
Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

FUNDAMENTALS OF
DISTRIBUTED OBJECT
SYSTEMS

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING

Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto

Surviving the Design of Microprocessor and Multimicroprocessor Systems:
Lessons Learned / Veljko Milutinovic

Mobile Processing in Distributed and Open Environments / Peter Sapaty

Introduction to Parallel Algorithms / C. Xavier and S. S. lyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from
Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

New Parallel Algorithms for Direct Solution of Linear Equations / C. Siva Ram
Murthy, K. N. Balasubramanya Murthy, and Srinivas Aluru

Practical PRAM Programming / Joerg Keller, Christoph Kessler, and
Jesper Larsson Traeff

Computational Collective Intelligence / Tadeusz M. Szuba

Parallel and Distributed Computing: A Survey of Models, Paradigms, and
Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective /
Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel
Systems / Martin Fleury and Andrew Downton

FUNDAMENTALS OF
DISTRIBUTED OBJECT
SYSTEMS
The CORBA Perspective

Zahir Tari

Omran Bukhres

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC.

New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

Designations used by companies to distinguish their products are often claimed as trademarks. In
all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in
initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

Copyright 2001 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic or mechanical, including uploading, downloading, printing,
decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the Publisher. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008,
E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional person should be sought.

ISBN 0-471-20064-6.

This title is also available in print as ISBN 0-471-35198-9.

For more information about Wiley products, visit our web site at www.Wiley.com.

Library of Congress Cataloging-in-Publication Data is available:

ISBN 0-471-35198-9 (cloth : alk. paper)

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

In the memory of my father Si’Hmanou Tari
To my mother Takh’lit Madaoui

In the memory of my role model, my father,
Abdussalam Ali Bukhres

Contents

FOREWORD xv

PREFACE xix

ACKNOWLEDGMENTS xxv

ACRONYMS xxvii

PART I BASICS OF CORBA 1

1. Introduction to Distributed Systems 3

1.1 Basics of Distributed Systems 3
1.1.1 Architectures 4
1.1.2 Characteristics 8
1.1.3 Advantages and Disadvantages 11

1.2 Distributed System Technologies 12
1.2.1 Socket 13
1.2.2 Remote Procedure Call 17
1.2.3 Remote Method Invocation 21
1.2.4 Distributed Computing Environment 23
1.2.5 Distributed Component Object Model 25

1.3 Summary 30

1.4 Review Questions 31

1.5 Exercises 31

2. Introduction to CORBA 32

2.1 Overall Picture 32

2.2 CORBA 1, CORBA 2, and CORBA 3 35

vii

viii CONTENTS

2.3 Object Management Group 36

2.3.1 Reference Object Model 36

2.3.2 Object Management Architecture 43

2.4 Common Object Request Broker Architecture 46

2.4.1 ORB Core 48

2.4.2 Interface Definition Language 49

2.4.3 Interface and Implementation Repositories 52

2.4.4 Object Adaptors 54

2.4.5 CORBA Interoperability 56

2.5 CORBA Binding 57

2.5.1 Binding of Transient IORs 57

2.5.2 Binding Persistent IORs 58

2.6 CORBA and Existing Technologies 60

2.6.1 DCE vs. CORBA 60

2.6.2 DCOM vs. CORBA 61

2.6.3 RMI vs. CORBA 62

2.7 Summary 62

2.8 Review Questions 63

2.9 Exercises 63

3. CORBA Programming 64

3.1 Overall Picture 64

3.2 Basic CORBA Programming 67

3.2.1 Interface Definition Language 67

3.2.2 Static Invocation Interface 85

3.2.3 Static Skeleton Interface 90

3.3 Dynamic Types 102

3.3.1 TypeCode 102

3.3.2 Type Any 103

3.4 Advanced CORBA Programming 106

3.4.1 Dynamic Invocation Interface 106

3.4.2 Dynamic Skeleton Interface 112

3.4.3 Interface and Implementation Repositories 118

3.5 Summary 124

3.6 Review Questions 125

CONTENTS ix

3.7 Exercises 125

PART II ADVANCED CORBA 127

4. Object Adaptors 129

4.1 Overall Picture 129

4.2 Architectures 131
4.2.1 Basic Object Adaptor 132
4.2.2 Portable Object Adaptor 133

4.3 Technical Issues 138
4.3.1 Overview 138
4.3.2 Basic Object Adaptor 141
4.3.3 Portable Object Adaptor 145

4.4 Database Adaptors 151

4.5 Summary 160

4.6 Review Questions 161

4.7 Exercises 161

5. CORBA Interoperability 162

5.1 Overall Picture 162

5.2 Domain 163

5.3 Bridge 164

5.4 Interoperability Protocols 166
5.4.1 Internet Inter-ORB Protocol 177
5.4.2 Environment Specific Inter-ORB Protocol 178

5.5 Interoperable Object Reference 179

5.6 Summary 181

5.7 Review Questions 181

5.8 Exercises 182

6. CORBA Caching 183

6.1 Overall Picture 183

6.2 Caching Issues and Techniques 185

6.3 Cache Replacement 187

x CONTENTS

6.3.1 Caching Consistency Algorithms 189
6.3.2 Other Issues 191

6.4 The Caching Approach 192

6.5 Architecture 193

6.6 Caching Model 196

6.7 Design 199

6.8 Testing 205

6.9 Summary 209

6.10 Review Questions 210

6.11 Exercises 210

PART III CORBA SERVICES 211

7. Naming Service 213

7.1 Background 213
7.1.1 Naming 214
7.1.2 Case Studies 217

7.2 Functions 220
7.2.1 Name Resolution 224
7.2.2 Binding and Unbinding Names 225
7.2.3 Creating and Deleting Naming Contexts 227
7.2.4 Listing the Context of a Naming Context 230

7.3 Summary 230

7.4 Review Questions 231

7.5 Exercises 231

8. Trading Object Service 232

8.1 Overall Picture 232
8.1.1 Basic Concepts 232
8.1.2 OMG vs. ODP 235

8.2 An Illustrative Example with JTrader 236
8.2.1 Definition of a Service Offer 236
8.2.2 Service Export 238
8.2.3 Service Import 242
8.2.4 Result Manipulation 244

CONTENTS xi

8.3 Architecture 246

8.3.1 Trader Components 249

8.3.2 Service Type Repository 259

8.3.3 Dynamic Property Evaluation 262

8.4 Constraints, Policies, and Preferences 263

8.5 Query Propagation 266

8.5.1 CORBA Query Routing 266

8.5.2 Semantic-based Query Routing 268

8.6 TOS Implementations 270

8.6.1 JTrader 270

8.6.2 TAO Trader 271

8.6.3 DOK Trader 272

8.7 Summary 274

8.8 Review Questions 275

8.9 Exercises 275

9. Event Service 277

9.1 Overall Picture 277

9.2 Push and Pull Models 280

9.2.1 DCE Event Management Service (XEMS) [81] 282

9.3 Architecture 284

9.3.1 Canonical Pull Model 286

9.4 Untyped Event Channel 287

9.4.1 Design Aspects 287

9.4.2 Implementation Aspects 290

9.5 Typed Event Channel 298

9.5.1 Design Aspects 298

9.5.2 Implementation Aspects 302

9.6 CORBA Event Service Implementations 307

9.6.1 OrbixTalk 307

9.6.2 TAOs Event Service 308

9.6.3 Electra 309

9.6.4 CyberBus 310

9.6.5 Orbix+ISIS 311

9.7 Discussion on QoS Issues 312

xii CONTENTS

9.8 Summary 314

9.9 Review Questions 314

9.10 Exercises 315

10. Object Transaction Service 316

10.1 Overview 316

10.2 Basics of Transactions 317

10.2.1 Concepts 317

10.2.2 Concurrency Control Protocols 320

10.2.3 Commit Protocols 323

10.3 OTS Concepts 326

10.3.1 Interface Hierarchy 326

10.3.2 Context Propagation 328

10.3.3 Transactional Objects 329

10.3.4 Recoverable Objects 330

10.3.5 Transactional and Recoverable Servers 332

10.4 Transaction Scenario 333

10.5 OTS Implementations 336

10.5.1 Iona Transaction Service 336

10.5.2 Microsoft Transaction Service 338

10.6 Summary 340

10.7 Review Questions 340

10.8 Exercises 341

11. Object Query Service 342

11.1 Overall Picture 342

11.2 Background on Query Processing 345

11.2.1 Overview 345

11.2.2 Execution Strategies 347

11.2.3 Query Architecture 351

11.2.4 Join Operators 352

11.3 OQS Languages 354

11.3.1 Object Query Language 354

11.3.2 OQL Algebra 356

CONTENTS xiii

11.4 OQS Components 358

11.4.1 QueryEvaluator 360

11.4.2 Collections and Iterator 361

11.4.3 QueryableCollection 363

11.4.4 QueryManager and Query Object 363

11.5 DOK Query Service 365

11.5.1 Query Execution Engine 365

11.5.2 Query Optimization 366

11.6 Summary 367

11.7 Review Questions 368

11.8 Exercises 369

REFERENCES 371

INDEX 377

Foreword

Innovations have been occurring at a predictable rate in certain technology domains
for many years. For example, Moore’s Law—where the capacity of general-purpose
computer chips has doubled every 18 months—is still going strong after three
decades. More recently, the speed of IP networks has been improving at an even
faster rate—known as Metcalf’s Law—where bandwidth increases by a factor of ten
every two years. At this point there is even a “bandwidth index,” similar to indices
that track the price/performance of other commodities, such as petroleum or elec-
tricity. The steady advance in these technologies is remarkable and is due in no small
part to decades of synergistic research, development, and education by academic,
industrial, and government partners around the world.

There are, however, important domains—particularly software-intensive dis-
tributed systems in telecommunications, health care, aerospace, and online financial
services—that are not improving at the same rate as Moore’s Law or Metcalf’s Law,
due to a variety of inherent and accidental complexities, such as partial failures,
distributed deadlock, and non-portable programming APIs. Consequently, although
computer and network hardware keeps getting smaller, faster, cheaper, and better at
a predictable pace, complex distributed software systems seem to get bigger, slower,
more expensive, and buggier, and the innovation cycles are hard to predict.

An appropriate metaphor for the challenges of software-intensive distributed sys-
tems appears in the movie Apollo 13, starring Tom Hanks. After an explosion in the
command module forces the crew into the lunar module, the carbon dioxide levels
grow dangerously high due to a broken air scrubber. At this crucial moment, a man-
ager at Johnson space center walks into a room full of engineers and scientists sitting
around a table and dumps out a bag containing common components—such as tooth-
paste, Tang, and duct tape—found on the lunar module. He tells the group they’ve
got eight hours to take these components and assemble an air scrubber that will fit
into the appropriate opening, and if it is not right the first time, everyone is going to
die!

Increasingly, developers of complex software-intensive distributed systems—
especially large-scale mission-critical “systems of systems”—are facing challenges
analogous to those of the Apollo 13 engineers and scientists. In particular, time-
to-market pressures and competition for consumers and personnel have created a
situation where distributed systems must be developed using a large number of
commodity-off-the-shelf (COTS) components, which are not developed in-house

xv

xvi FOREWORD

and whose quality can thus rarely be controlled directly. Yet, just like the Apollo
13 engineers and scientists, we must quickly and robustly master the principles,
patterns, and protocols necessary to thrive in a COTS-centric environment because
our livelihood—and sometimes even our lives—depend upon our success.

Over the past decade, various techniques and tools have been developed to allevi-
ate many accidental and inherent complexities associated with distributed software
systems. Some of the most successful of these techniques and tools center on dis-
tributed object computing (DOC) middleware, which resides between applications
and the underlying operating systems, protocol stacks, and hardware devices to sim-
plify and coordinate how these components are connected and how they interoperate.
Just as communication protocol stacks can be decomposed into multiple layers, so
too can DOC middleware be decomposed into the following layers:

• Infrastructure middleware, which encapsulates and enhances native OS com-
munication and concurrency mechanisms to create object-oriented (OO) net-
work programming components, such as reactors, acceptor-connectors, monitor
objects, active objects, and component configurators. These components help
eliminate many tedious, error-prone, and non-portable aspects of developing
and maintaining networked applications via low-level OS programming API,
such as Sockets or POSIX pthreads. Widely-used examples of infrastructure
middleware include Java virtual machines (JVMs) and the ADAPTIVE Com-
munication Environment (ACE).

• Distribution middleware, which use and extend the infrastructure middleware to
define a higher-level distributed programming model. This programming model
defines reusable APIs and components that automate common end-system net-
work programming tasks, such as connection management, (de)marshaling,
demultiplexing, end-point and request demultiplexing, and multithreading.
Distribution middleware enables distributed applications to be programmed
using techniques familiar to developers of standalone applications, i.e., by
having clients invoke operations on target objects without concern for their
location, programming language, OS platform, communication protocols and
interconnects, and hardware. At the heart of distribution middleware are Ob-
ject Request Brokers (ORBs), such as Microsoft’s Component Object Model
(COM)+, Sun’s Java remote Method Invocation (RMI), and the OMG’s Com-
mon Object Request Broker Architecture (CORBA), which is a key focus of
this book.

• Common middleware services, which augment distribution middleware by
defining higher-level domain-independent services, such as event notifications,
logging, multimedia streaming, persistence, security, global time, real-time
scheduling and end-to-end quality of service (QoS), fault tolerance, concur-
rency control, and transactions. Whereas distribution middleware focuses
largely on managing end-system resources in support of an OO distributed
programming model, common middleware services focus on managing re-
sources throughout a distributed system. Developers can reuse these services
to allocate, schedule, and coordinate global resources and perform common

FOREWORD xvii

distribution tasks that would otherwise be implemented in an ad hoc manner
within each application.

• Domain-specific services, which are tailored to the requirements of particular
domains, such as telecommunications, e-commerce, health care, process au-
tomation, or aerospace. Unlike the other three OO middleware layers—which
provide broadly reusable “horizontal” mechanisms and services—domain-
specific services are targeted at vertical markets. Domain-specific services
are the least mature of the middleware layers today, due partly to the histor-
ical lack of distribution middleware and common middleware service stan-
dards, which provide a stable base upon which to create domain-specific
services. Since these services embody knowledge of application domains,
however, they can significantly increase system quality and decrease the cycle-
time and effort required to develop particular types of distributed applica-
tions.

As these DOC middleware layers mature they are becoming COTS products that
are readily available for purchase or open-source acquisition. COTS DOC middle-
ware has become essential in software development organizations that face strin-
gent time and resource constraints since it helps amortize software life-cycle costs
by leveraging previous development expertise and concentrating research efforts
that improve quality and performance. Ultimately, this R&D process will result in
software-intensive distributed systems that get smaller, faster, cheaper, and better at
a predictable pace, just as computer and network hardware do today.

The following factors have helped improve the quality and performance of COTS
DOC middleware products during the past decade:

• Maturation of DOC middleware standards—DOC middleware standards have
matured considerably in recent years. For instance, the OMG has adopted spec-
ifications for CORBA that reduce ORB footprint, improve fault tolerant behav-
ior, reserve real-time connection and threading resources, and expose various
types of QoS policies to applications.

• Maturation of DOC middleware patterns and frameworks—A substantial
amount of R&D effort has focused on patterns and frameworks for DOC
middleware and applications. As these patterns mature and become instantiated
in COTS framework components, they have helped improve the efficiency,
scalability, predictability, and flexibility of DOC middleware.

Until recently, however, it has been hard to instructors and students to learn how
to use DOC middleware effectively without dedicating substantial time and effort.
One problem has been that DOC middleware APIs, capabilities, and best practices
have existed largely in the programming folklore, the heads of expert developers,
or scattered throughout articles in trade magazines and web sites. Another problem
is that existing books on DOC middleware and CORBA are intended as guides for
industry practitioners rather than as textbooks for students. Thus, many important
theoretical and fundamental distribution issues are not covered in these books.

xviii FOREWORD

In a highly competitive information technology economy, educating students to
become effective distributed software developers is increasingly important. Premium
value and competitive advantage is accruing to individuals, universities, companies,
and even countries that can quickly master the principles, patterns, and protocols nec-
essary to integrate COTS middleware to create complex DOC applications that can-
not be bought off-the-shelf yet. Success in this endeavor requires close collaboration
between researchers and practitioners, which is why I’m delighted that Zahir Tari
and Omran Bukhres have written Fundamentals of Distributed Object Systems: The
CORBA Perspective to help educate researchers and developers of next-generation
information technologies.

This book uses CORBA to illustrate the theory and practice of distribution mid-
dleware and many common middleware services, as follows:

• The coverage of CORBA’s distribution middleware is split into two parts: (1)
fundamental aspects of the CORBA reference model, such as the CORBA inter-
face definition language (IDL), object references, and standard interoperability
protocols and (2) advanced CORBA features, such as portable object adapters,
client caching, and enhanced communication protocols. This material provides
much more than a rehash of the standard CORBA APIs—it also describes the
key technical concepts, underlying theoretical foundations, and common solu-
tions related to challenges encountered when developing and integrating inter-
operable software.

• The coverage of common middleware services focus on a wide range of
CORBA’s objects services, such as the CORBA Naming, Trading, Events,
Transaction, and Query services. For most of these services, this book de-
scribes the corresponding architectures and basic elements. It also shows how
such services can be implemented and presents lessons that can be learned and
generalized when developing domain-specific services and distributed applica-
tions.

By study, mastering, and applying the material in this book, you’ll be able to
design and implement distributed applications more rapidly and effectively.

We are fortunate that Zahir and Omran have found time in their busy professional
lives to write an outstanding textbook on DOC middleware and CORBA. If you
want thorough coverage of the DOC middleware technologies that are shaping next-
generation distributed systems read this book. I’ve learned much from it, and I’m
confident that you will too.

Douglas C. Schmidt
University of California, Irvine

Preface

CORBA, the acronym for the Common Object Request Broker Architecture, is the
result of a standardization consortium, called OMG (Object Management Group),
involving more than six hundred international software companies. OMG aims to
produce and set up an architecture and a set of standards for open distributed systems
enabling interoperability across different hardware and software vendor platforms.

This book presents the theoretical and technical views of the CORBA technology,
including the architecture (the Object Management Architecture), the main techni-
cal issues (e.g., adaptor, interoperability, caching) and the different services for the
management of heterogeneous and distributed objects (naming, trading, query and
transaction management). We also present the technical foundations of the main is-
sues related to the design and implementation of large-scale distributed applications,
and give details about how specific parts of a CORBA system can be designed.

This book will be valuable to the reader who is interested in understanding the
foundations of the CORBA technology and whose aim is to perform advanced re-
search on one of the technical issues related to such a technology (caching, trading,
etc.). Or the reader may just want to learn how to program advanced distributed appli-
cations, and therefore the aim is to understand the basic “programming techniques”
for building heterogeneous distributed applications. The reader may want to find out
as much as possible about the CORBA technology and to get a “technical” inside
view of its different aspects (architectural, design etc.).

The eleven chapters of this book provide answers to questions that most people
are asking, including our students at RMIT and Purdue University:

• What is CORBA?
• Why do we need CORBA?
• What do we need to know in order to understand the “inside” of CORBA?
• What do we need to know in order to implement distributed applications?

Our aim is to provide detailed and technical answers to these questions. The book
is organized into three parts. The first part describes the CORBA basics, such as the
foundations of distributed systems, CORBA Architecture details, and CORBA pro-
gramming. This part provides the first step in understanding all the aspects related
to the CORBA technology as well as how to implement distributed applications by

xix

xx PREFACE

using different CORBA components such as the Static Skeleton Interface, Dynamic
Invocation Interface, Dynamic Skeleton Interface, and Interface Repository. The sec-
ond part covers specific issues related to CORBA, including Object Adaptor, Interop-
erability, Caching and Load balancing. Finally, the last part describes some important
CORBA services, such as naming, trading, transaction and query services.

HOW TO USE THE BOOK

There are many ways to use this book on distributed objects. Basically there are three
blocks of chapters, with each referring to a certain level of technicality for CORBA.
Block I involves introductory chapters that, as ordered in the figure below, provide a
good understanding of the basics of distributed objects. Readers familiar with con-
cepts of distributed systems can skip Chapter 1 and start from Chapter 2 and cover
Chapters 3, 5, and 7. These four chapters of the first block cover all the necessary de-
tails on the main concepts related to CORBA distributed object systems: the CORBA
chapter covers architectural concepts and issues of distributed object systems; Chap-
ter 3 explains how to implement CORBA-based applications; Chapter 5 explains
how different distributed object systems communicate with each other, and finally,
Chapter 7 explains how objects identified by their “object names” can be used by
applications.

After the concepts illustrated in the chapters of Block I are well understood, we
suggest readers move to another level of technicality. The chapters of Block II pro-
vide a more advanced view of distributed objects.

 Chapter 1 (Introduction to Distributed Systems)

Chapter 2 (Introduction to CORBA)

Chapter 3 (CORBA Programming)

Chapter 5 (CORBA Interoperability)

Chapter 7 (Naming Service)

Chapter 4 (Object Adaptors)
Chapter 8 (Trading Object Service)

Chapter 10 (Object Transaction Service)
Chapter 11 (Object Query Service)

Block II

Block I

Block III

(2 Hours)

(3 Hours)

(6 Hours)

(2 Hours)
(2 Hours)

(3 Hours)
(3 Hours)
(3 Hours)

(3 Hours)

(3 Hours)
(4 Hours)

Chapter 9 (Event Service)

Chapter 6 (CORBA Caching)

PREFACE xxi

Chapter 4 goes into details on one of the major components of CORBA systems—
the Object Adaptors. The remaining chapters of Block II address the issues of service
retrieval in large-scale distributed systems as well the communication across hetero-
geneous distributed systems.

Block III contains chapters that need to be read after the basic and advanced con-
cepts of distributed objects are well understood. They require a deep understanding
of different aspects covered in Blocks I and II, including programming aspects and
architectural aspects. Chapter 6 shows how distributed object applications can be
made efficient by extending client proxies. Chapter 10 covers issues of robustness
and reliability of transactions in distributed object applications. Chapter 11 explains
how CORBA and Database technologies can be (partially) integrated.

For undergraduate students, all the chapters of Block I will need to be covered
in detail. The instructor can add additional chapters from Block II according to the
order of how they are listed in the figure. Some chapters of the second and third
blocks can be assigned as reading material, for example, Chapters 8, 9, and 6.

For postgraduate students, we suggest covering a few chapters of Block I to be
covered in the first two or three lectures. Chapters 2 and 5 can be such chapters. If
students are familiar with Java, then some of the implementation concepts of pro-
gramming can be covered as an assignment (e.g., an assignment covering both DII,
DSI and the look up of the Interface Repository, where students will build a com-
plex application using such concepts). The remaining lectures will need to cover the
chapters of Block II and Block III.

ORGANIZATION OF THE BOOK

Part I is dedicated to the basics of CORBA and contains technical concepts neces-
sary for a good understanding of distributed systems and distributed object systems.
Chapter 1 introduces the main elements of distributed systems and aims at provid-
ing readers with appropriate background to better understand the remaining chap-
ters of this book. Detailed descriptions of existing distributed system technologies,
such as Socket, Remote Procedure Call, Remote Method Invocation, are also pro-
vided. Chapter 2 is the first step into the CORBA world. It draws a general picture
of CORBA and describes in more detail the main elements of the CORBA archi-
tecture, such as Interface Definition Language (IDL), Object Request Broker (ORB)
and Interface and Implementation Repositories. The concept of object binding is
presented in the CORBA context, and different approaches supported by existing
CORBA-compliant systems are explained, such as the binding of transient object ref-
erences and the binding of persistent object references. Chapter 3 demonstrates how
to design and implement distributed object applications using a Java-based CORBA
system, OrbixWeb. It is the only chapter of this book that provides program codes.
A step-by-step implementation of a complete application is proposed: first, basic
programming techniques are illustrated and later more advanced ones are proposed,
such as programming with DII (Dynamic Invocation Interface), programming with
DSI (Dynamic Skeleton Interface) and programming with the Interface Repository.

xxii PREFACE

Part II is about advanced topics in CORBA—adaptors, interoperability and
caching. CORBA adaptors provide interface flexibility and management. Chap-
ter 4 describes the main issues related to the design of adaptors and later discusses
the two architectures: BOA and POA. Both these architectures are explained and
compared to each other with regard to a set of criteria, such as object/servant man-
agement, object grouping, request redirection and multi-threading. At the end of the
chapter, a POA extension to deal with database issues, such as persistence of ob-
ject references, is given. Chapter 5 explains the inter-ORB communication protocol
which is based on the standard IIOP (Internet Inter-ORB Protocol). An ORB can
implement additional communication protocols. The structure of IOR (Interoperable
Object References), which enables invocations to pass from one ORB to another,
is discussed. Chapter 6 is about CORBA performance. It discusses how to make
CORBA applications efficient by caching remote objects and therefore make them
locally accessible through appropriate proxies. Caching relates to the way proxies
(e.g., client proxy and server proxy) and the ORB perform invocations. Chapter 6
describes a specific design for CORBA caching. A FIFO-based removal algorithm
is discussed, and this uses a double-linked structure and hash table for eviction. A
variation of optimistic two-phase locking for consistency control is proposed. This
protocol does not require a lock at the client side by using a per-process caching
design.

Part III is about the Common Object Services Specification (COSS). CORBA
provided a standard for several distributed services. This part describes some of the
important CORBA services, such as the Naming Service, Event Service, Trading
Service, Object Transaction Service, and Object Query Service Chapters 7 and 8 de-
scribe the CORBA Naming and Trading services, respectively. These services pro-
vide appropriate functionalities to share information available in different servers.
Users can browse, retrieve, and update object references by using the different op-
erations of the interface provided by the Naming or Trading Services. Chapter 7
enables a transparent access to objects and offers facilities to retrieve objects based
on their names. Chapter 8 provides “matchmaking” services for objects. Each object
is recorded with appropriate information and the role of the trader is to find the best
match for the client, based on the context of the request service and the offers of the
providers. Chapter 8 starts with an illustrative example and shows how a trader can
be used to locate services. The different steps of this example are illustrated with
JTrader, a Java-based CORBA Trading Service. Later sections describe the elements
of the CORBA trader architecture as well as the issues related to efficiency and scal-
ability of CORBA Traders (e.g., clustering, query propagation). Chapter 9 covers the
CORBA Event Service, which offers sophisticated communication between ORB
objects. This chapter provides details of the following aspects: the event architec-
ture, the different communication semantics (e.g. synchronous, asynchronous, and
deferred invocations), and the different communication models (Push/Pull and hy-
brid models). A few implementations of the CORBA Event Service are described.
Chapter 10 is about the CORBA Object Transaction Service (OTS). This service is
one of the essential parts of most of distributed systems, including those supporting
business applications such as OLTP (On-Line Transaction Processing). This chapter

PREFACE xxiii

starts with a background on transactions, including the different transaction models
(such flat and nested models), different concurrency control and commit protocols.
Later, a detailed discussion on the CORBA OTS is provided, and this covers the
description of the different elements of this service. The last section overviews two
implementations, one related to the Iona’s product and the other one is the Microsoft
counterpart of the OTS, called MTS (Microsoft Transaction Service). Chapter 11,
the last chapter of Part III, describes a service which can be qualified as a “data-
oriented” service, that is, the Object Query Service. This service enables integration
of databases by using a standard query language (such as the ODMG’s Object Query
Language, denoted as OQL). The first two sections of this chapter describe the main
query processing techniques used in distributed databases. This may help the reader
to understand the important issues as well as solutions related the processing of het-
erogeneous databases. Later sections provide a detailed description of the elements
of CORBA’s Object Service.

Acknowledgments

We gratefully acknowledge all the people directly or indirectly involved in the prepa-
ration of this book. Many people from RMIT and Purdue helped tremendously. In
particular, we would like to thank our former students who have reviewed some sec-
tions of this book and made valuable suggestions for improvement. Special thanks
go to RMIT students:

l Suryadinata Setiawan, who implemented the CODAR database adaptor, and
made contributions to Chapters 1, 2, 3, and 4, as well as reviewed questions,
exercises, and answers to both of them for all chapters in the book.

. David Lin, for his work on CORBA caching, including the design of the caching
model and the implementation and testing of the model.

l Greg Craske and Kiran, who did extensive work on the CORBA Trading Object
Service, and in particular, for the issues of clustering and query routing.

l Sunny Bains for his work on the CORBA Event Service, including the design
and implementation of the typed and untyped event channels.

We would like to thank our graduate students Christina Davenport, Srinivasan
Sikkupparbathyam, Marcel0 Areal, Eric Lynch, and Lara Atallah for their readings
and tremendous feedback. We also would like to thank Frank Oreovicz and Michelle
Boshears for their qualified English editing.

The most important support that made this whole book possible came from our
families. We would also like to thank our respective employers for providing us with
an appropriate environment and their support for this book.

And as always, a special expression of deep and sincere gratitude goes to Allah
almighty for all his help and guidance.

ZTARI
O.BUKHRES

Acronyms

BOA Basic Object Adaptor

COM Microsoft’s Component Object Model

CORBA Object Request Broker Architecture

toss Common Object Services Specification

DCE Distributed Computing Environment

DCOM Microsoft’s Distributed COM
FIFO First In First Out

GIOP General Inter-ORB Protocol

HTTP Hypertext Transfer Protocol

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

LRU Last Recently Used

ODMG Object Database Management Group

OQS Object Query Service
OODBMS Object Oriented Database Management System

OMA Object Management Architecture

OMG Object Management Group

ORB Object Request Broker

OTS Object Transaction Service

02PL Optimistic 2PL

2PL Two Phase Locking

POA Portable Object Adaptor

RDBMS Relational Database Management System

RMI Remote Method Invocation

RPC Remote Procedure Call

STR Service Type Repository

TCP/IP Transport Control Protocol/Internet Protocol

TOS Trading Object Service

UML Unified Modeling Language

xxvii

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

PART I

BASICS OF CORBA

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 1

Introduction to Distributed Systems

The advent of computers was motivated by the need to perform complex data cal-
culations and processing quickly. Once their usage to perform these tasks is ubiqui-
tous, the next computing breakthroughs are spurred by the necessity to collaborate
with other computers via a network. The earliest solutions are based on a model
called centralized systems, in which a single computer with one or multiple CPUs
processes all incoming requests. However, reasons such as cost, reliability, and the
separate nature of the divisions that makes up organizations using the systems causes
this model to be less attractive. Another model, called distributed systems, addresses
these issues with its distribution. Instead of having one single powerful computer,
distributed systems employ multiple computers communicating to each other via a
common network. The independent, distributed, and sometimes heterogeneous na-
ture of these computers also underlies the importance of having a distributed system
software to provide a common view of the systems.

This chapter serves as a brief introductory overview of distributed systems. The
first section explains the basic ideas of distributed systems. The second section com-
pares different solutions of a distributed system software, called middleware: Sock-
ets, RPC, RMI, DCOM, and CORBA.

1.1 BASICS OF DISTRIBUTED SYSTEMS

A distributed system is a collection of autonomous computers linked by a network
and equipped with distributed system software [22]. A distributed system is the oppo-
site of a centralized system, which consists of a single computer with one or multiple
powerful CPUs processing all incoming requests. The distributed system software
enables the comprising computers to coordinate their activities and to share system
resources. A well-developed distributed system software provides the illusion of a
single and integrated environment although it is actually implemented by multiple
computers in different locations. In other words, the software gives a distribution
transparency to the systems.

3

4 INTRODUCTION TO DISTRIBUTED SYSTEMS

1.1.1 Architectures

The definition and implementations of distributed systems evolve from the system
where remote terminals or minicomputer, independently carrying out some opera-
tions and periodically communicating with mainframes in batch mode. Between the
late 1970s and the early 1980s, the notion of distributed systems was synonymous
with distributed processing, that is, a request processing technique where a request is
broken into subtasks which will be processed by multiple machines. During this pe-
riod, a distributed system was interconnected in either the star, hierarchical, or ring
structure. As shown by Figure 1.1, each remote terminal in star structure is connected
to the central computer via a modem. Figure 1.2(a) depicts a distributed system with
hierarchical structure.

One or more locations have their own minicomputers. Each minicomputer at these
locations is connected to a central computer via leased phone lines. The minicom-
puter periodically sends the required summary data, for example, daily sales, to the
central computer. Figure 1.2(b) illustrates a distributed system interconnected in a
ring structure consisting of autonomous computers linked in a peer-to-peer fashion.
Examples of peers are mainframes, mid-range machines and PCs.

Distributed system types of this period range from functional distribution, cen-
trally controlled, integrated systems, to non-integrated systems. A distributed system
with functional distribution has some of its functions distributed, but not the capa-
bility to process a complete transaction. The system employs intelligent terminals
or controllers to perform message editing, screen formatting, data collection, dia-
logue with terminal operators, some security functions, and message compaction. A
centrally controlled distributed system is viewed as a collection of peripheral small
computers, which might be capable to completely process. Each of them is sub-

Modem

Terminal

Modem

Terminal

Modem

Terminal

Central Computer

Modem

Terminal

Modem

Terminal

Modem

Terminal

Figure 1.1 Star structure.

BASICS OF DISTRIBUTED SYSTEMS 5

MinicomputerMinicomputerMinicomputer

Central Computer

Terminal Terminal

Phone Line
Leased

Terminal Terminal

Mainframe

Terminal

(a) (b)

MinicomputerMinicomputer

Figure 1.2 (a) Hierarchical structure; (b) ring structure.

ordinate to a higher level computer in the overall system structure. An integrated
distributed system consists of separate systems which have an integrated design of
the data located in different systems, and possibly of the data in different programs
as well. A non-integrated distributed system comprises independent systems which
are connected by a computer network.

The meaning and implementations of distributed systems started to change in the
period between mid to late 1980s. The idea of distributed systems represents a system
ranging from a separate, geographically dispersed applications cooperating with each
other, to a single application formed by the cooperation of geographically dispersed
but relatively independent, stand-alone, and component programs. A distributed sys-
tem of this period has four types of structural and interconnection configurations.
The first one, which is shown in Figure 1.3(a), is a mainframe connected to personal
computers with certain functions or applications are off-loaded from the mainframe
into the PCs.

Another type is PCs connected to a mid-range machine, which, in turn, is con-
nected to a mainframe. As depicted in Figure 1.3(b), all of them are organized in a
hierarchical structure with one root and as one moves closer toward the root, have an
increasing computing power, function, and possibly control is implied.

Users of these PCs manipulate the mid-range machine to access applications and
data backup of one department. The mid-range delivers data to the mainframe which
handles enterprise level processing. Figure 1.4(a) illustrates the next type of struc-
tural and interconnection configurations.

A distributed system of this type is arranged as a connection of peers which have
different details of interconnection and dependency. However, no clear central point
of control exists in the system. As shown in Figure 1.4(b), the last type is a collec-

6 INTRODUCTION TO DISTRIBUTED SYSTEMS

Mainframe Handle Enterprise
Level Processings

Handle Departmental
Level Processings

Mid-range Mid-range Mid-range

PC PC PC

Level Processings
Handle User

(b)

PC PC PC

Mainframe

(a)

Figure 1.3 (a) Structural and inter-connection configuration comprising of a mainframe and
its connected PCs; (b) hierarchical structure and interconnection configuration.

tion of peer hierarchies. Each of the mainframe or mid-range machines exhibits a
hierarchical configuration and is connected to a collection of PCs.

Distributed systems underwent a final evolution around the late 1980s. As shown
in Figure 1.5(a), each site in the early distributed systems of this period contained
one or multiple individual software providing access to its resources.

Later, the granularity of distribution control became more fine-grained, enabling
functions of a single software to be distributed across the network. Thus, as Fig-
ure 1.5(b) illustrates, the current distributed system now consists of autonomous
computers which are linked by a network. The software used by this system is di-
vided into multiple components, each residing at a different site.

BASICS OF DISTRIBUTED SYSTEMS 7

Mid-range Mid-range Mid-range

PC PC PC PCPC

Mainframe

PC

Various Interconnections and Dependencies

Mainframe

Mid-rangePC

(a)

(b)

Figure 1.4 (a) Connection of peers structure and inter-connection configuration; (b) connec-
tion of hierarchical peers structure and inter-connection configuration.

= Software Component

Site 1 Site 2

Site 4Site 3Site XSite 1

(a) (b)

Figure 1.5 (a) A distributed system in pre-late 1980s; (b) a distributed system today.

8 INTRODUCTION TO DISTRIBUTED SYSTEMS

1.1.2 Characteristics

A distributed system has six important characteristics [22]: (1) resource sharing, (2)
openness, (3) concurrency, (4) scalability, (5) fault tolerance, and (6) transparency.
These characteristics are not automatic consequences of distribution. Instead, they
are acquired as a result of of a careful design and implementation.

Resource Sharing Resources provided by a computer which is a member of a
distributed system can be shared by clients and other members of the system via a
network. In order to achieve effective sharing, each resource must be managed by
a software that provides interfaces which enables the resource to be manipulated
by clients. Resources of a particular type are managed by a software module called
resource manager, which performs its job based on a set of management policies and
methods.

Openness Openness in distributed systems is the characteristic that determines
whether the system is extendible in various ways. This characteristic is measured
mainly by the degree to which new resource sharing services can be incorporated
without disruption or duplication of existing services. The opposite of an open dis-
tributed system is a closed distributed system. The set of features and facilities pro-
vided by a closed distributed system stay static overtime. New features and facilities
cannot be added into the system. This prevents the system from providing any new
resources other than those which are already made available. The openness of a dis-
tributed system can be viewed from two perspectives: hardware extensibility and
software extensibility. The former is the ability to add hardware from different ven-
dors to a distributed system, while the latter is the ability to add new software or
modules from different vendors to a distributed system.

A system is considered being open if its key software interfaces are published, that
is, the interfaces are specified, documented, and made available publicly to software
developers. This process is similar to the process of standardizing these interfaces
since both make the interfaces publicly available. However, the former does not re-
quire the interfaces to pass official standardization process before they are made
available. An example of more open systems are UNIX systems. Resources of these
system are used via system calls, that is, a set of procedures which are made avail-
able to programs and other languages that support conventional procedure facilities.
UNIX systems are able to handle a newly added type of hardware by adding new
systems calls or new parameters to existing system calls. These systems calls are im-
plemented by one module of the UNIX called kernel. However, unless access to the
source code is available (like in the case of Linux Operating System (OS)), the ker-
nel is fixed and inextensible. Therefore, the design of the kernel determines the range
and the level of supports for different resource types available to UNIX applications.
The availability of interprocess communication facilities in UNIX widens the scope
for achieving openness. It allows resources that are not accessible through system
calls to be manipulated via the interprocess communication facilities instead. It also
enables resources on machines with different hardware and software to be used as
long as the necessary interprocess communication facilities are available.

BASICS OF DISTRIBUTED SYSTEMS 9

Concurrency Concurrency is the ability to process multiple tasks at the same
time. A distributed system comprises multiple computers, each having one or mul-
tiple processors. The existence of multiple processors in the computer can be ex-
ploited to perform multiple tasks at the same time. This ability is crucial to improve
the overall performance of the distributed system. For example, a mainframe must
handle requests from multiple users, with each user sending multiple requests at
the same time. Without concurrency, performance would suffer, since each request
must be processed sequentially. The software used must make sure that an access
to the same resource does not conflict with others. All concurrent access must be
synchonized to avoid problems such as lost update (two concurrent access update
the same data, but one of the updates is lost), dirty read (one access updates the data
read by another access, but the former fails and affects the latter), incorrect summary
(a set of data is updated by an access while the set is being processed by another
access), and unrepeatable read (an access reads data twice, but the data are changed
by another access between the two reads) [29].

Scalability Scalability in distributed systems is the characteristic where a system
and application software need not to change when the scale of the system increases.
Scalability is important since the amount of requests processed by a distributed sys-
tem tends to grow, rather than decrease. In order to handle the increase, additional
hardware and/or software usually needed. However, this does not mean throwing
more hardware and more software into the system would resolve the issue of scala-
bility. In fact, a system which is not scalable does not utilize the additional hardware
and software efficiently to process requests. This is because the system is not de-
signed to expand. Such a system will eventually hit its processing capability limits
and its performance starts to degrade. On the other hand, a system is said to be scal-
able if it provides flexibilities to grow in size, but still utilize the extra hardware and
software efficiently. The amount of flexibilities the system has determines the level
of scalability it provides.

Fault Tolerance Fault Tolerance in distributed systems is a characteristic where
a distributed system provides an appropriately handling of errors that occurred in the
system. A system with good fault tolerance mechanisms has a high degree of avail-
ability. A distributed system’s availability is a measure of the proportion of time that
the system is available for use. A better fault tolerance increases availability. Fault
tolerance is achieved by deploying two approaches: hardware redundancy and soft-
ware recovery. The former is an approach to prevent hardware failures by means
of duplication. Although expensive, this technique improves availability since one
or multiple dedicated hardware stand ready to take over the request processing task
when a failure occurs. For example, an application might use two interconnected
computers where one of them is acting as a backup machine in case the other is
unable to process requests. Software recovery is an approach where software is de-
signed to recover from faults when they are detected. Even so, a full recovery may
not be achieved in some cases. Some processing could be incomplete and their per-
sistent data may not be in a consistent state.

10 INTRODUCTION TO DISTRIBUTED SYSTEMS

Transparency Transparency is the concealment of the separation of components
in a distributed system from the user and the application programmer such that the
system is perceived as a whole rather than as collection of independent components.
As a distributed system is separated by nature, transparency is needed to hide all
unnecessary details regarding this separation from users. The term information ob-
ject is used to denote the entity to which the transparency can be applied to. There
are eight forms of transparency in distributed systems. The first one is access trans-
parency, which enables local and remote information objects to be accessed using
identical operations. The second one is location transparency, which enables infor-
mation objects to be accessed without the knowledge of their location. These first two
forms of transparency are also known as network transparency. They provide a sim-
ilar degree of anonymity for resources found in centralized computer systems. Their
existence or inexistence have a strong effect on the utilization of a distributed sys-
tem’s resources. The third transparency is concurrency transparency, which enables
several processes to operate concurrently using shared information objects without
interference between them. Replication transparency enables multiple information
objects to be used to increase reliability and performance without knowledge of the
replicas by users or application programs. Failure transparency hides faults and al-
lows users and application programs to complete their tasks even though a hardware
or software failure occurs. Migration transparency permits information objects to
be moved within a system without affecting the operation of users or application
programs. Performance transparency permits a distributed system to be reconfig-
ured to improve performance as the load fluctuates. Finally, scaling transparency
permits the system and application to expand in scale without changing the sys-
tem structure and application algorithms. For example, consider an e-mail address
of amazigh@cs.rmit.edu.au. Users need not to know about the physical address of
machine that must be contacted to deliver an e-mail to this address, nor do they need
to know how the e-mail is actually sent. Thus, an e-mail address has both location
and access transparency, that is, network transparency.

The presence or absence of the resource sharing, open, and transparent charac-
teristics explained above influences how heterogeneities of a distributed system are
addressed. The existence of resource sharing increases the need for the system to be
more open. This is because sharable resources of this system are almost certainly
made up of hardware and software from different vendors. Without the openness,
these resources cannot be used by clients if they are based on technologies from ven-
dors different from those resources. Another problem is that hardware and software
of various vendors will not be able to be incorporated into the system, especially
in cases where legacy systems exist. Having an openness in the system facilitates
the mix-and-match of hardware and software. This allows the system to take advan-
tage of the best features from different products, regardless who their vendors are.
The last characteristic that determines a distributed system’s approach to its hetero-
geneities is transparency. If the transparency is not available, clients will be exposed
to the complexities of multiple technologies underlying the system. As a result, the
system becomes harder to use and requires a lot of training. This could reduce, even
eliminate the lure of the distributed systems model completely.

BASICS OF DISTRIBUTED SYSTEMS 11

1.1.3 Advantages and Disadvantages

The trend of distributed systems is motivated by the potential benefits that they could
yield. These benefits are [83][101]:

• Shareability: Shareability in distributed systems is the ability that allows the
comprising systems to use each other’s resources. This sharing takes place on
a computer network connected to each system, using a common protocol that
governs communications among the systems. Both the network and the protocol
are respectively the common communication medium and the common protocol
that facilitate sharing. The Internet is a good example of a distributed system.
Each computer that wishes to use and/or share resources must be connected to
the network and understand TCP/IP.

• Expandability: Expandability of a distributed system is the ability that permits
new systems to be added as members of the overall system. Foreseeing all re-
sources that will ever be provided is often not feasible. It also influences the
ability to determine what level of processing power the host machines must
have. A distributed system might end up providing unused resources on ma-
chines with under-capacity utilization. Such waste of time and money is re-
solved by giving the freedom to add shared resources only when they are really
needed.

• Local Autonomy: A distributed system is responsible to manage its resources. In
other words, it gives it’s systems a local autonomy of their resources. Each sys-
tem can apply local policies, settings, or access controls to these resources and
services. This makes distributed systems ideal for organizations whose struc-
ture consists of independent entities located in different locations. For example,
multinational companies might have their systems scattered in different loca-
tions, each managing the affairs of a particular branch.

• Improved Performance: As the number of clients accessing a resource in-
creases, the response time starts to degrade. The conventional ways of main-
taining the response time, for example, upgrading the host machine, can be
used to offset this effect. This is further improved with techniques such as
replication, which allows the same resources to be copied, and load balancing,
which distributes access requests among these copies. The separate nature of
distributed systems is also helpful since resources exist in different machines.
Requests for these resources are sent to different machines, making the request
processing to be naturally distributed. Finally, the number of computers in a
distributed system benefits the system, in terms of its processing power. This is
because the combined processing power of multiple computers provides much
more processing power than a centralized system. The limit of which a single
computer can be installed with multiple CPUs prohibit an endless increase of
its processing power.

• Improved Reliability and Availability: Disruptions to a distributed system do
not stop the system as a whole from providing its resources. Some resources
may not be available, but others are still accessible. This is because these re-

12 INTRODUCTION TO DISTRIBUTED SYSTEMS

sources are spread across multiple computers where each resource is managed
by one computer. If these resources are replicated, the disruption might cause
only minimum impact on the system. This is because requests can be diverted
to other copies of the target resources.

• Potential Cost Reductions: The first advantage of distributed systems over cen-
tralized systems is cost effectiveness. As Grosch’s law states, the computing
power of a single CPU is proportional to the square of its price. Thus, one CPU
X, which has four times the performance of one CPU Y, can be acquired at
twice the cost of CPU Y. However, this law became invalid when microproces-
sors were introduced. Paying double price yields only a slightly higher speed,
not four times of the CPU performance. Therefore, rather than paying more
for a single CPU, the most cost-effective way of achieving a better price to
performance ratio is to harness a large number of CPUs to process requests.
Another potential cost reduction occurs when a distributed system is used to
handle request processing shared of multiple organizations. All of these orga-
nizations could contribute to the setup and maintenance costs. This reduces the
per organization costs down compared to setting and maintaining the system
independently.

Beside these advantages a distributed system has the following disadvantages:

• Network Reliance: Because all computers in a distributed system rely on a net-
work to communicate to each other, problems on the network would disrupt
activities in the system as a whole. This is true especially for physical problems
such as broken network cables, routers, bridges, etc. The cost of setting up and
maintaining the network could eventually outweigh any potential cost savings
offered by distributed systems.

• Complexities: A distributed system software is not easy to develop. It must be
able to deal with errors that could occur from all computers that make up the
distributed system. It must also capable to manipulate resources of computers
with a wide range of heterogeneities.

• Security: A distributed system allows its computers to collaborate and share
resources more easily. However, this convenience of access could be a prob-
lem if no proper security mechanism are put in place. Private resources would
be exposed to a wider range of potential hackers, with unauthorized accesses
launched from any computers connected to the system. In fact, a centralized
system is usually more secure than a distributed system.

1.2 DISTRIBUTED SYSTEM TECHNOLOGIES

Middleware in distributed systems is a type of distributed system software which
connects different kinds of applications and provides distribution transparency to
its connected applications. It is used to bridge heterogeneities that occurred in the

DISTRIBUTED SYSTEM TECHNOLOGIES 13

Presentation

Application

Session

Transport

Network

Data Link

Physical

Middleware

Transport
and

Network

Datalink
and

Physical

Figure 1.6 Middleware and the OSI Model.

systems. As Figure 1.6 illustrates, middleware replaces session, presentation, and
application layers of the OSI model.

Based on significant standards or products in the market, middleware can be di-
vided into several categories, such as socket, RPC (Remote Procedure Call), RMI
(Remote Method Invocation), DCE (Distributed Computing Environment), DCOM
(Distributed Component Object Model) and CORBA (Common Object Request Bro-
ker Architecture). Because this book focuses on the CORBA type of middleware, in
which details are given in Chapter 2, this section will discuss the remaining mid-
dleware approaches. Explanations given in this section provide a quick overview of
these approaches, rather than a comprehensive comparison of the middleware.

1.2.1 Socket

A socket is a peer-to-peer communication endpoint [82]. The first implementation of
sockets is known as Berkeley sockets, due to its introduction in 1981 as part of UNIX
BSD 4.2 operating system. Sockets are generic interfaces which enable processes
that reside in different computers to communicate to each other. They provide the
basic infrastructure needed to facilitate communications in distributed systems. As
Figure 1.7 depicts, sockets are usually used as interfaces from the upper three layers
of the OSI model into the transport layer [98].

From the OSI model point of view, a network application is a combination of its
upper three layers. These layers reside in the address space which users have access
to. The rest of the OSI layers provide all the necessary basic functionalities which
are used by the upper layers. In UNIX, these layers are implemented by the kernel.
Access to their address space is forbidden and exclusive only for the system.

Figure 1.8 shows two processes communicating to each other via their sockets.
The process that sends data to another process is called sending process, while the
process that receives this data is a receiving process. A socket has a network address
which consists of an Internet address and a local port number. Each of the processes
that wishes to communicate must create and initialize a socket. Creating a socket re-
turns an I/O descriptor number, whereas the initialization step prepares the socket to

14 INTRODUCTION TO DISTRIBUTED SYSTEMS

Presentation

Application

Session

Transport

Network

Data Link

Physical

Application

IP

ICMP

UDPTCP

Device Driver
and Hardware

OSI Model TCP/IP
Protocol Suite

Space
User

System/Kernel
Space

Socket

Figure 1.7 Sockets in the OSI model and the TCP/IP protocol suite.

send data for sending socket, or accept data for receiving socket. Typically, a send-
ing process creates and initializes its socket before the receiving process performs
the same steps. A socket created by the former is called a sending socket, whereas
the one created by the latter is a receiving socket. A sending process sends all the
necessary data to the server process via its socket. Data to be sent are queued at
the sending socket until the underlying protocol has been transmitted. The protocol
might require an acknowledgement of the data’s successful arrival at the receiving
socket. In this case, the data are queued until this acknowledgement is received by
the sending process. When these two processes no longer need to communicate, the
sending socket must be closed. The receiving socket can also be closed if there are
no other processes that wish to communicate with the receiving process. Because
socket implementations are based on TCP/IP protocol suite, they are usually used
as interfaces to its protocols, for example, TCP, UDP, IP, and ICMP. Depending on
the protocols they are interfacing to, sockets can be classified into three types: (1)
datagram, (2) stream, and (3) raw sockets.

Datagram sockets are sockets that provide an interface to UDP (User Datagram
Protocol). UDP is an unreliable connectionless protocol of TCP/IP protocol suite

Sending
Process

Sending
Socket

Process

Socket

Receiving

Receiving

User
Space

System/Kernel

Computer X Computer YNetwork

data

Space

Figure 1.8 Interprocess communication using sockets.

DISTRIBUTED SYSTEM TECHNOLOGIES 15

which delivers data as limited-size packets called datagrams. UDP is unreliable be-
cause it gives no guarantee on the successful arrival of its datagrams. UDP always
calculates the checksums (i.e., a code which is a function of the correct datagram
content included in its datagram) of datagrams to determine whether or not they
have been received successfully. However, UDP makes no attempt to detect dupli-
cate datagrams nor it has any ordering on the transmission of multiple datagrams.
UDP also does not have any built-in acknowledgement and datagram retransmission
mechanisms. A datagram might be lost, sent more than once, or arrived in wrong or-
der. The connectionless nature of UDP means that a sending socket is not tied to any
particular receiving socket. The same sending socket can be used to send datagrams
to multiple receiving sockets without any re-initialization required.

Figure 1.9 describes the code fragments of two communicating sockets. Both pro-
cesses create their sockets using the socket function which returns I/O descriptors.
The first argument tells the function to use the Internet as the communication do-
main, where the latter indicates the socket is a datagram socket. The last argument is
used to specify the use of a particular protocol. Setting the argument with value 0 lets
the system to choose a suitable protocol. The next step is for both processes to call
bind to associate their sockets to the process addresses. The sending process sends
its data by using sendto, while the receiving process receives this data by calling
recvfrom. Notice that since UDP is connectionless, sending the data to the receiv-
ing process requires sendto to be specified with the receiving process address, while
receiving process with recvfrom always receives the sending process address. The
advantage of this type of socket over others is its speed. Datagram sockets are fast
because they have no overhead of error detection mechanisms. The problem of this
approach is that there is a limit to the amount of data that can be sent in a datagram,
and its unreliable nature.

Stream sockets are sockets that provide an interface to TCP (Transmission Control
Protocol). TCP is a reliable connection-oriented protocol of TCP/IP protocol suite
which delivers data in byte streams. Data sent to the receiving process are guaranteed
to arrive successfully in the order of which the data are sent without any errors or du-
plication. Before communication between two processes commences, a connection
between their sockets must be established and valid until one of its sockets is closed.

descriptor = socket(AF_INET,
SOCK_DGRAM, 0)

sendingProcessAddress)
bind(descriptor,

descriptor = socket(AF_INET,
SOCK_DGRAM, 0)

arrivedData = recvfrom(descriptor,
buffer, sendingProcessAddress)

sendto(descriptor, "data",
receivingProcessAddress)

receivingProcessAddress)
bind(descriptor,

data

Figure 1.9 Code fragments of a sending and receiving datagram socket.

16 INTRODUCTION TO DISTRIBUTED SYSTEMS

Both the sending and the receiving sockets are bound to each other. This eliminates
the possibility of using the sending socket to deliver data to processes other than
those of the receiving socket. Data are read immediately by the receiving process in
the same order as they are written. However, the data are placed in a queue with a
limited size. Thus, the receiver socket blocks if the queue is empty, while the sender
blocks when the queue is full.

Figure 1.10 illustrates the code fragment of two communicating sockets. Similar
to datagram sockets, both the sending and the receiving processes must create their
sockets by calling socket. However, the second argument must be specified with
SOCK STREAM to indicate the use of streams for delivering the data. The receiving
process must bind its socket and calls listen on the receiving socket. The func-
tion indicates that the socket will be a listening socket, that is, a passive socket that
waits for any incoming request for connections. It also specifies how many waiting
connections can be queued by the listening socket. The sending process transfers the
request to establish a new connection to the receiving process by calling connect.
The receiving process calls accept to accept the request and create a new connec-
tion. The function returns an I/O descriptor, associated with a sending process whose
address is passed by this function. This descriptor can be used by recvfrom function
to receive data sent with write function. The total number of bytes of data that need
to be received is specified in dataSize, while the total number of bytes successfully
accepted is returned into totBytesReceived. Notice that since the sending socket
is bound to a particular receiving socket, the address of the receiving socket is no
longer need to be specified every time data are sent. This the reason why the write
function does not have any parameter for the receiving process’s address.

descriptor = socket(AF_INET,
SOCK_STREAM, 0)

descriptor = socket(AF_INET,
SOCK_STREAM, 0)

listen(descriptor,
maxQueuedConn)

totByteReceived = recvfrom(descriptor,
buffer, dataSize)

receivingProcessAddress)
bind(descriptor,

receivingProcessAddress)
connect(descriptor,

write(descriptor,
"data", dataLength)

"data"

newDescriptor = accept(descriptor
sendingProcessAddress)

Figure 1.10 Code fragments of a sending and receiving stream socket.

DISTRIBUTED SYSTEM TECHNOLOGIES 17

The last type of socket, that is, raw sockets, provide an interface to the lower
layer protocols such as IP (Internet Protocol) and ICMP (Internet Control Message
Protocol). Unlike the previous two socket types, raw sockets do not provide the con-
ventional peer-to-peer services. Instead, the use of raw sockets is at a lower level, that
is, to read and write the content of datagrams. Such capability enables raw sockets to
be used to test new protocols, analyze the content of datagrams, and to manipulate
advanced features of existing protocols.

Compared to other middleware, sockets are too primitive to be used in developing
a distributed system software. The services they provide are aimed solely at transfer-
ring and receiving data successfully. The socket’s primitiveness is the main reason
of its lack of higher level facilities such those used for marshalling, unmarshalling
data, error detection, and error recovery. These facilities must be built from scratch
by developers on top of the existing socket primitive facilities. Another problem also
arises when the software needs to be used in a platform different from where it was
developed and tested. Porting the software to another platform may require the target
platform to have the same socket implementation, due to its lack of code portabil-
ity. Nevertheless, the socket’s intimacy with the lower level details is not always
a liability. Developers have complete control of a distributed system software built
using sockets, down to the lowest software level. This is potentially powerful for op-
timizing the software or any other tasks that require low-level access to the sent and
received data.

1.2.2 Remote Procedure Call

RPC or Remote Procedure Call is a type of middleware which allows clients to use
services of the servers by calling their procedure calls in a similar manner to those
found in normal programs. Both normal and remote procedure calls are usually syn-
chronous and follow the request–reply mechanism, in which a client is blocked until
its server responds to the call. Asynchronous implementation of RPC is also avail-
able. The control of execution in this RPC is returned immediately to the client after
the request has been delivered to the server.

RPC as a concept has been around since the mid-1970s. It was later introduced
by OSF (Open Software Foundation) as part of DCE (Distributed Computing En-
vironment) standard in the mid 1980s. The idea of RPC centers around its view of
distributed system software as a set of software components running on different
computers, but connected by a common network. Each of the software components
is a server which provides its services through a set of procedure calls, analogous to
procedure calls in a conventional software. However, unlike a traditional procedure
call, which takes place in the same address space, a procedure call in RPC spans
two different address spaces (i.e., client’s and server’s) and is mediated by a com-
mon network. The control of execution is passed between these two address spaces
according to the flow of execution.

Procedure calls of a server can be made accessible to clients in two ways. The
first approach is to extend an existing programming language with all the necessary
notations for describing the procedures. The advantage of this approach is that the

18 INTRODUCTION TO DISTRIBUTED SYSTEMS

programming language specific features can be used. The disadvantage is that their
code is too closely tied to a particular programming language, making the code not
portable. An example of RPC implementation of this approach is Cedar RPC. The
second approach is to use a dedicated programming language called Interface Defini-
tion Language (IDL). A description of the procedure calls is written in this language,
which will used to develop stub and skeleton. A stub is a client-side procedure that
marshals parameters of procedure calls and unmarshal parameters of their replies.
A skeleton is a server-side procedure that unmarshalls parameters of procedure calls
and marshalls parameters of their replies. The advantage of having IDL is that it is
independent of any particular programming language. The only drawback is that no
programming language specific features can be used. An example of this type of RPC
implementation is the popular ONC (Open Network Computing) RPC, developed by
Sun Microsystems.

Figure 1.11 illustrates the flow of a procedure call in a RPC software compared
to the one in a conventional software. In conventional software the calling procedure
plays the role of a client, while the called procedure is the server. The calling pro-
cedure might pass some parameters to the called procedures. After the called proce-
dures are executed, it could return some results to the calling procedure. In contrast, a
procedure call in an RPC software requires stub and skeleton to perform marshalling
and unmarshalling of parameters and results. Request messages and their message
replies are sent via a common network, also with the help of the stub and the skeleton.

RPC has three types of message delivery guarantees. The first one is retry request
message, which guarantees the request to be retransmitted the request until either a

Client

Calling
Procedure

Stub

Called
Procedure

Server

Skeleton

Network

Procedure
Calling Called

Procedure

Local Procedure Call

Remote Procedure Call

parameters result
result

parameters

message
reply

message
request

parameters

result

Figure 1.11 A procedure call in an RPC and conventional software.

DISTRIBUTED SYSTEM TECHNOLOGIES 19

reply is received or the server is assumed to have failed. The second guarantee is
duplicate filtering, which filters out any duplication, that is, retransmission of previ-
ously received request messages. The last guarantee is retransmission of reply mes-
sages, which retransmits lost message replies without re-executing their procedure
calls by keeping a history of those message replies. These guarantees characterize
RPC call semantics which determine how request and reply messages are transmit-
ted.

There are three call semantics in RPC. The first one is “maybe call semantic,”
which has no message delivery guarantee at all. A request message is sent only once
and could be lost since there is no retry request message guarantee exists. If the mes-
sage does reach its destinations and if for some reasons the message is retransmitted,
the latter request messages will not be discarded. Furthermore, since this semantic
does not guarantee retransmission of message replies, all retransmitted requests will
be processed. The next call semantic is “at-least-once,” which retransmits a message
request when it is lost, has no duplicate filtering, and process all the retransmitted
requests. As a result, a request sent with this semantic is guaranteed to be executed
at least once, with all retransmitted messages will be processed. The last call seman-
tic is “at-most-once,” which guarantees a request to be executed at most once. The
request message is retransmitted when it is lost, all duplicates are filtered out, and if
the request has been processed previously, its reply message will be taken from the
reply message history instead from the result of the target procedure execution.

An RPC program is usually written in C. Below is an example of an RPC program
which displays a message on the server side. Its IDL declaration would be:

program MESSAGEPROG {
version PRINTMESSAGEVERS { int PRINTMESSAGE(string) = 1;

} = 1;
} = 0x20951085;

This IDL describes a program called MESSAGEPROG with a version number 1
and program number 0x20951085. Its PRINTMESSAGE remote procedure accepts a
string parameter, returns the execution status, and has a procedure number of 1.
The client’s code fragment below calls the server’s remote procedure:

int main(int argc,char *argv[]) {
...
CLIENT *clnt;
int *result;
...
server = argv[1];
message = argv[2];
...
clnt = clnt_create(server, MESSAGEPROG, PRINTMESSAGEVERS, "tcp");
...
result = printmessage_1(&message, clnt);
...

20 INTRODUCTION TO DISTRIBUTED SYSTEMS

if(*result == 0) {
fprintf(stderr, "%s:could not print your message\n", argv[0]);
exit(1);
}
...

}

clnt create creates a client handle similar to a socket. The name of the server
that the client wants to communicate with is specified in the first parameter. The
next two parameters are the name of the program as declared in the IDL file and
the program version number. The last parameter indicates what protocol should be
used to talk to the server. Once the handle is created, the remote procedure can
be invoked by the C function of format procedureName versionNo, for example,
printmessage 1. Details of the printmessage 1 function are given below:

...
int *printmessage_1(char **msg,struct svc_req *req)
{
static int result;
printf("%s\n", *msg);
result = 1;
return (&result);
}

Notice that the function has little differences compared to a normal C function.
The strength of RPC lies in its ease of use, portability, and robustness [88]. Its

ease of use is the result of the higher level of abstraction that it provides to the de-
velopers and RPC’s similarity with normal procedure calls. RPC insulates the lower
level details such as marshalling and unmarshalling parameters, freeing developers
to concentrate solely on the software logic. Software developed using RPC is easier
to be ported compared to sockets. Some RPC implementations even support location
transparency. The robustness of RPC-based solutions have been proved in mission-
critical applications that require scalability, fault tolerance and reliability. Despite
these strengths, RPC has several weaknesses [88][101]. RPC is inflexible to change
since it assumes a static relationship between client and server at run-time. This
causes client and server codes to be tightly coupled to each other. Another weakness
is that RPC is based on the procedural/structured programming model, which is al-
ready outdated with the object oriented model. The next weakness is RPC’s lack of
location transparency. Developers should not be able to determine whether or not the
procedure being called is remote or local. For example, developers must themselves
be careful not to pass a C reference to a remote procedure. This is because a C refer-
ence points to local memory address which has no meaning on the server side. The
use of a weakly programming language of C in most RPC implementations could
cause problems in marshalling and unmarshalling the passed parameters. The last
problem is RPC’s inability to handle communication between one client and multi-
ple servers, except when a separate connection is used for each communication. This

DISTRIBUTED SYSTEM TECHNOLOGIES 21

is because RPC assumes all communications are one-to-one, that is, a client talks to
only one server at a time.

1.2.3 Remote Method Invocation

RMI or Remote Method Invocation, is a Java-based middleware that allows methods
of Java objects located in a Java Virtual Machine (JVM) (i.e., a self-contained Java
operating environment which simulates a separate computer) to be invoked from an-
other JVM even when this JVM is across a network. RMI was introduced by JavaSoft
with JDK 1.1 and is essentially object-oriented Java RPC. Both use IDL to describe
the distributed system software interfaces (i.e., methods for RMI and procedures for
RPC) involved. The description is later used to produce stub and skeleton. As Fig-
ure 1.12 illustrates, the flow of a request is also not much different from its RPC
counterpart.

However, RMI does have some differences compared to RPC. The first one is
that, IDL in RPC is usually based on procedural C, while IDL is RMI is based on
object-oriented Java. Server objects must register themselves with rmiregistry to ad-
vertise their availability to clients. A RMI client makes use of rmiregistry to locate a
particular object. Once the object is found, the client will receive a reference to the
wanted object. The registry allows developers to manage the availability of all server
objects in one place. Java garbage collector handles memory management of these
server objects. This garbage collector uses a remote reference counting scheme to
determine which server objects can be removed from memory. The scheme counts
the total number of connections for each server object in the JVM which is called
the reference count. Every time a connection is established to an object, its reference
count is incremented. The number is decremented when the connection is broken or
gracefully terminated. If the former occurs, the client must explicitly re-establish the
connection since RMI has no automatic reconnection feature.

Skeleton

parameters result
result

parameters

request
message

reply
message

Network

Stub

JVM JVM

Client Server

Calling
Object

Called
Object

Figure 1.12 Simplified view of an object method invocation in RMI.

22 INTRODUCTION TO DISTRIBUTED SYSTEMS

The following RMI IDL provides an interface description for a server object
which prints a person’s name on the server, appends the message with "Hello",
and returns the message to the client:

import java.rmi.*;
public interface SimpleInterface extends Remote {

String printName(String name) throws RemoteException;
}

The above is an interface whose method is printName, accepts a name as a string
and throws an exception called RemoteException if the method’s execution fails.
The implementation of the server object is given below:

import java.rmi.*;
import java.rmi.server.*;

public class SimpleServer extends UnicastRemoteObject
implements SimpleInterface {

public SimpleServer() throws RemoteException { super(); }
public String printMessage(String name) throws RemoteException {

System.out.println(name);
return("Hello " + name);

}

public static void main(String args[]) {
System.setSecurityManager(new RMISecurityManager());
try {

SimpleServer newServer = new SimpleServer();
System.out.println("SimpleServer attempting to bind

to the registry");
Naming.rebind("//numbat.cs.rmit.edu.au:30010/SimpleServer",

newServer);
System.out.println("SimpleServer bound in the registry");

} catch(Exception e) {
System.out.println("SimpleServer error: " + e.getMessage());
e.printStackTrace();

}
}

}

SimpleServer class must inherit from UniCast class and implement the
SimpleInterface before it becomes the implementation class of the RMI in-
terface. The implementation of printMessage method appears like any other Java
function. Before an instance of SimpleServer object can be accessed to clients, it
must be first registered with rmiregistry. In the above example, main function of
SimpleServer is the class responsible to perform this task. main registers the ob-
ject as residing at a host called numbat.cs.rmit.edu.au, with port number 30010

DISTRIBUTED SYSTEM TECHNOLOGIES 23

under the name of SimpleServer. For the client side, each of the SimpleClient
class below acts as the client of the SimpleServer object:

import java.rmi.*;
public class SimpleClient {

private static SimpleInterface server = null;
public static void main(String args[]) {
try {
server = (SimpleInterface)
Naming.lookup("//numbat.cs.rmit.edu.au:30010/SimpleServer");
System.out.println(server.printMessage("Amazigh"));

} catch(Exception e) {
System.out.println("SimpleClient error: " +

e.getMessage());
e.printStackTrace();

}
}

}

SimpleClient first attempts to locate a server object called SimpleServer
which resides on a hostname of numbat.cs.rmit.edu.au and port number of
30010. Upon its successful reference acquisition, the client calls the object’s
printMessage method with its name parameter passed with value of Amazigh.
Finally, the appended message is returned and displayed on the client’s screen as
Hello Amazigh

Similar to RPC, RMI’s main strength lies in its higher level of abstraction it pro-
vides compared to sockets. RMI gives a better transparency of low-level details com-
pared to RPC and sockets. RMI software inherits its platform independent and code
portability from Java which help to address the problem of heterogeneities in dis-
tributed systems. However, its Java-based nature works against RMI when legacy
applications exist. Non-Java objects cannot communicate with Java objects via RMI.
All legacy applications must be rewritten in Java before they can gain the benefit of
RMI. At the end, RMI is suitable only when all Java solutions are used.

1.2.4 Distributed Computing Environment

DCE or Distributed Computing Environment, is an OSF middleware standard de-
signed to provide a distributed framework based on a structured/procedural model.
DCE 1.0 was released in 1992 with its implementations starting to appear in the fol-
lowing year. Examples of DCE implementations are DCE++ from DEC and HP’s
OODCE.

Figure 1.13 depicts the DCE architecture which is divided into two parts: DCE
Executive and DCE Extended Services. DCE executive consists of several compo-
nents. The first one is the directory service, which enables the control and man-
agement of administrative domains, called cells. Services of the directory services
are Cell Directory Services (CDE), Global Directory Services (GDS),

24 INTRODUCTION TO DISTRIBUTED SYSTEMS

Network
Management

Option

Time Service
DistributedDirectory

Services
Security
Services

Remote Procedure Call

Thread Service

DCE Executive

Service
Event Distributed

File Service

DCE Extended Services

Operating System and Network Services

Distributed Applications

Figure 1.13 OSF DCE Architecture.

Domain Name Service (DNS), and Global Directory Agent (GDA). The sec-
ond one is Distributed Time Service (DTS) is a DCE component which syn-
chonizes time on all hosts in a DCE cell, as well as between cells, using Universal
Time Co-ordinated (UTC) standard. DCE Executive component is the security
service that performs authentication, authorization, integrity, and privacy for all DCE
applications. Security service authenticates clients and servers by using Kerberos
V5. Authorization in security service allows servers to use access a control list to
determine whether a client is permitted to access a given service. Security service
maintains the integrity of information in all the received messages by using check-
sum. The security service protects the privacy of sensitive information during their
transmissions from clients to servers with the use of DES encryption. DCE’s thread
service is based on the POSIX 100.34a draft 4 standard and supports the creation
and management of multiple threads of controls within a client or a server.

DCE extended services also consists of several components. The first two com-
ponents, that is, network management option and event service, will be offered in the
future DCE versions. Network management option provides facilities to access man-
agement information using Simple Network Management Protocol (SNMP)
and Common Management Information Protocol (CMIP). Event service gives
system and user applications a common way to generate, forward, filter, and log
events. The last component is Distributed File Service (DFS) which allows
files of different cells to be shared in a single logical file system through directory ser-

DISTRIBUTED SYSTEM TECHNOLOGIES 25

vices without the knowledge of location and local access procedures. DFS also sup-
ports file replications, fault-tolerance, and log based recovery from hardware failures.

DCE excels over other previously explained middleware because of the level,
breadth, and openness of its solutions. The first strength is obvious since DCE offers
more than just the ability of clients to call remote procedure of servers, that is, RPC.
It also provides a set of services at the level higher than other middleware. These
services are developed on top of RPC which are aimed at achieving specific goals.
For example, security services are built on top of RPC for goals such as protecting
sensitive information from unauthorized access, and so on. DCE is a more complete
solution compared to other middleware, due to the breadth of services offered. This
is compared to sockets that are only for sending data between clients and servers,
RPC, which facilitate procedure calling, and RMI, which is used only for calling
methods of remote objects. DCE is open since, compared to RMI, it’s a standard,
not a proprietary technology. DCE’s main weakness is its use of outdated procedural
paradigms. Other weaknesses include its limited number of popular implementations
and lack of widespread usage.

1.2.5 Distributed Component Object Model

DCOM, or Distributed Component Object Model, is a middleware developed by Mi-
crosoft that provides a distributed framework based on object-oriented model. It is
the distributed extension to the Component Object Model (COM), which provides an
Object Remote Procedure Call (ORPC) on top of DCE RPC [20]. COM itself is a
component software architecture that promotes reusability by allowing applications
and systems to be built from binary components supplied by different software ven-
dors. DCOM is the latest incarnation of Microsoft’s object technology which starts
its live from mid-1980s [67] as Dynamic Data Exchange (DDE), that is, an inter-
process communication protocol designed by Microsoft that allows applications to
exchange messages via shared memory. Later, it evolved to Object Linking and
Embedding (OLE) (a compound object model for linking and embedding objects
created by different applications), to COM, and finally to DCOM. As illustrated by
Figure 1.14, DCOM services are divided into two parts: OLE and COM.

COM provides the underlying object system on which OLE services rely upon.
COM services are uniform data transfer, monikers, and persistent storage. Uniform
data transfer service is a COM service that provides the basic facilities to exchange
data between applications. It extends the windows clipboard to handle OLE objects.
Moniker service provides the mechanism to name objects for their identifications.
Persistent storage service allows objects to be stored in the disk. It is different from
traditional file service, due to its compound model. The model allows the contain-
ment relationship of multiple objects within a container to be preserved.

OLE part contains three services: (1) compound documents, (2) drag-and-drop,
and (3) automation. Compound documents service provides the ability to link in-
formation in a document through three services: in-place activation, linking, and
embedding. In-place activation enables container applications to hold component ob-
jects, permitting the user to manipulate component application operations. Linking

26 INTRODUCTION TO DISTRIBUTED SYSTEMS

Persistent Storage

Uniform Data Transfer

Drag and Drop

In-Place Activation Linking

Monikers

Embedding

Component Object Model

Automation

Figure 1.14 DCOM Architecture.

enables multiple applications to share common data. Changes to the common data
is reflected to all sharing applications whenever the data are changed. Embedding
allows container objects to have separate copies of the same data. The next service
is drag-and-drop, which permits users to add OLE objects by dragging and dropping
them into their containers. Automation service is an OLE service that allows devel-
opers to reuse existing components for building a new application by exposing their
operations.

Unlike previous middleware, DCOM is an object-oriented based middleware. A
DCOM application comprises of a set of objects that provides the application ser-
vices via methods of these objects. DCOM follows the RPC and RMI approach of
using IDL to declare the methods which should be made accessible to clients. DCOM
maintains a separation between interfaces and their implementations, that is, DCOM
objects. Each of the implementation classes can implement multiple interfaces, but
each of them must inherit from IUnknown base interface:

// Inside unknwn.idl
[local,
object,
uuid(00000000-0000-0000-0000-000000000046)
pointer_default(unique)

]

interface IUnknown {
typedef [unique] IUnknown *LPUNKNOWN;
HRESULT QueryInterface([in] REFIID riid,

[out, iid_is(riid)] void **ppvObject);

DISTRIBUTED SYSTEM TECHNOLOGIES 27

ULONG AddRef();
ULONG Release();

}

As depicted above, IUnknown is identified with its unique Interface Identifier
(IID). An IID is a 128-bit long Globally Unique Identifier (GUID), which is as-
signed to each DCOM interface. IUnknown’s QueryInterface is used to determine
if a DCOM object specified in ppvObject parameter supports the interface whose
IID given to riid parameter. This function returns HRESULT, which is similar with
Java’s void. However, it is used to determine whether the function has been success-
fully executed. The last two functions are used to manage the reference count of the
DCOM object implementing this interface. AddRef increases the reference count,
while the Release function decreases its value. Both of these return the updated
reference count as unsigned long.

Consider the IDL of a DCOM program which allows clients to increase and de-
crease counter on the server side:

import "unknwn.idl";

[object, uuid(3CFDB283-CCC5-11D0-BA0B-00A0C90DF8BC)]
interface ICounter : IUnknown {

HRESULT getCount([out] int countVal);
HRESULT increase([in] int increment);
HRESULT decrease([in] int decrement);

}

ICounter interface needs to refer to ”unknwn.idl” file for the IUnknown in-
terface declaration. This interface has only three methods: getCount, which sets
the variable passed to countVal with the current value of the counter, increase,
which adds the value passed to increment parameter to the counter value, and
decrease, which subtracts the value passed to decrement from the counter value.
The CCounter class below implements the ICounter interface:

#include "counter.hh" // IDL generated interface header file

class CCounter : public ICounter {
public:

ULONG __stdcall AddRef();
ULONG __stdcall Release();
HRESULT __stdcall QueryInterface(REFIID riid, void **ppv);
HRESULT __stdcall getCount(int *countVal);
HRESULT __stdcall increase(int increment);
HRESULT __stdcall decrease(int decrement);

private:
int myCountVal;
ULONG myRefCount; // The reference count attribute

}

28 INTRODUCTION TO DISTRIBUTED SYSTEMS

The actual implementation of this class is shown below:

ULONG CCounter::AddRef() { return(++myRefCount)};
ULONG CCounter::Release() {

if(--myRefCount != 0) { return(myRefCount); }
delete(this);
return(0);

}

HRESULT CCounter::QueryInterface(REFIID riid, void **ppv) {
if(riid == IID_IUnknown) { *ppv = (IUnknown*) this; }
else if(riid == IID_IDisplayer) { *ppv = (ICounter*) this; }

else { *ppv = NULL;
return(E_NOINTERFACE);

}
AddRef();
return(S_OK);

}

HRESULT CCounter::getCount(int *countVal) {
(*countVal) = myCountVal;
return(S_OK);

}

HRESULT CCounter::increase(int increment) {
myCountVal = myCountVal + increment;
return(S_OK);

}

HRESULT CCounter::decrease(int decrement) {
myCountVal = myCountVal - decrement;
return(S_OK);

}

AddRef function simply adds myRefCount variable by one. The function Release
subtracts one from myRefCount and removes the object from memory if the ref-
erence count has reached zero. QueryInterface function sets the ppv parameter
with the appropriate implementing object, depending on the IID passed to riid
parameter. The rest of the functions are similar to normal C++ functions. The only
difference is that, it returns S OK to the client, which notifies the successful execution
of the function called. The client code for the counter application is as follows:

#include <stdlib.h>
#include <iostream.h>
#include "counter.hh"

int main(void) {
// Local declarations

DISTRIBUTED SYSTEM TECHNOLOGIES 29

IUnknown *pUnknown;
ICounter *pCounter;
int counterVal = 0;

// Initialize server
CoInitialize(NULL);

// Instantiate a DCOM class
CoCreateInstance(CLSID_Counter, NULL,

CLSCTX_INPROC_SERVER,
IID_IUnknown,
(**void) &pUnknown);

// Check if the object supports ICounter interface
pUnknown->QueryInterface(IID_ICounter,

(void**) &pCounter);

// Perform and verify getCount function execution
pCounter->getCount(&counterVal);

count << "Current counter value is " << counterVal << endl;

// Perform and verify increase function execution
pCounter->increase(10);

// Perform and verify decrease function execution
pCounter->decrease(5);

// Perform and verify getCount function execution
pCounter->getCount(&counterVal);

cout << "Current counter value is " << counterVal << endl;

// Decrease the object’s reference counter
pUnknown->Release();

// Remove server initializations
CoUninitialize();

return(EXIT_SUCCESS);
}

All DCOM library functions in the above sample code starts with Co prefix. The
first function executed is CoInitialize, which prepares the client for processing.
CoCreateInstance is the next DCOM function executed. It creates a new instance
of CCounter, which will be cast to the CCounter object by the QueryInterface
function. Later, getCount is executed and returns the current count value. increase
is then executed to add ten to the count value. This is followed by the execution of

30 INTRODUCTION TO DISTRIBUTED SYSTEMS

decrease to subtract five from the count value. The getCount is re-executed to
display the last count value before the client finishes. Release function’s execution
decreases the reference count to notify server that the client no longer needs this
object. Finally, CoUninitialize is called before the client terminates.

Compared to sockets, RMI, and RPC, DCOM provides a higher-level abstraction
for developing distributed software. DCOM architecture has a set of services (e.g.
automation) built on top of low-level services like persistent storage service, similar
to those specified in OSF DCE. DCOM’s is built on top of proven desktop system
architecture which is ideal for for desktop centric distributed systems. Microsoft’s
dominance in the personal computer industry gives DCOM a considerable influence
in middleware. DCOM’s architecture is well defined, with its specification being au-
thoritative [100]. However, despite that, it is now managed by an Open Group affil-
iate called Active Group, the perception of DCOM as being Microsoft’s proprietary
technology remains. Microsoft still has the power to define DCOM standards before
passing them the Active group for approval. This negative image plays an adverse
role to DCOM’s wider acceptance in the middleware industry. The DCOM’s focus on
desktops makes it problematic to extend DCOM to enterprise architecture. Although
DCOM has been redefined for the enterprise level, its design does not gracefully
reflect this. DCOM architecture is not well-partitioned because the boundaries be-
tween its layers are not clearly defined. All programs written in DCOM run best
only on Microsoft-based products. Some DCOM implementations are already avail-
able on non-Microsoft platforms, but these will inevitably be hindered by inadequate
compiler, tool, and run-time support [100].

1.3 SUMMARY

A distributed system is a collection of autonomous computers linked by a network
and equipped with distributed system software. Distributed systems might have some
of the following characteristics, depending on their designs: resource sharing, open-
ness, concurrency, scalability, and transparency. The existence of resource sharing,
openness, and transparency plays an important role in addressing heterogeneities of
the system. The distributed systems model provides the benefit of shareability, ex-
pandability, local autonomy, improved performance, improved reliability and avail-
ability, and potential cost reduction. However, the distributed systems model relies
heavily on a common network for communications. The complexities of distributed
systems make it difficult to develop a software that can exploit multiple computers
and hide the system heterogeneities. The higher possibility of security breaches is
another disadvantage. The easy access and dispersed nature of distributed systems
are causing problems in providing an effective security mechanism for the model.

Distributed systems use middleware to connect different kinds of applications and
provide distribution transparency to its connected applications. They are also used to
bridge heterogeneities that occurred in the systems. Examples of important middle-
ware are sockets, RPC, RMI, DCOM, and CORBA. Sockets are peer-to-peer com-
munication endpoints. Sockets solution is the most primitive middleware compared

EXERCISES 31

to others, making it unsuitable for distributed system software development. RPC
and RMI provide a higher level of facilities than sockets. However, RPC is based on
the old procedural model, whereas RMI are based on Java. DCOM and CORBA are
based on an object-oriented model. DCOM is a desktop-centric middleware devel-
oped by Microsoft, whereas CORBA is an enterprise-focused middleware standard
maintained by OMG. A more complete coverage of CORBA and its concepts are
explained in the next chapter.

1.4 REVIEW QUESTIONS

• What is a distributed system? How does a distributed system differ from a cen-
tralized system?

• Why is a good distributed system software important to a distributed system?
• What are the characteristics of distributed systems? Explain the relationship

between these characteristics and the system heterogeneities.
• Why does the effect of disruptions to a subset of computers in a distributed

system influence only some resources it manages rather than all of them?
• Why is a distributed system considered as less secure compared to a centralized

system?
• How is the separate nature of distributed systems helpful in improving the over-

all performance?
• What is middleware? What does it do? What are the OSI layers that middleware

replaces in the overall distributed system software?
• Why is developing a distributed system software using sockets much harder

than building them using CORBA?
• What is the major difference between RMI and RPC?
• What are the strengths and weaknesses of DCE and DCOM?

1.5 EXERCISES

• One of the benefits of distributed systems is the potential cost reduction they
provide. What are the factors that could prevent this benefit from being realized?

• If reliable connections are possible with stream sockets, then are unreliable and
connectionless datagram sockets still needed?

• A distributed system consists of multiple computers dispersed at different lo-
cations which are connected together by a network. Discuss why this becomes
the source of problems for distributed applications that rely on time accuracy.

• Discuss cases where distributed systems are not suitable to use as the model for
developing a computer system.

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 2

Introduction to CORBA

This chapter provides an inside view of CORBA with details of its different elements
such as the CORBA reference object model and the Object Management Architec-
ture (OMA). It also goes into details on some of the major elements of the CORBA
architecture: Object Request Broker (ORB), Interface Definition Language (IDL),
Interface and Implementation Repositories, and object adaptors. We show how object
binding works in CORBA environments, and this is done by using either transient
and persistent object references. At the end of the chapter, the CORBA technologies
are compared with related technologies (e.g., DCE, DCOM and RMI).

2.1 OVERALL PICTURE

The explosion of growth in the computing industry has developed an increasingly
pronounced need for the sharing of computing resources. The days where we had
a stand-alone desktop, the use of which depends on the local applications installed
are gone, and distributed computing is here. Users want access to information stored
in remote systems, and mechanisms which allow this facility are becoming prolific.
CORBA, an acronym for Common Object Request Broker Architecture, is a stan-
dard adopted by the OMG (Object Management Group) to enable interoperability
between applications in heterogeneous distributed environments, without regard for
where they are located. Other solutions to the distributed integration problem are
Microsoft’s DCOM (Distributed Component Object Model), and DCE (Distributed
Computing Environment). This book focuses on the technical details of CORBA
technology because it provides open communication between different systems and
does this in a standard manner. We believe that this standard may help vendors, de-
velopers and researchers in providing acceptable solutions to the problems related to
software interoperability. This is the main reason for choosing to describe CORBA
and explaining in more technical detail the issues and solutions related to this tech-
nology.

OMG is a group of vendors who jointly developed a common way to interact
with distributed objects. The group was founded in April 1989 by twelve commer-
cial vendors: IBM, BNR Europe Ltd., Expersoft Corp., ICL plc, Iona Technolo-
gies Ltd., DEC, Hewlett-Packard, HyperDesk Corp., NCR, Novell USG, Object De-

32

OVERALL PICTURE 33

sign Inc., and SunSoft. Since its formation, the OMG has grown to more than 600
members whose goal is to provide a common architectural framework, across het-
erogeneous hardware platforms and operating systems, for inter-communication of
application objects. For that, they released specifications for the Common Object
Request Broker Architecture (CORBA) [70] and other related technologies. The
CORBA architecture is to be vendor, platform and language neutral. The Interface
Definition Language (IDL), as the specification language for the interfaces of ob-
jects, is the “glue.”

CORBA is an open distributed object computing infrastructure. Its objective is
to automate many common network programming tasks such as object registration,
location, and activation; request demultiplexing; framing and error-handling; param-
eter marshalling and un-marshalling; and operation dispatching. This automation of
what are usually networking functions is done with a software intermediary called the
Object Request Broker (ORB). It sits on the host between the data and the application
layer (i.e., one level lower than the application layer—level 7 in the OSI model) and
it handles, in a transparent manner, request messages from clients (which can be user
or server objects) and servers (i.e., implementations which provide specific services).
The first implementations of the ORBs under the CORBA 1 specifications were not
concerned with representing objects in a meaningful way outside of the boundary of
the ORB. The CORBA 2 specifications address interoperability at a higher level, that
is, object representation across the boundaries of ORBs. By implementing interoper-
ability, the boundaries of a given ORB need not limit the scope of an application.

The CORBA paradigm is based on a combination of two existing methodologies.
The first, distributed client–server computing, is based in part on message-passing
systems most commonly found in UNIX-based environments. The second method-
ology is object-oriented programming. An ORB plays the role of an object-oriented
remote procedure call (RPC) application program interface. It provides common ser-
vices, such as basic messaging and an RPC-type communication between clients
and servers, directory services, meta-description, and location and host transparency.
CORBA is based on a peer-to-peer communication model and supports both asyn-
chronous and a limited version of asynchronous communications. Location trans-
parency refers to the fact that clients do not need to be aware of where the servers are
located. ORBs are responsible for finding these servers, based on information con-
tained within client requests (such as references). Host transparency is maintained
within CORBA where ORBs can access and make calls to different CORBA ob-
jects on various machines. If a client application (process) is running on one host,
then that host’s ORB is able to locate data in a different place on that host or on a
different machine altogether. This is achieved largely through the different reposito-
ries (e.g., interface and implementation repositories) and the information contained
within object references.

The presence of object-oriented methodology in CORBA is the result of necessity,
not of choice. Object-oriented programming is merely a different, convenient way to
explain and develop a program, and the adoption of an object-oriented approach is
motivated by the desire for software development with reusable components that
interact with one another through well-defined interfaces. In CORBA, three basic

34 INTRODUCTION TO CORBA

features of object-oriented programming are used. First, polymorphism among ob-
jects is allowed. The ORB makes different (interface of) objects and their associated
implementations independent and reusable by different applications. Second, encap-
sulation is utilized. Each client application knows nothing about the implementation
it accesses; it merely makes requests of the respective objects through the ORB, and
the object retrieves the data for the application. Third, data inheritance is provided. If
one description of an object is designed to interface with an ORB, any object derived
from that parent object will preserve its parent’s interface.

A CORBA object has an interface and an implementation. The interface is not
bound to a specific implementation programming language, but is instead written
in a special-purpose Interface Definition Language (IDL), which, in turn, translates
to different constructs in the different implementation languages via language map-
pings. This makes it possible to call an object implementation written in a given
language (e.g., Cobol) from a client program written in another language (e.g.,
Smalltalk). As per the CORBA 2.0 standard, the ORBs from different vendors are
able to interoperate, because the CORBA 2.0 specifies the protocols that should
be used for ORB-to-ORB communication. The most common CORBA protocol is
the IIOP (-Internet Inter ORB Protocol) which is a specialized version of GIOP
(-General Inter ORB Protocol).

In summary, CORBA provides several advantages over existing distributed sys-
tems. From the software development point of view, developers can use CORBA
to distribute applications across client–server networks. Instead of having hundreds
of thousands of lines of code running on computers with dumb terminals, smaller,
more robust applications that communicate between file servers and workstations
are now necessary. CORBA keeps the distribution of applications simple; a plug-and-
play architecture is used to distribute the client–server applications. The programmer
then can write applications that work independently across platforms and networks.
CORBA also enables integration of different software applications without a need to
rely on low-level communication facilities. Other benefits of CORBA are:

• It interworks well with different middlewares, including Microsoft distributed
system (DCOM).

• The CORBA Services provide a set of optional extensions that address areas
that the core itself cannot address: for example, transactions, naming, events,
and trading. It is integrated with other technologies, such as databases, reliable
messaging systems, threads, and user interface generation systems.

• It applies to many different vertical markets. The core level is applicable to all
of these, and specialized implementations can be provided in areas such as real
time and embedded systems. The upper layers, both the CORBA services and
the CORBA facilities, can be applied differently in the various vertical markets.
The OMG has set up a number of active special interest groups to address these
special needs.

• It supports both static and dynamic usage. The dynamic parts are more difficult,
but they need to be used only by a subset of CORBA programmers.

CORBA 1, CORBA 2, AND CORBA 3 35

• IDL is mapped separately to each programming language, so usage of each
language is natural; for example, in object-oriented languages the normal steps
for implementing and using classes still apply.

• There is an agreed protocol in phase, IIOP, for facilitating communication be-
tween ORBs. It is a well-established and widely adopted standard that is written
and maintained by an open procedure.

2.2 CORBA 1, CORBA 2, AND CORBA 3

CORBA 1.1 was adopted in 1991 by the OMG. CORBA 1.1 introduced the IDL (In-
terface Definition Language) which is the language through which the interface for
all CORBA applications is defined. In the earlier versions of CORBA (e.g., CORBA
1.0., 1.1, etc.), OMG focused on the specification of the core part of CORBA, that is,
the ORB, as well as a few basic services (such as Naming, Trading, and Event ser-
vices). OMG did not provide for interoperability between ORB implementations,
that is, a possible way to make invocations, whether they are static or dynamic,
across different ORBs, not automatically supporting the same language mapping.
In later versions, CORBA implementations provided guaranteed out-of-the-box in-
teroperability by means of UNO GIOP hosted on the TCP/IP networking transport
service, called IIOP (Internet Inter-ORB Protocol). CORBA 3.0 specifications add
a new dimension of capability and ease-of-use to CORBA, and refer to three major
categories: (1) Internet integration, (2) quality of service control, and (3) CORBA’s
component architecture. The focus of this book is on the specifications of CORBA
1 and 2. The CORBA 3 specifications are not yet totally finalized. We will therefore
provide an overview of CORBA 3; and details about CORBA 1 and CORBA 2 can
be found in Chapters 2 and 5.

The Internet integration specifications enhance CORBA integration with the in-
creasingly popular Internet: security (firewall specification) and naming (Interoper-
able Name service). The CORBA 3.0 firewall specification defines transport-level
firewalls, application-level firewalls, and a bi-directional GIOP connection that is
useful for callbacks and event notifications. The Interoperable Name Service defines
one URL-format object reference, iioploc, which can be typed into a program to
reach defined services at a remote location, including the Naming Service. A second
URL format, iiopname, actually invokes the remote Naming Service using the name
that the user appends to the URL, and retrieves the IOR of the named object.

The CORBA 3.0 quality of service control includes specifications for asyn-
chronous messaging and quality of service control, and the specifications for mini-
mum, fault-tolerant, and real-time CORBA. The new messaging specification defines
a number of asynchronous and time-independent invocation modes for CORBA, and
allows both static and dynamic invocations to use every mode. Asynchronous invo-
cation results may be retrieved by either polling or callback. The choice is made by
the form used by the client in the original invocation. Minimum CORBA is primar-
ily intended for embedded systems. Embedded systems, once they are finalized and
burned into chips for production, are fixed, and their interactions with the outside

36 INTRODUCTION TO CORBA

network are predictable—they have no need for the dynamic aspects of CORBA,
such as the DII or the interface repository that supports it, which are therefore not
included in Minimum CORBA. Real-time CORBA standardizes resource control
(e.g., threads, protocols, connections, etc.) by using priority models to achieve pre-
dictable behavior for both hard and statistical realtime environments. Fault-tolerance
for CORBA is being addressed by an RFP, also in process, for a standard based on
entity redundancy, and fault management control.

The CORBA’s component model refers to CORBA components and CORBA
scripting. CORBA components represent a multi-pronged advance with benefits for
programmers, users, and consumers of component software. The three major parts
of CORBA components are the following: (1) a container environment that packages
transactionality, security, and persistence, and provides interface and event resolu-
tion; (2) integration with enterprise JavaBeans; and (3) a software distribution format
that enables a CORBA component software marketplace. The CORBA components
container environment is persistent, transactional, and secure. For the programmer,
these functions are pre-packaged and provided at a higher level of abstraction than
the CORBA services provide. This leverages the skills of business programmers who
are not necessarily skilled at building transactional or secure applications, who can
now use their talents to produce business applications that acquire these necessary
attributes automatically. Containers keep track of event types emitted and consumed
by components, and provide event channels to carry events. The containers also keep
track of the interfaces provided and required by the components they contain, and
connect one to another where they fit. CORBA components support multiple inter-
faces, and the architecture supports navigation among them. Enterprise JavaBeans
(EJBs) will act as CORBA components, and can be installed in a CORBA com-
ponents container. Unlike EBJs, of course, CORBA components can be written in
multiple languages and support multiple interfaces.

2.3 OBJECT MANAGEMENT GROUP

OMG (Object Management Group) has developed a (i) conceptual model, known as
the reference object model, and (ii) a reference architecture, called the Object Man-
agement Architecture, which was briefly discussed in Section 2.3.2.The reference
object model defines how objects distributed across a heterogeneous environment
can be described, while the reference architecture characterizes interactions between
those objects.

2.3.1 Reference Object Model

This section describes the CORBA object model. Because CORBA is solidly
grounded in the fundamentals of object-oriented paradigm, we will first describe
the main concepts related to this paradigm, and later introduce those specific to
CORBA. Because CORBA deals with distributed environments, some of the con-

OBJECT MANAGEMENT GROUP 37

cepts of the object-oriented paradigm (e.g., type/class inheritance, polymorphism,
etc.) are revised in the CORBA reference object model.

The Object Paradigm This paradigm has been known for several decades and is
used in different areas, such as programming languages (e.g., C++, Smalltalk), and
databases (e.g., object-oriented databases). There are non “clear” concepts attached
to this paradigm as its interpretation differs from one area to another. However, most
of the research communities agree that an object model should support the follow-
ing main concepts: class/type, polymorphism (e.g., overriding, overloading, and late
binding), object identity, inheritance, encapsulation, and the concept of complex ob-
jects.

• The notions of class and type are generally used to refer to the same concept.
However, there are two types of object-oriented systems: those supporting the
concept of class and those supporting the concept of type [2]. In the first cate-
gory, are systems such as Smalltalk and Gemstone. In the second category, we
can find systems such as C++ and Simula.

A type summarizes the common features of a set of objects with the same
characteristics. It corresponds to the notion of an abstract data type and has two
parts: the interface and the implementation (or implementations). Only the in-
terface part is visible to the users of the type. The implementation part of the
object is seen only by the type designer. The type interface consists of the list of
operations together with their signatures (i.e., the type of the input parameters
and the type of the result). The type implementation has a data part and a proce-
dural part. The data part is the representation of the state of the object (that is the
values of its attributes), and the procedural part describes the implementation
of the operations (that is the programming code).

In programming languages, types are used as tools to increase programmer
productivity, by ensuring program correctness at compile type (i.e., type check-
ing).

The concept of class is different from that of type. Its specification is the
same as that of a type, but it is more of a run-time notion. It contains two as-
pects [2]: an object factory and an object warehouse. The object factory can
be used to create new objects, by calling a specific operation (e.g., constructor
in C++), or by cloning some prototype object representation of the class. The
object warehouse means that which is attached to the class, that is, a list of ob-
jects that are instances of the class. Classes are therefore not used for checking
correctness of a program but rather to create and manipulate objects.

• An object represents an instance of a class. It is defined as a recording of the
values of the type representing the class, with additional information allowing
it to be identified independently on its values. This is called object identity.

• An object identity is like a memory address which allows it to uniquely identify
objects independently from their values. There are two major characteristics of
the concept of object identity: (a) an object identity is unique; therefore, there

38 INTRODUCTION TO CORBA

are no two objects with the same object identity, even if they have been deleted,
(b) the change of the structure/type or values of objects will not change their
object identity.

• Encapsulation comes from (i) the need to cleanly distinguish between the spec-
ification and the implementation of an operation, and (ii) the need for modular-
ity. Modularity is necessary to structure complex applications. Encapsulation
acts like a “rule” allowing only the interface of objects to be visible to clients;
the implementation is hidden and therefore not accessible. One of the major
advantages of encapsulation is the ability to change the implementation of op-
erations without affecting their interface.

• Inheritance represents the ability to re-use types, that is, re-using both the inter-
face and the implementation of types to refine them and to define more specific
ones, called sub-types. This subtyping relationship—a relationship between a
sub-type and its super-type—is called type inheritance. It defines a hierarchy
between types. For example, we can define that TPerson is a type representing
all people. This type has name and age as attributes (i.e., part of the implemen-
tation of the type) and two operations die() and marry() (i.e., the signature of
these operations represents the interface of the type, and their implementation
code is a part of the implementation of the type). We can create another type
TEmployee as a special kind of person, who inherits attributes and operations of
TPerson , and has a special attribute salary and a special operation pay().

So inheritance facilitates better structuring (i.e., factorization of specification
and implementation) by allowing re-usability.

• Overriding, overloading and late binding relates to the concept of polymor-
phism, that is—the ability to associate multiple types of the same operation.
The type hierarchy allows re-implementation of the same operation for different
types (called overriding). For example, a single (abstract) operation marry()

can have two different behaviors, one in the the type TPerson and another one
at the type TEmployee. At run-time, the system will be able to determine the ap-
propriate implementation to use when the operation marry() is invoked (and
this called late binding). Therefore, it is not necessary to check the type of ob-
ject who called the operation at compile-time. Finally, overloading allows the
definition of several implementations of the same operation within the same
type.

CORBA Reference Object Model The CORBA object model is similar to
the one presented earlier; however, there are a few major differences, in particu-
lar, regarding the meaning of the different concepts. For example, because CORBA
deals with distribution of processes or/and data, the concept of inheritance defined in
object-oriented models needs to be re-defined. The inheritance we defined earlier is
not appropriate in heterogeneous distributed environments (like CORBA) because it
models the type inheritance, that is, the inheritance of specifications (operations) and
the inheritance of implementations (data and code of operations). Because a type in
CORBA is defined only as the part related to the clients, the operations, then the in-

OBJECT MANAGEMENT GROUP 39

heritance of operations seems to be the logical one to have in CORBA environments.
The inheritance of implementation is not considered because the implementation part
of types (the data and the code of operations) is implemented in different program-
ming paradigms, such as C++, C, Java. Therefore, inheriting the implementation part
of the types is possible, however not often required.

The CORBA object model is abstract in that it is not directly realized by any par-
ticular technology. A CORBA object system is a collection of objects that isolates
the requesters of services (clients) from the providers of services by a well-defined
encapsulating interface. In particular, clients are isolated from the implementations
of services as data representations and executable code. The CORBA object model is
defined as two models: one model (i.e., client model) which describes the object se-
mantics, that is, the concepts that are meaningful to clients, including concepts such
as object creation and identity, requests and operations and types and signatures; the
other model (implementation model) describes concepts related to object implemen-
tations, including such concepts as methods, execution engines, and activation.

The CORBA object model is an example of a conventional object-oriented model,
where a client sends a message to an object. Conceptually, the object interprets the
message to decide what service to perform. In the conventional model, a message
identifies an object and zero or more actual parameters. As in most conventional
object models, a distinguishing first parameter is required, which identifies the op-
eration to be performed; the interpretation of the message by the object involves se-
lecting a method based on the specified operation. Operationally, of course, method
selection could be performed either by the object or the ORB.

Object Semantics Object semantics define concepts that are relevant to the
clients. Here we introduce such concepts, as proposed in the CORBA document [70].

• As with conventional object-oriented models, objects are entities of an object
system. An object is an identifiable, encapsulated entity that provides one or
more services that can be requested by a client.

• Clients request services by issuing requests. The term “request” is broadly
used to refer to the entire sequence of causally related events that transpire
between a client initiating a request and the last event causally associated with
that initiation. The information associated with a request consists of an opera-
tion, a target object, zero or more (actual) parameters, and an optional request
context.

Parameters in a request are instantiated with values. A value is an instance
of an OMG data type. There are non-object values (string), as well as values
that reference objects, called object references. An object reference is a value
that reliably denotes a particular object. Specifically, an object reference will
identify the same object each time the reference is used in a request, subject to
certain pragmatic limits of space and time.

• Objects can be created and destroyed. From a client’s perspective, there is no
special mechanism for creating or destroying an object, as it exists in object-
oriented systems (e.g., constructors in C++). Objects are created and destroyed

40 INTRODUCTION TO CORBA

as an outcome of issuing requests. The outcome of object creation is revealed
to the client in the form of an object reference that denotes the new object.

• CORBA types are similar to those defined in conventional object models. Types
are used in signatures to restrict a possible parameter or to characterize a possi-
ble result. The extension of a type is the set of entities that satisfy the type at any
particular time. An object type is a type whose members are object references.
In other words, an object type is satisfied only by object references.

There are different types, those defined by CORBA and those defined by
clients. A CORBA type can be either a basic type (such as Boolean, characters,
etc.) or a constructed type. A constructed type can be either a tuple type (which
consists of an ordered set of <name,value> pairs), union type, sequence type
(which consists of a variable-length array of a single type), an array type (which
consists of a fixed-shape multidimensional array of a single type), an interface
type (which specifies the set of operations that an instance of that type must
support), or a value type (which specifies state as well as a set of operations
which an instance of that type must support).

• Interfaces are probably the key concept of the CORBA object model. They de-
scribe a set of possible operations that a client may request of objects, through
their interfaces. Compared to conventional object models, CORBA interfaces
are the operations part of types (the specification of the types). The imple-
mentation of the type (i.e., the data and the implementation of the operations)
is “separated” from the type specification. Obviously, an interface may have
several implementations, and the particularity of the CORBA object model is
that these implementations can be done in different programming languages,
such as C, C++, and Java. However, as we will see later on, interfaces must
be defined with the OMG standard specification language, called the Interface
Definition Language (IDL). Section 2.4.2 describes the main concepts of this
language, and Chapter 3 shows how to specify and implement interfaces by
using a CORBA complaint system such as OrbixWeb.

An interface provides a syntactic description of how a service provided by
an object that is supporting this interface, is accessed via this set of operations.
An object satisfies an interface if it provides its service through the operations
of the interface according to the specification of the operations.

The interface type for a given interface is an object type, such that an object
reference will satisfy the type if and only if the referent object also satisfies the
interface.

Interface inheritance provides the composition mechanism for permitting an
object to support multiple interfaces. The principal interface is simply the most-
specific interface that the object supports, and consists of all operations in the
transitive closure of the interface inheritance graph.

• An operation is an identifiable entity that denotes an indivisible primitive of
service provision that can be requested. The act of requesting an operation is
referred to as invoking the operation. An operation is defined as in conventional
object models; it has an identifier (i.e., its name) and has a signature (that de-

OBJECT MANAGEMENT GROUP 41

scribes the legitimate values of request parameters and returned results). The
general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)
[raises(except1,...,exceptN)]
[context(name1, ..., nameM)]

where: oneway is an optional keyword that indicates that best-effort semantics
are expected of requests for this operation; the default semantics are exactly-
once if the operation successfully returns results or at-most-once if an ex-
ception is returned. The <op_type_spec> is the type of the return result. The
<identifier> provides a name for the operation in the interface. The param-
eters are flagged with the modifiers in, out, or inout indicate the direction in
which information flows (with respect to the object performing the request):
in means that the value of the parameter will be provided by the client when
the operation is invoked, out means the opposite of in (i.e., the value of the
parameter will be returned after the execution of the operation), inout means
that the parameter can be in or out. The optional raises expression indicates
which user-defined exceptions can be signalled to terminate an invocation of
this operation; if such an expression is not provided, no user-defined excep-
tions will be signalled. The optional context expression indicates which request
context information will be available to the object implementation.

• An interface may have attributes. Because interfaces model the specification
part of types, attributes referred in interfaces do not relate to data persistence
as in conventional object models. In fact, data persistence relates to the imple-
mentation of interfaces.

An attribute is logically equivalent to declaring a pair of accessor functions:
one to retrieve the value of the attribute and one to set the value of the attribute.
An attribute may be read-only, in which case only the retrieval accessor func-
tion is defined. From a CORBA perspective, the main difference between an
attribute and an operation is that for the former no exception can be associated
to it.

Object Implementation The object implementation describes the concepts rel-
evant to realizing the behavior of objects in a computational system. The implemen-
tation of an object system carries out the computational activities needed to effect
the behavior of the requested services. These activities may include computing the
results of the request and updating the system state. During this process, additional
requests may be issued.

The implementation model consists of two parts [70]: the execution model and the
construction model. The former describes how services are performed, and the latter
describes how services are defined. A requested service is performed in a computa-
tional system by executing code that operates upon some data. The data represent a
component of the state of the computational system. The code performs the requested
service, which may change the state of the system. Code that is executed to perform
a service is called a method. A method is an immutable description of a compu-

42 INTRODUCTION TO CORBA

tation that can be interpreted by an execution engine. A method has an immutable
attribute called a method format, that defines the set of execution engines that can
interpret the method. An execution engine is an abstract machine (not a program),
that can interpret methods of certain formats, causing the described computations to
be performed. An execution engine defines a dynamic context for the execution of
a method. The execution of a method is called a method activation. When a client
issues a request, a method of the target object is called. The input parameters passed
by the requestor are passed to the method and the output and input–output parame-
ters and return result value (or exception and its parameters) are passed back to the
requestor.

The construction model provides mechanisms for realizing behavior of requests.
These mechanisms include definitions of object state, definitions of methods, and
definitions of how the object infrastructure is to select the methods to execute and
to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods. An
object implementation or implementation, for short, is a definition that provides the
information needed to create an object and to allow the object to participate in pro-
viding an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It
also typically includes information about the intended types of the object.

Table 2.1 summarizes the main differences between conventional object models
and the CORBA object model.

TABLE 2.1 Conventional Object Models and CORBA Object Model

Conventional Object Models CORBA Object Model

class as object factory and data no support of the concept of class. The
warehouse object factory is a function that is

supported by an ordinary interface

type interface

type inheritance includes supports for interface inheritance
inheritance of operations and only
inheritance of implementation

overriding, overload, no support for overriding,
late binding overloading, and late biding

object identity object reference as an extension of
object identity to include additional
information, such the information
about location of objects (e.g., host,
port number, adaptor name)

encapsulation encapsulation

OBJECT MANAGEMENT GROUP 43

2.3.2 Object Management Architecture

OMA (Object Management Architecture) provides a framework which defines the
functions supported by the component technology specifications with the OMG. As
such it forms the foundation for building applications constructed from distributed
objects and for interoperability between applications in homogeneous and heteroge-
neous environments.

As depicted in Figure 2.1, the OMA reference model consists of the follow-
ing components: Object Request Broker (ORB), Object Services (COSS), Common
Facilities, Application Objects, CORBA Domains. The ORB component is mainly
responsible for facilitating communication between clients and objects. It is the cen-
tral body, a broker provides the basic mechanism for transparent communication
between distributed objects, and enables them to transparently make and receive re-
quests and responses in a distributed environment. Object Services are a collection of
basic services for using and implementing objects. Services are required to construct
distributed applications, and are independent of application domains. An example
of Object Services is the Life Cycle Service, which defines conventions for creating
deleting, copying and moving objects; however, it is not concerned with the details
of the objects implemented in the application. Common Facilities are a collection
of services that may be shared by many applications, but are not as fundamental as
the Object Services. These facilities provide general purpose capabilities useful in
many applications. An electronic mail managing facility might be an example of a
Common Facilities object. Application Objects correspond to the traditional notion
of applications; they are software that is specifically designed to solve a business
problem, and make use of the services facilities and domains as required. There is no

Healthcare Finance

User
Interface Management

Task
Management

Systems
Management
Information

TransactionEventTradingNaming Query

Application Objects

CORBA Facilities

Vertical CORBA Facilities

Horizontal CORBA Facilities

Object Request Broker

CORBA Services

Figure 2.1 OMG Object Model Architecture.

44 INTRODUCTION TO CORBA

C
o

m
p

o
u

n
d

 In
te

rc
h

a
n

g
e

D
a

ta
 E

n
c

o
d

in
g

 R
e

p
re

se
n

ta
tio

n

Ti
m

e
 O

p
e

ra
tio

n
s

D
a

ta
 In

te
rc

h
a

n
g

e

In
fo

rm
a

tio
n

 S
to

ra
g

e
 a

n
d

 R
e

tr
ie

va
l

In
fo

rm
a

tio
n

 E
xc

h
a

n
g

e

In
fo

rm
a

tio
n

 M
o

d
e

lin
g

Information Mgmt

C
o

m
p

o
u

n
d

 P
re

se
n

ta
tio

n

D
e

sk
to

p
 M

a
n

a
g

e
m

e
n

t

R
e

n
d

e
rin

g
 M

a
n

a
g

e
m

e
n

t

U
se

r S
u

p
p

o
rt

Sc
rip

tin
g

Distributed Applications

C
o

m
p

u
te

r
M

a
n

u
fa

c
tu

rin
g

In
te

g
ra

te
d

D
ist

rib
u

te
d

Si
m

u
la

tio
n

C
o

n
c

u
rr

e
n

c
y

A
c

c
o

u
n

tin
g

A
p

p
lic

a
tio

n
D

e
ve

lo
p

m
e

n
t

Im
a

g
e

ry

In
fo

rm
a

tio
n

Su
p

e
rh

ig
h

w
a

ys

M
a

p
p

in
g

Se
c

u
rit

y

Te
le

c
o

m
m

u
n

ic
a

tio
n

s

In
te

rn
a

tio
n

a
liz

a
tio

n

Ex
p

lo
ra

tio
n

 &
P

ro
d

u
c

tio
n

O
il

&
 G

a
z

&

Vertical CORBA FAcilities

CORBA Services

C
o

lle
c

tio
n

 M
a

n
a

g
e

m
e

n
t

C
o

n
sis

te
n

c
y

Ev
e

n
t

M
a

n
a

g
e

m
e

n
t

In
st

a
n

c
e

 M
a

n
a

g
e

m
e

n
t

C
u

st
o

m
iz

a
tio

n

D
a

ta
 C

o
lle

c
tio

n

In
st

ru
m

e
n

ta
tio

n

P
o

lic
y

M
a

n
a

g
e

m
e

n
t

P
ro

c
e

ss
 L

a
u

n
c

h

Sc
h

e
d

u
lin

g
 M

g
m

t

Se
c

u
rit

y

Q
u

a
lit

y
o

f
Se

rv
ic

e
 M

g
m

t

System Management

W
o

rk
flo

w

A
g

e
n

ts

R
u

le
 M

a
n

a
g

e
m

e
n

t

A
u

to
m

a
tio

n

Task MgmtUser Interfaces

Horizontal CORBA Facilities

Object Request Broker

Operating System and Network Services

Ev
e

n
ts

C
o

n
c

u
rr

e
n

c
y

Q
u

e
ry

Tr
a

n
sa

c
tio

n
s

R
e

la
tio

n
sh

ip
s

Tr
a

d
in

g

Se
c

u
rit

y

Ex
te

rn
a

liz
a

tio
n

Li
fe

 C
yl

e

N
a

m
in

g

P
e

rs
ist

e
n

c
e

Li
c

e
n

sin
g

P
ro

p
e

rt
ie

s

C
h

a
n

g
e

 M
a

n
a

g
e

m
e

n
t

D
a

ta
 In

te
rc

h
a

n
g

e

R
e

p
lic

a
tio

n

C
o

lle
c

tio
n

s

Ti
m

e

Figure 2.2 Detailed view of OMA.

standardization for the Application Objects, and they lie in the uppermost layer of
the reference model. CORBA domains are services that are generalized, and targeted
toward a specific vertical market, such as telecommunications, or finance.

A detailed description of each component of the OMA is depicted by Figure 2.2.

Object Services The value-added services provided by CORBA are collectively
known as CORBA Services (COSS). COSS are domain-independent interfaces that
are used by many distributed object programs. There are several services, includ-
ing Naming, Events, Life Cycle, Persistence, Relationship, Externalization, Transac-
tion, Concurrency, Property, Licensing, Time, Trader and Security. Several of these
services, such as Naming, Events, Transaction, Trading, and Security services, are
supported by most CORBA systems.

The Naming Service allows the retrieval of distributed objects by the names of
the distributed objects. Therefore, clients do not need to remember the references to
objects they want to use. Names, which are like “semantic identifiers,” are assigned

OBJECT MANAGEMENT GROUP 45

to objects and used by clients to easily retrieve them. The Trading Service com-
plements the functionalities of the Naming Service, enabling retrieval of distributed
objects based on their properties. Objects are registered with traders, that is, objects
which can retrieve other objects that are recorded in their repositories, based on prop-
erty values. Traders are then used to find objects with certain values for properties.
For example, the request to a trader will be to find a room in a hotel which costs 50
and with a bathroom in it. In this context, the objects related to different instances of
hotels will have the “cost” and “whether or not it has a bathroom” will be the prop-
erties associated to these objects. Obviously, these properties are not automatically
those recorded with the state of objects.

The CORBA Object Query and Transaction Services can be classified as “data-
base” services. Often these services deal with “persistent objects.” Objects are made
persistent either by using the Persistent Service or transparently done by the ORB
(through specific components, such as adaptors). The CORBA Object Query Service
(OQS) allows declarative access to heterogeneous database systems, including rela-
tional databases (e.g., Oracle and Sybase) as well as object-oriented databases (e.g.,
ObjectStore and O2). The Oject Query Service provides operations to query objects
based on several standard languages (such as OQL). Interfaces are proposed to de-
scribe different elements involved within the querying of objects, such as various col-
lections (e.g., queryable collection) and query components (e.g., query evaluators).
Users can invoke queries on collections of objects and the Object Query Service
returns collections of objects that satisfy the given predicate. The Object Transac-
tion Service provides operations to control the scope and duration of transactions. It
allows multiple objects potentially residing at different resource managers to partici-
pate in a global atomic transaction and allows objects to associate their internal state
changes with the transaction. The Object Transaction Service also is responsible for
the coordination of the completion of distributed transactions by implementing pre-
sumed abort two phase commit (2PC) protocol across heterogeneous, autonomous,
and distributed objects based systems.

In this book we have chosen to discuss only a few COS Services, which we be-
lieve are important for distributed applications. These include the Naming Service
(in Chapter 7), the Trading Service (in Chapter 8), the Event Service (in Chapter 9),
the Transaction Service (Chapter 10), and the Query Service (Chapter 11). The first
three services are basic ones for distributed systems and useful for locating objects
and enabling advanced communication between these objects. The transaction ser-
vice enables the building of robust and reliable applications. The Query service is
important when dealing with persistent objects, and in particular, when databases are
used as persistent storage. Because databases represent a large number of existing
industrial applications, their integration with CORBA is a step-forward. The Query
service provides an important mechanism to retrieve and update objects within sev-
eral data repositories.

As mentioned earlier, the remaining CORBA services which are not discussed in
this book are equally important. We have chosen to describe a few specific services,
in particular those related to “databases,” because we believe they will be the ones
that benefit the most from CORBA.

46 INTRODUCTION TO CORBA

Common Facilities Where CORBA Services provide services for objects,
CORBA facilities provide services for applications. These interfaces are also hor-
izontally oriented, but unlike Object Services they are oriented toward end-user
applications. CORBA Facilities standardize all interfaces that are common across
all CORBA domains. An example of such a facility is the Distributed Document
Component Facility (DDCF), a compound document Common Facility based on
OpenDoc. DDCF allows presentation and interchange of objects based on a docu-
ment model, for example, facilitating the linking of a spreadsheet object into a report
document.

Domain Interfaces These interfaces fill roles similar to Object Services and
Common Facilities but are oriented toward specific application domains. For ex-
ample, one of the first OMG RFPs, issued for Domain Interfaces is for Product Data
Management (PDM) enablers for the manufacturing domain. Other OMG RFPs will
soon be issued in the telecommunications (CORBAAtel), manufacturing (CORBAA-
man), medical, and financial domains.

Application Interfaces These are interfaces developed specifically for a given
application. Because they are application-specific, and because the OMG does not
develop applications (only specifications), these interfaces are not standardized.
However, if over time it appears that certain broadly used services emerge out of
a particular application domain, they might become candidates for future OMG
standardization.

2.4 COMMON OBJECT REQUEST BROKER ARCHITECTURE

Figure 2.3 illustrates the primary components of CORBA. Object implementations
define operations that implement a CORBA IDL interface. They can be written in
a variety of languages, including C, C++, Java, Smalltalk, and Ada. A client is the

Client

Interface
Dynamic IDL

Stub

Static IDL
Skeleton

ORB
Interface

Dynamic
Skeleton

ORB
Interface

ORB Core ORB Core

Object Adaptor

IIOP/GIOP

Implementation
Object

Figure 2.3 The Common Object Request Broker Architecture.

COMMON OBJECT REQUEST BROKER ARCHITECTURE 47

program entity that invokes an operation on an object implementation. The services
of a remote object are accessed in a manner that is transparent to the caller.

An ORB is a logical entity that may be implemented in various ways, such as one
or more processes or as a set of libraries. To decouple applications from implemen-
tation details, the CORBA specification defines an abstract interface for an ORB.
This interface provides various helper functions such as converting object references
to strings and vice versa, and creating argument lists for requests made through the
dynamic invocation interface described below.

A client application program is written in a language supported by the ORB. Ev-
ery ORB supports one single language mapping (e.g., C++, Java, etc.) in which ap-
propriate proxies (e.g., client proxy as the stub and server proxy for the skeleton)
are generated in this language. The client program will refer to object types that
are defined within an IDL application. When the IDL application is compiled, the
ORB generates stubs and skeletons which serve as the “glue” between the client
and server applications, respectively, and the ORB. They are basically responsible
for marshalling (for the stub) and un-marshalling (for the skeleton) client requests.
They are written in the language supported by the ORB. When a client invokes an
operation of an interface of the IDL application, this operation will be marshalled
by the stub and forwarded to the ORB. This type of invocation is called a static
invocation, because the operations invoked by the client are known at compile
time by the stub.

However, there is another alternative where the client wants to call an operation
that is not known by the stub. This situation may occur, for example, when the imple-
mentation object has been changed within the server (e.g., adding an implementation
of an operation) and the IDL application has not been re-compiled to generate a new
stub (which will be aware of the new operation and therefore able to marshall it). An-
other situation will be a client wanting to delegate the execution of an operation to
an implementation object without having the IDL interface known by the stub (e.g.,
a client that receives a remote object reference from the Trading Service and wishes
to invoke an operation on the object). For such types of invocation, called dynamic
invocation, OMG provided the Dynamic Interface Invocation (DII), where clients
can directly access the underlying request mechanisms provided by the ORB. Ap-
plications use DII to dynamically issue requests to objects without requiring IDL
interface-specific stubs to be linked in. Unlike IDL stubs, DII also allows clients to
make non-blocking deferred synchronous (separate send and receive operations) and
oneway (send-only) calls.

So far we have described the client side. Regarding the server side, as shown in
Figure 2.3, there are several components that are used by the ORB to negotiate the
execution of the operation issued by the client, either statically or dynamically. If the
operation has issued the operation using Static Stub Invocation (SSI) mechanism,
then the ORB will forward the request to the Object Adaptor, and this is done
by using the information contained within the reference of the object in which the
operation is invoked by the client.

Object references contain details which help the execution of operations within
the servers. They include information, such as the server location, the adaptor iden-

48 INTRODUCTION TO CORBA

tity, and the oid of the object within the server. The Object Adapter assists the ORB
with delivering requests to the proper object implementation and with activating ap-
propriate objects within the server. To do that, the adaptor needs to keep track of
information, such as the association of oids with their servant classes. In this way,
when the ORB delegates the execution of the operation to the adaptor, this will first
identify the servant class of the object and then ask the skeleton to un-marshal the
operation so it can be invoked on the appropriate object implementation in the server.

The Object Adaptor has other functionalities than just activating and deactivating
objects in servers. Object adaptors also are responsible for enforcing security policies
specified on the implementation objects. Chapter 4 gives a detailed discussion about
the main functions of the Object Adaptor and the different categories of adaptors,
such as Basic Object Adaptor and the more recently standardized OMG adaptor, the
Portable Object Adaptor.

DSI is the server side’s analogue to the client side’s DII. The DSI allows an
ORB to deliver requests to an object implementation that does not have compile-
time knowledge of the type of the object it is implementing. The client making the
request has no idea whether the implementation is using the type-specific IDL skele-
tons or is using the dynamic skeletons.

As explained earlier, OMA is an architecture for distributed objects. At the lower
communication level, the object interaction takes the form of Remote Procedure
Calls (RPCs), which are synchronous invocations. CORBA also allows, to a cer-
tain degree, asynchronous interaction by specifying a oneway operation semantics
in which the client continues its computation without waiting for a result from the
server after issuing the request. The oneway operation is a request-only operation
with best-effort semantics; it does not return any result and the requester never syn-
chronizes with the completion (if any) of the request.

2.4.1 ORB Core

The ORB provides a mechanism for transparently communicating client requests
to target object implementations. The ORB simplifies distributed programming by
decoupling the client from the details of the method invocations. This makes client
requests appear to be local procedure calls. When a client invokes an operation, the
ORB is responsible for finding the object implementation, transparently activating it
if necessary, delivering the request to the object, and returning any response to the
caller.

The ORB is the negotiator of this framework. An ORB knows about the interfaces
to certain objects. The IDLs for the objects it knows are located in a dynamic listing
called the interface repository. An ORB has the ability to know of other objects that
reside in different host systems. When queried, the ORB tries to match the requested
data object to its interface repository. Then through its implementation repository, the
ORB will attempt to send a message to the object. If the data object or its server is not
running, the ORB will obtain the reference of how and where to start the object in the
implementation repository or an associated database. Once the ORB has the correct
reference, it will attempt to start that object and then proceed to send the original

COMMON OBJECT REQUEST BROKER ARCHITECTURE 49

message. If this process fails or the ORB does not know of the requested object,
the ORB will return an appropriate error message to the calling client application or
object.

The ORB removes the complexity of distributed network programming for devel-
opers. There is no longer need to worry about how to set up and test low-level RPC
routines to carry data from one application to another. Clients simply set up IDL ref-
erences to the object and response methods within the object, and then, compile and
register the object (and possibly its server).

The OMG-specified interface repository is kept within a CORBA host and is
maintained by the ORB process (a demon). The interface repository is a listing of
all object IDLs the ORB needs to be aware of. The object IDLs are not constrained
to the same host that the ORB is running on. They could be on different hosts but
must be registered in an interface repository for use. This repository allows for per-
sistent objects. It does not care about the status of an object; it is in essence the
ORB’s database of interfaces for use at run time. Therefore, applications need not be
compiled or linked with the information of other CORBA objects, but they may still
issue calls and use the information through DII.

Also maintained by the ORB demon is a specified implementation repository.
This repository allows ORBs to locate and activate the various implementations of
objects. The CORBA objects are not required to be running processes. Thus, the
ORB is required to know how to activate an object, if necessary. Usually activating
an object requires a symbol table or other database that has the specified path to the
object or server and other necessary information. Such information could be the last
time the object or server was accessed. If another CORBA object issues a request to a
non-running CORBA object, the implementation repository allows the activation of
the requested object and the passing of the original request. At run time, this activity
is invisible to the developer.

2.4.2 Interface Definition Language

IDL is the language used by clients to specify interfaces for the object in the server.
The IDL provides an independent, programming language neutral way of specify-
ing the interface of implementation objects, that is, the operations and attributes of
implementation objects. Interfaces are specified in the client side as IDL files. In
the server side, servants are provided as abstract specifications for the implementa-
tion objects. Such servants can be C++ or Java classes, depending on the mapping
language supported by the ORB.

This is different from centralized systems, where both the specification and the
implementation are defined within a single system using a single specification and
implementation language, like C++ or Java. Because CORBA deals with the dis-
tribution of objects (or distributed objects), as illustrated in Figure 2.4, is “split”
into two components: one component involves the IDL interface and the other com-
ponent describes the implementation of the IDL interfaces. There may be several
implementations for the same interface, which are located in different servers. The
implementations might be in different languages. The ORB, together with the adap-

50 INTRODUCTION TO CORBA

One interface and several implmentations (possibly in
different languages) located in different servers

implementation implementation

interface

implementation

interface

Single concept
(e.g. C++ class)

Object Request Broker

Figure 2.4 “Centralized object” vs. “distributed object.”

tors, is responsible for selecting the appropriate implementation when a client makes
an invocation. As mentioned earlier, the appropriate implementation object is se-
lected by the ORB and the adaptors by analyzing the information contained within
object references.

Chapter 3 provides all of the details necessary to implement a CORBA applica-
tion using either SSI or DSI. This chapter also shows how to define interfaces and
compile them to generate appropriate client and server proxies. Here we provide a
simple example of an IDL specification to make clear some of the concepts we ex-
plained earlier. The keyword “interface” is used to specify interfaces, such as those
of Account, CheckingAccount and Bank distributed objects. The specifications of
these objects contain attributes (such as name and balance) and operations (such as
MakeDeposit()). Because IDL deals only with specifications, for each interface an-
other factory interface needs to be defined in order to specify operations that create
objects. In the example below, the interface Bank is an example of the factory in-
terface which is used to create objects of the types Account and CheckingAccount,
and this is through the operations newAccount() and newCheckingAccount(). Be-
cause the Bank interface behaves like a factory interface, only one object implemen-
tation of this interface is generally needed to create any object of type Account or
CheckingAccount, and this is generally done when a server is initialized.

interface Account {
readonly attribute float balance;
readonly attribute string name;
void makeDeposit(in float f);
void makeWithdrawal(in float f);

};
interface CheckingAccount: Account {

readonly attribute float overdraftLimit;
};
// a factory for bank accounts
interface Bank {

Account newAccount(in string name);

COMMON OBJECT REQUEST BROKER ARCHITECTURE 51

void deleteAccount(in Account a);
CheckingAccount newCheckingAccount(in

string name, in float limit);
};

In the example above, the interface CheckingAccount is defined to inherit from
the Account interface. Contrary to object-oriented models, where “inheritance”
means “inheritance of specification as well as inheritance of interfaces,” the in-
heritance in IDL only means inheritance of the interface, that is, inheritance of
the operations and the attributes defined within the interface Account. Therefore,
implementation objects of the interface Account and implementation objects of the
interface CheckingAccount, which may or not be in different servers, support the
same interfaces, but may have completely different behavior. This means that the
implementation of the operations for the interface Account is not atomically inher-
ited from object implementations of CheckingAccount. However, if this behavior is
required, the implementation inheritance can be done in the server side.

A final comment regarding the IDL specification above concerns the attribute
specification, such as balance and name. Because IDL deals only with specifications,
these attributes express operations instead. This is mainly because “persistency” is an
implementation issue; therefore, the operations related to these attributes should be
linked to the appropriate persistent data of object implementations. These attributes
are similar to accessors (when readonly keyword is used) and modifiers of C++. One
of the main differences between attributes and operations is that the former cannot
have associated exceptions.

Figure 2.5 shows the different types supported by CORBA. To summarize the
discussion on IDL, this language is a separate language within the CORBA specifi-
cation with the same lexical rules as C++. New keywords are introduced to handle
distributed computing concepts. IDL semantics should coincide with the ANSI C++
standardization effort, and the IDL has full support for C++ preprocessing. The IDL
describes the interfaces that client objects use when they want to reference an object
implementation. Each IDL interface is defined completely for the object. The IDL
also provides information necessary to develop clients that use an object’s interface
operations. IDL has been mapped successfully to several languages, including C,
C++, Java, and Smalltalk.

Short Long UShort ULong Double Char String Boolean Enum Octal Any

SequenceStruct

Constructed ValueBasic ValueObject Reference

Value

Float PointInteger

Float

AnyUnion

Figure 2.5 CORBA’s IDL type hierarchy.

52 INTRODUCTION TO CORBA

2.4.3 Interface and Implementation Repositories

In the CORBA architecture, there are two repositories, the interface repository (IFR)
and the implementation repository (IPR). Each of them acts like a “dictionary” pro-
viding meta-descriptions about specific information. IFR provides a meta-description
of the IDL types at the client side (e.g., list of operations for a given interface),
whereas an implementation repository provides a meta-description about the imple-
mentation information at the server side (i.e., list of servers that are active and how
they can be activated). Each of these repositories plays an important role during op-
eration invocations.

This section discusses the IFR and its OMG standard. Because the implementa-
tion repository is related to the implementation part of an ORB, OMG has provided
neither a structure nor an interface of such types of repositories. Each vendor imple-
ments such implementation repositories in a specific way by containing any infor-
mation required by the ORB to perform basic functions in the server side, such as
activating/deactivating servers.

Interface Repository IFR is the component of the ORB that provides persistent
storage of interface definitions that it manages and provides access to a collection
of object definitions specified in OMG IDL. All the information defined within IDL
applications is stored as instances of IFR meta-types. For example, InterfaceDef is a
meta-type that is used to record all information about every interface, including the
list of its operations, the list of attributes, the list of exceptions and the list of inherited
interfaces (i.e., base interfaces). When a client compiles the IDL, this meta-type, as
well as others, are instantiated to contain appropriate information about the IDL ap-
plication. For instance, in the example of Section 2.4.2, when the IDL containing the
interfaces Account, CheckingAccount, and Bank is compiled, then three instances
of the meta-type InterfaceDef are created to store the details of each of these in-
terfaces. For the interface Account, for example, the instance of InterfaceDef will
record the following details: balance and name as attributes (instances of the meta-
type AttributeDef, makeDeposit() and makeWithdrawal() as operations (instances of
the meta-type OperationDef). One of the advantages of storing the details of the in-
terface Account is being able to dynamically browse the details of this interface at
run-time. Users can look up the content of the interface repository and later be able
to check the new operations that are added to the interface.

Figure 2.6 depicts a partial view of the different meta-types of the IFR, and Chap-
ter 3 shows how they are used to browse the content of the IFR. These meta-types
record all the information about IDL applications, and they are used by the IDL
compiler for type-checking of request signatures—whether the request was issued
through the DII or through a stub. This information is recorded within IFR and can
also be used to assist in checking the correctness of interface inheritance graphs and
assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an IFR is public, that is,
accessible from clients using the OMG’s operations of the IFR, the information main-
tained in the IFR can also be used by clients and services. For example, the IFR can

COMMON OBJECT REQUEST BROKER ARCHITECTURE 53

content(restricted_type,
 exclude_inherited)

lookup_name(Identifier search_name
 levels_of_search
 restricted_type
 exclude_inherited)

describe-contents(restricted_type
 exclude_inherited
 max_returned_objects)

attribute Identifier name
attribute RepositoryId id;

describe()
containedSeq within()

FullInterfaceDescription
 describe_interface()

attribute repositoryIdSeq base_interfaces
struct FullInterfaceDescription {
 identifier name
 repositoryId id
 OpDescriptionSeq operations
 AttrDescriptionSeq attributes }

struct Description {
 Contained contained_object
 identifier name
 any value }

struct Description {
 Identifier name
 any value }

Contained
 lookup_id (in RepositoryId

search_id)

Container

ModuleDef Repository

InterfaceDef

AttributeDef

OperationDef

Contained

<sequence>

<sequence>

<sequence>

Figure 2.6 Partial CORBA interface repository type hierarchy.

be used to manage the installation and distribution of interface definitions, provide
components of a CASE environment (e.g., an interface browser), provide interface
information to language bindings (such as a compiler), and provide components of
end-user environments (e.g., a menu bar constructor).

Implementation Repository OMG has not provided any standard regarding the
implementation repository mainly because it relates to the implementation part of the
ORB. Information contained within this repository is not available to clients; how-
ever, it is used by the ORB to perform object binding. There are two types of bindings
in CORBA, direct and indirect. The direct binding is performed by the ORB itself,
whereas the indirect binding is based on the use of the implementation repository.
This also can provide additional features, such as load balancing, object migration
and sever migration. The features of each implementation repository depend on the
vendor.

As detailed in Section 2.5, before the client invokes an operation, a reference to
an object is retrieved. There are different ways to find such a reference. One way is to
use either the Naming Service, when the name of the object is known by the client,
or the Trading Service when the object is registered with a trader. The other way is
to read the string version of the reference, when this is stored in a file. References
are in a compatible form to the standard CORBA reference, called IOR (Interoper-

54 INTRODUCTION TO CORBA

able Object Reference). Details about IOR are given in Chapter 5. Briefly, an IOR
contains three types of information [47]: (1) type name (which acts like an index
into IFR so IDL definitions can be retrieved at runtime), (2) the protocol and address
details, which specify addressing information, such as the host name and the TCP
port number, and (3) the object key, which consists of the name of the object adaptor
and the name of the object. An example of IOR can be as follows:

IDL:iServiceApp:1.2 | goanna:2222 | OA7,obj120

CORBA distinguishes between two types of IORs: the transient IOR and the per-
sistent IOR. The former is a reference that exists for as long as its associated server
process remains available. Once the server shuts down, the reference is not acces-
sible anymore, even if the server is restarted. The latter is persistent by nature; it is
accessible even if the server shuts down and is later restarted. The implementation
repository is used when persistent IORs are used. Because information about the host
name and port number is embedded within IORs, appropriate information should be
stored in the implementation repository so any change of a server to a different host
or port number will be detected and the ORB can transparently start the server, do
the binding, and shut down the server after some period of idle time. In short, to bind
persistent IORs, ORBs provide an implementation repository to store all necessary
information about servers.

The implementation repository has several functions, among which is its respon-
siblity for the maintenance of the registry of servers, for the storage of active servers,
as well as their appropriate details, such the current host and port number, and for
starting servers on demand if they are registered for automatic activation. The imple-
mentation repository generally maintains a table that has the following information:

Adapter Name Start-up Command Address

OA7 rsh amazigh “/usr/local/bin/jim -x” goanna:2222
OA1 miki:1030
OA4 /usr/local/bin/robert

The first two attributes of the table are instantiated when a server is installed.
The last attribute records the host and port number at which the server is currently
running. An empty address indicates that the server is stopped.

2.4.4 Object Adaptors

The rationale behind the inclusion of an (object) adaptor in the OMG architecture
is interface flexibility and management. Without an adaptor, to communicate, both
ORB and implementations must either agree on one fixed set of interfaces or support
multiple sets of interfaces. The solution with a unique set of interfaces is not desirable
because different sets of interfaces might be wanted, depending on the application’s

COMMON OBJECT REQUEST BROKER ARCHITECTURE 55

goals. For example, implementations are needed to perform a radically new kind of
service, new functionalities are added, or better performance is needed. The second
alternative, the support of multiple sets of interfaces, is too complex and could result
in only a subset of the adaptor’s interfaces being used. Confusion might also occur
over which set of interfaces should be selected. It is conceded that foreseeing all
types of interfaces that the implementations and the ORB will have is impossible.

The ORB and the object adaptor together provide the binding of client operations
to appropriate object implementations. When an invocation is made, the client-side
ORB is responsible for interpreting the object’s profiles, for locating the server in
which the object is implemented, and for sending a request to that server. On the
server side, the request is received by the ORB, the following steps of dispatching
are generally performed:

• The ORB finds the object adapter that the object is implemented in and passes
the request on to that adapter.

• The object adapter finds the servant that implements the object.
• If the servant uses a static skeleton, the request is unpacked by IDL-generated

code and the desired method is invoked.

But before any of this can happen, the object adapter must first know about the
servant (i.e., the abstract class from which an object implementation is created). Af-
ter registering the servant with the object adapter, an implementation must be able to
create and export object references that address the servant. Therefore, in addition to
the invocation of operations on object implementations, the object adapter provides
an administrative interface as well. Here we summarize the functions of an object
adapter: (i) the registration of implementations (with the implementation repository),
(ii) the generation and interpretation of object references, (iii) the mapping of object
references to their corresponding implementations, (iv) the activation and deactiva-
tion of object implementations, (v) the invocation of methods via a skeleton or the
DSI, and (vi) involvement in the enforcement of the security policies of object im-
plementations.

An object adaptor provides three interfaces: one to the ORB, which consists of
a single method to receive an incoming request, one to the user code to which this
request will be passed, by using either the Dynamic or Static Skeleton Interface, and
one administrative interface through which an implementation can cause objects to
be activated or deactivated, and which can influence the processing of requests.

In the initial OMG’s specifications, the object adaptor was known as the Basic
Object Adaptor (BOA). It provided basic functionalities, as listed in its IDL specifi-
cation:

interface BOA {
Object create (in ReferenceData id,

in InterfaceDef intf, in ImplementationDef impl);
void dispose (in Object obj);
ReferenceData get_id (in Object obj);

56 INTRODUCTION TO CORBA

void change_implementation (in Object obj, in ImplementationDef impl);
void impl_is_ready (in ImplementationDef impl);
void deactivate_impl (in ImplementationDef impl);
void obj_is_ready (in Object obj, in ImplementationDef impl);
void deactivate_obj (in Object obj);

};

An object can enter three states during its lifetime: (1) not-existent, (2) inactive,
and (3) active. An object is initially in the not-existent state, meaning that the ORB
does not know of the object and that invocations are not possible but will be rejected
with an appropriate error message. When an object is created (e.g., call of the oper-
ation newAccount() on an object of type Bank), object references can be exported.
Several pieces of information are embedded within these references, such as the oid
of the object, the reference of the adaptor and the reference of the server. By using
the Naming or Trading Service, clients can retrieve objects and receive their object
references. Initially, these objects are inactive, and method invocations will be with-
held on the server side by the BOA and block until the object transitions to the active
state. After activation, method invocations received by the ORB core are passed on
to the implementation until it is deactivated again. The process of objects activation
and deactivation can happen more than once and is transparent to the client. A server
might wish to disallow upcalls from the ORB for some time while other tasks are
being done, or to replace the implementation. Once an object is not needed anymore,
it can be destroyed to returned to the not existent state, causing the BOA to act as
if it had never existed. All of the information about the states of object implemen-
tations as well as other details (e.g., security) are stored within the implementation
repository.

BOA’s specifications were simple; however, they were plagued by problems with
regard to the issues of BOA portability, clarity, and completeness. As a result, cur-
rently available BOAs are vendor-specific and incompatible. OMG has recently re-
leased the specification of another adaptor, called Portable Object Adaptor (POA),
which is not an improved version of BOA. POA was designed from the ground up
with portability in mind. Server codes benefit the most from POA since they can
now operate across different CORBA products. POA interfaces are declared in such
a way as to give more room and more flexibility for future expansions of POA. Like
BOA, POA is also designated to handle objects with the most conventional imple-
mentations.

Chapter 4 provides a detailed description of BOA and POA and shows their dif-
ferences with regards to aspects of architecture and policies.

2.4.5 CORBA Interoperability

The CORBA interoperability standard was developed to allow different ORBs to
communicate. CORBA interoperability provides a gateway infrastructure that makes
different ORB implementations compatible. It sits in the transport layer of the OSI
model. The General Inter-ORB Protocol (GIOP) specifies one main constraint: dif-

CORBA BINDING 57

ferent ORBs must be TCP/IP compliant. This specialized form of the GIOP is re-
ferred to as the Internet Inter-ORB Protocol (IIOP).

Through the CORBA specification, the CORBA methods and services allow the
object methodology to be carried to a distributed, enterprise network. Through IIOP,
CORBA is standardized to a lower network level (of OSI) so it may be used be-
tween multiple heterogeneous enterprise networks. Seven specified IIOP message
types exist: Request , Reply, Cancel Request , LocateRequest , LocateReply,
CloseConnection, and MessageError . All message types are straightforward,
except for the two Locate message types, which are used for network speed opti-
mization routines.

Different implementations of ORBs could either be straight IIOP run over TCP/IP
networks or could run over a different type of network infrastructure, such as Nov-
ell’s NetWare or a Windows NT Transport Driver Interface (TDI). For the latter to
occur, the ORB implementation would need an associated “bridge” implementation.
This bridge allows its ORBs to communicate with IIOP-based ORBs. When writing
a bridge, an implementation can be developed with the Dynamic Skeleton Interface
mentioned previously.

2.5 CORBA BINDING

As explained in Section 2.4.3, there are two type of object references, transient and
persistent IORs. For each of these types, specific binding needs to be used.

2.5.1 Binding of Transient IORs

The binding of transient IORs requires that the server is available at the time when the
client invokes an operation. Such a type of binding involves several steps, including
(a) opening the connection with the server, (b) the location of the servant of the
object by the object adaptor, (c) the return of the result of execution. These steps are
depicted by Figure 2.7.

Step (a): Based on the information contained within the IOR, the client-side
ORB runtime opens a communication on the host and port number specified in
the IOR and sends a request message to the server process. The message contains
information which helps the server and adaptor to invoke the client operation: the
size of the message, the object key (i.e., adapter and object names), the name of
the operation to be invoked, and parameters of the operation.
Step (b): The server uses the information within the message to locate the ap-
propriate adaptor. As it will be detailed in Chapter 4, the adaptor will use a table
called the Object Map Table to locate the servant, and this is based on the name of
the object. This is one type of lookup, where the table is browsed to find the ser-
vant. However, there are other alternatives, such as using a default servant class,
which may be useful for specific objects, such as database objects, in which ap-
propriate functions can be used.

58 INTRODUCTION TO CORBA

user-supplied servant

user-supplied servant

IDL:iService:App:1.2 goanna:2222 OA7, obj120

user-supplied servant

obj1

obj120
...

obj20

Object Map Table

default servant

object reference

OA7

Client

Server at goanna::2222

(c) reply for op()

(b)

op() [OA7, obj120](a)

invoke op()

Figure 2.7 Binding of transient IORs.

Step (c): The server sends a reply message to the client. This message contains
the request identifier sent to the corresponding request, and also contains the re-
sult of the operation, (when this is successfully invoked in the server). In case
of invocation failure, then the message contains exception information stating the
reasons for the failure.

2.5.2 Binding Persistent IORs

The implementation repository is used to enable the binding of persistent references.
Details of the implementation repository are embedded within these persistent IORs.
They are created by servers with the following information [47]:

• The interface repository ID of the most derived interface (as for transient IORs),
• The host name and port number of the implementation repository,
• The adaptor and object names (as for the transient IORs).

The server registers each servant with the same adapter and object name that it
used for the previous installations of that servant. To bind a persistent IOR, the princi-
ple is the same as for transient IORs. With regards to the ORB opening a connection,
instead of connecting to the server directly, it connects to the server that runs the im-
plementation repository. This server unpacks the information related to the adaptor
name and uses it as an index in the server table to check the details about the server on
which the operation will be invoked. As explained earlier in Section 2.4.3, the imple-
mentation repository maintains a table that contains details about the servers which
are active or non active, as well as the commands to start-up the different servers.

CORBA BINDING 59

Depending on the way the server has been registered (e.g., automatic or manual), the
implementation repository will either return a location-forward reply to the client or
an exception. The location-forward reply is a form of another IOR, which is con-
structed by the implementation repository based on the details available in the table
that it maintains. This mainly occurs because the server has probably moved to an-
other host or to another port of the same hosts. Therefore, the client will need to
re-send the request with the appropriate IOR (sent by the implementation repository)
constructed from up-to-date information about the servers. Once the request arrives
at the appropriate server, the binding is identical to that of the transient IORs.

Figure 2.8 summarizes the different steps involved in the binding of a persistent
IOR with an automatic server start-up. For the manual start-up server, basically if
the server is registered but not running, the implementation repository will return an
exception which states that the server needs to be manually re-started. If the server
is running, then the binding process is the same as for the automatic-start up.

Step (a): The client invokes an operation, say op(), on an object obj120. Because
the server where the object is located may have changed host or port number, the
invocation is done on the implementation repository. As shown in Figure 2.8, a
reference is created at the client side that contains details about the implementa-
tion repository.
Step (b): When the implementation repository receives the request from the
ORB, and because the server is registered with automatic start-up option, then the
implementation repository starts up the server.
Step (c): The server informs the implementation repository of its current address,
that is, the host and the port number.
Step (d): The implementation repository returns to the client the current address
of the server, so the client invocation can be performed with the right information.

user-supplied servant

user-supplied servant

user-supplied servant

IDL:iService:App:1.22 yallara:2323 OA7, obj120

obj1

obj120
...

obj20

Object Map Table

default servant

Server at goanna::2222
OA7 Se

rv
er

 t
ab

le

object reference

IDL:iService:App:1.22 goanna:2222 OA7, obj120 Implementation Repository at yallara:2323

(a) op() [OA7, obj120]

my current address (goanna:2222)(c)

fork/exec (rsh Amazigh "/usr/local/bin/jim -x")(b)

location-forward(goanna:2222)(d)

op() [OA7, obj120](e) reply for op()

...

OA7 rsh Amazigh "/usr/localbin/jim -x" goanna::2222

Adapter
Name

Start-up Command Address

OA4 /usr/local/bin/robert
OA1 miki:1030

Client

invoke the operation(f)

(g)

Figure 2.8 Binding of persistent IORs.

60 INTRODUCTION TO CORBA

Step (e): The client creates a new IOR with appropriate information about the lo-
cation of the server included. In the example of Figure 2.8, the newly constructed
IOR contains the address of the server, that is goanna:222.

Steps (f)–(g): When the operation is invoked with the new IOR, the remaining
steps are similar to those of transient IORs; the server looks in the Object Map
table to select the appropriate servant and invokes the operation.

2.6 CORBA AND EXISTING TECHNOLOGIES

This section discusses the differences between CORBA and related technologies, in
particular, DCE, DCOM, and RMI.

2.6.1 DCE vs. CORBA

Both DCE and CORBA are middleware technologies that support the construction
and integration of client–server applications in heterogeneous distributed environ-
ments. As they are similar technologies, it is highly desirable that they are able to
interwork with one other. However, they are not equivalent technologies. As ex-
plained in Section 1.2.4 of Chapter 1, DCE is designed around a procedural pro-
gramming model, while CORBA has been designed with an object-oriented pro-
gramming model. The advantages of the use of an object-oriented model such as the
CORBA model include support for the following features: encapsulation and data
hiding, abstraction of common features into classes, inheritance of interface, and
implementation. Other differences in capabilities are:

• DCE has support for mechanisms that maintain the server state during a par-
ticular transaction. This mechanism is known as contexts. CORBA has no such
mechanism and it falls on the programmer to manage this.

• DCE supports pointers both within operation parameters, and as operation pa-
rameters. The DCE run-time system will serialize (or marshal) values compris-
ing a data-structure, including values addressed by pointers, in preparing for
transmission to the server. DCE then un-marshals them on the server side. The
CORBA constructs for building complex data types do not include the idea of
pointers. This means that either extra code must be written by the programmer
to pass complex structures containing pointers as parameters, or the program-
mer may redefine the data structure to be a collection of one or more objects,
which of course, CORBA does support.

• CORBA, unlike DCE, supports the types “Any” (for fixed type length) and
“DynAny” (for variable type length), which allows a value of an arbitrary type
to be passed.

• CORBA IDL, unlike DCE IDL, supports interface inheritance, and defines a
hierarchical namespace. DCE IDL defines a flat namespace.

CORBA AND EXISTING TECHNOLOGIES 61

• CORBA includes the definition of an interface repository to facilitate dynamic
querying of data type information. DCE has no such equivalent.

• CORBA defines a DII (Dynamic Invocation Interface) to allow the invocation
of objects without static knowledge of them. This allows arbitrary operation
invocation on arbitrary object types at runtime. DCE only goes as far as the
CORBA static invocation interface.

• CORBA supports automatic server activation, whereas DCE servers must be
activated by other means, such as human intervention.

• CORBA services cover a far broader spectrum of application support than DCE.

2.6.2 DCOM vs. CORBA

DCOM and CORBA are two popular distributed object models. As explained in Sec-
tion 1.2.5 of Chapter 1, DCOM is a distributed extension to COM which builds an
object remote procedure call (ORPC) layer on top of DCE RPC to support remote
objects–at the top layer, or the basic programming architecture. Exactly how the
client is connected to the server is totally hidden from the programmers. The client
and the server programs interact as if they reside in the same address space on the
same machine. In terms of the infrastructure which provides the client and the server
with the illusion that they are both located in the same address space, the main dif-
ference between DCOM and CORBA is how server objects are registered and when
proxy/stub/skeleton instances are created.

COM and CORBA both provide a framework for creating and using components
that can interface with each other, as well as with other applications, libraries, system
software and networks in a standard, well-defined manner. CORBA was designed
from the ground up to support components that could exist anywhere on a network;
COM originally ran on a single system. Distributed COM (DCOM) is the distributed
extension to COM that builds an object remote procedure call layer on top of DCE
RPC to support remote objects. Distributed COM added the ability for COM com-
ponents to interface across the network. An essential part of both frameworks are the
value-added services. DCOM is a Microsoft technology that exists as a single imple-
mentation; CORBA was defined by a consortium of vendors, the OMG, value-added
services. Some of the value-added services associated with DCOM include Microsoft
Transaction Service (MTS), Microsoft Message Queue Server (MMQS), Microsoft
Cluster Server (MCS) and Microsoft Management Console (MMC). DCOM does
not provide a centralized naming service. This essential part of a scalable architec-
ture allows users locate a particular application or component no matter where it
resides in the enterprise. While DCOM provides a rich set of tools and technolo-
gies for implementing distributed object systems, its most significant drawback is
that it is a Windows-only solution and many of the tools are new and still matur-
ing.

Another difference to note between DCOM and CORBA, at the programming
Layer, is the way they perform exception handling. CORBA provides support for

62 INTRODUCTION TO CORBA

standard C++ exceptions and some CORBA specific exceptions. In addition, user-
defined exceptions are also allowed and are declared in the IDL. The IDL compiler
maps a user-defined exception to a C++ class. In contrast, DCOM requires that all
methods return a 32-bit error code called an HRESULT at this layer.

DCOM supports objects with multiple interfaces, while CORBA allows an inter-
face to inherit from multiple interfaces.

2.6.3 RMI vs. CORBA

The differences between RMI and CORBA as summarized in the following table.

Feature CORBA/IIOP RMI

Parameter Marshaling Yes Yes
Parameter Passing in, out, in/out in
Dynamic Stub Downloads Yes Yes
Dynamic Class Downloads Maybe Yes
Objects Passed by Value Yes (with RMI over IIOP) Yes
Garbage Collection Yes (via ORB and POA) Yes (via language)
Interface Descriptions Yes Yes
Distributed Dynamic Discovery Yes (via the IR) No
Distribute Dynamic Invocations Yes (via DII) No
Wire-level Security context Yes (via CORBA security) No
Persistent Naming Yes No

2.7 SUMMARY

In this chapter we have provided details about OMG’s Common Object Request
Broker Architecture. We began this chapter by explaining the significance of the use
CORBA environments. We have also explained the different versions of CORBA,
including CORBA 1, CORBA 2 and CORBA, in which details for every version are
given.

Unlike other architectures, such as DCOM, CORBA is an architecture for open
distributed systems. We explained the different parts of this architecture, including
the ORB core, the IDL, the interface and implementation repositories, the object
adaptor, and the communication protocol (i.e., IIOP/GIOP). In addition to this ar-
chitecture, we have shown how object binding works in two cases: one relating to
transient object references, and the other persistent object references, where the im-
plementation repository is used to activate and deactivate servers. Finally, we de-
scribed the main differences between the CORBA technology and the existing mid-
dleware technologies, such as DCOM, DCE and RMI.

EXERCISES 63

2.8 REVIEW QUESTIONS

• How are polymorphism, encapsulation, and inheritance applied in CORBA?
• What are the advantages of CORBA over existing distributed systems?
• What are the fundamental differences between conventional object models and

the CORBA reference object model? Explain the factor that motivates these
differences. What is the similarity between these two kinds of models?

• How can a CORBA object be made to support multiple interfaces?
• Explain briefly the functions of naming service, trading service, persistent ser-

vice, object query service, and object transaction service.
• What are the functions of DII, DSI, object adaptor, and ORB core?
• Explain the motivation behind the inclusion of an object adaptor in the OMG

architecture. What motivated OMG to replace BOA with POA?
• Can a CORBA object with a certain interface have multiple implementations?

Justify your answer.
• Explains briefly the indirection that occurs when establishing a connection for

persistent IORs.
• Give three differences for each comparison of CORBA with DCE, DCOM, and

RMI.

2.9 EXERCISES

• A client receives a transient object reference from its server. The reference is
later used to invoke the referenced object. However, the server was already
shutdown; thus an exception is returned. After waiting for a couple of minutes,
the client again sends the same request to the referenced object and succeeds.
Discuss why the client’s first attempt fails, while the second succeeds.

• OMG introduces POA to provide server code portability. When does this feature
become important to a CORBA application?

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 3

CORBA Programming

This chapter provides step-by-step tutorials on CORBA programming. The explana-
tions given are not meant to be complete, but rather sufficient. However, it is nec-
essary to know about object object-oriented concepts and Java programming, and
have a basic understanding of the the overall ORB architecture. An important part
of the existing literature has been published on object-oriented concepts (e.g., [14])
and Java programming (e.g., [21, 89]). Chapter 2 presented appropriate details of the
CORBA architecture and the different elements of the OMG’s Object Management
Architecture.

Topics discussed in this book are about the CORBA standard, not about any of
its ORB products. Propietary features and mechanisms are irrelevant and are not
discussed. However, product-specific mechanisms like compilation and server regis-
tration commands are unavoidable in developing CORBA applications. Whenever a
specific mechanism is used, this will be noted. All sample programs in this chapter
have been developed and tested under OrbixWeb version 3.0, IONA’s ORB product
based on Java.

This chapter is organized as follows: The next section proposes an overall picture
on how to program in CORBA and the required concepts; it also describes a sample
application which will be used to explain the different CORBA programming steps.
The rest of the chapter is composed of three main parts: (1) basic CORBA program-
ming in Section 3.2, (2) dynamic types in Section 3.3, and (3) advanced CORBA
programming in Section 3.4. Basic CORBA programming involves details about the
Interface Definition Language (IDL), Static Interface Invocation (SSI), and Static
Skeleton Interface (SSI). CORBA dynamic types relate to TypeCode and type Any.
Finally, in the section about CORBA advanced programming, we will be covering
the Dynamic Interface Invocation (DII), the Dynamic Skeleton Interface (DSI), and
the Interface Repository (IFR).

3.1 OVERALL PICTURE

Unlike conventional programming, CORBA applications maintain a distinction be-
tween the interfaces of its objects and their implementations. The reason behind
this division originates from the distributed application characteristics inherited
by CORBA applications. A distributed application is usually heterogeneous and

64

OVERALL PICTURE 65

relies on others for the resources it requires but does not have. The heterogene-
ity of distributed applications eliminates the possibility of having a universal en-
vironment when no appropriate facilities are available on at least one platform.
The distributed applications’ reliance on resources of other distributed applica-
tions could cause changes to propagate to applications that use those resources.
Interface-implementation separation addresses these problems by dictating interac-
tions between applications to be purely based on their interfaces. In other words, the
interfaces and their access information are the only things that must be agreed upon
by both sides. This allows the server, which handles these interfaces, and the client,
which manipulates them, to be developed in different programming environments so
long as the same interfaces are used by both parties. Changes to the implementations
have no or lesser impact on the client, except if they involve changes to the interfaces
and/or to their access information.

In order to develop a CORBA application, programmers have to choose which
ORB product and programming language to use. If they are the same for both client
and server, it is said that the client and the server are developed in a single and
(common) programming environment. Otherwise, there are multiple programming
environments, one for each communication side. Figure 3.1 depicts the different
CORBA application development steps, both in single and multiple programming
environments.

Generated Files
for Client

Generated Files
for Server

Design

IDL File

ServerClient

Tested
Cient

Tested
Server

(2) or (3)

(1b)

(1a)

(2)

(4) (4)

Design

IDL File

Client

Tested
Client

IDL to X
Language Compiler

Generated Files
for Client

(1a)

(1b) (1b)

Server

Tested
Server

Generated Files
for Server

Language Compiler
IDL to Y

(2)

(4) (4)

(2) or (3)

Programming Environment Programming Environment X Programming Environment Y

Single Programming Environment Multiple Programming Environments

IDL Compiler

Figure 3.1 Programming steps in different programming environments.

66 CORBA PROGRAMMING

Steps (1a) and (1b). These steps consist of developing the required interfaces
for an application by (i) writing the IDL (Interface Definition Language) file(s)
and later on compiling them. These files contain interface declarations and their
compilation generates additional files required by developers, to develop the client
and the server, as well as files facilitating the communication between the client
and the servers (e.g., stubs and skeletons).
Step 2. This step is concerned with the development of the client application and
uses the interfaces specified in the IDL file(s). If the interfaces are known to the
client at compilation time, then the client would be able to use SII (Static Invoca-
tion Interface) to invoke methods available in the object’s interfaces. Otherwise,
the client will need to use DII (Dynamic Invocation Interface). SII can also be
used in conjunction with dynamic types (e.g., TypeCode and type Any) to be able
to dynamically check the types of objects and the IFR (Interface Repository) can
be used to obtain certain information (e.g., modules, interfaces, operations).
Step 3. This step is concerned with implementing the server. If the interfaces are
known to the server during its compilation, the server can use SSI (Static Skeleton
Interface) to service incoming requests. Programmers must later choose between
two implementation styles, that is, BOA (Basic Object Adapter) or TIE, before
proceeding to write the implementations. On the other hand, if the interfaces are
unknown, DSI (Dynamic Skeleton Interface) is used. Like DII, an SSI implemen-
tation can use TypeCode, type Any, and the IFR.
Step 4. This step is concerned with the testing of the implemented application.
Programmers need to compile the application, register the server, and run the
application. Unique to the server registration step is the creation of a new entry
in the IR (Implementation Repository). This entry is used to start a server process
when requests arrive.

Both the client application and the server can be developed simultaneously or one
after another. The numbering in both graphs in Figure 3.1 reflects this fact. Another
point worth noting is that client and server style (SSI or DSI) is transparent to both
sides. Such details are implementation-dependent and do not concern application
interfaces. Programmers are free to mix and match these approaches, for example,
SII clients can talk to a DSI server, and DII clients can communicate with an SSI
server and so on.

To make the different steps in implementing CORBA applications clear, we have
chosen to illustrate then on a sample application, the iService application. A com-
pany called iService (Internet Service) has hired Twinlab Co. to develop a prototype
of its application. This application provides three kinds of services: free, paid, and
tryable services. All transactions made on these services are quoted in U.S. dollars.
Users must register their personal details using the application’s client software be-
fore using these services. Newly registered users are given US$100 of initial credit.
Users are able to increase their credits by transferring money directly to iService’s
bank account. Payments can be made in any currencies and will be exchanged into
U.S. dollars at the current rate. All payments are verified by iService employees us-
ing the application. After payments have been approved, an iService’s employee will

BASIC CORBA PROGRAMMING 67

Figure 3.2 UML diagram of the iService application.

use the application to increase the user’s credits. Each user is allowed to have at most
three accounts. An account has a unique login name and is protected by a password.
Access to both a user’s personal details and accounts are protected by a different
password. iService currently operates three services: (1) news, (2) retail, and (3) a
price-quoting service. As the company expands its offerings, the number of services
is expected to grow. iService has also given Twinlab Co. a UML diagram to speed
up its development process. The diagram is shown in Figure 3.2.

3.2 BASIC CORBA PROGRAMMING

This section discusses the basic features of CORBA programming. These features
are enough for programmers to start developing a complete CORBA application.
The type of applications that will be built here are static CORBA applications. Stubs
and skeletons are bound to their interfaces as they have been declared at compilation
time.

3.2.1 Interface Definition Language

IDL (Interface Definition Language) is OMG’s specification language, used to de-
scribe the interfaces that clients use and servers handle. IDL cannot be used to de-
velop the implementations of these interfaces; it is used solely to define interfaces.
IDL declarations are stored in an ASCII file whose name ends with an .idl extension.
This file is easily transferable by e-mail, ftp or by other ways of acquiring an ASCII
file.

68 CORBA PROGRAMMING

From a programming point of view, IDL is a subset of the proposed ANSI C++
standard, with additional constructs to support the operation invocation mechanism.
It has similarities with other major object-oriented languages: it is case sensitive (like
C++ and Java), has a preprocessor (C++), and uses the same comment characters
(as C++ and Java). However, IDL does not understand any implementation-related
constructs, such as access controls. IDL declarations are always public since the
notions of private and protected are pertinent to the implementation and irrelevant
to the interface. The same reasoning applies to constructor, destructor, overloaded
methods, and procedural components. Additionally, some constructs are unique to
IDL. Examples include parameter passing modes and readonly attributes. Others,
like the integer datatype, simply do not exist.

IDL reconciles diverse object-models and programming languages by applying
its own object model, the CORBA object model, and by being a neutral language.
CORBA application designs must comply with this object model and have their in-
terfaces defined in IDL. IDL neutralitity is motivated by the principle of interface-
implementation separation. This establishes IDL as a purely declarative language,
concentrating on interface descriptions, instead of on implementation details. Its
neutrality means that these interface descriptions are programming language inde-
pendent. The contents of these descriptions are not executable, even though they are
abstracted from the implementations.

IDL does not replace the role of conventional programming languages, like Java,
as the programming language used to develop the implementations. In fact, IDL
complements them by providing programming language independent constructs for
describing interfaces. Interface descriptions defined by these constructs are compiled
by an IDL compiler. The compiler verifies the syntax and translates each of the con-
structs into conventional programming language native construct(s), in a process
called mapping. The result of this compilation is a set of programming language-
specific files containing the translated native constructs. These generated files are
used by programmers to develop the implementations. The conventional program-
ming language selected to implement interfaces is known as the language binding.
OMG publishes IDL mapping specifications, each for a language binding. An IDL
mapping specification describes the rules on how IDL constructs are mapped to a
language binding. IDL mapping specifications are available for most of the popular
programming languages: Java, C++, C, Smalltalk, COBOL, Ada. Programmers can
select a conventional programming language as their language binding, so long as an
IDL mapping specification and a CORBA compliant ORB product supporting this
specification are available.

There are two steps to developing interfaces: (1) write the IDL file(s) and (2)
compile them. The first step declares all of the necessary definitions using IDL con-
structs, based on the application’s design. The second step executes the IDL compiler
for syntax verification and mapping. Examples of files generated from this step are
stubs and skeletons. Further details on commonly used IDL constructs and their ap-
plication to the sample program are explained in the rest of this IDL section. Readers
can refer to the documentation of the ORB product used (e.g., OrbixWeb’s manual)
or OMG’s “IDL to Java Mapping specification” for the complete IDL syntax and
mapping.

BASIC CORBA PROGRAMMING 69

Basics An IDL identifier is an arbitrarily long sequence of ASCII alphabetic,
digit, and underscore characters. It is case sensitive and always begins with an al-
phabetic character. It must not have the same name as any IDL keyword, and must
be declared in lower-cases.

As shown below, comment characters are identical to C++ and Java.

// This is a comment.
/* This is also

a comment */

IDL also recognizes full standard C++ pre-processing features. The first one is
macro substitution, which is used to improve code readability.

#define ACCOUNT_NO 5736912

The above macro tells the compiler to replace every occurrence of ACCOUNT NO
with 5736912. The next one is source file inclusion, for example:

#include "orb.idl"
#include <orb.idl>

In both #define statements the IDL compiler will include an IDL file. called
orb.idl, in the compilation process. However, the included file in the first one is taken
from the current working directory. The IDL file in the latter inclusion is part of
the ORB product whose location is known to the compiler. Source file inclusion is
required when at least one IDL construct, declared in the included file, is used by
other constructs in included file. The last feature is conditional compilation and can
be expressed as follows:

#ifdef iServiceApp_IDL
#define iServiceApp_IDL
// Not shown
...
#endif

The above preprocessor prevents all declarations between #define and #endif
from being included more than once. The inclusion occurs only when the symbol
iServiceApp IDL has not been defined anywhere else. This preprocessor is usu-
ally used when one IDL file is included in multiple IDL files, to prevent inadvertant
redeclaration.

Module A module is a group of related constructs; it is used to provide a name
space to the constructs and to avoid naming clashes. It is particularly useful for or-
ganizing an IDL file with a large number of constructs or to differentiate between
constructs which have the same name. Declaring constructs inside a module is a
good programming practice as it makes the IDL file more maintainable.

70 CORBA PROGRAMMING

An IDL module is mapped to a Java package with the same name. For example, a
module declaration from our sample application is shown below.

module iServiceApp {
// Not shown
...
};

This module, after IDL compilation, is mapped to

package iServiceApp;
....

A module can also be declared inside of another module. An example of this
nested declaration is found in the module CORBA which contains pre-defined IDL
constructs.

module org {
module omg {

module CORBA {
// Not shown
...

};
};

};

This module is mapped to a Java package org.omg.CORBA. All IDL constructs
declared inside of a module are mapped to the corresponding Java construct(s) within
the scope of the generated package. IDL constructs whose declarations are not en-
closed in a module are mapped into Java global scope. Consider if there was an IDL
construct named Construct which is mapped to a Java class of Construct and encap-
sulated in a module called Package, the result of mapping this construct is a Java
class with the full scope name of Package.Construct.

Interface An IDL interface is a description of the services provided by one type
of object. This service is made available to clients through interface attributes and
operations. Without this interface, clients would not know how to access the service.
An interface is similar to a class in Java, but free of any implementation related
constructs. In fact, an IDL interface might be implemented by one or multiple Java
classes. An interface is declared with the keyword interface, as illustrated below:

module iServiceApp {
interface User {...};
...

};

Like any other object, a CORBA object can have attributes and operations:

BASIC CORBA PROGRAMMING 71

module iServiceApp {
interface User {
// Attributes
readonly attribute long id;
attribute User spouse;
...
attribute string phoneNo;
readonly attribute float credits;
...
// Operations
void addCredits(in float creditAmount,

in string currencyCode);
void decreaseCredits(in float chargedAmount);

};
...
interface Retailer ... {
// Operations
string getItemList(in Account account);
void order(in Account account, in string itemId,

in short quantity);
void bargain(in Account account, in string itemId,

inout float price);
void getItemDetail(in Account account, in string itemId,

out string name, out float price ,
out string description);

};
...

};

Four attributes are defined in the above code fragment of the User interface dec-
laration: id, spouse, credits and phoneNo. The presence of the readonly keyword at
the start of an attribute declaration determines whether or not the value of this at-
tribute is editable. For example, the values of spouse and phoneNo are changeable
by all clients, while values of id and credits are only readable. An attribute must be
declared as having a certain datatype. This datatype is usually selected from one of
the basic, constructed, template, or interface datatypes. Datatypes of the attributes in
the example are all from basic datatypes, except for spouse which is of type inter-
face. Attribute id is of type long, phoneNo is a string attribute, and credits is a float
attribute. The spouse declaration is different from other attribute declarations since
it is a self-referential declaration. This is because the attribute uses the IDL con-
struct in which it is declared. Account, used by the Retailer interface, is an example
of constructed types. Details of this datatype are given in the constructed datatypes
section.

As explained in Chapter 2, IDL attributes are not like conventional class attributes,
which record persistent data. Declaring an attribute in the interface is not the same
as a Java attribute being declared in the implementation. In fact, as we will see later,
attributes are actually mapped to Java functions. This mapping strategy allows pro-

72 CORBA PROGRAMMING

grammers to assign the value of the result of processing in the Java function to the id
attribute, rather than being merely a contained value.

Besides attributes, a CORBA object, which is an instance of a CORBA interface,
may have a number of operations. Operations are analogous to functions in Java.
They both typically have return values and parameters. One noticeable difference is
the existence of parameter passing modes—in, out, and inout inout—in the operation
declarations. These keywords specify the direction in which the parameter is being
passed. For example, the parameter chargedAmount from the addCredits operation
is passed from the caller, the client, to the called object. The out mode of getItemDe-
tail’s name, price, and description means that these parameters are passed from the
called object to the caller. Parameters with inout mode, such as the price of a bargain
operation, are passed in both directions.

An interface is mapped to a signature and an operations Java interface. A sig-
nature interface is the datatype used when the IDL interface is referred to by other
mapped constructs, while an operations interface contains the mapped operation’s
signatures. The name of the former is the exact name of the mapped IDL in-
terface. The latter interface is of type: InterfaceNameOperations. Stub and
skeleton classes are also generated. They are of types: InterfaceNameStub and
InterfaceNameSkeleton, respectively. Three files are also generated, allow-

ing programmers to use one of two implementation styles. The first is for BOA’s
skeleton class with the name of InterfaceNameImplBase. The skeleton class or
implementation base class in OrbixWeb should not be confused with OrbixWeb’s
InterfaceNameSkeleton class. The second file is for TIE’s TIE class which has

the name of tie InterfaceName, and the operations interface mentioned earlier.
The usage explanation of these files is given in the SSI section. (Readers should note
that the last two files are specific to OrbixWeb.) IDL constructs declared inside an
interface are mapped to the corresponding Java constructs in a package Interface-
NamePackage. An interface declared inside of a module will have a full class name
of ModuleName.InterfaceNamePackage.

Each interface attribute is mapped to two public Java functions: one to set the
attribute and another to return its value, except for the readonly attributes, which
have only return functions. For example, the User’s id and phoneNo attributes are
mapped to:

public int id() {...}
public String phoneNo() {...}
public void phoneNo(String value) {...}
...

IDL operations are also mapped to public Java functions. Their return types are
mapped to the corresponding Java datatypes, while their parameters are mapped to
parameters of the Java functions. These parameters have the same names as their op-
eration parameter counterparts, with their datatypes mapped to the appropriate Java
datatypes. Mapping out and inout parameters also generates holder classes for the
parameters’ datatypes. Holder classes are explained later in the Holder and Helper
section. For example, the Retailer’s operations are mapped to:

BASIC CORBA PROGRAMMING 73

public String getItemList(Account account) {...}
public void order(Account account, String itemId, short quantity) {...}
public void bargain(Account account, String itemId,

FloatHolder price){...}
public void getItemDetail(Account account, String itemId,

StringHolder name, FloatHolder price, StringHolder description) {...}
...

Interface Inheritance Interface inheritance is similar to the inheritance used in
other object-oriented programming languages; however, it is restricted to the inher-
itance of specification only. An IDL interface can inherit from one or multiple in-
terfaces. An inheriting interface is known as a derived interface, while the inherited
interface is called the base interface. If a derived interface inherits from a base in-
terface, this inheritance is a single interface inheritance. However, if the derived in-
terface inherits from more than one base interface, the derived interface is said to
have a multiple interface inheritance. Declaring an inheritance is achieved by adding
“ : ” after the name of derived interface, and following this with the name of the base
interface(s). Examples of inheritance declarations from our sample application are
depicted below:

interface ServiceProvider {...};
interface FreeServiceProvider : ServiceProvider {...};
interface PaidServiceProvider : ServiceProvider {...};
interface TriableServiceProvider : FreeServiceProvider,

PaidServiceProvider {...};
...

A single interface inheritance is translated to the inheritance of the derived inter-
face’s operations. In other words, a single inheritance is when then derived interface
inherits all operation all operations of its base interface. Both the TIE and the skele-
ton class implement the derived interface’s operation interface, as depicted in Figure
3.3.

For example, mapping FreeServiceProvider creates the following Java code:

package iServiceApp;
public interface FreeServiceProvider extends ServiceProvider {...}

Also, FreeServiceProvider’s skeleton and TIE class are created:

// Skeleton class
package iServiceApp;
public abstract class _FreeServiceProviderImplBase ...

implements FreeServiceProvider {...}

// TIE class
package iServiceApp;
public class _tie_FreeServiceProvider ...

implements FreeServiceProvider {...}

74 CORBA PROGRAMMING

Class
Skeleton Operation

Interface

Base Interface’s
Operation Interface

Class
Operation
Interface

Base Interface’s
Operation Interface

TIE

BOA

TIEinherits

inherits

implements

implements

Figure 3.3 Mapped single inheritance.

A multiple interface inheritance maps to the derived interface inheriting all opera-
tion interfaces of all its base interfaces. This is possible since Java supports multiple
inheritance of Java interfaces, instead of class. Both TIE and the skeleton class im-
plement the derived interface’s operation interface, as illustrated in Figure 3.4.

For example, mapping TriableServiceProvider generates the following Java code:

package iServiceApp;
public interface TriableServiceProvider

extends FreeServiceProvider, PaidServiceProvider {...}

Also, the following classes are generated:

Operation
Interface

Operation Interface
Base Interface’s Base Interface’s

Operation Interface

TIE

Operation
Interface

Operation Interface
Base Interface’s Base Interface’s

Operation Interface

Skeleton
Class

BOA

TIE
Class

implements

implements

Figure 3.4 Mapped multiple inheritance.

BASIC CORBA PROGRAMMING 75

// Skeleton class
package iServiceApp;
...
public abstract class _TriableServiceProviderImplBase ...

implements TriableServiceProvider {...}

// TIE class
package iServiceApp;
public class _tie_TriableServiceProvider ...

implements TriableServiceProvider {...}

An interface’s inheritance relationships do not guarantee that its implementation
class has the same inheritance tree. In other words, the number of base interfaces
inherited by a derived interface is not always the same as the number of implemen-
tation classes used to implement the derived interface. For example, the FreeServi-
ceProvider interface might be implemented by one Java class which inherits from
the ServiceProvide’s implementation class. Another possibility is having one imple-
mentation class which does not inherit from any other implementation class at all,
but implements all interface inheritance relationships, starting from ServiceProvider
until FreeServiceProvider itself. Exactly how these interface relationships are imple-
mented is explained in Section 3.2.3.

Holder and Helper Class A parameter’s value in Java is always passed by value
and never by reference. Due to this restriction, values passed to the mapped out and
inout parameters must be contained in an instance of a class called the holder class.
For basic IDL types, a holder class name is the name of the corresponding Java
datatype name with its first character capitalized and the word “Holder” appended at
the end. For example, the holder class name of IDL’s long is IntHolder. A holder class
name for a programmer or an OMG defined datatype is the name as the correspond-
ing Java datatype name of the mapped datatype with the word “Holder” appended at
the end. For example, the User interface has a holder class named UserHolder with
the following details:

package iServiceApp;
public final class UserHolder implements

org.omg.CORBA.portable.Streamable {
// The contained value
public iServiceApp.User value;
public UserHolder() {}
public UserHolder(iServiceApp.User value) { this.value = value; }
...

}

A helper class assists programmers in manipulating an IDL datatype. It provides
them with static functions to pass the datatype’s value in Any (i.e., insert and extract
to/from Any), return the datatype’s TypeCode (type), IDL’s Id (id) of this datatype,
and to read and write the type from a stream (read and write). For an interface,

76 CORBA PROGRAMMING

this also includes two additional static functions: bind() and narrow(). bind() is
an OrbixWeb-specific function used to bind to a CORBA object and narrow() is a
CORBA-compliant function used to cast down an object reference to a more spe-
cific interface. Programmers must use narrow() to cast a CORBA object, instead
of using the normal Java casting. This is necessary because such casting would only
convert the reference to a Java interface, rather than to the desired CORBA inter-
face. For example, the following code converts an object reference with the interface
org.omg.CORBA.Object to a reference of a User interface:

// Assuming object has already contained a
// valid User’s object reference
User user = UserHelper.narrow(object);

// The following is not the correct way
User user = (User) object;

The rules for naming a helper class are similar to those of naming a holder class.
The only difference is that the appended word is Helper instead of Holder. An exam-
ple of a helper class for the interface User is described below:

package iServiceApp;
public class UserHelper {
public static void insert(org.omg.CORBA.Any any,

iServiceApp.User value) {...}
public static iServiceApp.User extract(org.omg.CORBA.Any any) {...}
private static org.omg.CORBA.TypeCode _type;
public static org.omg.CORBA.TypeCode type() {...}
...
public static String id() {...}
public static iServiceApp.User

read(org.omg.CORBA.portable.InputStream _stream) {...}
public static void

write(org.omg.CORBA.portable.OutputStream _stream,
iServiceApp.User value) {...}

public static final iServiceApp.User bind() {...}
public static final iServiceApp.User bind(String markerServer) {...}
public static final iServiceApp.User bind(String markerServer,

String host) {...}
public static iServiceApp.User narrow(org.omg.CORBA.Object _obj)

throws org.omg.CORBA.BAD_PARAM {...}
}

All IDL datatypes have a holder and a helper class, except for data types de-
clared with a typedef statement, which have only helper classes. Programmer defined
datatypes have their holder and helper classes, generated by the IDL compiler. On the
other hand, holder and helper classes for OMG defined datatypes are pre-generated
and are an integral part of the ORB product.

BASIC CORBA PROGRAMMING 77

Constructed Types Constructed types are IDL datatypes created by program-
mers from other IDL datatypes. An example of a constructed type is structure. An
IDL structure is an aggregate collection of variables. It might consist of variables
with the same types or different types. Structs should be used when a set of variables
is manipulated as an unit but grouping them as an object is unnecessary. Structs
should also be used when sending a large number of related values.

Let us consider the following example related to a user’s accounts which is ex-
tracted from the sample application:

struct Account {
User owner;
string password;
string loginName;

};
...

An account has three attributes: owner, password, and login name. One could
create the account as a CORBA object, with each of the attributes being editable.
However, it is almost certainly the case that the cost of maintaining a CORBA object
is more expensive than the cost of maintaining a simple structure. Another reason
is that having these variables as a structure does not affect the quality of the de-
sign. Thus, it is desirable to create them as a structure instead. Another example is
found when all accounts of all users must be sent for purposes such as replication or
caching.

An IDL structure is mapped to a final Java class which has the same Name. It has
a public attribute for each of the structure members, one non-parameterized construc-
tor which initializes all fields to zero or null, and another constructor which takes all
of the structure members as its parameters, for initializing the structure. For example,
the IDL structure Account is translated to:

package iServiceApp;
public final class Account

implements java.lang.Cloneable {
public User owner;
public String password;
public String loginName;
public Account() {}
public Account(User owner, String password, String loginName) {
this.owner = owner;
this.password = password;
this.loginName = loginName;

}
...
}

Enumerated types are another example of constructed types. Enumerated types
are custom-made IDL types which enable programmers to represent their values as

78 CORBA PROGRAMMING

identifiers. Similar to macro substitution, enumerated types improve code readability.
However, enumerated types are not just aliases as in macro substitution, they are IDL
datatypes. The keyword enum declares an enumerated type, followed by its name and
identifiers that represent the datatype’s values. For example, an IDL declaration to
declare an enumerated type called ParamMode with values of IN, OUT, and INOUT
is:

enum ParamMode { IN, OUT, INOUT };

An enumerated type is mapped to a final Java class of the same name. Each of
the datatype values is mapped to two Java constructs. The first one is a static final
attribute (a Java constant) whose name is prefixed by an underscore. This constant
holds the actual Java integer value which is symbolized by an identifier of the enu-
merated type. The next one is also a static final attribute, but without the prefix. It
is the Java object representation of the integer value. Two functions are also cre-
ated: value which returns the integer, that is, the current Java constant value, and
f rom int () that returns the Java object representation of a specified integer value.
For example, the ParamMode enumerated datatype above is mapped to:

package iServiceApp;
public final class ParamMode
implements java.lang.Cloneable {
public static final int _IN = 0;
public static final ParamMode IN = new ParamMode(_IN);
public static final int _OUT = 1;
public static final ParamMode OUT = new ParamMode(_OUT);
public static final int _INOUT = 2;
public static final ParamMode INOUT = new ParamMode(_INOUT);
public static final ParamMode IT_ENUM_MAX =

new ParamMode(Integer.MAX_VALUE);
private int ___value;

public int value () { return ___value; }
public static ParamMode from_int (int value) {
switch (value) {

case _IN : return IN;
case _OUT : return OUT;
case _INOUT : return INOUT;
default :

throw new org.omg.CORBA.BAD_PARAM("Enum out of range");
}

}
private ParamMode (int value) { ___value = value; }
...

}

BASIC CORBA PROGRAMMING 79

Named Types A named type is essentially an alias to an existing IDL type. It
improves the readability of the code by introducing a datatype which is conceptu-
ally different, but programmatically the same, as the aliased datatype. Recall from
our sample application that all transactions are quoted in US dollars except when
increasing user credits, which could be done in any currency. Rather than using a
float datatype for money, it would be more meaningful if a named type USDollars
is used, with the exception of addCredits which accepts all international currencies.
Therefore, the sample IDL has now become:

module iServiceApp {
// Simple typedef declarations
typedef float Money;
typedef Money USDollars;

interface User {
...
readonly attribute USDollars credits;
...
// Operations
void addCredits(in Money creditAmount,

in string currencyCode);
void decreaseCredits(in USDollars chargedAmount);

};

interface Retailer ... {
...
void bargain(in Account account, in string itemId,

inout USDollars price);
void getItemDetail(in Account account, in string itemId,

out string name, out USDollars price ,
out string description);

};
...

Money is an alias of float, while USDollars is the alias for Money. All float dec-
larations, except for addCredits’s creditAmount parameter have been replaced with
USDollars. creditAmount is declared as having a named type of Money since the pa-
rameter can carry all currency values whose currency code is determined by curren-
cyCode. The result of mapping the above declarations is the same, with the additional
helper class created for each of these named types.

Template Types A template type is a parameterized IDL type used to declare a
new datatype. Additional information must be passed to its parameter(s) in order to
complete the declaration of the new type. An example of a template type is sequence,
which is a variable length list of elements of the same type. It should be used when
there is a need to send a collection of elements, but the exact number of elements can
not be determined statically. There are two kinds of sequences available: bounded

80 CORBA PROGRAMMING

and unbounded. Both may have a varying number of elements every time they are
transferred; the former has a maximum number of elements that can be held by the
sequence. Sequences used in our sample application are unbounded sequences. An
example of these sequences is described below.

struct Account {
...
string password;
string loginName;

};
typedef sequence<Account> Accounts;
interface User {

readonly attribute Accounts accounts;
...

};
...

A sequence is mapped to a Java array of the same name. For example, the decla-
ration of the accounts attribute above is mapped to:

public Account[] accounts() {...}
...

A bounded sequence will go through bound checking before being sent. This
ensures the array length will always be less than the maximum number of elements
specified in the IDL declaration of the sequence.

Forward Declaration

A forward declaration is an incomplete definition of an IDL type declared before
the declaration of its dependents. It is used to solve cyclic dependencies or to make
the code more elegant. An example of forward declaration is illustrated below:

// Forward declaration
interface User;
struct Account {
User owner;
...

};

// Normal, i.e. the complete IDL declaration
interface User {
void addAccount(in Account newAccount);
...

};
...

BASIC CORBA PROGRAMMING 81

Account requires that the User be declared earlier, while User requires the op-
posite. Such cyclic dependencies can only be broken by declaring the interface User
twice. The first one is the forward declaration, while the latter declaration is a normal
interface declaration.

Forward declarations enhance code elegance by freeing programmers to place the
complete IDL declarations in any order. Usually, the order of these forward dec-
larations must follow the order of dependence of the datatypes declarared in these
declarations. Consider the following example.

interface User {...};
interface ClientManager {

...
User register(in string firstName , in string lastName,

in string password , in Address address ,
in string phoneNo , in Accounts accounts);

};
...

If relocating the ClientManager declaration to a place below the User declaration
increases code elegance, then the above IDL declaration must be modified to:

// Forward declaration
interface User;

interface ClientManager {
...
User register(in string firstName , in string lastName,

in string password , in Address address ,
in string phoneNo , in Accounts accounts);

};

// Normal, i.e the complete
// User declaration
interface User {...};
...

Exception An exception is an IDL construct which signals the occurrence of an
error. It should be used when certain conditions cannot be handled. There are two
kind of exceptions: system exceptions, which are pre-defined and usually raised at
runtime by the ORB; and user-defined exceptions which are declared by program-
mers and raised by implementations. The latter cannot be raised by interface at-
tributes, only by interface operations. An exception is similar to a structure, because
it can have multiple members. These members are accessible when it is caught by
the code. For example, consider the following IDL declarations:

exception InvalidAccount { string reason;};
interface User {

...

82 CORBA PROGRAMMING

readonly attribute Accounts accounts;
void addAccount(in Account newAccount)

raises(InvalidAccount);
...

};

exception InsufficientCredits {
float creditsRequired;
float currentTotCredits;

};
interface Retailer : PaidServiceProvider {

void order(in Account account, in long itemId, in short quantity)
raises(InvalidAccount, NotExist, InsufficientCredits);

...
};

...

I nvalid Account exception is raised by the operation add Account () whenever
a new account cannot be added to the user’s list of accounts. The exact cause of
the failure is described by an error message in reason. This error message can be
used by the client’s code, which displays the message whenever the exception is
raised. Another exception, I nsu f icientCredits, is raised whenever an user does
not have enough credits to create an order. The exception contains the number of
credits that are required (credits Required) and amount of credits the user currently
has (currentT otCredits). This information can be used to notify the user about the
error.

At first, exceptions may seem more complex than required for the simple task
of signalling errors. One could remove all exceptions altogether and use a Boolean
or a structure instead. However, there are some drawbacks to using these datatypes.
For a Boolean value, no additional information is returned other than the fact that an
exception has been raised. For structures, they could be confused with normal return
types. Thus, having exceptions is appropriate since it provides programmers with a
dedicated IDL construct that encapsulates the necessary information about the error.

An exception is mapped to a final Java class with the same name. System ex-
ceptions inherit from org.omg.CORBA.SystemException, while user-defined ex-
ceptions extend org.omg.CORBA.UserException. Operations that raise CORBA
exceptions are mapped as before, but with an additional Java throws statement ap-
pended. Raising a CORBA exception is performed by using throw. For instance, the
exception LoginFailed is mapped to:

package iServiceApp;

public final class LoginFailed extends org.omg.CORBA.UserException
implements java.lang.Cloneable {
public String reason;
public LoginFailed() { super(); }

BASIC CORBA PROGRAMMING 83

public LoginFailed(String reason) {
super();
this.reason = reason;

}
...

}

Compiling The complete IDL declarations of our sample application, so far, is
shown below.

#ifndef iServiceApp_IDL
#define iServiceApp_IDL
module iServiceApp {

// Simple typedef declarations
typedef float Money;
typedef Money USDollars;

// Forward declaration
interface User;
struct Account {

User owner;
string password;
string loginName;

};
typedef sequence<User> Users;
typedef sequence<Account> Accounts;
struct Address {

string state;
string street;
string country;

};
exception InvalidAmount { string reason; };
exception InvalidAccount { string reason; };
interface User {

// Attributes
readonly attribute long id;
attribute User spouse;
attribute Address address;
attribute string phoneNo;
readonly attribute USDollars credits;
attribute Users children;
readonly attribute Accounts accounts;
attribute string lastName;
attribute string firstName;

// Operations
void addAccount(in Account newAccount) raises(InvalidAccount);
void addCredits(in Money creditAmount,

in string currencyCode) raises(InvalidAmount);

84 CORBA PROGRAMMING

void decreaseCredits(in USDollars chargedAmount);
};
exception InvalidDetail { string reason; };
exception LoginFailed { string reason; };

interface ClientManager {
// Operations
Account login(in string loginName, in string password)

raises(LoginFailed);
User register(in string firstName,

in string lastName,
in string password,
in Address address ,
in string phoneNo ,
in Accounts accounts);
raises(InvalidDetail, InvalidAccount);

};
interface ServiceProvider {
// Attributes
readonly attribute string manual;
readonly attribute string announcement;

};
interface FreeServiceProvider : ServiceProvider {
// Operation
string getAd(in Account account) raises(InvalidAccount);

};
interface PaidServiceProvider : ServiceProvider {
// Operation
string getPaymentInfo(in Account account) raises(InvalidAccount);

};

interface TriableServiceProvider : FreeServiceProvider,
PaidServiceProvider {

// Attribute
readonly attribute USDollars initCredits;

};
interface Newspaper : FreeServiceProvider {
// Operations
string getHeadline(in Account account) raises(InvalidAccount);
string getLocalNews(in Account account) raises(InvalidAccount);
string getWorldNews(in Account account) raises(InvalidAccount);
string getSportsNews(in Account account) raises(InvalidAccount);
string getWeatherNews(in Account account) raises(InvalidAccount);
string getBusinessNews(in Account account) raises(InvalidAccount);
};
exception NotExist { string reason; };
exception InsufficientCredits {

float creditsRequired;
float currentTotCredits;

};

BASIC CORBA PROGRAMMING 85

interface Retailer : PaidServiceProvider {
// Operations
string getItemList(in Account account) raises(InvalidAccount);
void order(in Account account, in long itemId, in short quantity)

raises(InvalidAccount, NotExist, InsufficientCredits);
void bargain(in Account account, in long itemId,

inout USDollars price) raises(InvalidAccount, NotExist);
void getItemDetail(in Account account,

in long itemId,
out string name,
out USDollars price,
out string description)
raises(InvalidAccount, NotExist);

};
interface Quoter : TriableServiceProvide {

// Operations
string getQuotableList(in Account account) raises(InvalidAccount);
USDollars getQuote(in Account account,

in long quotableId)
raises(InvalidAccount, NotExist,
InsufficientCredits);

};
};
#endif

The above IDL is compiled in OrbixWeb by executing the following command:
idl iServiceApp.idl. Programmers can also utilize Makefile, which contains a
similar command, by typing make idl at the command prompt. Compilation gener-
ates a directory, called java output, in the current directory. This directory contains
all of the files which result from the mapping process. In the remaining sections we
will show how these files are used.

3.2.2 Static Invocation Interface

SII or the Static Invocation Interface is a set of APIs commonly used by clients to
invoke objects. This is because the interfaces of most CORBA applications are re-
solvable at compile-time. In turn, these interfaces allow the IDL compiler to generate
the SII, based on the interfaces. SII is usually referred to by CORBA programmers as
the stub. It is generated in the chosen language binding as a result of mapping inter-
faces. Clients that use SII assert that the interfaces will not change, and that changes
to interfaces require SII regeneration by means of re-mapping. As a result, clients
that use this modified SII must be recompiled.

In Java binding, the role of client is usually played by a client executable class.
A client executable class is a Java class with a static main function. It is similar to
other executable Java classes, but differs because of its use of SII. From example, the
client executable class from our application is:

86 CORBA PROGRAMMING

package iServiceApp;

// All import statements
// are declared here
...
public class Client {
...
public static void main(String args[]) {...}
...

}

Readers should note that the class name Client is not compulsory. Having client
executable classes does not imply that these classes are the only kind of classes that
can assume the client role. In fact, all classes which use SII to invoke objects have
the role of client.

Developing a client-executable class consists of several programming steps: (i)
initialization of the ORB, (ii) obtaining an object reference, and (iii) invocating op-
erations on object references. Below are the details of each steps.

Step 1 (Initialization of the ORB)

ORB is accessed through a singleton Java class org.omg.CORBA.ORB. The client’s
connection to the ORB needs to be initialized before being used. The ORB initializa-
tion is accomplished by calling its init static function, i.e., O R B.ini t (). This func-
tion returns an instance of the initialized ORB and should be called before any other
CORBA statements in the code.

Step 2 (Getting hold of an object reference)

Prior to CORBA object manipulation, a client must acquire a reference to the ob-
ject. This step is repeated for each of the objects accessed by the client. Acquisition
is accomplished by one of the following methods: performing the object binding;
stringifying the object reference; or invoking a method on another object.

Object Binding An object binding is a reference acquisition method in which
a reference is obtained by searching for the desired object in the server. An object
binding in OrbixWeb relies on the use of the proprietary function bind() which is
owned by the target object’s interface helper. A code fragment, which performs a
binding process follows.

private ClientManager connectToClientManager(String args[]) {
// Local declaration
ClientManager clientManager = null;
...
if(args.length == 1) {
...

BASIC CORBA PROGRAMMING 87

clientManager = ClientManagerHelper.bind(":iService", args[0]);
}
else { System.out.println("usage : client <host> ");}
...
return(clientManager);

}

...

The bind() function used in the example accepts two parameters: the object’s
marker with its server name, and the host machine’s name. An object marker is
OrbixWeb’s term for an object id or object name. It is unique within the scope of
a server and used to identify an object. A string passed as the bind() function’s first
parameter must be in the format Marker:ServerName. A server name is a unique
name given to identify an application server. It might not be specified at all, as
in the above example. This allows bind() to return a reference to the first object
found having the same IDL interface. The host name parameter must be the Internet
host name or Internet IP address. A host name is different from a server name. A host
name is the name of the machine where the server process resides, whereas a server
name is the name registered by the programmer to identify a CORBA application’s
server.

Stringification of Object Reference A reference to an object can be converted
to a string. This feature is useful for storing the reference persistently on the disk.
ORB’s object to string() function converts an object reference to a string, with
string to object () doing the opposite. Once a stringified string has been converted
to an object reference, the reference can be cast to the appropriate interface type, by
using the interface helper’s narrow() function. The following code fragment string-
fies a user object to string and vice versa.

ORB orb = ORB.init()
...
User user = null;
...
// Assuming object has been bound earlier
String stringifiedObjRef = orb.object_to_string(user);
...
Object objRef = orb.string_to_object(stringifiedObjRef);
user = UserHelper.narrow(objRef);

Object Invocation In this method, an operation or an attribute of an object whose
reference was acquired earlier is accessed. The operation or attribute returns another
object reference for the client. An example of such operation is provided in the next
programming step.

In OrbixWeb, whenever an object reference enters a client address space a proxy
is created; this is a local representative for the remote object. All requests made to the
object reference are forwarded to the proxy, which in turn passes them to the remote
object via the ORB. This process is shown in Figure 3.5.

88 CORBA PROGRAMMING

ORB X
requests

replies

requests

object reference X

requests

X’s object proxy

re
pl

ie
s

replies

Client Server

Figure 3.5 A request delivery by a proxy.

Step 3 (Invocation of operations on CORBA objects)

The last step is to invoke attributes and/or operations on the objects. This step can
be repeated several times by the client when an object’s information is needed. The
invocation of an object’s attributes and operations are similar because, as explained
earlier, attributes are mapped to functions of the stub.

Let us consider the following fragment of application code.

private User registerIndividual(ClientManager clientManager) {
...
User newUser = null;
...
newUser = clientManager.register(firstName, lastName, password,

address, phoneNo, accounts, INIT_CREDITS, USD_CODE);
...
return(newUser);

}
...

Compare the above code fragment, which invokes an operation, with the follow-
ing code fragment, which obtains an attribute value by calling the mapped function
of a quoter interface’s announcement attribute.

private void handleQuotingService(String[] args, Account account) {
...
System.out.println(quoter.announcement());
...

}
...

For non-CORBA programmers, both register and announcement appear to be just
two normal Java functions. Invoking operations with out or inout parameters require
the use of their holder classes. For example, a code fragment that invokes Retailer’s
getItemDetail which has three out parameters (name, price, and description) is pro-

BASIC CORBA PROGRAMMING 89

vided below. The operation gets details of an item that will the be displayed by the
client executable to the screen.

// Local declarations
StringHolder name = new StringHolder();
FloatHolder price = new FloatHolder();
StringHolder description = new StringHolder();
...
retailer.getItemDetail(account, itemId, name, price, description);

System.out.println("Details");
System.out.println("-------");
System.out.println("Name : " + name.value);
System.out.println("Price : " + price.value);
System.out.println("Description : " + description.value);
System.out.println("");
...

An example of an IDL operation invocation with an inout parameter is Retailer’s
operation of bargain. Note that readFloat reads a floating point number from the
user’s keyboard input:

// Local declaration
FloatHolder floatHolder = new FloatHolder();
...
System.out.print("Price : ");
floatHolder.value = readFloat();
retailer.bargain(account, itemId, floatHolder);
...

Operations that raise exceptions must have all of their Java exceptions caught
when executing their Java functions:

private User registerIndividual(ClientManager clientManager) {
...
User newUser = null;
try { newUser = clientManager.

register(firstName, lastName, password,address, phoneNo,
accounts);

} catch(InvalidDetail invDetailEx) {
System.out.println(invDetailEx.reason);

} catch(InvalidAccount invAccountEx) {
System.out.println(invAccountEx.reason);

}
return(newUser);
...

}
...

The rest of the client’s executable statements is similar to any other Java programs.

90 CORBA PROGRAMMING

3.2.3 Static Skeleton Interface

SSI or Static Skeleton Interface is the server side equivalent of SII. It is referred to
by CORBA programmers simply as the skeleton. Like its client counterpart, SSI is
the common way of servicing incoming requests; this is because interfaces of most
CORBA applications can be resolved at compile-time. The IDL compiler generates
SSI based on the interfaces. Servers that use SSI assume that the interfaces stay static
over time. Changes to application interfaces require that the SII to be regenerated by
re-mapping the IDL file(s). SSI servers must be amended to reflect these changes and
be recompiled.

The role of a server in a Java binding is divided among two types of classes: the
server executable class and the implementation class. A server executable class is
similar to the client executable. Both are Java classes with a static main function
and are not the only kind of classes that can assume the role of a server. However,
a server executable class uses SSI instead of SII. It is responsible for performing
server initialization tasks, for example, notifying BOA about the server’s readiness
to accept requests. Implementation classes are Java classes that implement the in-
terfaces. A typical CORBA application has one server executable class and multiple
implementation classes.

Developing a server consists of several development steps: (a) developing the
implementation classes, (b) developing a server executable file, and (c) testing the
application.

Step 1 (Develop implementation class(es))

The following programming steps are repeated for each interface that needs to be
implemented: (a) select an implementation style, and (b) write the implementation
classes.

Step 1.1 (Select an implementation style) There are two styles in which an
implementation can be written: BOA and TIE. BOA is a SSI implementation style
which requires that the implementation class inherit from the skeleton class of the
IDL interface that needs to be implemented. Figure 3.6 illustrates the inheritance
relationship graphically.

Operation
Interface IDL compiler

Created by the

Implementation Class

Skeleton Class

inherits

implements

Created by
CORBA programmers

Figure 3.6 Inheritance in BOA implementation style.

BASIC CORBA PROGRAMMING 91

Operation
Signature

TIE class

Implementation Class

IDL compiler

implements

1

1

delegates
requests to

implements Created by the

Created by
CORBA programmers

Figure 3.7 Inheritance in TIE implementation style.

Another alternative is to use the TIE style which requires that the instance of
the implementation class be associated with the TIE class of the IDL interface that
needs to be implemented. The class implemented in TIE style is also called TIEd
class. The implementation class with TIE style must implement the operation Java
interface of the IDL interface, instead of BOA’s inheritance approach. Figure 3.7
depicts the TIE’s delegation relationship pictorially.

BOA’s inheritance enables the implementation class to receive requests, process
them and send their replies back to clients. In comparison, TIE’s delegation achieves
the same result by having a TIE class that passes all incoming requests for the im-
plemented CORBA object to its implementation class. Thus, as Figure 3.8 and 3.9
depict, a request to a BOA styled implementation object is received directly, whereas
a request to a TIEd object must pass its TIE object. Nevertheless, the performance
difference is barely noticeable since a TIE object communicates with its TIEd object
via function calls.

Selecting the appropriate style requires consideration of three factors. The first
one is whether or not there is a need to separate CORBA functionalities and process-
ing logic. For example, programmers might decide to have the implementation class
concerned with processing requests, since this is considered to be more elegant and
cleaner. The next one is code reusability. The BOA style has poor reusability since

requestsre
pl

ie
s

object reference X

Client

X object’s proxy ORB
requestsrequests

replies replies
object
X’s implementation

CORBA object

Server

X

Figure 3.8 Request flow of a BOA style implemented CORBA object in OrbixWeb.

92 CORBA PROGRAMMING

Server

 implementation object

X
CORBA object

Tie object

replies

re
qu

es
ts

requests

replies

requestsre
pl

ie
s

object reference X

Client

X object’s proxy ORB
requests

replies

Figure 3.9 Request flow of a TIE style implemented CORBA object in OrbixWeb.

the implementation class must implement all interface operations and attributes, re-
gardless of whether they are inherited or not. On the opposite side, the TIE style pro-
motes reusability because it permits the implementation class to inherit Java func-
tions and attributes from another implementation class. For example, consider the
implementation class NewspaperImpl written using BOA style. NewspaperImpl has
inherited from NewspaperImplBase and must implement all operations and at-
tributes declared by their interface, including those inherited from ServiceProvider
and FreeServiceProvider. Figure 3.10 shows this inheritance more clearly.

NewspaperImpl

_ServiceProviderOperations

_FreeServiceProviderOperations

_NewspaperOperations
implements

inherits

_NewspaperImplBase

inherits

inherits

Created by the

IDL compiler

Created by

CORBA Programmer

Figure 3.10 NewspaperImpl in BOA style.

BASIC CORBA PROGRAMMING 93

In contrast, if the Newspaper interface were implemented in TIE style, interface
ServiceProvider, FreeServiceProvider, and Newspaper can be Implemented, respec-
tively, by ServiceProviderImpl, FreeServiceProviderImpl and NewspaperImpl class.
FreeServiceProviderImpl can reuse the code of ServiceProviderImpl and Newspa-
perImpl can reuse FreeServiceProviderImpl’s code, all by inheritance. Figure 3.11
describes these inheritance relationships in more detail.

Besides inheritance, reusability in TIE style can also be achieved if there is an
existing class that can be used as the implementation class. This is often the case
in legacy applications; the catch is that the existing class must have the same Java
function signatures as the operation interface [48]. The existing class might have to
be changed to conform to this restriction. The last factor is the amount of memory
available. TIE style should not be used if there is insufficient memory to accommo-
date two Java objects (i.e., TIE and TIEd objects) implementing a CORBA object.
Using both styles of implementing a CORBA application is permitted.

Step 1.2 (Write the implementation class) This step is composed of several
programming steps, such as (a) the use of appropriately generated class, and (b) the
implementation of all mapped interface attributes and operations.

NewspaperImpl

FreeServiceProviderImpl

ServiceProviderImpl

_tie_Newspaper

1

1

delegates
requests to

_ServiceProviderOperations

_NewspaperOperations

_FreeServiceProviderOperations

inherits

inherits

inherits

implements

implements

inherits

Created by CORBA programmers Created by the IDL compiler

Figure 3.11 NewspaperImpl in TIE style.

94 CORBA PROGRAMMING

Step 1.2.1 (Use of appropriately generated class). Initially, the programmer
needs to use a generated class of the selected implementation style. An implementa-
tion class in BOA must inherit from its skeleton class. For example, the implemen-
tation class of the User interface is shown below:

package iServiceApp;
public class UserImpl extends _UserImplBase {...}

An implementation class in TIE style is associated with the TIE class in two
programming steps. The first is to have a class implementing the operation interface
of the IDL interface. The implementation class of the User interface would be:

package iServiceApp;
public class UserImpl implements _UserOperations {...}

The second step is to establish the delegation relationship between the implemen-
tation object and its TIE object. It occurs when the implementation or TIEd class is
being instantiated. A TIEd class instantiation corresponds to its TIE class instanti-
ation. The TIE class constructor has the TIEd class’s instance as a parameter. For
example, the delegation relationship for the implementation class in the previous
example would be established by the following:

User newUser = new _tie_User(new UserImpl());

So far, we have considered only single inheritance. If the IDL interface inherits
from multiple interfaces, it seems natural for the implementation class to also inherit
from multiple implementation classes. Each of the inherited implementation classes
is the implementation class of an inherited IDL interface. However, Java does not
recognize the notion of multiple inheritance of classes. The closest idea to multiple
inheritance is multiple Java interface inheritance; therefore, different approaches are
chosen instead. For BOA, the implementation class still inherits from the skeleton

Operation
Interface

Operation Interface
Base Interface’s Base Interface’s

Operation Interface

Implementation Class

IDL compiler
Created by the

Created by
CORBA programmers

inherits

implements
Skeleton Class

Figure 3.12 Multiple inheritance in BOA style.

BASIC CORBA PROGRAMMING 95

_TriableServiceProviderOperations

_TriableServiceProviderImplBase

TriableServiceProviderImpl

_FreeServiceProviderOperations _PaidServiceProviderOperations

IDL compiler

Created by
CORBA programmers

implements

QuoterImpl

Created by the

inherits

inherits

Figure 3.13 Quoter’s multiple inheritance in BOA style.

class; however, its skeleton class implements all the operation Java interfaces of the
inherited IDL interfaces. This is described in Figure 3.12.

For example, implementing the Quoter interface requires that the implementation
class to inherit from QuoterImplBase; Figure 3.13 depicts this multiple inheri-
tance.

For TIE, the implementation class must implement all of these operation Java in-
terfaces. This type of implementation is illustrated in Figure 3.14. Some code from

Operation
Signature

Operation Signature
Base Interface’s Base Interface’s

Operation Signature

Implementation Class

TIE Class

1

1

Created by the
IDL compiler

CORBA programmers
Created by

implements

implements

requests to
delegates

Figure 3.14 Multiple interface inheritance in TIE style.

96 CORBA PROGRAMMING

_FreeServiceProviderOperations _PaidServiceProviderOperations

TriableServiceProviderImpl

QuoterImpl

_QuoterOperations

_TriableServiceProviderOperations

_ServiceProviderOperations

Created by

inherits

1

1

ServiceProviderImpl

IDL compiler

CORBA programmers

Created by the

delegates

inherits

inherits

implements

requests to

_tie_Quoter
implements

inherits

inherits inherits

inherits

Figure 3.15 Quoter’s multiple inheritance in TIE style.

the implementation classes of the inherited IDL interfaces might have to be repeated
in the implementation class of the inheriting code. Figure 3.15 shows an example
of such a case. TriableServiceProviderImpl cannot inherit from both FreeService-
ProviderImpl and PaidServiceProviderImpl due to the inexistence of multiple class
inheritance in Java. Therefore, there are two possibilities: either inherit from one of
the three previously mentioned classes or from ServiceProviderImpl. In the above
example, the choice was to inherit from the TriableServiceProviderImpl. This means
code that implements operations and attributes of FreeServiceProviderImpl and Paid-
ServiceProviderImpl must be repeated in TriableServiceProviderImpl.

Step 1.2.2 (Implementation of all mapped interface attributes and opera-
tions). Implementing a mapped interface attribute and operation is similar to writ-
ing any other Java functions, regardless of what implementation style is used. For
example, the code fragment below implements a ServiceProvider’s id attribute and
the decreaseCredits operation.

// Implementation attributes
private int myId = 0;
private float myUSDCredits = 0;
...

BASIC CORBA PROGRAMMING 97

public int id() {
return(myId);

}
...
public void

decreaseCredits(float chargedAmount) {
myUSDCredits = myUSDCredits - chargedAmount;

}
...

Handling a mapped out or inout IDL parameter operation is similar to the client
executable. For example, consider the code fragment of bargain operation which
handles an inout parameter of price:

public void bargain(Account account, int itemId, FloatHolder price)
throws InvalidAccount, NotExist {

// Local declaration
float bargainedPrice =

price.value - (price.value * (float) 0.10);
System.out.println(account.owner.id() +

" has bargained US$ " +
price.value + " for item no " + itemId);
price.value = bargainedPrice;

}
...

Raising a mapped CORBA exception is the same as throwing a Java exception:

public Account login(String loginName, String password)
throws LoginFailed {

// Local declaration
Account account = null;
account = (Account) myAccounts.get(loginName);
if(account == null) {

throw(new LoginFailed(LOGIN_FAILED_MSG));
}
if(account.password.equals(password)) {

throw(new LoginFailed(LOGIN_FAILED_MSG));
}

return(account);
}
...

When developing a CORBA application, programmers might encounter objects
called factory objects. A factory object is an ordinary CORBA object whose function
is to create and return other CORBA objects. An example of a factory object is a
ClientManager object. Its register operation creates a CORBA object for each newly

98 CORBA PROGRAMMING

registered user. A factory object might also give an object marker to new objects
during creation. An object marker is then used to identify the object; it must not be
null or contain “ : ” character. The latter applies since that character is used to provide
scoping when the object is being located among different objects of different servers.
An example of this scoping can be found during the client executable’s attempt to
bind to a Newspaper object:

private Newspaper connectToNewspaper(String args[]) {
// Local declaration
Newspaper newspaper = null;
...
newspaper = NewspaperHelper.bind("iNewspaper:iService", args[0]);
...

}
...

Creating a marked object for an implementation class written using the BOA style
is accomplished by passing the object marker to its skeleton class’s constructor, for
example,

// From ClientManagerImpl class:
public User register(String firstName, String lastName,

String password, Address address, String phoneNo,
Account[] accounts) throws InvalidDetail, InvalidAccount {
...
myTotUsers++;
newUser = new UserImpl(myTotUsers, firstName, lastName,

password, address, phoneNo, accounts, USDCredits);
...
return(newUser);

}
...

// From UserImpl class:
...
private static final

String USER_ID = "User";
...
public UserImpl(int id, String firstName, String lastName,

String password, Address address, String phoneNo,
Account[] accounts, float USDCredits) {
super(USER_ID + id);
...

}
...

In the TIE style, the object marker is passed as the second parameter of the TIE
class constructor. Nothing special needs to be done in the implementation class. If

BASIC CORBA PROGRAMMING 99

the UserImpl from the above example were implemented in the TIE style, it would
be:

// From ClientManagerImpl class:
...
private static final String USER_ID = "User";
...
public User register(String firstName, String lastName,

String password, Address address, String phoneNo,
Account[] accounts) throws InvalidDetail, InvalidAccount {
...
myTotUsers++;
String objectMarker = USER_ID + myTotUsers;
newUser = new _tie_User(new UserImpl(objectMarker, firstName,

lastName, password, address, phoneNo,
accounts, USDCredits), objectMarker);

...
return(newUser);

}

...
// From UserImpl class:
...
public UserImpl(Sting id, String firstName, String lastName,

String password, Address address, String phoneNo,
Account[] accounts, float USDCredits) {
id = objectMarker;

...
}
...

Step 2 (Develop server executable class(es))

Developing a server executable consists of the following programming steps: (a)
initialize the server, and (b) notify the ORB.

Step 2.1 (Initialize the server) Server initialization involves at least the ini-
tialization of its connection to the ORB. This is usually followed by the creation
of boot objects and other initialization steps. Details on boot objects and additional
initialization steps are explained below:

Step 2.1.1 (Initialize the ORB). This step is similar to the step of initializing the
ORB when developing a client. Both use the ORB’s init function, must be performed
at least once, and should be executed before any other CORBA statements in the
code. However, this step does not initialize the server’s connection to the ORB. It
initializes the client’s connection to the ORB instead.

100 CORBA PROGRAMMING

Step 2.1.2 (Create boot objects). Boot objects are objects that are created when
the server starts up. They provide initial points of application access. The server
startup provides an opportunity to create these boot objects before clients attempt
to access them. For example, the ClientManager, Newspaper, Retailer and Quoter
objects are all boot objects. The ClientManager object must be active when clients
are trying to logon to their accounts, while the rest of the boot objects must also be
active before clients can use services that they provide. Creating these objects earlier
during server startup avoids the problem of clients being unable to use those objects
because they are inactive. Boot objects are created like any other CORBA object.
A code fragment from a server which creates boot objects implemented in BOA is
shown below:

public static void main(String args[]) {
// Constants
private static final String QUOTER_MARKER = "iQuoter";
private static final String RETAILER_MARKER = "iRetailer";
private static final String NEWSPAPER_MARKER = "iNewspaper";
...
Quoter quoter = new QuoterImpl(QUOTER_MARKER);
Retailer retailer = new RetailerImpl(RETAILER_MARKER);
Newspaper newspaper = new NewspaperImpl(NEWSPAPER_MARKER);
ClientManager clientManager = new ClientManagerImpl();
...

}

For the server implemented in TIE, the code fragment is as follows:

public static void main(String args[]) {
...
Quoter quoter = new _tie_Quoter(new QuoterImpl(), QUOTER_MARKER);
Retailer retailer =

new _tie_Retailer(new RetailerImpl(), RETAILER_MARKER);
Newspaper newspaper =

new _tie_Newspaper(new NewspaperImpl(), NEWSPAPER_MARKER);
ClientManager clientManager = new ClientManagerImpl();
...

}
...

Step 2.1.3 (Perform other initialization steps). Other initialization steps could
be opening database connections, preparing a log file, etc. These steps vary from one
application to another.

Step 2.2 (Notify the ORB) After its initialization steps are completed, a server
must indicate to BOA that it is now ready to accept requests. In OrbixWeb, this
consists of converting the org.omg.CORBA.ORB object returned by its init func-
tion into a IE.Iona.OrbixWeb.CORBA.ORB and calling its OrbixWeb specific
impl is ready() function with the name of the server specified:

BASIC CORBA PROGRAMMING 101

package iServiceApp;

// All import statements
// are declared here.
...
public class Server {

...
public static void main(String args[]) {
...
// Local declarations
ORB orb = ORB.init();
...
System.out.println("Server is ready to accept requests");
_OrbixWeb.ORB(orb).impl_is_ready("iService");
System.out.println("Server is exiting...");
...

}

The impl is ready() function blocks the server until an event occurs, handles
that event, and reblocks to wait for another event. It does not return until one of the
following occurs: a timeout; an exception is raised while waiting for an event; or
IE.Iona.OrbixWeb.CORBA.BOA’s deactivate impl() function is executed.

Step 3 (Test the application)

Once the above programming steps are completed, programmers must proceed with
the application testing steps. The command lines used in the following steps are
OrbixWeb specific:

• Compile the client and server classes. Command lines needed to compile the
server are already provided in the Makefile and are automatically performed
when make is executed.

• Start the OrbixWeb demon. The OrbixWeb demon must be active before the
server can be registered. It intervenes when a request arrives for an inactive
server by activating the server. In UNIX this is done by executing orbixdj&.

• Register the server. Before clients can start using the server, the programmer
must register the server with the implementation repository. Server registration
creates a new entry in the implementation repository. It needs to be performed
only once, or when only registered information (i.e., HostName, ServerName,
and ServerAbsoluteClassName) changes. The command line used to register
the server is:

putit -hHostName ServerName -j ServerAbsoluteClassName.

For example, the command line to register a server named iService to run a
server executable called iServiceApp.Server on a host machine called numbat

102 CORBA PROGRAMMING

is:

putit -hnumbat iService -j iServiceApp.Server.

3.3 DYNAMIC TYPES

This section discusses the CORBA dynamic types used when developing applica-
tions. These are like meta-types and they are useful when dealing with type resolution
at runtime. Two dynamic datatypes are explained in this section: TypeCode and Any.
The former is an IDL datatype which provides information about IDL datatypes, in-
cluding itself. The latter acts as a universal container for arbitrary datatypes. Using
both datatypes enables CORBA applications to handle datatypes which are unfore-
seen at compile-time and resolvable only at run-time.

3.3.1 TypeCode

TypeCode is an IDL datatype that can be used for providing a run-time description
of IDL datatypes, including itself; providing a run-time description of the contents
of IDL values, for example, the content of an Any value; querying the interface
repository (IR) for information about the datatypes it stores; and finally, resolving a
value’s datatype or other usages that require a datatype’s information.

Programmers can use TypeCode as an interface attribute type, a parameter, or as
the return value of the operation. When TypeCode is used in an IDL file, program-
mers must include orb.idl. The following example of its use in an IDL file is taken
from Section 3.4.1.

#include<orb.idl>
struct ParameterDef {

string name;
TypeCode type;

};
...

The next code fragment provides a partial declaration of the TypeCode interface
as specified by OMG. Only important operations are shown.

module CORBA {
enum TCKind { tk_null, tk_void, tk_short, tk_long,
tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean,
tk_char, tk_octet, tk_any, tk_TypeCode, tk_Principal,
tk_objref, tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except

};

DYNAMIC TYPES 103

interface TypeCode {
TCKind kind();
boolean equal(in TypeCode tc);
...

};
...

The kind() function returns the overall classification of the type that TypeCode
describes, from the TCKind enumerated values. For example, calling kind on Type-
Code of the short datatype returns tk short. TCKind enumerated values also allow
TypeCode to be self-describing.

The operation equal is useful for testing the equality of two TypeCodes. However,
the use of this operation should be avoided since the operation is not clearly detailed
in the CORBA specification [48]. This causes equal to have an ORB product de-
pendent behavior. Instead, we decided to base datatype comparison, in our sample
application, on the overall classification, i.e., using the kind operation.

TypeCode interface is mapped to a Java interface of the same name, while kind
operation is mapped to a Java function of TCKind kind(). Each mapped IDL type
will have a TypeCode constant of name format tc TypeName generated by the IDL
compiler. This constant might be used by equal to test whether or not two TypeCodes
are the same.

3.3.2 Type Any

Any is an IDL type which holds the value of an arbitrary datatype. It is similar to
Java’s java.lang.Object and should be used to contain values whose datatypes are
unresolvable at compile time. Its use also helps to compensate for the loss of operator
overloading in IDL. For example, consider all of the operations of the Retailer and
Quoter interfaces that have itemId and quotableId parameters, respectively:

interface Retailer : PaidServiceProvider {
void order(in Account account, in long itemId, in short quantity)

raises(InvalidAccount, NotExist, InsufficientCredits);
void bargain(in Account account, in long itemId, inout USDollars price)

raises(InvalidAccount, NotExist);
void getItemDetail(in Account account, in long itemId, out string name,

out USDollars price, out string description)
raises(InvalidAccount, NotExist);

...
};

interface Quoter : TriableServiceProvider {
USDollars getQuote(in Account account, in long quotableId)

raises(InvalidAccount, NotExist, InsufficientCredits);
...

};

104 CORBA PROGRAMMING

Some retail items and quotables might require datatypes other than long. Retail
item ids might need to be declared as string should they contain non-numerical val-
ues. For quotable ids, they might have to be declared as a string, as it is the case for
stock quotes. There are three choices that can be used to solve this problem. One
could declare the itemId as string, but this would restrict Retailer from holding ids
of more complex datatypes such as IDL struct. Another choice is to overload all op-
erations by declaring the same set of operations more than once, each having the
itemId parameter of different IDL datatype. However, this approach is not supported
in IDL. The last option is to declare these ids as any. This is the best choice since it
accepts all IDL datatypes, including those which are unknown at compile-time. Such
flexibility allows the same set of operations to be used with whatever datatypes are
passed to them. Thus, the operations have now become:

interface Retailer : PaidServiceProvider {
void order(in Account account, in any itemId, in short quantity)
raises(InvalidAccount, NotExist, InsufficientCredits);

void bargain(in Account account, in any itemId,
inout USDollars price) raises(InvalidAccount, NotExist);

void getItemDetail(in Account account, in any itemId,
out string name, out USDollars price, out string description)
raises(InvalidAccount, NotExist);

...
};

interface Quoter : TriableServiceProvider {
USDollars getQuote(in Account account, in any quotableId)
raises(InvalidAccount, NotExist, InsufficientCredits);

...
};

any is mapped to a Java class of org.omg.CORBA.Any. Programmers are required
to use org.omg.CORBA.ORB’s create any() function to create an instance of
org.omg.CORBA.Any, for example:

Any newAny = ORB.init().create_any();
...

In order for an Any variable to hold a value, an insertion function must be used.
An insertion typically occurs on the client side, before an Any variable that con-
tains the inserted value is sent to the server for processing. The insertion function
required to insert values of a particular datatype is insert DataT ypeName. Ex-
amples of commonly used insertion function are: insert short (), insert long(),
insert f loat (), insert double(), insert Boolean(), insert char(), insert any(),
insert Object (), insert string(). An example of their usage is illustrated by the
code fragment below:

DYNAMIC TYPES 105

// From Client executable class
private Any readAny() {

Any any = null;
String stringInput = null;
...
try {
// Read a string from user’s
// keyboard input. (Not shown)
...
any = ORB.init().create_any();
...
any.insert_string(stringInput);
...

}
...
return(any);

}

A value of a user defined type (e.g., User) is inserted by using the insert static
function of the type’s helper class. For example, if the sample application were to
insert a User object into an Any variable, the code fragment would be:

Any any = ORB.init().create_any();
// Create a new User (Not Shown)
...
UserHelper.insert(any, newUser);
...

Extracting a value from an Any usually happens on the server side, particu-
larly in the implementation class. An implementation class must first check what
type of data the Any contains by calling its type and executing the kind function
of the returned TypeCode. Later, the implementation class calls the appropriate
extract DataT ypeName() function for the Any value. An example of this extrac-
tion is shown in the convert I tem I dT oString() function below:

private String convertItemIdToString(Any itemId)
throws NotExist {

// Local declaration
String convertedItemId = null;

if(itemId.type().kind() == TCKind.tk_long) {
convertedItemId =
Integer.toString(itemId.extract_long());

}
...
return(convertedItemId);

}

106 CORBA PROGRAMMING

3.4 ADVANCED CORBA PROGRAMMING

This section discusses advanced features of CORBA programming. These features
enable clients to manipulate services without prior knowledge of the interfaces that
provide these services. Clients implemented using these features can create requests
to interfaces of which they know nothing when they are compiled. Such clients are
also capable of traversing through unknown IDL declarations and invoking them.
These features also give servers the ability to accept and process any operation call.
This is regardless of whether or not the targeted interfaces are already defined in
the application IDL. It is important to note that these features capture only the syn-
tactic knowledge of the interfaces, not their semantical understanding. The type of
applications that can be built using these features are known as dynamic CORBA
applications. Such applications may not be entirely dynamic. Clients could be static,
while servers might be dynamic and so on. As this type of application is quite rare,
the explanations provided in this section may not be required by most program-
mers.

3.4.1 Dynamic Invocation Interface

The DII or Dynamic Invocation Interface is a generic pre-defined API used to invoke
interfaces which are resolved only at run-time. It allows clients to discover inter-
faces at run-time and create requests for them. DII is rarely used and is limited to
a small set of applications. Examples include IDL browsers which explore through
interfaces and other IDL constructs, gateway applications which forward requests to
non CORBA objects in their appropriate format and vice versa, management sup-
port tools, and distributed debuggers. In programming terms, DII does not depend
on stubs for request invocation. Thus, these applications are immune to changes or
additions to the applications interfaces.

We will consider again the application iService to illustrate the use of DII in de-
veloping applications. Here we expand some of the requirements of the iService
application to deal with new requirements and expand existing services. TwinLab
programmers realize that the current prototype has not taken this into account. If
the final product were to follow the current prototype, a software upgrade would be
needed for every new type of service added into the interfaces, before clients would
access these services. iService immediately rejected this idea since a continuous up-
grade could discourage consumers from using the new services. However, the ever-
growing nature of the interfaces prevents Twinlab programmers from developing a
prototype based on those interfaces. After consulting with iService, they agreed to
build the prototype using DII. They also agreed on several programming conventions
which govern the way the application interface of a service is manipulated. First, all
ServiceProviders are registered with the ServiceManager. Clients will use Service-
Provider’s serviceList attribute to retrieve a list of available services. A new attribute
called opDefList is added to ServiceProvider which returns information required to
invoke the interface’s operations using DII. This information is contained in type
OperationDef structure which has the following IDL declarations:

ADVANCED CORBA PROGRAMMING 107

enum ParamMode { IN, OUT, INOUT };
struct ParameterDef {

ParamMode mode;
TypeCode type;
string name;

};

typedef sequence<TypeCode> ExceptionDefs;
typedef sequence<ParameterDef> ParameterDefs;

struct OperationDef {
string name;
ExceptionDefs exDefList;
ParameterDefs paramDefList;
TypeCode returnValueType;

};

typedef sequence<OperationDef> OperationDefs;
interface ServiceProvider {

readonly attribute OperationDefs opDefList;
...

}
...

Each operation in the interface is essentially a service option whose name is the
operation’s name. Selecting the option triggers the invocation of the operation. Val-
ues passed to its in or inout parameters would be requested from the user. The return
value, all out and inout parameters are displayed after the invocation is completed.
Proceeding with the development of the prototype, programmers use DII to perform
an invocation by following these programming steps: (i) acquire the target object’s
reference, (ii) create a request object, (iii) populate the request object, (iv) invoke the
request object, and finally (v) retrieve the invocation results.

Step 1 (Acquire the target object reference)

Reference acqusition methods have been explained earlier in the programming steps
of client executable development of SII. The reference to the target object need not
be obtained in any specific interface. The object may be acquired with an interface
ranging from the widest org.omg.CORBA.Object to the object’s narrowest inter-
face, as declared in the IDL file.

Step 2 (Create a request object)

A CORBA request is mapped to a Java abstract class org.omg.CORBA.Request and
can be created by using the following org.omg.CORBA.Object’s function:

public Request _request(String operation);

108 CORBA PROGRAMMING

The parameter operation is the name the operation to be invoked. For example,
code that creates a request object for a ServiceProvider is:

private void handleServiceOption(ServiceProvider serviceProvider,
OperationDefoperationDef, Account account) {

...
Request request = null;
...
// Create a new request
request = serviceProvider._request(operationDef.name);
...

}
...

If an attribute is being called instead, the parameter should be passed with a string
in the format of getAttributeName, for example, get serviceList to access ser-
viceList atribute. If an attribute is called to have its value changed, the parameter
should be passed with a string in the format of set AttributeName, (e.g., for set-
ting the firstName attribute the string would be: set f irst Name).

Step 3 (Populate the request object)

This step consists of several other steps, as detailed below.

Step 3.1 (Specify the return value’s TypeCode). It is accomplished by using
Request’s set return type() function:

public void set_return_type(TypeCode tc);

An example of its usage, in our application, is:

private void handleServiceOption(ServiceProvider serviceProvider,
OperationDef operationDef, Account account) {

...
Request request = null;
...
// Set the return value type request.
set_return_type(operationDef.returnValueType);
...

}
...

Step 3.2 (Specify the exception TypeCodes). If an operation throws excep-
tions, their TypeCode must be specified to the Request in two steps. The first step
is to retrieve an org.omg.CORBA.ExceptionList object which will contain the
specified exception TypeCodes. This is accomplished by calling Request’s excep-
tions attribute. Each of the exceptions that could be raised by the operation will have

ADVANCED CORBA PROGRAMMING 109

its TypeCode inserted into the Request. This is achieved by executing the Excep-
tionList’s public void add(TypeCode tc). For example, our sample application has a
function called set Exceptions() to add all exception TypeCodes into the exception
list. The content of this function is:

private void setExceptions(Request request, TypeCode[] exDefList) {
// Local declaration
int counter = 0;

for(;counter < exDefList.length;counter++) {
request.exceptions().add(exDefList[counter]);

}
}
...

Step 3.3 (Specify All Operation Parameters). This step provides Request
with all necessary inputs regarding the operation parameters. Which functions should
be used to set the input and what exactly this input is depends on the parameter
passing mode. First, an appropriate function is executed to return an Any variable
which will contain the input. If the parameter passing mode is in, then Request’s
add in arg() is called to return the variable, which will be inserted with a param-
eter value that needs to be passed to the operation. An out parameter requires the
execution of add out arg() function to return the Any variable. This variable must
be set to a holder object designated to hold a parameter value set by the operation
after its execution. For an inout parameter, add inout arg() function is used to re-
turn the Any variable. This variable must be set with a holder object which holds the
value that will be passed to the operation. After the operation invocation, the holder
will be set with a new value by the operation.

The last step is to insert the appropriate input into the Any variable. Inserting
a parameter value to be passed into the Any variable is accomplished by calling
its insert DataT ypeName() function. For example, the function used to insert a
short is insert short (). Inserting a holder object into the variable requires the use
of insert Streamable() function. If there is a basic datatype value to be passed
(i.e., the parameter passing mode is in or inout), the value must be passed to
the datatype’s holder class constructor during instantiation. The newly instanti-
ated holder object is in turn passed to the constructor of another kind of holder
class, that is, org.omg.CORBA.DataTypeNameHolderHolder during its instan-
tiation. This is a holder class for the datatype’s holder class whose instance is
inserted by the insert Streamable() into the Any variable. If the value has a more
complex datatype, the value to be passed is specified to its holder class’s con-
structor when it is being instantiated. The holder class to be used has the name of
org.omg.CORBA.DataTypeNameHolder, e.g., for Account structure, the holder
class is org.omg.CORBA.AccountHolder.

The code fragment below shows the content of the insert Short () function in the
Client class. The function is used to specify a short operation parameter to the re-

110 CORBA PROGRAMMING

quest object. Two new datatypes are introduced in order to facilitate the operation in-
vocation of an unknown interface: ParameterDef and ReturnedParam. ParameterDef
contains the parameter’s definition which is used to specify the input to the request
object. The ReturnedParam class is instantiated for each out and inout parameter. It
contains the parameter’s name, the parameter’s datatype, and its holder object. The
holder object contains the value that will be displayed after The operation is exe-
cuted.

private ReturnedParam insertShort(Request request,
ParameterDef paramDef) {

// Local declaration
ReturnedParam returnedParam = null;

if(paramDef.mode.equals(ParamMode.IN)) {
System.out.print(paramDef.name + " : ");
request.add_in_arg().insert_short(readShort());

}
else if(paramDef.mode.equals(ParamMode.OUT)) {
Streamable valueHolderHolder =
new ShortHolderHolder(new ShortHolder());

request.add_out_arg().insert_Streamable(valueHolderHolder);
returnedParam = new ReturnedParam(paramDef.name,
paramDef.type, valueHolderHolder);

}
else if(paramDef.mode.equals(ParamMode.INOUT)) {

System.out.print(paramDef.name + ": ");
Streamable valueHolderHolder =
new ShortHolderHolder(new ShortHolder(readShort()));

request.add_inout_arg().
insert_Streamable(valueHolderHolder);

returnedParam = new ReturnedParam(paramDef.name,
paramDef.type, valueHolderHolder);

}
return(returnedParam);

}
...

Step 4 (Invoke the Request Object)

Request’s invoke() function triggers the invocation of a request object and causes
the request to be sent to the target object, for example:

// Invoke the request, i.e., request is sent to the Server
request.invoke();
...

ADVANCED CORBA PROGRAMMING 111

Step 5 (Retrieve the invocation results)

After an operation has been invoked, the return value can be obtained from the
request object by first retrieving the contained Any value by using the request’s
return value() function. The actual return value must later be extracted from the
containing Any by calling the appropriate extract function as explained previously in
the Any section. For example, the function display ReturnV alue() from our exam-
ple retrieves, extracts and displays the return value. If the operation returns no value,
i.e., it is declared as a void operation, nothing will be done.

private void displayReturnValue(Any returnValue) {

// If the operation returns a value, display the result
if(returnValue.type().kind() == TCKind.tk_void) {

// No return value, so does not do anything
}
else if(returnValue.type().kind() == TCKind.tk_short) {

short returnedShort = returnValue.extract_short();
System.out.println(returnedShort);

}
...
// Similar ifs for the rest of the datatypes
//
//
}
...

Retrieving out and inout parameter values is as simple as accessing the value at-
tribute of the parameter’s datatytype holderholder class for basic datatypes or holder
class for more complex datatypes. For example, the function display Returned
Param() displays an out or inout parameter values returned by the operation. Recall
that, a reference to the parameter value’s holder or holderholder object is contained
within its ReturnedParam object:

private void displayReturnedParam(ReturnedParam returnedParam) {
System.out.print(returnedParam.getName() + " : ");

if(returnedParam.getType().kind() == TCKind.tk_short) {
ShortHolderHolder shortHolderHolder =

(ShortHolderHolder) returnedParam.getHolder();

System.out.println(shortHolderHolder.value.value);
}
...
// Similar ifs for the rest of the datatypes
//
//

}
...

112 CORBA PROGRAMMING

3.4.2 Dynamic Skeleton Interface

The DSI or Dynamic Skeleton Interface is a generic and pre-defined API that enables
implementations to receive requests for application interfaces which are known only
at run-time. It enables implementations to accept requests, extract details contained
in the requests (e.g., operation name, operation parameter values, etc.), and return
results. Compared to SSI, DSI is not often used. It may be used to write gateways in-
terfacing between CORBA and non-CORBA applications. Such gateways would ap-
pear as normal CORBA servers, containing a number of CORBA objects. In reality,
the gateways use DSI to intercept the incoming requests and translate them into calls
to the non-CORBA applications. Combined with DII, these gateway objects would
be able to translate requests from non-CORBA applications to CORBA requests, that
is, bi-directional gateway objects. DSI can also be used to create a CORBA object
which acts as a front-end to one or more non-CORBA objects. Having a CORBA
object to represent each non-CORBA object usually consumes excessive server re-
sources. In order to reduce consumption, a front-end object could act as a proxy to
multiple non-CORBA objects. One way to implement this is to have a parameter
specifying which of the non-CORBA objects the operation invocation should be per-
formed on. In terms of programming, DSI does not use the generated skeletons to
receive requests. Clients of a DSI application are unable to determine whether DSI
or SSI is being used on the server side. The decision to choose DSI or SSI is made
on a per-interface basis. The same server might use both DSI and SSI in its imple-
mentations, but an implementation is developed only using one of them. The server
must indicate that it wishes to use DSI for a specified IDL interface.

An example of DSI usage is given in the iService sample application. In order
to promote reusability of its code, iService insists that Twinlab programmers must
use an existing ServiceManager implementation. However, although this implemen-
tation is derived from a CORBA standard, it is not CORBA compliant. Additional
propietary features and information have been incorporated into the implementation.
At the end, a translation process is required before an incoming CORBA compli-
ant request can be processed by the ServiceManager implementation. It is decided
that a CORBA compliant ServiceManager class will be written, and its object will
act as a front-end for existing ServiceManager implementation. The new ServiceM-
anager will have the task of translating incoming requests and their replies, while
the existing ServiceManager provides the actual processing for those requests. DSI
programming steps that must be taken by the programmers for each implementation
class are: (i) write a DSI-based implementation class and (ii) implement ids() and
invoke() functions.

Step 1 (Write a DSI-based Implementation Class)

This is performed with the following steps: (i) create an implementation class that
inherits from the CORBA dynamic implementation, and (ii) implement the ids()
and invoke() functions.

ADVANCED CORBA PROGRAMMING 113

Step 1.1 (Create an implementation class that inherits from
org.omg.CORBA.DynamicImplementation)

package iServiceApp;
...
import org.omg.CORBA.DynamicImplementation;
...
public class ServiceManagerImpl

extends DynamicImplementation {...}

Step 1.2 (Implement ids () and invoke () functions) ids() function is an
OrbixWeb specific function that is used to determine what interface(s) the implemen-
tation class is implementing, including all inherited interfaces. It returns a Java array
of strings; each is the interface repository id of an implemented interface. Details
regarding the interface repository are provided later.

private static final String IDS[] =
{"IDL:iServiceApp/ServiceManager:1.0"};

...
public String[] _ids() {

return(IDS);
}
...

The invoke() function is called every time a new request needs to be processed.
An org.omg.CORBA.ServerRequest object is also passed to this function which
encapsulates details regarding the request, e.g., the name of operation or attribute
being invoked (op name attribute), parameter details (params operation), exception
details (except). For example, the invoke() function from the sample application is
shown below:

public ServerRequest translate(ServerRequest request) {
// Local declaration
ServerRequest nonCORBARequest = request;

// Perform all the necessary steps to
// convert the CORBA request to its
// corresponding Non CORBA request
// ...
// ...
System.out.println("Translating " + request.op_name());
return(nonCORBARequest);

}

public void invoke(ServerRequest request) {
// Local declaration

114 CORBA PROGRAMMING

ServerRequest nonCORBARequest =
translate(request);

process(nonCORBARequest);
}
...

In the example, an incoming request is first translated to a form that can be han-
dled by the non-CORBA implementation class. The result is analyzed by process
function and an appropriate NonCORBAServiceManager’s function will be called.
A return value and/or parameter values must be inserted by the process before the
reply is sent. Manipulating ServerRequest to execute the correct NonCORBASer-
viceManager’s function starts with determining the name of operation or attribute
being called, for example,

...
if(operationName. equals("_get_serviceList")) {...}
else if(operationName.equals("registerService")) {...}
return;

}
...

Once the name is known, the parameter details must be extracted from ServerRe-
quest in several steps. These extraction steps are skipped if no parameters are passed.
The steps begin with the creation of onr or more Any variables. Each of them will be
used to contain the holder object of a passed parameter:

process(ServerRequest request) {
...
else if(operationName.equals("registerService")) {

...
Any serviceProvider = orb.create_any();
...

}
}
...

It is followed by the instantiation of all of the holder variables which will be used
to contain the holder object of each passed parameter:

...
else if(operationName.equals("registerService")) {

...
ServiceProviderHolder serviceProviderHolder =

new ServiceProviderHolder();
...

}
}

...

ADVANCED CORBA PROGRAMMING 115

For complex datatypes such as the ServiceProvider interface, use the normal
holder class. However, a parameter of simpler IDL datatypes requires the use of
two holder classes: one normal holder class and holderholder class. The holder class
is used to carry the value of the IDL type, while the holderholder class contains an
instance of the holder class. The latter is necessary in order to allow the instance to
be passed to a client or server. For example, the DSI code fragment for the User’s
phoneNo attribute would be:

import org.omg.CORBA.StringHolderHolder;
...
ORB orb = ORB.init();
...
if(operationName.equals("_get_phoneNo")) {

Any returnValue = orb.create_any();
StringHolder valueHolder = new StringHolder();
StringHolderHolder valueHolderHolder =

new StringHolderHolder(valueHolder);
...

}
...

For in parameters, each of the instantiated holder objects will be filled with the
passed parameter value, while for an out it will be used to return a parameter value
w resulting from the invocation. In the case of inout, the holder object is used to do
both. The next step is to insert each of the instantiated holder objects into its Any
variable:

...
ORB orb = ORB.init();
...
else if(operationName.equals("registerService")) {

...
Any serviceProvider = orb.create_any();
serviceProvider.insert_Streamable(serviceProviderHolder);
...
}

...
}

This step continues with the creation of a named value list using org.omg.CORBA.
ORB’s create list () with the total number of operation parameters passed as its ar-
gument:

...
public void process(ServerRequest request) {

...
NVList passedParamValues = null;
...

116 CORBA PROGRAMMING

else if(operationName.equals("registerService")) {
...
passedParamValues = orb.create_list(1);
...

}
...

A named value list is an instance of org.omg.CORBA.NVList class. It is a list
of org.omg.CORBA.NamedValue objects, one for each passed parameter. A named
value itself is an IDL datatype with name and value attributes. The former holds
the name of the parameter, while the latter is an Any attribute that encapsulates the
parameter’s value. Now, a named value is added to the named list for each parameter
using the named list’s add value() function:

...
public void process(ServerRequest request) {

...
else if(operationName.equals("registerService")) {

...
passedParamValues.add_value(null, serviceProvider,

ARG_IN.value);
...

}
...

add value() parameters are as follows: i tem name which should be passed with
null, val for the holder object, and Flags for the parameter passing mode. Finally,
params() of ServerRequest is executed, which fills the named list with the passed
parameter values:

...
else if(operationName.equals("registerService")) {

...
request.params(passedParamValues);

...
}

...

After params() is executed, the holder objects will contain the passed parameter
values for the in and inout parameters. These parameter values can be passed to the
non-CORBA implementation function. If an exception is raised, it must be caught
and sent back to the client. Sending the exception back to the client is achieved
by calling ServerRequest’s except function with the raised exception passed as its
parameter.

...
else if(operationName.equals("registerService")) {

ADVANCED CORBA PROGRAMMING 117

...
try { myNonCORBAServiceManager.

registerService(serviceProviderHolder.value);
} catch (InvalidService invServEx) {

InvalidServiceHelper.insert(returnedException,invServEx);
request.except(returnedException);

}
...

If the operation returns some parameter values, then their holder objects must be
set appropriately. For example, if there is a NonCORBARetailerImpl that must be
reused, the DSI code fragment for the Retailer interface’s getItemDetail would be:

import org.omg.CORBA.AnyHolderHolder;
import org.omg.CORBA.FloatHolderHolder;
import org.omg.CORBA.StringHolderHolder;
...
else if(operationName.equals("getItemDetail")) {

...
AccountHolder accountHolder = new AccountHolder();
AnyHolderHolder itemIdHolderHolder =
new AnyHolderHolder(new AnyHolder());

StringHolderHolder nameHolderHolder =
new StringHolderHolder(new StringHolder());

FloatHolderHolder priceHolderHolder =
new FloatHolderHolder(new FloatHolder());

StringHolderHolder descriptionHolderHolder =
new StringHolderHolder(new StringHolder());

...
// Prepare holder objects
...
myNonCORBARetailer.getItemDetail(accountHolder.value,
itemIdHolderHolder.value.value, nameHolderHolder.value,
priceHolderHolder.value, descriptionHolderHolder.value);
...

}
...
// In the NonCORBARetailer class
public void getItemDetail(Account account, Any itemId,

StringHolder name, FloatHolder price, StringHolder description)
throws InvalidAccount, NotExist {

...
name.value = "the name of item no " + convertItemIdToString(itemId);
price.value = TEST_PRICE;
description.value = "the description of item no " +

convertItemIdToString(itemId);
...

}
...

118 CORBA PROGRAMMING

If the operation returns a value, it must be specified to ServerRequest using its
result function:

...
returnValueHolder.value =

myNonCORBAServiceManager.serviceList();
returnValue.insert_Streamable(returnValueHolder);

request.result(returnValue);

Step 2 (Create and Register DSI Objects)

The last programming step is to instantiate the gateway object, that is, Service-
ManagerImpl and register it with the server. The registration is performed by using
ORB’s connect, which also establishes communication between the ORB and the
DSI object.

Object serviceManager = new ServiceManagerImpl(nonCORBAServiceManager);

// Connect the non CORBA service manager to the ORB
_OrbixWeb.ORB(orb).connect(serviceManager, SERVICE_MANAGER_MARKER);
...

3.4.3 Interface and Implementation Repositories

Chapter 2 provided details regarding the different CORBA repositories. This sec-
tion shows how to use the information contained in these repositories to program
applications.

Interface Repository The IFR or InterFace Repository is the component of
ORB that provides for the storage, distribution, and management of a collection of
related objects’ IDL definitions. Examples of its application can be found in the
CASE tools which aid CORBA application developers; interface browsers which ex-
plore IDL definitions and list them to the programmers; CORBA compilers which
check for syntax errors; CORBA applications that use DII to invoke objects whose
types are not known at compile time, and gateways which might perform request
conversion.

IDL definitions are made available by incorporating the information procedurally
into stub routines or as repository objects which can be accessed at ORB run-time.
They are used by the ORB to interpret and handle values encapsulated by requests;
to perform type checking of request signatures to determine whether the request was
issued through the DII or through a stub; to assist in checking the correctness of the
interface inheritance graph; and to promote interoperability between different ORBs
by providing interface information for the objects other ORBs pass. IDL definitions
are entered into and retrieved from IFR by manipulating its operations. Usually, there
are alternative ways to insert information into the repository e.g., using tools, copying

ADVANCED CORBA PROGRAMMING 119

Figure 3.16 UML diagram for commonly used IFR definitions.

objects from one repository to another, compiling IDL definitions, etc. In OrbixWeb,
putidl and rmidl command line tools are used to enter and remove the IDL definitions.
Examples of IDL definitions are definitions for module, interface, exception, etc.

Figure 3.16 shows the UML diagram for commonly used IDL definitions:
org.omg.CORBA.IRObject is the base interface for all repository objects. Its
def kind attribute determines the overall classification of the IFR object, while
its destroy operation removes the IFR object from the repository. IFR objects that
represent the IDL definitions of datatypes such as primitives, interfaces, struc-
tures, sequences, and typedef implement org.omg.CORBA.IDLType interface.
The interface’s type attribute returns the object’s datatype as a TypeCode. IDL
definitions that can contain other IDL definitions have their IFR objects imple-
menting the org.omg.CORBA.Container interface. For example, module and
interface will have their IFR objects stored as org.omg.CORBA.ModuleDef and
org.omg.CORBA.InterfaceDef respectively. The contained IFR objects them-
selves implement org.omg.CORBA.Contained interface. For example, opera-
tion and attribute definitions are saved as org.omg.CORBA.OperationDef and
org.omg.CORBA.AttributeDef object. Notice that InterfaceDef is both Con-
tainer and Contained since it can contain IFR objects such as OperationDef and be
contained in a ModuleDef. The repository is represented by org.omg.CORBA.
Repository object, whose operations can be used to search for IFR objects that
match specific criteria, for example, specific TCKind, and so forth.

Recall from the DII section that each ServiceProvider returns information, which
is used to perform DII operation invocation, from its opDefList attribute. The prob-
lem is that programmers themselves must manually create this information for all
operations and ensure that this information correctly reflects the operation. This ap-
proach is error prone and potentially returns outdated information. A better way
would be to interrogate and retrieve all required information from IFR. This sim-
plifies the application’s IDL declarations and implementations since all IDL decla-
rations and the code related to opDefList can be removed. TwinLab Programmers
only need to provide the scopedName attribute which returns an absolute name in
the format of ModuleName::InterfaceName. The scoped name is used by the client
executable to retrieve the appropriate interface definition object.

120 CORBA PROGRAMMING

The different programming steps for manipulating IFR to invoke an interface op-
eration are: (i) acquire the IFR object reference, (ii) retrieve the interface description,
(iii) use of the interface description.

Step 1 (Acquire the IFR reference)

This step is accomplished by using ORB’s resolve initial re f erence() with its
parameter being the ”InterfaceRepository” string, which tells the ORB to return an
IFR reference. This reference is later narrowed to Repository interface:

import org.omg.CORBA.ORBPackage.InvalidName;
...
private Repository connectToIFR() {

// Local declarations
Repository IFR = null;
Object IFRObject = null;
try { IFRObject = ORB.init().

resolve_initial_references("InterfaceRepository");
IFR = RepositoryHelper.narrow(IFRObject);

} catch(InvalidName invNameEx) {
System.out.println("Exception during narrow of IFR " +

"reference : ");
System.out.println(invNameEx);

} catch(SystemException sysEx) {
System.out.println(UNABLE_TO_BIND_TO_IFR_MSG + sysEx);
}

return(IFR);
}

Step 2 (Retrieve interface description)

Programmers might want to first check if the IFR contains anything at all:

...
private FullInterfaceDescription

getFullInterfaceDescription(Repository IFR,
ServiceProvider serviceProvider) {
...
Contained[] ifrContent = null;
...
// Test if the repository contains anything at all
ifrContent = IFR.contents(DefinitionKind.dk_all, true);
if(ifrContent.length < 1) {

System.out.println("Interface Repository is currently "
+ "empty");

}
...

ADVANCED CORBA PROGRAMMING 121

content operation returns all IFR objects regardless their kinds, that is, dk all.
Boolean value true indicates IFR to exclude IFR objects of inherited interfaces from
consideration. Container’s lookup function retrieves the interface definition object as
Contained object. The name given by the ServiceProvider’s scopedName attribute is
used as the lookup search criterion. The Contained object returned is narrowed to an
InterfaceDef before calling its describe inter f ace(), which returns the interface’s
full description:

...
// Local declarations
Contained contained = null;
InterfaceDef interfaceDef = null;
FullInterfaceDescription fullInterfaceDescription = null;
..
// Retrieve the interface definition from IFR
contained = IFR.lookup(serviceProvider.scopedName());
interfaceDef = InterfaceDefHelper.narrow(contained);
fullInterfaceDescription = interfaceDef.describe_interface();
...

This interface description is an IDL structure of type org.omg.CORBA.Inter-
face DefPackage.FullInterfaceDescription whose members provide a
complete description of an IDL interface. The structure’s member relevant to
the example is operations. This member contains a sequence of org.omg.CORBA.
OperationDescription, each containing a description about an interface oper-
ation. Frequently used members of OperationDescription structure are: the name
which contains the operation name, parameters that contain descriptions about the
operation parameters, the result which contain the operation return value’s type, and
exceptions which contains descriptions about all raisable exceptions. Each of the de-
scriptions contained in the parameters is a org.omg.CORBA.ParameterDescrip-
tion structure. Members of this structure used in the example are name (contains
the name of the parameter), type (holds the parameter’s type), and mode (has the
parameter’s passing mode). Each of the exception descriptions contained in the ex-
ceptions member is a org.omg.CORBA.ExceptionDescription structure. Its type
is used in the example and contains the exception type.

typedef sequence <ParameterDescription> ParDescriptionSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;
...
struct ExceptionDescription { TypeCode type;} ;
...
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
...
struct ParameterDescription {

Identifier name;
TypeCode type;

122 CORBA PROGRAMMING

ParameterMode mode;
};
...
struct OperationDescription {

Identifier name;
ParDescriptionSeq parameters;
TypeCode result;
ExcDescriptionSeq exceptions;

};
...
struct FullInterfaceDescription {

OpDescriptionSeq operations;
...

};
...

Step 3 (Use of interface description)

The information contained in the interface description can be used to create a re-
quest using DII. The OperationDescription’s name is used as the parameter of Re-
quest’s request () function, replacing our own OperationDef’s name member. For
the set return() t ype() function, the result structure member is used instead of our
custom-made OperationDef. The case is similar for exceptions and parameters. Thus,
handleServiceOption has now become:

ServiceProvider serviceProvider, Account account) {
...
ParameterDescription[] paramDescList = operationDesc.parameters;
...
request = serviceProvider._request(operationDesc.name);
...
request.set_return_type(operationDesc.result);
...
setExceptions(request, operationDesc.exceptions);
...
returnedParam = setParam(request, paramDescList[counter], account);
...

The content of set Exception() function now is:

// Local declaration
int counter = 0;

for(;counter < exDescList.length;counter++) {
request.exceptions().add(exDescList[counter].type);

}
}
...

ADVANCED CORBA PROGRAMMING 123

ParameterDescription paramDesc, Account account) {
// Local declaration
ReturnedParam returnedParam = null;
...
if(paramDesc.type.kind() == AccountHelper.type().kind() &&

paramDesc.type.name() != null &&
paramDesc.type.name().equals(AccountHelper.type().name())) {

returnedParam = insertAccount(request, paramDesc, account);
}
else if(paramDesc.type.kind() == TCKind.tk_short) {

returnedParam = insertShort(request, paramDesc);
}

...

The code that checks the parameter passing mode is now slightly different. For
example, a set of if’s in the insertAccount has become:

ParameterDescription paramDesc, Account account) {
...
if(paramDesc.mode.equals(ParameterMode.PARAM_IN)) {

...
}
else if(paramDesc.mode.equals(ParameterMode.PARAM_OUT)) {

...
returnedParam =
new ReturnedParam(paramDesc.name.paramDesc.type, valueHolder);

}
else if(paramDesc.mode.equals(ParameterMode.PARAM_INOUT)) {

...
returnedParam = new ReturnedParam(paramDesc.name,

paramDesc.type, valueHolder);
}

...

Similar changes also apply to other insert functions.

Implementation Repository As detailed in Chapter 2, IR or Implementation
Repository is the component of the ORB which Contains information that allows
the ORB to locate and activate implementations of objects. Since most of this in-
formation is vendor- or operating system-specific, OMG does not provide a detailed
specification of IR. It is commonly used as a place to store additional information as-
sociated with implementations. For example, it may provide debugging information,
administrative control, resource allocation, security, etc. An implementation repos-
itory is usually responsible for maintaining a registry of known servers, recording
which servers are currently running on which host and port number, and starting in-
active servers which are registered for automatic start-up when their requests arrive.

124 CORBA PROGRAMMING

In OrbixWeb, putit, lsit, rmit, psit, and killit are the command line tools
used to manipulate the IR. putit has been explained previously in the SSI section.
lsit is used to list all registered servers, for example:

Someone@cs lsit
[IT_daemon: New Connection (numbat.cs.rmit.edu.au:60951)]
[New Connection (numbat.cs.rmit.edu.au,IT_daemon, *,surset,
pid=-889250955)]
Root Directory

iService
[IT_daemon: End of Connection (numbat.cs.rmit.edu.au,IT_daemon,
surset,pid=-889245829)]

rmit is used to unregister a server in the following format: rmit ServerName.
For example, to remove a server called iService the command is: rmit iService.
psit is used to displays details on the active servers, for example:

Someone@cs psit
[IT_daemon: New Connection (numbat.cs.rmit.edu.au:61370)]
[7611: New Connection (numbat.cs.rmit.edu.au,IT_daemon,*,
surset,pid=3405730599)]
Active servers at node numbat.cs.rmit.edu.au are :
Name Marker Code Comms Port Launch PerClient?

iService * xdr tcp 2000 auto ---
[IT_daemon: End of Connection (numbat.cs.rmit.edu.au,IT_daemon,
surset,pid=7611)]

killit deactivates servers using the following format: killit ServerName.
For example, the command to deactivate the iService server is killit iService.

3.5 SUMMARY

In this chapter, we have explained the CORBA programming features that are uti-
lized to develop distributed applications. IDL supplies such applications with the
ability to interact beyond their confining heterogeneities. The separation between in-
terfaces and their implementations is the enabling factor. This is further enhanced
by the freedom to choose between static and dynamic processing. Clients that use
static interfaces can choose SII, while those that are unable to determine the inter-
faces at compile time should select DII instead. For servers that rely on static inter-
faces, SSI can be used, while servers that receive requests for interfaces that cannot
be resolved during compilation ought to use DSI instead. When using SSI, the TIE
and BOA implementation styles accommodate existing code reusage and ground-up
development, respectively. Dynamic types are used to improve the processing flexi-
bility with their meta information about types (TypeCode) and a universal container
(Any). Management, storage, and distribution of an application’s IDL definitions are

EXERCISES 125

handled by the IFR, while the IR tackles server activations and other implementation-
management related responsibilities.

3.6 REVIEW QUESTIONS

• What is the difference between conventional programming and CORBA pro-
gramming?

• How does IDL reconcile heterogeneities in a distributed system?
• Why doesn’t IDL recognize private and protected access mode?
• Explain the term “object reference stringification.”
• What is the difference between attribute in an IDL interface attribute and a

normal object attribute?
• Why do we need helper and holder classes?
• What is the function of Any? When should it be used?
• What is DII? What does it do? When should DII be used? What kind of appli-

cations use DII?
• What is DSI? What does it do? When should DSI should be used? What kind

of applications that use DSI?
• Explain the two implementation styles in SSI.
• What is the function of IFR? Give examples of applications that must use IFR.
• What is IR? Is IR specified in the CORBA standard? Justify your answer. What

is IR usually responsible for?
• Compare how these two implementation styles enable an implementation class

to process requests.
• Explain the factors a programmer must consider when choosing the appropriate

SSI implementation style.

3.7 EXERCISES

• If clients are implemented using DII, what implementation approaches must
their servers use: SSI or DSI? Justify your answer.

• Consider an operation with the following IDL declaration:

void X();

If the code to invoke this operation is provided, what changes need to be
made to the code which creates a Request object in order for the same code to
be used to invoke the following attribute:

readonly attribute long X;

126 CORBA PROGRAMMING

• Provide the implementation of the following Student interface in the BOA and
TIE approach:

interface Person {
readonly attribute string name;
attribute string address;

};

interface Student : Person {
readonly attribute string no;

void enrol(in string subjectCode);
};

Make all of the necessary assumptions.
• Provide the DII code fragment to invoke the operation invokedOp of the fol-

lowing IDL interface:

exception InvokedOpException {};
interface InvokedObject {

boolean invokedOp(in string param)
raises(InvokedOpException);

};

Pass param parameter with the value of “invokedOpParam”.
• Provide the DSI code fragment for the above question. Assume the Java func-

tion that implements invokedOp operation is already provided.

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

PART II

ADVANCED CORBA

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 4

Object Adaptors

OMG provided the specification of two adaptors, the Basic Object Adaptor (BOA)
and the Portable Object Adaptor (POA). BOA was released in an earlier version of
the OMG specification. Because of several problems related to this adaptor, such as
portability and flexible activation policies, OMG recently released the POA specifi-
cation.

Even though most of the existing CORBA systems are supporting POA or being
updated to support it, we have decided to provide details of BOA (e.g., architec-
ture and object/servant/server activation and deactivation). We believe that this will
provide a clear idea about the BOA limitations and therefore make it easier to under-
stand the OMG adoption of POA. This chapter also provides a comparison between
BOA and POA with regard to the issues relating to object adaptors. The chapter starts
with an overview of CORBA and its adaptors, and in Section 4.2, the architectures
of BOA and POA are described. Section 4.3 provides an evaluation of both BOA
and POA with regard to a set of criteria. Finally, in Section 4.4, we show how POA
can be extended to construct database adaptors that enable making object references
persistent.

4.1 OVERALL PICTURE

The rationale behind the inclusion of an object adaptor in the OMG architecture is
interface flexibility and management. To communicate without an adaptor, both the
ORB and the implementations must agree on one fixed set of interfaces or they must
support multiple sets of interfaces. Providing a unique set of interfaces is not desir-
able because different sets of interfaces might be needed, depending on the applica-
tion’s aims. For example, an implementation might perform a radically new kind of
service, include new functionalities, or better performance may be needed. The sec-
ond alternative, that is, to support multiple sets of interfaces, is complex and could
result in only a subset of the adaptor’s interfaces being used. Confusion might also
occur over which set of interfaces should be selected. It is conceded that foreseeing
all the types of interface is impossible.

129

130 OBJECT ADAPTORS

To be efficient, the interface of an adaptor would have to be tailored according
to the interface of the ORB and the interfaces of the implementations. This does not
mean that adaptors can be introduced sparingly; however, it happens only in special
cases and OMG expects to have a small number of adaptors existing. The advantage
of placing an object adaptor between an ORB and implementations is to make them
independent of each other. In this way, an ORB relies on its adaptor’s interface to
communicate indirectly with the implementation objects and vice versa. An adaptor
will be responsible for adapting the interfaces of its implementation objects for the
ORB. It will also allow the implementation object to gain access to the ORB service
via the adaptor’s public interface.

The adaptor will be then dependent on the interface of its implementation ob-
jects and the interface of its ORB. Changes in the interfaces will affect the adaptor’s
interface.

In addition to the role of linking an ORB with object implementations, object
adaptors have other functionalities, including generation and interpretation of ob-
ject references, method invocation, security of interaction, activation and deactiva-
tion of object implementations, mapping object references to their implementation
objects, and registration of implementation. In earlier versions of CORBA, BOA
(Basic Object Adaptor) [70] was proposed as a basic adaptor that provides these
functionalities. However, BOA’s specification is plagued by problems in its porta-
bility, clarity and completeness. As a result, currently available BOAs are vendor
specific and incompatible. An RFP (Request For Proposal) for ORB Portability was
published to address these problems [71]. This document reveals that OMG had sev-
eral choices: (i) improve the BOA specification to eliminate multiple interpretations;
(ii) allow multiple versions of BOA to exist, each for a major operating environ-
ment (e.g., POSIX, Windows, Macintosh) and standardize each of those versions;
(iii) publish a new “universal” object adaptor which is not necessarily derived from
BOA; or (iv) abandon the BOA standardization effort. The first choice seems too
hard, if not impossible. Because of too many incompatible versions of BOA, pro-
ducing a specification that considers all of them seems like a futile attempt. The
second will cause the proliferation of multiple versions of BOA. The next choice
promises a clean break from the past but invalidates existing applications. The last
one is a “hands-off” approach and should not be selected. Ultimately, OMG decided
to start fresh by taking the third choice as their solution [74]. They agreed to let
the vendors keep their BOAs, but no new BOA specification will be published. Ap-
plications that use BOAs will continue to function and be supported by the ORB
vendors.

POA (Portable Object Adaptor) is the OMG’s new adaptor. It is not an improved
version of BOA and is specified in [78]. POA was designed from the ground-up with
portability in mind. Server code benefits most from POA, since they can now operate
across different CORBA products. POA interfaces are declared in their own Porta-
bleServer module. This gives more room and more flexibility for future expansions
of POA. Like BOA, POA is designed to handle objects with conventional implemen-
tation.

ARCHITECTURES 131

4.2 ARCHITECTURES

When an invocation is made, the client-side ORB is responsible for interpreting the
object’s roles, for locating the server in which the object is implemented and for
sending a request to that server. On the server side, the request is received by the
ORB, where three steps of dispatching are necessary: (i) the ORB must find the ob-
ject adaptor that the object is implemented in and pass the request on to that object
adaptor; (2) the object adaptor must find the servant that implements the object; and
(3) if the servant uses a static skeleton, the request is unpacked by the IDL-generated
code and the desired method is invoked. Before any of this can happen, the object
adaptor must first know about the servant. After registering the servant with the ob-
ject adaptor, an implementation must be able to create and export object references
that address the servant. So besides merely performing invocations, the object adap-
tor must provide an administrative interface as well. The object adaptor will be re-
sponsible for: (i) registration of implementations; (ii) mapping object references to
the corresponding object implementations; (iii) activating and deactivating objects
and implementations; (iv) generating and interpreting object references; (v) method
invocation; and (vi) security of interactions.

Figure 4.1 shows the object adaptor in relation to the other server-side parts of an
ORB. The object adaptor is trapped between the ORB core and the object implemen-
tation and provides three interfaces: one to the ORB, consisting of a single method
to receive an incoming request; one to the user code, for forwarding requests, us-
ing either DSI or DII; and one interface through which an implementation can cause
objects to be activated or deactivated and can influence the processing of requests.

The most simple object adaptor would be no more than a table that maps object
keys (the server-side part of an object reference) to servants. Upon invocation, only

User Code
(servant)

Generated SSI Code
(skeleton)

Skeleton
Dynamic Static IDL

Skeleton

Object Adaptor

ORB Core

Figure 4.1 ORB server side.

132 OBJECT ADAPTORS

a single table lookup would be necessary; activation and deactivation of servants
would cause insertions and deletions into that table.

4.2.1 Basic Object Adaptor

The BOA’s purpose was to be a simple and generic type of object adaptor that could
be used, as the name suggests, for basic purposes. As such, its interface is inten-
tionally minimalistic, providing several methods, conveniently specified in IDL as
shown below:

module CORBA {
// from Interface Repository interface
interface interfaceDef;

// from Implementation Repository
interface ImplementationDef;

interface Object;

// an object for the authentication service
pseudo interface Principal;

typedef sequence<octet,1024> ReferenceData;

...

pseudo interface BOA {

// implementation activation and deactivation
void impl_is_ready (in ImplementationDef impl);
void deactivate_impl (in ImplementationDef impl);
void obj_is_ready (in Object obj,

in ImplementationDef impl);
void deactivate_obj (in Object obj);

// generation and interpretation of object references
Object create (in ReferenceData id,

in InterfaceDef intf,
in ImplementationDef impl);

void dispose (in Object obj);
ReferenceData get_id (in Object obj);
void change_impelemtation (in Object obj,

in ImplementationDef impl);

// identification of the principal making a
// request Principal
get_principal (in Object obj, in environment ev);

ARCHITECTURES 133

};
...

};

Figure 4.2 depicts a global picture of BOA. It shows the translation of a user’s
(IDL) operation to a set of BOA operations. The first step is to start a server process
when the first request to its object arrives. The implementation registers as being
ready to receive requests, by calling B O A :: impl is ready(). Next, BOA performs
an up-call to the object activation routine. Later, BOA delivers the requests to the ob-
ject using the appropriate skeleton method. The implementation might or might not
use BOA’s services, through its interface for operations such as object deactivation
using B O A :: deactivate obj ().

4.2.2 Portable Object Adaptor

POA is an object that is visible to the server. Object implementations are registered
with the POA. As for BOA, the ORB, POA, and object implementations cooperate
to determine on which servant the operation should be invoked, and to perform the
invocation. As shown in Figure 4.3, there are several elements within the POA archi-
tecture that are involved in the process of activation and invocation: servant, object
reference, POA, policy, POA manager, servant manager, and adaptor activator. In this
section we will provide definitions of these elements of the POA architecture based
on [79] and will explain how their roles fit within the overall picture of the POA
functions.

• Basically, a servant class is a programming language object (e.g., C++ class)
that implements operations on one or more objects (e.g., C++ objects). Servants
generally exist with the context of a server process.

• A user has a reference to an object, called an object reference, and invokes an
(IDL) operation on that object. The request is mediated by the ORB and trans-
formed into invocations on a particular servant. An object reference in the POA
model is the same as in the CORBA object model. This reference contains an

5. BOA
services
manipulation

Methodactivation
1. Implementation

2. Implementation
registration

4. Method
invocation

3. Object
activation

Skeleton

ORB

object implementation

Basic Object Adapter

Up-call interface
Normal call interface

Figure 4.2 BOA operations in a shared server.

134 OBJECT ADAPTORS

ObjectId

ObjectId

Active Object Map

User-supplied servant

User-supplied servant

User-supplied servant

User-supplied servant

User-supplied servant

ObjectId

ObjectId

ObjectId

Active Object Map

ObjectId

User-supplied servant

object reference
servant pointer

User-supplied servant

POA Manager

Adapter Activator

root POA

Servant Manager
Servant Manager
User-supplied

User-supplied servant

POA type 1

POA type 2

POA type 3

Default Servant

Adapter Activator

ObjectId

Figure 4.3 POA architecture.

object Id and a POA identity. In a few ORB implementations, object references
contain additional information that helps increase efficiency of the binding pro-
cess (e.g., location of the server).

• A POA is an identifiable entity within the context of a server. Each POA pro-
vides a name space for object ids and name space for other (nested or child)
POAs. Policies, as shown in Figure 4.4, associated with a POA, describe the
characteristics of the objects implemented within that POA. Nested POAs form
a hierarchical name space for objects within a server.

• A Policy is an object, associated with a POA by an application, in order to
specify a characteristic shared by the objects implemented under that POA. The
specification defines policies controlling the POA’s threading model as well as
other options related to the management of objects. Other specifications may
define other policies that affect how an ORB processes requests on objects im-
plemented in the POA.

• The servant manager activates and deactivates servants when requested by the
ORB (through specific operations). The servant manager is responsible for man-
aging the association of an object (as characterized by its object id value) with

ARCHITECTURES 135

IdUniquenessPolicy

ServantRetentionPolicy

ImplicitActivationPolicy

IdAssignmentPolicyThreadPolicy

RequestProcessingPolicy

LifeSpanPolicy

policy_type

copy()
destroy()

Policy

Figure 4.4 Portable server policies.

a particular servant, and for determining whether an object exists or not. There
are two types of servant managers, namely Servant Activator and Servant Lo-
cator. The type used in a particular situation depends on policies in the POA.

• An adaptor activator is an object that the application developer can associate
with a POA. The ORB invokes operations on an adaptor activator when a re-
quest is received for a child POA that does not currently exist. The adaptor
activator can then create the required POA on demand.

Clients hold references upon which they can make requests. These references
can be obtained by using CORBA services (e.g., Naming Service, Trading Service).
When a request is invoked by using the information within the reference, as ex-
plained in Section 2.5 of Chapter 2, the first thing that the ORB does is to locate the
appropriate POA object, which in turn has enough information to locate the respon-
sible servant for the object for which the request is invoked. As we will see later on,
POAs are identified by name within the namespace of their parent POA. The loca-
tion POA starts from the root POA hierarchy (called rootPOA) and proceeds until
the correct POA is found. The full path name is extracted from the reference to locate
the position of the POA within the hierarchy.

There are several ways to locate a POA within a hierarchy, and obviously these are
implementation considerations (and therefore OMG will not provide any detail). One
option is that the request is delivered to rootPOA, which then scans the first part of
the path name and then delegates the request to one of its child POAs. The request is
handed down the line until the right POA is reached. This way follows a linear access
to the POAs along the inheritance hierarchy, which is generally appropriate when
the hierarchy is small. When there is a large number of adaptors, a better option is
needed. For example, an access method (index or hash table) can be used to increase
the performance of the lookup of the appropriate POA within the hierarchy.

136 OBJECT ADAPTORS

If the lookup of the POA hierarchy fails, that is, the appropriate POA is not found,
then the application (programmer) has the opportunity to create and register the re-
quired POA by using an adaptor activator. As shown in Figure 4.3, an adaptor activa-
tor is a user-implemented object that can be associated with an existing POA within
the POA hierarchy. It is given an opportunity to create the required POA. If it cannot,
the client receives an exception.

The creation of POA’s children requires user intervention because programmers
usually wish to assign a custom set of policies by writing the code that does this. An
example of policy can be as follows: if a new POA is to be created but no adaptor
activator has been registered with its parent, then the request will fail. Within the
adaptor activator, the user cannot only create further child POAs, but also activate
objects managed by these child POAs, possibly by reading state information from
the disk.

Once an object’s POA has been found, further processing depends on the POA’s
servant retention policy and its request processing policy; Figure 4.4 shows the dif-
ferent types of policies. The POA uses the oid of the object reference to locate the
servant. Figure 4.3 shows the three possible ways to find the responsible servant,
and these are based on the different policies: RETAIN, use default servant, and
use servant manager. In the former, that is, POA has a servant retention policy
of RETAIN, then POA performs a lookup in the Active Object Map to find if there is
a servant associated with the oid value from the request. If found, the POA invokes
the operation on the servant. This case relates to “POA type 1” in Figure 4.3. The
lookup method can have a big impact on the POA’s overall performance. As men-
tioned above, appropriate access methods are useful when large numbers of objects
are registered.

If the servant retention policy is non-RETAIN, or has the RETAIN policy but no
matching entry is found in the Active Object Map, the request processing policy is
considered. If its value is a use default servant, the user can provide a single default
servant that will be used regardless of the request’s oid. The POA invokes the opera-
tion on the default servant associated to it. If a default servant is not found, then the
POA raises an OBJ ADAPTOR system exception. This case relates to “POA type 2” of
Figure 4.3.

A default servant is useful when handling a group of usually identical objects
through a single servant. A default servant can use the POA’s context-sensitive in-
trospection methods to query the oid of the current request and behave accordingly.
Default servants provide scalability using the flyweight patterns: the server does not
grow with the number of objects. Rather, the server can produce arbitrary numbers of
object references while the number of active servants is constant. A database server
is an example of the usage of a default servant. Each table would be represented by
using a different POA and the key value is used as oid. In this way, all table rows
are objects with their own object reference. Only a single default servant is needed
per table; in an invocation, this default servant would query the request’s oid and
use it as a table index. By using the DSI, the default servant could even be iden-
tical for all database tables, examining the table structure to select its parameter’s
types.

ARCHITECTURES 137

The request processing policy can be set to use the servant manager, providing
even more flexibility than in the previous policies. This case relates to “POA type 3”
of Figure 4.3. Because the POA has a reference to a user-provided servant manager
(see Figure 4.5), it delegates the search to this manager which will invoke specific
operations (such as incarnate or preinvoke), depending on the type of the manager.
There are two types of server managers, servant locator and servant activator, which
can be used depending on the servant retention policy. If this policy’s value is RE-
TAIN, the servant activator will incarnate a new servant which will, after the invo-
cation, be entered into the Active Object Map itself to reflect the new update. If
the servant retention policy is non-RETAIN, the servant manager would have to be
a servant locator; its task is to locate a servant suitable only for a single invocation.
The servant locator supplements the default servant mechanism by providing a set
of default servants. This is generally important for critical applications, when load
balancing is required; the server locator selects the servants with the less load.

get_POA()
get_object_id()

POA Current

CORBA Current

name
the_parent
the_POAManager
the_activator
the_servant_manager

unknown_adapter()

Adapter Activator

etherealize()
incarnate()

postinvoke()

preinvoke()

Servant Managerget_servant_manager()
set_servant_manager()
get_servant()
set_servant()

destroy()
find_POA()
create_POA()

activate_object()
activate_object_with_id()
deactivate_object()
create_reference()
create_reference_with_id()
servant_to_id()
servant_to_reference()
reference_to_servant()

id_to_servant()
reference_to_id()

id_to_reference()

POA

create_thread_policy()
...
create_request_processing
 _policy()

Policy

activate()
hold_request()
discard_requests()
deactivate()

POA Manager

Servant Activator Servant Locator

Servant

Figure 4.5 Different elements of a portable server.

138 OBJECT ADAPTORS

Both servant activator and servant locator can also throw a special forward excep-
tion instead of returning a servant [79]. This exception contains a new object refer-
ence to forward the request to, possibly to an object realized in a different server on
another system, employing the GIOP location forwarding mechanism. Forwarding
allows, for example, the implementation of load balancing or redundant services: the
servant manager would check its replicated servers and forward the request to an
available one.

Figure 4.6 summarizes all the steps described above. A overall picture of the
different elements related to the OMG’s POA is given in Figure 4.5. Details of their
IDL interfaces can be found in [79].

4.3 TECHNICAL ISSUES

This section provides a detailed description of BOA and POA, concentrating on dif-
ferent issues involved in processing object requests.

4.3.1 Overview

It is important to put both adaptors side by side to give a better understanding of
their strengths and weaknesses. In order to do this, there are several aspects of an
adaptor that need to be evaluated: server, object, servant, object grouping, request
redirection, and multithreading and concurrency control.

Server A server must be registered before the adaptor can activate it. Activation
happens when the first request arrives for the implementation. During its up-time, a
server allocates and deallocates memory used by its active objects. When no longer
needed, the server and its objects will be deactivated. Although this scenario is typi-
cal of a server lifetime, there are a few issues to be considered. One of them is related
to the way servers are registered and how they manage their memories. Another is-
sue is about the way servers are gracefully deactivated and the way objects and their
servants participate in this process.

Object Several issues are related to objects. These include object identity (oid),
lifespan, activation, deactivation, binding and lifetime relationship with their ser-
vants. Here we describe these concepts.

Each object has an oid, differentiating itself from others. The way an oid is de-
fined and the information it supports (operations, etc.) are to be considered. An ob-
ject’s lifespan is the time period during which the object exists. Classified by their
lifespan, there are two kinds of objects: persistent and transient. A persistent object
is an object that can survive beyond the process that created it. Persistent objects
continue to exist until they are explicitly deleted, while a transient object’s lifespan
is constrained by its creating process. Whether or not the object lifespan is contem-
plated in an adaptor should be considered. Object activation prepares an object to
accept and process its requests, whereas object deactivation shutdowns an active ob-

TECHNICAL ISSUES 139

POA located

Adaptor Activator
creates and register
a child POA

retention policy
check servant object found in the

Active Object Map

processing policy
check request

check servant
retention policy

incarnation of a new
servant by the servant
activator

location of the servant
by the servant locator

servant
invoke default

forward exception
check whether

is raised

register servant
with the Active
Object Map

no
NON_RETAIN no

USE_SERVANT_MANAGER

request fails

yes

invoke servant

forward request invoke servant

request complete

request invocation

NOT_RETAINRETAIN

invoke servant

USE_OBJECT_MAP_ONLY USE_DEFAULT_SERVANT

no

RETAIN yesyes

Figure 4.6 POA-based request processing.

140 OBJECT ADAPTORS

ject. Issues about object activation and deactivation relate to the way objects of an
adaptor are activated and deactivated, the styles of activating objects, and whether or
not objects can be activated on demand (activated when the first request arrives) and
if so. Finally, regarding the relationship with servants, the issues to be considered are
the types of relationships that exist between objects and their servant lifetime and the
way this affects object implementations.

Servant An important aspect of servants is the registration process. A servant is
registered to record the association with its implemented object. There are two ways
of registering a servant: explicit and implicit registration. An example of implicit
registration is when a servant class’s instantiation triggers its constructor to performs
registration. In contrast, an explicit registration is usually obtained by explicitly call-
ing a method. The types of registrations supported and how a servant is registered
are important considerations for an adaptor.

Another important aspect of servants is the relationship between servant, skeleton
and stub. One feature of this relationship that deserves special attention is colloca-
tion, an optimization technique which avoids request/reply overheads (marshaling,
unmarshaling, etc.) when the target object is in the same process as the requesting
object. This is achieved by having a separate inheritance hierarchy for the client-side
and the server-side classes, allowing a request to be passed to the appropriate local
servant when its target object is local or to the stub if the object is remote. The level
of control which an adaptor has on the servant-skeleton-stub relationship is crucial
for the server code’s portability and performance.

Object Grouping Objects with the same characteristics are grouped together to
simplify their manipulation. Object grouping enables programmers to apply the same
set of operations to the members of a group, which is important when objects in the
group need to be processed in a uniform manner. The issues to be considered are
whether or not the adaptor supports object grouping and how a group is structured.

Assuming object grouping exists, object group activation and deactivation are
also important issues. Object group activation activates an entire group of related
objects when any single object in this group is accessed, similarly for object group
deactivation. The purpose is to avoid overheads that might on a per-object invocation.
What sort of strategy is devised by the adaptor should be carefuly weighed.

Request Redirection Request redirection is the act of forwarding requests to
another object. It is applied in cases where the destination object is unable to or
refuses to process the request.

Multithreading and Concurrency Control Single threaded servers are not
scalable and maybe unable to handle a large number of requests, because requests are
processed sequentially rather than concurrently. Employing multithreading increases
a server’s scalability, but raises the issues of thread allocation, critical section, and
multithreaded requests.

TECHNICAL ISSUES 141

Thread allocation is an act of assigning a request to a thread for its concurrent
processing. How requests are distributed to their threads is reflected in the selection
of thread policy. There are several thread allocation policies [34] to choose from:
thread pool, thread per request, thread per client, thread per connection, thread per
servant and thread per object. Servers with a thread pool pre-create their threads dur-
ing startup; each incoming request is assigned to a thread. In the rest of the policies,
operations are assigned a new thread. This thread is spawned for a request, client,
client’s connection, servant, and object, respectively. The issues related to thread al-
location are the time when thread assignment take place, who should perform this
and how it is done.

Critical sections are parts of a program where only one active thread should exist
at any given time; if this not enforced, wrong results can occur. Ensuring this requires
mechanisms such as locking and thread synchronization. Some means should be
provided to specify and protect an object’s critical sections.

A multithreaded request is a request which is handled by multiple threads. The re-
quest is broken down to smaller tasks and each of them is assigned to a thread. These
tasks should be computationally complex enough to justify their thread creation. The
approach taken by an adaptor to accomplish efficient request multithreading needs
to be investigated.

4.3.2 Basic Object Adaptor

This section provides details about BOA, elaborating on issues described in Sec-
tion 4.3. As mentioned earlier in this chapter, BOA has problems with its specifi-
cations. Some of these problems, such as object activation and oid assignment, are
caused by their operations having an ImplementationDef interface as its param-
eter. This interface contains information that describes an implementation object.
Since OMG saw this information as system specific, it decided not to standardize
ImplementationDef. As a result, operations that have this interface as their param-
eters are not portable. Other sources of problems are: BOA’s basic nature (for prob-
lems in multithreading and concurrency control, relationship between object and ser-
vant lifetime, object grouping, object group activation and deactivation), considered
as being environment specific (for the problems in server’s memory management and
registration) and inadequate specification of other problems.

Server Information related to the server registration process is left undefined be-
cause its characteristics are environment specific. Regarding the server activation is-
sue, BOA specifies four policies to activate its servers: shared server, unshared server,
server per-method and persistent server. These policies are illustrated in Figure 4.7.
Under the shared server policy, multiple active objects of a given implementation
share the same server. Figure 4.2 depicts a shared server policy. For the unshared
server policy, there is only one object of a given implementation active. Object acti-
vation is not necessary in this policy. Servers based on this policy are launched for
each method invocation, whereas servers in the persistent server policy are activated
by means external to BOA. Note that concept of “persistency” used in this context

142 OBJECT ADAPTORS

Per Method
Persistent

ObjectregistrationStartup
Server

Shared Server
Unshared
Server

Servcr
Server

Server
Implementation

Basic Object Adapter

Figure 4.7 Steps in activating server in all policies.

is different from the same concept used in database systems. A more appropriate
meaning is “externally activated server” [87] .

When a server with an unshared activation policy is ready to accept a request,
it will notify BOA by calling B O A :: obj is ready(). This also activates its sole
object, eliminating any need to perform a separate object activation. Servers with
other activation policies should use B O A :: impl is ready() instead and carry out
their object activations in another step.

During the server’s up-time, its implementation might receive a request that re-
turns a value. When this happens a memory space will be allocated to hold this value.
Similarly, a memory space is also allocated for the implementation when its object
is activated. When the server needs to be shut down, an appropriate deactivation’s
operation will be called. Depending on the server’s activation policy, a server can
be deactivated by calling B O A :: deactivate impl() (if the server is a shared or
persistent server) or B O A :: deactivate obj () (if the server is an unshared server),
or automatically after processing a request (if the server is a per-method server).

Although the above process seems clear, there are several details missing.
First, there is no mention on how BOA and implementation objects are synchro-
nized after their server is activated. Without synchronization, BOA might start
to deliver the request even when the target object’s implementation is not ready
with its event handling process. In some ORB products (e.g., Orbix [52, 53]),
their server calls B O A :: impl is ready() and blocks. Others make multiple
B O A :: impl is ready() calls, with another operation is used for synchronization.
This causes B O A :: impl is ready() to behave differently from one ORB product
to another. No specification regarding server memory management is given. Some
rules for each BOA’s operating environment (e.g., POSIX) should have been defined,
but they were considered to be system dependent [71]. Also, how the objects and
their servants can partake in the server’s deactivation process is not mentioned.

Object An oid in BOA is usually embedded in the object reference and unique
within the scope of a server. It is of the type ReferenceData and mapped to a se-
quence of 1024 octets. An oid’s value needs to be converted to ReferenceData
before it can be used to assign an object. Oid assignment can be done by calling

TECHNICAL ISSUES 143

B O A :: create() which creates an object reference as a side effect. Other arguments
of B O A :: create() are: ImplementationDef and InterfaceDef. The first ar-
gument was explained earlier, while the function of the second one is to define the
object’s interface. No ambiguities appeared from B O A :: create() itself; however,
the creation of an ImplementationDef has never been completely specificatied. For
this reason, assigning an oid in BOA cannot be performed in a standardized manner.
No other support on oids is available.

All BOA objects are persistent; however, BOA does not provide any specifica-
tions on transient objects. Proprietary mechanisms are used instead to carry out their
creations. When the first request for an object arrives, BOA will perform an up-call
to its object activation routine. The object’s Id is made available for activating the
appropriate object. After the object is activated, it will indicate its readiness to BOA
by calling B O A :: obj is ready().

Previously we showed all that BOA specifications give concerning object activa-
tion. No additional details on the routine’s characteristics are given; this affects the
availability of activation on demand. There are several points not addressed in the
specification, including: (i) the parameters of the routine, (ii) the way BOA starts
the activation, (iii) the way appropriate code is loaded and passed to BOA, (iv) the
initialization of the state of the target object’s state, and (v) the assignment of ob-
jects to the server. The point (v) is determined by the object implementor’s defined
policy. How this policy is defined in the ImplementationDef is again, unspecified.
Vendors attempt to resolve these questions with their own solutions (e.g., Orbix with
its Loader class [52, 53]), but these are proprietary. Furthermore, BOA does not ex-
plicitly mention the object activation styles available. Although, in practice it is clear
that most, if not all, ORB products use the servant per-object activation style: one
servant is instantiated and registered for every activated object.

Deactivating BOA objects is the job of their implementations and is accomplished
by calling B O A :: deactivate obj (). When there are too many objects active in the
server, some might have to be deactivated to free up the server’s memory. However,
there is no call-back function that can be used by BOA to deactivate them. In some
CORBA products, an object’s deactivation is triggered by its servant’s destructor,
while others use a third call-back function.

Figure 4.8 shows the relationship between object and servant lifecycles. As de-
picted, the BOA specification does not attempt to isolate an object’s lifetime from

creation
deletion

Active Not Active

Exist

deactivation
activationServant Instantiation servant destruction

Does Not Exist

Figure 4.8 Object and servant lifecycles in BOA.

144 OBJECT ADAPTORS

its servant’s. Thus BOA’s object activation is analogous to its servant instantiation.
Similarly, an object deactivation in BOA will cause its servant to be destroyed. This
coupling prevents servants from being reused to implement more than one object.
Nevertheless, BOA offers a simple, but reasonably solid concept of object and ser-
vant lifetimes.

Servant There is no mention in the BOA specification about any mechanism for
registering servants; instead, vendor-specific mechanisms are used, and the mecha-
nisms are based on implicit registration using the servant’s constructor. The spec-
ification does not provide details on skeletons and their relationship with servants.
Servant methods and their signatures are described, but not the names of base classes
that the servants have to inherit from. Eventually, servants code are not portable.

Other than allowing a separate inheritance hierarchy, little or no information re-
lated to collocation can be found in BOA specification because collocation is an
implementation-specific issue rather than an independent one. Support for colloca-
tion varies from one ORB product to another. Most products have their ORBs check-
ing the location of a target object. If it is local, the ORB will use the target object’s
stub to contact its remote implementation. Otherwise, ORB will call BOA to return
the implementing servant. Location transparency is preserved since the client has no
indication of where the target object actually resides. Clients cannot distinguish the
target object’s stub from its servant, and this because both have the same interface
name and method signatures. However, if an interceptor [78] is used, (i.e., an addi-
tional component of an ORB which can provide additional processing steps before
a request/reply continues with its normal invocation path,) it might not be able to
detect local invocations [34]. Therefore, not all requests and replies will go through
the interceptor. This could cause problems, especially if the interceptor is used to
provide security and access control.

Object Grouping Details on object grouping are unavailable in BOA. Usually,
programmers have to develop their own solution. No strategy has also been put in
place to address object group activation and deactivation.

Request Redirection CORBA 2.0 ’s GIOP specification states that the use of a
reply message with LOCATION FORWARD status diverts requests to another object.
This message contains a reference to an object where the request should be re-sent.
Clients will transparently send the current and subsequent requests to the other ob-
ject. However, BOA does not specify how to exploit this feature in a standardized
manner. Even if it did, no operations for manipulating this message are declared in
the GIOP specification. That message is used only by the ORB internally.

Multithreading and Concurrency Control No details on multithreading and
concurrency control can be extracted from the BOA specification. In Orbix for ex-
ample, the ThreadFilter class is used to deal with thread allocation. Some levels of
support for other issues are also available, but these are proprietary.

TECHNICAL ISSUES 145

4.3.3 Portable Object Adaptor

This section shows how POA addresses the issues presented in Section 4.3. Even
though some of these issues, such as server management, were briefly described in
Section 4.2.2 we prefer to re-discuss them in a more detailed way to make sure that
the concepts related to POA are well understood.

Unlike BOA, multiple instances of POA can exist in a server; each is identified by
its name. As depicted in Figure 4.9, these instances are organized in a hierarchical
structure with rootPOA as its root. A root POA is managed by the ORB and its
references can be obtained by calling O R B :: resolve initial re f erences(). POA
provides a namespace for its object’s oid and another namespace for other POAs.
Each POA manages a group of objects that share the same characteristics. An object
is considered to be managed by a POA if its creation happened in that POA. Once
an object has been created in one POA, its management responsibility cannot be
transferred to another POA. Characteristics of the managed object are reflected in its
policies. The value of a policy is set during the POA’s creation or the policy’s default
value is used. A POA’s policy is not inherited from its parent, nor it can be changed.

Server The POA specification did not have enough details regarding server reg-
istration, memory management rules, and process activation. Even so, the details of
the synchronization process between the POA and its implementations are provided.
Each POA is synchronized by its POAManager. This can be achieved because the
POA manager controls the processing state of its POAs. There are four processing
states of the POA manager: Active, Holding, Discarding, and Inactive. Its state tran-
sition diagram is shown in Figure 4.10. When a POA manager is in the active state,
its POAs receive and process incoming requests. When a POA manager is in holding
state, all incoming requests are queued. If a POA manager is in the discarding state,
all incoming requests will not be queued or delivered. POAs whose POA manager
are in the inactive state are ready to be destroyed; once a a POA manager enters this
state it cannot proceed to any other state. Its POAs will stop working and all of their
requests will be rejected.

 manages

A C DPOA POA

object object object object object object object object

rootPOA

POA B POA

Figure 4.9 POA hierarchical structure.

146 OBJECT ADAPTORS

Instantiated Destroyed

POA POA

Discard

Holding Active Inactive

Figure 4.10 POA manager states.

A POA server is shut down by calling O R B :: shutdown(). This operation in-
cludes the option of immediately shutting the server down or waiting until all ORB
processing tasks (object deactivation and requests processing) have been completed.
When a server is being shutdown, all of its adaptors are deactivated and each of them
triggers deactivation of their objects. This object deactivation allows objects and their
servants to participate in the overall server deactivation process.

Object An oid is unique within the scope of a POA instance. It is opaque, has the
type of ObjectId and is mapped to a standardized sequence of octets. An object’s
oid is usually embedded inside object references along with the object’s POA name.
An oid’s value must be translated to octets before being assigned to an object. Two
POA policies related to object identity are: id assignment and object id uniqueness
policies. The id assignment policy provides two oid assignment methods: assigned by
the server (has the policy value of USER ID) or assigned by the POA (with the policy
value of SYSTEM ID). If no policy value is given at the POA creation, the default
value SYSTEM ID is used. The operation P O A :: create re f erence() is used for
the first method, while the latter should call P O A :: create re f erence wi th id().
Both operations return a new reference, pointing to an object of the assigned oid.
Their usage is CORBA compliant.

Before describing the object id uniqueness policy, we first introduce the concept
of object lifetime. Different from the BOA approach, the lifetime of an object and
its servants in POA are separated. An object activation does not always correspond
to a servant instantiation, similarly for object deactivation. Thus, the concepts of in-
carnation and etherealization are introduced to emphasize this point. Incarnation is
a process of giving bodily form (i.e., servant) to a virtual CORBA object. Incarna-
tion establishes an association between a servant and an object to serve the object’s
requests; in other words, it creates an implementation relationship between an ob-
ject and its implementing servant. On the other hand, an etherealization is a process
of taking away an object’s bodily form/servant from it. This breaks the association
between a servant and its implemented object and causes the object to be “unim-
plemented.” As pictured in Figure 4.11, incarnations always occur when objects are
activated. However, as we will see later for object deactivation, etherealization might
not even be performed in an object lifecycle. Figure 4.11 also shows that a servant’s

TECHNICAL ISSUES 147

D
o

e
s

N
o

t E
xi

st
D

o
e

s
N

o
t E

xi
st

Etherealized

(Servant) Incarnated

instantiation
destruction

deletion

creation

Servant Level
Object Level

etherealization(s)in
ca

rn
at

io
n(

s)

Active

Exists

Exists

Not Active
activation

deactivation

Figure 4.11 Objects and servants lifecycles in POA.

instantiation can happen before its object incarnation. The servant’s destruction can
occur later, possibly long after its object etherealization. This raises the possibility
of one servant implementing multiple objects. The advantage of this separation is
better memory and performance optimization techniques, although this could make
the actual programming work confusing for people who are already used to BOA’s
lifetime concept.

As explained in Section 4.2.2, POA has several activation styles that can be chosen
from. A choice can be made between various combinations of request processing and
servant retention policy values. The request processing policy specifies how requests
are processed by the POA, whereas the servant retention policy determines if a POA
should RETAIN servants of active objects in its Active Object Map. This is owned
by the POA and contains entries indexed by oids, each recording the association
between an active object’s oid and its implementing servant. When a request arrives
for an object, this table will be referred to, for retrieiving the implementing servant.

When the ORB receives a request for an object, it will look for the target ob-
ject’s POA. Depending on the ORB product being used, the ORB might use the
name of the POA, embedded in the target object’s reference for this purpose. If
this POA does not exist, its parent’s AdaptorActivator will perform its creation
process. An adaptor activator is developed by the programmer, but not needed for
pre-created POAs. In order to create a particular POA in the POA hierarchy, all
POAs that lead to it will also have to be created. Each of them will be created
by their parent’s AdaptorActivator. If we consider the example of POA A5 of
Figure 4.12 when it is about to be created, if POA A1, A2, A3, A4 do not exist,
then A4 will cause all of them to be created. POA A1 and A2 will be created by

148 OBJECT ADAPTORS

 manages

Adapter Adapter

Adapter

Adapter

Adapter

Adapter

Activator 5 Activator 6
Adapter

Activator 7

Activator 1

Activator 2

Activator 3

Activator 4POA A5

POA A4

POA A3

POA A2

POA A1

POA A POA B POA C POA D

rootPOA

Figure 4.12 POA hierarchy.

AdaptorActivator 1, POA A3 will be created by AdaptorActivator 2, POA
A4 and A5 by AdaptorActivator 3. After the target POA is created, the request
will be delivered to this POA.

When the value of the request processing policy is USE ACTIVE OBJECT MAP
ONLY, the POA must also have its servant retention policy’s value set to RETAIN.
This combination tells the POA to perform a look-up of its Active Object Map using
the target object’s oid. If a matching entry is found, a reference to the servant can be
acquired, and the request will be passed to it. The POA’s map has to be populated by
explicitly pre-activating objects that will be used. P O A :: activate object () can be
used for that purpose if its id assignment policy value is SYSTEM ID. If the value is
USER ID, P O A :: activate object wi th id() is used instead.

When the combination is RETAIN and USE DEFAULT SERVANT, the POA should
perform a look-up of the Active Object Map when a request arrives. When no entry
matches, the request will have to be passed to a default servant for its processing. If
the POA has no default servant registered with it, an exception is produced. Like the
previous combination, the Active Object Map needs to be populated with objects that
will be used. There are two types of default servants: per-interface default servant and
for-all default servant [77]. In the former, the default servant is typically used for a
POA instance which manages objects of a given interface. All requests are processed

TECHNICAL ISSUES 149

by the default servant, which handles only those for objects of a given interface. The
for-all default servant is capable of processing all requests regardless the interfaces
the target objects have.

Any POA with NON RETAIN does not have an Active Object Map and re-
quires its request processing policy value to be either USER DEFAULT SERVANT
or USE SERVANT MANAGER. If NON RETAIN is combined with USE DEFAULT
SERVANT, all requests will always be delivered to a default servant since no Active
Object Map exists. As before, an exception will be produced if there is no default
servant registered.

If the policy combination is NON RETAIN and USE SERVANT MANAGER, the
POA will rely on its registered servant manager to incarnate the requested object. A
servant manager is a custom-made class written by programmers. Its incarnating op-
eration is called by the POA to return an implementing servant of the wanted object.
There are two kinds of servant managers available: servant activator and servant lo-
cator. A servant locator is used in this combination, with preinvoke as its incarnating
operation. An Active Object Map does not exist and servant locator is always called
for every incarnation.

If the combination is RETAIN and USE SERVANT MANAGER, the POA will first
attempt to locate the appropriate entry in its active object map. If not found, the
servant activator’s incarnate operation will be called to incarnate the target object.
After incarnation is completed, the POA will receive the servant from its servant
activator and pass the request to this servant. A new entry for this servant will be
added to the Active Object Map for its usage in the next invocations.

POA’s object activations can happen in three ways: explicitly (by calling P O A ::
activate object ()) or P O A :: activate object wi th id()), on demand (using
servant managers), or implicitly (by setting implicit activation policy’s value to
IMPLICIT). The first two have been explained previously. Implicit activation oc-
curs when operations that logically require an oid to be assigned to an inactive
object’s servant are executed. Examples of these kinds of operations are: P O A ::
servant to re f erence() and P O A :: servant to id(). Intuitively, two values can
be chosen for this policy: IMPLICIT ACTIVATION and NO IMPLICIT ACTIVATION.
The default value is NO IMPLICIT ACTIVATION. IMPLICIT ACTIVATION also re-
quires the POA to have SYSTEM ID and RETAIN.

An object’s deactivation occurs when the object is deactivated explicitly (by
calling P O A :: deactivate object ()); its POA is deactivated (by calling P O A
Manager :: deactivate()); its POA is destroyed (by calling P O A :: destroy()); or
deactivated by ORB/POA. The last deactivation is triggered internally by ORB/POA
and it is unstandardized. When the POA has no servant manager registered, the object
will be deactivated immediately without any etherealization process. POA will search
for this object’s entry and remove it from the Active Object Map. Etherealization also
does not happen when function POAManager::deactivate and P O A :: destroy() are
called, if their etherealize objects parameter is set to false. Care should be taken
when a POA Manager is set to the inactive state, just before its server’s shutdown,
as this would also deactivate its POAs’s servant managers and stop etherealizations
from happening.

150 OBJECT ADAPTORS

Both persistent and transient objects are supported in a POA. A POA’s definition
of transient object has been revised in [78]. It states that a transient object is an object
that cannot outlive the POA instance in which it was first created. Lifespan policy
deals with this by providing two policy values: TRANSIENT and PERSISTENT. If no
value is specified at POA creation, TRANSIENT will be used. A POA with policy
values of PERSISTENT and UNIQUE ID assigns oids which are unique across all
instantiations of the same POA.

Servant POA supports both explicit and implicit servant registrations. The opera-
tion P O A :: activate object () or P O A :: activate object wi th id() can be used
an explicit registration. These operations will activate an object by using a specified
servant and register a new entry with the Active Object Map. Objects are implicitly
registered if the POA’s servant retention and request processing policies have the
value of RETAIN and USE SERVANT MANAGER. A new entry is inserted into the
Active Object Map after the incarnation process finishes. If the servant retention pol-
icy is NON RETAIN instead, implicit registrations can occur when the servant locator
is implemented with a map similar to the POA’s Active Object Map.

The names of base classes and the operation signatures of POA servants are spec-
ified. Also, inheritance and delegation based approaches are better described and the
servant’s methods and its inheritance hierarchy are more clearly defined. At the end,
the code’s portability is significantly improved.

Collocation in POA is not specified because of its implementation specific nature.
Beside location transparency, there are several other important issues that must also
be considered in collocation, with interceptor and multithreading being some that are
relevant to database adaptors. Like BOA, levels of collocation supports vary from one
CORBA implementation to another.

Object Grouping An object group in POA consists of the objects that are man-
aged by a POA instance. Their grouping is based on characteristics shared by its
member objects. An object is a member of a group if it is managed by the group’s
POA. Note that since the structure of nested POAs is hierarchical, the overall struc-
ture of their object groupings is also hierarchical. However, because an object’s
management responsibility is determined during its creation, this grouping is static.
Despite this limitation, the same operations can now be performed on all members of
a group. For example, consider a servant manager being used for request processing.
Its POA will use the same incarnate and etherealize the operation to apply the same
algorithms to all its objects. Unfortunately, no strategy has been specified for ob-
ject grouping activation and deactivation. Proprietary supports from ORB vendors, if
any, are also limited. Programmers usually have to produce their own “home made”
strategy to devise object group activation and deactivation.

Request Redirection POA facilitates request redirection with its Forward Re-
quest exception. This exception contains the reference to an object to which a re-
quest should be forwarded. Assuming a GIOP based protocol is used, this exception
will be returned to the client in a reply message with LOCATION FORWARD reply

DATABASE ADAPTORS 151

status. In the POA specification, for example, Forward Request can be raised dur-
ing object incarnation by its servant manager’s incarnate (for servant activator) or
preinvoke (for servant locator) operation.

Multithreading and Concurrency Control POA’s thread allocation is con-
trolled by its thread policy. The value SINGLE THREAD MODEL does not use any
of the thread allocation policies mentioned earlier. Instead, all requests will be pro-
cessed sequentially in a single thread. The ORB CONTROL MODEL value implies
that ORB is responsible for the thread allocations. Although the POA has a thread
policy in its specifications, there are still some details missing. First, no description
is given on how exactly a POA with an ORB CONTROL MODEL policy value can
allocate requests to threads. The ORB might use one of the thread allocation policies
previously mentioned or it might still use a single threaded model. The critical sec-
tion problem is left unsolved, while the specifications on multithreaded servants are
not provided. A POA’s code portability cannot be guaranteed for multithread server;
future POA revisions on this topic are expected.

4.4 DATABASE ADAPTORS

This section discusses issues related to POA-based database adaptors, but we will not
describe solutions for these issues. The aim of this section is to provide appropriate
details about the integration of CORBA and database technologies. Some solutions
are provided in [95], which is a POA-based database adaptor, and [87], which is
BOA-based adaptor; however, these will be not discussed in this book. Nonetheless,
these issues are valid regardless of the basis adaptor adopted. For database adaptors
which are not based on BOA or POA, this section can be used as a reference. Issues
which are specific to an adaptor will be explicitly noted.

Persistency of objects is critical for many applications, such as banking and
telecommunication applications. A POA does not deal with such a persistency; how-
ever, it can provide a nice framework for extensions for building database adaptors.
There is no CORBA standard regarding database adaptors; however, because we
believe that persistency is a very important issue, we would like to explain how the
basics of POA can be extended to deal with persistency. As the reader may notice,
persistency can also be achieved by using the OMG’s Persistent Service. We have
not chosen to explain this service because we believe that persistency should be
transparent to the users, and therefore it needs to be addressed by the ORB (through
POA) without any use of the services.

This section explains issues pertinent to development of a database adaptor. It
starts off with the concepts and design, and includes the issues of a reference model,
the selection of a basis adaptor, and architectural considerations. We continue with a
discussion of the deficiencies of the present object model, followed by issues of the
persistent object’s identity, state, lifecycle, reference and its servant lifecycle. This
section ends with performance, scalability and portability issues.

152 OBJECT ADAPTORS

Concepts and Design Furnishing persistency to CORBA applications demands
an integration with database systems. An integration approach must be devised for
this purpose. First, a set of concepts is needed to construct the nature of the approach
taken. These concepts are obtained from the approach’s reference model. A refer-
ence model provides an overall view of the problems. It also provides knowledge of
the approach’s entities and their elements, thus enabling an understanding of things
which are involved in the approach and to proceed with the conceptualization task.
Once this is done, the rest of the issues should be resolved in line with those concepts.

At the start of the design process, developers have to consider whether or not to
build the database adaptor on top of an existing conventional adaptor. If they de-
cide to do so, two adaptors can be chosen from: BOA and POA. Each has its own
strengths and weaknesses. Starting from BOA promotes reusability of an ubiquitous
adaptor. However, its specification is problematic, not portable and will be phased
out. Consequently, choosing BOA would commit a database adaptor to be a propri-
etary and short-term solution. POA, on the other hand, is not yet widely available
in the current systems. Major CORBA vendors (e.g., IONA and Inprise) have not
released their POA supported ORBs. Selecting a POA will advantageously position
a database adaptor as a long term and portable solution. One could also avoid BOA
and POA altogether and build a database adaptor from scratch. This gives maximum
freedom in the development at the expense of portability and standard compliance.
The last design issue is the database adaptor’s architecture. For complex and so-
phisticated software like a database adaptor, having an architecture is compulsory.
An architecture organizes the comprising elements of the software into a structural
form. A good architecture provides clarity, extensibility, and maintainability to the
software.

Object Model The CORBA object model defines concepts related to the object
semantics and implementation objects. It does not address persistency since this fea-
ture is optional to CORBA objects and outside of its scope. Thus, this object model
was not designed to model persistent objects, and consequently its semantic con-
cepts such as types, interfaces, operations and attributes do not have persistent coun-
terparts. Due to their absence, persistency syntax and semantics are undeclarable in
IDL. As the result, the following issues are unsolvable: (i) how and when a CORBA
object can be determined as persistent, (ii) what indicates its persistency, (iii) how
and when a servant can be denoted as being capable of implementing a persistent
object, and (iv) how non-persistent objects are treated. The last issue is particularly
important in cases where persistent objects refer to transient objects.

One may extend the CORBA model to take persistent properties into account
by adding new object semantics. An example of this approach is found in Secant’s
Persistent Object Manager [84]. While this solution is sensible, the introduction of
these persistent semantics creates new IDL syntax and semantics which are foreign
to existing applications. Unless their IDLs and implementation are changed, inter-
operability will be compromised. This creates an unwanted dilemma: extending the
current object model could jeopardize interoperability, but without the IDL syntax
and semantics persistency is left unfacilitated. Even if this problem is resolved, de-

DATABASE ADAPTORS 153

velopers still have to be careful not to pollute the IDL with syntax or semantics
derived from the database schema. Such design is prone to changes that occur from
the schema updates.

One important aspect when considering persistency in CORBA environments is
transparent persistency. Transparent persistency is the property in which persistency
details are hidden at two levels: object level and implementation level. At the object
level, clients should not be aware of the persistency of the objects. This is because
CORBA allows interface-related information to be disclosed to the clients, but not its
implementation-related information. Thus, persistence which is an implementation
issue [80], should also be excluded from the client’s view. Transparent persistency at
the implementation level dictates that persistency details should not be revealed to the
servants. The new object model is obliged to accomplish persistency in accordance
to this transparent persistency property.

Object Identity The oid of a persistent object is used for several purposes, such
as identification, storage and restoration of states, and processing requests. In the first
usage, the oid needs to be in the form of an uninterpreted sequence of octets. It must
have information on how to differentiate one object from others. In the next case,
the oid must be in a form which is adherent to its database product and paradigm. It
has to contain information for storing and restoring the right state. In the last case,
the oid ought to be in an application-dependent form. The oid is expected to contain
sufficient information to have requests to their objects processed by the right appli-
cation service. In each of the above cases, its information should be unique. After
these facts are analyzed, questions are raised on what sort of information, form and
structure a persistent oid will actually have and how the above heterogeneities are
accommodated. These issues are crucial since they affect how persistent objects are
bound, identified, and manipulated.

A more complex issue is found in the oid generation process. A new persistent
oid must correspond to a stored state and a set of services. This is not difficult for
objects that represent new data and/or new service. However, it is more complicated
when legacy databases and applications come into the equation. A database adaptor
is obliged to resolve this issue appropriately.

oid uniqueness is also of concern because of the information it must contain. Each
item of information might be used to uniquely identify the right object, state and
service. However, its combined values might not be unique for an oid. Additionally,
the database adaptor must now deal with the possibility of having multiple sources
of the information. Each might have its own generation methods and issues.

Object State Issues in this section stem from the lack of details concerning the
persistent object’s state and its determination process. Persistent state determination
selects which part of an object’s state will be made persistent. Its method of selec-
tion and timing are the particular concern. How a persistent object’s state can be
accessed, especially if access to its values is restricted, should also be considered.
Manipulating databases of different products and paradigms, to store and restore the
state, is also problematic. Each database requires a different way of loading and sav-

154 OBJECT ADAPTORS

tuples

Persistent Object State

Relational Database Systems

Object-Oriented Database Systems

objects

Figure 4.13 Persistent object’s state with multiple databases and paradigms.

ing the object’s state. Most importantly, the database adaptor must know how to use
RDBMS’s tuple or ODBMS’s object for storing and restoring the state. This is fur-
ther complicated when there are multiple possible databases in which the state can be
stored. It is the database adaptor’s obligation to select which of the databases should
keep the state. Locating the stored state is also harder, since the database adaptor
must find which database that stores the state of a particular object.

Moreover, the adaptor must also determine which attributes of state should be
stored. Whether or not it is capable of dealing with state fragmentation [83] is a
matter of consideration. Objects which have their state fragmented and stored across
multiple databases must be reconstructed before they can be accessed. This increases
the difficulties in finding the right databases, storing and restoring objects, and ma-
nipulating their state.

Object Lifecycle Events There are several issues which are common to object
lifecycle events. Central to these is the issue of their integration with the storage
steps of persistent objects. These steps are loading, inserting, querying, updating,
and deleting the state of the objects. Exploitation of the basis adaptor, to manage
a persistent object’s lifecycle events, is significant in resolving the above issues.
With respect to BOA, such integration must be accomplished in compliance with the
CORBA standard. Last, but not least is the issue of the storage steps execution trans-
parency of events. That is, how in programming terms can transparent persistency
be imposed on the executions of these storage steps. There is a trade-off between the
database information hiding and the performance which ought to be balanced to gain
a suitable level of transparency and performance.

• Event creation: A persistent object comes into existence when its reference is
created for the first time. During this process, the referenced object can either
be activated at the same time (early binding) or later when the first request

DATABASE ADAPTORS 155

arrives (late binding) [34]. In both cases, the reference will be associated with
the servant of the activated object. The selection of binding is important since
it influences the length of time required to create a persistent object. Which
binding(s) are available, how they are supported, and which one to choose are
the points that need to be considered.

Besides this, one also has to realize that the creation of a persistent object
is not always matched with a similar process being performed for the state and
service. A database adaptor might have to act as a front end to the existing data
and/or service. Therefore, the conventional meaning of “new object” needs to
be redefined for persistent objects. Further, consider when new data does need
to be inserted into the database. In this case, the timing of the insertion is the
influencing factor to the server’s response time. When this insertion is to be
done is to be considered.

• Event activation: How persistent objects are activated is significant. As ex-
plained in the previous sections, BOA based objects suffer from lack of spec-
ification on this issue. Employing proprietary supports is usually the only way
to fill this vacuum. It is highly desirable for BOA-based database adaptors to
be able to navigate through this problem. In contrast, POA specifies several
styles in activating its objects. Hence, the selection of the activation styles to be
deployed and whether some/all of the styles can be used to activate persistent
objects is to be considered.

• Event querying: Designing query facilities in a database adaptor requires a
trade-off between performance and the hiding of database internal details. As
database internals are better hidden, the performance degrades. A database
adaptor should allow query facilities to be used without violating transpar-
ent persistency or causing its query performance to suffer. The location of
query strings is equally important in relation to the previous issue. Query
strings must exclusively exist in the database code fragments. What databases
(RDBMS/ODBMS/both), types of queries (pre- compiled/dynamic/both), and
query manipulation language (OQL/SQL/both) are supported influences the
performance and applicability of the database adaptor. Furthermore, relevant
standards should be followed while catering for proprietary extensions. How
queries that return a collection of objects are handled needs to be considered as
well.

• Event update: The first step in an update process is to determine the updatables.
Pertinent to this step is the issue of granularity. A fine-grained granularity is se-
lective and more efficient, whereas the coarser one is simpler but less efficient.
This, along with the update timing of the stored data, are both the determin-
ing factors in an update’s response time. Moreover, the cause of an update is
significant in as much as it decides the controls over the update.

• Event deactivation: An active object will eventually be deactivated to reclaim
the memory it occupies. Deactivations are governed by the memory manage-
ment rules of its server. As mentioned earlier, neither BOA nor POA have
these rules. One of the reasons is to avoid distributed memory management

156 OBJECT ADAPTORS

becoming part of the CORBA standard. This is due to its error prone and costly
approaches. Thus, unless programmers provide their own object deactivation
scheme, a server will crash because of memory exhaustion. The scheme de-
vised might activate and deactivate objects several times, but it must observe
the concepts of deactivation control, victim selection, deactivation safety and
deactivation transparency.

Loosening the deactivation control amounts to less programming work since
it lets the database adaptor take charge instead. However, it increases the re-
liance on the accuracy of its victim selection algorithm. The less accurate it
is, the greater the chances of deactivating a still-in-use object. This is in con-
flict with the scheme’s transparency and safety properties. A safe deactivation
scheme guarantees the continuity and integrity of objects it deactivates, while a
transparent deactivation scheme stops clients from being aware that such deac-
tivation takes place. There are two kinds of deactivation safety: safety by state
and safety by processing. A deallocation scheme is considered as safe by state if
the state of objects it deactivates is preserved across their activations. Safety by
processing protects a currently working object from errors and inconsistencies
that might arise from their sudden deactivations. In particular, these properties
must prevent cases where errors from the deactivations, which are triggered by
clients/database adaptors, from being exposed and handled by the clients. This
is because such actions increase the code complexity of the database adaptor’s
clients.

An object’s deactivation process is always carried out in its lifecycle. This
process is an ideal place to undertake any of the object’s storage steps before it
is finally deactivated. Deciding which storage step(s) should be included in an
object deactivation is to be carefully contemplated.

• Event deletion: When a deletion occurs, it may or may not cause the deletion
of its stored data and service as well. If the deletion triggers the removal of
its data, the database will be located and the data will be removed. Crucial to
the deletion’s response time is the timing of the removal of stored data from
the database. How a database adaptor determines when the deletion of data
and/or service should take place and how the data can be removed needs to be
answered.

Object Reference A relationship between two objects is represented by an
IOR. However, relationships in DBMS are represented differently. Relationships in
RDBMS are symbolized by keys, while in ODBMS they are presented by database
references. Such mismatches must be bridged before an IOR can be used to access
its persistent object.

Generating IORs is the responsibility of an adaptor. This usually requires the in-
formation pertinent to the referenced object to be encapsulated inside the IOR. Fur-
thermore, in order to preserve the relationships that a persistent object has, all the
IOR’s of the relationships must persist as well. Their referential integrity must be
maintained so that they are still usable when they are restored. Referential integrity

DATABASE ADAPTORS 157

is conserved if references are not dangled, that is, pointing to a non-existent object.
Also important is how to acquire references to remote CORBA objects when the
references are not available locally. How oids can be made available during an IOR
creation and how IORs of stored persistent objects are provided to the application
are questions to be answered. How the mechanism providing IORs can fit into the
application’s code also needs to be considered. The above issues are to be solved
in accordance with the IOR’s transparent storability [87]. Transparent storability is a
feature where converting an IOR to its usable form, that is, to string before it is stored
or to a CORBA reference when it is retrieved, is not required. In other words, code
that provides the actual application service are not aware that such IOR is actually
stored in the database. How a database adaptor conserves this property is yet to be
solved. In essence, IORs of persistent objects must be managed in such a way that
they behave and perform similarly to a normal object.

Servant Lifecycle Events Issues in the servant lifecycle events are focused on
providing actual programming language logic to the objects. As CORBA has several
programming language bindings, solving these issues clearly rests upon the program-
ming language’s capability. This section discusses all of these issues below; they are
applicable regardless of what programming language is used.

• Event instantiation: Objects with multiple servant classes have problems with
their servant instantiations. Having multiple choices of the servant class is rel-
evant when an object is to provide the same service in different ways. The
reasons might be because of better performance, support for previous service,
and so on. However, each of these servants might be implemented in a differ-
ent approach—POA/TIE/DSI. Parameters of their constructors could be distinct
and require them to be passed with different values. Some of the constructors
have no parameters at all (zero/null constructor), while others have multiple
parameters. When dealing with the existing code, these servants may already
have factories to carry out their instantiations. A database adaptor is compelled
to cope with these variables before it is able to instantiate these servant classes.
Although not crucial, adding and removing the selectable servants can cause
minor irritations. Usually, the relevant code has to be manually changed and
recompiled. A more convenient way of handling these tasks is needed to speed
up the entire editing process.

• Event incarnation: A persistent object’s incarnation restores the object’s state
from its database and prepares the object with the state as loaded. There are
two choices in relation to the servant that is used to incarnate. The first option
is to use an already instantiated servant, while the second option instantiates a
new one. Choosing which option should be taken is the problem in incarnating.
When the second option is chosen, the selection of an existing servant to use is
another issue. A database adaptor might have to be careful not to cause a servant
to over-incarnate. This is to avoid a servant being overloaded with the requests
of its objects. It is especially true in cases where threads are used in the servant.
Likewise, finding the database that stores the persistent object’s state is hard

158 OBJECT ADAPTORS

particularly when there are multiple databases at the back-end. Furthermore, a
database adaptor must load the object’s state, set it with this state, and finally
activate the object.

Two kinds of initialization steps can be identified in an incarnation process:
steps related to restoring the object’s state and those pertinent to the business
logic. The former is more likely to be similar for all applications than the latter.
Therefore, the same set of code could be used to handle the former’s steps.
This raises the possibility of automating the task of restoring the object state
for servants in all applications. If there are multiple servants to choose from,
each of them might have unique initialization steps. The adaptor should be able
to execute the right initialization steps for a particular servant. A mechanism to
automate both steps is required, whilst allowing their customizations.

Incarnation is a potentially dangerous step for the concept of separation of
concern. A naive programmer would write the incarnation code without sepa-
rating code fragments related to the database from others. However, since they
are very closely related, separating them is not an easy task. The design of a
database adaptor should be aimed at simplifying this task.

• Event etherealization: Similar to incarnation, two kinds of steps can happen
in an etherealization process; the object’s storage and business logic process-
ing steps. The etherealization’s problems resemble those of the incarnation as
well. It is compulsory for the database adaptor to be able to prepare the object
before it is etherealized. This might involve one or several storage steps. The
storage steps are similar from application to application, compared to the busi-
ness related steps. Hence, automation is a possibility. The existence of multiple
servants might also coincide with the presence of their dissimilar etherealiza-
tion steps. The adaptor should select the right steps for an appropriate servant.
The customization and the automation of both steps are to be facilitated in their
mechanism. The issue of enforcing the separation of concern also needs to be
tackled. Recall from the previous chapter that etherealization may or may not
happen. This could cause problems to objects that rely on the etherealization
to perform their storage step(s). The adaptor should be able to cope with this
problem, while maintaining the state’s consistency of those objects.

• Event destruction: A servant destruction in some BOA based products could
be used to provoke its object deactivation. However, caution must be exer-
cised when destroying a servant of the POA or other BOA-based products. An
accidental destruction could cause the objects implemented by the servant to
be forcefully unimplemented without their proper deactivations. The servant’s
destruction event is ready to be used for the execution of its object’s storage
step(s). The selection of what storage step(s) should be performed in the de-
structor requires some consideration.

Performance, Scalability and Code Portability Increasing scalability and
the performance of a database adaptor is more likely to stretch CORBA standard to
its limit. More improvement can only be gained from employing proprietary exten-
sions. However, such use works against the portability of the server’s code. Unless

DATABASE ADAPTORS 159

standardized mechanisms are used, this problem remains as the stumbling block in
realizing a scalable, performance minded and portable database adaptor. The issues
below describe problems encountered when developing database adaptors with those
goals. Some of the issues described below are not directly related to the database
adaptor, but rather to the overall server. They are there because a database adaptor
can play a pivotal and influential role in attaining those goals for the server.

Clients measure a server’s performance according to its response time and avail-
ability. A response time is the time elapsed from the invocation of a remote object
until its reply is received. Availability is the server’s probability of failing or becom-
ing unreachable [22]. Clearly, a low response time and higher availability are very
desirable. Speeding up a server’s response calls for the reduction of time consumed
by all steps in an object invocation. These optimizable steps are illustrated in Figure
4.14. A server’s availability is enhanced if the server failures can be minimized.

The first optimizable step is marshaling and unmarshaling steps on the client side.
There are two factors that influence the time taken to complete those steps: message
size and the IDL data types it contains. More data to be transferred means a larger
message, which at the end prolongs the time taken [34]. Increasingly complex and
structured data types also play an adverse role on the response time. The delivery
rate/call latency is dependent on the ORB products used. The rate is usually uncon-
trollable except if modifications are made to the source code of the ORB product
being used. Lowering the response time of a database adaptor is much harder than
lowering it in a conventional adaptor counterpart. The processing time of a database
adaptor is longer due to the database operations that have to be performed. For ex-
ample, in an object activation, the database is accessed to load the object’s state. For
a remote method invocation, the database might be queried/updated. If an object’s
state is cached, the database operation will perform faster than its remote method
invocation. Hence, there is a significant time difference existing between these two;
as a result, access to fine-grained data via a remote method invocation would incur

(2) Requests and replies delivery
(3) Object adapter processing

(1) Marshalling and unmarshalling on the client side

ORB
Interfaces

Static IDL
Skeleton Skeleton

DynamicDynamic IDL
Stub

Adapter
ObjectInvocation

(4) Unmarshalling on the server side

(4) (3)(1)(2)

Client Object Implementation

ORB Core

Figure 4.14 Optimizable steps of the flow of a request and its reply.

160 OBJECT ADAPTORS

unacceptable overhead [87, 99]. If data is uncached, database operations could slow
down the entire invocation process. Instantiation of the classes involved (e.g., ser-
vant class) is also effectual, especially in interpreted programming languages like
Java. A massive number of instantiations decreases the response time of a database
adaptor. The last optimizable step is the processing time of an implementation ob-
ject. A heavily loaded implementation object has a sluggish response time, which
slows the server down. Thus, managing the request load of an implementation ob-
ject is also essential. The number of requests and replies contributes to the overall
server performance. A decline in their numbers automatically improves the server’s
response. This is because it eliminates the need to perform the steps for their requests
and replies.

Availability of a server with a database adaptor should be resolved at two levels:
server level and database level. Failures at the first level are classified as omission
failure, response failure, and crash failure [22]. An omission failure is a failure in
which a server fails to respond to a request. Response failure is divided into two
classes: value failure and state transition failure. The former happens when the server
returns a wrong value, while the latter has the wrong effect on resources (e.g., sets
the wrong values to data items). Crash failure is repeated omission failure and in-
cludes all kinds of server crashes. At the database level, failures range from trans-
action failures to physical and catastrophic failures. At the first glance, there seems
to be no connection between these failures and the database adaptor. However, due
to its closeness to the implementation objects, it is logical for a database adaptor
to at least accommodate any fault tolerance mechanisms that are being used by its
server.

Scalability is the characteristic where the system and application software do not
need to change when the scale of the system increases [22]. In servers with database
adaptors, scalability concentrates on their capacity to bring about reasonable per-
formance as the number of persistent objects, databases, and requests grows. Thus,
some optimization techniques need to be devised to enable the database adaptor to
cope with an increase of these variables.

In order to avoid a database adaptor becoming a proprietary solution, it should
be built on existing standards. However, unstandardized parts of a database are the
potential problems when moving to different environments (different DBMS and/or
ORB products). These parts might come from the DBMS or CORBA side. In the
DBMS, they can be found in queries, database-generated oids, and so on. From
CORBA these parts can be found in optimization techniques such as threading.

4.5 SUMMARY

In this chapter we have presented one of the main components of the CORBA ar-
chitecture, the object adaptor, and explained the importance of including such an
adaptor within CORBA. We have also explained the main architectural differences
between the BOA and POA adaptors. Based on technical issues related to object
adaptors, we provided an analysis of both BOA and POA and showed their strengths

EXERCISES 161

and weaknesses. In the last section of this chapter we provided details of the issues
that need to be taken into account in order to build database adaptors.

4.6 REVIEW QUESTIONS

• What is the advantage gained from placing an object adaptor between an ORB
and implementations?

• What are the three steps in dispatching a request on the server side, assuming
SSI is used?

• Compare the strengths and the weaknesses of using a default servant with those
of using a servant manager.

• What is the difference between servant activator and servant locator?
• What is a persistent and a transient object?
• Why do vendors provide proprietary solutions (e.g., loader classes in IONA’s

Orbix) for loading inactive objects in BOA?
• What is the difference in the relationship between servant and object lifecycle

in BOA, compared to that in POA?
• Which has a better support in multithreading: BOA or POA? Justify your an-

swer. What is the problem with POA’s multithreading support?
• Explain the concepts of incarnation and etherealization.
• Does the incarnation in an object activation corresponds to an etherealization in

its object deactivation? Justify your answer.

4.7 EXERCISES

• What are the possible problems that could occur when a request bypasses inter-
ceptors which are used to provide security and access control.

• What is the consideration behind the use of USER DEFAULT SERVANT request
processing policy?

• CORBA applications often need to store the states of their objects persistently
in databases. The simplest approach would be to include in the servant classes of
those objects all the necessary codes (SQL query strings, etc.) that access these
databases, in order to manipulate (load, delete, edit, etc.) their object states.
What is the main problem with this approach?

• What are the problems that occur if a database adapter is not built based on any
of the CORBA adapters?

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 5

CORBA Interoperability

CORBA specification provides a list of guidelines for implementing ORB prod-
ucts. The concrete realization of these guidelines is left to ORB vendors to fill. All
CORBA compliant ORB products follow the same guidelines, but have different im-
plementation details from each other. In the earlier versions of CORBA standard
(CORBA 1), some aspects of the ORB such as low-level protocols used for inter-
ORB communication were left unspecified. As a result, ORBs of different vendors
were not always able to communicate with each other. OMG realized this problem
and issued an RFP (Request For Proposal) asking vendors to submit proposals to
standardize the inter-ORB communication. A specification called Universal Net-
worked Object (UNO) was adopted and has been revised several times ever since.
This specification introduces concepts such as domains, bridges, interoperability pro-
tocols, and Interoperable Object References (IOR).

This chapter describes the OMG’s interoperability standard; the next section
overviews the interoperability issues. Later sections provide details about domains
(Section 5.2), bridges (Section 5.3), interoperability protocols (Section 5.4), and IOR
(Section 5.5). The aim of this chapter is to provide additional technical details to
the ones proposed in Chapters 2, 3, and 4. This chapter does not provide a complete
cover of the topic related to the issue of CORBA interoperability. Points which are
deemed to be important are discussed in more detail. For additional information, the
reader may refer to the OMG’s specification.

5.1 OVERALL PICTURE

Interoperability is the ability of a client of a given ORB to invoke an OMG IDL-
defined operations on objects on other ORBs, where all these ORBs are indepen-
dently developed. It is used when requests must travel from one ORB to another.
Three factors motivate the introduction of the interoperability standard. The first fac-
tor is ORB implementation diversity, that is, differences in the way the ORB specifi-
cation is implemented to address a variety of user needs. Application environments
might be partitioned into different ORBs, based on the application requirements such
as security. This creates ORB boundaries which divide the applications around the
ORB being used. For example, one secure ORB might be used to mediate access
to private objects, while another ORB is used to delegate requests to public objects.

162

DOMAIN 163

Some objects are accessed over long distances, with global visibility, longer delays,
less reliable communication, and must be active for a long period of time. Other ob-
jects are closer, are not accessed from elsewhere, provide higher quality service, and
have shorter lifetime. As a result, their ORB varies in scope, distance, and lifetime.
Interoperability is achieved with a combination of interoperability protocols, which
govern rules and formats used to communicate; bridges, which translate requests
from one domain to another; and IOR, which provides a standardized way to ma-
nipulate CORBA objects. Note that bridges are used only when requests must travel
from one domain to another domain.

5.2 DOMAIN

A domain is a distinct scope, within which common characteristics are exhibited,
common rules are observed, and over which a distribution transparency (e.g., loca-
tion transparency) is preserved. It allows a system to be divided into a collection
of components which have some common characteristics. They are related to each
other by either containment (one domain inside another) or federations (two domains
are joined in a manner agreed to and set up by their administrators). Each domain
provides an abstraction and further distinction of the ORB’s functionality scope. Its
boundary is defined as the limit of the scope in which a particular characteristic is
valid or meaningful. A characteristic is said to traverse a domain’s boundary if it is
translated to its equivalent in that domain. A domain can be modelled as an object
and become a member of other domains. An object is said to be a member of a do-
main if it has the characteristic of the domain. An object can be a member of several
domains, regardless their kinds, causing the domain member sets to overlap.

Domains are usually administrative or technological in nature. Administrative do-
mains include naming domain, trust group, resource management domain, referenc-
ing domain (the scope of an object reference), network addressing domain (the scope
of a network address), security domain (the extent of a particular security policy),
transaction domain (the scope of a given transaction service), and other run-time
characteristics of a system. Examples of technology domains are representation do-
main (the scope of a message transfer syntax and protocol), type domain (the scope
of a particular type identifier), and other build time characteristics. Figure 5.1 illus-
trates an example of two CORBA objects sharing the same domains.

An ORB might have multiple domains within its functionality scope, such as dif-
ferent access domains, each having a different access control. The ORB itself can be
a domain if ORB products used are from different vendors. A domain might span
several ORBs, with each being a distinct scope and having its own characteristics,
rules and transparency; for example, one access control domain for all objects han-
dled by all ORBs. Most domains of an ORB usually have the same scope as their
ORB’s. Whenever two ORBs mediate a request from a client to a server, the re-
quest might not just move through these ORBs, but it might also cross to another
domain boundary. This is because the client resides in a domain which is different
from the server’s domain. Thus, for the interoperability to succeed, the issues of do-

164 CORBA INTEROPERABILITY

CORBA Object

Reference

Representation Representation

Reference

Networking

Security

Figure 5.1 Two CORBA objects sharing same domains.

main boundary traversal must be resolved. For example, consider a request is being
delivered from a client to a server via two identical ORBs which share one protocol.
If the client resides in an access control domain different from the one of the server,
the request’s permission must be translated to its equivalent in the server’s access
control domain. Otherwise, the request would only be passed from the client’s ORB
to the server’s ORB, without any transformation required.

5.3 BRIDGE

A bridge is conceptually a mapping mechanism which transforms requests expressed
in terms of a domain’s model to the one of destination model. It is used as an answer
to the ORB and domain boundary traversal problems. Its role is to ensure that con-
tent and semantics are mapped from the form appropriate to one domain to that of
another. The result is that users of any given ORB only see their appropriate content
and semantics.

Figure 5.2 shows two techniques of bridging requests: mediated bridging and im-
mediate bridging. The first one is a technique of bridging which transforms elements
of interaction relevant to the domain from its internal form to an agreed common
form at the boundary of each domain. The scope of agreement of a common form
can range from a private agreement between two particular ORBs or domains to a
universal standard. Multiple common forms might exist, with each optimized or ori-
ented for a different purpose. Selecting which one should be used can be decided
statically (administrative policy agreed between ORB vendors. or between system
administrators), or dynamically (for each object or on each invocation). This bridg-
ing technique can be implemented as specifically compiled (similar to stubs), generic
library code (like encryption codes), or intermediate bridges to the common form.
The latter technique is a method of bridging that transforms elements of the inter-
action relevant, directly from the internal form of the source domain to the internal
form of the target domain, at the boundary of each domain. This technique has the
potential to be optimal since no mediation is required. However, this comes at the

BRIDGE 165

Mediated Bridging

Domain X Common
Form

Domain Y

Immediate Bridging

Domain X Domain Y

Figure 5.2 Mediated and immediate bridging techniques.

cost of the interoperability’s flexibility and generality. Immediate bridging is usually
applicable when the domain boundaries are purely administrative, that is, no tech-
nology changes. For example, when the domains are security domains handled by
two similar ORBs, no common intermediate form is necessary.

Some applications require the traffic of requests which are being bridged to be
constrained, controlled, and monitored based on certain policies. Such bridging is
called policy-mediated bridging. An example of its application is found in domains
which perform audits of their external access or provide domain-based access con-
trol, based on some security policies. Fully transparent bridging might be highly
undesirable and resource management policies might even need to be applied for re-
stricting some types of traffics during certain periods. Objects in certain domains of
particular types might be made inaccessible to other domains. Traffics might have to
be analyzed and some knowledge about them might be required in order to enforce
particular security policies.

Bridges can be implemented as in-line and request level bridge, based on their
bridging level, the level on which the bridging process occurs. An in-level bridge is
a bridge which is implemented inside of the ORB, while a request level bridge is
implemented by the application code outside the ORB instead. Request level bridges
are further divided into two types: half and full bridge. A half bridge is a request
level bridge that relies on another half bridge to connect to another ORB. It receives
requests from clients in one ORB and transmits them in an agreed-upon format and
agreed-upon protocol to another half bridge in another ORB. A full bridge is a re-
quest level bridge that spans two ORBs. It is used when the transformation is purely
internal to one execution environment, using the shared programming environment’s
binary interface to CORBA and OMG-IDL defined data types. A full bridge appears
to be another kind of in-line bridge from outside the execution environment. This is
because the full bridge’s environment is the only one that knows the techniques used
to construct the bridge. However, full bridges more easily support portable policy
mediation components, due to their use of only standard CORBA APIs.

166 CORBA INTEROPERABILITY

Request level bridges could be implemented as interface-specific or generic
bridges. The former support only predetermined IDL interfaces and aremdeveloped
by using IDL-compiler generated stub and skeleton interfaces. The latter are capable
of bridging requests for server objects with arbitrary IDL interfaces by manipulating
interface repository, DII, and DSI. Programmers who wish to develop generic request
level bridges should use several interfaces. The first one is DII which allows bridges
to invoke objects whose interfaces are unknown when the bridges are developed or
deployed. DSI enables bridges to handle invocations on proxies whose represented
objects’ interfaces are unresolved when the bridges are developed. Other important
interfaces are interface repositories which are consulted when using DII and DSI
and object adapters which are used to create proxies. The last interface is CORBA
object references which supports operations that fully describe their interfaces and
create tables mapping object references to their proxies and vice versa.

5.4 INTEROPERABILITY PROTOCOLS

In order to provide interoperability, several protocols have been specified by OMG,
including GIOP, IIOP, and ESIOP. These protocols are used as the basic infrastruc-
tures for higher level interoperability services.

GIOP (General Inter-ORB Protocol) is an abstract protocol which provides a
blueprint to implement a concrete interoperability protocol based on a transport pro-
tocol. GIOP is independent of any particular transport protocol. Its abstract nature
means that this protocol cannot be used immediately for inter-ORB communica-
tions. Instead, it must be first mapped onto a specific transport layer. There are three
versions of GIOP specification: GIOP 1.0, 1.1, and 1.2. The first revision of GIOP
1.0 adds support for message fragmentation for a more efficient marshaling. The
next revision, GIOP 1.2, incorporates bidirectional communication for communica-
tion through a firewall, especially in cases where servers must also be clients. The
explanation in this section is based on GIOP 1.2 specification and consists of the
following elements: CDR, message format, and transport assumptions.

Common Data Representation

CDR (Common Data Representation) is a transfer syntax for mapping OMG IDL
into bi-canonical low-level representation for on-the-wire transfer between ORBs
and Inter-ORB bridges. CDR has several important characteristics:

• Supports both big-endian and little-endian byte orderings. CDR-encoded data
contains a flag which indicates the appropriate byte ordering. This allows big-
endian and little-endian machines to send their data in their native format. Mes-
sage originators determine which ordering should be used to send the data. The
receivers are responsible to swap bytes that comprise the data. The byte swap-
ping occurs whenever the ordering used by the receivers is different from the
originators.

INTEROPERABILITY PROTOCOLS 167

• Aligns primitive types on natural boundaries. CDR aligns primitive datatypes
according to the number of bytes allocated to represent their values. For exam-
ple, IDL’s short is allocated two bytes to represent its value and aligned on a
2-byte boundary. This approach is less efficient in terms of bandwidth because
of its use of bytes padding, a technique which is used to fill unused space of
the bytes allocated to represent a datatype’s value. Nevertheless, CDR is faster
since a primitive value need not be reformatted based on the number of spaces
actually used.

• Lack of self-identification. CDR-encoded data contains no information that can
be used to describe its datatype(s). Both senders and receivers must agree on the
datatype(s) of the data being sent; otherwise a misinterpretation could occur.

• Supports complete IDL mapping. CDR provides descriptions on how all
IDL datatypes are represented. It supports primitive datatypes, constructed
datatypes, pseudo-object datatypes, object references, and all user-defined
datatypes.

IDL datatypes are encoded in one or multiple octets. An octet is a collection of
eight bit values. For big-endian, the MSB (Most Significant Byte) starts at octet 0,
while the opposite is true for little-endian. For example, big-endian and little-endian
representation of increasing value one to eight is shown in Figure 5.3.

1

2

4

3

6

5

7

01

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

LSBMSB

LSB MSB

Octet No

Figure 5.3 Big-endian and little-endian encoding layout.

The following is a description of CDR encoding rules for some of the commonly
used IDL datatypes.

• Primitive datatypes. Figure 5.4 and interoperability-long illustrate the encoding
layout of short and long datatypes.

MSB

LSB

0

1

Octet No

LSB

MSB

Figure 5.4 Encoding layout of a short value.

168 CORBA INTEROPERABILITY

A short value occupies two octets, while a long value requires four octets.
Both are aligned at their natural boundaries (Fig. 5.5).

MSB 0

1

Octet No

LSB

2

3LSB MSB

Figure 5.5 Encoding layout of a long value.

• Constructed datatypes. IDL struct is an example of constructed datatypes. Con-
sider the following IDL declaration:

struct Address {
string state;
string street;
string country;

};

Each string member is encoded with an unsigned long which indicates the
string length in octets, including the terminating NULL, followed by the actual
string value, also terminated by NULL. Figure 5.6 illustrates an example of a
string value encoding for ’VIC’ in big-endian:

4 V I C

0 3

\0

4 5 6 7

Figure 5.6 Encoding layout of a string.

An IDL struct itself is encoded as a sequence of structure members in order
of their IDL declarations. Each member is encoded based on their datatype
encoding rules. For example, Figure 5.7 depicts the big-endian encoding of a
struct which contains ’VIC’ in its state, ’Grattan’ in its street, and ’Australia’ in
its country.

4 V I C

0 3

\0

4 5 6 7 181716151413

10\0nattar8 G

1211 19 23

A su

2524

\0a

32 33

i

3130

la

29

r

28

t

2726

Figure 5.7 Encoding layout of a structure.

• Named types. Enumerated types are examples of named types. An enumerated
type value is encoded as an unsigned long. For example, consider the following
enumerated type:

enum ParamMode { IN, OUT, INOUT };

INTEROPERABILITY PROTOCOLS 169

the encoding for OUT value is an unsigned long value which contains the or-
dering number of OUT, that is, two.

• Template types. sequence is an example of template types. Its encoding se-
quence starts with its length in unsigned long, followed by the sequence values.
For example, consider the following declaration:

typedef sequence<short> shortSeq;

The big-endian encoding for a shortSeq whose members are initialized with
values from one to five is illustrated in Figure 5.8.

2

0 3

5 1 3 4 5

7 11 15 19 23

Figure 5.8 Encoding layout of a sequence.

Message Formats

GIOP specification defines eight types of messages: Request , Reply, Cancel Request ,
LocateRequest , LocateReply, CloseConnection, MessageError , Fragment .
The first four are administrative messages, while the latter are used in object invoca-
tions. Figure 5.9 illustrates the structure of a GIOP message.

0

Message
BodyHeader

Message

11 11 + Message
Body Length

Figure 5.9 GIOP message structure.

A GIOP message starts with a message header followed by a message body. An
IDL declaration for the message header is as follows:

module GIOP {
struct Version {
octet major;
octet minor;
};

enum MsgType_1_1 { // Revised in GIOP version 1.1
Request, Reply, CancelRequest, LocateRequest, LocateReply,
CloseConnection, MessageError, Fragment

};

170 CORBA INTEROPERABILITY

struct MessageHeader_1_1 { //Revised in GIOP version 1.1
char magic[4]; // Magic number
Version GIOP_version;
octet flags;
octet message_type;
unsigned long message_size;

};
...

};

The structure of a message header in big-endian ordering is depicted in Figure
5.10.

Number
Magic Version

No
Type Flags Size

Message
BodyHeader

Message

0 11 11 + Message

0 3 5 6 7 11

Body Length

Figure 5.10 Message header structure in big-endian.

A message header is the 12-bytes length part at the start of a GIOP message. The
first 4 bytes of the header always contain the string ’GIOP’. The next byte is the major
version number, while the latter one is the minor version number, and followed by
one byte for flags. The least significant bit of the flag byte indicates the byte ordering
used. If the rest of the message is encoded in big- endian, this bit has a value of
0. Otherwise, this bit will have a value of 1 for little-endian ordering. The second
least significant bit indicates fragmentation. If this message is a complete message,
or is the last message in a sequence of fragments, then the bit will have a value
of 0. A message which is a fragment with more fragments to follow will have this
bit set to 1. Byte 7 indicates the message type and is filled with the order number of
MsgT ype 1 1, for example, 0 for Request message, 1 for Reply message, and so on.
The last four bytes are 4-byte unsigned long, which indicates the size of the message
body, minus the 12-byte message header, but including any alignment gaps. The
GIOP message body is a variable length part of the message whose exact content is
different from one message type to another. The rest of the GIOP discussion explains
the message body’s content for each message type.

Request Message Request message is sent by a client whenever it wishes to
invoke an operation of an object. Figure 5.11 depicts the content structure of GIOP
Request message.

As illustrated, the message body for a GIOP Request message consists of Re-
quest message header and Request message body. The IDL declaration for Request
message header is provided below:

INTEROPERABILITY PROTOCOLS 171

Message
BodyHeader

Message

0 11 11 + Message

Request
Header

Request
Body

11 11 + length of
Request Header

11 + length of
Request Header +
length of Request

Body

Body Length

Figure 5.11 Content structure of request message.

module IOP {
...
typedef unsigned long ServiceId;

struct ServiceContext {
ServiceId context_id;
sequence<octet> context_data;

};

typedef sequence<ServiceContext> ServiceContextList; };

module GIOP {
...
struct RequestHeader_1_1 { // Revised in GIOP version 1.1
IOP::ServiceContextList service_context; unsigned long request_id;
boolean response_expected;
octet reserved[3];
sequence<octet> object_key;
string operation;
Principal requesting_principal;

};
...

};

service context is a sequence of ServiceContext used to transmit infor-
mation specific to a certain context of a service transparently in each request. An
example of its usage can be found in transaction and security service. request id
is used to associate a particular request with its particular reply. Clients could send
multiple requests to servers and receive their replies in a random order. The use of
request id prevents a reply message from being misused to respond to a request.
Clients are responsible for generating this value uniquely in the scope of a connec-
tion. response expected is set to true if a reply is expected to be returned from the
server as a response to the request message. Otherwise, the member should be set
with the boolean value of false instead. reserved member is a three bytes sized mem-

172 CORBA INTEROPERABILITY

ber reserved for future use. object key identifies the target server object where the
request message must be delivered to. operation member encapsulates the name of
the operation being invoked. For example, the operation name to retrieve the value of
an attribute called serviceList is Reply message header get serviceList (). The
last member, requesting principal(), indicates the identity of the sending client
and is used to support B O A :: get principal() operation. The Request’s message
body contains in and out parameters for the request. It could also be followed with
Context if the declaration of the operation being invoked has a Context clause. Simi-
lar to IDL’s struct, the parameters are encoded according to the orders in which they
are declared. Each of these parameters is encoded by the rule specified by CDR for
its datatype.

Reply Message A server that receives a Request message whose request
expected is set to true must respond by sending a Reply message. Figure 5.12
illustrates the content structure of a GIOP Reply message.

Message
BodyHeader

Message

0 11 11 + Message

Reply
Header

11 11 + length of 11 + length of
Reply Header +
length of Reply

Body
Reply

Body

Reply Header

Body Length

Figure 5.12 Content structure of reply message.

As shown, the message body of a Reply message consists of the Reply message
header and Request message body. The IDL declaration for the message header is as
follows:

module IOP {
...
typedef unsigned long ServiceId;

struct ServiceContext {
ServiceId context_id;
sequence<octet> context_data;

};

typedef sequence<ServiceContext> ServiceContextList; };

module GIOP {
...

INTEROPERABILITY PROTOCOLS 173

enum ReplyStatusType { NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION, LOCATION_FORWARD };

struct ReplyHeader {
IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;

};
...

};

As in Request message, service context is used to send information specific
to a service context. request id contains the request id obtained from the Request
message header’s request id, thus associating the Request message with its Re-
ply message. reply status indicates the status of the operation invocation. If it
contains NO EXCEPTION, this means that the request has been processed success-
fully. The Reply message body will contain the return value and all out and inout
parameters. Each of them is encoded according to its IDL declaration order and to
the CDR rules defined for its datatype. Value USER EXCEPTION indicates that a user
exception has been raised. Reply message with this value will have its message body
containing the repository id of the exception. SYSTEM EXCEPTION indicates that the
server or its ORB has raised a system exception. Its Reply message body contains
the following structure:

struct SystemExceptionReplyBody {
string exception_id;
unsigned long minor_code_value;
unsigned long completion_status;

};

exception id is the exception’s repository id. minor code value holds vendor-
specific system exception minor codes. It is not used by standard system exceptions
and has been deprecated by OMG. completion status indicates where the error oc-
curred. If its value is 1 this means the operation has been invoked successfully, but
an error occurred during the return. Value of 0 indicates the exception is raised before
the operation is successfully invoked. Lastly, value LOCATION FORWARD indicates
that the request cannot be processed by the server and should be forwarded to the
another object instead. The reference to this object will be contained in the message
body.

CancelRequest Message This message tells the server not to send any reply
after the request has been processed. However, this message does not cancel currently
running request processing. The Reply message might still be sent and the client must
be prepare to accept the message or any exception from the server. Figure 5.13 shows
the content structure of GIOP CancelRequest message.

174 CORBA INTEROPERABILITY

Message
BodyHeader

Message

0 11 11 + Message

11 + length of
CancelRequest Header

Header
CancelRequest

11

Body Length

Figure 5.13 Content structure of CancelRequest message.

A CancelRequest message contains only a message header with IDL declaration
of:

struct CancelRequestHeader {
unsigned long request_id;

};

request id is the id of the request that needs to be cancelled.

LocateRequest Message Clients use LocateRequest messages to determine
the validity of an object or whether the server containing the object is capable of
receiving requests or what address requests should be sent to. Figure 5.14 depicts the
content structure of GIOP LocateRequest message.

Message
BodyHeader

Message

0 11 11 + Message

11 + length of
LocateRequest Header

Header

11

LocateRequest

Body Length

Figure 5.14 Content structure of LocateRequest message.

As illustrated, LocateRequest contains only a message header of the following
declaration:

struct LocateRequestHeader {
unsigned long request_id;
sequence<octet> object_key;

};

INTEROPERABILITY PROTOCOLS 175

request id of LocateRequest message associates the message with a LocateRe-
ply message in the manner similar with the association between Request and Re-
ply messages. object key identifies the object being located by the LocateRequest
message.

LocateReply Message The use of this message is to respond to a LocateRequest
message. Figure 5.15 describes the content structure of GIOP LocateReply message
pictorially.

Message
BodyHeader

Message

0 11 11 + Message

Body

11 11 + length of11 + length of

Body Length

LocateReply
Header

LocateReply
Header

LocateReply Header +

LocateReply

length of LocateReply

(if OBJECT_FORWARD
presents)

Body

Figure 5.15 Content structure of LocateReply message.

The IDL declaration of LocateReply message header is given below:

enum LocateStatusType { UNKNOWN_OBJECT, OBJECT_HERE, OBJECT_FORWARD };
struct LocateReplyHeader {

unsigned long request_id;
LocateStatusType locate_status;

};

request id is filled with a value obtained from LocateRequest’s request id,
while locate status holds the status of the attempt to locate the wanted object.
It can contain three possible values. The first one is UNKNOWN BJECT which in-
dicates that the server does not know the desired object. The next possible value
is OBJECT HERE, with which the server can directly receive the requests for
the wanted object. A LocateReply message with a locate status value of UN-
KNOWN OBJECT or OBJECT HERE has no message body. If OBJECT FORWARD is
present, then the reference of the wanted object will be inserted into the LocateReply
message body.

CloseConnection Message A server uses this message to inform its clients
that it is about to close the connection. A new connection must be established if
clients want to communicate with the server again later. An example of its usage is
found when a server is overloaded or about to reach its connection limit. Without
this message, clients might confuse a normal connection closing with the abnormal

176 CORBA INTEROPERABILITY

ones, such as those that happen when a server crashes. This type of GIOP message
contains no GIOP message body, only a GIOP message header. See Fig. 5.16.

0

Header
Message

11

Figure 5.16 Content structure of CloseConnection message.

MessageError Message MessageError message is sent in response to messages
which are not properly created: invalid version number, invalid message type, invalid
magic value, etc. No GIOP Message body exists. See Fig. 5.17.

0

Header
Message

11

Figure 5.17 Content structure of MessageError message.

Fragment Message A Request or Reply message that must be sent as fragment
messages is broken into a normal message with its fragment bit set to 1 and a se-
quence of fragment messages. All of these fragment messages must also have their
fragment bits set to 1, except for the last one. Figure 5.18 illustrates the content
structure of a fragment-type message.

Message
BodyHeader

Message

0 11 11 + Message

Header Data

11 11 + length of11 + length of

Fragment Fragment

Header
Fragment Fragment Header +

length of Fragment
Data

Body Length

Figure 5.18 Content structure of Fragment message.

Transport Assumptions

An interoperability protocol based on GIOP specification is implemented on top of
a transport protocol. The following are assumptions regarding the behavior of this
protocol:

INTEROPERABILITY PROTOCOLS 177

• Connection oriented. Messages sent using connection-oriented transport proto-
col require no embedded destination addresses. Instead, a connection handle is
returned after the connection is established and used for message deliveries.

• Reliable. The transport protocol must guarantee that messages are delivered in
the order in which they were sent, at most once, and their successful deliveries
are acknowledged.

• Viewable as a byte stream. The transport protocol must not have message size
limits, fragmentations, or alignments enforced.

• Have reasonable orderly shutdown notification. The transport protocol must be
able to notify the other communication end about abnormal connection shut-
down. This happens when clients or servers crash, network connectivity is lost,
etc.

• Have a TCP/IP mappable connection initiation model. The transport proto-
col’s connection initiation model must be mappable to the TCP/IP’s model.
The model is described briefly next.

Servers do not actively initiate connections, but listen or are prepared to
receive requests for connections. A client that wishes to establish a connection
must know the server address and send a connect request to it. The listening
server might create a new connection or reject the request, for reasons such
as insufficient resources. Either side is able to close the connection once it is
established.

5.4.1 Internet Inter-ORB Protocol

IIOP (Internet Inter-ORB Protocol) is a concrete GIOP interoperability protocol
based on TCP/IP. All CORBA compliant ORBs must support this protocol either
as their native protocol or through half-bridges. IIOP is commonly used as the proto-
col of choice in communicating with other ORBs. In order to map the abstract GIOP
onto TCP/IP, OMG specifies how TCP/IP addresses information inside IOR. The in-
formation allows clients to establish a connection to the server by manipulating the
IOR before sending requests. The IDL declaration for this addressing information is
shown below:

module IIOP {
struct Version {
octet major;
octet minor;

};

struct ProfileBody_1_1 { // Revised in IIOP version 1.1
Version iiop_version;
string host;
unsigned short port;
sequence<octet> object_key;

178 CORBA INTEROPERABILITY

sequence<IOP::TaggedComponent> components;
};

...
};

iiop version indicates the IIOP version supported. host is the name of the host
machine. The name can be specified as an Internet host name (e.g., www.hostname.
com) or as an Internet IP address (e.g., 123.123.123.123). port member is used to
specify the port number where the server listens for incoming requests. object key
is used to identify the object where requests should be sent to. components contains
additional information which will be used by some newer CORBA features, such
as wide character code sets. More details on this member are provided in the IOR
section.

5.4.2 Environment Specific Inter-ORB Protocol

ESIOP (Environment Specific Inter-ORB Protocol) is a concrete GIOP protocol
which is used to communicate in a particular environment. An ESIOP is optimized
for a specific environment and may be chosen over TCP/IP. However, ESIOP is op-
tional and could be proprietary. As a result, its availability is limited and at least
one more protocol should be supported as the second choice. An example of ESIOP
is DCE-CIOP (DCE-Common Inter-ORB Protocol) which makes use of a subset of
DCE-RPC facilities and parts of GIOP specification.

Message Transports DCE-RPC defines connection-oriented and connection-
less protocols for establishing communication between a client and a server. It sup-
ports multiple underlying transport protocols and multiple outstanding requests to
multiple CORBA objects over one single connection. Messages can also be frag-
mented, allowing ORBs to manage a buffer which contains a large amount of mar-
shaled data. Interactions between ORBs are made in the form of remote procedure
calls on one of two DCE-RPC interfaces: pipe-based or array-based interfaces. The
first one has its messages transmitted as pipes of uninterpreted bytes. The use of this
interface has the following characteristics: efficiently sends a large amount of data,
buffering complete messages is not compulsory, marshaling and unmarshalling can
be performed simultaneously with the message transmission, ORB controls mes-
sage encoding and data marshaling, and DCE client and server stubs can be used
to implement DCE-CIOP. This interface is optional since not all DCE-RPC imple-
mentations provide enough support for pipes. Messages of the second interface are
transmitted as arrays of uninterpreted bytes. The interface is an alternative to the
previous interface when the DCE-RPC implementations do not sufficiently support
pipes. The existence of array-based interface support in all client and server ORBs
is compulsory. Using this interface over the first one offers no advantage. However,
the pipe-based interface is preferred over the array-based one since messages can be
transmitted without precomputing their lengths. Both of these interfaces have invoke
and locate operations. The former is used in operation invocations, while the latter
finds server processes.

INTEROPERABLE OBJECT REFERENCE 179

Data Representation DCE-CIOP messages represent OMG IDL datatype val-
ues in CDR. Their message headers and bodies are delivered as OMG IDL data types
values and also encoded in CDR. The messages are sent via DCE-RPC pipes or ar-
rays. On the other hand, DCE-IDL defined operations use Network Data Represen-
tation (NDR) encoding. The way CDR represents OMG-IDL primitive datatypes is
similar to how NDR represents DCE-IDL datatypes. In fact, there is almost a one-to-
one equivalent of NDR’s primitive types to those of CDR. For example, OMG IDL’s
short and long correspond to DCE-IDL’s short and long. Some OMG IDL datatypes
such as constructed types have no correspondent in the DCE IDL.

Message Formats There are four types of DCE-CIOP messages that can be ex-
changed. The first one is Invoke Request which is used to send an invocation re-
quest. It contains information such as target object, target operation, the principal,
the operation context, a service context, and in and inout parameter values. An In-
voke Response message is sent as a response to an Invoke Request message. This
message indicates the status of the invocation and returns a ServiceContext. If the
invocation is successful, the return value, and out and inout are returned. If it fails,
an exception is returned. If the object is at a different location, the object’s binding
information is returned instead. The next type of message is Locate Request which
is used to send requests to locate server processes. It contains information which
identifies the target object and the target operation. The last message type is Locate
Response which is used to response to a Locate Request. It holds information that
indicates whether the object’s location is in the current server process, or elsewhere
or even unknown. If the object is elsewhere, its RPC binding information will also be
returned. Each of these message types have their message formats start with a field
containing the byte ordering used in the CDR encoding of the rest of the message.
The CDR byte order of a message must be the same with the NDR byte order used
by DCE-RPC to transmit the message.

5.5 INTEROPERABLE OBJECT REFERENCE

An object is manipulated through its references. These references should contain
potential information that is crucial to bridges in performing their job. The first in-
formation is whether or not object references are actually null, that is, do not point to
any object. The object type—the interfaces that a referenced object implements—is
the next information needed. A list of protocols that can be selected to communicate
with the referenced object is also important. It facilitates the selection of a proto-
col which is optimized to communicate with the referenced object efficiently. Infor-
mation about available ORB services is needed to reduce or eliminate negotiation
overhead in selecting them. In order to provide the above information, OMG stan-
dardizes the structure of the object references as IOR. Its IDL declaration is shown
below:

180 CORBA INTEROPERABILITY

module IOP {
typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;

struct TaggedProfile {
ProfileId tag;
sequence<octet> profile_data;

};

struct IOR {
string type_id;
sequence<TaggedProfile> profiles;

};

typedef unsigned long ComponentId;
struct TaggedComponent {
ComponentId tag;
sequence<octet> component_data;

};

typedef sequence<TaggedComponent> MultipleComponentProfile;
};

As shown above, the IOR structure is declared as an IDL struct called IOR.
Its type id contains the most derived interface (i.e., the interface at the end of
the referenced object’s inheritance tree) of the referenced object. A null is repre-
sented as having an empty profile with its type id holding a string which con-
tains only a single terminating character. The latter can also be used to represent
the org.omg.CORBA.Object interface. Profiles is a sequence of protocol specific
tagged profiles; each supports at least one protocol. An IOR must have at least one
profile which can be used to drive a complete invocation using any of the supported
protocols. A bridge between two domains may need to know the detailed content
of the profiles for those domains. Each tagged profile contains a tag encapsulated in
its tag member. Vendors must reserve tag values from OMG before using them for
proprietary protocols. If clients cannot interpret these proprietary tag values, their
profiles will be ignored. Thus, the existence of proprietary protocol information will
not jeopardize interoperability.

If the tag value is TAG INTERNET IOP, then its profile data will have the
IIOP::ProfileBody structure which was explained earlier in the IIOP section. If
the tag contains a value of TAG MULTIPLE COMPONENTS, then profile data will
hold MultipleComponentProfile which in turn contains service-specific information.
MultipleComponentProfile is a sequence of TaggedComponent structure, each hav-
ing tag and component data. Similar to values of tag in the TaggedProfile, vendors
must also request OMG to allocate the tag values of the TaggedComponent’s tag
before using those values. component data contains the actual information perti-

REVIEW QUESTIONS 181

nent to a particular tag value. For example, if the tag value is TAG ORB TYPE, the
component data contains information to identify a particular ORB of a vendor.
This tag enables the use of proprietary features and optimizations. Other tags are
also specified for purposes like describing security mechanisms, codeset (for wide
character supports), alternative IIOP address of the referenced object, and so on.

5.6 SUMMARY

In this chapter we described interoperability standardized mechanisms used to com-
municate with ORBs of different vendors. Bridges transform requests that cross their
domains to the target domains’ forms. Interoperability protocols facilitate commu-
nication between two ORBs on top of a particular transport protocol. Each of them
is a GIOP mapping onto specific transport protocol. IIOP is a commonly used in-
teroperability protocol which is based on TCP/IP. OMG also permits the use of the
Environment Specific Interoperability Protocol (ESIOP) such as DCE-ESIOP. This
type of protocol is optimized for a particular environment, making it an ideal choice
for communication in that environment. IORs allow objects to be accessed without
worrying about the underlying communication details. Information embedded in the
IORs is relevant to one or multiple services and/or protocols. Proprietary features and
optimizations can also be accomplished by manipulating the embedded information.

5.7 REVIEW QUESTIONS

• What is interoperability? Why is it so important? Explain the factors that moti-
vate interoperability.

• What is a domain? Explain boundary traversing and different categories of do-
mains. What is the use of domain in relation to the ORB’s functionality scope?

• Why must the issue of domain boundary traversal be resolved for interoperabil-
ity to succeed?

• What is a bridge? What is its role in interoperability? What are the techniques
in bridging a request? What is policy-mediated bridging? Explain the different
types of bridges?

• What is GIOP? What does its abstract nature mean? What are different types of
GIOP messages?

• What must a person who wants to create a new interoperability protocol do in
relation to GIOP?

• What is IIOP? How is an IOR used to identify a particular ORB product?
• What is ESIOP? Why is it usually chosen as a second choice protocol?
• How are multiple protocols supported in IOR?
• Explain how clients deal with tag values that they have no idea about.

182 CORBA INTEROPERABILITY

5.8 EXERCISES

• After looking at the content of an IOR, one would realize that no information
about the lifetime status (e.g., whether or not the object is still active, etc) of
object referenced by this IOR is embedded inside the IOR. Why does OMG not
include this information inside the IOR?

• When IIOP was not available, how could one make sure two CORBA applica-
tions would be able to communicate with each other?

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 6

CORBA Caching

For many distributed data-intensive applications, the default remote invocation of
CORBA objects by clients is not acceptable because of performance degradation.
Caching enables clients to invoke operations locally on distributed objects instead
of fetching them from remote servers. This chapter describes a design and imple-
mentation of a specific caching approach for CORBA-based systems using Orbix.
The proposed caching solution is a generic one that can be implemented in any other
ORB platform, such as OrbixWeb and Visibroker.

Caching has been extensively studied in several areas, such as databases, the
World Wide Web, and conventional distributed systems. However there is a very
little work done in the area of CORBA. This chapter proposes a summary of some
of the techniques proposed in CORBA caching [104, 105][67], and later describes
in detail a generic approach that deals with the issues of object eviction and object
consistency. An FIFO-based removal algorithm is discussed, and this uses a double
linked structure and hash table for eviction. A variation of optimistic two phase lock-
ing for consistency control is proposed. This protocol does not require a lock at the
client side by using a per-process caching design. Based on experiments made, for a
1000 objects per-client invocation, when the number of clients increases to 20, no-
caching approach will result in server saturation; when the number of clients equals
15, caching with half buffer will save up to 45% of access time and caching with full
buffer will save up to 50% of access time.

Because caching is an implementation issue for CORBA systems, OMG has not
provided any standard. Caching relates to the way proxies (e.g., client proxy and
server proxy) and the ORB perform invocations.

6.1 OVERALL PICTURE

Chapters 2 and 3 provided details of the CORBA architecture as well as how to
develop distributed applications. It was mentioned that CORBA has several advan-
tages over existing communication protocols (e.g., RPC, socket), and in particular,
with regard the issue of transparency, such as location transparency (i.e., clients do
not worry where the objects are located, that is, the host and the address), oper-
ating system transparency (clients do not need to know the underlying operating

183

184 CORBA CACHING

systems on which the ORBs are installed), and programming language transparency
(clients do not need to know the different languages used to implement the different
servers). However the enforcement of these different types of transparency (by the
ORB) causes performance problems, such as message overhead and frequent remote
invocations. On the other hand, distributed applications, such as telecommunication
and avionics control, require high bandwidth and low latency, high speed and porta-
bility [37]. For example, telecommunication systems require high speed as well to
increase efficiency of work. Using existing ORBs for such applications may lead to
poor performance due to excessive marshalling/demarshalling overhead, data cop-
ing, and high-level of function call overhead.

Whereas CORBA implementations can be optimized along the lines of efficient
and data copying [36, 37], it is the default behavior of CORBA applications that
causes significant latency. Network latency is often the significant component of ap-
plication invocation latency. By default, a CORBA client application will perform
a remote invocation for every request. For many distributed data-intensive applica-
tions, this is an unacceptable performance overhead. However, by caching remote
objects, it is possible to reduce the number of network invocations during critical
client processing. Inter-transaction caching allows clients to retain the contents of
the cache across transaction boundaries. Inter-transaction caching requires a cache
consistency protocol to ensure that a client’s view of the data is globally consis-
tent. Tradeoffs must be made during protocol selection to ensure that the cost of
maintaining the cache does not eliminate the gain made by caching. Typically this is
dependent upon the workload that the application is expecting.

When dealing with CORBA caching, one important aspect is the granularity as-
pect. Introducing caching is to allow CORBA objects to be used as fine grained
application objects, rather than processing interface versions of internal objects (i.e.,
attributes). If CORBA objects are used only at process boundaries, then there is a
need to write a mapping between the internal application and interface objects. This
approach is error prone, complex, adds an extra layer of maintenance and is an addi-
tional performance overhead.

Very little work has been done with the caching approach in CORBA environ-
ments. The only work in the area we are aware of is the one proposed by Mow-
bray [67]. This approach includes an object caching technique that intercepts any
remote invocations within the client if the object is locally available. Objects are mi-
grated to clients via a distributed cache manager (with a single retrieve and single
update operation). The cache manager is hard-coded for a specific set of related IDL
interface types, which performs coarse-grained shipping using an IDL interface for
a single retrieve operation and a single update operation. One major problem of this
approach is that it is an “informal one.” It does not present an implementation, test-
ing or performance analysis of the approach. Also, this approach does not guarantee
one copy serialization of objects updated, that is, consistency across different caches,
which is not acceptable for most of the distributed applications.

The aim of this chapter is to propose a comprehensive view of the issues related
to CORBA caching as well as a detailed caching technique that can contribute to
improving the ORB performance. These issues involve object eviction and object

CACHING ISSUES AND TECHNIQUES 185

consistency. Object eviction is considered when the client buffer is full (with cached
objects); therefore, the decision to be taken is to decide which object to evict so the
frequency of later remote of invocation is reduced. Object consistency is considered
when “real” data is updated in the server. Therefore, the issue is to make sure that
all clients have consistent copies of the data in the server, that is, the most up- to-
date data. On one hand, by caching objects locally in the client workspace, good
performance can be gained. On the other hand, caching has its own problems and
limitations. Evicting a “wrong” object can have deep consequences on the perfor-
mance of a system. Also, when dealing with applications where the frequency of
updates is high, more messages are issued to make the copies of data consistent, and
this has an impact on the overall performance.

This chapter describes an enhanced version of the existing removal algorithm
(FIFO) using a specific data structure, a doubly linked queue structure with hash
table. This chapter also describes a concurrency control algorithm without retaining
or assigning locks for objects at the server side. Instead of locking operations in the
client side, they are locked in the server side. The proposed algorithms were tested
in Orbix [104, 105], as shown in the later sections, and there is substantial gain of
performance improvement of client applications

The following section provides a technical summary of the existing approaches
that deal with the issues of cache replacement and data consistency. Section 6.5
discusses a caching architecture as well as the different algorithms for cache re-
placement and data consistency in the context of CORBA environments. Section 6.7
provides details about the design of the proposed algorithms. Section 6.8 proposes
a series of tests which demonstrate the performance improvement when caching is
used in combination with CORBA applications.

6.2 CACHING ISSUES AND TECHNIQUES

In CORBA, all client invocations are routed by the ORB to specific implementations
called servant classes. Based on the information contained within the object refer-
ence (or IOR), the local ORB will decide to invoke the operation either locally or
remotely. Clients do not need to know about the location of the object, the program-
ming language used to implement operations in the server, or the communication
protocol to be used to communicate with a remote server. The ORB provides loca-
tion and distribution transparency.

However, the demultiplexing strategies used by ORBs can impact their perfor-
mance significantly. Conventional ORBs demultiplex client requests to the servant
in several steps [36]: (1) the OS protocol stack demultiplexes the incoming client
request multiple times through the data link, network and transport layers to the
OS kernel and the ORB core; (2) the ORB core uses the addressing information in
the client’s object key to locate the appropriate adapter, servant and the skeleton of
the target IDL operation; (3) the IDL skeleton locates the appropriate operation, de-
marshals the requests buffer into operation parameters and performs the operation
up-call. Demultiplexing client request through all these layers is expensive. The ma-

186 CORBA CACHING

jor problem of this layered demultiplexing is that it induces bad performance as it
increases the latency by increasing the number of times that an internal table must
be searched. This can also lead to priority inversions.

In addition to the problem related to demultiplexing, ORB latency overhead stems
from long chains of intra-ORB function calls, excessive presentation layer conver-
sions and data copying, and non-optimized buffering algorithms used for network
reads and writes. Scalability impediments are due to inefficient server demultiplex-
ing techniques and the lack of integration with OS and network features. These in-
efficiencies prevent developers from using CORBA for life critical applications such
as real time avionics, telecommunication call processing and medical imaging [37].

The degradation of ORB performance can also be due to unnecessary access to
remote objects by applications. As mentioned in Section 6.1, caching these objects
will remove the need for excessive access to a remote server and therefore improve
the performance of remote execution of operations. Figure 6.1 shows two clients
accessing data from the cache storage; as a result, the network congestion is reduced
and the performance is increased. If the data is not cached, then the cache manager
will request to retrieve the object from the server and cache it locally. One of the
main tasks of the cache manager is to increase the probability of having objects in
the cache when they are requested.

However, caching has its own problems. One of them is concerned with the se-
lection of the object to be evicted when the buffer is full. The selection of a victim
for eviction is quite complex because the use of a specific strategy may have a great
impact on performance. Another problem is that the data in the server can be updated
and therefore make the cached objects inconsistent. Local cached objects will need
to be updated, and this may also affect the performance of ORB because of a large
number of messages.

local access

Object

remote reponseremote access

Client 2

Client 1

Network

cached data
local access

Server

cached data

Figure 6.1 Cache at client’s side.

CACHE REPLACEMENT 187

6.3 CACHE REPLACEMENT

When a cache buffer is full, some data must be evicted. Which data need to be evicted
remains an issue for the developers. Here we discuss some of the main existing re-
moval algorithms [113].

Least Recently Used The LRU (Least Recently Used) algorithm is probably
the most widely used cache replacement algorithm for handling objects. The least
recently used objects will be removed as many as required to have a sufficient space
for the newly accessed object. This may involve one or many replacements. Each
time an object is accessed, the object is promoted to the head of most frequently
used chain and some actions need to be taken to keep track of the accessed data item.
Since a list with sorted order is used, the cost of keeping the object in order will
degrade the performance.

• Page cache design: As shown in Figure 6.2, a page which is fetched from the
server is put in the middle of the usage chain at page position O (e.g., Page O).
If a later transaction refers to the page O , then it is promoted to the top of the
usage chain N. Whenever a new page enters the cache, the page at the bottom
of the chain (e.g., Page A) is evicted. Clients always send whole pages to the
server when committing a modified object [106].

• Object cache design: As shown in Figure 6.3, the page W received from the
server in response to a fetched request is placed in the middle of the usage
chain which is the same as page cache design. However, when an object in a
page (in the middle of Page O) is referred to, only that object is promoted to the
top of the chain. When a new page enters the cache, some objects at the bottom
of the chain are evicted. Clients send only the modified object to the server in a
transaction commit message [106].

SIZE Policy Objects are removed based on their size, with the largest object re-
moved first. As for the LRU algorithm, some techniques are required to keep the data
size in order. If two objects have equal size, which is generally rare, then the order

Top

evict

arrivesrefers

the whole page is
bottommiddle of the Page chain

Transaction

Page O Page B Page APage N

promoted to the top of the chain

Page M

Client
New Page

Figure 6.2 Page cache design.

188 CORBA CACHING

top

arrivesrefers

only the referred object is middle of the Page chain

Page N Page M

Page O

promoted to the top of chain

NEW Page W

Client
Transaction

bottom

Page B Page A
evict

Figure 6.3 Object cache design.

of removal is based on their last access time [4]. One of the major limitations of this
approach is to keep track of the object size as well as the access time.

LRU-MIN This approach is a hybrid approach which combines LRU and the SIZE
policy. The removal of larger sized objects is preferred, which reduces the number of
objects replaced. If an incoming object (say S) is too big to fit in the cache, then an
object of the same size or larger than S will be removed. If no objects can be found in
the cache (with the same size or bigger), then objects are removed according to the
LRU strategy: objects with size greater than S/2 are first chosen, then later objects
with size greater than S/4, then objects of size at least S/8 will be deleted, and so
on until sufficient free cache space is been created [4]. This algorithm requires an
exhaustive search as well as the use of an efficient relocation algorithm in order to
put together the smaller free spaces.

LRU-THOLD This is a variant of the LRU algorithm. The LRU-THOLD algo-
rithm avoids caching of large objects (or documents), which requires replacing a
large number of existing smaller size objects. The difference with the LRU algo-
rithm is that no objects larger than a threshold size can be cached [1].

FIFO FIFO (First In, First Out) is the queue algorithm in which the first object in
the queue is pruned off when the buffer is full. The new object is appended to the
tail of a queue. If the object from the middle of the queue is addressed, then the cost
of updating or removing the object will be expensive. Some appropriate mechanisms
are required to efficiently remove objects from the middle of the queue.

Object Live Time Algorithm An object live time is added to objects to indicate
their life duration. When the live time expires, the object becomes stale. This algo-
rithm is particularly for World Web Wide caching, in which the cached data has an
expiration time. When the time expires, the browser will fetch a new copy of data
from the Internet. Generally, it is not possible to associate a lifetime with an object
copy when the object is written because the time of the next write to the object is
not known [3]. Neither HTTP nor Gopher has any provision for a server notifying

CACHE REPLACEMENT 189

the cache when a page changes, so the cache object must be estimated a time period
during which it believes the page will not change. In the context of CORBA, this al-
gorithm is nearly useless, because the critical object in CORBA cannot be estimated
by the program or the end user.

6.3.1 Caching Consistency Algorithms

As mentioned earlier, the data in a server can be updated, but this makes the cached
objects inconsistent. Some techniques are used to control the cache consistency prob-
lem, such as locking of objects. Such techniques are particularly efficient when data
is locked for short time. When the locks are used for long period, locking mecha-
nisms become inappropriate. Instead, optimistic concurrency control based on for-
ward and backward validation is used. Operations on objects are not transactions,
that is, they require a very short time to be processed; therefore, locking is a better
approach when dealing with CORBA cached objects. The focus in this section is on
the recent locking approaches proposed in the literature.

Callback Locking This algorithm first appeared in the Andrew file system to
maintain the consistency of cached files [50]. Using this mechanism, a client must
obtain a lock from the server before accessing a data page rather than at the commit
time. The lock is retained even after a transaction is terminated. Therefore, there is
no need for the client to contact the server to check object validity or to acquire a
lock when a transaction accesses a cached object with the appropriate lock. When a
transaction accesses a cached object without a retained lock (i.e., client’s first request
or cache object has been evicted from cache buffer) or with the wrong lock (the
transaction wants to update an object that has only a read lock), it will need to obtain
a proper lock from the server. The server broadcasts a message to all clients that
have inappropriate locks associated with this object and requests them to release the
locks. A client releases the lock requested by the server immediately if the object
has not been accessed by the current transaction on the client. Otherwise, it waits
until the current transaction terminates to release the lock. The server cannot grant
the requested lock until all incompatible locks on the object are released [110].

Server-based Two Phase Locking With this approach, the server’s copy of
each object (or page) is treated as the primary copy of that object. Client transactions
must obtain the proper lock from the server before they are allowed to access a data
item the same as the Callback Locking. But clients are not allowed to cache locks
across transaction boundaries. A variant of this approach, called Caching 2PL, is
proposed that allows data to be cached at clients across transaction boundaries. Con-
sistency is maintained by using the “check-on-access” policy: when a transaction
requests a read lock for a page that is cached at its client side, it sends the Log Se-
quence Number found on its copy of the page along with the lock request. The server
responds to the lock request with the latest copy of the page along with the response,
if it determines that the site’s copy is no longer valid. In Caching 2PL, deadlock de-

190 CORBA CACHING

tection is performed exclusively at the server. Deadlocks are resolved by aborting the
youngest transaction involved in the deadlock [17]. An algorithm similar to Caching
2PL is currently used in the EXODUS storage manager [16].

Optimistic Two Phase Locking (No-Wait Lock) The O2PL schemes allow
inter-transaction caching of data pages and an optimistic form of lock caching. They
are based on a read-one, write-all concurrency control protocol for replicated data
in distributed databases. The O2PL algorithms are optimistic in the sense that they
defer the detection of conflicts among locks cached at multiple sites until transaction
commit time. In these algorithms, each client has its own local lock manager from
which the proper lock must be obtained locally before a transaction can access a data
item at that client. This differs from Caching PL in that client assigns locks locally.
Client updates are performed locally, but they are not permitted to migrate back to the
server’s buffer until the associated update transaction enters its commit phase. The
client’s read operation is executed locally as well, in case there is a cache miss(data
not found in cache or data is invalid), the client requests the server to obtain the
latest copy of the data. The server is responsible for keeping track of where pages
are cached in the system. The client informs the server when it drops a page from its
buffer pool by piggybacking that information on the next message that it sends to the
server. Thus, the server’s data is conservative.

When an updating transaction is ready to enter its commit phase, it sends a mes-
sage to the server containing a copy of each page that has been updated. The server
then acquires exclusive locks on these pages on behalf of the transaction. Once these
locks have been acquired at the server, the server sends a message to each client that
has cached copies of the updated pages. These remote clients obtain exclusive locks
on their local copies of the updated pages on behalf of the committing transaction.
Once all the required locks have been obtained, specific actions are taken. It can be
invalidated by a message or updated with the latest data item [17].

• Invalidation phase: During this phase, a committing update transaction acquires
update-copy locks on all copies of the updated pages. At the server, these locks
enable the committing transaction to safely update data. On other clients, how-
ever, they enable it to safely invalidate cached copies of the page. Once all
updated pages have been invalidated, these other clients send a prepared-to-
commit message back to the server, release their update-copy locks, and then
drop out of the commit protocol. The server can commit the update transaction
when all sites containing cached copies of the updated data have responded.
At that moment, only the server and the client that originated the update have
copies of the updated data [17].

• Propagation phase: The propagation O2PL keeps all clients informed of any
changes made to the data resident in their local caches. As in O2PL Invalidate,
a committing update transaction acquires update-copy locks on all copies of
pages to be updated. In this case, these locks are used to enable the committing
transaction to safely update its data on every machine that holds a copy of the

CACHE REPLACEMENT 191

updated data. Since updates must be installed on the server and all clients atom-
ically, O2PL Propagation employs a two-phase commit protocol rather than
the one-phase commit that suffices for O2PL Invalidate. Also, the prepare-to-
commit messages that the server sends to clients in this case must include copies
of the relevant updates. These updates are installed during the second phase of
the commit protocol to avoid overwriting valid cached pages before the out-
come of the update transaction is certain [17].

6.3.2 Other Issues

In addition to the above two issues, there are other aspects that need to be taken into
account when designing a caching approach. These aspects involve, for example,
cache storage, cache organization and invalid access prevention.

• Cache storage: In some network file systems, such as Andrew [50], clients’
file caches are kept on their local disks. In the Sprite network file system, file
data is cached in the main memory for the following reasons: i) the main mem-
ory caches permit workstations to be diskless, which makes them cheaper and
quieter; ii) data can be accessed more quickly from a cache in main memory
than a cache on disk; iii) physical memories on client workstations are now
large enough to provide high hit ratios. As memories get larger, main memory
caches will grow to achieve even higher hit ratios; iv) the server caches will be
in main memory regardless of where client caches are located. Memory-based
caching can also have three levels: local client memory, remote client memory,
and server memory. The first two levels require a remote access operation to
fetch the cache data; thus it is not recommended.

• Cache organization: In the ScaFDOCS system [56], two schemes for client
caching are mentioned: per-node caching and per-process caching. The former
allows clients in the same node to share the cache data, whereas the latter en-
ables clients to have their own caching manager.

• Invalid access prevention: When a cached data becomes stale, some action
needs to be taken either to leave the stale data unchanged until the next event
or to remove the stale data from the cache. Franklin et al. [32] described two
schemes: avoidance and detection. The avoidance-based scheme ensures that
all cache data is valid, while the detection scheme allows stale data to remain
in client caches and ensures that transactions are allowed to commit only when
they do not access such cache data. Detection base schemes are lazy; they re-
quire that the transaction check the validity of cache data. Stale data is kept in
the cache for some period. If the next transaction refers to the stale data, then it
is updated without re-assigning the space for it. In case of a full cache buffer, if
the stale data is in the head of the queue, then it is removed. While the avoidance
based scheme is positive, it guarantees that all the invalid data will be removed
immediately so that it will not have a chance to access invalid data.

192 CORBA CACHING

6.4 THE CACHING APPROACH

As described in Sections 6.3 and 6.3.1, there are four main types of removal al-
gorithms: LRU, Size, FIFO and object live time algorithm. LRU-Min and LRU-
THOLD are variants of LRU. Since the LRU algorithm will have one or many re-
placements, the cost will be higher. For the Size algorithm, in case of objects having
the same size, this approach is not realistic because objects with the same size have
equal priorities and therefore not useful to be used in CORBA environments. The
FIFO algorithm has a limitation when dealing with the update of objects in the mid-
dle of chain. The algorithm which uses object live time is hard to estimate because
the time for the next update action on the object is unknown. However, an appropriate
extension of the FIFO approach to better deal with object updates can be beneficial
for CORBA caching. This chapter will show how to extend the FIFO approach to
include an appropriate data structure (e.g., double linked list) to improve some of its
limitations.

Table 6.1 summarizes the characteristics of the different locking consistency pro-
tocols. This table shows that Caching 2PL always accesses the remote server. Fre-
quent remote access will degrade the performance of the whole system. The Callback
Locking retains the lock even after a transaction terminates, which will induce poor
performance unnecessarily. The Optimistic 2PL can be considered as the most ap-
propriate consistency algorithm for CORBA environments. It has a callback feature
and it does not retain a lock. Assigning locks in the client side, as is done by the
Optimistic 2PL, will have the same drawbacks as the Callback Locking. Therefore
the implementation of a lock manager at the client side is impractical. A design of
an algorithm based on the optimistic 2PL with some enhanced features, such as the
use of per-process design (i.e., each client has its own cache manager), is one of the
most appropriate solutions for CORBA environments.

Regarding the issue of cache storage, we use the client memory as a cache storage.
Figure 6.4, which shows some experiments performed in [104, 105], found that the
cost of access time can be reduced by caching using memory. With data size equal to
10000 bytes, remote access time requires 6.91872 milliseconds, while caching using
memory only needs 0.9421923 milliseconds. By using memory caching, 86.3% of
the access time is saved. The concurrency control and replacement algorithms are

TABLE 6.1 Summary of Different Lock Mechanisms

retain client assign callback event trigger
Algorithms lock lock action remote access

CallBack YES NO YES Cache Miss
Wrong lock

Caching 2PL NO NO NO Always
Optimistic 2PL NO YES YES Cache Miss

Commit time

ARCHITECTURE 193

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000

A
ve

ra
ge

 ti
m

e
in

 M
ill

is
ec

on
d

Nums of bytes sent

No caching
Cache using memory

Figure 6.4 Cache design in memory and no cache.

not of concern at this stage. How the performance can be increased using the above
algorithms is discussed in a later section.

One of the advantages of a per-node caching scheme is that object faulting and
consistency-related actions only need to be done for a single copy at a node. How-
ever, when multiple clients access the cache data, some lock mechanisms are required
in the client side to protect the shared data. To simplify the lock control at client side,
the per-process scheme is selected for the approach described in the remaining sec-
tions of this chapter. For invalid access prevention design, removing stale objects may
make room in the buffer, but the cost of reallocating space for the same object when
it is accessed next time will be expensive. However, detection-based algorithms can
be improved by using a callback strategy. Then the stale data will not be accessed.
So we implement the detection-based scheme using a server callback strategy. When
the data is stale, the client knows there is no need to access that data.

6.5 ARCHITECTURE

This section describes an architecture and a model for CORBA caching. We present
the main components in this caching architecture and later show how they commu-
nicate with each other. The cache architecture has the following components: cache
manager, evictor, server manager, monitor and lock manager. As shown in Figure 6.5,
this architecture is based on a single server and multiple clients. Each client has its

194 CORBA CACHING

Evictor

Queue

(servant)

Interface
ORB

Adapter

Object

Management
Connection

IDL
Skeleton

Object

Object
Ref

Client
in args

out args + return values

operation()

Interceptor/Filter

Lock

Cache

Servant

OS Kernel

OS I/O Subsystem

Network Adapters

OS Kernel

OS I/O Subsystem

Network Adapters

ORB Core

Extended
StubsIDL

(smart proxy)

Manager

Monitor

Manager

Manager

Figure 6.5 The caching reference architecture.

own evictor and cache manager. The cache organization design is based on a per-
process approach.

• The cache manager is responsible for deciding whether the client should per-
form local access or remote access. When a client makes a read request, the
cache manager will contact the evictor first. If the data is found and it is valid,
the cache manger will then return the data to the client. All write requests are
passed through to the server.

• The evictor is responsible for cache replacement. When the cache buffer is full,
some cache data items need to be evicted. At the beginning, the evictor is empty.
When a client first performs a read operation, it fetches data from the server side
and an evictor is created. In the next read operation, the client will contact the
cache manager. It is the task of the cache manager to contact the evictor first; if
data is not found or is invalid, it will then contact the server for the data and put
the latest data into the evictor.

• The server manager is responsible for coordinating the server resource and call-
back operation. When the client contacts the server for the first time, a cache
manager is constructed on the client side. The server manager is informed that

ARCHITECTURE 195

a cache manager is created at the same time. If one client makes a write re-
quest, the server manager will notify all the clients that the data is updated, and
invalidate the data.

• The role of the monitor is to manage consistency of the cached objects. It is
an independent process which monitors the operations accessing the server and
includes an enhanced optimistic lock algorithm.

• The lock manager will lock the operation before accessing the server site’s data.
The operation will be unlocked once it is finished. The design of the lock man-
ager is illustrated later in the next section.

Figure 6.6 shows the interaction between each component of the caching archi-
tecture. The client first makes a read request. The request is handled by the caching
manager. The caching manager contacts the evictor, and because the evictor is empty
at the beginning of the process, the caching manager decides to contact the server
for an object copy. The monitor intercepts a client request and tells the lock man-
ager to assign a lock for the operation. The lock manager first checks the operation
and assigns the proper lock. Then the operation is passed to the server. The server
processes the request. The monitor notices that the server finishes a processing oper-
ation; then it commands the lock manager to unlock the operation. The lock manager
again checks the operation, and frees the lock associated with the operation. The ob-
ject returned by the server is sent to the caching manager. The caching manager then
creates an entry in the evictor and returns the copy to the client. If the client makes a
read request again, the request is passed to the caching manager. After contacting the
evictor, the caching manager knows the object is in the evictor and it is valid; it then

 return object

read-request searches
evitor empty

remote access
lock read-operation

unlock read-operation

searches

data found

read-request

remote access

invalidates

lock write-operation

unlock write-operation
notifiesnotifies

returns object

processes object

processes object

returns cache
object

creates evictor

write-request

create proxy

Client Evictor Monitor ServerCache Manager Servant Manager

Figure 6.6 Sequence diagram.

196 CORBA CACHING

fetches the object from the evictor. The object is then sent to the client. The client
decides to make a write request this time. The caching manager makes a remote ac-
cess request to the server. The monitor again intercepts the request and informs the
lock manager. The lock manager assigns the proper lock and the request is processed
in the server. The monitor notices the operation is done by the server; then it asks
the lock manager to unlock the operation. The information of the updated object is
passed to the server manager. The server manager broadcasts an invalidate message
to all the caching managers. The caching manager in each client invalidates the ob-
ject in the evictor. After the object is updated in the evictor, the client may continue
to make more requests.

6.6 CACHING MODEL

This section discusses the details of the CORBA caching approach proposed in [104,
105]. A generic algorithm, which deals with various caching issues (cache manage-
ment, eviction, callback strategy, filtering and locking algorithms) is described.

Cache Management

The cache manager manipulates the client resources such as cache object and com-
municates with the evictor and the server objects. The algorithm below describes the
main operations of the cache manager.

---- Cache Management -------------------
check whether there is an invalidate operation and process if yes
if read operation
if Evictor not empty

Hash_search() the key
if key found and the object is valid

fetch the object and promote the object to the tail of chain
end if

else
make remote call to server
get the object
if evictor is empty

create evictor
else

hash search the object key
if object key is found and is valid

validate the object with latest value
else

hash insert the new object into evictor
end if

end if
end if

CACHING MODEL 197

else
remote access to server
get the object
invalidate object in evictor

end if

Eviction

The evictor uses a double-linked list with an FIFO based algorithm. When an object
is dropped from the evictor, the client will not inform the server. If the next operation
of the client requires an object which is not available in the evictor, the client will
contact the server for the import of the object. The FIFO chain in the evictor is a
double linked list. A hash table is constructed to find the object quickly. The hash
function is based on a string search with some improved features. One of these fea-
tures is to convert the string value into integer and perform hash(n) searches to find
the correct slot of the object. At the same time, the object key is retained as string
format. If the object location is empty, it returns an empty location. In the case of
conflicts, a linear search will be performed on the object.

---- hash algorithm ------------------
if evictor is empty

return not found
else if object is in the top of queue

return the object found
else if object is the latest accessed object

return the object found
else if object is at the tail of queue

return the object found
else

perform hash(n) to find the object
if object is found

return the object
else

perform a linear search to find the object
end if

end if

The object we are looking for in the evictor may be in the middle of the queue. In
this case, the hash function is called to search the key. If the key is found, the object
link with the previous object and with the next object in the queue will be removed.
Also, the object found is then promoted to the tail of queue. Whenever a new object
arrives, and if the cache buffer is full, the first object in the queue will be removed,
otherwise the new object is appended to the end of the queue. When a server wants to
invalidate an object in the evictor and the object is not found, the evictor will simply
ignore the server notice. If the object is found in the evictor, it will be invalidated.
Further operations can be taken either by keeping the object in the cache or removing
it immediately. The removal algorithm for eviction is given below.

198 CORBA CACHING

---- removal algorithm ------------------
if object is in the evictor

promote the object to the tail of queue
else if evictor is full

evict the first object in queue
else

perform hash function to find the proper location for the object
put object into the hash_table and append the object to the tail
of queue

end if

Callback Strategy

The server manager is responsible for manipulating server resources and callback
strategies. The server will notify all other clients when the object is updated at the
server side by using the invalidation protocol. The invalidation message size is far
smaller than the update size. In the update protocol, the latest copy of the object is
sent to all the clients when this object is updated. Using the invalidating protocol
reduces the network congestion, since the clients do not need to check the validity of
each object with the server.

---- Callback algorithm ------------------
If client proxy creates

store the proxy information into database
end if
monitor process
If there is an request coming from client

lock manager check the operation and assign lock
server process the request
lock manager unlock the operation
if write operation

call back all the clients
end if

end if

Filtering and Locking

The lock manager is a part of the monitor. It assigns locks to operations when they
access the server data. It also unlocks operations once they have finished process-
ing with the data. Because operations process the data quickly, at least quicker than
transactions, there is no need to retain the lock on the cache data. This proposed al-
gorithm is a combination of Caching 2PL and O2PL, where each client does not have
its own local lock manager. The lock manager is located on the server side. In a read
operation, when the client accesses the local cache data, no lock is required. If the
cache data is not found in the cache buffer or the cache data is invalid, then the client
needs to make a remote access call to the server. The lock manager, which is imple-
mented in the server, assigns a Log Sequence Number according to the operation.

DESIGN 199

The lock manager will need to know what data is operated on in each operation. In a
write operation, the client always makes a remote call to the server to update the data
on the server side (the primary data copy). This is done in such a way that the server
does not need to wait for all the other clients which are holding the data to reply
or send ready-to-commit request to it. This approach differs from O2PL in that the
client updates are not performed locally, which will save numerous messages being
exchanged between clients and server to confirm the lock. The server is responsible
for keeping track of the object’s location in the system. Clients don not inform the
server when they drop an object from their buffer pool. Once an operation refers
to an object and the object is not found at cache buffer, it will contact the server
immediately for a copy.

6.7 DESIGN

This section describes an Orbix implementation of the proposed caching approach,
a workload generator, testing and results.

Interface and UML design

The implementation of the caching approach will be illustrated by a simple example,
a distributed banking application. The IDL interface for this application is given
below. We consider a scenario when a banker interface creates Account objects and
the register interface is used to tell the server that a client proxy is created, and
regAccount interface will notify the client when an update happens.

struct Statement{
string holder;
string address;
float balance;
long hosts[4000];
long num;

};
typedef sequence<Statement> seqStatement;
interface account {

readonly attribute float balance;
void setStatement(in any s, in long num);
void getStatement(out any s, in long num);
void makeLodgement (in float f);
void makeWithdrawal (in float f);

};
interface bank {

account newAccount (in string name) raises (reject);
void deleteAccount (in account a);

};

200 CORBA CACHING

interface cacheCallback {
oneway void invalidate (in string key);

};
interface registerProxy {
oneway void signOn (in cacheCallback proxy);
oneway void signOff (in cacheCallback proxy);

};
interface regAccount : registerProxy, account {
};

Caching Manager

The caching manager illustrated in Figure 6.7 is located at the bottom of the UML
diagram. It inherits almost all the classes and is generated by the Orbix standard
proxy factory class (AccountProxyFactoryClass). A single instance of the proxy
factoryclass needs to be created if a user-defined proxy (caching manager) is con-
structed. Orbix will communicate with the factory whenever it needs to create a
proxy of an interface in three ways: (i) when a reference to an object of that inter-
face (e.g., Account) is passed back as out or inout parameter or a return type, or
when a reference to a remote object enters an address space via an in parameter;
(ii) when the :: bind() function is called; and (iii) when the function C O R B A ::
Orbix .string to object () is called for that interface. The following is the imple-
mentation of caching manager class;

Lock Manager

WHICH_LOCK()
ReleaseLock()
AssignLock() getStatement()

setStatement()
signOn()
signOff()
notify()

evict()
isCacheValid()
hashsearch()

generates

fetch
Register

create

invalidate()new()

Banker

create()

inRequestPostMarshal()
outReplyPreMarshal()

Monitor

Filter Account

Server Manager

Caching ManagerAccountProxyFactory

RegAccountProxyFactory

Evictor

Figure 6.7 UML class diagram.

DESIGN 201

// Code fragment of AccountProxy (Caching Manager) class

import org.omg.CORBA.Any;
import org.omg.CORBA.SystemException;

public class AccountProxy extends _AccountProxyImplBase {
_tie_cacheCallback m_self;

// notify the server manager that a client proxy is constructed
m_self = new _tie_cacheCallback(this);
signOn(m_self);

void getStatement(Any s, int num) throws SystemException {

char[] key;
Times T;

checkPending();
key = new char[11];
assignKey(num,key,’s’);
if(!isEmpty()){

int pos= -1;

if(hash_search(key,pos)) {
if(isCacheValid()) {

cacheHit++;
s = get_cache();
updateCacheTimeStamp(T.set_timestamp());
return;

}
}

}

try { // data not in cache
cacheMiss++;
getStatement(s,num);
updateEvitorManger(T.set_timestamp(), s, key);

}
}

}

Monitor and Lock Manager

A filter is used to intercept processes. With the filter, a programmer can specify
additional code to be executed before or after the execution of an operation. Orbix’s
filters do not comply with the standard OMG’s specifications. There are two types of
filters: per-process filters and per-object filters. A per-process filter allows control of
all applications and attributes calls leaving or entering a client’s or server’s address

202 CORBA CACHING

in queue

in queue

out queue

PreMarshal

out queue

inRequest

ServerClient

Client Request

Client Process Server Process

PreMarshal
 outRequest outRequest

PostMarshal

inReply
PostMarshal PreMarshal

inReplyinReply
Failure

Server Reply

PostMarshalFailure
outReply outReply

outReply
PreMarshal

Unlock

Lock

inRequest
PostMarshal

Figure 6.8 Orbix’s filter diagram.

space, while the per-object filter only concerns individual objects. A per-process
filter is used to implement the monitor. The Orbix’s filter is illustrated in Figure 6.8.

The Filter class has ten methods to monitor the transaction and reception of
an operation. The operations out Request PreMarshal(), out Request Post Mar -
shal(), in Reply Post Marshal() and in Reply PreMarshal() are in the client’s
address space. The out Request PreMarshal() operations are used before the op-
eration’s parameters have been added to the request queue. out Request Post Mar -
shal() is used after the operation’s parameters have been added to the request queue.
in Request PreMarshal(), in Request Post Marshal(), out Reply PreMarshal()
and out Reply Post Marshal() are in the server’s address space. in Requestpre
Marshal() is used before the operation has been sent to the target object and
before the operation’s parameters have been removed from the request queue.
in Request Post Marshal() is used before the operation sent to the target and after
the operation’s parameter has been removed from in-queue. The out Reply PreMar -
shal() is used before the return value has been added to the out queue. out Reply Post
Marshal() is used after the return value and out parameter have been added to the
out-queue. The other two methods, out Reply Failure() and in Reply Failure(),
are used when there is a failure during the process.

The in Request Post Marshal() and out Reply PreMarshal() are used for lock-
ing and unlocking operations. We have implemented them by inheriting the su-
per class Filter and rewriting the in Request Post Marshal() and out Reply Pre
Marshal() methods so that they will perform appropriate functions.

// Code Fragment of Lockmanager

public class Mutex_t {
// This class implements C++-alike mutex_t

}

DESIGN 203

public class LockManager {

protected Mutex_t Sharedata[1000];
protected int counter; // total numbers of lock assigned
protected int index; // current lock number

public void AssignLock(int n) {...};
public void ReleaseLock(int n) {...};
public int WHICH_LOCK(const char * func) {...};

}
}

The lock manager is using the Solaris mutex to protect share data. The maxi-
mum share lock limit is 1000 different objects in the lock manager. The method
WHICH LOCK is used to assign lock number to different function call.

Evictor

The evictor is composed of object, hash table and an FIFO queue. Only pure object
design is illustrated here; details about the page design are not considered. The object
in CORBA environments is designed by using the struct type which is mapped to the
C++ struct. Figure 6.9 shows the object structure. The data member inside struct is an
object identity key, object state which shows an object’s current status whether it is
valid or not, object value, object access time, link pointer to the previous object and
link pointer to the next object. The double links inside the object are used for quickly
removing the object from the link. Each object is considered as a CORBA::Any type,
because objects with different types cannot be linked together. CORBA provides a
generic type ANY which suits this purpose.

Figure 6.10 shows how the evictor is implemented. When a client refers to an
object with key S6, a hash function is performed. If the data with key S6 is found,
the object can be promoted to the top of the FIFO chain immediately. In this case,

(A) Data Structure (B) Object Link

pointer to previous object

S1 S2 S3

object Type

Any Any Any

pointer to next object

Object Key
State

Value

Access time

Pointer to previous object

Pointer to next object object key

Figure 6.9 Object structure and object link.

204 CORBA CACHING

Sn

S6 Sn S4 S1

tail head

0
1
2

4
5

n

3

6

S1

S6

Sn

S4
S3

S3 S4S6 S1
evict

S3

Hash table

Key S6 found

After a popular object hit

Before a popular object hit

Evictor Queue (FIFO)

Figure 6.10 Evictor pattern.

the previous link(S3) and forward link(S4) are destroyed. A new link with the and
the data S6 is constructed in the tail of the queue.

// Code fragment of Evictor class
public class Evictor {

protected class LINK {...}
protected LINK first_; // the head of queue
protected LINK last_; // the tail of queue
protected LINK current_; // last accessed object in queue

public int isCacheValid() {...} // check whether the cache is valid
public int hash_search(const char * key,

int * pos) {...} // search object key in queue
public void createFIFO() {...} // create queue
public LINK evict() {...} // evict object from evictor queue
public void updateEvitorManger() {...} // update the information

// of evictor
}

Server Manager

The server manager class inherits from the register class which allows the server
manager to callback the clients. The callback happens only if one of the clients per-
forms a write operation. Only the write operation is shown below:

// Code fragment of Server Manager class
import org.omg.CORBA.Any;

TESTING 205

void setStatement(const Any s, int num) {
String key = new String();
acc.setStatement(s,num,pe);
assignKey(num,key,’s’);
notify(key); // broadcast the invalidate message to client

// based on the object key
}

6.8 TESTING

This section shows the different tests made on the proposed CORBA caching ap-
proach.

Workload Generation

There are different workloads, such us the one using databases, the World Wide Web,
and distributed file systems. Although it is hard to generate a perfect workload, the
designed workload is based on the initial purpose-evaluation of the distributed ap-
plication. Thus, distributed file systems workload is suitable for this purpose. The
distributed file system workload (Princeton workload) [15] is selected for the evalu-
ation of banking system with a few modifications. The workload is described by the
following parameters: number of object invocations per client, inter-access times,
object creation rate, temporal locality, access type and transfer data size.

• The number of object invocations per client: In Princeton trace, the number
of object invocations per client is 50000 objects which will take up 16 hours.
Due to the resource limitation in the used OS system, a 1000 objects invocation
per-client is used.

• The inter-access times: Within some period, a request of the client will be made.
The inter-access time in Princeton workload is one second. Since 1 second is
too long for all of the testing, we take 0.1 second in the workload.

• Object creation rate: Every time a request is generated, the request can be on
the same existing object or a new object. The object creation rate decides how
many new objects should be created. In [3], it suggests 0.5% for an object cre-
ation rate. This is found to be insufficient for evaluating the system. Matt [15]
suggests 4.16% for a file creation rate. An object creation rate of 5% is chosen.

• Temporal locality: The temporal locality suggests which object needs to be ac-
cessed in the previous generated object. However, the previous accessed time
used in [3] is too long. Based on the number of selected objects, we recalculate
the figure as shown in Table 6.2.

• Access type: The access type determines the read and write operations of the
object. The read-write rate of 4:1 in [3] is selected for the workload generation.

• Data transfer size: We use the average data size of 16 KB in the Toronto
study [35].

206 CORBA CACHING

TABLE 6.2 Temporal Locality

1000 objects
Chosen object accessed

Percentage in the last n seconds

46.4% 3
53.4% 6

The inter-access rate decides the timestamp of an operation generated by the
event. Once the event is generated, the object creation rate is used to determine
whether a new object should be created or just access an existing object. In the case
of accessing an existing object, the access type is generated by the access type rate
read-write 4:1. The temporal locality is applied after the object is determined to be
object accessing rather than object creating. The first object is created without deter-
mining its creation rate.

Testing and Result

The tests presented here are those proposed in [104, 105]. Before the test experiment
is set up, a buffer size test is performed. When the buffer size increases, the cache
miss rate decreases. A full buffer size is defined to be a point when the miss rate
ceases to decrease when the buffer size is increased. Figure 6.11 shows the full buffer

0

20

40

60

80

100

0 2 4 6 8 10

M
is

s
ra

te

Total numbers of objects (percentage)

Miss rate with 20% write operation

Figure 6.11 Miss rate decreases with the increase of buffer size.

TESTING 207

size for 1000 objects is 60 objects. Half of that size is selected, which has around 30
objects as the buffer size. The experiments are conducted on Solaris 2.6 operating
system. The available memory in the server side is 250 MB. Each client has 30
objects and 60 objects buffer size separately. The maximum number of clients is 20.
Current network bandwidth is 10 MB.

As shown in Figure 6.12, the performance of the caching approach is obviously
better than that of the no-caching approach for 1000 objects with average data size
equal to 16 KB. Caching with half buffer size can save up to 45.5% of the access
time, while caching using full buffer size can save up to 50% of the access time. A
full buffer size caching only shows slightly better performance than it yields in the
half buffer size caching. This because when eviction takes place, the hash table is
very efficient. Both the half buffer caching and full buffer caching outperform the
no-caching. From Figure 6.12, we found that when the number of clients increases
to 20, the no-caching approach causes exhaustive invocations on the server side and
the server becomes saturated. Then memory used in the server reaches the current
limit 250 MB, and the server crashes. On the other hand, the caching will not reach
the current memory limit in the same situation. This is because many read requests
are handled on the client side. This proves the previous opinion that caching reduces
network congestion.

For the problem of a server crashing in the no-caching approach, this can be
caused by the lack of memory. More tests were conducted in [104, 105] to mea-
sure the performance when numbers of object invocation per-client increased or de-
creased. A 500 objects invocation per-client and 1500 objects invocation per-client

0

5

10

15

20

0 5 10 15 20

A
ve

ra
ge

 ti
m

e
in

 M
ill

is
ec

on
d

Nums of clients

no caching
caching with half buffer 30 objects
caching with full buffer 60 objects

Figure 6.12 Client invocation of 1000 objects.

208 CORBA CACHING

0

5

10

15

20

0 5 10 15 20

A
ve

ra
ge

 ti
m

e
in

 M
ill

is
ec

on
d

Nums of clients

no caching
caching with half buffer 30 objects
caching with full buffer 60 objects

Figure 6.13 Client invocation of 500 objects.

are performed in the experiment. A new temporal locality for each 500 objects and
1500 objects is recalculated separately. The full buffer size and half buffer size the
same as in the previous figure, which is 60 objects and 30 objects separately. From
the Figures 6.13 and 6.14, the caching approach was found to outperform the no-
caching approach. This is because many client requests are performed locally if the
object is cached on the client side. Only when the object is not found on client side or
the object is invalidated, Will the client perform a remote request. This is contrasted
with the no-caching approach as it causes more network congestion when the num-
ber of objects is increased. For 1500 objects invocation per-client, the no-caching
crashes the server when the number of clients equals 5. By monitoring the process,
we realized that it reached the current memory limit, whereas the caching approach
is consistent.

The experiment shows that full buffer caching is always better than half buffer
caching. This is because full buffer caching has less eviction or no eviction. The
probability that the object can be fetched in the full buffer size caching side is higher
than that of half buffer size caching. This is because full buffer size caching has more
available space for objects.

The result is affected by the workload as well, since the 500 objects invocation
per-client has fewer objects created, in which operation on the same object is higher
than 1000 objects and 1500 objects. In the implementation of the evictor, if the object
is referred to frequently, then the object can be fetched quickly since it is always at
the tail of the queue. No further operation is needed, also since 30 and 60 objects

SUMMARY 209

0

5

10

15

20

0 5 10 15 20

A
ve

ra
ge

 ti
m

e
in

 M
ill

is
ec

on
d

Nums of clients

no caching
caching with half buffer 30 objects
caching with full buffer 60 objects

Figure 6.14 Client invocation of 1500 objects.

in the 500 objects invocation per-client have more space. As a result, the 500 object
invocation has less access time than that of the 1000 objects and 1500 objects.

6.9 SUMMARY

This chapter reviews some of the existing techniques used in The caching approach.
An appropriate eviction algorithm for CORBA caching is described, and this is based
on an extension of the FIFO algorithm to include a double-linked list and hash ta-
ble. In this extended algorithm, if an object is referred in the middle of the queue,
the object can be removed quickly from the queue. Consistency algorithms based
on locking mechanism were analyzed and a variation algorithm of the Optimistic
2PL is described. In this algorithm, clients are not required to get a lock or retain
a lock, while at the same time it remains consistent by using a per-process design.
An interceptor is introduced to the lock mechanism, so that locking can be applica-
tion independent. This goal is achieved by implementing a monitor process which
intercepts all the requests from the clients, and locks the operation based on the data
attribute on which it operates.

To test the performance, existing workloads were carefully studied and a dis-
tributed workload based on a distributed file system was described. To work effi-
ciently, a workload generator is implemented. The generator iterates on each client
side to generate a different workload set. The performance shown in the experiments

210 CORBA CACHING

indicates that caching is feasible. With increasing numbers of clients, the perfor-
mance is significantly increased. Full buffer caching is slightly better than half buffer
caching. This shows that the eviction algorithm is efficient. At the same time, both
the full buffer caching and half buffer caching approaches outperform the no-caching
approach. Performance is significantly increased in the caching design.

6.10 REVIEW QUESTIONS

• Explain what usually causes poor performance in CORBA applications.
• Explain two important issues in caching.
• Explain briefly the problem(s) that occur in each existing cache replacement

algorithm which have been discussed in this chapter.
• When should lockings not be used to maintain cache consistency? Justify your

answer.
• What are three other issues that must be taken into account when designing a

caching approach?
• Compare the characteristics of callback locking, server-based two phased lock-

ing, and optimistic two phase locking.
• What is the advantage and the problem of a per-node caching scheme?
• What is the responsibility of each component of the caching architecture ex-

plained in this chapter?
• What happens if an evictor does not exist in the caching architecture?
• How can the Callback strategy used in this caching approach reduce network

congestion?

6.11 EXERCISES

• Discuss briefly how the eviction of “wrong” objects can have deep conse-
quences on the performance of a system. (Hint: relate this to the I/O cost
involved when accessing database entries.)

• How could one make the proposed caching approach be more portable to other
CORBA compliant ORB products?

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

PART III

CORBA SERVICES

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 7

Naming Service

This chapter provides details of the CORBA Naming Service, with examples given
to show how this service is used in distributed object environments. Section 7.1
provides the basic background about the naming service and describes some well-
known case studies (e.g., DNS and X.500). Details about the OMG Naming Service,
including a detailed description of the operations for name resolution, name bind-
ing/unbinding and creation/deletion of context, are given in Section 7.2.

7.1 BACKGROUND

A naming service is a generic directory service that provides similar functionalities
as the White Pages, such as finding an address of a person when his/her name is
known. Given a name of an object, the naming service is responsible for returning the
reference to that object. Names for objects are very useful because they can be used
to externally identify objects and therefore make it easy for the user to remember
and find them. This becomes very important when distributed environments become
more and more open with a very large number of inter-connected systems.

Names require management. They can be treated uniformly, each within its own
name space, and require the following management and administrative functions:

• Name space structuring: The structure of a name space must be defined as a
design decision, and this reflects the naming policy adopted.

• Name allocation: At some level or in some context, a name should be unique;
for example, an IP address must be unique in a network. Name management
includes the activity of administering and allocating the unique part of a name
to a particular entity. The name space may be partitioned so that names can be
independently allocated by multiple management agents without conflicts.

• Name registration: This is a function of directory service management which
includes the activity of making persistent the information which permits map-
pings between names and entities. An example is a name to address mapping.
This is critical information, so it must be complete, accurate and readily avail-
able.

213

214 NAMING SERVICE

A naming service enables attributes such as addresses of resources or objects to
be obtained when given their names. It manages the naming space using specific
operations. In this section we give an overview of the naming service in distributed
systems and we later present two case studies, DNS (Domain Name Service) and
X.500 Directory Service.

7.1.1 Naming

Names, in a system, are generally used to enable users to locate and communicate
with the entities on which they operate. Names may refer to a variety of resources
such as computers, services, ports and individual objects. Names are known by the
users, and the naming service provides a mapping of these names to the (system)
identifiers of the corresponding resources. System identifiers provide efficient access
to appropriate resources, and more importantly they are fixed-length bit strings.

Names cover three different concepts: symbolic names, unique identifiers, and
addresses. The former are ordinary names through which users identify the entities
on which they wish to perform their operations. A symbolic name could indicate
location information (e.g., laser printer@Computer Room) or may be location
independent (e.g., Amazigh Tari 1999). Unique identifiers are those used by systems
to refer to persistent entities. They provide immutable identifiers, which are efficient
for system use. Addresses enable a support system to locate the physical location of
an entity.

Figure 7.1 illustrates an example where names are used to locate objects in a dis-
tributed system, such as files. The file identifier, which in this case contains the port
identifier and the identifier of the file within the server, is resolved. Several mappings
are performed to access the file: mapping its textual file onto a resource identifier,
mapping this to a port identifier and service-specific identifier, and mapping the port
identifier to a network address, and the service-specific identifier on the resource in
the appropriate server.

The association between a name and an object is called binding. A naming ser-
vice is responsible for managing a database binding between a set of textual (i.e.,

/home/z/zahirt/research/caching.tex

163737 8

3:90:99a:3:a0:4
file

network address
Server

resource identifier

file name

Figure 7.1 Names used to locate resources.

BACKGROUND 215

Name

Algorithm
Mapping ...

name_2

name_k

name_1
1

2

O

O
O

3

context

name space universe of objects

Figure 7.2 General model for naming.

human-readable) names and attributes of objects. This service provides the operation
resolve() that looks up attributes in the database for a given name. Other operations
are also supported by the naming service: for example, creating new bindings with
new names, deleting bindings and listing names. For large scale applications, the
database bindings are distributed in several sites and also replicated to improve the
availability of the service.

When names are used, the naming service needs to associate names with particu-
lar objects. In any particular naming system, names are chosen from a name space,
which is comprised of an alphabet of symbols together with syntax rules that spec-
ify which names are acceptable in this name space. As shown in Figure 7.2, a name
mapping algorithm associates some (not necessarily all) names of the name space
to some (again, not necessarily all) values in a universe of values. A value may be
an object, or it may be another name from either the original name space or from a
different name space.

Performing the name mapping algorithm to determine a value that is associated
with a name is, as mentioned earlier, known as resolving the name. This is generally
controlled by an additional parameter, known as a context. For a given naming sys-
tem, there can be many different contexts, and a single name of the name space may
map to different values when different contexts are used. For example, in ordinary
discourse when I refer to “you,” “here,” or “Mary” the meaning of those names de-
pends on the context in which I utter them. The most common implementation of a
context is a table of particular name to value (object) mappings, which are known as
bindings, since they have been fixed in advance of lookup. One thus describes a name
as being bound to a value in a particular context. For example, a telephone book is a
context that binds personal names to telephone numbers. A name that is not bound
in a context is said to be free in that context. There are usually several contexts, so
the interpreter must specify which one to use.

Conceptually, there are three operations associated with a naming system:

• Resolve (name, context): When an interpreter encounters a name of an object,
it identifies an appropriate context. It resolves the name in that context, and it
substitutes the corresponding value for the name as it continues interpretation.

• Bind (name, value, context): This operation proposes a new binding; the status
result reports whether or not the proposal is acceptable to the naming system.

216 NAMING SERVICE

• Unbind (name, value, context): This operation removes an existing binding,
again with a status reporting of success or failure.

Different naming systems have different rules about uniqueness of name to value
mappings. Some naming systems have a rule that a name must map to exactly one
value in a given context, while in other naming systems one name may map to several
values, or one value may have several names, even in the same context. The name
mapping algorithm plus a single context does not necessarily map all names of the
name space to values; therefore, a possible outcome of performing the name mapping
algorithm can be a not found result. In some systems, a possible outcome can be a
list of values. In practice, there are three commonly used name mapping algorithms:
simple table lookup, path name resolution, and search.

7.1.1.1 Simple Table Lookup. When the implementation of a context is a
table of {name, value} pairs, the name mapping algorithm becomes a simple lookup
of the name in that table (with an appropriate access method, such as an index or
hash-table, when the table is too large). Binding a name to a value consists of simply
adding that {name, value} pair to the table. When a naming system uses table lookup
contexts, it is immediately apparent how different contexts may contain different
bindings for the same name.

Several real world examples are based on the table lookup, such as:

• The registers of a processor are named with numbers. The value is the register
itself and the mapping from name to value is accomplished by wiring. This
name does not identify the contents of the register, although those contents may
also have a name in a program that uses the register. Thus in the sentence “The
value of X is currently in register two,” “two” names a physical register, and
“X” names its contents.

• Storage cells (individual memory locations) in a virtual memory are similarly
named with numbers known as addresses. The algorithm for mapping gener-
ally involves lookups in page tables, which provide bindings from blocks of
addresses (pages) to blocks of contiguous storage cells. When multiple virtual
memories are used to enforce modularity, each virtual memory is a distinct
context; a given address usually refers to a different storage cell in each virtual
memory. Storage cells can also be shared among virtual memories, in which
case the same storage cell may have the same (or different) addresses in differ-
ent virtual memories, depending on the bindings in the page tables.

• The file system of a personal computer involves names and contexts at several
levels: disk sectors, file storage regions, files, and directories are all named ob-
jects. Directories are examples of table lookup contexts. A particular file name
may appear in several different directories, bound to either the same or different
files.

• Ports of a data communication system such as the Internet are usually named
with two distinct naming systems. The first one, used inside the network, in-
volves a name space consisting of numbers in a fixed length field, and maps to
physical entrance and exit points of the network. A second naming system, used

BACKGROUND 217

by clients of the network, maps a more human-friendly name space of character
strings to port names of the first name space.

7.1.1.2 Path Names. A path name is the second most commonly encountered
in naming algorithms. A path name is a name that explicitly includes a reference to
the context in which it should be resolved. A path name involves some syntax that
separates its components. Some examples of path names are:

zahirt.cs.rmit.edu.au
/home/z/zahirt/corba
Chapter 4, section 3, first paragraph
First paragraph of Section 3 of Chapter 4

The two last examples suggest that different naming systems place the component
names in opposite orders, and indeed the first three examples also demonstrate both
orders. The order of the components comes into play in the interpretation of the
path name, which is most easily explained recursively: all but the least significant
component of a path name is an explicit context intended to be used to resolve that
least significant component.

Path names are usually used to identify objects that are organized in a hierarchical
structure. Contexts are treated as objects, and any context may contain a name to
object binding for any other object, whether a context or not. The name interpreter
identifies one context to use as the root, and it then resolves all absolute path names
by following a path from the root to the first named context in the path name, then
the next, etc., until it reaches the object that was named by the original path name. It
similarly can resolve relative path names by referencing to a variable containing the
absolute path name of the current context.

7.1.1.3 Search. Simple table lookups and recursive path name resolution may
be the two most common forms of name resolution, but there are many situations
which involve more elaborate schemes with multiple table lookups: search. Search
is typically involved, for example, when a compiler creates a binary program that
imports a named interface from a library of subroutines and functions. A search is
also often involved when the user of a desktop computer types a command that refers
to a program and some data object, or double clicks on an icon.

Still search is a widely used mechanism. In addition to being used by the loader
to locate programs in libraries, search is used by user interfaces to locate commands
whose name is typed by the user, by compilers to locate interfaces, and by documen-
tation systems to locate documents. Additionally in a programming language with
nested environments, a variable that is free in the current context gets bound by a
search of hierarchically containing contexts.

7.1.2 Case Studies

So far we have seen some implementations of the basic functions of a naming ser-
vice in several environments. This section provides a description of two case studies,

218 NAMING SERVICE

namely DNS and X.500, which may help the reader to understand the implementa-
tion issues of the naming service within the context of distributed systems.

7.1.2.1 Domain Name System (DNS). DNS provides naming of computers
and services in the Internet. DNS is a very general name management and name
resolution system that hierarchically distributes the management of names to differ-
ent naming authorities, and it also hierarchically distributes the job of resolution of
names to different name servers. Its design allows it to respond rapidly to requests for
name resolution, to scale up to very large numbers of stored records and very large
numbers of requests. It is a quite robust, in the sense that it provides continued, ac-
curate responses in the face of many kinds of network and server failures. The basic
interface to DNS is quite simple, that is, value = dns resolve (domain name),
which is a little different from the standard resolve interface. There is no context
argument because there is only one, global, context for resolving all Internet domain
names, and it is wired into dns resolve(). The primary use for DNS is to associate
human-friendly character string names, called domain names, with machine-oriented
binary network attachment point identifiers: in other words, IP addresses. The term
domain is used in a very general way in DNS: it is simply a set of one or more
names that have the same hierarchical ancestor. This means that naming regions are
domains, but it also means that the personal computer is a domain with just one
member.

In the usual DNS implementation, binding is not accomplished by invoking
bind() and unbind() (to delete the binding) operations as in the general naming
model, but rather by using a text editor or database generator to create and manage
tables of bindings. These tables are then loaded into DNS resolvers by some behind-
the-scenes method as often as their managers deem necessary. One consequence of
this design is that changes to DNS bindings do not often occur within seconds of
the time you request them; they typically take hours, instead. Domain names are
path names, with components separated by periods (called dots, particularly when
domain names are read aloud) and with the least significant component coming first.
A typical domain name is goanna.cs.rmit.edu.au.

The name resolution operation of DNS is conceptually simple, but it has several
elaborations that enhance its performance, scalability, and robustness. For example,
when presented with a domain name, dns resolve() sends that domain name to a
root name server, whose network attachment point it somehow knows. The root name
server extracts the most significant component of the domain name (in the example,
au) and looks up just that component in its tables. The binding that it finds there is to
the network attachment point of another name server that handles all names that end
in au. The root responds by sending back a message saying “the name server for the
au domain is at network attachment point Z.”

This sequence repeats for each component of the original path name, until
dns resolve() finally reaches the name server for cs.rmit.edu.au. That name
server has a record for the network attachment point of goanna.cs.rmit.edu.au,
so it sends back a message saying “goanna.cs.rmit.edu.au is at network at-
tachment points.” dns resolve() returns this result to its caller, which can go on to

BACKGROUND 219

initiate some network protocol with that network node. The server that holds a name
record for a domain name is known as the naming authority for that domain name.
In this example, the name server cs.rmit.edu.au is the naming authority for the
goanna.cs.rmit.edu.au domain, as well as all other domain names that end with
cs.r.mit.edu. Note that this definition of naming authority means that the naming
authority for the name of a name server is different from the naming authority for
the names managed by that server. Thus the root name server is the naming authority
for the domain name au, while the au name server is the naming authority for all
domain names that end in au.

7.1.2.2 X.500 Directory Service. X.500 is a directory service which is de-
fined by CCITT and ISO standards organizations to be used by individuals and
organizations to make available a wide range information about themselves and
the resources they wish to offer for use in the network. X.500 is specified as an
Application Level Service in the Open Systems Interconnection (OSI) set of stan-
dards.

The X.500 directory is organized under a common “root” directory in a tree hi-
erarchy (called Directory Information Tree, i.e., DIT) of: country, organization, or-
ganizational unit, and person. An entry at each of these levels must have certain
attributes; some can have optional ones established locally. Each organization can
implement a directory in its own way as long as it adheres to the basic schema or
plan. Each local directory is called a Directory System Agent (DSA) and can repre-
sent one organization or a group of organizations. The DSAs are interconnected from
the Directory Information Tree (DIT). The user interface program for access to one
or more DSAs is a Directory User Agent (DUA). DUAs include who is, finger, and
programs that offer a graphical user interface. X.500 is implemented as part of the
DCE in its Global Directory Service (GDS).

X.500 directory model is a distributed collection of independent systems which
cooperate to provide a logical data base of information to provide a global directory
service. Directory information about a particular organization is maintained locally
in a Directory System Agent (DSA). This information is structured within specified
standards. Adherence to these standards makes the distributed model possible. It is
possible for one organization to keep information about other organizations, and it
is possible for an organization to operate independently from the global model as
a stand alone system. DSAs that operate within the global model have the ability
to exchange information with other DSAs by means of the X.500 protocol. Each
DSA provides information for the global directory. Directories are able to locate, in
the hierarchical structure discussed above, which DSA holds a certain portion of the
directory. Each directory manages information through a defined set of attributes and
in a structure defined as the Directory Information Base (DIB). A DSA is accessed
by means of a DUA which interacts with the directory by communicating with one or
more DSAs as necessary to respond to a specific query. DUAs can be an IP protocol
such as whois or finger, or a more sophisticated application which may provide a
graphical user interface access to the DSA. Access to a DSA can be accomplished
by an individual or automated by a computer application.

220 NAMING SERVICE

In addition to the directory model, the X.500 standard defines the information
model used in the directory service. All information in the directory is stored in
“entries,” each of which belong to at least one “object class.” The object classes to
which an entry belongs defines the attributes associated with that particular entry.
Some attributes are mandatory white others are optional. System administrators may
define their own attributes and register these with the regulating authorities, which
will in turn make these attributes available on a large scale. Every entry has a Relative
Distinguished Name (RDN), which uniquely identifies the entry. An RDN is made
up of the DIT information and the actual entry. The directory operates under a set of
rules know as the directory schema. This defines correct utilization of attributes, and
ensures an element of sameness throughout the global Directory Service.

An example of an entry under “RMIT University” will have the following struc-
ture under X.500:

o=RMIT Universtity

ou=Staff

cn= Zahir Tari

c=AUS C=US

root

ou=Guests

cn=Omran Bukres

@c = AUS @o = RMIT University @ou = Staff @cn = Zahir Tari

7.2 FUNCTIONS

This section provides some insight into the OMG Naming Service [72]. As with other
naming services, this service allows one or more logical names to be associated with
an object reference. A server that holds an object reference can register it with the
naming service. The name can subsequently be used by clients of that server to find
the object. Client applications can use the naming service to obtain the first object
reference by using the logical name assigned to that object.

The OMG Naming Service is designed around a syntax-independent, in-memory
hierarchical name structure that can be used with any of the established naming con-
ventions, such as in Unix syntax (where names are organized in a hierarchy, sepa-
rated with slashes, and they can be almost any length), DOS syntax (where names are
separated by backslashes and with a length of “8 dot 3” characters), and X.500 syn-
tax (where names are separated by commas and space between names is allowed).
The OMG Naming Service provides a multilevel name structure, and the clients are

FUNCTIONS 221

responsible for inserting the name separators (e.g., slashes, backslashes) before dis-
playing the compound name.

As for other naming systems, the association of names to objects defines name
bindings and these are persistent within naming contexts. In the previous section,
we saw the different ways these bindings are made persistent (e.g., tables), but this
issue is an implementation one; therefore, there is no reference to it in the OMG
specification document for the naming service [72]. Names are unique within each
naming context; however, different names can be bound to an object in the same or
different contexts at the same time. There are no absolute names. A name binding is
always defined relative to a naming context. To resolve a name is to determine the
object associated with the name in a given context. To bind a name is to create a
name binding in a given context.

Because a context is like any other object, it can also be bound to a name in a
naming context. Binding contexts form the structure of a graph called the naming
graph which is a directed graph with nodes and labelled edges where the nodes are
contexts. A naming graph allows more complex names to reference an object. Given
a context in a naming graph, a sequence of names can reference an object. This
sequence of names, called a compound name, defines a path in the naming graph
to navigate the resolution process. Figure 7.3 shows an example of a naming graph,
where the directed edges are object references. The nodes of the graph are like the
type of the edges, where solid nodes represent application objects and others are

admin

services

machines

machine

mango.customware.com

workgroup

local to mango

NamingFactory

EventFactory

InterfaceRepository

relationships_server
Events_sever

PropertySet_server
dbxWrapper_server

services

Adder

root

local to goanna

goanna.cs.rm
it.edu.au

add55

add50
add12

Counter

CounterFactory

AdderFactory

servers

services

development

root

Figure 7.3 A naming graph.

222 NAMING SERVICE

contexts. Depending on the systems used, the graph can be a hierarchy as in Unix
or DOS, or just an ordinary graph with cycles. As illustrated in this example, there
are several root naming contexts, one local to mango server and the other one for
goanna server, which is a general rule for naming graphs. As we will see in a later
section, there is a specific operation of the ORB idl interface that returns the root of
the naming graph for a given ORB daemon running a specific server.

Also, in the proposed example of Figure 7.3, even though the graph seems like
it is built as one unique graph, it is actually a union of a set of naming sub-graphs
(more precisely, a federation of naming graphs): one sub-graph is located in goanna,
the other ones in mango, etc. These sub-graphs can be located in different machines,
local or remote, supporting different conventions, such as DOS or Unix conventions.
Clients can transparently access to objects in these different sub-graphs using the
API of the naming service, which will be covered later.

Let us start now by introducing more details about the OMG IDL of the naming
service. Many of the operations defined in a naming context take names as parame-
ters. Names have a structure and they are ordered sequences of components. A name
with a single component is called a simple name; a name with multiple components is
called a compound name. Each component except the last is used to name a context;
the last component denotes the bound object. The notation

name = [component_1 , component_2 , ..., component_k]
name[0] = component_1
name[2] = component_2
...
name[k-1] = component_k

indicates the sequences of components. A name component consists of two at-
tributes: the identifier attribute and the kind attribute. As shown below for the IDL
for a compound name, both the identifier attribute and the kind attribute are rep-
resented as IDL strings. The kind attribute adds descriptive power to names in
a syntax-independent way [72]. The values of this attribute can be c source, ob-
ject code, executable, pdf, or anything that can give additional information about
the objects users are looking for. This allows applications that use syntactic naming
conventions to identify related objects. For instance, Unix environments use suf-
fixes such as .c (for c source) and .o (for object code). Applications (such as the C
compiler) depend on these syntactic conventions to make name transformations, for
example, to transform a C file adder.c into adder.o. Obviously, the OMG naming
system does not interpret, assign, or manage the values of the kind attributes. Only
the specific application may make policies about the use and management of these
values.

Referring to the example of Figure 7.3, a name can have the following form:

name = [component_1 , component_2 , component_3, component_4]
name[0].id = ‘‘machine’’
name[1].id = ‘‘development’’

FUNCTIONS 223

name[2].id = ‘‘services’’
name[3].id = ‘‘Adder’’

The example refers to the naming context which is the sub-context of the context
that has a name “services.” In the general case, the OMG idl for name is as following:

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};

typdef sequence <NameComponent> Name;

The lack of name syntax is especially important when considering internation-
alization issues. Software that does not depend on the syntactic conventions for
names does not have to be changed when it is localized for a natural language that
has different syntactic conventions,unlike software that does depend on the syntac-
tic conventions which must be changed to adopt to new conventions. To avoid is-
sues of differing name syntax, the naming service always deals with names in their
structural form, that is, there are no canonical syntaxes or distinguished meta char-
acters. It is assumed that various programs and system services will map names
from the representation into the structural form in a manner that is convenient to
them.

OMG Naming Service provides several operations for navigating and updating
the naming graphs: binding objects, name resolution, unbinding, naming contexts,
deleting contexts, and listing a naming context. To simplify the description of these
operations, we will first provide below the IDL of the CORBA Naming Service,
without the details of the exceptions, for example. Later we will go through the
different operations of the IDL and illustrate their use on the example of Fig-
ure 7.3.

interface NamingContext {
...
void bind(in Name n, in Object obj) raises(...);
void bind_context(in Name n, in NamingContext nc) raises(...);
void rebind(in Name n, in Object obj) raises(...);
void resolve(in Name n) raises(...);
void unbind(in Name n) raises(...);
void list(in unsigned long how_many,

out BindingList bl,
out BindingIterator bi) raises(...);

NamingContext new_context() raises(...);
NamingContext bind_new_context(in Name n) raises(..);
void destroy() raises (...);

};

224 NAMING SERVICE

7.2.1 Name Resolution

Before any operation is performed on a naming context, say services of the naming
graph of Figure 7.3, the reference to this context object needs to be found. Because
of the structure of the naming graph, the references of all context objects along the
path that joins the root of the naming graph and the context in which the operations
need to be applied (i.e., services) are to be retrieved (i.e., resolved). In general cases,
if r1 −→ r2 −→ · · · −→ rp is a directed path of the naming graph, where r1 is the
root context and rp is the name of context in which we are looking for the reference,
then all the references of the contexts ri , 2 ≤ i ≤ p − 1, need to be found. By using
the operation

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

on a given context object of the directed path, say the context object with the
name r j (2 ≤ j ≤ p − 2), will return the reference to the context object with the
name r j+1. For instance, if the reference of the context machine is o-machine, then
the reference o-services to the context services can be found as follows:

CORBA::Object obj3;
CosName::NamingContext o-services;
CosName::Name name; // initialisation of the name
name.length(1);
name[0].id = CORBA::string_dup(‘‘services’’);
obj3 = o-machine->resolve(name);

// we assume that all checkings are done before down-casting
o-services = CosName::NamingContext::_narrow(obj3);

To obtain a reference to the root context of a naming graph, this needs to be done
by using a specific operation of the ORB idl, that is, resolve initial re f erences()
operation, as follows:

CORBA::ORB orb = CORBA::ORB_init(argc, argv);
CORBA::Object obj1;
CosName::NamingContext o-initial;
obj1 = orb->resolve_initial_references(‘‘NamingService’’);
o-initial = CosName::NamingContext::_narrow(obj1);

To obtain the reference to the context “machine,” the operation resolve() needs
to be applied on the object o-initial with the name of the context as a parameter.

CORBA::Object obj2;
CosName::NamingContext o-initial // one obtained above;
CosName::Name name; // initialisation of the name
name.length(1);

FUNCTIONS 225

name[0].id = CORBA::string_dup(‘‘machine’’);
obj2 = o-machine->resolve(name);

// we assume that all checkings are done before down-casting
o-machine = CosName::NamingContext::_narrow(obj2);

As the reader may see, the operation resolve() was applied twice: one time on
the object reference o-initial to obtain the reference to the to the naming context
machine; and the other time on the object reference o-machine to obtain the reference
to the naming context services. This process can be simplified by directly applying
the operation resolve() on the object o-initial with the appropriate name (as a path
machine −→ services).

CosName::Name name;
name.length(2);
name[0].id = CORBA::string_dup(‘‘machine’’);
name[1].id = CORBA::string_dup(‘‘services’’);
obj2 = o-initial->resolve(name);
o-services = CosName::NamingContext::_narrow(obj2);

As for the general case illustrated at the beginning of this section, where r1 −→
r2 −→ · · · −→ rp is a directed path of the naming graph, where r1 is the root context
and rp is the name of context in which we are looking for the reference, then it will
be enough to create a CORBA name with a length p − 1, as the following example
illustrates:

CosName::Name name;
name.length(p-1);;
name[0].id = CORBA::string_dup(‘‘r2’’);
name[1].id = CORBA::string_dup(‘‘r3’’);
...
name[p-1].id = CORBA::string_dup(‘‘rp’’);
... // apply resolve as in previous examples

7.2.2 Binding and Unbinding Names

The bind() operation assigns a name to an object in a given naming context. This
object can be a context object or an application object. Naming contexts that are
bound using bind do not participate in name resolution when compound names are
passed to be resolved. The syntax of this operation is as follows:

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

As for the resolve() operation, the operation bind() can be used several times
within a directed graph to assign a name to an object within a specific context. Al-

226 NAMING SERVICE

ternatively, the operation can be applied only once with a specific value for the name
to represent the complete path. In the example below, we will be using the operation
only once to bind a given name add-71 to an object (say new-obj, which can be of
any type) within the naming context Adder.

CORBA::Object new-obj = ... // it can be of any type
CosName::Name name;
name.length[4];
name[0].id = CORBA::string_dup(‘‘machine’’);
name[1].id = CORBA::string_dup(‘‘development’’);
name[2].id = CORBA::string_dup(‘‘services’’);
name[3].id = CORBA::string_dup(‘‘Adder’’);
o-initial->bind(‘‘add-71’’, new-obj);

The operation rebind() is used to force the creation of a new binding whether or
not that biding is already in use. This is a safer call than the bind() operation, which
fails (with an exception AlreadyBound (when the binding already exists). In the case
of the rebind() operation, if the binding with a specified name already exists, it is
simply dropped. This operation is generally useful when the user wants to ensure
that a binding is created whether or not the binding already exists.

The operation unbind() removes a binding within a naming context. This means
that the object still exists; however, it cannot be found within the context in which
the operation unbind() is used. Obviously, this object can be found from any other
context if bindings have been created (probably with different names). The follow-
ing example reverse the above procedure and unbinds the name “add-71” from the
context Adder.

CosName::Name name;
name.length[4];
name[0].id = CORBA::string_dup(‘‘machine’’);
name[1].id = CORBA::string_dup(‘‘development’’);
name[2].id = CORBA::string_dup(‘‘services’’);
name[3].id = CORBA::string_dup(‘‘Adder’’);
o-initial->unbind(‘‘add-71’’);

If the operation unbind() is applied on a context, such as Adder, than all the
content of this context can no longer be found unless that context is accessible from
other contexts. To unbind the context Adder, the procedure is similar to the previous
example.

CosName::Name name;
name.length[3];
name[0].id = CORBA::string_dup(‘‘machine’’);
name[1].id = CORBA::string_dup(‘‘development’’);
name[2].id = CORBA::string_dup(‘‘services’’);
o-initial->unbind(‘‘Adder’’);

FUNCTIONS 227

before the use of unbind() after the use of unbind()

admin

services

servers

machine

root

add50

add12

development

admin

services

servers

root

add50

add12

services

Counter

CounterFactory

Counter

CounterFactory

AdderFactory AdderFactory

services

development

machine

add55 add55

Figure 7.4 Deleting of the binding related to Adder.

A naming graph is similar to the one proposed in Figure 7.4. All of the infor-
mation related to the disconnected graph containing the objects add12 and add50 is
no longer accessible from any other naming context. In most situations, this result
with dangling context sub-graphs is not appropriate because the information related
to these graphs is lost. Therefore, it is generally useful to check whether there is
another binding from a context before deleting a binding.

7.2.3 Creating and Deleting Naming Contexts

The OMG Naming Service supports two operations to create new contexts: new
context () and bind new context (). The former returns a naming context imple-
mented by the same naming server as the context on which the operation was in-
voked. The new context is not bound to any name. The latter operation creates a new
context and binds it to the name supplied as an argument. The newly created con-
text is implemented by the same naming server as the context in which it was bound
(i.e., the naming server that implements the context denoted by the name argument
excluding the last component).

Let us assume that we want to create a sub-context within the context Adder with
a name SpecialAdder. As mentioned earlier, this can be done in two ways using
the two different operations. If the operation new context () is used, then we will
proceed as follows:

CosNaming::Name name;
name.length[4];
name[0].id = CORBA::string_dup(‘‘machine’’);

228 NAMING SERVICE

name[1].id = CORBA::string_dup(‘‘development’’);
name[2].id = CORBA::string_dup(‘‘services’’);
name[3].id = CORBA::string_dup(‘‘Adder’’);

// we first get the context Adder
CosNaming::NamingContext ContAdder;
CORBA::Obj obj4;
obj4 = o-initial->resolve(name);
ContAdder = CosNaming::NamingContext::_narrow(obj4);

// create a context
CosNaming::NamingContext newCont;
NewCont = ContAdder->new_context();

// assign a name
CosNaming::Name newName;
newName.length[1];
newName[0].id = CORBA::string_dup(‘‘SpecialAdder’’);
ContAdder->bind_context(newName,NewCont);

This creation of the new context and later the assignment of a name to it can be
done in one step by using only one operation, that is, bind new context ():

CosNaming::NamingContext newCont;
CosNaming::Name name;
name.length[5];
name[0].id = CORBA::string_dup(‘‘machine’’);
name[1].id = CORBA::string_dup(‘‘development’’);
name[2].id = CORBA::string_dup(‘‘services’’);
name[3].id = CORBA::string_dup(‘‘Adder’’);
name[4].id = CORBA::string_dup(‘‘SpecialAdder’’);
newCont = o-original->bind_new_context(name);

The removal of a context is done by using the operation unbind(), as illustrated
in the previous section. As mentioned, if the binding is deleted, it will be difficult to
retrieve the content of the context unless there are references to it from other contexts.

As mentioned earlier, the unbind() operation deletes only the binding, and is
shown in Figure 7.4. The information related to the disconnected sub-graph will be
in the server, unless this sub-graph can be accessed from another context or the same
context with a different name. To correctly destroy a context, that is, both delete the
context as well as remove the bindings, another operation needs to be used. This
operation is the destroy() operation. When this is used on the context Adder of
Figure 7.1, destroy() will produce a structure of the naming graph as depicted in
Figure 7.5. Obviously, the remaining applications objects are no longer accessible,
given there are no bindings from another context.

Figures 7.5 and 7.6 show a general example of a naming graph and illustrates the
differences between the operations unbind() and destroy() on a given naming con-

FUNCTIONS 229

admin

services

servers

machine

root

add50

add12

development

admin

services

root

services

Counter

CounterFactory

Counter

CounterFactory

AdderFactory AdderFactory

services

development

machine

add55

before the use of destroy() after the use of destroy()

servers

Figure 7.5 Destroying the naming context Adder.

X

unbind X destroy X

Figure 7.6 unbind() and destroy() operations.

230 NAMING SERVICE

text. As mentioned earlier, these operations need to be used carefully to avoid having
objects that cannot be accessed anymore. Obviously, the OMG Naming Service does
not guarantee this type of safety. It is the responsibility of the users to make sure that
their objects, whether they are context or application objects, are accessible.

7.2.4 Listing the Context of a Naming Context

The list () operation allows a client to iterate through a set of bindings in a naming
context. It returns at most the requested number of bindings in a list of type Bind-
ingList. If the naming context contains additional bindings, the operation returns an
iterator (of type BindingIterator) with the additional bindings. If the naming context
does not contain additional bindings, the binding iterator is a null object reference.
The IDL is given below:

enum BindingType {object, ncontext};
struct Binding {

Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;
void list (in unsigned long how_many,

out BindingList bl, out BindingIterator bi);
;

7.3 SUMMARY

In this chapter we provided a detailed description of the OMG Naming Service, and
gave an example of how to use such a service with OrbixWeb. We first showed the
real importance of the use of names within distributed systems, and in particular,
we showed how existing systems implement such functions of naming services (e.g.,
resolve function). To provide a better understanding of the different structures of
a naming service, we explained the architecture and operations of two well-known
systems, namely, the DNS (Distributed Naming Service) used in the Internet, and
X.500 Directory Service which is widely adopted by the industrial community.

The different functions of the OMG Naming Service were described and appropri-
ate examples were shown. These functions covered binding and unbinding of names,
creation and deletion of naming contexts, and finally the function that lists the con-
tent of the a naming context. Exercises are given at the end of this chapter to help
readers practicing with the OMG Naming Service. We suggest that the reader have
a look at the OMG specification in case additional information is needed (e.g., the
complete description of the IDL).

EXERCISES 231

7.4 REVIEW QUESTIONS

• What are the management functions required by names?
• What is binding? What is the relationship between the binding and a naming

service? What are the three conceptual operations provided by a naming ser-
vice?

• Explain the three mainly used name mapping algorithms and illustrate their
differences.

• Explain the difference between the CORBA Naming Service and existing dis-
tributed naming services in relation to its name space structuring.

• Explain the similarities between the CORBA Naming Service and existing dis-
tributed naming services.

• What is the advantage of having a lack of name syntax in the CORBA Naming
Service?

• Explain the difference between a simple name and a compound name.
• Describe the following operations of the CORBA Naming service: bind(),

rebind(), resolve(), and bind new context ().
• Explain the name resolution process in DNS.
• Explain how the X.500 Directory Serviceis organized.

7.5 EXERCISES

• Provide a code fragment that does the following: get the initial reference to the
naming service, bind an object named boundObject in the context of r1 −→
r2 −→ r3, and unbind this object.

• Provide a code fragment that does the following: get the initial reference to
the naming service, get the context r2 from the previous question, create a new
context called r3new, and delete r3 context.

• Explain some cases where multiple names are bound to a single object.
• Explain how different types of entries in an X.500 Directory Service name hi-

erarchy can be translated to that of OMG Naming Service.

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 8

Trading Object Service

In Chapter 7 we saw how objects can be found by using the CORBA Naming Service
when their names are known. One problem that may arise is that the users do not
have details about the names that are associated with different objects, but they have
details about their (external) properties, such as the cost of printing a file. To enable
the creation of objects in such a way, another service is defined, called the trading
service, that is responsible for locating objects when the values of their properties
are known.

This chapter explains the details of the CORBA Trading Object Service (TOS).
Before introducing the different elements of the TOS, we will show an example of
how a TOS is used. The JTrader, which is a CORBA-compliant syntax will be used
to illustrate the use of different trader operations, such as registering and importing
a service type. Section 8.3 provides details about the elements of the CORBA TOS,
and Section 8.4 explains the trading policies, such as scoping policies, associated
with CORBA traders. Because query routing is very important when dealing with
large-scale distributed applications, in Section 8.5 we explain the underlying model
of the OMG query propagation mechanism and later show how this mechanism can
be extended to deal with dynamic information related to service offers. Finally, in
Section 8.6, we provide a short description of some existing CORBA TOS imple-
mentations.

8.1 OVERALL PICTURE

8.1.1 Basic Concepts

The general function of a trading service is to provide facilities for service providers
to advertise services and for clients to search and locate services available in a dis-
tributed system dynamically. An object that provides trading services in a distributed
system is called a trader. A trader can be seen as the third-party object which analo-
gously provides a “Yellow Page” type of service. It enables a match-making facility
for service providers and service users. Service users look for a service based on
its type or characteristics instead of its name. Just like a Yellow Page which acts as
an index system to provide information according to general categories, a trader pro-
vides a classification scheme for distributed objects, and more importantly, it enables
runtime advertising and retrieval of services under proper trading contexts.

232

OVERALL PICTURE 233

Trader Trader

Importer Exporter

Trader

Trader

Trader

Trader

service reply

import request
import reply

exports

service invocation

Figure 8.1 A network of traders.

A simple picture of the interaction between traders, clients and servers is depicted
in Figure 8.1. Services provided by service providers can be advertised, that is ex-
ported, to a trader. The information advertised by the service providers is known
as service offers. They describe a service using a set of service properties, such as
name, value and mode triples. The object placing the advertisement is called the ex-
porter. Exporting a service is therefore performed by an assertion made by the server
and will consist of the following details: (i) the service identifier, (ii) the methods of
the objects of the corresponding server (service types), (iii) the service properties
(attribute types/values), (iv) the location of the service. (In some sophisticated archi-
tectures, the location of the service is maintained by a Locator, which is an important
component of a Trader architecture).

Opposite of the service offer, a service request is issued by clients, called im-
porters, in order to find service offer(s) which satisfy its required matching con-
straints. The service request is made with following details: (i) service type (e.g., the
kind of service the client wants), (ii) service properties (expressed by the matching
constraints), and optionally (iii) searching and scoping policies (e.g., the preference
criteria or the extent of the search).

Both the service offer and the service request operations are mediated by traders.
In the case of a service offer, the trader needs to acquire sufficient details about
the offer in order to store the service in the type repository (usually defined as a
database). The amount of details required by the trader is necessary both for the
trader to know (i) how to store the service offer during the registration, and later, (ii)
how to accommodate the search of the service offers from the repository according
to the service request. Because the same service type can be available in different
traders, traders will need to route the service requests to other traders by following
the forward links of the trading graph. The routing graph is a subgraph of the trading
graph which involves only those traders that have received the service request, as
shown in Figure 8.2. When the original constraints of the service request are satisfied,
the traders of the routing graph return the result by following the path of links to
the routing in the opposite direction until reaching the original trader (which have
started the invocation of the service request). As we will see in later sections, specific

234 TRADING OBJECT SERVICE

TraderTrader

TraderTrader

TraderTrader

TraderTrader TraderTraderTraderTrader

TraderTrader TraderTrader

Trader

TraderTraderTraderTrader

TraderTrader TraderTrader

TraderTrader

The Trading Graph

im
p

o
rt re

q
u

e
st

im
p

o
rt re

p
ly

e
xp

o
rts

Trader

the routing of the query

the return of the result

The Routing Graph

Figure 8.2 Trader query routing.

policies are described in the OMG document [73] on the links between the traders
(e.g., hopcount) to allow the routing of trader queries along specific paths of a trading
graph. When the object references are returned, the importer can interact with the
service providers.

A simple example illustrating the use of traders is the printing example. In such a
case, the exporter can be a printer that exports its printing service with a set of service
properties suitable for the printing service, such as cost, speed and quality. Examples
of service offer properties are the service offer’s expiration time and owner. The
importer can be a user who wishes to print a report with a lower cost and within a
certain time. If the cardinality constraint, that is the number of printers specified by
the user to satisfy the original constraints, are not yet satisfied, then the local trader
will route the query to the remaining traders using specific information regarding
within the links of the trading graph. Using this graph, traders share information
about service offers amongst each other, and they can act recursively as clients to
each other.

Although the described view of service trading seems to be simple, there are
several approaches when dealing, for example, with the returned service offers and
persistency. Most of the traders, such ODP-based traders [86][63], return all of the
service matchings found in the type repository. A few approaches, such as [109], re-
turn a single (best) selection. The return of a single (best) selection saves the client
from having to browse through a long list of retrieved results. However, when the

OVERALL PICTURE 235

(best) selection cannot be found, it is sometimes suitable to return a group of service
offers, which together can meet the service request. It is generally up to the client to
decide within its service import policy on the number of service offers it wants for
every service request.

In most of the existing trader architectures [49, 69], service offers are registered
within a trader and are often stored in a database (as the type repository). This way of
dealing with persistency of service offers may cause the trader to become a service
bottleneck instead of being a service mediator. Other approaches, such as in [109],
keep the service references of those objects within the traders (in a file). Client re-
quests are to be done by the trader in consultation with all the service offers through
their interfaces. In other words, the trader decentralizes its exclusive right on its type
repository and lets the service matching be done by a bidding process between the
service offers and trader itself, whichever service provides the best matching will be
selected. This approach has the advantage that the burden of service mediation is be-
ing decomposed and distributed to the service offers themselves, but the potential dis-
advantage is that, if a trader has many registered service offers, inter-communication
costs can be prohibitively expensive due to the negotiation and deliberation process
needed for choosing a final bid by the trader.

8.1.2 OMG vs. ODP

The history of traders can be traced back to October 1994 when the International
Standard Organization (ISO), in conjunction with the International Electrotechnical
Commission (IEC), released a working document on traders [59]. In March 1996,
ISO and IEC issued another draft on the ODP trading function. Three months later,
OMG also released its trading service specification [73], which is largely based on
the ODP TFS [7]. Some of the ODP trading specifications were not appropriate
to use in the context of CORBA, and therefore needed to be changed. Some of the
problems were related to the fact that the ODP trading specifications do not allow for
the re-use of services, such as the query service, except in a hidden implementation-
dependent manner. Also, the operations provided many parameters that are irrelevant
within a CORBA environment.

The OMG View The OMG view of the trading service is to “facilitate the offer-
ing and discovery of instances of services of particular types.” [73] OMG considers a
trading service as a service object in itself. It is invoked to allow its clients to discover
services that become available. It uses the key operations of “export” and “import”
on a trader of services. OMG’s specification document on the object trading service
states two main considerations about the trader’s functionalities: (i) a trader “facili-
tates the offering and the discovery of instances of services of particular types”; (ii) a
trader “enables export and import, facilitates the discovery of, and late binding to ser-
vices.” The first point implies that the trader has knowledge of the service (or object)
life-cycle. It must be ready to accept frequent exports and de-registrations in order to
keep up to date. An environment in which a trader is to work has the potential to be

236 TRADING OBJECT SERVICE

dynamic. Under such conditions, behavior within the environment should not be pre-
dicted as services may come and go very frequently and unexpectedly. The second
point suggests that there is a large degree of automation in the activities of importing
and invoking service offers. The service offers are rigidly type-matched with precise
behavior descriptions. If this were not the case, then there could be problems due
to invoking an unwanted service. In general, programs are written and used in the
precise knowledge of the expected behavior.

The ANSA View “The activity of choosing services, such that they match some
service requirement. The choice is based on the comparison of the specification of
a service required (provided by a prospective consumer) and the service specifica-
tions supplied by service providers or their agents.”[24] This is the same as the OMG
view. However, there are a number of key differences in trader operation which are
a consequence of the differences in the ODP and CORBA paradigms. An interesting
difference is that the OMG computational model requires that a reserved function
name be made available as part of the ORB bootstrap. This allows all users of the
ORB to access the name without having to look it up via the naming service. The
calls are direct to the trader through one of a series of interfaces that give a specialized
interface according to the desired function. Alternatively, a client of an ANSA trader
makes the calls directly to a trader context and from there, all operations are carried
out. The client can navigate to different contexts and search for the appropriate ser-
vice. This has the disadvantage that all user operations, from client to administrator,
use the same interface. Therefore, the operations that each type of user needs are not
shielded from those who do not need them. This is what OMG tackles by providing
more than one interface to the same trader. The other implication from the ANSA
document in this regard is that when services are exported, they are stored in the
specified context. This shifts the responsibility of clustering to the client, which is
undesirable for a user-friendly, useful trader.

8.2 AN ILLUSTRATIVE EXAMPLE WITH JTRADER

This section shows the use of the OMG Object Trading Service. We first give a brief
discussion of the way CORBA functions, and later describe the process of advertising
a service with a trader and sending a query to a trader to find services. The example
uses stock trading as the service offer and an investor as the user of the service. The
programs are written in Java using JTrader version 0.2 and ORBacus ORB version
2.0.4.

8.2.1 Definition of a Service Offer

The service that we wish to export to a trader is a StockBroker service. The IDL
specification below shows the service type model of the stock trading service we
want to export. Note that this is only a description of the service that we want to
export.

AN ILLUSTRATIVE EXAMPLE WITH JTRADER 237

service StockBroker
{
interface Broker;
mandatory readonly property string firm_name;
mandatory readonly property float minimum_charges;
mandatory property float commission_rate;
};

The StockBroker service is provided by a Broker object. It is comprised of three
properties, the firm name, the minimum amount of commission charged and commis-
sion rate. A service provider has to provide values for all three properties as they are
defined as “mandatory” properties. The firm name and minimum commission rate
cannot be changed after the service is advertised. The property mode of “commis-
sion rate” is not defined as “readonly” because we will use the commission rate to
demonstrate the use of dynamic properties. The interface below defines the behavior
of a Broker who sells shares to the public with a commission.

interface Broker
{
readonly attribute string firm_name;
readonly attribute float minimum_charges;
readonly attribute float commission_rate;
boolean buy_share(in string share_code,
in unsigned long amount) raises(StockNotFound);

}

The services provided can be a function of an object, a product from a factory or
a professional service from a firm. It is not necessary to have the same object for the
service that we are going to offer. For example, we can offer a service of type Share
that has properties to define its share price, lowest share price, highest share price
and par value. This service type can return the same Broker object so that users can
use the buy share() function to buy the share in mind. The interface is compiled by
using the IDL compiler which generates three types of files: “holder” type, stub files,
and object or server implementation skeleton files. Orbix’s Java IDL compiler gener-
ates seven Java source files from the Broker interface: BrokerRef.java, Broker.java,
BrokerHolder.java, BrokerOperations.java, boaimpl Broker.java, tie Broker.java,
dispatcher Broker.java. Each of these files contains a type in the form of an

Java interface or a Java class. Table 8.1 gives a brief description of the roles of
each file.

When ORBacus Java IDL compiler jidl is used, five Java source files are gen-
erated from the same IDL interface: Broker.java, BrokerHolder.java, BrokerImpl
Base.java, BrokerHelper.java and StubForBroker.java. The purpose of Broker file is
similar to the BrokerRef file generated by OrbixWeb IDL compiler. StubForBroker
implements the operations defined in the interface Broker. Both the OrbixWeb Java
IDL compiler and ORBacus Java IDL compiler generate a holder class for the inter-
face. The BrokerImplBase class defines operations that must be implemented by a
class in the server.

238 TRADING OBJECT SERVICE

TABLE 8.1 OrbixWeb IDL Compiler Generated Files Description

BrokerRef A Java interface; the methods of this interface defines
the Java client view of the IDL interface.

Broker A Java class which implements the methods defined in
interface BrokerRef. This class provides functionality
which allows client method invocations to be forwarded
to a server. The primary role of this Java class is to trans-
parently forward client invocations on Broker operations
to the appropriate Hello implementation object.

BrokerHolder A Java class which defines a Holder type for the class
Hello. This is required for passing Broker objects as
inout or out parameters to and from IDL operations.

BrokerOperations A Java interface which maps the attributes and operations
of the IDL definition to Java methods. These methods
must be implemented by a class in the server.

boaimpl Broker An abstract Java class which allows server-side
developers to implement the Broker interface using one
of two techniques available in OrbixWeb; this technique
is called the BOAImpl approach to interface
implementation.

tie Broker A Java class which allows server-side developers to
implement the Broker interface using one of two
techniques available in OrbixWeb; this technique is
called the TIE approach to interface implementation in
OrbixWeb.

dispatcher Broker A Java class used internally by OrbixWeb to dispatch
incoming server requests to implementation objects.
Application developers do not require an understanding
of this class.

In the rest of this section, we will be using the ORBacus jidl compiler. We
will build the BrokerImpl class to implement all of the operations defined in the
BrokerImplbase class.

8.2.2 Service Export

A server application is needed to service client requests. The server application has
to obtain an ORB pseudo-object reference. This serves two purposes.

AN ILLUSTRATIVE EXAMPLE WITH JTRADER 239

First, it initializes itself into the ORB environment to serve clients. Second, the
ORB pseudo-object reference is needed for use in future ORB operations. Applica-
tions can be initialized in one or more ORBs. When an ORB initialization is com-
plete, its pseudo reference is returned and can be used to obtain other references for
that ORB. Applications call the init operation to obtain an ORB pseudo reference.

ORB orb = ORB.init(args, new Properties());
BOA boa = orb.BOA_init(args, new Properties());

Through the ORB we can obtain an object reference to a trader. This can be done
in three ways. If the trader is registered as an initial service of the orb, we can use the
ORB’s resolve initial re f erences() method to resolve the TradingService initial
reference. The second method is to get a reference of the trader through the CORBA
Naming Service. The third way is by obtaining the trader object reference from per-
sistent storage. In this example, we obtain a stringified trader reference from a file.
The basic procedure to obtain a trader object reference is shown in the code below.

// obtain a trader object reference
org.omg.CORBA.Object obj = <...>;
org.omg.CosTrading.Lookup trader =
org.omg.CosTrading.LookupHelper.narrow(obj);

org.omg.CosTrading.Register register = trader.register_if();

We want an instance of the Register interface to advertise a service with a trader.
The primary object associated with a trading service is an instance of the Lookup
interface. Therefore, an object of the the Lookup interface will need to be found.
Then an object of the Register interface through the Lookup object will be retrieved.
The TOS specification specifies a TraderComponents interface from which all the
five trading object interfaces inherit. This interface contains five readonly attributes,
namely lookup i f , register i f , link i f , proxy i f and admin i f , which repre-
sents the five components of a trader. Section 8.3 will provide more details about
these components. The IDL compiler generates functions that return the value of
these five attributes. A trader implementation does not have to implement all of the
five interfaces. A nil object reference is returned to the client if the trader does not
support a request interface. We can obtain a register object by invoking the function
register i f () of the Lookup object.

org.omg.CosTrading.Register register = trader.register_if();

The service offer can now be prepared to be exported to the trader. First, it is
important to make sure that the trader knows about the service type to be exported.
To do so, a message describe type will be sent to the Service Type Repository (STR)
of the trader to check whether a service type exists in the database. If the service type
is not in the STR, the system will throw an exception. We obtain an object reference
to the STR in the same way that we obtain the register object reference. Each of the

240 TRADING OBJECT SERVICE

implementations of the five trader interfaces have the function t ype repos() which
returns an object reference to a STR.

// find the reference to STR
org.omg.CORBA.Object obj = trader.type_repos();
ServiceTypeRepository repository =
ServiceTypeRepositoryHelper.narrow(obj);

The registration of a new service within STR can be done as following:

// assuming there is no super type for this service
String superTypes[] = new String[0];

// define the properties of the services type
PropStruct properties[] = new PropStruct[3];

properties[0] = new PropStruct();
properties[0].name = "firm_name";
properties[0].value_type = orb.create_string_tc(0);
properties[0].mode = PropertyMode.PROP_MANDATORY_READONLY;

properties[1] = new PropStruct();
properties[1].name = "minimum_charges";
properties[1].value_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_float);
properties[1].mode = PropertyMode.PROP_MANDATORY;

properties[2] = new PropStruct();
properties[2].name = "commission_rate";
properties[2].value_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_float);
properties[2].mode = PropertyMode.PROP_NORMAL;

repository.add_type(typeName, BrokerHelper.id(),
properties, superTypes);

The above procedure ensures that the service type that we want to advertise ex-
ists in the STR. If we advertise a service type which does not exist, we will get
an UnknownServiceType exception from the trader. Broker Helper.id() returns the
specific identification number for the Broker interface to be associated with the ser-
vice type. As we mentioned before, a service can have super types from which it
inherits. If a query for a service does not require an exact type match, the trader will
consider the subtypes of the request type when searching for matches. In this exam-
ple, we assume that StockBroker does not have any super types. As such, we create
an empty super type list to pass to the STR.

A query to a trader returns a list of object references that can provide the service
a user is looking for. We thus need to have the object reference ready when we

AN ILLUSTRATIVE EXAMPLE WITH JTRADER 241

advertise the service. We create an instance of BrokerImpl instead of Broker because
the latter is just an interface which cannot be instantiated.

BrokerImpl aBroker = new BrokerImpl();

The code below shows the procedure involved in preparing a service to be adver-
tised with the trader.

// prepare the broker properties to register
org.omg.CosTrading.Property [] properties =
new org.omg.CosTrading.Property[3];
properties[0] = new org.omg.CosTrading.Property();
properties[0].name = "firm_name";
properties[0].value = orb.create_any();
properties[0].value.insert_string(aBroker.firm_name());

properties[1] = new org.omg.CosTrading.Property();
properties[1].name = "minimum_charges";
properties[1].value = orb.create_any();
properties[1].value.insert_float(aBroker.minimum_charges());

The procedure involved in advertising a service that has a dynamic property is
different from a usual service advertisement. The job of providing a value for the
dynamic property commission rate is delegated to an object which implements the
IDL interface CosTradingDynamic::DynamicPropEval. In our case, a RateEval
object is used to provide the value for this property. The DynamicPropEval interface
provides eval D P() function which is invoked by the trader when it examines a ser-
vice that contains dynamic properties. The role of this function is to return a dynamic
property value for the trader to examine. The implementation of this function is de-
pendent on the service provider. It can obtain a value from the database or derive the
value from a mathematical calculation. In our example, the constructor of the RateE-
val provides a commission rate for this property when it is created and the function
eval D P() returns the value to the trader when the service is being examined. The
implementation of this function is shown in the program below.

public org.omg.CORBA.Any evalDP(String name,
org.omg.CORBA.TypeCode returned_type,
org.omg.CORBA.Any extra_info)
throws org.omg.CosTradingDynamic.DPEvalFailure

{
org.omg.CORBA.Any commissionRate = null;
if(!name.equals("commission_rate"))
throw new org.omg.CosTradingDynamic.DPEvalFailure(name,
returned_type, extra_info);

commissionRate = orb.create_any();
commissionRate.insert_float(rate);

242 TRADING OBJECT SERVICE

return commissionRate;
}

To prepare a dynamic property, a DynamicProp structure must be created as the
value of the commission rate. This structure contains the object reference of a Ra-
teEval object, a CORBA TypeCode indicating the type returned for this property. and
a CORBA Any containing information needed by the RateEval object.

// create dynamic property.
// RateEval object will provide the actual value
properties[2] = new org.omg.CosTrading.Property();
properties[2].name = "commission_rate";
properties[2].value = orb.create_any();
org.omg.CosTradingDynamic.DynamicProp dyProp =
new org.omg.CosTradingDynamic.DynamicProp();
dyProp.eval_if = new RateEval(orb,aBroker.commission_rate());

dyProp.returned_type =
orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_float);
dyProp.extra_info = orb.create_any();
DynamicPropHelper.insert(properties[2].value, dyProp);

As mentioned before, we need to specify a service type name under which we
want the service advertisings to fall. We advertise three Broker objects under three
different service type names to demonstrate the service type matching problem in
traders. The names chosen are StockBroker, ShareBroker, and ShareTrader. As we
will see from the query result later, the trader will only return a service that has an
exact type match.

After we have prepared all the necessary components, we can use the Register
object that we obtained through the Lookup object to advertise or export the service
with the trader. The export function returns an identification number for the offer if
the export process is successful.

String id = register.export(aBroker, typeName, properties);

8.2.3 Service Import

The steps involved in importing a service from a trader are straightforward. All
CORBA-compliant traders must support the Lookup interface. We concentrate on
the query operation of the Lookup interface in this section. This operation requires
nine parameters which are of types ServiceTypeName, Constraint, Preference,
PolicySeq, SpecifiedProps, unsigned long, OfferSeq, OfferIterator, and
PolicyNameSeq, respectively. We will explain each of these parameters in later sec-
tions.

ServiceTypeName is a string that specifies the type of service the user is looking
for. In this example, the investor is looking for a service of type ShareBroker.

AN ILLUSTRATIVE EXAMPLE WITH JTRADER 243

// service type
String type = "ShareBroker";

Constraints specify the group of advertised services that a user is interested in.
These constraints are expressed in the form of a string. In this example, the investor
is only interested in share brokers who charge a commission of less than twenty
percent.

constraint = new String("commission_rate < 0.2");

A Preference parameter states the order in which a user prefers to have the
matched services returned, this is, to ensure that the returned services are those of
greatest interest to the user.

// set preference.
// Options available are first, random,
// max (expression), min (expression), and with (expression)
String preference = "first";

The PoliciesSeq parameter allows the importer to specify how the search
should be performed as opposed to what sort of services should be found in the
course of the search.

// set the policies. Only a few policies are provided here
org.omg.CosTrading.Policy policies[] =
new org.omg.CosTrading.Policy[9];

// set exact_type_match policy
anyType = orb.create_any();
anyType.insert_boolean(false);
policies[0] =
new org.omg.CosTrading.Policy("exact_type_match", anyType);
...

The SpecifiedProps parameter defines the set of properties describing offers
that are to be returned with the object reference. There are three possibilities: the
importer wants one of the properties, all of the properties, or some of the properties.

// properties that the trading services should
// return with each matched offer, which is all at here.
org.omg.CosTrading.LookupPackage.SpecifiedProps desiredProps =
new org.omg.CosTrading.LookupPackage.SpecifiedProps();

desiredProps.all_dummy((short)0);

The returned offers can be returned in one of two ways or a combination of both:

244 TRADING OBJECT SERVICE

• The parameter of type OfferSeqHolder holds a list of offers and the OfferIt-
eratorHolder parameter is a reference to an interface at which offers can be
obtained.

• A “how many” parameter of unsigned long type states how many offers are to
be returned via the OfferSeqHolder variable. Any remaining offers are available
via the iterator interface. If the “how many” exceeds the number of offers to be
returned, then the OfferIteratorHolder variable will have a value of nil.

If any cardinalities or other limits were applied by one or more traders in re-
sponding to a particular query, then the parameter of type PolicyNameSeqHolder
will contain the names of the policies which limited the query.

// set up variables to hold the search result
org.omg.CosTrading.OfferSeqHolder offers =
new org.omg.CosTrading.OfferSeqHolder();
org.omg.CosTrading.OfferIteratorHolder iterator =
new org.omg.CosTrading.OfferIteratorHolder();
org.omg.CosTrading.PolicyNameSeqHolder limits =
new org.omg.CosTrading.PolicyNameSeqHolder();

We can invoke the query operation after we have prepared all the required param-
eters.

// perform the query
trader.query(type, constraint, preference,
policies, desiredProps, 20, offers, iterator, limits);

The code below tests whether a query returns any result.

// no match result
if (offers.value.length == 0 && iterator.value == null)
{
System.out.println("No offer found");
System.exit(0);
}

The trader returns one offer of type “ShareBroker” although there are three service
offers in the trader that match the request. This is because the other two objects are
advertised under different service type names. Although they have the same interface
and behavior, the trader does not consider them to be compatible service types.

8.2.4 Result Manipulation

The trader returns a list of object references that have satisfied the specific require-
ment. This is where the limitations of CORBA greatly reduce the usefulness of
TOS. Users generally have two ways of using an object reference returned from a

AN ILLUSTRATIVE EXAMPLE WITH JTRADER 245

query. The client can either invoke an operation on the object by calling stub routines
that are specific to the object or by constructing a request dynamically through the
CORBA Dynamic Invocation Interface (DII). The ORB then locates the appropriate
implementation code, transmits the parameters and transfers control to the imple-
mentation object through an IDL skeleton or a dynamic skeleton. In performing the
request, the object implementation may obtain some services from the ORB through
the object adapter. The control and output values are returned to the client when the
request is complete.

Dynamically typed programming languages, like Smalltalk, do not need to know
the returned object type to make an invocation on it. However, static type binding
programming languages, like C++ and Java, do need to know the object type to
invoke an operation on the object. A client can use a Helper class to narrow the object
reference to its type and invoke the operation statically if the object type and the
function name and parameters are known to the user. This method is very practical
because it is difficult for a user to know the return service type in advance. In this
way, the user can send a request to the Naming Service to look for an object that
matches the specified type. The following code shows the use of static operation
invocation.

Broker broker = BrokerHelper.narrow(offers[i].reference);

To perform a dynamic invocation on an object, we need to get an object of type
Request from the object. CORBA Object classes define the function request () to
return a Request object. This function takes in a parameter which is the name of the
function that we want to invoke. We can see the problem with DII in this case. The
DII allows the invocation of operations on an object without knowledge of its type.
However, it does require the client to know the exact syntax of the operation name.
In our example, we have to make the assumption that all the compatible service types
have the operation buy share(). This assumption cannot stand except when there is
a standard defined for the service type naming and object interfaces associated with
the service type.

org.omg.CORBA.Request request =
offers[i].reference._request("buy_share");

We need to put values into the request object. First we have to obtain an empty
NVList object which holds the parameters to the operation request. NVList contains
a list of NamedValue elements. A NamedValue contains a name and a value, where
the value is of type Any and is used in the DII to describe the arguments to a request.
We can get a reference to the NVList in the request object by invoking the arguments
function on the request object.

// create a NVList object which will contain the
// parameter to the operation request
org.omg.CORBA.NVList list = request.arguments;

246 TRADING OBJECT SERVICE

The NVList provides functions to prepare parameters for the invocation. We
would like to buy 100 BHP shares from a stock broker in this example. The function
buy share() takes in a share code and the amount to buy as its parameters. We will
use add value() function to insert these two parameters into the named value list.

// assume we want to buy 100 BHP shares
org.omg.CORBA.Any valueA = orb.create_any();
valueA.insert_string("BHP");
list.add_value("share_code", valueA,
org.omg.CORBA.ARG_IN.value);
org.omg.CORBA.Any valueB = orb.create_any();
valueB.insert_long(100);
list.add_value("amount", valueB,
org.omg.CORBA.ARG_IN.value);

We can invoke the request on the object once the parameters have been inserted
into the Request object.

try { request.invoke(); } catch(Exception e) {}

8.3 ARCHITECTURE

After introducing some concepts related to the CORBA Trading Object Service and
showing an example on how to use it, in this section, we will provide details of all
the components of a CORBA Trader.

Figure 8.3 shows the different components that take part in the OMG Trading
Service: Lookup, Registry, Admin, Link, and Proxy interfaces that are intended to
provide specific trading tasks. An interface is graphically represented with a rec-
tangle and includes a name, a list of attributes, and a list of operations. A trader does
not need to provide all of these interfaces to be inter-operable with other traders.
If a trader is intended to provide only a query service, a trader with Lookup alone
will be sufficient to achieve the requirements. Traders that provide only the Lookup
interface are called query traders. Those traders that provide Lookup and Registry
interfaces are called simple traders. A stand-alone trader provides only the interfaces
Lookup, Registry, and Admin. Those traders that provide Lookup, Registry, Admin,
and proxy are called proxy traders, and full-service traders are those that implement
all the interfaces of a trader.

To configure a trader’s functionality in order to obtain a specific type of trader,
the interface TraderComponents is provided and contains five readonly attributes. A
trader’s functionality can be configured by composing the defined interfaces in one
of several prescribed combinations.

interface TraderComponents {
readonly attribute Lookup lookup_if;
readonly attribute Register register_if;

ARCHITECTURE 247

supports_dynamic_properties()
supports_modifiable_properties()

supports_proxy_offers()
type_repos()

SupportAttributes

OctetSeq
set_def_search_card
set_max_search_card
set_def_match_card
set_max_match_card

set_max_return_card
set_def_return_card

set_max_list
set_supports_modifiable_properties
set_supports_dynamic_properties
set_supports_proxy_offers
set_def_hop_count
set_max_hop_count
set_max_follow_policy
set_max_link_follow_policy
set_type_repos
set_request_id_stem

list_offers()
request_id_stem()
newService()
deleteService()

Admin

add_link()
remove_link()
describe_link()
list_links()
modify_links()

Link

Lookup_if()
Register_if()
Admin_if()
name()

TraderComponent
def_search_card()
max_search_card()
def_match_card()
max_match_card()
def_return_card()
max_return_card()
max_list()
def_hop_count()
max_hop_count()

max_follow_policy()
def_follow_policy

ImportAttributes

export()
withdraw()
describe()
modify()
withdraw_using_constraint()
resolve()

Register

query()
getHitData()
getTidData()
callBackData()
offerReplicate()
linkTableReplicate()
serviceReplicate()
deleteOfferreplicate()
deleleLinkTableReplicate()

Lookup

Trader

Register
Lookup
Link
Admin

LinkAttribute

max_link_
follow_policy()

Figure 8.3 Class diagram of trader.

readonly attribute Link link_if;
readonly attribute Proxy proxy_if;
readonly attribute Admin admin_if;

};

The composition is not modelled through inheritance, but rather by multiple in-
terfaces to an object. Given one of these interfaces, a way of finding the other as-
sociated interfaces is needed. To facilitate this, each trader functional interface is
derived from the TraderComponents interface. The five read-only attributes pro-
vide a way to get a specific object reference. The implementation of the operation

248 TRADING OBJECT SERVICE

get < inter f ace > i f () must return a null object reference if the trading service
in question does not support that particular interface.

In addition to the ability of a trader to select specific functionalities to sup-
port, a trader may also choose not to support modifiable properties, dynamic
properties, and/or proxy offers. The functionality supported by a trader imple-
mentation can be determined by querying the readonly attributes in the interface
SupportAttributes, which has the following IDL:

interface SupportAttributes {
readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

};

where:

• supports modifiable properties informs whether the trader supports properties
that can be modified or not. If this attribute is set to true, the service provider
can modify properties relating to their service registered in the trader. If this
attribute is set to false, the trader will not let the service provider modify the
properties of the services that have been registered.

• supports dynamic properties informs whether the trader supports properties to
be declared dynamic or not. If set to true/false, the trader will not hold the
data relating to the dynamic properties, rather the service provider will hold the
information. The trader will dynamically query the service provider each time
the trader wants to know the property value.

• supports proxy offers informs whether the trader supports proxy offers to be
registered or not. If this attribute is set to FALSE, then the trader will not let
proxy offers be registered.

• type repos informs whether the trader supports an interface repository or not.
If the trader supports the type repository, the type repos attribute is set to hold
a reference to interface repository. This type repository is used by the trader
implementation to enquire on the interface repository. If the trader does not
support type repository, this attribute is set to hold null.

Each trader can be configured with default and maximum values of certain car-
dinality and link follow constraints that apply to queries. The values for these con-
straints can be obtained by querying the attributes in the interface ImportAttributes
which holds the traders query policies. These policies can be altered by the admin-
istrator. If there are missing policies, the trader takes the default policy value. When
the user policy exceeds the maximum policy value, the trader silently sets the policy
value to the maximum allowable policy value. Every time a query is made to the
trader, the trader checks both the trader policies and the query policies to respond
accordingly.

ARCHITECTURE 249

interface ImportAttributes {
readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_match_card;
readonly attribute unsigned long max_match_card;
readonly attribute unsigned long def_return_card;
readonly attribute unsigned long max_return_card;
readonly attribute unsigned long max_list;
readonly attribute unsigned long def_hop_count;
readonly attribute unsigned long max_hop_count;
readonly attribute FollowOption def_follow_policy;
readonly attribute FollowOption max_follow_policy;

};

When a trader creates a new link or modifies an existing link the max link
f ollow policy attribute will determine the most permissive behavior that the link
will be allowed. The value for this constraint on link creation and modification can
be obtained from the following interface LinkAttributes. Whenever a query is made,
the trader checks if the query “link follow” policy exceeds its maximum link follow
policy. If it does, the trader silently sets its value to maximum link follow policy
value.

interface LinkAttributes {
readonly attribute FollowOption max_link_follow_policy;

};

8.3.1 Trader Components

This section provides more details regarding the different modules supported by a
trader. Figure 8.4 summarizes the list of these modules.

CosTrading Module CosTradingDynamic Module

DynamicPropEvalLookup module Registry module

Link module

Proxy module

Admin module

CosTradingRepos Module

Figure 8.4 OMG trader modules.

250 TRADING OBJECT SERVICE

Lookup Module Being one of the main components of a trader, the function
query() (see IDL of Lookup) searches the trader’s local database and remote trader’s
databases for the relevant service which satisfies the given constraints. This query
takes in the service type, constraints, preference, policy sequence, specified proper-
ties, and number of services. It then returns the sequence of offers, offer iterator, and
limits applied. For example, if a client wishes to buy a sports shoe, in particular from
the Adidas company, and he/she wishes to know if there are any stores in Melbourne,
Australia, which can offer him the best value for the money, say, offering at least a
discount of 10%, the client will issue the following query to the trader:

location = Melbourne,
service type = shoe-shop,
brand = Adidas,
and discount >= 10
in decreasing order of discount.

The trader will check its local database for any matching offers and then query
remote traders in the network depending on the local traders policies and the query
policies. The local trader gathers all the results from the remote traders and displays
them to the user in the format preferred. The client can then choose a shop and make
the purchase.

The OMG IDL of the interface Lookup is:

interface Lookup: TraderComponents,SupportAttributes,ImportAttributes{
typedef Istring Preference;
enum HowManyProps {none, some, all };
union SpecifiedProps switch (HowManyProps) {
case some: PropertyNameSeq prop_names;
};

void query (in ServiceTypeName type, in Constraint constr,
in Preference pref, in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many, out OfferSeq offers,
out OfferIterator offer_itr,
out PolicyNameSeq limits_applied);

The service type, declared as in ServiceTypeName type, is the name of the
service the client is looking for. For instance, a client may be looking for book shops
or restaurants. Constraints, declared as in Constraint constr, are the properties
which the service has to satisfy before the trader returns the service to the client.
These constraints give the desirable properties of the services which the trader has
to take into consideration before returning to the client. Preference, declared as in
Preference pref, gives the order in which to return services. For example, the
client is looking for inexpensive hotels. When they give the preference as ’min price’,
the trader displays all the hotels that satisfy their requirements in increasing order of

ARCHITECTURE 251

price. If “pref” does not obey the syntax rules for a legal preference expression, then
an IllegalPreference exception is raised.

Policy sequence, defined as in PolicySeq policies, is a set of instructions to
the trader to follow specific policies while looking for the services. These are ex-
plicit instructions to the trader. If any of the policies are not mentioned, the trader
takes the default values of the local trader. Specified properties, declared as in
SpecifiedProps desired props, represent those properties of the service which
the trader has to display to the client so as to let client make decisions on which
service to select. Number of services, specified by the clause in unsigned long
how many, advises the trader to look for the maximum of the requested number
of offers. All those services that satisfy the client’s requirements will be returned
through a sequence of offers, declared in out OfferSeq offers. The trader also
returns the iterator of f er i tr to let the client iterate through the returned offers. The
argument limits applied gives the client the names of all policies which limit the
query.

Search policies for a trader can be specified by using the provided structure
LookupPolicies, which is defined as follows:

struct LookupPolicies {
unsigned long search_card;
unsigned long match_card;
unsigned long return_card;
boolean use_modifiable_properties;
boolean use_dynamic_properties;
boolean use_proxy_offers;
TraderName starting_trader;
FollowOption link_follow_rule;
unsigned long hop_count; boolean exact_type_match;

};

• The search card policy indicates to the trader the maximum number of offers it
should consider when looking for type conformance and constraint expression
matches. The lesser of this value and the trader’s max search card attribute is
used by the trader. If this policy is not specified, then the value of the trader’s
def search card attribute is used.

• The match card policy indicates to the trader the maximum number of matching
offers to which the preference specification should be applied. The lesser of
this value and the trader’s max match card attribute is used by the trader. If this
policy is not specified, then the value of the trader’s def match card attribute is
used.

• The return card policy indicates to the trader the maximum number of matching
offers to return as a result of this query. The lesser of this value and the trader’s
max return card attribute is used by the trader. If this policy is not specified,
then the value of the trader’s def return card attribute is used.

252 TRADING OBJECT SERVICE

• The use modifiable properties policy indicates whether the trader should con-
sider offers which have modifiable properties when constructing the set of offers
to which type conformance and constraint processing should be applied. If the
value of this policy is TRUE, then such offers will be included; if FALSE, they
will not. If this policy is not specified, such offers will be included.

• The use dynamic properties policy indicates whether the trader should consider
offers which have dynamic properties when constructing the set of offers to
which type conformance and constraint processing should be applied. If the
value of this policy is TRUE, then such offers will be included; if FALSE, they
will not. If this policy is not specified, such offers will be included.

• The use proxy offers policy indicates whether the trader should consider proxy
offers when constructing the set of offers to which type conformance and con-
straint processing should be applied. If the value of this policy is TRUE, then
such offers will be included; if FALSE, they will not. If this policy is not speci-
fied, such offers will be included.

• The starting trader policy facilitates the distribution of the trading service it-
self. It allows an importer to scope a search by choosing to explicitly navigate
the links of the trading graph. If the policy is used in a query invocation it is
recommended that it be the first policy-value pair; this facilitates an optimal for-
warding of the query operation. A “policies” parameter need not include a value
for the starting trade policy. Where this policy is present, the first name compo-
nent is compared against the name held in each link. If no match is found, the
InvalidPolicyValue exception is raised. Otherwise, the trader invokes query()

on the Lookup interface held by the named link, but passing the starting trader
policy with the first component removed.

• The link follow rule policy indicates how the client wishes links to be followed
in the resolution of its query. Section 8.5.1 discusses this aspect in detail.

• The hop count policy indicates to the trader the maximum number of hops
across federation links that should be tolerated in the resolution of this query.
The parameter at the current trader is determined by taking the minimum of the
trader’s max hop count attribute and the importer’s hop count policy, if pro-
vided, or the trader’s def hop count attribute if it is not. If the resulting value is
zero, then no federated queries are permitted. If it is greater than zero, then it
must be decremented before passing on to a federated trader.

• The exact type match policy indicates to the trader whether the importer’s ser-
vice type must exactly match an offer’s service type; if not (and by default),
then any offer of a type conformant to the importer’s service type is considered.

Registry Module This interface is used by exporters who wish to export or ad-
vertise about their services or withdraw their advertised services. A service can be
registered or withdrawn through this module. The registry module provides six func-
tionalities: export, withdraw, describe, modify, withdraw (using constraint), and re-
solve.

ARCHITECTURE 253

A trader will need to keep persistent in its local database certain information,
including the references of the different offers and their corresponding properties. A
null value for a particular property will mean that that this particular property is not
defined. All mandatory property columns are defined as “NOTNULL” which makes
it mandatory to insert a value.

The IDL definition of the Register interface is defined below. In the following
discussion, we will provide details of the different functions of such an interface.

typedef string OfferId;
typedef sequence<OfferId> OfferIdSeq;

interface Register: TraderComponents,SupportAttributes {
struct OfferInfo {
Object reference;
ServiceTypeName type;
PropertySeq properties;
};

OfferId export(in Object reference,
in ServiceTypeName type, in PropertySeq properties)

void withdraw(in OfferId id)
OfferInfo describe(in OfferId id)
void modify(in OfferId id,

in PropertyNameSeq del_list,
in PropertySeq modify_list)

void withdraw_using_constraint (in ServiceTypeName type,
in Constraint constr)

Register resolve(in TraderName name)
}

The export function is used to register a service. The exporter has to supply the
service reference, its service type and properties of the service. These properties are
used for matching the constraints of the clients. All the services registered in the
trader have a unique Id. The export function assigns this Id to the service every time
a new service registers itself with the trader.

Service providers wishing to advertise their services invoke the export operation
passing the service reference, the service type and the property sequence. The trader
stores this information in its local database and returns a unique number relative to
this trader of type OfferId. Export will perform the following checks [73]:

• The reference parameter carries information that enables a client to interact with
a remote server. If the trader wishes to consider a certain type of reference as
unacceptable, it may return an InvalidObjectRef exception.

• The type parameter identifies the service type, which contains the interface type
of reference. If the string representation does not obey the rules for the identi-
fiers, then an IllegalServiceType exception is raised.

254 TRADING OBJECT SERVICE

• If the type is syntactically correct, but a trader is unable to unambiguously de-
termine that it is of recognized type, then an UnknownServiceType exception
is raised.

• If the trader can determine that the interface type of the reference parameter
is not the subtype of the interface type specified in type, then an Interface-
TypeMismatch exception is raised.

• The properties parameter contains a sequence of name value pairs that describe
this offer. If any of the property names defined in the property name sequence
do not obey the syntax for the PropertyNames, then an IllegalPropertyName
exception is raised.

• If the type of the property value is not the same as the declared type, then a
PropertyTypeMismatch exception is raised.

• If an attempt is made to assign a dynamic property value to a read-only property,
a ReadonlyDynamicProperty exception is raised.

• If the properties parameter omits any property declared in the service type
which is mandatory, then a MissingMandatoryProperty exception is raised.

• If two or more properties with the same property name are included in the
properties parameter, then a DuplicatePropertyName exception is raised.

When dealing with the implementation of the export function, after performing
the above checks, this function will get a new transaction number for the transaction
to store in its database. It then invokes the function newO f f er() (on the database).
This function will store the reference and properties; it will then generate an Id that
will be unique to the trader. The id is returned to the exporter which could be used
as an identity for the offer. The interaction diagram of the export function is shown
in Figure 8.5.

The describe function takes the unique Id of the service and returns the descrip-
tion of the service. This function is invoked by a service provider or the administrator
who wishes to know details of an offer denoted by a particular offerId. This function
returns an OfferInfo structure. This structure holds the object reference, its service
type and the properties related to a particular offerId, which was registered by the
exporter. This function takes offerId, which is originally returned by the export func-
tion, as an argument to avoid a call to this function by malicious clients. Figure 8.5
shows the different steps of the function describe():

• If the string representation of the offer id does not obey the rules of the offer
identifiers, an IllegalOfferId exception is raised.

• If the offer id is legal, but the trader cannot find the offer within the database,
an UnknownOfferId exception is raised.

After performing the above checks, this function invokes the function get O f f er()

on the database, which returns an offer. An Offer is a structure with an object refer-
ence and a list of properties. After getting the service type for offerId by invoking

ARCHITECTURE 255

describe()
check for illegal offerId

get Service type

check for unknown offerId

get offer

create offer

:Client :Describe :Database

export() check for illegal Service type

check for invalid object reference

check the interface

check the Service type

get new transaction Id

new offer

:Exporter :Export :Database

Implementation specific

Figure 8.5 Export and describe functions.

get ServiceT ype() on the database, this function creates an OfferInfo structure and
returns it to the caller.

The remaining functions of the Register interfaces are the withdraw (with or with-
out constraints) and modify functions. The former is used to deregister the service.
The service which wants to deregister itself has to pass its unique Id to this function.
This function takes the offerId and checks for the matching offers in the database.
If a match exists, the trader removes the entry of the offer, otherwise it throws an
appropriate exception. This function takes offerId, which was originally returned by
export function to avoid a call to this function by malicious client,s as its argument.
Figure 8.6 shows the different steps of such a function.

The administrator of the trader may no longer be interested in all of the ser-
vices which satisfy a particular constraint. The administrator will invoke the func-
tion wi thdraw using constraint () constraint on a particular service type. A trader
checks through its database to see if there are any services of the particular service
type matching the constraint. If so, it removes all of the entries relating to that par-
ticular service, otherwise it throws an appropriate exception.

The modify function is used to modify the properties of the service. It is quite
reasonable that the services may have some extra properties or may delete some
properties in the course of time. This modify function reflects these changes in the
trader database.

A client may want to refer to the trader that is known by a name rather than by
object reference. The operation resolve is used to resolve a context relative name for
another trader. When the trader cannot resolve the name, it throws an appropriate
exception. When there is a match, it returns a reference to the Register interface.

256 TRADING OBJECT SERVICE

modify

modify properties

create query

check for illegal offerId

:Exporter :Modify :Database:Exporter

withdraw() check for illegal offerId

get Service type

get new transaction Id

delete

:Database:Withdraw

Implementation specific

Figure 8.6 Withdraw and modify functions.

The function resolve takes in a sequence of name components and returns a ref-
erence to Registry. This function performs the following checks:

• If the contents of the parameter cannot yield legal syntax for the first compo-
nent, then the IllegalTraderName exception is raised.

• If no match is found for the linkName, or the trader does not support links,
UnknownTraderName is raised

• If the Register interface is not null, then the trader binds to the Register interface
and invokes resolve, but passes the TraderName list with the first component
removed. If it is null, then a RegisterNotSupported exception is raised.

When the trader matches the first name component and there are no names left
over, a reference to the register interface is returned. Intermediate traders return this
register interface to the client in a recursive manner.

Admin Module Federated traders are autonomous, meaning each trader admin-
isters itself and is not influenced by external traders. The administrative module has
various parameters that define the policies of the trader. These parameters can be
modified to reflect the changes in the trader’s policy. Apart from these policy param-
eters, the administrator supports two functions: the list offers and the list proxies.

interface Admin: TraderComponents,SupportAttributes,
ImportAttributes,LinkAttributes {

typedef sequence<octet> OctetSeq;
readonly attribute OctetSeq request_id_stem;
unsigned long set_def_search_card (in unsigned long value);
unsigned long set_max_search_card (in unsigned long value);
unsigned long set_def_match_card (in unsigned long value);
unsigned long set_max_match_card (in unsigned long value);
unsigned long set_def_return_card (in unsigned long value);

ARCHITECTURE 257

unsigned long set_max_return_card (in unsigned long value);
unsigned long set_max_list (in unsigned long value);
boolean set_supports_modifiable_properties (in boolean value);
boolean set_supports_dynamic_properties (in boolean value);
boolean set_supports_proxy_offers (in boolean value);
unsigned long set_def_hop_count (in unsigned long value);
unsigned long set_max_hop_count (in unsigned long value);
FollowOption set_max_follow_policy (in FollowOption policy);
FollowOption set_def_follow_policy (in FollowOption policy);
FollowOption set_max_link_follow_policy (in FollowOption policy);
TypeRepository set_type_repos (in TypeRepository repository);
OctetSeq set_request_id_stem (in OctetSeq stem);
void list_offers (in unsigned long how_many,

out OfferIdSeq ids, out OfferIdIterator id_itr)
void list_proxies (in unsigned long how_many,

out OfferIdSeq ids, out OfferIdIterator id_itr)
}

The list offers Id’s of services registered in the local database. This function takes
in the number as its parameter and returns a sequence of Id’s and an iterator to it so
that Admin can iterate on the returned Id’s. The list proxies return the set of Id’s of
proxy offers registered in the trader.

Link Module This module provides a means to interact with the remote traders
in the federation. It provides four functions: add link, remove link, describe link and
modify link.

interface Link:TraderComponents,SupportAttributes,LinkAttributes {
struct LinkInfo {
Lookup target;
Register target_reg;
FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;

};

void add_link(in LinkName name, in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule);

void remove_link(in LinkName name);
LinkInfo describe_link(in LinkName name);
LinkNameSeq list_links ();
void modify_link(in LinkName name,

in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule);

}

The add link function creates a new link between the local trader and a remote
trader. A trader is connected to a number of federated traders through the links. Every

258 TRADING OBJECT SERVICE

time a new trader is known to the local trader, a link is created between the local
trader and the known trader. Every link has an associated name which will be in the
context of the trader, and has policies that describe the link. These link policies can
be modified by the modify link function. A description of a link can be obtained
by invoking the describe link function. Remove link removes the link associated
between the local trader and remote trader.

• The function add link() is used to dynamically add a new link, which takes in
linkname, target reference, def pass on follow rule, and limiting follow rule.
Each trader is independent in assigning names to the link. A linkname will be
unique in the context of trader. Each link has to follow rules, which have to be
obeyed by the trader while querying the remote trader. The def pass on follow
rule parameter specifies the default link behavior for the link if no link behav-
ior is specified on an importer’s query request. If the def pass on follow rule
exceeds limiting follow rule, then a DefaultFollowTooPermissive exception is
thrown. The parameter limiting follow rule specifies the most permissive link
follow behavior that the link is willing to tolerate. A limitingfollowTooPer-
missive exception is raised if this parameter exceeds the trader’s attribute of
max link follow policy at the time of the links creation.

• This function removes all knowledge of the target trader. The target trader can
no longer be used to resolve, forward, or propagate any trading operations from
this trader. This function takes in the link name as a parameter and returns
void. The exception IllegalLinkName is raised if the link name is not valid. The
UnknownLinkName exception is raised if the named link is not in the trader.

• The function describe link() returns information about the link held in the
trader. It takes in the link name and returns LinkInfo. LinkInfo is a structure
comprised of Lookup interface, Register interface, default follow behavior and
limiting follow behavior of the link. Link name identifies the link whose de-
scription is required. An IlegalLinkName exception is raised for an invalid link
name.

• The function list links() returns a list of the names of all trading links within
the trader.

• Finally, the function modi f y link() can be used to change the existing link
following behaviors of an identified link. The name and the Lookup reference
cannot be changed. It takes in def pass on follow rule, limiting follow rule and
returns void. The parameter def pass on follow rule specifies the new default
link behavior for this link. If the def pass on follow rule exceeds the limit-
ing follow rule, then a DefaultFollowTooPermissive exception is raised. lim-
iting follow rule parameter specifies the new limit for the follow behavior of
this link. The LimitingFollowTooPermissive exception is raised if the value ex-
ceeds the current max link follow policy of the trader.

Proxy Module Proxy services are like normal services that have a service type
and properties, but do not have a direct object reference. An object reference is ob-

ARCHITECTURE 259

tained by querying the lookup of the proxy offer. This module has three main func-
tions: export proxy, withdraw proxy and describe proxy.

interface Proxy:TraderComponents,SupportAttributes {
typedef Istring ConstraintRecipe;
struct ProxyInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;
};

OfferId export_proxy(in Lookup target, in ServiceTypeName type,
in PropertySeq properties, in boolean if_match_all,
in ConstraintRecipe recipe, in PolicySeq policies_to_pass_on)

void withdraw_proxy(in OfferId id)
ProxyInfo describe_proxy(in OfferId id)

}

Like normal service offers, proxy offers have a service type “type” and named
property values “properties.” However, a proxy offer does not include an object ref-
erence at which the offered service is provided. Instead, this object reference is ob-
tained when it is needed for a query operation; it is obtained by invoking another
query operation upon the “target” Lookup interface held in the proxy offer. The
“recipe” parameter tells the trader how to construct the constraint expression for
the secondary query operation to “target.” This permits the secondary constraint ex-
pression to be made up of literals, values of properties of the proxy offer, and the
primary constraint expression.

If a query operation matches the proxy offer (using the normal service type Match-
ing, property matching and preference algorithms), this primary query operation in-
vokes a secondary query operation on the Lookup interface nominated in the proxy
offer. Although the proxy offer nominates a Lookup interface, this interface is only
required to conform syntactically to the Lookup interface; it need not conform to the
Lookup interface behavior specified above.

8.3.2 Service Type Repository

The service type is a very important element of trading services in distributed sys-
tems. A trader compares the service request type with service offer types to find
matches for a request. An importer has to specify a service type when requesting
a service. Similarly, an exporter also needs to supply a service type when advertis-
ing a service offer with a trader. When a trader is designed, problems in uniquely
identifying and comparing service types have to be solved.

260 TRADING OBJECT SERVICE

A (trading) service has a type, called service type, which is a sort of meta-
information about the service. It’s comprised of an interface type that defines the
computational signature of the service interface, and zero or more named property
types: <service type name, service interface, set of properties>.
Properties of a type describe the characteristics of the type and the rules that govern
its usage. A property has a name, a type, and a property mode. A property mode
can be normal, read only, mandatory, or mandatory read only. Exporters do not need
to provide a value for a normal property when advertising a service. However, the
exporters must provide a value for a mandatory property. If a service type contains a
read only property, the value of the property cannot be changed later. A mandatory
read only property has the strongest specification. The exporter must provide a value
for the property and the value cannot be changed subsequently.

The value of a property in a service offer might change frequently. It is too trou-
blesome and inconvenient for an exporter to withdraw and re-register a service offer
every time the value of a property in the offer changes. The share price is an example
of these frequently changing properties. Instead of supplying a static value for this
property, exporters can give instructions to traders to find out the value dynamically.

The TOS supports dynamic properties where the value of a property is not held
within a trader. Instead, the property contains a reference to an object implementing
an OMG trader DynamicPropEval interface. The DynamicPropEval interface only
supports one operation, the evalDP operation which is responsible for returning a
value for the property. This function needs to know the name, the returned type and
any extra information about the dynamic property. When the value of the property is
required, the trader invokes the evalDP operation on the object reference. Depending
on the server object implementation, it might look up the value in a database or
compute the value on the fly.

There is no restriction on the type of a dynamic property. However, a trader must
support the dynamic property functionality for an exporter to be able to advertise a
service offer with dynamic properties. A client can make a query to a trader with
the function support dynamic properties() to find out whether the trader sup-
ports dynamic properties. As dynamic properties involve an extra step and introduce
overhead in obtaining the value for a property, the importer can specify whether a
trader should consider offers with dynamic properties when searching for matched
services. As mentioned earlier, the value of a read-only property cannot be changed
after it has been initialized. Therefore, a service type cannot have any dynamic read
only attributes.

Similar to inheritance in object-oriented programming, service types can be re-
lated in a hierarchy that reflects type inheritance. This hierarchy can be used to de-
cide whether a service type can be substituted by another service type. The TOS
specification [73] lists the rules for service type conformance as follows: given two
service types X and Y, X is said to be a subtype of Y if and only if:

• The interface type associated with X is either the same as, or derived from, the
interface type associated with Y.

• All the properties defined in Y are also defined in X.

ARCHITECTURE 261

• For all properties defined in both X and Y, the mode of the property in X must
be the same as, or stronger than, the mode of property in Y.

• All properties defined in X that are also defined in Y shall have the same prop-
erty value type in X as their corresponding definitions had in Y.

Information about service types is stored in a Service Type Repository (STR). The
type repository supports the storage, retrieval and management of type descriptions.
In most of the implementations, a database system is used as an STR, which needs to
take into account non-functional aspects, such as performance and scalability, using
appropriate techniques of indexing [31], clustering [23], and query routing [103] to
produce better performance and scalability for critical distributed applications.

Users must provide the full details of a service type to register it within the STR,
such as the type name, an interface associated with the type, a list of type properties
and super types for each of the service types. The IDL structure of the STR system
is as follows:

module CosTradingRepos {
interface ServiceTypeRepository {
// local types
typedef sequence<CosTrading::ServiceTypeName> ServiceTypeNameSeq;
enum PropertyMode {PROP_NORMAL, PROP_READONLY,

PROP_MANDATORY, PROP_MANDATORY_READONLY };
struct PropStruct {
CosTrading::PropertyName name;
CORBA::TypeCode value_type;
PropertyMode mode;

};
typedef sequence<PropStruct> PropStructSeq;
typedef CosTrading::Istring Identifier;

// IR::Identifier
struct IncarnationNumber {
unsigned long high;
unsigned long low;
};

struct TypeStruct {
Identifier if_name;
PropStructSeq props;
ServiceTypeNameSeq super_types;
boolean masked;
IncarnationNumber incarnation;
};
enum ListOption {all,since};
union SpecifiedServiceTypes switch(ListOption) {
case since IncarnationNumber incarnation; };

262 TRADING OBJECT SERVICE

// attributes
readonly attribute IncarnationNumber incarnation;

// operation signatures
IncarnationNumber add_type(in CosTrading::ServiceTypeName name,
in Identifier if_name, in PropStructSeq props,
in ServiceTypeNameSeq super_types)

void remove_type(in CosTrading::ServiceTypeName name)
ServiceTypeNameSeq list_types(in SpecifiedServiceTypes which_types);
TypeStruct describe_type(in CosTrading::ServiceTypeName name)
TypeStruct fully_describe_type(in CosTrading::ServiceTypeName name)
void mask_type(in CosTrading::ServiceTypeName name)
void unmask_type(in CosTrading::ServiceTypeName name)

The operation add type() enables the creation of new service types in the service
type repository. The caller supplies the “name” for the new type, the identifier for
the interface associated with instances of this service type, the property definitions
for this service type, and the service type names of the immediate super-types to this
service type. The operation mask type() permits the deprecation of a particular type
(i.e., after being masked, exporters will no longer be able to advertise offers of that
particular type). The type continues to exist in the service repository due to other
service types being derived from it.

8.3.3 Dynamic Property Evaluation

The part of the IDL which specifies the use of dynamic properties is the following:

module CosTradingDynamic {
interface DynamicPropEval {

any evalDP(in CosTrading::PropertyName name,
in TypeCode returned_type, in any extra_info);

struct DynamicProp {
DynamicPropEval eval_if;
CORBA::TypeCode returned_type;
any extra_info;

};
};

The DynamicPropEval interface allows dynamic property values in a service of-
fer held by the trader. When exporting a service offer (or proxy offer), the property
with the dynamic value has an “any” value which contains a DynamicProp structure
rather than the normal property value. A trader which supports dynamic properties
accepts this DynamicProp value as containing the information which enables a cor-
rectly typed property value to be obtained during the evaluation of a query.

CONSTRAINTS, POLICIES, AND PREFERENCES 263

The export (or export proxy) operation raises the PropertyTypeMismatch if the
returned type is not appropriate for the property name as defined by the service type.
Readonly properties may not have dynamic values. The export and modify operations
on the Register interface and the export proxy operation on the Proxy interface raise
the ReadonlyDynamicProperty exception if dynamic values are assigned to readonly
properties. When a query requires a dynamic property value, the evalDP operation is
invoked on the eval if interface in the DynamicProp structure. The property name pa-
rameter is the name of the property whose value is being obtained. The returned type
and extra info parameters are copied from the DynamicProp structure. The evalDP
operation returns an any value which should contain a value for that property. The
value should be of a type indicated by returned type.

If the trader does not support dynamic properties (indicated by the trader attribute
supports dynamic properties), the export and export proxy operations should not be
parameterized by dynamic properties. The behavior of such traders in such circum-
stances is not specified by this standard.

8.4 CONSTRAINTS, POLICIES, AND PREFERENCES

Policies

The interaction between traders, exporters and importers is affected by trading be-
haviors of the trading objects. Both TOS and ODP TF use the concept of policy to
provide a framework for describing the behavior of a trader. Policies are rules that
affect trader behavior at run time. A policy has a name and a value assigned to that
policy. For example, a hop count policy, of an unsigned long type, specifies how
many times a query can propagate to other traders. OMG’s Trading Service defines
policies for traders and importers, but not for exporters.

Importer Policies

An importer sends its policies as a query operation’s parameter to a trader. Table 8.2
describes eight importer policies that a trader must support. In this section we have
a particular interest in the exact type match policy as the trader will consider the
subtype of the request type as a match when the importer does not require an exact
type match.

Scoping Policies

A trader’s policies are stored in the attributes of the trader. Trader policies are spec-
ified initially when the trader is created, and can be modified or interrogated later
by the user. A trader specifies its default policies to be used when an importer does
not specify any policies in its service request. A trader also has maximum policies
to place limitations on what the trader will do. Table 8.3 lists out the traders’ default
and maximum policies.

264 TRADING OBJECT SERVICE

TABLE 8.2 Importer Policies

Policies Description

search card the maximum amount of service offers to be searched
for a particular request.

match card the upper bound of matched offers to be ordered by a
trader.

return card the number of matched offers to be returned to a user.

link follow the link follow behaviour for a trader. The value of
this policy can either be: always follow links, follows
the links when there is no matched service found in
the local trader, or do not follow any links.

starting trader the user specifies a trader to process its request by
providing a reference of the trader. The trader who
receives the request has the obligation to forward the
request to the specified trader even though the user
has specified a policy to search offers in local
trader only.

request id an identifier for a query operation.

exact type match specifies whether an importer is looking for an
exact type match of the request service type.

hop count specifies how many times a request can be propa-
gated to other traders.

A link specifies a limiting follow rule limiting follow rule to limit the chaining be-
havior when a link is created. The limiting follow rule indicates whether a forwarded
request should be propagated further by the target trader. The value of the limiting
rule could be: always propagated further(always), propagated further if there is no
matched service in the target trader(if no local), or do not propagated the request to
other traders(local only). The always option has the highest value followed by the

TABLE 8.3 Trader’s Default and Maximum Policies

Default Policies Maximum Policies

def hop count max hop count
def follow policy max link follow policy
def match card max match card
def search card max search card
def return card max return card

CONSTRAINTS, POLICIES, AND PREFERENCES 265

TABLE 8.4 Preferences

Preference Description

max <expression> The expression can refer to properties of the offer.
The matched offers are returned in a descending order.

min <expression> The expression can refer to properties of the offer. The
matched offers are returned in an ascending order.

with <expression> The expression is a boolean expression. It can refer to
properties of the offer. The matched offers that have a
true value precede those that have a FALSE value.

random The order of returned matched offers is in random.

first The matched offers are returned in the order as they
are discovered.

if no local and local only. The max link follow policy is used to specify an upper
limit on the value of a link’s limiting follow rule at the time of creation or modifi-
cation of a link. If the maximum link follow policy has a value of local only, then a
propagated request to a trader would not be forwarded further even though the link
has an always follow policy.

There are general rules regarding the use of importer and trader policies. If an
importer does not specify a policy for a service request, the trader uses its default
policy. In the case of an importer policy exceeding the limitation (maximum) policy
specified by the trader, the trader’s limiting policy overrides the importer policy.

Preferences

Preferences are used to determine the order in which matched services return to user.
Table 8.4 lists the five possible ways a user can order the matched services.

Constraints

Importers use a service type name and constraints to specify the service offers in
which they have an interest. The constraints are specified in a constraint language.
OMG has specified a Constraint Language to be used in its trading service, but pro-
prietary query languages can also be accommodated. The name of a proprietary
query language has to be placed between two angle brackets(<<>>) at the start
of the constraint expression. The trader evaluates each service offer against the con-
straint. An offer is considered a match only if the constraint expression evaluates to
a TRUE value.

Standard constraint language has constructs including comparative functions, sub-
string matching, set membership, and mathematical and logical operators. The con-

266 TRADING OBJECT SERVICE

straint expression can refer to properties of a service offer and thus enable importers
to find a potential service offer on the basis of its properties. However, constraint
expressions are operated only on properties of the standard data types like boolean,
short, unsigned short, long, unsigned long, float, double, char, string and sequences
of these data types. This does not mean that a service offer cannot contain complex
property types, but complex types cannot be referred to in a constraint expression.
For example, a query looking for service offers that have a cost of less than 50 will
look like “cost < 50”.

8.5 QUERY PROPAGATION

In this section we discuss the basic OMG’s TOS query routing and show a possible
extension to deal with important issues, such as scalability.

8.5.1 CORBA Query Routing

The trader linkage allows arbitrary directed graphs of traders to be produced, which
may introduce two types of problems [73]: (i) a single trader can be visited more
than once during a search due to it appearing on more than one path (i.e., distinct
set of connected edges) leading from a trader; and (ii) cycles can occur. Figure 8.7
shows an example of a trading graph with has a cycle which may lead to repeated
querying of the same trader, and therefore result in an infinite loop: A −→ B −→ C
−→ A. When an importer queries the trader A, A passes the same query to B, and
in turn, B passes the query to C, and C passes the query to A. This process may be
repeated indefinitely, which leads to an infinite loop unless there is a means to detect
and avoid it.

To ensure that a search does not enter into an infinite loop, a hop count is used to
limit the depth of links used to propagate a search. The hop count is decremented by
one before propagating a query to other traders. The search propagation terminates at

A

B

E

C

F

D

I

J

H

G

Figure 8.7 A trading graph with cycles.

QUERY PROPAGATION 267

the trader when the hop count reaches zero. To avoid the unproductive revisiting of a
particular trader while performing a query, a RequestId can be generated by a source
trader for each query operation that it initiates for propagation to a target trader. The
trader attribute of request id stem is used to form RequestId.

typedef sequence<octet> OctetSeq;
attribute OctetSeq request_id_stem;

A trader remembers the RequestId of all recent interworking query operations
that it has been asked to perform. When an interworking query operation is received,
the trader checks this history and only processes the query if it is the operation’s first
appearance. In order for this to work, the administrator for a set of federated traders
must have initialized the respective request id stems to non-overlapping values. The
RequestId is passed in an importer’s policy parameter on the query operation to the
target trader. If the target trader does not support the use of the RequestId policy,
the target trader need not process the RequestId, but must pass the RequestId on to
the next linked trader if the search propagates further.

To propagate a query request in a trading graph, each source trader acts as a client
to the Lookup interface of the target trader and passes its client’s query operation
to its target trader. The following example illustrates the modification of hop count
parameter as a query request passes through a set of linked traders in the trading
graph of Figure 8.8. We assume that the link follow policies in the traders will result
in always follow behavior.

• A query request is invoked at the trading interface of T1 with an importer’s
hop count policy expressed as hop count = 4. The trader scoping policy for T1
includes max hop count = 5. The resultant hop count applied for the search,
after the arbitration action that combines the trader policy and the importer
policy, is hop count = 4.

• We assume that no match is found in T1 and the resulting follow policy is al-
ways, that is, T1 is to pass the request to T3. A modified importer hop count
policy of hop count = 3 is used. The local trader scoping policy for T3 in-
cludes max hop count = 1 and the generation of T3 Request id to avoid repeat
or cyclic searches of the same traders. The resultant scoping policy applied for
the search at T3 is hop count = 1 and the T3 Request id is stored.

• Assuming that no match is found in T3 and the resulting follow policy is always,
the modified scoping parameter for the query request at T4 is: hop count = 0
and request id = T3 Request id.4. Assuming that no match is found in T4, even
though the max hop count = 4 for T4, the search is not propagated further. An
unsuccessful search result will be passed back to T3, to T1, and finally to the
user at T1. Of course, if a query request is completed successfully at any of the
traders on the linked search path, then the list of matched service offers will be
returned to the original user. Whether the query request is propagated through
the remaining trading.

268 TRADING OBJECT SERVICE

Trader A

Trader B

Trader C

Trader F

Trader D

Trader E

max_hop_count = 10

def_follow_policy = always

max_hop_count = 1

def_follow_policy = always

def_follow_policy = always

def_follow_policy = always

max_hop_count = 6

def_follow_policy = always

max_hop_count = 0

query.hop_count = 5

query.hop_count = 4

query.hop_count = 3

Trader I

Trader attribute

Service Offer

Link

query.hop_count = 3

query.hop_count = 3

max_hop_count = 4

query.hop_count = 1

Figure 8.8 An example of TOS’s query routing.

8.5.2 Semantic-based Query Routing

One of the main characteristics of the information maintained by traders is that they
keep changing in the course of time. The stock market is a good example where
the price of shares keeps changing and new shares are continually introduced to the
market. Making use of static information about a particular trader, as is the case
in the current specification of the CORBA trader, does not lead to effective query
routing. The information recorded in the attributes of traders (e.g., max hop count)
and queries (e.g., hop count) is static by nature and therefore does not change to
reflect the new information added to the STRs (e.g., new shares, update of share
price) of traders. In this way, an identical query will always be propagated in the
same way, which makes the Lookup operation useless because it does not return
updated information, which may be available in other traders that have not been
visited.

To address such a problem, the approach proposed in [103] suggests making use
of dynamic information about the traders, where each trader keeps information lo-
cally relating to the services remote traders can offer. Each trader holds two types of

QUERY PROPAGATION 269

information: (i) a linkTable table which holds references to all traders that the local
trader has links to, and (ii) a callback table that holds references to all traders which
are linked to this local trader. When a trader adds a new link, it creates a new table
in its local database, which holds all service types and hit factor information of the
linked trader. At the same time, the linked trader also stores the address of the trader
that has a link to it. Whenever new data is added to the database, for example, a new
offer is registered or exported, all the traders can pass queries to the trader to update
themselves to reflect this change. This can be achieved by getting all the trader refer-
ences from the callback table, and calling an appropriate function for all of references
to reflect the change. In turn, other traders that have links to it will be notified. This
process maintains up to date information about the linked traders at the local level.
When a trader is queried, it gets references of all traders that have the potential to
return offers from locally stored information. A trader will first query the trader that
has the highest hit factor for a particular service type, and then the trader that has the
second highest hit factor, and so on. This delays or avoids querying traders that have
the least chance of returning the particular service type offers.

Routing algorithms are used to decide the target traders for the query, based on
the hit factor [103]. The calculation of a hit factor is based on the number of offers
and their relative distance from the trader. When a trader claims that it can address
N number of offers, it means that this trader can give access to N number of offers
both locally and remotely via this trader. It is not sufficient to decide the target trader
based on the number of offers it can give access to. For example, suppose there are
two traders A and B. A has 500 offers of a particular service type and can address
100 offers of the same type remotely from a trader 1 hop away. B has 5 offers locally
and can address 1000 offers remotely from a trader 100 hops away. It is advisable
for the local trader to pass a query to A rather than B, even though B can address
1005 offers, as A would take less time to query. The hitfactor is calculated by the
following formula:

HF = HF + (no of offers × e−λ×n),

where λ is the arbitrary factor which determines the nature of the curve, and n is the
number of hops away. When new offers are added to a trader, HF for that particular
service in a local trader increments by no of offers, since for a local trader, n = 0.
So, the factor no of offers × e−λ×n = no of offers × 1. For a remote trader, HF for
that particular service is added to by a factor of no of offers × e−λ×n , where n ≥ 1.

Let us consider the example of Figure 8.7. Assume that we have 100 exporters
exporting 100 services of type x to trader D. At the first stage, traders B and F
receive this update information and increment their corresponding service hitfactor
by 100×e−λ. Suppose, we take the factor λ = 1, then the value becomes 100×e−1 =
36.78794. Hence, traders B and F increment their hit factor of type x by 36.78794
in the appropriate tables. Trader B in turn, sends this information to A and trader F
sends it to C and H. Traders A, C and H are two hops away from trader D. Thus,
their corresponding hitfactors are incremented by 100 × e−1×2 = 13.53352. This
process continues until there are no other traders to pass on this update, or the trader

270 TRADING OBJECT SERVICE

decides not to propagate this update any further. If we look closely at the graph,
trader A receives the update message from B and updates itself by incrementing HF
by 13.53352. But trader C again informs trader A in the next stage and asks for
an increment of HF by 100 × e−1×3 = 4.978706. Hence, two updates have taken
place for the same transaction. This leads to inconsistent HF tables, which is not
acceptable. To avoid this, a transactionI d which is unique in a trader federation is
used.

When an STR gets updated due to the addition or deletion of services, all other
traders which hold information relating to this trader have to update themselves to
reflect the change in the repository. The trader broadcasts this information to the fed-
erated traders, which update themselves recursively. Due to the presence of cycles, a
trader may undergo an update twice as demonstrated above. To overcome this prob-
lem, each trader, before broadcasting, generates a unique transactionId to represent
this change. When this update message is passed on to the remote traders in the fed-
eration, traders who have already processed the update message will have stored this
transactionId. When the remote trader is asked to process an update, it first compares
the update transactionId with the ones that have been stored in its repository (i.e.,
those which have already been processed or seen). If there is a match, the trader
just ignores it, otherwise it makes the change. When the remote trader processes the
update, it stores the transactionId in its database to avoid future inconsistencies.

8.6 TOS IMPLEMENTATIONS

There are several implementations of the CORBA Trading Object Service [7, 112, 9].
[7] built a trader on top of the CORBA Naming Service. Traders were implemented
by using the X.500 protocol as a database to store and search for information about
service offers [112]. [9] added a service locator which incorporated DCE cell and
X.500 functionality for the retrieval of resource access information given the re-
source name.

A number of trader prototypes have been implemented for the DCE platform
by [68] [8]. DCE functions already available are unsatisfactory and lack important
mechanisms, such as type management, to support service management and media-
tion in open distributed environments.

Although the TOS specification was not released until mid 1996, a few CORBA-
compliant traders have been implemented by various commercial vendors, including
IONA (for OrbixTrader), DSTC (for Object Trader), Nortel (for RCP-ORB), Suite
Software (for SuiteValet), ICL (for DAIS), and Mark Spruiell (for JTrader). Several
prototypes were developed by academic institutions, including TAO Trader (Wash-
ington University), and DOK Trader (RMIT University).

8.6.1 JTrader

JTrader creates a service type list that it will consider when matching service offers.
It checks whether the importer looks for an exact type match. If it does, then the
initial request service type is the only service type in the search type list. If an exact

TOS IMPLEMENTATIONS 271

type match is not specified, it will find all the compatible service types and add them
to the search type list. JTrader defines compatible service types as the initial request
service type and all of its subtypes. It does so by examining the super types of all the
service types in the service type repository. If the service type being examined is a
subtype of the initial request type, it is added to the search type list.

The trader then goes through each element in the search type list. It finds all of
the service offers that match the service type and puts them into a potential service
offer list. The trader goes through the search type list again to search for proxy offers
that match the request service and adds the returned service offers to the potential list.
The trader takes the search card value into consideration while searching for matched
services. The search card defines the amount of service offers a trader should search
in order to find matching services. After it gets all of the potential offers, the trader
matches the offers with the constraint and puts the results into a matched service list.
It checks with the match card value to make sure that it does not match more offers
than the match card specified. The items in this list are put in the returned lists in the
user’s preferred order.

JTrader is not fully compliant with the OMG trader in the sense that it does not
check for the starting trader policy value. If the importer provides a value for this pol-
icy, the trader is obligated to forward the request to the target trader. The argument
for not implementing this policy is that JTrader does not support the Link interface
which provides functions for a trader to interact with other traders in a trader fed-
eration. However, the OMG trader lists the starting trader as one of the “standard”
scoping policies and a trader does not need to support the Link interface to forward a
request to the target trader. The target trader object reference is provided as a policy
value and the trader does not need to know about the target trader. One of the reasons
for having a trader forward a query to a second trader is because the importer does
not have the right to access the target trader but the initial trader does. The importer
can ask the initial trader to make a query on the target trader in order to gain access
to services available in the target trader.

8.6.2 TAO Trader

The TAO Trader first checks whether the query has specified a starting trader policy.
It forwards the query to the target trader if a trader reference is provided. Because the
TAO Trader also supports the Link interface, it checks whether a federated query is
returned to it. The TAO Trader’s matching process is different from JTrader. It finds
all the offers that match the request service type and then iterates through the offers
to match them with the constraints of the query. If the offer matches the constraint,
it is added to the matched offers list in the order preferred by the importer. The
search card and match card values are evaluated during the matching process.

The trader proceeds to search for compatible service types if the importer does
not specify an exact type match. The efficiency of the trader can be improved if the
trader checks whether it has reached the search card and match card limits before
it retrieves all of the subtypes and checks for matched services. Subtype searching
is more efficient in the TOA Trader due to the use of an incarnation number. The

272 TRADING OBJECT SERVICE

service type repository generates an incarnation number for every new service type.
It is impossible to have a subtype that has a larger incarnation number than its super
type since the incarnation number is generated in ascending order. In this case, the
trader only checks for service types that have a larger incarnation number than the
request type.

Unlike the JTrader’s implementation, the TAO Trader performs a search for offers
of a type once it discovers it is a subtype of the request service type. The result is
added to the matched list in the user preferred order and the trader checks the next
service type until it reaches the search card or match card limits, or it has examined
all of the service types in the repository. The matched offers are then returned to the
user in the specified format.

8.6.3 DOK Trader

The DOK-Trader [23, 103] implements all of the CORBA TOS’s interface, with a
special emphasis on performance and scalability. Two main issues were addressed:
clustering and routing. The routing approach [103] was partially described in Sec-
tion 8.5.2. Here we summarizse the clustering approach for service offers [23] within
a trader’s STRs.

The clustering of service offers is performed within a hierarchy of contexts by
specialization of property sets. It provides a meaningful clustering scheme, centered
on semantics, rather than schematics. The basis of the scheme is to cluster services
on their properties, which give service offers their semantics. Service offers which
have similar properties, irrespective of service type, are related by being clustered
into one or more contexts. Each context has associated to it a set of properties. Each
member of a context is said to share the set of properties of that context.

The two offers share one or more properties, then they can be viewed in a sim-
ilar context. This is the reasoning behind the notion of context, and is the basis of
the clustering technique. Each context has a set of (i.e., zero or more) offer property
objects bound to them. A context contains a cluster which holds service offers per-
taining to the context. The following rule is the basis of the clustering technique: all
the offer objects bound to a context must contain a property set which is equal to, or
a super-set of, the property set that the context holds. Contexts are related in a hierar-
chical manner, called a specialization graph. The term specialization is used because
the more properties that are bound to a context, the more specialized, or detailed are
the offers that are members of it. Figure 8.9 shows an example context structure. For
the purpose of simplicity, property object references are denoted as: p1, p2, and so
forth.

The clustering algorithm attempts to make service offers members of the most
specialized contexts possible. The algorithm works by pushing the offer down the
levels of the graph until it cannot be pushed any further (i.e., the offer cannot become
a member of any sub-contexts). Offers only exist in the lowest, most specialized,
context possible.

TOS IMPLEMENTATIONS 273

ROOT

c1
p1^p2

c2
p2^p3

p1 p2 p3 p4

c4c3

o3

o4
o5

o1

o2

o6

Key:

Context Specialisation Link

Context to Offer object binding

Offer to Property object binding

p2^p3^p4p1^p3^p4

Figure 8.9 An example context.

Clustering. When a new offer is bound to a cluster, it triggers a procedure that
checks all of the offers for property commonalities, apart from the properties of its
context. If a number of those offers have some properties in common, other than
the properties of that context, then a specialized context can be created for those
common offers. This new context becomes a specialization of the context that was
checked. This type of specialization is controlled by the specialization threshold.
Specializations are created when the number of services in common within a cluster
exceeds this value. The specialization threshold value needs to be adjusted in order
to optimize performance. If set too high, it will result in large clusters. If set too low,
it will result in a large specialization graph. Ultimately, it has be tuned to the specific
needs of the trader.

Specialization graph re-structuring. When a new context is created, it must be
linked in to the existing graph in a way that allows it to be accessed through any
of its properties. To elaborate, a cluster inherits its super-context’s properties plus
has its own additional properties. The new context can be accessed via the link to
the context that created it, and also needs to be linked to the properties it does not
inherit. During re-structuring, the graph must be searched in order to find the appro-
priate context(s) to link to. This can be done as cheaply as finding a context to add a
service offer to. There are some special cases where a new context needs to be linked
between two pre-existing contexts (i.e., it becomes a specialization of one context
and a generalization of another). Fig. 8.10 shows an example of graph restructuring.
It also shows that there is a link that becomes redundant and is destroyed.

274 TRADING OBJECT SERVICE

New

ROOTROOTROOT

p1^p2^p3p1^p2^p3

p1^p2p1^p2 p1^p2 p2^p3

3)2)1)

destroyed

p1^p2

PropertiesContextStep

1 c1

Link that was

p1^p2^p3

p2^p3c33

2 c2

c2

c1c1 c1

p3

c3

c2

p2p1p1 p2 p3p1 p2

Figure 8.10 Restructuring a specialization graph.

8.7 SUMMARY

A Naming Service provides appropriate functions for locating objects within dis-
tributed environments. This is done by using (useful) names that are known by the
users. The functions of such a service are important; however, they are not sufficient
because users may not know or may not remember all of the names of objects, espe-
cially in large scale distributed applications. She/he may only know certain attributes
(or properties) of such objects. Using the functions of a Trading Service, users can
find such objects based on the values of certain properties attached to these objects.
Such values are not stored by objects within servers. They are like meta-data that
characterize the internal structure and data of objects. The values of properties are
managed by the type repository of the Trading Service.

The Trading Service does not replace the Naming Service. These services have
complementary roles within distributed environments, and in particular, within
CORBA environments. Depending on what functionalities the users are looking for,
these two services can be used either separately or in combination.

In this chapter, we started with a description of the role of the Trading Service in
distributed systems. We then explained the differences between the ODP and OMG
views with regard to the trading architecture and functions. To better understand
some of the basic ideas of the OMG Trading Service, we preferred to give first an
example with a specific Trading Service (JTrader) and later go into details in the de-
scription of the different components of the OMG Trader. JTrader was one of the first
CORBA-compliant Trading Services, and several extensions were proposed later on
to deal with specific issues of service trading, such as performance and semantic
issues of offers.

Details of the OMG Trading Service were provided, including (i) the architecture
and (ii) the constraints and policies, and (ii) the query propagation. We showed how

EXERCISES 275

a CORBA trader statically routes queries to its neighbors by using information they
have (e.g., max hop count), as well as the information related to queries (e.g., query
hop count). We explained how such a routing mechanism has a few limitations when
dealing with dynamic environments. We then proposed an extension of the OMG
routing approach to deal with the dynamic information contained within traders of
trading graphs.

In the last section of this chapter three different implementations of the OMG
Trading Service were described: JTrader, TAO’s trader and DOK-Trader. All of these
traders are CORBA compliant in the sense that they support the OMG specification.
However, they differ in their implementation of such specification. The first trader
supports the basic functions of the OMG service, the second provides an extension
of the service to deal with QoS features (such as realtime), and the last trader deals
with performance and scalability issues of the OMG Trading Service.

8.8 REVIEW QUESTIONS

• What is the general function of a trading service? Why must the trader have
sufficient details of an offer in order to store the service in the type repository?

• What does the term exporting in a trading service mean? What are the assertions
made by the server when exporting a service?

• What does the term importing in a trading service mean? What are the details
made along with a service request when importing a service?

• Explain the trader approaches in relation to the returned service offers and per-
sistency.

• Why are some ODP trading specifications inappropriate to use in the context
of CORBA? What are the two main considerations about the OMG trader’s
functionalities? What do they imply? Explain the key differences in the trader
operations of ODP and OMG Trading Service.

• What are the five interfaces specified in the TOS specification? What does each
of them do?

• Explain briefly about ”importer policies” in OMG Trader Service.
• Explain briefly about ”scoping policies” in OMG Trader Service.
• Must all of five interfaces specified in the OMG Trading Service be imple-

mented by a trader implementation? Justify your answer. Hint: Relate the jus-
tification with the different combinations of interfaces which are implemented
by traders.

• Briefly explain Service Type Repository including the operations in its inter-
face.

8.9 EXERCISES

• Provide the IDL service specification and the code fragment for exporting a
Bank object to a service called BankingService. The object has the following

276 TRADING OBJECT SERVICE

IDL interface:

interface Bank {
readonly attribute string name;
readonly attribute float interest;
attribute float monthly_charge;

};

The Bank interface is implemented by BankImpl class with all of its at-
tributes are being mandatory. Its interest attribute is a dynamic property whose
value is provided by the function evaluator of a class called interestEvaluator.
Assume no Bank object has ever been exported before and no super type exists
in the BankService. Hint: The code fragments in this chapter should provide
sufficient detail for this task.

• Provide a code fragment to import all the Bank objects with the following con-
ditions: their interest attributes must be greater than 0.1, preference must be
first, exact type match must be set to FALSE, and only ten offers should be re-
turned. The code fragment must also check if there is at least one offer returned,
otherwise it should display a message and exit. Hint: the code fragments in this
chapter should provide sufficient detail for this task.

• Describe briefly how trading service can be applied to the area of e-commerce.

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 9

Event Service

This chapter provides an insight into the CORBA Event Service, including a descrip-
tion of its components, a way of implementing them for an object request broker, and
finally the list of problems which can be encountered in the design of such a service.
This chapter may help readers not only understand the details of the CORBA event
channel, but also grasp the technical issues related to the implementation of the event
channel in the context of object-request brokers.

This chapter describes the core CORBA specifications of the event channel and
presents a high level view of its basic architecture along with the many benefits of
CORBA. The CORBA Event Service is discussed in Section 9.1. Section 9.2 reviews
some of the existing approaches based on the Push and Pull models. Section 9.3
provides details of the architecture of the CORBA event channel, and Sections 9.4
and 9.5 go in depth in the discussion about the untyped and respectively typed event
channels. Section 9.6 provides an analysis of the existing CORBA Event Service.
Section 9.7 finally discusses some of the required extensions needed by the CORBA
Event Service to deal with different QoS issues.

9.1 OVERALL PICTURE

An event service allows components to dynamically register or unregister their inter-
est in specific events. The service defines a well known object called an event channel
that collects and distributes events among components that know nothing about each
other. Subscribers connected to the event channel receive the events asynchronously.
The uses of the event service are many and any communication between objects
that fits into the Publish/Subscribe pattern can make use of the event service. In this
model of distribution, inserting the event channel as a third party between the client
and server provides a high degree of decoupling.

In an event service, there are both suppliers and consumers of information. The
event channel does the actual de-coupling between suppliers and consumers. It con-
sumes events from the suppliers and supplies events to the consumers. The mode
of communication can be one to one, one to many or many to many. The impor-
tant aspect is that all events received from suppliers are broadcast to all consumers
for specific event channels, called untyped channels. For the typed event channels,

277

278 EVENT SERVICE

the principle is the same but only relevant to the suppliers and consumers that are
interested in a particular IDL interface. Furthermore, multiple event channels are
supported working independently of each other. An event is defined as any piece of
data that has been generated as a result of some activity.

The OMG event channel communication is based on the Publish/Subscribe
paradigm and may be achieved by using any of the following three communica-
tion technologies [101]: unicasting, broadcasting, and multicasting. Unicasting is
a point-to-point method, which is a communication that links two processes. An
example of a unicast protocol is the TCP/IP stack. Broadcasting is a method of
communication that allows one process to send messages to all other processes on
the network. Multicasting allows one process to selectively send a message to be
delivered to a select group of processes that form the active group. CORBA shields
the programmer from interfacing with these lower level facilities by higher level
protocols such as IIOP.

There are several examples relating to the practical use of an event service. Some
of these examples are from the aviation industry (e.g., Boeing [13]) and digital li-
braries. In the context of the aviation industry, an avionic generally has a logical and
a physical device. Certain groups of devices are distributable, others are not. Some
are active, some are passive. The software is run by events generated by the various
controllers and components. The avionics infrastructure can benefit from the use of
CORBA, and in particular, of the Event Service. Event-based execution is the way
control flow happens. The idea is to keep the event control and dependency knowl-
edge within each of the components. The Event Service allows for the easy definition
and addition of pluggable entities. This helps in reducing the number of entities and
their inter-dependencies.

In the context of digital libraries [30], suppliers are the providers of documents.
Hence the different kinds of electronic documents correspond to the more general
term object in the model. Providers are typically scientific publishers. A scientist
usually follows the publications in a few journals and conference proceedings, those
that fit into his/her research area. He/she scans the table of contents of the new issue,
reads a few abstracts and carefully studies one or two of them. This is exactly where
an alerting service becomes useful and more and more publishers are offering such a
service.

Yet another pattern of accessing scientific literature involves browsing in the local
library, where, for example, some journal that is not read regularly is quickly scanned
for papers of interest, with perhaps one read carefully. However, browsing in the
vast number of electronic documents spread over thousands of servers is completely
unreasonable. A profile is a filter predicate. In the context of digital libraries, this is a
retrieval query executed periodically without explicit intervention by the user. Only
the results are presented. Of course, a single user may define more than one profile.
The event service decouples this process and allows several servers to communicate
asynchronously with the clients via their profiles. The suppliers may push or pull
their objects.

In several business activities which often evolve unpredictably and asynchro-
nously, a model of a tightly coupled client and its server communication is not

OVERALL PICTURE 279

inadequate. The CORBA Event Service offers the ability to de-couple the clients
and servers and provides an event-driven, connectionless communication. The event
service roughly aims at transferring data between objects. An application can then
send events to the event service and not worry about the recipients that would be
interested in receiving the message. The event channel manages the registration of
receivers and the delivery of the event to applications that are interested in receiving
the event.

Push and Pull Models

There are suppliers of information and consumers of information. The heart of
OMG’s Event Service is the event channel. Alone, the event channel is the con-
sumer to the suppliers, and the supplier to the consumers. The event channel accepts
connections from one or many suppliers, and one or many consumers. The key is
that any event received from one of the suppliers is transmitted to every consumer.
Furthermore, multiple event channels are supported working independently of each
other. An event is defined as any piece of data that has been generated as a result
of some activity. The event channel allows users to connect one or several suppliers
with one or several consumers. Using the event channel means that we get a sym-
metric relationship between suppliers and consumers: It is possible, for example,
to let the producer use the push model and the consumer use the Pull model on the
same event channel.

The CORBA Event Service supports two models of operation—a Push model and
a Pull model, which are described in detail in Section 9.2. Both models govern how
suppliers communicate with an event channel, and how an event channel communi-
cates with consumers. In a push model, a push supplier sends an event to the event
channel by using a CORBA push operation. This is unsolicited, event-driven pro-
cessing to the event channel. However, the event channel also supports a Pull model,
acting as a client to the suppliers, polling the suppliers for information. Such pulling
can be based on time intervals. On the consumer side, both Push and Pull models are
supported by the specification.

The data communication itself is done through normal method calls, and there is
a choice whether the producer initiates the transfer (the push model) or the consumer
(the Pull model). Mainly intended for sending messages that announce events, this
service is done either via generic push/pull method calls that can take the Any data
type, or via the typed event channel on specific IDL interfaces.

Untyped and Typed Channels

There are two models in the CORBA Event Service specification, the untyped and
typed channels. These models will be detailed in Sections 9.4 and 9.5. In the untyped
event channel, event data is delivered via the IDL Any type. Events are passed to all
connected consumers. In the typed event channel, the callers can use an application-
specific IDL interface for supplying and consuming events. This allows applications

280 EVENT SERVICE

to overcome the limitation of sending untyped data over the event channel, thereby
minimizing type errors. The supplier and consumer must have prior knowledge of
the nature of the interface. The use of objects has become an accepted basis for
distributed programming. Strongly typed interfaces enhance ease of programming,
correctness, reusability and portability.

The untyped and typed event channels support the following delivery models: (i)
the canonical Push model (where the supplier pushes events to the channel, which
in turn pushes the events to the consumers), (ii) the canonical Pull model (where
the event channel pulls the events from the supplier and in turn the consumers pull
the events from the event channel), (iii) the hybrid Push/Pull model (where suppliers
push events to the event channel but consumers pull events from the event channel),
and (iv) the hybrid Pull/Push model (where the event channel pulls events from the
suppliers but the event channel pushes the events to the consumers).

While there are several implementations of the CORBA Event Service (see Sec-
tion 9.6), they all differ from the standard by providing a specialization for a particu-
lar requirement. There are some that provide real time performance, while others use
multicast protocols for message delivery. The common thread is that they all deviate
and extend the standard with proprietary enhancements. Also, there are no reference
implementations of the typed event service.

This chapter goes beyond a description of the OMG specifications of the CORBA
event channel. We propose a full description of the different aspects of the event
channel and ideas about how such a channel can be implemented in existing CORBA
platforms. A list of problems that a designer of a CORBA event channel may face
when implementing such a system is discussed. For example, in the untyped chan-
nel, Orbix handles the type Any, when used as a parameter or as a return value
from an operation, in a very peculiar manner. Parameters of type Any are mar-
shalled and un-marshalled by the ORB’s object adaptor. This creates a problem
for the event channel because the marshalling/unmarshalling code (for the object
type contained within the type Any) in the skeleton and/or stub, has to be stat-
ically linked into the event channel. This defeats the purpose of de-coupling the
suppliers from the consumers. Also, the implementation of the type Any is ORB
dependent. This hampers the interoperablity of omniORB2 and Orbix, a problem
which can be overcome once Orbix implements the new OMG type Dyn Any; om-
niORB2 already does. For the typed event channel the CORBA-compliant operation
C O R B A :: O R B :: create operation list () is not supported by several systems
(e.g., Orbix2.3MT), and this operation is critical to the typed event channel as it
allows for dynamically determining the operation parameter modes and types. It is
therefore useful for marshalling and unmarshalling of the incoming and outgoing
requests.

9.2 PUSH AND PULL MODELS

This section looks at the Publish/Subscribe paradigm and existing work along with
implementations of event communication based on this paradigm. Also, we briefly

PUSH AND PULL MODELS 281

look at some of the uses of the Publish/Subscribe model in order to get a better
understanding of the practical importance and requirements of the event channel real
environments.

Distributed control in a network using computers has, in the past, employed
polling by using fetch-execute feedback cycles:

while (true) do begin
probe the environment;
call event procedure;

end

Event-based programming, on the other hand, offers the benefit of notification
instead of busy-probing. The program tells the environment to inform it when some-
thing happens, and when that something happens it reacts accordingly. A program
can set up multiple event handlers to deal with different things happening indepen-
dently. These event handlers can operate in different threads concurrently, which
leads to a natural concurrent design. Also, the program does not waste cpu-cycles by
busy-probing; therefore, the program itself is free to do other useful things. Event-
based programming provides a simple model for component interaction that is useful
for distributed control problems such as resource reservation and allocation.

The following are some of the aspects of the event-based model. (i) Events are
represented as a hierarchy of classes. (ii) Event delivery uses the Publish/Subscribe
paradigm, with the potential of using adapters as proxies. Publishers announce
events, and Subscribers receive event notification. (iii) Event listeners register with
one or more Publishers or proxies to receive events from them. (iv) Event publishers
each maintain a list of subscribers. Events are sent to subscribers by calling an indi-
vidual method on each subscriber. (v) Event proxies can behave as event Publishers
or as event Subscribers as needed. They can even subscribe to other proxies and
so on.

Event proxies are often employed as intermediary event subscribers that can reside
between the actual event publishers and the event subscribers that actually want to
act on the events generated. Proxies themselves can be chained compositionally, with
the ability to set up customizable event-triggering networks. As proxies, adapters can
be delegated one or more useful applications such as: (i) provide filtering events; (ii)
provide aggregation of events, like a mailing list digest facility; (iii) provide the abil-
ity to forward and/or translate events; (iv) provide a persistence store and archive
events; (v) provide security features such as maintaining access control to one or
more subscribers; (vi) demultiplex multiple event sources to a single listener; (ix) of-
fer default behavior for event listener methods; and (x) provide ordering capabilities,
such as total ordering or causal ordering.

There have been efforts by other agencies and companies to standardize the Pub-
lish/Subscribe services, and some of the more important and successful efforts are
outlined below. The Java Multicast Object Bus (iBus) is a middleware product from
Softwired Inc1. It is a Java-based middleware product allowing Java applications and

1http://www.softwired.ch/

282 EVENT SERVICE

components to exchange arbitrary kinds of events or objects. The iBus is a piece of
software that embodies the idea of a ubiquitous information medium using a channel
abstraction similar to radio transmission. Applications tune into channels to send or
receive data in near real time. The Generic Multicast Service (GTS) is useful for re-
liable group communication; it also offers a reliable order-preserving multicast. An
event service based on GTS can harness the group communication and order pre-
serving facilities of GTS. There is also an event service specification proposed for
the Distributed Computing Environment (DCE) by the OpenGroup2.

iBus—The Java Multicast Object Bus

iBus3 is pure Java; object bus middleware for the instant delivery of event objects
via reliable IP multicast and TCP. iBus provides a Publication/Subscribe API and
can be extended with new quality-of-service features. iBus provides the following
communication features: multicast, point-to-point, non-blocking, blocking, request-
reply and as well as coordination features such as failure-detection, tracking sub-
scription/unsubscription and fault-tolerance.

Spontaneous networking is supported allowing applications to be written in a lo-
cation independent way. iBus applications can be relocated from one machine to
another without affecting their peer applications. The iBus architecture has no single
point of failure, and there are no daemon applications that need to be present. iBus
provides a quality of service framework in which applications only pay for services
they need: programmers can request qualities of service such as reliable multicast,
reliable point-to-point communication, channel membership notifications, message
compression, and encrypted communication. The iBus protocol composition frame-
work allows programmers to extend iBus with as yet unsupported communication
protocols and qualities of service.

The QoS features such as reliable multicast, unreliable multicast, and encryption
are implemented as Java classes. A quality of service is expressed as a list of protocol
objects. The core of the iBus is a channel; the main job of the channel is to admin-
ister the producer and consumer objects. Like the CORBA Event Service channel,
events pushed on to the channel are received by all connected consumers. An iBus
is described by a URL. The URL encodes everything that is relevant to a channel,
such as the communication protocol to be used, the QoS, the network address and a
topic string describing the events on the channel. The protocol and QoS objects are
linked as depicted in Figure 9.1. By specifying several channels and each demanding
a different quality of service, suppliers and consumers may use multiple qualities of
service simultaneously.

9.2.1 DCE Event Management Service (XEMS) [81]

The XEMS Preliminary Specification defines a common event model, together with
a binding to DCE RPC, and a proposed binding to CORBA IDL. Their intention is

2http://www.opengroup.org/
3http://www.softwired.ch/

PUSH AND PULL MODELS 283

Ordered
Multicast Multicast

PersistancePersistance

Java
Objects

Ordered

SecuritySecurity

IP Network

Objects
Java

QoS

iBus Application iBus Application

iBus

stack

classes

Figure 9.1 The iBus QoS architecture.

to make the XEMS compatible with the CORBA notification service. A preliminary
look at the XEMS gives the impression that it is very similar to the CORBA Event
Service; this is true only at a very superficial level. The XEMS differs widely from
the CORBA Event Service, and mainly the DCE XEMS has a good elaboration for
filtering and persistence in the specification and mandates policies by specifying
them in the event services manager. The characteristics of DCE XEMS are:

• XEMS involves two or more channels, centralizing the functionality associated
with reliable delivery.

• XEMS includes filtering mechanisms. The interface to suppliers ensures that
only suppliers that are authorized to insert events are allowed. On the side of
the client the filters are based on event type and and the criteria for receiving an
event. Clients can only receive events for which they are authorized.

• XEMS provides persistence, so that events that are not delivered to consumers
are stored in an events repository. A consumer may act as a proxy for a central-
ized logging facility.

284 EVENT SERVICE

• Filters are akin to the select statement in SQL and ODMG queries. An event
will be passed to the consumers only if it passes all the criteria specified in the
filter that were registered by the client.

• The consumer/supplier registry also maintains state information about active
consumers and suppliers.

• Consumers may disconnect without losing events as events will still be col-
lected for the consumers and passed on when the consumer reconnects at a later
time.

• The schema repository contains information for typed events.
• The event services manager is responsible for managing the activities of the

event service.

9.3 ARCHITECTURE

This section is specifically dedicated to the CORBA Event Service. It provides a
high-level description of this service.

The CORBA event channel plays the role of a mediator between the suppliers
and consumers. There are two roles defined for objects in the event service: objects
that produce data are suppliers and objects that process the event data are consumers.
Standard CORBA requests are used to communicate data between the suppliers and
consumers. There are two orthogonal approaches to initiating event communication
between the suppliers and consumers. They are the Push model and the Pull model
as depicted in Figure 9.2. The Push model allows a supplier of events to initiate the
transfer of event data; the Pull model allows the consumer of events to request the
event data from the supplier.

Supplier

Pull Push

Consumer

Proxy Event
Channel

Proxy
Consumer Supplier

Push Pull

Figure 9.2 CORBA event service: A high-level view.

ARCHITECTURE 285

The communication of events can be either generic by means of the push or pull
operations or it can be typed via operations defined in OMG IDL. The event data to
be passed can be defined in any manner desired and is passed by means of parame-
ters. The event channel allows for multiple suppliers to communicate with multiple
consumers asynchronously. The channel is both a consumer and supplier of events. It
manages the object references to supplier and consumers, and it also acts as a proxy
consumer to the real suppliers and as a proxy supplier to the real consumers. For
more advanced architectures, channels can serve also serve as a replicator, broad-
caster and multicaster that forward events from one or more suppliers to one or more
consumers. However, any event channel must be capable of supporting all four mod-
els and their combinations, of event receiving and dispatching.

There are four types of event communication models: the push model (which in-
volves the interfaces PushConsumer and PushSupplier), the pull model (which sup-
ports the interfaces PullConsumer and PullSupplier), the hybrid push/pull model and
the hybrid pull/push model. The event channel object is responsible for managing the
communication of events from the suppliers to the consumers; it does this through
proxies. All four event models follow the same connection and disconnection proto-
cols. The IDL of the basic event channel interface is provided below.

module CosEventComm {
exception Disconnected { };
interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};
interface PushSupplier {
void disconnect_push_supplier();

};
interface PullSupplier {
any pull() raises(Disconnected);
any try_pull (out boolean has_event) raises(Disconnected);
void disconnect_pull_supplier();

};
interface PullConsumer {
void disconnect_pull_consumer();

};
};

Canonical Push Model

In this model, the suppliers push events to the event channel proxy push-consumers.
The event channel proxy push-suppliers, in turn, push the events to the connected
consumers via the push() operation (see Figure 9.3).

286 EVENT SERVICE

Push Supplier

Proxy Proxy
Push

SupplierConsumer Channel
EventPush

push()

Push Consumer

push()

Figure 9.3 The canonical push model.

9.3.1 Canonical Pull Model

In this model, the event channel proxy pull-consumers, pull events from the con-
nected pull-suppliers. The proxy pull-suppliers, in turn, let the connected pull-
consumers, pull events via the pull() and tr y pull() methods (see Figure 9.4).

Proxy
Pull

Consumer

Event
Channel

Proxy

Supplier
Pull

pull()

pull()

Pull Consumer

Pull Supplier

Figure 9.4 The canonical pull model.

Hybrid Push/Pull Model

In the Hybrid Push/Pull Model, the connected suppliers push events on to the proxy
push-consumers in the event channel object. The proxy pull-supplier objects, in turn,
let the connected pull-consumers, pull events via the pull() and tr y pull() methods
(see Figure 9.5).

UNTYPED EVENT CHANNEL 287

Pull Consumer

Push Supplier

Supplier

Proxy
PullEvent

Channel
Consumer

Push
Proxy

push()

push()

Figure 9.5 The hybrid push/pull model.

Hybrid Pull/Push Model

In the Hybrid Pull/Push Model, the event channel proxy pull-consumers pull events
from the connected pull-suppliers. The event channel proxy push suppliers, in turn,
push the events to the connected consumers via the push() method (see Figure 9.6).

Consumer Supplier

Proxy Proxy
Pull Event

Channel
Push

push()

pull()

Pull Supplier

Push Consumer

Figure 9.6 The hybrid pull/push model.

9.4 UNTYPED EVENT CHANNEL

9.4.1 Design Aspects

The core of the event channel for both the typed and untyped event channel follow
the same connection, administration and disconnection procedure. The IDL syntax
for the untyped event channel is listed In this section, and we will explain the purpose
of the various interfaces and the related issues.

288 EVENT SERVICE

Channel Creation

The event service specification does not mandate a policy for the event channel cre-
ation, nor does it explicitly advocate a supplier or consumer connection policy to an
instance of the event channel. Suppliers and consumers are free to connect to any
event channel once they have an object reference to an event channel object. The
creation of objects within the event channel is based on the factory pattern [44].

Channel Administration

There is a single instance of each of the consumer and supplier administration ob-
jects. As show in the IDL of the Event Channel, the administration interface within
the channel is used to get the object references to the proxy supplier and consumer
objects which will receive and dispatch events. The event service specification does
not specify an explicit interface for the creation of channels but does provide for an
operation Cos EventChannel Admin :: EventChannel :: destroy() to terminate a
channel.

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

There are two types of administration interfaces, one for supplier administra-
tion and another for consumer administration. The administration objects perform
two major functions: first the actual creation and deletion of the proxy objects, and
second, assisting in the management of the events. For the consumer proxies, the
supplier administration object provides a backward reference to the central event
channel event queue on to which the proxy consumers push the arriving events. In
the case of the supplier proxies, the event channel object pulls an event from its cen-
tral event queue. Then it requests the consumer administration object to broadcast it
to the individual proxy supplier queues.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};
interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};
interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

UNTYPED EVENT CHANNEL 289

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};
interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

}
interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};

Below is a description of the methods present in the individual administration
object interfaces.

• Supplier Administration. All supplier administration within the channel is
done via the CosEventChannelAdmin::SupplierAdmin interface. Suppli-
ers can obtain the proxy consumer object references via this interface. The
push-suppliers will obtain the reference from Cos EventChannel Admin ::
Supplier Admin :: obtain push consumer() and the pull-suppliers will ob-
tain the reference from the Cos EventChannel Admin :: Supplier Admin ::
obtain pull consumer().

• Consumer Administration. All consumer administration within the channel
is done via the CosEventChannelAdmin::ConsumerAdmin interface. Con-
sumers can obtain the proxy supplier object references via this interface. The
push-suppliers will obtain the reference from Cos EventChannel Admin ::
Consumer Admin :: obtain push supplier() and the push-consumers will
obtain the reference from the Cos EventChannel Admin :: Consumer Admin ::
obtain pull supplier().

Connection of Suppliers and Consumers

In order to connect to the proxy objects the suppliers and consumers, both call the
relevant connect operation on the proxy interface that was obtained from the ad-
ministration object. For example, the PushSupplier object connects to the Proxy-
PushConsumer object via the connect push supplier() operation, passing a ref-
erence to itself. The PullConsumer object connects to the ProxyPullSuplier object
via the connect pull consumer() operation. If the proxy objects already have sup-
pliers and consumers connected they raise the AlreadyConnected exception. Even
though the proxy objects are created by the administration objects, the proxies are
activated only after the suppliers and consumers perform a connect operation. If a
PushSupplier calls the ProxyPushConsumer push operation without connecting first,

290 EVENT SERVICE

the ProxyPushConsumer throws a Disconnected exception. The situation is similar
for the ProxyPullSupplier object pull() and tr y pull() operations.

Disconnection of Suppliers and Consumers

Here again the event service specification is vague on the specifics and there is no
mandatory policy. The suppliers and consumers are free to disconnect at any time.
The channel object may also disconnect any of the suppliers or consumers arbitrarily.
The policy followed in this design is to let the suppliers and consumers decide when
to disconnect. The event channel object will not initiate a disconnect, except when it
is itself explicitly destroyed.

9.4.2 Implementation Aspects

A multi-threaded model will be useful for the implementation of the event channel
because it makes for better throughput, but on the down side it does lead to more
programming complexity. In order to coordinate the various activities of a concur-
rent design, the use of different control and locking mechanisms, such as mutexes
and semaphores, can be useful. The management of connected suppliers and con-
sumers, the storage and dispatching of events all require different appropriate data
structures which are discussed below. As new events arrive and are dispatched, the
event management issues that can be raised are:

• Thread Model. Since multiple suppliers and consumers may connect to an
event channel object, each supply or consume events asynchronously. A multi-
threaded model can be chosen for the event channel. The thread model for the
untyped event channel is the thread per object model which is the active object
pattern [61].

For every supplier and consumer that connects a separate thread is started
to service the connection. The event channel object itself runs in a separate
thread. This thread is responsible for broadcasting the events to the connected
consumers. The memory management of the events is handled by a separate
thread. This thread is associated with the ConsumerAdmin object. It monitors
the events that are broadcast and deletes the associated data structures and ob-
jects, once they have been successfully broadcast to all connected consumers.
From the implementation point of view, the thread per object model in Orbix
can be implemented by inheriting from the CORBA::ThreadFilter class [5].
This derived class sits between the incoming requests before they are unmar-
shalled and dispatched to the target object on the server.

• Dead Lock Prevention. There are several situations where a deadlock can occur
because of the multithreaded design of the event channel: for instance, if an
incoming request comes in from a supplier/consumer to disconnect, while the
channel is “blocked” on the request portion (push/pull) of an invocation from
the same supplier/consumer. The causes of potential deadlocks can be when

UNTYPED EVENT CHANNEL 291

a consumer/supplier is added/ deleted, an event is added/broadcast, or during
garbage collection of events. (i) When suppliers and consumers are added to the
SupplierAdmin object or the ConsumerAdmin object, access to the data struc-
tures, needs to be synchronized and regulated via semaphores and mutexes. (ii)
For the addition/broadcast of events, as events arrive from the suppliers, the
addition to the central event queue, has to be synchronized via semaphores as
there may be a conflict, since the queue data structure holding the events is mon-
itored and accessed by different threads. These threads are the supplier objects
thread, channel event broadcast thread and the garbage-collection thread. (iii)
For the garbage collection of event objects, there is a garbage collection thread
associated with every channel object. All events are monitored by the garbage-
collection thread, and when their reference count reaches zero, the objects are
disposed of and the associated memory freed.

• Data Structures. All the events can be stored in FIFO queue data structures,
and the connected suppliers and consumers are stored in an Array type of data
structures. There will be no ordering of events within the event channel ex-
cept FIFO; Therefore, a queue can be suitable data structure for storing and
retrieving events. The Standard Template Library (STL) [97] can be used for
the common data structure representations such as hash map, queue and lists.

• Memory Management. When an event arrives from a supplier, only a single in-
stance of the event object is maintained; a reference is passed from the supplier
to the central event channel object. The central event channel object broadcasts
the event. During the broadcasting operation the event channel object incre-
ments the reference count of the event, for every connected consumer. It then
puts the event on the garbage-collection queue and the proxy supplier event
queue. The proxy suppliers all have their own independent event queues. These
queues are maintained by the proxy supplier object. Every time an event is
successfully passed to a consumer, the proxy supplier object reduces the ref-
erence count of the event and removes it from its event queue. The garbage-
collection thread monitors the garbage-collection queue at fixed time intervals.
Those events that have a reference count of zero are deleted and the resources
reclaimed.

Supplier Interface

Supplier objects that connect to the event channel are managed by the SupplierAdmin
object. The proxy consumer objects add the events received from the supplier objects,
to the global event queue, that is, maintained in the EventChannel object. The global
event queue is managed by the EvenChannel object and is a blocking queue data
structure. If there are no consumers attached or the number of events in the queue
crosses a hard-coded threshold value, then adding events to the queue will block the
caller.

The supplier admin object also keeps track of the number of suppliers connected,
as shown in Figure 9.7. The proxy consumer objects are created by SupplierAd-

292 EVENT SERVICE

Event Queue

Proxy Pull
Consumer

Proxy Push
Consumer

Proxy Pull
Consumer

Proxy Push
Consumer

Push Supplier

Pull Supplier

Push Supplier

Pull Supplier
pull()

push()

push()

push()

Proxy Consumer Threads

Supplier AdministrationSuppliers

Figure 9.7 Supplier administration architecture.

min when the suppliers request connection via the obtain push supplier() and
obtain pull supplier() operations. The proxy consumer object is added to the col-
lection. At the time of disconnection the supplier object informs the consumer object
by calling the disconnect push consumer() and the disconnect pull consumer(),
respectively. The consumer objects call the remove() operation in the SupplierAd-
min object to inform it about the disconnection request. The supplier admin object
then removes the disconnected supplier from its collection. The addition and removal
of suppliers is coordinated by using semaphores and mutexes.

• Pull Supplier Interface. The Pull Supplier interface requires that the Pull Sup-
plier first obtain the SupplierAdmin reference from the event channel object and
then obtain a reference to the ProxyPullConsumer object. The Pull Supplier has
to then connect to the ProxyPullConsumer object by passing its reference to
the ProxyPullConsumer, so that it can then start to pull events from the Pull
Supplier. The events pulled from the Pull Supplier are put on the central event
queue, maintained by the event channel object, Figure 9.8.

• Push Supplier Interface. The Push Supplier interface requires that the Push Sup-
plier first obtain the SupplierAdmin reference from the event channel object and
then obtain a reference to the ProxyPushConsumer object. The Push Supplier
has to then connect to the ProxyPushConsumer object by passing its reference
to the ProxyPushConsumer. After the connection, the Push Supplier object can
start pushing events to the ProxyPushConsumer object. The events received by

UNTYPED EVENT CHANNEL 293

 : Pull
Supplier

 : Event
Channel

 : Supplier
Admin

 : Proxy
PullConsumer

 : Semaphore : Collection

1: for_suppliers()

2: obtain_pull_consumer()

4: connect_pull_supplier(PullSupplier)

3: createProxy()

6: add(ProxyPullConsumer)

7: up()

8: insert(ProxyPullConsumer)

9: down()

10: pull()

12: disconnect_pull_consumer()

11: push(Event)

13: remove(ProxyPullConsumer)

14: up()

15: remove(ProxyPullConsumer)

16: down()

5: startThread()

Figure 9.8 Pull supplier message trace diagram.

the ProxyPushConsumer object are passed on to the central event queue main-
tained by the event channel object, Figure 9.9.

Consumer Interface

The consumer objects that connect to the event channel are managed by the Con-
sumerAdmin object. The event channel object broadcasts the events received from
the suppliers, to the ProxyConsumer objects, that are registered with the Con-

294 EVENT SERVICE

 : Push
Supplier

 : Event
Channel

 : Supplier
Admin

 : Proxy
PushConsumer

 :
Semaphore

 : Collection

1: for_suppliers()

2: obtain_push_consumer()

4: connect_push_supplier(PushSupplier)

3: createProxy()

5: add(ProxyPushConsumer)

6: up()

7: insert(ProxyPushConsumer)

8: down()

9: push(Event)

11: disconnect_push_consumer()

12: up()

13: remove(ProxyPushConsumer)

14: down()

10: push(Event)

Figure 9.9 Push supplier message trace diagram.

sumerChannelAdmin object. The event queues in the proxy supplier objects are
non-blocking. Therefore, any event received from the suppliers is guaranteed to be
broadcast to the proxy supplier objects. After an event has been successfully passed
to the consumer, the proxy supplier object reduces the reference count associated
with the event. Broadcast events are not disposed of by the proxy suppliers but are
managed by a garbage-collection thread.

As shown in Figure 9.10, the ConsumerAdmin object also keeps track of the
number of consumers connected. The proxy supplier objects are created by the Con-
sumerAdmin object when the consumers request connection via the obtain push
consumer() and obtain pull consumer() operations. The proxy supplier object
is added to the collection. At the time of disconnection the consumer objects
inform the supplier objects by calling the disconnect push supplier() and the
disconnect pull supplier(), respectively. The supplier objects call the remove()
operation in the ConsumerAdmin object to inform it about the disconnection request.

UNTYPED EVENT CHANNEL 295

Consumers

pull()

Thread

Channel

Event

pull()

push()

pull()

Garbage Collection Thread

Broadcast

Thread

Consumer Administation

Collection

Garbage

Pull Consumer

Push Consumer

Pull Consumer

Proxy Event Queues

Proxy Supplier Threads

Proxy Push Supplier

Proxy Pull Supplier

Proxy Pull Supplier

QueueEvent

Inform

Figure 9.10 Consumer administration architecture.

The supplier admin object then removes the disconnected consumer from its collec-
tion. The addition and removal of consumers is coordinated by using semaphores
and mutexes.

The proxy supplier objects can be in three states, DISCONNECTED, DISCONNECT-
ING or CONNECTED. If the proxy supplier is in the state CONNECTED then a request
to connect will throw an AleadyConnected exception.

• Pull Consumer Interface. The pull consumer interface requires that the pull con-
sumer first obtain the ConsumerAdmin reference from the event channel object
and then obtain a reference to the ProxyPullSupplier object. The pull consumer
has to then connect to the ProxyPullSupplier object by passing its reference to
the ProxyPullSupplier. After the connection the pull consumer object can start
receiving events from the ProxyPullSupplier object. If there are no events pend-
ing in the ProxyPullSupplier queue, then the pull operation will block until an
event is available, Figure 9.11.

During the pulling of events from the proxy supplier the proxy pull sup-
plier can be in any of the two states: WAITINGFOREVENT or EVENTREADY.
It is necessary to keep track of these states in case a multithreaded pull con-
sumer initiates a disconnect from the proxy pull supplier while another thread
is blocked trying to pull events. In this situation the proxy pull supplier discon-
nect operation first informs the pull() operation of the disconnection request,
by changing the state to DISCONNECTING. After the pull() operation aborts
the request, it enters into the DISCONNECTED state.

• Push Consumer Interface. The push consumer interface requires that the push
consumer first obtain the ConsumerAdmin reference from the event channel ob-
ject and then obtain a reference to the ProxyPushSupplier object. The push con-

296 EVENT SERVICE

 : Pull
Consumer

 : Event
Channel

 : Consumer
Admin

 : Proxy
PullSupplier

 : Semaphore : Collection

1: for_consumers()

2: obtain_pull_supplier()

4: connect_pull_consumer(PullConsumer)

3: createProxy()

5: add(ProxyPullSupplier)

6: up()

7: insert(ProxyPullSupplier)

8: down()

9: pull()

11: disconnect_pull_supplier()

12: remove(ProxyPullSupplier)

13: up()

14: remove(ProxyPullSupplier)

15: down()

10: pull()

Figure 9.11 Pull consumer message trace diagram.

sumer has to then connect to the ProxyPushSupplier object by passing its refer-
ence to the ProxyPushSupplier. After the connection, the push consumer object
can start receiving events from the ProxyPushSupplier object, Figure 9.12.

Event Manager

The event channel object is responsible for queueing all incoming events and then
broadcasting them to the connected consumers via the proxy suppliers (see Fig-
ure 9.13). The event channel object upon creation starts a separate thread to handle
the broadcasting of events. Flow control is implemented using mutexes; the broad-
cast thread blocks waiting for consumers to connect. The event queue also has a

UNTYPED EVENT CHANNEL 297

 : Push
Consumer

 : Event
Channel

 : Consumer
Admin

 : Proxy
PushSupplier

 : Semaphore : Collection

1: for_consumers()

2: obtain_push_supplier()

3: createProxy()

4: connect_push_consumer(PushConsumer)

5: add(ProxyPushSupplier)

9: startThread()

11: push(Event)

6: up()

7: insert(ProxyPushSupplier)

8: down()

12: disconnect_push_supplier()

14: remove(ProxyPushSupplier)

15: up()

16: remove(ProxyPushSupplier)

17: down()

13: stopThread()

10: pull()

Figure 9.12 Push consumer message trace diagram.

incoming
events from
Proxy
Supplier
threads

Admin
object

Consumer
inform

Push

Thread

Pull

Event Channel Queue

Figure 9.13 Event queue architecture.

298 EVENT SERVICE

 : Proxy
PushConsumer

 : Proxy
PullConsumer

 : Event
Channel

 : Consumer
Admin

 : Proxy
PushSupplier

 : Proxy
PullSupplier

 :
Semaphore

1: push(Event)

2: push(Event)

3: broadcast(Event)

5: push(Event)

6: push()

4: up()

7: down()

Figure 9.14 Event manager message trace diagram.

configurable threshold value, specifying the number of events it will accept, before
it will block suppliers that attempt to push incoming events (see Figure 9.14).

9.5 TYPED EVENT CHANNEL

9.5.1 Design Aspects

The creation of a typed channel is the same as an untyped channel. The administra-
tion issues are also the same. The communication of events does not use the type
Any but is through IDL interfaces. This allows the applications to pass data that
can be defined in the IDL interfaces, thus overcoming the shortcomings of using
type Any to pass events. In order to facilitate the communication using the IDL
interfaces the following interfaces are introduced in the OMG specification, Typed
EventChannel,TypedConsumerAdmin, TypedSupplierAdmin, TypedPushConsumer,
TypedPullSupplier, TypedProxyPushConsumer and TypedProxyPullSupplier. The
IDL interfaces, for the Type event service are listed below.

module CosTypedEventComm {
interface TypedPushConsumer : CosEventComm::PushConsumer {

Object get_typed_consumer();
};

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

TYPED EVENT CHANNEL 299

};

module CosTypedEventChannelAdmin {
exception InterfaceNotSupported { };
exception NoSuchImplementation { };
typedef string Key;

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin : CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(in

Key supported_interface) raises(InterfaceNotSupported);
CosEventChannelAdmin::ProxyPullConsumer

obtain_typed_pull_consumer(in Key uses_interface)
raises(NoSuchImplementation);

};
interface TypedConsumerAdmin: CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(in
Key supported_interface) raises(InterfaceNotSupported);

CosEventChannelAdmin::ProxyPushSupplier
obtain_typed_push_supplier(in Key uses_interface)
raises(NoSuchImplementation);

};
interface TypedEventChannel {

TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy();

};
interface TypedFactory {

TypedEventChannel create();
};
};

The benefit of using IDL interfaces is that it allows applications to decide on
the data that is to be passed on each event. One of the obvious benefits is that it
makes for better static type checking. The IDL interfaces are identified by a Key;
this is a parameter of type string which uniquely identifies a particular IDL inter-
face. The IDL interfaces are persistent within the Interface Repository. The Typed-
SupplierAdmin and TypedConsumerAdmin objects obtain the IDL description from
the Interface Repository server. This interface description is used to create a DSI
(Dynamic Skeleton Interface) object in the case of the TypedProxyPullSupplier and
TypedProxyPushConsumer. For the TypedProxyPushSupplier and the TypedProxy-
PullConsumer a DII (Dynamic Invocation Interface) request is made by the created
objects, Figure 9.15.

300 EVENT SERVICE

...

...

...

...

IDL Interface (Key) Operations (opName) Queue(Event)

Hash map

push(Key,opName,Event)

Marshall

pull(Key,opName,Event)

Unmarshall

op1

op2

op3

op2

op3

op1

C

B

A

X

DSI

Typed Push Supplier

DSI

Typed Pull Consumer

DII

Typed Push Consumer

DII

Typed Pull Supplier

Figure 9.15 Typed event channel architecture.

The flow control issues are the same as for the untyped event channel. The dif-
ference is in the event management. Unlike the untyped channel the typed chan-
nel can accept events on multiple operations, for the same interface simultaneously.
The same conditions apply for the broadcasting of events. The design therefore re-
quires separate event queues for each operation defined in the IDL interface, for both
the proxy consumers and proxy suppliers. All incoming events are marshalled into
a generic data structure along with the type information that will be required for
unmarshalling. This marshalled event is then pushed onto the central typed event
channel interface operation queue. Like the untyped event channel the typed chan-
nel also uses the same technique to broadcast the events to the TypeProxySuppliers.
The TypeProxySuppliers unmarshal the events before dispatching the events to the
typed consumers. In order to maintain separate queues for the operations, the key
that represents the IDL interface is used as the key for the hash table.

There are some important differences in the Typed Push and Typed Pull Models.
The Pull model of communication is a little more complex than the Push model.
This is because the server object from which the events have to be pulled must au-
tomatically modify the IDL interface and provide operations to pull events. The two
operations are pull op(), which blocks if there are no events pending and tr y op(),

TYPED EVENT CHANNEL 301

which checks if there is an event pending and if not returns false, else true along with
the pending event. For example if there is an Interface I then the new interface will
be pull <I>.

Interface I {
oneway op(in Object a);

};

is transformed to pull <I>:

Interface pull<I> {
pull_op(out Object a);
boolean try_op(out Object a);

};

There are also restrictions on the operation parameter passing modes. All oper-
ations must be one way; they need not be declared as such but should follow the
semantics of one way operations. The parameter passing modes for the pull and try
operations have to be the out mode only.

In the rest of this section, we will re-explain some the important steps of the DSI
and DII, which were already covered at the beginning of this book. The DII and DSI
mechanisms are important for implementing the typed event channel.

DSI—Dynamic Skeleton Interface. Since the event channel cannot know in
advance what interface the suppliers and consumers want to use for communication,
the server objects to facilitate communication have to rely on the DSI mechanism
rather than the normal static skeleton interface. All such dynamically created objects
have to inherit from the CORBA::DynamicImplementation class and override its
single method invoke(). The newly created object then has to be registered with the
BOA or POA. In order to pass a reference to the object that is created dynamically, an
IOR (Interoperatable Object Reference) is created which has the following format:

host:serverName:marker:IR host:IR server:interfaceMarker

where server Name is the server host name; marker the unique object marker
within the type; I R host is the IFR server host name; I R server is the name of
the IFR server ie. IFR; and inter f aceMarker is the name of the IDL interface or
Key.

DII—Dynamic Invocation Interface. For TypedProxyPullSupplier and the
TypedProxyPushConsumer objects that have to invoke operations on remote objects,
the invocations requests have to be constructed dynamically from the IDL interface.
The sequence of steps is: (i) Request object is constructed; (ii) the Request object
is populated with the object reference, the name of the operation/attribute, and the
parameters to the operation; and (iii) the request is invoked.

302 EVENT SERVICE

9.5.2 Implementation Aspects

The core design of the untyped and typed event channels is the same. The differences
are noted below:

• Thread Model. The thread model is Thread per object [93]. A new thread is
created for each instance of the proxy objects in the typed event channel.

• Marshalling and Unmarshalling. As the events are received on the different
IDL interfaces registered with the typed event channel, the typed proxy con-
sumers marshal the event parameters into a generic data structure along with
the type information of the parameters for unmarshalling. The typed proxy sup-
pliers unmarshal the events before dispatching to the connected consumers.

• Data Structures. The typed event channel can receive events for all the opera-
tions that may be present in the IDL interface. Therefore, separate queues have
to be maintained for these separate operations. This necessitates the augmenta-
tion of the simple queue (FIFO) that is used in the untyped event channel. The
typed event channel uses two hash map data structures to maintain the different
queues. The first hash table maps to another hash table that is keyed on the op-
eration names present in that particular IDL interface. Each value of the hash
table points to the queue (FIFO) for that operation. So in order to push or pull
events to and from the central queue, two parameters are required: first, the IDL
interface Key and second, the operation name.

Typed Supplier Interface

The typed Supplier objects that connect to the event channel are managed by the
TypedSupplierAdmin interface. The typed proxy consumer objects add the events
received from the typed supplier objects to the global typed event queue that is main-
tained in the EventChannel object. The incoming events are identified by the key and
the operation name. Since the typed channel interfaces inherit from the untyped event
channel Interfaces, the protocols for connection and disconnection are similar. For
obtaining the object references two new interfaces and methods are introduced. The
TypedPushConsumer interface has one method—get typed consumer(), which
returns the reference to the DSI object.

• Typed Pull Supplier Interface. The typed pull supplier first obtains the proxy
pull consumer object from the SupplierAdmin interface. The typed pull supplier
passes the key as the parameter to identify the IDL interface it will support, af-
ter informing the event channel of the IDL interface the supplier will support.
The supplier then connects to the proxy pull consumer by passing its object ref-
erence in a connect function call. The typed proxy consumer object first looks
up the interface in the IFR, and upon a successful reference passes the key to
the event channel for the purpose of storing events for the interface identified
by the Key. The proxy consumer then starts a thread that makes DII calls on the
Interface identified by the Key; after retrieving the events it marshals the events

TYPED EVENT CHANNEL 303

 : Typed Pull
Supplier

 : Typed Event
Channel

 : Typed
Supplier Admin

 : Proxy Pull
Consumer

 : IFR

1: for_suppliers()

2: obtain_typed_pull_consumer(Key)

3: createProxy()

4: connect_pull_supplier(TypedPullSupplier)
5: get_interface(Key)

6: register_interface(Key)

7: add(ProxyPullConsumer)

8: startThread()

9: pull_op(out param)

11: push(Key,Operation,Event)

12: disconnect_pull_consumer()

10: marshall(params)

14: remove(ProxyPullConsumer)

15: remove_interface(Key)

13: stopThread()

Figure 9.16 Typed pull supplier message trace diagram.

and pushes them onto the event queue that is maintained by the EventChannel
object, Figure 9.16.

• Typed Push Supplier Interface. The typed push supplier first obtains the typed
proxy push-consumer object from the the SupplierAdmin interface. The typed
push supplier passes the key as the parameter to identify the IDL interface it
will be pushing events on to. The supplier then obtains an object reference to
the object that will accept events on the Interface identified by Key. The typed
proxy push-consumer looks up the IDL interface in the IFR, then it creates a
DSI object for the Interface, registers the key with the event channel and returns
the newly created dynamic object reference that will accept a push request from
the push-supplier. When it receives events from the push supplier the proxy
push-consumer marshals the events and pushes them on to the event queue that
is maintained by the event channel object, Figure 9.17.

304 EVENT SERVICE

 : Typed Push
Supplier

 : Typed Event
Channel

 : Typed
Supplier Admin

 : Typed Proxy
Push Consumer

 : IFR : Object

1: for_suppliers()

2: obtained_typed_push_consumer(Key)

3: createProxy()

4: register_interface(Key)

5: get_interface(Key)6: register_interface(Key)

7: get_typed_consumer()
8: createObject()

9: op(in param)

11: push(Key,Operation,Event)

10: marshall(param)

12: disconnect_push_consumer()

13: remove(TypedProxyPushConsumer)

14: remove_interface(Key)

Figure 9.17 Typed push supplier message trace diagram.

Typed Consumer Interface

The typed supplier objects that connect to the event channel are managed by the
TypedSupplierAdmin object. The typed proxy consumer objects add the events re-
ceived from the typed supplier objects to the global typed event queue that is main-
tained in the EventChannel object. The incoming events are identified by the key and
the operation name. Since the typed channel interfaces inherit from the untyped event
channel Interfaces, the protocols for connection and disconnection are similar. For
obtaining the object references, two new interfaces and methods are introduced. The
TypedPullSupplier interface has one method—Object get typed supplier(),
which returns the reference to the DSI object.

• Typed Pull Consumer Interface. The typed pull consumer first obtains the typed
proxy pull-supplier object reference from the ConsumerAdmin interface. The

TYPED EVENT CHANNEL 305

typed pull consumer passes the key as the parameter to identify the IDL inter-
face from where it will be pulling events. The consumer then obtains an object
reference to the object that will supply events on the Interface identified by
Key. The typed proxy pull-supplier looks up the IDL interface in the IFR, then
it creates a DSI object for the Interface, registers the key with the event chan-
nel and returns the newly created dynamic object reference that will supply
pull requests from the pull consumer. When a request for an event arrives the
DSI server retrieves an event from its local event queue, unmarshals the event,
converts all parameters to OUT parameters and returns the events to the pull
consumer, Figure 9.18.

• Typed Push Consumer Interface. The typed push supplier first obtains the proxy
push-supplier object reference from the ConsumerAdmin interface. The typed
push consumer passes the key as the parameter to identify the IDL interface
it will support, after informing the event channel of the IDL interface the con-
sumer will support. The consumer then connects to the proxy push-supplier by
passing its object reference in a connect function call. The typed proxy supplier
object first looks up the interface in the IFR, and upon a successful reference

 : Typed Pull
Consumer

 : Typed Event
Channel

 : Typed
Consumer Admin

 : Typed Proxy
Pull Supplier

 : IFR : Object

1: for_consumer()

2: obtain_typed_pull_supplier(Key)

3: createProxy()

6: register_interface(Key)

4: register_interface(Key)

7: add(TypedProxyPullSupplier)

8: pull_op(out param)

9: pull(opName,Event)

10: unmarshall(Event)

5: get_interface(Key)

11: disconnect_pull_supplier()

12: remove(TypedProxyPullSupplier)

13: remove_interface(Key)

Figure 9.18 Typed pull consumer message trace diagram.

306 EVENT SERVICE

 : Typed Push
Consumer

 : Typed Event
Channel

 : Typed
Consumer Admin

 : Proxy Push
Supplier

 : IFR

1: for_consumer()

2: obtain_typed_push_supplier(Key)
3: createProxy()

4: register_interface(Key)

5: get_interface(Key)
6: register_interface(Key)

8: connect_push_consumer(TypedPushConsumer)
9: startThread()

10: get_typed_consumer()

11: pull(opName,Event)

12: unmarshall(Event)

13: op(in param)

14: disconnect_push_supplier()

15: stopThread()

16: remove(ProxyPushSupplier)

7: add(ProxyPushSupplier)

17: remove_interface(Key)

Figure 9.19 Typed push consumer message trace diagram.

passes the key to the event channel for the purpose of retrieving events for
the Interface identified by the key. The proxy supplier then starts a thread that
makes DII calls on the Interface identified by the key, and after retrieving the
events from its local queue, it unmarshals the events and pushes them on to
the typed push consumer. All the parameters are converted to IN parameters,
Figure 9.19.

Typed Event Manager. The typed event channel object is responsible for queue-
ing all incoming events and then broadcasting them to the connected consumers via
the DSI and DII Suppliers. The event channel object upon creation starts a separate
thread to handle the broadcasting of events. Flow control is implemented by using

CORBA EVENT SERVICE IMPLEMENTATIONS 307

 : Typed Proxy
Push

 : Proxy Pull
Consumer

 : Typed Event
Channel

 : Typed
Consumer Admin

 : Typed Proxy
Pull Supplier

 : Proxy Push
Supplier

 : Semaphore

1: push(Key,Operation,Event)

2: push(Key,Operation,Event)

3: broadcast(Key,Operation,Event)

4: up()

5: push(Operation,Event)

6: push(Operation,Event)

7: down()

Figure 9.20 Typed event manager message trace diagram.

mutexes; the broadcast thread blocks waiting for consumers to connect. The event
queues have a configurable threshold value, specifying the number of events they
will accept before they will block suppliers that attempt to push incoming events on
to the individual operation queues. For the typed event channel there is more than
one queue for queueing the events. In fact, for every interface there is a hash map
that takes a string key as a parameter and this maps to another hash map. The sec-
ond hash map is the hash table for the operations specified in the interface. For ev-
ery operation the hash map maps to a queue of events for that particular operation.
Therefore, to access any event requires two indirect operations. The first mapping is
based on the interface key and the second on the operation, as in Figure 9.20.

9.6 CORBA EVENT SERVICE IMPLEMENTATIONS

This section provides a description of some of the implementations of the CORBA
Event Service within the following distributed object systems: OrbixTalk, TAO’s
event service, Electra, and CyberBus.

9.6.1 OrbixTalk

Iona’s OrbixTalk implementation is similar in some respects to the event service
specification. However, instead of using point-to-point communication, it uses IP
Multicast, which is much more efficient and scalable. Using OrbixTalk, the world of

308 EVENT SERVICE

applications is divided into talkers (publishers) and listeners (subscribers). OrbixTalk
allows shared information to be organized into a hierarchical structure of topics,
each of which is identified by an OrbixTalk topic name. In this way, an application
can determine which information it is interested in and inform OrbixTalk by using
the topic name. The application employs negative acknowledgments to make sure
that a request is delivered to every object that has subscribed to it. However, it does
not provide totally ordered multicast, not does it provide virtual synchrony. Also,
requests can get lost under high load situations or when a receiver detects that it
has missed a message after the sender has discarded that message from its internal
message queue.

Talkers generate messages and listeners receive them. Consequently, any partic-
ular stream of messages is unidirectional, from one or more talkers to one or more
listeners. If a listener wishes to, in some sense, “reply” to an message which it has
received, it must either use a normal ORB invocation back to the talker, or estab-
lish a second stream of messages in the opposite direction to the first. Thus, a single
message stream can simultaneously have more than one talker and more than one
listener. In general, M talkers can issue messages via the same message stream to N
listeners, without any of the talkers and listeners having explicit knowledge of each
other. One of the advantages of this is that new talkers and listeners can be added
easily. The talker does not have to maintain a list of listeners.

To understand the roles of talker and listener in terms of the client-server model,
note that talkers generate messages, and listeners receive and act on these messages.
Therefore, a talker is a client while a listener is a server. OrbixTalk architecture in-
cludes three parts, an OrbixTalk talker, an OrbixTalk listener and a Directory En-
quiries Server. Briefly, a talker application wishes to talk on a topic. The OrbixTalk
network first checks to see if the topic name has been translated to a Multicast ad-
dress. If not, a request is sent to the Directory Enquiries Server requesting the IP
Address for the topic name. The Directory Enquiries Server looks up the name and
returns the IP Address of the IP Multicast group if it has it or allocates a new one if
it does not. The talk message is then multicast to the group.

A listener application calls the OrbixTalk network to listen, passing it a topic
name. Again, the OrbixTalk network performs the topic name translation as above.
Messages arriving on this topic are passed to listeners listening on that topic.

9.6.2 TAOs Event Service

TAO’s Event Service [91] is an attempt to augment the CORBA Event Service
specification with some additional features, such as real-time event dispatching and
scheduling, periodic event processing, and efficient event filtering and correlation
mechanisms. It is part of the TAO system, which is a real-time ORB end system
that provides end-to-end quality of service guarantees to applications by vertically
integrating CORBA middleware with OS I/O subsystems, communication protocols,
and network Interfaces [92].

The event service runs on real-time OS platforms (e.g, V×Works and Solaris
2.×) that provide real-time scheduling guarantees to application threads. The TAO

CORBA EVENT SERVICE IMPLEMENTATIONS 309

event channel is a specialized extension to the standard for a very specific application
domain, such as avionics, telecommunications, process control, and distributed inter-
active simulation. Applications in these domains have very strict real-time require-
ments, which are implemented in the TAO ORB, and the event channel extensions
make use of these real-time facilities.

• Guarantees for real-time event dispatching and scheduling. TAO extends the
CORBA Event Service interfaces by allowing consumers and suppliers to spec-
ify their execution requirements and characteristics. These parameters are used
by the channel’s dispatching mechanism to integrate with the system-wide real-
time scheduling policy to determine event dispatch ordering and preemption
strategies.

• Specification for centralized event filtering and correlation. TAO’s Event Ser-
vice provides filtering and correlation mechanisms that allow consumers to
specify logical OR and AND event dependencies. When those dependencies
are met, the event service dispatches all events that satisfy the consumers’ de-
pendencies.

• Support for periodic processing. TAO’s Event Service allows consumers to
specify event dependency timeouts. It uses these timeout requests to propagate
temporal events in coordination with system scheduling policies.

The priority-based event dispatching and preemption is done by the dispatching
module. Below we list some of its important components and functions.

• Run-time Scheduler. The Dispatching Module collaborates with the Run-time
Scheduler to determine priority values of the event/consumer tuples. Given an
event and the target consumer, the Run-time Scheduler determines the priority
at which the event should be dispatched to the consumer.

• Priority Queues. The Dispatching module maintains a priority queue of
events for each preemption priority used by the Run-time Scheduler. When
an event/consumer tuple arrives, it is inserted into the queue corresponding to
the preemption priority.

• Dispatcher. The dispatcher is responsible for removing the event/consumer tu-
ples from the priority queues and forwarding the events to consumers by call-
ing their push operation. The positioning of the events in the priority queue is
determined by the Run-time scheduler by assigning different priorities to the
event/consumer tuples.

9.6.3 Electra

Electra [64] is a CORBA v2.0 ORB supporting the implementation of reliable dis-
tributed applications. Electra objects can be replicated to achieve fault tolerance.
Electra permits combining equally-typed object implementations running on differ-
ent machines to an object group. A CORBA object reference can be bound to an

310 EVENT SERVICE

object group and requests will be transmitted by a reliable multicast. Object groups
can be used for active replication, efficient data distribution from one sender to many
receivers, object migration, and for more. The replication degree of an Electra ob-
ject can be increased dynamically at run time, while clients are firing operations that
update the internal state of the objects. Objects that join a replication group auto-
matically obtain a copy of the current internal state of the group members. Electra
runs on communication subsystems like Horus, Ensemble, and ISIS. All of the ORB
and RPC code is based on a generic virtual machine that abstracts the functionality
provided by systems like Horus and ISIS, for example, communication endpoints,
process groups, message passing, threads, and semaphores. To map the operations of
the Virtual Machine onto the underlying communication subsystem, a specific Adap-
tor Object is implemented. This is called the Adaptor Model. Presently, there is an
Adaptor Object for Horus and one for ISIS. To port Electra to another subsystem,
an Adaptor Object is written and plugged into the architecture. None of the code
residing above of the adaptor needs to be modified for that.

9.6.4 CyberBus

Cyberbus is an event management software that allows objects to interact By using
the Publish/Subscribe paradigm. Supplier objects push events on the bus; consumer
objects subscribe for events they are interested in. A CyberBus object can be both
a producer and consumer at the same time. A consumer can also request an event
directly from a producer by using a pull request. The producers use a subject to label
events and encapsulate the event object into a posting data structure. The events
are then multicast by the Cyberbus. The CyberBus is not based on the CORBA event
service model but does try to solve the same problem. It offers reliable, asynchronous
communication, failure detection and fault tolerance.

CyberBus makes use of the CORBA Any data type and CORBA sequences to
package data for transmission over the bus. Downcall methods are invoked by the
implementor of a CyberObject. Up-call methods, on the other hand, are invoked
only by CyberBus to deliver postings or to inform a CyberObject of the failure
of another CyberObject. Programmers are discouraged from invoking up-calls di-
rectly. The CyberBus subject is a simple char∗ and is represented as follows:
/usr/joe/group/whiteboard. CyberBus allows a CyberObect to subscribe to many
subjects and also allows for the use of wildcards in subjects. Event data needs to
be encapsulated into a posting data structure before it can be shipped over the Cy-
berBus. A posting consists of the subject it is addressed to and a list of name value
pairs:

struct nameValueElem {
CORBA::String_var name; // name of value (optional)
CORBA::Any value; // application specific data

};

CORBA EVENT SERVICE IMPLEMENTATIONS 311

struct posting {
CORBA::String_var subject; // subject associated with the posting
namedValueElemSeq data; // a CORBA sequence of nameValueElems

};

CyberBus guarantees that every operational object that has subscribed for that
subject will receive a copy of the posting (reliable multicast). In the case of pulling
events from producers, CyberBus provides a pull mechanism. The consumer calls the
operation Cyber Bus :: pull() with a parameter that is the subject that it is interested
in; this operation behaves like a blocking multicast RPC.

CyberBus also supports the concept of groups. It is accomplished by assigning a
single name to a set of CyberObjects. CyberBus delivers special upcalls to the mem-
bers of a CyberGroup when an object joins or leaves a group. The members of a
CyberGroup cooperate tightly to achieve a common goal such as active replication,
primary/backup, load sharing or mutually exclusive access to a an external resource.
CyberBus supports state transfer between the members of a CyberGroup. CyberOb-
jects join a group by calling the plug() operation. When programming CyberBus
applications one can ensure that each CyberObject sees postings, failure notifica-
tions and subscribe/unsubscribe notifications in exactly the same order. They share a
consistent view on failures and on CyberGroup membership.

9.6.5 Orbix+ISIS

IONA has provided a facility for integrating group communication and “Virtual Syn-
chrony” into their ORB Orbix by incorporating the ISIS toolkit. ISIS is a distributed
group communication toolkit that implements the Virtual Synchrony model. This
was originally proposed by Birman in [12]. Virtual Synchrony guarantees that the
behavior of a distributed application is predictable regardless of partial failures, asyn-
chronous messaging and objects that join and leave the system dynamically. The core
of the model is a failure suspector service and a group abstraction.

Orbix+ISIS (O+I) offers a CORBA-compliant distribution model for actively
replicated process groups. Applications can be developed by using the traditional
Iona Orbix C++ bindings, and then converted to being Orbix+ISIS servers. O+I
has group membership services, including heartbeat detection, join and exclusion
primitives. It supports total message ordering [58], as well as less stringent (but more
efficient) causal ordering, leaving the choice up to the developer. It supports a general
cooperative group computing paradigm, and while it is primarily intended for high
availability, it can be used by any applications that need a totally ordered (“Virtually
synchronous”) computing model. Being network-based, it has no proprietary hard-
ware dependencies. It is supported on multiple common platforms (HPUX, Solaris,
IBM AIX, Windows NT), and groups can be composed of server processes running
on heterogeneous combinations of these platforms. ISIS groups can be distributed
over Wide Area Networks, allowing for geographic diversity.

In addition to its standard active replication model, Orbix+ISIS also supports a
Coordinator/Cohort model. While this model can still fully mask failures from clients

312 EVENT SERVICE

as in the active replica model, it does so in a “lazy” replication style, which can be
considerably more efficient, depending upon the size of state to be transferred relative
to the cost of computing that state from the client inputs. Coordinator/Cohort can also
be a useful load balancing tool, since a group can nominate different members to be
coordinators for different client operations simultaneously.

Orbix+ISIS integrates the two separate products in two ways. First, it replaces the
TCP/IP layer in Orbix with the ISIS reliable transport software. The result is new
options availability and reliability options for developers. ISIS is a message-oriented
middleware with high-availability features. ISIS manages the states of objects in dif-
ferent locations on a network. ISIS can guarantee that the same message delivered
to two (or more) objects running in different locations will produce the same result.
This capability can be used to support a fault-tolerant configuration for a set of ob-
jects - two identical sets of objects executing in parallel, with one set taking over if
the other fails. In addition, ISIS is useful in recovering from failures. In case of an
outage, the ISIS software transfers the current state to replicas and resynchronizes
the system-wide state. Lastly, the ISIS system can make an ORB itself (as opposed
to applications that use an ORB) fault-tolerant. Iona and ISIS have designed a set
of templates, an IDL code generator, and programming conventions to make Or-
bix+ISIS transparent to C++ developers. The only change for developers will be the
addition of “call backs” to their application code. Call backs are required to support
interaction via the ORB.

Finally, Orbix+ISIS has an event stream model which decouples the client and
server in an interaction and funnels their operations through an event queue. This
queue can optionally store messages persistently and is itself implemented as an
actively replicated ISIS group. This yields a CORBA- based Publish/Subscribe
mechanism, with fully ordered, guaranteed message delivery to intended recipients,
whether they are executing at the time of transmission or not. Object perISIStance
is achieved by using database specific adapters. The Orbix adapter approach is
explained below.

The Orbix approach to providing persistence is by using object adapters. An ob-
ject database adapter provides a tight integration between the ORB and persistent
object implementations. An object adapter mediates between the ORB, the gener-
ated skeletons and the object implementation. With the assistance of skeletons (or of
the DSI), it adapts the object implementation interface to the ORB-private interface.
Orbix Adapters are implemented by using the Orbix filter hooks. Orbix references
are used to load objects from a persistent store when necessary. The objects are reg-
istered in their constructor, and the transactions are also managed by the database
adapter.

9.7 DISCUSSION ON QOS ISSUES

One of the important issues in event service is the QoS requirement. At the current
stage of the OMG specification, a few aspects need to be addressed:

DISCUSSION ON QOS ISSUES 313

• Persistence. The OMG standard does not mandate that event channels provide
persistence. In the event of a server shutdown due to a problem, the event chan-
nel may lose events. For the untyped channel which uses the type Any for com-
municating events there is an added problem of incompatibilities between the
implementation between different ORB’s. This problem should be solved when
the type DynAny is widely available.

• Filtering. The standard OMG Event Service does not specify any filtering capa-
bilities. This means that all events are passed to all connected consumers. In the
current situation, filtering has to be implemented on the side of the consumers.

• Increased End System Utilization. Since the event filtering is performed on the
side of the client the network utilization increases. This could be avoided by
proving a filtering mechanism in the event channel interface.

There are no QoS Service guarantees in the specification. This makes it very diffi-
cult to anticipate all the possible application requirements and therefore implement a
general solution which would be universally applicable. Different applications have
different QoS requirements, e.g, in aviation controllers the real time requirements
are very stringent; in stock market applications ordering of events is very important.
In general, an event channel should provide persistence, so that events that are not
passed to consumers should be stored for future delivery.

To extend the CORBA Event Service to work on a domain specific application,
the following QoS features can be added.

• Scalability. In order to make the event channel scalable one technique would be
to use multicasting or group communication. This can be done, for example, by
using the ISIS toolkit with additional interfaces to the design for interfacing to
the low level facilities of the toolkit. Orbix+ISIS features are transparent to the
client program; fault-tolerant object group behavior does not require changes to
the client code. A server implementation class gains fault-tolerant object group
behavior by inheriting from a base class [60]. Orbix+ISIS provides base classes
for two types of object groups, active replication and event stream.

• Persistence. The events that need to be stored in persistence storage. This can
be either using a database adaptor, similar to the one described in Section 4.4
of Chapter 4, that is, by extending the Portable Object Adaptor to manage per-
sistency of objects within a database system [95]. Another alternative is to use
the CORBA Persistency Service.

• Ordering of Events. Currently, the ordering of events is first- come first-serve
at the event channel. The originating time is not taken into consideration. In
order to provide total or causal ordering [58], a different queueing mechanism
will have to replace the simple queue that stores the events on the event channel.
Guaranteeing “stronger” QoS levels like total-order is expensive with respect to
message latency. The latencies on total-ordered messages can be very high [11].
The interface between the suppliers and the event channel would also require
modification to accommodate these changes.

314 EVENT SERVICE

• Garbage Collection. This is an issue that affects the ORB’s in general. GIOP
has no concept of sessions and does not permit servers to distinguish between
orderly and disorderly client shutdown. As an example if a client (supplier or
consumer) crashes or loses connectivity before it gets a chance to initiate a dis-
connect, the server objects do not have a means to detect this. The objects on the
server then tend to hang around forever. If too many such objects accumulate,
this tends to have a negative impact upon the performance of the server.

• Filtering of Events. This issue has been addressed in the CORBA Notification
Service and the same mechanism could be used to provide event filtering in the
event service.

• Realtime Event Channel. For realtime requirements it is better to use a realtime
ORB that provide realtime guarantees to clients and servers. So the typed chan-
nel should be ported to existing realtime ORB’s such as TAO and Electra. There
are already untyped event channels for these to realtime ORB’s

9.8 SUMMARY

For many complex distributed applications, one-to-one communication is just not ac-
ceptable. De-coupling those who provide events (suppliers) and those who consume
events (consumers) is just appropriate. Suppliers do not need to know the consumers
of their events. They just need to have a “letter box” where they can put their events
(letters or messages) and later consumers can pick them up when they are ready.
These consumers may be also informed about the events (letters or messages) which
concern them. The CORBA Event Service provides such “letter box” style function-
alities and it enables many-to-many communication.

In this chapter we discussed the advantages of of the OMG Event Service. Before
proposing details about such service, we described some of the Publish/Subscribe
mechanisms. The untyped and typed event channels were detailed and examples
were given. To complement the description of the OMG specification of such a ser-
vice, we provided details about how such a service can be implemented as well the
problems that can be encountered during the implementation (not use!) of the service.
At the end of the chapter, a few implementations of the OMG Event Service were
described, such as OrbixTalk, TAO’s realtime event channel, Electra, CyberBus, and
Orbix+ISIS.

9.9 REVIEW QUESTIONS

• Briefly explain the event channel. Hint: Relate the event channel with sub-
scribers, publish/subscribe pattern, and decoupling.

• What is an event? Briefly explain the decoupling provided by an event channel.
Briefly explain the different kinds of event channels.

• Explain the three communication technologies that use the OMG event channel.

EXERCISES 315

• Explain briefly how the push and pull models work.
• What is the difference between typed and untyped event channels in terms of

interfaces used to access events? Briefly explain delivery models that can be
used by these event channels.

• What are the problem with the current implementations of CORBA event ser-
vice? What is an event proxy? What kinds of applications adapters can be del-
egated with as proxies?

• Explain the implementation aspects of untyped event channels.
• Explain the implementation issues of typed event channels.
• Explain the QoS aspects that must be addressed at the current stage of the OMG

specification.
• Explain the QoS features that can be added in order to extend the CORBA Event

Service to work on a domain specific application.

9.10 EXERCISES

• Discuss the abilities that the Push and Pull models give to consumers. Provide
an example for the ability each model gives.

• Discuss QoS issues of OMG event service specification when it is used to im-
plement an event service in stock trading applications

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 10

Object Transaction Service

This chapter describes the main elements of the CORBA Object Transaction Service
(OTS), including the OTS architecture and its different components. At the end of
the chapter, an example of a CORBA OTS is given, followed by a comparison with
the Microsoft transaction server.

10.1 OVERVIEW

The concept of transactions is an important programming paradigm for simplifying
the construction of reliable and available applications, especially those that require
concurrent access to shared data. The concept was first used to protect data in a
centralized database, but it has recently been extended to the broader concept of dis-
tributed computation. Transactions guarantee that the data will be consistent at the
end of its execution, regardless of whether the transaction may have been executed
concurrently with others (commits) and failures may have occurred during its execu-
tion (aborts).

OTS is a service under OMA that provides operations to control the scope and
duration of a transaction. It allows multiple objects, potentially residing at different
resource managers, to participate in a global atomic transaction and allows objects
to associate their internal state changes with the transaction. OTS coordinates the
completion of a distributed transaction by implementing presumed abort two phase
commit (2PC) protocol across heterogeneous, autonomous, and distributed objects
based systems [75]. OTS is the object-oriented counterpart of the procedural trans-
action processing (TP) monitors in distributed environments. TP monitors provide
transaction management (ACID properties and resource management, database con-
nection management, load sharing between software servers, etc.) in procedural envi-
ronments, whereas OTS only provides the transaction management function through
its object interfaces. The design of OTS is based on the X/Open reference model, ex-
cept that the procedural XA [107] and TX [108] interfaces have been replaced with
a set of CORBA interfaces defined in the CORBA Interface Definition Language
(IDL). All inter-component communication is mandated to be via CORBA method
calls on instances of these IDLs.

Transaction capabilities play a key role in several applications that require reliable
processing. The OTS defines IDL interfaces that let multiple distributed objects on

316

BASICS OF TRANSACTIONS 317

multiple platforms participate in atomic transactions. In this way, by using the OTS,
ORBs can provide a seamless environment for running mission-critical components.
The OTS allows applications already making use of a distributed object-oriented
CORBA environment to make use of transactional behavior, thus increasing relia-
bility and robustness. It also allows applications which must rely on transactional
capabilities to be embedded in an ORB-based environment.

10.2 BASICS OF TRANSACTIONS

This section introduces the basic concepts related to transaction-based systems and
describes in more details the different transactional models, including flat and nested
models, and finally introduces the consistency protocols for these models. Transac-
tions will be described in a format similar to the one used in the following example:

begin_transaction T: begin_transaction INCREASE_BAL88
op-1(); :x = read(balance);
op-2(); :y = read(salary);
... write(balance, :y + :x);
... write(salary, :y + 100);
...
... :x = read(age);
op-K() write(age, :x+1);

end_transaction T end_transaction INCREASE_BAL88

Figure 10.1 Structure and example of transactions.

where op − 1(), . . ., op − K () are read() and wri te() operations and : x and : y are
variables.

10.2.1 Concepts

The concept of transactions has been widely supported by a variety of existing sys-
tems, including data-oriented systems, such as databases, and process-oriented sys-
tems such as distributed systems. This concept has the same purpose in all these
systems and is meant to “group” a set of operations, mainly read and write oper-
ations, into one logical execution unit called a transaction. However, as we will
describe in later sections, operations within a transaction can also be regrouped to
form sub-transactions (or child-transaction) of the original transaction (or parent-
transaction). These types of transactions are called nested transactions as opposed to
the conventional transactions called flat transactions.

Whether a transaction is a flat transaction or a nested transaction, the basic re-
quirement is to enforce ACID properties [10, 43], which are Atomicity, Consistency,
Isolation, and Durability. Atomicity property is the property that says all operations
performed as part of a transaction are considered to be one atomic action—they are
either all performed or none of them are. When a transaction commits, all the effects
of the operations are completed and cannot be interrupted or undone. In the example

318 OBJECT TRANSACTION SERVICE

of Figure 10.1, the operations within the transaction INCREASE BAL88 have to be all
or none applied, that is, update the current balance with the salary amount and later
update the salary with 100, or none of them will be applied. When the transaction
commits, all the updates are made persistent. When a transaction aborts (or is rolled
back), all the operations are undone, and the state will match the state that existed
and was relevant before any of these operations were performed.

Consistency refers to the property that transactions must guarantee that the data
are transformed from one consistent state to another. Consistency of a state is de-
fined by a set of constraints and variants which must be satisfied. The property of
consistency enables an application that is implemented correctly to perform a set of
operations guaranteed to create a new state satisfying these constraints. The isolation
property of transactions is used in situations where multiple processing entities ref-
erence and change the same underlying resources and data. An executing transaction
cannot reveal its results to other concurrent transactions before its commits. Ensuring
isolation by not permitting incomplete results to be seen by other transactions solves
the lost update problem. The following example illustrates this lost update problem
for the two transactions zahir trans and j im trans:

balance = 200$
salary = 1000$
begin_transaction zahir_trans
:x = read(balance); 200$

begin_transaction jim_trans
:z = read(balance); 200$
write(balance, :z+100); 300$

write(balance, :x + 10) 210$
end_transaction zahir_trans

x: = read(balance);
end_transaction jim_trans

Because j im trans was able to see the balance and changed it after zahir trans
had read the balance, the transaction zahir trans has lost the update that was per-
formed by the other transaction, that is, it should have a balance of 240$ instead of
210$. One could say that a solution is to abort the transaction zahir trans in or-
der to retrieve a consistent state. If that is done, this will require that the transaction
j im trans to be aborted as well as those that have used the data since this trans-
action. This is known as cascading aborts. If a transaction permits others to see its
incomplete results before committing and then decides to abort, any transaction that
has read its incomplete values will have to abort as well.

When looking at j im trans transaction, it is apparent that it was allowed to read
an inconsistent value of balance. This occurred because it read the value in the time
between zahir trans reading and writing a new value—this is called an inconsistent
retrieval.

To avoid the problem of lost updates and inconsistent retrieval, the system needs
to enforce what is called serializability of the transactions. Two transactions are se-
rializable if the interleaving of the operations of the transactions produces an effect

BASICS OF TRANSACTIONS 319

as if the transactions had been performed one at a time. For example, the operations
zahir trans and j im trans are not serializable because they cannot be interleaved.
If interleaving is attempted, there will be a lost update and an inconsistent retrieval.
In these situations, where there are conflicts between the transactions, one of the
transactions needs to be aborted.

In general, given a set of transactions, say T1, . . . , Tn , these transactions are
said to be serializable if the interleaving of their operations produces a serial or-
der Ti1, . . . , Tin , where i is a permutation on {1, . . . , n}. In this case, the operations
of Ti1 will be performed first, then those of Ti2 , and so on until the transactions are
completed.

The last property is the durability property which guarantees that the result of a
transaction that commits is durable (persistent) and will never be lost (except in the
case of catastrophes, such as destruction of the disk and all its backups). Durability is
usually implemented by using a persistent storage mechanism, but the definition of
transactional durability does not specify how this is done or place limitations on what
implementation is used; it only specifies that the result set of a completed transaction
must be durable.

These ACID properties apply to any transactional-based model, whether it is a
flat transactional model or a nested transactional model. In a flat transactional model,
transactions are only defined in terms of basic read and write operations. The trans-
actions shown in Figure 10.1 are examples of flat transactions. Nested transactions
relate to those that are defined in terms of other transactions, called sub-transactions.
For example, the transaction INCREASE BAL88 can be rewritten to contains two sub-
transactions, one that reads the balance and salary and updates them, and the other
subtransaction that reads and updates the age. Because the operations of these sub-
transactions are not dealing with the same data items, they can be split and executed
in parallel. Now the initial transaction of Figure 10.1 can be expressed in a nested
transaction as in Figure 10.2 model.

In general, a nested transaction can be defined as a directed graph where nodes
are subtransactions and a directed edge is defined between a parent transaction and

begin_transaction T: begin_transaction INCREASE_BAL88
begin_transaction T_1 begin_transaction UPD_SALARY
op-1(); :x = read(balance);
op-2(); :y = read(salary);

end_transaction T_1 write(balance, :y + :x);
... write(salary, :y + 100);
begin_transaction T_K end_transaction UPD_SALARY

op_k(); begin_transaction INCREASE_AGE
op_k+1(); :x = read(age);
... write(age, :x+1);
op_n(); end_transaction INCREASE_AGE

end_transaction T_K end_transaction INCREASE_BAL88

Figure 10.2 Structure and example of a nested transaction.

320 OBJECT TRANSACTION SERVICE

T9

T8

T1

T

T

2

3

T

T

6

7

T4

5

T

10T

Figure 10.3 Nested transactions.

its sub-transaction. Figure 10.3 shows the general structure of a nested transaction
T1 which has three sub-transactions, T2, T3 and T4. In turn, T2 and T3 has sub-
transactions T5, T6 and T7, T8, respectively. Finally, T6 has two sub-transactions, T9
and T10.

One obvious advantage of the nested transactional model is that it enables the sys-
tems to process sub-parts of a nested transaction in parallel and therefore increase the
performance of the systems supporting such a model. Also, because sub-transactions
belonging to different sub-graphs of a nested transaction can commit or abort without
affecting the results of each other. In this way, the nested transaction T1 can commit
even if one of its sub-transactions, say T3 is aborted. This offers more flexibility in
managing complex applications without affecting their performance, such as rolling
back unnecessary transactions because some of their sub-operations have not been
committed. More details about the commit protocol in nested transaction are given
in Section 10.2.3.

10.2.2 Concurrency Control Protocols

To allow atomicity and isolation, transactions must be scheduled so that all of their
offset on shared data is serially equivalent. There are several concurrency control
mechanisms which enable serializability of transactions. Here we will show two of
these mechanisms, the pessimistic concurrency control and the optimistic concur-
rency control.

10.2.2.1 Pessimistic Concurrency Control. This concurrency control
mechanism is used in several systems, including existing database systems. The
idea is that before any transaction performs an operation on a data item, it must
acquire a lock, which can be either an exclusive lock (in case of a write operation)
or a shared lock (in case of a read operation). Locks that have been acquired by a
transaction are released only by the transaction commits. The locking mechanism
is generally implemented by using a lock manager which is responsible for the
management of locks.

BASICS OF TRANSACTIONS 321

When a data item is locked by a given transaction, any other transaction that
needs to access or update this item must wait until the lock is released. This creates a
(waiting) dependency relationship between transactions, called the Waiting Directed
Graph (WDG), where the nodes are transactions. In this case, a directed edge from
a transaction Ti to a transaction T j means that Ti is waiting to acquire a lock on
the data item that was locked by T j . When a WDG does not have a directed cycle,
the transactions are serializable. Otherwise, they are said to not be serializable, and
therefore there exists a deadlock. One solution to solving the deadlock situation is to
abort one of the transactions involved in the cycle. Since there may be several trans-
actions, in some systems, priorities are assigned to transactions and the transaction
with the lowest priority is aborted.

10.2.2.2 Optimistic Concurrency Control. Locking data items generally
restricts the accessibility of the data items, thereby reducing concurrent access to
shared data items. This is generally not acceptable for several types of applications
because it reduces their performance since transactions need to wait until locks are
released by earlier transactions.

To avoid waiting for locks, a solution is to leave transactions performing opera-
tions on copies of the data items. Each transaction has two timestamps, one for the
starting of the transaction (read phase) and the other for when the transactions ask
to commit (validation phase). When a transaction has a “green” light to commit, it
enters its last stage in which all the operations made on the copy of the data item are
made persistent (write stage).

During the read phase, the operations of a transaction are performed on a copy of
the data item. When the transaction wants to commit, the transaction manager checks
whether this transaction has any conflict with other transactions and whether or not
they have been committed. Here we describe two protocols to validate transactions in
the context of the optimistic concurrency control: backward validation and forward
validation.

• Backward Validation. In the context of this protocol, the operations a transaction
that have asked to commit are checked with the operations of earlier transac-
tions. Conflicts occur when the transaction has read a data item that has been
updated by earlier transactions.

Let us consider the example of Figure 10.4 which illustrates the different
phases of the transaction T9. When T9 enters the validation phase, conflicts can
only occur with the transactions T3 and T5. T20 and T10 have no conflicts with
T9 because they were committed before T9 started its read phase. Therefore,
T9 reads data items after the two transactions committed. Regarding T1, since
this transaction has not yet committed, there will be no checking to perform.
However, when this transaction enters its validation phase, it has to check if
there is a conflict with the transaction T9, if it has been allowed to commit.

When the set of transactions that may enter in conflict with T9 has been
identified, it is called the candidate conflict set and is denoted as CCST9 ; the
second step is to check whether or not this transaction has read a data item that

322 OBJECT TRANSACTION SERVICE

PHASE

VALIDATION

READ

PHASE

WRITE

PHASE

T1

T3

T5

T20 T10

T9

TT

T

51 34

33

(A) Forward Validation (B) Backward Validation

Figure 10.4 Transaction phases.

has been updated by the CCST9 ’s transactions. In fact, if a CCST9 ’s transaction
has updated the data item before T9 has performed the read, then this transaction
does not have any conflict with T9. The only ones that are in conflict with T9
are those of CCST9 which have updated data items after T9 performed the read
operation. We denote this subset of transaction as CCS<T9,backward>.

In general, given a transaction Ti , this transaction can start the write phase
if and only if CCS<Ti ,backward> is empty. If not, this will mean that this trans-
action will need to be aborted and started again.

• Forward Validation. In the context of this protocol, the transaction to be vali-
dated is checked with those transactions that are currently active, that is, those
that have not yet committed when the transaction entered the validation stage.
Conflicts may arise when the transaction has updated a data item that has been
read by active transactions.

Referring again to Figure 10.4, to validate the transaction T9, the conflicts
that need to be checked are with the following set CCS<T9,backward> = {T51,
T33, T34}, that is, the set of transactions that have not yet committed when T9
started the validation stage. If one of the transactions of this conflict set has read

BASICS OF TRANSACTIONS 323

a data item that has been updated by T9, then either this transaction or T9 needs
to be aborted [46].

10.2.3 Commit Protocols

A commit protocol is used to synchronize updates on data items (that can be located
in different servers) so that they either all fail or all succeed. This is done by central-
izing the decision to commit but by giving each participant the right of veto. For flat
or nested transactions there are several commit protocols, and here our focus will be
on the two phase commit (2PC) and three phase commit (3PC).

10.2.3.1 2PC Protocol for Flat Transactions. This protocol is designed so
the servers that contain the data items can commit or abort a transaction. Because
of the atomicity property, if a part of a transaction is aborted by a given server,
then the whole transaction must be aborted. To make sure that a transaction can be
committed, one of the servers (called coordinator) will be responsible for checking
with the other servers to determine if the transaction can commit. This is done in two
phases, the CanCommit phase and the DoCommit phase. In the first phase, as shown
in Figure 10.5, the coordinator sends a request to all the servers that are executing
operations of the transaction. These servers are called workers, and they will work
together with the coordinator to come up with a consistent final decision about the
transaction.

When the workers receive the message CanCommit, they will send a reply as to
whether they can or cannot commit the operations of the transactions. The coordina-
tor analyzes the replies and decides to continue committing the transaction or to abort
it. If one of the replies is negative, that is, one of the operations of the transaction
cannot be committed, then the coordinator aborts the transaction. If all the votes are
positive the commit protocol enters its second phase, the DoCommit phase, where

Worker 1

Worker N

Coordinator
Do Commit

Have Committed

Yes

Can Commit?

Figure 10.5 2PC protocol.

324 OBJECT TRANSACTION SERVICE

the coordinator asks each worker to commit the operations of the transaction. Ev-
ery worker will act accordingly and apply the operations and inform the coordinator
when all the operations are applied.

10.2.3.2 2PC for Nested Transactions. The commit protocol for nested
transactions is a little complex because when a subtraction wishes to commit, and
since it does not necessarily have information about other sub-transactions, then
it will commit even though one of it parents has aborted. In general, the top-level
transaction can commit only if all of its provisionally committed child transactions
can commit.

When a nested transaction wishes to commit (i.e., provisionally commit), it should
report its status (as well as its descendants) to its direct parent. This process re-
peats until the top-level transaction receives all the information about all its sub-
transactions. Let us consider the example of Figure 10.3 with additional information
on the status of the sub-transactions, as shown in Figure 10.6. In this example, be-
cause T6 has aborted, T9 and T10 should be aborted. But because these two transac-
tions are not aware of the status of T6 and T2, they will try to commit even though
their ancestors have aborted.

To avoid such a problem, each transaction will keep track of the provisionally
committed sub-transactions as well as those that are aborted. This information is then
passed to the parent transaction, which will in turn send information to its parents,
etc. Table 10.1 shows the flow of information from one sub-transaction to its parent
for the example shown in Figure 10.6.

During the 2PC protocol, the coordinator (the server that has initiated the top level
transaction) sends a CanCommit? request to each of the workers and supplies the
abort list. As mentioned earlier, based on the information in this list, each worker will

aborted

provisional commit

provisional commit

abort

provisional commit

abort

provisional commit

provisional commit

T

T

T

T

T

T

T

T

73

T

1

2

5

6

9

10

8

4

T

provisional commit

Figure 10.6 Nested transactions.

BASICS OF TRANSACTIONS 325

TABLE 10.1

Transaction Childs Provisional Commit List Abort List

T9 T9
T10 T10
T5 T5
T6 T9 , T10 T9, T10 T6
T7 T7
T8 T8
T2 T5 , T6 T2 T6, T5
T3 T7, T8 T3, T8 T7
T4 T4
T1 T2, T3, T4 T2, T3, T4

decide whether to commit or abort by checking the status of the parent transactions.
When a worker receives a CanCommit? message, it first checks the aborted list. If
there is no aborted parent transaction in the list, then the worker sends a Yes vote to
the coordinator. If there is, an abort votes in the list, then the transaction aborts. In the
second phase of the 2PC, the coordinator collects the votes and sends a DoCommit
request for those that have voted Yes. The coordinators must then commit those
transactions.

The 2PC protocol for nested transactions allows a top level transaction to com-
mit even though some of the sub-transactions have aborted. In the example of Fig-
ure 10.3, if the sub-transactions T2, T3, T8 and T4 can commit, then the top level
transaction will commit.

10.2.3.3 Three Phase Comitt Protocol (3PC). The main objective of the
2PC protocol is to make sure that a consensus is found regarding the commitment
of a transaction among the different servers. This (consensus) provides a good basis
for the consistency of data; however, it can induce a delay that is mainly related
to the failure of the coordinator or one of the workers. Referring to Figure 10.5, if
a worker has failed after a coordinator has voted, then this worker will be waiting
until the coordinator restarts. The same problem occurs when a worker fails, then the
coordinator will have to wait until the worker restarts.

To avoid such a delay, 2PC has been extended to include an additional phase,
called the PreCommit phase, and the new protocol is called 3PC protocol. The first
phase of this protocol is similar to the 2PC. In the second phase, the coordinator
collects the votes and makes a decision. If one of the workers votes No, then it sends
an abort to all the workers. If the vote is Yes, then it sends a PreCommit request to all
the workers to check whether or not the workers (who have voted yes) are still able to
commit. Workers that have voted Yes will wait for the PreCommit or Abort request.
For a given timeout, if the request is not received, the worker will assume that the
coordinator has failed and either aborts the transaction or contacts the coordinator.

326 OBJECT TRANSACTION SERVICE

When a worker receives the PreCommit request, it votes a second time and sends
the reply to the coordinator. The coordinator will collect the vote and decide to com-
mit or abort the transaction. When it decides to commit, then it sends a DoCommit
to all the workers, and they will carry out this commit.

10.3 OTS CONCEPTS

OTS service supports the concept of a transaction in the context of CORBA envi-
ronments. It defines interfaces that allow multiple distributed objects to cooperate to
provide atomicity. These interfaces enable the objects to either commit all changes
together or to rollback all changes together, even in the presence of failures. It pro-
vides transaction synchronization across the elements of a distributed client/server
application. The transaction service places no constraints on the number of objects
involved. The transaction service does not require that all requests be performed
within the scope of a transaction. OTS provides operations (i) to control the scope
and duration of a transaction; (ii) to allow multiple objects to be involved in a single,
atomic transaction; (iii) to allow objects to associate changes in their internal state
with a transaction; and (iv) to coordinate the completion of transactions. OTS [75]
provides the following features:

• Support for multiple transaction models, such as flat and nested transactions.
• Support for transactions that span heterogeneous object request brokers. Ob-

jects on these brokers can participate in a single transaction, and in addition, a
single broker can support multiple transaction services.

• Support of existing IDL interfaces. A single interface supports both transac-
tional and non-transactional implementations. To make an object transactional,
it needs to use an ordinary interface that inherits from an abstract OTS class.
This approach avoids an explosion of IDL variants that differ only in their trans-
action characteristics.

• Support of both implicit (system-managed) propagation and explicit (applica-
tion-managed) propagation. With implicit propagation, transactional behavior
is not specified in the operation’s signature. With explicit propagation, applica-
tions define their own mechanisms for sharing a common transaction.

• Support for TP Monitors. A TP Monitor provides both efficient scheduling and
the sharing of resources by a large number of users. It must be possible to
implement OTS in a TP monitor environment.

10.3.1 Interface Hierarchy

Figure 10.7 shows the OMG’s schematic view of a distributed transaction processing
model. The model’s principal concept is that a client may perform CORBA transac-
tions on various types of servers by using invocations. The service usually establishes
a so-called transaction context for this, which is unique to the client’s session. The

OTS CONCEPTS 327

PropagationContext

timeout
current
parents

prepare()
rollback()
commit()
commit_one_phase()
forget()

Resource

RecoverableObject

register_ressource()

TransactionalObject

TransIdentity

otid
term
coord

replay_completion()

RecoveryCoordinator

CORBACurrent

recreate()
create()

TransactionFactory

rollback()
commit()

Terminator

get_terminator()

get_coordinator()

Control

get_status()
get_parent_status
get_top_level_status()
register_ressource()

Coordinator

register_synchronization()
register_subtran_aware()

create_subtransaction()
rollback_only()

get_txcontxt()

begin()
commit()
rollback()
rollback_only()

suspend()
resume()

get_control()

Current

before_completion()
after_completion()

Synchronization

rollback_subtransaction()
commit_subtransaction()

SubtransactionAwareresource

Figure 10.7 The transaction interface hierarchy.

transaction context is a way for the transaction service to monitor the vital signs of
the transaction as it occurs.

The Current interface defines operations that allow a client of the OTS to explic-
itly manage the association between threads and transactions. It is provided to begin,
commit, rollback, or obtain status monitoring information on transactions. It supports
the notion of multiple client threads of operation occurring per transaction, which
leads to the support of nested sub-transactions within a transaction via the use of
these threads. The TransactionFactory interface enables the transaction originator to
begin a transaction. This interface defines two operations, create and recreate, which
create a new representation of a top-level transaction. The two operations actually re-
turn a Control object. The Control interface allows a program to explicitly manage or

328 OBJECT TRANSACTION SERVICE

propagate a transaction context. It defines two operations, namely get terminator()

and get coordinator(). The first operation returns a Terminator object which sup-
ports operations to end the transaction. The second operation returns a Coordinator
object, which supports operations needed by resources to participate in the transac-
tion. The Terminator interface supports operations to either commit or roll back a
transaction. Typically, these operations are used by the transaction originator. The
Coordinator interface provides mechanisms to coordinate the actions of the differ-
ent participants involved in ongoing transactional operations. Examples of this are
create subtransaction() to setup new sub-transactions nested under the current
parent transaction, or the registering of an external resource, using register resource
or register subtransaction aware(). The RecoveryCoordinator interface can be
used by recoverable objects to coordinate recovery of the OTS-based system in the
event of failure. It provides a replay completion() operation that returns the current
status of a transaction, whether or not it has committed successfully, rolled back, or
is in some intermediate state, contingent upon other sub-transactions. The Resource
interface defines the operations invoked by the Transaction Service during the 2PC.
The Subtransaction Aware Resource interface is used with the nested transaction
model. Its purpose is usually to help register a specialized callback resource object
that will notify some recoverable object if a specified subtransaction completes suc-
cessfully. Finally, the Transactional Object interface is used by an object to indicate
that it is transactional. It is a marker interface and has no operations.

10.3.2 Context Propagation

A transactional originator has a choice to either use the indirect context management
(and therefore implicit transaction propagation) or the direct context management
(and therefore explicit transaction propagation). In the example below, t xn crt is
an object supporting the Current interface. The client uses the begin() operation to
start the transaction which becomes implicitly associated with the originator’s thread
control. The program later uses the operation commit () to end the transaction.

// Indirect & Implicit Propagation
...
txn_crt.begin();
...
Account->makeDeposit(10.00);
...
txn_crt.commit(false);
...

In the direct or explicit model, as shown in the example below, the transaction
originator uses direct context management and explicit transaction propagation. The
client uses an object from the interface TransactionFactory (see Figure 10.7) to create
a new transaction and uses the returned Control object to retrieve the Terminator and
Coordinator objects. As shown in the interface of Control objects, these objects do

OTS CONCEPTS 329

not directly support management of transactions. Instead, they support operations
that return the Terminator and Coordinator objects. The former is used to commit or
rollback a transaction. The latter is used to enable transactional objects to participate
in the transaction. The two objects can be propagated independently, and therefore
allow finer granularity control over propagation.

// Direct & Explicit Propagation
...
CosTransactions::TransactionFactory fac;
CosTransactions::Control ctr;
CosTransactions::Terminator trt;
CosTransactions::Coordinator crd;

// probably using _bind() to find the factory
fac = ...
ctr = fac->create(0);
trt = ctr->get_terminator();

Later on the client issues requests, some of which involve transactional objects
(those that have their IDL interface inherit from CosTransactions::Transac-
tionalObject). The propagation of the context should be explicit, meaning the
object ctr should be passed as an explicit parameter of the request:

...
// my_object is a transactional object
my_object->operation(arguments, ctr);
...
trt->commit(false);

The client can use the object reference trt to commit the transaction. Basically
a client can invoke any operation on any object during a transaction, but the object
must be either transactional or recoverable for that operation to display transaction
semantics.

10.3.3 Transactional Objects

A transactional client is a program that invokes operations of many transactional ob-
jects in a single transaction. Transactional objects are those objects whose behavior
is affected by being invoked within the scope of a transaction. For instance, given
a transaction T1 which updates the balance of a customer, the corresponding object
Account will be a transactional object. All of the transactional objects related to T1
will define the context of the transaction. Those objects that are not affected by T1
are called nontransactional objects. The difference between the transactional objects
and those that are not is that changes on the former objects can survive any failure.

The example below shows two types of interfaces. The SpecialAccount interface
is an object that inherits from TransactionalObject interface, and the context of the

330 OBJECT TRANSACTION SERVICE

transaction is implicitly associated with the object’s thread. The makeDeposit ()
operation performs some transactional requests on recoverable objects. The object
acc is an example of a recoverable object.

// IDL
interface SpecialAccount : CosTransactions::TransactionalObject {

...
void makeDeposit(in float amount);
...

}

interface OrdinaryAccount {
...
void makeDeposit(in float amount);

}

// server side
void SpecialAccount_i::makeDeposit(CORBA::Float amount) {
{

// find the appropriate account
acc = ...
balance = acc->get_balance();
balance += amount;
acc->set_balance(amount);

}

// end of a transactional operation

The operation to begin a transaction is executed by a pseudo-object located in
the ORB. It sets up a transaction context, which the ORB automatically inserts as a
parameter of each to every operation in the scope of the transaction until the trans-
actional client invokes the corresponding end transaction operation. This is termed
implicit transaction propagation. Transactional (and recoverable) objects look for the
transaction context to determine whether a request is a part of a transaction. There is
also a CORBA mode that supports explicit passing of the transaction context. This al-
lows the originating transactional client, or any other object that receives the context
from that objects, to extend the bounds of the transaction explicitly.

10.3.4 Recoverable Objects

Recoverable objects have persistent data that is managed as part of the transaction.
Recoverable objects are transactional objects whose data is affected by committing
or rolling back the transaction. A recoverable object owns the data and places it in a
persistent storage and implements a failure-recovery mechanism. If a failure occurs
during the transaction, during the restart procedure, the transactional object reads its
saved data from the persistent storage, discovers that a transaction is in process, and
participates in a commit/rollback protocol with the Transaction service.

OTS CONCEPTS 331

A recoverable object registers a resource object with the transaction service to
associate the changes made to its data with the transaction. The transaction service
drives the 2PC protocol by issuing requests to the registered resources.

The client may call on transactional and recoverable servers during the course of
a transaction. The recoverable server implements an object with a recoverable state
that is invoked within the scope of the transaction, either directly by the transac-
tion originator or indirectly through one or more transactional objects. Transactional
objects, contained within transactional servers, refer to persistent data that may be
modified in the course of the transaction. In addition a client can perform invocations
on non-transactional objects, but these typically will not survive a failure and can-
not be reversed if a rollback operation results. The behavior of objects within trans-
actional servers may be affected by a transaction but is not recoverable in nature.
Transactional servers do not participate in the completion operation (e.g., commit)
of a transaction, but are capable of forcing the transaction to roll back.

Let us consider the following example to illustrate the concept of recoverable
objects.

interface RecovrableAccount : CosTransactions::TransactionalObject,
CosTransactions::Resource {

...
void makeDeposit (in float amount);
...

}

Upon entering, the context of the transaction is implicitly associated with the
object’s thread. The pseudo-object Current is used to retrieve the Coordinator object
associated with the transaction. As shown below, before registering the Resource, the
object uses has transaction and is same transaction operations on the coordina-
tor crd to check whether it has already been registered for the same transaction. Here
the object (i.e., this) is itself a Resource object and therefore the object recv (as Re-
coveryCoordinator) will be returned when calling crd − register resource(this).
As shown in Figure 10.7, rollback operation of recv can be invoked to re-establish
the previous state of an object of RecoverableAccount.

void RecoverableAccount_i::makeDeposit(CORBA::Float amount)
{

CosTransactions::Current cur;
CosTransactions::Control ctr;
CosTransactions::Coordinator crd;
CosTransactions::RecoveryCoordinator recv;

cur = new CosTransactions::Current();
ctr = cur.get_control();
crd = ctr->get_coordinator();
// register the current object
recv = crd->register_resource(this);

332 OBJECT TRANSACTION SERVICE

...
// perform the usual operation
balance = balance + 10;
...

// end of the transaction operation
}

10.3.5 Transactional and Recoverable Servers

Figure 10.8 summarizes the whole architecture: when a transactional client begins
a transaction, a transaction context is created when the transaction is started and
transmitted to transactional and recoverable objects with each transactional request.
Transactional objects propagate the transaction but are not involved in transaction
completion. They may force rollback of the transaction. The Recoverable objects
register Resource objects for the transaction completion. They may force rollback of
the transaction. Finally, the Resource objects participate in the transaction comple-
tion (e.g., 2PC).

The OMG defines ten key interfaces inside the CosTransactions module. As
shown in the previous section, these interfaces play a major role in managing the
life-cycle of any and all CORBA transactions from beginning to end. Figure 10.9
shows the components of the OMG’s OTS and how they work together to execute a
transaction. A transaction client makes a request of the OTS to define the boundaries
or a series of operations that constitute a transaction. It then invokes transaction
operations (b) on transactional objects. During the transaction, requests can also be
made (c) on recoverable objects.

Transactional objects can be used to implement two types of application servers,
transactional and recoverable. A transactional server is a collection of one or more

participates in
transaction
completioncompletion of the transaction,

it may be forced to rollback

If they are not in the

register ressource in
transaction completion
may force rollback

Transaction
context

Recoverable Server

Resource
Object

Transactional

operations
Transactional

Transactional
Client

Recoverable

Transactional Server

Transaction Service

transaction
begin or end

(c)

(d)
(e)

(b)

(a)

Object

Figure 10.8 CORBA transaction service components.

TRANSACTION SCENARIO 333

transaction
contexttransaction originator

Synchronization

(associated with thread)

CurrentCurrent Terminator

Control

transaction
context

TransactionFactory

(transmitted with request)

recoverable server

SubtransactionAwareResource

Transaction Service

Resource Control

Coordinator

RecoveryCoordinator

(associated with thread)

context
transaction

Figure 10.9 Major interfaces of the transaction service.

objects whose behavior can affect a transaction, but which has no recoverable state of
its own. It implements recoverable changes using other recoverable objects. It does
not participate in any way with the commit protocol of a transaction, but it may force
the transaction to rollback in case of problems (e.g., stopping the server). A recover-
able server is a collection of objects, in which at least one of them is a recoverable
object. As shown in the previous section, a recoverable object participates in the pro-
tocols by registering one or more Resource objects (d) with the Transaction Service.
The Resource implements the appropriate commit protocol (e.g. 1PC, 2PC).

10.4 TRANSACTION SCENARIO

Here we will show a typical transaction scenario, and the different phases are illus-
trated Figure 10.10.

...

log decision to commit

...

get-next-response

prepare
commit

commit

log heuristics status

log heuristic decision

log prepared state

ResourcesOTSClient

VoteCommit

VoteCommit

...

...

Figure 10.10 A typical transaction scenario.

334 OBJECT TRANSACTION SERVICE

Client

Terminator

ORB

object
Current

Coordinator
ControlOTS

begin

TransactionFactory

Transaction Context

Figure 10.11 Phase 1.

Phase 1. As shown in Figure 10.11, the transaction originator starts the transaction
by using the Current pseudo-object. The Transaction Service creates objects that
represent the transaction (Control, Coordinator, Terminator) and are used to form
the Transaction Context. The transaction context becomes implicitly associated
with the client’s thread.

Phase 2. The transaction originator issues requests to transactional objects (see
Figure 10.12). The transaction context that is associated with the client’s thread is
propagated with the request and associated with the thread in which the method
of the target object will be executing. Using the Current pseudo-object, the trans-
actional object can inquire about the visiting transaction and in particular use this
information to implement isolation of transactions.

Phase 3. Some transactional objects are also recoverable objects whose persistent
data will be affected by the outcome of the transaction. A recoverable object uses
the Current pseudo-object to retrieve the Coordinator of the transaction. As shown

ServerTransactional

Current

Coordinator

(propagation context built from
transaction context and transmitted

Control

Terminator

with each request)

OTS

ORB

Transactional
object

Client

Figure 10.12 Phase 2.

TRANSACTION SCENARIO 335

(non-volatile)

Resource
object

Recoverable

Stable

(propagation context)

object

Storage

Client

Coordinator

ServerRecoverable

ORB

OTS

Figure 10.13 Phase 3.

in Figure 10.13, it registers a Resource object to notify its participation in the
transaction.

Phase 4. When all the operations performed in the transaction have been com-
pleted, the transaction originator uses the Current pseudo-object to request the
commitment of the transaction. As shown in Figure 10.14, the Transaction Ser-
vice commits the transaction using the 2PC wherein requests are sent to the reg-
istered Resource object. In the first phase of the 2PC, prepare requests are sent to
all registered Resource objects. Each Resource object returns a vote result to the
Transaction Service which takes the decision either to commit or to roll back the
transaction depending on the result of the votes. In the second phase of the 2PC,

ORB

OTS
Terminator

Client

object
Current object

Resource
object
Resource

Figure 10.14 Phase 4.

336 OBJECT TRANSACTION SERVICE

commit requests are sent to all registered Resource objects that returned a vote to
commit (presume here that the decision has been taken by the transaction service
to commit the transaction).

10.5 OTS IMPLEMENTATIONS

This section describes two implementations of object-based transaction systems, one
is CORBA compliant and the other one is not. The CORBA compliant is from Iona
and it relates to the Orbix transaction monitor. The non-CORBA compliant is the
Microsoft Transaction Service (MTS).

10.5.1 Iona Transaction Service

OrbixOTS was developed in collaboration with the Transarc Corporation to bring
the powerful computing concept of transaction processing to distributed objects. As
shown in Figure 10.15, OrbixOTS has a modular architecture that includes such ser-
vices as distributed transactions and a Resource Manager that uses the XA protocol
to integrate applications with databases or queueing systems. All interprocess com-
munication takes place using Orbix. The architecture includes the OMG’s Object
Concurrency Control Service (OCCS), and services for logging and failure recovery.

The transaction manager is implemented as a link in library; hence transactional
applications have an instance of the transaction manager that cooperates to imple-
ment distributed transactions. The transaction manager is linked-in (and there is no
dedicated “transaction server”) and there is no central point of failure. Application
or resource failures during the two-phase commit protocol will block the commit-
ting transaction but will not stop new transactions from executing. The transaction
manager is a full implementation of the CORBA’s OTS interface, with additional
advanced features such as nested transactions and clients and servers may be multi-
threaded.

OrbixOTS also provides a resource manager to support the X/Open XA interface.
Many products support the XA interface including Oracle, Sybase, and Informix
relational databases, as well as IBM’s MQ Series queueing system. The OCCS is
an advanced locking service that fully supports nested transactions and works in
cooperation with the transaction manager. The OCCS implementation component is

Orbix
Manager

Application-Specific Server Code

RecoveryOCCSResource
Manager

LoggingTransaction

Figure 10.15 OrbixOTS server components.

OTS IMPLEMENTATIONS 337

linked into the application that is acquiring the locks. Hence, the OCCS is not a true
distributed locking service, but since the interfaces are defined by using CORBA
IDL, servers can be developed that export the OCCS interface to provide a server
that effectively implements a distributed locking service.

Logging provides a durable record of the progress of transactions so that Or-
bixOTS servers can recover from failure. OrbixOTS permits both ordinary files and
raw devices to be used for transaction logs. A transaction log may be expanded at
runtime and it may be mirrored for redundancy. Also, an OrbixOTS server can pro-
vide a logging service to other recoverable servers.

The transaction log is used during recovery after a crash to restore the state of
transactions which were in progress at the time of the crash.

An example of how the OrbixOTS is involved in coordinating a distributed trans-
action is given below. A hypothetical situation where two applications, each with
their own database, are distributed by using Orbix. Applications could either be two
separate software products or different parts of the same one, in different processes
or machines. In this example, the scenario will have two applications A and B, where
the application A wants to update its database and invoke an application B, which in
turn will cause an update of B’s database. OrbixOTS mediates between the applica-
tions, ensuring that the database updates are performed automatically.

• Application A begins a transaction by making a call on OrbixOTS (Fig-
ure 10.16). Application A is now in the context of a created transaction.
Application A then registers with the OTS that it has a database that may
be updated in the context of the transaction. This registration may be done
automatically by the OTS.

• Application A proceeds to update its database, but does not commit this update,
as the OrbixOTS is responsible for performing this step.

• Application A next invokes application B over Orbix, by making a call on a
transactional object. This carries with it knowledge of the transaction that A
has begun. B is said to join the global transaction.

8. prepare

3. SQL

1. begin

2. register

4. invoke

5. register
6. SQL

8. commit
8. commit

8. prepare

DB A APP A OTS App B DB B

7. commit

Figure 10.16 Interaction diagram.

338 OBJECT TRANSACTION SERVICE

• On receipt of the invocation, application B registers with the OrbixOTS that it
has a resource that will need to be called back on transaction completion. As
for application A, this registration step may be done manually or automatically.

• Application B now updates its database, and again defers the commit to the
OrbixOTS. Control returns back to application A.

• Application A now requests completion of the transaction by invoking the com-
mit operation on the OTS.

• The OrbixOTS now commits the transaction to both resources, using a two
phase commit protocol.

Figure 10.16 shows the interaction diagram which summarizes the steps detailed
above. Components of the systems are represented by vertical lines; horizontal lines
represent calls from one component to another.

10.5.2 Microsoft Transaction Service

Microsoft Transaction Server (MTS) combines the services of a TP monitor with the
philosophy of component software. MTS provides a server-centered environment
for developing and deploying three-tiered applications based on Microsoft’s Compo-
nent Object Model (COM) technologies. It provides a container for in-process COM
server components.

MTS is a container for server components. The services MTS provides are de-
ferred activation, a sharable object context, and support for transactions. MTS al-
lows the transaction requirements of each component it manages to be set adminis-
tratively. This feature allows components to be written separately and then grouped
as needed to form a single transaction. The work required to carry out a transac-
tion, such as two-phase commit, is actually performed by a separate service, the
Distributed Transaction Coordinator (DTC).

A traditional transactional application tells a transaction server that it should be-
gin a transaction, makes changes, then tells the transaction server to commit or abort.
But this traditional approach cannot be applied when the transactions are being per-
formed by components. Since the primary goal of component-based development is
to allow building applications from independently created parts, if each component
is always used alone, the traditional transactional structure can be applied. But when
multiple components are combined into a single transaction, each component cannot
contain its own Begin Transaction request.

MTS can disallow a component to determine when a transaction begins. Instead,
each component can be administratively configured to require a transaction. When
a client creates a transaction-required component, MTS automatically starts a trans-
action. If that component then commits or aborts the transaction, MTS carries out
the component’s request. If the component creates another component, and the new
component also requires a transaction, MTS can automatically include the changes
made by the new component in the transaction. When the second component com-
mits or aborts its work, MTS takes note but does not end the transaction, not until the

OTS IMPLEMENTATIONS 339

parent component commits or aborts does MTS end the transaction. This approach
allows the same component binary to be used in its own transaction or combined
with others into a single transaction.

MTS supports automatic transactions, allowing clients to remain unaware of when
transactions start and end. MTS also supports the approach in which the client indi-
cates when a transaction begins and ends in traditional client/server transaction sys-
tems. MTS also accomplishes automatic and transparent transaction support using
a context object. If a transaction needs to span the functions of two different ob-
jects, then MTS simply uses the same context object to coordinate the activities of
both objects. This process allows the transaction semantics to be separated from the
application code.

MTS transaction management logic is not necessarily defined within the applica-
tion logic. The transaction semantics are defined declaratively when the components
are assembled into an application package. An MTS application package is actually
a group of related ActiveX components. In order to create an application package,
the relationships between the individual components must be configured by using
a tool called the MTS Explorer. The MTS Explorer generates the package and in-
stalls the runtime control information into the MTS catalogue As each component is
configured, it is assigned a transaction attribute, which can take one of four values:
Required, Supported, Not Supported, Requires New.

When a client application requests the creation of a new component, MTS deter-
mines the transaction status of the caller and the transaction requirements of the new
component. If the caller wishes to propagate an existing transaction, then it creates
the new component. By being created within the context object, the new component
inherits the context object and the associated transaction.

Once the transaction context is established, the component carries out its func-
tion, based on requests from its client. When its work is completed, the component
must tell the MTS executive that its task is complete. The component must deter-
mine whether to commit the transaction or abort the transaction, and then make the
appropriate call to MTS to signal that its work is finished. To close the transac-
tion, the component calls a method in the IObjectContext interface of its context
object. If the transaction is ready to be committed, the component calls IObjectCon-
text::SetComplete. If something has gone wrong and the transaction must be rolled
back, the component calls IObjectContext::SetAbort.

If a component is part of a group of components, all collectively participate in a
single transaction. In this case, each component will call SetComplete when its work
is done, but MTS will not begin the commit process until all components within the
transaction have called SetComplete. A component can be used in various ways, let-
ting an application architect reuse the application code without rewriting the transac-
tion control logic. This is because a component can either live within its own trans-
action or be part of a larger group of components, all of which belong to a single
transaction.

Two phase commit for MTS applications is handled by DTC, which plays the role
of transaction coordinator. DTC runs as a separate service on the same machine as
MTS. When a client calls SetComplete, MTS delegates this request to the DTC. It is

340 OBJECT TRANSACTION SERVICE

the DTC that actually carries out the work required to accomplish commitment and
the two-phase commit process.

10.6 SUMMARY

The CORBA OTS offers robustness and reliability for critical applications. It pro-
vides typical TP monitors (such as TUXEDOS) for distributed object applications.
CORBA OTS supports different models, including flat and nested transactional mod-
els. It also provides flexibility to customize the functionalities of the service for spe-
cific requirements.

This chapter explained in detail the CORBA OTS. We first provided some back-
ground on transactions, in particular a description of the transactional models (flat
and nested), concurrency control protocols (pessimistic and optimistic), and com-
mit protocols (2PC and 3PC). Later we described the different elements of the OTS
architecture, including transactional and recoverable objects. We showed how these
elements can be used according to two different modes of context propagation, im-
plicit and explicit. Two major OTS systems were described at the end of this chap-
ter: one is a CORBA compliant (i.e., Iona’s OTS) and is widely used within indus-
trial organizations; the other one is the Microsoft Transaction Service. Even though
this is not a CORBA compliant, it shares many common aspects with the OMG’s
OTS.

10.7 REVIEW QUESTIONS

• What protocol uses OTS to coordinate the completion of a distributed transac-
tion? Briefly explain the definition, different types, and properties of a transac-
tion.

• Explain the lost update and inconsistent retrieval problems.
• Briefly explain the two concurrency control protocols discussed in this chapter.

What is the assumption each of them makes?
• Explain how 2PC protocol for flat transactions, 2PC for nested transactions, and

3PC work.
• What is the reason behind the inclusion of an extra phase (i.e., PreCommit

phase) in the 3PC?
• What are the features the OTS provide?
• What are the functions of the following OTS interfaces: Current, Transaction-

Factory, Control, Terminator, Coordinator, RecoveryCoordinator, Resource,
SubtransactionAwareResource, and TransactionalObject?

• Compare indirect context management and implicit transaction propagation
with direct context management and explicit transaction propagation in terms
coding (i.e., IDL interfaces and their operations).

EXERCISES 341

• Briefly explain transactional, non-transactional, and recoverable objects. How
is a client invocation on non-transactional objects handled when a failure oc-
curs?

• Give an example for each CORBA-OTS and non-CORBA OTS implementa-
tion. Explain a typical transaction scenario of OTS.

10.8 EXERCISES

• Compare the benefits and the drawbacks of using explicit and implicit context
propagation in terms of their coding in a program.

• In OMG Transaction Service, is a transactional object also a recoverable object?
Justify your answer.

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

CHAPTER 11

Object Query Service

The CORBA Object Query Service (OQS) allows declarative access to heteroge-
neous database systems, including relational databases, such as Oracle and Sybase,
as well as object-oriented databases (ObjectStore and O2). Users can invoke queries
on collections of objects and the Query Service will return collections of objects that
satisfy the given predicate. In this chapter we will not only describe the OQS, but
also some of the main query processing techniques used in distributed databases. We
believe that these techniques can be used to fully implement OQS.

There are, however, a few differences between query processing in distributed
databases and CORBA environments. The major difference relates to the seman-
tic meaning of “data sources.” In distributed databases, data sources are generally
stored as “tuples” of relations which are fragmented horizontally, vertically, or both
at different sites. There is a centralized system that manages the distribution of data
sources, and most of the processing, including query processing, is performed by
central modules. CORBA has a different approach when dealing with data sources or
processes. First, no distinction is made regarding the nature of the distributed objects;
they can store data, perform operations, or both. Second, each server is autonomous
and can support different language bindings (e.g., C++, Java) as well as different un-
derlying systems (relational database system, file system, object-oriented database).
Therefore, query processing techniques of distributed database systems need to be
updated to deal with the specific requirements of CORBA environments.

This chapter does not propose solutions for query processing in CORBA environ-
ments, because they have yet to be developed. Instead we summarize the main ideas
used in query execution and optimization in distributed database systems [83], and
we show how these ideas can be used in the context of CORBA environments. This
chapter also describes the architecture of the CORBA Object Query Service.

11.1 OVERALL PICTURE

For CORBA environments, dealing with database aspects is a very important issue
because several organizations need to deal with persistent data sources as well as
the facilities (e.g., query and transaction facilities) to manipulate these data sources.
CORBA, with the object request broker, can provide communication across different
database systems and therefore enable organizations to cross boundaries.

342

OVERALL PICTURE 343

To deal with the management of data, or heterogeneous data sources, several is-
sues must be addressed. The first one relates to the design of appropriate database
wrappers which will provide a standard interface for different clients. These adap-
tors will be responsible for understanding local database systems and must be able
to serve as a gateway between object request brokers and databases. Other issues
relate to the design of database facilities to be used by CORBA clients to access
and manipulate persistent data. OMG proposed a standard for such database facili-
ties, including the query service, the transaction service and the concurrency control
service. This chapter deals with the query service. Details about the different com-
ponents related to this service can be found in the following chapters: database adap-
tor (Chapter 4), and transaction service (Chapter 10). In [95], the author proposed
a POA-based adaptor with appropriate solutions for object activation/de-activation,
pre-fetching and caching.

To integrate CORBA and database environments, issues such as optimization of
the network access and the reliable access to a large number of data need to be con-
sidered. A simple two-tier architecture cannot adequately support these needs. A so-
lution is three-tier client/server architecture with an explicit middle layer of software
mediating between modern client workstations and exiting database systems. The
client handles the presentation and local processing. The database system manages
storage and retrieval of the respective data. The middle layer functions as an object
application server that enables client applications to store and retrieve the data from
a data server. The ORB will handle heterogeneity at the platform level, and in doing
this it provides location and implementation transparency. It provides an infrastruc-
ture to integrate application components into a distributed system. The Object Query
Service will provide the facilities to overcome the difficulty of accessing the database
system with a better solution.

The integration of CORBA and database technologies enables clients to access
CORBA objects that are stored in the persistent storage. Some of the advantages are:

• CORBA improves the ease of working across many boundaries: some database
systems do not support a wide range of operating systems. The choice available
may be only for that particular database server machine.

• Some database systems do not support multiple languages: If they do, then
they do not allow interoperability between them. In object-oriented database
systems, objects accessed by the client must be loaded in the client address
space or client’s machine. In CORBA, the client requests are processed on the
remote object, and the result is returned back.

• In relational database management systems, clients make a query call to
the database, thus exposing the relational schema to the clients; whereas in
CORBA, objects export an interface defined in IDL to their clients. This al-
lows ease of exporting an IDL interface rather than export the SQL interface.
Moreover, the choice of the database management system is not revealed to the
clients, an important issue when the systems and the clients are being written
by different companies.

344 OBJECT QUERY SERVICE

To deal with the management of data sources, OMG defined database-like ser-
vices, such as query, transaction, concurrency control and persistency services. The
Object Query Service enables clients to find objects whose attributes meet the search
criteria that the client specified in the query. This service allows objects to be ac-
cessed from anywhere in a network without concern for the type of database that is
being used, the operating system it is running on, or the programming language it is
written in. In this way the user of CORBA can gain the advantage of implementing
the system in a mix of technologies that use multiple machines and databases. OQS
provides clients facilities to query data from heterogeneous storage systems (dif-
ferent types of database management systems) like ORACLE (relational database),
ObjectStore (object oriented database) or a non-DBMSs (e.g., file systems, WWW
servers).

Figure 11.1 shows how the OQS can be used in distributed environments. The
first step consists of taking the database schema and wrapping it in an IDL. Wrap-
ping means to develop an IDL specification that maps the database tables into IDL
interfaces, with the respective DBMS type. Wrapping also means that appropriate
adaptors must be used in the server side to deal with several issues, such as the
communication between the ORBs and the databases. These technical issues are ex-
plained in Section 4.4 of Chapter 4. Global queries are expressed in a standard query
language (such as ODMG’s OQL) and then passed as strings to OQS. The syntax
analyzer checks for the correctness of the received query. To facilitate the transfor-
mation of the global queries, and therefore optimize them, these queries are then
transformed into algebraic expressions (called execution plans). An execution plan
is typically a tree where the nodes are algebraic operations and the edges are links

Database
IDL

Database
IDL

Database DatabaseDatabaseDatabase

ClientClient

Object Adaptor

Query Server

Object Adaptor
DatabaseDatabase

Object Adaptor
Database

Query Server

Object Request BrokerObject Request Broker IIOP/GIOP

Figure 11.1 Query service in client/server architecture.

BACKGROUND ON QUERY PROCESSING 345

between the execution of the algebraic operations. The query optimizer, which is a
part of the OQS, will then find the “best” global execution plan (GEP) which can be
decomposed into a set of local execution plans (LEP). An LEP is an execution plan in
which the data sources needed for the evaluation come from a single database server.
Every query may have an infinite number of possible GEPs which are obtained by all
possible re-arrangements of an original GEP. A variety of heuristic or cost-based op-
timization strategies within constraints imposed by the algebraic operators are then
applied to reduce the number of GEPs to the most desirable ones. A “best” GEP is
then selected and each LEP of the GEP is forwarded to the object adaptors which will
translate them into specific (query) language to the relevant database servers on the
network. When a database server receives a query, it executes it and then returns the
result to the database adaptor. The adaptor then translates it into a standard format,
and the result is further processed by the appropriate components of the query server
(e.g., query evaluator).

From the specification point of view, OQS supports: (i) Basic operations on col-
lections of objects, namely selection, insertion, updating, and deletion. These opera-
tions are part of the CosQueryCollection interface. (ii) Different types of objects,
locally or remotely stored. They may be transient or persistent. (iii) Use of objects
with arbitrary attributes and operations. (iv) Allowing the scope of the objects ac-
cessible in and via the collections that are the immediate operands of the query op-
erations. (v) Querying and/or returning complex data structures. (vi) Operations on
user-defined collections of objects. (vii) Operations on other kinds of collections and
sets. (iix) The use of attributes, inheritance, and procedurally specified operations
in the querying predicate and in the computation of results. (ix) The use of avail-
able interfaces defined by OMG-adopted specifications. (x) The use of relationships
for navigation, including testing for the existence of a relationship between objects.
(xi) An extensible framework for dealing with object queries. (xii) Independence of
specific syntax and semantics of the query language used.

11.2 BACKGROUND ON QUERY PROCESSING

Important work has been done by the database community in designing efficient
query services for distributed database systems, and in particular, the design and im-
plementation of distributed query managers that are able to generate efficient query
execution plans to coordinate the execution of the generated plans. This section
overviews such work and describes concepts related to execution strategies and join
operators.

11.2.1 Overview

The efficiency of a query manager basically depends on the integration between
query execution module components (query scanner, query parser, query trans-
former, query functions and operators, query optimizer, query decomposer and query
evaluator). This integration is performed through an interface between a declarative

346 OBJECT QUERY SERVICE

query language (e.g., predicate calculus) and a host programming language that is
used to develop the required execution module components. The levels of integra-
tion are mainly categorized as loosely or tightly coupled approaches. In a loosely
coupled approach, a query execution engine is introduced to take strings containing
queries as their arguments. The execution engine parses and semantically evaluates
a given query at run time. This approach also allows queries to be optimized at
runtime.

A query manager has two main components: a query optimization engine and
a query execution engine. A client query is first analyzed (by a parser) and then
mapped (by a translator) into a sequence of algebraic operations to be implemented
by the query execution engine. Algebraic operations involve operations such join,
project, and select. A query optimization engine (or query optimizer) is a special
planner module that employs different techniques (plan representation, search in-
cluding directed search and pruning, dynamic programming, and branch-and-bound
algorithms) to enhance the performance of the query processing by minimizing sev-
eral variables, such as the response time, cpu, I/O, network time and effort (i.e.,
time and effort can differ due to parallelism), memory costs (e.g., maximum alloca-
tion or as time-space product), and a total resource usage. A query execution engine
is used to define the space of possible plans that can be chosen by the query op-
timizer. Since query execution plans (QEP) are algebraic expressions, they can be
represented as trees [40]. As shown in Figure 11.2, there are several tree shapes
that QEPs can take, including left deep, bushy, and right deep. The QEPs can be
divided into groups according to which shape of the query inputs (operands) it can
evaluate. For example, when a user query is submitted, the query execution engine
(using parser) generates a possible un-optimized query plan (i.e., tree structure). The
query optimizer then maps or expands the initial query expression into a possible
optimized query execution plan that operates directly on the stored database objects.
The mapping or expanding process can be very complex and might require substan-
tial search and cost estimation effort. This process may be iterated repeatedly until

A B DC

Join CDJoin AB

Join BC

bushy

A B

C

D

Join AB

Join BC

Join CD

left deep

DC

Join CD

Join DB

Join BA

B

A

right deep

Figure 11.2 Different tree execution.

BACKGROUND ON QUERY PROCESSING 347

a most optimized stage is reached. By using a simple tree traversal algorithm, the
QEP is translated into a representation ready for execution by the database’s query
execution engine. The result of this translation can be (i) a compiled code, (ii) a
semi-compiled or interpreted language, or (iii) semi-compiled or interpreted data
structure.

A query can be a read-only query or update query. Both types of queries may in-
clude a search predicate to determine the database objects to be modified. Therefore
query optimization and execution techniques will be applied to search and extract
information from the database without changing the database. Queries can be imple-
mented by using either interactive queries or embedded queries. Embedded queries
are usually optimized when the program is compiled and used to avoid the optimiza-
tion overhead when the program run. This type of optimization strategy is called
static optimization. The static strategy concept is applied in different projects such
as EXODUS [41] and later refined by using a dynamic optimization strategy [42, 66].
As indicated in the system R, there must be dynamic optimization mechanisms for
storing the optimized plans and invalidating the stored plans when they become in-
feasible (i.e., index dropped from database). The invalidating and storing of a current
valid plan is known as a cut point. The cut point between compile-time and run-time
used in dynamic optimization techniques may be placed at any other point in the
sequence of query processing steps.

A query can be nested or un-nested. Nested queries pose a few problems dur-
ing the optimization stage because their processing requires special techniques to
deal with (i) optimization rules and heuristics such as flattening, (ii) selectivity and
cost estimation, and (iii) algorithms and their parallelization. Processing these types
of queries requires more enhanced developing efforts, and includes: (i) the system
architectures for complex query plans and parallel execution, (ii) the selection and
aggregation algorithms, (iii) the relationship of sorting and hashing as it pertains
to database query processing, (iii) special operations and other auxiliary techniques
such as compression. As the purpose of query processing algorithms is to perform
some kind of matching between database items (i.e., tuples, objects, attributes, etc),
there is a need for concepts that can be implemented to perform operations (bi-
nary and unary operations) and sorting and hashing structures. These concepts affect
many aspects of query processing from indexing and clustering over aggregation
and join algorithms for centralized, distributed and federated database systems oper-
ations.

11.2.2 Execution Strategies

In a distributed database system, data is stored across several sites and the distribution
is transparent for the user. The database system is responsible for the management
of the data distribution. Relations can be stored across several sites and their access
can incur message-passing costs. There are generally two techniques for storing rela-
tions and the third one can be a hybrid. In a horizontal fragmentation, each fragment
consists of a subset of rows of the original relation and the union of the horizontal
fragments must be equal to the original relation. In vertical fragmentation, each frag-

348 OBJECT QUERY SERVICE

ment consists of a subset of columns of the original relation and the collection of
vertical fragments should be a lossless-join decomposition. In general, a relation can
be fragmented, and each resulting fragment can be further fragmented.

The processing of queries in distributed databases has several more factors to be
considered than in centralized databases. One of the crucial factors is the cost of
transferring data over the network. Data includes intermediate files that are trans-
ferred to other sites for further processing, as well as the final result files that may
have to be transferred to the site where the query result is needed. Although these
costs may not be very high if the sites are connected via a high-performance local
area network, they become quite significant in other types of networks. Therefore,
query optimization algorithms for distributed databases have been focusing on reduc-
ing the amount of data transfer as an optimization criterion in choosing a distributed
query execution strategy.

To estimate the cost of an evaluation strategy, in addition to counting the number
of page I/Os, the cost model needs to take into account the cost of shipping the
result tuples to the site where the query is posed from the site where the result is
assembled.

Let us consider the following two relations which describe a department and its
staff members. Every department has an id (deptid), a name (d name) and an address
(address). For every staff of a department, the department id, the staff id (staffid), its
name (s name) and its title (title) are recorded.

Department(deptid, d_name, address)
Staff(deptid, staffid, s_name, title)

Now we wish to query these relations and select all the names of the staff of the
department of Computer Science. The expression of this query in relational calculus
using SQL syntax is:

Select s_name
From Department D, Staff S
Where D.deptid = S.deptid
and D.d_name = ‘‘Computer Science’’

As shown below, two algebraic expressions can be derived from the query above,
where σ , operators, respectively. These expressions are semantically equivalent (pro-
duce the same result), but they do not have the same performance (the time cost of
evaluating the query). The semantic equivalence of algebraic expressions can be ob-
tained by a series of transformations on the algebraic operators, such as the permu-
tation of the operators σ and ��. The cost of evaluating the expression (2) below is
cheaper than the option (1) because the join in the second option will be done on
a reduced size of the relation Department (i.e., only computer science department
will be used). In the first option, all the tuples of the relation will be considered and
therefore this will increase the cost of the join.

BACKGROUND ON QUERY PROCESSING 349

TABLE 11.1 Horizontal Fragmentation

Site Relation

S1 Department1 = σdeptid≤100 (Department)
S2 Department2 = σdeptid>100 (Department)
S3 Staff1 = σdeptid≤50 (Staff)
S4 Staff2 = σdeptid>50 (Staff)

∏

s name

(σd name=“Computer Science′′ (Department ��deptid Staff)) (11.1)

∏

s name

(σd name=“Computer Science′′ (Department) ��deptid Staff) (11.2)

Now if we are dealing with distributed data, the relations Department and Staff
can be fragmented horizontally, vertically or both. Let us assume there are four sites
where these relations are stored and horizontally fragmented. Table 11.1 describes
the way the relations Department and Staff are horizontally fragmented. The site S1,
for example, contains only those tuples of the relation Department that have an id
lesser than 100. Those with greater id are stored in the site S2.

We assume that the result is expected at S5. There are several equivalent dis-
tributed execution strategies for the above query. To make the idea simple to under-
stand, we illustrate three strategies, as shown in Figures 11.3, 11.4, and 11.5. Strategy

R3 = R1 Staff 1

Site 3

R4 = R2 Staff 2

Site 4

Site 1

R1 = d_name = "Computer Science" Department 1

d_name = "Computer Science" DepartmentR2 =

Site 2

2

result = R3 R4

Site 5

se
nd

 R
2

se
nd

 R
1

send R3 send R4

Figure 11.3 Execution strategy A.

350 OBJECT QUERY SERVICE

R3 = 1

Site 4

 R2 Staff R4 = 2

Site 3

 R1 Staff

Site 1

R1 = d_name = "Computer Science" Department 1

d_name = "Computer Science" DepartmentR2 =

Site 2

2

result = R3 R4

se
nd

 R
1

se
nd

 R
2

send R4send R3

Site 5

Figure 11.4 Execution strategy B.

A basically computes the selection of all Computer Science department at S1 and S2,
respectively, within the relations R1 and R2. The sites 1 and 2 send the produced
relations to S3 and S4, which in their turn will compute the join with their respective
fragments of the relation Staff (i.e., Staff1 and Staff2). Finally, sites 3 and 4 will send
S5 the produced relations R3 and R4, which later joins them to generate the final
result.

Strategy B illustrated in Figure 11.4 is similar to strategy A, except that site 1
will communicate the result to site 4 instead. In the same way, site 2 will transfer the
partial result to S3.

Another strategy is to send all the fragments of the relations to S5 which will
re-create all the complete relations (by union of the fragments) and later make an ap-

Site 5

Site 4Site 1 Site 2 Site 3

 Staff Staff 21Department 2Department1

d_name = "Computer Science"result = (Staff 1 2 1(Department Department) 2Staff)

Figure 11.5 Execution strategy C.

BACKGROUND ON QUERY PROCESSING 351

propriate join between the relation Staff and Department. This strategy can be much
more expensive in terms of total cost1 than Strategies A and B. In strategy A, for ex-
ample, only a reduced number of data will be transferred between sites (bottom to up
of Figure 11.3) because all the selections and join (with smaller relations) are done
earlier, and S5 will then be working with a smaller data compared to S5 of Strategy
C. Without specific details, it is difficult to differentiate between the strategies A and
B. However, if sites 1 and 3 are closer to each other (and similarly for sites 2 and 4),
the strategy 11.3 will be better because it reduces the transfer cost.

To perform any choice between strategies, the query optimizer needs to access
statistics on the database. These typically bear on fragments and include fragment
cardinality and size as well as the number of distinct values of each attribute [83].
To minimize the probability of error, more detailed statistics such as histograms of
attribute values are sometimes used at the expense of higher management cost.

11.2.3 Query Architecture

Figure 11.6 depicts the different steps of a typical query processing system.

• During the query decomposition step, the user query will go through different
steps to check, for example, whether or not information referred with the query
correspond to those recorded in the database (syntactic and semantic analysis).
Queries are also normalized to facilitate further processing (e.g., transforma-
tion of ¬(¬p1) to p1). The last phase of the query decomposition consists of
rewriting the query in an algebraic form. This involves (i) straight transforma-
tion of the query from the relational calculus into algebra, and (ii) restructuring
of the relational algebra query to improve the performance. Details about these
transformations can be found at [83].

• During the data localization step, relations are replaced by their correspond-
ing fragments. Different techniques of query reduction can be used: reduction
for primary horizontal fragmentation (where a relation is replaced by a union
of its fragments), reduction for vertical fragmentation (where a relation is
re-constructed by joining its different fragments), and reduction for hybrid
fragmentation (where a relation is rebuilt with horizontal and vertical frag-
ments).

• The last step is the optimization of the query by using appropriate techniques
and producing appropriate execution plans. A query optimizer will contain dif-
ferent components such as a search space, a cost model and search strategy. A
search space consists of alternative execution plans for a query. The cost model
basically is used to evaluate the cost of each execution plan and the search strat-
egy explores the search space and select the best execution plan.

1This will involve: the cost of transferring each fragment to S5 + cost of making the union between
fragments of Staff + cost of making union between Department + cost of making join between the
complete relations Staff and Department.

352 OBJECT QUERY SERVICE

Query Decomposition

Data Localization

Global Optimization

Local Optimization

R

V U

T
S

algebraic operations

Select
From
Where

V U

R2R1 T1 T2 T3

algebraic expressions

fragment query

optimised fragment query

optimised local queries

SQL query

Figure 11.6 Query processing steps.

11.2.4 Join Operators

This section discusses a specific algebraic operator, the join operator (or semi − join
for distributed databases), because the design of such an operator can have a large
impact on the performance of an optimizer. Here we overview some of the work done
in the context of this area.

11.2.4.1 Nonjoin Queries. Every operation, including scanning a relation and
selecting data, is affected by the fragmentation of relations. If we assume that a
relation A is horizontally fragmented, with half of all tuples at a site S1, and the
other half at a site S2, the database system must be able to process SELECT queries
by evaluating it at both sites and taking the union of the results. If the SELECT clause
contained AVG, the results cannot be combined by simply taking the union. The
database system must compute the sum and count of a field value at the two sites,
and use this information to compute the average of all tuples. If the WHERE clause
contained that all tuples related are stored at one site, on the other hand, the database
system should recognize that this query can be answered by just executing it at the
site S1.

BACKGROUND ON QUERY PROCESSING 353

To better illustrate the difficulties related to query processing, let us consider a dif-
ferent scenario. In this case the relation A is vertically fragmented with the attributes
A1 and A2 recorded in the site S2, and the attributes A3 and A4 at site S1. Because
no attribute is stored at both sites, this vertical fragmentation would therefore be a
poor decomposition. The database system has to reconstruct the whole relation A by
joining the two fragments on the common tuple-id field and execute the query over
this reconstructed relation. The other case is when the entire relation A is stored at
both sites (S1 and S2). In this way, queries can be answered by executing them either
in site S1 or site S2. Usually, to improve the performance of the query evaluation,
the cost of shipping and the cost of executing the query are considered as criteria
for evaluating the queries. The local processing costs may differ depending on what
indexes are available on relation at the two sites.

11.2.4.2 Joins. Join is an algebraic operation used to retrieve information from
different database items (e.g., as relations, files and objects). This operator is the most
difficult one to implement efficiently, especially if there is no predefined link between
different database items [65]. Usually, the remaining algebraic operators (e.g., Select
and Project) are implicit operations with the Join operation. There are different types
of join operations (e.g., equijoin, semijoin, outerjoin) and most of their implementa-
tions [33] use the theta join operators (i.e., =, ≤, ≥, <, >, and �=). Such implementa-
tion techniques include different join methods such as nested-loop, sort-merge-join,
and hash-join. In the case of hash-join method various hashing techniques such as
simple-hash-join, hash-partitioned-join using divide-and-conquer (i.e., grace-hash-
join, hybrid-hash join and hash-loop-joins), and simple hash-partitioned-join can be
implemented.

Let us consider a simple example to show the complexity of the join operator.
Suppose that the relation A is stored at S1, and that the relation B is stored at S2. The
cost of joining the two relations A and B should take into account various strategies.
Fetch can be done with a page-based nested loop join in S1 with the relation A as the
outer, and for each relation A page, fetch all relation B pages from S2. If the fetched
relation A pages are cached in S1 until the join is complete, pages are fetched only
once. But if the query site is not S1 nor S2, the cost of shipping the result is greater
than the cost of shipping both relations to the query site. Thus, it would be cheaper
to ship both relations to the query site and compute the join there. Alternatively, an
index nested loops join in S1 can be built, fetching all matching B’s tuples for each
A’s tuple. This is not a good idea because the cost of shipping tuples dominates the
total cost, even for a fast network. An extreme solution is to ship the relation A from
S1 to S2 and carry out the join, ship the relation B to S1 and carry out the join there,
or ship both to the site where the query was posed and compute the join there.

11.2.4.3 Semijoins. The basic idea behind distributed query processing using
the semijoin operation is to reduce the number of tuples in a relation before transfer-
ring it to another site. Intuitively, to send the joining column of one relation R to the
site where the other relation S is located, then the column is joined with S. Consider
the strategy of shipping the relation B to S1 and computing the join at S2. Some of

354 OBJECT QUERY SERVICE

B’s tuples do not join with any tuple in Sailors. If we could somehow identify B’s
tuples that are guaranteed not to join with any tuples in the relation A, we could avoid
shipping them.

Two techniques have been proposed for reducing the number of A’s tuples to be
shipped. The idea is to proceed in three steps:

• At S1, compute the projection of the relation A onto the join columns, and ship
this projection to S2.

• At S2, compute the natural join of the projection received from the first site
with the relation B; the result of this join is called the reduction of the relation
B with respect to key field. Only those B’s tuples in the reduction will join with
tuples in the relation A. Therefore, ship the reduction of the relation B to S1,
rather than the entire the relation B.

• At S1, compute the join of the reduction of the relation B with key field.

11.3 OQS LANGUAGES

OQS is designed to be independent of any specific query language. Therefore, a par-
ticular Query Service implementation can be based on a variety of query languages
and their associated query processors. However, in order to provide query interoper-
ability among the widest variety of query systems and to provide object-level query
interoperability, OMG’s requirements are that the OQS must support one of the fol-
lowing two query languages: SQL (e.g., SQL-92) or OQL (e.g., OQL-92).

As mentioned earlier, queries are transformed into an algebraic expression for
query optimization and execution purposes. Because OMG is dealing with the object-
oriented paradigm, the most appropriate algebra to be used is an object-oriented al-
gebra. OMG does not provide details on the type of the algebra to be used because
it relates to the implementation of the OQS, and therefore it is for the those who are
building such a service to make the appropriate choices.

This section provides an overview of an object-oriented algebra and OQL to help
the reader understand the way distributed objects are used.

11.3.1 Object Query Language

OQL is an SQL-like query language but with more abilities. The major difference
with SQL is that OQL acts on the objects and not relations. OQL supports asso-
ciative query and update on collections of IDL objects. Specifically, it is possible
to define an object query language for any of the existing object models such as
C++, Smalltalk, and SQL3. OQL, which queries over IDL specified collection ob-
jects, may be expressed. OQL deals with complex objects and collections. It allows
querying objects starting from their names, where a name may denote any atomic,
structure, collection, or literal objects, and acts as entry point into the database. Some
of the differences are: (i) includes operation invocation in queries; (ii) feature of in-

OQS LANGUAGES 355

heritance; (iii) ability to invoke operation provides the inserts, update and delete
capability without violating encapsulation.

An OQL expression over a set of variables X is recursively defined as follows:

const constants
|var variables from X
|lambda var if inside of a select or quantifier
|expr.method name() method call
|expr->field name field selection
|[field name = expr [, field name = expr]*] tuple constructor
|set([expr [, expr]*]) set constructor
|bag([expr [, expr]*]) bag constructor
|list([expr [, expr]*]) list constructor
|select [distinct] expr from lambda var in expr [,

lambda var in expr]* [where expr] selection
|exists lambda var in expr : expr existential quantifier
|for all lambda var in expr : expr universal quantifier

The following is an example of OQL query.

select distinct p.name
from p in Person
where p.own.manufacturer.location.name = "Detroit"

and Person.own.drivetrain.engine.cylinder >= 6
and Person.own.color = "blue"

where p, declared in the FROM clause, is a range variable over member objects of the
set named Patients of type Set stored somewhere in an object services architecture
instantiation. The function name() used in the WHERE clause is a public member
function of Person inherited by Patient and Physician. Inheritance of function inter-
faces is as defined by IDL. The SELECT clause indicates that the objects returned by
the query are Patient objects. The expression p. f amily doctor.name, called a path
expression, allows navigation through the object composition graph, which enables
the formulation of predicates on nested objects. The function f amily doctor() is
of type Physician; therefore, we use the dot notation (following C++ convention) to
invoke the function name of physician.

The previous query can be extended to return the name and the age of the person
who owns a car which is manufactured by a company located in Detroit. These cars
are blue and their engines have six cylinders.

select distinct struct (a: p.name, z: p.age)
from p in Person
where p.own.manufacturer.location.name = "Detroit"

and Person.own.drivetrain.engine.cylinder >= 6
and Person.own.color = "blue’

356 OBJECT QUERY SERVICE

But things can be complicated. For example, instead of returning the age of p,
we may specify z as a result of another select statement. The following QQL query
extends the result of the above query and adds to each returned tuple the name of
the president of the company which manufactures the car owned by the person. In
addition, this president must earn more that 100,000.

select distinct struct (a: p.name, z: age,
w: (select y.name

from y in employee
where y in x.own.manufacturer.president
and y.salary > 100000))

from p in Person
where p.own.manufacturer.location.name = "Detroit"

and Person.own.drivetrain.engine.cylinder >= 6
and Person.own.color = "blue’

11.3.2 OQL Algebra

An algebraic expression is used in query processing for the execution of queries in a
“uniform model,” and therefore independent of specific language or syntax. Because
query processing aims at optimizing the execution of queries, properties of algebraic
operations, such as permutation of selection and joins, are well suited for building
different execution plans for the same query, and depending on a specific criterion
(e.g., time execution, cpu) later select the most appropriate execution graphs. Access
methods, such as indexes on available data, are used to compute the cost of each of
the execution graphs.

There are several object-oriented algebras, such as [90]. Here we describe some
of the basic common algebraic operators of these algebraic expressions. In most of
these algebras, the results of object algebraic operators are collections of objects
whose member may be different types like set, bag, list, and so forth.

• get(monoid, extent name, range variable, predicate): It captures the OQL
query select * from range variable in extent name with predicate. It creates a
collection, where each tuple has only one component, range variable, bound to
an object of this extent. The predicate is in a form of (p1, . . ., pn) to indicate
the conjunction of the predicates pi . The predicates are not allowed to contain
nested queries (all forms of querying nesting are eliminated).

• reduce (monoid, expr, variable, head, predicate): For each tuple in the collec-
tion expr that satisfies the predicate, it evaluates the head. Then it reduces the
resulting collection to a value (bound to a variable) or a collection (where each
tuple binds variable to the value of head), depending on the output in monoid.

• join (monoid, left, right, head, predicate, keep): It relates to the relational join
operator. It concatenates the tuples of the left and right inputs if they satisfy the
predicate. If keep=left, then it behaves like a left-outer join (it concatenates the
left tuple with null values), if keep=right it behaves like a right-outer join, while
if keep=none, it is a regular join.

OQS LANGUAGES 357

• unnest(monoid, expr, variable, path, predicate, keep): It unnests the inner
collection path of the outer collection expr and filters out all tuples that
do not satisfy the predicate. For example, if expr is of type set (< x :<
name : string, children : set (person) >>) and path=x.children, then
the output of this operation has type set (< name : string, children :
set (person), variable : person >). If there are no values, or no value
satisfies the predicate, and keep=true, then the tuple is padded with a null
value.

• nest (monoid, expr, variable, head, groupby, nestvars, predicate): It groups the
expr by the variables in groupby (which has the form: vars(v1vn), where a vi

is a variable defined in expr .) Then, for each different binding of the groupby
variable, it creates a tuple extended with the binding of variable to the value.

• map (monoid, expr, variable, function): maps the function (that depends on the
variable) over expr . It is simpler versions of reduce.

• merge(monoid, left, right): merges the (union-compatible) input expressions.

As explained earlier, in order to perform optimization of the user queries, OQL
queries will be translated into algebraic expressions. Here we will only illustrate
these translations on a few examples of OQL queries.

SELECT distinct struct (E: e.name,
M: (SELECT c.name

FROM c in a e.children
WHERE c.age > 18))

FROM e in Employee WHERE e.name="Smith"

has the following algebraic form:

reduce(set,
nest (bag,

get(set,
employees,
e,
and (eq(project(e,name), "Smith"))),
c,
project(e, children),
and (get(project(c, age), 18), true),
x,
project(c, name),
vars(e),
vars(),
and()),

y,
struct(bind(E, project(e,name)), bind(M,x)),
and ())

358 OBJECT QUERY SERVICE

The following example returns a struct instead, where the names of employee and
their departments are returned.

SELECT struct(E: e.name, D: e.dept.name)
FROM e in Employees;

This OQL query is translated into the following algebraic expression

reduce(bag,
join(bags,

get(bag,Employees,e,and()),
get(bag,Departments,x,and()),
and (eq(OID(project(e,dept)),OID(x))),
none),

y,
struct (bind(E,project(e,name)),bind(D,project(x,name))),
and())

The last example about the translation of OQL queries is the following:

SUM(SELECT e.age
FROM e in Employees);

is transformed to

reduce(sum,
get(sum,Employees,e,and()),
x,
project(e,age),
and())

11.4 OQS COMPONENTS

OQS provides query operations on collections of objects. Queries are predicate-
based and may return collections of objects, and include all conventional manipu-
lation operations, such as selection, insertion, updating and deletion on collection
of objects. Objects involved in queried collections may be of any type. Figure 11.7
shows the overall OQS’s architecture. QueryEvaluators represent the main compo-
nents of such a service and allow nesting and federation of queries over a set of
distributed objects. Such objects may participate in a query in two ways, either as
an object as it is, or as a part of a collection of objects (either implicit or explicit).
The first is more general because any CORBA object is supported; however it may
have optimization problems. In the second, a query is passed to lower level Query-
Evaluators (see Figure 11.7(b)(c)). The result of these subqueries should be com-
bined and passed to the client; however, this is an implementation issue and not part

OQS COMPONENTS 359

QueryEvaluator

Client

object

Native Query System

(c)(b)(a)

QueryEvaluatorQueryEvaluator

QueryEvaluator

Figure 11.7 General architecture.

of the specification. This second way allows the use of optimizations provided by
existing native database systems. As shown in Figure 11.7(c), queries can be nested
to an arbitrary number of levels.

Figure 11.8 provides some details of the OQS’s interfaces, and Table 11.2 de-
scribes the role of these interfaces. This framework provides two levels to accomplish

Collection

Get_status()
Get_result()

Execute()
Prepare()

Query

ql-types: sequence<QLTypes>

evaluate()

default_ql_type: QLType

create()

QueryEvaluator

QueryManager
QueryableCollection

Figure 11.8 Query framework interface hierarchy/structure.

360 OBJECT QUERY SERVICE

TABLE 11.2 OQS Interface

Interface Purpose

CollectionFactory To create collections
Collection To aggregate objects
Iterator To iterate over collections
QueryLanguageType To represent query language types
QueryEvaluator To evaluate query predicates and execute

query operations
QueryableCollection To represent the scope and result of queries
QueryManager To create query objects and perform query

processing
Query To represent queries

this. The first level consists of the basic abstractions involving minimal functionali-
ties related to the query service: QueryEvaluator and Collection interfaces. The next
level can be considered as the advance level, which consists of QueryManager and
QueryableCollection interfaces. They provide an extensible functionality for dealing
with all aspects of a query.

11.4.1 QueryEvaluator

This module specifies the functionalities of query evaluators. QueryEvaluator evalu-
ates queries predicates and executes query operations, and they are required to sup-
port queries expressed in various languages, including SQL-92 and ODMG’s OQL.
Each QueryEvaluator publishes the query functionality through its evaluate opera-
tion and performs all query processing by invoking operations on that object through
the IDL interfaces. The specification proposes QueryEvaluators to support OQL or
SQL dialects as query language.

module CosQuery {
... // list of exceptions
enum QueryStatus {complete, incomplete};
typedef CosQueryCollection::ParameterList ParameterList;
typedef CORBA::InterfaceDef QLType;
interface QueryLanguageType {};
interface SQLQuery : QueryLanguageType {};
interface SQL_92Query : SQLQuery {};
interface OQL : QueryLanguageType {};
interface OQLBasic : OQL {};
interface OQL_93 : OQL {};
interface OQL_93Basic : OQL_93, OQLBasic {};

interface QueryEvaluator {
readonly attribute sequence<QLType> ql_types;

OQS COMPONENTS 361

readonly attribute QLType default_ql_type;
any evaluate (in string query, in QLType ql_type, in
ParameterList params)
raises(QueryTypeInvalid, QueryInvalid,

QueryProcessingError);
};

...
};

A user can read the attribute default ql type to find the default query language
for the QueryEvaluator or the other attribute ql types for a list of other supported
query languages. The query is submitted as a string in the chosen query language
and passed to the QueryEvaluator, specifying the language and a list of parameters.
When the query completes successfully, it returns the result of type Any. The returned
result is a generic type and the most common return type will probably be a collection
of objects. If the evaluator meets an error, then it throws an exception. For example,
if the query language type specified is not supported by the QueryEvaluator, then it
throws QueryTypeInvalid exception. If the query syntax or semantics is incorrect or if
the input parameter list is incorrect, then, the QueryInvalid exception is thrown. If any
error is encountered during query processing, the QueryProcessingError exception is
thrown. The evaluate() operation evaluates a query and performs required query
processing. The IFR (Interface Repository) contains the details of the data types and
methods in it, the evaluate operation evaluate query predicates by referring this IFR.
If the predicate type is not similar to the one in the Interface Repository, then, the
evaluate function returns a QueryTypeInvaild.

11.4.2 Collections and Iterator

Collections of objects may be used both as the scope and result of a query. Collec-
tions are not typed; objects of different types can be part of the same collection. The
Collection interface specification provides standard operations for retrieving, adding,
deleting and replacing objects in collections. Associated iterators are used for traver-
sal.

Collection and Iterators are abstract object types. The Collections module of the
OQS describes classes for handling arbitrary collections of CORBA objects, and
includes support for adding and deleting objects and for iterating over collections.
The QueryEvaluator passes the query predicate to the collection. The objects that are
present in the Collections are called elements. The Collection interface defines op-
erations to add, replace, remove and retrieve elements (see CosQueryCollection
interface). Elements of collections are generally of type any. In a heterogeneous dis-
tributed database environment, depending on the underlying types of data, these ele-
ments could be relational tuples, objects or images.

362 OBJECT QUERY SERVICE

module CosQueryCollection {
exception ElementInvalid {};
exception IteratorInvlaid {};
exception PositionInvalid {};
...
interface CollectionFactory {

readonly attribute long cardinality;
void add_element (in any element)

raises(ElementInvalid);
void add_all_elements (in Collection elements)

raises(ElementInvalid);
void insert_element_at (in any element, in Iterator where)

raises(IteratorInvalid, ElementInvalid);
};
...

};

The attribute cardinali t y stands for the number of objects in the collection, and
the function next () of the Iterator interface returns the object of the collection to
the Iterator it is pointing to and advances the iterator position. The function more()
of the Iterator interface returns true, if there are more elements left to be retrieved by
a call to next (), and false otherwise.

Wrapper maps the given OQL to the respective query language; hence when
the client receives the result he/she does not know whether it is from a relational
or from an object database. It is often difficult to obtain a specific object without
navigating through the Collection, as it is not always possible to get the result in
the first instance. CORBA Query Service provides an interface to over come the
above difficulty, by providing an interface called Iterator. The operation Iterator
create i terator() and creates an iterator.

Module CosQueryCollection {
...
interface Iterator {

any next() raises (IteratorInvalid, PositionInvalid);
void reset();
boolean more();

};
Iterator create_iterator ();

};

An Iterator is a movable pointer into a collection. Iterator is a cursor implementa-
tion in database systems. For a client to navigate through the member elements in the
collection uses this Iterator. In an Ordered Collection, an Iterator points to the begin-
ning or the first element of the Collection. The operation next () moves the pointer
through subsequent elements until it reaches the last element in the Collection. If the
Collection is unordered then the Iterator visit in a random order. Each element in

OQS COMPONENTS 363

Queryable
Collection

Collection

Queryable
Collection

QueryEvaluator query

query query

query

Figure 11.9 Query framework interface hierarchy/structure.

this is reached only once. The Iterator interface provides an operation called reset ()
which is used for restarting the iteration. We can have multiple iterator to traverse
through the same or different collections.

11.4.3 QueryableCollection

It combines the query functionality of the QueryEvaluator with the data management
functionality of Collection. Then after evaluating the predicate and the operation on
the query it receives results and returns the result to the caller. This Collection is noth-
ing but a QueryEvaluator by itself, as shown in Figure 11.9; that is, the Collection
can itself be both results of a query and as a scope for another query. QueryableCol-
lection interface provides a mechanism for nesting queries to any number of levels.
The collection then serves as both result of a query and as a scope for another query.
This type of collection is known as QueryableCollections.

module CosQuery {
...
interface QueryableCollection : QueryEvaluator, CosQueryCollection::
Collection {};

...

The interface QueryableCollection inherits from both QueryEvaluator
and Collection. Though it is an implementation issue and not specified by
CORBA, the result of a query on a QuerableCollection should be another
QueryableCollection that can be queried again. To be able to use local opti-
mization techniques, the QueryableCollection may raise an exception when
new objects are replaced or added that are out of scope of the Query Evaluator
section (like most ordinary CORBA objects will be).

11.4.4 QueryManager and Query Object

Query managers and Query objects are useful for complex and time consuming
queries. Complex queries may be optimized before execution and saved for later
use with a different set of parameters. By using Query Managers, a client is able to

364 OBJECT QUERY SERVICE

execute a time-consuming query in an asynchronous manner, that is, it’s not blocked
by the call and can perform other operations while waiting for the result.

When the client generates a query, no feedback regarding the query will be re-
turned until the client receives data from the query. In these situations, QueryMan-
ager allows clients to monitor and manage the queries that have been generated. It
returns the status of the operation of the query. QueryManager is more powerful than
QueryEvaluator because QueryManager contains pointers to the set of object in a
database through the wrapper, on which the queries can be specified. In other words,
QueryManager contains the universal collection of objects. A wrapper then has the
pointer to the object in the database containing the index. Any query to be accessed
is represented by the Query Object, which operates on the subset of the collections
present in the QueryManager.

module CosQuery {
..
interface QueryManager : QueryEvaluator {
Query create (in string query, in QLType ql_type, in

ParameterList params) raises(QueryTypeInvalid, QueryInvalid);
};

interface Query {
readonly attribute QueryManager query_mgr;
void prepare (in ParameterList params) raises(QueryProcessingError);
void execute (in ParameterList params) raises(QueryProcessingError);
QueryStatus get_status ();
any get_result ();

};
};

The attribute ql types is a sequence of query languages supported by the Query
Evaluator and the attribute default ql type is the default query language used if not
specified in a call to. The function evaluate() takes a string representation of a
query, a query language type and a sequence of parameters and runs the query if
possible and returns the result. The function of QueryManager is similar to evaluate
function of the Query Evaluator, except that it returns an object of type Query. The
attribute query mgr of Query stands for the associated Query Manager and the func-
tion prepare() prepares a query with a different set of parameters (that are passed
as an argument). It should optimize a query for faster execution. Finally, the function
execute() executes a query. A list of parameters can be passed as an argument.

The QueryManager interface works in tandem with a Query object in managing
overall query processing and monitoring the query execution. A Query object is cre-
ated for each query. Once the Query object is created, the first step of query process-
ing, the query language type and the query syntax are checked. If the Query Manager
does not support the query language then a QueryTypeInvalid exception is thrown.
If the query syntax or semantics is incorrect or if the input parameter provided is
incorrect, the QueryInvalid exception is raised. The QueryManager obtains the in-

DOK QUERY SERVICE 365

formation of the attributes and its data type, methods from the Interface repository to
check whether the input parameter list is correct or not. Assuming that the syntax, se-
mantics and the parameters are correct, the next step is to decompose the query. The
objective of decomposing is to break up a given query into subqueries. The subquery
is expressed in terms of the actual or conceptual databases into its component parts
or subqueries and finds a strategy that indicats the sequence of primitive or funda-
mental operations and their corresponding processing sites in the network necessary
to answer the query. The operation prepare() defined in the Query Interface goes
into different stages of query processing.

11.5 DOK QUERY SERVICE

This section describes the design and implementation of the OQS service in the con-
text of the DOK project [102]. In this project, a loosely coupled approach similar to
ODMG’s C++ OQL binding [19] is used. A user’s queries are written in the ODMG
OQL syntax. The loosely coupled approach was chosen because it is much simpler
to implement. The focus in this section is on the DOK Query Service, which is a
CORBA compliant. Because the syntax of the CORBA Object Query Service has
already been covered in the previous sections, the focus here will be on the details of
the design and implementation of the DOK query processing engine.

The global query processing is composed of a set of phases: query preprocess-
ing, query decomposition, query optimization, and query evaluation. After the global
query is parsed and semantically is correct, the query preprocessor module translates
a global query against the integrated schema into an internal representation in terms
of external data sources objects to be next utilized by query optimizer. Because of
the heterogeneity nature, a relational algebra tree (B-tree) is used to express the op-
erations and semantics concepts for all possible external data sources (i.e., relational
and object-oriented). The query tree internal nodes represent query operations (i.e.,
select, join, project, outer-join, etc.), while the leaf nodes are used to represent both
tables in the case of relational databases and functions for object-oriented databases.
The leaf nodes may contain both columns specifications, functions’ parameters con-
straints and some other performance related operations such as scan and sort.

11.5.1 Query Execution Engine

Execution of queries is based on different algorithms (sorting and hashing). The
DOK Query execution engine manages elements of large sets of items such as
relations, records, tuples, entities, or other objects. The implementation of query
processing algorithms is based on the iteration over their input items sets. Sets are
represented by sequences and used to represent one-dimensional lists, arrays and
time series bulk types. Algorithms are algebra-type operators that consume zero or
more inputs and produce one or more outputs.

Query processing algorithms are based on algebra concepts categorized as logi-
cal and physical algebra algorithms. Logical algebra considers the data model (re-

366 OBJECT QUERY SERVICE

lational, and object-oriented) and defines what queries can be expressed in the cor-
responding data model such as a relational algebra. Physical algebra is a system-
specific feature; different systems may implement the same data model (i.e., logical
algebra), but they may use different physical algebras. The query execution engine
may use one or more logical algebra algorithms such as the use of only nested-loops
join algorithm, or both nested-loops join and merge-join algorithm, or entirely rely
on hash join algorithm. It may also use the physical algebra algorithms such as cost
functions that are associated only with physical algebra operators of the correspond-
ing system. In a real environment the mapping process can be complex because it
involves choices and frequently logical and physical operators do not map directly
to each other. For-example, one physical algebra operator may implement multiple
logical algebra operators (i.e., to join two tables we may implement into two steps:
(i) projection without duplicate removal, (ii) then remove any duplication.

Here we define the implementation of the query execution module (execute) and
the protocol used to invoke each query processing component to process a user query.
As shown earlier, the second argument to the query execution module is an OQL
statement, and the subsequent host language expressions are input operands of the
query. Furthermore, the query string may contain place holders for its operands using
some binding notations that transfer the required information (query statements and
its operands) to a corresponding execution formula.

First, all operands of the host language are evaluated, and their values are con-
verted into a string and inserted into the corresponding place in the query. Then the
whole query is sent to the execution module component as a single string in a single
message. The corresponding execution module parses the transferred query string
and computes the values of operands. If the corresponding operand is an object, its
handle number is passed. Suppose that we have the following user query invocation
in a client program:

query(result, "binding notation not finalised",mysql);

Assuming that mysql has a handle number 3, based on that the host language
program places the operand values in the corresponding places in the parse tree.
The query statement must be scanned in the host language program to find out the
number of operands and their types. The type information is necessary because the
host language program may call different procedures to transmit values of different
types.

11.5.2 Query Optimization

The abstraction of the query optimization process is divided into (a) query parsing
and (b) searching stages. First, the parsing module applies some transformations in
a submitted query based on some rules and produces equivalent queries that are in-
tended to be efficient. The query parsing process may depend on some declarative
information of the queries’ operands and the related operations. Such information is
related to some statics and characteristics of queries without concern for specific cost.
The parsing of a query is performed on the form of standardizing queries sampling

SUMMARY 367

techniques and flattening the nested queries. Second, is the searching and planning
stage of the query processing that is performed by the optimizer. This stage is em-
ployed in order to perform a search strategy which explores the space of all access
plans that are determined by logical and physical algebra in terms of the required
methods and structures.

After the initial query processing stage is completed and a parse tree generated,
it is necessary to decompose a query by applying integrated decomposition rules
into local sub-queries based on the global anthology.2 This decomposition process is
based on a optimized tree query representation that is produced during the transfor-
mation process. In the context of the DOK project, for the optimization purpose, an
algebraic approach to global query optimization is considered. With this approach,
a query is decomposed into operations of an object algebra form. Based on some
heuristics, then for each operation an execution site is chosen, and the corresponded
operations are sent to each local site through an interface utility based on CORBA
object management architecture. Finally, local objects are computed locally in re-
sponse to sub-queries initiated on a federated level.

In the optimization process, the most relevant and important question is to clarify
the way the results of the first operator are passed to the second one. The answer to
this question is closely related to the techniques implemented by the optimizer. Such
techniques may be (i) by creating and accessing a temporary file that may be kept in
the buffer or not. (ii) Creating one process for each operator, then using interprocess
communication mechanisms (i.e., pipes) to transfer data between operators, leaving
it to the operating system to schedule and suspend operator processes if pipes are
full or empty. (iii) The above two solutions create or introduce an extra cost; to
avoid a temporary file and scheduling, a rule-based translation program can be used.
These programs transform a plan represented as a tree structure into a single iterative
program with (a) nested loops, (b) or other control structures [38]. The required
rules set in [33] are not simple, especially for algorithms with complex control logic
such as sorting, merge-join, and hash join. (iv) The most practical alternative is to
implement all operators in such a way so that they can schedule each other within
a single operating system process. This solution defines a single record and iterates
over all records comprising an intermediate query result. This technique is employed
in the Volcano prototype system [39]. Each time an operator needs another Record, it
calls its input operator to produce one output. This is called a simple procedure call,
which is much cheaper than interprocess communication since it does not involve the
operating system. This approach is very close to production systems such as System
R/SQL.DS and DB2, Ingres, Informix, Oracle.

11.6 SUMMARY

In previous chapters we covered some of the main important services of distributed
systems, such as the Naming Service, the Trading Service, the Event Service and the

2A collection of different component databases information provided by the corresponding database
administrator.

368 OBJECT QUERY SERVICE

Transactional Service. The service described in this chapter, the OMG Query Ser-
vice, is not a “standard” service of conventional distributed systems. Indeed, it is a
service for databases, centralized or distributed. Because CORBA is object-oriented
instead of process-oriented, CORBA objects may contain persistent data, and there-
fore will be stored in persistent storage. We believe that this aspect of persistency is
a very important advantage of CORBA over existing distributed systems.

If CORBA deals with persistent data, then appropriate database services need to
be provided. One of these services is the Query Service, which offers query facilities
over multiple (data) repositories. Another service is the OMG Object Transaction
Service. However, the reader may notice that CORBA and database systems have
different views when dealing with these services. Database systems are generally
centralized, at least the commercial ones, and all their functions, including query
processing, are done in a centralized manner. CORBA systems are distributed by na-
ture. Their objects, even though they are persistent, can be stored in different systems
(relational database systems, object-oriented database systems, files). Therefore, the
query processing techniques for CORBA systems may differ from the database sys-
tems.

This chapter provided details of the OMG Object Query Service. Background on
query processing in distributed databases was also described. We hope that this has
helped readers to understand the issues and the complexity related to query process-
ing. Later on, we described the architecture and the components of the OMG Query
Service, including QueryEvaluator, QueryCollection, and QueryManager. Finally,
we described an implementation of such a service within the context of the DOK
system.

11.7 REVIEW QUESTIONS

• Explain the differences between query processing in distributed databases and
CORBA environments.

• What are the issues that need to be addressed when dealing with the manage-
ment of data in CORBA environments?

• Explain some of the advantages of CORBA and database technologies integra-
tion.

• Explain the steps involved when using OQS in distributed environments.
• What does the efficiency of a query manager practically depend on? Briefly

explain two main components of a query manager.
• Compare different types of query optimization strategies. What are the prob-

lems in optimizing nested queries?
• What are the two techniques in storing relations across multiple sites in dis-

tributed database systems? Explain how the cost of transferring data over the
network influences query processing in distributed databases.

• Explain the steps performed in a typical query processing system.

EXERCISES 369

• Explain how semijoin is used to reduce the number of tuples in a relation prior
to their transfer to another site.

• Briefly explain each of the functions of each OQS component interfaces.

11.8 EXERCISES

• A query optimizer in OMG query service finds the “best” Global Execution
Plan (GEP) before sending its comprising Local Execution Plans (LEP)s to the
object adaptors. Later, the object adaptors translate the LEPs to specific query
language to the relevant database servers on the network. Discuss the nature of
this “best” GEP.

• Discuss the benefit and the drawback of OMG Query Service. Hint: Relate the
explanation to database schema and query manipulation language

Fundamentals of Distributed Object Systems: The CORBA Perspective
Zahir Tari, Omran Bukhres

Copyright c© 2001 John Wiley & Sons, Inc.
Print ISBN 0-471-35198-9 Electronic ISBN 0-471-20064-6

References

1. M. Abrams, C.R. Standridge, G. Abdulla, S. Williams, E.A. Fox, “Caching Proxies:
Limitations and Potentials,” Proc. Fourth Int. World Wide Web Conf., Boston, 1995.

2. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik, “The
Object-Oriented Database System Manifesto,” Proc. Int. Conf. on Deductive Object-
Oriented Databases (DOOD), Kyoto, Japan, 1989, pp. 40–57.

3. M. Ahamad and R. Kordale, “Scalable Consistency Protocols for Distributed Services,”
IEEE Trans. Parallel and Distributed Systems (PDS), 10(9), 1999, pp. 888–903.

4. C. Aggarwal, J.L. Wolf, P.S. Yu, “Caching on the World Wide Web,” IEEE Trans. Knowl-
edge and Data Engineering (TKDE), 11 (1), 1999, pp. 94–107.

5. S. Baker, CORBA Distributed Objects Using Orbix, Addison-Wesley, Reading, MA,
1997.

6. A. Barak, S. Guday and R.G. Wheeler, “The Mosix Distributed Operating System, Load
Balancing for UNIX,” 1993.

7. M. Bearman, K. Duddy, K. Raymond, and A. Vogel, “Trader Down Under: Upside Down
and Inside Out,” Int. J. Theory and Practice of Object Systems (TAPOS), 3(1), 1997, pp.
15–29.

8. A. Beitz and M. Bearman, “An ODP Trading Service for DCE,” Proc. 1st Int. Workshop
on Services in Distributed and Networked Environments, Los Alamitos, CA, 1994.

9. A. Beitz and M. Bearman, “ Service Location in an Open Distributed Environment,”
Technical Report 21, CRC for Distributed Systems Technology, 1995.

10. P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Databases, Addison-Wesley, Reading, MA, 1987.

11. K.P. Birman, “The Process Group Approach to Reliable Distributed Computing,”
Comm. ACM (CACM), 36(12), 1993, pp. 36–53.

12. K.P. Birman and R. van Renesse (eds.), “Reliable Distributed Computing with the ISIS
Toolkit,” IEEE Comp. Soc. Press, 1994, pp. 558–565.

13. Boeing, “Joint Computer Systems Technical Committee and Software Systems,” Report
of Technical Committee Meeting, May 1998.

14. G. Booch, Object-Oriented Analysis and Design with Applications, Addison-Wesley,
Reading, MA, 1994.

15. M.A. Blaze, “Caching in Large-scale Distributed File Systems,” Ph.D. Thesis, Princeton
University, 1992.

16. M. Carey et al., “Storage Management for Objects in EXODUS,” In Object-Oriented
Concepts, Databases, and Applications, W. Kim and F. Lochovsky (eds.), Addison-
Wesley, Reading, MA, 1989.

371

372 REFERENCES

17. M. Carey, M. Franklin, M. Livny, E. Shekita, “Data Caching Tradeoffs in Client-Server
DBMS Architectures,” Proc. ACM SIGMOD Conf. on Management of Data, Denver,
1991, pp. 357–366.

18. T.L. Casavant and J.G. Kuhl, “A Taxonomy of Scheduling in General-Purpose Dis-
tributed Computing Systems,” IEEE Trans. Software Eng. (TSE), 14(2), February 1988,
pp 141–154.

19. R.G.G. Catell et al., Object Database Standard: ODMG 2.0, Morgan Kaufmann, 1997.

20. P.E. Chung, Y. Huang, S. Yajnik, et al., “DCOM and CORBA Side by Side, Step by
Step, and Layer by Layer,” C++ Report, Vol 10, No. 1, January 1998, pp. 18–30.

21. G. Cornell and C.S. Horstmann, Core Java, Sun Microsystem Press, 1996.

22. G. Coulouris, J. Dollimore, and T. Kindberg, “Distributed Systems, Concepts and De-
sign,” Addison-Wesley, Reading, MA, 1994.

23. G. Craske and Z. Tari, A Property-based Clustering Approach for the CORBA Trading
Service, Proc. Int. Conf. on Distributed and Computer Systems (ICDCS’99), Texas, June
1999, pp. 517–527.

24. J.P. Deschrevel, “The ANSA Model for Trading and Federation,” Architecture Report,
ANSA, July 1993.

25. A.B. Downey and M. Harchol-Balter, “A Note on Limited Performance Benefits of Mi-
grating Active Processes for Load Sharing,” Technical Report, No. UCB/CSD-95-888,
University of California, Berkeley, Computer Science Division, November 1995.

26. D.L. Eager, E.D. Lazowska, J. Zajorjan, “Adaptive Load Sharing in Homogeneous Dis-
tributed Systems,” IEEE Trans. Software Eng. (TSE), 12(5), May 1986, pp. 662–675.

27. D.L. Eager, E.D. Lazowska and J. Zajorjan, “A Comparison of Receiver-Initiated and
Sender-Initiated Adaptive Load Sharing,” Performance Evaluation Journal, 6(1), March
1986, pp. 53–68.

28. D.L. Eager, E.D. Lazowska and J. Zahorjan, “The Limited Performance Benefits of Mi-
grating Active Processes for Load Sharing,” SIGMETRICS, May 1988, pp. 662–675.

29. R. Elmasri and S.B. Navathe, Fundamentals of Database Systems, Addison-Wesley,
Reading, MA, 1994.

30. D. Faensen, A. Hinze and H. Schweppe, “Alerting in a Digital Library Environment:
Do Channels Meet the Requirements?,” Proc. European Conf. on Digital Librairies
(ECDL), Heraklion, 1998, pp. 643–644.

31. B. Fan, K. Kumar and Z. Tari, “An Efficient Trader Using Attribute Clustering Technique
in Distributed Object Systems,” Proc. Int. Conf. on Parallel and Distributed Processing
Technique and Applications (PDPTA), Las Vegas, 1998.

32. M. Franklin, M.J. Carey, and M. Livny, “Transactional Client-Server Cache Consistency:
Alternatives and Performance,” ACM Trans. on Database Systems, 22(3), 1997, pp. 315–
363.

33. J.C. Freytag, “Rule-Based View of Query Optimisation,” Proc. ACM Int. Conf. on Man-
agement of Data (SIGMOD), 1987, pp. 173–180.

34. J. Garbis, D. Slama, and P. Russell, Enterprise CORBA, Prentice-Hall, Englewood Cliffs,
NJ, 1999.

35. D.S. Gill, S. Zhou, and H.S. Sandhu, “A Case Study of File System Workload in a Large-
Scale Distributed Environment,” Proc. ACM SIGMETRICS Conf. on Measurement and
Modelling of Computer Systems, 1994, pp. 276–277.

REFERENCES 373

36. A.S. Gokhale and D.C. Schmidt, “Evaluating the Performance of Demultiplexing Strate-
gies for Real-time CORBA,” Proc. IEEE Global Telecommun. Conf. (GLOBECOM),
Phoenix, 1997, pp. 1729–1734.

37. A.S. Gokhale and D.C. Schmidt, “Measuring and Optimising CORBA Latency and Scal-
ability Over High-speed Networks,” IEEE Trans. on Computers, 47(4), 1999, pp. 391–
413.

38. G. Graefe and D. J. DeWitt, “The EXODUS Optimiser Generator,” Proc. ACM SIGMOD
Int. Conf. on Management of Data, 1987, pp. 160–172.

39. G. Graefe, “Volcano—An Extensible and Parallel Query Evaluation System,” IEEE
Trans. Knowledge and Data Engineering (TKDE), 6(1), 1994, pp. 120–135.

40. G. Graefe, “Query Evaluation Techniques for Large Databases,” ACM Computing Sur-
veys, 25(2), June 1993, pp. 73–170.

41. G. Graefe and D. J. DeWitt, “The EXODUS Optimiser Generator,” Proc. ACM Int. Conf.
on Management of Data (SIGMOD), 1987, pp. 160–172.

42. G. Graefe and K. Ward, “Dynamic Query evaluation Plans,” Proc. ACM Int. Conf. on
Management of Data (SIGMOD), 1989, pp. 358–365.

43. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann, 1993.

44. E. Gamma, R. Helm et al., Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley, Reading, MA, 1995.

45. I. Gunaratne and G. Fernandez, Building New Applications and Managing Legacy Ap-
plications with Distributed Technologies: Principles and Techniques, Springer-Verlag,
New York, 1988.

46. T. Harder, “Observation on Optimistic Concurrency Control Schemes,” Information Sys-
tems, 9(2), 1984, pp. 11–20.

47. M. Henning, “Binding, Migration, and Scalability in CORBA,” Technical Report,
DSTC, University of Queensland, 1997.

48. M. Henning and S. Vinoski, “Advanced CORBA Programming With C++,” Addison-
Wesley, Reading, MA, 1999.

49. Y. Hoffner, G. Thomas, and M. Beasley, “Data Management for an Enhanced Trader,”
Technical Report, ANSA, 1994, APM.1162.01.

50. J.H. Howard et al., “Scale and Performance in a Distributed File System,” ACM Trans.
Comp. Systems, 6(1), February 1988, pp. 51–81.

51. IONA Technologies, “Orbix Database Adapter Framework Release 1.0,” 1997.

52. IONA Technologies, “OrbixWeb Programmer’s Guide,” 1997.

53. IONA Technologies, “OrbixWeb Programmer’s Reference,” 1997.

54. P. Krueger and M. Livny, “The Deverse Objectives of Distributed Scheduling Policies,”
Proc. IEEE Int. Conf. on Distributed Computing Systems (ICDCS), 1987, pp. 242–249.

55. P. Krueger and N.G. Shivaratri, “Adaptive Location Policies for Global Scheduling,”
IEEE Trans. Software Eng. (TSE), 20(6), June 1994.

56. R. Kordale, M. Ahamad and M. Devarakonda, “Object Caching in a CORBA Compli-
ant System,” USENIX Computing Systems Journal, Computing Systems, 9(4), 1996, pp.
377–404.

57. O. Kremien and J. Kramer, “Methodical Analysis of Adaptive Load Sharing Algo-
rithms,” IEEE Trans. Parallel and Distributed Systems (PDS), 3(6), November 1992.

374 REFERENCES

58. L. Lamport, “Time, Clocks and the Ordering of Events in a Distributed System,” Com-
mun. ACM (CACM), 21(7), 1978, pp. 558–565.

59. ITU/ISO, “Reference Model for Open Distributed Processing,” Committee Draft
ISO/IEC/JTC1/SC21 N807, October 1994.

60. S. Landis and S. Maffeis, “Building Reliable Distributed Systems with CORBA,” Jour-
nal of Theory and Practice of Object Systems (TAPOS), Volume 3, 1997, pp. 31–43.

61. R.G. Lavender and D.C. Schmidt, “Active Object: an Object Behavioral Pattern for Con-
current Programming,” In Pattern Languages of Program Design, J.O. Coplien, J. Vlis-
sides, and N.L. Kerth (eds.), Addison-Wesley, Reading, MA, 1996.

62. A. Leff, P.S. Yu, “Performance Study of Robust Distributed Load Sharing Strategies,”
IEEE Trans. Parallel and Distributed Systems (PDS), 5(12), December 1994.

63. E. Maderia and L. Lima, “A Model for Fedrative Trader,” Proc. Int. Conf. on Open
Distributed Processing, Brisbane, 1995.

64. S. Maffeis, “Run-Time Support for Object Oriented Distributed Programming,” Ph.D.
Thesis, University of Zurich, Switzerland, 1995.

65. P. Mishra and M.H. Eich, “Join Processing in Relational Database,” ACM Computing
Surveys, 24(1), March 1992, pp. 63–113.

66. J.M. Morrissey, W.T. Bealor and S. Kamat, “A Comparison of Static and Dynamic
Strategies for Query Optimisation,” Proc. 7th IASTED/ISM on Parallel and Distributed
Computing Systems, Washington, 1995, pp. 55–53.

67. T.J. Mowbray and R.C. Malveau, CORBA Design Pattern, Wiley, New York, 1997.

68. K. Muller-Jones, M. Merz and W. Lamersdorf, “The TRADER: Integrating Trading Into
DCE,” Proc. 3rd Int. IFIP TC6 Working Conf. on Open Distributed Processing (ICODP),
Brisbane, 1995.

69. Y. Ni, “Resource and Service Trading in a Heterogeneous Large Distributed System,”
Proc. IEEE Workshop on Advances in Parallel and Distributed Systems, New Jersey,
1993.

70. OMG, “Common Object Request Broker: Architecture and Specification,” Revision 2.0,
1995.

71. OMG, “ORB Portability Enhancement RFP,” June 1995.

72. OMG, “Naming Service Specification,” December 1997.

73. OMG, “Trading Object Services Specification,” December 1997.

74. OMG, “ORB Portability Joint Submission (Final),” May 1997.

75. OMG, “Transaction Service Specification,” July 1997.

76. OMG, “Concurrency Control Service Specification,” July 1997.

77. OMG, “Common Object Request Broker: Architecture and Specification,” Revision 2.2,
1998.

78. OMG, “Common Object Request Broker: Architecture and Specification,” Revision
2.3a, 1998.

79. OMG, “The Portable Object Adaptor,” Revision 2.2, 1998.

80. OMG, “Persistent State Service 2.0,” April 1999.

81. Open Group, “Event Management Services (XEMS),” Technical Report, X/Open Docu-
ment, 1997.

82. R. Orfali and D. Harkey, Client/Server Programming with Java and CORBA, Wiley
Computer, New York, 1998.

REFERENCES 375

83. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1991.

84. J. Pompeii, “Secant Persistent Object Manager: A Technical Overview,” Secant Tech-
nologies, 1998.

85. G. Rackl and T. Schnekenburger, “Dynamic Load Distribution for CORBA Applica-
tions: Integration and Evaluation,” Component Users’s Conference, Munich, 1997.

86. K. Raymond and K. Raymond, “Federating Traders: An ODP Adventure,” Proc. IFIP
TC6/W2.6 Working Conf. on Open Distributed Processing, Berlin, 1991, pp. 125–141.

87. F. Reverbel, “Persistence in Distributed Object Systems: ORB/ODBMS Integration,”
Ph.D. Thesis, University of New Mexico, 1996.

88. W. Ruh, T. Herron and P. Klinker, “IIOP Complete: Understanding CORBA and Mid-
dleware Interoperability,” Addison-Wesley, Reading, MA, 1999.

89. SAMS.net, ”Java Unleashed,” 1996.

90. I. Savnik, Z. Tari, and T. Mohoric, “QAL: A Query Algebra for Complex Objects,” Int.
J. Data and Knowledge Eng. (DKE), 30(1), May 1999, pp. 57–94.

91. D. Schmidt, T. Harrison, C. O’Ryan, and D. Levine, “The Design and Performance of a
Real-Time CORBA Event Service,” IEEE J. Selected Areas in Communications, August
1999.

92. D. Schmidt, D. Levine and S. Mungee, “The Design of the TAO Real-Time Object Re-
quest Brokers,” Computer Communications, 21(4), April 1998.

93. D. Schmidt and S. Vinoski, “Comparing Alternative Programming Techniques for Multi-
Threaded CORBA Servers—the Thread-per-Request Concurrency Model,” C++ Report,
SIGS, 8(2), February 1996.

94. D.C. Schmidt and S. Vinoski, ”Introduction to Distributed Computing (Column 1),”
SIGS C++ Report, 1995.

95. S. Setiawan, “CODAR: A POA-based CORBA Database Adaptor,” Technical Report,
no. TR-00-3, RMIT University, May 2000.

96. K.G. Shin and C.J Hou, “Design and Evaluation of Effective Load Sharing in Distributed
Real-Time Systems,” IEEE Trans. Parallel and Distributed Systems (PDS), 5(7), July
1994.

97. A. Stepanov and M. Lee, “The Standard Template Library,” Technical Report, Hewlett
Packard, April 1994.

98. W.R. Stevens, UNIX Network Programming, Volume 1, Networking API: Sockets and
XTI, Prentice-Hall, Upper Saddle River, NJ, 1998.

99. Sysnetics, “Persistence of Distributed Objects,” http://www.sysnetics.com/persist/
persistence.html.

100. O. Tallman and J.B. Kain, “COM versus CORBA: A Decision Framework,” Distributed
Computing Journal, July 1998. http://www.quoininc.com/quoininc/articles.html

101. A.S. Tanenbaum, Modern Operating Systems, Prentice-Hall, Englewood Cliffs, NJ,
1992.

102. Z. Tari, W. Cheng, K. Yetongnon, and I. Savnik, “Towards Cooperative Databases:
The DOK Approach,” Proc. Int. Conf. on Parallel and Distributed Computing Systems
(PDCS), Dijon, 1996, pp. 595–600.

103. Z. Tari and G. Craske, Designing a CORBA Trading Service with Query Routing Facil-
ities, Proc. Int. Conf. on Distributed and Computer Systems (ICDCS’00). Taipei, April,
2000, pp. 504–511.

376 REFERENCES

104. Z. Tari, Q. Lin and H. Hamidjaja, “A Caching Approach to improve CORBA Perfor-
mance,” IEEE Proc. Int. Workshop on Internet 2000 (IWI200), Taipei, April, 2000, pp.
59–60.

105. Z. Tari, Q. Lin and H. Hamidjaja, “Cache Management in CORBA Distributed Object
Systems,” IEEE Concurrency, Vol 8, No. 3, 2000, pp. 48–55.

106. J. O’Toole and L. Shrira, “Hybrid Caching for Large-Scale Object Systems (Think Glob-
ally Act Locally),” Proc. Int. Workshop on Persistent Object Systems (POS), 1994. pp.
99–114.

107. X/Open Ltd., “Distributed Transaction Processing: The XA Specification,” October
1991.

108. X/Open Ltd., “Distributed Transaction Processing: The TX Specification,” October
1992.

109. A. Vogel et al., “Trader Down Under: Upside Down and Inside Out,” Technical Report,
CRC for Distributed Technology, Australia, 1996.

110. Y. Wang and L.A. Rowe, “Cache Consistency and Concurrency Control in a
Client/Server DBMS Architecture,” Proc. ACM SIGMOD Conf. on Management of
Data, May 1991, pp. 367–377.

111. C.J. Wang, P. Krueger, and M.T. Liu, “Intelligent Job Selection for Distributed Schedul-
ing,” Proc. IEEE Int. Conf. on Distributed Computing Systems (ICDCS), 1993, pp 517–
524.

112. A. Waugh and M. Bearman, “Designing an ODP Trader Implementation Using X.500,”
Proc. Int. Conf. on Open Distributed Processing, Brisbane, Australia, Feb. 1995.

113. S. Williams, M. Abrams, E. Fox, and G. Abdulla, “Removal Policies in Network Caches
for WWW Documents,” Proc. ACM SIGCOMM Conf. on Application, Technologies,
Architecture for Computer Communications, Palo Alto, 1996, pp. 293–305.

114. S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: A Load Sharing Facility for
Large, Heterogeneous Distributed Computer Systems,” Software-Practice and Experi-
ence, 23(12), Dec. 1993, pp. 1305–1336.

Index

Page references followed by italic t indicate material in tables.

access controls, 67
access transparency, 10
ACID properties (atomicity, consistency,

isolation, and durability), 316,
317–319

Active Group, 30
Active Object Map, 136, 147
active state objects, 56
adaptor activator, 133, 135
add in arg(), 109
add inout arg(), 109
add link(), 248
add out arg(), 109
addresses, 213, 214
add type(), 262
add value(), 116
Admin interface, 246, 247, 256–257
administrative domains, 163
ANSA, view of traders, 236
Any type, 60, 66, 103–105

and helper class, 75
application interfaces, 46
Application layer (OSI Model), 13
Application Objects, 43–44
array type, 40
asynchronous messaging, 35
at-least-once RPC semantic, 19
at-most-once RPC semantic, 19
atomicity, of transactions, 317–318
attributes, 41

CORBA objects, 70–72
automation service, 25, 26
availability, 9, 11–12
avoidance-based invalid access prevention, for

CORBA caches, 191

backward validation, 321–322
bandwidth index, xiii

Basic Object Adaptor (BOA), 48, 55–56
architecture, 132–133
brief description, 129, 130
implementation style, 90–91
summarized, 161
technical issues, 141–144

basic types, 40
begin(), 328
Berkeley sockets, 13
bind(), 76, 86–87, 215, 218, 225
binding

direct and indirect, 53
languages, 68
late, 38, 155
of names, 214–215, 225–227
persistent IORs, 58–60
transient IORs, 57–58

bind new context(), 227
BOA. See Basic Object Adaptor
BOA::create(), 143
BOA::deactivate impl(), 142
BOA::deactivate obj(), 133, 142, 143
BOA::get principal(), 172
BOA implementation style, 90–91
BOA::impl is ready(), 133, 142
BOA::object is ready(), 142, 143
boot objects, 99, 100
bridges, 57, 164–166
broadcasting, 278

C++, 37
cache manager, 184, 193, 194

design, 200–201
operations, 196–197

cache organization, 191
cache replacement, 186–191
cache storage, 191
caching, 183. See also CORBA caching

377

378 INDEX

caching consistency algorithms, 189–191
caching two-phase locking, 189–190, 192t
callback locking, 189, 192t
callback strategy, 198
callback table, 269
CancelRequest message, 57, 173–174
CanCommit phase, 323, 324–325
candidate conflict set, 321–322
canonical pull model, 280, 286
canonical push model, 280, 285–286
cascading aborts, 318
Cedar RPC, 18
Cell Directory Services (CDE), 23
cells, 23–24
centralized systems, 3

distributed systems contrasted, 11–12
centrally controlled distributed systems, 4–5
checksums, 15
classes, 37
client executable class, 85
clients, 46–47
CloseConnection message, 57, 175–176
clustering, 273
CollectionFactory interface, 360t
Collection interface, 359, 360, 360t , 361–363
commit(), 328
commit protocols, 323

three phase commit (3PC), 325–326
two phase commit (2PC) for flat

transactions, 323–324
two phase commit (2PC) for nested

transactions, 324–325
commodity-off-the-shelf (COTS) components,

xiii
Common Data Representation (CDR),

166–177
Common Facilities, 43, 46
common middleware services, xiv–xv
Common Object Request Broker Architecture.

See CORBA
complexity, of distributed systems, xiii, 12
Component Object Model (COM), 25, 61
compound documents service, 25
compound name, 221, 222
computers, 3. See also distributed systems
concurrency, 9, 316. See also Object

Transaction Service; transactions
concurrency control, 140–141

Basic Object Adaptor, 144
Portable Object Adaptor, 151

concurrency control protocols
optimistic, 321–323
pessimistic, 320–321

Concurrency Service, 44

concurrency transparency, 10
conditional compilation, 69
connect pull consumer(), 289
connect pull supplier(), 289
connect push supplier(), 289
consistency, of transactions, 317, 318
consistency algorithms, CORBA caches,

189–191
constraints, Trading Object Service, 265–266
constructed datatypes, 168
constructed types, 40, 77–78
construction model, 41, 42
consumer interface

typed event channels, 304–306
untyped event channels, 293–296

consumers, 277, 279, 284–287. See also event
channels

administration, 289
connection, 289–290

disconnection, 290
container environment, 36
context propagation, 328–329
contexts, 60
Control interface, 327–328
coordinator, 323
Coordinator interface, 327, 328
CORBA. See also implementation repository;

Interface Definition Language;
interface repository; object adaptors;
Object Request Brokers; specific
services

application interfaces, 46
background, 32–35
benefits, 34–35
brief description, 32–35
conventional object models compared, 42t
DCE contrasted, 60–61
DCOM contrasted, 61–62
domain interfaces, 46
facilities summarized, 34, 43, 46
integration with database technologies, 343
object implementation, 41–42
Object Management Architecture, 43–46
object paradigm, 37–38
object semantics, 39–41
primary components, 46–57
reference object model, 36–42
RMI contrasted, 62
services summarized, 34, 44–45
summarized, 34, 62

CORBA 1, 33
CORBA 1.1, 35
CORBA 2, 33, 34, 35
CORBA 3.0, 35–36

INDEX 379

CORBAAman, 46
CORBAAtel, 46
CORBA binding. See binding
CORBA caching, 183–185

approach, 192–193
architecture, 193–196
cache replacement, 186–191
consistency algorithms, 189–191
design, 199–205
model, 196–199
problems with, 186
summarized, 209–210
techniques, 185–186
testing, 205–209

CORBA components, 36
CORBACurrent interface, 327
CORBA Domains, 43, 46
CORBA Event Service. See Event Service
CORBA Facilities, 34, 43, 46
CORBA Internet integration specifications,

35–36
CORBA interoperability, 34. See also

Interoperable Object References
basic concepts, 162–163
bridges, 164–166
brief description, 56–57, 162
Common Data Representation (CDR),

166–177
domains, 163–164
Environment Specific Inter-ORB Protocol,

178–179
Internet Inter-ORB Protocol, 177–178
protocols, 166–179

CORBA Naming Service. See Naming Service
CORBA Object Query Service. See Object

Query Service
CORBA Object Transaction Service. See

Object Transaction Service
CORBA::ORB::create operation list(), 280
CORBA programming

advanced features, 105–124
basic concepts, 67–105
Dynamic Invocation Interface, 106–111
Dynamic Skeleton Interface, 112–118
dynamic types, 102–105
implementation repository, 123–124
Interface Definition Language, 67–85
interface repository, 118–123
overall picture, 64–67
programming environments, 65
Static Invocation Interface, 85–89
Static Skeleton Interface, 90–102
summarized, 124–125

CORBA quality of service control, 35–36

CORBA query routing, 268–270
CORBA scripting, 36
CORBA Services, 34, 44–45
CORBA Trading Object Service. See Trading

Object Service
CosEventChannelAdmin::ConsumerAdmin::

obtain pull supplier(), 289
CosEventChannelAdmin::ConsumerAdmin::

obtain push supplier(), 289
CosEventChannelAdmin::EventChannel::

destroy(), 288
CosEventChannelAdmin::SupplierAdmin::

obtain pull consumer(), 289
CosEventChannelAdmin::SupplierAdmin::

obtain push consumer(), 289
cost model, for query optimization, 351
cost reductions, advantage of distributed

systems, 12
create any(), 104
create iterator(), 362
create list(), 115
Current interface, 327
cut point, 347
CyberBus, 310–311
CyberBus::pull(), 311

daemons (demons), 49
database adaptors, 151–160
database queries. See Object Query Service;

query processing; Trading Object
Service

databases, 342, 344
database schema, wrapping in IDL, 344
datagrams, 15–17
datagram sockets, 14–15
Data Link layer (OSI Model), 13
data localization, in query processing, 351
data sources, 342–345
data structures

typed event channels, 302
untyped event channels, 291

datatypes, 77–81
Common Data Representation (CDR),

167–169
Environment Specific Inter-ORB Protocol

(ESIOP), 179
DCE. See Distributed Computing Environment
DCE++, 23
DCE-CIOP (DCE-Common Inter-ORB

Protocol), 178, 179
DCE Event Management Service (XEMS),

282–284
DCE Executive, 23–24
DCE Extended Services, 23, 24–25

380 INDEX

DCOM. See Distributed Component Object
Model

deactivate imp(), 101
dead lock prevention, untyped event channels,

290–291
default servant, 136
demons (daemons), 49
demultiplexing, CORBA caches, 185–186
derived interface, 73
describe interface(), 120
describe link(), 248
destroy(), 228–229
detection-based invalid access prevention, for

CORBA caches, 191
digital libraries, 278
direct binding, 53
Directory Information Base (DIB), 219
Directory Information Tree (DIT), 219
Directory System Agent (DSA), 219
Directory User Agent (DUA), 219
dirty read, 9
disconnect pull consumer(), 292
disconnect pull supplier(), 294
disconnect push consumer(), 292
disconnect push supplier(), 294
displayReturnValue(), 111
distributed applications, 64–65
distributed client-server computing, 33
Distributed Component Object Model

(DCOM), 25–30, 32
CORBA contrasted, 61–62

Distributed Computing Environment (DCE),
23–25, 32

CORBA contrasted, 60–61
and RPCs, 17

distributed database systems, 342. See also
query processing

Distributed Document Component Facility,
46

Distributed File Service (DFS), 23–24
distributed object computing (DOC)

middleware. See middleware
distributed processing, 4
distributed systems

advantages, 11–12
architectures, 4–7
characteristics, 8–10
defined, 3
disadvantages, 12

distributed system software, 3
distributed system technologies, 12–13. See

also CORBA
categories of, 13–30

Distributed Time Service (DTS), 23

Distributed Transaction Coordinator (DTC),
338

distribution middleware, xiv
distribution transparency, 3

middleware for, 12
dns resolve(), 218–219
DoCommit phase, 323–324, 326
DOK Query Service, 365–367
DOK Trader, 270, 272–274
domain interfaces, 43, 46
domain names, 218
Domain Name Service (DNS), 24

naming case study, 218–219
domains, 163–164
domain-specific services, xv
dots, 218
drag-and-drop service, 25, 26
DSTC, 270
duplicate filtering, 19
durability, of transactions, 316, 318
Dynamic Data Exchange (DDE), 25
dynamic invocation, 47
Dynamic Invocation Interface (DII), 36

and CORBA programming, 66, 106–111
defined, 47
JTrader example, 245
and typed event channel, 299, 301

dynamic property evaluation, in Trading
Object Service, 262–263

DynamicPropEval interface, 260, 262–263
dynamic query optimization, 347
Dynamic Skeleton Interface (DSI)

bridge implementations, 57
and CORBA programming, 66, 112–118
defined, 48
with object adaptors, 55
and typed event channel, 299, 301

dynamic types, 66, 102–105
DynAny type, 60

Electra, 309–310
embedded queries, 347
embedded systems, 35–36
embedding service, 25, 26
encapsulation, 34, 38

in CORBA, 39
Enterprise JavaBeans, 36
enumerated types, 77–78
Environment Specific Inter-ORB Protocol

(ESIOP), 178–179
equal(), 103
equijoins, 353
ESIOP (Environment Specific Inter-ORB

Protocol), 178–179

INDEX 381

evaluate(), 361, 364
event activation, 155
event-based execution, 278
event channels, 277–279

canonical pull model, 280, 286
canonical push model, 280, 285–286
hybrid pull/push model, 280, 285, 287
hybrid push/pull model, 280, 285, 286–287
pull model, 279, 280–285
push model, 279, 280–285
realtime, 314
typed, 277–280, 298–307
untyped, 277, 279–280, 287–298

event creation, 154–155
event deactivation, 155–156
event deletion, 156
event delivery, 281
event destruction, 158
event etherealization, 158
event incarnation, 157–158
event instantiation, 157
event manager

typed event channels, 306–307
untyped event channels, 296–298

event proxies, 281
event publishers, 281
event querying, 155
Event Service, 35, 44

architecture, 284–287
basic concepts, 277–280
brief description, 277
CyberBus, 310–311
Electra, 309–310
implementations, 307–312
Orbix+ISIS, 311–312
OrbixTalk, 307–308
push and pull models, 279, 280–284
QoS issues, 312–314
summarized, 314
TAO Event Service, 308–309
typed event channel, 277–280, 298–307
untyped event channel, 277, 279–280,

287–298
event update, 155
evictor, 193, 194

design, 203–204
operation, 197–198

exact type match policy, 252, 264t
exceptions (IDL), 81–83
exclusive lock, 320
execution engine, 42
execution model, 41–42
execution plans, 344–345
EXODUS, 347

expandability, 11
export(), 263
exporter, 233, 235

in JTrader, 238–242
export proxy(), 263
extensibility, 8
Externalization Service, 44

factory objects, 97–98
failure transparency, 10
fault tolerance, 9
fault-tolerant CORBA, 35, 36
FIFO (First In, First Out) cache replacement,

188, 192
filtering, of CORBA caches, 198–199
firewall specification, 35
flat transactions, 317–319

two phase commit (2PC), 323–324
float datatype, 79
forward declarations, 80
forward validation, 322–323
Fragment message, 176
from int(), 78
functional distribution systems, 4

garbage collection, 314
gateway objects, 112

creating and registering, 118
Gemstone, 37
General Inter-ORB Protocol (GIOP), 34, 35,

58–59, 166
and request redirection, 144

Generic Multicast Service, 282
get, 356
getOffer(), 254
get service List(), 172
getServiceType(), 255
get typed consumer(), 302
get typed supplier(), 304
GIOP. See General Inter-ORB Protocol
Global Directory Agent (GDA), 23
Global Directory Service (GDS), 23, 219
global execution plan, 345
Globally Unique Identifier (GUID), 27
granularity, 184
Grosch’s law, 12

hardware extensibility, 8
hardware redundancy, 9
hashing techniques, 353, 365
has transaction(), 331
helper class, 75–76
heterogeneous database systems, 342
heterogeneous data sources, 342, 343

382 INDEX

hierarchical structure, 4, 5, 6
holder class, 72, 75–76
hop count policy, 252, 264t
horizontal fragmentation, 347
host transparency, with CORBA, 33
hybrid pull/push model, 280, 285, 287
hybrid push/pull model, 280, 285, 286–287

iBus, 281–282
ICL, 270
ICMP (Internet Control Message Protocol), 17
IDL. See Interface Definition Language
IDL files, 49, 67
IDL identifier, 69
IDL interfaces, 70–73

inheritance, 73–75
IDL mapping specifications, 68
IDL modules, 69–70
IDL structures, 77
IIOP. See Internet Inter-ORB Protocol (IIOP)
iioploc, 35
iiopname, 35
immediate bridging, 164–165
imp is ready(), 100–101
implementation classes

defined, 90
development, 90–93
writing DSI-based, 112–118
writing SSI-based, 93–99

implementation repository, 33
calling by ORB, 48, 49
and CORBA programming, 66, 123–124
described, 52, 53–54
and persistent IOR binding, 58–59

ImportAttributes interface, 247, 248
importer, 233, 235

in JTrader, 242–244
importer policies, 263, 264t
inactive state objects, 56
inconsistent retrieval, 318
incorrect summary, 9
indirect binding, 53
information objects, 10
infrastructure middleware, xiv
inheritance, 34, 38

in CORBA, 38–39
IDL interfaces, 73–75
interfaces, 40

in-level bridge, 165
in-place activation service, 25
insert functions, 104–105, 109
instantiation, 39
integrated distributed systems, 4, 5
interactive queries, 347

Interface Definition Language (CORBA IDL),
33, 34

basic elements, 69
compiling, 83–85
as complement to conventional languages,

68
and CORBA programming, 66, 67–85
datatypes, 77–81
described, 49–51
exceptions, 81–83
holder and helper classes, 72, 75–76
module, 69–70
separate mapping to programming

languages, 49–51
wrapping database schema in, 344

Interface Definition Language (IDL)
for DCOM implementation, 26–27
for RMI implementation, 21–22
for RPC implementation, 18

Interface Identifier (IID), 27
interface inheritance, 40
interface repository, 33

acquiring reference, 120
calling by ORB, 48, 49
and CORBA programming, 66, 118–123
described, 52–53
interface description application, 122–123
interface description retrieval, 120–122

interfaces, 40, 41
IDL, 70–75
steps in developing, 68

interface type, 40
Internet, as distributed system, 11
Internet integration specifications, 35–36
Internet Inter-ORB Protocol (IIOP), 34, 35,

177–178
message types, 57

interoperability. See CORBA interoperability
interoperability protocols, 166–179
Interoperable Name Service, 35
Interoperable Object References (IORs),

53–54, 179–181
binding persistent, 58–60
binding transient, 57–58
persistent and transient, 54

inter-transaction caching, 184
invalid access prevention, for CORBA caches,

191
invocation, 40–41

in SII, 88–89
static and dynamic, 47

invocation latency, 184
invoke(), 110–111, 113, 301
Iona, 270

INDEX 383

Iona Transaction Service, 336–338
IORs. See Interoperable Object References
IP (Internet Protocol), 17
IP addresses, 213
iService application, 66–67
ISIS (Orbix+ISIS), 311–312
isolation, of transactions, 316
is same transaction(), 331
Iterator interface, 360t , 361–363

JavaBeans, 36
Java garbage collector, 21
Java Multicast Object Bus (iBus), 281–282
Java Remote Method Invocation, 21–23
Java Virtual Machines, 21
joins, 346, 352–354, 356
JTrader, 270–271

result manipulation, 244–266
service export, 238–242
service import, 242–244
service offer definition, 236–238

kernel, 8
kind(), 103

language binding, 68
late binding, 38, 155
latency, 184
leased phone lines, 4
Licensing Service, 44
lifecycle events, 154–156
Life Cycle Service, 43, 44
LinkAttribute interface, 247
link follow policy, 264t
link follow rule policy, 252
linking service, 25–26
Link interface, 246, 247, 257–258
linkTable table, 269
Linux Operating System, 8
list(), 230
listening socket, 16
listing, of naming contexts, 230
list links(), 248
load balancing, 11
local autonomy, 11
local execution plan, 345
LocateReply message, 57, 175
LocateRequest message, 57, 174–175
location transparency, 10

with CORBA, 33, 183
lack of with RPCs, 20–21

locator, 233
locking, of CORBA caches, 198–199

caching two-phase, 189–190, 192t

callback, 189, 192t
optimistic two-phase locking, 190–191,

192t
lock manager, 193, 194, 195–196

design, 201–203
operation, 198–199

locks, 320–321
Lookup interface, 246, 247, 250–252
lost update, 9
LRU (Least Recently Used) cache

replacement, 187–188, 192
LRU-MIN cache replacement, 188, 192
LRU-THOLD cache replacement, 188, 192

macro substitution, 69
map, 357
Mark Spruiell, 270
marshalling, 47
mask type(), 262
match card policy, 251, 264t
maybe RPC semantic, 19
mediated bridging, 164–165
memory management, untyped event channels,

291
merge, 357
MessageError message, 57, 176
message formats

Common Data Representation (CDR),
169–176

Environment Specific Inter-ORB Protocol
(ESIOP), 179

Metcalf’s law, xiii
method activation, 42
method format, 42
methods, 41–42
Microsoft Cluster Server, 61
Microsoft Management Console, 61
Microsoft Message Queue Server, 61
Microsoft Transaction Service, 61, 338–340
middleware

CORBA with, 34
defined, 12–13
types of, xiv–xv

migration transparency, 10
minimum CORBA, 35–36
modify link(), 248
modularity, and encapsulation, 38
modules, 69–70
moniker service, 25
monitor, 193, 194, 195–196

design, 201–203
operation, 198–199

Moore’s law, xiii
more(), 362

384 INDEX

MTS Explorer, 339
multicasting, 278
multiple interface inheritance, 73
multiple programming environment, 65
multithreading, 140–141

Basic Object Adaptor, 144
Portable Object Adaptor, 151

name allocation, 214
name binding, 214–216, 221, 225–227
named datatypes, 168–169
named types, 79
name registration, 214
name resolution, 224–225
names, 214
name search, 217
name space structuring, 214
naming, 214–217

Domain Name Service (DNS) case study,
218–219

path names, 217
search, 217
simple table lookup, 216–217
X.500 Directory Service case study,

219–220
naming context, 221

creation and deletion, 227–230
listing, 230

naming domain, 163
naming graphs, 221
Naming Service, 35, 53

basic concepts, 213–220
binding and unbinding names, 214–215,

225–227
brief description, 44–45
functions, 220–230
name resolution, 224–225
naming context creation and deletion,

227–230
naming context listing, 230
and object retrieval, 56
summarized, 274, 230

naming service, 213–214
narrow(), 76, 87
nest(), 357
nested queries, 347
nested transactions, 317–320

two phase commit (2PC), 324–325
network addressing domain, 163
network latency, 184
Network layer (OSI Model), 13
network transparency, 10
new context(), 227
newOffer(), 254

next(), 362
non-integrated distributed systems, 4
nonjoin queries, 352–353
Nortel, 270
not-existent state objects, 56
no-wait lock, 190–191

O2, 342
object activation, 138, 140
object adaptors, 47–48, 54–56. See also Basic

Object Adaptor; Portable Object
Adaptor

architectures, 131–138
basic concepts, 129–130
database adaptors, 151–160
summarized, 160–161
technical issues, 138–151

object binding, 86–87
object cache design, 187
Object Concurrency Control Service (OCCS),

336
object consistency, in CORBA caches, 185,

186
algorithms for, 189–191

object deactivation, 138, 140
object eviction, in CORBA caches, 184–185,

186, 197–198
object factory, 37
object grouping, 140

Basic Object Adaptor, 140
Portable Object Adaptor, 150

object identity, 37–38
object implementation, 41–42
Object Linking and Embedding (OLE), 25
object live time cache replacement,

188–189
Object Management Architecture (OMA),

43–46
Object Management Group (OMG), 32–33,

35, 36
query language requirements, 354
special interest groups, 34
and traders, 235–236

Object Map Table, 57
object marker, 87
object-oriented algebras, 356
object-oriented databases, 342, 344
object oriented paradigm, 37–38
object oriented programming, 33–34
Object Query Language. See OQL
Object Query Service. See also query

processing
basic concepts, 342–354
brief description, 45, 342

INDEX 385

components and their interfaces, 358–365,
360t

DOK Query Service, 365–367
Object Query Language, 354–356
Object Query Language algebra, 356–358
operations supported, 345
summarized, 367–368

object references, 39, 47–48, 156–157
obtaining in DII, 107
obtaining in SII, 86–87
in POA, 133–134
stringification, 87

Object Remote Procedure Call (ORPC), 25
Object Request Brokers (ORBs), 33, 43

bridges, 57, 164–166
described, 47, 48–49
domains, 163–164
and heterogeneous data sources, 343
initialization in SII, 86
initialization in SSI, 99
latency, 185–186
and object adaptors, 55–56

objects, 37–38, 138, 140
Basic Object Adaptor, 142–144
in CORBA, 39–40
invocation, 87
lifecycle events, 154–156
Portable Object Adaptor, 146–150
states, 56

object semantics, 39–41
Object Services, 43
ObjectStore, 342, 344
object to string(), 87
Object Transaction Service. See also

transactions
basic concepts, 326–333
brief description, 44, 45, 316–317
context propagation, 328–329
implementations, 336–340
interface hierarchy, 326–328
Iona Transaction Service, 336–338
Microsoft Transaction Service, 338–340
recoverable objects, 330–332
recoverable server, 332–333
summarized, 340
transactional objects, 329–330
transactional server, 332–333
typical transaction scenario, 333–336

object types, 40
object warehouse, 37
obtain pull consumer(), 294
obtain pull supplier(), 292
obtain push consumer(), 294
obtain push supplier(), 292

ODP-based traders, 234, 235
ONC RPC, 18
OODCE (Hewlett Packard), 23
openness, 8, 10
operating system transparency, 183–184
operations, 40–41

CORBA objects, 70, 72–73
optimistic concurrency control, 321–323
optimistic two-phase locking, 190–191, 192t
OQL (Object Query Language), 354–356

algebra, 356–358
example queries, 357–358

Oracle, 342, 344
Orbix+ISIS, 311–312
OrbixOTS, 336–338
OrbixTalk, 307–308
OrbixWeb

DSI, 113
and holder and helper classes, 76
IDL file compiling, 85
IDL interface, 72
implementation repository, 124
interface repository, 119
object binding, 86–87
object invocation, 87–88
SSI, 92, 100

ORB::resolve initial references(), 145
ORBs. See Object Request Brokers
ORB::shutdown(), 146
OSI Model, 13
outerjoins, 353
overloading, 38
overriding, 38

page cache design, 187
parameter passing modes, 72
params(), 116
path expressions (OQL), 355
path names, 217
peer-to-peer connections, 4, 6, 7
performance, 11
performance transparency, 10
per-object filter, 201–202
per-process filter, 201–202
Persistence Service, 44, 45, 151
persistent Interoperable Object References, 54
persistent IOR binding, 58–60
Persistent Object Manager, 152
persistent objects, 138
persistent storage service, 25
pessimistic concurrency control, 320–321
Physical layer (OSI Model), 13
plug(), 311
POA. See Portable Object Adaptor

386 INDEX

POA::activate object(), 148, 149, 150
POA::activate object with id(), 148, 149, 150
POA::create reference(), 146
POA::create reference with id(), 146
POA::deactivate object(), 149
POA::destroy(), 149
POA::Manager::deactivate(), 149
POA::servant to id(), 149
POA::servant to reference(), 149
policies

POA, 133, 134
trader search, 251, 264t

policy-mediated bridging, 165
polymorphism, 34, 38
Portable Object Adaptor (POA), 48, 56

architecture, 133–138
brief description, 129, 130
summarized, 161
technical issues, 145–151

ports, 216–217
PreCommit phase, 325
prepare(), 365
Presentation layer (OSI Model), 13
primitive datatypes, 167–168
Princeton workload, for cache testing, 205
procedure calls, 17, 18
Product Data Management enablers, 46
programming language transparency, 184
PropagationContext interface, 327, 328
Property Service, 44
Proxy interface, 246, 258–259
proxy traders, 246
published software interfaces, 8
publish/subscribe pattern, 277, 278, 281
pull(), 285, 290, 295
Pull Consumer interface, 295
pull model, 279, 280–285

canonical, 280, 286
pull op(), 300
Pull Supplier interface, 292
push(), 285, 287
Push Consumer interface, 295–296
push model, 279, 280–285

canonical, 280, 285–286
Push Supplier interface, 292–293

QoS
Event Service, 312–314
iBus, 282

quality of service control, 35–36
queries, 342
query(), 250, 252
QueryableCollection interface, 359, 360, 360t ,

363

query decomposition, 351
QueryEvaluator interface, 358–361, 360t , 363
query execution engine, 346

DOK Query Service, 365–366
query execution plans, 346
Query interface, 359, 360t
QueryLanguageType interface, 360t
QueryManager interface, 359, 360t , 363–365
query managers, 345–346, 363
query objects, 363–364
query optimization, 351

DOK Query Service, 366–367
query optimization algorithms, 348
query optimization engine, 346
query parsing, 366–367
query processing, 342. See also Object Query

Service
architecture, 351–352
basic concepts, 345–347
data transfer as optimization strategy, 348
execution strategies, 347–351
join operators, 352–354

query propagation, in Trading Object Service,
266–270

query routing, in Trading Object Service, 234,
266–268

semantic-based, 268–270
Query Service. See Object Query Service
query traders, 246

raw sockets, 17
read-only queries, 347
real-time CORBA, 35, 36
realtime event channels, 314
rebind(), 226
receiving process, 13–17
receiving socket, 14
recoverable objects, 330–332
recoverable server, 332–333
RecoveryCoordinator interface, 327, 328
reduce, 356
reference count, 21
referring domain, 163
Register interface, 246, 247, 252–256
relational database management systems,

343
relational databases, 342, 344
Relationship Service, 44
Relative Distinguished Names (RDN), 220
reliability, 11–12
Remote Method Invocation, 21–23
remote procedure calls, 17–21

ORBs as object-oriented, in CORBA, 33,
48

INDEX 387

remove()
consumer interface, 294
supplier interface, 292

replication, 11–12
replication transparency, 10
Reply message, 57, 172–173
representation domain, 163
request(), 122, 245

request id policy, 264t
requesting principal(), 172
request level bridge, 165, 166
Request message, 57, 170–172
request objects

creation, 107–108
populating, 108

request redirection, 140
Basic Object Adaptor, 140
Portable Object Adaptor, 150–151

requests, 39–42. See also Object Request
Broker

marshalling and un-marshalling, 47
reset(), 363
resolve(), 215, 218, 224–225
resolve initial references(), 120, 224, 239
Resource interface, 327, 328
resource management domain, 163
resource manager, 8
resource sharing, 8, 10, 11

increasing need for, 32
retransmission of supply messages, 19
retry request message, 18–19
return card policy, 251, 264t
return value(), 111
ring structure, 4, 5
rmiregistry, 21–22
RMI (Remote Method Invocation), 21–23
routing graph, 233–234
RPC. See remote procedure calls

ScaFDOCS system, 191
scalability, 9
scaling transparency, 10
scoping policies, 263–265
search, for name lookup, 217
search card policy, 251, 264t
search space, 351
search strategy, for query optimization, 351,

366
security, 12
security domain, 163
Security Service, 44
SELECT queries, 352
semantic-based query routing, 268–270
semijoins, 352, 353–354

sending process, 13–17
sending socket, 14
sequence type, 40

bounded and unbounded, 79–80
serializability, of transactions, 318–319
Servant Activator, 135
Servant Locator, 135
servant manager, 133, 134–135
servants, 49, 133, 140

Basic Object Adaptor, 144
default, 136
lifecycle events, 157–158
Portable Object Adaptor, 150

server-based (caching) two-phase locking,
189–190, 192t

server executable classes
defined, 90
development, 99–101

server manager, 193, 194–195, 196
design, 203–205
operation, 198

servers, 47–48, 138
Basic Object Adaptor, 141–142
Portable Object Adaptor, 145–146

service export, in JTrader, 238–242
service import, in JTrader, 242–244
service offers, 233–234

defining in JTrader, 236–238
service properties, 233, 234
service type conformance, 260–261
service type repository, 259–262
Session layer (OSI Model), 13
setExceptions(), 109
set return type(), 108, 122
shareability, 11
shared lock, 320
simple name, 222
simple procedure calls, 367
simple table lookup, of names, 216–217
simple traders, 246
Simula, 37
single interface inheritance, 73
single programming environment, 65
Size policy cache replacement, 187–188, 192
skeletons, 18

in CORBA, 47, 68
SSI referred to as, 90

Smalltalk, 37
sockets, 13–17
software extensibility, 8
software recovery, 9
sorting techniques, for query processing, 365
source file inclusion, 69
special interest groups (OMG), 34

388 INDEX

specialization graph, 272
re-structuring, 273–274

Sprite network file system, 191
SQL (Structured Query Language), 360

OQL contrasted, 354
Standard Template Library, 291
star structure, 4
starting trader policy, 252, 264t
static invocation, 47
Static Invocation Interface (SII), 66

and CORBA programming, 85–89
static query optimization, 347
Static Skeleton Interface (SII)

and CORBA programming, 90–102
with object adaptors, 55

Static Stub Invocation, 47
still name search, 217
storage cells, 216
stream sockets, 15–16
string to object(), 87
Structured Query Language. See SQL
stubs, 18

in CORBA, 47, 68
SII referred to as, 85

SubtransactionAwareresource interface, 327,
328

sub-transactions, 319
sub-types, 38
Suite Software, 270
supplier interface

typed event channels, 302–304
untyped event channels, 291–293

suppliers, 277, 279, 284–287. See also event
channels

administration, 289
connection, 289–290
disconnection, 290

SupportAttributes interface, 247
support dynamic properties(), 260
Sybase, 342
symbolic names, 214
system calls, 8
system exceptions, 81
system identifiers, 214

TAO Event Service, 308–309
TCP (Transmission Control Protocol), 15–16
TCP/IP, 14, 15
technology domains, 163
template types, 79–81, 169
Terminator interface, 327, 328
thread model

typed event channels, 302
untyped event channels, 290

three phase commit (3PC), 325–326
TIE implementation style, 91–93
Time Service, 44
TP (Transaction Processing) Monitors, 316,

326
TraderComponent interface, 246, 247
Trader interface, 247
traders, 232–235. See also Trading Object

Service
ANSA view of, 236
OMG view of, 235–236
search policies, 251, 264t

trading graph, 233
Trading Object Service, 35, 53

architecture, 246–263
basic trader concepts, 232–236
brief description, 44, 45, 235
constraints, 265–266
default and maximum properties, 264t
dynamic property evaluation, 262–263
implementations, 270–274
JTrader, 236–246, 270–271
and object retrieval, 56
policies, 263–265, 264t
preferences, 265t
query propagation, 266–270
service type repository, 259–262
summarized, 274–275
TAO Trader, 270, 271–272
trader components, 249–259

trading service, 232–235
TransactionalObject interface, 327, 328
transactional objects, 329–330
transactional server, 332–333
transaction domain, 163
TransactionFactory interface, 327, 328
transaction ID, 270
Transaction Processing (TP) Monitors, 316,

326
transactions, 316–320. See also Object

Transaction service
backward validation, 321–322
commit protocols, 323–326
concurrency control protocols, 320–323
forward validation, 322–323
inter-transaction caching, 184

Transaction Service. See Object Transaction
Service

Transidentity interface, 327, 328
transient Interoperable Object References, 54
transient IOR binding, 57–58
transient objects, 138
transparency, 10, 183–184
Transport layer (OSI Model), 13

INDEX 389

trust group, 163
try op(), 300–301
try pull(), 285, 290
tuple type, 40
TUXEDOS, 340
two phase commit (2PC)

for flat transactions, 323–324
for nested transactions, 324–325

TypeCode type, 66, 102–103
and helper class, 75
specifying in DII, 108–109

type conformance, 260–261
type domain, 163
Typed Consumer interface, 304–306
typed event channels, 277–280, 298–307
Typed Pull Consumer interface, 304–305
Typed Pull Supplier interface, 302–303
Typed Push Consumer interface, 305–306
Typed Push Supplier interface, 303–304
Typed Supplier interface, 302–303
type extension, 40
type inheritance, 38–39
types, 37, 38

in CORBA, 40, 51

UDP (User Datagram Protocol), 14–15
unbind(), 216, 226, 228–229
unbinding, of names, 216, 225–227
unicasting, 278
uniform data transfer service, 25

union type, 40
unique identifiers, 214
UNIX systems, as open systems, 8
un-marshalling, 47
unnest(), 357
un-nested queries, 347
unrepeatable read, 9
untyped event channels, 277, 279–280,

287–298
update queries, 347
use dynamic properties policy, 252
use modifiable properties policy, 252
use proxy offers policy, 252
user-defined exceptions, 81

validation, of transactions
backward, 321–322
forward, 322–323

values, 39
value type, 40
vertical fragmentation, 347

Waiting Directed Graph (WDG), 321
withdraw using constraint(), 255
workers, 323

X.500 Directory Service, naming case study,
219–220

XEMS Preliminary Specification, 282–284
X/Open reference model, 316

