
SEPTEMBER 27, 2000
Writing Enterprise Applications with
Java 2 SDK, Enterprise Edition

by Monica Pawlan

SEPTEMBER 27, 2000

a

copyright 1995-99 Sun Microsystems, Inc.

As used in this document, the terms “Java virtual machine” or “Java VM” mean a virtual machine for the Jav

platform.

SEPTEMBER 27, 2000 III

DK
,

ools, a
p Lan-
va 2

JRE).

e

Preface

This tutorial introduces you to the APIs, tools, and services provided in the Java 2 Enter-
prise Edition (J2EE) Software Developer Kit (SDK). You can get the free J2EE S
(http://java.sun.com/j2ee/download.html) to use for demonstrations, prototyping
educational use, and verifying J2EE application portability.

To support these uses the J2EE SDK comes with J2EE development and deployment t
Web server, Cloudscape database, Java Software application server, Extensible Marku
guage (XML) support, the J2EE APIs, and Java Plug-In. Java Plug-In lets you run Ja
applets in browsers that support an earlier release of the Java Runtime Environment (

Note:This is a work in progress. Links to new lessons are turned on when they becom
available. Submit comments and suggestions to jdcee@sun.com
PREFACE

IV SEPTEMBER 27, 2000
PREFACE

SEPTEMBER 27, 2000 V
Contents

Preface. iii

Lesson 1
A Simple Session Bean. .1
Example Thin-Client Multitiered Application 2
J2EE Software and Setup 3

Unix: 3
Windows: 3

Path and ClassPath Settings 3
Path Settings 3
Class Path Settings 4

J2EE Application Components 4
Create the HTML Page 5

HTML Code 6
Create the Servlet 6

Import Statements 7
init Method 7
doGet Method 7

Servlet Code 9
Create the Session Bean 10

CalcHome 11
Calc 12
CalcBean 12

Compile the Session Bean and Servlet 13
Compile the Session Bean 13
Compile the Servlet 13

Start the J2EE Application Server 14
Unix: 14
Windows: 14

Start the Deploy Tool 14
Unix: 14
Windows: 14

Deploy Tool 15
Assemble the J2EE Application 16

Create J2EE Application 16
Create Session Bean 16
Create Web Component 19
Specify JNDI Name and Root Context 22
CONTENTS

SEPTEMBER 27, 2000 VI
Verify and Deploy the J2EE Application 23
Run the J2EE Application 25
Updating Component Code 26

Lesson 2
A Simple Entity Bean .27
Create the Entity Bean 28

BonusHome 28
Bonus 29
BonusBean 30

Change the Servlet 32
Compile 34

Compile the Entity Bean 34
Compile the Servlet 35

Start the Platform and Tools 35
Unix 35
Windows 35

Assemble and Deploy 35
Update Application File 36
Create Entity Bean 36
Verify and Deploy the J2EE Application 42

Run the J2EE Application 43

Lesson 3
Cooperating Enterprise Beans .45
Change the Session Bean 46

CalcHome 46
Calc 47
CalcBean 47

Change the Servlet 49
Compile 50

Compile the Session Bean 51
Compile the Servlet 51

Start the Platform and Tools 51
Unix 52
Windows 52

Assemble the Application 52
Create New J2EE Application 52
Create New Web Component 53
Bundle Session and Entity Beans in one JAR File 54

Verify and Deploy the J2EE Application 58
Run the J2EE Application 60

Lesson 4
JavaServer Pages Technology. .61
CONTENTS

SEPTEMBER 27, 2000 VII
Create the JSP Page 62
Comments 64
Directives 64
Declarations 64
Scriptlets 65
Predefined Variables 65
Expressions 65
JSP-Specific Tags 66

Change bonus.html 66
Start the Platform and Tools 67

Unix 67
Windows 67

Remove the WAR File 67
Create New WAR FIle 67
Verify and Deploy the J2EE Application 68
Run the J2EE Application 70
More Information 71

Lesson 5
Adding JavaBeans Technology to the Mix 73
About the Example 74
Create bonus.jsp 76

Specify the JavaBean 78
Get the Data 78
Pass the Data to the JavaBean 78
Retrieve Data from the JavaBean 78

Create the JavaBeans Class 79
Bean Properties 81
Constructor 81
Set Methods 81
Get Methods 82

Start the Platform and Tools 84
Unix 84
Windows 84

Remove the WAR File 85
Create New WAR FIle 85
Verify and Deploy the J2EE Application 86
Run the J2EE Application 87
More Information 87

Lesson 6
Extensible Markup Language (XML)89
Marking and Handling Text 90
CONTENTS

VIII SEPTEMBER 27, 2000
Change the JavaBean Class 90
XML Prolog 91
Document Root 91
Child Nodes 91
Other XML Tags 91
JavaBean Code 92

The APIs 95
SAX and DOM 95
J2EE 95

Update and Run the Application 96
More Information 96

Lesson 7
JDBC Technology and Bean-Managed Persistence 97
Bean Lifecycle 98
Change the BonusBean Code 99

Import Statements 99
Instance Variables 100
Business Methods 100
LifeCycle Methods 100

Change the CalcBean and JBonusBean Code 106
Create the Database Table 107

createTable.sql 107
cloudTable.bat 108
cloudTable.sh 108

Remove the JAR File 109
Verify and Deploy the Application 111
Run the Application 112
More Information 113

Index . 115
CONTENTS

SEPTEMBER 27, 2000 1

how-
s of

cifi-
edu-
APIs,

with
Lesson 1
A Simple Session Bean

This lesson introduces you to J2EE applications programming, and the J2EE SDK by s
ing you how to write a simple thin-client multitiered enterprise application that consist
an HTML page, servlet, and session bean.

The J2EE SDK is a non-commercial operational definition of the J2EE platform and spe
cation made freely available by Sun Microsystems for demonstrations, prototyping, and
cational uses. It comes with the J2EE application server, Web server, database, J2EE
and a full-range of development and deployment tools. You will become acquainted
many of these features and tools as you work through the lessons in this tutorial.

• Example Thin-Client Multitiered Application (page 2)

• J2EE Software and Setup (page 3)

• Path and ClassPath Settings (page 3)

• J2EE Application Components (page 4)

• Create the HTML Page (page 5)

• Create the Servlet (page 6)

• Create the Session Bean (page 10)

• Compile the Session Bean and Servlet (page 13)

• Start the J2EE Application Server (page 14)

• Start the Deploy Tool (page 14)

• Deploy Tool (page 15)

• Assemble the J2EE Application (page 16)

• Verify and Deploy the J2EE Application (page 23)

• Run the J2EE Application (page 25)

• Updating Component Code (page 26)

Browser/HTML
Page Servlet Session Bean
LESSON 1 A SIMPLE SESSION BEAN

2 SEPTEMBER 27, 2000

h an
ce
iving
in an

siness
plica-
n bean

red
two-
non-
ds the
ges
Example Thin-Client Multitiered Application
The example thin-client multitiered application for this lesson accepts user input throug
HTML form that invokes a servlet. The servlet uses Java Naming and Directory Interfa
(JNDI) APIs to look up a session bean to perform a calculation on its behalf. Upon rece
the results of the calculation, the servlet returns the calculated value to the end user
HTML page.

This example is a thin-client application because the servlet does not execute any bu
logic. The simple calculation is performed by a session bean executing on the J2EE ap
tion server. So, the client is thin because it does not handle the processing; the sessio
does.

Multitiered applications can consist of 3 or 4 tiers. As shown in Figure 1, the multitie
example for this tutorial has four tiers. Three-tiered architecture extends the standard
tier client and server model by placing a multithreaded application server between the
web-based client application and a backend database. Four-tiered architecture exten
three-tier model by replacing the client application with a Web browser and HTML pa
powered by servlet/JavaServer Pages technology.

Figure 1 Multitiered Architecture

Web Server
(Thin-Client

Servlet)

Database
Server

Network

Enterprise Beans
Application

Server

Network

Web Browser
HTML Pages

Network

Tier 1:
Client Tier

Tier 2:
Web Tier

Tier 3:
Business Tier

Tier 4:
EIS Tier
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 3

ple to
avaSer-

prise

ctory

r using
ment
ss path

n your
ve for
While this lesson uses only three of the four tiers, Lesson 2 expands this same exam
access the database server in the fourth tier. Later lessons adapt the example to use J
ver Pages and Extensible Markup Language (XML) technologies.

J2EE Software and Setup
To run the tutorial examples, you need to download and install the Java 2 SDK Enter
Edition (J2EE), Version 1.2.1 Release (http://java.sun.com/j2ee/download.html), and
Java 2 SDK, Standard Edition (J2SE), Version 1.2 or later (http://java.sun.com/jdk/

index.html).

The instructions in this tutorial assume J2EE and J2SE are both installed in a J2EE dire
under monicap's home directory.

Note:Everywheremonicap is used in a path name, please change it to your own user
name.

Unix:
/home/monicap/J2EE/j2sdkee1.2.1
/home/monicap/J2EE/jdk1.2.2

Windows:
\home\monicap\J2EE\j2sdkee1.2.1
\home\monicap\J2EE\jdk1.2.2

Path and ClassPath Settings
The download has the J2EE application server, Cloudscape database, a Web serve
secure socket layer (SSL) also known as HTTP over HTTPS, development and deploy
tools, and the Java APIs for the Enterprise. To use these features, set your path and cla
environment variables as described here.

Path Settings
Path settings make the development and deployment tools accessible from anywhere o
system. Make sure you place these path settings before any other paths you might ha
other older JDK installations.

Unix:
/home/monicap/J2EE/jdk1.2.2/bin
/home/monicap/J2EE/j2sdkee1.2.1/bin
LESSON 1 A SIMPLE SESSION BEAN

4 SEPTEMBER 27, 2000

vari-

nt is a
inter-
wing

d ses-
he
es are
rifi-

rent
ting a
real-
Windows:
\home\monicap\J2EE\jdk1.2.2\bin
\home\monicap\J2EE\j2sdkee1.2.1\bin

Class Path Settings
Class path settings tell the Java 2 development and deployment tools where to find the
ous class libraries they use.

Unix:
/home/monicap/J2EE/j2sdkee1.2.1/lib/j2ee.jar

Windows:
\home\monicap\J2EE\j2sdkee1.2.1\lib\j2ee.jar

J2EE Application Components
J2EE applications programmers write J2EE application components. A J2EE compone
self-contained functional software unit that is assesmbled into a J2EE application and
faces with other application components. The J2EE specification defines the follo
application components:

• Application client components

• Enterprise JavaBeans components

• Servlets and JavaServer Pages components (also called Web components)

• Applets

In this lesson, you create a J2EE application and two J2EE components: a servlet an
sion bean. The servlet is bundled with its HTML file into a Web Archive (WAR) file, and t
session bean interfaces and classes are bundled into a JAR file. The WAR and JAR fil
added to the J2EE application and bundled into an Enterprise Archive (EAR) file for ve
cation testing and deployment to the production environment.

While you do all of these steps for this lesson, you are actually performing several diffe
functions. Writing the servlet and session bean code is a developer function, while crea
J2EE application and adding J2EE components to an application assembly function. In
ity, these functions would be performed by different people in different companies.
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 5

en the
s-
a bonus

e with

n bean
Create the HTML Page
The HTML page for this lesson is calledbonus.html . It’s HTML code is after Figure 2,
which shows how the HTML page looks when displayed to the user. Thebonus.html file
has two data fields so the user can enter a social security number and a multiplier. Wh
user clicks theSubmit button,BonusServlet retrieves the end user data, looks up the se
sion bean, and passes the user data to the session bean. The session bean calculates
and returns the bonus value to the servlet. The servlet then returns another HTML pag
the bonus value for the end user to view.

Figure 2 HTML Page

Figure 3 shows how data flows between the browser and the session bean. The sessio
executes in the J2EE application server.

Figure 3 Data Flow

HTML Form
Browser

bonus.html

Servlet
(Web Server)

BonusServlet.class

Session Bean
(Application Server)

CalcBean.class

Calc.class
CalcHome.class

Component Component
LESSON 1 A SIMPLE SESSION BEAN

6 SEPTEMBER 27, 2000

le

ectory

splay

hown
HTML Code
The interesting thing about the HTML form code is the alias used to invokeBonusServlet .
When the user clicks the Submit button on the HTML form,BonusServlet is invoked
because it is mapped to theBonusAlias during application assembly described in Assemb
the J2EE Application (page 16).

The example assumesbonus.html is in the/home/monicap/J2EE/ClientCode directory on
Unix. Here and hereafter, Windows users can reverse the slashes to get the correct dir
pathname for their platform.

<HTML>
<BODY BGCOLOR = "WHITE">
<BLOCKQUOTE>
<H3>Bonus Calculation</H3>
<FORM METHOD="GET"
 ACTION="BonusAlias">
<P>
Enter social security Number:
<P>
<INPUT TYPE="TEXT" NAME="SOCSEC"></INPUT>
<P>
Enter Multiplier:
<P>
<INPUT TYPE="TEXT" NAME="MULTIPLIER"></INPUT>
<P>
<INPUT TYPE="SUBMIT" VALUE="Submit">
<INPUT TYPE="RESET">
</FORM>
</BLOCKQUOTE>
</BODY>
</HTML>

Create the Servlet
The example assumes theBonusServlet.java file is in the/home/monicap/J2EE/Client-

Code directory on Unix. At run time, the servlet code does the following:

• Retrieves the user data

• Looks up the session bean

• Passes the data to the session bean

• Upon receiving a value back from the session bean, creates an HTML page to di
the returned value to the user.

The next sections describe the different parts of the servlet code. The servlet code is s
in its entirety in Servlet Code (page 9).
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 7

The
a

has

ote

s its

and the
e

er. The

d uses

t
-

Import Statements
The servlet code begins with import statements for the following packages:

• javax.servlet , which contains generic (protocol-independent) servlet classes.
HTTPServlet class uses theServletException class in this package to indicate
servlet problem.

• javax.servlet.http , which contains HTTP servlet classes. TheHttpServlet class
is in this package.

• java.io for system input and output. TheHttpServlet class uses theIOException

class in this package to signal that an input or output exception of some kind
occurred.

• javax.naming for using the Java Naming and Directory Interface (JNDI) APIs to
look up the session bean home interface.

• javax.rmi for looking up the session bean home interface and making its rem
server object ready for communications.

init Method
The BonusServlet.init method looks up the session bean home interface and create
instance. The method uses the JNDI name specified during component assembly (calcs) to
get a reference to the home interface by its name. The next line passes the reference
home interface class to thePortableRemoteObject.narrow method to be sure the referenc
can be cast to typeCalcHome .

InitialContext ctx = new InitialContext();
Object objref = ctx.lookup("calcs");
homecalc = (CalcHome)PortableRemoteObject.narrow(obj
 ref, CalcHome.class);

doGet Method
The parameter list for thedoGet method takes arequest andresponse object. The browser
sends a request to the servlet and the servlet sends a response back to the brows
method implementation accesses information in therequest object to find out who made
the request, what form the request data is in, and which HTTP headers were sent, an
the response object to create an HTML page in response to the browser's request.

The doGet method throws anIOException if there is an input or output problem when i
handles the request, and aServletException if the request could not be handled. To calcu
late the bonus value, thedoGet method creates the home interface and calls itscalcBonus

method.
LESSON 1 A SIMPLE SESSION BEAN

8 SEPTEMBER 27, 2000
 public void doGet (HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException {
 String socsec = null;
 int multiplier = 0;
 double calc = 0.0;
 PrintWriter out;
 response.setContentType("text/html");
 String title = "EJB Example";
 out = response.getWriter();
 out.println("<HTML><HEAD><TITLE>)
 out.println(title);
 out.println("</TITLE></HEAD><BODY>");

 try{
//Retrieve Bonus and Social Security Information
 String strMult = request.getParameter(
 "MULTIPLIER");
 Integer integerMult = new Integer(strMult);
 multiplier = integerMult.intValue();
 socsec = request.getParameter("SOCSEC");

//Calculate bonus
 double bonus = 100.00;
 theCalculation = homecalc.create();
 calc = theCalculation.calcBonus(
 multiplier, bonus);
 }catch(Exception CreateException){
 CreateException.printStackTrace();
 }

//Display Data
 out.println("<H1>Bonus Calculation</H1>");

out.println("<P>Soc Sec : " + socsec + "<P>");
 out.println("<P>Multiplier: " +
 multiplier + "<P>");
 out.println("<P>Bonus Amount : " + calc + "<P>");
 out.println("</BODY></HTML>");
 out.close();
 }
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 9
Servlet Code
Here is the full code.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import Beans.*;

public class BonusServlet extends HttpServlet {
 CalcHome homecalc;

 public void init(ServletConfig config)
throws ServletException{

//Look up home interface
 try{
 InitialContext ctx = new InitialContext();
 Object objref = ctx.lookup("calcs");
 homecalc =
 (CalcHome)PortableRemoteObject.narrow(
 objref,
 CalcHome.class);
 } catch (Exception NamingException) {
 NamingException.printStackTrace();
 }
 }
 public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String socsec = null;
 int multiplier = 0;
 double calc = 0.0;
 PrintWriter out;
 response.setContentType("text/html");
 String title = "EJB Example";

out = response.getWriter();
 out.println("<HTML><HEAD><TITLE>");
 out.println(title);
 out.println("</TITLE></HEAD><BODY>");
 try{
 Calc theCalculation;
//Get Multiplier and Social Security Information
 String strMult =
 request.getParameter("MULTIPLIER");
 Integer integerMult = new Integer(strMult);
 multiplier = integerMult.intValue();
 socsec = request.getParameter("SOCSEC");
//Calculate bonus
LESSON 1 A SIMPLE SESSION BEAN

10 SEPTEMBER 27, 2000

client
tent and
ensure

ession

mplete
shaded
ional-
 double bonus = 100.00;
 theCalculation = homecalc.create();
 calc =

theCalculation.calcBonus(multiplier, bonus);
 } catch(Exception CreateException){
 CreateException.printStackTrace();
 }
//Display Data
 out.println("<H1>Bonus Calculation</H1>");
 out.println("<P>Soc Sec : " + socsec + "<P>");
 out.println("<P>Multiplier: " +
 multiplier + "<P>");
 out.println("<P>Bonus Amount : " + calc + "<P>");
 out.println("</BODY></HTML>");
 out.close();
 }
 public void destroy() {
 System.out.println("Destroy");
 }
}

Create the Session Bean
A session bean represents a transient conversation with a client. If the server or
crashes, the session bean and its data are gone. In contrast, entity beans are persis
represent data in a database. If the server or client crashes, the underlying services
the entity bean data is saved.

Because the enterprise bean performs a simple calculation at the request ofBonusServlet,

and the calculation can be reinitiated in the event of a crash, it makes sense to use a s
bean in this example.

Figure 4 shows how the servlet and session bean application components work as a co
J2EE application once they are assembled and deployed. The container, shown in the
box, is the interface between the session bean and the low-level platform-specific funct
ity that supports the session bean. The container is created during deployment.
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 11

ey are

e Ses-

-
E

f its

e
r-
Figure 4 Application Components

The next sections show the session bean code. The example assumes theCalcBean.java ,
Calc.java , andCalcHome.java files are placed in the/home/monicap/J2EE/Beans direc-
tory on Unix. Thepackage Beans statement at the top of theCalcBean interface and class
files is the same name as the name of this directory. When these files are compiled, th
compiled from the directory aboveBeans and theBeans package (or directory) name is
prepended with a slash to the interface and class files being compiled. See Compile th
sion Bean (page 13).

Note: While this example shows how to write the example session bean, it is also pos
sible to purchase enterprise beans from a provider and assemble them into a J2E
application.

CalcHome
BonusServlet does not work directly with the session bean, but creates an instance o
home interface. The home interface extendsEJBHomeand has acreate method for creating
the session bean in its container.CreateException is thrown if the session bean cannot b
created, andRemoteException is thrown if a communications-related exception occurs du
ing the execution of a remote method.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CalcHome extends EJBHome {
 Calc create() throws CreateException,
 RemoteException;
}

TextHTML Form
Browser

Servlet

Home
Interface

Remote
Interface

Session
Bean

Application Server

Container
LESSON 1 A SIMPLE SESSION BEAN

12 SEPTEMBER 27, 2000

terface

e

e
need

con-
Calc
When the home interface is created, the J2EE application server creates the remote in
and session bean. The remote interface extendsEJBObject and declares thecalcBonus

method for calculating the bonus value. This method is required to throwjavax.rmi.Remo-

teException , and is implemented by theCalcBean class.

package Beans;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Calc extends EJBObject {
 public double calcBonus(int multiplier,
 double bonus)
 throws RemoteException;
}

CalcBean
The session bean class implements theSessionBean interface and provides behavior for th
calcBonus method. ThesetSessionContext and ejbCreate methods are called in that
order by the container afterBonusServlet calls thecreate method in CalcHome.

The empty methods are from theSessionBean interface. These methods are called by th
bean's container. You do not have to provide behavior for these methods unless you
additional functionality when the bean is, for example, created or removed from its
tainer.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class CalcBean implements SessionBean {
 public double calcBonus(int multiplier,
 double bonus) {
 double calc = (multiplier*bonus);
 return calc;
 }
//These methods are described in more
//detail in Lesson 2
 public void ejbCreate() { }
 public void setSessionContext(
 SessionContext ctx) { }
 public void ejbRemove() { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
 public void ejbLoad() { }
 public void ejbStore() { }
}

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 13

with a
Compile the Session Bean and Servlet
To save on typing, the easiest way to compile the session bean and servlet code is
script (on Unix) or a batch file (on Windows).

Compile the Session Bean

Unix
#!/bin/sh
cd /home/monicap/J2EE
J2EE_HOME=/home/monicap/J2EE/j2sdkee1.2.1
CPATH=.:$J2EE_HOME/lib/j2ee.jar
javac -d . -classpath "$CPATH" Beans/CalcBean.java
 Beans/CalcHome.java Beans/Calc.java

Windows
cd \home\monicap\J2EE
set J2EE_HOME=\home\monicap\J2EE\j2sdkee1.2.1
set CPATH=.;%J2EE_HOME%\lib\j2ee.jar
javac -d . -classpath %CPATH% Beans/CalcBean.java
 Beans/CalcHome.java Beans/Calc.java

Compile the Servlet

Unix
#!/bin/sh
cd /home/monicap/J2EE/ClientCode
J2EE_HOME=/home/monicap/J2EE/j2sdkee1.2.1
CPATH=.:$J2EE_HOME/lib/j2ee.jar:
 /home/monicap/J2EE
javac -d . -classpath "$CPATH" BonusServlet.java

Windows
cd \home\monicap\J2EE\ClientCode
set J2EE_HOME=\home\monicap\J2EE\j2sdkee1.2
set CPATH=.;%J2EE_HOME%\lib\j2ee.jar;
 \home\monicap\J2EE
javac -d . -classpath %CPATH% BonusServlet.java
LESSON 1 A SIMPLE SESSION BEAN

14 SEPTEMBER 27, 2000

mand
th
u

tarts
r

have
Start the J2EE Application Server
You need to start the J2EE application server to deploy and run the example. The com
to start the server is in thebin directory under your J2EE installation. If you have your pa
set to read thebin directory, go to theJ2EE directory (so your live version matches what yo
see in this text) and type:

j2ee -verbose

Note: Sometimes the J2EE server will not start if Outlook is running.

If that does not work, type the following from theJ2EE directory:

Unix:
j2sdkee1.2.1/bin/j2ee -verbose

Windows:
j2sdkee1.2.1\bin\j2ee -verbose

The verbose option prints informational messages to the command line as the server s
up. When you seeJ2EE server startup complete , you can start the depoloyer tool. Fo
now, you can ignore the other messages that scrolled by.

Start the Deploy Tool
To assemble and deploy the J2EE application, you have to start the deploy tool. If you
your path set to read thebin directory, go to theJ2EE directory (so your live version matches
what you see in this text) and type:

deploytool

If that does not work, do the following from theJ2EE directory:

Unix:
j2sdkee1.2.1/bin/deploytool

Windows:
j2sdkee1.2.1\bin\deploytool

Notes:If a memory access error is encountered when startingdeploytool , add an
environment variable calledJAVA_FONTSand set the path to c:\ .
For examplec:\winnt\fonts . Also, If a NullPointerException for BasicFi-
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 15

ow
rma-
ation
ich
J2EE
in-
leChooserUI is encountered when startingdeploytool , be sure you are not starting
the tool from the root directory (i.e.c:\). If you run it somewhere else, such as thebin

directory for yourj2sdkee1.2 installation, you will not encounter the problem.

Deploy Tool
The Deploy tool shown in Figure 5 has four main windows. The Local Applications wind
displays J2EE applications and their components. The Inspecting window displays info
tion on the selected application or components. The Servers window tells you the applic
server is running on the local host. And the Server Applications window tells you wh
applications have been installed. As you go through the steps to assemble the example
application, you will see the Local Applications, Inspecting, and Server Applications w
dows display information.

Figure 5 Deploy Tool

Note:To the right of the Server Applications window is a grayedUninstall button.
After you deploy the application, you will see the application listed in the Server
Applications window. You can clickUninstall to uninstall the application, make
changes, and redeploy it without having to stop and restart the application server.
LESSON 1 A SIMPLE SESSION BEAN

16 SEPTEMBER 27, 2000

plica-
more

.

ant

ec-
for

and

.

fter
Assemble the J2EE Application
Assembling a J2EE application involves creating a new application, and adding the ap
tion components to it. Here is a summary of the assembly steps, which are discussed in
detail below.

1. Create a new J2EE application (BonusApp.ear).
2. Create a new enterprise bean (CalcBean.jar).
3. Create a new web component (Bonus.war).
4. Specify JNDI name for the enterprise bean (calcs).
5. Specify the Root Context for the J2EE application (BonusRoot).

Create J2EE Application
J2EE components are assembled into J2EE application Enterprise Archive (EAR) files

File menu: SelectNew Application.

New Application dialog box,:

• TypeBonusApp.ear for theApplication File Name.

• Click the right mouse button in theApplication Display Name field. BonusApp

appears as the display name.

• Click theBrowsebutton to open the file chooser to select the location where you w
the applicationEAR file to be saved.

New Application file chooser:

• Locate the directory where you want to place the applicationEAR file

• In this example, that directory is/home/monicap/J2EE .

• In theFile name field, type BonusApp.ear.

• Click New Application.

• Click OK .

TheBonusApp display name is now listed in the Local Applications window, and the Insp
tor window to the right shows the display name, location, and contents information
BonusApp . The meta information shown in the contents window describes the JAR file
J2EE application, and provides runtime information about the application.

Create Session Bean
Enterprise beans (entity and session beans) are bundled into a Java Archive (JAR) file

File menu: SelectNew Enterprise Bean. The New Enterprise Bean Wizard starts and
displays anIntroduction dialog box that summarizes the steps you are about to take. A
reading it over, clickNext .

EJB JAR dialog box: Specify the following information:
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 17

ond

r

• Enterprise Bean will go in: BonusApp
Display name: CalcJar
Description: A simple session bean that
calculates a bonus. It has one method

• Click Add. There are two Add buttons on this screen. Make sure you click the sec
one down that is next to theContents window.

Add Files to .JAR dialog box: go to theJ2EE directory. You can either type the path name o
use the browser to get there. Once at theJ2EE directory, double click onbeans to display the
contents of thebeans directory.

• SelectCalc.class .

• Click Add.

• SelectCalcHome.class .

• Click Add.

• SelectCalcBean.class .

• Click Add.

Important Note:The Add Contents to .JAR dialog box should look like the one in
Figure 6. TheEnterprise Bean JAR classes must show theBeans directory prefixed
to the class names.
LESSON 1 A SIMPLE SESSION BEAN

18 SEPTEMBER 27, 2000

ed to
AR
Figure 6 Select Session Bean Class Files

• Click OK. You should now be back at theEJB JAR dialog box.Beans/Calc.class ,
Beans/CalcHome.class , andBeans/CalcBean.class should appear in theContents
window.

• Click Next.

General dialog box: Make sure the following information is selected:

• classname:Beans.CalcBean

Home interface:Beans.CalcHome

Remote interface:Beans.Calc

Bean type:Session andStateless

• Specify the display name (the name that appears when when the JAR file is add
BonusApp in the Local Applications window), and provide a description of the J
file contents.
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 19

ent

over,

l

•Display Name:CalcBean

•Description: This JAR file contains the CalcBean session bean.

• Click Next .

Environment Entries dialog box: This example does not use properties (environm
entries) so you can:

• Click Finish .

Verify the JAR file was indeed added to the J2EE application:

• Go to the Local Applications window

• Click the key graphic in front of theBonusApp . You will see theCalcJar JAR file.

• Click the key graphic in front of the CalcJar to see theCalcBean session bean.

Create Web Component
Web components (servlets, or JavaServer Pages technology) are bundled into a Web
Archive (WAR) file.

File menu: SelectNew Web Component. TheNew Web Component Wizardstarts and
displays a window that summarizes the steps you are about to take. After reading it
click Next .

WAR File General Properties dialog box: Provide the following information:

• WAR file: BonusApp

Display name:BonusWar

Description: This war file contains a servlet and an html page.

• Click Add.

Add Contents to WAR dialog box:

• Go to theClientCode directory by typingClientCode afterJ2EE in theRoot Direc-
tory field.

• Selectbonus.html. Make sure theWAR contents shows the listing as bonus.htm
without theClientCode directory prefixed to the name.

• Click Add.

Note: Make sure you addbonus.html before you addBonusServlet.class
LESSON 1 A SIMPLE SESSION BEAN

20 SEPTEMBER 27, 2000
Figure 7 Add BonusServlet.class

• Click Next .

• Choose theClientCode directory again.

• SelectBonusServlet.class. Be sure the WAR contents shows the listing as
BonusServlet.class without theClientCode directory prefixed to the name.

• Click Add.

Add Contents to WAR dialog box: The display should look like Figure 8.
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 21
Figure 8 Add bonus.html

• Click Finish .

WAR File General Properties dialog box:

• Click Next .

Choose Component Type dialog box:

• SelectServlet (if it is not already selected)

• Click Next .

Component General Properties dialog box:

• Make sure BonusServlet is selected for theServlet Class.
LESSON 1 A SIMPLE SESSION BEAN

22 SEPTEMBER 27, 2000

le

and

with

r

he
xt

one

NDI
• Enter a display name (BonusServlet) and description.

• You can ignore theStartup and load sequence settings here because this examp
uses only one servlet.

Component Initialization Parameters dialog box:

• Click Next . BonusServlet does not use any initialization parameters.

Component Aliases dialog box:

• Click Add.

• TypeBonusAlias and pressReturn . This is the same alias name you put in theACTION

field of the HTML form embedded in thebonus.html file.

• Click Finish .

In the Content pane, you can see that the WAR file contains an XML file with structural
attribute information on the web application, thebonus.html file, and theBonusServlet

class file. The WAR file format is such that all servlet classes go in an entry starting
Web-INF/classes . However, when the WAR file is deployed, theBonusServlet class is
placed in a Context Root directory underpublic_html . This placement is the convention fo
Servlet 2.2 compliant web servers.

To change the display name or description:

• Put your cursor in the appropriate field in the window

• Change them as you wish.

• Press theReturn key for the edits to take effect.

Specify JNDI Name and Root Context
Before you can deploy theBonusApp application and its components, you have to specify t
JNDI nameBonusServlet uses to look up theCalcBean session bean, and specify a conte
root directory where the deployer will put the web components.

JNDI Name:

• Select theBonusApp file in the Local Applications window. The Inspecting window
displays tabs at the top, and one of those tabs is JNDI Names.

• Select JNDI Names. The Inspecting window shows a three-column display with
row. CalcBean is listed in the middle column.

• In the far right column under JNDI name, type calcs. This JNDI name is the same J
name passed to the BonusServlet.lookup method.

• Press the Return key.

Context Root:

• Click the Web Context tab at the top of theInspecting window. You will see
BonusWar in the left column.

• TypeBonusRoot in the right column
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 23

ick
at the

d

• Press theReturn key. During deployment theBonusRoot directory is created under
thepublic_html directory in yourJ2sdkee1.2 installation, and thebonus.html

file andBonusServlet class are copied into it as shown in Figure 9.

Figure 9 Context Root Directory Structure

Aliases:

• In theLocalApp window, clickBonusWar and then clickBonusServlet

• Click the Aliases tab at the top of theInspecting window. You should seeBonu-

sAlias in the field.

• If BonusAlias is not there, type it in and pressReturn .

Verify and Deploy the J2EE Application
Before you deploy the application, it is a good idea to run the verifier. The verifier will p
up errors in the application components such as missing enterprise bean methods th
compiler does not catch.

Verify:

• With BonusApp selected, chooseVerifier from theTools menu.

• In the dialog that pops up, clickOK. The window should tell you there were no faile
tests.

BonusRoot

WEB-INF

classes

bonus.html

public_html

BonusServlet.class

j2sdkee1.2
LESSON 1 A SIMPLE SESSION BEAN

24 SEPTEMBER 27, 2000

f the

e
x
-

s of

n in
• Close the verifier window because you are now ready to deploy the application.

Note: In the Version 1.2 software you might get atests app.WebURI error. This
means the deploy tool did not put a.war extension on theWARfile duringWARfile cre-
ation. This is a minor bug and the J2EE application deploys just fine in spite of it.

Deploy:

• From theTools menu, chooseDeploy Application . A Deploy BonusAppdialog box
pops up. Verify that the Target Server selection is either localhost or the name o
host running the J2EE server.

Note:Do not check the Return Client Jar box. The only time you need to check this
box is when you deploy a stand-alone application for the client program. This exampl
uses a servlet and HTML page so this box should not be checked. Checking this bo
creates a JAR file with the deployment information needed by a stand-alone applica
tion.

• Click Next . Make sure the JNDI name showscalcs . If it does not, type it in yourself,
and press theReturn key.

• Click Next . Make sure the Context Root name showsBonusRoot . If it does not, type it
in yourself and press theReturn key.

• Click Next .

• Click Finish to start the deployment. A dialog box pops up that displays the statu
the deployment operation.

• When it is complete, the three bars on the left will be completely shaded as show
Figure 10. When that happens, clickOK.
LESSON 1 A SIMPLE SESSION BEAN

25 SEPTEMBER 27, 2000

g

L

Figure 10 Deploy Application

Run the J2EE Application
The web server runs on port 8000 by default. To open thebonus.html page point your
browser tohttp://localhost:8000/BonusRoot/bonus.html , which is where the Deploy
tool put the HTML file.

Note:If you need to use a different port because port 8000 is being used for somethin
else, edit theweb.properties file in the~/J2EE/j2sdkee1.2/config directory and
restart the J2EE server.

• Fill in a social security number

• Fill in a multiplier

• Click the Submit button.BonusServlet processes your data and returns an HTM
page with the bonus calculation on it.
LESSON 1 A SIMPLE SESSION BEAN

26 SEPTEMBER 27, 2000

our
se one

is

e

Bonus Calculation

Soc Sec: 777777777
Multiplier: 25

Bonus Amount 2500.0

Updating Component Code
The Tools menu has two menu options of interest. they areUpdate Application Files and
Update and Redeploy Application. These options let you change code and redeploy y
application with ease. Simply make your code changes, recompile the code, and choo
of these menu options.

• Update Application Files updates the application files with your new code. At th
point you can either verify the application again or deploy it.

• Update and Redeploy Applicationupdates the application files with your new cod
and redeployes the application without running the verifier.
LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 27

om a
e thin-

o your
any
ations.
ly and
shows
Lesson 2
A Simple Entity Bean

This lesson expands the Lesson 1 example to use an entity bean.BonusServlet calls on the
entity bean to save the social security number and bonus information to and retrieve it fr
database table. This database access functionality adds the fourth and final tier to th
client, multitiered example started in Lesson 1.

The J2EE SDK comes with Cloudscape database, and you need no additional setup t
environment for the entity bean to access it. In fact in this example, you do not write
SQL or JDBC code to create the database table or perform any database access oper
The table is created and the SQL code generated with the Deploy tool during assemb
deployment. Lesson 7 JDBC Technology and Bean-Managed Persistence (page 97)
you how to write the SQL code for an entity bean.

• Create the Entity Bean (page 28)

• Change the Servlet (page 32)

• Compile (page 34)

• Start the Platform and Tools (page 35)

• Assemble and Deploy (page 35)

• Run the J2EE Application (page 43)
LESSON 2 A SIMPLE ENTITY BEAN

28 SEPTEMBER 27, 2000

en an
e data
dated.
L or

data
.

ed out

he

y is a
that

hen

mary
entity
ts, a
Create the Entity Bean
An entity bean represents persistent data stored in one row of a database table. Wh
entity bean is created, the data is written to the appropriate database table row, and if th
in an entity bean is updated, the data in the appropriate database table row is also up
The database table creation and row updates all occur without your writing any SQ
JDBC code.

Entity bean data is persistent because it survives crashes.

• If a crash occurs while the data in an entity bean is being updated, the entity bean
is automatically restored to the state of the last committed database transaction

• If the crash occurs in the middle of a database transaction, the transaction is back
to prevent a partial commit from corrupting the data.

BonusHome
The main difference between theCalcHome session bean code from Lesson 1 and t
BonusHome entity bean code for this lesson (below) is thefindByPrimaryKey method. This
finder method takes the primary key as a paramete. In this example, the primary ke
social security number, which is used to retrieve the table row with a primary key value
corresponds to the social security number passed to this method.

The create method takes the bonus value and primary key as parameters. W
BonusServlet instantiates the home interface and calls itscreate method, the container
creates aBonusBean instance and calls itsejbCreate method. TheBonusHome.create and
BonusBean.ejbCreate methods must have the same signatures, so the bonus and pri
key values can be passed from the home interface to the entity bean by way of the
bean's container. If a row for a given primary key (social security) number already exis
java.rmi.RemoteException is thrown that is handled in theBonusServlet client code.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import javax.ejb.EJBHome;

public interface BonusHome extends EJBHome {
 public Bonus create(double bonus, String socsec)
 throws CreateException, RemoteException;
 public Bonus findByPrimaryKey(String socsec)
 throws FinderException, RemoteException;
}

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 29

entity
Bonus
After the home interface is created, the container creates the remote interface and
bean. TheBonus interface declares thegetBonus andgetSocSec methods so the servlet can
retrieve data from the entity bean.

package Beans;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Bonus extends EJBObject {
 public double getBonus() throws RemoteException;
 public String getSocSec() throws RemoteException;
}

Browser

bonus.html

Servlet

BonusServlet.class

Component

Session Bean

CalcBean.class
Calc.class

CalcHome.class

Component

Entity Bean

BonusBean.class
Bonus.class

BonusHome.class

Component

Database
LESSON 2 A SIMPLE ENTITY BEAN

30 SEPTEMBER 27, 2000

a per-
en the

tions,

naged

e
g
g.

bean
ds if

pecific
ce at

lls the
ods:

he
rtual-

ng

ner

the

e vari-
BonusBean
BonusBean is a container-managed entity bean. This means the container handles dat
sistence and transaction management without your writing code to transfer data betwe
entity bean and the database or define transaction boundaries.

If for some reason you want the entity bean to manage its own persistence or transac
you would provide implementations for some of the empty methods shown in theBonusBean

code below. The following references take you to documents that describe bean-ma
persistence and transactions.

• Chapter 3 of the Writing Advanced Applications tutorial.
developer.java.sun.com/developer/onlineTraining/Programming/JDCBook

• Chapter 4 of the Java 2 Enterprise Edition Developer's Guide.
java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/DevGuideTOC.html

WhenBonusServlet callsBonusHome.create , the container calls theBonusBean.setEnti-

tyContext method. TheEntityContext instance passed to thesetEntityContext method
has methods that let the bean return a reference to itself or get its primary key.

Next, the container calls theejbCreate method. TheejbCreate method assigns data to the
bean's instance variables, and then the container writes that data to the database. Thejb-

PostCreate method is called after theejbCreate method and performs any processin
needed after the bean is created. This simple example does no post-create processin

The other empty methods are callback methods called by the container to notify the
that some event is about to occur. You would provide behavior for some of these metho
you are using bean-managed persistence, and others if you need to provide bean-s
cleanup or initialization operations. These cleanup and initialization operations take pla
specific times during the bean's lifecycle, and the container notifies the bean and ca
applicable method at the appropriate time. Here is a brief description of the empty meth

• TheejbPassivate andejbActivate methods are called by the container before t
container swaps the bean in and out of storage. This process is similar to the vi
memory concept of swapping a memory page between memory and disk.

• The container calls theejbRemove method if the home interface has a correspondi
remove method that gets called by the client.

• TheejbLoad andejbStore methods are called by the container before the contai
synchronizes the bean's state with the underlying database.

The getBonus and getSocSec methods are called by clients to retrieve data stored in
instance variables. This example has noset< type > methods, but if it did, clients would call
them to change the data in the bean's instance variables. Any changes to the instanc
ables result in an update to the table row in the underlying database.
LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 31
package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;

public class BonusBean implements EntityBean {

 public double bonus;
 public String socsec;
 private EntityContext ctx;

 public double getBonus() {
 return this.bonus;
 }
 public String getSocSec() {
 return this.socsec;
 }

 public String ejbCreate(double bonus,
String socsec)
throws CreateException{

 //Called by container after setEntityContext
 this.socsec=socsec;
 this.bonus=bonus;
 return null;
 }

 public void ejbPostCreate(double bonus,
 String socsec) {
 //Called by container after ejbCreate
 }

//These next methods are callback methods that
//are called by the container to notify the
//Bean some event is about to occur

 public void ejbActivate() {
 //Called by container before Bean
 //swapped into memory
 }

 public void ejbPassivate() {
 //Called by container before
 //Bean swapped into storage
 }
LESSON 2 A SIMPLE ENTITY BEAN

32 SEPTEMBER 27, 2000

es in
 public void ejbRemove() throws RemoteException {
 //Called by container before
 //data removed from database
 }

 public void ejbLoad() {
 //Called by container to
 //refresh entity Bean's state
 }

 public void ejbStore() {
 //Called by container to save
 //Bean's state to database
 }

 public void setEntityContext(EntityContext ctx){
 //Called by container to set Bean context
 }

 public void unsetEntityContext(){
 //Called by container to unset Bean context
 }
}

Change the Servlet
The BonusServlet code for this lesson is very similar to the Lesson 1 version with chang
the init anddoGet methods. Theinit method for this lesson looks up both theCalcBean

session bean, and theBonusBean entity bean.

public class BonusServlet extends HttpServlet {
 CalcHome homecalc;
 BonusHome homebonus;
 Bonus theBonus, record;

public void init(ServletConfig config)
throws ServletException{

 try {
 InitialContext ctx = new InitialContext();
 Object objref = ctx.lookup("bonus");
 Object objref2 = ctx.lookup("calcs");
 homebonus=(
 BonusHome)PortableRemoteObject.narrow(
 objref, BonusHome.class);
 homecalc=(CalcHome)
 PortableRemoteObject.narrow(
 objref2, CalcHome.class);
LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 33

tabase

ge is
nd the

num-
, so if
before

TML
mes-
 } catch (Exception NamingException) {
 NamingException.printStackTrace();
 }
}

The try statement in thedoGet method creates theCalcBean andBonusBean home inter-
faces. After callingcalcBonus to calculate the bonus, theBonusHome.create method is
called to create an entity bean instance and a corresponding row in the underlying da
table. After creating the table, theBonusHome.findByPrimaryKey method is called to
retrieve the same record by its primary key (social security number). Next, an HTML pa
returned to the browser showing the data originally passed in, the calculated bonus, a
data retrieved from the database table row.

Thecatch statement catches and handles duplicate primary key values (social security
bers). The underlying database table cannot have two rows with the same primary key
you pass in the same social security number, the servlet catches and handles the error
trying to create the entity bean. In the event of a duplicate key, the servlet returns an H
page with the original data passed in, the calculated bonus, and a duplicate key error
sage.

try {
 Calc theCalculation;
//Retrieve Bonus and Social Security Information
 String strMult = request.getParameter(
 "MULTIPLIER");//Calculate bonus
 Integer integerMult = new Integer(strMult);
 multiplier = integerMult.intValue();
 socsec = request.getParameter("SOCSEC");
//Calculate bonus
 double bonus = 100.00;
 theCalculation = homecalc.create();
 calc = theCalculation.calcBonus(
 multiplier, bonus);
//Create row in table
 theBonus = homebonus.create(calc, socsec);
 record = homebonus.findByPrimaryKey(socsec);
//Display data
 out.println("<H1>Bonus Calculation</H1>");
 out.println("<P>Soc Sec passed in: " +
 theBonus.getSocSec() + "<P>");
 out.println("<P>Multiplier passed in: " +
 multiplier + "<P>");
 out.println("<P>Bonus Amount calculated: " +

 theBonus.getBonus() + "<P>");
 out.println("<P>Soc Sec retrieved: " +

 record.getSocSec() + "<P>");
 out.println("<P>Bonus Amount retrieved: " +
LESSON 2 A SIMPLE ENTITY BEAN

34 SEPTEMBER 27, 2000

ttings,
 record.getBonus() + "<P>");
 out.println("</BODY></HTML>");
//Catch duplicate key error
 } catch (javax.ejb.DuplicateKeyException e) {
 String message = e.getMessage();
//Display data
 out.println("<H1>Bonus Calculation</H1>");
 out.println("<P>Soc Sec passed in: " +
 socsec + "<P>");
 out.println("<P>Multiplier passed in: " +
 multiplier + "<P>");
 out.println("<P>Bonus Amount calculated: " +

 calc + "<P>");
 out.println("<P>" + message + "<P>");
 out.println("</BODY></HTML>");
 } catch (Exception CreateException) {
 CreateException.printStackTrace();
 }
}

Compile
First, compile the entity bean and servlet. Refer to Lesson 1 for path and classpath se
and information on where to place the source files.

Compile the Entity Bean

Unix
#!/bin/sh
cd /home/monicap/J2EE
J2EE_HOME=/home/monicap/J2EE/j2sdkee1.2.1
CPATH=.:$J2EE_HOME/lib/j2ee.jar
javac -d . -classpath "$CPATH" Beans/BonusBean.java
Beans/BonusHome.java Beans/Bonus.java

Windows
cd \home\monicap\J2EE
set J2EE_HOME=\home\monicap\J2EE\j2sdkee1.2.1
set CPATH=.;%J2EE_HOME%\lib\j2ee.jar
javac -d . -classpath %CPATH% Beans/BonusBean.java
Beans/BonusHome.java Beans/Bonus.java
LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 35

cape
Compile the Servlet

Unix:
cd /home/monicap/J2EE/ClientCode
J2EE_HOME=/home/monicap/J2EE/j2sdkee1.2.1
CPATH=.:$J2EE_HOME/lib/j2ee.jar:/home/monicap/J2EE
javac -d . -classpath "$CPATH" BonusServlet.java

Windows:
cd \home\monicap\J2EE\ClientCode
set J2EE_HOME=\home\monicap\J2EE\j2sdkee1.2.1
set CPATH=.;%J2EE_HOME%\lib\j2ee.jar;
 \home\monicap\J2EE
javac -d . -classpath %CPATH% BonusServlet.java

Start the Platform and Tools
To run this example, you need to start the J2EE server, the Deploy tool, and Clouds
database. In different windows, type the following commands:

j2ee -verbose
deploytool
cloudscape -start

If that does not work, type this from theJ2EE directory:

Unix
j2sdkee1.2.1/bin/j2ee -verbose
j2sdkee1.2.1/bin/deploytool
j2sdkee1.2.1/bin/cloudscape -start

Windows
j2sdkee1.2.1\bin\j2ee -verbose
j2sdkee1.2.1\bin\deploytool
j2sdkee1.2.1\bin\cloudscape -start

Assemble and Deploy
The steps in this section are:
LESSON 2 A SIMPLE ENTITY BEAN

36 SEPTEMBER 27, 2000

de.

e ses-
rences

n
e

in
• Update Application File

• Create Entity Bean

Update Application File
The web archive (WAR) file containsBonusServlet and bonus.html . Because you have
changedBonusServlet , you have to update the J2EE application with the new servlet co

• Local Applicatons Window: Highlight theBonusApp application.

• Tools Menu: SelectUpdate Application Files.

Note:TheBonusApp application from the previous lesson is automatically uninstalled

Create Entity Bean
The steps to creating the EJB JAR for the entity bean are very similar to the steps for th
sion bean covered in Lesson 1. There are a few differences, however, and those diffe
are explained here.

Note: In this lesson, the entity bean goes in a separate JAR file from the session bea
to continue the example from Lesson 1 with the least number of changes. Becaus
these beans have related functionality, however, you could bundle and deploy them
the same JAR file. You will see how to bundle related beans in the same JAR file in
Lesson 3.

File Menu:

• SelectNew Enterprise Bean.

Introduction :

• Read and clickNext .

EJB JAR:

• Make sureBonusApp shows in theEnterprise Bean will go in field.

• SpecifyBonusJar as the display name.

• Click Add (the one next to theContents window).

Add Contents to JAR:

• Toggle the directory so the beans directory displays with its contents.

• SelectBonus.class

• Click Add.
LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 37
• SelectBonusBean.class

• Click Add.

• SelectBonusHome.class

• Click Add.

• Click OK.

Figure 11 Adding Classes to BonusJar

EJB JAR:

• Click Next .

General:
LESSON 2 A SIMPLE ENTITY BEAN

38 SEPTEMBER 27, 2000

s

).

meth-
ation
pter 6
• Beans.BonusBean is the classname

• Beans.BonusHome is the Home interface

• Beans.Bonus is the Remote interface.

• EnterBonusBean as the display name.

• Click Entity .

• Click Next .

Entity Settings:

• SelectContainer-Managed persistence .

• In the bottom window, checkbonus andsocsec .

• Specify java.lang.String for the primary key class. Note that the primary key ha
to be a class type. Primitive types are not valid for primary keys.

• Specifysocsec for the primary key field name.

• Click Next .

Environment Entries:

• Click Next . This simple entity bean does not use properties (environment entries

Enterprise Bean References:

• Click Next . This simple entity bean does not reference other enterprise beans.

Resource References:

• Click Next . This simple entity bean does not look up a database or JavaMail session
object.

Security:

• Click Next . This simple entity bean does not use security roles.

Transaction Management:

• SelectContainer-managed transactions (if it is not already selected.

• In the list below makecreate , findByPrimaryKey , getBonus and getSocSec

required. This means the container starts a new transaction before running these
ods. The transaction commits just before the methods end. There is more inform
on these transaction settings in Enterprise JavaBeans Developer's Guide, Cha
(java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/DevGuideTOC.html).
LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 39

gs for
Figure 12 Transaction Management

• Click Next .

• Click Finish .

Local Applications :

• SelectBonusApp .

• In the Inspecting window, selectJNDI names

• Give BonusBean the JNDI name ofbonus

• Press the Return key

Before the J2EE application can be deployed, you need to specify deployment settin
the entity bean and generate the SQL. Here is how to do it:
LESSON 2 A SIMPLE ENTITY BEAN

40 SEPTEMBER 27, 2000

I

s

Local Applications window:

• SelectBonusBean .

Inspecting window:

• SelectEntity

• Click theDeployment Settings button to the lower right.

Deployment Settings:

• Specify jdbc/Cloudscape (with a capitalC on Cloudscape) for the Database JND
name

• Press Return

• Make sure theCreate table on deploy andDelete table on Deploy boxes are
checked.

• Click Generate SQL now.

Note: If you get an error that the connection was refused, start the database a
described in Start the Platform and Tools (page 35).
LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 41

e

Figure 13 Generate SQL and Database Table

• When the SQL generation completes, select thefindByPrimaryKey method in the EJB
method box. To the right a SQL statement appears. It should readSELECT “socsec”

FROM “BonusBeanTable” WHERE “socsec”=? . The question mark (?) represents th
parameter passed to thefindByPrimaryKey method.

• Click OK.
LESSON 2 A SIMPLE ENTITY BEAN

42 SEPTEMBER 27, 2000

for
d

Verify and Deploy the J2EE Application
Verify:

• With BonusApp selected, chooseVerifier from theTools menu.

• In the dialog that pops up, clickOK. The window should tell you that no tests failed.

• Close the verifier window because you are now ready to deploy the application.

Note:In the Version 1.2 software you might get atests app.WebURI error. The J2EE
application deploys in spite of it.

Deploy:

• Tools Menu: SelectTools.Deploy Application .

Note:Do not check the Return Client Jar box. The only time you need to check this
box is when you use bean-managed persistence or deploy a stand-alone application
the client program. This example uses a servlet and HTML page so this book shoul
not be checked. Checking this box creates a JAR file with deployment information
needed by a stand-alone application.

• Click Next . Make sure the JNDI names showcalcs for CalcBean and bonus for
BonusBean . Type any missing JNDI names in yourself, and press theReturn key.

• Click Next . Make sure the Context Root name showsBonusRoot . If it does not, type it
in yourself and press theReturn key.

• Click Next .

• Click Finish to start the deployment.

• When deployment completes, clickOK.
LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 43

cu-
Run the J2EE Application
The web server runs on port 8000 by default. To open thebonus.html page point your
browser tohttp://localhost:8000/BonusRoot/bonus.html , which is where the Deploy
tool put the HTML file.

Fill in a social security number and multiplier, and click theSubmit button.BonusServlet

processes your data and returns an HTML page with the bonus calculation on it.

Bonus Calculation

Soc Sec passed in: 777777777
Multiplier passed in: 25
Bonus Amount calculated: 2500.0
Soc Sec retrieved: 7777777777
Bonus Amount retrieved: 2500.0

If you go back tobonus.html and change the multiplier to 2, but use the same social se
rity number, you see this:

Bonus Calculation
Soc Sec passed in: 777777777
Multiplier passed in: 2
Bonus Amount calculated: 200.0
Duplicate primary key.
LESSON 2 A SIMPLE ENTITY BEAN

44 SEPTEMBER 27, 2000
LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 45

bean
re the
e ses-
n work

n
n

Lesson 3
Cooperating Enterprise Beans

In Lesson 2 A Simple Entity Bean (page 27), the servlet looks up and creates a session
to perform a bonus calculation, and then looks up and creates an entity bean to sto
bonus value and related social security number. This lesson modifies the example so th
sion bean looks up and creates the entity bean. Because the session and entity bea
together, they are bundled into one JAR file for deployment.

• Change the Session Bean (page 46)

• Change the Servlet (page 49)

• Compile (page 50)

• Start the Platform and Tools (page 51)

• Assemble the Application (page 52)

• Verify and Deploy the J2EE Application (page 58)

• Run the J2EE Application (page 60)

Note: Some people have trouble getting this lesson to work with 2 beans in one JAR
file. If this happens to you, delete the JAR file with the two beans and put each bean i
its own JAR file. You might need to stop and restart the server and tools before you ca
generate SQl and deploy.
LESSON 3 COOPERATING ENTERPRISE BEANS

46 SEPTEMBER 27, 2000

. This

bean.
Change the Session Bean
In this lesson and as shown in Figure 14, the entity bean is a client of the session bean
means the entity bean gets its data from the session bean instead of fromBonusServlet as it
did in Lesson 2 A Simple Entity Bean (page 27). So, thecalcBonus method in the session
bean is modified to take the social security number as a parameter and create the entity

Figure 14 Beans Working Together

CalcHome
The CalcHome interface is unchanged. It has the samecreate method that returns an
instance of the remote interface.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CalcHome extends EJBHome {
 public Calc create()
 throws CreateException, RemoteException;
}

Session Bean
(Application Server)

calcBonus method
getRecord method

Database

HTML Form
Browser

bonus.html

Servlet
(Web Server)

BonusServlet.class

Entity Bean
LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 47

ber as
tity

ns.

is cal-

-

Calc
The calcBonus method in the Calc interface is changed to take the social security num
a parameter. This is soCalcBean can pass the bonus and social security number to the en
bean after calculating the bonus value. A newgetRecord method is added soCalcBean can
find an entity bean by its primary key (the social security number).

Also, thecalcBonus method signature throwsDuplicateKeyException andCreateExcep-

tion . This is soBonusServlet can catch and handle either of these exception conditio
DuplicateKeyException descends fromCreateException . If you design thecalcBonus

method to throwDuplicateKeyException , but catchCreateException , DuplicateKeyEx-

ception is not thrown. The way around this is to havecalcBonus throw both Dupli-

cateKeyException andCreateException .

package Beans;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import javax.ejb.DuplicateKeyException;
import javax.ejb.CreateException;

public interface Calc extends EJBObject {
 public Bonus calcBonus(int multiplier,
 double bonus,
 String socsec)
 throws RemoteException,
 DuplicateKeyException,
 CreateException;
 public Bonus getRecord(String socsec)
 throws RemoteException;

}

CalcBean
The code to create the entity bean is moved fromBonusServlet to thecalcBonus method so
the bonus and social security number can be written to the entity bean after the bonus
culated. Thehomebonus variable is an instance variable so it can be used in thecalcBonus

method to look up the entity bean and in thegetRecord method to locate the entity bean cor
responding to the social security number.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
LESSON 3 COOPERATING ENTERPRISE BEANS

48 SEPTEMBER 27, 2000
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.ejb.DuplicateKeyException;
import javax.ejb.CreateException;

public class CalcBean implements SessionBean {
 BonusHome homebonus;
//Throw DuplicateKeyException and CreateException
//so BonusServlet can catch and handle these
//exception conditions.
 public Bonus calcBonus(int multiplier,
 double bonus, String socsec)
 throws DuplicateKeyException,
 CreateException {
 Bonus theBonus = null;
 double calc = (multiplier*bonus);
 try {
 InitialContext ctx = new InitialContext();
 Object objref = ctx.lookup("bonus");
 homebonus = (BonusHome)
 PortableRemoteObject.narrow(
 objref, BonusHome.class);
 } catch (Exception NamingException) {
 NamingException.printStackTrace();
 }
//Store data in entity bean
 try {
 theBonus = homebonus.create(calc, socsec);
 } catch (java.rmi.RemoteException e) {
 String message = e.getMessage();
 e.printStackTrace();
 }
 return theBonus;
 }

 public Bonus getRecord(String socsec) {
 Bonus record = null;

//Use primary key to retrieve data from entity bean
 try {
 record = homebonus.findByPrimaryKey(socsec);
 } catch (java.rmi.RemoteException e) {
 String message = e.getMessage();
 } catch (javax.ejb.FinderException e) {
 e.printStackTrace();
 }
 return record;
 }
 public void ejbCreate() { }
LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 49

ean

ome
y
n. If

sage,
 public void setSessionContext(
 SessionContext context){
 }
 public void ejbRemove() { }
 public void ejbActivate() { }
 public void ejbPassivate() { }
 public void ejbLoad() { }
 public void ejbStore() { }
}

Change the Servlet
The BonusServlet program is very similar to the version in Lesson 2 A Simple Entity B
(page 27) with changes in theinit anddoGet methods. Theinit method for this lesson
looks up theCalcBean session bean only.

public class BonusServlet extends HttpServlet {
 CalcHome homecalc;
//Need Bonus variables because CalcBean methods
//called in the doGet method return instances
//of type Bonus
 Bonus theBonus, record;

 public void init(ServletConfig config)
 throws ServletException{
 try {
 InitialContext ctx = new InitialContext();
 Object objref = ctx.lookup("calcs");
 homecalc = (CalcHome)
 PortableRemoteObject.narrow(
 objref, CalcHome.class);
 } catch (Exception NamingException) {
 NamingException.printStackTrace();
 }
 }

The try statement in thedoGet method calculates the bonus, creates the session bean h
interface, and calls thecalcBonus and getRecord methods. If the methods successfull
complete, an HTML page is returned showing the data retrieved from the entity bea
DuplicateKeyException is thrown by thecalcBonus method, an HTML page is returned
showing the social security number and multiplier passed in, and the exception mes
Duplicate primary key .

As before in Lesson 2 A Simple Entity Bean (page 27), thecatch statement catches and
handles duplicate primary key values (social security numbers).
LESSON 3 COOPERATING ENTERPRISE BEANS

50 SEPTEMBER 27, 2000

ttings,
 try {
 Calc theCalculation;
//Retrieve Bonus and Social Security Information
 String strMult = request.getParameter(
 "MULTIPLIER");//Calculate bonus
 Integer integerMult = new Integer(strMult);
 multiplier = integerMult.intValue();
 socsec = request.getParameter("SOCSEC");
//Calculate bonus
 double bonus = 100.00;
 theCalculation = homecalc.create();
//Call session bean
//Pass 3 parameters:multiplier, bonus, and socsec
 theBonus = theCalculation.calcBonus(
 multiplier, bonus, socsec);
 record = theCalculation.getRecord(socsec);
//Display data returned by session bean
 out.println("<H1>Bonus Calculation</H1>");
 out.println("<P>Soc Sec retrieved: " +
 record.getSocSec() + "<P>");
 out.println("<P>Bonus Amount retrieved: " +
 record.getBonus() + "<P>");
 out.println("</BODY></HTML>");
 } catch (javax.ejb.DuplicateKeyException e) {
 String message = e.getMessage();
 out.println("<H1>Bonus Calculation</H1>");
 out.println("<P>Soc Sec passed in: " + socsec +
 "<P>");
 out.println("<P>Multiplier passed in: " +
 multiplier + "<P>");
 out.println("</BODY></HTML>");
 } catch (Exception CreateException) {
 CreateException.printStackTrace();
 }

Compile
First, compile the session bean and servlet. Refer to Lesson 1 for path and classpath se
and information on where to place the source files.
LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 51

cape
Compile the Session Bean

Unix
#!/bin/sh
cd /home/monicap/J2EE
J2EE_HOME=/home/monicap/J2EE/j2sdkee1.2.1
CPATH=.:$J2EE_HOME/lib/j2ee.jar
javac -d . -classpath "$CPATH" Beans/CalcBean.java
 Beans/CalcHome.java Beans/Calc.java

Windows
cd \home\monicap\J2EE
set J2EE_HOME=\home\monicap\J2EE\j2sdkee1.2.1
set CPATH=.;%J2EE_HOME%\lib\j2ee.jar
javac -d . -classpath %CPATH% Beans/CalcBean.java
 Beans/CalcHome.java Beans/Calc.java

Compile the Servlet

Unix:
cd /home/monicap/J2EE/ClientCode
J2EE_HOME=/home/monicap/J2EE/j2sdkee1.2
CPATH=.:$J2EE_HOME/lib/j2ee.jar:
 /home/monicap/J2EE
javac -d . -classpath "$CPATH" BonusServlet.java

Windows:
cd \home\monicap\J2EE\ClientCode
set J2EE_HOME=\home\monicap\J2EE\j2sdkee1.2 set
CPATH=.;%J2EE_HOME%\lib\j2ee.jar:\home\monicap\J2EE
javac -d . -classpath %CPATH% BonusServlet.java

Start the Platform and Tools
To run this example, you need to start the J2EE server, the Deploy tool, and Clouds
database. In different windows, type the following commands:

j2ee -verbose
deploytool
cloudscape -start

If that does not work, type this from theJ2EE directory:
LESSON 3 COOPERATING ENTERPRISE BEANS

52 SEPTEMBER 27, 2000

a new

ant
Unix
j2sdkee1.2.1/bin/j2ee -verbose
j2sdkee1.2.1/bin/deploytool
j2sdkee1.2.1/bin/cloudscape -start

Windows
j2sdkee1.2.1\bin\j2ee -verbose
j2sdkee1.2.1\bin\deploytool
j2sdkee1.2.1\bin\cloudscape -start

Assemble the Application
The steps for this section include the following:

• Create New J2EE Application

• Create New Web Component

• Bundle Session and Entity Beans in One JAR File

Create New J2EE Application
Rather than update the J2EE application from Lessons 1 and 2, these steps create
J2EE application.

DeleteBonusApp:

• Click BonusApp so it is highlighted

• SelectDelete from theEdit menu

Create2BeansApp :

• From theFile menu, selectNew Application.

• Click the right mouse button in theApplication Display Name field. 2BeansApp

appears as the display name.

• Click theBrowsebutton to open the file chooser to select the location where you w
the applicationEAR file to be saved.

New Application file chooser:

• Locate the directory where you want to place the applicationEAR file

• In this example, that directory is/export/home/monicap/J2EE .

• In theFile name field, type2BeansApp.ear .
LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 53

1 and
• Click New Application.

• Click OK .

Create New Web Component
Now, go through the steps to create the WAR file. These steps are outlined in Lesson
summarized below. With 2BeansApp selected,

File Menu:

• SelectNew Web Component .

Introduction :

• Read and ClickNext

War File General Properties:

• Specify BonusWar for the display name.

• Click Add

• Go to theClientCode directory and addbonus.html

• Click Next

• Go to theClientCode directory and addBonusServlet.class

• Click Finish .

War File General Properties:

• Click Next .

Choose Component Type:.

• Make sureDescribe a servlet is selected.

• Click Next .

Component General Properties:

• MakeBonusServlet the servlet class

• Make the display nameBonusServlet .

• Click Next .

Component Initialization Parameters.

• Click Next .

Component Aliases:

• SpecifyBonusAlias

• Click Finish .
LESSON 3 COOPERATING ENTERPRISE BEANS

54 SEPTEMBER 27, 2000

this,
an to
Inspecting window:

• Select Web Context

• SpecifyBonusRoot .

Bundle Session and Entity Beans in one JAR File
In this lesson, you will put both the session and entity beans in the same JAR file. To do
you first create the JAR file with only the session bean in it, and then add the entity be
that JAR file.

Create JAR with Session Bean

With 2BeansApp selected,

File Menu:

• Select New Enterprise Bean

Introduction :

• Read and clickNext .

EJB JAR:

• Make sure2BeansApp shows in theEnterprise Bean will go infield.

• Specify2BeansJar as the display name.

• Click Add (the one next to theContents window).

• Toggle the directory so the Beans directory displays with its contents.

• SelectCalc.class

• Click Add.

• SelectCalcBean.class

• Click Add.

• SelectCalcHome.class

• Click Add.

Enterprise Bean JAR classes:

• Make sure you seeBeans/Calc.class , Beans/CalcHome.class , and Beans/Cal-

cBean.class in the display.

• Click OK.

EJB JAR:

• Click Next .
LESSON 3 COOPERATING ENTERPRISE BEANS

55 SEPTEMBER 27, 2000

es).

r
ts just
ttings
General:

• CalcBean is the classname,Beans.CalcHome is the Home interface, andBeans.Calc

is the Remote interface.

• EnterCalcBean as the display name.

• Click session and stateless.

• Click Next .

Environment Entries:

• Click Next . This simple session bean does not use properties (environment entri

Enterprise Bean References:

• lick Next . The references are handled during deployment rather than here.

Resource References:

• Click Next . This simple session bean does not look up a database or JavaMail session
object.

Security:

• Click Next . This simple session bean does not use security roles.

Transaction Management:

• SelectContainer-managed transactions (if it is not already selected).

• In the list below makecalcBonus , andgetRecord required. This means the containe
starts a new transaction before running these methods. The transaction commi
before the methods end. You can find more information on these transaction se
in Chapter 6 of the Enterprise JavaBeans Developer's Guide.

• Click Next.

Review Settings:

• Click Finish .

Local Applications:

• Select2BeansApp .

• In the Inspecting window, selectJNDI names , giveCalcBean the JNDI name ofcalcs ,
and press the Return key.

Add the Entity Bean

With 2BeansApp selected,

File Menu:
LESSON 3 COOPERATING ENTERPRISE BEANS

56 SEPTEMBER 27, 2000

own
• Select New Enterprise Bean

Introduction :

• Read and clickNext .

EJB JAR:

• Make sure2BeansJar shows in theEnterprise Bean will go in field. This setting will
add the new bean to the existing JAR file instead of putting the new bean in its
JAR file.

• Click Add (the one next to theContents window).

• Toggle the directory so the Beans directory displays with its contents.

• SelectBonus.class

• Click Add.

• SelectBonusBean.class

• Click Add.

• SelectBonusHome.class

• Click Add.

Enterprise Bean JAR classes:

• Make sure you seeBeans/Bonus.class , Beans/BonusHome.class , and Beans/

BonusBean.class in the display.

• Click OK.

EJB JAR:

• Click Next .

General:

• Make sureBeans.BonusBean is the classname,Beans.BonusHome is the Home inter-
face, andBeans.Bonus is the Remote interface.

• EnterBonusBean as the display name.

• Click Entity .

• Click Next .

Entity Settings:

• SelectContainer managed persistence .

• n the window below, checkbonus and socsec . The primary key class is
java.lang.String , and the primary key field name issocsec . Note that the primary
key has to be a class type. Primitive types are not valid for primary keys.

• Click Next .
LESSON 3 COOPERATING ENTERPRISE BEANS

57 SEPTEMBER 27, 2000

).

meth-
rma-

loper's

gs for
Environment Entries:

• Click Next . This simple entity bean does not use properties (environment entries

Enterprise Bean References:

• Click Next . This simple entity bean does not reference other enterprise Beans.

Resource References:

• Click Next . This simple entity bean does not look up a database or JavaMail session
object.

Security:

• Click Next . This simple entity bean does not use security roles.

Transaction Management:

• SelectContainer-managed transactions (if it is not already selected).

• In the list below makecreate , findByPrimaryKey , getBonus and getSocSec

required. This means the container starts a new transaction before running these
ods. The transaction commits just before the methods end. You can find more info
tion on these transaction settings in Chapter 6 of the Enterprise JavaBeans Deve
Guide.

• Click Next .

Review Settings:

• Click Finish .

Local Applications:

• Select2BeansApp .

• In the Inspecting window, selectJNDI names , giveBonusBean the JNDI name ofbonus

andCalcBean the JNDI name ofcalcs

• Press the Return key after each entry.

Before the J2EE application can be deployed, you need to specify deployment settin
the entity bean and generate the SQL. Here is how to do it:

Local Applications window:

• SelectBonusBean .

Inspecting window:

• SelectEntity

• Click theDeployment Settings button to the lower right.

Deployment Settings window:
LESSON 3 COOPERATING ENTERPRISE BEANS

58 SEPTEMBER 27, 2000

I

s

ter

ick
at the

d

• Specify jdbc/Cloudscape (with a capitalC on Cloudscape) for the Database JND
name

• Press Return

• Make sure theCreate table on deploy andDelete table on Deploy boxes are
checked

• Click Generate SQL now.

Note: If you get an error that the connection was refused, start the database a
described in Start the Platform and Tools (page 51).

When the SQL generation completes,

• Select thefindByPrimaryKey method in the EJB method box.

• To the right a SQL statement appears. It should readSELECT “socsec” FROM “Bonus-

BeanTable” WHERE “socsec”=? . The question mark (?) represents the parame
passed to thefindByPrimaryKey method.

• Click OK.

Verify and Deploy the J2EE Application
Before you deploy the application, it is a good idea to run the verifier. The verifier will p
up errors in the application components such as missing enterprise bean methods th
compiler does not catch.

Note: If you get a Save error when you verify or deploy, shut everything down and
restart the server and tools.

Verify:

• With 2BeansApp selected, chooseVerifier from theTools menu.

• In the dialog that pops up, clickOK. The window should tell you there were no faile
tests.

• Close the verifier window because you are now ready to deploy the application.

Note: In the Version 1.2.1 software you might get atests app.WebURI error. This
means the deploy tool did not put a.war extension on theWARfile duringWARfile cre-
ation. This is a minor bug and the J2EE application deploys just fine in spite of it.

Deploy:
LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 59

run-

for
d

s of

n in
• From theToolsmenu, chooseDeploy Application . A Deploy BonusAppdialog box
pops up.

• Verify that the Target Server selection is either localhost or the name of the host
ning the J2EE server.

Note:Do not check the Return Client Jar box. The only time you need to check this
box is when you use bean-managed persistence or deploy a stand-alone application
the client program. This example uses a servlet and HTML page so this book shoul
not be checked. Checking this box creates a JAR file with deployment information
needed by a stand-alone application.

• Click Next .

• Make sure the JNDI names show forcalcs for CalcBean andbonus for BonusBean . If
they do not, type the JNDI names in yourself, and press theReturn key.

• Click Next . Make sure the Context Root name showsBonusRoot . If it does not, type it
in yourself and press theReturn key.

• Click Next .

• Click Finish to start the deployment. A dialog box pops up that displays the statu
the deployment operation.

• When it is complete, the three bars on the left will be completely shaded as show
Figure 15. When that happens, clickOK.
LESSON 3 COOPERATING ENTERPRISE BEANS

60 SEPTEMBER 27, 2000

L

this:
Figure 15 Deploy Application

Run the J2EE Application
The web server runs on port 8000 by default. To open thebonus.html page point your
browser tohttp://localhost:8000/BonusRoot/bonus.html , which is where the Deploy
tool put the HTML file.

• Fill in a social security number and multiplier.

• Click the Submit button.BonusServlet processes your data and returns an HTM
page with the bonus calculation on it.

Bonus Calculation

Soc Sec retrieved: 777777777
Bonus Amount Retrieved: 200.0

If you supply the same social security number twice, you will see something similar to

Bonus Calculation

Soc Sec passed in: 777777777
Multiplier passed in: 2
Duplicate primary key
LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 61

o a
es and
ute the

45) to
Lesson 4
JavaServer Pages Technology

JavaServer Pages (JSP) technology lets you put segments of servlet code directly int
static HTML page. When the JSP Page is loaded by a browser, the servlet code execut
the application server creates, compiles, loads, and runs a background servlet to exec
servlet code segments and return an HTML page or print an XML report.

This lesson changes the WAR file from Lesson 3 Cooperating Enterprise Beans (page
use a JSP Page instead ofBonusServlet .

• Create the JSP Page (page 62)

• Change bonus.html (page 66)

• Start the Platform and Tools (page 67)

• Remove the WAR File (page 67)

• Create New WAR FIle (page 67)

• Verify and Deploy the J2EE Application (page 68)

• Run the J2EE Application (page 70)

• More Information (page 71)
LESSON 4 JAVASERVER PAGES TECHNOLOGY

62 SEPTEMBER 27, 2000

vari-

ds

at-
code

mment
Create the JSP Page
A JSP Page looks like an HTML page with servlet code segments embedded between
ous forms of leading (<%) and closing (%>) JSP tags. There are noHttpServlet methods
such asinit , doGet , or doPost . Instead, the code that would normally be in these metho
is embedded directly in the JSP Page using JSP scriptlet tags.

The following JSP Page (Bonus.jsp) is equivalent to BonusServlet from Lesson 3 Cooper
ing Enterprise Beans (page 45). A more detailed description of the JSP tags follows the
listing. Note that JSP tags cannot be nested. For example, you cannot nest a JSP co
tag within a JSP scriptlet tag.

<HTML>
<HEAD>
<TITLE>Bonus Calculation</TITLE>
</HEAD>
 <%-- Comment
 Scriptlet for import statements
 <%@ indicates a jsp directive --%>
 <%@ page import="javax.naming.*" %>

<%@ page import="javax.rmi.PortableRemoteObject" %>
 <%@ page import="Beans.*" %>
 <%-- Comment
 Scriptlet to get the parameters,
 convert string to Integer to int for bonus
 calculation, and declare/initialize bonus
 variable. <% indicates a jsp scriptlet --%>
 <%! String strMult, socsec; %>
 <%! Integer integerMult; %>
 <%! int multiplier; %>
 <%! double bonus; %>
<%
 strMult = request.getParameter("MULTIPLIER");
 socsec = request.getParameter("SOCSEC");
 integerMult = new Integer(strMult);
 multiplier = integerMult.intValue();
 bonus = 100.00;
%>
 <%-- Comment
 Scriptlet to look up session Bean --%>
<%
 InitialContext ctx = new InitialContext();
 Object objref = ctx.lookup("calcs");
 CalcHome homecalc = (CalcHome)
 PortableRemoteObject.narrow(
 objref, CalcHome.class);
%>
LESSON 4 JAVASERVER PAGES TECHNOLOGY

SEPTEMBER 27, 2000 63
 <%-- Comment
 Scriptlet to create session Bean,
 call calcBonus method, and retrieve a database
 record by the social security number
 (primary key) --%>
<%
 try {
 Calc theCalculation = homecalc.create();
 Bonus theBonus = theCalculation.calcBonus(
 multiplier,
 bonus,
 socsec);
 Bonus record = theCalculation.getRecord(socsec);
%>
 <%-- Comment
 HTML code to display retrieved data
 on returned HTML page. --%>
 <H1>Bonus Calculation</H1>
 Social security number retrieved:
 <%= record.getSocSec() %>
 <P>
 Bonus Amount retrieved: <%= record.getBonus() %>
 <P>
 <%-- Comment
 Scriptlet to catch DuplicateKeyException --%>
<%
 } catch (javax.ejb.DuplicateKeyException e) {
 String message = e.getMessage();
%>
 <%-- Comment
 HTML code to display original data passed to JSP
 on returned HTML page --%>
 Social security number passed in: <%= socsec %>
 <P>
 Multiplier passed in: <%= strMult %>
 <P>
 Error: <%= message %>
 <%-- Comment
 Scriptlet to close try and catch block --%>
<%
 }
%>
 <%-- Comment
 HTML code to close HTML body and page --%>
</BODY>
</HTML>
LESSON 4 JAVASERVER PAGES TECHNOLOGY

64 SEPTEMBER 27, 2000

P

file.
f the
HTML.

nslated
pack-

u can
ope is
ave to
ations
or
Comments
The first seven lines ofBonus.jsp show straight HTML followed by a JSP comment. JS
comments are similar to HTML comments except they start with<%-- instead of<!-- ,
which is how they look in HTML. You can use either JSP or HTML comments in a JSP
HTML comments are sent to the client’s web browser where they appear as part o
HTML page, and JSP comments are stripped out and do not appear in the generated

Note: I found that putting a colon in a JSP comment as in<%-- Comment: Scriptlet

for import statement s . . . created a runtime error that went away when I took
the colon out.

<HTML>

<HEAD>

<TITLE>Bonus Calculation</TITLE>

</HEAD>

 <%-- Comment

 Scriptlet for import statements

 <%@ indicates a jsp directive --%>

Directives
JSP directives are instructions processed by the JSP engine when the JSP Page is tra
to a servlet. The directives used in this example tell the JSP engine to include certain
ages and classes. Directives are enclosed by the<%@ and%> directive tags.

 <%@ page import="javax.naming.*" %>
 <%@ page import="javax.rmi.PortableRemoteObject" %>
 <%@ page import="Beans.*" %>

Declarations
JSP declarations let you set up variables for later use in expressions or scriptlets. Yo
also declare variables within expressions or scriptlets at the time you use them. The sc
the entire JSP Page, so there is no concept of instance variables. That is, you do not h
declare instance variables to be used in more than one expression or scriptlet. Declar
are enclosed by the<%! and %> declaration tags. You can have multiple declarations. F
example,<%! double bonus; String text; %> .

 <%! String strMult, socsec; %>
 <%! Integer integerMult; %>
 <%! int multiplier; %>
 <%! double bonus; %>
LESSON 4 JAVASERVER PAGES TECHNOLOGY

SEPTEMBER 27, 2000 65

code is
. This
closed

except

y into
m the
Scriptlets
JSP scriptlets let you embed java code segments into the JSP page. The embedded
inserted directly into the generated servlet that executes when the page is requested
scriptlet uses the variables declared in the directives described above. Scriptlets are en
by the<% and%> scriptlet tags.

<%
 strMult = request.getParameter("MULTIPLIER");
 socsec = request.getParameter("SOCSEC");
 integerMult = new Integer(strMult);
 multiplier = integerMult.intValue();
 bonus = 100.00;
%>

Predefined Variables
A scriptlet can use the following predefined variables:session , request , response , out ,
and in . This example uses the request predefined variable, which is anHttpServletRe-

quest object. Likewise,response is an HttpServletResponse object, out is a Print-

Writer object, andin is aBufferedReader object.

Predefined variables are used in scriptlets in the same way they are used in servlets,
you do not declare them.

<%
 strMult = request.getParameter("MULTIPLIER");
 socsec = request.getParameter("SOCSEC");
 integerMult = new Integer(strMult);
 multiplier = integerMult.intValue();
 bonus = 100.00;
%>

Expressions
JSP expressions let you dynamically retrieve or calculate values to be inserted directl
the JSP Page. In this example, an expression retrieves the social security number fro
Bonus entity bean and puts it on the JSP page.

<H1>Bonus Calculation</H1>
 Social security number retrieved:
 <%= record.getSocSec() %>
 <P>
 Bonus Amount retrieved: <%= record.getBonus() %>
 <P>
LESSON 4 JAVASERVER PAGES TECHNOLOGY

66 SEPTEMBER 27, 2000

the JSP
who
se any
P-spe-

to

s

te an
JSP-Specific Tags
The JavaServer Pages 1.1 specification defines JSP-specific tags that let you extend
implementation with new features and hide a lot of complexity from visual designers
need to look at the JSP page and modify it. The JSP example in this lesson does not u
JSP-specific tags, but you will see an example of these tags in the next lesson. The JS
cific tags defined in the 1.1 specification are the following:

jsp:forward andjsp:include to instruct the JSP engine to switch from the current page
another JSP page.

jsp:useBean , jsp:setProperty , and jsp:getProperty let you embed and use JavaBean
technology inside a JSP Page.

jsp:plugin automatically downloads the appropriate Java Plug-In to the client to execu
applet with the correct Java platform.

Change bonus.html
The only change you need to make tobonus.html is to have theACTION parameter in the
HTML form invokeBonus.jsp instead ofBonusServlet .

<HTML>
<BODY BGCOLOR = "WHITE">
<BLOCKQUOTE>
<H3>Bonus Calculation</H3>
<FORM METHOD="GET" ACTION="Bonus.jsp">
<P>
Enter social security Number:
<P>
<INPUT TYPE="TEXT" NAME="SOCSEC"></INPUT>
<P>
Enter Multiplier:
<P>
<INPUT TYPE="TEXT" NAME="MULTIPLIER"></INPUT>
<P>
<INPUT TYPE="SUBMIT" VALUE="Submit">
<INPUT TYPE="RESET">
</FORM>
</FORM>
</BLOCKQUOTE>
</BODY>
</HTML>
LESSON 4 JAVASERVER PAGES TECHNOLOGY

67 SEPTEMBER 27, 2000

cape

e from
Start the Platform and Tools
To run this example, you need to start the J2EE server, the Deploy tool, and Clouds
database. In different windows, type the following commands:

j2ee -verbose
deploytool
cloudscape -start

If that does not work, type this from theJ2EE directory:

Unix
j2sdkee1.2.1/bin/j2ee -verbose
j2sdkee1.2.1/bin/deploytool
j2sdkee1.2.1/bin/cloudscape -start

Windows
j2sdkee1.2.1\bin\j2ee -verbose
j2sdkee1.2.1\bin\deploytool
j2sdkee1.2.1\bin\cloudscape -start

Remove the WAR File
Because a JSP page is added to the Web component, you have to delete the WAR fil
the previous lesson and create a new one with the JSP page in it.

Local Applications:

• Click the2BeansApp icon so you can see its application components.

• SelectBonusWar so it is outlined and highlighted.

• SelectDelete from theEdit menu.

Create New WAR FIle
File menu:

• SelectNew Web Component

Introduction :

• Read and ClickNext .
LESSON 4 JAVASERVER PAGES TECHNOLOGY

68 SEPTEMBER 27, 2000

.

ick
at the
War File General Properties:

Note: There appears to be a bug in the Deploy tool. Make sure you addBonus.jsp first
followed bybonus.html . If you addbonus.html first, Deploy tool putsbonus.html

whereBonus.jsp should go, andBonus.jsp wherebonus.html should go. If this hap-
pens, you can manually fix the problem by copying them to their correct locations
This is where they correctly belong after deployment:
~/j2sdkee1.2/public_html/JSPRoot/bonus.html

~/j2sdkee1.2/public_html/JSPRoot/WEB-INF/classes/Bonus.jsp

• SpecifyBonusWar for the display name.

• Click Add

• Go to theClientCode directory and addBonus.jsp ,

• Click Next

• Go to theClientCode directory and addbonus.html

• Click Finish .

War File General Properties:

• Click Next .

Choose Component Type:.

• Make sureDescribe a JSP is selected. Click Next.

Component General Properties:

• MakeBonus.jsp the JSP filename

• Make the display nameBonusJSP.

• Click Finish .

Inspecting window:

• Select Web Context

• SpecifyJSPRoot .

Verify and Deploy the J2EE Application
Before you deploy the application, it is a good idea to run the verifier. The verifier will p
up errors in the application components such as missing enterprise Bean methods th
compiler does not catch.

Verify:
LESSON 4 JAVASERVER PAGES TECHNOLOGY

69 SEPTEMBER 27, 2000

run-

e
x
.

the

s of

n in
• With 2BeansApp selected, chooseVerifier from theTools menu.

• In the dialog that pops up, clickOK. The window should tell you no tests failed.

• Close the verifier window because you are now ready to deploy the application.

Deploy:

• From theTools menu, chooseDeploy Application . A Deploy BonusAppdialog box
pops up.

• Verify that the Target Server selection is either localhost or the name of the host
ning the J2EE server.

Note:Do not check the Return Client Jar box. The only time you need to check this
box is when you deploy a stand-alone application for the client program. This exampl
uses an HTML and JSP page so this book should not be checked. Checking this bo
creates a JAR file with deployment information needed by a stand-alone application

• Click Next . Make sure the JNDI names showcalcs for CalcBean and bonus for
BonusBean . If they do not show these names, type them in yourself, and press
Return key.

• Click Next . Make sure the Context Root name showsJSPRoot . If it does not, type it in
yourself and press theReturn key.

• Click Next .

• Click Finish to start the deployment. A dialog box pops up that displays the statu
the deployment operation.

• When it is complete, the three bars on the left will be completely shaded as show
Figure 16. When that happens, clickOK.
LESSON 4 JAVASERVER PAGES TECHNOLOGY

70 SEPTEMBER 27, 2000

ge
Figure 16 Deploy Application

Run the J2EE Application
The web server runs on port 8000 by default. To open thebonus.html page point your
browser tohttp://localhost:8000/JSPRoot/bonus.html , which is where the Deploy
tool put the HTML file.

Note: Deploy tool putsBonus.jsp underpublic_html/JSPRoot , and bonus.html

under public_html/JSPRoot/WEB-INF/classes , which is opposite of where they
really belong. Manually copy them to their correct locations as follows:public_html/

JSPRoot/bonus.html andpublic_html/JSPRoot/WEB-INF/classes/Bonus.jsp.

• Fill in a social security number and multiplier

• Click theSubmit button.Bonus.jsp processes your data and returns an HTML pa
with the bonus calculation on it.
LESSON 4 JAVASERVER PAGES TECHNOLOGY

71 SEPTEMBER 27, 2000

this:

process

Java-
Bonus Calculation

Social Security number retrieved: 777777777
Bonus Amount Retrieved: 200.0

If you supply the same social security number twice, you will see something similar to

Bonus Calculation

Soc Sec passed in: 777777777
Multiplier passed in: 2
Error: Duplicate primary key

More Information
Another way to use JavaServer pages technology is in combination with JavaBeans tech-
nology where the JSP page presents a form to the user and calls on the JavaBean to
the data entered on the form. You can see an example at the following URL:http://

java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Client.fm.html#10649

This next URL takes you to an article with a great explanation of JavaServer pages and
Beans technologies:Building Your own JSP Components
http://developer.iplanet.com/viewsource/fields_jspcomp/fields_jspcomp.htm l
LESSON 4 JAVASERVER PAGES TECHNOLOGY

72 SEPTEMBER 27, 2000
LESSON 4 JAVASERVER PAGES TECHNOLOGY

SEPTEMBER 27, 2000 73

sign
iness
what
prob-

es pro-
ts with

ge what
beans
the
cleaner
intain,
Lesson 5
Adding JavaBeans Technology

to the Mix

You can use JavaBeans technology to put a JavaBean between the JSP page andCalcBean

session bean to get a better Model, View, Controller (MVC) separation. MVC is a de
pattern that consists of three kinds of objects. The Model provides the application bus
logic, the View is its screen presentation, and the Controller is an object that manages
happens when the user interacts with the View. A design pattern describes a recurring
lem and its solution where the solution is never exactly the same for every recurrence.

Lesson 4 JavaServer Pages Technology (page 61) is set up so the HTML and JSP pag
vide the screen presentation (View) and manage what happens when the user interac
the data (Controller). The entity and session bean (BonusBean andCalcBean) are the appli-
cation objects or Model.

This lesson uses a JSP page for the screen presentation (View), a JavaBean to mana
happens when the user interacts with the View (Controller), and the entity and session
for the application objects (Model). Separating the Controller from the View like this lets
JavaBean serve as a wrapper for the session bean and gives the example a much
MVC separation. An application that uses clear design patterns is easier to update, ma
and manage.

• About the Example (page 74)
• Create bonus.jsp (page 76)

• Create the JavaBeans Class (page 79)

• Bean Properties (page 81)

• Remove the WAR File (page 85)

• Create New WAR FIle (page 85)

• Verify and Deploy the J2EE Application (page 86)

• Run the J2EE Application (page 87)

• More Information (page 87)
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

74 SEPTEMBER 27, 2000

nsisted
ser

form,
page

ting
y looks

n with
About the Example
In Lesson 4 JavaServer Pages Technology (page 61), the application user interface co
of an HTML page with an HTML form. The HTML form calls the JSP page when the u
clicks theSubmit button on the HTML page.

Another way to create the user interface is with one JSP page that includes the HTML
JSP scriptlets, and JSP-specific tags for interacting with the JavaBean. When the JSP
loads, the HTML form is displayed and the scriptlet and JSP-specific tags for interac
with the JavaBean are executed. Because no data has been supplied yet, the displa
like Figure 17:

Figure 17 Whenbonus.jsp Loads

After the user enters some data and clicks theSubmit button, the HTML form is redisplayed
and the scriptlet and JSP-specific tags for interacting with the JavaBean execute agai
the data supplied. The display looks something like Figure 18. This is because theACTION

parameter for the HTML form onbonus.jsp recursively calls itself.
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000 75

d dis-
Figure 18 After User Enters Data and Clicks Submit

If the user enters the same social security number, a duplicate key error is returned an
played on the JSP page as shown in Figure 19.
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

76 SEPTEMBER 27, 2000

ion
s the
is in

Java-
Figure 19 Duplicate Key Error

Create bonus.jsp
The code forbonus.jsp is fairly straight forward because the code to look up the sess
bean and calculate the bonus is now in the JavaBean. The first part of the file contain
HTML code to create the form. The code to pass the HTML form data to the JavaBean
the second part of the file. The completebonus.jsp file appears below. Look it over before
going on to the discussion of its scriptlet and JSP-specific tags for interacting with the
Bean.

<HTML>
<BODY BGCOLOR = "WHITE">
<HEAD>
<TITLE>Bonus Calculation</TITLE>
</HEAD>

<BLOCKQUOTE>
<H3>Bonus Calculation</H3>
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000 77
<!--ACTION parameter calls this page-->
<FORM METHOD="GET" ACTION="bonus.jsp">

<P>
Enter social security Number:
<P>
<INPUT TYPE="TEXT" NAME="SOCSEC"></INPUT>
<P>

Enter Multiplier:
<P>
<INPUT TYPE="TEXT" NAME="MULTIPLIER"></INPUT>

<P>
<INPUT TYPE="SUBMIT" VALUE="Submit">
<INPUT TYPE="RESET">
</FORM>

<!--Scriptlet and JavaBeans Tags start here -->
<jsp:useBean id = "jbonus" class = "JBonusBean"/>

<%! String sMult, ssec; %>
<%
 sMult = request.getParameter("MULTIPLIER");
 ssec = request.getParameter("SOCSEC");
%>

<jsp:setProperty name = "jbonus" property="strMult" value="<%=sMult%>"/>
<jsp:setProperty name = "jbonus" property="socsec" value="<%=ssec%>"/>

Social security number retrieved:
<jsp:getProperty name="jbonus" property="socsec"/>

<P>
Bonus Amount retrieved:
<jsp:getProperty name="jbonus" property="bonusAmt"/>

<P>
Error messages:
<jsp:getProperty name = "jbonus" property="message"/>

</BLOCKQUOTE>

</BODY>
</HTML>
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

78 SEPTEMBER 27, 2000

put
r

d in

fol-
Specify the JavaBean
The following HTML tag specifies the JavaBean being used in this example. Theid param-
eter defines an alias to use to reference the JavaBean, and theclass parameter specifies the
JavaBeans class. In this example theid is jbonus and theclass is JBonusBean .

<jsp:useBean id = "jbonus" class = "JBonusBean"/>

Get the Data
The following JSP scriptlets retrieve the user-supplied data from the HTML form in
fields. The multiplier is stored in thesMult String variable, and the social security numbe
is stored in thessec String variable.

<%! String sMult, ssec; %>
<%
 sMult = request.getParameter("MULTIPLIER");
 ssec = request.getParameter("SOCSEC");
%>

Pass the Data to the JavaBean
The following HTML tags set two properties in the JavaBean. A property is a private fiel
the JavaBean class. The first line uses thejsp:setProperty name tag to set thestrMult

field in the JBonusBean class (aliased by thejbonus id) to the value stored in thesMult

variable. The second line performs a similar operation for thesocsec field in theJBonus-

Bean class.

<jsp:setProperty name = "jbonus" property="strMult" value="<%=sMult%>"/>
<jsp:setProperty name = "jbonus" property="socsec" value="<%=ssec%>"/>

The value="<%=ssec%>" expression sends the data contained in the ssec vari-
able to the socsec field in the JavaBean.

Retrieve Data from the JavaBean
Retrieving data from a JavaBean is similar to sending data to it. You use thejsp:getProp-

erty name tag and indicate the property (private field) whose data you want to get. The
lowing getProperty name tag retrieves the data stored in thesocsec private field of the
JBonusBean class (aliased by thejbonus id).

Social security number retrieved:
<jsp:getProperty name="jbonus" property="socsec"/>

The following tags perform similar operations for thebonusAmt andmessage fields in the
JBonusBean class.
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

79 SEPTEMBER 27, 2000

g and
e Jav-

ols that

et and

v-
<P>
Bonus Amount retrieved:
<jsp:getProperty name="jbonus" property="bonusAmt"/>

<P>
Error messages:
<jsp:getProperty name = "jbonus" property="message"/>

Create the JavaBeans Class
A JavaBeans class (or bean for short) looks just like any ordinary Java programming lan-
guage class. But to be a bean, a JavaBeans class must follow a set of simple namin
design conventions as outlined in the JavaBeans specification. Because beans follow th
aBeans specification, they can be accessed and managed by other programs and to
follow the same conventions.

In the Create bonus.jsp (page 76) section, HTML tags and JSP scriptlets are used to g
set data in the private fields of theJBonusBean class. This is possible because theJBonus-

Bean class follows the JavaBeans naming and design conventions.

This section describes theJBonusBean code and gives you a very simple introduction to Ja
aBeans technology as it is used with JSP pages. Visit the JavaBeans home page athttp://

java.sun.com/beans/index.html for further information on JavaBeans technology.

Here is theJBonusBean class in its entirety. A discussion of its pertinent parts follows.

import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import Beans.*;

public class JBonusBean {
 private String strMult, socsec, message;
 private double bonusAmt;
 CalcHome homecalc;

 public JBonusBean() {
 try{
 InitialContext ctx = new InitialContext();
 Object objref = ctx.lookup("calcs");
 homecalc = (CalcHome)
 PortableRemoteObject.narrow(
 objref, CalcHome.class);
 } catch (javax.naming.NamingException e) {
 e.printStackTrace();
 }
 }
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

80 SEPTEMBER 27, 2000
 public double getBonusAmt() {
 if(strMult != null){
 Integer integerMult = new Integer(strMult);
 int multiplier = integerMult.intValue();
 try {
 double bonus = 100.00;
 Calc theCalculation = homecalc.create();
 Bonus theBonus = theCalculation.calcBonus(
 multiplier, bonus, socsec);
 Bonus record = theCalculation.getRecord(
 socsec);
 bonusAmt = record.getBonus();
 socsec = record.getSocSec();
 } catch (javax.ejb.DuplicateKeyException e) {
 message = e.getMessage();
 } catch (javax.ejb.CreateException e) {
 e.printStackTrace();
 } catch (java.rmi.RemoteException e) {
 e.printStackTrace();
 }
 return this.bonusAmt;
 } else {
 this.bonusAmt = 0;
 this.message = "None.";
 return this.bonusAmt;
 }
 }

 public String getMessage(){
 return this.message;
 }
 public String getSocsec(){
 return this.socsec;
 }
 public String getStrMult(){
 return this.strMult;
 }
 public void setSocsec(String socsec) {
 this.socsec = socsec;
 }
 public void setStrMult(String strMult) {
 this.strMult = strMult;
 }
}

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

81 SEPTEMBER 27, 2000

d tools
appear-
tions.
ssible

-

ed in
Bean Properties
Properties define the data that a JavaBean makes accessible to other programs an
through get and set methods. The data might do things such as define the JavaBeans
ance or behavior, or be used in or the result of a series of calculations and computa
Properties are actually private class fields that should always be private and only acce
through get and set methods.

The following code segment shows the private properties for theJBonusBean class. The
JBonusBean class has a correspondingget<property> method for each field and corre
spondingset<property> methods for thestrMult andsocsec fields.

public class JBonusBean {

 private String strMult, socsec, message;

 private double bonusAmt;

Constructor
TheJBonusBean constructor looks up the session Bean.

 public JBonusBean() {
 try{
 InitialContext ctx = new InitialContext();
 Object objref = ctx.lookup("calcs");
 homecalc = (CalcHome)
 PortableRemoteObject.narrow(
 objref, CalcHome.class);
 } catch (javax.naming.NamingException e) {
 e.printStackTrace();
 }
 }

Set Methods
JBonusBean has two setter methods (methods prefixed with the wordset). Setter methods
set properties (private fields) to specified values. The two setter methods aresetSocsec and
setStrMult for setting the socsec and strMult private fields (JavaBean prop-

erties) .

In this example, the values used to set thesocsec andstrMult properties come from the
setProperty name tags in the JSP page. The J2EE server uses the information suppli
the following setProperty name tags to locate the corresponding set methods in theJBo-

nusBean (aliased by thejbonus id):
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

82 SEPTEMBER 27, 2000

e

pital-

in,
<jsp:setProperty name = "jbonus" property="strMult" value="<%=sMult%>"/>
<jsp:setProperty name = "jbonus" property="socsec" value="<%=ssec%>"/>

In the JBonusBean class, theset<property> methods follow naming conventions so th
J2EE server can map thesetProperty name tags in the JSP file to the correctset<prop-

erty> methods to pass the data from the JSP page to the JavaBean.

With setter methods, the method name consists of the wordset and the property name. The
property name is the name of one of theJBonusBean private fields. While field names begin
with a lowercase letter by convention, the second word in a method name is always ca
ized. So to set thesocsec private field, the method name issetSocsec . The J2EE server
maps the uppercaseSocsec in the method name to the lowercasesocsec field. Setter meth-
ods have no return value and have one argument of the appropriate type.

 public void setSocsec(String socsec) {

 this.socsec = socsec;

 }

 public void setStrMult(String strMult) {

 this.strMult = strMult;

 }

Get Methods
JBonusBean has four getter methods (methods prefixed with the wordget). Getter methods
get and return property values (private field values). The four getter methods aregetBo-

nusAmt , getMessage , getSocsec , andgetStrMult for returning data from thebonusAmt ,
message , socsec , andstrMult private fields (JavaBean properties).

In this example, the values used to set thebonusAmt andmessage fields come from theget-

BonusAmt method. The JSP page retrieves data from theJBonusBean properties using the
following getProperty name tags. The JSP page retrieves only the values it is interested
so you might notice that although there is aJBonusBean property for the multiplier (thestr-

Mult field), that value is not retrieved by the JSP page.

Social security number retrieved:
<jsp:getProperty name="jbonus" property="socsec"/>

<P>
Bonus Amount retrieved:
<jsp:getProperty name="jbonus" property="bonusAmt"/>

<P>
Error messages:
<jsp:getProperty name = "jbonus" property="message"/>
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

83 SEPTEMBER 27, 2000

ge can
gu-
d

y data,
lue for

dis-
Getter methods follow the same naming conventions as setter methods so the JSP pa
retrieve data from theJBonusBean .Getter methods always have a return value and no ar
ments. You might notice that although thegetBonusAmt method sets property values an
does not really need to return a value in this example, it returnsthis.bonusAmt to avoid a
runtime J2EE server error.

ThegetBonusAmt method uses anif-else statement to handle the case where nostrMult

value is supplied. When the JSP page is first loaded, the end user has not supplied an
but all tags and scriptlets on the page are executed anyway. In this event, the data va
thestrMult property passed toJBonusBean is null , which results in a null multiplier and a
null bonusAmt value. A runtime server error occurs when the JSP page gets and tries to
play thenull bonusAmt value. To prevent this runtime error,bonusAmt is set to 0 in the event
a null strMult value is received from the JSP page.

 public double getBonusAmt() {

 if(strMult != null){

 Integer integerMult = new Integer(strMult);

 int multiplier = integerMult.intValue();

 try {

 double bonus = 100.00;

 Calc theCalculation = homecalc.create();

 Bonus theBonus = theCalculation.calcBonus(

 multiplier, bonus, socsec);

 Bonus record = theCalculation.getRecord(

 socsec);

 bonusAmt = record.getBonus();

 socsec = record.getSocSec();

 } catch (javax.ejb.DuplicateKeyException e) {

 message = e.getMessage();

 } catch (javax.ejb.CreateException e) {

 e.printStackTrace();

 } catch (java.rmi.RemoteException e) {

 e.printStackTrace();

 }

 return this.bonusAmt;

 } else {

 this.bonusAmt = 0;

 this.message = "None.";

 return this.bonusAmt;

 }

 }

 public String getMessage(){
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

84 SEPTEMBER 27, 2000

cape
 return this.message;

 }

 public String getSocsec(){

 return this.socsec;

 }

 public String getStrMult(){

 return this.strMult;

 }

 public void setSocsec(String socsec) {

 this.socsec = socsec;

 }

 public void setStrMult(String strMult) {

 this.strMult = strMult;

 }

Start the Platform and Tools
To run this example, you need to start the J2EE server, the Deploy tool, and Clouds
database. In different windows, type the following commands:

j2ee -verbose
deploytool
cloudscape -start

If that does not work, type this from theJ2EE directory:

Unix
j2sdkee1.2.1/bin/j2ee -verbose
j2sdkee1.2.1/bin/deploytool
j2sdkee1.2.1/bin/cloudscape -start

Windows
j2sdkee1.2.1\bin\j2ee -verbose
j2sdkee1.2.1\bin\deploytool
j2sdkee1.2.1\bin\cloudscape -start
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000 85

te the
Remove the WAR File
Because you are adding a completely new class to the application, you have to dele
War file from the previous lesson and create a new one.

Local Applications:

• Click the2BeansApp icon so you can see its application components.

• SelectBonusWar so it is outlined and highlighted.

• SelectDelete from theEdit menu.

Create New WAR FIle
File menu:

• SelectNew Web Component .

Introduction :

• Read and ClickNext .

War File General Properties:

• Specify BonusWar for the display name.

• Click Add.

• In the next window, go to theClientCode directory, and addbonus.jsp .

• Click Next , go to theClientCode directory, addJBonusBean.class

• Click Finish .

Note: Make sure you addbonus.jsp before you addJBonusBean.class .

War File General Properties:

• Click Next .

Choose Component Type:.

• MakeBonus.jsp the JSP filename

• Make sureDescribe a JSP is selected.

• Click Next.

Component General Properties:

• Make the display nameBonusJSP.

• Click Finish .

Inspecting window:

• Select Web Context
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

86 SEPTEMBER 27, 2000

ick
at the

d

run-

e
x
.

the

s of

n in
• SpecifyJSPRoot .

Verify and Deploy the J2EE Application
Before you deploy the application, it is a good idea to run the verifier. The verifier will p
up errors in the application components such as missing enterprise bean methods th
compiler does not catch.

Verify:

• With 2BeansApp selected, chooseVerifier from theTools menu.

• In the dialog that pops up, clickOK. The window should tell you there were no faile
tests. That is, if you used the session bean code provided for this lesson.

• Close the verifier window because you are now ready to deploy the application.

Note: In the Version 1.2.1 software you might get atests app.WebURI error. This
means the deploy tool did not put a.war extension on theWARfile duringWARfile cre-
ation. This is a minor bug and the J2EE application deploys just fine in spite of it.

Deploy:

• From theTools menu, chooseDeploy Application . A Deploy BonusAppdialog box
pops up.

• Verify that the Target Server selection is either localhost or the name of the host
ning the J2EE server.

Note:Do not check the Return Client Jar box. The only time you need to check this
box is when you deploy a stand-alone application for the client program. This exampl
uses an HTML and JSP page so this book should not be checked. Checking this bo
creates a JAR file with deployment information needed by a stand-alone application

• Click Next . Make sure the JNDI names showcalcs for CalcBean and bonus for
BonusBean . If they do not show these names, type them in yourself, and press
Return key.

• Click Next . Make sure the Context Root name showsJSPRoot . If it does not, type it in
yourself and press theReturn key.

• Click Next .

• Click Finish to start the deployment. A dialog box pops up that displays the statu
the deployment operation.

• When it is complete, the three bars on the left will be completely shaded as show
Figure 20. When that happens, clickOK.
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000 87

ge

n.
Figure 20 Deploy Application

Run the J2EE Application
The web server runs on port 8000 by default. To open thebonus.jsp page point your
browser tohttp://localhost:8000/JSPRoot/bonus.jsp , which is where the Deploy tool
put the JSP page.

• Fill in a social security number and multiplier

• Click theSubmit button.Bonus.jsp processes your data and returns an HTML pa
with the bonus calculation on it.

See About the Example (page 74) for screen captures showing the application in actio

More Information
Visit the JavaBeans home page athttp://java.sun.com/beans/index.html for further
information on JavaBeans technology.
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

88 SEPTEMBER 27, 2000
LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000 89

text-
APIs.

d han-

ceive
ut the
the
klet,
enta-
ols to
ctive
lso

e Mix
ata is
Lesson 6
Extensible Markup Language

(XML)

eXtensible Markup Language (XML) is a language for representing and describing
based data so the data can be read and handled by any program or tool that uses XML
Programs and tools can generate XML files that other programs and tools can read an
dle.

For example, a company might use XML to produce reports so different parties who re
the reports can handle the data in a way that best suits their needs. One party might p
XML data through a program to translate the XML to HTML so it can post the reports to
web, another party might put the XML data through a tool to produce a stockholder boo
and yet another party might put the XML data through a tool to create a marketing pres
tion. Same data, different needs, and an array of platform-independent programs and to
use the same data in any number of different ways. These highly flexible and cost-effe
capabilities are available through XML tags, Document Type Definitions (DTDs) a
known as XML schemas, and XML APIs.

This lesson adapts the example from Lesson 5 Adding JavaBeans Technology to th
(page 73) so the JavaBean class uses XML APIs to print a simple report where the d
marked with XML tags.

• Marking and Handling Text (page 90)

• Change the JavaBean Class (page 90)

• The APIs (page 95)

• Update and Run the Application (page 96)

• More Information (page 96)
LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

90 SEPTEMBER 27, 2000

file.
s to
nd so

nition
data

an
the

ro-
rrect
ore

ro-
the

ows
what

This
erent
used.
it is

mation
trans-

ssion
Marking and Handling Text
With XML you define markup tags to represent the different elements of data in a text
For example, if you have a text file that consists of a short article, you define XML tag
represent the title, author, first level heads, second level heads, bullet lists, article text, a
on. Once the data is represented by XML tags, you can create a Document Type Defi
(DTD) and/or eXtensible Style sheet Language (XSL) file to describe how you want the
handled.

• XSL styles let you do things like map XML to HTML. For example, you can define
XML title tag to represent the title of an article, and create an XSL file that maps
XML title tag to the HTML H1 heading tag for display to the end user.

• A DTD (also known as an XML schema) contains specifications that allow other p
grams to validate the structure of an XML file to ensure the tagged data is in the co
format. For example, a DTD for an article might allow one title tag, but zero or m
first and second level heads.

Any program capable of parsing XML can check for well-formed XML tags, and any p
gram capable of applying XSL styles or DTD specifications to XML data can handle
tagged data intelligently. For example, if an article has two title tags, but the DTD all
only one, the program returns an error. Checking an XML document against a DTD is
is known as verification.

The nice thing about XML is the tagging is separate from the style sheet and DTD.
means you can have one XML document and one to many style sheets or DTDs. Diff
style sheets let you have a different presentation depending on how the document is
For example, an article on XML can have a style sheet for the different web sites where
to be published so it will blend with the look and feel of each site.

The current J2EE release does not have an eXtensible Style sheet Language Transfor
(XSLT) engine so it is not currently possible to use a style sheet to do things such as
form an XML document into HTML for display.

Change the JavaBean Class
In this lesson, agenXML method is added to theJBonusBean class to generate the XML doc-
ument shown below. A description of the code to generate this file comes after the discu
here of the XML document tags and structure.

<?xml version="1.0"?>
<report>
 <bonusCalc ssnum="777777777" bonusAmt="300.0" />
</report>
LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

SEPTEMBER 27, 2000 91

read
log

ata.

s.
to

e
ve a

pecifi-

d to
alues

is

gs that
lowing
tead.
tags.
d tag
XML Prolog
The<?xml version=”1.0”?> line is the XML prolog. An XML file should always start with
a prolog that identifies the document as an XML file. The prolog is not required and is
only by humans, but it is good form to include it. Besides version information, the pro
can also contain encoding and standalone information.

• Encoding information: indicates the character set used to encode the document d
Uncompressed Unicode is shown as<?xml version=”1.0” encoding=”UTF-8”?>.

The Western European and English language character set is indicated by:
<?xml version=”1.0” encoding=”ISO-8859-1”?>.

• Standalone information: indicates if this document uses information in other file
For example, an XML document might rely on a style sheet for information on how
create the user interface in HTML, or a DTD for valid tag specifications.

Document Root
The <report> tag is the first XML tag in this file. It is the top-level XML tag and marks th
beginning of the document data. Another name for this level tag is root. XML tags ha
matching end tag, so the end of this document has the corresponding</report> tag to close
the pair.

You can give XML tags any name you want. This example usesreport because the XML
file is a bonus report. It could just as well be named<root> or <begin> or whatever. The
name takes on meaning in the style sheet and DTD because that is where you assign s
cations to tags by their names.

Child Nodes
The <bonusCalc> tag represents the bonus report. This tag is a child node that is adde
the root. It uses attributes to specify the social security number and bonus amount v
(ssnum andbonusAmt). You can define a DTD to check that thebonusCalc tag has thessnum

attribute andbonusAmt attributes, and have your program raise an error if an attribute
missing or if attributes are present that should not be there.

<bonusCalc ssnum="777777777" bonusAmt="300.0" />

Other XML Tags
There are a number of ways to tag data. This example uses empty tags, which are ta
do not enclose data, use attributes to specify data, and are closed with a slash. The fol
empty tag from this example, could be created so the data is enclosed by XML tags ins
The XML parser checks that all data enclosed by data has what are called well-formed
Well-formed tags consist of an opening tag and a closing tag as shown in the well-forme
example below.
LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

92 SEPTEMBER 27, 2000

ssing

pro-

t ver-
ion.

-
s the
be
and

.

an’s

red
Empty tag:
<bonusCalc ssnum="777777777" bonusAmt="300.0" />

Well-formed tags:
<bonusCalc>
 <ssnum>"777777777"</ssnum>
 <bonusAmt>300.0</bonusAmt>
</bonusCalc>

XML comment tags look just like HTML comment tags.

 <!-- Bonus Report -->

 <bonusCalc ssnum="777777777" bonusAmt="300.0" />

Processing Instructions give commands or information to an application that is proce
the XML data. Processing instructions have the format<? target instructions?> where
target is the name of the application doing the processing, andinstructions embodies the
information or commands for the application to process. The prolog is an example of a
cessing instruction, wherexml is the target andversion=”1.0” embodies the instructions.
Note that the target namexml is reserved for XML standards.

<?xml version=”1.0”?>

You can also use processing instructions to do things like distinguish between differen
sions of a presentation such as the high-level executive version and the technical vers

JavaBean Code
The JBonusBean class for this lesson hasimport statements for creating the XML docu
ment, handling errors, and writing the document out to the terminal. This lesson write
XML output to the terminal to keep things simple. The XML output could just as well
written to a file, but you would need to configure your browser to use Java Plug-In
include a security policy file granting the JavaBean code permission to write to the file

To generate the XML file for this lesson, you need to import theElementNode andXmlDocu-

ment classes. You also need theStringWriter andIOException classes to write the XML
data to the terminal.

import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import Beans.*;
import java.io.StringWriter;
import java.io.IOException;
import com.sun.xml.tree.ElementNode;
import com.sun.xml.tree.XmlDocument;

This version of theJBonusBean class has one more instance variables. The session be
remote interface,theCalculation , needs to be accessed from thegetBonusAmt andgenXML

methods. This is becausegenXML reads the database to generate XML for all records sto
in the database and has to be able to access the session bean’sgetRecord method.
LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

SEPTEMBER 27, 2000 93

-
n

node
hich

es the
t to a

us
ond
Calc theCalculation;

The JBonusBean .genXML method is called from thegetBonusAmt method after the process
ing completes in the eventstrMult is notnull . The first thing this method does is create a
XMLDocument object and the root node, and adds the root to the document. The root
represents the top-level point in the document hierarchy (or tree) and is the point at w
processing begins.

 private void genXML(){
 Bonus records = null;
 //Create XML document
 XmlDocument doc = new XmlDocument();
 //Create node
 ElementNode root = (ElementNode)
 doc.createElement("report");
 //Add node to XML document
 doc.appendChild(root);

The try and catch block that comes next, gets the record out of the database, retriev
bonus amount and social security number from the record, converts the bonus amoun
string, creates a child node (bonusCalc), and adds the social security number and bon
amount to thebonusCalc child node as attributes. The child node represents the sec
level in the document hierarchy or tree, and the attributes represent the third level.

 try{
 //Get database record
 records = theCalculation.getRecord(socsec);

//Retrieve the social security number from record
 String ssRetrieved = records.getSocSec();
 //Retrieve bonus amount from record
 double bRetrieved = records.getBonus();
 //Convert double to string
 Double bonusObj = new Double(bRetrieved);
 String bString = bonusObj.toString();
 //Create child node
 ElementNode bonusCalc = (ElementNode)
 doc.createElement("bonusCalc");
 //Add attributes to child node
 bonusCalc.setAttribute("ssnum", ssRetrieved);
 bonusCalc.setAttribute("bonusAmt", bString);
 //Add child node to root
 root.appendChild(bonusCalc);
 } catch (java.rmi.RemoteException e) {
 e.printStackTrace();
 }

The last part of thegenXML method creates aStringWriter object, writes the document
hierarchy or tree to theStringWriter object, and writes theStringWriter object to the ter-
minal.
LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

94 SEPTEMBER 27, 2000

odel
ple.
ess
ainst
 try{
 StringWriter out = new StringWriter();
 doc.write(out);
 System.out.println(out);
 } catch (java.io.FileNotFoundException fe) {
 System.out.println("Cannot write XML");
 } catch (IOException ioe) {
 System.out.println("cannot write XML");
 }

The hierarchy or tree structure for the XML document is called the Document Object M
(DOM). Figure 21 shows a simplified representation of the DOM for this lesson’s exam
The API calls in thegenXML method create the DOM and you can make API calls to acc
the DOM to do such things as add, delete, and edit child nodes, or validate the DOM ag
a DTD. You can also create a DOM from an XML file.

Figure 21 Document Object Model (DOM)

Document Root
report

Child Node
bonusCalcs

Bonus Amount Attribute
bonusAmt

Social Security Number Attribute
ssnum
LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

SEPTEMBER 27, 2000 95

nd
Is.
L text

t pro-

OM
I is
ory,

tree
API
n in-

eth-

ange.
The APIs
The j2ee.jar file that comes with your J2EE installation provides APIs for parsing a
manipulating XML data. The JAR file currently provides SAX, DOM, and J2EE XML AP
You can use whichever API best suits your needs because as shown in Figure 22, XM
is independent of the platform and language of its creation..

Figure 22 Platform and Language Neutral Text

SAX and DOM
The SAX API is an event-driven, serial-access mechanism that does element by elemen
cessing.

The DOM API provides a relatively familiar tree structure of objects. You can use the D
API to manipulate the hierarchy of application objects it encapsulates. The DOM AP
ideal for interactive applications because the entire object model is present in mem
where it can be accessed and manipulated by the user.

Constructing the DOM requires reading the entire XML structure and holding the object
in memory, so it is much more CPU and memory intensive. For that reason, the SAX
will tend to be preferred for server-side applications and data filters that do not require a
memory representation of the data.

Note: You can find more information on the DOM and SAX APIs at this location:
http://java.sun.com/xml/docs/tutorial/overview/3_apis.html

J2EE
The platform-independent J2EE XML APIs use a DOM tree and provide a wealth of m
ods for manipulating the DOM hierarchy. The J2EE XML APIs are in the packagecom.sun

and were used in this lesson’s example. Please note that these APIs are subject to ch

Application written in
Java programming

language running on
Unix.

Application written in
C++ running on

Windows.
DOM SAX

XML

HTTP

DTD
LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

96 SEPTEMBER 27, 2000

simply

ge

arch
Update and Run the Application
Because all you have done in this lesson is change the JBonusBean class, you can
update and redeploy the application.

• Local Applicatons Window: Highlight the2BeansApp application.

• Tools Menu: Select Update and Redeploy Application.

Note:TheBonusApp application from the previous lesson is automatically uninstalled

The web server runs on port 8000 by default. To open thebonus.jsp page point your
browser tohttp://localhost:8000/JSPRoot/bonus.jsp , which is where the Deploy tool
put the JSP page.

• Fill in a social security number and multiplier

• Click theSubmit button.Bonus.jsp processes your data and returns an HTML pa
with the bonus calculation on it.

More Information
There is a lot of information about XML on the Web that you can access with a good se
engine. A very good web site iswww.xml.com . The java.sun.com site has an XML tutorial
at http://java.sun.com/xml/docs/tutorial/index.html .
LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

SEPTEMBER 27, 2000 97

the
e the
Con-

ntainer
lt con-

imple-
naged

beans

naged
Lesson 7
JDBC Technology and Bean-

Managed Persistence

Up to this point, the example J2EE application has written data to and read data from
underlying Cloudscape database without your writing and SQL code. This is becaus
container has been handling data storage and retrieval on behalf of the entity bean.
tainer-managed persistence is the term used to describe the situation where the co
handles data storage and retrieval. This lesson shows you how to override the defau
tainer-managed persistence and implement bean-managed persistence.

Bean-managed persistence is when you override container-managed persistence and
ment entity or session bean methods to use the SQL commands you provide. Bean-ma
persistence can be useful if you need to improve performance or map data in multiple
to one row in a database table.

This lesson changes the entity bean in the example J2EE application to use bean-ma
persistence.

• Bean Lifecycle (page 98)

• Change the BonusBean Code (page 99)

• Change the CalcBean and JBonusBean Code (page 106)

• Create the Database Table (page 107)

• Remove the JAR File (page 109)

• Verify and Deploy the Application (page 111)

• Run the Application (page 112)

• More Information (page 113)
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

98 SEPTEMBER 27, 2000

sBean

ing a
ith the
f this
ty

exam-

s are

ext
iner
on-

the
has a

urn

me

ean
if no

the
lude

ome
-

Bean Lifecycle
The BonusBean (page 30) section in Lesson 3 shows the container-managed Bonu
class. The only methods with implementations aregetBonus to return the bonus value,get-

SocSec to return the social security number, andejbCreate to create an entity bean with the
bonus andsocsec values passed to it. The container takes care of such things as creat
row in the database table for the data, and ensuring the data in memory is consistent w
data in the table row. With bean-managed persistence, you have to implement all o
behavior yourself, which means adding JDBC and SQL code, and implementing the emp
methods in the container-managed example.

A session or an entity bean consists of business methods and lifecycle methods. In the
ple,CalcBean has two business methods,calcBean andgetRecord , andBonusBean has two
business methods,getBonus andgetSocsec . Both CalcBean andBonusBean have the fol-
lowing lifecycle methods. Business methods are called by clients and lifecycle method
called by the bean’s container.

• setEntityContext : The container calls this method first to pass an entity cont
object to the entity bean. The entity context is dynamically updated by the conta
so even if the entity bean is invoked by many clients over its lifetime, the context c
tains current data for each invocation. A session bean has a correspondingsetSes-

sionContext method that performs a similar function as thesetEntityContext

method.

• ejbCreate : The container calls this method when a client calls a create method in
bean’s home interface. For each create method in the home interface, the bean
correspondingejbCreate method with the same signature (parameters and ret
value).

• ejbPostCreate: The container calls this method after theejbCreate method completes.
There is anejbPostCreate method for every ejbCreate method that takes the sa
arguments as its corresponding create method. However,ejbPostCreate has no return
value. UseejbPostCreate to implement any special processing needed after the b
is created, but before it becomes available to the client. Leave this method empty
special processing is needed.

• ejbRemove : The container calls this method when a client calls a remove method in
bean’s home interface. The example J2EE application for this tutorial does not inc
a remove method in the home interface.

• unsetEntityContext : The container calls this method after theejbRemove has been
called to remove the entity bean from existence. Only entity beans have anunsetEn-

tityContext method. A session bean does not have a correspondingunsetSession-

Context method.

• ejbFindByPrimaryKey : The container calls this method when a client calls thefind-

ByPrimaryKey method in the bean’s home interface. For each find method in the h
interface, the bean has a correspondingejbFind< type > method with the same signa
ture (parameters and return value).
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 99

an’s
uch as

r
-

nd
in and

not

ersis-

g
a
to
• ejbLoad andejbStore : The container calls these methods to synchronize the be
state with the underlying database. When a client sets or gets data in the bean s
in the case of a get method, the container callsejbStore to send the object data to the
database and callsejbLoad to read it back in again. When a client calls a finde
method, the container callsejbLoad to initialize the bean with data from the underly
ing database.

• ejbActivate andejbPassivate : The container calls these methods to activate a
passivate the bean’s state. Activation and passivation refer to swapping a bean
out of temporary storage to free memory, which might occur if a given bean has
been called by a client in a long time. Implementations forejbPassivate might
include things like closing connections or files used by the bean, and forejbActivate

might include things like reopening those same connections or files.

Change the BonusBean Code
This section walks through the bean-managed persistenceBonusBean code. The first thing
you will notice is that there is a lot more code here than for the container-managed p
tence version.

Import Statements
TheInitialContext , DataSource , andConnection interfaces are imported for establishin
a connection to the database. ThePreparedStatement interface is imported to be used as
template to create a SQL request. TheResultSet interface is imported to manage access
data rows returned by a query. TheFinderException and SQLException classes are
imported to handle lookup and database access exceptions.

package Beans;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import javax.ejb.FinderException;
import java.sql.SQLException;
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

100 SEPTEMBER 27, 2000

ections.
ou
ol. In

are

it),
Instance Variables
The instance variables added to this lesson let you establish and close database conn
The stringjava:comp/env/jdbc/BonusDB indicates the resource reference name, which y
also specify when you add the entity bean to the J2EE application using the Deploy to
this example, the resource reference is an alias to the Cloudscape database (CloudscapeDB)
where the table data is stored.

Later, you will create theBONUStable in theCloudscapeDB , and during deployment, you will
mapjdbc/BonusDB to jdbc/CloudscapeDB .

public class BonusBean implements EntityBean {
 private EntityContext context;
 private Connection con;
 private String dbName =
 "java:comp/env/jdbc/BonusDB";
 private InitialContext ic = null;
 private PreparedStatement ps = null;
 private double bonus;
 private String socsec;

Business Methods
The business methods have not changed for this lesson except for calls toSys-

tem.out.println , which let you see the order in which business and lifecycle methods
called at runtime.

 public double getBonus() {
 System.out.println("getBonus");
 return this.bonus;
 }
 public String getSocSec() {
 System.out.println("getSocSec");
 return this.socsec;
 }

LifeCycle Methods
These methods include calls toSystem.out.println so you can see the order in which
business and lifecycle methods are called at runtime.

ejbCreate

The ejbCreate method signature for this lesson throwsRemoteException andSQLException

in addition toCreateException . SQLException is needed because theejbCreate method
for this lesson provides its own SQL code (it does not rely on the container to provide
andRemoteException is needed because this method performs remote access.

One thing to notice about this class is that it returns aString value which is the primary key,
but the declaration for this method in the home interface expects to receive aBonus class
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 101

-

instance. The container uses the primary key returned by this method to create theBonus

instance.

public String ejbCreate(double bonus, String socsec)
 throws RemoteException,
 CreateException,
 SQLException {
 this.socsec=socsec;
 this.bonus=bonus;

 System.out.println("Create Method");
 try {
//Establish database connection
 ic = new InitialContext();

DataSource ds = (DataSource) ic.lookup(dbName);
 con = ds.getConnection();
//Use PreparedStatement to form SQL INSERT statement
//to insert into BONUS table
 ps = con.prepareStatement(
 "INSERT INTO BONUS VALUES (? , ?)");
//Set 1st PreparedStatement value marked b y ? , with
//socsec and the 2nd value marked by ?) with bonus
 ps.setString(1, socsec);
 ps.setDouble(2, bonus);
 ps.executeUpdate();
 } catch (javax.naming.NamingException ex) {
 ex.printStackTrace();
 } finally {
//Close database connection
 ps.close();
 con.close();
 }
//Return primary key
 return socsec;
 }

ejbPostCreate

This method has the same signature asejbCreate , but no implementation because this sim
ple example performs no post create processing or initialization.

 public void ejbPostCreate(double bonus,
 String socsec)
 throws RemoteException,
 CreateException,
 SQLException {
 System.out.println("Post Create");
 }
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

102 SEPTEMBER 27, 2000

yKey
keys if
ploy-
ust
ejbFindByPrimaryKey

The container-managed version of BonusBean did not include an ejbFindByPrimar
implementation because the container can locate database records by their primary
you specify container-managed persistence and provide the primary key field during de
ment. In this lesson,BonusBean is deployed with bean-managed persistence so you m
provide an implementation for this method and throw theSQLException . The container-
managed version throwsRemoteException andFinderException only.

If the find operation locates a record with the primary key passed toejbFindByPrimaryKey ,
the primary key value is returned so the container can call theejbLoad method to initialize
BonusBean with the retrievedbonus andsocsec data.

One thing to notice about this class is that it returns aString value which is the primary key,
but the declaration for this method in the home interface expects to receive aBonus class
instance. The container uses the primary key returned by this method to create theBonus

instance.

public String ejbFindByPrimaryKey(String primaryKey)
throws RemoteException,FinderException,

 SQLException {
 System.out.println("Find by primary key");
 try {
//Establish database connection
 ic = new InitialContext();

DataSource ds = (DataSource) ic.lookup(dbName);
 con = ds.getConnection();
//Use PreparedStatement to form SQL SELECT statement
//to select from BONUS table
 ps = con.prepareStatement(

"SELECT socsec FROM BONUS WHERE socsec = ? ");
 ps.setString(1, primaryKey);
//Use ResultSet to capture SELECT statement results
 ResultSet rs = ps.executeQuery();
//If ResultSet has a value, the find was successful,
//and so initialize and return key
 if(rs.next()) {
 key = primaryKey;
 } else {
 System.out.println("Find Error");
 }
 } catch (javax.naming.NamingException ex) {
 ex.printStackTrace();
 } finally {
//Close database connection
 ps.close();
 con.close();
 }
//Return primary key
 return key;
 }
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 103

to the
ejbLoad

This method is called after a successful call toejbFindByPrimaryKey to load the retrieved
data and synchronize the bean data with the database data.

 public void ejbLoad() {
 System.out.println("Load method");
 try {
//Establish database connection
 ic = new InitialContext();

DataSource ds = (DataSource) ic.lookup(dbName);
 con = ds.getConnection();
//Use PreparedStatement to form SQL SELECT statement
//to select from BONUS table
 ps = con.prepareStatement(
 "SELECT * FROM BONUS WHERE SOCSEC = ?");
 ps.setString(1, this.socsec);
//Use ResultSet to capture SELECT statement results
 ResultSet rs = ps.executeQuery();
//If ResultSet has a value, the find was successful
 if(rs.next()){
 this.bonus = rs.getDouble(2);
 } else {
 System.out.println("Load Error");
 }
 } catch (java.sql.SQLException ex) {
 ex.printStackTrace();
 } catch (javax.naming.NamingException ex) {
 ex.printStackTrace();
 } finally {
 try {
//Close database connection
 ps.close();
 con.close();
 } catch (java.sql.SQLException ex) {
 ex.printStackTrace();
 }
 }
 }

ejbStore

This method is called when a client sets or gets data in the bean to send the object data
database and keep the bean data synchronized with the database data.

 public void ejbStore() {
 System.out.println("Store method");
 try {
//Establish database connection
 DataSource ds = (DataSource)ic.lookup(dbName);
 con = ds.getConnection();
//Use PreparedStatement to form SQL UPDATE statement
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

104 SEPTEMBER 27, 2000

e

etes
//to update BONUS table
 ps = con.prepareStatement(

"UPDATE BONUS SET BONUS = ? WHERE SOCSEC = ?");
//Set 1st PreparedStatement value marked by ? with
//bonus and the 2nd value marked by ?) with socsec
 ps.setDouble(1, bonus);
 ps.setString(2, socsec);
 int rowCount = ps.executeUpdate();
 } catch (javax.naming.NamingException ex) {
 ex.printStackTrace();
 } catch (java.sql.SQLException ex) {
 ex.printStackTrace();
 } finally {
 try {
//Close database connection
 ps.close();
 con.close();
 } catch (java.sql.SQLException ex) {
 ex.printStackTrace();
 }
 }
 }

ejbRemove

This method is called when a client calls aremove method on the bean’s home interface. Th
JavaBean client in this example does not provide aremove method that a client can call to
removeBonusBean from its container. Nevertheless, the implementation for anejbRemove

method is shown here. When the container callsejbRemove , ejbRemove gets the primary key
(socsec) from thesocsec instance variable, removes the bean from its container, and del
the corresponding database row.

 public void ejbRemove()
 throws RemoteException {
 System.out.println("Remove method");
 try {
 DataSource ds = (DataSource)ic.lookup(dbName);
 con = ds.getConnection();
 ps = con.prepareStatement(
 "DELETE FROM BONUS WHERE SOCSEC = ?");
 ps.setString(1, socsec);
 ps.executeUpdate();
 } catch (java.sql.SQLException ex) {
 ex.printStackTrace();
 } catch (Exception ex) {
 ex.printStackTrace();
 try {
 ps.close();
 con.close();
 } catch (java.sql.SQLException ex) {
 ex.printStackTrace();
 }
 }
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 105

o tem-
t calls

ry is

o tem-
t calls

ntity
ejbActivate

When a bean has not been used in a long time, the container passivates it or moves it t
porary storage where the container can readily reactivate the bean in the event a clien
one of the bean’s business methods. This method calls thegetPrimaryKey method on the
entity context so the primary key is available to clients querying the bean. When a que
made, the container uses the primary key to load the bean data.

 public void ejbActivate() {
 System.out.println("Activate method");
 socsec = (String)context.getPrimaryKey();
 }

ejbPassivate

When a bean has not been used in a long time, the container passivates it or moves it t
porary storage where the container can readily reactivate the bean in the event a clien
one of the bean’s business methods. This method sets thepri mary key tonull to free mem-
ory while the bean is in the passive state.

 public void ejbPassivate() {
 System.out.println("Passivate method");
 socsec = null;
 }

setEntityContext

This method is called by the container to initialize the bean’scontext instance variable.
This is needed because theejbActivate method calls thegetPrimarykey method on the
context instance variable to move a passive bean to its active state.

 public void setEntityContext(
 javax.ejb.EntityContext ctx){
 System.out.println("setEntityContext method");
 this.context = ctx;
 }

unsetEntityContext

This method is called by the container to set thecontext instance variable tonull after the
ejbRemove method has been called to remove the entity bean from existence. Only e
beans have anunsetEntityContext method.

 public void unsetEntityContext(){
 System.out.println("unsetEntityContext method");
 ctx = null;
 }
}

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

106 SEPTEMBER 27, 2000
Change the CalcBean and JBonusBean Code
BecauseBonusBean provides its own SQL code, theCalcBean.calcbonus method, which
createsBonusBean instances, has to be changed to throwjava.sql.SQLException . Here is
one way to do make that change:

public class CalcBean implements SessionBean {
 BonusHome homebonus;

 public Bonus calcBonus(int multiplier,
double bonus, String socsec)

 throws RemoteException,
 SQLException,
 CreateException {

 Bonus theBonus = null;
 double calc = (multiplier*bonus);

 try {
 InitialContext ctx = new InitialContext();
 Object objref = ctx.lookup("bonus");
 homebonus = (BonusHome)
 PortableRemoteObject.narrow(
 objref, BonusHome.class);
 } catch (Exception NamingException) {
 NamingException.printStackTrace();
 }

//Store data in entity Bean
 theBonus=homebonus.create(calc, socsec);
 return theBonus;
 }

The JBonusBean class has to be changed to catch theSQLException thrown byCalcBean .
DuplicateKeyExcpetion is a sublcass ofCreateException , so it will be caught by the
catch (javax.ejb.CreateException e) statement.

 public double getBonusAmt() {
 if(strMult != null){
 Integer integerMult = new Integer(strMult);
 int multiplier = integerMult.intValue();
 try {
 double bonus = 100.00;
 theCalculation = homecalc.create();
 Bonus theBonus = theCalculation.calcBonus(
 multiplier, bonus, socsec);
 Bonus record = theCalculation.getRecord(
 socsec);
 bonusAmt = record.getBonus();
 socsec = record.getSocSec();
 } catch (java.sql.SQLException e) {
 this.bonusAmt = 0.0;
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 107

cre-
 this.socsec = "000";
 this.message = e.getMessage();
 } catch (javax.ejb.CreateException e) {
 this.bonusAmt = 0.0;
 this.socsec = "000";
 this.message = e.getMessage();
 } catch (java.rmi.RemoteException e) {
 this.bonusAmt = 0.0;
 this.socsec = "000";
 this.message = e.getMessage();
 }
 genXML();
 return this.bonusAmt;
 } else {
 this.bonusAmt = 0;
 this.message = "None.";
 return this.bonusAmt;
 }
 }

Create the Database Table
Because this example uses bean-managed persistence, you have to create theBONUSdatabase
table in theCloudscapeDB database. With container-managed persistence, the table is
ated for you.

To make things easy, the database table is created with two scripts:createTable.sql and
cloudTable.sh (Unix) or cloudTable.bat (Windows/NT). For this example, thecre-

ateTable.sql script goes in your~/J2EE/Beans directory, and thecloudTable.sh (Unix)
or cloudTable.bat (Windows/NT) script goes in your~/J2EE directory.

To execute the scripts, go to theBeans directory and type the following:

Unix:

../cloudTable.sh

Windows/NT:

..\cloudTable.bat

createTable.sql
This file is provided in the code download for this lesson.
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

108 SEPTEMBER 27, 2000
drop table bonus;

create table bonus
(socsec varchar(9) constraint pk_bonus primary key,
bonus decimal(10,2));

exit;

cloudTable.bat
This file is provided in the code download for this lesson.

rem cloudTable.bat
rem Creates BONUS table in CloudscapeDB.
rem
rem Place this script in ~\J2EE
rem To run: cd ~\J2EE\cloudTable.sh
rem
rem Change this next line to point to *your*
rem j2sdkee1.2.1 installation
rem
set J2EE_HOME=\home\monicap\J2EE\j2sdkee1.2.1
rem
rem Everything below goes on one line
java -Dij.connection.CloudscapeDB=
jdbc:rmi://localhost:1099/jdbc:cloudscape:
CloudscapeDB\;create=true -Dcloudscape.system.home=
%J2EE_HOME%\cloudscape -classpath
%J2EE_HOME%ıib\cloudscape\client.jar;
%J2EE_HOME%ıib\cloudscape\ tools.jar;
%J2EE_HOME%ıib\cloudscape\cloudscape.jar;
%J2EE_HOME%ıib\cloudscape\RmiJdbc.jar;
%J2EE_HOME%ıib\cloudscapeıicense.jar;
%CLASSPATH% -ms16m -mx32m
COM.cloudscape.tools.ij createTable.sql

cloudTable.sh
This file is provided in the code download for this lesson.

#!/bin/sh
#
cloudTable.sh
Creates BONUS table in CloudscapeDB.
#
Place this script in ~\J2EE
To run: cd ~\J2EE\cloudTable.sh
#
Change this next line to point to *your*
j2sdkee1.2.1 installation
#
J2EE_HOME=/home/monicap/J2EE/j2sdkee1.2
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 109

eans
ng
dding
#
Everything below goes on one line
java -Dij.connection.CloudscapeDB=jdbc:rmi:
//localhost:1099/jdbc:cloudscape:CloudscapeDB\;
create=true -Dcloudscape.system.home=
$J2EE_HOME/cloudscape -classpath
$J2EE_HOME/lib/cloudscape/client.jar:
$J2EE_HOME/lib/cloudscape/tools.jar:
$J2EE_HOME/lib/cloudscape/cloudscape.jar:
$J2EE_HOME/lib/cloudscape/RmiJdbc.jar:
$J2EE_HOME/lib/cloudscape/license.jar:
${CLASSPATH} -ms16m -mx32m
COM.cloudscape.tools.ij createTable.sql

Remove the JAR File
You have to update the bean JAR file with the new entity bean code. If you have both b
in one JAR file, you have to delete the2BeansJarand create a new one. The steps to addi
CalcBean are the same as in Create JAR with Session Bean (page 54). The steps to a
BonusBean are slightly different and described here.

If you have the beans in separate JAR files, you have to delete the JAR file withBonusBean

and create a new one as described here.

These instructions pick up at the point where you add theBonusBean interfaces and classes
to the JAR file.

EJB JAR:

• Click Add (the one next to theContents window).

• Toggle the directory so the Beans directory displays with its contents.

• SelectBonus.class

• Click Add.

• SelectBonusBean.class

• Click Add.

• SelectBonusHome.class

• Click Add.

Enterprise Bean JAR classes:

• Make sure you seeBeans/Bonus.class , Beans/BonusHome.class , and Beans/

BonusBean.class in the display.

• Click OK.

EJB JAR:

• Click Next .
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

110 SEPTEMBER 27, 2000

a

).

meth-
rma-

loper's
General:

• Make sureBeans.BonusBean is the classname,Beans.BonusHome is the Home inter-
face, andBeans.Bonus is the Remote interface.

• EnterBonusBean as the display name.

• Click Entity .

• Click Next .

Entity Settings:

• SelectBean-managed persistence .

• The primary key class isjava.lang.String , Note that the primary key has to be
class type. Primitive types are not valid for primary keys.

• Click Next .

Environment Entries:

• Click Next . This simple entity bean does not use properties (environment entries

Enterprise Bean References:

• Click Next .

Resource References:

• Click Add

• type jdbc/BonusDB in the first column underCoded Name. Make sureType is

javax.sql.DataSource , andAuthentication is Container .

• Click Next .

Security:

• Click Next . This simple entity bean does not use security roles.

Transaction Management:

• SelectContainer-managed transactions (if it is not already selected).

• In the list below makecreate , findByPrimaryKey , getBonus and getSocSec

required. This means the container starts a new transaction before running these
ods. The transaction commits just before the methods end. You can find more info
tion on these transaction settings in Chapter 6 of the Enterprise JavaBeans Deve
Guide.

• Click Next .

Review Settings:

• Click Finish .

Inspecting window:

• With 2BeansApp selected, clickJNDI names.

• Assign calcs to CalcBean , bonus to BonusBean , and jdbc/Cloudscape to jdbc/

BonusDB.
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 111

ick
at the

d

run-

-

d

s of
Verify and Deploy the Application
Before you deploy the application, it is a good idea to run the verifier. The verifier will p
up errors in the application components such as missing enterprise bean methods th
compiler does not catch.

Note: If you get a Save error when you verify or deploy, shut everything down and
restart the server and tools.

Verify:

• With 2BeansApp selected, chooseVerifier from theTools menu.

• In the dialog that pops up, clickOK. The window should tell you there were no faile
tests.

• Close the verifier window because you are now ready to deploy the application.

Note: In the Version 1.2.1 software you might get atests app.WebURI error. This
means the deploy tool did not put a.war extension on theWARfile duringWARfile cre-
ation. This is a minor bug and the J2EE application deploys just fine in spite of it.

Deploy:

• From theToolsmenu, chooseDeploy Application . A Deploy BonusAppdialog box
pops up.

• Verify that the Target Server selection is either localhost or the name of the host
ning the J2EE server.

• Check theReturn Client Jar box. Checking this box creates a JAR file with deploy
ment information needed by the entity bean.

• Click Next .

• Make sure the JNDI names show forcalcs for CalcBean, bonus for BonusBean , and
jdbc/Cloudscape for BonusDB. If they do not, type the JNDI names in yourself, an
press theReturn key.

• Click Next . Make sure the Context Root name showsJSPRoot . If it does not, type it in
yourself and press theReturn key.

• Click Next .

• Click Finish to start the deployment. A dialog box pops up that displays the statu
the deployment operation.

• When it is complete, clickOK.
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

112 SEPTEMBER 27, 2000

ge

ess is
the data-
uired to
essage.

d out).
Run the Application
The web server runs on port 8000 by default. To open thebonus.jsp page point your
browser tohttp://localhost:8000/JSPRoot/bonus.jsp , which is where the Deploy tool
put the JSP page.

• Fill in a social security number and multiplier

• Click theSubmit button.Bonus.jsp processes your data and returns an HTML pa
with the bonus calculation on it.

The J2EE server output might show the following message each time database acc
attempted. The message means no user name and password were supplied to access
base. You can ignore this message because a user name and password are not req
access the Cloudscape database, and this example works just fine regardless of the m

Cannot find principal mapping information for data source with JNDI name
jdbc/Cloudscape

Here is a cleaned up version of the J2EE server output (the above message was edite

setEntityContext method
Create Method
Post Create

setEntityContext method
Find by primary key
Load method

getBonus
Store method
Load method

getSocSec
Store method
Find by primary key
Load method

getSocSec
Store method
Load method

getBonus
Store method

<?xml version="1.0"?>
<report>
 <bonusCalc ssnum="777777777" bonusAmt="300.0" />
</report>
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 113
More Information
You can get more information on entity Beans and bean-managed persistence here:
http://java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Entity.fm.html

You can get more information on making database connections here:
http://java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Database.fm.html
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

114 SEPTEMBER 27, 2000
LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000

Index
A

application assembly 16
application components

editing information 22
working together 10

application deployment 24, 58, 69, 86, 111
application verification 23, 58, 68, 86
avax.rmi.RemoteException 12
B

bonus.html file 6
BonusServlet code 6
C

Cloudscape database 27
container managed

persistence 30
transaction management 30

Content pane 22
context root

calling a servlet in an HTML form 6
specify 22

create method 12, 28
CreateException class 11
D

deploy application 24, 58, 69, 86, 111
deploy tool

assemble application 16
deploy application 24, 58, 69, 86, 111
described 15
editing information 22
verify application 23, 58, 68, 86
view application components 19

deploytool command 14
doGet method 7

E

editing information 22
ejbCreate method 12, 28
EJBObject class 12
entity Bean

container managed 30
defined 28

F

findByPrimaryKey method 28
G

getBonus method 29
getSocSec method 29
H

home interface
looking up 7
role of 11

HTTP headers 7
HttpServlet class 7
I

IOException class 7
J

J2EE application components
defined 4

j2ee -verbose command 14
java.io 7
javax.naming 7
javax.rmi 7
javax.servlet 7
javax.servlet.http 7
JNDI name

how used 7
specify 22
INDEX

SEPTEMBER 27, 2000
L

looking up the home interface 7
M

meta information 16
method signatures 28
Multitier architecture

defined 2
multitier architecture

example 3
P

persistent data 28
PortableRemoteObject class 7
primary key 28

duplicate 28
R

remote interface 12
request object 7
response object 7
run application 25, 60, 70, 87
S

ServletException class 7
session Bean

defined 10
SessionBean interface 12
setSessionContext method 12
signatures, methods 28
T

thin-client application defined 2
transaction management 30
transaction rollback 28
U

Uninstall button 15
V

verify application 23, 58, 68, 86

W

Web Archive (WAR) file 19
INDEX

	Writing Enterprise Applications with Java‰ 2 SDK, Enterprise Edition
	by Monica Pawlan
	Preface
	Contents
	Lesson 1 A Simple Session Bean
	Example Thin-Client Multitiered Application
	Figure 1 Multitiered Architecture

	J2EE Software and Setup
	Unix:
	Windows:

	Path and ClassPath Settings
	Path Settings
	Unix:
	Windows:

	Class Path Settings
	Unix:
	Windows:

	J2EE Application Components
	Create the HTML Page
	Figure 2 HTML Page
	Figure 3 Data Flow
	HTML Code

	Create the Servlet
	Import Statements
	init Method
	doGet Method

	Servlet Code
	Create the Session Bean
	Figure 4 Application Components
	CalcHome
	Calc
	CalcBean

	Compile the Session Bean and Servlet
	Compile the Session Bean
	Unix
	Windows

	Compile the Servlet
	Unix
	Windows

	Start the J2EE Application Server
	Unix:
	Windows:

	Start the Deploy Tool
	Unix:
	Windows:

	Deploy Tool
	Figure 5 Deploy Tool

	Assemble the J2EE Application
	1. Create a new J2EE application (BonusApp.ear).
	2. Create a new enterprise bean (CalcBean.jar).
	3. Create a new web component (Bonus.war).
	4. Specify JNDI name for the enterprise bean (calcs).
	5. Specify the Root Context for the J2EE application (BonusRoot).
	Create J2EE Application
	Create Session Bean
	Figure 6 Select Session Bean Class Files

	Create Web Component
	Figure 7 Add BonusServlet.class
	Figure 8 Add bonus.html

	Specify JNDI Name and Root Context
	Figure 9 Context Root Directory Structure

	Verify and Deploy the J2EE Application
	Figure 10 Deploy Application

	Run the J2EE Application
	Updating Component Code

	Lesson 2 A Simple Entity Bean
	Create the Entity Bean
	BonusHome
	Bonus
	BonusBean

	Change the Servlet
	Compile
	Compile the Entity Bean
	Unix
	Windows

	Compile the Servlet
	Unix:
	Windows:

	Start the Platform and Tools
	Unix
	Windows

	Assemble and Deploy
	Update Application File
	Create Entity Bean
	Figure 11 Adding Classes to BonusJar
	Figure 12 Transaction Management
	Figure 13 Generate SQL and Database Table

	Verify and Deploy the J2EE Application

	Run the J2EE Application

	Lesson 3 Cooperating Enterprise Beans
	Change the Session Bean
	Figure 14 Beans Working Together
	CalcHome
	Calc
	CalcBean

	Change the Servlet
	Compile
	Compile the Session Bean
	Unix
	Windows

	Compile the Servlet
	Unix:
	Windows:

	Start the Platform and Tools
	Unix
	Windows

	Assemble the Application
	Create New J2EE Application
	Create New Web Component
	Bundle Session and Entity Beans in one JAR File
	Create JAR with Session Bean
	Add the Entity Bean

	Verify and Deploy the J2EE Application
	Figure 15 Deploy Application

	Run the J2EE Application

	Lesson 4 JavaServer Pages Technology
	Create the JSP Page
	Comments
	Directives
	Declarations
	Scriptlets
	Predefined Variables
	Expressions
	JSP-Specific Tags

	Change bonus.html
	Start the Platform and Tools
	Unix
	Windows

	Remove the WAR File
	Create New WAR FIle
	Verify and Deploy the J2EE Application
	Figure 16 Deploy Application

	Run the J2EE Application
	More Information

	Lesson 5 Adding JavaBeans Technology to the Mix
	About the Example
	Figure 17 When bonus.jsp Loads
	Figure 18 After User Enters Data and Clicks Submit
	Figure 19 Duplicate Key Error

	Create bonus.jsp
	Specify the JavaBean
	Get the Data
	Pass the Data to the JavaBean
	Retrieve Data from the JavaBean

	Create the JavaBeans Class
	Bean Properties
	Constructor
	Set Methods
	Get Methods

	Start the Platform and Tools
	Unix
	Windows

	Remove the WAR File
	Create New WAR FIle
	Verify and Deploy the J2EE Application
	Figure 20 Deploy Application

	Run the J2EE Application
	More Information

	Lesson 6 Extensible Markup Language (XML)
	Marking and Handling Text
	Change the JavaBean Class
	XML Prolog
	Document Root
	Child Nodes
	Other XML Tags
	JavaBean Code
	Figure 21 Document Object Model (DOM)

	The APIs
	Figure 22 Platform and Language Neutral Text
	SAX and DOM
	J2EE

	Update and Run the Application
	More Information

	Lesson 7 JDBC Technology and Bean- Managed Persistence
	Bean Lifecycle
	Change the BonusBean Code
	Import Statements
	Instance Variables
	Business Methods
	LifeCycle Methods
	ejbCreate
	ejbPostCreate
	ejbFindByPrimaryKey
	ejbLoad
	ejbStore
	ejbRemove
	ejbActivate
	ejbPassivate
	setEntityContext
	unsetEntityContext

	Change the CalcBean and JBonusBean Code
	Create the Database Table
	createTable.sql
	cloudTable.bat
	cloudTable.sh

	Remove the JAR File
	Verify and Deploy the Application
	Run the Application
	More Information
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	P
	R
	S
	T
	U
	V
	W

	Index

