Web Development with JavaServer Pages

Web Development with
JavaServer Pages

SECOND EDITION

DUANE K. FIELDS
MARK A. KOLB
SHAWN BAYERN

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in inidal
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Elizabeth Martin
/“ 209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America
123456789 10 - VHG - 04 03 02 01

To Kris—
for her patience, encouragement

and good humor that made this project possible
D.K.F.

For Megan, Andrew, and Jean—
your presence is my strength, and your love my inspivation
M.AK.

To my parents—
For teaching me everything I know (except JSP)
S.B.

brief contents

o S NN D U R W N~

NN N N NN~
QA (i AW N~ D

Introduction 1

HTTP and servlets 17

First steps 30

How JSP works 46

Programming JSP scripts 65
Actions and implicit objects 101
Using JSP components 129
Developing JSP components 165
Working with databases 198
Architecting JSP applications 229
An example JSP project 272
Introducing filters and listeners 318
Applying filters and listeners 334
Deploying JSP applications 384
Performing common JSP tasks 418

Generating non-HTML content 470

viii BRIEF CONTENTS

JSP by example 493

Creating custom tags 529

Implementing advanced custom tags 582
Validating custom tag libraries 621
Changes in the JSP 1.2 API 669

Running the reference implementation 676
Incorporating Java applets 683

JSP resources 697

JSP syntax reference 702

JSP API reference 718

CONtents

preface to the second edition xxv
preface to the fivst edition xxix
acknowledgments xxxi

about this book xxxiii

about the authors xxxviii
authors online xxxix

about the cover illustration xl

Introduction 1

1.1 Whatis JSP? 2

1.2 Dynamic content on the web 2
Why dynamic content? 3 = Common Gateway
Interface 4 = Template systems 5 = Java on
the Web 8 = How XML fitsin 11

1.3 Therole of JSP 13
The JavaBeans component avchitecture 13
JSP and Java 2 Platform Enterprise Edition 15

‘ CONTENTS

2 HTTP and serviets 17
2.1 The Hypertext Transfer Protocol (HTTP) 18
HTTP basics 18 = GET versus POST 21
2.2 Javaservlets 23
How a web server uses serviets 24 = The anatomy
of w serviet 24 = A serviet example 26

3 Fivst steps 30
3.1 Simple text 31

3.2 Dynamic content 32
Conditional logic 33 = Iteration 34
Non-HTML output 37
3.3 Processing requests and managing sessions 38
Accessing request parameters 38 = Using sessions 39
3.4 Separating logic from presentation 41
Reusing logic with JavaBeans 42
Abstracting logic with custom tags 44
3.5 Review of examples 45

How JSP works 46
4.1 The structure of JSP pages 47
Directives and scripting elements 47
Standard and custom actions 48
4.2 Behind the scenes 52
Translation to serviets 52 = Translation versus execution 54
4.3 What the environment provides 56
Automatic serviet generation 56 = Buffered output 57
Session management 59 = Exception handling 63
Implicit objects 64 = Support for JavaBeans
and HTML forms 64

CONTENTS

xi

Programming JSP scripts 65
5.1 Scripting languages 66
5.2 JSPtags 68
5.3 JSP directives 68
Paye divective 68 = Include dirvective 80
Tag lLibrary divective 82
5.4 Scripting elements 83
Declarations 84 = Expressions 88 = Scriptlets 91
5.5 Flow of control 93
Conditionalization 93 = Iteration 94
Exception handling 94 = A word of caution 97
5.6 Comments 97
Content comments 98 = JSP comments 98
Scripting language comments 99

Actions and implicit objects 101
6.1 Implicit objects 102
Serviet-related objects 104 = Input/Outpur 105
Contextual objects 112 = Ervor handling 120
6.2 Actions 121
Forward 122 = Include 125 = Plug-in 128
Bean tags 128

Using JSP components 129

7.1 The JSP component model 130
Component architectures 130 = Benefits of o
component architecture 131 = Component design
Sfor web projects 132 = Building applications
from components 133

xii CONTENTS

7.2 JavaBean fundamentals 135
The different types of JavaBeans 138
7.3 JSP bean tags 140
Tag-based component programming 140 = Accessing JSP
components 142 = Initializing beans 150
Controlling a bean’s scope 157

8 Developing JSP components 165
8.1 What makes a bean a bean? 166
Bean conventions 166 = The bean constructor 167
Defining a bean’s properties 168 = Indexed
properties 172 = Implementing bean properties
as cursors 176 = Boolean properties 178 = JSP type
conversion 179 = Configuring beans 181
8.2 Some examples 182
Example: a TimerBean 182
A bean that calculntes interest 184
8.3 Bean interfaces 189
The BeanlInfo interface 189 = The Serializable
interface 190 = The HttpSessionBindingListener
wnterface 190
Other features of the Bean API 191
8.4 Mixing scriptlets and bean tags 192
Accessing beans through scriptlets 192
Accessing scriptlet created objects 193

Working with databases 198
9.1 JSPand JDBC 199

JNDI and data sources 200 = Prepared statements 201

CONTENTS xiii

9.2 Database driven JSPs 202
Creating JSP components from table data 202
JSPs and JDBC data types 205 = Maintaining persistent
connections 208 = Handling large sets of vesults 211
Transaction processing 216

9.3 Example: JSP conference booking tool 217
Progect overview 217 = Our database 218
Design overview 218

1 Avrchitecting JSP applications 229
10.1 Web applications 230

Web application flow 232
Architectural approaches 233

10.2 Page-centric design 233
Role-based pages 233 = Managing page flow with
action targets 236 = Building composite pages 238
Limatations of the page-centric approach 241

10.3 Servlet-centric design 242
Hello, World—with serviets 243 = JSP and the serviet
API 244 = Serviets for application control 247
Serviets for handling application logic 248 = Serviets as
single entry points 249 = Handling errors in the
servlet 252 = Example: serviet-centric employee
browser 253 = EmployeeBean 255
FetchEmployeeServiet 258 = JSP employee list 261
JSP page viewer 262

10.4 Enterprise JavaBeans 263
What are Enterprise JavaBeans? 263 = JavaBeans vs.
EJBs 2064 = Application servers and EJB containers 264
Application design with E]Bs 265

Xiv

CONTENTS

10.5 Choosing an appropriate architecture 266
Application environment 267 = Enterprise software
requirements 268 = Performance, scalability, and
availability 269 = Technical considerations 269

Organizational considerations 270

11

An example JSP project 272

11.1 An FAQ system 273
Project motivations 273 = Application requirvements 273
Application modules 275
Building an FAQ component 276

11.2 The storage module 278
Database schema 279 = The FaqRepository class 279
Storage module exceptions 285

11.3 The administration module 286
The administration serviet 287 = The main menu 293
Adding an FAQ 297 = Deleting an FAQ 300
Updating an FAQ 3006

11.4 The web access module 311
The FagServiet 312 = Viewing a single FAQ 313
Viewing all the FAQs 314 = A table of contents view 315
Plain text view 317

Introducing filtevs and listeners 318
12.1 Life-cycle event listeners 319
Session listeners 319 = Application listeners 324
12.2 Filters 326
How filters work 327 = Filter classes 330
Wrapper classes 332
12.3 Using filters and listeners 333

CONTENTS XV

1

Applying filtevs and listenevs 334
13.1 Application description 335
13.2 User authentication 337
User account representation 337 = User management
interface 338 = User management implementation 339
13.3 Web authentication 341
Session interactions 341 = Login serviet 344
Login pages 350 = Content pages 353
Logout serviet 357 = Logout pages 358
13.4 Access control filters 360
Authentication filter 361 = Role filter 364
13.5 Logging listener 368
HttpSessionListener methods 369
HzttpSession AttributeListener methods 369
13.6 Content filter 372
Filter methods 373 = Response wrapper inner class 375
Output stream inner class 376 = More filter methods 377
Filter vesults 380 = Other content filters 381

14

Deploying JSP applications 384
14.1 This means WAR 385
WAR is XML 386 = Waging WAR 389
14.2 The art of WAR 390
WAR materiel 390 = Drafting deployment descriptors 396
14.3 Maintaining a WAR footing 415

xvi ‘ CONTENTS

1 Performing common JSP tasks 418
15.1 Handling cookies 419
Managing cookies 419 = The Cookie class 420
Example 1: setting o cookie 421
Example 2: retrieving a cookie 422
15.2 Creating error pages 425
An ervoneous page 426 = Data collection methods 427
Sending electronic mail 432 = The errov page 433
15.3 Mixing JSP and JavaScript 437
15.4 Building interactive interfaces 441
Sticky widgets 441 = Utility methods 442
The example form 443 = Setting up the form 445
Text and hidden fields 446 = Text aveas 447
Radio buttons 447 = Select boxes 448
Check boxes 448 = Form source 449
15.5 Validating form data 451
Client- and server-side validation 451
Example: server-side validation 452
15.6 Building a shopping cart 458
Overview 459 = The catalog page 460
ShoppingCartltem and InventoryManager 460
The ShoppingCart bean 464
Displaying the shopping cart 466
15.7 Miscellaneous tasks 467
Determining the last modification date 467

Executing system commands 468

CONTENTS xvii

1

Generating non-HTML content 470

16.1 Working with non-HTML content 471
The importance of MIME 471 = Controlling the
content type 472 = Detecting your client 472
Designing multiformat applications 473
Controlling the file extension 474

16.2 Text content formats 475
Plain text output 475 = WYGIWYG output (what you
generate is what you get) 476

16.3 XML documents 477
Creating voice XML documents 479

16.4 External content 482
JSP style sheets 483 = JavaScript 485

16.5 Advanced content formats 487
Excel spread sheets 488 = Code generation 489

17

JSP by example 493
17.1 Arotating banner ad 494
The BannerBean 494 = Using the bean 495
17.2 A random quote generator 497
The QuoteBean 497 = Using the bean 498
17.3 The Tell a Friend! sticker 499
The sticker 500 = The MailForm page 502
Sending the mail 503
17.4 A JSP Whois client 505
The Whois protocol 505 = Requivements and design
considerations 507 = The WhoisBean 507
Building the front end 515

17.5 Anindex generator 517
A basic implementation 518 = An improved version 520
Going further 525
17.6 A button to view JSP source 525
Displaying the source 525 = Limitations of the view
source program 527 = Adding a view source button
\to a page 527 = Viewing source through a bookmark 528

18

Creating custom tags 529

18.1 Role of custom tags 530

18.2 How tag libraries work 531

18.3 Tag library descriptors 535
Library elements 535 = Validator elements 537
Listener elements 538 = Tay elements 538
Variable elements 540 = Attribute elements 541
Example element 543

18.4 API overview 544
Toyg handlers 544 = Tag handler life-cycle 550
Helper classes 556 = Auxiliary classes 559

18.5 Example tag library 559

18.6 Content substitution 560

18.7 Tag attributes 563

18.8 Content translation 567
URL rewriting 568 = HTML encoding 572

18.9 Exception handling 575

18.10 To be continued 580

CONTENTS Xix

1

Implementing advanced custom tags 582
19.1 Tag scripting variables 583
Example tag 583 = Scripting vaviable JavaBean 585
19.2 Flow of control 587
Conditionalization 588 = Iteration 595
19.3 Interacting tags 613
Interaction mechanisms 614 = Index tag 616
19.4 The final ingredient 619

20

Validating custom tag libvarvies 621
20.1 Two representations of JSP 622
20.2 JSP pages as XML documents 624
The root element 625 = Template text 626
Scripting elements 627 = Request-time attribute values 0627
Directives and actions 629 = Sample page 629
20.3 Tag library validation 631
20.4 Example validators 634
Copying validator 635 = Script-probibiting validator 638
Ervov handling 642 = Content handler 645
Nesting validator 651
20.5 Packaging the tag library 660
Packaging o single library 661
Packaging multiple librarvies 662
20.6 For further information 666

Changes in the JSP 1.2 API 669
A.1 Introduction 669

A.2 Changes to the API 670
Java 2, Version 1.2 now a requirement 670

XX

CONTENTS

Serviet API 2.3 required 670 = XML syntax now fully
supported 670 = Determining the real path 671
Redirects arve not relative to the serviet context 671
Restricted names 671 = Page encoding attribute 671
Flush on include no longer required 671

A.3 Web application changes 672
New 2.3 web application DTD 672 » Handling of white
space 672 = Resolving path names in the web.xml file 672
Request mappings 672 = Dependency on installed
extensions 072

A4 Custom tag improvements 0673
Transiation time validation 673 = New tayg
interfaces 073 = Changes to the TLD 673

A.5 JavaBean changes 0674
Bean tags cannot implicitly access scriptiet objects 674
Fully qualified class names requived 674

A.6 New servlet features 674
Serviet filters 675 = Application events 675

B

Running the vefevence implementation 676
B.1 DPrerequisites 677

B.2 Downloading and installing Tomcat 677
B.3 Web applications and Tomcat 681

C

Incorporating Java applets 683

C.1 Browser support for Java 683

C.2 The plug-in action 685
Requived attributes 685 = Optional attributes 687
Parameters 688 = Fallback text 689

C.3 Example: applet configuration 690

CONTENTS

XXi

JSP rvesources 697

D.1
D.2
D.3
D4
D.5
D.6
D.7
D.8

Java implementations 697

JSP-related web sites 697

JSP FAQs and tutorials 698

JSP containers 698

Java application servers with JSP support 699
JSP development tools 700

Tools for performance testing 700

Mailing lists and newsgroups 700

JSP syntax vefevence 702

E.l
E.2
E.3
E4
E.5
E.6
E.7
E.8
E9
E.10
E.11
E.12
E.13
E.14

Content comments /02
JSP comments 703
<jsp:declaration> 704
<jsp:directive.include> 705
<jsp:directive.page> 706
<jsp:directive.taglib> 707
<jsp:expression> 708
<jsp:forward> 709
<jsp:getProperty> 710
<jsp:include> 711
<jsp:plugin> 712
<jsp:scriptlet> 713
<jsp:setProperty> 714
<jsp:useBean> 715

xxii ‘ CONTENTS

JSP API rvefevence 718
F.1 JSP implicit objects 719
F.2 DPackage javax.servlet 719
Interface Filtert 719 = Interface FilterChaint 719
Interface FilterConfig? 720 » Class GenericServier 720
Interface RequestDispatcher 720 = Interface serviet 721
Interface ServietConfig 721 = Interface ServietContext 721
Interface ServietContextAttributeEvent! 722
Interface ServierContextAttribuseListener’ 722
Interface ServietContextEvent’ 722
Interface ServierContextListener’ 723
Class ServietException 723 = Class ServietInputStream 723
Class ServietOutputStream 724
Interface ServietRequest 724
Class ServietRequest Wrapper! 725
Interface ServietResponse 726
Class ServletResponse Wrapper! 726
Interface SingleThreadModel 727
Class UnavailableException 727
F.3 DPackage javax.servlet.http 727
Class cookie 727 = Class HttpServiet 728
Interface HetpServietRequest 729
Class HrtpServietRequest Wrapper’ 730
Interface HttpServietResponse 730
Class HrtpServietResponse Wrapper! 732
Interface HttpSession 733
Interface HttpSessionAutiVﬂtionLixtener 733
Interface HttpSem'onAttVib%teListener 733
Class HttpSessionBindingEvent 734

CONTENTS xxiii

Interface HetpSessionBindingListener 734
Class HetpSessionEvent’ 734
Interface HrtpSessionListener’ 735 = Class HrtpUtils 735
F.4 DPackage javax.servlet.jsp 735
Interface HitpJspPage 735 = Class JspEnginelnfo 736
Class JspException 736 = Class JspFactory 736
Interface JspPage 737 = Class JspTagException 737
Class JspWriter 737 = Class PageContext 738
F.5 DPackage javax.servlet.jsp.tagext 740
Class BodyContent 740 = Interface BodyTng 740
Class BodyTagSupport 740 = Interface IterationTag' 741
Class PageData’ 741 = Interface Tag 741
Class TagAttributeInfo 742 = Class TagData 742
Class TagExtralnfo 743 = Class TagInfo 743
Class TagLibraryInfo 744
Class TagLibraryValidator' 744
Class TagSupport 744 = Class TagVariableInfol 745
Interface TryCatchFinally' 745 » Class VaviableInfo 745

index 747

preface to the second edition

When the first edition of Web Development with JavaServer Pages was published
some eighteen months ago, URLs ending with a .jsp file extension were a novelty.
Today, this is a commonplace occurrence for millions of web surfers. JSP has been
widely adopted, and we are very pleased to have played a supporting role in its
popularization.

We are likewise very pleased with the reception of the first edition. As one of the
first JSP books on the market, we knew we were taking a risk. It’s clear from the
response, however, that JSP addresses a serious need in the development commu-
nity, resulting in an equally serious need for good reference material. By presenting
such reference material from the practitioner’s point of view, we appear to have
struck a nerve. The first edition received both critical and popular acclaim as one of
the leading books on the subject, and our thanks go out to all of the readers who
contributed to its success.

Of course, the book’s success is due in no small part to the success of JSP itself.
JavaServer Pages technology has experienced a rapid adoption in the past year or
so, anxiously embraced by the “teeming millions” of Java and web developers who
had been clamoring for a standard mechanism for generating dynamic web con-
tent. At the time the first edition was published, there were only a handful of appli-
cation servers supporting JSP 1.0, and even fewer supporting version 1.1. As a
required component of the J2EE (Java 2 Enterprise Edition) platform, however,
there are now dozens of commercial application servers with full JSP support. Tool
support is another area that has thankfully experienced significant growth. Today,

XXVi

PREFACE TO THE SECOND EDITION

web developers can take advantage of a wide array of editors, IDEs, and code gen-
erators with built-in support for JSP.

As with any Internet technology though, JSP continues to evolve.

In September 2001 Sun released the JavaServer Pages 1.2 and the Java
Servlets 2.3 specifications. These APIs were updated to provide several new fea-
tures, clarify some outstanding issues from the previous specifications, and pave the
way for improved tool support. Among those new features are full XML support,
servlet filters and life-cycle event handlers, and enhanced validation of custom tag
libraries. Readers interested in a quick overview of the new APIs are directed to
Appendix A.

Given these changes to the specifications, as well as our desire to fix a few gaftes
from the first edition, we felt an obligation to our readers—both past and future—
to start work on a second edition.

As was true of the first edition, our goals for this new edition are twofold. In
addition to updating the text to address the changes and enhancements introduced
in JSP 1.2, we have also revised and expanded the opening chapters to provide a
gentler introduction to JSP and the underlying technologies (such as HTTP and
servlets) for those who are new to web development. At the turn of the millennium,
it was safe to assume that anyone brave enough to be dabbling with JSP already
knew their way around the underlying protocols. JSP is now an established platform
in its own right, and it was felt that providing a bit more context for understanding
the inherent properties of that platform was more than justified.

We’ve also added more examples, including the much-requested shopping cart,
as well as an entire chapter on creating non-HTML content. JSP was always intended
as a general-purpose mechanism for generating dynamic content of all kinds, not
just HTML. With the recent excitement revolving around XML and other text-based
document formats, full coverage of this topic was a given for the second edition.

A pair of new chapters focus on servlet filters and life-cycle event listeners, two
new features of the Servlet 2.3 API that are equally applicable to JSP applications.
Filters enable developers to layer new functionality—such as on-the-fly encryption,
compression, translation, or authentication—atop existing servlets and JSP pages,
without having to change the original code. Event listeners provide applications
with the ability to monitor (and therefore take advantage of) the activity of the
underlying servlet or JSP container more closely. A chapter-length example demon-
strates how both of these features may be leveraged to simplity the implementation
of key application behaviors.

PREFACE TO THE SECOND EDITION XXVii

As we continue to gain experience in real-world web development projects, we
are often exposed to new techniques for architecting JSP applications. In the
interest of keeping readers abreast of such alternatives, new material in chapter 10
introduces the concept of action targets, an extension to the page-centric design
approach presented in the first edition.

In keeping with the industry’s growing interest in custom tag libraries, we’ve
expanded our coverage of this topic, as well. There are now three chapters dedi-
cated to using, developing, validating, and deploying custom tags. New examples
are included to demonstrate JSP 1.2 enhancements, and new custom tag libraries
are available from our companion web site, http: //www.taglib.com/.

Observant readers will notice an additional name on the cover of this second edi-
tion, Shawn Bayern. Shawn, an active member of the Java Community Process, is
the reference-implementation lead for the JSP Standard Tag Library, a collection of
general-purpose custom tags that will ultimately be supported by all JSP containers.
He lends us his unique insight into JSP’s place in the technology spectrum, and we
are confident that readers will value his contributions to this book as much as we do.

Welcome then, to readers both new and returning. We hope that this second
edition will prove itself a worthy successor to the original Web Development with
JavaServer Pages. And we look forward to uncovering even more .jsp file extensions
as we surf the web, hunting for the next generation of killer web applications.

preface to the first edition

In late 1998 we were asked to develop the architecture for a new web site. Our
employer, a vendor of enterprise software for system and network management,
had an unconventional set of requirements: that the site be able to provide product
support data customized for each customer; and that the support data be tailored
to the software the customer had already purchased, as well as the configurations
already selected.

Of course, the web site needed to look sharp and be easy to navigate. Manage-
ment software, which of necessity must be flexible and support a wide range of
operating conditions, tends to be very complex. This particular software was tar-
geted at Internet and electronic commerce applications, so using the web as a major
component of product support was a natural fit. By personalizing web-based sup-
port for each customer, this inherent complexity would be reduced, and the cus-
tomer experience improved. But how to accomplish that ... and how to do it within
the time constraints the project required?

What we needed was an architecture that would give everyone on the team,
both the designers and the programmers, as much freedom as possible to work
unhindered in the limited time available. The ability of these two groups to
progress independently, without costly rework, was crucial. A solution that could
provide dynamic content as an add-on to otherwise conventional HTML files clearly
was the best approach. We briefly considered, then just as quickly dismissed, the
notion of building our own dynamic context system. There just wasn’t enough time
to deliver both a publishing system and a web site.

XXX

PREFACE TO THE FIRST EDITION

At the time we were already familiar with Java servlets. Indeed, servlets were a
key element of the architecture of the product to which this site would be devoted.
We mulled over using servlets for the site itself but were concerned with how this
would affect those responsible for the content, graphics, and layout of the site.

As we researched the problem further we were reminded of an ongoing initiative
at Sun Microsystems called JavaServer Pages (JSP). JSP was still being refined, and
Version 1.0 was months away. However, it was intended to become a standard Java
technology, and it used Java servlets as its foundation. It also allowed us to imple-
ment dynamic content on top of standard HTML files. Best of all, it worked! As we
became more familiar with JSP, we found that it worked very well indeed.

As is often the case, there were some rough spots as the JSP specification went
through major changes along the way. Hair was pulled, teeth were gnashed, les-
sons were learned. Fortunately, we obtained a great deal of help from the JSP com-
munity—the developers at Sun and the other JSP vendors, as well as our fellow
early adopters.

This book thus serves a twofold purpose. First, we hope to help future users of
JSP by sharing the hard-earned lessons of our experience. We offer them what we
hope is a helpful guide to the current JSP feature set: JavaServer Pages is now at ver-
sion 1.1 and the need for published reference material has long been recognized.

Second, we offer this book as an expression of gratitude to the current commu-

nity of JSP developers in return for the assistance they provided when we needed it.
Thanks to all.

acknowledgments

We recognize the support and understanding of the many people who helped make
this book possible. We acknowledge:

T. Preston Gregy, the former development manager of Duane and Mark, for
allowing them to make the early leap to a JSP architecture, before the technology
was considered ready for prime time. This head start was painful at times, but ulti-
mately proved a boon to their web development projects. It also gave them the
experience necessary to develop this text, for which they are equally grateful. Other
colleagues who advised them during the writing of the this book include Kirk
Drummond and Ward Harold.

Pierre Delisle for encouraging and guiding Shawn’s efforts in the Java commu-
nity. Merci pour tout, mon ami. Shawn also wishes to thank his colleagues at Yale,
especially Andy Newman and Nicholas Rawlings.

The JSP design team at Sun Microsystems, especially Eduardo Pelegri-Llopart. His
assistance and attentiveness to our queries was critical to the success of this effort.

The teeming millions of Java and JSP developers who continue to offer their
insights and expertise to the development community through their unselfish par-
ticipation in mailing lists, newsgroups, and the web. Double thanks to everyone
participating in the Jakarta and Apache projects for their outstanding work in the
Open Source arena. You are all instrumental to the continuing success of Java and
establishing it as a lingua franca for Internet development.

Our publisher, Marjan Bace, for giving us this opportunity; our editor, Elizabeth
Martin, for her yeoman’s effort in polishing this manuscript; and our typesetter,

xxxii ACKNOWLEDGMENTS

Tony Roberts. Their insights, guidance, and expertise were invaluable to the com-
pletion of this book.

Ouwr reviewers, whose comments, criticisms, and commendations advised, cor-
rected and encouraged us. Our deep appreciation is extended to Michael Andreano,
Dennis Hoer, Vimal Kansal, Chris Lamprecht, Max Loukianov, James McGovern,
Dave Miller, Dr. Chang-Shyh Peng, Anthony Smith, and Jason Zhang. Special
thanks to Lance Lavandowska for his technical edit of the final manuscript.

Our friends, families, and coworkers for their unfailing support, assistance, and
tolerance throughout the writing process. Without them this book could not have
been possible.

about this book

JavaServer Pages is a technology that serves two different communities of develop-
ers. Page designers use JSP technology to add powerful dynamic content capabilities
to web sites and online applications. Java programmers write the code that imple-
ments those capabilities behind the scenes.

Web Development with JavaServer Pages is intended to present this technology to
both groups. It is impossible in a book of this length to provide all the background
information required by this subject, and, for this reason, we do not attempt to
describe the HTML markup language. It is assumed that the reader is sufficiently
familiar with HTML to follow the examples presented. It is likewise assumed that
the reader is familiar with URLs, document hierarchies, and other concepts related
to creating and publishing web pages.

We also do not include a primer on the Java programming language. As with
HTML, there is a wealth of reference information available on the language itself.
Programmers reading this book are assumed to be familiar with Java syntax, the
development cycle, and object-oriented design concepts. A basic understanding of
relational database technology in general, and JDBC in particular, is reccommended
but not required.

Our focus here, then, is strictly on JavaServer Pages. The interaction between
JSP and the technologies already mentioned—HTML, Java, and databases—will of
course be covered in depth. For the benefit of readers not so well versed in the
enabling technologies upon which JSP depends, however, this second edition fea-
tures new coverage of HTTP, the protocol that web browsers and web servers use to

XXXiV

ABOUT THIS BOOK

communicate with one another, and Java servlets, the foundational technology for
server-side Java applications.

The topics covered are as follows:

Chapter 1 introduces JavaServer Pages (JSP) and presents a brief history of web
development. JSP is contrasted with past and present web technologies. Since this
chapter provides historical context and a broad introduction, it is intended for a
general audience.

Chapter 2 discusses core technologies on which JSP depends. The Hypertext
Transfer Protocol (HTTP) and the Java Servlet platform, both of which help define
how JSP operates, are introduced. A simple Java Servlet example is discussed. This
chapter focuses on technical details that are important for programmers, but page
designers can read it to learn how the web works.

Chapter 3 presents a tutorial introduction to JSP. Examples designed to demon-
strate JSP’s capabilities—from simple iteration and conditionalization to session
management and non-HTML content generation—are discussed in a gradual pro-
gression. This chapter’s examples are intended for a general audience.

Chapter 4 provides more information for programmers and page designers
about how JSP operates behind the scenes. The chapter focuses on how JSP works
and introduces some of the core, time-saving features that JSP provides. The core
elements of a JSP page are also introduced more formally than in chapter 3.

Chapters 5 and 6 introduce the four basic categories of JSP tags: directives,
scripting elements, comments, and actions. The use and syntax of all standard JSP
tags is presented, with the exception of those specific to JavaBeans. The first three
categories are covered in chapter 5.

Chapter 6 introduces action tags, and describes the implicit Java objects accessi-
ble from all JSP pages. In both of these chapters, particular emphasis is placed on the
application of these tags and objects to dynamic content generation via scripting.
The scripting examples use the Java programming language, and may be of second-
ary interest to page designers. Because this chapter introduces most of the major
functionality provided by JavaServer Pages, it is intended for a general audience.

Chapters 7 and 8 cover JSP’s component-centric approach to dynamic page
design through the use of JavaBeans and JSP bean tags. The JSP tags covered in
chapter 7 allow page designers to interact with Java components through HTML-
like tags, rather than through Java code. Chapter 8 will explain the JavaBeans API
and teach you to develop your own JSP components.

Chapter 9 covers techniques for working with databases through JSP. Nowadays,
most large-scale web sites employ databases for at least some portion of their

ABOUT THIS BOOK XXXV

content, and JSP fits in nicely. By combining the power of a relational database with
the flexibility of JSP for content presentation and front-end design, it is practical to
build rich, interactive interfaces.

In chapter 10, we discuss several architectural models useful for developing JSP
applications. We examine the various architectural options available when we com-
bine JSP pages with servlets, Enterprise JavaBeans, HTML, and other software ele-
ments to create web-based applications.

In chapter 11 we apply the JSP programming techniques we covered in previous
chapters to the development of a real world, enterprise web application. In a chapter-
length example, we will be developing a system for managing and presenting lists of
frequently asked questions (FAQs). This chapter is based on a project the authors
recently completed for a major software company’s customer support site. The pre-
sentation aspect of this chapter should be of interest to page designers, while the
implementation aspects should be of interest to programmers.

Chapters 12 and 13 introduce two new features of the JSP 1.2 and Servlet 2.3
specifications—filters and listeners. Filters can be used to layer new functionality
onto JSP and servlet-based applications in a modular fashion, such as encryption,
compression, and authentication. Listeners enable developers to monitor various
activities and events occurring over the lifecycle of a web application. Chapter 12
covers the basics, while chapter 13 presents a chapter-length intranet example which
demonstrates the use of filters and listeners to add enhanced capabilities to an exist-
ing application.

Issues surrounding the deployment of web-based applications are the focus of
chapter 14. Web Application Archives provide a portable format for the packaging
of related servlets and JSP pages into a single, easily-deployed file, called a WAR file.
The practical aspects of this approach to web deployment are demonstrated
through coverage of the configuration and construction of a WAR file for the exam-
ple application presented in chapter 13. Since both code and pages are stored
together in a WAR file, this chapter should be of interest to all JSP developers.

Chapter 15 explains how to perform common tasks with JSP. A multitude of
examples and mini-projects address issues such as cookies, form processing, and error
handling. If you learn best by example, you will find this chapter particularly helpful.

In chapter 16 we examine a newer application of JSP programming, creating
content other than HTML. The chapter explores this new area with coverage of
plain text, XML, JavaScript, and even dynamic spreadsheets.

XXXVi

ABOUT THIS BOOK

We return to the topic of JSP examples in chapter 17. Here, the emphasis is on
tull-fledged applications that illustrate the various techniques and practices pre-
sented in previous chapters.

Chapter 18 covers the development, deployment, and application of custom tag
libraries. This material focuses primarily on the implementation of custom tags by
Java programmers. From the perspective of jointly designing a set of application-
specific tags, page designers may find some benefit in reviewing the introductory
sections of this chapter, which discuss the types of functionality that can be pro-
vided by custom tags.

In chapter 19, we expand upon the topic of custom tags with additional exam-
ples that take advantage of more advanced features of Java and JSP.

Coverage of JSP custom tags concludes in chapter 20 with a discussion of tag
library validators, a new feature introduced in JSP 1.2. Using validators, custom tag
developers can enforce constraints and manage dependencies within all JSP pages
that make use of their tags. Furthermore, because tag library validation occurs dur-
ing page translation and compilation, rather than in response to a request, it enables
custom tag errors to be detected earlier in the development process.

There are six appendices in the book. Appendix A is provided for the benefit of
readers of the first edition, the terminally impatient, and those wanting a quick look
at what’s new. In it we hit the highlights of recent advances in JSP technology, nota-
bly JSP 1.2 and the Servlet 2.3 API.

Appendix B describes how to download, install, and run Tomcat, the JSP refer-
ence implementation. This appendix is aimed at readers who don’t already have a
JSP container to use; setting up Tomcat will help these readers experiment with the
book’s examples.

Java applets are small applications that run within the context of a web browser.
Appendix C describes the <jsp:plugin> action, a cross-platform tag for specitying
applets which use Sun Microsystems’s Java Plug-in technology in order to take
advantage of the Java 2 platform within the browser. This appendix is directed at
Java programmers.

As is the case with any major software technology in use today, there is a wealth
of information on JSP and related topics available online. Appendix D provides a col-
lection of mailing lists, newsgroups, and web sites of relevance to both categories of
JSP developers, accompanied by brief descriptions of the content available from each.

Appendix E, serving as a quick reference, summarizes the use and syntax of all of
the standard (i.e., built-in) JSP tags available to page designers.

ABOUT THIS BOOK XXXvii

Appendix F, geared toward Java programmers, lists all of the Java classes intro-
duced by the JSP and servlet specifications to supplement the standard Java class
library for web-based application development. Summary descriptions of these
classes and their methods are provided, as is a table of the JSP implicit objects.

Source code

The source code for all of the examples called out as listings in the book is freely
available from our publisher’s web site, www.manning.com/fields2, and from the
book’s companion web site, www.taglib.com. The listings are organized by chapter
and topic and include the source for both Java classes and JSP pages used in the
examples. If any errors are discovered updates will be made available on the web.

Code conventions

Courier typeface is used to denote code (JSP, Java, and HTML) as well as file
names, variables, Java class names, and other identifiers. When JSP is interspersed
with HTML, we have used a bold Courier font for JSP elements in order to improve
the readability of the code. Italics are used to indicate definitions and user specified
values in syntax listings.

about the authors

DUANE K. FIELDS, web applications developer and Internet technologist, has an
extensive background in the design and development of leading edge Internet
applications for companies such as IBM and Netscape Communications. Duane
lives in Austin, Texas, where he consults, does Java applications development, and
tries to find more time to fish. He frequently speaks at industry conferences and
other events and has published numerous articles on all aspects of web application
development from Java to relational databases. He is a Sun Certified Java Program-
mer, an IBM Master Inventor, and holds an engineering degree from Texas A&M
University. He can be reached at his web site at www.deepmagic.com.

MARK A. KOLB, Ph.D., is a reformed rocket scientist with graduate and undergrad-
uate degrees from MIT. A pioneer in the application of object-oriented modeling to
aerospace preliminary design, his contributions in that field were recently recog-
nized with a NASA Space Act Award. With over 15 years’ experience in software
design, Mark’s current focus is on Internet applications, ranging from applet-based
HTML editors to server-side systems for unified messaging and residential security
monitoring. Mark resides in Round Rock, Texas, with his family and a large stack of
unread books he’s hoping to get to now that this one is done. His home on the web
is at www.taglib.com.

SHAWN BAYERN is a research programmer at Yale University. An active participant
in the Java Community Process, he serves as the reference-implementation lead for
the JSP Standard Tag Library (JSPTL). He is a committer for the Jakarta Taglibs
Project and has written articles for a number of popular industry journals. Shawn
holds a computer-science degree from Yale University and lives in New Haven,
Connecticut. He can be found on the web at www.jsptl.com.

authors online

Purchase of Web Development with Java Server Pages includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other
users. To access the forum and subscribe to it, point your web browser to
www.manning.com/fields2 This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.

about the cover itllustration

The cover illustration of this book is from the 1805 edition of Sylvain Maréchal’s
four-volume compendium of regional dress customs. This book was first published
in Paris in 1788, one year before the French Revolution. Its title alone required no
fewer than 30 words.

“Costumes Civils actuels de tous les peuples connus dessinés d’apres
nature graves et coloriés, accompagnés d’une notice historique sur
leurs coutumes, moenrs, rveligions, etc., etc., redigés par M. Sylvain
Maréchal”

The four volumes include an annotation on the illustrations: “gravé a la maniere
noire par Mixelle d’apres Desrais et colorié.” Clearly, the engraver and illustrator
deserved no more than to be listed by their last names—after all they were mere
technicians. The workers who colored each illustration by hand remain nameless.

The remarkable diversity of this collection reminds us vividly of how distant and
isolated the world’s towns and regions were just 200 years ago. Dress codes have
changed everywhere and the diversity by region, so rich at the time, has melted
away. It is now hard to tell the inhabitant of one continent from another. Perhaps
we have traded cultural diversity for a more varied personal life—certainly a more
varied and interesting technological environment.

At a time when it is hard to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life
by Maréchal’s pictures. Just think, Maréchal’s was a world so different from ours
people would take the time to read a book title 30 words long.

Introduction

This chapter covers

An introduction to JSP technology
The evolution of dynamic content on the Web
How JSP interacts with other Java code

How to separate presentation and
implementation

1.1

1.2

CHAPTER 1
Introduction

Welcome to Web Development with JavaServer Pages. This book has been written to
address the needs of a wide audience of web developers. You might just be starting
out as a web programmer, or perhaps you’re moving to JavaServer Pages (JSP) from
another language such as Microsoft Active Server Pages (ASP) or ColdFusion. You
could be a Hypertext Markup Language (HTML) designer with little or no back-
ground in programming—or a seasoned Java architect! In any case, this book will
show you how to use JSP to improve the look and maintainability of web sites, and
it will help you design and develop web-based applications. Without further ado,
let’s begin our look at JavaServer Pages.

What is JSP?

JavaServer Pages—]JSP, for short—is a Java-based technology that simplifies the pro-
cess of developing dynamic web sites. With JSP, designers and developers can
quickly incorporate dynamic content into web sites using Java and simple markup
tags. The JSP platform lets the developer access data and Java business logic without
having to master the complexities of Java application development.

In short, JSP gives you a way to define how dynamic content should be intro-
duced into an otherwise static page, such as an unchanging HTML file. When a JSP
page is requested by a web browser, the page causes code to run and decide, on the
fly, what content to send back to the browser. Such dynamic content allows for the
construction of large and complex web applications that interact with users.

JSP is flexible: it adapts to the needs of developers and organizations. For some,
JSP is a simple way to mix Java code and HTML text to produce dynamic web pages.
For others, it helps separate Java code from presentation text, giving nonprogram-
mers a way to produce functional and dynamic web pages. JSP is not even limited to
the production of dynamic HTML-based content. For instance, it can be used in
wireless and voice-driven applications.

Because JSP is based on widely accepted standards, products from numerous
vendors support it. Like Java itself, JSP isn’t dependent on a particular platform.
When you learn JSP, you can be confident that your new skills will be applicable
outside the individual environment in which you learned them.

Dynamic content on the web

The simplest application of the web involves the transmission of static, unchanging
data (figure 1.1). When discussing computer systems, however, it’s important to
keep in mind that static is a relative term. Compared with traditional forms of data

1.2.1

Dynamic content on the web ‘ 3

storage—file cabinets and stone
carvings, for instance—all computer e]
files are transient. When we discuss <2 Responds with
content on the Web, we draw a con- correct flle
ventional distinction between URLSs Figure 1.1 Static web sites transmit only simple,
that refer to simple files and those static files

that refer to the output of a

program.

Web browser 1. Requests a URL Web server

DEFINITION Static content on the Web comes directly from text or data files, such as
HTML or JPEG files. These files might be changed, but they are not al-
tered automatically when requested by a web browser. Dynamic content,
on the other hand, is generated on the fly, typically in response to an indi-
vidual request from a browser.

Why dynamic content?

By our definition, dynamic content is typically generated upon individual requests
for data over the Web. This is not the only way that an ever-changing web site
might be produced. A typical computer system that runs a web server might easily
run other software that can modify files in the server’s file systems. If the web server
then sends these automatically processed files to web browsers, the server achieves a
primitive style of dynamic content generation.

For example, suppose that a pro-
. . Web browser 1. Requests a URL Web server
gram running in the background on ' —
e
a web server updates an HTML file ~ 7 Responds with I:‘ =5
every five minutes, adding a ran- correct flle /
domly selected quotation at the bot- Normal, non-web program
modifies data (whenever
tom. Or suppose that a news it needs to)

organization has a program that) . . .
1 fb Ki Figure 1.2 A simple way to achieve dynamic
accepts manual entry of breaking- content is to modify files behind the

news stories from journalists, formats scenes programmatically.
these into HTML, and saves them in
a file accessible by a web server. In both cases, a web site provides relatively dynamic
data without requiring specific web programming (figure 1.2).

However, such web sites don’t easily support interaction with web users. Sup-
pose there were a search engine that operated using this type of behind-the-scenes
approach. Theoretically, such an engine could figure out all of the search terms it

1.2.2

CHAPTER 1
Introduction

supported and then create—and store—individual HTML pages corresponding to
every supported combination of terms. Then, it could produce a gigantic list of
HTML hyperlinks to all of them, in a file that looked like the following:

Search for "aardvark and lizard"
Search for "aardvark and mouse"
Search for "aardvark and octopus"

Such a scheme, of course, would rapidly become unworkable in practice. Not only
would the user interface be tedious, but the search engine would have to store
redundant copies of formatted search results across trillions of HTML files. Imagine
how long it would take to generate these files when new search terms were added,
and consider how much disk space would be required.

Moreover, many sites need to be able to respond to arbitrary, unpredictable
input from the user. An online email application certainly couldn’t predict every
message a user might write. And often, a web site needs to do more than simply
send HTML or other data when a request is issued; it also needs to take program-
matic, behind-the-scenes action in responce to a request. For example, an online
store might need to save users’ orders into a database, and an email application
would actually have to send email messages. In many cases, simply displaying pre-
fabricated HTML isn’t enough.

For all of these reasons, several web-specific technologies have been designed to
allow programmers to design sites that respond dynamically to requests for URLs
from browsers. JSP is one such technology, and we can get a better sense of how JSP
is useful if we look at a few of its predecessors and competitors.

Common Gateway Interface

The first widely used standard for producing dynamic web content was the Com-
mon Gateway Interface, or CGI, which defined a way for web servers and external
programs to communicate. Under typical operating systems, there are only a few
ways that a program can communicate with another one that it starts: it might
specify particular text on the target program’s command line, set up environment
variables, or use a handful of other strategies. CGI takes advantage of these
approaches to allow a web server to communicate with other programs. As shown
in figure 1.3, when a web server receives a request that’s intended for a CGI pro-
gram, it runs that program and provides it with information associated with the par-
ticular incoming request. The CGI program runs and sends its output back to the
server, which in turn relays it to the browser.

1.2.3

Dynamic content on the web 5

Web browser 1. Requests a URL Web server 2. Runs program, CGI program
passing information
about request

4. Transmits response 3. Sends output
(HTML, etc.) (HTML, etc.)

Figure 1.3 To respond dynamically, a web server can spawn a CGl program to handle
a web request.

CGI is not an application programming interface (API) for any particular lan-
guage. In fact, CGI is almost completely language-neutral. Many CGI programs
have been written in Perl, but nothing prevents you from writing one in C, LISP, or
even Java. The CGI standard simply defines a series of conventions which, when fol-
lowed, let programs communicate with CGI-aware web servers and thus respond to
web requests.

Because it imposes few constraints, CGI is quite flexible. However, the CGI
model has an important drawback: a web server that wants to use a CGI program
must call a new copy in response to every incoming web request.

DEFINITION In operating-system parlance, a running instance of a program is known
as a process. In slightly more formal terms, then, CGI requires that a new
process be created, or spawned, for every new incoming web request.

CGI doesn’t provide for any mechanism to establish an ongoing relationship
between a server process and the external CGI processes it runs. This limitation
leads to a relatively large cost of initialization upon each new request, for creating a
process on a server is a relatively expensive operation. This cost isn’t immediately
obvious when a server runs only a handful of programs, but for large web sites that
deal with thousands of requests every minute, CGI becomes an unattractive solu-
tion, no matter how efficient an individual CGI program might be.

Template systems

The CGI model has another drawback: it requires programs to produce HTML files
and other content, meaning that program code often needs to contain embedded
fragments of static text and data (figure 1.4). Many newer technologies have taken
a different approach. Systems such as Macromedia ColdFusion, Microsoft ASP, and
the open-source PHP (a hypertext preprocessor) all permit the integration of script-
ing code directly into an otherwise static file. In such a file, the static text—typically
HTML—can be thought of as a template around which the dynamic content, gener-
ated by the scripting code, is inserted (figure 1.5). The mechanism is similar to the

CHAPTER 1
Introduction

now-ancient idea of mail merge, a teature supported by nearly all word-processing
systems whereby the same letter can be printed multiple times, varying only in the

particular spots where customized content is necessary.

Such template systems provide a convenient way for
web designers to insert dynamic content into their
web pages. Unlike CGI, template systems don’t
require developers to write stand-alone, executable
programs that print HTML. In fact, a template system
usually doesn’t require an in-depth understanding of
programming in the first place. Instead, designers
need only learn a scripting language supported by the
template system they use. Even the procedure for
debugging and testing pages developed under such
systems is similar to that of HTML: reload a page in
the browser, and changes to both scripting code and
template HTML take effect.

Conceptually, template languages are all fairly simi-
lar. The most visible differences among these systems
involve the particular scripting languages they sup-
port, the syntax used for accessing such languages, and
the way that they provide access to back-end logic.

ColdFusion

ColdFusion provides a set of HTML-like tags that can
be used to produce dynamic content. Instead of writ-
ing more traditional types of code, ColdFusion devel-
opers can build applications using a combination of
HTML tags and ColdFusion-specific tags. Using tag-
based syntax has the advantage of consistency: pages
that consist only of HTML-like tags are more accessi-
ble to HTML designers who do not have experience
with programming languages.

source_code {
functionl () ;
function2 () ;
if (x) |
print

[HTML
Fragment]

Figure 1.4 CGI often requires
that HTML fragments appear
within program code, making
both harder to maintain.

<p>
Your order's
total comes to ..

$ [simple
program code]

That's right;
we're ripping
you off.

</p>

Figure 1.5 Template systems
let HTML designers embed
simple program code within
HTML documents.

ColdFusion is available for Microsoft Windows and a variety of UNIX platforms,
and it allows developers to write extensions to its core tag set in C++ and Java. Fur-
thermore, ColdFusion code can access reusuable components such as CORBA
objects and Enterprise JavaBeans (EJBs)—as well as COM objects when it runs on
Windows. Work on ColdFusion also gave birth to a technology known as Web-
Distributed Data Exchange (WDDX), which helps transfer data from one platform

Dynamic content on the web 7

to another. ColdFusion supports WDDX and can communicate with other services
that use it.

Active Server Pages

ASP technology supports multiple scripting languages, which can be embedded in
HTML documents between the delimiters <% and %>. (As we will see, JSP uses these
same delimiters.) ASP is a core feature of the Microsoft Internet Information Server
(11S), and it provides access to reusable Windows-based objects known as ActiveX
components. Traditional ASP supports two scripting languages by default—Visual
Basic Scripting Edition, based on Visual Basic, and JScript, based on JavaScript.

More recently, Microsoft has introduced ASP.NET as part of its .NET framework.
While classic ASP offers an interpreted scripting environment where code is exe-
cuted directly out of a text file every time a page is loaded, ASP.NET logic is com-
piled, yielding greater performance. ASP.NET offers access to any programming
language supported in the .NET environment, including Visual Basic (in contrast
with simple VBScript on ASP) and C#, which is pronounced “C sharp” and repre-
sents a new language offering from Microsoft. The new ASP.NET environment, like
Java, supports type-safe programming, which can improve code maintainability.
Furthermore, ASPNET introduces the concept of an ASP.NET server control, which
lets ASPNET code authors access logic using a simple, HTML-like tag interface, just
like ColdFusion—and, as we will see later, JSP.

The greatest drawback of the ASP and ASP.NET environments is that they are
centered primarily on a single platform—Windows. Some vendors, such as
Chili!Soft, have introduced products that support ASP in other environments. And
the more recent .NET framework promotes certain kinds of integration with non-
Microsoft platforms. Nonetheless, ASP and ASP.NET have not typically been
regarded as attractive solutions for organizations that are not committed to
Microsoft technology.

PHP and other alternatives
PHP is an open source template system. As with other open source projects, such as
the Linux operating system and the Apache HTTP Server, PHP is not a commercial
product. Instead, it is the result of contributions from a community of developers
who freely build and support its code base. Open source products are typically avail-
able on a variety of operating systems, and PHP is no exception.

Like ASP, PHP was once based on purely interpreted scripting, but it has moved
closer to compilation over time. PHP 4 provides improved efficiency over PHP 3 by
compiling scripts before executing them. PHP 4 comes with a rich function library

1.2.4

CHAPTER 1
Introduction

that includes support for accessing mail services, directories, and databases. Like
ColdFusion, it supports WDDX, which provides for interoperability with other lan-
guages. Furthermore, it can interact with Java code, and it provides an API that
allows programmers to insert custom modules.

PHP isn’t the only open source platform for generating dynamic content on the
Web. For instance, like PHP, a system called Velocity falls under the umbrella of the
Apache Software Foundation. Velocity is a template engine that is geared toward
providing access to Java objects using a simple, custom template language.

Open source template systems are flexible and free. Because their source code is
available, experienced developers can debug nearly any problem they run into while
using open source systems. In contrast, when a bug is encountered in a proprietary
system, developers might need to wait for new releases to see it addressed. Some
developers, however, see the sheer number of solutions offered by the open source
community as a drawback. With dozens of competing alternatives that change fre-
quently, the community can appear fragmentary, and some organizations might find
it hard to settle with confidence on a solution they trust to be stable.

Java on the Web

So far, we have mentioned little about how Java and JSP fit into the larger picture.
Java, as you probably know, is a language that was developed by Sun Microsystems.
Java programs run inside a Java Virtual Machine (JVM), which provides a platform-
independent level of processing for Java bytecodes, into which Java source files are
compiled. Java thus avoids tying itself to a particular hardware platform, operating-
system vendor, or web server. Furthermore, because Java has gained wide industry
acceptance, and because the Java Community Process provides a well-defined
mechanism for introducing changes into the platform when enough industry sup-
port exists, Java users can be confident that they develop applications on a standard
and flexible platform. Let’s take a quick look at how Java is used on the Web.

Java applets

All of the technologies discussed so far involve dynamic content generation on the
web server’s end. However, the Web can also be used to deliver software that acts
dynamically once it reaches the client machine.

Determining the appropriate mixture of client-side and server-side code to use
in an application is a complex problem, and the industry historically seems to swing
between the two alternatives. At the client-side end of the spectrum, a web site
could offer fully functional, downloadable programs that users can run; at the

Dynamic content on the web 9

server-side end, servers handle almost all of the processing of an application, merely
asking clients to render screens of HTML or other markup languages.

Java applets, an early use of Java technology that remains popular in some envi-
ronments, are examples of client-side code. Applets are typically small programs
that can be downloaded and run inside web browsers. Applets can access the net-
work and perform a variety of other functions, offering a rich user interface from
within a simple web browser. But applets have drawbacks and are not suitable for all
applications. For instance, not all web browsers support Java applets identically; in
fact, not all web browsers support Java applets in the first place. Furthermore, in
many situations, server-side code is easier to maintain and support.

Java servlets

A Java servlet relates to a server, roughly, as a Java applet does to a web browser. A
servlet is a program that plugs into a web server and allows it to respond to web
requests according to instructions provided as Java code. As we mentioned, the CGI
standard allows developers to write code in Java. Why, then, would a separate stan-
dard for Java servlets be necessary?

Foremost, servlets offer a great performance advantage over CGI programs. This
may seem counterintuitive to those who realize that code that runs inside a JVM is
typically slower than code that runs natively on a particular platform. Even though
the performance difference between Java and native code diminishes as research
improves, the gap is still noticeable. Thus, if CGI supports native code but Java
requires a JVM, how could servlets be faster than CGI programs?

The major difference lies in the limitation of CGI that we discussed earlier: CGI
processes need to be run individually in response to web requests. The Java Servlet
platform offers a different model that allows a Java program within a single JVM
process to direct requests to the right Java classes. Since no new operating-system
processes—only lighter-weight threads of execution within the JVM—need to be
created for incoming requests, servlets end up scaling better than CGI programs do.

Servlets also offer Java programmers more convenience than the base CGI speci-
fication. CGI does not provide language-specific APIs, nor does it provide standard
libraries to facilitate programming. The Java Servlet standard, in contrast, provides
an API that supports abstraction and convenience. In order to access information
about incoming requests, for example, servlet programmers can use objects from a
particular class hierarchy defined in the Servlet specification. Moreover, servlets
have access to all of the benefits of the Java platform itself, including reusable class
libraries and platform independence. Since a servlet is just a Java class, it can natu-
rally access other Java code.

10

CHAPTER 1
Introduction

NOTE We’ll look more at servlets in the next chapter. Appendix F provides a refer-
ence to the servlet API.

Servlets first appeared as part of the Sun Java web server product, which was an
HTTP server written in Java. Versions 2.1 and 2.2 of the Servlet standard appeared
in 1999, and version 2.3 was released in 2001. The evolution of the Servlet plat-
form continues under the Java Community Process.

Even with the services provided by the Java Servlet API, however, the platform
has a drawback in terms of convenience and maintainability when it is used to pro-
duce dynamic web pages. Servlets offer all of the tools necessary to build web sites,
but just like the CGI standard, they require developers to write code that prints
entire HTML files—or other data—on demand. Code that looks like
out.println("<p>One line of HTML.</p>");
out.println("<p>Another line of HTML.</p>");
is common. The ease of template systems, where code can simply be embedded in
static text, is not present.

Libraries and toolkits help orient the servlet environment toward the creation of
HTML pages (and other types of data). For instance, the Element Construction Set
(ECS), another open source project under the Apache Software Foundation’s
umbrella, offers an approach that should be familiar to object-oriented program-
mers. ECS supports the creation of HTML and Extensible Markup Language (XML)
pages using a class hierarchy representing textual elements. This approach facilitates
the construction and maintenance of textual documents, but it has a potential
drawback: all document content, both static and dynamic, still exists inside source
code. To edit the layout of a page, a developer must modify Java code; an HTML
designer cannot simply edit a straightforward text file.

JavaServer Pages (JSP)

Ideally, then, it seems that web designers and developers who use the Java platform
would want a standards-based template system built on top of the Servlet platform.
As we discussed, servlets provide performance benefits and can take advantage of
existing Java code. But template systems let dynamic web pages be created and
maintained easily.

JSP was the natural result of this need. JSP works like a template system, but it
also extends the Servlet platform and provides most of the advantages of servlets.
Like servlets, JSP pages have access to the full range of Java code’s capabilities. JSP
pages can include Java as embedded scripting code between <% and %> delimiters,

1.2.5

Dynamic content on the web 11

the same as those used in ASP. But like ColdFusion, JSP also provides several standard
HTML-like tags to access back-end logic, and it lets developers design new tags.

In short, JSP is a standards-based template system that extends the Java Servlet
tramework. The first draft of the JSP specification appeared in 1998, followed by
versions 1.0 and 1.1 in 1999. The newest version of the standard—]JSP 1.2—was
released in 2001; this version is the one covered by this book.

In addition to the underlying technical specifics, servlets and JSP differ from
most other technologies in another important respect: they are supported by a wide
variety of vendors. Dozens of server-side platforms and development tools support
servlets and JSP.

How XML fits in

What implications does XML have for web developers? XML is not a development
language; it does not serve a function coordinate with that of template systems,
CGlI, or anything else we’ve discussed so far. XML is, at heart, a format for repre-
senting data. A quick primer on XML’s syntax and how it relates to HTML is given
in chapter 4, but for now, think of an XML document as a way to represent tree-
structured data in textual form. XML is not tied to any particular programming lan-
guage, so it is sometimes called “portable data.” (For example, the WDDX technol-
ogy mentioned in section 1.2.3 is based on XML.)

A quick tour of XML technologies

Several technologies support XML and make it useful as a mechanism for storing,
transmitting, and manipulating data for web applications. For instance, document
type definitions (DTDs) ensure a certain level of structure in XML documents. XML
Schema is a technology that goes far beyond DTDs in ensuring that an XML docu-
ment meets more complex constraints.

TIP Here’s a relatively lighthearted but instructional way to look at XML basics.
Suppose you want to store a list of jokes on your computer. You could easily
store such a list in a simple text file. XML lets you impose structure: for ex-
ample, you can mark off sections of the jokes into set-ups and punchlines.
Given such a structured file, DTDs let you make sure that every joke has a
punchline. And XML Schema, one might say, comes close to ensuring that
the punchlines are funny!

Of course, such a claim about XML Schema is not literally true. But XML
Schema can be used to define details about how data needs to appear in a
document.

12

CHAPTER 1
Introduction

Several APIs and languages exist for manipulating XML. The Document Object
Model (DOM) provides programmatic, well-defined access to an in-memory copy
of an XML document. The Simple API for XML (SAX), by contrast, supports an
event-driven model that allows programmers to handle XML without keeping an
entire document in memory at once.

Extensible Stylesheet Language Transformations (XSLT) provides a mechanism
for manipulating XML documents—that is, for extracting pieces of them, rearrang-
ing these pieces, and so on. XSLT uses the XML Path Language (XPath) for refer-
encing portions of the XML document. An XPath expression, as an example, can
refer to “all <punchlines> elements under all <joke> elements” within a document.
An XSLT transformation would let you format an XML document containing data
into HTML for presentation on web browsers—and also into the Wireless Markup
Language (WML) for use on cell phones and other wireless devices.

Some web-specific technologies have focused specifically on XML. One such
technology is Cocoon, yet another product of the Apache Software Foundation.
Cocoon supports pipelines of XSLT transformations and other operations, so that a
single XML document gets massaged through a series of steps before being sent to
its final destination. Cocoon uses this model to support presentation of data in
HTML and other formats. The Cocoon framework also introduces the idea of
eXtensible Server Pages (XSP), which works like an XML-based template system;
XSP can be used to generate XML documents dynamically, using markup that refer-
ences either embedded or external instructions.

XML and JSP

JSP touches on XML technology at a number of points. Most simply, JSP can easily
be used to create dynamic XML documents, just as it can create dynamic HTML
documents. Java code used by JSP pages can, moreover, easily manipulate XML doc-
uments using any of the Java APIs for XML, such as the Java API for XML Processing
(JAXP). JSP pages can even be written as XML documents; most of JSP syntax is
compatible with XML, and the syntactic constructs that aren’t compatible have anal-
ogous representations that are.

Behind the scenes, the JSP 1.2 specification uses XML to let developers validate
pages. Just as JSP pages can be authored in XML, every JSP page is represented,
internally by the JSP processor, as an XML document. JSP 1.2 lets developers use
this view of the page to verify the document as it is being processed—that is, to
ensure that the page meets custom constraints the developer can specify. This might
be usetul in environments where back-end developers want to ensure that HTML
designers using the developers’ code follow certain conventions appropriately.

1.3

1.3.1

The vole of JSP 13

Future versions of JSP might use this internal XML representation to let developers
execute automatic XSL transformations, or other modifications, on JSP pages
before they execute.

The role of JSP

When we presented individual template systems, we discussed how they provided
access to back-end libraries and custom logic. For instance, ASP supports ActiveX
controls and ColdFusion can be extended with C++ or Java, thus providing access
to back-end C++ or Java objects. We now look at how JSP pages fit into Java frame-
works—that is, how they access reusable Java classes, and what role they play in
large, distributed Java applications.

The JavaBeans component architecture

JavaBeans is a component architecture for Java. To software developers, the term
component refers to reusable logic that can be plugged into multiple applications
with ease. The goals of component architectures include abstraction and reusability.
That is, new applications don’t need to know the details of how a particular compo-
nent works, and the same component can be used in a variety of applications.
Because of this reusability, component architectures increase productivity; code per-
forming the same task does not need to be written, debugged, and tested repeatedly.

Think of JavaBeans as Java classes that follow particular conventions designed to
promote reusability. JavaBeans can encapsulate data and behaviors. For instance,
you might design JavaBeans that represent your customers or products, or you
might write a bean that handles a particular type of network call. Because JavaBeans
automatically provide information to their environments about how their data can
be accessed, they are ideally suited for use by development tools and scripting lan-
guages. For example, a scripting language might let you recover the last name of a
customer whose data is stored in a JavaBean just by referring to the bean’s last-
Name property. Because of JavaBeans’ conventions, the scripting language can auto-
matically determine, on the fly, the appropriate methods of the JavaBean to call in
order to access such a property (as well as the Java data type of the property). Java-
Beans can also, because of their generality, be connected and combined to support
more sophisticated, application-specific functionality.

14

CHAPTER 1
Introduction

NOTE We’ll discuss more about the technical details of JavaBeans in chapter 8. For
now, our intent is to explore high-level advantages that JavaBeans provide to
JSP applications.

Just as JavaBeans can be used by scripting languages, they can also be used inside
JSP pages. Of course, the Java code that is embedded in a JSP page can access Java-
Beans directly. In addition, though, JSP provides several standard HTML-like tags to
support access to properties within JavaBeans. For instance, if you wanted to print
the lastName property of a customer bean, you might use a tag that looks like this:

<jsp:getProperty name="customer" property="lastName"/>

In addition to the typical reusability

that the JavaBeans’ architecture offers JavaBean
(figure 1.6), beans thus serve another 1
role in the JSP environment. Specifi- JEVEBGET

cally, they promote the separation of \
presentation instructions and imple- / —¢—LL_
mentation logic. A customer bean ref-
erenced by a JSP page might have an JSP Jsp Jsp

. . . . page page page
arbitrarily complex implementation;

for instance, it might use the JDBC
Data Access API to retrieve customer ¢ T /

information or process demographic JavaBean
data related to the customer. Regard- 7
less of what goes on behind the scenes,

however, the single line of JSP code JavaBean

above still retrieves the lastName
property out of the customer bean.
The Java code is thus abstracted out of
the JSP page itself, so that an HTML designer editing the page would not even need
to see it—much less be given a chance to modify it accidentally.

Note that JavaBeans, while greatly assisting the separation of presentation
instructions from back-end program logic, do not provide this separation automati-
cally. JavaBeans’ properties can contain arbitrary data, and you could easily con-
struct an application that stores HTML tags as data inside JavaBeans. For instance,
instead of a lastName property that might store the name Jones, you might instead
store a formattedLastName property that looked more like this:

Figure 1.6 The same JavaBeans component can
be used in multiple JSP pages.

1.3.2

The vole of JSP 15

<p>Jones</p>

Doing this would compromise the separation of HTML from logic, however.
Including this HTML inside a JavaBean would limit the bean’s reusability. Suppose
you wanted to start using the bean in a wireless, WML-based application, or in an
applet. In such a case, storing HTML inside the bean would not be desirable.
Instead, it would be more productive to surround the JSP tag that refers to the bean
with HTML formatting.

Similarly, JavaBean logic itself should not produce HTML tags. You might be
tempted to use a JavaBean to construct an HTML table automatically as the result
of a database query, but in most situations, it would be better, instead, to use JSP to
construct the table and the JavaBean only to access the database.

The separation between logic and presentation that JSP promotes can, as we’ve
hinted, assist with division of labor within development teams. The more Java code
that is removed from JSP pages, the more those pages should feel familiar to web
designers. When programmers focus their work on Java code and designers manage
HTML pages, the need for coordination among team members is reduced, and the
team can become more productive. Even on relatively small projects, using JavaBeans
might save you work and make your code more maintainable. It is typically easier to
debug standalone JavaBeans than Java code embedded in a JSP page—and, as we’ve
discussed, encapsulating code in a bean will let you easily use it in multiple pages.

NOTE JavaBeans are not the only way to abstract logic out of JSP pages. Custom
tags, described in more detail in chapters 17-19, provide another means of
referencing Java logic within JSP pages without embedding it in the page it-
self. Chapter 18 covers design considerations that will help you choose be-
tween JavaBeans and custom tags.

JSP and Java 2 Platform Enterprise Edition

JSP technology is integral to the Java 2 Platform, Enterprise Edition (J2EE). Because
it focuses on tasks related to presentation and flexibly supports access to back-end
functionality, JSP is a natural choice for the web tier of multi-layer applications.

J2EE in contrast with the Standard Edition (J2SE) and the Micro Edition
(J2ME), supports the development of enterprise applications. J2EE includes tech-
nologies targeted at designing robust, scalable applications. At J2EE’s core is the
Enterprise JavaBeans (EJB) specification, which aids developers of enterprise com-
ponents by managing such things as security, transactions, and component life
cycle considerations.

16

CHAPTER 1
Introduction

The J2EE BluePrints, a set of documents and examples from Sun Microsystems
that describe recommendations for building enterprise applications, prominently
teature JSP technology. In many enterprise environments, JSP provides an effective
mechanism for handling the presentation of data, irrespective of the data’s source,
the use of EJB, and other considerations.

JSP is also being used as the basis for emerging standards. For example, the Java-
Server Faces initiative, operating under the Java Community Process, had recently
begun investigations into a standard mechanism for simplifying the development of
graphical web applications using servlets and JSP.

Because JSP is regarded as enterprise-quality technology, JSP developers can
depend on backwards compatibility from future versions of the JSP specification.
While JSP actively continues to evolve, its days as an experimental platform are over.
Instead, users of JSP can rely on its platform independence, its status as an enter-
prise technology, and its basis on standards accepted by the industry.

HTTP and serviets

This chapter covers

HTTP basics

HTTP GET versus HTTP POST
Java servlet basics

An example servlet

17

18

2.1

2.1.1

CHAPTER 2
HTTP and sevviets

Like most web applications, JSP pages require a style of programming different
from that of traditional desktop applications. For one thing, you cannot choose
how and when your JSP application interacts with its users; JSP pages are limited by
the protocols and technologies on which they rest. In this chapter, we look at the
Hypertext Transfer Protocol (HTTP) and Java servlets, both of which help define
how JSP functions.

The Hypertext Transfer Protocol (HTTP)

HTTP is the default protocol for JSP, which means that JSP applications typically
receive requests and send responses over this protocol. HT'TP is also the basic proto-
col of the World Wide Web, and you’ve almost certainly used it already if you’ve
accessed a web page.

For computers on a network to communicate, they need a set of rules—that is, a
protocol—for sending and receiving data. HTTP is one such protocol, and it’s the
one that has been adopted by the web. All web browsers support HTTP, as do the
web servers they connect to. HTTP supports both static content, such as HTML
files, and dynamic content, including data generated by the technologies we dis-
cussed in chapter 1.

DEFINITION Web server is a general term that can be used to describe both the hard-
ware and the software of a machine that answers requests from web
browsers. In this discussion, we usually refer to the software—that is, to
HTTP-server software running on a networked machine. Examples of
HTTP servers include the Apache Server and Microsoft IIS.

HTTP basics

As it turns out, HTTP is simpler than many other protocols. It defines a relatively
straightforward model of interaction between a web browser and a server. Specifi-
cally, HTTP is oriented around requests and responses. Under HTTP, a browser
sends a request for data to a server, and the server responds to that request by pro-
viding HTML or some other content.

The Hypertext Transfer Protocol (HTTP) 19

By contrast, some application protocols are

. . . Client Server
bidirectional. For example, when you establish
a terminal connection to a host using Telnet, 2
either your client program or the server may
Client Server

arbitrarily decide that it is time to send a mes-
sage to the other party. As suggested in
figure 2.1, web servers do not have this flexi-
bility. For a web server to send data to a web
browser, it must wait until it receives a request
from that browser. While a Windows applica-
tion like Microsoft Word, or even a terminal b
application running on top of Telnet, can sim- gigyre 2.1 a. A request-response

ply decide to display a message on the user’s protocol such as HTTP. b. A bidirectional
screen when it needs new input, an HTTP- Protocol s“_c'_‘t?s"Te'“et- Note that t::
based application must follow the request/ z‘:;::::la;; fslt:‘bﬁs:::fssage onee the
response model.

NOTE To get around some of HTTP’s constraints on application flow, web applica-
tions can send JavaScript code—or even full programs like Java applets—as
part of their responses to browsers. (See chapter 15 for an example of using
JavaScript, and see appendix C for more information about applets.)

Applets and scripting code are not appropriate for all web applications. For
example, not every browser supports JavaScript and Java applets. Further-
more, underneath such code, the requests and responses of HTTP are still
present, and you will need to keep them in mind when designing your web
applications.

HTTPY is also szateless, meaning that once a web server answers a request, it doesn’t
remember anything about it. Instead, the web server simply moves to the next
request, forgetting tasks as it finishes them. You will occasionally need to keep this
statelessness of HT'TP in mind as you develop web applications. For example, sup-
pose you want to design an application that ties together successive requests; per-
haps you want to remember that a user added a product to a shopping cart, or you
need to assemble the results of several pages’ worth of HTML forms. By itself,
HTTP does not join together such logically connected requests—a task often
referred to as session management. As we will see in chapter 4, the JSP environment
provides support for session management, but you should keep in mind that you

20

CHAPTER 2
HTTP and sevviets

have some control over how your application manages sessions; HTTP does not
solve, or even address, this issue for you.

Because HTTP is stateless, a web browser must build two separate, complete
requests if it needs two pages from a server. In fact, for pages that contain embed-
ded images, music, or other data, the browser might have to send numerous
requests to the server in order to load a single page completely.

NOTE If you have experimented with HTTP, you may have realized that it supports
persistent connections, meaning that a browser can keep a single network con-
nection open if it has many requests it needs to send to a server. This ability is
just an implementation detail, however: it represents only a low-level perfor-
mance improvement. As far as web applications are concerned, persistence
does not change the way HTTP functions; the protocol is still stateless and
oriented around individual requests and their responses.

Although HTML is clearly one of the most popular formats for data on the web,
HTTP is a general-purpose protocol and is not limited to serving HTML. For exam-
ple, HT'TP also frequently carries images, sound files, and other multimedia—and it
can be used for just about anything else. HTTP responses are typically tagged with a
content type; that is, they include information about the data’s format. This extra
information is encoded as part of an HTTP message’s beaders.

A typical HTTP response has a status line, headers, and a
body (figure 2.2). The body contains the response’s pay- gizizsiine
load—an HTML file, for example—while the header and sta-

tus line provide information that the browser uses to figure Headers
Information about
out how to handle the response. Although the web server typ- the response

ically manages some response headers itself, JSP pages have
access to set the headers for the responses they generate. For

Body
example, your JSP page can set the content type of its HTML, JPG, or a file
5 . .1s . in another format
response; we’ll see how to take advantage of this ability in
chapter 15.

As described, HTTP is a reasonably simple protocol. Many Figure 2.2 The
users of the web think that HTTP does more than it really typical structure of an
does. An important point to keep in mind is that HTTP HTTP response.
doesn’t care what content it carries or how that content was generated. Neither, in
fact, do web browsers: a browser does not need to know whether the HTML it ren-
ders was transmitted from a static file, a CGI script, an ASP page, or a JSP applica-
tion. As suggested by figure 2.3, the flow of a typical web application is not very

2.1.2

The Hypertext Transfer Protocol (HTTP) 21

different, as far as a web browser is concerned, from aimless browsing of static pages
by a user: the browser transmits a request and gets a response, the user reads the

page and takes some action, and the cycle repeats.

As an example of HTTP’s simplicity, consider a
web-server feature you might be familiar with.
When a browser asks for a URL that corresponds to
a directory of files instead of a particular file name,
many servers generate a listing of the files in that
directory. It is important to realize that the server
generates this listing; it automatically fabricates an
HTML message that represents a directory listing,
and the browser renders this HTML message just as
it would render a static file. (In other words, the
browser has no idea that it just requested a list of
files.) The very correspondence between the URL
and a directory is idiosyncratic to the web server’s
configuration; the web server, on its own, establishes
this mapping. Likewise, it’s up to web servers to
decide whether a particular request will be served
from a simple file or dispatched to a JSP page.

GET versus POST

Request

User Server
Response

Request

Response

Request

Response

Figure 2.3 The flow of a typical
web application is not substantially
different from that of aimless
browsing by a web user. Broadly
speaking, the web is made up of
requests and responses.

As we discussed earlier, HTTP servers need to wait for requests from web browsers.
These requests can come in a variety of forms, but the two request types—formally
called methods—that are most important to web developers are called GET and POST.

Just like HTTP responses, HTTP requests can be broken

GET Request

up into headers and bodies. However, while most HTTP GeT url HTTP/1.1

response messages contain a body, many HTTP requests do
not. A simple type of HTTP request just asks for information Information about
identified by a URL. (To be more specific, browsers don’t

Headers

the request

send the entire URL to servers; they send only the portion of

the URL relative to the server’s root. When we discuss URLS gigyre 2.4 The

in HTTP requests, we refer to this type of relative URL.) This typical structure of a

kind of request usually consists of a line of text indicating the GET request.

desired URL, along with some headers (figure 2.4). Because

such requests support simple information retrieval, they are called GET requests.
Handling GET requests is relatively simple: the server reads and parses the

requested URL and sends an appropriate response. GET methods are often used to

22

CHAPTER 2
HTTP and sevviets

retrieve simple files, such as static HTML or images. However, they are not limited
to this simple functionality. URLs come in many shapes and sizes, and as we’ve dis-
cussed, servers have discretion in processing them: URLs don’t necessarily map to
files in a filesystem, JSP pages, or anything else. Furthermore, information can be
encoded dynamically into a URL. For example, a value you type into an HTML form
might be added to the end of a URL. A web server can process this information on
the fly, taking customized action depending on the information that a URL contains.

As an example, suppose a web server is configured to respond with a custom
greeting based on information that it parses out of the URL. When the server
receives a request corresponding to a URL such as

http://example.taglib.com/hello?name=Name
it responds with HTML output of the form
<html><body><p> Hello, Name </p></body></htmls>

The server is well within its rights to respond to a request in this manner; again, a
URL doesn’t necessarily correspond to a particular file on the server, so no file
called hello or hello?name= or anything similar needs to exist on the exam-
ple.taglib.com server. The server can simply make an arbitrary decision to
respond to the request in this way.

As it turns out, many real-life web applications handle GET =~ o Request
requests in a very similar fashion when responding to HTML posT url HTTP/1.1
forms. Web browsers have a standard format for submitting Hoadors
the information that users enter through such forms. (There- Information about
fore, when servers parse this information, they can know what the request
to expect.) One way that browsers submit this kind of

encoded information is by appending it to the URL in a GET Body
Information sent as

request. part of the request,
POST requests are similar to GET requests. However, in | usually intended for

L. L. R . a web application
addition to transmitting information as part of the structure
of the URL, POST requests send data as part of the request’s _
bodv (fi 25) A ith GET his infe . Figure 2.5 The

ody (figure 2.5). As wit requests, this information gy ical structure of a
might be in any format, but web browsers and server-side POST request.
applications generally use standard encoding rules.

When requesting URLs as the result of an <a>, , or similar HTML element,
web browsers use GET requests. When submitting the result of an HTML <forms,
browsers use GET by default but can be told to use POST by specitying the method
attribute of <form> as POST, as follows:

22

Java serviets 23

<form method="POST” >

Why is there a need for both GET and POST, considering how similarly they func-
tion? For one thing, many web applications require the browser to transmit a large
volume of data back to the server, and long URLs can get unwieldy. Although there
is no formal length limitation on URLSs, some software—such as HTTP proxies—has
historically failed to function properly when URLs are greater than 255 characters.
POST is therefore useful to get around this limitation.

The HTTP standard also draws a logical difference between the two types of
requests. The standard suggests that GET methods, by convention, should not cause
side effects. For example, a properly functioning web application should not store
information in a database in response to a GET request; actions that cause side effects
should be designed, instead, to use POST requests. In practice, this guideline is not
always followed, and in most cases, it does not have many practical ramifications.

A more important consideration raised by the HTTP standard is that software
engaged in the processing of URLs—including web browsers, proxies, and web
servers—often stores these URLs as they are processed. For instance, browsers often
keep histories of visited URLSs, and servers often maintain logs of URLs that have
been requested. Therefore, if your web application passes sensitive data, such as a
user’s password, using an HTML form, it should POST the data instead of sending it
as part of the URL in a GET request. Data sent as the body of'a POST is not typically
logged by browsers, proxies, or servers.

TIP As you develop web applications, you’ll probably find that you use POST re-
quests more frequently than GET requests for submitting web forms, given
the volume and sensitivity of the data you’ll need to transfer. GET requests
are useful, however, if you want to access dynamic content from an <a> or
 tag; these tags cause browsers to use the GET method. We’ll see an
example of this use of <a> in the servlet example.

Java servlets

A Java servlet is a special type of web-based Java program. As we saw in chapter 1,
JSP pages depend intricately on servlets. In fact, every JSP page ultimately becomes
a servlet before it's used. Therefore, before jumping into JSP, you might want to
familiarize yourself with how servlets work.

24

2.2.1

2.2.2

CHAPTER 2
HTTP and sevviets

How a web server uses serviets

A web server, as we have seen, has fairly wide discretion in how it decides to
respond to HTTP requests. It might serve files from a disk, or it might call a
program and produce a response based on that program’s output. More sophisti-
cated servers, such as the Apache Server, have rich configuration mechanisms that
allow modules to be installed and run from within the web server’s process. One
such program might be a servlet container.

DEFINITION A program that manages servlets is called a serviet container, or a serviet
engine. If a web server is configured to respond to certain types of re-
quests by running a servlet, a servlet container is responsible in part for
handling these requests. For example, the container sets up and shuts
down servlets as necessary and provides information to servlets to facili-
tate their processing. The servlet container also calls the appropriate
methods on servlet objects in order to cause specific servlets’ logic to run.

A servlet container might .
. Browser Web server Servlet continer
be implemented as a sepa- process process
rate operating-system pro- °
cess from the web server it
: . : Browser Web server
communicates with, or it orocess
might be configured to run b
inside th b 5 Servlet
inside the web server’s pro- container
cess (figure 2.6). The

model of communication

between web servers and Figure 2.6 A servlet container may run in a separate operating-

i X K system process from the web server logic that depends on it (a).
servlet containers is fairly p'serviet container may also run inside a web server’s process (b).
general; as long as the con-

tainer can manage servlets appropriately, hand them requests, and deliver their
responses, servlet and JSP developers can be shielded from the details of the back-
end interaction between servlet containers and the generic web-server logic that
drives them.

The anatomy of a serviet

Like HTTP, servlets are based on the request/response model. In fact, a servlet is
essentially a Java class that implements a particular, formal interface for producing
responses based on requests. The Java interface javax.servlet.Servlet, which
defines how servlets function, has a method that looks like

Java serviets 25

public void service (ServletRequest req, ServletResponse res)

The ServletRequest and ServletResponse interfaces, both in the javax.servlet
package, represent the requests that a servlet processes and the responses that a
servlet generates.

Because all servlets implement the javax.servlet.Servlet interface, each pro-
vides an implementation of the service () method. (Implementing a Java interface
requires that a class provide implementations of all of the methods declared in that
interface.) Therefore, all servlets have logic for processing a request and producing
a response.

The servlet interface has other methods that servlets must implement. JSP
developers do not typically need to deal with these methods directly, but it may be
useful to know that servlets can provide logic to handle initialization in an init ()
method and cleanup in a destroy () method.

The most common type of servlet is
tied specifically to HTTP, which the Serv- service ()
let specification requires every servlet ggr re@“\
container to support. The servlet stan-
dard defines a class, javax.serv-
let.http.HttpServlet, that represents
HTTP-capable servlets and contains ggyre 2.7 The mapping of GET and POST
some convenience logic for their pro- requests within an HttpServiet implementation.
grammers. Specifically, authors of HTTP
servlets do not usually need to write a service () method manually; instead, they
can extend the HttpServlet class and override one or more of the higher-level
methods it provides. Since HttpServlet is aware of HTTP, it has Java methods that
correspond to HTTP methods: for instance, it specifies a doGet () method to handle
GET requests and a doPost () method to handle POST requests. As figure 2.7 sug-
gests, the service () method of Httpservlet calls these methods when the servlet
receives GET or POST requests. Because service () provides this switching mecha-
nism to differentiate among different types of HT'TP requests, the developer of an
HTTP servlet does not need to analyze each request, determine its type, and decide
how to handle it. Instead, HTTP servlet authors can simply plug in logic to respond
to GET or POST requests, as appropriate to their applications.

The doGet () and doPost () methods accept arguments of type HttpServlet-
Request and HttpServletResponse, both of which are located in the
javax.servlet.http package. These two interfaces extend their more generic
equivalents and provide HTTP-specific request information and response directives.
For example, because the type of message headers we discussed earlier are an HTTP

POST request

doGet () doPost ()

26

2.2.3

CHAPTER 2
HTTP and sevviets

concept and might not be present in another protocol, the method getHeaders ()
is defined in HttpServletRequest, not in the base servletRequest interface. That
is, the general interface does not need to have any concept of HTTP headers, but
HTTP-specific request objects do. Similarly, the HttpServletResponse interface
lets a servlet set HTTP cookies, which are described in more detail in chapters 4 and
14; cookie functionality would not be appropriate in the generic interface.

Consider another use of the servietRequest interface. As we discussed earlier,
browsers have a standard mechanism for encoding the data that users enter on
HTML forms. In the servlet environment, it is the job of the servlet container to
understand this encoding and represent it to the servlet. It does this through a
ServletRequest object, which has methods like getParameter () that let the serv-
let easily recover the information entered by the user. Servlet authors therefore
don’t need to parse the encoded form data themselves; they can use the simple Java
API that the container provides. HttpServletRequest objects will resurface when
we begin to discuss the details of JSP functionality.

NOTE For more information on the servlet and JSP APIs, including the classes and
interfaces shown in this chapter, see appendix F.

A serviet example

Even though detailed knowledge of servlets is not necessary for JSP developers—in
fact, one of JSP’s great advantages is that it lets developers create Java-based web
applications without having to write servlets by hand—a simple servlet example
might help you understand how servlets function. As we discussed, the servlet con-
tainer does a lot of work behind the scenes, so a simple servlet is actually fairly
straightforward to write. A basic HTTP servlet just needs to provide logic to
respond to GET or POST request, which it can do by overriding the doGet () or
doPost () methods in Httpservlet. The source code to a basic servlet that greets
the user and prints extra information is shown in listing 2.1.

Listing 2.1 A servlet that greets and prints

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class BasicServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws IOException {

Java serviets 27

// output to the browser via the "response" object's Writer
PrintWriter out = res.getWriter();

// print out some unchanging template "header" text
out.println("<html>") ;

out.println("<body>") ;

out.println("<p>");

// print some dynamic information based on the request
String name = reqg.getParameter ("name") ;
if (name != null)

out.println("Hello, " + name + ".");
else

out.println("Welcome, anonymous user.") ;
out.println("You're accessing this servlet from "

+ reg.getRemoteAddr () + ".");

// print out some unchanging template "footer" text
out.println("</p>");

out.println("</body>") ;

out.println("</html>") ;

This servlet implements only the doGet () method; it does not concern itself with
POST requests. From doGet (), the servlet prints unchanging information, often
called template data, to a java.io.PrintWriter object it has retrieved from the
HttpServletResponse object it was passed. Then, it greets the user by retrieving a
particular parameter from the HTTP request, much as the web server in our prior dis-
cussion did. It also prints the IP address from which the request originated. (Some
applications use this information for gathering statistics or auditing users.)

TIP It is relatively easy to install a servlet container and run the servlet from
listing 2.1. See appendix B for more information on Jakarta Tomcat, a free
servlet and JSP container that provides the official reference implementation
for the Java servlets and JSP platforms.

Notice how the servlet makes multiple calls of the form out.println() in order to
display HTML and other miscellaneous text. Servlets that print HTML become
unwieldy quickly because they output a large amount of text from within program
logic. As we saw in chapter 1, this awkward use of servlets is one of the motivating
factors behind JSP.

28

CHAPTER 2
HTTP and sevviets

§ http: / /fexample.taglib.com:8080 /example/servlet /BasicServlet - Microsoft _ ol x|

J File Edit WView Favorites Tools Help |JLinks 22

JAQdFeSS |€] http:/fexample.taglb.com :8080/example/serviet/BasicServiet j @Go
Welcome, anonymous user. You're accessing this servlet from 192.168.1.123.

|&]Done [[|8 mtermet 7

Figure 2.8 Output of the basic servlet when no name is specified.

Figures 2.8 and 2.9 show the servlet responding to two different requests. Note
the differences between the two trial runs of the servlet. In figure 2.8, no name
parameter is specified, so the test against such a parameter in the code causes an
anonymous greeting to be displayed; figure 2.9 greets the user by name. Note also
that the IP addresses shown in the two windows are different; the servlet detects the
IP address of each new request as it’s processed.

The servlet determines the name parameter from the HTTP request by parsing it
according to the standard rules we mentioned before; the details of these rules are not
important for now, but as you can probably see from the example, strings of the form

name=value

following a question mark (?) in the URL are interpreted as request parameters.
URLs containing such parameters can also be constructed manually—for exam-

ple, as references from an <a> element. A file containing the following HTML might

allow a user to click two different links and be greeted by two different names:

 Say hello to Justin.
 Say hello to Melissa.

More dynamically, an HTML form containing the element
<input type="text” name="name” />

could allow the user to enter his or her name and be greeted appropriately.

example.taglib.com:8080 /example /serviet /BasicServietZname= '

] Fle Edit ¥ew Favorites Tools Help “Links »
JAgdreSS I@ http:/fexample.taglb.com :8080/example/servlet/BasicServietPname=George j el
[—
Hello, George. You're accessing this servlet from 192.168.1.103.
H
@] Dore [] [mtemet 4

Figure 2.9 Output of the basic servlet when a name is specified.

Java serviets 29

This crash course in servlets was not designed to turn you into a servlet pro-
grammer overnight. As we’ve discussed, JSP makes it easy to develop dynamic web
pages without having to use servlets. But many JSP programmers find a basic under-
standing of servlets useful as they approach more complex problems. Some applica-
tions, as we will see in chapter 10, can be built using both JSP and servlets. In other
situations, having experimented with servlets will give you a deeper understanding
of the JSP environment; we’ll discuss more about how JSP pages and servlets inter-
relate in chapter 4.

Furst steps

This chapter covers

Writing your first JSP page

Simple dynamic content with JSP
Basic session management
Abstracting logic behind JSP pages

30

3.1

Simple text 31

Now we’re ready to see what JSP looks like. This chapter explores some of JSP’s
capabilities, giving you a quick tour of its basic functionality. The goal isn’t to
swamp you with technical details; we’ll begin to consider those in the next two
chapters, when we introduce the syntax and back-end implementation of JSP. The
examples in this chapter should familiarize you with JSP pages’ look and feel, which
will be helpful when we discuss the syntax more formally.

About the examples

As indicated in chapter 1, a strength of JSP is that it lets you produce dynamic con-
tent using a familiar, HTML-like syntax. At the same time, however, the mixture of
JSP elements and static text can make it difficult to look at a file and quickly find the
JSP elements. To help remedy this problem for the examples in this book that mix
JSP elements with static text, we have adopted the convention of marking JSP tags
in such examples in boldface.

All of the examples presented in this chapter (except for one) are real, usable JSP,
and you’re encouraged to experiment with them yourself before moving forward. If
you do not yet have a JSP environment in which to experiment, appendix B contains
a quick installation guide for Tomcat, a free JSP container that provides the refer-
ence implementation for the JSP platform.

DEFINITION A JSP container is similar to a servlet container, except that it also pro-
vides support for JSP pages.

Simple text

No programming book would be complete without an example that prints “Hello,
world!” This simple task serves as an excellent starting point for experimentation.
Once you can use a language to print a text string of your choice, you’re well on
your way to becoming a programmer in that language.

For the web, it makes sense to print “Hello, world!” inside an HTML file. Here’s
a JSP page that does this:

<html>
<body>

<p>

Hello, world!
</p>

</body>
</html>

32

3.2

CHAPTER 3
Fivst steps

At this point, you’re probably thinking, “Wait! That’s nothing but a plain HTML
file.” And you’re exactly right; this example is almost disappointingly simple. But it
emphasizes an important point about JSP pages: they can contain unchanging text,
just as normal HTML files do. Typically, a JSP page contains more than simple static
content, but this static—or template—text is perfectly valid inside JSP pages.

If a JSP container were to use the JSP page in the example code to respond to an
HTTP request, the simple HTML content would be included in the generated
HTTP response unchanged. This would be a roundabout way of delivering simple,
static HTML to a web browser, but it would certainly work.

Unfortunately, this example didn’t show us much about what JSP really looks
like. Here’s a JSP page that prints the same “Hello, world!” string using slightly
more of JSP’s syntax:
<html>
<hody>
<p>
<%= "Hello, world!" %>
</p>
</body>
</html>
This example differs from the previous one because it includes a tag, or element, that
has special meaning in JSP. In this case, the tag represents a scripting element. Script-
ing elements are marked off by <% and %>, and they let you include Java code on the
same page as static text. While static text simply gets included in the JSP page’s out-
put, scripting elements let Java code decide what gets printed. In this case, the Java
code is trivial: it’s simply a literal string, and it never changes. Still, the processing of
this page differs from that of the prior example: the JSP container notices the script-
ing element and ends up using our Java code when it responds to a request.

Dynamic content

If JSP pages could only print unchanging text, they wouldn’t be very useful. JSP
supports the full range of Java’s functionality, however. For instance, although the
scripting element in the last example contained only a simple Java string, it might
have contained any valid Java expression, as in

<%= customer.getAddress () %>
or

<%= 17 * n %>

3.2.1

Dynamic content 33

NOTE As we’ll see in chapter 5, JSP is not strictly limited to Java code. The JSP stan-
dard provides for the possibility that code from other languages might be in-
cluded between <% and %>. However, Java is by far the most common and
important case, and we’ll stick with it for now.

Let’s take a closer look at some examples of JSP pages that produce content
dynamically.

Conditional logic

One of the simplest tasks for a Java program, and thus for a JSP page, is to differen-
tiate among potential courses of action. That is, a program can make a decision
about what should happen next. You are probably familiar with basic conditional
logic in Java, which might look like this:

if (Math.random() < 0.5)

System.out .println("Your virtual coin has landed on heads.");
else

System.out .println("Your virtual coin has landed on tails.");

This Java code, which simulates the flip of a coin, can transfer to a JSP page with
only small modifications:

<html>

<body>

<p>Your virtual coin has landed on

<% if (Math.random() < 0.5) { %>

heads.

<% } else { %>

tails.

<% } %>

</p>

</body>

</html>

This example is similar to the Java code, except that JSP takes care of the output for
us automatically. That is, we don’t need to call System.out.println() manually.
Instead, we simply include template text and let the JSP container print it under the
right conditions.

So what, exactly, does this latest example do? Up until the first <%, the page is
very similar to our first example: it contains just static text. This text will be printed
for every response. However, the template text is interrupted by the Java code
between the <% and %> markers. In this case, the Java code uses Math.random() to
generate a pseudorandom number, which it uses to simulate the flip of a coin. If this

34

3.2.2

CHAPTER 3
Fivst steps

number is less than 0.5, the block of JSP between the first two { and } braces gets
evaluated. This block consists of static text (heads.), so this text simply gets
included if the conditional check succeeds. Otherwise, the value tails. will be
printed. Finally, the template text after the final $> marker gets included, uncondi-
tionally, into the output.

Therefore, this JSP page can result in two different potential outputs. Ignoring
white space, one response looks like this:

<html>

<body>

<p>Your virtual coin has landed on
heads.

</p>

</body>

</html>

The other potential response is identical, except that the line containing the word
“heads” is replaced with one containing “tails.” In either case, the browser renders

the resulting HTML. Recall from chapter 2 that browsers do not need to know how
the HTML was generated; they simply receive a file and process it.

Iteration

Another fundamental task for programs is itzeration—that is, looping. Like condi-
tional logic, iterative code can be moved into JSP pages as well. Let’s take the previ-
ous example and turn it into a page that flips five coins instead of one:

<html>
<body>
<% for (int i = 0; i < 5; i++) { %>
<p>
Your virtual coin has landed on
<% if (Math.random() < 0.5) { %>
heads.
<% } else { %>
tails.
<% } %>
</p>
<% } %>
</body>
</html>

How have we modified the example from the conditional logic section (other than
by indenting it for clarity)? We’ve simply added a Java for () loop around part of it,

embedded between the same <% and %> markers that we used earlier. As shown in
figure 3.1, this loop causes its body to be executed five times.

Dynamic content 35

‘example.taglib.com:8888/examp! ;|g|5|

J Fle Edt Wew Favorites Tools Help |JLinks ”ﬁ
JAgdresS I@ http: ffexample. taglb.com :8888/example/chapter 3-loop. jsp j G0

Your virtual coin has landed on heads. N

Your virtual coin has landed on tails.

Your virtnal coin has landed on tails.

Your virtual coin has landed on heads.

Your virtual coin has landed on tails. -
|@] Done l_’_|‘ Intermet Y

Figure 3.1 A sample run of our iteration example.

To get more of a feel for iteration, let’s look at a simple JSP page that prints a
traditional multiplication table in HTML (figure 3.2). This table would be tedious
to type by hand, even for the most capable mathematicians. JSP turns the problem
into a simple programming task that can be solved using two loops, one nested
inside the other:

<table border="1">
<% for (int row = 1; row < 11; row++) { %>

<tr>

<% for (int column = 1; column < 11; column++) { %>

<td><tt><%= row * column %></tt></td>

<% } %>

</tr>
<% } %>
</table>
How does this example work? First, we set up an HTML table with the <table> ele-
ment. Then, for each number in the outer loop, we start a new row with the <tr>
element. Within each row, we create columns for each number in the inner loop
using the HTML <td> element. We close all elements appropriately and, finally,
close the table.

Figure 3.3 shows the HTML source (from our browser’s View Source com-
mand) for the HTTP response sent when the multiplication-table page runs. Note
how, as we’ve emphasized before, the browser plays no part in the generation of
this HTML. It does not multiply our numbers, for instance. It simply renders the

HTML that the JSP engine generates.

36

CHAPTER 3
Fivst steps

F htip: / fexample.taglib.com:8888 /example /chapters

J File Edit Wiew Favorites Tools Help

JAgdress I@ htip i /fexample. tagib. com 8888 /example/chapter 3-mult. jsp j Fae

TEFEEE T EF 1
2 [a e s (10121816 820
s[5 |s 12is1ezLizazrs0
4 o 1216024z }5z 3640
5 [10[15 20 /25 30 35 40 1550
6 [12[10 24[50 36 42 s8 5480
7 [14l21 2855 a2 9956 5310
& [16/24 5220 a8 5664 7280 _
5 [18/27 36[a5 54 8372330
10[20/50 a0 }50 e0 7080 90 100

|&] Dore [[mternet

Figure 3.2 A multiplication table printed in a web browser

| K

WARNING You might not have expected JSP processing to add some of the white space
that appears in figure 3.3. JSP processing preserves the spaces in the source
JSP file. For example, the body of the inner loop in our multiple-table exam-
ple begins by starting a new line, for a line starts immediately after the inner
for () loop’s closing %> tag. In the majority of cases, you won’t need to wor-
ry about the spacing of your output, but on rare occasions, you may need to
eliminate extra white space in your source file.

This is the first example we’ve shown that mixes the simple <% marker with the <%=
marker. As in the ASP environment, the <% marker introduces code that will simply
be executed. By contrast, <%= introduces an expression whose result is converted to
a string and printed. In the JSP code in the multiplication table example, the for ()
loops are structural and thus appear in blocks beginning with <%. When it comes
time to print our row * column value, however, we include the Java code inside a
block that starts with <%-=.

NOTE We’ll cover the details of these special markup tags—and describe more about
iteration and conditional logic—in chapter 5.

3.2.3

Dynamic content 37

&l chapter3-mult[1] - Notepat

Fle Edit Format Help
<tahle border="1"=» -

<tr>
<tdr<tt>le/tt></td>
<tdr<tte2</tt</td>
<tdr<t>3</t></td>
<tdr<tt>d</tt></td>
<tds<tt>5S</tte</td>
<tds<ttsb</tte</td>
<tdr<tt>7</t></td>
<tdr<tt>B</tt></td>
<tdr<tf>9</ttr</td>
<td><tt>10</tt></td>

</tr>

<tr>
<tdr<ttr2</tt></td>
<tdr<tt>d</tt></td>
<tdr<tt>b</tt></td>

M Figure 3.3
Kl A7 Output of the multiplication-table JSP page

Non-HTML output

JSP doesn’t care about the form of static, template text. To demonstrate that JSP isn’t
tied to HTML exclusively, here’s a simple JSP page that can be used as a time service
for cell phones. It outputs WML, a form of XML that’s used by some wireless devices:

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8"
import="java.text.*, java.util.*"
%$><?xml version="1.0"7?>
<%
SimpleDateFormat df =
new SimpleDateFormat ("hh:mm a") ;
%>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="time" title="Time">
<p>It's <%= df.format (new Date()) %>.</p>
<p> (Do you know where your laptop is?)</p>
</cards>
</wml>

38

3.3

3.3.1

CHAPTER 3
Fivst steps

Don’t worry about the details of WML. JSP doesn’t, and WML
specifics are beyond the scope of this book. This example just
demonstrates an application of JSP beyond the traditional,
HTML-based web. Figure 3.4 shows sample output on an
emulator for a particular wireless device, the Ericsson R320s.

NOTE For further details on the generation of non-HTML

content, see chapter 15.

Processing requests and managing sessions

So far, our examples have performed simple tasks that aren’t
inherently web based. That is, you could write a command-line
or Windows program analogous to each of the JSP examples pre-
sented so far. Let’s move on to JSP pages that are web specific.
In JSP, several Java objects are exposed automatically to scripting
code. When you write scripting code, you can refer to these objects
without having to declare them by hand. Known as implicit objects,
these variables—with names such as request, session, and
response—give you a simple mechanism to access requests, manage
sessions, and configure responses, among other tasks. The next few
examples rely on features that the JSP container exposes through
implicit objects. They make sense only in environments that are, like
the Web, based on the request/response model described in chapter 2.
We’ll go into further detail about implicit objects in

File View Bookmarks Help

Its 10:08 PM.
(Do you know where

your laptop is?)

Figure 3.4 Output
of a WML emulator
receiving input
from a sample JSP
page

chapter 6. For now, we introduce them just to demonstrate some more of JSP’s

functionality.

Accessing request parameters

In chapter 2, we saw how the Java Servlets API gives servlets access to information
sent as part of the request. We also saw an example of a servlet that uses this infor-
mation to greet the user by name. Compared to the servlet in listing 2.1, the JSP
code to perform the same task is even simpler. Here’s a JSP page that works just like

the servlet in the last chapter:

<% String name = request.getParameter ("name"); %>
<html>

<body>

<p>

<% if (name != null) { %>

3.3.2

Processing requests and managing sessions 39

Hello, <%= name %>.
<% } else { %>

Welcome, anonymous user.
<% } %>
You're accessing this servlet
from <%= request.getRemoteAddr() %>.
</p>
</body>
</html>
This example pulls out two pieces of information from the request: the value of the
name parameter and the IP address of the machine that sent the request. (The calls
work just as they did in listing 2.1.) Notice that we didn’t need to declare the
request variable; the environment has done so for us. The call to request .get-
RemoteAddr () means, “Get the IP address of the current request”; every time the
JSP page runs, the value of the request object automatically represents the then-cur-
rent request.

Accessing requests is very common in JSP, for access to requests lets JSP pages
retrieve information from users. The request object is, by default, an instance of
the same HttpServletRequest interface that we saw in chapter 2. All of the func-
tionality of HttpServletRequest is thus available through the request object. For
example, you can access the data entered into an HTML form by calling
request .getParameter (), just as our example does.

Using sessions

Recall that HTTP is stateless, meaning that a web server starts with a blank slate as it
processes each new request it receives. If you need to tie different requests—for
example, all requests from the same user—into a sesszon, you need either to program
this yourself or to use a platform that handles the task for you.

Fortunately, JSP is one such platform. We’ll see how JSP actually manages ses-
sions later, in chapters 4 and beyond, but let’s take a look now at how sessions
might be used. As we mentioned, scripting elements in JSP pages have access to an
implicit session object. You can store and retrieve session-related data by using
methods this object provides.

As an example, imagine that during the processing of a request, you have built
up an object called userbata for a particular user. Suppose you wish to remember
this object for subsequent requests that come from the same user. The session
object lets you make this association. First, you would write a call like ses-
sion.setAttribute("login", userData) to tie the userData ObjCCt to the
session. Then, for the rest of the session, even for different requests, you would be
able to call session.getAttribute ("login") to recover the same userData

40

CHAPTER 3
Fivst steps

object. The session object keys data under particular names, much as a typical hash
table, or an implementation of java.util.Map, does. In this case, the userData
object is keyed under the name login.

Let’s see how sessions work in practice by converting our virtual coin-flip page
from before into one that keeps track of how many times “heads” and “tails” have
been chosen. Listing 3.1 shows the source code for such a page.

Listing 3.1 A small application that uses sessions

<%
// determine the winner
String winner;
if (Math.random() < 0.50)

winner = "heads";
else
winner = "tails";

synchronized (session) ({

// initialize the session if appropriate

if (session.isNew()) {
session.setAttribute("heads", new Integer(0));
session.setAttribute("tails", new Integer(0));

}

// increment the winner

int oldvalue =
((Integer) session.getAttribute(winner)) .intValue() ;

session.setAttribute (winner, new Integer (oldvValue + 1));

%>
<html>
<body>
<hl>Current standings:</hl>
<table border="1">
<tr>
<th>Heads</th>
<th>Tails</th>
</tr>
<tr>
<td><%= session.getAttribute("heads") %></td>
<td><%= session.getAttribute("tails") %></td>
</tr>
</table>
</body>
</html>

3.4

Separvating logic from presentation ‘ 41

At its heart, this page is similar
to the one from before that
emulates a coin flip. However,
the page contains extra logic to
keep a tally of prior coin flips in -l
the session object. Without | Current standings:

getting too caught up in the

details, the page initializes the -
session if it’s new—that is, if Heads Tails
session.isNew () returns 11 10
true—and then it keeps track of

the tally for “heads” and “tails,” @loone | [[Internet

keying the data, imaginativel
ying > & y Figure 3.5 A stateful tally of prior events, made
enough, under the names heads possible by session management.

and tails. Every time you reload

the page, it updates the tallies and displays them for you in an HTML table
(figure 3.5). If you reload the page, the tallies change. If your friend, however,
begins accessing the application from a different computer, the session object for
your friend’s requests would refer to a new session, not yours. When different users
access the page, they will all receive their own, individual tallies of heads and tails.
Behind the scenes, the JSP container makes sure to differentiate among the various
users’ sessions.

"3 http: / ,.-"example.taglib.corj; BB88;
| Ele Edt Wiew Favorites Tools | |Links

JAgdress I@ htip:ffexample.tagib.com :EIEIEiEi;’ej G0

[]
Y

Separating logic from presentation

In the examples so far, Java code has been mixed right in with HTML and other
static text. A single JSP file might contain some HTML, then some Java code, and
finally some more HTML. While this mixture is a convenient way to generate
dynamic content, it might be difficult for a large software-development team to
maintain. For instance, programmers and HTML designers would need to manage
the same combined JSP files. If problems are encountered, they might not be imme-
diately clear whether they come from HTML problems or logic errors.

To help address these issues and provide for greater maintainability, JSP provides
another mechanism for generating on-the-fly content. In addition to the simple
scripting elements we’ve shown, JSP allows special, XML-based tags called actions to
abstract Java code away from the JSP page itself.

Many actions look just like HTML tags, but they work like a signal to the JSP
container to indicate that some processing needs to occur. When processing of a JSP

42

3.4.1

CHAPTER 3
Fivst steps

page hits a block of static HTML text, like <p>Hello!</p>, such text is simply passed
through to the JSP page’s output. Processing for actions is different: when the JSP
page hits an action, such as <jsp: includes, it runs extra code to figure out how pro-
cessing should proceed. Unlike the Java between scripting elements <% and %> tags,
however, the code for actions does not appear directly on the JSP page. Instead, it can
either be built into the container or provided as a custom add-on by developers.

We’ll cover actions in more depth in chapters 4 and 6. For now, let’s take a look
at how these tags might help you manage your JSP applications.

Reusing logic with JavaBeans

One common use of the special XML-based tags we’ve mentioned is to communi-
cate with JavaBeans. In fact, JSP provides several standard action tags to help you
communicate with these beans. As we discussed in chapter 1, JavaBeans are reusable
Java components: they are Java classes that follow conventions, defined in the Java-
Beans standard, that promote modularity and reusability. The details of this stan-
dard, as it relates to JSP pages, will be covered in chapter 8. For now, let’s look at a
simple JavaBean class so that we can present a JSP page that uses it:

package com.taglib.wdjsp.firststeps;
public class HelloBean implements java.io.Serializable {
String name = "world";
public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}
}
Indeed, this is a very simple Java class. It contains a single instance variable, name,
which refers to a string. By default, this string has the value world, but it can be
changed using the method setName (), which takes an instance of the Java String
class as its parameter. Code outside the bean can retrieve the name by using
getName (). These methods have names that the JavaBeans framework will look for,
by default, when it needs to modify or retrieve the name variable, which in bean
terms is called a property

A JSP page may use this bean as follows:

<html>

<body>

<p>

<jsp:useBean id="hello"
class="com.taglib.wdjsp.firststeps.HelloBean"/>

Separvating logic from presentation 43

<jsp:setProperty name="hello" property="name"/>

Hello, <jsp:getProperty name="hello" property="name"/>!

</p>

</body>

</html>

The first action tag that appears is the <jsp:useBean> tag. As its name suggests,
this tag lets the JSP page begin using a bean, specified by a particular class name and
page-specific ID. In this case, we have indicated that we wish to use an instance of
the HelloBean class and, for the purposes of the page, to call it hello. The appear-
ance of the <jsp:setProperty> tagin the code causes the request parameter called
name—if it exists and isn’t an empty string—to be passed as the String parameter in
a call to the bean’s setName () method. We could have written

<% if (request.getParameter ("name") != null

&& !request.getParameter ("name") .equals(""))
hello.setName (request.getParameter ("name")) ;

o

>

and it would have had a similar effect, but <jsp:setPropertys is both easier to use
and provides us with a level of abstraction. If we needed to set multiple properties
in the HelloBean, <jsp:setProperty> would make our page substantially easier to
read and less prone to errors.

The final action tag that appears in the example is <jsp:getPropertys, which
retrieves the name property from the HelloBean and includes it in the JSP page’s
output. Therefore, the example prints a personalized greeting if it can retrieve the
user’s name from the request; if not, it simply prints Hello, world!, just like our
first example.

The bean-centered approach gives our page several advantages in readability and
maintainability. As we just mentioned, the tags beginning with <jsp: take care of
various operations for us behind the scenes. This way, we don’t have to write Java
code that manually sets and retrieves information out of the bean.

Suppose that HelloBean were a little more complex. Instead of a bean that sim-
ply stores a name, imagine one that capitalizes names correctly or that uses the
name as part of a database query that retrieves more information about the user.
Even if HelloBean performed these extra tasks, its interface with the JSP page
would be the same: <jsp:getPropertys and <jsp:setPropertys> would still work
just as they do in the example we just saw. If multiple pages in your application—or
even multiple applications—need to use the logic contained inside the bean, they
can all simply use different copies of the bean—or even the same copy—via the
<jsp:useBean> tag. Beans therefore let you move more of your own Java code out-
side the JSP page itself, and they let you reuse this code among multiple pages. By

44

3.4.2

CHAPTER 3
Fivst steps

contrast, Java logic that appears between <% and %> might need to be replicated in a
number of different pages.

NOTE We cover JavaBeans and bean-based design strategies in detail, beginning
with chapter 7.

Abstracting logic with custom tags

Action tags thus have some of the benefits as do functions in a language like Java;
they let you hide and reuse logic. Tags have an additional benefit, too: their syntax,
being XML-based, is similar to that of HTML. Therefore, if you are working as a
developer on part of a team that also includes nonprogramming HTML designers,
you might decide that you want to expose your back-end functionality through tags
instead of through simple function calls.

As we’ll discuss further in the next chapter, JSP lets you write your own new
actions and expose them in tag Lbraries. Writing new tags is an advanced JSP topic
that we leave until chapters 17-19, but let’s briefly look, for now, at how we might
use one of the tags we demonstrate in those later chapters. One such tag is
<mut : ifPropertys>, which, in its simplest usage, conditionally includes the text
contained between it and its ending </mut : ifProperty> tag if the specified prop-
erty of a JavaBean is true instead of false.

Once we import the appropriate tag library—a procedure we'll learn more
about in chapter 5—we can use the <mut: ifPropertys tag in a JSP page as follows:
<mut:ifProperty name="user" property="important">

Welcome! Thanks for visiting again.
</mut:ifProperty>

<mut:ifProperty name="user" property="unimportant">
Oh, it's you again. Sigh.
</mut:ifPropertys>

WARNING As we mentioned, this JSP fragment depends on advanced JSP features. You
won’t be able to run it just as it appears. See chapters 17-19 for more infor-
mation on custom tag libraries.

As with <jsp:setPropertys>, we could have written functionally similar code by
using Java inside <% and %> delimiters, but these tags give us a level of abstraction
and allow us to reuse logic.

Review of examples 45

3.5 Review of examples

The goal in this chapter wasn’t to cover any syntactic specifics or to explain behind-
the-scenes operation; we’ll have ample time for that later. For now, our progression
of examples has given you a first look at JSP. You’ve seen that JSP pages can contain
» static HTML text
» static non-HTML text

« embedded Java code that supports iteration, conditionalization, and other
abstract logic

» standard tags that, among other benefits, hide logic and let you access JavaBeans
» custom tags that you’ve written yourself, or that other developers have written

Now, we’re ready to look more formally at how JSP pages are composed and how
they get processed before they execute.

How JSP works

This chapter covers

JSP directives and scripting elements
JSP action elements

Phases in processing a JSP page
Advantages of the JSP environment

46

4.1

4.1.1

The structuve of JSP pages 47

In chapter 3, we jumped into JSP by looking at some of its capabilities. Let’s now
take a closer look at the structure of JSP pages, studying the building blocks of JSP
pages in more detail. Full syntax and functionality will be covered in chapter 5 and
beyond; our goal for now is to discuss how JSP works, what happens to JSP pages
behind the scenes before and while they run, and how the JSP container provides
services on which you will rely as you learn more about JSP.

The structure of JSP pages

As we saw in chapter 3, JSP pages

. . JSPP
are a combination of text and special age

markup tags (figure 4.1). Template o
text is static text that’s passed Directives glcerﬁg:?s
through to the output, while the

special JSP markup tags allow JSP

pages to be dynamic. For example, a A

markup tag might cause on-the-fly Standard Custom

HTML to get generated, or it might actions actions
decide whether static text will be
displayed. A markup tag might also
take some behind-the-scenes action, Template text
such as sending an email or check-
ing a database.

One group of such dynamic JSP
tags is reminiscent of ASP’s syntax;
this variety of tags supports configu-
ration and scripting. Another class
of tags is based on the syntax of the XML and lets JSP developers produce dynamic
content without including Java code directly on a JSP page.

Figure 4.1 Elements that can appear, in any
order, in a JSP page

Directives and scripting elements

Some JSP tags begin with the characters <% and end with %>, the same delimiters
used in the ASP environment. In JSP, an additional character may appear after the
leading <% to further describe the purpose of the tag.

Tags of this style have one of two purposes: either they include Java code in the
JSP page, or they contain instructions for the JSP container.

48 CHAPTER 4
How JSP works

DEFINITION If a tag introduces Java code into a JSP page, it is called a scripting ele-
ment. A JSP directive, by contrast, provides instructions to the JSP con-
tainer; it either requests action on the part of the container, or it specifies
information about the JSP page.

The following tags are examples of scripting elements:

o\°

! int count = 0; %>

<
<%= 2 * Math.PI * radius %>

o\°

o°

<
if (radius > 10.0) {
out.println(“Exceeds recommended maximum. Stress analysis advised.”);

}

>

o

Similarly, examples of directives include:

<%@ page isErrorPage="true” %>
<%@ include file="header.html” %>

NOTE These tags are not compatible with XML; an XML document could not con-
tain elements that begin with <% and end with %>, with somewhat arbitrary
content in between. Since JSP 1.2 allows authorship of JSP pages in XML-
compliant syntax, as chapter 1 described, these tags pose a problem. JSP
solves this issue by specifying a corresponding XML-compliant element for
cach type of non-XML tag. Chapter 5, in addition to covering the full use and
functionality of directives and scripting elements, will go into further detail
about the dual, XML-compliant elements.

4.1.2 Standard and custom actions

The rest of the JSP special markup tags are based on XML syntax. That is, they fol-
low the style and conventions of XML. Before going into too much detail about
how these tags work, let’s first describe some of the basics of XML syntax, in case it
is new to you.

Basic XML syntax

XML looks a lot like HTML, but it is specified a more strictly. For example, XML tags
are case sensitive, while HTML tags are not. When designing a page in HTML, you
might choose to write either <p> or <P>, and it doesn’t much matter which one you
pick. In XML, these two tags are entirely different elements.

The structuve of JSP pages 49

XML also requires that all attribute values be placed within quote marks. HTML
is often written without quote characters surrounding attributes, as in

This tag would be illegal in XML; instead, the URL specified for the href attribute
would need to be surrounded with either single or double quotes. XML also requires
that every nonempty tag—that is, any tag that contains text or other tags—have an
appropriate closing counterpart. It is common to see HTML that looks like this:

 First list item

 Second list item
</uls>

This fragment could not be part of a legal XML document. For use in XML, closing
tags would need to be provided. For example:

 First list item </1i>

 Second list item </1li>
</uls>
Not every tag contains text or other tags, however. For instance, the HTML

tag stands alone and can’t sensibly contain anything else. To differentiate such tags
from those that do require a closing counterpart, XML uses /> as the ending delim-
iter for the tag. For instance, a standalone tag like HTML’s
 would be written
as
 in XML. (Technically, you could also write
</br>, but there is gener-
ally little reason not to use the /> shortcut.)

While HTML has a fixed set of tags, you can extend XML in application-specific
ways by defining sets of tags that have meaning in a particular context. For
instance, if you wanted to store a database of jokes in an XML file, you might
define tags such as <jokes>, <setup>, <punchlines, and so on, and then include
them in a file as follows:

<joke quality="poor”>
<setup>
</setup>
<punchlines>.
. and she said, “No, silly, it’s a servlet container!”

</punchline>
</joke>

To allow tags defined for different applications to appear unambiguously in the
same file, XML uses namespaces, which are essentially collections of tag and attribute

50

CHAPTER 4
How JSP works

names. An XML file can refer to a namespace by attaching the namespace identifier,
tollowed by a colon (:), to the beginning of a tag’s name. In this manner, a single
XML file can use two different tags with the same name, as long as they are part of
different namespaces. For example, if our joke-oriented tags were qualified with the
namespace identifier joke, and a separate namespace identified by the name con-
figuration had a <setups> element, namespaces would allow a single document to
use both elements by specifying them as <joke:setups> and <configura-
tion:setup>. (We leave it to your imagination to concoct a file that would appro-
priately contain both configuration directives and jokes.)

JSP action elements
JSP actions are XML-style tags that cause special processing to occur at a specific
point in the run-time execution of a JSP page. This processing might involve the
text contained by the action tag, or it might simply involve calling some stand-alone
Java code that performs a task.

JSP action tags come in two varieties, standard and custom. First, JSP defines
several tags known as standard actions.

DEFINITION A standard action is an action tag that has been defined by the JSP stan-
dard. For JSP, standard actions are associated with the namespace jsp,
and standard actions appear in JSP pages with a prefix of jsp:, even for
JSP pages that are not written using the XML-compliant syntax mentioned
earlier.

JSP defines actions that cover several commonly used features, like forwarding a
request to a new page. Standard actions, however, are not the only actions sup-
ported in JSP pages. A powerful feature of JSP is the ability to program new actions.

DEFINITION A custom action is an action tag whose behavior is added to the environ-
ment through an API provided by the JSP standard. Collections of custom
actions are usually called tay libravies.

Tag libraries are incorporated into JSP pages using the JSP <%@ taglib %> directive.
This directive associates a prefix with each tag library imported into a page. As with
namespaces, these prefixes prevent clashes between two tags with the same name
but from different tag libraries. (In fact, in the XML view of a JSP page, tag libraries
are imported using the actual XML namespace mechanism.)

The structuve of JSP pages 51

NOTE In some organizations that use JSP to develop large applications, custom tag
libraries provide a means of abstracting logic away from JSP pages—and even
for eliminating Java code from them, if this is desired. A complex operation,
such as a database update, might be hidden behind a custom tag. In some
cases, this abstraction can simplify maintenance of JSP pages. Some organiza-
tions have adopted the approach of separating JSP developers from tag de-
velopers: the former group is familiar with HTML and JSP tags, and the latter
group programs in Java and exposes all custom application logic through
tags. The premise, in short, is that HTML developers can easily learn how to
use custom JSP tag libraries because the syntax of JSP tags is so similar to
that of HTML.

This organizational style is just one of many options for developing web ap-
plications, but it might help you envision one benefit of JSP’s ability to ex-
pose Java logic through XML-like tags. We discuss several architectures and
organizational models for JSP pages in chapter 10.

Although JSP actions are, as we’ve discussed, based primarily on XML syntax, JSP
departs from XML syntax by allowing tags to be embedded within one another.
This can happen in two different ways. First, any JSP tag—including directives or
scripting expressions—can appear arbitrarily inside an HTML tag, supplying
dynamic content to fill in the HTML tag’s attributes (or even part of its name). For
example, the following is legal JSP:

<a href="<%= sourceVariable %>">

This is not a major issue, though; the JSP container can regard HTML merely as
arbitrary text. Since JSP doesn’t process HTML tags, it can treat them as plain text.
And since JSP tags can clearly be embedded in plain text, it is not problematic to
embed them in HTML or other tag-based content.

Second, more interesting use of JSP tags occurs inside other JSP tags. Specifi-
cally, a JSP scripting expression can specity the value of a JSP action’s attribute. For
example, the following can be legal JSP:

<myTagLibrary:customAction attribute="<%= value %>" />

As a real-life example of this feature, consider the following use of a standard
action tag:

<jsp:setProperty name="login” property="visits”
value="<%= previousVisits + 1 %>"/>

52

4.2

4.2.1

CHAPTER 4
How JSP works

Such embedded tags are referred to as request-time attribute expressions or request-
time attribute values, for the attribute’s value is determined when the page is run in
response to a request, not when the page is initially processed. These embedded
expression tags may look strange, but they are very useful in practice. We’ll see
more about request-time attribute values, including the restrictions placed on their
use, in the next three chapters.

The syntax we’ve shown here for request-time attribute values is not valid in
XML. But like other constructs valid in JSP but not in XML, the JSP standard defines
an XML-attribute equivalent that can be used when authoring pages in XML syntax.
The particulars of this mechanism are not important for now, however.

NOTE Details on most JSP actions will be presented in chapters 5 and 6. A few ac-
tion tags, however, are specific to JSP’s built-in support for the JavaBeans
component programming model. Descriptions of these tags will be covered
in chapter 7.

Behind the scenes

Once a JSP container has been installed and configured, using it is relatively
straightforward. JSP files that are added to the appropriate directory hierarchy—or
otherwise marked off in a manner agreed upon by the web server and the JSP
server, such as by using a file extension of .jsp or another configured value—are
simply handled by the JSP container when appropriate. (Chapter 13 describes the
process of deploying JSP applications in more detail.)

Although you can rely on this process and ignore the details of how the JSP con-
tainer works most of the time, some knowledge of its operation will help you get
more out of the JSP environment.

Translation to serviets

Like most source code, JSP pages start life as text files and end up being compiled.
A JSP file, though, takes a somewhat more circuitous route through this process
than does a typical Java program. Before being run, JSP pages are translated to serv-
lets. This translation involves conversion of JSP source code into servlet source code
by the JSP container. (This step is sometimes referred to as compilation of a JSP page
into a servlet, but it should be differentiated from compilation of Java code into
bytecodes.) After this translation, the servlet class is, itself, compiled.

Because JSP pages are translated to servlets, they inherit servlets” dependence on
the request/response model. JSP pages, like servlets, are called in response to

Behind the scenes 53

requests, and they produce responses. When the JSP container translates the body
of a JSP page into a servlet, it produces a new class that implements the
javax.servlet.Servlet interface. This class has a method called jspservice ()
that is built from the body of the JSP page. Furthermore, unless the page author
specifically requests greater control via the extends attribute of the <3@ page %>
directive—which is extremely rare—the container bases the generated class on a
class whose service () calls _jspservice (). In short, a JSP page is translated into a
method that maps requests to responses based on the contents of the JSP page.

How do the contents get translated? The easiest part of the JSP source file to
translate is the template text—that is, the part of the page that isn’t a directive, a
scripting element, an action, or anything else specific to JSP (such as JSP comments,
which will be introduced in chapter 5). This template text might be HTML, or it
could be XML or text in an arbitrary format. The JSP container doesn’t care what it
is; it simply outputs it as part of the response. For example, the following text:

<p>Template text</p>
might be converted into a call that looks like
out.println(“<p>Template text</p>");

Scripting expressions are also easy to translate and incorporate into the servlet, for
the Java code embedded in them is passed through as is. The Java code will be
included at the right place in the servlet, and it will be run as appropriate when the
servlet is run.

WARNING As we will see again in chapter 5, JSP technically allows scripting languages
other than Java to be included in scripting expressions. However, the JSP 1.2
standard doesn’t provide formal rules for what happens when a JSP page uses
a language other than Java for scripting elements. The discussion here applies
only to cases where Java is used as the scripting language—which is, for now,
the vast majority.

Action elements are somewhat more complicated to transfer, but the end result is
that the JSP container writes calls to appropriate Java code at the correct spots in the
generated servlet’s source code. If the action is a custom action you’ve written
yourself, the translation will involve creating calls to your custom code.

Once the translation from the JSP page into a servlet is complete, the behind-
the-scenes servlet is compiled into Java bytecodes.

54

CHAPTER 4
How JSP works

4.2.2 Translation versus execution

JSP defines two stages of processing for JSP pages: the translation phase and the exe-
cution phase. (It is common to speak of the execution phase as the request phase or
simply as run time). We’ve just discussed what occurs during translation: the JSP
page is converted into a servlet. Subsequently, when a request is received by the
container, this servlet is run. The distinction between the purposes of the two
phases is clear, but there are still some differences worth emphasizing.

Performance implications

The translation phase occurs only when necessary, not as a response to every
request. As you can imagine, the process of parsing a JSP page, translating it to a
servlet, and then compiling that servlet can be time-consuming. Fortunately, the
JSP container does not need to repeat the process of translation for each request
that it handles. As long as the underlying JSP page hasn’t been changed, there’s no
reason to generate a new servlet. A typical JSP container, therefore, will check the
last modification time on a JSP file, and it will translate the file only if necessary.
This extra check does not reduce the amount of time necessary for translation upon
the first request for a JSP page; however, all subsequent requests will proceed much
more quickly, for these requests can simply be served from a compiled servlet. (This
process is summarized in figure 4.2.)

TIP JSP also supports precompilation of JSP pages into servlets to avoid the perfor-
mance hit associated with compiling a JSP page the first time it is requested. If
the JSP page is compiled before any user requests it, the first request will pro-
ceed smoothly. For details, see chapter 13.

The separation of translation and request phases gives JSP a performance edge over
many other web-based development environments. In many scripting environ-
ments, script code needs to be interpreted for every request. Since JSP can take care
of expensive parsing and compilation operations before requests are processed, the
JSP container’s delay during a response is greatly reduced. Furthermore, since JSP
pages depend on servlets, the JSP environment automatically yields the benefits of
servlets’ performance improvements. Recall from chapter 1 that servlets are multi-
threaded, which makes them substantially faster than environments such as CGI that
depend on spawning new processes at request time.

Behind the scenes 55

Web
request
JSP container
JSP servlet No T_ranslate JSP
current? into servlet

Compile
servlet

Compiled
servlet
Process request using logic
from JSP page
Web
response

Figure 4.2 The typical process for translating and running
JSP pages

Error handling

Another difference between the translation and request phases concerns how errors
are handled. Translation-time errors in JSP are analogous to compile-time errors in
traditional Java programming: some, but not all, errors can be caught before the
program even runs, but the rest must, unfortunately, show up at run time.

Broadly speaking, there are two sorts of translation-time errors a container
might encounter. First, there are errors in the structure of the JSP page. For
instance, a scripting expression might not contain its closing %>, or a directive’s
name might be misspelled. In cases like this, the container might be able to

56

4.3

4.3.1

CHAPTER 4
How JSP works

pinpoint the error’s location in the JSP file and return a reasonably useful message
to help you fix the problem.

The second class of errors is more insidious; these errors show up only once the
JSP page is translated into a servlet. Recall that the JSP container does not necessar-
ily process Java code embedded within scripting elements; it merely includes this
code directly as part of the servlet’s source code. Therefore, errors in such code
only show up as a failure of the generated servlet to compile. If this embedded Java
code leads to a compile-time error, the error can be somewhat difficult to track
down. The container might provide you with only the error’s line number in the
offending servlet’s source code, for example. You might get lucky and be able to
correlate a misspelling highlighted by the compiler’s error with a misspelling in the
original JSP code, but if not, you might need to look through the generated serv-
let’s source code to identify the problem. (The location of the servlet’s source code
is container-specific; check your JSP container’s documentation to find out what it
does with its generated servlets.)

The way that containers report errors is implementation dependent, but if the
problematic translation occurred in response to a web request for a newly changed
JSP file, it is likely that the error will be reported as part of the HTTP response to
that request. That is, you’ll get the error message in your web browser, instead of
getting the output you expected. This often lets you debug without having to
search through log files to find error messages.

As we mentioned, not all errors can be caught at translation time. Request-time
errors occur by virtue of a Java exception (or, more strictly, a Java Throwable
object) being thrown as the JSP page’s compiled servlet is run in response to a
request. JSP provides a mechanism to let developers catch request-time errors grace-
tully; we’ll discuss the advantages of this mechanism in the next section and detail
its operation in chapter 14.

What the environment provides

JSP inherits convenience features from servlets, and it provides features of its own.
Let’s take a look at some of these advantages and go into detail about how JSP con-
tainers provide them. These services are some of the features you’ll come to rely on
as you design and write JSP applications.

Automatic servlet generation

As we’ve seen, an obvious difference between writing servlets and JSP pages is that
JSP authors don’t need to write servlets manually. Instead, the JSP container creates

4.3.2

What the envivonment provides 57

servlets automatically. In fact, JSP might be looked at—or even used—as a conve-
nient platform for developing stand-alone servlets rapidly. (In practice, though,
most JSP authors think of servlets as a behind-the-scenes detail.)

Besides the simple convenience of not having to write doGet () and doPost ()
methods by hand, the automatic creation of servlets has another important advan-
tage: it supports an organizational model that separates presentation tasks from
back-end implementation tasks. That is, JSP provides for a productive division of
labor for web-application development. Because the JSP environment takes care of
the compilation process automatically and hides the details of the Java methods that
need to be written, JSP pages become more accessible to nonprogrammers or nov-
ice programmers. JSP authors do not need to know the detailed structure of a Java
class or the syntax for declaring methods; instead, they can write Java code as if it
were simple scripting code. Furthermore, as we noted earlier, some uses of JSP that
rely heavily on tag libraries can even push Java code entirely out of JSP pages.

NOTE Engineers working under the Java Community Process are striving to provide
a standard tag library for JSP with some of these goals in mind. Automatic
servlet generation made JSP pages accessible to novice programmers, and a
standard tag library would continue the trend by providing new standard tags
for common operations within JSP page. These tags could help minimize the
use of Java code in JSP pages. For example, instead of writing a simple condi-
tional block using Java code inside scripting expressions, a JSP author could
use a standard conditional tag to provide for control flow.

Even advanced Java programmers can appreciate the convenience that comes with
automatic generation of a servlet. If a programmer needs to add dynamic content to
a web page, adding a simple scripting element is much easier than manually writing
a servlet that prints out a large block of HTML with calls like out .printin().

Buffered output

As we saw in chapter 2, HTTP places constraints on the way that web applications
can interact with web browsers. In that discussion, we saw that HTTP responses
typically contain a status line, followed by headers, followed by a body. This
sequence is not negotiable; that is, once the body of an HTTP response begins
transmission on the network, the web server has lost its opportunity to specify
headers or the status line.

Because the pre-body structures support error reporting (among many other
features), this constraint might have been a problem for fault-tolerant JSP

CHAPTER 4

How JSP works
JSP JSP Page
Page —
— Generated response
Generated R
response —
Buffer
modify clear send

Figure 4.3 Unbuffered versus buffered output. When output is unbuffered, it leaves the JSP
page’s control immediately and cannot be retracted.

applications. Suppose that halfway through the code that generates a response, an
error occurs, and the JSP page decides that it needs to set a status code to describe
the error or a header to forward the user to a new page. If the web server has
already sent part of the response’s body, it will not be able to go back and edit the
headers or status line.

JSP solves this problem by buffering the output of JSP pages.

DEFINITION A buffer is a temporary space for storing information. Buffering involves
using such temporary space to hold data before sending it on to its ulti-
mate destination.

Instead of sending the output generated by a JSP page directly to web browsers, the
JSP container first buffers the output. This buffering gives the JSP page leeway if it
needs to add or modify a header after generation of the page’s output has begun.
That is, the JSP page can simply modity the buffer before sending it on the network.
If the JSP page decides to forward the request to another page, it can simply clear
the buffer (figure 4.3).

WARNING JSP output buffers do not grow automatically; that is, they have a fixed size.
We will see in the next chapter how to configure this size, but it is important
to understand how the buffer size might affect the functionality of a JSP

4.3.3

What the envivonment provides

page. By default, when the buffer fills up, its contents are sent to the brows-
er. Therefore, once the initial buffer for a response has filled up and is sent,
the JSP page no longer has an opportunity to set headers.

If seamless error reporting or header handling is essential to an application,
the JSP container can be configured to throw an exception when the buffer
becomes full. This prevents a partial response from being sent to the web
browser, and it ensures that a JSP page will never run into a situation where
it unexpectedly finds it can’t set a header. In practice, however, it is rare for
an output buffer to be filled by a JSP application; the default size must be at
least 8 kilobytes (KB) on any container, and this is enough for a typical JSP
page. For details, see chapter 5.

Because the JSP container, by default, automatically builds output buffering into
the servlets it generates for JSP pages, JSP authors can simply forget about the issue
in most cases. For example, you can use the mechanisms we’ll discuss in chapter 6
to modity the response’s headers, and you will not typically need to remember how
HTTP response messages are structured. The container takes care of the ugly details
for you.

Session management

As we saw in chapter 2, HTTP is stateless, meaning in part that HTTP servers do not
remember requests once they’ve processed them. If a server gets three requests in a
row from the same web browser, it sees these as three separate requests; nothing
binds them together.

Cookies
One common way to connect requests together is through HTTP cookies, which
work specifically to bind requests together. Cookies work as follows: in response to
a request, a web server decides to send a cookie to a browser. It does this by adding
a particular header to its response. If the browser supports cookies, it processes the
header and finds the cookie, which it stores for later use. For all subsequent requests
the browser sends, the browser checks its lists of cookies and finds the ones whose
properties indicate that the cookie is appropriate for the request. Keep in mind that
the server does not subsequently request cookies it has sent. Instead, the server
relies on the browser to send cookies automatically once the browser receives them.
(This process is depicted in figure 4.4.)

If a server wants to link requests together into a session, it is easy to see how it
might accomplish this via cookies. Suppose a server stores a unique session

59

60

CHAPTER 4
How JSP works

MRequeat |
Browser Request Server
Response

Headers

Cookie

Body

Headers

Cookie

b (/ Request > Time

Browser Server
I'Response |
Response

I]
Request

Response

I Request }

[Response |
Response

Figure 4.4 Setting and using an HTTP cookie. Step 1, a cookie is sent to
the browser as part of the response headers (a). Step 2, once
the cookie is sent, it is sent back by the browser automatically
for all requests in the cookie’s scope. The server does not
subsequently request the cookie; it gets it automatically (b).

identifier in the cookie that it sends to a browser. When the server processes subse-
quent requests and notices this session ID in a cookie sent back to it, it knows that
the request came from the same user to whom the server sent the cookie in the past.

NOTE Because not every browser supports cookies, other mechanisms have been
devised for handling session management. A session ID can be sent back to
the server as part of the URL (a practice generally known as URL rewrit-
ing), or for form-based applications, it can be included in HTML forms as

What the envivonment provides 61

an <input type="hidden”> element. Since environments such as JSP can
dynamically generate HTML, including the URLs and forms it contains,
web developers can add the appropriate session IDs to HTML output as
part of their applications’ responses.

Sessions are extremely popular in web applications, since they allow an application
to remember previous actions of the user and provide a level of continuity in the
user interface. For instance, any e-commerce web site that lets a user browse prod-
ucts and store them in a shopping cart needs some way to manage sessions. Applica-
tions that support data entry across multiple HTML forms also require some way to
associate the various forms with one another. Portal sites may allow a user to receive
a customized view of an application without having to repeatedly enter their prefer-
ences; to do so, they needs sessions.

Fortunately, the JSP environment supports sessions automatically, for it inherits
the session support that comes with the servlet platform. By default, a JSP page has
access to an implicit object called session that represents the session for the current
request. The author of the JSP page can store data in this session and retrieve it later,
during a different request. The JSP container takes care of session-management auto-
matically; individual JSP pages do not typically need to handle session IDs or decode
session cookies automatically. There is a small caveat: if an alternative to cookies is
used, more work may need to be handled manually by the JSP page; for instance, if
URL rewriting is used, URLs need to be generated dynamically and can’t appear sim-
ply as static text in the page.

Session pitfalls

JSP’s session management facilities usually let JSP developers ignore the underlying
mechanism; for the most part, JSP pages can assume that session management is
handled properly by the container. However, two issues related to session manage-
ment might complicate the design and deployment of web applications.

First, a session-based web application that serves a large base of users should
consider how much storage each session requires. Even if you store data as small as
5 KB in the session, supporting 1,000 simultaneous users takes up 5 megabytes
(MB) of storage. For a million active sessions, the requirement becomes 5 gigabytes
(GB). There is no need for all of this storage to be physical memory, of course;
typical operating systems support virtual memory as well. Still,; an application that
has a large base of users requires careful planning and an understanding of storage
requirements imposed by sessions; the size of the data stored in a session has a

62

CHAPTER 4
How JSP works

direct impact on the number of simultaneous users that can be practically supported
on a particular hardware configuration.

TIP Java has no analog of the sizeof operator in C or C++, but you can estimate
the storage requirements of a Java object in several ways. In some cases, you
can make this estimate by writing a stand-alone program that calls the
freeMemory () method of java.lang.Runtime before and after instantiat-
ing the object. Another strategy is to use Java’s serialization facility. If the ob-
ject you are measuring implements the java.io.Serializable interface,
you can write it out to disk using the writeObject () method of ja-
va.io.ObjectOutputStream. The size of the resulting file will provide a
conservative estimate of the object’s memory footprint.

We’ve discussed active or simultaneous users, but this concept is somewhat vague.
Because HTTP is stateless, JSP containers have no way of knowing or not whether a
session is still in use. A user might simply be taking a long time to fill in a form, or
that user might have exited the web browser and walked away from the computer.
JSP and servlets base session expiration on time-outs. After a configurable period of
inactivity, the session and its contents will be removed from memory. Applications
can also provide an explicit mechanism to let a user log out; for example, an applica-
tion can display a link labeled Log out and clear out a session in response to that
link. (Of course, there is no guarantee that users will click such a link before leaving
the application, so the inactivity time-out is useful in these cases as well.)

A second issue is that sessions have an effect on the scalability of your applica-
tion. Suppose an application has too many users to run with acceptable perfor-
mance on a single server. A common response might be to spread the application
out among many servers. This strategy is known as load balancing or load distribu-
tion. However, session management complicates such a solution, for the session
object represents an actual, in-memory Java object on a particular computer.

This object is not automatically available on every server that might need to take
part in the processing of the application.

One way around this is to make sure the user’s browser always communicates
with the server that happens to store that particular user’s session. For instance, the
application might have a front page that chooses one of several load-balancing serv-
ers randomly and then redirects the user to that server. All of the user’s subsequent
interactions will be with that server, and the application will therefore be able to
recover the user’s session state easily, for it exists as a simple object on that server.

4.3.4

What the envivonment provides 63

In some cases, this approach is not good enough. For example, if a high degree
of fault tolerance is required, it might not be acceptable to associate a particular
server with a user; if this server goes down, the user may be left stranded. In other
situations, a higher granularity of load-balancing might be necessary; an application
or container might need to decide to pass off a user to a new machine in the middle
of that user’s session. In some cases, it may therefore be necessary to make sure that
all servers that take part in an application are able to recover a user’s session. This is
handled by a mechanism known as session migration, which involves copying a
user’s session object from one server to another as needed.

NOTE Web applications in a servlet environment may be marked as distributable us-
ing a feature defined in the servlet standard. When an application is marked in
this manner, objects stored in the session should implement the same
java.io.Serializable interface that we noted earlier. Keep this in mind
when using sessions from within JSP pages that are part of a distributable ap-
plication. Making sure that the objects you store in your sessions are serializ-
able is good practice in general, since it also allows sessions to be stored on
server shutdown under JSP containers that support this behavior.

Exception handling

JSP uses Java’s exception-handling mechanism, which helps keep code readable by
letting developers focus on the tasks they’re trying to solve, instead of on handling
errors manually. A key principle of Java’s exception support is that it lets errors
propagate up to the code that’s appropriate to handle them. For instance, a library
function might be able to deal with some errors, but it should pass any errors it
can’t handle up to its caller.

A JSP page works similarly: if a JSP page wants to handle certain types of unex-
pected events, it certainly can do so. But a JSP page can also ignore certain errors
and let them be handled by code that gets built into the servlets that the JSP con-
tainer generates. Specifically, JSP allows you to specity an error page that handles
unexpected errors that occur during its processing. Suppose you write a JSP page
that connects to a database, but the database is down. You don’t need to catch this
unexpected event by writing code in your JSP page. Instead, you can use the
errorPage mechanism to let the environment catch the error for you, thus giving
you less to worry about for each new JSP page you write.

NOTE The errorpage mechanism is described further in chapters 5 and 14.

64

4.3.5

4.3.6

CHAPTER 4
How JSP works

Implicit objects

The Servlet API specifies a Java mapping to functionality that is useful for web appli-
cations. For example, through the HttpServletRequest and HttpServletRe-
sponse interfaces introduced in chapter 2, Java web applications can easily access
requests and configure responses.

Since JSP inherits functionality from the servlet API, JSP applications can take
advantage of the convenient Java mappings provided by the servlet environment. JSP
takes things a step further, too, by giving simple names to commonly used objects.
These names can be accessed from within scripting elements to give Java code within
JSP pages easy access to its environment. For instance, in a JSP page operating over
HTTP, the name request is given to the HttpServletRequest object, and request
parameters can be accessed simply through calls to request.getParameter (). This
explains the convenient syntax we demonstrated in chapter 2.

NOTE There are implicit objects for accessing the request, the response, the session,
and other useful functionality, including the exception-handling features we
just mentioned. Implicit objects will be covered in detail in chapter 6.

Support for JavaBeans and HTML forms

Recall that JavaBeans are reusable Java components that can simplify application
development. JSP includes built-in support for JavaBeans through standard actions
that let you easily set and retrieve properties from JavaBeans without having to
write Java code to do so. Recall also that the servlet environment, and hence JSP,
also supports automatic parsing of request parameters—for example, data from
HTML forms. Servlets and JSP pages have simple access to request parameters
through an object of type HttpServletRequest.

Using these two features together can simplity one of the most common tasks
that web developers need to implement: reading and storing information from
HTML forms. JSP provides a standard action, <jsp: setPropertys, that has a mode
that causes data from an entire form to be stored in an appropriately constructed
JavaBean. This means that in many cases, you can process an HTML form without
writing more than a single line of code.

NOTE <jsp:setProperty> and other features of JSP’s JavaBean support are dis-
cussed in detail in chapter 7.

Programmanyg JSP scripts

This chapter covers

= Using JSP directives

= JSP scripting elements

= Flow of control via scriptlets
= Comments in JSP pages

65

66

5.1

CHAPTER 5
Programming JSP scvipts

In chapter 1, emphasis was placed on leveraging component-centric design to pro-
mote the separation of presentation and implementation. By taking advantage of
JSP’s built-in support for server-side JavaBeans, it is possible to write JSP pages that
contain only HTML and HTML-like tags. Doing so yields considerable benefits with
respect to code reuse, application maintainability, and division of labor. This “purist”
approach to JSP development is not always the most practical solution, however. Cir-
cumstances may dictate the use of an alternative approach: JSP pages with embedded
scripts, typically referred to as scripting elements.

For example, when developing an application prototype, the schedule may not
provide developers with sufficient time for a full-scale component design effort. Of
course, if the design is not based on JavaBeans, then the JSP bean tags (see
chapter 7) will be of little use. The scripting tags, however, can apply the full
expressive power of the underlying Java language, and are, therefore, fully compati-
ble with whatever data model you select, JavaBeans or otherwise.

Furthermore, even if you are using JavaBeans, the capabilities of the built-in JSP
bean tags are somewhat limited. If your needs go beyond the creation of server-side
JavaBeans and the access and modification of their properties, you will either need
to use (and perhaps even write) a custom tag library, or take advantage of the exist-
ing scripting tags. Like JavaBeans component design, creating a custom tag library
requires a considered approach that your development schedule may not permit.
Designing a custom tag library is only justified when you know you will be using its
custom tags over and over again. Reusability is a key element of tag library design,
and a key reason that good library design tends to be difficult and time-consuming.
If such an effort is infeasible, the scripting tags are available to supply any required
functionality not provided by the standard bean tags.

What scripts lack in abstraction, then, they more than make up for in power.
This power results, of course, from the ability of scripts to express arbitrary compu-
tations in the associated scripting language. With the full strength of a program-
ming language at their disposal, scripts are the ultimate tool of last resort when
developing JSP: if you can’t find another way to do something, you can always write
a script. And, as suggested earlier, there are also times when scripts are the first tool
of choice.

Scripting languages

The default scripting language for JSP is, naturally enough, Java. Unless otherwise
specified, the JSP parser assumes that all scripting elements on a page are written in

Scripting languages 67

Java. Given that JSP pages are compiled into Java servlets, this assumption makes
the translation of scripts into servlet code very straightforward.

The JSP specification, however, allows JSP implementers to support alternative
scripting languages as well. To be acceptable for use with JSP, a scripting language
must meet three requirements:

« It must support the manipulation of Java objects. This includes creating
objects and, in the case of JavaBeans, accessing and modifying their
properties.

» It must be able to invoke methods on Java objects.

» It must include the ability to catch Java exceptions, and specify exception
handlers.

More succinctly, for a scripting language to be compatible with JSP, it needs to have
sufficient expressive power to take advantage of the capabilities provided by the JSP
platform. For example, if a scripting language cannot access Java objects and call
their methods, it cannot read request parameters, participate in session manage-
ment, or set cookies. The core functionality of JSP is made accessible to web devel-
opers via Java objects, so a scripting language that cannot use these objects is of
limited utility.

If a scripting language is able to interact with Java objects, or can be extended to
interact with Java objects, then it is a good candidate for integration with a JSP con-
tainer. Caucho Technology, for example, has developed a JSP container called Resin,
which is integrated with the company’s Java-based implementation of JavaScript. As
a result, Resin supports both Java and JavaScript as its scripting languages. Support
for alternative scripting languages makes JSP accessible to a larger development
community by giving developers who are uncomfortable with Java syntax the
option to use a different programming language in their JSP pages.

Unfortunately, while alternative languages for JSP scripting are supported by the
JSP specification, portable mechanisms for integrating scripting languages with JSP
containers are not. Such a mechanism is under consideration for a future version of
JSP, but the only JSP scripting language that is universally available is Java. For this
reason, we will use Java as the scripting language for all of the examples in this
book. If you are using a JSP container that supports scripting languages other than
Java, please consult your software documentation for further details on the use of
those alternatives.

68

5.2

5.3

5.3.1

CHAPTER 5
Programming JSP scvipts

JSP tags

JSP provides four major categories of markup tags. The first, directives, is a set of
tags for providing the JSP container with page-specific instructions for how the doc-
ument containing the directives is to be processed. Directives do not affect the han-
dling of individual requests, but instead affect global properties of the JSP page that
influence its translation into a servlet.

Scripting elements are used to embed programming instructions, written in the
designated scripting language for the page, which are to be executed each time the
page is processed for a request. Some scripting elements are evaluated purely for
their side effects, but they may also be used to generate dynamic content that
appears in the output of the page.

Comments are used for adding documentation strings to a JSP page. JSP supports
multiple comment styles, including one which enables documentation to appear in
the output from the page. Other JSP comments can only be viewed in the original
JSP file, or in the source code for the servlet into which the page is translated.

Actions support several different behaviors. Like scripting elements, actions are
processed for each request received by a page. Actions can transfer control between
pages, specify applets, and interact with server-side JavaBeans components. Like
scripting elements, actions may or may not generate dynamic content. All custom
tags incorporated via extended tag libraries take the form of actions.

The remaining sections of this chapter cover the first three categories of JSP tags,
while the fourth will be presented in chapters 6 and 7. The individual tags included
in these categories are introduced, and their use is described.

JSP directives

Directives are used to convey special processing information about the page to the
JSP container. For example, directives may be used to specify the scripting language
for the page, to include the contents of another page, or to indicate that the page
uses a custom tag library. Directives do not directly produce any output that is visi-
ble to end users when the page is requested; instead, they generate side effects that
change the way the JSP container processes the page.

Page directive

The page directive is the most complicated JSP directive, primarily because it sup-
ports such a wide range of attributes and associated functionality. The basic syntax
of the page directive is as follows:

JSP divectives 69

<%@ page attributel="valuel" attribute2="value2" attribute3=.. %>

White space after the opening <%@ and before the closing %> is optional, but rec-
ommended to improve readability. Like all JSP tag elements, the page directive has
an XML-based form, as well:

<jsp:directive.page attributel="valuel"
attribute2="value2" attribute3=.. />

Attribute specifications are identical for the two tag styles, and there are twelve dif-
ferent attributes recognized for the page directive. In the examples to follow, we
will use the first style, which is much more amenable to manual page creation. To
use the XML format, the entire JSP page must be specified as an XML document,
such as is produced when a page using the first style is parsed by the page compiler
(see chapter 20 for further details).

Table 5.1 Attributes supported by the page directive

Attribute Value Default Examples
info Text string None info="Registration form."
language Scripting language | "java" language="java"
name
contentType MIME type, See first exam- | contentType="text/html;
character set ple charset=IS0-8859-1"
contentType="text/xml"
pageEncoding | Character set "ISO-8859-1"| pageEncoding="ISO-8859-1"
extends Class name None extends="com.taglib.wdjsp.MyJspPage"
import Class and/or pack- | None import="java.net.URL"
age names import="java.util.*, java.text.*"
session Boolean flag "true" session="true"
buffer Buffer size, or "gkb" buffer="12kb"
false buffer="false"
autoFlush Boolean flag "true" autoFlush="false"
isThreadSafe | Boolean flag "true" isThreadSafe="true"
errorPage Local URL None errorPage="results/failed.jsp"
isErrorPage Boolean flag "false" isErrorPage="false"

A summary of the twelve attributes supported by the page directive is presented in
table 5.1, and individual discussions of each attribute follow. In view of this large
number of attributes, you will likely find it very convenient that JSP allows you to
specify multiple page directives on a single page. With the exception of the import

70

CHAPTER 5
Programming JSP scvipts

attribute, however, no individual page directive attribute may be specified multiple
times on the same page. This means an attribute cannot appear multiple times
within the same directive, nor can it appear in multiple directives on the same page.
For example, the following sequence of page directives is valid, since the only
attribute that is repeated is import:
<%@ page info="This is a valid set of page directives." %>
<%@ page language="java" import="java.net.*" %>
<%@ page import="java.util.List, java.util.ArrayList" %>
The following page directive, however, is not valid, because the session attribute
occurs twice:
<%@ page info="This is an invalid page directive" session="false"

buffer="16k" autoFlush="false" session="false" %>
Similarly, this sequence of page directives is invalid because the info attribute is
repeated:
<%@ page info="This is not a valid set of page directives." %>
<%@ page extends="com.taglib.wdjsp.MyJspPage"

info="Use my superclass." %>
Unrecognized attributes are also invalid. If a JSP page contains any invalid page
directives, a translation-time error will result when the JSP container attempts to
generate the source code for the corresponding servlet.

Info attribute

The info attribute allows the author to add a documentation string to the page
that summarizes its functionality. This string will then be available for use by the JSP
container or other tools in a programmatic manner for displaying the summary
information. There are no restrictions on the length or contents of the docu-
mentation string, but author, version, and copyright information are commonly
included, as in the following example:

<%@ page info="The CLU homepage, Copyright 1982 by Kevin Flynn." %>

The default value for the info attribute is the empty string.

Language attribute

The language attribute specifies the language to be used in all scripting elements
on the page. All JSP containers are required to support Java as a scripting language,
and this is the default if the 1anguage attribute is not explicitly specified. As indi-
cated earlier in the chapter, support for other scripting languages is optional, and

JSP divectives 71

varies among JSP implementations. Here is how the language attribute is used to
specify Java as the scripting language:

<%@ page language="java" %>

Note that if the include directive is employed, scripting elements in the included
page must use the same scripting language as the current page.

ContentType attribute

This attribute is used to indicate the MIME type of the response being generated by
the JSP page. Although MIME stands for Multipurpose Internet Mail Extensions,
MIME types are also used to indicate the type of information contained in an HTTP
response, and this is the context in which they are used in JSP. The most common
MIME types for JSP are "text/html", "text/xml", and "text/plain", indicating
responses in HTML, XML, and plain text formats, respectively. To specify that a JSP
document is generating XML content, for example, this attribute is specified as follows:

<%@ page contentType="text/xml" %>

The default MIME type for JSP pages is "text/html".

The contentType attribute can also be used to specify an alternate character set
for the JSP page. This enables page authors to deliver localized content using the
language encoding most appropriate for that content. The character set is specified
via the contentType attribute by appending a semicolon, the string charset=, and
the name of the desired character set to the end of the attribute value. (An optional
space is permitted between the semicolon and charset=.) For example, to specity
an HTML response using the (default) ISO-8859-1 character set, the following
directive would be used:

<%@ page contentType="text/html; charset=IS0O-8859-1" %>

Note that if the response to be generated by a JSP uses an alternate character set,
the JSP page must itself be written in that character set. Of course, the JSP container
can’t know a page is using an alternate character set until it reads the page directive
that specifies the character set, so only character sets that allow specification of this
directive are valid for use in a JSP page. Once the directive has been read by the JSP
container (i.e., using the default character set), it can switch to the indicated charac-
ter set for the remainder of the page. All the characters read before switching char-
acter sets, however, must be compatible with the final character set.

The official registrar for both MIME types and character sets is the Internet
Assigned Numbers Authority (IANA). This standards body maintains lists of all valid
MIME types and character set names.

72

CHAPTER 5
Programming JSP scvipts

PageEncoding attribute

The pageEncoding attribute, introduced in JSP 1.2, provides an alternate means for
specifying the character set used by the JSP page. Instead of supplying the character
set as part of the contentType attribute’s value, it can be declared independently
via the pageEncoding attribute, as in:

o

<%@ page pageEncoding="ISO-8859-1" %>

The default character set for JSP pages is 1SO-8859-1, also known as latin-1. The
various caveats regarding alternate character sets presented in the discussion of the
contentType attribute apply to the pageEncoding attribute, as well.

Extends attribute
The extends attribute identifies the superclass to be used by the JSP container
when it is translating the JSP page into a Java servlet, and is specified as follows:

<%@ page extends="com.taglib.wdjsp.myJdspPage" %>

There is no default value for this attribute. If this attribute is not specified, the JSP
container is free to make its own choice of JSP servlet class to use as the superclass
for the page. Note that if you specify this attribute, JSP imposes certain restrictions
on the specified superclass. If; as is typically the case, the JSP page is being delivered
via the HTTP protocol, then the specified superclass must implement the
javax.servlet.jsp.HttpJspPage interface. If an alternate protocol is being used,
then the specified superclass must implement the javax.servlet.jsp.JspPage
interface. (The API documentation for these classes is available from Sun Microsys-
tems, and is included with the JSP reference implementation described in
appendix B.)

In practice, this attribute is very rarely used because the default behavior, let-
ting the JSP container select the superclass for the page, typically yields the best
performance. The vendors of JSP containers devote considerable resources to tun-
ing their implementations, including optimization of their default page super-
classes. Except when you have very specific needs not anticipated by your JSP
vendor, it is unlikely that writing and optimizing your own page superclass will be
worth the effort.

Import attribute

Unlike the extends attribute, use of the import attribute is quite common, because
it extends the set of Java classes which may be referenced in a JSP page without hav-
ing to explicitly specify class package names (in other words, because it saves typ-
ing). All Java classes and interfaces are associated with a package name; to

JSP divectives 73

completely specify a class, the package name must be prepended to the class name.
For example, the discussion of the extends attribute makes mention of the interface
javax.servlet.jsp.HttpJdspPage. This is actually a reference to an interface
named HttpJspPage, which resides in the javax.servlet.jsp package.

NOTE Java programmers will notice from the discussion that follows that the im-
port attribute of the page directive has an analogous role to Java’s import
statement, used when writing Java class files. This is, of course, no coinci-
dence. When a JSP page is compiled into a servlet, any import attributes are
translated directly into the corresponding import statements.

The advantages of packages are twofold. First, packages make it easy to keep track
of classes that are related in functionality and origin, since these are typically used as
the criterion for grouping a set of classes into a package. Second, they make it possi-
ble to avoid class naming collisions between different developers (or groups of
developers). As long as the developers put their classes into separate packages, there
will not be any conflicts if some of the classes share the same name. For example,
the J2SE platform includes two classes (actually, one class and one interface) named
List. One resides in the java.awt package, and represents a user interface compo-
nent for selecting one or more items from a scrolling list. The second resides in the
java.util package, and represents an ordered collection of objects. Users of these
classes distinguish between the two via their package names.

It can become very tedious, however, to always have to refer to classes using
their package names. The import attribute can be used to identify classes and /or
packages that will be frequently used on a given page, so that it is no longer neces-
sary to use package names when referring to them. This is referred to as importing a
class or package into the JSP page. To import a specific class, simply specify its name
(including the package) as the value of the import attribute, as in:

<%@ page import="java.util.List" %>

If this directive is present in a JSP page, the java.util.List class can be referred to
on that page by simply using the unqualified class name, List, also called its base
name. This will hold true anywhere on the page a class name might appear in a JSP
element—including both scripting elements and Bean tags—except in the
<jsp:plugins> tag (appendix C).

It is also possible to import an entire package into a JSP page, in cases where
multiple classes from the same package are being used. This is accomplished by

74

CHAPTER 5
Programming JSP scvipts

specifying the name of the package, followed by a period and an asterisk, as the
value of the import attribute:

<%@ page import="java.util.*" %>

This example directive has the effect of importing all of the classes in the java.util
package into the current JSP page, such that any class in the java.util package
may now be referred to using only its base name.

As mentioned previously in this chapter, import is the only attribute of the page
directive that may occur multiple times within a single JSP page. This allows JSP
developers to import multiple classes and /or packages into the same page, via mul-
tiple page directives with import attributes, or multiple import attributes within
the same page directive, or a combination. In addition, the import attribute itself
supports importing multiple classes and/or packages via a single attribute value, by
separating the items to be imported using commas. For example, the following
directive imports an interface, a class, and a package using a single import attribute:

o

<%@ page import="java.util.List, java.util.ArrayList, java.text.*" %>

The space character following the comma is optional, but recommended for
improved readability.

You may be wondering what would happen if you tried to import two classes
that have the same base name, as in the following:

°

<%@ page import="java.util.List, java.awt.List" %>

The JSP container considers this to be an illegal statement, and will refuse to process
a JSP page that includes such an ambiguity. You might instead try to import these
two classes using their packages, as follows:

<%@ page import="java.util.*, java.awt.*" %>

In this case, however, the conflict is resolved by allowing neither of the two List
classes to be referred to by its base name. Instead, both must use their fully qualified
class names, which include their package names. In order to be able to refer to one
of the two classes by its base name, you will have to explicitly import that class, as in
the following:

<%@ page import="java.util.*, java.awt.List" %>

Using this last directive, the List class from the java.awt package can be referred
to via its base name, but the List class from the java.util package must be
referred to using its full name, java.util.List.

JSP divectives 75

Finally, note that, as a convenience for JSP developers, every page for which Java
is selected as the scripting language automatically imports all of the classes from the
fOllOWing four packages: java.lang, javax.servlet, javax.servlet.http, and

javax.servlet.jsp.

Session attribute

The session attribute is used to indicate whether or not a JSP page participates in
session management (as described in chapter 4). The value for this attribute is a
simple boolean indicator, either true or false. For example, to specify that a page
is not part of a session, the following form is used:

<%@ page session="false" %>

The default value for this attribute is true; by default then, all pages participate in
session management. If a JSP does not interact with the session, then a slight perfor-
mance gain can be obtained by setting this attribute to false. Note, however, that
the session implicit object, described in chapter 6, is available only on pages for
which the session attribute is set to true.

Buffer attribute

The buffer attribute controls the use of buffered output for a JSP page. To turn off
buffered output, so that all JSP content is passed immediately to the HTTP
response, this attribute should be set to none, as follows:

<%@ page buffer="none" %>

Alternatively, this attribute can be used to set the size of the output buffer in kilo-
bytes, by specifying the attribute value as an integer, followed by the character
string “kb”. For example:

<%@ page buffer="12kb" %>

The default value for this attribute is "skb". Note that the JSP container is allowed
to use an output buffer larger than the requested size, if it so chooses; the specified
value can therefore be thought of as the minimum buffer size for the page. This
allows the JSP container to optimize performance by creating a pool of output buft-
ers and using them as needed, instead of creating a new output buffer for every JSP
page request.

Buffering the output of JSP pages is generally a good practice to follow, primarily
because it enables transferring control from one page to another (e.g., via the
<jsp: forwards action, described in chapter 6). This enables you to retract all of the

76

CHAPTER 5
Programming JSP scvipts

output generated so far by a page, including headers and cookies, for replacement
with the contents of another page.

In particular, output buffering allows you to make full use of the errorprage
attribute of the page directive, discussed later, to forward control to a user-friendly
error page when exceptions arise in the course of JSP processing. Such custom error
pages are greatly preferred over the output of JVM error messages in the middle of
what otherwise appears to be normal output. In addition, error pages can be
scripted to notify the webmaster or the development team when a run-time error
occurs, yielding a dual benefit: the end user sees an unintimidating and perhaps
apologetic message that there was a problem in responding to their request, while
the implementers receive a full report detailing the context and circumstances of the
error. (For further details, see the error-handling example in chapter 15.)

If, as reccommended, you elect to use buffered output, it is key that you select an
appropriate buffer size. This is because, as indicated in chapter 4, if the output from
the page is able to fill the buffer, most of the benefits of buffering—including the
ability to forward to an alternate page—will be lost. Fortunately, estimating the size
of your output is a rather straightforward, if tedious, exercise. If your output is pri-
marily English text, then one character of output will consume 1 byte of data in your
output buffer. Other encodings use multiple bytes of data for representing individual
characters. Once you know the size of the characters you will be using, the next step
is to estimate the number of characters that will be generated by the page.

Each character of static text in the original JSP page will of course translate into
one character’s worth of data in the final output. For dynamically generated con-
tent, a conservative approach is to estimate the maximum number of characters cor-
responding to each JSP element which generates output. After summing all of these
character counts, multiply by the number of bytes per character to compute the
required buffer size, dividing by 1,024 to convert bytes into kilobytes. You will
likely find that the default value of 8 KB is sufficient for most JSP pages, but pages
which generate significant amounts of dynamic content may need correspondingly
larger output buffers.

AutoFlush attribute

This attribute is also used for controlling buffered output. In particular, this
attribute controls the behavior of the JSP container when the page’s output buffer
becomes full. If this attribute is set to true (the default), the output buffer will
automatically be flushed, and its current contents sent to the HT'TP server for trans-
mission to the requesting web browser. Page processing then resumes, with any and

JSP divectives 77

all new content being buffered until the buffer once again becomes full, or the end
of the page is reached. This attribute is set as follows:

<%@ page autoFlush="true" %>

As mentioned in chapter 4, note that once the buffer has been flushed and its initial
contents sent to the browser, it is no longer possible for the JSP page to set response
headers or forward processing to a different JSP page.

If autoFlush is set to false, the JSP container will not automatically flush the
buffer when it becomes full. Instead, it will raise an exception, which will have the
effect of halting processing of the JSP page and displaying an error page in the
browser that originally requested the page. The class of the exception raised under
these circumstances is implementation-specific. Also, keep in mind that it is illegal
to set the autoflush attribute to false when the buffer attribute is set to none. In
other words, the JSP container cannot be set to signal an exception when the output
buffer becomes full if there is no output buffer in the first place.

The best setting for this attribute will vary from page to page. If the amount of
output that might be generated by a page is unpredictable, the autoFlush attribute
should be set to true. Under such circumstances, overflowing the output buffer is a
very real possibility, so you need to ensure that the page’s contents will be delivered
to the browser, rather than an error message. If you also might need to set response
headers on this page, or conditionally forward to another page, the decision to do
so should be made near the beginning of the page, in order to guarantee that these
actions will take place before the buffer might be flushed and the opportunity for
taking these actions is lost.

If, however, you need to keep your options open as long as possible with respect
to setting response headers or forwarding to another page, then setting autoFlush
to false is the appropriate choice. In this case, it is critical that the page’s output
buffer be large enough for any conceivable output that might be generated by the
page. If not, you again risk the possibility that, if it turns out the output buffer must
be flushed, the end user will see an error message rather than your page contents.

IsThreadSafe attribute

The isThreadsafe attribute is used to indicate whether your JSP page, once it is
compiled into a servlet, is capable of responding to multiple simultaneous requests.
If not, this attribute should be set to false, as in the following:

<%@ page isThreadSafe="false" %>

When this attribute is set to false, the JSP container will dispatch outstanding
requests for the page sequentially, in the order they were received, waiting for the

78

CHAPTER 5
Programming JSP scvipts

current request to finish processing before starting the next. When this attribute is
set to true (the default), a thread is created to handle each request for the page,
such that multiple requests for the page are handled simultaneously.

This attribute should be set to its default value of true. If not, performance will
suffer dramatically whenever multiple users try to access the JSP page at the same
time, since each subsequent user will have to wait until all previously submitted
requests have been handled before processing of their request can begin. If the page
is heavily trafficked, or its content generation is at all computationally intensive, this
delay will likely not be acceptable to users.

Whether or not this attribute can be set to true, however, is usually dependent
upon its use of resources. For example, if your JSP page creates and stores a data-
base connection that can be used by only one end user at a time, then, unless special
measures are taken to control the use of that connection, the page cannot safely be
accessed by multiple threads simultaneously. In this case, the isThreadsafe
attribute should be set to false, or else your users are likely to encounter run-time
errors when accessing the page. If, however, your JSP page accesses a pool of data-
base connections and waits for a free connection before it begins processing, then
the isThreadsafe attribute can probably be set to true.

Setting isThreadSafe to false is certainly the more conservative approach.
However, this yields a significant performance penalty. Fortunately, the thread
safety of a JSP page is typically dependent more upon how resources are used, rather
than what resources are used. If you are not a Java developer and are concerned
about whether or not your page is safe for multithreading, the best approach is to
consult an experienced programmer; if the page is not thread-safe as is, it can usu-
ally be made so.

TIP Judicious use of Java’s synchronized keyword is the best approach to ensur-
ing thread safety. All access to objects that are shared across multiple JSP pag-
es, or across multiple invocations of the same JSP page, should be
synchronized if there is the potential for inconsistency or deadlocks should
those objects be simultaneously accessed and/or modified by multiple
threads. In this vein, you should carefully examine all static variables, and all
objects used by JSP pages whose scope is either session or application (as
discussed in chapter 6), for potential thread safety issues.

Finally, you also need to be aware that, even if a JSP page sets the isThreadsafe
attribute to false, JSP implementations are still permitted to create multiple
instances of the corresponding servlet in order to provide improved performance. In

JSP divectives 79

this way, the individual instances handle only one request at a time, but by creating a
pool of servlet instances, the JSP container can still handle some limited number of
simultaneous requests. For this reason, you still must consider the resource usage
even of pages that are not marked thread-safe, to make sure there are no potential
conflicts between these multiple instances. Given this harsh reality, you are usually
better off biting the bullet and making sure that your page is fully thread-safe. This
discussion of the isThreadSate attribute is presented here in the interest of com-
pleteness, but the bottom line is that if you’re tempted to set this attribute’s value to
false, you will be doing both yourself and your users a favor if you reconsider.

ErrorPage attribute

This attribute is used to specify an alternate page to display if an (uncaught) error
occurs while the JSP container is processing the page. This alternate page is indi-
cated by specifying a local URL as the value for this attribute, as in the following:

<%@ page errorPage="/misc/error.jsp" %>

The error page URL must specify a JSP page from within the same web application
(see chapter 14) as the original page. As in this example, it may be an absolute URL,
which includes a full directory specification. Such URLs are resolved within the
context of that web application; typically, this means a top-level directory—corre-
sponding to the name under which the web application was deployed—will be
appended to the beginning of the URL. Alternatively, a relative URL may be speci-
fied, in which case any directory information included in the URL is appended to
the directory information associated with the current page, in order to form a new
URL. In the context of the errorpage attribute, absolute URLs start with a forward
slash, while relative URLs do not.

The default value for this attribute is implementation-dependent. Also, note that
if the output of the JSP page is not buffered and any output has been generated
before the error occurs, it will not be possible to forward to the error page. If the
output is buffered and the autoFlush attribute is set to true, once the buffer
becomes full and is flushed for the first time, it will likewise become impossible to
torward to the error page. As you might expect, if autoFlush is false, then the
exception raised when the buffer is filled will cause the JSP container to forward
control to the page specified using the errorPage attribute.

IsErrorPage attribute

The isErrorPage attribute is used to mark a JSP page that serves as the error page
for one or more other JSP pages. This is done by specifying a simple boolean
attribute value, as follows:

80

5.3.2

CHAPTER 5
Programming JSP scvipts

o

<%@ page isErrorPage="true" %>

When this attribute is set to true, it indicates that the current page is intended for
use as a JSP error page. As a result, this page will be able to access the exception
implicit object, described in chapter 6, which will be bound to the Java exception
object (i.e., an instance of the java.lang.Throwable class) which caused control to
be forwarded to the current page.

Since most JSP pages do not serve as error pages, the default value for this
attribute is false.

Include directive

The second JSP directive enables page authors to include the contents of one file in
another. The file to be included is identified via a local URL, and the directive has
the effect of replacing itself with the contents of the indicated file. The syntax of the
include directive is as follows:

<%@ include file="localURL" %>

Like all JSP tags, an XML translation of this directive is also available. Its syntax is as
follows:

<jsp:directive.include file="IlocalURL" />

There are no restrictions on the number of include directives that may appear in a
single JSP page. There are also no restrictions on nesting;; it is completely valid for a
JSP page to include another JSP page, which itself includes one or more other JSP
pages. As mentioned earlier, however, all included pages must use the same script-
ing language as the original page.

As in the URL specification for the errorPage attribute of the page directive,
the value of the include directive’s £ile attribute can be specified as an absolute
path within the current web application (chapter 14), or relative to the current
page, depending upon whether or not it starts with a forward slash character. For
example, to include a file in a subdirectory of the directory that the current JSP
page is in, a directive of the following form would be used:

<%@ include file="includes/navigation.jspf" %>

To include a file using an absolute path within a web application, the following
form would be used:

<%@ include file="/shared/epilogue/copyright.html" %>

JSP divectives 81

<%@

Including and Included Combined Combined Page
Pages Source Servlet

Figure 5.1 Effect of the include directive on page compilation

The decision whether to use a common top-level directory for shared content, ver-
sus directory-specific files, depends upon the overall design of your web site or
application hierarchy. A combination of both approaches may also be appropriate.

It is recommended that the .jsp file extension be reserved for JSP pages that will
be viewed as top-level documents (i.e., pages that are expected to be referenced
explicitly in URLs requested by an end user). An alternate extension, such as .jspf or
jsf, is preferred for JSP fragments meant to be included as elements of other JSP
pages. As indicated in figure 5.1, the include directive has the effect of substituting
the contents of the included file before the page is translated into source code and
compiled into a servlet. The contents of the included file may be either static text
(e.g., HTML) or additional JSP elements that will be processed as if they were part
of the original JSP page. This means that it is possible to make reference in the
included page to variables that are local to the original page, and vice versa, since
the included page effectively becomes part of that original page. In practice, this
approach can lead to software maintenance problems, since it breaks the modularity
of the individual files. If used in a disciplined manner, though, it can be helpful to
isolate code that appears repeatedly across a set of JSP pages into a single file, and
use the include directive to share this common code.

NOTE For C and C++ developers, the JSP include directive is a direct analog of the
#include directive provided by the preprocessor for those two languages.

82

5.3.3

CHAPTER 5
Programming JSP scvipts

As described in chapter 4, the JSP container will automatically rebuild and recompile
the servlet associated with a JSP page whenever it detects that the file defining the
page’s contents has been modified. This only applies to the file for the JSP page itself,
however, not to any files which have been incorporated via the include directive.
The JSP container is not required to keep track of file dependencies resulting from the
use of this directive, so modifications to included files will not automatically trigger
the generation of a new JSP servlet. The easiest way to force the construction of a new
servlet is to manually update the modification date on the file for the including page.

TIP On the UNIX platform, the easiest way to update a file’s modification date is
via the touch command. Unfortunately, there is no direct equivalent on the
Windows platform. Alternate Windows command shells are available which
provide this functionality, or you can simply open the file in an editor and
save its contents, unchanged.

JSP also provides an alternative means for including the contents of one JSP file
within another, via the <jsp:include> action, described in chapter 6. Unlike the
include directive, which treats the contents of the file to be included as if it were
part of the original page, the <jsp:include> action obtains the contents of the file
to be included at the time the request for the original page is being handled, by for-
warding the request to the included page and then inserting the results of process-
ing this secondary request into the results of the original page.

Tag library directive

This directive is used to notify the JSP container that a page relies on one or more
custom tag libraries. A tag library is a collection of custom tags that can be used to
extend the functionality of JSP on a page-by-page basis. Once this directive has been
used to indicate the reliance of a page on a specific tag library, all of the custom tags
defined in that library become available for use on that page. The syntax of this
directive is as follows:

<%@ taglib uri="tagLibraryURI" prefix="tagPrefix" %>.

Here, the value of the uri attribute indicates the location of the Tag Library
Descriptor (TLD) file for the library, and the prefix attribute specifies the XML
namespace identifier that will be prepended to all occurrences of the library’s tags
on the page. For example, the following directive loads in a tag library whose TLD
is accessible via the local URL /EncomTags:

<%@ taglib uri="/EncomTags" prefix="mcp" %>

5.4

Scripting elements 83

Within the page in which this directive appears, the tags defined by this library are
accessed using the prefix mep. A tag from this library named endpProgram, then,
would be referenced within the page as <mcp:endProgram/>. Note that all custom
tags follow XML syntax conventions. In addition, the prefix names jsp, jspx, java,
javax, servlet, sun, and sunw are reserved by the JSP specification; you may not
provide them as the value for the prefix attribute of the taglib directive within
your own JSP pages.

NOTE Unlike the other directives introduced in this chapter, there is no direct XML
version of the taglib directive. Instead, when constructing a JSP page as an
XML document, the use of a custom tag library is specified as an attribute of
the document’s root element. For further details, see chapter 20.

Because the custom tag prefix is specified external to the library itself, and on a page-
specific basis, multiple libraries can be loaded by a single page without the risk of
contlicts between tag names. If two libraries both define tags with the same name, a
JSP page would still be able to load and use both libraries since it can distinguish
those tags via their prefixes. As such, there are no restrictions on how many tag
library directives may appear on a page, as long as each is assigned a unique prefix. If,
however, the JSP container cannot find the TLD at the indicated location, or the
page references a tag that is not actually defined in the library (based on the contents
of the TLD), an error will result when the JSP container tries to compile the page.
The construction of custom tag libraries and their associated TLDs is described
in chapter 18. The deployment of custom tag libraries is presented in chapter 14.

WARNING For security reasons, the JSP specification mandates that the Java classes imple-
menting a library’s custom tags must be stored locally, as part of the deployed
web application which uses them (see chapter 13). Some JSP containers, how-
ever, allow page authors to specify URLs referencing complete tag library JAR
files in the uri attribute of the taglib directive, including JAR files stored on
remote servers. Support for this behavior is intended to ease development, but
keep in mind that downloading arbitrary Java code from a remote URL and
running that code on your web server is a rather risky proposition.

Scripting elements

Whereas the JSP directives influence how the page is processed by the JSP container,
scripting elements enable developers to directly embed code in a JSP page, includ-
ing code that generates output to appear in the results sent back to the user. JSP

84

54.1

CHAPTER 5
Programming JSP scvipts

provides three types of scripting elements: declarations, scriptlets, and expressions.
Declarations allow the developer to define variables and methods for a page, which
may be accessed by other scripting elements. Scriptlets are blocks of code to be exe-
cuted each time the JSP page is processed for a request. Expressions are individual
lines of code. Like scriptlets, they are executed for every request. The results of eval-
uating an expression, however, are automatically inserted into the page output in
place of the original expression tag.

All scripting elements in a page are written in the scripting language designated
for the page via the language attribute of the page directive. In the absence of an
explicit specification of the scripting language, it is assumed by the JSP container
that the scripting language is Java. Recall, as well, that if the include directive is
used to incorporate the contents of one JSP page into another, both pages must use
the same scripting language. Finally, none of the tags for the JSP scripting elements
supports attributes.

Declarations

Declarations are used to define variables and methods specific to a JSP page.
Declared variables and methods can then be referenced by other scripting elements
on the same page. The syntax for declarations is:

<%! declaration(s) %>

Note that multiple declarations may appear within a single tag, but each declaration
must be a complete declarative statement in the designated scripting language. Also
note that white space after the opening delimiter and before the closing delimiter is

optional, but recommended to improve readability. For JSP pages specified as XML
documents, the corresponding syntax is:

<jsp:declaration> declaration(s) </jsp:declaration>

The two forms are identical in effect.

Variable declarations

Variables defined as declarations become instance variables of the servlet class into
which the JSP page is translated and compiled. Consider the following declaration
of three variables:

<%! private int x = 0, y = 0; private String units = "ft"; %>

This declaration will have the effect of creating three instance variables in the servlet
created for the JSP page, named x, vy, and units. These variables can be referenced

Scripting elements 85

by any and all other scripting elements on the page, including those scripting ele-
ments that appear earlier in the page than the declaration itself.

When declaring JSP instance variables, it is important to keep in mind the poten-
tial that multiple threads will be accessing a JSP simultaneously, representing multi-
ple simultaneous page requests. If a scripting element on the page modifies the
value of an instance variable, all subsequent references to that instance variable will
use the new value, including references in other threads. If you wish to create a vari-
able whose value is local to the processing of a single request, this may be done in a
scriptlet. Declared variables are associated with the page itself (through the servlet
class), not with individual requests.

Since variables specified via JSP declarations are directly translated into variables
of the corresponding servlet class, they may also be used to declare class variables.
Class, or static, variables, are those whose values are shared among all instances of a
class, rather than being specific to an individual instance. When the scripting lan-
guage is Java, class variables are defined using the static keyword, as in the follow-
ing example:

<%! static public int counter = 0; %>

The eftect of this declaration is to create an integer variable named counter that is
shared by all instances of the page’s servlet class. If any one instance changes the
value of this variable, all instances see the new value.

In practice, because the JSP container typically creates only one instance of the
servlet class representing a particular JSP page, there is little difference between
declaring instance variables and declaring class variables. As explained earlier, the
major exception to this rule is when a JSP page sets the isThreadsafe attribute of
the page directive to false, indicating that the page is not thread-safe. In this case,
the JSP container may create multiple instances of the page’s servlet class, in order
to handle multiple simultaneous requests, one request per instance. To share a vari-
able’s value across multiple requests under these circumstances, the variable must be
declared as a class variable, rather than an instance variable.

When the isThreadsafe attribute is true, however, it makes little practical dif-
ference whether a variable is declared as an instance variable or a class variable.
Declaring instance variables saves a little bit of typing, since you don’t have to
include the static keyword. Class variables, though, do a somewhat better job of
conveying the typical usage of declared JSP variables, and are appropriate regardless
of the setting of the isThreadSafe attribute.

86

CHAPTER 5
Programming JSP scvipts

Method declarations
Methods defined via declarations become methods of the servlet class into which
the JSP page is compiled. For example, the following declaration defines a method
for computing factorials:
<%! public long fact (long x) {

if (x == 0) return 1;

else return x * fact(x-1);

}o%s

As with variable declarations, declared methods can be accessed by any and all
scripting elements on the page, regardless of the order in which the method decla-
ration occurs relative to other scripting elements.

DEFINITION The factorial of a number is the product of all of the integers between
that number and 1. The factorial function is only valid for non-negative
integers, and the factorial of zero is defined to be one. The standard
mathematical notation for the factorial of a variable x is ! Thus, x! = x *
(x—1)*(x—2)*...*1. Forexample, 5! =5*4 *3*2* 1 =120. The
method definition provided here implements this definition in a recursive
manner, by taking advantage of the fact that 0! = 1, and the observation
that, for x > 0, it is true that x! = x * (x-1)!

In addition, multiple method definitions can appear within a single declaration tag,
as can combinations of both variable and method declarations, as in the following:

<%! static private char[] vowels =
{ ra’, 'e’, "i’, 'o', 'u’, 'A’, 'E’, 'I', 'O', ‘U’ };
public boolean startsWithVowel (String word) {
char first = word.charAt (0) ;
for (int i = 0; i < vowels.length; ++i) ({
if (first == vowels[i]) return true;

}

return false;
static private Stringl[] articles = { "a ", "an " };
public String withArticle (String noun) {
if (startsWithVowel (noun)) return articles[1l] + noun;
else return articles[0] + noun;

}

o°

>

This declaration introduces two methods and two class variables. The withArti-
cle () method, which relies upon the other variables and methods included in the

Scripting elements 87

declaration, can be used to prepend the appropriate indefinite article to whatever
character string is provided as its argument.

As with class variables, class methods may be specified using JSP declarations.
Class methods, also known as static methods, are methods associated with the class
itself, rather than individual instances, and may be called without requiring access to
an instance of the class. In fact, class methods are typically called simply by prepend-
ing the name of the class to the name of the method. Class methods may reference
only class variables, not instance variables. In practice, because it is generally not
possible to obtain (or predict) the name of the servlet class corresponding to a par-
ticular JSP page, class methods have little utility in the context of JSP.

Handling life-cycle events

One particularly important use for method declarations is the handling of events
related to the initialization and destruction of JSP pages. The initialization event
occurs the first time the JSP container receives a request for a JSP page. The destruc-
tion event occurs when the JSP container unloads the servlet class, either because
the JSP container is being shut down, or because the page has not been requested
recently and the JSP container needs to reclaim the resources (e.g., system memory)
associated with its servlet class.

These events are handled by declaring special life-cycle methods that will auto-
matically be called by the JSP container when the corresponding event occurs. The
initialization event is handled by jspInit (), and the destruction event is handled
by jspbDestroy (). Neither method returns a value nor takes any arguments, so the
general format for declaring them is:
<%! public void jspInit () {

// Initialization code goes here...

1
public void jspDestroy () {
// Destruction code goes here...

}

o°

>

Both methods are optional. If a JSP life-cycle method is not declared for a JSP page,
the corresponding event is simply ignored.

If 3spInit () is defined, the JSP container is guaranteed to call it after the servlet
class has been instantiated, but before the first request is processed. For example,
consider a JSP page that relies upon a pool of database connections in order to col-
lect the data used to generate its contents. Before the page can handle any requests,
it needs to ensure that the connection pool has been created, and is available for

88

5.4.2

CHAPTER 5
Programming JSP scvipts

use. The initialization event is the standard JSP mechanism for enforcing such
requirements, as in:

<%! static private DbConnectionPool pool = null;
public void jspInit () {

if (pool == null) {

String username =

pool = DbConnectionPool.getPool (this, username, password) ;

"sark", password = "mcpr00lz";

-

}

Here, a class variable is declared for storing a reference to the connection pool, an
instance of some hypothetical DbConnectionPool class. The jspInit () method
calls a static method of this class named getPool (), which takes the page instance
as well as a username and password for the database as its arguments, and returns
an appropriate connection pool, presumably either reusing an existing connection
pool or, if necessary, creating one.

In a similar manner, if jspDestroy () is defined, it will be called after all pending
requests have been processed, but just before the JSP container removes the corre-
sponding servlet class from service. To continue the example introduced above,
imagine the following method declaration for the page destruction event:

>

<%! public void jspDestroy () {
pool .maybeReclaim(this) ;
}o%s

Here, the connection pool is given a chance to reclaim its resources by calling its
maybeReclaim () method with the page instance as its sole argument. The implica-
tion here is that if this page is the only consumer of connection pools that is still
using this particular pool, the pool can reclaim its resources because this page no
longer needs them.

Expressions

Declarations are used to add variables and methods to a JSP page, but are not able
to directly contribute to the page’s output, which is, after all, the objective of
dynamic content generation. The JSP expression element, however, is explicitly
intended for output generation. The syntax for this scripting element is as follows:

<%= expression %>
An XML version is also provided:

<jsp:expression> expression </jsp:expression>

Scripting elements 89

In both cases, the expression should be a valid and complete scripting language
expression, in whatever scripting language has been specified for the page. The
effect of this element is to evaluate the specified expression and substitute the
resulting value into the output of the page, in place of the element itself.

JSP expressions can be used to print out individual variables, or the result of
some calculation. For example, the following expression, which uses Java as the
scripting language, will insert the value of & into the page’s output, courtesy of a
static variable provided by the java.lang.Math class:

<%= Math.PI %>

Assuming a variable named radius has been introduced elsewhere on the page, the
tollowing expression can be used to print the area of the corresponding circle:

<%= Math.PI * Math.pow(radius, 2) %>

Again, any valid scripting language expression is allowed, so calls to methods are
likewise permitted. For example, a page including the declaration of the fact ()
method could then insert factorial values into its output using expressions of the
following form:

<%= fact(12) %>

This particular expression would have the effect of substituting the value 479001600
into the contents of the page.

These three expressions all return numeric values, but there are no restrictions
on the types of values that may be returned by JSP expressions. Expressions can
return Java primitive values, such as numbers, characters, and booleans, or full-
fledged Java objects, such as strings and JavaBeans. All expression results are con-
verted to character strings before they are added to the page’s output. As indicated
in table 5.2, various static toString () methods are used to convert primitive values
into strings, while objects are expected to provide their own toString () methods
(or rely on the default implementation provided by the java.lang.0Object class).

Table 5.2 Methods used to convert expression values into strings

Value Type Conversion to String
boolean java.lang.Boolean.toString (boolean)
byte java.lang.Byte.toString (byte)
char new java.lang.Character (char).toString()
double java.lang.Double.toString (double)
int java.lang.Integer.toString (int)

CHAPTER 5
Programming JSP scvipts

Table 5.2 Methods used to convert expression values into strings (continued)

Value Type Conversion to String
float java.lang.Float.toString(float)
long java.lang.Long.toString (long)
object toString () method of object’s class

Notice that no semicolon was provided at the end of the Java code used in the
example JSP expressions. This is because Java’s semicolon is a statement delimiter. A
semicolon has the effect of transforming a Java language expression into a program
statement. In Java, statements are evaluated purely for their side effects; they do not
return values. Thus, leaving out the semicolon in JSP expressions is the right thing
to do, because the JSP container is interested in the value of the enclosed code, not
its side effects.

Given that this scripting element produces output only from expressions, not
statements, you may be wondering if there is a convenient way to do conditional
output in a JSP page. Java’s standard if /then construct, after all, is a statement, not
an expression: its clauses are evaluated purely for side effects, not value. Fortunately,
Java supports the oft-forgotten ternary conditional operator, which does return a
value based on the result of a conditional test. The syntax of Java’s ternary operator
is as follows:

test expr ? true expr : false expr

Each operand of the ternary operator is itself an expression. The test expr expres-
sion should evaluate to a boolean value. If the value of test_expr expression is
true, then the true expr expression will be evaluated and its result returned as the
result of the ternary operator. Alternatively, if the value of test_expr expression is
false, then the false expr expression is evaluated and its result will be returned.
The ternary operator can thus be used in a JSP expression as in the following;:

<%= (hours < 12) ? "AM" : "PM" %>

In this particular example, the value of the hours variable is checked to determine
whether it is less than twelve. If so, the ternary operator returns the string "amM",
which the JSP expression then inserts into the page. If not, the operator returns
"pM" and, again, the JSP expression adds this result to the page output.

TIP The ternary operator is particularly convenient for use in JSP expressions not
just for its functionality, but also for its brevity.

5.4.3

Scripting elements 91

Scriptlets

Declarations and expressions are intentionally limited in the types of scripting code
they support. For general purpose scripting, the appropriate JSP construct is the
scriptlet. Scriptlets can contain arbitrary scripting language statements which, like
declarations, are evaluated for side effects only. Scriptlets do not, however, automat-
ically add content to a JSP page’s output. The general syntax for scriptlets is:

<% scriptlet %>
Scriptlets can also be specified using XML notation, as follows:
<jsp:scriptlet> scriptlet </jsp:scriptlet>

For either tag style, the scriptlet should be one or more valid and complete state-
ments in the JSP page’s scripting language. Alternatively, a scriptlet can leave open
one or more statement blocks, which must be closed by subsequent scriptlets in the
same page. In the case where the JSP scripting language is Java, statement blocks are
opened using the left brace character (i.e., {) and closed using the right brace char-
acter (i.e., }).

Here is an example of a scriptlet which contains only complete statements:
<% GameGrid grid = GameGrid.getGameGrid() ;

Recognizer rl = new Recognizer (new Coordinates(grid, 0, 0));

Recognizer r2 = new Recognizer (new Coordinates(grid, 100, 100)) ;

rl.findProgram("Flynn") ;

r2.findProgram ("Flynn"); %>
This scriptlet fetches one object via a class method, which it then uses to
instantiate two new objects. Methods are then called on these objects to ini-
tiate some computation.

Note that a page’s scriptlets will be run for each request received by the page. For
the previous example, this means that two instances of the Recognizer class are cre-
ated every time the JSP page containing this scriptlet is requested. Furthermore, any
variables introduced in a scriptlet are available for use in subsequent scriptlets and
expressions on the same page (subject to variable scoping rules). The foregoing
scriptlet, for example, could be followed by an expression such as the following;:

<%= rl.statusReport () %>

This expression would then insert the results of the statusReport () method call
for instance r1 into the page’s output. Later scriptlets or expressions could make
additional references (such as method calls, or inclusion in argument lists) to this
instance and the r2 instance, as well the grid object.

92

CHAPTER 5
Programming JSP scvipts

If you wish to control the scoping of a variable introduced by a scriptlet, you can
take advantage of JSP’s support for leaving code blocks open across multiple script-
lets. Consider, for example, the following JSP page which reproduces the above
scriptlet, with one small but important modification:

<html>

<body>

<hls>Intruder Alert</hl>

<p>Unauthorized entry, dispatching recognizers...</p>
<% GameGrid grid = GameGrid.getGameGrid() ;

{ Recognizer rl = new Recognizer (new Coordinates(grid, 0, 0));

Recognizer r2 = new Recognizer (new Coordinates(grid, 100, 100));
rl.findProgram("Flynn") ;
r2.findProgram("Flynn"); %>
<h2>Status</h2>

First Recognizer: <%= rl.statusReport() %>
Second Recognizer: <%= r2.statusReport() %>

<% } %>
Alert Level: <%= grid.alertLevel() %>
</body>
</html>
In this case, the first scriptlet introduces a new program block before creating the
two Recognizer instances. The second scriptlet, toward the end of the page, closes
this block. Within that block, the r1 and r2 instances are said to be iz scope, and
may be referenced freely. After that block is closed, these objects are out of scope, and
any references to them will cause a compile-time error when the page is compiled
into a servlet by the JSP container. Note that because the grid variable is intro-
duced before the block is opened, it is in the page’s top-level scope, and can con-
tinue to be referenced after the second scriptlet closes the block opened by the first,
as in the call to its alertLevel () method near the end of the page.

The reason this works has to do with the translation of the contents of a JSP
page into source code for a servlet. Static content, such as HTML code, is translated
into Java statements which print that text as output from the servlet. Similarly,
expressions are translated into Java statements which evaluate the expression, con-
vert the result to a string, and print that string value as output from the servlet.
Scriptlets, however, undergo no translation at all, and are simply inserted into the
source code of the servlet as is. If a scriptlet opens a new block without also closing
it, then the Java statements corresponding to any subsequent static content or JSP
elements simply become part of this new block. The block must ultimately be

closed by another scriptlet, or else compilation will fail due to a Java syntax error.

5.5

5.5.1

Flow of control 93

NOTE Java statements corresponding to a JSP page’s static content, expressions, and
scriptlets are used to create the jspService () method of the correspond-
ing servlet. This method is responsible for generating the output of the JSP
page. Directives and declarations are also translated into servlet code, but do
not contribute to the jspService() method and so are not affected by
scoping due to scriptlets. On the other hand, the JSP Bean tags, discussed in
chapter 7, are translated into Java statements for the jspService () meth-
od and therefore are subject to scoping restrictions introduced via scriptlets.

Flow of control

This ability of scriptlets to introduce statement blocks without closing them can be
put to good use in JSP pages to affect the flow of control through the various ele-
ments, static or dynamic, that govern page output. In particular, such scriptlets can
be used to implement conditional or iterative content, or to add error handling to a
sequence of operations.

Conditionalization

Java’s if statement, with optional else if and else clauses, is used to control the
execution of code based on logical true/false tests. Scriptlets can use the if state-
ment (or the appropriate analog if the scripting language is not Java) to implement
conditional content within a JSP page. The following page fragment, for example,
uses the fact () method introduced earlier in this chapter to compute the factorial
of a page variable named x, as long as it is within the appropriate range:
<% if (x < 0) { %>

<p>Sorry, can’t compute the factorial of a negative number.</p>
<% } else if (x > 20) { %>

<p>Sorry, arguments greater than 20 cause an overflow error.</p>
<% } else { %>

<p align=center><%= x %>! = <%= fact(x) %></p>
<% } %>
Three different blocks of statements are created by these scriptlets, only one of
which will actually be executed. If the value of x is negative, then the first block will
be executed, causing the indicated static HTML code to be displayed. If x is greater
than 20, the second block is executed, causing its static HTML to be displayed. Oth-
erwise, the output from the page will contain the static and dynamic content speci-
fied by the third block, including the result of the desired call to the fact () method.

94

5.5.2

5.5.3

CHAPTER 5
Programming JSP scvipts

Iteration

Java has three different iteration constructs: the for loop, the while loop, and the
do/while statement. They may all be used via scriptlets to add iterative content to a
JSP page, and are particularly useful in the display of tabular data. Here, for exam-
ple, is a page fragment which uses the fact () method defined earlier in this chapter
to construct a table of factorial values:
<table>
<tr><th><i>x</i></th><th><I>x</I>! </th></tr>
<% for (long x = 01; x <= 201; ++x) { %>

<tr><td><%= x %></td><td><%= fact(x) %></td></tr>
<% } %>
</table>
Static HTML is used to create the table and its headers, while a for loop is used to
generate the contents of the table. Twenty-one rows of data are created in this man-
ner (figure 5.2). The other iteration constructs may be used in a similar manner. In
addition to generating row data for HTML tables, another common use for itera-
tion scriptlets is looping through a set of results from a database query.

Exception handling

As described in chapter 4, the default behavior when an exception is thrown while
processing a JSP page is to display an implementation-specific error message in the
browser window. In this chapter, we have also seen how the errorpage attribute of
the page directive can be used to specify an alternative page for handling any
uncaught errors thrown by a JSP page. A third option allows even finer control over
errors by incorporating the standard Java exception-handling mechanisms into a JSP
page using scriptlets.

If a block of code on a JSP page has the potential of signaling an error, Java’s
exception handling construct, the try block, may be used in a set of scriptlets to
catch the error locally and respond to it gracefully within the current page. By way
of example, consider the following alternative declaration for the factorial method
presented earlier:

<%! public long fact (long x) throws IllegalArgumentException {

if ((x < 0) || (x > 20))
throw new IllegalArgumentException ("Out of range.");
else if (x == 0) return 1;

else return x * fact(x-1);
}%>

Flow of control 95

- Netscape

File Edit View Go Communicator Help
j Back Fomesd Reload Home Seach Netscape Print smﬂ

| wlf " Bookmarks A Goto: [htip://localhost:8080/webdev/factioop.jsp |

Factorial Loop
E_ x!

[0 1
[1] 1
[2 2
3] ;
[4] 24
[5 120
[6] 720
[7] 5040
[8] 40320
[9] 362850
o 3628300
T 39916300
1z 479001600
13 6227020800
14 27178291200
15] 1307674362000
6] 20922789%83000
17[355687428006000

= ==

Figure 5.2 Tabular results generated by the iteration example

This version of the method verifies that the method’s argument is within the valid
range for this calculation, signaling an I1legalArgumentException if it is not.
Using this version of the method, we could consider an alternative implementa-
tion of the example presented in the foregoing section on conditionals, as follows:
<% try { %>
<p align=center> <%= x %>! = <%= fact(x) %></p>
<% } catch (IllegalArgumentException e) { %>

<p>Sorry, factorial argument is out of range.</p>
<% } %>

96

CHAPTER 5
Programming JSP scvipts

ﬁ'{Nelscape

File Edt Yiew Go Communicator Help
I Back fousd Rebad Home Seach Netscape Pint Secuiy I
v &'Bmkmatks \‘; Go lo:Ihttp:.-’J’Iocahesl:SD‘BI]fwebd'evﬂacl-tly.isp?x-da' 3

Factorial Try
421 =

Sonry, factorial argument is out of range.

=i [Document Done S R e = e e

Figure 5.3 Failure results generated by the first exception handler example

Like the earlier example, the intent here is to print the result of a factorial calcu-
lation, or display an error message if the calculation cannot be made. In this case, a
try block is established around the expression which calls fact (). If this call raises
an IllegalArgumentException the catch block will handle it by printing an error
message. If no exception is raised, the content enclosed by the catch block will be
ignored, and only the successtul results are displayed.

In figure 5.3 an attempt to calculate the factorial of 42 has been made, but this
is out of the range of permitted values for the fact () method. (This is because Java
integer values of type long are limited to 64 bits. Twenty is the largest integer
whose factorial can be expressed using 64 bits.) As a result, the I1legalArgument -
Exception is thrown, and then caught. Notice that all of the output generated up
until the call to the fact () method appears on the page. This is because the
corresponding servlet code for this output does not raise any exceptions, and there-
fore is executed when the page is processed. As soon as the call to fact () occurs,
however, the exception is raised and control is transferred to the catch block,
which then prints the error message.

In order to suppress the equation output altogether, the code on the JSP page
must be rearranged to call the fact () method before any of that output is gener-
ated. One possible approach is to rewrite the first scriptlet:

<% try {
long result = fact(x); %>
<p align=center> <%= x %>! = <%= result %></p>

<% } catch (IllegalArgumentException e) { %>
<p>Sorry, factorial argument is out of range.</p>
<% } %>

5.5.4

5.6

Comments 97

In this case, the factorial value is computed in the scriptlet itself, at the beginning of
the try block, and stored in a new local variable named result. This variable is
then used in the expression which displays the factorial value, rather than directly
calling the method, as before. And because the method call now precedes any out-
put, if an exception is thrown, control will be transferred to the catch block before
the output in the try block begins.

A word of caution

As you can see from these examples, scriptlets that introduce enclosing blocks are
very powerful. Short of using custom tag libraries, they are the only means available
in JSP to implement conditional or iterative content, or to add custom exception
handlers to a page. At the same time, excessive use of these scriptlets can lead to
maintainability problems.

The primary reason for this is readability. The fact that Java delimiters (i.e., {
and }) appear adjacent to the HTML-like scriptlet delimiters (i.e., <% and %) intro-
duces a syntax clash, which can make these tags difficult to follow. Adhering to an
indentation convention, as the examples here do, can help address this issue, partic-
ularly when there are several lines of content interleaved between the scriptlet that
opens a block and the scriptlet that closes it.

As discussed in chapter 1, maintenance of JSP pages is often shared by individu-
als skilled in Java programming and others who are skilled in page design and
HTML. While it is certainly true that HTML has tags that must appear in pairs in
order to have meaning, the notion that some scriptlets are stand-alone while others
are mutually dependent is somewhat foreign to those familiar with HTML syntax
but not Java syntax. As the preceding examples demonstrate, there are cases where
three or more scriptlets are required to implement conditional logic or exception
handling, a scenario that has no parallels in HTML.

As a result, modifying and debugging pages that make heavy use of scriptlets
such as these can be complicated. If the web designers on a team are uncomfortable
with the syntax issues, it is not unlikely that they will involve the programming staff
when making even minor changes to a page. Likewise, if there is a problem with the
display of a page, a joint effort may be required to resolve it.

Comments

If the number of ways comments can be expressed in a language is an indication of
its power, then JSP must be the most powerful dynamic content system around:
there are three different ways to insert comments into a JSP page. These three styles

98

5.6.1

5.6.2

CHAPTER 5
Programming JSP scvipts

of comments themselves divide into two major types, comments that are transmit-
ted back to the browser as part of the JSP response, and those that are only visible in
the original JSP source file.

Content comments

Only one of the three comments styles falls into the first group. These are referred
to as content comments, because they use the comment syntax associated with the
type of content being generated by the JSP page. To write a comment that will be
included in the output of a JSP page that is generating web content, the following
syntax is used:

<!-- comment -->

Those tamiliar with HTML and XML will recognize that this is the standard comment
syntax for those two markup languages. Thus, a JSP page that is generating either
HTML or XML simply uses the native comment syntax for whichever form of content
it is constructing. Such comments will then be sent back to the browser as part of the
response. Since they are comments, they do not produce any visible output, but they
may be viewed by the end user via the browser’s View Source menu item.

Since these comments are part of the output from the page, you can, if you wish,
include dynamic content in them. HTML and XML comments can, for example,
include JSP expressions, and the output generated by these expressions will appear
as part of the comment in the page’s response. For example:
<!-- Java longs are 64 bits, so 20! = <%= fact(20) %> is

the upper limit. -->
In this case, the computed value of the factorial expression will appear in the com-
ment that is actually sent to the browser.

JSP comments

JSP comments are independent of the type of content being produced by the
page. They are also independent of the scripting language used by the page.
These comments can only be viewed by examining the original JSP file, and take
the following form:

<%-- comment --%>

The body of this comment is ignored by the JSP container. When the page is com-
piled into a servlet, anything appearing between these two delimiters is skipped
while translating the page into servlet source code.

5.6.3

Comments 99

For this reason, JSP comments such as this are very useful for commenting out
portions of a JSP page, as when debugging. In the following page fragment, for
example, only the first and last expressions, displaying the factorials of 5 and 9, will
appear in the page output:

51 = <%= fact(5) %>

<%--

6! = <%= fact(6) %>

71 = <%= fact(7) %>

8! = <%= fact(8) %>

°
--%>

9! = <%= fact(9) %>

All of the other expressions have been commented out, and will not appear in the
page’s output. Keep in mind that these comments do not nest. Only the content
between the opening comment delimiter, <%--, and the first occurrence of the clos-
ing delimiter, --%>, is ignored.

Scripting language comments

Finally, comments may also be introduced into a JSP page within scriptlets, using
the native comment syntax of the scripting language. Java, for example, uses /* and
*/ as comment delimiters. With Java as the JSP scripting language, then, scripting
language comments take the following form:

<% /* comment */%>

Like JSP comments, scripting language comments will not appear in the page’s out-
put. Unlike JSP comments, though, which are ignored by the JSP container, script-
ing language comments will appear in the source code generated for the servlet.

Scripting language comments can appear by themselves in scriptlets or may
accompany actual scripting code, as in the following example:

<% long valid = fact(20);
long overflow = fact(21); /* Exceeds 64-bit long! */

o

>

In this case, the comment will again appear in the source code of the corresponding
servlet.

Scripting language comments can also appear in JSP expressions, as long as they
are also accompanied by, or part of, an expression. For example, all of the following
JSP expressions are valid:

<%= /* Comment before expression */ fact(5) %>
%= fact(7) /* Comment after expression */ %>

%= fact (9 /* Comment inside expression */) %>

AYEA

100

CHAPTER 5
Programming JSP scvipts

A JSP expression that contains only a comment, but not a scripting language expres-
sion, is not valid, and will result in a compilation error.

Java also supports a second comment syntax, in which the characters // are the
opening delimiter, and the closing delimiter is the end of the line. This comment
syntax can also be used in JSP pages, as long as the scriptlet or expression in which it
is used is careful to include the end-of-line delimiter, as in the following examples:

<% long valid = fact(20); // This one fits in a 64-bit long.
long overflow = fact(21); // This one doesn’t.

%>

5! = <%= fact(5) // Getting tired of factorial examples yet?

If the scriptlet or expression does not include the end-of-line delimiter, there is a
danger that the content immediately following it may be commented out when
the JSP page is translated into a servlet. Consider, for example, the following JSP
page fragment:

Lora’s brother is over <%= fact(3) // Strange ruler... %> feet tall!

Depending upon the implementation of the JSP container, it is possible that the code
generated to print out the character string "feet tall!" may appear in the servlet
source code on the same line as the code corresponding to the JSP expression. If so,
this code will be commented out in the servlet source code and never appear in the
output from the page. In fact, it is also possible that part of the code generated for the
expression itself will be commented out, in which case a syntax error will result the
first time the page is compiled. For this reason, the fully delimited Java comment syn-
tax (i.e., /* ... */) is the preferred style for JSP usage, particularly in JSP expressions.

Actions and implicit objects

This chapter covers

= Types of JSP implicit objects

= Accessing and applying implicit objects
= Attributes and scopes

= Action tags for transfer of control

101

102

6.1

CHAPTER 6
Actions and implicit objects

Three types of JSP tags were introduced in chapter 5: directives, scripting elements,
and comments. The remaining type, actions, will be introduced here. Actions
encapsulate common behavior into simple tags for use from any JSP page. Actions
are the basis of the custom tag facility described in chapters 18-20, but a number of
standard actions are also provided by the base JSP specification. These standard
actions, presented later in this chapter, are supported by all JSP containers.

Before we look at the standard actions, however, we will first consider the set of
Java objects that the JSP container makes available to developers from each page.
Through their class APIs, these objects enable developers to tap into the inner
workings of the JSP container and leverage its functionality. These objects can be
accessed as built-in variables via scripting elements. They may also be accessed pro-
grammatically by JavaBeans (chapter 7), servlets (chapter 10) and JSP custom tags
(chapters 18-20).

Implicit objects

As the examples presented in chapter 5 suggest, the JSP scripting elements provide a
great deal of power for creating, modifying, and interacting with Java objects in order
to generate dynamic content. Application-specific classes can be instantiated and values
from method calls can be inserted into JSP output. Network resources and repositories,
such as databases, can be accessed to store and retrieve data for use by JSP pages.

In addition to objects such as these, which are completely under the control of
the developer, the JSP container also exposes a number of its internal objects to the
page author. These are referred to as émplicit objects, because their availability in a
JSP page is automatic. The developer can assume that these objects are present and
accessible via JSP scripting elements. More specifically, these objects will be auto-
matically assigned to specific variable names in the page’s scripting language. Fur-
thermore, as summarized in table 6.1, each implicit object must adhere to a
corresponding API, in the form of a specific Java class or interface definition. Thus,
it will either be an instance of that class or interface, or of an implementation-
specific subclass.

Table 6.1 JSP implicit objects and their APIs for HTTP applications

Object Class or Interface Description
page javax.servlet.jsp.HttpJdspPage Page’s servlet instance.
config javax.servlet.ServletConfig Servlet configuration data.
request javax.servlet.http.HttpServletRequest Request data, including

parameters.

Implicit objects 103

Table 6.1 JSP implicit objects and their APIs for HTTP applications (continued)

Object Class or Interface Description
response javax.servlet.http.HttpServletResponse Response data.
out javax.servlet.jsp.JspWriter Output stream for page content.
session javax.servlet.http.HttpSession User-specific session data.
application | javax.servlet.ServletContext Data shared by all application

pages.

pageContext | javax.servlet.jsp.PageContext Context data for page execution.
exception java.lang.Throwable Uncaught error or exception.

The nine implicit objects provided by JSP fall naturally into four major categories:
objects related to a JSP page’s servlet, objects concerned with page input and out-
put, objects providing information about the context within which a JSP page is
being processed, and objects resulting from errors.

Beyond this functional categorization, four of the JSP implicit objects—
request, session, application, and pageContext—have something else in com-
mon: the ability to store and retrieve arbitrary attribute values. By setting and get-
ting attribute values, these objects are able to transfer information between and
among JSP pages and servlets as a simple data-sharing mechanism.

The standard methods for attribute management provided by the classes and
interfaces of these four objects are summarized in table 6.2. Note that attribute keys
take the form of Java string objects, while their values are referenced as instances
of java.lang.Object.

WARNING Note that attribute names beginning with the prefix java are reserved by the
JSP specification, and should therefore not be used within your application.
An example of this is the javax.servlet.jsp.JjspException attribute as-
sociated with requests, as presented in chapter 10.

Table 6.2 Common methods for storing and retrieving attribute values

Method Description
setAttribute (key, value) Associates an attribute value with a key (i.e., a name).
getAttributeNames () Retrieves the names of all attributes associated with the session.
getAttribute (key) Retrieves the attribute value associated with the key.
removeAttribute (key) Removes the attribute value associated with the key.

104

CHAPTER 6
Actions and implicit objects

6.1.1 Serviet-related objects

The two JSP implicit objects in this category are based on the JSP page’s implemen-
tation as a servlet. The page implicit object represents the servlet itself, while the
config object stores the servlet’s initialization parameters, if any.

Page object

The page object represents the JSP page itself or, more specifically, an instance of
the servlet class into which the page has been translated. As such, it may be used to
call any of the methods defined by that servlet class. As indicated in the previous
chapter, the extends attribute of the page directive may be used to specify a servlet
superclass explicitly, otherwise an implementation-specific class will be used by the
JSP container when constructing the servlet. In either case, the servlet class is always
required to implement the javax.servlet.jsp.JspPage interface. In the specific
case of web-based JSP applications built on HTTPD, the servlet class must implement
the javax.servlet.jsp.HttpJspPage interface. The methods of this class are pre-
sented in appendix F.

In practice, the page object is rarely used when the JSP scripting language is
Java, because the scripting elements will ultimately be incorporated as method code
of the constructed servlet class, and will automatically have access to the class’s
other methods. (More specifically, when the scripting language is Java, the page
object is the same as the this variable.) For other scripting languages, however, the
scripting variable for this implicit object grants access to all of the methods provided
by the javax.servlet.jsp.JIspPage interface, as well as any methods that have
been defined for the page via method declarations.

Here is an example page fragment that utilizes this implicit object:
<%@ page info="Page implicit object demonstration." %>
Page info:
<%= ((javax.servlet.jsp.HttpJdspPage)page) .getServletInfo() %>
This expression will insert the value of the page’s documentation string into the
output from the page. In this example, note that because the servlet class varies
from one page to another, the standard type for the page implicit object is the
default Java type for nonprimitive values, java.lang.0Object. In order to access
methods defined by the javax.servlet.jsp.HttpJspPage interface, the page
object must first be cast to that interface.

Config object
The config object stores servlet configuration data—in the form of initialization
parameters—for the servlet into which a JSP page is compiled. Because JSP pages are

6.1.2

Implicit objects 105

seldom written to interact with initialization parameters, this implicit object is rarely
used in practice. This object is an instance of the javax.servlet.ServletConfig
interface. The methods provided by that interface for retrieving servlet initialization
parameters are listed in table 6.3.

Table 6.3 Methods of javax.servlet.ServletConfig interface for accessing initialization parameters

Method Description
getInitParameterNames () Retrieves the names of all initialization parameters.
getInitParameter (name) Retrieves the value of the named initialization parameter.

Due to its role in servlet initialization, the config object tends to be most relevant
in the initialization of a page’s variables. Consider the following declaration and
scriptlet, which provide similar functionality to the sample jspInit () method pre-
sented in the previous chapter:

<%! static private DbConnectionPool pool = null; %>

if (pool == null) {
String username = config.getInitParameter ("username") ;
String password = config.getInitParameter ("password") ;
pool = DbConnectionPool.getPool (this, username, password) ;

} %>

o°

<

In this case, rather than storing the username and password values directly in the
JSP page, they have been provided as initialization parameters and are accessed via
the config object.

Values for initialization parameters are specified via the deployment descriptor
file of a web application. Deployment descriptor files are described in chapter 14.

Input/Output

These implicit objects are focused on the input and output of a JSP page. More spe-
cifically, the request object represents the data coming into the page, while the
response object represents its result. The out implicit object represents the actual
output stream associated with the response, to which the page’s content is written.

Request object

The request object represents the request that triggered the processing of the cur-
rent page. For HTTP requests, this object provides access to all of the information
associated with a request, including its source, the requested URL, and any headers,
cookies, or parameters associated with the request. The request object is required
to implement the javax.servlet.ServletRequest interface. When the protocol is

106

CHAPTER 6
Actions and implicit objects

HTTPD, as is typically the case, it must implement a subclass of this interface,
javax.servlet.http.HttpServletRequest.

The methods of this interface fall into four general categories. First, the request
object is one of the four JSP implicit objects that support attributes, by means of the
methods presented in table 6.2. The HttpServletRequest interface also includes
methods for retrieving request parameters and HTTP headers, which are summa-
rized in tables 6.4 and 6.5, respectively. The other frequently used methods of this
interface are listed in table 6.6, and provide miscellaneous functionality such as
access to the request URL and the session.

Among the most common uses for the request object are looking up parameter
values and cookies. Here is a page fragment illustrating the use of the request
object to access a parameter value:

<% String xStr = request.getParameter ("num");
try { long x = Long.parselong(xStr); %>
Factorial result: <%= x %>! = <%= fact(x) %>
<% } catch (NumberFormatException e) { %>
Sorry, the num parameter does not specify an
integer value.
<% } %>

In this example, the value of the num parameter is fetched from the request. Note
that all parameter values are stored as character strings, so conversion is required

before it may be used as a number. If the conversion succeeds, this value is used to
demonstrate the factorial function. If not, an error message is displayed.

WARNING When naming your request parameters, keep in mind that parameter names
beginning with the prefix jsp are reserved by the JSP specification. You must
therefore avoid the temptation of using them in your own applications, since
the container is likely to intercept them and may block access to them from
your JSP pages. An example of this is the jsp_precompile request parameter,
presented in chapter 14.

When utilizing the <jsp: forward> and <jsp:include> actions described at the
end of this chapter, the request object is also often used for storing and retrieving
attributes in order to transfer data between pages.

Implicit objects 107

Table 6.4 Methods of the javax.serviet.http.HttpServietRequest interface for accessing request

parameters

Method

Description

getParameterNames ()

Returns the names of all request parameters

getParameter (name)

Returns the first (or primary) value of a single request parameter

getParameterValues (name)

Retrieves all of the values for a single request parameter.

Table 6.5 Methods of the javax.serviet.http.HttpServietRequest
interface for retrieving request headers

Method

Description

getHeaderNames ()

Retrieves the names of all headers associated with the request.

getHeader (name)

Returns the value of a single request header, as a string.

getHeaders (name)

Returns all of the values for a single request header.

getIntHeader (name)

Returns the value of a single request header, as an integer.

getDateHeader (name)

Returns the value of a single request header, as a date.

getCookies ()

Retrieves all of the cookies associated with the request.

Table 6.6 Miscellaneous methods of the javax.servlet.http.HttpServietRequest interface

Method Description
getMethod () Returns the HTTP (e.g., GET, POST) method for the request.
getRequestURI () Returns the path information (directories and file name) for the
requested URL.
getRequestURL () Returns the requested URL, up to, but not including any query string.
getQueryString() Returns the query string that follows the request URL, if any.

getRequestDispatcher (path)

Creates a request dispatcher for the indicated local URL.

getRemoteHost () Returns the fully qualified name of the host that sent the request.
getRemoteAddr () Returns the network address of the host that sent the request.
getRemoteUser () Returns the name of user that sent the request, if known.

getSession(flag)

Retrieves the session data for the request (i.e., the session implicit
object), optionally creating it if it doesn’t exist.

Response object

The response object represents the response that will be sent back to the user as a
result of processing the JSP page. This object implements the javax.servlet.Serv-
letResponse interface. If it represents an HTTP response, it will furthermore

108

CHAPTER 6

Actions and implicit objects

implement a subclass of this interface, the javax.servlet.http.HttpServletRe-

sponse interface.

The key methods of this latter interface are summarized in tables 6.7-6.10.
Table 6.7 lists a pair of methods for specitying the content type and encoding of a
response. Table 6.8 presents methods for setting response headers, while those in
table 6.9 are for setting response codes. The two methods in table 6.10 provide
support for URL rewriting, which is one of the techniques supported by JSP for ses-
sion managment. For a full listing of all the methods associated with the
javax.servlet.http.HttpServletResponse interface, consult appendix F.

Table 6.7 Methods of the javax.servlet.http.HttpServletResponse
interface for specifying content

Method

Description

setContentType ()

Sets the MIME type and, optionally, the character encoding of the
response’s contents.

getCharacterEncoding ()

Returns the character encoding style set for the response’s contents.

Table 6.8 Methods of the javax.servlet.http.HttpServletResponse
interface for setting response headers

Method

Description

addCookie (cookie)

Adds the specified cookie to the response.

containsHeader (name)

Checks whether the response includes the named header.

setHeader (name, value)

Assigns the specified string value to the named header.

setIntHeader (name, value)

Assigns the specified integer value to the named header.

setDateHeader (name, date)

Assigns the specified date value to the named header.

addHeader (name, value)

Adds the specified string value as a value for the named header.

addIntHeader (name, value)

Adds the specified integer value as a value for the named header.

addDateHeader (name, date)

Adds the specified date value as a value for the named header.

Table 6.9 Response code methods of the javax.servlet.http.HttpServletResponse

interface
Method Description
setStatus (code) Sets the status code for the response (for nonerror circumstances).

sendError (status, msg) | Sets the status code and error message for the response.

sendRedirect (url) Sends a response to the browser indicating it should request an alternate

(absolute) URL.

Implicit objects 109

Table 6.10 Methods of the javax.servlet.http.HttpServletResponse
interface for performing URL rewriting

Method Description

encodeRedirectURL (url) Encodes a URL for use with the sendrRedirect () method to include
session information.

encodeURL (name) Encodes a URL used in a link to include session information.

Here, for example, is a scriptlet that uses the response object to set various headers
for preventing the page from being cached by a browser:

<% response.setDateHeader ("Expires", 0);
response.setHeader ("Pragma", "no-cache");
if (request.getProtocol().equals ("HTTP/1.1")) ({
response.setHeader ("Cache-Control", "no-cache");

}

>

o

The scriptlet first sets the Expires header to a date in the past. This indicates to the
recipient that the page’s contents have already expired, as a hint that its contents
should not be cached.

NOTE For the java.util.Date class, Java follows the tradition of the UNIX oper-
ating system in setting time zero to midnight, December 31, 1969 (GMT).
That moment in time is commonly referred to as the UNIX epoch.

The no-cache value for the Pragma header is provided by version 1.0 of the HTTP
protocol to further indicate that browsers and proxy servers should not cache a
page. Version 1.1 of HTTP replaces this header with a more specific Cache-Control
header, but recommends including the pragma header as well for backward compat-
ibility. Thus, if the request indicates that the browser (or its proxy server) supports
HTTP 1.1, both headers are sent.

Out object

This implicit object represents the output stream for the page, the contents of which
will be sent to the browser as the body of its response. The out object is an instance
of the javax.servlet.jsp.JIspWriter class. This is an abstract class that extends
the standard java.io.Writer class, supplementing it with several of the methods
provided by the java.io.PrintWriter class. In particular, it inherits all of the stan-
dard write () methods provided by java.io.Writer, and also implements all of the
print () and println() methods defined by java.io.PrintWriter.

110

CHAPTER 6
Actions and implicit objects

For example, the out object can be used within a scriptlet to add content to the
generated page, as in the following page fragment:

<P>Counting eggs
<% int count = 0;
while (carton.hasNext()) {
count++;
out.print(".");

}
%>

There are <%= count %> eggs.</P>
The scriptlet in this fragment, in addition to counting the elements in some hypo-
thetical iterator named carton, also has the effect of printing a period for each
counted element. If there are five elements in this iterator, this page fragment will
produce the following output:
Counting eggs.....
There are 5 eggs.
By taking advantage of this implicit object, then, output can be generated from
within the body of a scriptlet without having to temporarily close the scriptlet to
insert static page content or JSP expressions.

In addition, the javax.servlet.jsp.JspWriter class defines a number of
methods that support JSP-specific behavior. These additional methods are summa-
rized in table 6.11, and are primarily used for controlling the output buffer and
managing its relationship with the output stream that ultimately sends content back
to the browser. The full set of methods for this class appears in appendix F.

Table 6.11 JSP-oriented methods of the javax.servlet.jsp.JdspWriter interface

Method Description

isAutoFlush () Returns true if the output buffer is automatically flushed when it becomes full,
false if an exception is thrown.

getBufferSize () Returns the size (in bytes) of the output buffer.

getRemaining() Returns the size (in bytes) of the unused portion of the output buffer.

clearBuffer () Clears the contents of the output buffer, discarding them.

clear () Clears the contents of the output buffer, signaling an error if the buffer has pre-
viously been flushed.

newLine () Writes a (platform-specific) line separator to the output buffer.

flush() Flushes the output buffer, then flushes the output stream.

close () Closes the output stream, flushing any contents.

Implicit objects 111

Here is a page fragment that uses the out object to display the buffering status:

<% int total = out.getBufferSize();

int available = out.getRemaining() ;

int used = total - available; %>

Buffering Status:
<%= used %>/<%= total %> = <%= (100.0 * used)/total %>%
Local variables are created to store the buffer size parameters, and expressions are
used to display the values of these local variables. This page fragment is particularly
useful when tuning the buffer size for a page, but note that the values it prints are
only approximate, because the very act of displaying these values on the page uses
up some of the output buffer. As written, the displayed values are accurate for all of
the content that precedes this page fragment, but not for the fragment itself (or any
content that follows it, of course). Given, however, that this code would most likely
be used only during page development and debugging, this behavior is not only
acceptable, but also preferable: the developer needs to know the buftfer usage of the
actual page content, not of the debugging message.

The methods provided for clearing the buffer are also particularly useful. In the
discussion of exception handling, recall that it was necessary to rewrite our original
example in order to make the output more user-friendly when an error condition
arose. More specifically, it was necessary to introduce a local variable and pre-
compute the result we were interested in. Consider, instead the following approach:

<% out.flush();

try { %>

<p align=center> <%= x %>! = <%= fact(x) %></p>
<% } catch (IllegalArgumentException e) {

out.clearBuffer(); %>

<p>Sorry, factorial argument is out of range.</p>
<% } %>
In this version, the £1ush () method is called on the out object to empty the buffer
and make sure all of the content generated so far is displayed. Then the try block is
opened and the call to the fact () method, which has the potential of throwing an
IllegalArgumentException, is made. If this method call successfully completes,
the code and content in the catch block will be ignored.

If the exception is thrown, however, then the clearBuffer () method is called
on the out object. This will have the effect of discarding any content that has been
generated since the last time the output buffer was flushed. In this particular case,
the output buffer was flushed just before opening the try block. Therefore, only
the content generated by the try block before the exception occurred would be in
the output buffer, so only that content will be removed when the output buffer is

112

6.1.3

CHAPTER 6
Actions and implicit objects

cleared. The output buffer will then be overwritten with the error message indicat-
ing that the argument was out of range.

WARNING There is, of course, a down side to this approach. Recall from the discussion
of buffered output in chapter 4, that once the output buffer has been flushed,
it is no longer possible to change or add response headers, or forward to an-
other page. The call to the £lush() method at the beginning of this page
fragment thus limits your options for processing the remainder of the page.

Contextual objects

The implicit objects in this category provide the JSP page with access to the context
within which it is being processed. The session object, for example, provides the
context for the request to which the page is responding. What data has already been
associated with the individual user who is requesting the page? The application
object provides the server-side context within which the page is running. What
other resources are available, and how can they be accessed? In contrast, the page-
Context object is focused on the context of the JSP page itself, providing program-
matic access to all of the other JSP implicit objects which are available to the page,
and managing their attributes.

Session object

This JSP implicit object represents an individual user’s current session. As described
in the section on session management in chapter 4, all of the requests made by a
user that are part of a single series of interactions with the web server are considered
to be part of a session. As long as new requests by that user continue to be received
by the server, the session persists. If, however, a certain length of time passes with-
out any new requests from the user, the session expires.

The session object, then, stores information about the session. Application-
specific data is typically added to the session by means of attributes, using the meth-
ods in table 6.12. Information about the session itself is available through the other
methods of the javax.servlet.http.HttpSession interface, of which the ses-
sion object is an instance. The most commonly used methods of this interface are
summarized in table 6.12, and the full APT appears in appendix F.

Implicit objects 113

Table 6.12 Relevant methods of the javax.servlet.http.HttpSession interface

Method Description
getId() Returns the session ID.
getCreationTime () Returns the time at which the session was created.
getLastAccessedTime () Returns the last time a request associated with the session was
received.
getMaxInactiveInterval () Returns the maximum time (in seconds) between requests for which

the session will be maintained.

setMaxInactivelInterval (t) | Sets the maximum time (in seconds) between requests for which the
session will be maintained.

isNew () Returns true if user’s browser has not yet confirmed the session ID.

invalidate () Discards the session, releasing any objects stored as attributes.

One of the primary uses for the session object is the storing and retrieving of
attribute values, in order to transmit user-specific information between pages. As an
example, here is a scriptlet that stores data in the session in the form of a hypotheti-
cal UserLogin ObjCCt:

<% UserLogin userData = new UserLogin (name, password) ;
session.setAttribute ("login", userData); %>

Once this scriptlet has been used to store the data via the setAttribute () method,
another scripting element—either on the same JSP page or on another page later
visited by the user—could access that same data using the getAttribute ()
method, as in the following;:

<% UserLogin userData = (UserLogin) session.getAttribute ("login") ;
if (userData.isGroupMember ("admin")) {
session.setMaxInactiveInterval (60*60%*8) ;
} else {
session.setMaxInactiveInterval (60*15) ;

}

>

o°

Note that when this scriptlet retrieves the stored data, it must use the casting oper-
ator to restore its type. This is because the base type for attribute values is
java.lang.Object, which is therefore the return type for the getattribute ()
method. Casting the attribute value enables it to be treated as a full-fledged
instance of the type to which it has been cast. In this case, a hypothetical isGroup-
Member () method is called to determine whether or not the user is a member of the
administrator group. If so, the session time-out is set to eight hours. If not, the ses-
sion is set to expire after fifteen minutes of inactivity. The implication is that

114

CHAPTER 6
Actions and implicit objects

administrators (who are presumably more responsible about restricting access to
their computers) should not be required to log back in after short periods of inac-
tivity during the workday, while access by other users requires stricter security.

Note that JSP provides a mechanism for objects to be notified when they are
added to or removed from a user’s session. In particular, if an object is stored in a
session and its class implements the javax.servlet.http.HttpSessionBind-
ingListener interface, then certain methods required by that interface will be
called whenever session-related events occur. Details on the use of this interface are
presented in chapter 8.

Unlike most of the other JSP implicit objects which can be accessed as needed
from any JSP page, use of the session object is restricted to pages that participate
in session management. This is indicated via the session attribute of the page
directive, as described earlier in this chapter. The default is for all pages to partici-
pate in session management. If the session attribute of the page directive is set to
false, however, any references to the session implicit object will result in a compi-
lation error when the JSP container attempts to translate the page into a servlet.

Application object

This implicit object represents the application to which the JSP page belongs. It is
an instance of the javax.servlet.ServletContext interface. JSP pages are
deployed as a group (in combination with other web-based assets such as servlets,
images, and HTML files) in the form of a web application. This grouping is then
reflected by the JSP container in the URLs by which those assets are exposed. More
specifically, JSP containers typically treat the first directory name in a URL as an
application. For example, http://server/ games/index.jsp, http: //server/games/
matrixblaster.jsp, and http: //server/ games/space/paranoids.jsp are all elements of
the same games application. Specification of this grouping and other properties of
the web application is accomplished via Web Application Descriptor files, as
described in chapter 14.

The key methods of the javax.servlet.ServletContext interface can be
grouped into five major categories. First, the methods in table 6.13 allow the
developer to retrieve version information from the servlet container. Next,
table 6.14 lists several methods for accessing server-side resources represented as file
names and URLs. The application object also provides support for logging, via
the methods summarized in table 6.15. The fourth set of methods supported by
this interface are those for getting and setting attribute values, presented in
table 6.2. A final pair of methods (identical to those in table 6.3) provides access to
initialization parameters associated with the application as a whole (as opposed to

Implicit objects 115

the page-specific initialization parameters accessed via the config implicit object).
For the full APT of the javax.servlet.ServletContext interface, see appendix F.

Table 6.13 Container methods of the javax.servlet.ServletContext interface

Method Description
getServerInfo () Returns the name and version of the servlet container.
getMajorVersion () Returns the major version of the Servlet API for the servlet container.
getMinorVersion () Returns the minor version of the Servlet API for the servlet container.

Table 6.14 Methods of the javax.servlet.ServletContext interface
for interacting with server-side paths and files

Method Description

getMimeType (y) Returns the MIME type for the indicated file, if known by the
server.

getResource (path) Translates a string specifying a URL into an object that
accesses the URL's contents, either locally or over the net-
work.

getResourceAsStream (path) Translates a string specifying a URL into an input stream for
reading its contents.

getRealPath (path) Translates a local URL into a pathname in the local filesystem.

getContext (path) Returns the application context for the specified local URL.

getRequestDispatcher (path) Creates a request dispatcher for the indicated local URL.

Table 6.15 Methods of the javax.servlet.ServletContext interface for message logging

Method Description
log (message) Writes the message to the log file.
log (message, exception) Writes the message to the log file, along with the stack trace for the
specified exception.

As indicated in tables 6.13-6.15, the application object provides a number of
methods for interacting with the HTTP server and the servlet container in an imple-
mentation-independent manner. From the point of view of JSP development, how-
ever, perhaps the most useful methods are those for associating attributes with an
application. In particular, a group of JSP pages that reside in the same application
can use application attributes to implement shared resources. Consider, for exam-
ple, the following expression, which implements yet another variation on the con-
struction and initialization of a database connection pool:

116

CHAPTER 6
Actions and implicit objects

<% DbConnectionPool pool =
(DbConnectionPool) application.getAttribute ("dbPool") ;

if (pool == null) {

String username = application.getInitParameter ("username") ;
String password = application.getInitParameter ("password") ;
pool = DbConnectionPool.getPool (this, username, password) ;
application.setAttribute ("dbPool", pool) ;

}o%>
In this case, the connection pool is constructed in the same manner, but is stored in
a local variable instead of a class variable. This is done because the long-term stor-
age of the connection pool is handled via an application attribute. Before construct-
ing the connection pool, the application attribute is first checked for a pool that has
already been constructed.

If a pool is not available via this application attribute, a new connection pool must be
constructed. In this case, construction proceeds as before, with the added step of assign-
ing this pool to the application attribute. The other significant difference is that, in this
version, the initialization parameters are retrieved from the application object, rather
than from the config object. Initialization parameters associated with the application
can be accessed by any of the application’s JSP pages. Such parameters need only be
specified once, using the Web Application Descriptor file (see chapter 14), whereas the
initialization parameters associated with the config object must be specified on a page-
by-page basis.

Reliance on application initialization parameters enables reuse of this code across
multiple JSP pages within the application, without having to specify the initialization
parameters multiple times. Such reuse can be facilitated by making use of the JSP
include directive, and enables you to ensure that the connection pool will only be con-
structed once, and then shared among all of the pages.

TIP Like session attributes, the base type for application attributes is
java.lang.Object. When attribute values are retrieved from an applica-
tion, they must be cast back to their original type in order to access their
full functionality. Initialization parameters take the form of String objects.

As indicated in table 6.13, the application implicit object also provides access to
information about the environment in which the JSP page is running, through the
getServerInfo (), getMajorVersion (), and getMinorVersion () methods. Keep
in mind, however, that the data returned by these methods is with respect to the
servlet container in which the JSP page is running. To obtain the corresponding
information about the current JSP container, the JSP specification provides an

Implicit objects 117

abstract class named javax.servlet.jsp.JspEngineInfo that provides a method
for retrieving the JSP version number. Since this is an abstract class, a somewhat
convoluted path is necessary in order to access an actual instance. The required
steps are implemented by the following JSP page fragment:

<%@ page import="javax.servlet.jsp.JspFactory" %>

<% JspFactory factory = JspFactory.getDefaultFactory(); %>
JSP v. <%= factory.getEngineInfo().getSpecificationVersion() %>

For further details on the JspEngineInfo and JspFactory classes, see appendix F.

PageContext object

The pagecontext object provides programmatic access to all other implicit objects.
For the implicit objects that support attributes, the pageContext object also pro-
vides methods for accessing those attributes. In addition, the pageContext object
implements methods for transferring control from the current page to another,
either temporarily to generate output to be included in the output of the current
page or permanently to transfer control altogether.

The pageContext ObjCCt is an instance of the javax.servlet.jsp.PageCon-
text class. The full API for this class in presented in appendix F, but the important
methods of this class fall into four major groups. First, there is a set of methods for
programmatically accessing all of the other JSP implicit objects, as summarized in
table 6.16. While these methods are not particularly useful from a scripting perspec-
tive (since these objects are already available as scripting variables), we will discover
their utility in chapter 18 when we look at how JSP custom tags are implemented.

The second group of javax.servlet.jsp.PageContext methods enables the
dispatching of requests from one JSP page to another. Using the methods—listed in
table 6.17, the handling of a request can be transferred from one page to another
either temporarily or permanently. Further details on the application of this func-
tionality will be provided when we look at the <jsp: forwards> and <jsp:include>
actions toward the end of this chapter.

Table 6.16 Methods of the javax.servlet.jsp.PageContext class for
programatically retrieving the JSP implicit objects

Method Description
getPage () Returns the servlet instance for the current page (i.e., the page implicit
object).
getRequest () Returns the request that initiated the processing of the page (i.e., the request

implicit object).

getResponse () Returns the response for the page (i.e., the response implicit object).

118

CHAPTER 6
Actions and implicit objects

Table 6.16 Methods of the javax.servlet.jsp.PageContext class for
programatically retrieving the JSP implicit objects (continued)

Method Description
getout () Returns the current output stream for the page (i.e., the out implicit object).
getSession () Returns the session associated with the current page request, if any (i.e., the
session implicit object).
getServletConfig() Returns the servlet configuration object (i.e., the config implicit object).
getServletContext () | Returns the context in which the page’s servlet runs (i.e., the application

implicit object).

getException () For error pages, returns the exception passed to the page (i.e., the exception
implicit object).

Table 6.17 Request dispatch methods of the javax.servlet.jsp.PageContext class

Method Description
forward (path) Forwards processing to another local URL.
include (path) Includes the output from processing another local URL.

The remaining two groups of methods supported by the pageContext object deal
with attributes. This implicit object is among those capable of storing attributes. Its
class therefore implements all of the attribute access methods listed in table 6.2. In
keeping with its role as an avenue for programmatically accessing the other JSP
implicit objects, however, the javax.servlet.jsp.PageContext class provides a
set of methods for managing their attributes, as well. These methods are summa-
rized in table 6.18.

Table 6.18 Methods of the javax.servlet.jsp.PageContext class
for accessing attributes across multiple scopes

Method Description
setAttribute (key, value, scope) Associates an attribute value with a key in a specific scope.
getAttributeNamesInScope (scope) Retrieves the names of all attributes in a specific scope.
getAttribute (key, scope) Retrieves the attribute value associated with the key in a

specific scope.

removeAttribute (key, scope) Removes the attribute value associated with the key in a
specific scope.

findAttribute (name) Searches all scopes for the named attribute.

getAttributesScope (name) Returns the scope in which the named attribute is stored.

Implicit objects 119

As indicated earlier in this chapter, four different implicit objects are capable of stor-
ing attributes: the pageContext object, the request object, the session object,
and the application object. As a result of this ability, these objects are also referred
to as scopes, because the longevity of an attribute value is a direct result of the type
of object in which it is stored. Page attributes, stored in the pageContext object,
only last as long as the processing of a single page. Request attributes are also short-
lived, but may be passed between pages as control is transferred during the han-
dling of a single request. Session attributes persist as long as the user continues
interacting with the web server. Application attributes are retained as long as the JSP
container keeps one or more of an application’s pages loaded in memory—conceiv-
ably, as long as the JSP container is running.

NOTE Only a single thread within the JSP container can access attributes stored with
cither page or request scope: the thread handling the processing of the associ-
ated request. Thread safety is more of a concern, then, with session and appli-
cation attributes. Because multiple requests for an application’s pages will be
handled simultaneously, objects stored with application scope must be robust
with respect to access by these multiple threads. Similarly, because a user may
have multiple browser windows accessing a server’s JSP pages at the same
time, it must be assumed that objects stored with session scope may also be
accessed by more than one thread at a time.

In conjunction with the methods listed in table 6.18 whose parameters include a
scope specification, the javax.servlet.jsp.PageContext class provides static vari-
ables for representing these four different scopes. Behind the scenes, these are just
symbolic names for four arbitrary integer values. Since the actual values are hidden,
the symbolic names are the standard means for indicating attribute scopes, as in the
following page fragment:
<%@ page import="javax.servlet.jsp.PageContext" %>
<% Enumeration atts =

pageContext.getAttributeNamesInScope (PageContext.SESSION SCOPE) ;
while (atts.hasMoreElements()) { %>

Session Attribute: <%= atts.nextElement() %>

<% } %>

These variables are summarized in table 6.19.

120

6.1.4

CHAPTER 6
Actions and implicit objects

Table 6.19 Class scope variables for the javax.servlet.jsp.PageContext class

Variable Description
PAGE_SCOPE Scope for attributes stored in the pageContext object.
REQUEST SCOPE Scope for attributes stored in the request object.
SESSION_SCOPE Scope for attributes stored in the session object.
APPLICATION_ SCOPE Scope for attributes stored in the application object.

The last two methods listed in table 6.18 enable developers to search across all of
the defined scopes for an attribute with a given name. In both cases, the page-
Context object will search through the scopes in order—first page, then request,
then session, and finally application—to either find the attribute’s value or identify
in which scope (if any) the attribute is defined.

WARNING The session scope is accessible only to pageContext methods on pages that
actually participate in session management.

Error handling

This last category of JSP implicit objects has only one member, the exception
object. As its name implies, this implicit object is provided for the purpose of error
handling within JSP.

Exception object

The ninth and final JSP implicit object is the exception object. Like the session
object, the exception object is not automatically available on every JSP page.
Instead, this object is available only on pages that have been designated as error
pages using the isErrorPage attribute of the page directive. On those JSP pages
that are error pages, the exception object will be an instance of the
java.lang.Throwable class corresponding to the uncaught error that caused con-
trol to be transferred to the error page. The methods of the java.lang.Throwable
class that are particularly useful in the context of JSP are summarized in table 6.20.

6.2

Actions 121

Table 6.20 Relevant methods of the java.lang.Throwable class

Method Description

getMessage () Returns the descriptive error message associated with the exception
when it was thrown.

printStackTrace (output) Prints the execution stack in effect when the exception was thrown to
the designated output stream.

toString() Returns a string combining the class name of the exception with its error
message (if any).

Here is an example page fragment demonstrating the use of the exception object:

<%@ page isErrorPage="true" %>

<Hl>Warning!</H1l>

The following error has been detected:

<%= exception %>

<% exception.printStackTrace(new java.io.PrintWriter(out)); %>

In this example, the exception object is referenced in both an expression and a
scriptlet. As you may recall, expression values are converted into strings for printing.
The expression here will therefore call exception object’s tostring () method in
order to perform this conversion, yielding the results described in table 6.20. The
scriptlet is used to display the stack trace for the exception, by wrapping the out
implicit object in an instance of java.io.PrintWriter and providing it as the argu-
ment to the printStackTrace () method.

Actions

In chapter 5 we examined three types of JSP tags, directives, scripting elements, and
comments. Actions are the fourth and final major category of JSP tags, and them-
selves serve three major roles. First, JSP actions allow for the transfer of control
between pages. Second, actions support the specification of Java applets in a
browser-independent manner. Third, actions enable JSP pages to interact with Java-
Beans component objects residing on the server.

In addition, all custom tags defined via tag libraries take the form of JSP actions.
The creation and use of custom tags is described in chapter 18. Finally, note that
unlike directives and scripting elements, actions employ only a single, XML-based
syntax.

122

6.2.1

CHAPTER 6
Actions and implicit objects

Requestl

/>

<jsp:forward. ..

Request —

Forwarded
page

Original
page

Response l

Figure 6.1 Effect of the <jsp:forward> action on the processing of a request

Forward

The <jsp:forwards action is used to permanently transfer control from a JSP page
to another location within the same web application (see chapter 13) as the original
page. Any content generated by the current page is discarded, and processing of the
request begins anew at the alternate location. The basic syntax for this JSP action is
as follows:

<jsp:forward page="localURL" />

The page attribute of the <jsp:forwards action is used to specify this alternate
location to which control should be transferred, which may be a static document, a
servlet, or another JSP page. Note that the browser from which the request was sub-
mitted is not notified when the request is transferred to this alternate URL. In par-
ticular, the location field at the top of the browser window will continue to display
the URL that was originally requested. The behavior of the <jsp: forward> action is
depicted in figure 6.1. As with the include directive described in the previous
chapter, if the string value identifying the URL for the page attribute starts with a
forward slash character, it is resolved relative to the top-level URL directory of the
web application. If not, it is resolved relative to the URL of the JSP page containing
the <jsp:forwards action.

For added flexibility, the <jsp: forward> action supports the use of request-time
attribute values (as described in chapter 4) for the page attribute. Specifically, this
means that a JSP expression can be used to specify the value of the page attribute, as
in the following example:

<jsp:forward page='<%= "message" + statusCode + ".html" %>’ />

Every time the page is processed for a request and the <jsp: forwards> action is to
be taken, this expression will be evaluated by the JSP container, and the resulting

Actions 123

value will be interpreted as the URL to which the request should be forwarded. In
this particular example, the URL value is constructed by concatenating two constant
String values with the value of some local variable named statuscode. If, for
example, the value of statusCode were 404, then this action would forward con-
trol to the relative URL, message404.html.

As mentioned, the <jsp: forwards action can be used to transfer control to any
other document within the same web application. For the specific case when con-
trol is transferred to another JSP page, the JSP container will automatically assign a
new pageContext object to the forwarded page. The request object, the session
object, and the application object, though, will be the same for both the original
page and the forwarded page. As a result, some but not all of the attribute values
accessible from the original page will be accessible on the forwarded page, depend-
ing upon their scope: page attributes are not shared, but request, session, and appli-
cation attributes are. If you need to transfer data as well as control from one page to
another, the typical approach is to store this data either in the request, the session, or
the application itself, depending upon how much longer the data will be needed, and
whether it is user-specific. (Recall, however, that the session object is available only
on pages which are marked as participating in session management.)

TIP All of the objects in which JSP pages can store attribute values, with the ex-
ception of the pagecontext, are also accessible via the servlet API. As a result,
this approach can also be used to transfer data when forwarding from a JSP
page to a servlet.

Since the request object is common to both the original page and the forwarded
page, any request parameters that were available on the original page will also be
accessible from the forwarded page. It is also possible to specify additional request
parameters to be sent to the forwarded page through use of the <jsp:param> tag
within the body of the <jsp:forwards action. The syntax for this second form of
the <jsp:forwards action is as follows:

<jsp:forward page="localURL">

<jsp:param name="parameterNamel"
value="parameterValuel" />

<jsp:param name="parameterNameN"
value="parameterValueN"/>
</jsp:forward>
For each <jsp:param> tag, the name attribute identifies the request parameter to be
set and the value attribute provides the corresponding value. This value can be

124

CHAPTER 6
Actions and implicit objects

cither a static character string or a request-time attribute value (i.e., a JSP expres-
sion). There is no limit on the number of request parameters that may be specified
in this manner. Note also that the passing of additional request parameters is inde-
pendent of the type of document to which control is transferred; the <jsp:param>
tag can thus be used to set request parameters for both JSP pages and servlets.

NOTE As you might infer from the inclusion of getParameterValues () among
the methods of the request implicit object listed in table 6.4, HTTP request
parameters can actually have multiple values. The effect of the <jsp:param>
tag when used with the <jsp:forwards> and <jsp:include> actions is to
add a value to a particular parameter, rather than simply set its value.

This means that if a request parameter has already been assigned one or
more values by some other mechanism, the <jsp:param> tag will simply
add the specified value to those already present. Note, however, that this
new value will be added as the first (or primary) value of the request parame-
ter, so subsequent calls to the getParameter () method, which returns only
one value, will in fact return the value added by the <jsp:params> tag.

If the <jsp:param> tag is applied to a request parameter that does not al-
ready have any values, then the value specified in the tag becomes the param-
eter’s first and only value. Again, subsequent calls to getParameter () will
return the value set by the tag.

Given that the <jsp: forwards> action effectively terminates the processing of the cur-
rent page in favor of the forwarded page, this tag is typically used in conditional code.
Although the <jsp: forwards action could be used to create a page which generates
no content of its own, but simply uses the <jsp:param> tag to set request parameters
for some other page, scenarios such as the following are much more common:

<% if (! database.isAvailable()) { %>

<%-- Notify the user about routine maintenance. --%>
<jsp:forward page="db-maintenance.html"/>

<% } %>

<%-- Database is up, proceeed as usual... --%>

Here, a method is called to check whether or not a hypothetical database server is
available. If not, control is forwarded to a static HTML page which informs the user
that the database is currently down for routine maintenance. If the server is up and
running, then processing of the page continues normally, as indicated in the com-
ment following the conditional code.

6.2.2

Actions 125

One factor that you need to keep in mind when using this tag is its interaction
with output buffering. When the processing of a page request encounters the
<jsp:forwards> tag, all of the output generated thus far must be discarded by
clearing the output buffer. If the output buffer has been flushed at least once,
however, some of the output from the page will already have been sent to the
user’s browser. In this case, it is impossible to discard that output. Therefore, if the
output buffer associated with the current page request has ever been flushed prior
to the <jsp:forwards action, the action will fail, and an T1legalStateException
will be thrown.

As a result, any page that employs the <jsp: forwards> action should be checked
to make sure that its output buffer is large enough to ensure that it will not be
flushed prior to any calls to this action. Alternatively, if output buffering is disabled
for the page, then any code which might call the <jsp: forwards action must
appear on the page before any static or dynamic elements that generate output.

The final consideration in the use of this tag is the issue of cleanup code. If a JSP
page allocates request-specific resources, corresponding cleanup code may need to
be run from the page once those resources are no longer needed. If such a page
makes use of the <jsp: forwards tag, then processing of that page will end if and
when this tag is reached. Any cleanup code that appears in the JSP file after the
<jsp:forwards> tag will therefore not be run if processing of the page causes this
action to be taken. Dependent upon the logic in the page, then, it may be necessary
to include a call to the cleanup code just before the <jsp: forward> tag, in order to
make sure that resources are managed properly.

Include

The <jsp:includes action enables page authors to incorporate the content gener-
ated by another local document into the output of the current page. The output
from the included document is inserted into the original page’s output in place of
the <jsp:include> tag, after which processing of the original page resumes. In
contrast to the <jsp:forwards tag, then, this action is used to temporarily transfer
control from a JSP page to another location on the local server.

The <jsp:include> action takes the following form:

<jsp:include page="localURL" flush="flushFlag" />

The page attribute of the <jsp:includes action, like that of the <jsp:forwards
action, is used to identify the document whose output is to be inserted into the cur-
rent page, and is specified as a URL within that page’s web application (i.e., there is
no host or protocol information in the URL, just directories and a file name). The

126

CHAPTER 6
Actions and implicit objects

included page can be a static document, a servlet, or another JSP page. As with the
<jsp:forwards action, the page attribute of the <jsp:include> action supports
request-time attribute values (i.e., specifying its value via a JSP expression).

The flush attribute of the <jsp:include> action controls whether or not the
output buffer for the current page (if any) is flushed prior to including the content
from the included page. In version 1.1 of the JSP specification, it was required that
the £lush attribute be set to true, indicating that the buffer is flushed before pro-
cessing of the included page begins. This was a result of earlier limitations in the
underlying servlet API. In JSP 1.2, which is based on version 2.3 of the servlet API,
this limitation has been removed. In containers implementing JSP 1.2, then, the
flush attribute of the <jsp:includes> action can be set to either true or false; the
default value is false.

When the value of the £1lush attribute is set to true, the first step of the JSP
container in performing the <jsp:include> action is to flush the output buffer.
Under these circumstsances, then, the standard restrictions on the behavior of JSP
pages after the buffer has been flushed apply. In particular, forwarding to another
page— including an error page—is not possible. Likewise, setting cookies or other
HTTP headers will not succeed if attempted after processing the <jsp:includes tag.
For similar reasons, attempting to forward requests or set headers or cookies in the
included page will also fail (in fact, an exception will be thrown), although it is per-
tectly valid for an included page to itself include other pages via the <jsp:include>
action. If the £1ush attribute is set to false, only the restrictions on setting headers
and cookies still apply; forwarding, including to error pages, is supported.

As with pages accessed via the <jsp: forwards action, JSP pages processed via
the <jsp:include> tag will be assigned a new pageContext object, but will share
the same request, session, and application objects as the original page. As was
also the case with the <jsp: forwards action, then, the best way to transfer informa-
tion from the original page to an included JSP page (or servlet) is by storing the
data as an attribute of either the request object, the session object, or the appli-
cation object, depending upon its expected longevity.

Another element of functionality that the <jsp:include> action has in com-
mon with the <jsp:forwards> action is the ability to specify additional request
parameters for the included document. Again, this is accomplished via use of the
<jsp:params> tag within the body of the <jsp:includes> action, as follows:
<jsp:include page="localURL" flush="true">

<jsp:param name="parameterNamel"
value="parameterValuel" />

Actions 127

<jsp:param name="parameterNameN"
value="parameterValueN" />

</jsp:include>

As before, the name attribute of the <jsp:params> tag identifies the request parame-
ter to be set and the value attribute provides the corresponding value (which may
be a request-time attribute value), and there is no limit on the number of request
parameters that may be specified in this manner, or on the type of document to
which the request parameters will be passed.

As indicated in figure 6.2, the <jsp:include> action works by passing its
request on to the included page, which is then handled by the JSP container as it
would handle any other request. The output from the included page is then folded
into the output of the original page, which resumes processing. This incorporation
of content takes place at the time the request is handled. In addition, because the
JSP container automatically generates and compiles new servlets for JSP pages that
have changed, if the text in a JSP file included via the <jsp:includes> action is
changed, the changes will automatically be reflected in the output of the including
file. When the request is directed from the original file to the included JSP page, the
standard JSP mechanisms—that is, translation into a stand-alone servlet, with auto-
matic recompilation of changed files—are employed to process the included page.

In contrast, the JSP include directive, described in the previous chapter, does not
automatically update the including page when the included file is modified. This is
because the include directive takes effect when the including page is translated into
a servlet, effectively merging the base contents of the included page into those of the
original. The <jsp:include> action takes effect when processing requests, and
merges the output from the included page, rather than its original text.

There are a number of tradeoffs, then, that must be considered when deciding
whether to use the action or the directive. The <jsp:includes action provides
the benefits of automatic recompilation, smaller class sizes (since the code

Requestl <jsp:include.../>
Original Request _ Included
page page
Response —
Response l

Figure 6.2 Effect of the <jsp:include> action on the processing of a request

128

6.2.3

6.2.4

CHAPTER 6
Actions and implicit objects

corresponding to the included file is not repeated in the servlets for every including
JSP page), and the option of specifying additional request parameters. The
<jsp:include> action also supports the use of request-time attribute values for
dynamically specifying the included page, which the directive does not. Further-
more, the include directive can only incorporate content from a static document
(e.g., HTML) or another JSP page. The <jsp:include> action, since it includes the
output from an included URL rather than the contents of an included source docu-
ment, can be used to include dynamically generated output, such as from a servlet.

On the other hand, the include directive offers the option of sharing local vari-
ables, as well as slightly better run-time efficiency, since it avoids the overhead of
dispatching the request to the included page and then incorporating the response
into the output of the original page. In addition, because the include directive is
processed during page translation and compilation, rather than during request han-
dling, it does not impose any restrictions on output buffering. As long as the output
buffer is sufficiently large, pages which utilize the include directive are not limited
with respect to setting headers and cookies or forwarding requests.

Plug-in

The <jsp:plugin> action is used to generate browser-specific HTML for specifying
Java applets which rely on the Sun Microsystems Java plug-in. As the primary focus
of this book is the use of JSP for server-side Java applications rather than client-side
applications, details on the use of this action may be found in appendix C.

Bean tags

JSP provides three different actions for interacting with server-side JavaBeans:
<jsp:useBeans>, <jsp:setPropertys, and <jsp:getProperty>. Because compo-
nent-centric design provides key strengths with respect to separation of presenta-
tion and application logic, the next two chapters are devoted to the interaction
between JSP and JavaBeans.

Using JSP components

This chapter covers

=« The JSP component model

= JavaBean fundamentals

= Interacting with components through JSP

129

130

7.1

7.1.1

CHAPTER 7
Using JSP components

JSP scriptlets and expressions allow developers to add dynamic elements to web pages
by interleaving their HTML pages with Java code. While this is a great way for Java
programmers to create web-based applications and expressive sites, in general this
approach lacks an elegant separation between presentation and implementation, and
requires the content developer to be well versed in the Java programming language.
Along with scripting, JSP provides an alternative, component-centric approach to
dynamic page design. JSP allows content developers to interact with Java compo-
nents not only though Java code, but through HTML-like tags as well. This approach
allows for a cleaner division of labor between application and content developers.

The JSP component model

The JSP component model is centered on software components called JavaBeans.
Before we can explain the specifics of JavaBeans and how they relate to JSP develop-
ment we must first understand the role of software components in the development
process. Once we have an understanding of component-based design principles we
will learn how to apply these techniques to web page design in JSD.

Component architectures

Components are self-con-

tained, reusable software ?;T:r Account Database
elements that encapsulate user manager access Database
module component

o s | use
application behavior or interface B

data into a discrete pack-
age. You can think of
components as black box
devices that perform specific operations without revealing the details of what’s
going on under the hood. Because they abstract their behavior from their implemen-
tation, they shield their user from messy details—providing added functionality with-
out increased complexity. Components are stand-alone and not bound tightly to any
single application or use. This allows them to be used as building blocks for multiple,
potentially unrelated projects. These two principles, abstraction and reusability, are
the cornerstones of component-centric design. Figure 7.1 illustrates how a collec-
tion of independent software components is assembled to form a complete solution.

Think of components as reusable software elements that we can glue together
to construct our applications. A good component model allows us to eliminate or
greatly reduce the amount of glue code necessary to build our applications.
Component architectures work by employing an interface that allows our

Figure 7.1 A component-based application

7.1.2

The JSP component model 131

components to work together in a more integrated fashion. It is this commonality
that binds components together and allows them to be used by development tools
that understand the interface to further simplity development.

Benefits of a component architecture

Let’s look at an example of component-centric design that’s more concrete. When
an architect designs a new home he or she relies on components to save time,
reduce complexity, and cut costs. Rather than design every wall unit, window
frame, and electrical system from scratch he or she uses existing components to sim-
plify the task. Architects don’t design a custom air-conditioning system; they select
an existing unit that will fit their requirements from the many models available on
the market. There’s a good chance that the architect doesn’t have the skills or
resources to design an air-conditioning system anyway. And conversely the designer
of the air-conditioning system probably couldn’t build a house. Because of this
component-based approach the architect and contractor can concentrate on build-
ing what they know best—houses, and the air-conditioning company can build air-
conditioners. Component architectures allow us to hide a component’s complexity
behind an interface that allows it to interact with its environment or other compo-
nents. It isn’t necessary to know the details of how a component works in order to
access its functionality.

We can use this real world example to illustrate another important feature of
component design—reusability. The construction company can select an off-the-
shelf air-conditioner because it supports standard connectors, fastens with standard
screws, and runs off a standard electric voltage. Later, it the homeowner decides to
replace the unit with a new and improved model, there is no need to rebuild the
house—simply swap out the old component for the new. Standardized environ-
ments and design specifications have allowed for a flexible system that is easily main-
tained. Software components are designed to operate in specific environments, and
interact in predetermined ways. The fact that components must follow a certain set
of rules allows us to design systems that can accept a wide array of components.

Component development

While it would be nice if we could design our entire application from pre-existing
components, that’s an approach that’s rarely practical for real application design.
Usually an application developed with a component approach involves a combina-
tion of general purpose and application specific components. The benefits of com-
ponent reuse surface not only by sharing components among differing

132

7.1.3

CHAPTER 7
Using JSP components

applications, but through reuse of components across several segments of the same
or related applications.

A banking application, for example, might have several different customer inter-
faces, an employee access module, and an administrative screen. Each of these
related applications could make use of a common component that contained all of
the knowledge necessary to display the specifics of a particular bank account. With
luck, and good forethought during component design, this banking component
might be useful to anyone developing financial management applications.

Once a component has been designed, the component’s author is relatively free to
change its inner-workings without having to track down all of the component’s users.
The key to achieving this high level of abstractness is defining an interface that shields
any application relying on the component from the details of its implementation.

Component design for web projects

A component-based approach is ideal for the design of web applications. JSP lets
web designers employ the same component design principles that other software
developers have been using for years. Rather than having to embed complex logic
directly into pages through scripting code, or building page content into the pro-
gramming logic, they can simply employ HTML layout around components. The
component model’s ability to reuse common components can reduce development
time and project complexity.

Isolating application logic from presentation layout is a necessity for web devel-
opment organizations that are built around teams whose members have a diverse
set of complementary skill sets. In many enterprises the web team is composed of
both application developers and web developers. Java application developers are
skilled in tasks such as exchanging information with a database and optimizing
back-end server code for performance, while web developers are good with the pre-
sentation aspects such as interface design and content layout. In a componentized
JSP development project, application developers are free to concentrate on develop-
ing components that encapsulate program logic, while web developers build the
application around these components, focusing their energies on its presentation.
As illustrated in figure 7.2, clearly defined boundaries between an application’s core
functionality and its presentation to its user allow for a clearer separation of respon-
sibilities between development teams.

In some cases a single person may handle both aspects of design, but as project
complexity grows, splitting up the tasks of the development process can yield a
number of benefits. Even for web projects being handled by a small, unified team of
developers, a component-based architecture makes sense. The flexibility offered by

7.1.4

The JSP component model 133

Java developer’s domain

E N

Data Application
presentation M. logic

Web Data
designer’s access Database
domain -

Figure 7.2 Division of labor in a web application’s development

components allows a project to handle the sudden changes in requirements that
often seem to accompany web projects.

Building applications from components

So how can we use these component design principles in the design of web applica-
tions? Let’s look at how we might develop a web shopping application with such an
approach. As is typical for an enterprise application, this example involves collecting
information from a database based on user input, performing some calculations on
the data, and displaying the results to the user. In this case we will display a catalog
of items, allow the user to select some for purchase, and calculate tax and shipping
costs, before sending the total back to the user.

What we want to end up with is an online form that allows us to enter the cus-
tomer’s purchases, and, upon submitting the form, returns a new page with a nicely
formatted invoice that includes shipping fees and tax. Our page designers should
have no problem creating an attractive input form and invoice page, and our devel-
opers can easily calculate shipping and tax costs. It is only the interaction between
the two worlds that gets a little sticky. What technologies are best utilized in the
design of such an application?

Since our product catalog is stored in a database, that portion of the application
has to be tied to the server, but where should the tax and shipping calculations take
place? We could use a client-side scripting approach with something like JavaScript.
However, JavaScript isn’t supported in every browser, and would reveal our calcula-
tions in the source of our page. Important calculations such as shipping and tax
should be confined to the server for security purposes; we certainly don’t want the
client browser performing the task.

134

CHAPTER 7
Using JSP components

A server-side approach using JSP scripts would get around this problem. We can
access back-end resources with the code running safely on the server. While this
approach works well for smaller projects, it creates a number of difficulties for a
project such as this one. Directly imbedding JSP scripts into all of our pages intro-
duces a high degree of intermingling between our HTML page design and our busi-
ness logic. Our web designers and application developers will require a detailed
understanding of each other’s work in order to create the application. We could
choose to have the developers create a bare-bones implementation, then let our
designers polish it up. Or, we could let the designers develop a nice page layout
with no logic in it and then have the application developer punch in the code to cal-
culate tax and shipping. Does that provide the division of labor we’re looking for?
Not quite.

A problem with this approach surfaces when we deploy and maintain our appli-
cation. Consider, for example, what happens when our catalog sales application
(originally developed for use by a single location of the company) becomes so wildly
successful our bosses decide to deploy it companywide to all twenty-eight branches.
Of course the sales tax is different at each branch so we make twenty-eight copies of
our page and find an application developer familiar with the code to make the nec-
essary changes to the JSP scripts. Then, we have to get our web developers to
change the HTML of each page to correct any branch-specific design or branding
issues. Over the course of the application’s lifetime we will constantly have to fiddle
with calculations, fix bugs, increase shipping rates, update the design, and add new
features. All of this work must happen across twenty-eight different versions of the
code. Why should we need two groups of people doing the same job twenty-eight
times over?

A web application developed around components offers a better approach. With
the ability to deploy components into our HTML pages we can allow our applica-
tion developers to design tax and shipping calculating components that can be con-
figured at run time with determining factors like the local tax rate. Our web page
developers can then rely on these components without having to involve the appli-
cation developers each time some HTML needs to be changed or a new version of
the page created. On the application development side any bug fixes or updates
would be isolated to the components themselves and would not affect our web
page developer’s duties. So how do components fit in with JSP? JSP leverages the
JavaBeans component model, which we’ll explore next.

7.2

JavaBean fundamentals 135

JavaBean fundamentals

JavaBeans are software components written in Java. The components themselves are
called beans and must adhere to specifications outlined in the JavaBeans API. The
JavaBeans API was created by Sun with the cooperation of the industry and dictates
the rules that software developers must follow in order to create stand-alone, reus-
able software components. Like many other software components, beans encapsulate
both state and behavior. By using JSP’s collection of bean-related tags in their web
pages, content developers can leverage the power of Java to add dynamic elements to
their pages without writing a single line of Java code. Before delving into the specifics
of working with beans in JSP, we need to learn more about the beans themselves.

Bean containers

A bean container is an application, environment, or programming language that
allows developers to call up beans, configure them, and access their information and
behavior. Applications that use beans are composed purely of Java code, but bean
containers allow developers to work with it at a higher conceptual level. This is pos-
sible because JavaBeans expose their features and behavior to the bean container,
allowing the developer to work with the bean in a more intuitive fashion. The bean
container defines its own way of presenting and interacting with the bean and writes
the resulting Java code itself.

If you have used Sun’s Bean Box, IBM’s Visual Age for Java, Visual Caté, or
other Java development tools you’ve already had some experience with beans.
These applications include bean containers that work with beans in a visual format.
With these tools you can build an application by simply dragging bean icons into
position and defining the specifics of their behavior and their connections to other
beans. The application then generates all of the necessary Java code. Like these
visual tools, JSP containers allow developers to create web-based Java applications
without needing to write Java. In JSP we interact with beans through a collection of
tags that we can embed inside our HTML.

Bean properties

Bean containers allow you to work with beans in terms of properties—named
attributes of the bean that maintain its state and control its behavior. A bean is
defined by its properties, and would be pretty much useless without them. Bean
properties can be modified at run time by the bean container to control specifics of
the bean’s behavior. These property values are the sole mechanism the bean con-
tainer uses to expose beans to the developer.

136

CHAPTER 7
Using JSP components

As an example, let’s suppose we have a bean called WweatherBean that knows var-
ious things about the current weather conditions and forecasts. The bean could col-
lect current weather information from the National Weather Service computers, or
extract it from a database—the point being that as the bean’s user we do not need
to understand the specifics of how the bean gets its information. All we care about
as developers is that the WweatherBean is able to give us information such as the cur-
rent temperature, the projected high, or the chances for rain. Each of these bits of
information is exposed to the bean container as a property of the bean whose value
we can access for our web page or application.

Each bean will have a different set of properties depending on the type of infor-
mation it contains. We can customize a bean by setting some of its property values
ourselves. The bean’s creator will impose restrictions on each property of the bean,
controlling our access to it. A property can be read-only, write-only, or readable and
writable. This concept of accessibility allows the bean designer to impose limits on
how the beans can be used. In our WweatherBean, for example, it doesn’t make any
sense to allow developers to modity the value of the bean’s property representing
today’s high temperature. That information is managed by the bean itself and
should be left read-only. On the other hand, if the bean had a property controlling
the ZIP code of the region in whose weather we are interested, it would certainly
make sense to allow developers to specity it. Such a property would be writable, and
probably readable as well.

NOTE As we’ll learn in detail in chapter 8, behind the scenes JavaBeans are merely
Java objects. A JavaBean’s properties map to the methods of a Java object
that manipulates its state. So when you set a property of a bean, it’s like a
shortcut for calling object methods through Java. Likewise, viewing the cur-
rent value of a bean’s property is essentially calling a method of an object and
getting its results. We’ll learn how a Java object’s methods map into bean
properties in the next chapter.

Trigger and linked properties

Some properties are used to trigger behavior as well as report information and are
thus called trigger properties. Reading from or writing to a trigger property signals
the bean to perform an activity on the back end. These triggers, once activated, can
either update the values of other properties or cause something to happen on the
back end. Changing the value of our ZIP code property for example might cause
the bean to run off to the National Weather Service, request weather conditions in
the new ZIP code, and update its other weather related properties accordingly. In

JavaBean fundamentals 137

that case the weather properties and the ZIP code property are considered linked
properties because changing the value of one updates the values of others.

Indexed properties

It is also possible for a single property to store a collection of values. These proper-
ties are known as indexed properties because each value stored in the property is
accessed through an index number, which specifies which particular value you want.
For example you can request the first value in the list, the third, or the twenty-
seventh. Our WweatherBean could have a property that holds forecasted tempera-
tures for the next five days, for example. Not every bean container provides a simple
mechanism for working with these multivalue properties directly, however. The JSP
bean tags, for example, do not recognize indexed properties. Instead, you must use
JSP scriptlets, JSP expressions, or custom JSP tags (discussed in chapters 18 and 19)
to access them.

Property data types

Bean properties can be used to hold a wide array of information. WeatherBean’s
properties would need to store everything from temperatures to rainfall odds, fore-
casts, ZIP codes, and more. Each property of a bean can hold only one specific type
of data such as text or a number. bean property values are assigned a Java data type,
which is used internally by the bean and in the Java code generated by the bean
container. As you might expect, properties can hold any of the Java primitives like
int or double, as well as Java objects like strings and Dates. Properties can also
store user-defined objects and even other beans. Indexed properties generally store
an array of values, each of the same data type.

The bean container determines how we work with the property values of a bean.
With JSP scriptlets and expressions we reference property values by their Java data
type. If a property stores integer values we get integer values out of it and must put
integer values into it. With bean tags, however, we treat every property as if it were
stored text, or in Java parlance, a string. When you set the value of a bean prop-
erty, you pass it text. Likewise, when you read the contents of a property you get
back text, regardless of the internal data type used inside the bean. This text-only
strategy keeps JSP bean tags simple to work with and fits in nicely with HTML.

The JSP container automatically performs all of the necessary type conversions.
When you set an integer property, for example, it performs the necessary Java calls to
convert the series of numeric characters you gave it into an actual integer value. Of
course this conversion process requires you to pass in appropriate text values that
Java can correctly convert into the native data type. If a property handles floating

138

7.2.1

CHAPTER 7
Using JSP components

point values, for example, it would throw an error if you attempted to set the value
to something like banana bread, one hundred, or (3,9).

Clever bean designers can control property values themselves by accepting string
values for nonstring properties and performing the conversions themselves. For any
value which is neither a string nor a Java primitive type, this technique must be
used. Therefore it might be perfectly legal to set an integer property to one hun-
dred, provided the bean’s designer had prepared it for such input.

Bean property sheets

A bean’s capabilities are documented in a table called a property sheet which lists all
of the properties available on the bean, their level of access afforded to the users,
and their Java type. Property sheets may also specify example or valid values for each
property of the bean. Table 7.1 shows the property sheet for the weatherBean
component that we have been using.

Table 7.1 Property sheet examples

Name Access Java Type Example Value
zipCode read/write String 77630
currentTemp | read-only int 87
todaysHigh read-only int 101
todaysLow read-only int 85
rainodds read-only float 0.95
forecasts read-only String(] Sunny, Rainy, Cloudy, Sunny, Hot
iconURL read-only URL http://imageserver/weather/rainy.gif

Property sheets allow bean designers to describe the features of a bean to its users,
such as JSP developers, servlet programmers, and the like. From the property sheet
a developer can determine what type of information the bean can contain and what
behavior it can provide. Of course, the property sheet alone may not be enough to
adequately explain the behavior of a bean to the end user. In this case additional
information can be communicated through the bean’s documentation.

The different types of JavaBeans

For purposes of discussion we can think of beans as falling into three general cate-
gories: visual component beans used as elements of graphical user interfaces (GUI),
data beans that provide access to a collection of information, and service beans (also

JavaBean fundamentals 139

known as worker beans) that can perform specific tasks or calculations. Of course
some beans can be classified in more than one category.

Visual component beans

The development of visual components has been one of the most common uses of
JavaBeans. Visual components are elements such as text fields, selectors, or other
widgets useful for building user interfaces. By packaging GUI components into
beans, Java development environments can take advantage of JavaBean’s support
for visual programming. This allows developers to create their interfaces by simply
dragging the desired elements into position. Since visual beans have been designed
to run as part of graphical Java applications, they are not compatible with JSP, which
is intended for text-based applications such as HTML interface design.

Data beans

Data beans provide a convenient way to access data that a bean itself does not nec-
essarily have the capability to collect or generate. The calculation or collection of
the data stored inside data beans is the responsibility of some other, more complex
component or service. Data beans are typically read-only, allowing you to fetch data
from them but not allowing you to modity their values on your own.

However, some data beans allow you to set some of their properties in order to
control how data is formatted or filtered before being returned through other prop-
erties. For example, an AccountStatusBean might also have a currencyType prop-
erty that controls whether the balance property returned data in dollars, pounds, or
Swiss francs. Because of their simplicity, data beans are useful to standardize access
to information by providing a stable interface.

Service beans

Service beans, as you might expect, provide access to a behavior or particular ser-
vice. For this reason they are sometimes referred to as worker beans. They can
retrieve information from a database, perform calculations, or format information.
Since the only way that we can interact with a bean is through its properties, this is
how we will access a bean’s services. In a typical design, we will set the value of cer-
tain properties that control the bean’s behavior, and then read the results of the
request through other properties. A bean designed to access a database of employee
phone numbers, for example, might have a property called employee, which we
could set to the name we wish to look up. Setting this property triggers the data-
base search and sets the phone and email properties of the bean to reflect the infor-
mation of the requested employee.

140

7.3

7.3.1

CHAPTER 7
Using JSP components

Not all service beans collect data from a back-end source. Some simply encapsu-
late the logic necessary to perform calculations, conversions, or operations. A
StatisticsBean might know how to calculate averages, medians, and standard
deviations, for example. A UnitConversionBean might allow the page designer to
specify some distance in inches and get it back in feet, yards, miles, or furlongs.

Some service beans will not return any information. Their service may be to
store information in a database or log file, for example. In this case, you might set a
property’s value not to get results of the service, but simply for its side-effect behav-
ior—what happens on the back end. Service beans allow for a clear separation of
responsibility and for teams to have separate knowledge domains. The web designer
doesn’t need to understand statistical calculations and the programmer doesn’t need to
understand subtleties of page layout. A change in either the presentation or the pro-
gram logic will not affect the others, provided the bean’s interface does not change.

JSP bean tags

Now that we have a good understanding of the principles of component architec-
ture and JavaBeans we can get into the nitty-gritty of building web pages around
them. JSP has a set of bean tags which can be used to place beans into a page, then
access their properties. Unlike JSP scriptlets and expressions we explored in the pre-
vious chapter, you do not need to be a Java programmer in order to design pages
around beans. In fact, you don’t need to be any type of programmer at all because
JSP does a pretty good job of eliminating the need for messy glue between our
HTML and components.

Tag-based component programming

JSP needs only three simple tags to enable interaction with JavaBeans: <jsp:use-
Bean>, <jsp:setPropertys, and <jsp:getPropertys>. These tags allow you to
place beans into the page as well as alter and access their properties. Some people
complain about the simplicity of the JSP tag set, preferring an approach that embeds
more functionality into the tags themselves similar to PHP or ColdFusion. It is
important to understand that the limited set of functionality afforded to JSP bean
tags is intentional. They are not meant to provide a full-featured programming lan-
guage; programmers can use JSP scriptlets for that. Instead, the bean tags enable the
use of component design strategies in HTML documents without the need for the
page author to learn a programming language or to understand advanced program-
ming concepts.

JSP bean tags 141

As always, there is a fine line in determining the trade-off between the power of
a language and its complexity. As a good compromise, the JSP designers elected to
keep the core functionality very simple, defining only a few tags for working with
beans and establishing a specification that allows for the development of new, cus-
tom tags that solve specific problems. The standard tags allow you to create
references to beans you need to use, set the values of any configurable properties
they might have, and read information from the bean’s properties. Custom tags
with more complex levels of functionality can be developed by individuals and orga-
nizations and integrated into any JSP environment through an extension mecha-
nism known as custom tag libraries. Through custom tags the JSP language can be
extended to support additional programming constructs, like conditionals and
loops, as well as provide additional functionality such as direct access to databases.
We’ll learn about custom tags and tag libraries in chapters 18 and 19.

An illustrative example

Let’s whet our appetite by looking at JSP code built around components, rather
than scriptlets. This example shows some of the things we can accomplish with the
component-centric design model, and will serve as a kickoff to our discussion of
JSP’s component features.

<jsp:useBean id="user" class="RegisteredUser" scope="session"/>

<jsp:useBean id="news" class="NewsReports" scope="request">
<jsp:setProperty name="news" property="category" value="financial"/>
<jsp:setProperty name="news" property="maxItems" value="5"/>

</jsp:useBean>

<html>

<body>

Welcome back <jsp:getProperty name="user" property="fullName"/>,

your last visit was on

<jsp:getProperty name="user" property="lastVisitDate"/>.

Glad to see you again!

<P>

There are <jsp:getProperty name="news" property="newItems"/> new articles

available for your reading pleasure. Please enjoy your stay and come back soon.

</body>

</html>

Notice how straightforward the page design has become? We have used a few spe-
cial JSP tags to eliminate all of the Java code from our page. Even though we have
not yet discussed the specifics of any of the bean tags, you probably already have a
good idea of what the code does just by looking at it. It uses two components, user
and news. The first allows us to greet visitors personally, and the second stores news
items in which they might be interested. JSP bean tags allow us to more clearly

142

7.3.2

CHAPTER 7
Using JSP components

3 http: //slide/ W elcome. jsp - Microsoft Internet Explorer

[Be EGt Vew Favales ook Heb Ea

g -2 90 A9 & 3B 3 B.

Back Fowzd Stp Refiesh Home | Seach Favoites Hitoy | Mal Pint Edt
| Address [&] hitp.//sideAwelcome isp =] @6

Welcome back Eirk Drummond, your last wistt was on Thursday, October 7th. Glad to see you again!

There are 4 new articles available for your reading pleasure. Please enjoy your stay and come back soon.

|
€] Dane [[|¥5 Localintanet 4

Figure 7.3 Dynamic content with JSP

understand the page’s layout because we are writing HTML, not code. Figure 7.3
shows what the page looks like on the browser.

Accessing JSP components

To interact with a bean we first tell the page where to find the Java class file that
defines the bean and assign it a name. We can then use this name to access the val-
ues stored in the bean’s properties. By mastering just three simple JSP tags you can
add component-based web page design to your repertoire. We will look at each of
these tags in-depth.

The <jsp:useBean> tag

The <jsp:useBeans tag tells the page that we want to make a bean available to the
page. The tag is used to create a bean or fetch an existing one from the server.
Attributes of the tag specify the type of bean you wish to use and assign it a name
we can use to refer to it. The <jsp:useBean> tag comes in two forms, a single
empty tag and a matching pair of start and end tags that contain the body of the tag
which can be used to specify additional configuration information. In its simplest
and most straightforward form the <jsp:useBeans> tag requires only two attributes,
id and class. Like all of the JSP tags, you must enclose each attribute value in
quotes. The basic syntax for the tag’s two forms is:

<jsp:useBean id="bean name" class="class name"/>

<jsp:useBean id="bean name" class="class name">
initialization code
</jsp:useBean>

JSP bean tags 143

Table 7.2 shows all of the possible attribute values supported by the <jsp:use-
Bean> tag. We will discuss the purpose of each throughout the chapter, but for now
we will concentrate on understanding the basic bean tag attributes.

Table 7.2 Attributes of the <jsp:useBean> tag

Attribute Value Default Example Value
id Java identifier none myBean
scope page, request, session, appli-| page session
cation
class Java class name none java.util.Date
type Java class name same as com.manning.jsp.AbstractPerson
class
beanName Java class or serialized Bean | none com.manning.jsp.USCurrency.ser

The ID attribute

The id attribute specifies a name for the bean—a unique value that will refer to this
particular bean throughout the page and over the course of its lifetime (we’ll learn
how to extend the bean’s life beyond the current page later). We can use multiple
<jsp:useBeans> tags to define more than one bean within a page, even multiple
instances of the same bean class, as long as there is a unique identifier associated
with each individual bean. The name we select for our bean is arbitrary, but it must
follow some simple rules:

» It must be unique to the page
= It must be case sensitive
= The first character must be a letter

» Only letters, numbers, and the underscore character (_) are allowed (no spaces)

The class attribute

The value of the class attribute specifies the class name of the JavaBean itself. To
help better organize code and avoid conflicts, Java classes are usually organized into
packages. Packages are collections of individual Java class files organized inside a sin-
gle directory. Package names are usually composed of multiple, period-separated
names where each name is a directory in the package hierarchy. You must always
specify the fully qualified name of the bean class. A fully qualified class name consists
of the name of the class’s package and the class name itself. By convention, packages
begin with the Internet domain name of their creator, and usually include more

144

CHAPTER 7
Using JSP components

levels of hierarchy to help better organize collections of classes into logical collec-
tions. The bean’s developer will determine the actual package and class name of the
bean. Some fully qualified bean class names might look something like the following:
com.manning.RegisteredUserBean

com.deepmagic.beans.database.logging.LogBean

com.blokware.MagicPizzaBean
com.taglib.wdjsp.arch.EmployeeBean

The actual bean class is the last part of the fully qualified name, so in the first exam-
ple we are talking about a RegisteredUserBean inside the com.manning package.
Unlike other Java code, which allows you to import packages and refer to the class-
name alone, JSP requires fully qualified class names inside the <jsp:useBean> tag.
For example, the following does not work:

o

<%@page import="com.manning.*" %>
<jsp:useBean id="user" class="RegisteredUserBean" />

The correct way...

<jsp:useBean id="user" class="com.manning.RegisteredUserBean" />

Early implementations of the JSP specification sometimes allowed non-fully quali-
fied class names in this tag, but as of version 1.2 these are no longer allowed. Even
if your container supports this shortcut, you should always fully qualify your names
to keep your code compatible with other containers or updates to yours. Note that
for scripting variables, imported packages are supported and fully qualified class
names are not required.

The type attribute

In practice you won’t use this attribute too much. The <jsp:useBean> tag’s class
attribute determines which Java class is used to create our bean, but JSP offers a way
of fine-tuning the JSP container’s interpretation of the bean’s type which is some-
times needed when beans exist on the server and are not being instantiated by the
current page. By default, the bean is referenced by the class type corresponding
directly to the underlying object’s class. However, if you need to refer to the bean
as another type, for example a base class or an interface that the bean implements,
you can use the type attribute of the <jsp:useBean> tag to do so. The class type
you specify is used to represent the bean object in the Java resulting from the JSP
compilation phase. The bean’s actual class must, of course, be assignable to the class
type specified. If you specify both class and type attributes, the bean will be cre-
ated using the given class, then cast to the given type. The type attribute can only
be used alone (that is without a corresponding class attribute) in cases where the

JSP bean tags 145

bean already exists on the server, a feature known as scope which we’ll cover in the
last section of this chapter. Like the class attribute, you must specity the fully quali-
fied name of the class.

The beanName attribute

This attribute, which is not used too often, specifies the name of a bean which will
be passed to the instantiate () method of the java.beans.Beans class. It will
always take the format of “x.y.z”, but can refer to either a fully qualified classname
or a local serialized bean, located in the file path x/y/z.ser. If present, this class or
resource will be instantiated and assigned to the reference specified by the id
attribute. One unique feature of this attribute of the <jsp:useBean> tag is that it
can be assigned through a run-time expression, allowing you to specity the name of
the class or resource via a request parameter.

The tag body

The tag’s optional body portion can be used to initialize any user configurable
properties of the bean. This lets us configure a bean specifically for this page or our
particular application. We will discuss bean initialization in detail later. For now, we’ll
look at beans that do not require any special initialization at the time they are created.

<jsp:useBean> in action
Let’s get into using the bean tags. Here’s an example of the <jsp:useBean> tag in
action.
<jsp:useBean id="myclock" class="com.manning.jsp.ClockBean"/>
<html>
<body>
There is a Bean hiding in this page!
</body>
</html>
We’ve told the page that we will be using a bean that is defined in the Java class file
ClockBean in the com.manning.jsp package and we’ve named the bean myclock
for use in the page. In practice we like to put all of our <jsp:useBean> tags at the
beginning of the HTML document, but syntactically it is valid to use the tag any-
where in the page. However, keep in mind that beans are only available to portions
of the page following the <jsp:useBeans tag in which they were defined. Portions
of the page before the <jsp:useBeans tag will have no reference to the bean, and
attempting to access the bean will cause an error.

The <jsp:useBeans> tag creates an instance of the bean and assigns its ID as
specified by the id attribute. When the new bean is created it performs any tasks or

146

CHAPTER 7
Using JSP components

data processing as designed by the bean’s author. For example, the ClockBean sets
its internal state to reflect the current time and date, while another bean might look
up information in a database. This is part of the normal Java instantiation process
and happens without any help from you. Once a bean has been given a name and
been made available to the page we can begin using its properties. Depending on
the bean design, the properties may simply provide information such as the time of
day or the name of the current user, or they might also execute complex transac-
tions or look up information in a database. Whichever the case, the results are acces-
sible through the bean’s properties.

It is important to understand the difference between a bean’s class and its
instance. The bean’s class controls what type of bean will be created, its properties,
and capabilities. It is used like an object template to create a unique instance of the bean
with each call of the <jsp:useBeans> tag. For example, consider the following tags:
<jsp:useBean id="clockl" class="com.manning.jsp.ClockBean" />
<jsp:useBean id="clock2" class="com.manning.jsp.ClockBean" />
This creates two independent, that is, completely separate, beans with their own
names: clockl and clock2. They are instances of the same class, but any changes
made to one bean will have no effect on the other. Later in this chapter we will talk
about how other attributes of the <jsp:useBean> tag can allow a bean to be reused
between visits to a single page or across multiple pages throughout the site. In the
examples above, our beans are there, but we aren’t actually using them to do any-
thing. The next bean tag, <jsp:getProperty> allows us to retrieve the information
stored inside the bean.

Accessing bean properties with <jsp:getProperty>

The primary way to access a bean’s properties in JSP is through the <jsp:getProp-
erty> tag. Unlike the <jsp:useBean> tag which performs some work behind the
scenes but doesn’t produce any output, the <jsp:getPropertys tag actually pro-
duces content that we can see in the HTML generated by the page. The <jsp:get-
Property> tag is empty with no body element and expects two attributes, name and
property. Its syntax is:

<jsp:getProperty name="bean name" property="property name"/>

The name attribute specifies the bean we are evaluating, and should correspond to
the name we selected for the bean in the <jsp:useBeans tag’s id attribute. Don’t
forget that the <jsp:useBeans> tag refers to the bean with the id attribute, and that
other tags refer to the bean through a name attribute. It is a JSP convention that the

JSP bean tags 147

id attribute is used to define a new object, while the name attribute is used to refer-
ence an existing object. Be careful, it can be easy to confuse the two.

In the resulting HTML that is displayed at run time, the tag is replaced with the
value of the property of the bean you request. Of course, since we are creating an
HTML document, the property is first converted into text by the JSP container. This
tag is very easy to use. Let’s look at the clockBean example again, but this time
we’ll use the <jsp:getPropertys tag to ask the bean to tell us what time it is:
<jsp:useBean id="myclock" class="com.manning.jsp.ClockBean"/>
<html>
<body>
The Bean says that the time is now:
<jsp:getProperty name="myclock" property="time"/>
</body>
</html>

This should display HTML that looks something like:

<html>

<body>

The Bean says that the time is now: 12:33 pm

</body>

</html>

You’ll use this tag a lot, as it’s the key to component-based dynamic output with
JSP. You can use as many <jsp:getProperty> tags in your page as you need. You
can intersperse them with HTML to not only dynamically generate single values and
blocks of text, but to control attributes of the HTML as well. It is perfectly legal to
nest JSP tags inside HTML attributes. A bean’s property could be used to control
the page’s background color, the width of a table, or the source of an image. For
example, a bean reflecting a standardized corporate style might have a property that
exposes the URL location of the latest version of the corporate logo and the corpo-
rate color scheme. We can display this image in our HTML as shown next without
hard coding the URL value in each page.

<jsp:useBean id="style" class="beans.CorporateStyleBean"/>

<html>

<body bgcolor="<jsp:getProperty name="style" property="color"/>">

<center>

<img src="<jsp:getProperty name="style" property="logo"/>">

Welcome to Big Corp!

</centers>

</body>

</html>

This would generate HTML like this:

148

CHAPTER 7
Using JSP components

<html>

<body bgcolor="pink"s>

<center>

Welcome to Big Corp!

</center>
</body>
</html>

If the logo changes next week when the company replaces the corporate branding
director, or is acquired, all of your pages will instantly reflect the new value built
into the CorporatestyleBean. Another advantage here is that application pro-
grammers might be relying on the same bean to brand their interfaces, and the
change would be reflected there as well.

TIP

According to the specifications, white space in a document is not significant
to the JSP parser, but should be preserved by the JSP processor. In some im-
plementations that we have encountered, however, the parser does not prop-
erly preserve white space characters between JSP bean tags when no other
(non-white space) characters are present. For example, you would expect the
following JSP code to display something like “Firstname Lastname”, but in-
stead you might get “FirstnameLastname”:

<jsp:getProperty name="user" property="firstName"/>
<jsp:getProperty name="user" property="lastName"/>

This might happen because the JSP parser ignored the newline, which would
normally be treated as a white space character. If this happens, adding blank
lines probably won’t help as the JSP parser would simply ignore them too, as-
suming that there was nothing relevant between the two bean tags.

If your JSP container suffers from this annoyance, you can work around it by
placing meaningful, but empty content, such as an HTML comment, which
should force it to preserve the newline character in the page output.

<jsp:getProperty name="user" property="firstName"/>
<!-- insert a space -->
<jsp:getProperty name="user" property="lastName"/>

The <jsp:setProperty> tag

We use <jsp:setPropertys> to modify the properties of beans. The <jsp:setProp-
ertys> tag can be used anywhere within the page to modity a bean’s properties,
provided that the property has been made writable by the bean developer. We mod-
ity property values of a bean either to control specifics of the bean’s operation or

JSP bean tags 149

access its services. The exact behavior of changing a property’s value is bean spe-
cific. The bean’s author might, for example, provide a query property that specifies
a database query whose results are reflected in other properties. In that case you
might call <jsp:setPropertys several times in the page, reading the results proper-
ties again and again, since they would return new values after each change to the
query property.

Most service beans will require some amount of run-time configuration to be
useful, because they depend on user-configurable properties that control some
aspect of their behavior. This allows the same bean to be used over and over again
to encapsulate different sets of information. For example, if a developer needed a
bean to provide information about a registered user it would not be necessary to
create a different type of bean for each user—BobBean, SueBean, JoeBean, and so
forth. The developer would instead design the bean’s properties to abstractly refer
to properties of any user, and then make one of the bean’s properties control which
user’s information is stored in the bean

The <jsp:setpbropertys> tag is relatively straightforward. It requires three
attributes: name, property, and value. Just as in the <jsp:getProperty> tag, the
name attribute specifies the bean you are working with; the property attribute spec-
ifies which of the bean’s properties you wish to set; the value attribute is text to
which you want to set the property.

<jsp:setProperty name="bean name" property="property name"
value="property value"/>

The <jsp:setProperty> tag can be used anywhere inside the JSP document after
the bean has been defined with the <jsp:useBeans tag. At run time JSP evaluates
the tags in a page in the order they were defined, from top to bottom. Any property
values that you set will only affect tags in the page that follow the <jsp:setProp-
erty> tag. The value attribute can be specified as text or calculated at run time
with JSP expressions. For example, here are a couple of ways that we can set the
days since a user’s last visit by setting the value of a property. Both examples are
functionally equivalent, they set the daysLeft property to a value of 30.

<jsp:setProperty name="user" property="daysLeft" value="30"/>
<jsp:setProperty name="user" property="daysLeft" value="<%= 15 * 2 %>"/>

Indexed properties

As we mentioned earlier, indexed properties contain a whole collection of values for
the property. To access a value, you must pass the bean an index to indicate which
value you are interested in. The standard JSP bean tags cannot deal with indexed
properties; they can only be accessed through JSP scriptlets, expressions, and

150

7.3.3

CHAPTER 7
Using JSP components

custom tags. For example, let’s look at WeatherBean’s forecasts property, which
holds five string values, a forecast for each of the next five days. To view tomor-
row’s forecast we must specity the first element, which is referenced in array style
notation as element o, the next day’s is element 1, and so forth. You access an
indexed property through a JSP scriptlet or expression simply by calling the method
behind the property and passing it an index value. To read from an indexed prop-
erty, prefix it with the word get; to write to it use the prefix set. (We’ll explain how
properties are mapped to method names in detail in chapter 8.) To read from the
forecasts property we would call the method getForecasts (). For example:
Tomorrow’s Forecast: <%= weather.getForecasts(0) %>

The Rest of the Week

<% for (int index=1; index < 5; index++) { %>

<%= weather.getForecasts(index) %> (maybe)

<% } %>

In the above example we use JSP scriptlets and expressions to access the indexed
forecasts property of our WeatherBean, which has been loaded into the page with
an id of weather. To display the forecast for tomorrow, we use a JSP expression to
get the first element of the forecast’s property by calling its access method, get-
Forecasts (), with an argument of 0. We then use a scriptlet to loop through ele-
ments 1, 2, 3, and 4 to display a list of the forecasts for the rest of the week.

Beans with indexed properties can be designed to work more easily with JSPs so
that the JSP developer doesn’t have to resort to scriptlets in order to access them. A
bean can include a convenience property that allows you to treat an indexed prop-
erty as a single string value by separating each value with a comma or other delimiter.

Initializing beans

When a bean is first created it can be initialized by setting the value of its config-
urable properties. This initialization happens only the first time the bean is created.
By default, this initialization phase will take place each time the page is accessed,
since a bean is being created for each request. As we will see later when we discuss
the bean life cycle, beans can also be stored in and retrieved from the environment
of the web server, in which case they will not need to be reinitialized.

When a bean is first created it may be necessary to initialize it by setting the
value of any properties that control its operation before we attempt to read any
bean properties. We could simply use the <jsp:setpProperty> tag in the page, but
as we will learn later on, it is possible for beans to exist beyond the scope of a single

JSP bean tags 151

page request, and thus it becomes important to define a separate block of initializa-
tion code for the bean.

Bean configuration
The body tag version of the <jsp:useBean> tag allows you to configure the bean
before using it by setting any necessary properties with the <jsp:setpPropertys
tag. This form of the <jsp:useBean> has both start and end tags enclosing a body
area as follows:
<jsp:useBean id="myBean" class="com.manning.jsp.MyBean">
<%-- This is the body area --%>
</jsp:useBean>
Any commands inside the body are processed immediately after the bean is instanti-
ated and before it is made available to the rest of the page. For example:
<jsp:useBean id="clock" class="com.manning.jsp.ClockBean">

<jsp:setProperty name="clock" property="timezone" value="CST"/>
</jsp:useBean>
You can think of the <jsp:useBeans> tag’s body elements as a run-once configura-
tion phase. It is a useful way to configure the bean with page-specific configuration
data or to prepare the bean for use later in the page. You can even set properties of
other beans, as long as they have been created earlier in the page.

The body of the <jsp:useBean> tag can also contain JSP scriptlets and arbitrary
HTML markup. This HTML will be displayed as part of the page only if the bean
must be instantiated. (Be sure that you place such text after your opening HTML
tag!) If the bean already exists in the environment, then subsequent page requests
will not display this initialization HTML. For example:
<html>
<body>
<jsp:useBean id="clock" class="com.manning.jsp.ClockBean">

The ClockBean is initializing...
</jsp:useBean>
The main page follows..

</body>
</html>

Initializing beans from the request

A key feature of the <jsp:setProperty> tag is its ability to set a bean’s properties
dynamically at run time using information retrieved from the page request. This
allows us to dynamically configure our beans based on user input or other events by
embedding the configuration information into the page request itself. The request

152

CHAPTER 7
Using JSP components

information typically comes from an HTML form, or from request parameters hard
coded into the URL. It can also be populated with values—and even entire beans—
from a servlet. HTML forms provide a natural way to get input from users, fitting
well into the name /value pairs associated with JavaBean properties. Like a CGI pro-
gram, a JSP page can be used as a form handler by specitying its URL in the form
tag’s action attribute. Any data in the form will be accessible to the JSP page and
can be used to provide information to the bean.

Example: a compound interest calculator

Listing 7.1 shows how to build a simple application that can calculate the value of
compounded interest for an investment. We’ll first create an HTML page with a
form that will collect the necessary information to perform our calculation:

Listing 7.1 Compoundinterest.htm

<html>

<body>

<form action="CompoundInterestResults.jsp">

Principal: <input type="text" name="principal"s>
Interest Rate: <input type="text" name="interestRate">
Years: <input type="text" name="years"s>

<input type="submit" value="Calculate Future Value'">
</form>

</body>

</html>

|

We can then create a handler for our form called compoundInterestResults.jsp,
which will use the values specified in the form fields to configure a bean that can
calculate compounded interest. We’ll actually create this bean in the next chapter,
but for now let’s concentrate on using this bean as a service for our page. Let’s see
the CompoundInterestBean’s property sheet, shown in table 7.3.

Table 7.3 CompoundInterestBean property sheet

Name Access Java Type Example
principal read/write double 100.50
interestRate read/write double .10
years read/write int 10
futurevalue read-only String 155.21

JSP bean tags 153

The futurevalue property is linked to the other properties. Its value is calculated
using the values of the principal, interestRate, and years properties. To use
this bean we must therefore first set the values of these three properties, then read
the results from the futurevalue property. Let’s look at the JSP that will be the
form’s handler. First we must create a reference to the CompoundInterestBean.
<jsp:useBean id="calculator"

class="com.taglib.wdjsp.components.CompoundInterestBean"/>
<jsp:useBean id="calculator" class="com.manning.jsp.CompoundInterestBean"/>

In the body of our <jsp:useBeans> tag we need to map each of the bean’s configu-
ration properties to the appropriate data from the form field. The <jsp:setProp-
erty> tag looks for an incoming request parameter matching the value specified in
the param attribute of the tag. If it finds one, it tells the bean to set the correspond-
ing property, specified via the property attribute, to that value, performing any
necessary type conversion. We’ll add the following three lines to the body of our
<jsp:useBean> tag:

<jsp:setProperty name="calculator" property="principal" param="principal"/>
<jsp:setProperty name="calculator" property="interestRate"

param="interestRate"/>
<jsp:setProperty name="calculator" property="years" param="years"/>

The param attribute of the <jsp:setPropertys> tag is the equivalent of the JSP
Scriptlet <% request.getParameter (“something”) %>. So, the above block of code
is functionally equivalent to the following, which uses scriptlets instead of the param
attribute to initialize the bean’s values:

<jsp:setProperty name="calculator" property="principal"

value='<%= request.getParameter ("principal") %>'/>
<jsp:setProperty name="calculator" property="interestRate"

value='<%= request.getParameter ("interestRate") %>'/>
<jsp:setProperty name="calculator" property="years"

value='<%= request.getParameter ("years") %>'/>

When the request comes in from the form, the bean’s properties will be set to the
torm values specified by the user. Since this is such a common way of configuring
beans in JSP, a shortcut has been provided. If a property name is the same as the
name of the parameter passed in through the form, we can omit the param
attribute. Therefore the body of our <jsp:useBean> tag could be simplified to:
<jsp:setProperty name="calculator" property="principal"/>

<jsp:setProperty name="calculator" property="interestRate"/>
<jsp:setProperty name="calculator" property="years"/>

154

CHAPTER 7
Using JSP components

When multiple form field names map directly to bean properties you can also use
the special wild card character “*~ in the place of a property name. Using a wild
card indicates that you wish to set the value of any bean property whose name cor-
responds to the name of a request parameter. The names must match exactly as
there is no way to map parameters to properties with different names when the wild
card is used. For each property of the bean, a matching request parameter is looked
for. Extra request parameters are ignored, though they can be accessed through
scriptlets and the implicit request object. You can, of course, issue additional
<jsp:setProperty> commands to pick up any request parameters whose names do
not map directly to bean properties. There is no way to determine or specify the
order in which the bean’s properties are changed. If there are interdependencies,
one property depending on another, you will want to explicitly set them by specify-
ing a <jsp:setProperty> tag for each one. If we are careful to match up all of the
torm field names with our bean’s property names, we can configure all of the bean’s
properties with a single statement. Using the wild card, our bean could be config-
ured with a single line, like this:

<jsp:setProperty name="calculator" property="*"/>

Now that the bean has been configured, we can read the results of the bean’s calcu-
lation in the futurevalue property. We can also verify the input by reading the val-
ues of the properties that we just configured.

If you invest $<jsp:getProperty name="calculator" property="principal"/>
for <jsp:getProperty name="calculator" property="years"/> years

at an interest rate of

<jsp:getProperty name="calculator" property="interestRate"/>%
compounding monthly, you will have

$<jsp:getProperty name="calculator" property="futureValue"/>

The output of our JSP form handler will produce results like this:

If you invest $1000 for 30 years at an interest rate of 15% compounding
monthly, you will have $87,541.99

The JSP page is shown in its entirety in listing 7.2.

Listing 7.2 CompoundinterestResults.jsp

<jsp:useBean id="calculator"
class="com.taglib.wdjsp.components.CompoundInterestBean"/>
<jsp:useBean id="calculator" class="CompoundInterestBean"/>
<jsp:setProperty name="calculator" property="principal"/>
<jsp:setProperty name="calculator" property="years"/>
<jsp:setProperty name="calculator" property="interestRate"/>

JSP bean tags 155

</jsp:useBean>

<html>

<body>

If you invest $<jsp:getProperty name="calculator" property="principal"/>
for <jsp:getProperty name="calculator" property="years"/> years

at an interest rate of

<jsp:getProperty name="calculator" property="interestRate"/>%
compounding monthly, you will have

$<jsp:getProperty name="calculator" property="futureValue"/>

</body>
</html>
|

JSP does not care if you are using GET or POST requests for form submission. If
desired, you can also use hidden form elements to add configuration information to
a form without requiring the user to enter it. You can also encode directives into the
request URL directly by following standard URL encoding conventions. For exam-
ple the following URL will calculate interest for us, no form needed:

http://host/InterestCalculator.jsp?interestRate=0.10&years=15&principal=1000

The properties in the URL are exactly the same as if they came from a form using
the GET method of data delivery. You will need to escape any special characters of
course, but you will not need to decode them in the JSP, because the JSP container
handles this automatically. A word of warning on form values: do not rely on hid-
den fields for the storage of sensitive information like database passwords. Any form
data fields in your HTML, hidden or otherwise, can be viewed quite easily by any-
one viewing the source of the HTML page that contains the form data. It is all right
to store sensitive information inside your JSP however, provided it is part of a bean
tag or JSP scriptlets, because this data will be processed on the server and will never
be seen by the client code.

WARNING You cannot use request parameters that begin with jsp, jsp , java., jav-
ax., sun. and com.sun. They are reserved for the JSP container’s own use
and may conflict with request parameters assigned to the request by the con-
tainer itself. One example of a reserved request parameter is jsp pre-
compile, used to control compilation in JSP 1.2. You can read about this
precompilation feature in chapter 14.

Specifying default initialization values
If you are attempting to initialize a bean property from a request parameter that
does not exist or is defined as an empty value then the <jsp:setProperty>

156

CHAPTER 7
Using JSP components

command has no effect. The property does not get set to a null value, the
<jsp:setPropertys tag is just ignored. You can provide a default value for a prop-
erty by first setting it explicitly, then attempting to set it from the request as shown:

<jsp:setProperty name="calculator" property="interestRate" value="0.10"/>
<jsp:setProperty name="calculator" property="interestRate" param="interestRate"/>

In this example, the interestRate property is set to 10 percent, but can be over-
written by the value of the interestRate request parameter if it exists. This allows
you to supply appropriate default values for critical properties and to create flexible
pages that might be accessed through several means.

A security consideration

The wild card notation introduced earlier, <jsp:setProperty property="*">_1is a
very powerful shortcut for initializing bean properties from a request. It is particu-
larly convenient for mapping the input values from a form into a set of bean proper-
ties that perform some computation. Because it is very easy for a user to construct
his or her own requests, you need to be careful about using this shorthand notation
when the properties of the bean control sensitive information.

For example, consider an online banking application that represents account
information via a JavaBean class named AccountBean. The AccountBean class pro-
vides properties for accessing information about the account, such as accountNum-
ber and balance, as well as properties corresponding to account transactions, such
as withdrawalAmount and transferAmount. Given a form that allows a user to
specify a withdrawal amount, this form might then point to a JSP page such as the
tollowing that actually performs the transaction (as a side effect of setting the prop-
erty values) and reports the result:

<jsp:useBean id="myAccount" class="AccountBean">
<jsp:setProperty name="myAccount" property="*"/>

</jsp:useBean>

<html>

<heads><title>Cash Withdrawal</title></head>

<body>

<p>

$<jsp:getProperty name="myAccount" property="withdrawalAmount"/>

has been withdrawn from Account

#<jsp:getProperty name="myAccount" property="accountNumber"/>.

Your new balance is $<jsp:getProperty name="myAccount" property="balance"/>.

Thank you for patronizing us at the First Bank of Orange.

At first glance, the code seems benign. Assuming, however, that both getters and
setters are available for the bean’s properties, the potential is very real. If the URL
for this page were withdraw;jsp, consider the effect of a user submitting a request for:

7.3.4

JSP bean tags 157

http://server/account/withdraw. jsp?accountNumber=PH1L31N&balance=1000000

Normally, this page would be accessed as the target of a form, but there is nothing to
prevent a user from manually constructing his or her own request. No withdrawal
amount is specified in this URL, which presumably is not a problem, but the pres-
ence of a request parameter named balance seems a bit troublesome. When process-
ing the page’s <jsp:setProperty> tag, the JSP container will map this parameter to
the bean’s like-named balance property, and attempt to set it to $1,000,000!

One must hope the Java developer responsible for the AccountBean implemen-
tation will have put safeguards in place to prevent this sort of tampering, but the
bottom line is that care must be taken when using the <jsp:setProperty> wild
card. If the bean whose properties are to be set contains properties whose access
must be carefully controlled (such as a bank account balance), then the bean must
enforce that access control itself. Otherwise, the bean will be subject to the sort of
request spoofing described here if it is ever used in conjunction with a <jsp:set-
Property> tag employing the wildcard shortcut.

Controlling a bean’s scope

Up to now we’ve been talking about using beans as ways to encapsulate data or
behavior over the life span of a single page. Each time the page is requested, a new
instance of a bean is created and possibly modified via <jsp:setPropertys tags.
However JSP has a very powerful feature that allows you to specify that a bean
should continue to exist beyond the scope of a single page request. Such beans are
stored in the server environment and reused on multiple pages, or across multiple
requests for the same page. This allows us to create a bean once and then access it
throughout a user’s visit to our site. Any properties that we set will remain set
throughout the lifetime of the bean.

Bean accessibility and life span

A bean’s accessibility and life span are controlled through the scope attribute of the
<jsp:useBean> tag. The scope attribute can have a value of page, request, ses-
sion, or application. The accessibility of a bean determines which pages or parts
of a web application can access the bean and its properties. A bean’s life span deter-
mines how long a particular bean exists before it is no longer accessible to any page.
A summary of how each scope value affects the accessibility and life span of a bean is
shown in table 7 4.

158

CHAPTER 7
Using JSP components

Table 7.4 Possible bean scopes

Scope Accessibility Life span
page current page only until page is displayed or control is for-
warded to a new page
request current page and any included or for- until the request has been completely pro-
warded pages cessed and the response has been sent

back to the user

session the current request and any subsequent life of the user’s session
request from the same browser

application the current and any future request that is | life of the application
part of the same web application

When a bean is created on the server for reuse between pages it is identified by the
name specified by the id attribute of its <jsp:useBeans> tag. Any time you attempt
to create a bean with the <jsp:useBeans tag, the server searches for an existing
instance of the bean with the same id as specified in the tag, in the scope specified
by the tag. If one is found that instance of the bean is used instead of creating one. If
any configuration commands have been specified in the body of the <jsp:useBean>
tag, they will be ignored because the bean has already been initialized. The syntax of
the scope attribute is shown below. A bean can have only one scope value. You can-
not combine them in any fashion; they are by definition mutually exclusive.

<jsp:useBean id="beanName" class="class"
scope="page|request |session|application"/>

Page beans

If you do not specify a scope for a bean at the time it is created through the
<jsp:useBeans tag, it is assigned the default scope value of page. A bean with a
page-level scope is the least accessible and shortest lived of all JSP beans. Each time
the page is requested, either from a new visitor or a return visitor, an instance of the
bean is created. If there are any initialization tags or scriptlets in the body of the
<jsp:useBean> tag, these will be executed each time.

Essentially, beans with a page-level scope are transient—they are not persistent
between requests. For that matter, such beans are not accessible outside of the page
itself. If you use the <jsp:includes> or <jsp:forwards tags, any beans with only
page-level scope will not be available within the new or included page. If a page ref-
erenced by one of these tags contains <jsp:useBean> tags specifying a bean with
the same id as a bean created on the parent page, they will ignore the original bean
because it is out of scope, and will be forced to create their own new instance of the

JSP bean tags 159

bean instead. Since the default scope of the <jsp:useBeans tag is page-level, there
is no difference between these two tags:

<jsp:useBean id="beanl" class="com.manning.jsp.ClockBean"/>
<jsp:useBean id="bean2" class="com.manning.jsp.ClockBean scope="page"/>

If a bean does not need to persist between requests, or its information is of no use
after the request has been completed, it’s probably a good candidate for page-level
scope. For example, if our ClockBean is initialized to the current time and date the
first time it is created then it probably doesn’t do any good to keep it around for
very long. If you are using the <jsp:include> or <jsp:forwards> tags however,
you may need to set the scope of your bean to request-level so it can be accessed
from within these supplemental pages.

Request beans

If you specify a value of request for the scope attribute of a <jsp:useBeans> tag the
JSP container will attempt to retrieve the bean from the request itself. Since the
HTTP protocol does not provide a mechanism that would allow a web browser to
store anything other than simple name value pairs into the request, a bean can only
be stored in the request by a servlet or another JSP page on the local server. Beans
are stored in the request as request attributes, a feature added to Java Servlets in the
2.2 API which we cover in chapter 8. If the bean is not initially found in the request
it will be created and placed there.

The life span for a bean with request-level scope is essentially the same as one
with page scope except that the bean’s accessibility will be extended to pages refer-
enced with the <jsp:include> and <jsp:forwards tags. This gives the request
scope a dual purpose. First, it allows you to use Java servlets to create a bean and
forward it to your JSP page. Second, it gives you a way to extend the reach of bean
to pages that are included in or forwarded from the original page.

For example, consider the situation where you include a footer at the bottom of
each page via the <jsp:includes tag, and want to include page specific data. If you
place the data into the page scope however, it will not be accessible by the included
footer. The desired effect can be accomplished by storing your information in a
bean with request scope, assuring that if present it will be seen by the footer, as well
as the current page. In this example, we associate a contact name with each page,
which appears in the footer.
<jsp:useBean id="contact" class="jsp.ContactBean" scope="request">

<jsp:setProperty name="contact" property="name" value="Kris DeHart"/>

</jsp:useBean>
<html>

160

CHAPTER 7
Using JSP components

<body>

Welcome to our web site!

<jsp:include file="/footers/standardFooter.jsp" flush="true"/>

</body>

</html>

In this example, contact will be accessible from both the current page and stan-
dardFooter.jsp, which is an HTML excerpt which looks like this:

<HR>

To request changes to this page contact

<jsp:getProperty name="contact" property="name"/>

This example of building up a page by including smaller, component pages to build
a larger composite one is a useful technique for designing complex pages. It will be
discussed in detail in chapter 8.

Session beans

The session scope introduces component persistence to JSP, and is one of its most
powerful constructs. Unlike the request and page scopes, a bean with a scope
attribute value of session exists beyond the life of a single request because it is
placed into the user’s session object. Recall from our discussion of JSP session man-
agement in chapter 4 that the JSP container maintains a unique session object for
cach user visiting the site. Placing a bean into session scope stores it in this session
object, using the value of the id attribute as its identifier.

A bean does not have to do anything special to support such persistence; the JSP
container itself will handle the necessary state maintenance whenever you place a
bean into the session through the scope attribute. Once the bean is stored in a
user’s session it will be available to any other JSP on the server. If you call up a bean
with the <jsp:useBeans> tag that already exists in the session, the identifier that you
specity will refer to the existing instance of the bean, rather then creating a new one.

Since it is the JSP container that determines the length of time a session bean
exists, its lifetime might be minutes, hours, or days. Some JSP containers, like IBM’s
WebSphere, can write session data to disk when the server is shut down, and restore
the sessions upon restart. A container with such a capability effectively gives the
beans an infinite life span. Not all containers exhibit this behavior so it’s not cur-
rently a feature you can rely on. If you need to store information for an indefinite
length of time, or the session will be used to store critical data, you should consider
storing your information in a database instead. Typically, most containers will let
session data expire after it hasn’t been accessed for a few hours.

JSP bean tags 161

TIP If you have used the <%@ page session="false” %> to indicate that your
page does not require session support you will be unable to add beans to or
fetch them from the current session! The default value of the session attribute
is true, enabling session support. If you have no need for session support
however, you set this attribute to £alse to prevent the servlet container from
creating needless, wasteful session objects in memory. The session implicit
object will not be available to pages where the session attribute has been set
to false and will result in a run-time exception.

Sessions are useful for storing information collected through a user’s visit to the
site and for caching information that is frequently needed at the page level. Sessions
can be used to pass information from page to page without each one needing to
include the logic or additional processing time required to access information
stored in a database or external resource. A shopping cart is a good example of
session-oriented data. A user would like a shopping cart’s contents to be accessible
throughout the JSP application, so we create a ShoppingCartBean and store it in
the user’s session. At each page we can include a reference to the shopping cart,
allowing us to display a running total if we wish. There is an example of how to
build your own JSP shopping cart in chapter 14.

As a simple example, let’s look at how we would use a TimerBean to report to us
how long a user’s session has been active. We can use such a bean to log the person
out after a period of inactivity or to record time-sensitive visits like completing an
online survey or exam. Our TimerBean has one basic function: to report the differ-
ence between its creation time and the current time. This bean, which we’ll develop
in chapter 8, has the properties shown in its property sheet, table 7.5.

Table 7.5 TimerBean properties

Name Access Java Type Example
elapsedMillis read-only long 180000
elapsedSeconds read-only long 180
elapsedMinutes read-only long 3
startTime read/write long 857374234

The startTime property is intended to provide a way to affect the bean’s start time
by either setting it to a particular time (expressed in milliseconds since the epoch),
or the current time by passing it a zero or negative value.

162

CHAPTER 7
Using JSP components

Here’s a simple use of the bean that on the first load will start the clock, and dis-
play the elapsed time every subsequent load—providing of course that the time
between visits does not exceed the JSP container’s session timeout value.

<jsp:useBean id="timer" class="com.manning.jsp.TimerBean" scope="session"/>
<html>

<body>

Elapsed Time:

<jsp:getProperty name="timer" property="elapsedMinutes"/> minutes

</body>

</html>

If we wanted to add this functionality to a whole series of pages, we could include
the appropriate bean tags in their own file, which we then call with the
<jsp:include> tag. This example, taken from a web-based quiz application, uses
the TimerBean through an included file to display the elapsed time in the footer of
each page:

<html>

<body>

<form action="/servlet/processQuestions/6">

Question 6

What is the airspeed velocity of an unlaiden European swallow?

 <input type="text" name="answer">

 <input type="submit" value="Submit Answer"s>

</form>

<jsp:include page="/footers/ElapsedTimeFooter.html" flush="true"/>
</body>

</html>

Here are the contents of the ElapsedTimedFooter.html file:

<jsp:useBean id="timer" class="com.manning.jsp.TimerBean" scope="session"/>
<hr>

Remember, speed is a factor in this exam!

Time Used: <jsp:getProperty name="timer" property="elapsedSeconds"/> seconds
We can even have several different instances of TimerBean running at once, as long
as they have different identifiers. It is the id attribute of the <jsp:useBeans> tag
that is important in distinguishing between different instances of a bean, whether
referencing it from within the page or searching for it in the session.

JSP bean tags 163

TIP The default lifetime of a session is determined by the JSP container (or
more accurately, the servlet container). Beginning with the Servlet API 2.2,
the HttpSession interfaces’s getMaxInactiveInterval () and setMax-
InactiveInterval () methods can be used to view or set the timeout
variables. The getLastAccessedTime () method of this interface can tell
you how long it has been since the data in the session was last accessed.

Application beans

A bean with a scope value of application has an even broader life cycle and further
reaching availability than a session bean. Beans with application scope are associ-
ated with a given JSP application on the server. A JSP application is a collection of
JSP pages, HTML pages, images, applets, and other resources that are bundled
together under a particular URL hierarchy. Application beans exist throughout the
life of the JSP container itself, meaning that they are not reclaimed until the server is
shut down—they do not expire after a few hours or days. Unlike session beans that
are available only to subsequent requests from a given user, application beans are
shared by all users of the application with which they are associated. Any JSP page
that is part of an application can access application beans created by other pages
within that application. We will explain how to create the packaged JSP applications
themselves in chapter 14.

The application scope is used to store information that is useful throughout the
application and not specific to the individual page requesting access to the bean.
Once a bean is placed into application scope it will be used by pages throughout the
site. If the bean requires any configuration information it must be page indepen-
dent. If you expect configuration information to change between page requests or
between users, it is probably not a good candidate for application scope.

When a bean is stored in application scope there is only one instance of the bean
per server. You should be very cautious about changing an application bean’s prop-
erty once it has been stored in the application because any changes you make to the
properties will instantly affect all of the JSP pages which reference the bean.

Another good use of the application scope is the ability to cache application
information that would be too computationally expensive to generate for each indi-
vidual page request. For example, say that all of the pages of your online catalog
needed access to a table of shipping rates. This information can be encapsulated
into a bean and placed into the application scope. This would mean that the data
would have to be collected from the database only once, conserving not only data-
base access time but server memory as well. In each page you simply reference the

164

CHAPTER 7
Using JSP components

bean as normal, if it has not yet been instantiated and placed into the application,
the server will handle it:

<jsp:useBean id="ship" class="com.manning.ShipRateBean" scope="application"/>
<html>

<body>

Current shipping charges are:

<jsp:getProperty name="ship" property="baseCharge"/>

per shipment plus

<jsp:getProperty name="ship" property="perItemCharge"/>

per each item shipped.

</body>

</html>

If the bean requires any configuration you should use the body of the <jsp:use-
Bean> tag to set your initial property values. Since you would have to do this on
each and every page users might enter, you will probably want to seek alternatives
in this situation. First, you could use application-specific beans which require no
special configuration or whose constructor’s collect configuration information from
another source (such as a property file). Second, you could take steps to assure that
the necessary bean is placed into the application scope prior to the time any of the
dependent pages would need to access the bean. Or, you can serialize your precon-
figured beans oft to disk, and restore them as needed.

Scope and the type attribute

The type attribute of the <jsp:useBean> tag is generally only used when dealing
with beans that are expected to be in scope and that are subclasses of some higher
base class. If the bean exists in the current scope (say in the request or session), but
you have no way of knowing its exact type, you can simply specify its base class
through the type attribute. For example, a servlet or other JSP page placed a collec-
tion of objects into your session. You know that the objects are in some derivative
of Java’s Collection interface, but have no way of knowing if the other pages used
a List, a Set, a ListArray, or anything else. In this case you simply reference the
common Collection interface as the bean’s type; there is no need to specify a class
in this case. For example:

<jsp:useBean id="elements" type="java.util.Collection" scope="session"/>

Developing JSP components

This chapter covers

= The JavaBeans API
= Developing your own JSP components
= Mixing scriptlets and beans

165

166

8.1

8.1.1

CHAPTER 8
Developing JSP components

This chapter will help developers create their own JavaBeans for use as JSP compo-
nents, and teach web designers how they are implemented behind the scenes. For-
tunately, it is not necessary to understand all of the details of JavaBeans
development to work with JSP. As component architectures go, the interface
between JavaServer Pages and JavaBeans is quite simple, as we will see.

What makes a bean a bean?

So what makes a bean so special? A bean is simply a Java class that follows a set of
simple naming and design conventions outlined by the JavaBeans specification.
Beans are not required to extend a specific base class or implement a particular
interface. If a class follows these bean conventions, and you treat it like a bean—
then it is a bean. A particularly good thing about the bean conventions is that they
are rooted in sound programming practices that you may already be following to
some extent.

Bean conventions

The JavaBean conventions are what enable us to develop beans because they allow a
bean container to analyze a Java class file and interpret its methods as properties,
designating the class as a JavaBean. The conventions dictate rules for defining a
bean’s constructor and the methods that will define its properties.

The JavaBeans API

Following the conventions specified by the JavaBeans API allows the JSP container
to interact with beans at a programmatic level, even though the containing applica-
tion has no real understanding of what the bean does or how it works. For JSP we
are primarily concerned with the aspects of the API that dictate the method signa-
tures for a bean’s constructors and property access methods.

Beans are just objects

Like any other Java class, instances of bean classes are simply Java objects. As a result,
you always have the option of referencing beans and their methods directly through
Java code in other classes or through JSP scripting elements. Because they follow the
JavaBeans conventions, we can work with them a lot easier than by writing Java
code. Bean containers, such as a JSP container, can provide easy access to beans and
their properties. Following the JavaBeans API coding conventions, as we will see,
means creating methods that control access to each property we wish to define for
our bean. Beans can also have regular methods like any other Java object. However,

8.1.2

What makes o bean a bean? 167

JSP developers will have to use scriptlets, expressions, or custom tags to access them
since a bean container can manipulate a bean only through its properties.

Class naming conventions

You might have noticed that in most of our examples bean classes often include the
word bean in their name, such as UserBean, AlarmClockBean, DataAccessBean,
and so forth. While this is a common approach that lets other developers immedi-
ately understand the intended role of the class, it is not a requirement for a bean to
be used inside a JSP page or any other bean container. Beans follow the same class-
naming rules as other Java classes: they must start with an alphabetic character, con-
tain only alphanumeric and underscore characters, and be case sensitive. Addition-
ally, like other Java classes it is common, but not required, to start the name of a
bean class with a capital letter.

The magic of introspection

How can the JSP container interact with any bean object without the benefit of a
common interface or base class to fall back on? Java manages this little miracle
through a process called ntrospection that allows a class to expose its methods and
capabilities on request. The introspection process happens at run time, and is
controlled by the bean container. It is introspection that allows us to rely on con-
ventions to establish properties.

Introspection occurs through a mechanism known as 7¢flection, which allows the
bean container to examine any class at run time to determine its method signatures.
The bean container determines what properties a bean supports by analyzing its
public methods for the presence of methods that meet criteria defined by the Java-
Beans API. For a property to exist, its bean class must define an access method to
return the value of the property, change the value of the property, or both. It is the
presence of these specially named access methods alone that determine the proper-
ties of a bean class, as we will soon see.

The bean constructor

The first rule of JSP bean building is that you must implement a constructor that
takes no arguments. It is this constructor that the JSP container will use to instanti-
ate your bean through the <jsp:useBean> tag. Every Java class has a constructor
method that is used to create instances of the class. If a class does not explicitly
specify any constructors, then a default zero-argument constructor is assumed.
Because of this default constructor rule the following Java class is perfectly valid,
and technically satisfies the bean conventions:

168

8.1.3

CHAPTER 8
Developing JSP components

public class DoNothingBean { }

This bean has no properties and can’t do or report anything useful, but it is a bean
nonetheless. We can create new instances of it, reference it from scriptlets, and con-
trol its scope. Here is a better example of a class suitable for bean usage, a bean
which knows the time. This class has a zero-argument constructor that records the
time of its instantiation:

package com.taglib.wdjsp.components;
import java.util.*;

public class CurrentTimeBean {
private int hours;
private int minutes;

public CurrentTimeBean() {
Calendar now = Calendar.getInstance() ;
this.hours = now.get (Calendar.HOUR_OF_DAY) ;
this.minutes = now.get (Calendar.MINUTE) ;

}
}
We’ve used the constructor to initialize the bean’s instance variables hours and
minutes to reflect the current time at instantiation. The constructor of a bean is the
appropriate place to initialize instance variables and prepare the instance of the class
for use. Of course to be useful within a JSP page we will need to define some prop-
erties for the bean and create the appropriate access methods to control them.

Defining a bean’s properties

As we’ve mentioned, a bean’s properties are defined simply by creating appropriate
access methods for them. Access methods are used either to retrieve a property’s
value or make changes to it. A method used to retrieve a property’s value is called a
getter method, while a method that modifies its value is called a sezzer method.
Together these methods are generally referred to as access methods—they provide
access to values stored in the bean’s properties.

To define properties for a bean simply create a public method with the name of
the property you wish to define, prefixed with the word get or set as appropriate.
Getter methods should return the appropriate data type, while the corresponding
setter method should be declared void and accept one argument of the appropriate
type. It is the get or set prefix that is Java’s clue that you are defining a property.
The signature for property access methods, then, is:

public void setPropertyName (PropertyType value) ;
public PropertyType getPropertyName () ;

What makes o bean a bean? 169

For example, to define a property called rank, which can be used to store text, and is
both readable and writable, we would need to create methods with these signatures:

public void setRank (String rank) ;
public String getRank () ;

Likewise, to create a property called age that stores numbers:

public void setAge(int age) ;
public int getAge() ;

NOTE Making your property access methods public is more than a good idea, it’s
the law! Exposing your bean’s access methods by declaring them public is
the only way that JSP pages will be able to call them. The JSP container will
not recognize properties without public access methods.

Conversely, if the actual data being reflected by the component’s properties
is stored in instance variables it should be purposely hidden from other class-
es. Such instance variables should be declared private or at least protect-
ed. This helps ensure that developers restrict their interaction with the class
to its access methods and not its internal workings. Otherwise, a change to
the implementation might negatively impact code dependent on the older
version of the component.

Let’s revisit our previous example and make it more useful. We will add a couple of
properties to our CurrentTimeBean called hours and minutes, that will allow us to
reference the current time in the page. These properties must meet the getter
method signatures defined by the JavaBeans design patterns. They therefore should
look like this:

public int getHours() ;

public int getMinutes() ;

In our constructor we store the current time’s hours and minutes into instance vari-
ables. We can have our properties reference these variables and return their value
where appropriate. The source for this bean is shown in listing 8.1.

Listing 8.1 CurrentTimeBean.java

package com.taglib.wdjsp.components;
import java.util.*;

public class CurrentTimeBean {
private int hours;

170

CHAPTER 8
Developing JSP components

private int minutes;

public CurrentTimeBean() {
Calendar now = Calendar.getInstance() ;
this.hours = now.get (Calendar.HOUR_OF_DAY) ;
this.minutes = now.get (Calendar.MINUTE) ;

}

public int getHours() {
return hours;

}

public int getMinutes()
return minutes;

}
-

That’s all there is to it. These two methods simply return the appropriate values as
stored in the instance variables. Since they meet the JavaBean rules for naming
access methods, we have just defined two properties that we can access through JSP
Bean tags. For example:

<jsp:useBean id="time" class="CurrentTimeBean"/>

<html><body>

It is now <jsp:getProperty name="time" property="minutes"/>

minutes past the hour.
</body></html>

Properties should not be confused with instance variables, even though instance
variables are often mapped directly to property names but properties of a bean are
not required to correspond directly with instance variables. A bean’s properties are
defined by the method names themselves, not the variables or implementation
behind them. This leaves the bean designer free to alter the inner workings of the
bean without altering the interface and collection of properties that you expose to
users of the bean.

As an example of dynamically generating property values, here is a bean that cre-
ates random numbers in its property access methods rather than simply returning a
copy of an instance variable. Its code is shown in listing 8.2.

Listing 8.2 DiceBean.java

package com.taglib.wdjsp.components;
import java.util.*;

public class DiceBean {
private Random rand;
public DiceBean() ({

What makes o bean a bean? 171

rand = new Random() ;

}

public int getDieRoll ()
// return a number between 1 and 6
return rand.nextInt (6) + 1;

}

public int getDiceRoll() {
// return a number between 2 and 12
return getDieRoll () + getDieRoll () ;

}

}
|

In this example, our dieRoll and diceRoll properties are not managed by instance
variables. Instead, we create a java.util.Random object in the constructor and call
its random number generator from our access methods to dynamically generate
property values. In fact, nowhere in the bean are any static values stored for these
properties—their values are recomputed each time the properties are requested.

You are not required to create both getter and setter methods for each property
you wish to provide for a bean. If you wish to make a property read-only then
define a getter method without providing a corresponding setter method. Con-
versely creating only a setter method specifies a write-only property. The latter
might be useful if the bean uses the property value internally to affect other proper-
ties but is not a property that you want clients manipulating directly.

Property name conventions

A common convention is that property names are mixed case, beginning with a
lowercase letter and uppercasing the first letter of each word in the property name.
For the properties firstName and lastName for example, the corresponding getter
methods would be getFirstName () and getLastName () . Note the case difference
between the property names and their access methods. Not to worry, the JSP con-
tainer is smart enough to convert the first letter to uppercase when constructing the
target getter method. If the first two or more letters of a property name are upper-
cased, for example URL, then the JSP container assumes that you really mean it, so its
corresponding access methods would be getURL () and setURL ().

TIP Naming Properties—One situation that often leads to confusing property
names is acronyms. For example consider a property representing an identi-
fication number. It could be getId or getID, making the bean property id
or ID. This leads to more confusion (and ugly method names) when you
combine acronyms with additional words using capatilization of their own.

172

CHAPTER 8
Developing JSP components

For example something like an accessor for an XML document, is that
getXMLDocument or getXmlDocument? Is the property name xmlDocu-
ment, XMLDocument, or XmlDocument? To keep down confusion and im-
prove consistency, you should only capitalize the first letter of acronyms.
Without this rule teams tend to end up with several variations for the same
basic property throughout their code base. It is first and foremost consis-
tent and predictable and also clearly deliniates multiple word property
names through capitalization. So a property method representing a Social
Security number is immediately understood to be getUserSsn with a prop-
erty name of userSsn. It may look funny, but you’ll be amazed how much
confusion it avoids.

8.1.4 Indexed properties

Bean properties are not limited to single values. Beans can also contain multivalued
properties. For example, you might have a property named contacts that is used to
store a list of objects of type Contact, containing phone and address information.
Such a property would be used in conjunction with scriptlets or a custom iteration
tag to step through the individual values. Each value must be of the same type; a
single indexed property cannot contain both string and integer elements, for example.

To define an indexed valued property you have two options. The first style is
creating an access method that returns the entire set of properties as a single array.
In this case, a JSP page author or iterative custom tag can determine the size of the
set and iterate through it. For example:

public PropertyTypel]l getProperty()

In the second option, you can access elements of the set by using an index value.
This allows you additional flexibility. For example you might want to access only
particular contacts from the collection.

public PropertyType getProperty(int index)

While not specifically required by JavaBean conventions, it is useful to implement
both styles for a multivalued property. It’s not much more work and it adds a good
deal more flexibility in using the bean.

To set multivalue properties there are setter method signatures analogous to the
getter method naming styles described earlier. The syntax for these methods is:

public void setProperty(int index, PropertyType value)
public void setProperty(PropertyTypel]l values)

What makes o bean a bean? 173

Another type of method commonly implemented and recognized by bean contain-
ers is the size () method that can be used to determine the size of an indexed prop-
erty. A typical implementation would be:

public int getPropertySize ()

This is another method that is not required but increases the flexibility of the design
to give page developers more options with which to work.

Example: a bean with indexed properties

In this example we will build a component that can perform statistical calculations
on a series of numbers. The numbers themselves are stored in a single, indexed
property. Other properties of the bean hold the value of statistical calculations like
the average or the sum. This StatBean’s source code is shown in listing 8.3:

Listing 8.3 StatBean.java

package com.taglib.wdjsp.components;
import java.util.*;

public class StatBean {
private double[] numbers;

public StatBean() ({
numbers = new double[2];
numbers [0] = 1;
numbers [1] = 2;

}

public double getAverage()
double sum = 0;
for (int i=0; i < numbers.length; i++)
sum += numbers[i];
return sum/numbers.length;

}

public double[] getNumbers() {
return numbers;

}

public double getNumbers (int index) {
return numbers [index] ;

}

public void setNumbers (double[] numbers) {
this.numbers = numbers;

}

public void setNumbers (int index, double value) {
numbers [index] = value;

174

CHAPTER 8
Developing JSP components

}

public int getNumbersSize()
return numbers.length;

}

}
|

Since the JSP bean tags deal exclusively with scalar properties, the only way to inter-
act with indexed properties such as these is through JSP scriptlets and expressions.
In this JSP page we’ll use a JSP scriptlet in the body of the <jsp:useBeans tag to
pass an array of integers to the bean’s numbers property. We’ll have to use a scriptlet
to display back the numbers themselves, but we can use a <jsp:getProperty> tag
to display the average. The page is shown in listing 8.4:

Listing 8.4 stats.jsp

<jsp:useBean id="stat" class="com.taglib.wdjsp.StatBean">
<%
double[] mynums = {100, 250, 150, 50, 450};
stat.setNumbers (mynums) ;
%>
</jsp:useBean>
<html>
<body>
The average of
<%
double[] numbers = stat.getNumbers();
for (int i=0; i < numbers.length; i++) {
if (i != numbers.length)
out.print (numbers[i] + ", ");
else
out.println(“" + numbers[il);
}
%>
is equal to
<jsp:getProperty name="stat" property="average"/>
</body>
</html>
|

The use of custom tags, a technique that we will discuss in chapters 18 and 19, can
greatly aid in working with indexed properties by eliminating the need for inline
code by encapsulating common functionality into simple tag elements. With cus-
tom tags, we could eliminate the need for Java code in this example. We can also
move this code inside the bean, which is what we’ll do for now.

What makes o bean a bean? 175

Accessing indexed values through JSP bean tags
We might also want to include a method that will enable us to pass in the array of
numbers through a standard bean tag. Since bean tags deal exclusively with single
values, we will have to perform the conversion ourselves in the property access
methods. We’ll create another pair of access methods that treat the array as a list of
numbers stored in a comma delimited string. To differentiate between these two
approaches, we will map the string versions of our new access methods to a new
property we will call numbersList. Note that even though we are using a different
property name, it is still modifying the same internal data, and will cause changes in
the average and numbers properties. (Another example of this technique can be
found in the Whois example of chapter 17.)
public void setNumbersList (String values) {

Vector n = new Vector() ;

StringTokenizer tok = new StringTokenizer (values, “,");

while (tok.hasMoreTokens())

n.addElement (tok.nextToken()) ;
numbers = new double[n.size()];
for (int 1=0; 1 < numbers.length; i++)
numbers [i] = Double.parseDouble ((String) n.elementAt(i)) ;

}

public String getNumbersList() {
String list = new String();
for (int i=0; i < numbers.length; i++) {

if (i != (numbers.length -1)
list += numbers[i] + “,";
else
list += “" + numbers[i];

}

return list;

}

Now we can access this bean through JSP tags alone, as shown in listing 8.5.

Listing 8.5 stats2.jsp

<jsp:useBean id="stat" class="com.taglib.wdjsp.components.StatBean">
<jsp:setProperty name="stat" property="numbersList" value="100,250,150,50,450" />

</jsp:useBean>

<html>

<body>

The average of <jsp:getProperty name="stat" property="numbersList" />

is equal to

<jsp:getProperty name="stat" property="average" />

</body>

</html>

176

8.1.5

CHAPTER 8
Developing JSP components

3 http: //slide/ShowStats.jsp - Microsoft Internet Explorer

| Ele Edt View Favoites Tooks Help |
j ¢ .. 0 B A QM3 ‘ B 9 @ .
Back Forward Stop Refresh Home Search Favortes History Mail Print Edit
| Address [&] htip://slide/ShowStats jsp >l @Go
, =
The average of 100, 250, 150, 50, 450 is equal to 200
-]
|&] Done [| |58 Localintianet 4

Figure 8.1 The ShowStat’s page in action
The resulting display is shown in figure 8.1.

Implementing bean properties as cursors

Another technique for exposing the indexed properties of beans is creating a cursor.
If you are familiar with JDBC’s rResultset class, or the cachedrowsSet class of
JDBC 2.0, then you can probably guess where we’re headed. The idea here is to
move the index inside the bean class as an instance variable, allowing us to access
cach indexed property though the <jsp:getPropertys> tags by simply iterating the
index. We provide a next () method which increments the index, returning false
when the index counter has gone past the end of the list. This greatly reduces the
amount of scriptlet code in the page, without introducing the complexity of custom
tags. An example of a page using this technique is shown in listing 8.6. The
PlanetBean referenced in the page is shown in listing 8.7 and the resulting display
is shown in figure 8.2.

Listing 8.6 planets.jsp

<html>

<body bgcolor="white">

<jsp:useBean id="planet" class="wdjsp.PlanetBean"/>

<table border="1">

<tr><th>Planet</th> <th>Number of Moons</th></tr>

<% while (planet.next()) { %>

<tr><tds><jsp:getProperty name="planet" property="name"/></td>

What makes o bean a bean? 177

<td align="center"><jsp:getProperty name="planet" property="moons"/></td></tr>
<% } %>
</table>
</body>
</html>

Listing 8.7 PlanetBean.java

package wdjsp;

public class PlanetBean {

private static final int numPlanets = 9;

private static final String[] names = {
"Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus",
"Neptune", "Pluto" };

private static final int[] moons =
{ o 0,1, 2, 16, 18, 20, 8, 1 };

private int index;

public PlanetBean() {
index = -1;

}

public void first () {

index = -1;
1
public boolean next () {
index++;
if (index >= numPlanets) {
index--;

return false;
1
else {

return true;
1

}

public String getName () {
return names [index] ;

}

public int getMoons ()
return moons [index] ;
1

}
-

The while loop continues calling next (), incrementing the index, until it reaches
the end of the list. Each time through, the index is pointing at a different planet’s

178

8.1.6

CHAPTER 8
Developing JSP components

/2 http://192.168.88.20:8080 /w¢ jan =lol x|
File Edit View Favorites Tools Help ﬁ
Back ~ = - () [2] 4}| [ErersonalBar Qi Search »
Address I_@_http:_,l_'mz.163.88.zn:atﬁo.fwdisp,r_planets.js_p j @Go
|IﬂanetiDﬁnnhernfLJnuns
bdmtmy| 0
|Venus | 0
Earth | 1
[Mars | 2
|Jupiter | 16
Saturn | 18
|Ura.nus | 20
|Nepmne| 8
Pluto | 1
|
&] Done | [|9 nternet Y

Figure 8.2 Output of planet.jsp

data. We can then use our JSP bean tags to retrieve the corresponding properties.
Although we didn’t use it in this example, we provided a first () method to roll-
back the index to just prior to first element. This lets us rewind if we need to display
the list again. As this is a simple example, we’ve not implemented bounds checking
on the properties.

Boolean properties

For boolean properties that hold only true or false values, you can elect to use
another bean convention for getter methods. This convention is to prefix the prop-
erty name with the word is and return a boolean result. For example, consider
these method signatures:

public boolean isProperty () ;

public boolean isEnabled() ;

public boolean isAuthorized() ;

The container will automatically look for this form of method if it cannot find a
property access method matching the getter syntax discussed earlier. Setting the

8.1.7

What makes o bean a bean? 179

value of a boolean property is no different then the setter methods for other
properties.
public void setProperty (boolean b) ;

public void setEnabled(boolean D) ;
public void setAuthorized (boolean D) ;

JSP type conversion

A JSP component’s properties are not limited to string values, but it is important
to understand that all property values accessed through the <jsp:getProperty>
tag will be converted into a String. A getter method need not return a String
explicitly, however, as the JSP container will automatically convert the return value
into a string. For the Java primitive types, conversion is handled by the methods
shown in table 8.1

Table 8.1 Type conversions for <jsp:getProperty>

Property Type Conversion to String
boolean java.lang.Boolean.toString (boolean)
byte java.lang.Byte.toString (byte)
char java.lang.Character.toString (char)
double java.lang.Double.toString (double)
int java.lang.Integer.toString(int)
float java.lang.Float.toString(float)
long java.lang.Long.toString(long)
object calls the Object’s toString () method

Likewise, all property setter methods accessed with a <jsp:setpProperty> tag will
be automatically converted from a String to the appropriate native type by the JSP
container. This is accomplished via methods of Java’s wrapper classes as shown in
table 8.2.

Table 8.2 Type conversions for <jsp:setProperty>

Property Type Conversion from String
boolean Of Boolean java.lang.Boolean.valueOf (String)
byte or Byte java.lang.Byte.valueOf (String)
char or Character java.lang.Character.valueOf (String)
double oOr Double java.lang.Double.valueOf (String)

180

CHAPTER 8
Developing JSP components

Table 8.2 Type conversions for <jsp:setProperty> (continued)

Property Type Conversion from String
int or Integer java.lang.Integer.valueOf (String)
float or Float java.lang.Float.valueOf (String)
long Or Long java.lang.Long.valueOf (String)
object as if new String (String)

Properties are not restricted to primitive types. For objects, the JSP container will
invoke the object's tostring () method, which, unless you have overloaded it, will
probably not be very representative of the data stored in the object. For properties
holding objects rather than a String or native Java type you can set the property indi-
rectly, for example allowing the user to set the hours and minutes separately through
a pair of write-only properties and having a single read-only property called time.

Handling properties with null values

Property getter methods for Java’s primitive types such as int and double cannot
return a null value, which is only valid for methods that return objects. Sometimes
however, a property really is undefined. For example, if a property represents a
user’s age, and a call to the database reveals that we don’t know their age, what do
we return? While not that critical in many applications, it may be important to
some. In this case, we can simply establish a convention for this property, which says
if the age is a negative number then we don’t have any idea what the age is—it is
undefined. It is up to the JSP developer in this case to understand the convention
and react to such a situation accordingly.

Unfortunately, it’s not always that easy. How would we handle a temperature
reading, where negative numbers are perfectly valid? We could still pick an unrea-
sonable number, like - 999, as an indicator that this particular value is unknown.
However, such an approach is not only messy—requiring too much in-depth under-
standing by the JSP designer—it is also dangerous. Who knows what will be a rea-
sonable value for this application (or its decedents) ten years from now? A better
approach to this problem is to add a boolean property which can verify the legiti-
macy of the property in question. In that case, it doesn’t matter what the property
is actually set to. For example we would define both a getTempReading () and
isValidTempReading () methods.

What makes o bean a bean? 181

8.1.8 Configuring beans

Many times a bean will require run-time configuration by the page initializing it
before it can properly perform its tasks. Since we can’t pass information into the
bean’s constructor we have to use the bean’s properties to hold configuration infor-
mation. We do this by setting the appropriate property values immediately after the
container instantiates the bean in the body of the <jsp:useBean> tag or anywhere
in the page before the bean’s properties are accessed. It can be useful to set a flag in
your class to indicate whether or not an instance is in a useful state, toggling the flag
when all of the necessary properties have been set.

Even though the bean tags do not allow you to pass any arguments into a bean’s
constructor, you can still define constructors that take arguments. You will not
however, be able to call them through bean tags. You can only instantiate an object
requiring arguments in its constructor through a JSP scriptlet. For example:
<% Thermostat t = new Thermostat(78); %>

The thermostat was set at a temperature
of <%= t.getTemp() %> degrees.

One technique we have found useful is to provide a single method that handles all
configuration steps. This method can be called by your constructors that take argu-
ments, for use outside of bean tags, as well as by your property access methods once
all the necessary properties have been configured. In this example we’ll provide two
constructors for this Thermostat class, as well as an init () method which would
handle any necessary internal configuration. The zero argument constructor is pro-
vided for bean compatibility, calling the constructor which takes an initial tempera-
ture argument with a default value. Our init () method is then called through this
alternate constructor.

public class Thermostat {
private int temp;
private int maxTemp;
private int minTemp;
private int fuelType;

public Thermostat () {
// no argument constructor for Bean use
this (75) ;

}

public Thermostat (int temp)
this.temp = temp;
init () ;

}

public void setTemp (int temp) {
this.temp = temp;

182

8.2

8.2.1

CHAPTER 8
Developing JSP components

// initialize settings with this temp
init () ;

}

public int getTemp() {
return temp;

}

private void init () {
maxTemp = this.temp + 10;
minTemp = this.temp - 15;
if (maxTemp > 150)
fuelType = Fuels.DILITHIUM;
else
fuelType = Fuels.NATURALGAS;
}

}

Some examples

In this section we will present a number of more detailed examples of creating Java-
Beans for use in JSP. These examples are more in-depth than the ones we’ve been
looking at so far, and they will help give you the feel for developing more complex
components. For additional examples, see the beans we develop in chapters 9 and 11.

Example: a TimerBean

In the previous chapter we used a TimerBean to track the amount of time a user has
been active in the current browsing session. In the bean’s constructor we simply
need to record the current time, which we will use as our starting time, into an
instance variable:

private long start;

public TimerBean() {
start = System.currentTimeMillis() ;

}

The elapsedMillis property should return the number of milliseconds that has
elapsed since the session began. The first time we place a TimerBean into the session
with a <jsp:useBean> tag, the JSP container will create a new instance of the bean,
starting our timer. To calculate the elapsed time we simply compute the difference
between the current time and our starting time:

public long getElapsedMillis() {

long now = System.currentTimeMillis() ;
return now - start;

}

Some examples 183

The other property access methods are simply conversions applied to the elapsed
milliseconds. We have chosen to have our minutes and seconds properties return
whole numbers rather than floating points to simplify the display of properties
within the JSP page and eliminate the issues of formatting and precision. If the
application using our bean needs a finer degree of resolution, it can access the mil-
liseconds property and perform the conversions themselves. You are often better
off reducing component complexity by limiting the properties (and corresponding
methods) you provide with the component. We have found it helpful to focus on
the core functionality we are trying to provide, rather than attempt to address every
possible use of the component.

public long getElapsedSeconds () {
return (long)this.getElapsedMillis() / 1000;
}

public long getElapsedMinutes() {
return (long)this.getElapsedMillis() / 60000;
}

For convenience we will add a method to restart the timer by setting our start to
the current time. We’ll then make this method accessible through the JSP bean tags
by defining the necessary access methods for a startTime property and interpreting
an illegal argument to setStartTime () as a request to reset the timer.

public void reset () {
start = System.currentTimeMillis() ;
}

public long getStartTime() {
return start;
1

public void setStartTime(long time) {
if (time <= 0)
reset () ;
else
start = time;

}

The complete source for the bean is shown in listing 8.8.

Listing 8.8 TimerBean

package com.taglib.wdjsp.components;
public class TimerBean {
private long start;
public TimerBean()
start = System.currentTimeMillis() ;

184

8.2.2

CHAPTER 8
Developing JSP components

}

public long getElapsedMillis() ({
long now = System.currentTimeMillis() ;
return now - start;

}

public long getElapsedSeconds () {
return (long)this.getElapsedMillis() / 1000;

}

public long getElapsedMinutes () {
return (long)this.getElapsedMillis() / 60000;

}

public void reset () {
start = System.currentTimeMillis() ;

}

public long getStartTime()
return start;

}

public void setStartTime (long time) {
if (time <= 0)
reset () ;
else
start = time;

Here’s an example of a JSP page that pulls a TimerBean from the user’s session (or
instantiates a new Bean, if necessary) and resets the clock, using the approach
described in listing 8.8:

<jsp:useBean id="timer" class="TimerBean" scope="session"/>

<jsp:setProperty name="timer" property="startTime" value="-1"/>

<html><body>

Your online timer has been restarted.
</body></html>

A bean that calculates interest

As a more complex example let’s create a JSP component that knows how to calcu-
late the future value of money that is accumulating interest. Such a bean would be
useful for an application allowing the user to compare investments. The formula for
calculating the future value of money collecting compounding interest is:

FV = principal (1 + rate/compounding periods)” (years * compounding periods)

Some examples 185

This bean will require:

» The sum of money to be invested (the principal)

» The interest rate

» The number of years for the investment

« How often interest is compounded
This gives us the list of properties that the user must be able to modify. Once all of
these properties have been initialized, the bean should be able to calculate the
future value of our principal amount. In addition, we will need to have a property

to reflect the future value of the money after the calculation has been performed.
Table 8.3 defines the bean’s properties.

Table 8.3 Properties of a bean that calculates interest

Property Name Mode Type
principal read/write double
years read/write int
compounds read/write int
interestRate read/write double
futurevValue read-only double

Since users will probably want to display the input values in addition to configuring
them, they have been given both read and write access. The futurevalue property
is designated read-only because it will reflect the results of the calculation. Retriev-
ing the value of the futurevalue property uses the other properties to calculate our
results. (If you wanted to get fancy, you could write a bean that, given any four of
the properties, could calculate the remaining property value.) We’ll store our initial-
ization properties in instance variables:

public class CompoundInterestBean {
private double interestRate;
private int years;
private double principal;
private int compounds;

It is a good practice to make your instance variables private since we plan to define
access methods for them. This assures that all interaction with the class is restricted
to the access methods allowing us to modify the implementation without affecting
code that makes use of our class. Following the bean conventions, we must define a

186

CHAPTER 8
Developing JSP components

constructor that has no arguments. In our constructor we should set our initializa-
tion properties to some default values that will leave our bean property initialized.
We cannot calculate the future value without our initialization properties being set
to appropriate, legal values.

public CompoundInterestBean () {

this.compounds = 12;

this.interestRate = 8.0;

this.years = 1;

this.principal = 1000.0;
}
Since investments are generally compounded monthly (that is twelve times a year) it
might be handy to provide a shortcut that allows the bean user to not specify the
compounds property and instead use the default. It would also be nice if we could
provide other clients of the bean with a more robust constructor that would allow
them to do all their initialization through the constructor. This can be accom-
plished by creating a constructor that takes a full set of arguments and calling it
from the zero-argument constructor with the default values we have selected for
our bean’s properties:

public CompoundInterestBean () {
this (12, 8.0, 1, 1000.0);

}

public CompoundInterestBean (int compounds, double interestRate,

int years, double principal) {

this.compounds = compounds;

this.interestRate = interestRate;

this.years = years;

this.principal = principal;
}
This is a good compromise in the design. The bean is now useful to both traditional
Java developers as well as JSP authors. We must now define access methods for our
initialization properties. For each one we will verify that they have been passed valid
information. For example, money cannot be invested into the past, so the year
property’s value must be a positive number. Since the access methods are all similar,
we’ll just look at those for the interestRate property.
public void setInterestRate (double rate) {

if (rate > 0)

this.interestRate = rate;
else

this.interestRate 0;

Some examples 187

public double getInterestRate() {
return this.interestRate;

}

When we catch illegal arguments, such as negative interest rates, we have to decide
the appropriate way of handling it. We can pick a reasonable default value, as we did
here for example, or take a stricter approach and throw an exception.

We chose to initialize our properties with a set of legitimate, but hard-coded val-
ues to keep our bean in a legal state. Of course, this approach might not be appro-
priate in every situation. Another technique for handling uninitialized data is setting
up boolean flags for each property which has no legal value until it is initialized, and
tripping them as each setter method is called. Another method could then be used
to check the status of the flags to determine if the component had been initialized
yet or not. For example, we could have defined our futurevalue access method
like this:

public double getFuturevValue() {
if (isInitialized())
return principal * Math.pow(l + interestRate/compounds,
years * compounds) ;
else
throw new RuntimeException (“Bean requires configuration!") ;

}

private boolean isInitialized() {
return (compoundsSet && interestRateSet && yearsSet && principalSet) ;

}

In such a case, the bean is considered initialized if and only if the flags for each
property are set to true. We would initialize each flag to false in our constructor
and then define our setter methods as:

public void setYears(int years)
yearsSet = true;
if (years >=1)
this.years = years;
else
this.years = 1;

}

The complete code is shown in listing 8.9:

Listing 8.9 CompoundinterestBean.java

package com.taglib.wdjsp.components;
public class CompoundInterestBean {

188 CHAPTER 8
Developing JSP components

private double interestRate;
private int years;

private double principal;
private int compounds;

public CompoundInterestBean() {
this(12) ;

}

public CompoundInterestBean (int compounds) {
this.compounds = compounds;
this.interestRate = -1;
this.years = -1;
this.principal = -1;

}

public double getFutureValue() {
if ((compounds != -1) &&
(interestRate != -1) &&
(years != -1)
return principal * Math.pow(l+interestRate/compounds, compounds*12) ;
else
throw new RuntimeException (“Bean requires configuration!");

}

public void setInterestRate (double rate) {
if (rate > 0)
this.interestRate = rate;
else

this.interestRate 0;

}

public double getInterestRate()
return this.interestRate;

}

public void setYears (int years)
if (years >=1)
this.years = years;
else
this.years = 1;

}

public int getYears() {
return this.years;

}

public void setPrincipal (double principal) {
this.principal = principal;

}

public double getPrincipal()
return this.principal;

8.3

8.3.1

Bean interfaces 189

}

public static void main(Stringl] args) ({
CompoundInterestBean bean = new CompoundInterestBean() ;
bean.setInterestRate (0.06) ;
bean.setYears (30) ;
bean.setPrincipal (1200.00) ;
System.out .println (“FutureValue = “ + bean.getFutureValue()) ;

Bean interfaces

While not specifically required, there are a number of interfaces that you may
choose to implement with your beans to extend their functionality. We’ll cover
them briefly in this section.

The Beanlinfo interface

We learned about reflection earlier, but another way that a bean class can inform the
bean container about its properties is by providing an implementation of the Bean-
Info interface. The BeanInfo interface allows you to create a companion class for
your bean that defines its properties and their corresponding levels of access. It can
be used to adapt existing Java classes for bean use without changing their published
interface. It can also be used to hide what would normally be accessible properties
from your client, since sometimes Java’s standard reflection mechanism can reveal
more information than we would like.

To create a BeanInfo class use your bean’s class name with the suffix BeanInfo
and implement the java.beans.BeanInfo interface. This naming convention is
how the bean container locates the appropriate BeanInfo class for your bean. This
interface requires you to define methods that inform the container about your
bean’s properties. This explicit mapping eliminates the introspection step entirely.

There is also a java.beans.SimpleBeanInfo class that provides default, do-
nothing implementations of all of the required BeanInfo methods. This often pro-
vides a good starting point when designing a BeanInfo class for a JSP bean, because
many of the bean features designed for working with visual beans are irrelevant in
the context of JSP, and are ignored by the JSP container.

One area where the BeanInfo approach is particularly useful is in visual, or
WYSIWYG, JSP editors. JSP was designed to be machine-readable in order to sup-
port visual editors and development tools. By applying the BeanInfo interface to
existing Java classes, developers can construct their own JSP components for use in
such editors, even if the original component class does not follow the JavaBean

190

8.3.2

8.3.3

CHAPTER 8
Developing JSP components

conventions. Using BeanInfo classes you can designate which methods of an arbi-
trary class correspond to bean properties, for use with the <jsp:setpropety> and
<jsp:getProperty> tags.

The Serializable interface

One of the JavaBean requirements that JSP does not mandate is that beans should
implement the Serializable interface. This will allow an instance of the bean to
be serialized, turning it into a flat stream of binary data that can be stored to disk
for later reuse. When a bean is serialized to disk (or anywhere else for that matter),
its state is preserved such that its property values remained untouched. There are
several reasons why you might want to “freeze-dry” a bean for later use.

Some servers support indefinite, long-term session persistence by writing any
session data (including beans) to disk between server shutdowns. When the server
comes back up, the serialized data is restored. This same reasoning applies to servers
that support clustering in heavy traffic environments. Many of them use serializa-
tion to replicate session data among a group of web servers. If your beans do not
implement the serializable interface, the server will be unable to properly store
or transfer your beans (or other classes) in these situations.

Using a similar tactic, you might choose to store serialized copies of your beans
to disk, an LDAP server, or a database for later use. You could, for example, imple-
ment a user’s shopping cart as a bean, which you store in the database between visits.

If a bean requires particularly complicated configuration or setup it may be use-
ful to fully configure the beans’ properties as required, then serialize the configured
bean to disk. This snapshot of a bean can then be used anywhere you would nor-
mally be required to create and configure the bean by hand, including the
<jsp:useBean> tag via the beanName attribute.

The beanName attribute of the <jsp:useBean> tag is used to instantiate
serialized beans rather than creating new instances from a class file. If the bean
doesn’t exist in the scope, then the beanName attribute is passed on to
java.beans.Bean.instantiate (), which will instantiate the bean for the class
loader. It first assumes that the name corresponds to a serialized bean file (identi-
fied by the .ser extension) in which case it will bring it to life, but if it can’t find or
invoke the serialized bean it will fall back to instantiating a new bean from its class.

The HttpSessionBindingListener interface

Implementing the Java Servlet API’s HttpSessionBindingListener interface in
your JavaBean’s class will enable its instances to receive notification of session
events. The interface is quite simple, defining only two methods.

8.3.4

Bean interfaces 191

public void valueBound (HttpSessionBindingEvent event)
public void valueUnbound (HttpSessionBindingEvent event)

The valueBound () method is called when the bean is first bound (stored into) the
user’s session. In the case of JSP, this will typically happen right after a bean is
instantiated by a <jsp:useBeans tag that specifies a session scope, thus assigning
the bean to the user’s session.

The valueUnbound () method is called, as you would expect, when the object is
being removed from the session. There are several situations that could cause your
bean to be removed from the session. When the JSP container plans to expire a
user’s session due to inactivity, it is required to first remove each item from the ses-
sion, triggering the valueUnbound notification. The JSP container will automatically
recognize that the bean is implementing the HttpSessionBindingListener inter-
face, hence there is no need to register the bean with the container as a listener.
Alternatively, this event would be triggered if a servlet, scriptlet, or other Java code
specifically removed the bean from the session for some reason.

Each of these events is associated with an HttpSessionBindingEvent object,
which can be used to gain access to the session object. Implementing this interface
will allow you to react to session events by, for example, closing connections that
are no longer needed, logging transactions, or performing other maintenance activ-
ities. If you are implementing your own session persistence, such as saving a shop-
ping cart, this would be where you would move your data off to disk or database.

Other features of the Bean API

In addition to the access methods and constructor conventions that we have exam-
ined here, the JavaBeans Specification defines several other features. When writing
beans for use with JSP we do not generally need to concern ourselves with these
remaining elements of the specification because they are more oriented toward
visual beans, such as GUI components. While most of this extra functionality is not
reflected into the bean tags, it can be useful working with beans through JSP script-
lets or as part of a larger system. For clarity and for the sake of completeness we will
quickly point out these other features. For full details on these aspects of JavaBeans,
see the JavaBeans Specification or Manning’s The Awesome Power of Java Beans.

JavaBean event model

The JavaBeans API supports Java 1.1 style event handling, a feature intended prima-
rily for visual components. Events allow visual beans to communicate with one
another in a standard way, without each bean having to be too tightly coupled to

192

8.4

8.4.1

CHAPTER 8
Developing JSP components

other beans. However, JSP containers do not support the JavaBeans event model
directly. Any bean-to-bean communication is the responsibility of the bean designer.

Bound properties

A bean can be designed to generate events any time changes are made to its proper-
ties. This allows users of the bean to be notified of the changes and react accord-
ingly. If, for example, a bean contained information about the status of a radio
button on a user interface which was modified by one of the bean’s users, any other
users of the bean would be notified and could update their displays accordingly.

Constrained properties

Constrained properties are properties whose values must fall within specific limits.
For example a property representing a percentage value must be greater than or
equal to zero, and less than or equal to one hundred. The only difference between
the design patterns for setting a constrained versus an unconstrained property is
that it must declare that it throws the java.beans.PropertyVetoException.
Objects that want to support constrained properties must also implement methods
that allow other objects to register with the bean so that they can play a part in the
change approval process. Constrained property functionality is not directly imple-
mented through the bean tags, although beans can still take advantage of this func-
tionality internally. If a bean throws an exception in response to an illegal property
value, the normal JSP error handling will take place.

Mixing scriptlets and bean tags

Since JSP bean tags, scriptlets, and expressions eventually are translated into the
same single Java servlet class on the server, you can combine any of the elements.
This allows you to take advantage of component-centric design while not being
bound by the limits of the built-in tag commands. Using the <jsp:useBean> tag to
create objects puts them into the scope of the page, making them available to both
scriptlets and <jsp:getPropertys and <jsp:setPropertys tags.

Accessing beans through scriptiets

Since the <jsp:useBean> tag creates an object reference behind the scenes, you are
free to access that object through scriptlets and expressions, using the bean’s name
as the object identifier. For example, it is perfectly valid to do either of these snip-
pets, both of which produce the same results:

8.4.2

Mixing scriptlets and bean tags 193

<jsp:useBean id="stocks" class="StockMarketBean" scope="page"/>
The Dow is at <jsp:getProperty name="stocks" property="dow"/> points

or

<jsp:useBean id="stocks" class="StockMarketBean" scope="page"/>
The Dow is at <%= stocks.getDow() %> points

Calling bean properties through an expression rather than the somewhat lengthy
<jsp:getProperty> tag can be a handy shortcut if you aren’t afraid of a little Java
code in your page. A word of caution however! You can’t always assume that a
bean’s property returns a String or maps directly to the method you expect. It may
return a different type of data than you expect (which is all right if you are calling
the method in an expression), or a BeanInfo class may be redirecting you to a com-
pletely different method—one for which you may not even know the name.

Accessing scriptlet created objects

The reverse of this operation is not true. Objects created through scriptlets are not
guaranteed to be accessible through the bean tags, because there is no guarantee
that these objects will become part of the page context. Consider the following JSP
code for example, which is not valid in most JSP containers.

<html><body>

Auto-Shop 2000

<% Car car = (Car)request.getAttribute(“car"); %>

<% car.updateRecords(); %>

This car has <jsp:getProperty name="car" property="milage"/> miles on it..
</body></html>

In this example we have attempted to pull an object reference, car, out of the
request and use it in the page. However, the <jsp:getPropertys tag will not have
a reference to the object because it was not scoped into the page through a
<jsp:useBean> tag. The corrected code is:

<html><body>

Auto-Shop 2000

<jsp:useBean id="car" class="Car" scope="request"/>

<% car.updateRecords(); %>

This car has <jsp:getProperty name="car" property="milage"/> miles on it..
</body></html>

Notice that we can access the object through both scriptlets and JSP tags, allowing
us to call the updateRecords () method directly. We can even change the object ret-
erenced by the named identifier specified by <jsp:useBean>—it is the identifier
that’s important, not the actual object reference.

194

CHAPTER 8
Developing JSP components

Alternatively, you can scope the bean into the pagecontext directly using the
code:

pageContext.setAttribute ("car", car);

Handling indexed properties
This technique is particularly useful in handling indexed properties, which JSP
doesn’t provide any easier way to deal with (other than custom tags, as we’ll learn in
chapters 18 and 19). We apply the same principles as before, creating objects with
the <jsp:useBean> tag and referencing them through scriptlets and expressions.
For example, to loop through an indexed property we write code similar to that
which follows. The exact syntax will depend on your bean’s properties and associ-
ated methods. In this example, MusicCollectionBean contains an array of Album
objects, nested in its albums property. Each Album object in turn has a number of
bean properties. Note however, that we must declare the Album object reference
through a bean tag as a placeholder, or it will not be available to our page context
and therefore inaccessible through the bean tags.
<jsp:useBean id="music" class="MusicCollectionBean"/>
<jsp:useBean id="album" class="Album"/>
<%
Album[] albums = music.getAlbums () ;
for (int j=0; j < albums.length; j++) {

album = albums[j];
%>
Title: <jsp:getProperty name="album" property="title"/>

Artist: <jsp:getProperty name="album" property="artist"/>

Year: <jsp:getProperty name="album" property="year"/>

<% } %>
This code will loop through each of the albums in the array returned by the get-
Albums () method of MusicCollectionBean, assigning each to the variable album
in turn. We can then treat album as a bean, accessing it through the <jsp:getProp-
erty> tags. You can use this technique to create tables, lists, and other sequences of
indexed properties.

Other bean methods

Since beans are just objects, they may also have methods that are accessible through
JSP scripting elements. While it is desirable to create beans that can be used entirely
through the tags, sometimes it is useful to create beans with two levels of complex-
ity. These extra methods are not bean-related, but allow you to treat the bean as any
other Java object for more benefits or advanced functionality.

Mixing scriptlets and bean tags 195

Not all of your methods need to follow the bean conventions, although only
those methods that can be found by introspection will be made available through
the bean container. It is sometimes useful to provide basic functionality accessible
through the bean container, such as JSP tags, and more advanced functionality only
accessible through scriptlets or direct programmer intervention.

Removing a bean when done with it

At the end of a bean’s life span, which is determined by its scope, all references to
the bean will be removed and it will become eligible for garbage collection. Beans
in the page or request scopes are automatically reclaimed at the end of the HTTP
request, but session and application beans can live on. The life of a session bean is,
as discussed, dependent on the JSP container while the application scope is tied to
the life of the server. There are several situations where you might want to prema-
turely end the life of a bean. The first involves removing it from memory for perfor-
mance reasons. When you have no more use for the bean, especially one in session
or application scope, it’s a good idea to get rid of it. Eliminating unused bean
objects will improve the performance of your server-side applications by freeing as
many of the JVM’s resources as soon as possible.

Another reason you want to remove a bean is to eliminate it from the user’s ses-
sion for security reasons. A good example of this would be removing a user’s login
information from the session when the user has specifically advised that they are
logging oft. A typical approach to user authentication with JSP is to place the user’s
login credentials into the session following a successful login. The presence of these
credentials in the session satisfies the login requirements for future visits to pro-
tected pages until the session expires. For security reasons however it is desirable to
offer the visitor the ability to eliminate their login information from the session
when they have completed their visit. We can accomplish this by simply removing
their credentials from the session, returning them to their unauthenticated state.
The methods available to you are summarized in table 8.4.

Table 8.4 Discarding a used bean from various scopes

Scope Scriptlet Servlet
session session.removeAttribute (name) HttpSession.removeAttribute (name)
request/page pageContext .remove- ServletRequest.remove-
Attribute (name) Attribute (name)
application application.remove- ServletContext.remove-
Attribute (name) Attribute (name)

196

CHAPTER 8

Developing JSP components

The request bean

As discussed in previous chapters, JSP defines a number of implicit objects that
reflect information about the environment. The request object encapsulates infor-
mation about the request and has several properties that are accessible through the
bean tags. Like other beans, we can access the properties of the request objects
through <jsp:getProperty>. The id value assigned to the implicit request object
is, as you probably guessed, request. For example, we can display the remote user

name as follows:

<jsp:getProperty name="request" property="remoteUser"/>

Table 8.5 summarizes some of the more useful methods of the request object,
which can be exposed as properties to the bean tags.

Table 8.5 Properties of the request bean

Name Access Use

authType read Gets the authentication scheme of this request or null if
unknown. Same as the CGl variable AUTH_TYPE

method read Gets the HTTP method (for example, GET, POST, PUT) with
which this request was made. Same as the CGl variable
REQUEST METHOD

pathInfo read Gets any optional extra path information following the serviet
path of this request’s URI, but immediately preceding its query
string. Same as the CGl variable PATH INFO

pathTranslated read Gets any optional extra path information following the servlet
path of this request’s URI, but immediately preceding its query
string, and translates it to a real path. Same as the CGI vari-
able PATH TRANSLATED

queryString read Gets any query string that is part of the HTTP request URI
Same as the CGI variable QUERY STRING

remoteUser read Gets the name of the user making this request. The user name
is set with HTTP authentication. Whether the user name will
continue to be sent with each subsequent communication is
browser-dependent. Same as the CGl variable REMOTE_USER

requestURI read Gets the URI corresponding to the original request

characterEncoding read Gets the character set encoding for the input of this request

contentType read Gets the Internet media type of the request entity data, or null
if not known. Same as the CGI variable CONTENT TYPE

protocol read Gets the protocol and version of the request as a string of the

form <protocol>/<major version>.<minor version>. Same as
the CGl variable SERVER_PROTOCOL

Mixing scriptiets and bean tags 197

Table 8.5 Properties of the request bean (continued)

Name Access Use

remoteAddr read Gets the IP address of the agent that sent the request. Same
as the CGI variable REMOTE_ADDR

serverName read Gets the host name of the server that received the request.
Same as the CGI variable SERVER NAME

serverPort read Gets the port number on which this request was received.
Same as the CGI variable SERVER_PORT

scheme read Gets the scheme of the URL used in this request, for example
“http,” “https,” or “ftp”

remoteHost read Gets the fully qualified host name of the agent that sent the

request. Same as the CGl variable REMOTE_HOST

Working with databases

This chapter covers

The link between Java’s JDBC APl and JSP

Storing and retrieving JSP Beans with
an RDBMS system

Displaying database results with JSP
Maintaining persistent connections

198

9.1

JSP and JDBC 199

While long a bastion of large, well-funded enterprises, databases have found their
way into a much wider range of web sites in recent years. Along with their tradi-
tional role as back office data sources, most large-scale web sites employ databases
for at least some portion of the content. Ad management, users registration infor-
mation, community services, and contact lists are just some of the features com-
monly managed through a database. JSPs and relational databases make a good
combination. The relational database gives us the organizational capabilities and the
performance necessary to manage large amounts of dynamic data, while JSP gives us
a convenient way to present it. By combining the power of a relational database
with the flexibility of JSP for content presentation and front-end design you can
quickly develop rich, interactive web applications.

JSP and JDBC

Unlike other web scripting languages such as ColdFusion, Server Side JavaScript,
and PHP, JSP does not define its own set of tags for database access. Rather than
develop yet another mechanism for database access, the designers of JSP chose to
leverage Java’s powertful, popular, database API—JDBC.

When a JSP application needs to communicate with a database, it does so
through a vendor-provided driver class written to the JDBC API. Accessing a data-
base in JSP then is nothing news; it sticks to this tried and true workhorse from Sun.
In practice, as we’ll learn in chapter 10, we’ll often isolate database access inside a
servlet or a Bean, keeping the details hidden from the presentation aspects of the
JSP page. Both of these approaches are illustrated in figure 9.1

Learning JDBC is beyond the scope of this book, and a wealth of valuable infor-
mation already exists on the topic. If you aren’t familiar with Java’s JDBC API, a
number of online tutorials can be found on Sun’s JDBC web site, http://
java.sun.com/products/jdbc. Check online or at your favorite bookstore if you
need more information. In this chapter we’ll focus instead on the relationship
between JSP and JDBC.

NOTE The JDBC classes are part of the java.sgl package, which must be im-
ported into any Java class from which you wish to access JDBC, including
your JSP pages. Additional, optional extensions for the 2.0 version of the
JDBC API can be found in the javax.sqgl package, if it is installed on your
system. If your JDBC driver is not in your JSP container’s class path, you
will have to either import it into your page or refer to it through its fully
qualified class name.

200

9.1.1

CHAPTER 9
Working with databases

Request Request
JSP » > JSP
N Y
JDBC driver

Database access Database access handled

directly from by a servlet; results

a JSP page JDBC API passed to JSP page
Database

Figure 9.1 Database access options in JSP

JNDI and data sources

In ColdFusion and other template /scripting systems you access a database through
a single identifier that corresponds to a preconfigured database connection (or con-
nection pool) assigned by the system’s administrator. This allows you to eliminate
database connection information from your code, referring to your database
sources by a logical name such as EmployeeDB or SalesDatabase. The details of
connecting to the database are not exposed to your code. If a new driver class
becomes available, the database server moves, or the login information changes,
only the resource description needs to be reconfigured. Any components or code
referencing this named resource will not have to be touched.

JSP does not define its own database resource management system; instead you
can rely on JDBC 2.0’s Datasource interface and Java Naming and Directory Inter-
face (JNDI) technology for naming and location services. JNDI can be used to
shield your application code from the database details such as the driver class, the
username, password, and connection URI. To create a database connection with
JNDI, specify a resource name which corresponds to an entry in a database or nam-
ing service, and receive the information necessary to establish a connection with
your database. This shields your JSP code and supporting components from
changes to the database’s configuration. More information on using JNDI is avail-
able from Sun, at http://java.sun.com/products/jndi. Here’s an example of creat-
ing a connection from a data source defined in the JNDI registry:

9.1.2

JSP and JDBC 201

Context ctx = new InitialContext () ;

DataSource ds = (DataSource)ctx.lookup ("jdbc/SalesDB") ;

Connection con = ds.getConnection ("username", "password") ;

We can further improve upon this abstraction, and further simplify database access,
through custom tags, which use JNDI to allow simple access to named database
resources in a manner familiar to ColdFusion and other tag-style languages.

Prepared statements

Prepared statements allow us to develop a Structured Query Language (SQL) query
template that we can reuse to handle similar requests with different values between
each execution. Essentially we create the query, which can be any sort of SQL state-
ment, leaving any variable values undefined. We can then specify values for our
undefined elements before executing the query, and repeat as necessary. Prepared
statements are created from a Connection object, just like regular Statement
objects. In the SQL, replace any variable values with a question mark.

String query = "SELECT * FROM GAME_RECORDS WHERE SCORE > ? AND TEAM = ?";
PreparedStatement statement = connection.prepareStatement (query) ;

Before we can execute the statement we must specify a value for all of our missing
parameters. The Preparedstatement object supports a number of methods, each
tied to setting a value of a specific type—int, long, String, and so forth. Each
method takes two arguments, an index value indicating which missing parameter
you are specifying, and the value itself. The first parameter has an index value of 1
(not 0) so to specify a query that selects all high scores > 10,000 for the “Gold”
team we use the following statements to set the values and execute the query:

statement.setInt (1, 10000) ; // Score
statement.setString (2, "Gold"); // Team
ResultSet results = statement.executeQuery() ;

Once you have defined a prepared statement you can reuse it simply by changing
parameters, as needed. There is no need to create a new prepared statement
instance as long as the basic query is unchanged. So, we can execute several queries
without having to create a statement object. We can even share a single prepared
statement among an application’s components or a servlet’s users. When using pre-
pared statements, the RDBMS engine has to parse the SQL statement only once,
rather than again and again with each new request. This results in more efficient
database operations.

Not only is this more efficient in terms of database access, object creation, and
memory allocation but the resulting code is cleaner and more easily understood.

202

9.2

9.2.1

CHAPTER 9
Working with databases

Consider this example again, but this time the queries are not hard coded, but
come from a bean, userBean, which has been initialized from an input form.

statement.setInt (1, userBean.getScore()); // Score
statement.setString (2, userBean.getTeam()); // Team
ResultSet results = statement.execute() ;

The alternative is to build each SQL statement from strings, which can quickly get
confusing, especially with complex queries. Consider the following example again,
this time without the benefit of a prepared statement:

Statement statement = connection.getStatement () ;
String query = "SELECT * FROM GAME_RECORDS WHERE SCORE > " +
userBean.getScore() + " AND TEAM = ‘" +

userBean.getTeam() + "'";

ResultSet results = Statement.executeQuery (query) ;

Another, perhaps even more important, benefit of using prepared statements is evi-
denced here. When you insert a value into a prepared statement with one of its set-
ter methods you do not have to worry about proper quoting of strings, escaping of
special characters, and conversions of dates and other values into the proper format
for your particular database. This is particularly important for JSPs that are likely to
be collecting search terms input directly from users through form elements and are
particularly vulnerable to special characters and unpredictable input. Since each
database might have its own formatting peculiarities, especially for dates, using pre-
pared statements can help further distance your code from dealing with any one
particular database.

Database driven JSPs

There are a number of ways to develop database driven applications through JSP.
In this chapter, we’re concentrating on the database interaction itself, and less on
program architecture. JSP application design will be covered in chapter 10 and
again in chapter 11 which will feature a walk-through example of a database
driven JSP project.

Creating JSP components from table data

You may have recognized a similarity between the tables of a relational database and
simple JavaBean components. When building your applications think of tables as
being analogous to JavaBeans. While JavaBeans have properties, data from a table
has columns. A table’s schema is like the class that defines a JavaBean—defining the
names and types data that instances will hold. Like Java classes, tables are templates

Database dviven JSPs 203

for storing a specific set of information like the data from a purchase order or details
about inventory items and by themselves are not particularly useful.

It is only when we create instances of a JavaBean class or add rows to a table that
we have something worthwhile. Each row is an instance of what the table repre-
sents, just as a bean is an instance of its class. Both classes and tables then serve as
data models, a useful container for managing information about some real world
object or event. Keep this relationship in mind as we learn about JSP database devel-
opment. It will form the basis for many of our applications.

One of the most common areas for utilizing databases with JSP applications is to
retrieve data stored in a table to create a bean for use within the page. The configu-
ration of JSP components from information in the database is pretty straightforward
if your table schema (or the results of a join between tables) closely corresponds to
your bean’s properties. We simply use the row access methods of the Resultset
class to configure the bean’s properties with the values in the table’s corresponding
columns. If there is more than a single row in the result set we must create a collec-
tion of beans, one for each row of the results.

Database beans from scriptiets
You can use JSP scriptlets to configure a bean’s properties when it is created. After
establishing the connection, set its properties as appropriate through the data car-
ried in the Resultset. Don’t forget to import the java.sql package into the page
with the <%@ page import="java.sql.*” %> directive.

In this example we will use an ItemBean class used to represent a particular item
from inventory, taking the item number from the request object.

<%@ page import="java.sqgl.*" %>
<jsp:useBean id="item" class="ItemBean">
<%
Connection connection = null;
Statement statement = null;
ResultSet results = null;
ItemBean item = new ItemBean();
try {
Class.forName ("oracle.jdbc.driver.OracleDriver") ;
String url = "jdbc:oracle:oci8@dbserver";
String id = request.getParameter (id);
String query = "SELECT * FROM PRODUCTS TABLE WHERE ITEM ID = " + id;
connection = DriverManager.getConnection(url, "scott", "tiger");
statement = connection.createStatement();
results = statement.executeQuery(query) ;
if (results.next()) {
item.setId(results.getInt ("ITEM ID"));
item.setDesc (results.getString ("DESCRIPTION")) ;

204

CHAPTER 9
Working with databases

item.setPrice(results.getDouble ("PRICE")) ;
item.setStock(results.getInt ("QTY AVAILABLE"));

}

connection.close();

}

catch (ClassNotFoundException e) {
System.err.println("Could not load database driver!");

}
catch (SQLException e) {
System.err.println("Could not connect to the database!");

}

finally {
try { if (connection != null) connection.close(); }
catch (SQLException e) { }

}

%>

</jsp:useBean>

<html>

<body>

<table>

<tr><td>Item Number</td><td>

<jsp:getProperty name="item" property="id"/></td></tr>
<tr><tds>Description</td><td>

<jsp:getProperty name="item" property="desc"/></td></tr>
<tr><td>Price $</td><td>

<jsp:getProperty name="item" property="price"/></td></tr>
<tr><td>On hand</tds><td>

<jsp:getProperty name="item" property="stock"/></td></tr>
</table>

</body>

</html>

When this code finishes we will have an ITtemBean that is either empty (if the SELECT
found no matches) or is populated with data from the PRODUCTS_ TABLE. After creat-
ing our bean and using the database to populate it we then display its properties. In
this approach we’ve ended up with a lot of Java code, supporting a small amount of
HTML presentation. If we have several pages with similar needs, we’ll end up
rewriting (or using the cut and pasting operation, then maintaining) all of this code
again. In chapter 10, we’ll learn about architectures that help eliminate these prob-
lems. In the meantime, we could wrap the code into the bean, creating one that is
self-populating.

Self-populating beans

You can use a similar technique to that used in the JSP page example earlier to cre-
ate beans that populate themselves. In the bean’s constructor, you can establish the
database connection, perform the query, set your property values, close the

9.2.2

Database dviven JSPs 205

connection, and be ready for business. You can also define some of your bean’s
properties as triggers that cause the bean to retrieve data from the database by
including the database access code inside your property method. For example,
changing the ID property of our ItemBean could cause it to fetch that row of data
from the database and build up the other properties.

Outside influence

As we will learn in chapter 10, it is often desirable to keep the actual Java code in
the JSP page to a minimum. Instead we can rely on servlets to package data from
the database into the beans needed by the JSP page. The same approach that applies
to database access still applies, but with a servlet we can share and reuse our data-
base connection. We can move the management of database connections and the
collection of data out of the page, and into a servlet.

JSPs and JDBC data types

Each database supports its own set of internal data types, which vary significantly
among vendors. JDBC provides a layer of abstraction between Java’s data types and
those of the database. The JDBC layer frees a Java developer from having to worry
about subtle type distinctions and proper formatting. JDBC deals with the differ-
ence in data types in two ways. It defines a set of SQL types that logically map back
to native database types and it maps Java data types to the SQL types, and vice versa.

When dealing with the database directly, such as setting up a table’s schema, you
must deal with SQL types. However, when retrieving or storing data through JDBC,
you work in Java’s type system—the JDBC method calls you make determine how
to convert the data into the appropriate SQL type. When building JSP components
that interact with the database it is important to understand how such data is han-
dled. The following information will give you a good feel for some of the more
important SQL types and their handling by JDBC.

Integer data

JDBC defines four SQL types for handling integer data, but the major database ven-
dors commonly support only two. The SMALLINT type represents 16-bit signed inte-
gers and is treated as a Java short. The INTEGER type is mapped to Java’s int type
and holds a 32-bit signed integer value. The remaining two types, TINYINT and
BIGINT, represent 8-bit and 64-bit integers and are not commonly supported.

Floating-point numbers
There are two floating-point data types specified by JDBC, DOUBLE and FLOAT. For
all practical purposes they are essentially the same, the latter being included for

206

CHAPTER 9
Working with databases

consistency with ODBC. Sun recommends that programmers generally stick with
the DOUBLE type, which is analogous to Java’s double type.

Textual data

JDBC defines two primary SQL types for handling text: cHAR and VARCHAR. Each is
treated as a string object by JDBC. CHAR is widely supported by most databases,
and holds text of a fixed length. VARCHAR, on the other hand, holds variable length
text, up to a maximum specified width. Because CHAR is a fixed length data type, if
the data placed into a CHAR column contains fewer characters than the specified
width it will be padded with spaces by JDBC. While HTML browsers will ignore
extra spaces in JSP output data, you can call string’s trim() method before acting
on the data to remove trailing spaces. A third text type defined by JDBC is LONG-
VARCHAR, which holds especially large amounts of text. Because vendor support for
LONGVARCHAR differs wildly, you probably won’t use it much.

Dates and times

To handle date and time information JDBC defines three distinct types: DATE, TIME,
and TIMESTAMP. DATE holds day, month, and year values only. TIME holds hours,
minutes, and seconds. TIMESTAMP combines the information held in DATE and TIME,
and adds a nanoseconds field. Unfortunately, none of these corresponds exactly to
java.util.Date, which falls somewhere between each of these, due to its lack of a
nanoseconds field.

All of these SQL types are handled in Java by one of three subclasses of
java.util.Date: java.sqgl.Date, java.sqgl.Time, and java.sqgl.Timestamp.
Since they are subclasses of java.util.Date, they can be used anywhere a
java.util.Date type is expected. This allows you to treat them as you might nor-
mally treat date and time values, while retaining compatibility with the database.
Understanding how each of these specialized subclasses differs from its common
base class is important. For example, the java.sql.Date class zeros out the time
values, while java.sql.Time zeros out the date values. Don’t forget about these
important distinctions when exchanging data between the database and your JSP
components. If you need to convert a java.sgl.Timestamp object into its closest
approximate java.util.Date object, you can use the following code:

Timestamp t = results.getTimestamp ("MODIFIED") ;

java.util.Date d;

d = new java.util.Date(t.getTime() + (t.getNanos()/1000000)) ;

Some of the most common data type mappings you will encounter are listed in
table 9.1, along with the recommended Resultset access method for retrieving
data of that type.

Database dviven JSPs 207

Table 9.1 Common Java-to-JDBC type mappings

Java type JDBC type Recommended JDBC access method

short SMALLINT getShort ()

int INTEGER getInt ()

double DOUBLE getDouble ()

java.lang.String CHAR getString()

java.lang.String VARCHAR getString()

java.util.Date DATE getDate ()

java.sql.Time TIME getTime ()

java.sql.Timestamp TIMESTAMP getTimestamp ()

Handling undefined column data

If a column in the database is not assigned a value it will be set to null. The problem
is that there is no good way to represent an empty value with Java’s primitive types
like int and double, which are not objects and cannot be set to null. For example,
a call to getInt () might return 0 or —1 to indicate null, but those are both valid
values. The problem exists for strings as well. Some drivers return an empty string
(), some return null, and still others return the string value null. The solution,
which isn’t particularly elegant but does work, is the ResultSet’s wasNull ()
method. This method returns true or false, depending on whether or not the last
row access method called should have returned an actual null value.

We have this same problem when creating JSP components from JavaBeans. The
interpretation of a null value by the <jsp:getPropertys> tag is not consistent
among vendors, so if we can’t use a literal value to represent null we have to design
an approach similar to that of JDBC. What we can do is define a boolean property
that will indicate the validity of the property value in question. When we encounter
a null value in the database, we set the property to some non-null value, then make
certain the validity check will return false. In the following code we set the value of
our quantity property using the QTY AVAILABLE column of our ResultSet. We also
set a flag to indicate whether or not the value was actually valid.

init () {

myQuantity = results.getInt ("QTY AVAILABLE");
if (results.wasNull()) {

myQuantity = 0;

validQuantity = false;
1

else {

208

9.2.3

CHAPTER 9
Working with databases

validQuantity = true;

}

isvValidQuality ()
return validQuantity;

}

Of course, that means that in our JSP code we will have to check the validity of the
value before using it. We have to call our boolean check method:

Quantity Available:

<% if (item.isValidQuantity()) %>

<jsp:getProperty name="item" property="quantity"/> units
<% else %>

Unknown

An alternative, if the value were being used by the JSP only for display, would be to
define a string property that would return an appropriate value, no matter the
state of the property. While this approach would limit the flexibility of the bean, it
might be worth it to gain simplicity in your JSP code.
getQuantityString() {
if (validQuantity)
return new Integer (quantity) .toString() ;

else
return "Unknown";

}

The most popular way to avoid this irritating problem is to not allow null values in
the database. Most databases even allow you to enforce this at the schema level by
flagging a column as not being allowed to have null values.

Maintaining persistent connections

Sometimes you may want to keep your database connection across several requests
by the same client. You must be careful when you do this because the number of
database connections that a single server can support is limited. While continuing
the connection is all right for a few simultaneous users, if you have high traftic you
will not want each request to have its own connection to the database. Unfortu-
nately, establishing a connection to a database is probably one of the slowest parts
of your application, so it is something to be avoided where possible.

There are a number of solutions to this. Connection pools—implemented either
by the database driver or through connection pool classes—maintain a fixed num-
ber of live connections, and loan them as requested by your JSP pages or beans. A

Database dviven JSPs 209

connection pool is a good compromise between having too many open connections
and paying the penalty for frequent connections and disconnections.

Listing 9.1 creates a bean which encapsulates a database connection. Using this
ConnectionBean allows us to easily shield our JSP page from database connection
details, as well as enables us to keep our connection across several pages by storing it
in the session. That way we needn’t reconnect to the database each time. We’ve also
included some convenience methods that call the corresponding methods on the
wrapped connection object. (Note: To keep things simple here, we’ve hard coded our
database access parameters. You would probably want to make these configurable.)

Listing 9.1 ConnectionBean.java

package com.taglib.wdjsp.databases;

import java.sqgl.*;
import javax.servlet.http.*;

public class ConnectionBean implements HttpSessionBindingListener {
private Connection connection;
private Statement statement;

private static final String driver="postgresqgl.Driver";

private static final String dbURL="jdbc:postgresqgl://slide/test";
private static final String login="guest";

private static final String password="guest";

public ConnectionBean () {

try {
Class.forName (driver) ;
connection=DriverManager.getConnection (dbURL, login, password) ;
statement=connection.createStatement () ;

}

catch (ClassNotFoundException e) {
System.err.println("ConnectionBean: driver unavailable") ;
connection = null;

}

catch (SQLException e) {
System.err.println("ConnectionBean: driver not loaded") ;
connection = null;

}
}

public Connection getConnection() {
return connection;

}

public void commit () throws SQLException {
connection.commit () ;

210

CHAPTER 9
Working with databases

}

public void rollback() throws SQLException {
connection.rollback() ;

}

public void setAutoCommit (boolean autoCommit)

throws SQLException {
connection.setAutoCommit (autoCommit) ;

}

public ResultSet executeQuery (String sql) throws SQLException {
return statement.executeQuery(sql) ;

}

public int executeUpdate (String sgl) throws SQLException {
return statement.executeUpdate (sql) ;

}

public void valueBound (HttpSessionBindingEvent event) {
System.err.println("ConnectionBean: in the valueBound method") ;

try {
if (connection == null || connection.isClosed()) {

connection =
DriverManager.getConnection (dbURL, login, password) ;
statement = connection.createStatement () ;
catch (SQLException e) { connection = null; }

}

public void valueUnbound (HttpSessionBindingEvent event) {

try {
connection.close() ;

catch (SQLException e) { }
finally {
connection = null;

}
}

protected void finalize() ({
try {
connection.close() ;
1

catch (SQLException e) { }

}
|

This ConnectionBean class implements HttpSessionBindingListener, discon-
necting itself from the database if the bean is removed from the session. This keeps

9.2.4

Database dviven JSPs 211

the connection from living too long after we are done with it, and before it actually
gets garbage collected.

This bean has been designed to shield our application from the database connec-
tion details, but we could also create a more generic bean which accepts the neces-
sary configuration values (url, username, password, and driver) as properties
that the JSP page would have to set to activate the connection.

Handling large sets of results

If your query to the database returns a large number of rows, you probably don’t
want to display all of them at once. A 15,000-row table is hard to read and the
HTML resulting from your JSP can take a considerable amount of time to download
and display. If your application design allows, enforce a limit on the amount of rows
a query can return. Asking the user to restrict his or her search further can be the
quickest way to eliminate this problem.

A better solution is to present results a page at a time. There are a number of
approaches to solving this problem with JSPs. The Rowset interface was introduced
in JDBC 2.0 to define a standard way to access cached data through a JavaBeans
component, or across distributed systems.

Creating a persistent ResultSet
When you retrieve a ResultSet object from a query, not all of the results are
stored in memory. The database actually maintains a connection to the database
and doles out rows as needed. This result buffering behavior keeps traffic and
memory requirements low, but means you will remain connected to the database
longer—which might be an issue in high traffic environments where you want to
recycle database connections quickly. The database driver will determine the opti-
mum number of rows to fetch at a time, or, in JDBC 2.0, you can offer your own
suggestion to the driver. Fetching a new set of rows occurs automatically as you
advance through the Resultset; you don’t have to keep track of state yourself.
One strategy then is to page through the Resultset a page at a time, say twenty
rows per page. We simply loop through twenty rows, then stick the Resultset into
our session, and visit twenty more. The cursor position internal to the ResultSet
won’t change between requests; we’ll pick up right where we left oft when we pull
it out of the user’s session. You don’t need to explicitly keep a reference to the orig-
inal Connection object, the Resultset itself does that. When your Resultset goes
out of scope and is garbage collected your connection will be shut down. You
might want to wrap your ResultSet in a bean and implement HttpSessionBind-
ingListener to shut down your database connections as soon as they are no longer

212

CHAPTER 9
Working with databases

needed, or expose a cleanup method and call it at the bottom of your JSP page. One
problem with this approach is you’re keeping the database connection open for so
long. We’ll look at a couple of approaches that don’t hold the connection open
while the user browses from page to page.

Performing the query multiple times

In this technique we re-execute the search for each page of results we wish to show,
storing our current window position in the user’s session. At each step, we reissue
the original query, then use the Resultset’s next () method (or JDBC 2.0’s abso-
lute () method) to skip forward in order to start our listing at the appropriate posi-
tion. We then display the next, say, twenty rows and stop. We skip ahead twenty
rows the second time the JSP is loaded, forty rows on the third, and so on. If we
wish to provide additional feedback as to where the user is in the Resultset, simply
note its size. Now that you know the number of rows, you can display the appro-
priate status information such as “page 1 of 5.” One potential drawback to this
technique is that each page represents a new look at the database. Should the data
be modified between requests, the user’s view could change from page to page.

Use a self-limiting query

This technique is less general then the others we’ve looked at, and can’t be used in
every situation. The strategy here is to show a page of data, then record the primary
key of the last item you displayed. Then for each page you issue a new query, but
fine-tune the search through your query’s wHERE clause to limit the results of the
search to those you have not shown the user.

This method works great in situations where your data is listed in sequence,
say a series of product IDs. If the last product ID shown was 8375, store that
number in the session, and modify your next query to use this number in the
WHERE clause. For example:

SELECT * FROM PRODUCTS WHERE ID > 8375

The CachedRowSet Bean

An alternative way of handling more manageable query results—those that are big-
ger than a screen full, but not so big as to be a memory hog—is through cached-
RowSet. Sun is working on an early implementation of the JDBC 2.0 RowSet
interface, which encapsulates a database connection and associated query results
into a JavaBean component, called the cachedrowSet. This bean provides a discon-
nected, scrollable container for accessing result set style data in your JSP page, or
other JavaBean container. This is a very useful tool for working with database

Database dviven JSPs 213

information from within JSP. Sun may eventually add this class to the JDBC 2.0
optional extensions; you can find out more at Sun’s JDBC web page, http://
java.sun.com/products/jdbc. Unlike Resultset, CachedRowSet is an offline con-
nection that caches all of the rows in your query into the object. No active connec-
tion is required because all of the data has been fetched from the database. While
convenient, if the results of your database query are so large that memory usage is a
problem, you will probably want to stick to a persistent result set.

CachedRowSet is very easy to use. Simply configure the appropriate properties—
such as username, password, and the URL of your database—then set the command
property to your SQL query. Doing so populates the rowset with results you can
then browse through. You can also populate cachedrowSet using a RowSet object,
created from another query.

Example: paging through results with a CachedRowSet

Let’s build an example of paging through a series of results using Sun’s cached-
RowSet Bean and JSP. We’ll pull in the data, then allow the user to browse through
it five rows at a time, or jump back to the first row if desired. The same technique
applies to using a persistent ResultSet, although we’d have to resort to JSP script-
lets or wrap our live ResultSet object into our own bean. In this example we’ll
page through a set of results five rows at a time. In figure 9.2 you can see a screen
shot of our example in action.

And here in listing 9.2 is the source code:

Listing 9.2 CachedResults.jsp

<%@ page import="java.sql.*,javax.sql.*,sun.jdbc.rowset.*" %>
<jsp:useBean id="crs" class="CachedRowSet" scope="session">
<%
try { Class.forName ("postgresqgl.Driver"); }
catch (ClassNotFoundException e) {
System.err.println("Error" + e);
}
%>
<jsp:setProperty name="crs" property="url"
value="jdbc:postgresql://slide/test" />
<jsp:setProperty name="crs" property="username" value="guest" />
<jsp:setProperty name="crs" property="password" value="apple" />
<jsp:setProperty name="crs" property="command"
value="select * from shuttles order by id" />
<%
try { crs.execute(); }
catch (SQLException e) { out.println("SQL Error: " + e); }
%>

214 CHAPTER 9
Working with databases

| Fle Edt View Favortes Tooks Help

© .2 .0 B & @ @3 B & m

Back Forward Stop Refresh Home | Search Favortes Histoy Mail Print Edit
J Address IE] hittp: //slide. dev. tivol com/dev/dfields/manning/db/CachedResults jspPaction=next 3 @ Go

Cached Query Results
ID Airport Departure Seats

6 aH [093000 o
7 FR 121500 (10
B8 BOS [163500 |10
o [sFO [09:30:00 10
10[sFO 042300 4

First 5] [Mext 5

N

|&] Done [[Intemet

Figure 9.2 Browsing through data with a CachedRowSet

</jsp:useBean>

<html>
<body>
<center>
<h2>Cached Query Results</h2>
<P>
<table border="2">
<tr bgcolor="tan">
<th>id</th><th>Airport</th><th>Departure</th><th>Seats</th></tr>
<%
try {
if ("first".equals(request.getParameter ("action")))
crs.beforeFirst() ;
for (int i=0; (i < 5) && crs.next(); i++) {
%>
<tr>
<td><%= crs.getString("id") %></td>
<td><%= crs.getString("airport") %></td>
<td><%= crs.getString("time") %></td>
<td><%= crs.getString("seats") %></td>
</tr>
<% } %>
</table>
</p>
<%

Database dviven JSPs 215

if (crs.isAfterLast()) {
crs.beforeFirst(); %>

At the end of the result set

<%} 1}
catch (SQLException e) { out.println("SQL Error" + e); }
%>

<a href="<%= HttpUtils.getRequestURL(request) %>?action=first"s>
[First 5]

<a href="<%= HttpUtils.getRequestURL(request) %>?action=next">
[Next 5]

</centers>

</body>

</html>

NOTE The HttpUtils class has been deprecated as of Java Servlet API 2.3. These
methods in that class were only useful with the default encoding and have
been moved to the request interfaces. The call to the HttpUtils.getRe-
questURL method can be replaced by calling the getRequestURL () method
of the request object directly.

In this example, we create a session scoped CachedRowSet in our <jsp:useBean>
tag, and use the body of that tag to configure it and execute our query. It is impor-
tant to note that we must call attention to the database driver before we set the url
property of our bean. If we don’t, the database briverManager class will not recog-
nize the URL as being associated with our driver, resulting in an error.

If the user clicks either link at the bottom of the page, a request parameter is set
to indicate the desired action. So if the user clicks the “First 5” link, we move the
cursor back to its starting position just before the first row of the cashedrowset.

If the user selects the next five, the default, we don’t have to do anything special.
Since the cashedrowSet set is stored inside our session the cursor position will not
change, and we’ll simply pick up where we left off at the end of the previous view-
ing. We loop through the result with a for loop.

If more than five rows are left in the cachedrRowset the loop iterates through
them. In each step we are advancing the cursor one position and making sure we
don’t go off the end of the results. The loop stops after five iterations or when
crs.next () returns false—whichever occurs first. Inside the loop we simply dis-
play the data from the database. After the loop, we must move the cursor back to
the beginning as if we had run out of data, essentially looping back through the
data. Note the following code, near the end of the example:

<a href="<%= HttpUtils.getRequestURL(request) %>?action=next">

216

9.2.5

CHAPTER 9
Working with databases

The getRequestURL () method of HttpUtils (part of javax.servlet, which is
automatically imported by the JSP page) creates a link back to the current page,
rather than hard coding our own URL. We include the action request necessary to
indicate the user’s selection by tacking it onto the end of the request in GET encod-
ing syntax.

Transaction processing

Most of the JSP/database interactions we’ve been studying involve single step
actions. That is, one SQL statement is executed and we are done. Oftentimes how-
ever, a single action is actually composed of a series of interrelated SQL statements
that should succeed or fail together. For example, transferring money between two
accounts is a two-step process. You have to debit one account and credit the other.
By default, the database will process each statement immediately, an irrevocable
action. In our funds transfer example, if the credit action went through but the
debit one didn’t, we would be left with accounts that don’t balance.

Databases provide a mechanism known as transactions that help avoid such prob-
lems. A transaction is a block of related SQL statements treated as a single action,
and subsequently recalled in the event that any one of the individual statements fails
or encounters unexpected results. It is important to understand that to each state-
ment in the transaction, the database will show any changes made by the previous
statements in the same transaction. Anyone looking at the database outside the
scope of the transaction will either not see the changes until the entire transaction
has completed, or will be blocked from using the database until it is done. The
behavior of the database during the transaction is configurable, but limited to the
capabilities of the database with which you are working. This ability to block access
to data you are working with lets you develop transactions composed of a complex
series of steps without having to worry about leaving the database in an invalid state.

When you are satistied with the results of your database statements, signal the
database to accept the changes as final through the commit () method of your con-
nection object. Likewise, to revoke any changes made since the start of the transac-
tion simply call your Connection object’s rollback () method, which returns the
database to the state it was after the last transaction was committed.

By default, JDBC assumes that you want to treat each SQL statement as its own
transaction. This feature is known as autocommit, where each statement is committed
automatically as soon as it is issued. To begin a block of statements under transaction
control, you have to turn off the autocommit feature, as shown in the example which
tollows—a transaction where we’ll swap funds between Bob’s and Sue’s accounts.

9.3

9.3.1

Example: JSP conference booking tool 217

When we’ve completed all of the steps in our transaction, we’ll re-enable the auto-
commit feature.

connection.setAutoCommit (false) ;

try {
Statement st = connection.createStatement () ;
st .executeUpdate (
"UPDATE ACCTS SET BALANCE= (BALANCE-100) WHERE OWNER = "Bob") ;
st .executeUpdate (
"UPDATE ACCTS SET BALANCE= (BALANCE + 100) WHERE OWNER = "Sue") ;

connection.commit () ;

}

catch (SQLException e) { connection.rollback(); }

finally { connection.setAutoCommit (true); }

In the example we roll back the transaction if a problem occurs, and there are a
number of reasons one could. Bob and Sue might not exist, or their account may
not be accessible to our program, Bob’s account may not have enough funds to
cover the transaction, the database could explode between the first and second
statements. Wrapping them into a transaction ensures that the entire process either
completes, or the whole thing fails—not something in between.

Example: JSP conference booking tool

We’ll wrap up this chapter with an example that ties together much of what we’ve
learned about JSP database access: data retrieval, persistent connections, and multi-
page transaction processing. Here we’ll concentrate on the database code rather
than the application architecture, which is covered in chapter 10.

Project overview

In this project we must build an application to support an upcoming JSP confer-
ence, which is being held in several major cities across the U.S. First, we must deter-
mine which conference (city) the user plans to attend and reserve a slot for him or
her, as seating is very limited. Secondly, we must also reserve a seat for the user on
one of the several shuttle buses which will transport participants from the airport to
the conference. The tricky part is making sure that once the user has secured a
ticket to the conference he or she doesn’t lose it to other users while picking a shut-
tle option. This becomes a very real possibility when you consider thousands of
users registering across the globe simultaneously.

218

CHAPTER 9
Working with databases

9.3.2 Our database

Our database back end already exists and is populated with the relevant data in two
tables, Conferences (table 9.2) and Shuttles (table 9.3). The tables are related
through their respective Airport column, which holds the three-character identifier
for each airport associated with each conference city. Once the user has selected a
city, we can use the airport identifier to locate appropriate shuttle service.

Table 9.2 Schema for the Conferences table

Column Type
ID int
CITY varchar (80)
AIRPORT char (3)
SEATS int

Table 9.3 Schema for the Shuttles table

Column Type
ID int
AIRPORT char (3)
TIME time
SEATS int

9.3.3 Design overview

There are four basic steps in this process: picking a city, choosing a shuttle, review-
ing selections, and confirming the transaction. A user will be presented a list of
cities where the conference will be held and may select any one of them where space
is available. Doing so should hold his or her seat in the database by starting a trans-
action. This will ensure that the user doesn’t lose his or her seat while selecting the
shuttle in the second step. The third and fourth steps in the process are to have the
user review his or her selections and confirm them—committing the changes to the
database—or abort the process, rolling back the selections to free them for other,
less fickle attendees.

To maintain a transaction across
several pages like this we’ll need to use
JSP’s session management capabilities
to store our connection to the data-
base, which we’ll wrap in the Connec-
tionBean we built earlier in this
chapter. This will allow our transac-
tion to span each page in the process.
The pages, in order of application
flow, are shown in figure 9.3. As you
can see, we’ve also created a separate
error page we can use to report any

Example: JSP conference booking tool

conference.jsp

shuttle.jsp

confi

rm.jsp

finish.jsp error.jsp

219

Figure 9.3

N

The JSP pages of our
registration application

problem with the database or other element of the application.

Step 1: conference.jsp

The responsibilities of the conference selection page (figure 9.4) are to present the
user with a list of conference cities, pulled from the database, and allow him /her to
select any of them which have openings. The source code is shown in listing 9.3.

Listing 9.3 conference.jsp

<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*" errorPage="error.jsp" %>

<jsp:useBean id="connection" class="ConnectionBean" scope="session"/>

<html>
<body>
<center>

Conference Registration
<form action="shuttle.jsp" method="post">
<table border=1 bgcolor="tan" width="50%" align="center">

<tr><tds>

<table border="0" bgcolor="white" cellspacing=0 width="100%">

<tr bgcolor="tan">

<th> </th><th>City</th><th>Tickets Remaining</ths></tr>

<%

String sql = "SELECT * FROM CONFERENCES";
ResultSet results = connection.executeQuery(sql);

while (results.next()) {
if (results.getInt("seats") > 0) {
%>
<td>
<input type="radio" name="show"

value="<%= results.getString("id") %>">

</td>
<% } else { %>

220 ‘

CHAPTER 9
Working with databases

3 http://slide/dev/dfields/manning/db/conf/conference.jsp - Microsoft Internet Explorer

] File Edit View Favortes Tools Help |

JAgﬂen Itj http: //glide/dev/dfields/manning/db/conf/conference.jsp ;] @ Go
=
Conference Registration
City Tickets Remaining
New York 0
C Houston 11
Boston 0

C San Francisco 12

& Austin 37

" Los Angeles 33

i
|&€] Done [[[$% Local intranet y
Figure 9.4 The conference selection page
<td> </td>
<% } %>
<td><%= results.getString("city") %></td>
<td align="center"><%= results.getString("seats") %></td>
</tr>
<% } %>
</table>
</td></tr></table>
<p>
<input type="submit" value="Next (Choose Shuttle) ">
</form>
</centers>
</body>
</html>
||

This is the entry point into our application, but because our simple Connection-
Bean shields the database information from the page, we needn’t do anything spe-
cial to configure it. In fact, each page in our application starts with a block of code
to import our database classes and reference the ConnectionBean from the session,
or—in this case—create a ConnectionBean and place it into the session.

Once we have a connection to the database we can simply build our form using
data from the Conference table by executing the appropriate query and looping

Example: JSP conference booking tool 221

3 http://slide/dev/dfields/manning/db/conf/shuttle.jsp - Microsoft Internet Explorer

| Fie Edt View Favoites Tools Help IE
| Address |&] hitp://siide/dev/dields/manning/db/cont/shutle.sp ~] @6o |

Shuttle Reservation

Airport Time Seats Available

AUS 14:15.00 0
© AUS 12:00:00 9
& AUS 09:40.00 8

N K

|&] Done [_ I_IT! Local intranet

Figure 9.5 The shuttle selection page

through it with a while loop. For each row in the table, we verify that there are
seats available before adding a radio button for this city, ensuring that we don’t
allow the user to pick a conference that is full. We use the ID of each conference as
the value of the radio button, to which we have given the name show. We’ll use that
in the next page to hold their seat at the conference. The rest of the code is pretty
straightforward HTML. Clicking Next directs the user to the next page of the appli-
cation, shuttle.jsp (figure 9.5).

Step 2: shuttle.jsp

The shuttle selection page has a double duty. First it has to act on the information
gathered on the conference selection page. We have to reserve the user a seat at the
selected conference. Secondly, we have to allow the user to pick a conference shuttle
selection based on which conference city he/she will be visiting. The source appears
in listing 9.4.

Listing 9.4 shuttle.jsp

<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*"
errorPage="error.jsp" %>

<jsp:useBean id="connection" class="ConnectionBean"
scope="session"/>

222

CHAPTER 9
Working with databases

<%

String showID = request.getParameter ("show") ;
connection.setAutoCommit (false) ;

String sql;

sqgql = "UPDATE conferences set seats=seats-1 where id=" + showID;
connection.executeUpdate (sql) ;

%>

<html>
<body>
<center>
Shuttle Reservation</fonts>
<form action="confirm.jsp" method="post">
<table border=1 bgcolor="tan" width="50%" align="center">
<tr><td>
<table border="0" bgcolor="white" cellspacing=0 width="100%">
<tr bgcolor="tan"><th> </th>
<th>Airport</th><th>Time</th><th>Seats Available</th></tr>
<%
sql = "SELECT s.* from shuttles s, conferences c where c.id=" +
showID + " and s.airport = c.airport";
ResultSet results = connection.executeQuery(sql);
while (results.next()) ({
if (results.getInt("seats") > 0) {
%>
<td>
<input type="radio" name="shuttle"
value="<%= results.getString("id") %>">
</td>
<% } else { %>
<td> </td>
<% } %>
<td><%= results.getString("airport") %></td>
<td><%= results.getTime("time") %></td>
<td align="center"><%= results.getString("seats") %></td>
</tr>
<% } %>
</table>
</td></tr></table>
<p>
<input type="hidden" name="show" value="<%= showID %>">
<input type="submit" value="Next (Review Reservations) ">
</form>
</center>

</body>
</html>

Example: JSP conference booking tool 223

Now, after grabbing a reference to the ConnectionBean from the session, we grab
the selected show ID from the request and stash it in a local variable. We’ll need it
to update the database, plus we’ll pass it on to the pages that follow so we can sum-
marize the user’s selections on the last page.

String showID = request.getParameter ("show") ;

We now actually reserve the user a seat at his or her selected conference, by reduc-
ing the open seat count by one. Before we do this however, we turn off the auto-
commit feature of the database, thereby starting a transaction.

Generating our input form is no different than on the first page of the applica-
tion, although the database query is more complicated.

"SELECT s.* from shuttles s, conferences c¢ WHERE c.id=" +
showID + " and s.airport = c.airport"

That translates into a statement something like this:

SELECT s.* from shuttles s, conferences c
WHERE c.id=12 and s.airport = c.airport

Which, in English, means “perform a join on the table’s shuttles and conferences,
keeping only the shuttle table’s columns, and select only those rows where the con-
ference ID is 12 and the conference and shuttle are associated with the same air-
port.” This gives us a subset of the available shuttles, showing only those available
for our selected city. (Note that we can specify a table alias after each table’s name
(the s and c values) which keeps us from having to spell out the full table name
each time we use it in the application.)

We then loop through the result set as before, again not allowing the user to
select an entry that is already full. We’ll still need the showID selected in the original
page later in the application, so we’ll carry that on through a hidden form field.

<INPUT TYPE="HIDDEN" NAME="show" VALUE="<%= showID %>">

We could have placed it into the session, but this is just as easy for now and involves
fewer steps. Figure 9.6 shows how the user confirms his/her reservation.

Step 3: confirm.jsp

On this page we must reserve the user’s seat on the selected shuttle, display a sum-
mary of his/her selections from the first two screens, and then ask the user to either
commit or cancel the reservation. Listing 9.5 is the source code for the page:

224 CHAPTER 9
Working with databases

/3 http://slide/dev/dfields/manning/db/conf/confirm.jsp - Microsoft Internet Explorer

| Eile Edit View Favortes Tooks Help |-

| Address [€] htp: //slide/dev/dfields/manning/db/cont/confitm.jsp ~] @60 |

Reservation Confirmation

Summary
Reservations have been requested for the Austin
show, with a complimentary shuttle from the
AUS airport departing at 09:40:00.

To confirm your reservations select commit

below.

Commit Reservation Cancel Reservations I

H
|€] Dane [| |5 Local intranet 7

Figure 9.6 The confirmation request page

Listing 9.5 confirm.jsp

<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*" errorPage="error.jsp" %>
<jsp:useBean id="connection" class="ConnectionBean" scope="session"/>

<%

String sql;

String shuttleID = request.getParameter ("shuttle");

String showID = request.getParameter ("show") ;

sql = "UPDATE shuttles set seats=seats-1 where id=" + shuttleID;
connection.executeUpdate(sql) ;
sql = "SELECT c.city, c.airport, s.time from conferences c, " +

"shuttles s where c.id=" + showID + " and s.id=" + shuttleID;
ResultSet results = connection.executeQuery(sql);
results.next () ;

%>

<html>

<body>

<center>

Reservation Confirmation</fonts>
<form action="finish.jsp" method=posts>

<table border=1 bgcolor="tan" width="50%" align="center">

<tr><td>

<table border="0" bgcolor="white" cellspacing=0 width="100%">

<tr bgcolor="tan"s><th>Summary</ths></tr>

Example: JSP conference booking tool 225

<tr><tds>

Reservations have been requested for

the <%= results.getString("city") %>

show, with a complimentary shuttle from

the <%= results.getString("airport") %> airport
departing at <%= results.getTime ("time") %>.
<p>

To confirm your reservations select commit below.
</td></tr>

</table>

</td></tr></table>

<p>

<input type="submit" name="commit" value="Commit Reservation'"s

<input type="submit" name="rollback" value="Cancel Reservations"s>

</body>

</html>

|

Again, there’s not much new here. We decrement the appropriate shuttle seat
count, just as we did earlier with the conference. We’ve now made all the changes
we plan to make to the database, but remember we are still under transaction con-
trol since we turned off autocommit earlier. We have to disable autocommit only
once, because it is a property of our connection, which we have stored in our ses-
sion via the ConnectionBean.

sgl = "UPDATE shuttles set seats = seats - 1 where id = " + shuttlelD;
connection.executeUpdate (sql) ;

The query to get the summary information is a little complicated; we could have
broken it into a couple of separate queries, extracting the appropriate data from
each. However, it’s not necessary.

sgl = "SELECT c.city, c.airport, s.time from conferences c, shuttles s where
c.id=" + showID + " and s.id=" + shuttlelID;

This selects the columns we are interested in from the intersection of the CONFER-
ENCE and SHUTTLES table where the corresponding ID values match the two selec-
tions the user already made. At that point, we are ready to move on to the final page
(figure 9.7), which, depending on which button the user clicks, will commit the
transaction or roll it back.

Step 4: finish.jsp
Listing 9.6 is the final segment of our application.

226 CHAPTER 9
Working with databases

http://slide/dev/dfields/manning/db/conf/finish.jsp - Microsoft Internet Explorer
J File Edit “iew Favoites Tools Help |

| Address [€] hitp://slide/dev/dields/manning/db/cont/finish.isp =] @t

Reservations Confirmed
Your Reservations confirmed, thanks. ..

Book Another Reservation

2] Done I_ I_ E‘g Local intranet

Figure 9.7 The final page

Listing 9.6 finish.jsp

<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*"
errorPage="error.jsp" %>

<html>

<body>

<%

ConnectionBean connection =

(ConnectionBean) session.getValue ("connection") ;

™

if (request.getParameter ("commit") != null)
connection.commit () ;
else

connection.rollback() ;
session.removeAttribute ("connection") ;

%>

<center>

<% if (request.getParameter ("commit") != null) { %>

Reservations Confirmed
<p>

Your Reservations confirmed, thanks...

<% } else { %>

Reservations Canceled
<p>

Your reservations have been canceled.

Example: JSP conference booking tool 227

<% } %>

<p>
Book Another Reservation

</body>
</html>
||

If the user selected Commit, it will show up as a request parameter. If we detect this
we’ll commit the transaction. Otherwise, we’ll call rollback:

if (request.getParameter ("commit") != null)
connection.commit () ;

else
connection.rollback() ;

After saving our changes, we must get rid of that ConnectionBean to free its
resources, including the database we’ve been holding. So, we simply remove the
connection object from the session.

session.removeAttribute ("connection") ;

The last step is to give the user feedback, with an if block, based on his/her deci-
sion. All in all the flow through this example is straightforward and linear. To wrap
this example up, let’s look at the error page.

The error.jsp page

This page (listing 9.7) is referenced as an error handler for each page in the applica-
tion. If any exception occurs in the course of communicating with the database, it
will be forwarded to this page.

Listing 9.7 error.jsp

<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*"
isErrorPage="true" %>
<html>
<body>
<%
if (exception instanceof SQLException) {
try {

ConnectionBean connection = (ConnectionBean)session.getAttribute ("connection") ;
connection.getConnection() .rollback() ;
session.removeAttribute ("connection") ;

}
catch (SQLException e) { }

}

228 CHAPTER 9
Working with databases

%>

<center>

Application Error
<p>

An error has occurred: <tt><%= exception %></tt>

<p>

Book Another Reservation
</center>

</body>

</html>

|

On this page we try to clean up some things and let the user know what has hap-
pened. In the code we abort our transactions and remove the connection object
from our session when an error occurs. We’ll see more detailed discussion on creat-
ing error pages in chapter 14.

Architecting JSP applications

This chapter covers

= Building applications with JSP alone
= Learning to combine servlets and JSP pages
= Understanding architectural tradeoffs

229

230

10.1

CHAPTER 10
Avchitecting JSP applications

Now that we have covered the better portion of material on how to use JSP to build
dynamic web pages, we will look at how we can construct complete web applica-
tions with this technology. In this chapter we will discuss several architectural mod-
els usetul for developing JSP applications. We will examine architectural options
available to us when we combine JSP pages with servlets, EJBs, HTML, and other
software elements to create web-based applications.

Web applications

When designing a web application of any complexity, it helps to think of its high-
level architecture in terms of three logical areas:

« The presentation layer, the front end which controls the look and feel and
delivers results, also known as the view

» The control lnyer, which controls application flow, also known as the controller

« The application logic layer, which manages application data, performs calcula-
tions and communicates with back-end resources, also known as the model

The three layers (figure 10.1) aren’t necessarily separate software elements or com-
ponents (though as we shall see they can be), but rather they are useful constructs
to help us understand our application’s requirements. If you are familiar with design
patterns, a collection of common strategies used in software development, you
might recognize this three-part architecture as an implementation of the Model-
View-Controller, or MVC, pattern. The MVC pattern is concerned with separating
the information (the model) from its presentation (the view), which maps nicely
into our strategy.

Each layer plays an

important role in an applica- - -

tion’s architecture and will Presentation Control Application Database
. . . layer layer logic

be discussed briefly in the Backend

sections which follow. It is resources

often advantageous to treat
each tier as an independent
portion of your application. Isolating the logical portions of the application helps
ensure that you’ve covered all the bases in the design, focuses attention on creating a
robust architecture, and lays the groundwork for the implementation.

Do not confuse logical separation of responsibilities with actual separation of com-
ponents. Each tier does not necessarily need to be implemented by separate

Figure 10.1 Web application layers

Web applications 231

components. Some or all of the tiers can be combined into single components to
reduce application complexity, at the expense of modularity and high-level abstraction.

The presentation layer

This tier includes the client-side display elements, such as HTML, XML, or Java
applets. The presentation layout tier can be thought of as the user interface for the
application because it is used to get input from the end user and display the applica-
tion’s results. In the MVC paradigm, the presentation layout tier fills the role of the
view. It is an application specific presentation of the information owned by the
application logic, or model in MVC terms.

The presentation layout tier is not concerned with how the information was
obtained, or from where. Its responsibilities lie only in displaying the information
itself, while delegating any other activity up the chain to other tiers. For example, in
an application which involves submitting a search query through a web form only
the form itself and the corresponding results are the responsibility of the presenta-
tion layer. What happens in between, the processing of the request and the retrieval
of the results, is not.

Application logic

The application logic layer is the heart of the application, responsible for actually
doing whatever it is the application is supposed to do. It is responsible for perform-
ing queries against a database, calculating sales tax, or processing orders. This layer
models the data and behavior behind the business process for which we are devel-
oping the application. It is an encapsulation of data and behavior that is indepen-
dent of its presentation.

Unlike the presentation layer, this tier cares only about storing, manipulating,
and generating data, not displaying it. For this reason, components designed to
work as application logic can be relocated outside web-based applications, since the
behavior they encapsulate isn’t web-centric.

Control layer
The control layer determines the application’s flow, serving as an intermediary
between the presentation layer and the application logic. This tier serves as the log-
ical connection between the user’s interaction with the front-end and business
services on the back end. In the MVC pattern this tier is acting as the controller. It
delivers the model to the view and regulates communication between the two.

This tier is also responsible for making decisions among multiple presentations,
when available. If a user’s language, locale, or access level dictates a different

232

10.1.1

CHAPTER 10
Avchitecting JSP applications

presentation, this decision is made in the control layer. For example, an administra-
tor might see all of the data from a database query, while an end user might see an
alternate, more restrictive results page.

Each request enters the application through the control layer, which decides
how the request should be handled and what information should be returned. Sev-
eral things could happen at this point, depending on the circumstances of the
request and the application.

For example, the control layer might determine that the requested URL is pro-
tected by access control, in which case it would forward the request to a logon page
if the user has not yet been authenticated. This is an example of presentation logic
controlling the application’s flow from screen to screen. If any application work
needs to be done, the application’s presentation logic will collect data from the
request, if necessary, and deliver it to the application logic tier for processing. When
the application logic has completed its operation, the controller directs the request
back to the user via the presentation layer.

Web application flow

Applications, no matter the platform, are designed with a particular flow in mind.
Operations are expected to unfold in a series of steps, each with a specific purpose
and each in an order anticipated by the application’s designer. For example, to edit
a user’s profile you might prompt for a username whose profile you wish to edit,
display that user’s current profile information, ask for changes, process those
changes, and then display or confirm the results of the operation. As programmers,
we expect the user—indeed require the user—to proceed through each part of the
application in a certain, predetermined order. We can’t, for example, display user
profile details without first selecting the username. The nature of the web however,
can disrupt the rigid flow we’ve come to expect from applications.

Unlike traditional applications, web-based programs are forced to deal with
strange interruptions that may occur in the expected flow of a program due to the
inherent stateless request/response behavior of the HTTP protocol. The user can
hit the Back button on the browser, hit reload, prematurely abort an in-process
request, or open new browser windows at any time. In an application involving
transactions, the application may require that certain activities happen under very
specific circumstances or after certain prerequisites have been met. For example,
you can’t save a modified entry until you have first retrieved the original from the
database; you can’t delete an item until you have confirmed your selection; you
can’t submit an order twice, and so forth.

Page-centric design 233

In a traditional, off-line application, the developer has full control over the pro-
gram flow. Each step in the application’s process logically flows through the
program. A JSP application is a different story all together. Web applications are vul-
nerable to irregularities in the program flow. We’re not talking malicious intent; it’s a
perfectly innocent action on the part of users, conditioned to browsing traditional
web pages. They may bookmark the application halfway through the process, or may
click the Back in an attempt to go back to a step in the application. Or, they may
abort the request prematurely or attempt to reload the page. In any case, they break
the program flow we might normally expect. It is the responsibility of the JSP appli-
cation to ensure that proper program state and application flow is maintained.

10.1.2 Architectural approaches

10.2

Possibly the biggest choice you face in designing a JSP application is determining
how to separate the responsibilities of presentation, control, and application logic.
There are two basic approaches to take when architecting a JSP application: page-
centric and servlet-centric.

In the first approach, control and application logic responsibilities are handled
by the JSP pages themselves; in the second, an intermediate servlet (or servlets) are
used. Cleanly separating a JSP application into presentation, control, and applica-
tion logic subsystems makes it easier to develop, understand, and maintain.

Page-centric design

In the page-centric approach an application is composed solely of a series of interre-
lated JSP pages that handle all aspects—the presentation, control, and the applica-
tion logic. In this approach client requests are handled directly by JSP pages that
perform whatever tasks are necessary, including communicating with back-end data
sources, performing operations, and generating dynamic content elements.

All of the application logic and control decisions about which page to visit next
will be hard coded into the page itself or expressed through its beans, scriptlets, and
expressions at run time. Commonly, the next page visited would be determined by a
user clicking on a hyperlink anchor, for example , Or
through the action of submitting a form, <FORM ACTION="processSearch.jsp">.

10.2.1 Role-based pages

In the page-centric design model, each JSP page has a very specific role to play in
the application. One page might display a menu of options, another might provide
a form for selecting items from the catalog, and another would be needed to

234

CHAPTER 10
Avchitecting JSP applications

complete the shopping process. How a typical application might flow between these
different pages is illustrated in figure 10.2.

We’ve combined the application logic and program flow layers of our applica-
tions at the page level. This doesn’t mean that we lose our separation of presenta-
tion and content. We can still use the
dynamic nature of JSP and its support f |
for JavaBeans components to keep
things squared away. We’ve just elected
to use the JSP pages as containers for
the application’s control and logic, —
which ideally would still be encapsu-
lated into discrete components wher-
ever possible.

menu.jsp catalog.jsp checkout.jsp

4

Figure 10.2 Page-centric program flow

A simple page-centric application

Here’s a simple example of a trivial, two-page application using scriptlets for the
application logic. In this application (and we are using the term very loosely) we are
creating a system for rebel command to help sign up new recruits for Jedi training.
Perhaps the most important part of the process is determining the Jedi name given
to new recruits. This highly scientific calculation involves manipulating the letters of
the user’s first and last names with that of the hometown and mother’s maiden name.
This is a pretty typical two-step form application. The first page, jediform.html,
contains an HTML form, which collects the information needed to perform process-
ing, while the second screen, jediname. jsp, calculates and displays the recruit’s new
name (figure 10.3). The source codes for the operations are in listings 10.1 and 10.2.

Listing 10.1 jediform.html

<html>

<body>

Jedi Registration Center

<form action="jediname.jsp" method="post">

<input type="text" name="firstName"> First Name

<input type="text" name="lastName"> Last Name

<input type="text" name="mother"> Mother's Maiden Name

<input type="text" name="hometown"> Hometown

<p>

<input type="submit" value="Signup Now! ">

</form>

</body>

</html>

Page-centric design 235

’a http://localhost/jediname.jsp - Microsoft Internet Explorer [H[=] B3

| Ele Edt View Favortes Tools Help ‘

j ERes o ‘ a @
Back Forward Stop Refresh Home Search Favorites

| Address [@] hitp://localhost/jediname.isp ~| @6o

-

Jedi Registration Center

Rafe Colburn of Texas, house of Torkelson, your
Jedi name 1s Col-Ra Totex.

Thank you for signing up to fight the empire. Your
training will begin soon. MMay the force be with

you...

Sten up another recruit

N

|&] Done || [T% Localintranet

Figure 10.3 A page-centric application

Listing 10.2 jediname.jsp

<html>

<body>

<%
String firstName = request.getParameter ("firstName") ;
String lastName = request.getParameter ("lastName");
String mother = request.getParameter ("mother") ;
String hometown = request.getParameter ("hometown") ;

String newFirst = lastName.substring(0,3) + "-" +
firstName.substring(0,2);

String newLast = mother.substring(0,2) +
hometown.substring(0,3) . toLowerCase() ;

String jediname = newFirst + " " + newLast;
%>
Jedi Registration Center
<p>
<blockquote>

<%= firstName %> <%= lastName %> of <%= hometown %>,

house of <%= mother %>, your Jedi name is <i><%= jediname %></i>.
<p>

Thank you for signing up to fight the empire.

Your training will begin soon. May the force be with you...

236

CHAPTER 10
Avchitecting JSP applications

</blockquote>

Sign up another recruit
</body>

</html>

Application flow is maintained through the form action in the first page, and
through the anchor tab on the results page. The pages are tightly coupled in this
case. Not only do they need to sync up request parameters, but they must be aware
of each other’s URLs.

10.2.2 Managing page flow with action targets

One benefit of the page-centric application is the straightforward approach to page
flow. It is immediately obvious to someone working on the application or web site
what the intended flow is between pages because every page is explicitly referenced
through form actions and anchor links. With a servlet-centric application the devel-
oper must examine the web application’s deployment descriptor and servlet source
code to determine how the application is processed. If your application logic is not
hidden behind custom tags, then this approach tends to do a poor job of separating
application and presentation logic. A compromise exists however, allowing you to
keep an obvious and straightforward application flow while minimizing the mixing
of application code and presentation. This approach, which we call action targets,
isolates your application code into JSP pages whose only responsibility is processing
a request and then forwarding the request on to another HTML or JSP page respon-
sible for the presentation.

In this approach, which works particularlly well with form driven applications,
the JSP page targeted by a form submission contains a JSP scriptlet which processes
the request. This page is the action target. After processing, and possibly dependent
on the outcome of the processing, the request is directed to the next page in the
application.

The redict may be either a server-side redirect via a request dispatcher, or more
commonly, a client-side redirect courtesy of HttpServletResponse.sendRedi-
rect (). A client-side redirect actually sends a response header back to the client,
redirecting it to another URL. No content is returned from the action target in
either case. If you make use of the request dispatcher’s forward () method, the
original request is preserved and accessible by the presentation page. In the case of
a client-side redirect, the request received by the presentation page is not the same
request delivered to the action target. It does not contain request parameters, or
attributes. It is possible to pass the request parameters to the presentation page by
dynamically constructing the redirect URL to contain the appropriate parameters, in

Page-centric design 237

typically GET request fashion. You may also encode request parameters onto the
URL to pass information from the action target. Take for example this action target
for handling a bank account transfer. If the transfer succeeds, there is a single success
page to visit. If it fails however, you want to include a brief error message. We could
code this as shown in the following action target, taken from a banking application.
In it, it receives information from an HTML form used to initiate a funds transfer.

<%

String src = request.getParameter (“srcAccount”) ;

String dest = request.getParameter (“destAccount”) ;
String amount = request.getParameter (“amount”) ;

int result = BankManager.instance () .transfer(src, dest, amount) ;

if (result == 0) {
response.sendRedirect (“transferSuccessful.jsp?amount=" + amount) ;
}
else {
String msg;
if (result == 100)
msg = “Insufficient Funds”;
else if (result == 200)
msg = “Destination Account Invalid”;
else if (result == 300)
msg = “Source Account Invalid”;
else
msg = “Unknown Error: Transfer Failed”;

// encode the msg for for use as a request parameter
response.sendRedirect (“transferFailed.jsp?msg=" + msg) ;

00—

>

In the example, the hypothetical BankManager class actually attempts to perform
the transfer, returning a result code to indicate the success or failure. In this case, a
code of 0 indicates that everything went okay, while other codes are used to report
error conditions. After processing, the client is redirected to either transferSuccess-
tul.jsp or transferFailed.jsp for presentation, which would presumbably give the user
appropriate feedback. We’d like to show the amount of the transfer on the success
page, but with a client-side redirect the original request parameters are lost. There-
fore, we pass the value of the amount parameter to the success page through a GET
parameter. Moreover, the failure page is passsed a request parameter, msg, which
contains the reason for the failure as determined by the result code returned from
the BankManager’s transfer method.

238 CHAPTER 10
Avchitecting JSP applications

WARNING Unlike the request dispatcher and the <jsp:include> tag, the path refer-
enced in the response.sendRedirect () method is absolute to the docu-
ment root of the server, not the servlet context. If you want to redirect the
client to another document within your web application, you must prepend
the servlet context to the path, as you must do with HTML references. For
example:
<%
response.sendRedirect (request .getContextPath() + “

/destination.jsp”) ;

o°
\

Another fact that may influence the type of redirect to use (server or client) is how
you want the browser to react. Using a request dispatcher preserves the original
action URL in the browser, while a client redirect actually sends the browser to
another URL.

The code in the action target could just as easily have been placed into a servlet
(see the section of this chapter on developing servlet-centric applications), to create
an additional layer of abstraction between the presentation and logic aspects.
Whether this is a benefit or a hinderence to your project depends on a number of
factors, including your comfort level with servlets and WAR files, as well as who will
be working with the code most often and their familiarity with the application as a
whole. One situation where the action target technique can be particularly helpful is
during testing and debugging. If there is a problem with a particular form on the
web site or application it is trivial for someone unfamiliar with the code to determine
the source of the problem, even without access to the source code. If a form submis-
sion is going through a servlet reference specified in a web application, the tester
may be unable to determine where the request started and where it is going without
a good understanding of servlets, WAR files, and your application’s architecture.

10.2.3 Building composite pages

The idea of creating composite pages expands on the single page approach illus-
trated earlier but doesn’t change the fact that application presentation, logic, and
control systems are confined to a series of JSP pages. However in this design style
we combine a collection of small component pages, containing either HTML or JSP,
to create each screen in the application. This is accomplished through the use of the
<jsp:includes> action and the <%@ includes directive.

Page-centric design ‘ 239

Reducing complexity through decomposition
The composite page structure is a good approach

when the pages that make up your application (or _—| |TEMDETAILS
web site) are composed of a number of complex |header,jsp|
dynamic elements. For example, to display details Commodore 1541

of a catalog item we might break the page into Eig’fﬁ%f“
several elements—a site standard header contain- detailsjsp | |Aligned?: Sometimes
ing navigational elements and branding, the

details of the item itself, and a footer to close the
page. Each of these elements can be either static,

such as a snippet of HTML code, or dynamic—

another JSP file. We can take this strategy a step Figure 10.4 Component page
further by building our composite page of ele-

ments which are also composite pages themselves—iteratively breaking down each
element into more manageable structures. Each portion of the page comes from a
separate JSP or HTML file, as shown in figure 10.4.

As illustrated, the header and footer files might be static HTML elements. We
would then use the <%@ include %> directive to load the contents of the files in at
run time. The item we wish to display however, might apply a boilerplate approach,
by creating a JSP template, which we reuse throughout the site. This gives us the
ability to isolate the presentation of an item’s details (which might involve complex
HTML code) from the higher-level layout of its containing page. The page designer
could choose to include the item information anywhere on the page, and in any
context desired.

At run time, the primary page and any of its dynamic elements will not have to
be recompiled by the JSP engine unless they themselves have changed—static con-
tent is included dynamically and not through the compilation process. For example,
a change to the header file will show up at run time, but will not compile a new ver-
sion of'its containing JSP page each time. An excerpt from such a compound catalog
page code might look like this:

<html>

<body>

<jsp:include page=”/headers/support_ section.jsp” flush="true”/>
<center><h2>Catalog Item 7423</h2></center>

<jsp:include page="/catalog/item7423.jsp” flush="true”/>

<hr>

<jsp:include page="/footers/standard.html” flush="true”/>
</html>

</body>

240

CHAPTER 10
Avchitecting JSP applications

We can concentrate on the design of each portion of the page independently of the
system as a whole. This also gives us the ability to change the design at any time,
from a single point.

Constructing dynamic page components
Let’s not overlook the fact that you can pass information to your composite page ele-
ments through the request to provide page-specific or dynamic behaviors. For exam-
ple, when we call the page we specify the title through a request parameter:
<jsp:include page="/headers/basic.jsp” flush="true”>

<jsp:param name="title” value="About Our Company”/>

<jsp:param name="bgcolor” value="#FFFFFF” />
</jsp:include>
And then in the /headers/basic.jsp file we retrieve the request parameters, and use
JSP expressions to include their contents as part of the content we return through
the include tag:
<html>
<head><title><%= request.getParameter (“title”) %></title></head>

<body bgcolor="<%= request.getParameter (“*bgcolor”) %>">
<HR>

Or, revisiting our catalog item example, we might provide a more complex page
component that allows you to pass in parameters to determine which catalog item
to display.
<jsp:include page="/catalog/fetchlItem.jsp” flush="true”>

<jsp:param name="item” value="7423"/>
</jsp:include>
We could of course configure the item parameter at run time, based on input
parameters, giving us an even more useful dynamic page.

<jsp:param name="item” value="<%= request.getParameter (“item”) %>"/>

Any beans or other objects that have been loaded into request or application level
scope will be available to pages included through the <jsp:includes action.
Objects created in the default page level scope will not be available.

Component architecture, revisited

In many ways, the composite page view pattern mirrors the component architec-
tural strategies we discussed in the chapter 7. We have broken out various content
elements from our page design in order to improve the reusability and ease the pro-
cess of presentation design and development. The approach we have used here,

Page-centric design 241

factoring out the dynamic portions of the page, is a good way to build up a com-
posite page and reduce the complexity of any given JSP page.

The composite page approach provides excellent benefits among collections of
pages that can share common elements. By factoring out reusable, redundant infor-
mation and isolating it to its own files, we get two advantages. First, we reduce the
number of files involved by reusing common code. Second, we improve our ability
to manage site and application design by gaining the ability to delegate engineering
and design resources to discrete subsections of the application—without the poten-
tial for stepping on each other’s toes.

10.2.4 Limitations of the page-centric approach

A page-centric design is very simple from an architectural perspective. Because there
are few moving parts, little abstraction, and a minimum of layers it can be a good
approach for individuals and small teams of developers savvy in both HTML design
and Java development to quickly create dynamic web pages and simple JSP applica-
tions. Because a page-centric approach requires less overall code it may also be a
good choice for developing prototypes. However, for an application of any com-
plexity, the page-centric approach suffers from a number of problems.

Maintainability

Because the JSP pages that compose the application contain both presentation and
logic/control code, the application can be difficult to maintain. Significant min-
gling between HTML and JSP code blurs the distinction between web page designer
and Java coder, often requiring a high degree of interaction between developers.

Flow contol

The inherent flow control issues of web applications can lead to a number of prob-
lems unless you take the proper steps, coding your JSP pages defensively to be pre-
pared for receiving requests out of sequence. Since each segment of a page-centric
JSP application is its own page represented by its own URL, there is really nothing
to stop a user from executing the pages out of order. Each page of your application
must check for valid request parameters, verify open connections, watch for chang-
ing conditions, and generally take an assume-nothing approach with regard to the
order of operations of your pages. As you can imagine, this quickly becomes
unmanageable for all but the simplest applications. A servlet-centric approach,
which we discuss next, helps centralize flow control and reduce the complexity of
the individual pages.

242

10.3

CHAPTER 10
Avchitecting JSP applications

Serviet-centric design

Another, often more manageable approach to application design with JSPs is to use
its pages only for presentation, with the control and application logic aspects of the
application handled by a servlet, or group of servlets, on the back end. In this
approach, requests are indirectly routed to the JSP front-end pages via a servlet,
which performs whatever actions are needed by the application. A servlet can do
any or all of three things for the application:

» Perform actions on behalf of the JSP, such as submitting an order
« Deliver data for display, such as a database record, to a JSP

» Control flow between related JSP pages in an application

After performing the task the servlet forwards the request on to the appropriate JSP,
or, for that matter, a static HTML page. This approach is illustrated in figure 10.5.

If you are familiar with the mediator design pattern, this is the same approach
only applied to the JSP pages and other components of our application rather than
Java objects. In the mediator pattern we create a centralized component, in this case
a servlet, whose job it is to control how the other components of the application
interact with each other and the application’s data resources. This approach loosens
the coupling between the pages—allowing them to interact without having to be
directly aware of each other, and improves the abstraction between presentation
and application logic.

The goal in this approach to application design is to minimize the amount of
work being done in the pages themselves, relying instead on application dedicated
servlets to handle such aspects. This approach eliminates complexity from the front-
end JSP code, reducing them to pure data display and input collection activities.
Likewise, we eliminate the

need for embedding presenta-

tion information inside the Client Serviet ‘_mﬂ
servlets. The servlets in this AN
case should be concerned only

with application flow and gen- JSP
erating the data needed by the
JSP pages for presentation to

the user.

Figure 10.5 Program flow in a servlet-centric
application

Serviet-centric design 243

10.3.1 Hello, World—with serviets

Like any good programming book we started this one off with a couple of “Hello,
World” examples—using JSPs with scriptlets and beans. We’ll now add another one,
using a servlet-centric approach. The request will actually come in to the servlet,
which will in turn forward it on to this JSP page (helloFromservlet.jsp):

<% String msg = (String)request.getAttribute(“message”); %>

<html>

<body>

<%= msg %>

</body

</html>

As you’ll notice we aren’t creating any beans here. The getattribute () method of
the request here is the key. It’s similar to getParameter ()—it pulls information
from the request—but deals with any object rather than just simple strings. Later
in this chapter we’ll learn more about how we can use getattribute () (and its
companion the setAttribute () method) to pass beans from servlets to JSP pages.
For now though, just understand that it’s looking for an object with an identifer of
message and retrieving it from the request. How did it get there? The servlet put it
there! Remember that this page is not designed to be called directly, but rather pass
through our servlet first. The code for our servlet is:

package com.taglib.wdjsp.arch;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {
public void service (HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
String theMessage = "Hello, World";
String target = "helloFromServlet.jsp";
reqg.setAttribute ("message", theMessage) ;
RequestDispatcher rd;
rd = getServletContext () .getRequestDispatcher (target) ;
rd.forward(req, res);
}
}

When this servlet is called, it creates a “Hello, World” String object, places it into
the request with the identifier of "message", creates a RequestDispatcher (a
mechanism for finding servlets and JSP pages) for our JSP page, and forwards the
request to it. Notice that the servlet hasn’t done any presentation. There is not a

244

CHAPTER 10
Avchitecting JSP applications

single out .println() in there! The dynamic information is generated by the serv-
let, but it’s the JSP page that is in charge of displaying it. We’ve taken all of the
application logic from the JSP and moved it to the servlet. While you should be
familiar with the basics of Java servlets for this section, don’t worry if you aren’t
familiar with the new Servlet API features that JSP uses. We will cover those next.

10.3.2 JSP and the serviet API

There are a number of additions to the Servlet AP with releases 2.1, 2.2, and 2.3
that enable the combination of JSPs and servlets. We’ll quickly cover the relevant
additions to the Java Servlet API and explain how they enable a servlet-centric
approach to JSP application design. Visit Sun’s site (http://java.sun.com/products/
servlets) for more details.

Controlling flow: the RequestDispatcher
We’ve talked about passing control from the servlet to the JSP, but we haven’t
explained how to do this. Servlet API 2.1 introduced the RequestDispatcher
interface that allows you to forward processing of a request to a JSP or another
servlet, or call and include the output from a local document (a JSP, a servlet, an
HTML page) into the existing output stream. A RequestDispatcher object is cre-
ated by passing the URI of cither the JSP page or the destination servlet to the
getRequestDispatcher () method of either the incoming request object, or the
servlet’s ServletContext. The ServletContext’s method requires an absolute
URI, while the request object’s method allows you to use relative paths. The path
is assumed relative to the servlet’s request object. If the servlet that calls the
methods in the following bit of code is mapped to the URI /store/fetchOrder-
Servlet, then the following methods are equivalent.
req.getRequestDispatcher ("showOrders.jsp")
getServletContext () .getRequestDispatcher (" /store/showOrders.jsp") ;
Why go through a RequestDispatcher if you already have the URI? Many things
could affect the actual destination of the request—a web application, servlet map-
pings, and other server configuration settings. For example, the absolute path is
rooted at the application level (which we will learn more about in chapter 14),
which is not necessarily the same as your web server’s document root. Once you
have a RequestDispatcher object you can forward the request on, or include the
output of the specified servlet JSP page in the output of the current servlet.

Once you have created a RequestDispatcher object corresponding to your JSP
page (or another servlet for that matter) you have two choices. You can either hand
control of processing the current request over to the page associated with the

Sevviet-centric design 245

RequestDispatcher with the forward () method, or you can include its contents in
your servlet’s response via the include () method. The include () method can be
called at any time, but if you have done anything in your servlet to generate output,
such as written to the output stream, trying to call forward () will generate an
exception. Both methods need a reference to the current request and response
object. The signatures of these two methods of the RequestDispatcher class are:
public void include (HttpServletRequest, HttpServletResponse)

public void forward (HttpServletRequest, HttpServletResponse)

As we will soon see, it is the RequestDispatcher that allows us to use servlets in
the role of application controller. If the servlet code needs to perform any sort of
output at all, it simply does its job, then forwards the request for handling by the
JSP page. This is not a browser redirect—the browser’s view of the URL will not
change. The processing of the page is handled entirely by the server and the user
will not experience a page reload or even see the URL of the JSP page. Note that a
call to RequestDispatcher. forward() does not exit the doGet or doPost once the
destination page has been executed. Any code that follows your forward statement
will be processed once the request has been handled. Therefore it is important to
include an empty return statement following your forward call to prevent the
unwanted execution of additional call.

Passing data: request attributes

Request attributes are objects that are associated with a given request. Unlike String
values, which can be expressed through request parameters, request attributes can
be any Java object. They are placed into the request by the servlet container—usu-
ally to pass information between the servlet and another servlet or JSP page.

WARNING Attribute names beginning with java., javax., sun., and com.sun. are
reserved for internal usage by the servlet container and should not be used in
your application. A good way to avoid attribute collisions between applica-
tions running on the same server is to use your package identifier as a prefix
to your attribute name. The same approach applies for storing attributes in
the session as well. If you need to maintain a consistent set of attribute
names throughout a number of classes, consider defining them in a common
interface that can be implemented by your servlets or other classes which
need to refer to them.

246

CHAPTER 10
Avchitecting JSP applications

Setting and getting request attributes is quite straightforward; simply use these two
methods of the servletRequest object, and remember that when retrieving an
object stored as a request attribute, you’ll have to cast it to the appropriate class.

public void setAttribute (String name, Object o)
public Object getAttribute (String name)

It is request attributes that enable servlets to handle application logic by providing a
portable mechanism to exchange data between servlets and JSP pages. The data
resulting from an operation, such as a database lookup, can be packaged into a bean
or other object and placed directly into the request, where the JSP page can retrieve
it for presentation. We’ll discuss this concept in more detail later.

Effects of dispatching on the request

It is important to understand that when the RequestDispatcher transfers the
request to a JSP page it modifies the path information in the request object to
reflect the URL of the destination page. If you attempt to read the path information
(such as with HttpUtils.getRequestURL () or getServletPath()) you will see
only the JSP page URL, not the servlet URL as originally requested. There are a few
exceptions to this rule. If you use the include () method rather than the for-
ward () method, the servlet container will create the following request attributes to
reflect the original path requested:

javax.servlet.include.request_uri

javax.servlet.include.context path

javax.servlet.include.servlet path

javax.servlet.include.path_info

javax.servlet.include.query string

You can retrieve these request attributes if you need to determine the original
request. For this reason, if your JSP pages need to connect back to the original
servlet targeted request, and you want to determine the servlet’s path at run time,
you will have to use RequestDispatcher.include () in your servlet, rather than
forwarding control on to the JSP directly.

There is another type of RequestDispatcher called the NamedRequestDis-
patcher that allows you to reference servlets by a logical name assigned to them at
deployment time. A NamedRequestDispatcher can be obtained by calling the get-
NamedRequestDispatcher () method of the ServlietContext. When using the
NamedRequestDispatcher the request information is left intact, and is not modified
to map to the new servlet. Servlets are named for these purposes as part of the Serv-
let API’s web application packaging process—which we’ll introduce in chapter 14.

Serviet-centric design 247

10.3.3 Serviets for application control

One important role servlets in this architecture can play is to proxy transactions
between the individual JSP pages that compose the front end of the application. By
making certain that each HTTP request is first handled by a centralized controlling
servlet, we can better tie the pages together by performing tasks that span the scope
of any single page, such as authentication, and ensure that the application maintains
proper state and expected flow between components.

Enforcing application level requirements
For example, we could use our con-
trolling servlet to enforce proper il il LG
authentication for accessing any &
portion of our application. Unau- N
thenticated users would be detoured
through a logon subsystem, which
must be successfully completed,

before arriving at their destination.
Rather than try to build this com-
plexity into each JSP page making
up our application, we handle each
request that comes in through the mediation servlet.

In this architecture the servlet is managing flow through the application, rather
than the flow being driven by HTML anchor links and forms hard coded into each
JSP page. This eliminates some of the flow control problems inherent to HTTP-
based communications as we find in a page-centric application. The page-centric
application design we built earlier could be redesigned with a servlet-centric
approach to JSP application development as shown in figure 10.6.

Servlet

Figure 10.6 A servlet-centric catalog

Directing application flow

Directing application requests through a servlet shields JSP presentation code from
the complexities of application flow. We can use a servlet to provide a single URL
that will serve as our application’s entry point and encode the logical program flow
into the servlet. After being called, the servlet determines the appropriate action to
take, then uses a RequestDispatcher to route data to the appropriate JSP page. A
submitFeedback.jsp page delivers its data to our controlling servlet, and doesn’t
have to know that the next step is to send the user back to the main web page.
Compare this to one JSP page calling another. This approach not only leaves our
pages free of application logic, but allows us to reuse them for several purposes,

248

CHAPTER 10
Avchitecting JSP applications

even across applications, because they have been reduced to their essence—as pre-
sentation devices.

One technique for managing this flow is by employing a screen mapper, a data
structure that can associate a logical name with each of the screens that make up
your application. Then, your servlet deals with application flow as a series of logical
screen names, rather than actual file names. For example, a page featuring an input
form asking for information for a new employee, might be logically mapped to the
ID NewEmployeeForm and might refer to the URL /forms/employees/new.jsp. If
you place your mappings into a property file, or even a database, you can make
changes to the program’s configuration without having to edit your servlet code.
Although centralized storage permits sharing between applications, even something
as simple as a hash table, initialized in your servlet’s init () method, will help better
manage your logical to physical file mapping.

10.3.4 Serviets for handling application logic

Servlets provide an excellent mechanism for creating reusable services for your JSP
pages. Provided with the inputs (such as a purchase order number or customer ID)
it can deliver your page the data it needs, via request attributes. You can create as
many servlets for your application as needed: one that fetches purchase orders, one
that grabs customer data, and so forth. Alternatively, you can wrap up all of your
application’s functionality into a single servlet, and use request parameters to direct
the action to be taken.

Servilets provide services

In the case of an application displaying an item’s detail information from the database,
the servlet might get the item’s ID from the request, perform the lookup, and pack-
age the item information into a bean. This bean could then be added to the request
before forwarding control on to the JSP page containing the item presentation
HTML. In the JSP page, we would be able to retrieve the bean from the request, and
display its information accordingly. For example, we’ll grab a PurchaseOrderBean
and place it into the request object under the name po. In this example assume that
getPurchaseOrder () uses the ID passed in from the JSP form to retrieve a record
from the database. The service () method of our servlet would look like this:

String id = request.getParameter (“id”) ;

PurchaseOrderBean bean = getPurchaseOrder (id) ;
request.setAttribute (“po”, bean) ;

RequestDispatcher rd;

rd = getServletContext () .getRequestDispatcher (“/DisplayOrder.jsp”) ;
rd.forward (req, res);

Serviet-centric design 249

To get a reference to the PurchaseOrderBean we can cither use the <jsp:useBeans
tag, specifying request scope, or the getattribute () method of the request object to
reference the object in a scriptlet, casting it to the appropriate type.

<jsp:useBean name="po” class="PurchaseOrderBean” scope="request”/>
Purchase Order Number: <jsp:getProperty name="po” property="number”/>

or

<jsp:useBean name="po" class="PurchaseOrderBean"/>
<% po = (PurchaseOrderBean)request.getAttribute(“po”); %>
Purchase Order Number: <jsp:getProperty name="po” property="number”/>

The servlet in this case is acting as a service for the JSP page.

10.3.5 Serviets as single entry points

If we send all of our requests through a single servlet we must encode action infor-
mation into the request to declare our intentions—such as adding an item to the
database or retrieving an existing one. We can do this through request parameters,
using hidden form elements, URL encoding, or appending extra information after
the base servlet path. For example, if the URI for the servlet controlling your appli-
cation were /servlet/catalog, you could signal the desire to look up item 123 as
follows by encoding request parameters:

/servlet/catalog?action=1lookup&item=123

Another way to accomplish the same thing is by tacking additional information
onto the end of the URI, which the servlet can pick up through the getPathInfo ()
method of its request object.

/servlet/catalog/lookup/123

The scheme by which you choose to communicate your progress is irrelevant, as
long as you can easily retrieve the request information. Using request parameters
makes it easy, since the servlet has built-in support for processing them. On the
servlet side, we use these request parameters to determine where we are next
headed in the application and to pass along any relevant information (such as the
item code in the previous two examples). Once the desired action has been deter-
mined in the servlet, it can decide what needs to happen next.

Utilizing the command pattern

Many servlet-centric JSP applications involve command-oriented architecture.
Requests from each JSP page include some sort of command identifier, which trig-
gers behavior in the servlet or otherwise directs program flow. The command

250

CHAPTER 10
Avchitecting JSP applications

pattern, a design pattern (a commonly understood programming technique) famil-
iar to GUI programmers, can help us better structure our servlet by reducing com-
plexity and improving the separation between control and application logic.

Using this design pattern, we encapsulate each command our servlet can handle
into its own class—allowing us to break their functionality out of the main servlet
code. When a request comes in from the JSP page, the servlet dispatches the request
to the particular object associated with performing that command. The knowledge
of how that command corresponds to application logic is the domain of the com-
mand object only; the servlet merely mediates the request between the JSP and the
command object. Consider this simple excerpt from a servlet’s service () method
which can dispatch a command request to our command class based on the com-
mand identified through the request.

String cmd = reqg.getParameter (“cmd”) ;

if (cmd.equals (“save”))
SaveCommand saver = new SaveCommand () ;
saver.save(); // do its thing

1

if (cmd.equals(“edit”)) {
EditCommand editor = new EditCommand() ;
editor.edit(); // do its thing

}

if (cmd.equals (“remove”)) {
RemoveCommand remover = new RemoveCommand () ;
remover.remove (); // do its thing

}

Without utilizing the command pattern, each if block of our servlet would have to
contain all of the logic necessary to perform the command as requested. Instead, we
now have a reusable, encapsulated set of behavior that makes our code clearer and
more ecasily understood and has the added benefit of being able to be developed
and tested independently of the web application itself. While the example code is an
incremental improvement, what if our application has dozens of commands? We’ll
end up with a huge cascading group of if/then/else blocks.

We can improve on the example by eliminating the servlet’s need to understand
the exact relationship between a request command and the command object itself.
If we create a common way to handle all command objects, the servlet can treat
them all the same, in a single command-processing loop. Through an interface we
can create a common way to perform each command, without having to under-
stand its specifics. We treat the request command string as a unique identifier to
obtain the particular type of command object we require. Once we get a reference
to the appropriate command, we can call the methods defined in its interface to

Sevviet-centric design 251

actually perform the command. Consider the following code excerpt, where Com-
mand is a common interface implemented by all command objects, and the com-
mandFactory class maps command identifiers to specific command objects,
returning the appropriate object as type Command.

Command cmd = CommandFactory.getCommand (request.getParameter ("command")) ;
cmd.execute () ;

This code is the heart of our servlet, and can handle any command with just those
tew lines. In the event that an unknown command comes through, we can have
CommandFactory return a valid command object that doesn’t actually do anything
but throw an exception, or perform default behavior. There are a number of strate-
gies for mapping command identifiers to Command classes. We can employ a simple
HashMap for example. Another useful technique is utilizing the class. forName ()
method to create a Command instance dynamically using the command identifier
itself. Consider the following code snippet:

String cmdID = request.getParameter (“command”)) ;

Command cmd = Class.forName (cmdID + “Command”) .newInstance() ;

In the example we combine the command identifier in the request with the string Com-
mand, and attempt to locate the appropriate class. For example, if the command passed
in were GetUser then we would try to create an instance of the GetUserCommand class.
This technique requires you to establish a naming convention among your command
handlers, and can get more complicated if you need to support several different types
of constructors. The command pattern is an excellent way to simplify JSP /servlet inter-
action. In chapter 11 we will use the command pattern in a full length JSP application.

Ensuring transaction integrity

As we discussed earlier, web applications suffer somewhat from the stateless
request/response nature of the HTTP protocol. Reloading a page or clicking Back
can reissue requests or call them out of sequence—something we want to be sure to
catch in a mission-critical application.

One way to solve this continuity problem is by recording a token in the user’s
session upon completion of activity prerequisites and requiring this token in the
second step. When a request comes in to perform the second step of the transac-
tion, the servlet can first verify that the prerequisite has been met by retrieving the
token from the session. Once completed, the token is removed from the session. A
token then gives the servlet the ability to perform an action, but only once. Second-
ary requests will find no matching token and can raise an exception. Depending on
your application’s requirements you can maintain either a list of tokens—which

252

CHAPTER 10
Avchitecting JSP applications

would simultaneously support multiple browser windows from the same user—or a
single token, which is overwritten each time.

Let’s say your transaction is purchasing an item from your store. The final steps
of your checkout process are handled by checkout . jsp, a page that contains a form
requesting the selections and asks for final confirmation. Clicking Confirm places an
order for each item on the page, and then shows thankyou.jsp which thanks the
visitor for the order. What happens if the user hits Reload at this point, or Back?
Remember that as far as the browser is concerned it is submitting the contents of a
form. It doesn’t matter if a servlet or another JSP is receiving the action, the
browser will remember the request parameter contained in the form and deliver it
to its handler. Clicking Reload essentially repeats the process—resulting in the
placement of a duplicate order.

To add our transaction token scheme to this example, we have to have both
pages fall under the control of servlets (or the same servlet). When the user goes to
check out, the servlet should first generate a single-use token and store it in the ses-
sion before directing the request to checkout . jsp where we include the token as a
hidden form element. When the form is submitted, the servlet verifies that the
token in the form and the token on the server match. It then performs the action,
and revokes the token before proceeding on to thankyou.jsp.

If the user were to click Reload on the thank-you page, the form action would
be resubmitted, but this time there would be no corresponding token indicating to
the servlet that it was all right to proceed with the transaction. The servlet could
then decide to just ignore the duplicate request

and reload thankyou.jsp. This process is illus- Servlet Session
. | tok
trated in figure 10.7. | R Token
One technique for generating a simple trans- | [\
. . . . Issue token Submit form
action token that is both unique to each session | \
and nonrepeatablc throughput the application is o ¥ % \
by computing a message digest from the user’s % %
. . . [®)
unique session ID and the current system time. 9%'& %,
In chapter 11 we will apply this technique as part
of our example application. Figure 10.7 Transaction

10.3.6 Handling errors in the servlet

If in the course of normal application events your servlet encounters an unexpected
error, you have the option of passing the error on to a JSP error page. This keeps all
of your exception handling and error processing consistent throughout the applica-
tion, regardless of whether errors crop up in the JSP pages themselves or your

Sevviet-centric design 253

3 Employee Record - Microsoft Internet Explorer M= E3

J File Edit View Favortes Tool: Help ‘

J e) AN R ‘%- =] .
Back Earward Stop Refresh Home Search Favorites History b ail Print Edit

J Links ”IJAgdress I@ http: #/slide/serviet/FetchE mployee?id=10002 j o Go

[

Gregg, Preston
. 7 B | Full Name: Preston Gregg
; Foy Employee ID: 10002
Department: Marketing
E-mail: poregs@site

N Rl

|&] Done [| [5® Local intranet
Figure 10.8 An employee’s ID card

servlets. Simply catch the exception (which can be any subclass of Throwable) and
put it into the request object under the name javax.servlet.jsp.jspException.
Next use an instance of RequestDispatcher to forward your request on to your
error handling page. For example:

String username = req.getParameter (“user”);

if (username == null)
req.setAttribute (“javax.servlet.jsp.jspException”, new Exception (“no user-
name!”)) ;

RequestDispatcher rd = getServletContext () .getRequestDispatcher (“/error.jsp”) ;
rd.forward (req, res);

The error.jsp page in this example should be defined as a JSP error page as nor-
mal. When we stuff an exception object into the request with that attribute name
(javax.servlet.jsp.jspException) the error page will automatically create the
implicit exception object, and error handling can proceed. There is no difference
between an exception created by our servlet in this example and one being gener-
ated by an error in another JSP page.

10.3.7 Example: serviet-centric employee browser

In this example we will develop an application that browses through personnel
records of an existing database (figure 10.8). To keep things simple the user will not
be allowed to modity or add records to the database, which will be treated as read-
only. We’ll build a more complex database application later in this book.

254 CHAPTER 10
Avchitecting JSP applications

Design considerations

The employee database we are accessing may also be used by the payroll depart-
ment, the logon security system, and who knows what—or who—else. It is a good
idea therefore to design the components of this application to be as independent
from the application as possible.

We’ll need two main interfaces
in this example, one to list all of the list.jsp employee jsp
available employees, and another AN Z
that can view the details about the N /

employee selected from the list. S

The core component of our appli-
cation will be a bean, Employee-
Bean, which will encapsulate the
information we are interested in. It
will be the job of our central servlet
to handle all of the database inter-
action. The application model can be seen in figure 10.9.

Database

l‘+

Figure 10.9 The employee database application

The database

We will be accessing an existing database that is accessible through JDBC. Thanks to
the JDBC API, the Java code itself is database independent and should apply to
whatever particular database you favor. The information we wish to access,
employee records, is contained in a single table called pEOPLE_TABLE. While this was
done for simplicity’s sake in this example, spreading employee information across
several tables would only complicate the discussion and the SQL query required to
collect an individual’s information, but not our Java code. The schema for
PEOPLE_TABLE is shown in table 10.1:

Table 10.1 The PEOPLE_TABLE scheme

Column Purpose Type
ID Unique Employee ID int
FNAME First Name varchar (80)
LNAME Last Name varchar (80)
DEPARTMENT Department varchar (80)
EMAIL Email Address varchar (80)
IMAGE URL of personal photo varchar (80)

Sevviet-centric design 255

To access a particular employee’s record, say employee #1000, we can use the fol-
lowing SQL query, which should return a single record since each ID number is
unique to a single employee.

SELECT * FROM PEOPLE_ TABLE WHERE ID = 1000

We can wrap the results of this query into an EmployeeBean that encapsulates all of
the information we have about an employee. We can then use this Bean inside a JSP
page to display the information, but we will also have a reusable component that we
can apply to other applications that deal with employees and our database. Rather
than including the code for accessing information from the database inside the
functionality of our EmployeeBean or the JSP pages composing the front end, we
have chosen to create a servlet that is responsible for dealing with the database and
controlling the application.

10.3.8 EmployeeBean

The first thing we need to do is to define the JavaBean that will represent the
employee data contained in each record of the table. To do this we simply map each
column of the table to a bean property of the appropriate type. The property sheet
for a bean designed to hold a record from our PEOPLE_TABLE is shown in
table 10.2.

Table 10.2 An EmployeeBean

Name Access Java Type Example
id read-only int 1000
firstName read/write String Arlon
lastName read/write String Fields
department read/write String Engineering
email read/write String afields@headquarters
image read/write String http://server/1000.gif

The decision on what level of access to afford each property depends on how you
expect the bean to be used in the application. The id property for example is
unique to each record and will generally not be changed, even if we are editing an
employee’s details, so we will make it read-only to emphasize this fact. We still need
to be able to specify the id value at some point however—as it needs to be reflected
through the read-only property. To do so we will pass it in through the constructor.

256

CHAPTER 10
Avchitecting JSP applications

The constructor will also set all of the instance variables, which are used to store
property data, to empty strings.

public EmployeeBean (int id)
this.id = id;
firstName = "";
lastName = "";
image = "";
email = "";
department = "";

}

Of course a JSP page will not be able to pass arguments to a constructor, and
indeed won’t be able to instantiate a bean without a zero argument constructor.
We’ll provide one that simply passes a dummy, impossible id value to the primary
constructor. In this application however, we shouldn’t need to create a bean in
our JSP page anyway.
public EmployeeBean() {

this (0) ;
}
This way we can create the bean and leave it in a state that tells us that we don’t
have a valid identifier for this bean yet, such as when we are creating a record. If we
needed to construct a new database record from the data contained in the bean we
will need to create a valid identifier, usually by asking the database for the next
unique identifier. The EmployeeBean code (listing 10.3) is straightforward:

Listing 10.3 EmployeeBean

package com.taglib.wdjsp.arch;

public class EmployeeBean {
private int id;
private String firstName;
private String lastName;
private String image;
private String email;
private String department;

public EmployeeBean (int id)
this.id = id;
firstName = "";
lastName = "";
image = "";
email = "";
department = "";

}

Serviet-centric design

public EmployeeBean()
this (0);

}

public int getId() {
return this.id;

}

public void setFirstName (String firstName) {
this.firstName = firstName;

}

public String getFirstName() {
return this.firstName;

}

public void setLastName (String lastName) {
this.lastName = lastName;

}

public String getLastName () {
return this.lastName;

}

public void setImage (String image) {
this.image = image;

}

public String getImage() {
return this.image;

}

public void setEmail (String email) ({
this.email = email;

}

public String getEmail() {
return this.email;

}

public void setDepartment (String department) {
this.department = department;

}

public String getDepartment () {
return this.department;

}

257

258 CHAPTER 10
Avchitecting JSP applications

10.3.9 FetchEmployeeServiet

FetchEmployeeServlet knows how to do only two things. It can, given an
employee ID number, retrieve that employee’s information from the database and
torward it to the employee.jsp page for display, or return a Vector containing a
Bean representing each employee in the database to the 1ist.jsp page. The coding
is in listing 10.4.

Listing 10.4 FetchEmployeeServiet.java

package com.taglib.wdjsp.arch;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

import java.sqgl.*;

import java.util.*;

public class FetchEmployeeServlet extends HttpServlet ({
private final static String driver = "postgresgl.Driver";
private final static String url =
"jdbc:postgresqgl://slide.dev/emp";
private final static String user = "guest";
private final static String password = "guest';
private final static String sqgl =
"select * from people table where id = ?";
private Connection connection = null;
private PreparedStatement statement = null;
private ServletContext context;

public void init (ServletConfig config) throws ServletException {
super.init (config) ;
context = config.getServletContext () ;
try {
Class.forName (driver) ;
connection = DriverManager.getConnection(url, user, password) ;
statement = connection.prepareStatement (sql) ;
1
catch (ClassNotFoundException e) {
System.err.println("Unable to load database driver") ;
throw new ServletException("Unable to load database driver");
1
catch (SQLException e) {
System.err.println("Unable to connect to database");
throw new ServletException("Unable to connect to database");

}
}

public void service (HttpServletRequest redq,
HttpServletResponse res)

}

Serviet-centric design

throws ServletException, IOException {
String jsp;

String cmd = req.getParameter ("cmd") ;
String idString = reqg.getParameter ("id") ;
int id;

try { id = Integer.parselnt (idString); }
catch (NumberFormatException e) { id=0; }

if ("get".equals(cmd)) {
EmployeeBean bean = fetchEmployee (id) ;
req.setAttribute ("employee", bean) ;
jsp = "/employee.jsp";

}

else {
Vector list = fetchAll();
req.setAttribute("list", list);
jsp = "/list.jsp";

}

RequestDispatcher dispatcher;

dispatcher = context.getRequestDispatcher (jsp) ;

dispatcher.forward(req, res);

public EmployeeBean makeBean (ResultSet results)

}

throws SQLException {

EmployeeBean bean = new EmployeeBean (results.getInt("id")) ;
bean.setFirstName (results.getString ("fname")) ;
bean.setLastName (results.getString("lname")) ;

bean.setEmail (results.getString ("email")) ;
bean.setDepartment (results.getString ("department")) ;
bean.setImage (results.getString ("image")) ;

return bean;

public EmployeeBean fetchEmployee (int id) {

try {

ResultSet results;

synchronized (statement)
statement.clearParameters() ;
statement.setInt (1, id);
results = statement.executeQuery () ;

}

EmployeeBean bean = null;

if (results.next()) {
bean = makeBean (results) ;

}

if (results != null)
results.close() ;

return bean;

}

catch (SQLException se) { return null; }

259

260

CHAPTER 10
Avchitecting JSP applications

}

public Vector fetchall() ({
try {
Vector list = new Vector();
ResultSet results;
Statement st = connection.createStatement () ;
results = st.executeQuery("select * from people_ table");
while (results.next())
list.add (makeBean (results)) ;
return list;

}

catch (SQLException se) { return null; }

}

public void destroy()

try {
if (connection != null)
connection.close() ;
1

catch (SQLException e) { }

In the init () method of our servlet we establish a connection to the database that
will remain throughout the life of the servlet. In the destroy () method, which will
be called by the servlet container just prior to shutdown, we close this connection.
Each time the servlet is requested, service () will be called. It is here that we
encode our application’s logic and flow control. We basically support two com-
mands, get to fetch a specific employee, or anything else to create a Vector con-
taining all possible employees.

String cmd = req.getParameter ("cmd") ;

if ("get".equals(cmd)) {
EmployeeBean bean = fetchEmployee (id) ;
req.setAttribute ("employee", bean) ;
jsp = "employee.jsp";

}

else {
Vector list = fetchAll();
req.setAttribute("list", list);
jsp = "list.jsp";

}

After processing, we’ve set the variable jsp to the URI of the JSP page which should
be visited next by the application. We use a RequestDispatcher to transfer control
to that page.

Serviet-centric design 261

RequestDispatcher dispatcher = context.getRequestDispatcher (jsp) ;
dispatcher.forward(req, res);

Both fetchEmployee () and fetchall () rely on the makeBean () method, which
takes the current row of the Resultset sent to it and extracts the appropriate col-
umns to populate a newly created EmployeeBean.

public EmployeeBean makeBean (ResultSet results) throws SQLException {
EmployeeBean bean = new EmployeeBean (results.getInt("id"));
bean.setFirstName (results.getString ("fname")) ;
bean.setLastName (results.getString("lname")) ;
bean.setEmail (results.getString ("email")) ;
bean.setDepartment (results.getString("department")) ;
bean.setImage (results.getString ("image")) ;
return bean;

}
10.3.10 JSP employee list

This page receives the list of employees from the servlet in the form of a Vector
filled with EmployeeBean objects. It simply uses scriptlets to extract each one, then
builds a link back to the servlet to provide the user with a detail view of each entry.
We pass each employee’s ID number in through the link, which will allow our serv-
let to pick the proper one. The source code is in listing 10.5.

Listing 10.5 list.jsp

<%@ page import="java.util.*,com.taglib.wdjsp.arch.EmployeeBean" %>
<jsp:useBean id="employee" class="com.taglib.wdjsp.arch.EmployeeBean"/>
<html>
<body>
Current Employees
<uls>
<%

Vector v = (Vector)request.getAttribute("list");

Iterator i= v.iterator();

while (i.hasNext()) {

employee = (EmployeeBean)i.next();

%>

<a href="/servlet/FetchEmployeeServlet?cmd=get&id=
<jsp:getProperty name="employee" property="id"/>">
<jsp:getProperty name="employee" property="lastName"/>,
<jsp:getProperty name="employee" property="firstName"/>
<% } %>

</body>
</html>

262

CHAPTER 10
Avchitecting JSP applications

10.3.11 JSP page viewer

The JSP code needed to view the information stored inside the bean is fairly
straightforward. After we have a reference to the bean we simply display the values
of the appropriate properties needed for our interface. To grab the bean, which has
been placed into the request by our servlet, we specify a scope value of request and
an ID with the same identifier value used by the servlet.

<jsp:useBean id="employee" class="com.taglib.wdjsp.arch.EmployeeBean"
scope="request"/>

If the id value that we specity is not the same identifier used by the servlet when
placing the bean into the request, or if the page is requested directly rather than
through the servlet, the bean will not be found. If the bean is not found, the
<jsp:useBean> tag will, of course, create an empty EmployeeBean and place it into
the request. Once we have a reference to the bean we can use it to display the fields
extracted from the database, as we do with any other bean.

Department: <jsp:getProperty name="employee" property="department"/>

We have in essence encapsulated a database record into a JSP accessible bean with-
out muddying our page with database code. This solution also provides a high
degree of abstraction for the page designer. As far as the JSP code is concerned it
doesn’t matter where the data came from—flat file, database, input form, or an
LDAP server—the page still displays the record’s fields. This not only allows the
back-end implementation to change over time without affecting the front end, it
allows this front-end code (listing 10.6) to be reused throughout the system.

Listing 10.6 employee.jsp

<:%@ page import="com.taglib.wdjsp.arch.EmployeeBean"%>

<jsp:useBean id="employee" class="com.taglib.wdjsp.arch.EmployeeBean"
scope="request"/>

<html>

<head><title>employee record</title></head>

<body>

<table border="1" align="center">

<tr bgcolor="tan"><td colspan=2>

<jsp:getProperty name="employee" property="lastname"/>,

<jsp:getProperty name="employee" property="firstname"/>

</td></tr>

<tr><td align=left valign=top>

<img height="150"

src="<jsp:getProperty name="employee" property="image"/>"></td>

<td align=1left valign=top>

<table border=0>

10.4

10.4.1

Enterprise JavaBeans 263

<tr><td>full name:</td><td>

<jsp:getProperty name="employee" property="firstname"/>
<jsp:getProperty name="employee" property="lastname"/>
</td></tr>

<tr><td>employee id:</td><td>

<jsp:getProperty name="employee" property="id"/>
</td></tr>

<tr><td>department:</td><td>

<jsp:getProperty name="employee" property="department"/>
</td></tr>

<tr><tds<bs>e-mail:</td><td>

<jsp:getProperty name="employee" property="email"/>
</td></tr>

</table>

</td>

</tr>

</table>

</body>

</html>

Enterprise JavaBeans

The previous two JSP architectures we’ve discussed do not directly support compli-
cated transaction management and distributed architectures. The introduction of
the EJBs specification by Sun Microsystems and its adoption by major application
server companies like Netscape and IBM promises to ease and speed the develop-
ment of mission-critical applications. EJBs are positioned to play an increasingly
important role in Java applications and pair up excellently with JSPs and servlets.
However, teaching you the details of E]JBs is beyond the scope of this book. We can
only hope to introduce them to you, and leave you with an understanding of how
they fit into JSP application design.

What are Enterprise JavaBeans?

EJBs are reusable business logic components for use in distributed, multitier appli-
cation architectures. You can get up and running quickly by building applications
around EJBs you have created or by leveraging the growing number of oft-the-shelf
components. The EJB framework provides functionality that traditionally has repre-
sented the biggest challenge to creating web-based applications.

For example, if you were developing a high-end e-commerce application, you
might purchase one EJB component that performed real-time credit card approval,
another that managed your customers, and another that calculated shipping costs.
You would then tie these together within your application server by customizing the
run-time properties of the EJBs, and there you would have it—an order processing

264

CHAPTER 10
Avchitecting JSP applications

system. The application server would automatically handle sticky issues such as bal-
ancing loads, maintaining security, monitoring transaction processes, sharing
resources, ensuring data integrity, and so on.

10.4.2 JavaBeans vs. EJBs

How do EJBs and JavaBeans relate? They actually don’t have much in common
from a technical perspective, even if the philosophy behind them—enabling devel-
opers to take advantage of reusable components in their applications—is the same.
Like the beans we have been studying, EJBs are a Java-based software compo-
nent. However these beans follow a completely different set of conventions and
interfaces and are not accessible directly through bean containers or JSP tags (at least
the standard tags). The purpose of EJBs is to encapsulate business logic (for example,
the steps involved in depositing money into an account, calculating income tax, or
selecting which warehouse to ship an order from) into reusable server-side compo-
nents. In the EJB paradigm, an application is implemented as a set of business-logic-
controlling components that have been configured in application-specific ways
inside an EJB container such as an application server. Clients are then written to
communicate with the EJB components and handle the results. The standardized
interfaces exist to allow the EJB container to manage security and transactional
aspects of the bean. We can use EJBs to create JavaBeans for use in our JSP page.

10.4.3 Application servers and EJB containers

Like JSPs, EJBs are designed to work in concert with a container, typically inte-
grated into an application server such as Netscape Application Server (NAS) or
IBM’s WebSphere. An EJB container and a JSP container are different things, but
many application servers offer support for both. EJB containers must support Sun’s
EJB specification, which details the interface between application server elements.
EJBs can be used with any application server or other system providing an EJB con-
tainer that implements these interfaces. EJB containers can also exist as part of other
systems such as transaction monitors or database systems.

Application servers in particular are excellent environments to host EJB contain-
ers because they automate the more complex features of multitier computing.
Application servers manage scarce resources on behalf of the components involved
in the design. They also provide infrastructure services such as naming, directory
services, and security. And they provide bean-based applications with the benefit of
scalability—most application server environments will let you scale your application
through the addition of new clusters of machines.

Enterprise JavaBeans 265

EJB containers transparently provide their EJBs with a number of important ser-
vices. While you may not deal with these services directly since they’re conveniently
kept under the covers, EJBs couldn’t function without them. These services are:

» Life cycle management: Enables initialization and shutdown of EJBs.

» Load management: Automatically distributes EJB objects across a cluster of
servers.

» Security management: Enables E]Bs to work with a variety of authentication
schemes and approval processes.

» Transaction support: Manages such things as rolling back transactions that
didn’t fully complete and handling final commitment of transactions, plus
transactions across multiple databases.

» Persistence and state management: Enables EJBs to keep information
between sessions and individual requests, even if the container’s server must
be rebooted.

The EJB container also provides a communications channel to and from its beans, and
it will handle all of its EJBs multithreading issues. In fact, the EJB specification explic-
itly forbids an EJB from creating its own threads. This ensures thread-safe operation
and frees the developer from often-complicated thread management concerns.

10.4.4 Application design with EJBs

Now let’s examine how we would build a JSP application employing EJBs. Because
the role of an EJB is to handle only the core business logic of your application, you
will still need JSPs to deal with presentation issues such as generating web pages to
communicate results and servlets for control. While you can build your application
from JSPs and EJBs alone, either through scriptlets or JSP JavaBeans, we don’t gener-
ally recommend it. An application complex enough to benefit from EJBs would
almost certainly employ a servlet-centric design. Similar to the use of the command
pattern we described ealier, EJBs handle processing command requests or other appli-
cation logic, freeing the servlet from direct responsibility over command execution.

For example, in a banking application a servlet might use the services of an EJB
component to determine whether users are business or consumer customers and use
a servlet to direct them to an appropriate JSP-controlled web page to show them
their account balance. The application logic has been moved out of the servlet, in
favor of the EJB, which might be better able to handle it (figure 10.10).

266

10.5

CHAPTER 10
Avchitecting JSP applications

In such an approach, we’d
want to shield the JSP pages them- EICIUEE g S OEE pay ==
selves from the EJB’s inner work- e 4
ings as much as possible. If the — ¥
servlet’s calls to the EJB server Jsp

return particularly complex
objects, we might be better off Figure 10.10 An EJB handling application logic
wrapping the results of the call

into simpler data beans, which contain a view of the data relevant to the JSP page.
For example, consider this excerpt from a servlet where we extract account informa-
tion from an EJB and place it into a JavaBean before forwarding control on to our
presentation page:

Context initial = new InitialContext () ;

Object objref = initial.lookup ("AccountStatus") ;

AcctHome home;

home = (AcctHome)PortableRemoteObject.narrow(objref, AcctHome.class);
AccountStatus accountStatus = home.create () ;

AccountViewBean bean = new AccountViewBean/() ;

bean.setBalance (accountStatus.getBalance()) ;

bean.setLastUpdate (accountStatus.getLastModifiedTimeStamp ()) ;
request.setAttribute (“accountview”, bean) ;

RequestDispatcher rd;

rd = getServletContext () .getRequestDispatcher (“/AccountStatus.jsp”);
rd.forward (req, res);

Choosing an appropriate architecture

So when is it appropriate to use each of these different architectures for your JSP
application? Like most architectural decisions, it depends. It depends on a number
of factors, including your own team’s skills, experiences, personal preferences, and
biases. Sophisticated, multitier architectures provide a larger degree of abstraction
and modularity, but only at the cost of complexity and increased development time.
In practice, large multifaceted JSP applications tend to make use of more than one
single architectural model, using different models to fill different sets of require-
ments for each aspect of the application. When making your architectural selection
there are several important aspects to consider, each with its own advantages, disad-
vantages, and tradeoffs.

Choosing an appropriate avchitecture 267

10.5.1 Application environment

A JSP application’s environment plays an important role in determining the best-fit
architecture for a project. Every environment is different, but each places its own
unique pressures on JSP application design and deployment.

Firewalls and the DMZ
Today’s enterprise networks are pretty complicated places. Combined with the fact
that many applications cross the firewall we must be aware of the different zones of
accessibility in most enterprise situations. There are three basic access zones inside
most enterprises: intranet (the networks inside the inner firewall); DMZ or no man’s
land (the area between the intranet firewall and the public web); and the public web
or Internet (the network outside all firewalls).

Firewalls divide the corporate network
into a series of distinct zones (figure 10.11), Public web
each of which is afforded a different level of
accessibility. Of course in practice there are
generally several different levels of accessibil-
ity within each zone, but for purposes of dis-
cussion these definitions will suffice.

DMZ

The public web

Machines on the public web, with the excep- Intranet

tion of corporate public web servers, ArC GEN- L1041 A typical enterprise

erally restricted from any access to internal network

networks, including the DMZ. You can think

of the public web as “the rest of the world,”

since it literally includes everyone on the Internet. This is the area that will host the
web servers and JSP containers that the general public will connect to. While sys-
tems in this zone may include various levels of authentication designed to restrict
access to information on the server, the important thing to remember is that the
general public is given direct network connectivity to these systems, at least to some
degree. Applications running in this segment of the network generally experience
more traffic, and are more concerned with scalability and performance.

If a company runs an extranet for its business partners, it will generally be
deployed from this network zone. While we often think of an extranet as being pri-
vate, from a network connectivity point of view it still falls into the domain of public
access, at least for the front end. On the other hand, virtual private networks
(VPNs) created by corporations for their partners, employees, or field offices do not

268

CHAPTER 10
Avchitecting JSP applications

fall into this category. Although they carry information across the Internet they
have been designed to map into the company’s network in a transparent matter. For
this reason, we treat VPNs as simply another segment of our intranet, or internal
corporate network.

The intranet

The intranet is composed of internal networks and systems. Traditionally, systems
on the intranet can access machines inside the DMZ and on the public web. JSP
applications designed to run in the intranet can be entirely self-contained internal
applications, relying totally on resources local to the intranet they run on. Or, JSP
applications on the intranet may be acting on back-end data sources located in the
DMZ or the public web. For example, a JSP application might let a content manager
modify information ultimately displayed on the corporate web server, which lives in
the public web.

The DMZ

The DMZ is the name commonly given to the area between public and private net-
works and is given some level of access to machines on both the intranet and the
public web. It is a carefully restricted network zone. For this reason the DMZ can be
used to host back-end databases and support services for front-end JSP services.
The purpose of the DMZ is to provide the connectivity to communicate between
public and private network zones, while establishing a buffer zone where you can
better control access to information. Generally, the firewall is designed to let only
web traffic into the DMZ.

Back-end resources

Back-end resources (also known as enterprise information systems) are databases,
LDAP servers, legacy applications, and other sources of information that we will
need to access through our JSP application. Projects for the enterprise generally
require access to some sort of information system on the back end. Where are your
databases located? What sort of access is granted between your JSP container and
your information systems?

10.5.2 Enterprise software requirements

If you are building JSP applications for the enterprise, your choice of JSP application
architecture is largely influenced by the requirements placed on it by the very
nature and requirements of the enterprise itself. While every project is different, of

Choosing an appropriate avchitecture 269

course, any JSP application we might develop for use in the enterprise shares some
common characteristics that are worth exploring.

10.5.3 Performance, scalability, and availability

Enterprise applications are particularly sensitive to performance and availability
issues, especially in mission-critical situations and heavily loaded web servers. One
strategy commonly employed to address scalability issues is web server clustering,
using groups of machines to distribute the load across a single web site. If you will
be deploying JSP applications into a clustered environment you must understand
how your web servers, JSP containers, and application servers (if present) will han-
dle requests. Distributed transactions, sessions, and object persistence will vary dif-
ferently by vendor and program design. Some configurations will place restrictions
on your JSP components, such as support for object serialization, while others may
limit your use of persistence. If you are using JSP’s session management services you
must understand how your environment manages sessions across cluster nodes.

Maintenance and updates

Unlike retail software, which is developed around fixed schedules of release, appli-
cations designed for use within an enterprise are typically evolving constantly. If an
application is critical to the success of the business it will certainly be the target of
frequent bug fixes, improvements, and enhancements. In such a situation, modular-
ity and design flexibility will be critical to the ongoing success of the project. One of
JSP’s big strengths is its ability to separate the presentation aspects of your applica-
tion, allowing you to alter it independently of the application logic itself.

Understand risk factors

What task is your application performing? How much time should you spend ensur-
ing transaction integrity and bulletproofing each step of the process? If you are build-
ing mission-critical applications, count on spending more time designing transaction-
processing code and developing an architecture that reduces the risk of interruptions
in the program flow, as this can often be the most complicated and time-consuming
aspect of application design and testing.

10.5.4 Technical considerations

The technical nature of a JSP project will play a large role in determining the best
architectural approach. The complexity and number of moving parts should, in a
very real way, affect the project direction.

270

CHAPTER 10
Avchitecting JSP applications

Complexity and scope

How complex and interrelated are the activities surrounding your application? If
your application must deal with multiple data sources, resource pooling, or complex
transaction management, a fairly sophisticated architecture will certainly be in
order. It is very likely that you will want to employ servlets, and possibly EJBs to
shield your JSP front-end from a complicated back end. On the other hand, if there
are very few steps involved, placing all of your application logic directly into JSP
pages in a page-centric approach eliminates complexity and will likely reduce the
amount of development time required to complete the project

Potential for reuse

Could your application make use of components that already exist or would be use-
ful in other applications? If the JSP application you are developing is part of a larger
series of projects, the extra time involved in focusing on the development of
components may pay off in the long run. If you can develop JavaBeans to model
your domain objects you can reuse them throughout related applications—even if
they are not JSP based.

Expected lifetime and propensity for change

How likely is it that requirements will change over the life of the application? A
long life with an expectation for frequent change points to the need for a more
modular architecture with a higher degree of flexibility. However, an application
that you expect to use briefly and then discard would probably not benefit from the
increased complexity of a loosely coupled component-based architecture.

10.5.5 Organizational considerations

Every organization's situation is different. What worked for you in your last job
won’t necessarily work in this one. The talents of your team and your organization’s
work style will play a big role in determining the most appropriate JSP architecture.

Team size and capabilities
How big is your team? Is it just you or are you lucky enough to have a large corpo-
rate development team at your command? Is your Java development team com-
posed of beginners or seasoned veterans? Is there a high degree of variance in skill
levels? Larger teams with a range of complementary skill sets tend to favor the more
distributed models incorporating servlets and EJBs.

The ability to divide your application into discrete components promotes divi-
sion of labor, developer specialization, and better manageability in the team. Less

Choosing an appropriate avchitecture 271

experienced developers can work on data beans and other less complicated aspects
while your senior members can worry about the more complicated aspects of the
architecture and application logic. If necessary you can even hire contractors to
develop individual components beyond the area of expertise of your own develop-
ers, then integrate them into your project. Such a modular approach becomes less
important if a single small team will handle the JSP project alone.

Removing the Java from the front-end code frees your design team to concen-
trate on the application interface rather than its implementation. On the other
hand, if you are a lone wolf coding commando, then you will probably benefit from
the simplicity of single source, JSP-only style applications. The makeup of your team
will, in part play a role in determining the best architecture for your application.

Time and money

How much time and money has been allocated to your project? Increased levels of
complexity generally mean more time and, in the case of EJBs, more money. Com-
plexity and time are trade-offs, but you have to consider maintenance expenses as
well. It doesn’t do much good to create a rigid, hard to maintain design in an effort
to save time and money up front if you are continually forced to devote develop-
ment resources to maintaining the project in the future.

Control of assets and resources

How much control do you have over corporate resources that are important to
your project? If your application will be accessing databases or other information
sources that already exist or are beyond your control, you will probably want to select
an architecture with the additional layers of abstraction necessary to shield your devel-
opers from a disparate and possibly variant interface.

An example JSP project

This chapter covers

= Building a servlet-centric application
= Component-based JSP development
= JSP/Database interaction

= Utilizing the command pattern

= Maintaining transaction integrity

272

An FAQ system 273

Now we will apply the JSP programming techniques covered in previous chapters
toward the design and development of a real-world enterprise application more
complex than would be allowed as part of another chapter. We will develop a data-
base driven system for creating, managing, and displaying a list of frequently asked
questions (FAQs) and making them available through a web site. We hope it will
help tie together all the concepts we have discussed so far.

11.1 An FAQ system

We selected an FAQ system as the example for this chapter for several reasons. It is a
nontrivial application that illustrates many of the principals of JSP application design
such as command handling, form element processing, database interaction, and
transaction management. It was also important to present an application simple
enough that it could be constrained to a readable number of pages.

Lastly, we wanted to end up with a web application that could be useful in its
own right. While we will approach this project from an FAQ perspective, the project
itself'is applicable to maintaining and displaying any collection of information man-
aged by a database through a browser with JSP. Just to show you where we are
heading, a screen shot of the finished application in action is shown in figure 11.1.

11.1.1 Project motivations

A recent client of ours has been maintaining a list of FAQs to address common cus-
tomer product issues. As the list has grown over the years it had became increasingly
difficult to maintain and it had become necessary to maintain several different ver-
sions—a table of contents view, the whole list view, a list of new entries sorted by date,
and so forth. Each version was maintained by hand from the master list. The web
content team was responsible for updating the HTML based on the input of product
management, technical support, the documentation team, and a host of others.

The combination of frequent updates and the need to maintain multiple views of
the list was the driving force behind the desire to automate the FAQ administration
process. This chapter-length example is based on this project, which we recently
completed with the help of JSP technology.

11.1.2 Application requirements

The FAQ system we will build in this example is designed to allow the company’s
internal content owners (product managers, technical support, etc.) to add, update,
and delete entries from the list without needing to enlist the help of the content
team, and without having to edit individual HTML files. We’ll use a simple

274

CHAPTER 11
An example JSP project

43 FAQ List - Microsoft Internet Explorer |- [O] %]
| Fle Edt View Favoites Toos Help []
JW'@ http://slide. dev. tivoli. com:8000/fags Ypage=all jsp j (‘950 ‘

=

FAQ List

Question: What is the maximum speed of a Solar Sailer?
Answer: A standard Solar Sailer can travel at a rate of up to 200,000 pixels per second.

Question: Why do programs continue to believe in users?
Answer: Most programs are weak and use this silly belief as a means of justifying their own existence.

Question: Were all programs created equal?
Answer: Yes, but some programs were created more equal than others.

Question: What is the high score for Space Paranoids?
Answer: The high score for Space Paranoids 15 999,999,999 pomts - set by Flynn, the game's inventor.

N

/€] Done [[intemet

Figure 11.1 Viewing FAQs through our JSP application

web-based interface to allow them to manipulate the FAQ entries. FAQ information
created by this process will be stored inside a database, and will be viewable in several
forms and contexts through the company web site in place of the old, static pages.

After devising the concept and establishing our basic application goals, we must
devise a list of specific features we expect the application to support. The goal here
is not to dive into the details of the implementation behind each feature of the
application, but rather to list activities and events that the application will be
required to support:

« Each entry in the list will have a question, and an answer
» When an entry is modified we need to record the modification date

« FAQ entries should have a unique identifier that does not change, even if the
wording of the question itself changes, so that it is possible to link a user to a
particular FAQ

« FAQs must be visible in a variety of formats on the web—by title, by modifi-
cation date, and so forth

An FAQ system 275

« The FAQ lists on the web site should be generated dynamically, without the
need for content engineers to perform production work

» Users need to view single FAQ or multiple FAQs as presentation dictates

Another important requirement was to fit into the client’s network architecture. In
this case, they had database servers in the DMZ accessible from both the public web
servers and the intranet. We therefore decided that the most logical deployment
scheme would be to let intranet users manage FAQs stored on the DMZ databases,
and have the web servers access those same databases in order to display the FAQs.

11.1.3 Application modules

In order to start coding on this project we’ll first separate the application into dis-
crete modules which can then be built individually, without being burdened by the
details of the implementation of the others. To accomplish this we looked for com-
mon areas of functionality that we could separate from the project as a whole. An
important goal in this process was to create modules that were more or less inde-
pendent of each other. After studying the different areas, functions, and require-
ments we had identified we defined three modules:

» Storage—stores and retrieves FAQs in the database
= Administration—Ilets administrators create and edit entries

« Web access—displays the FAQs on the public web site

Decomposing our FAQ system into three modules gave us a number of benefits—
before, during, and after development. First, it allowed us to divide development
tasks among our development team resources. As long as the requirements for
interaction between modules were clear it was possible for each team to work more
or less independently—at least until we were ready to integrate the modules.

This approach also tends to encourage abstraction and promotes looser coupling
between modules and gives the ability to make changes to the implementation of
one module without having to rewrite the supporting ones. In other words, future
enhancements to one module can be made without involving the design teams of
the others.

Storage module

The storage module manages access to the database where each FAQ entry is
stored. We created it to shield the administration and web access modules from the
complexities of dealing with the database, and provide a layer of abstraction in case
we decided to make changes to the underlying storage mechanism as requirements

276

CHAPTER 11
An example JSP project

changed. In this case we are using a relational database, but may in the future need
to move to an object database or perhaps a simple flat file format.

Administration module

The administration module is the tool that product managers, support staff, and
other internal users would use to create and maintain the database of FAQs. It
includes a JSP-based user interface allowing them to add, delete, and update FAQs
in the database. This module is designed to be used within the enterprise exclu-
sively, and will not be exposed to the public web.

Web access module

This module is pretty much the reason we started this project. It allows us to
retrieve FAQs from the database and display them on the web dynamically. The pur-
pose of this module is to give our content team the JSP components and Java classes
they need to easily include individual or whole collections of FAQs into web pages
without having to constantly update them. It turns out that this module is pretty
simple; building off of components created for use in the other modules, but is infi-
nitely flexible in its capabilities. It essentially becomes a new service (fetching an
FAQ from the database) available to the content designers.

11.1.4 Building an FAQ component

It is clear that each module will need to exchange data at some point. To do so,
we’ll create a class to represent each FAQ. This class will be the building block from
each of our related modules, since, after all, it’s the FAQs we are building this whole
thing for in the first place. Since servlets and JSPs can both deal in terms of objects,
a FagBean object gives a common unit of exchange that will greatly simplify interac-
tion between components. The FagBean class defines a simple set of properties, as
shown in table 11.1.

Table 11.1 FaqBean properties

Property Java Type
ID int
question String
answer String
lastModified java.util.Date

An FAQ system 277

Creating the bean is straightforward; we simply provide the getter and setter meth-
ods for each of the Bean’s properties as shown in chapter 8. The source code is
shown in listing 11.1.

Listing 11.1 FaqBean

package com.taglib.wdjsp.fagtool;
import java.util.Date;

public class FagBean {
private int id;
private String question;
private String answer;
private Date lastModified;

public FagBean() ({
this.id = 0;
this.question = "";
this.answer = "";
this.lastModified = new Date() ;

}

public void setQuestion(String question) {
this.question = question;
this.lastModified = new Date() ;

}

public String getQuestion()
return this.question;

}

public void setAnswer (String answer) {
this.answer = answer;
this.lastModified = new Date() ;

}

public String getAnswer () {
return this.answer;

}

public void setID(int id) ({
this.id = id;

}

public int getID() {
return this.id;

}

public Date getLastModified() ({
return this.lastModified;

}

278

11.2

CHAPTER 11
An example JSP project

public void setLastModified (Date modified) {
this.lastModified = modified;

}

public String toString() {
return "[" + id + "] " + "Q: " + question + "; A: " +
answer + "\n";

Modifying any property of the bean through a setter method triggers an update in
the value of the lastModified property, which was initialized in the constructor to
match its creation date. You may be wondering why we created setter properties for
properties you might not expect the user to manipulate, such as lastModified and
1D. Since we’ll be constructing beans out of data from the database (and using them
in our JSPs), we need to be able to manipulate all the properties of our bean in order
to completely mirror their state in the database. The 1D property for new beans is
assigned by the storage module, rather than the bean itself, as we’ll soon learn.

The storage module

The storage module must be accessible by several application components. We
wanted to isolate all database activity into a single module—hiding database code
behind a series of access methods that dependent components could use to add,
remove, and update FAQ objects in the database.

The goal is to provide a single point of access into and out of the database. In
fact, we decided that the other modules should not even need to know that there is
a database; they simply request or deliver FAQs to the storage module, which magi-
cally handles the transaction. Likewise, we wanted the storage module to be appli-
cation independent. It does not need to be concerned about how the information it
manages is used by the other two modules, or any future modules for that matter.

The design we came up with was to create a Java class designed to handle any
requests for access to FAQs stored in the database. This code is independent of the
other modules in our database, but its interface would provide the necessary meth-
ods to manage FAQs. By isolating database specific code in this manner, we are able
to pursue development of this module independently of the other two. It also
restricts database or schema specific operations to a single module.

The storage module 279

11.2.1 Database schema

For this application we created a single table, FAQS, with four columns. The table is
used to store data for our FAQ objects. Each row of the table represents an FAQ
(and its answer) and is identified by a unique ID value. The schema is summarized
in table 11.2.

Table 11.2 The FAQ database schema

Column SQL Type
id int
question varchar(255)
answer varchar(4096)
modified timestamp

Most of these mappings between database columns and FagBean properties are
fairly straightforward. The modified column is used to store the date the FAQ was
last modified. The ID of each FAQ will be kept unique by maintaining a sequence
on the database, which is incremented automatically with each new Bean we add to

the table.

11.2.2 The FagRepository class

The FagRepository class is an example of the singleton pattern, a class which
allows only one instance of itself to be created and provides clients with a means to
access that instance. In this case, the singleton object provides a number of methods
for manipulating FAQs stored in the database. All of the methods in this class deal
with FagBean objects, not strings or SQL data, improving the abstraction between
this and its companion classes which will use it. We can build and debug this class
independently of the other modules because, while the repository lets us manipu-
late Beans in the database, it does so with no direct ties to the main application. The
FagRepository class is shown in listing 11.2.

Listing 11.2 FaqRepository

package com.taglib.wdjsp.faqgtool;

import java.util.*;
import java.sqgl.*;

public class FagRepository {
private static FagRepository instance;

280 CHAPTER 11

An example JSP project

private static final String driver = "postgresgl.Driver";
private static final String user= "guest';

private static final String pass = "guest";

private static final String dbURL =
"jdbc:postgresqgl://slide/test";

private Connection connection;
private PreparedStatement getStmt;
private PreparedStatement putStmt;
private PreparedStatement remStmt;
private PreparedStatement getAllStmt;
private PreparedStatement updStmt;

public static FagRepository getInstance ()
throws FagRepositoryException {
if (instance == null)
instance = new FagRepository() ;
return instance;

}

private FagRepository() throws FagRepositoryException {
String get="SELECT * FROM FAQS WHERE ID=?";

String put=

"INSERT INTO FAQS VALUES (NEXTVAL ('fagid seq'), ?, ?, ?)";
String rem="DELETE FROM FAQS WHERE ID=?";
String upd=

"UPDATE FAQS SET QUESTION=?, ANSWER=?, MODIFIED=? WHERE ID=?";
String all="SELECT * FROM FAQS ORDER BY ID";

try {
Class.forName (driver) ;
connection = DriverManager.getConnection (dbURL, user, pass);
getStmt = connection.prepareStatement (get) ;
putStmt = connection.prepareStatement (put) ;
remStmt = connection.prepareStatement (rem) ;
getAllStmt = connection.prepareStatement (all) ;
updStmt = connection.prepareStatement (upd) ;
}
catch (ClassNotFoundException e) {
throw new FagRepositoryException("No Driver Available!");
}
catch (SQLException se) {
throw new FagRepositoryException (se.getMessage()) ;

}
}

private FagBean makeFaqg(ResultSet results)
throws FagRepositoryException {
try {
FagBean faqg = new FagBean() ;
fag.setID(results.getInt ("ID")) ;
fag.setQuestion (results.getString ("QUESTION")) ;

The storage module

fag.setAnswer (results.getString ("ANSWER")) ;
Timestamp t = results.getTimestamp ("MODIFIED") ;
java.util.Date d;
d = new java.util.Date(t.getTime() + (t.getNanos()/1000000)) ;
fag.setLastModified(d) ;
return faqg;
}
catch (SQLException e) {
throw new FagRepositoryException (e.getMessage()) ;
}

}

public FagBean getFag(int id)
throws UnknownFagException, FagRepositoryException {
try {
ResultSet results;
synchronized (getStmt) {
getStmt.clearParameters () ;
getStmt.setInt (1, id);
results = getStmt.executeQuery() ;
1
if (results.next())
return makeFaqg(results) ;
else
throw new UnknownFagException ("Could not find FAQ# " + id);
1
catch (SQLException e) {
throw new FagRepositoryException(e.getMessage()) ;
1

}

public FagBean[] getFags ()
throws FagRepositoryException {
try {
ResultSet results;
Collection fags = new ArrayList();
synchronized (getAllStmt) {
results = getAllStmt.executeQuery () ;
}
FagBean fag;
while (results.next()) {
fags.add (makeFaqg(results)) ;

}

return (FagBean[])fags.toArray(new FagBean[0]) ;

}

catch (SQLException e) {
throw new FagRepositoryException (e.getMessage()) ;
}

}

281

282 CHAPTER 11
An example JSP project

public void update (FagBean faq)
throws UnknownFagException, FagRepositoryException {
try {
synchronized (updstmt) {
updStmt .clearParameters () ;
updStmt.setString(l, fag.getQuestion()) ;
updStmt.setString (2, fag.getAnswer()) ;
Timestamp now;
now = new Timestamp (fag.getLastModified () .getTime()) ;
updStmt .setTimestamp (3, now) ;
updStmt.setInt (4, fag.getID());
int rowsChanged = updStmt.executeUpdate () ;
if (rowsChanged < 1)
throw new UnknownFagException ("Could not find FAQ# " +
fag.getID()) ;
}
}
catch (SQLException e) {
throw new FagRepositoryException(e.getMessage()) ;

}
}

public void put (FagBean faqg) throws
FagRepositoryException {
try {
synchronized (putStmt) {
putStmt.clearParameters () ;
putStmt.setString (1, fag.getQuestion()) ;
putStmt.setString (2, fag.getAnswer()) ;
Timestamp now;
now = new Timestamp (fag.getLastModified () .getTime()) ;
putStmt.setTimestamp (3, now) ;
putStmt .executeUpdate () ;
}
}
catch (SQLException e) {
throw new FagRepositoryException (e.getMessage()) ;

}
}

public void removeFaqg(int id)
throws FagRepositoryException {
try {
synchronized (remStmt) {
remStmt .clearParameters () ;
remStmt.setInt (1, id) ;
int rowsChanged = remStmt.executeUpdate () ;
if (rowsChanged < 1)
throw new UnknownFagException ("Can’t delete FAQ# "+ id);

The storage module 283

}
}

catch (SQLException e) {
throw new FagRepositoryException(e.getMessage()) ;
}
}

public void destroy()
if (connection != null) {
try { connection.close(); }
catch (Exception e) { }

The constructor

The constructor for a singleton class like this one is private to prevent outside
classes from instantiating it. The only way to obtain an instance of the FagrReposi-
tory class then is through a static method of the FagrRepository itself. In the
constructor we establish a connection to the database. For brevity, we’ve hard
coded all of our database connection information, but in practice we would employ
a ResourceBundle, a properties file, JNDI, or some other means of externally con-
figuring this information. In the constructor we also create a number of prepared
statements to support the various operations we require—adding FAQs, removing
FAQs, and so forth.

Using prepared statements not only improves the performance, it keeps our
database access particulars in one place. While we’ve hard coded the database con-
nection and the SQL code for simplicity, we could pull database access and schema
related statements out of the code, retrieving them from a properties file at run
time, allowing us some more flexibility. Remember, we’ll only have to go through
this prepared statement setup process once, since the constructor will be called only
once, when we create the sole instance of the class.

Referencing the instance

A static member of the class itself maintains a reference (instance) to a single
instance of the class that will be passed to anyone calling the getInstance ()
method. The getInstance () method also takes care of creating the instance the
first time it is called. Note that if there is a problem, we throw a FagrRepository-
Exception in the constructor and rethrow it here. This way we can alert the calling
class that, for whatever reason, we are unable to create a FagRepository.

284

CHAPTER 11
An example JSP project

To use the FagrRepository then, the calling class just calls getInstance ()
(within a try block of course), and then calls the appropriate public methods. For
example, to get an FAQ from the database, we would use code such as this:

try {

FagRepository fagDatabase = FagRepository.getInstance() ;
FagBean fag = fagDatabase.getFag(10005) ;
System.out .println(“"The Question Is: “ + fag.getQuestion()”);

}

catch (UnknownFagException el) {
System.out .println(“Could not find Fag 10005") ;

}

catch (FagRepositoryException e2) {
System.out .println(“Could not get access to Fags!”);

}

We can use the code to write a test harness for this module and test each method of
our FagRepository class, even though the other modules may still be in develop-
ment. Very handy.

Prepared statements
Note that our access methods all contain synchronized blocks around the prepared
statements. This is necessary because we are reusing PreparedStatement objects.
Because there is only a single instance of this class, there may be several threads exe-
cuting these methods simultaneously. Without synchronization, one thread could
be manipulating elements of the Preparedstatement object while another is
attempting to use it. Not a good thing.

Each prepared statement handles a different type of operation and each works
with the data stored inside the FaQs table of the database. As a typical example,
notice the prepared statement we are using to add FAQs to the database:

String put="INSERT INTO FAQS VALUES (NEXTVAL('fagid seq'), 2, ?, ?)";

This statement says that the first value (which maps to the ID of the FAQ) is deter-
mined by incrementing a sequence, fagid segq, on the database. The operation
nextval () is a built-in method of our database server. This keeps us from having to
manage id allocation ourselves. Most, but not all, databases provide some sort of
managed sequences. If necessary you can create your own table of sequence values
and manage them yourself.

Access methods
Our FAQ access methods getFag() and getFags () have a common operational
requirement. Given a ResultSet as output from executing the appropriate prepared

The stovage module 285

statement they need to turn each row into a FagBean object. This is accomplished by
creating an empty FagBean object, and populating it with data from the appropriate
columns of the current row of the result set. Take a look at the getFaq() method in
the previous section. As you can see, we simplify things by delegating this common
task off to a utility method, makeFaq (), which takes the Resultset as its argument,
and builds a bean mirroring the data in the Resultset. Also note the conversion
from the database Timestamp to the bean’s java.util.Date type.

11.2.3 Storage module exceptions

In our methods that need to execute JDBC calls, we trap any sQLExceptions that
arise and rewrap them into FagRepositoryExceptions. We could have simply
thrown them back, but since the decision was made to make the interface to FagRe-
pository independent of its implementation—meaning that calling classes
shouldn’t have to know that FagRepository is accessing a database, and thus
shouldn’t have to deal with sQLExceptions. Besides, if they can’t access the Fag-
Repository, there’s not much the calling class can do about it, other than reporting
it. Failure in this case is fatal. We do pass the message along in any case, to make
things easier to debug.

We’ve created two simple exceptions classes to handle various error conditions
that may arise inside the storage module. The first, FagrepositoryException, is
the base class. The second, UnknownFagException, is a more specific exception that
is thrown when a requested FAQ cannot be located. They are very simple classes.
Their source code is shown in listings 11.3 and 11.4.

Listing 11.3 FaqRepositoryException

package com.taglib.wdjsp.faqgtool;

public class FagRepositoryException extends Exception {

public FagRepositoryException() {
super () ;

}

public FagRepositoryException (String msg) {
super (msg) ;

}

286

11.3

CHAPTER 11
An example JSP project

Listing 11.4 UnknownFaqException

package com.taglib.wdjsp.fagtool;
public class UnknownFagException extends FagRepositoryException {

public UnknownFagException() {
super () ;

}

public UnknownFagException (String msg) {
super (msg) ;

}

The administration module

The administration module is a tool allowing administrators to add, delete, and
update FAQs in the system. It is composed of a series of interconnected screens that
form the user interface to our application. The application’s screens are a function
of the various steps the user can take along the way. Transitioning between each
step causes activity—such as adding an FAQ to the database or deleting an existing
one—and results in different outcomes that lead us to new screens.

At each screen, we’ll want to give the user a L
chance to go back to the main menu (aborting the Menu
current step), as well as perform the appropriate
activity for that page. Therefore, from each screen in

our application different choices take the user to dif- % L N L
terent parts of the program. This is a typical tree- Add Update Delete
style application flow (figure 11.2). (For brevity and sereen menu menu
clarity in the diagram, we’ve left out the abort path

which just takes the user back to the main menu o L L
from each screen.) Each path through the applica- Update Delete

tion adds another branch to the tree.

In developing the administration portion of our
FAQ management system we decided to create one Save Save
central servlet, FagAdminServlet, to handle the
application logic and direct each request to the
appropriate screen, depending on the state of the
application and information specified in the request.
The screens themselves are a series of JSP pages, which make use of data provided
by the servlet. The servlet will be a mediator between the various pages that make

Figure 11.2 Flow through the
administration application

The administration module 287

up the user interface screens, and will direct requests to the appropriate application
logic, which deals with the FAQ data itself.

11.3.1 The administration servlet

A servlet is at the heart of our application. We will direct each request to this serv-
let, and have it determine the actions to take and the next appropriate page to dis-
play. Our goal here is to use the JSPs for display and presentation purposes only, and
have the servlet managing flow through the application and handling the applica-
tion logic. We created an implementation of the command pattern approach dis-
cussed in chapter 10 to help better separate the application logic from the program
control aspects of our servlet.

Utilizing the command pattern

In the command pattern, we associate application activities (such as adding an FAQ
or editing an entry) with instances of classes that know how to perform the
requested function. Each activity will be represented by a specific command. The
implementation we elected to use for this project packages the application logic
into a collection of independent command handler classes, all of which implement
a common interface called command. The command interface specifies a single
method, execute ():

package com.taglib.wdjsp.fagtool;

import javax.servlet.*;
import javax.servlet.http.*;

public interface Command
public String execute (HttpServletRequest req)
throws CommandException;

The execute () method of each command handler takes an HttpServletRequest,
allowing it to pull out from the request any parameters it needs to perform its oper-
ation. When complete, the command handler can then store its results as a request
attribute before returning control to the servlet. The results of the operation can
then be retrieved from the request by the JSP page ultimately handling the request.
If anything goes wrong, an instance of CommandException, (listing 11.5), is thrown
to alert the servlet to the problem. The big idea here is that we have created an
interface which allows the servlet to delegate the handling of a command to a han-
dler class, without having to know any details about the handler class itself, even its
specific class name.

288 CHAPTER 11
An example JSP project

Listing 11.5 CommandException

package com.taglib.wdjsp.fagtool;
public class CommandException extends Exception {

public CommandException() {
super () ;

}

public CommandException (String msg) {
super (msg) ;

}

Mapping actions to commands

Each JSP screen will indicate the user’s desired action to the servlet by passing in a
value through the request parameter cmd. The value of cmd serves as a command
identifier, telling us what to do next. So to delete an FAQ, the JSP page would sim-
ply pass in the appropriate identifier, say delete, signaling the servlet to hand the
request off to the command handler for deletion. Each action we want to support
in our application needs its own unique identifier that the JSP pages can use to
request different actions to be performed.

However, processing a command is more than just calling the appropriate com-
mand handler’s execute () method. We must also direct the request to the appro-
priate JSP page following successful completion of the action. We didn’t want the
pages themselves to have to be bound to specific pages or understand flow control
issues. Therefore we’ve designed each of our command handlers to accept a string
value in its constructor to specify the next page in the process. This string value is
passed back to the controlling servlet from the execute () method as a return value,
identifying the JSP page that should now receive the request.

In our servlet, we associate each command identifier with a separate instance of
one of our command classes (each of which we’ll discuss in a bit), which has been
preconfigured with the file name of the destination screen we should visit next. We
store each command class instance in a HashMap, using the command identifier used
by our JSP pages as the key. We’ll do this in the init () method of the servlet, which
is run only the first time the servlet is started by the server. This operation is per-
formed in the initCommands () utility method:

private void initCommands ()
commands = new HashMap () ;

commands .put ("main-menu", new NullCommand ("menu.jsp")) ;
commands .put ("abort", new AbortCommand ("menu.jsp"));

The administration module 289

commands .put ("add", new NullCommand ("add.jsp")) ;
commands .put ("do-add", new AddCommand ("menu.jsp")) ;
commands .put ("update-menu", new GetAllCommand ("upd menu.jsp")) ;
commands .put ("update", new GetCommand ("update.jsp"));
commands .put ("do-update", new UpdateCommand ("menu.jsp")) ;
commands .put ("delete-menu", new GetAllCommand ("del menu.jsp"));
commands .put ("delete", new GetCommand ("delete.jsp"));
commands .put ("do-delete", new DeleteCommand ("menu.jsp")) ;

}

As you can see we’ve created ten different commands, each with its own unique
identifier, which form the keys to our HashMap. Each command activity involves
more than just mapping a command identifier to a command handler; it’s a combi-
nation of command identifier, command handler class, and destination screen.
Some command handlers can be used to handle several different command identifi-
ers, by being configured with different destination pages. For example, both the
update menu and delete menu JSP pages will need a list of the FAQs in the database
to allow the user to make their selection. Collecting all of the FAQs for retrieval by
the JSP page is the job of the GetAllCommand class. Creating two different instances
of the GetallCommand class with different destinations allows us to reuse the appli-
cation logic isolated inside the command handler. We aren’t required to create a
unique class for each identifier, since only the destination screens are different in
this case.

Processing commands

The implementation behind each command handler is, as we’ll see, independent of
the operations inside the servlet itself. We’ll discuss each of these in turn. The ser-
vice () method of our servlet is extremely simple in this design. We simply fetch the
appropriate command handler from our list, call its execute () method, then redi-
rect the request to the appropriate page. The lookupCommand () method simply
pulls the appropriate object from the HashMap and provides sane defaults—sort of a
factory method. The commandToken.set () method creates a special token to help
maintain transaction integrity, which will be explained soon.

public void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
String next;
try {
Command cmd = lookupCommand (req.getParameter ("cmd")) ;
next = cmd.execute (req) ;
CommandToken. set (req) ;
}
catch (CommandException e) {
reqg.setAttribute ("javax.servlet.jsp.jspException", e);

290

CHAPTER 11
An example JSP project

next = error;

}

RequestDispatcher rd;
rd = getServletContext () .getRequestDispatcher (jspdir + next);
rd.forward (req, res);

}

If executing the command throws an exception, we catch it and store it as a request
attribute before forwarding the request on to our error-handling page. This allows
us to handle both servlet originated exceptions and JSP exceptions in the same
place. The complete source code for the servlet is shown in listing 11.6.

Listing 11.6 FaqAdministrationServiet

package com.taglib.wdjsp.fagtool;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class FagAdminServlet extends HttpServlet ({
private HashMap commands;
private String error = "error.jsp";
private String jspdir = "/jsp/";

public void init (ServletConfig config) throws ServletException {
super.init (config) ;
initCommands () ;

public void service (HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
String next;

try {
Command cmd = lookupCommand (reqg.getParameter ("cmd")) ;
next = cmd.execute (req) ;

CommandToken. set (req) ;
}
catch (CommandException e)
reqg.setAttribute ("javax.servlet.jsp.jspException", e);
next = error;
}
RequestDispatcher rd;
rd = getServletContext () .getRequestDispatcher (jspdir + next);
rd.forward (req, res);

The administration module 291

private Command lookupCommand (String cmd)
throws CommandException {
if (emd == null)
cmd = "main-menu";
if (commands.containsKey (cmd.toLowerCase()))
return (Command)commands.get (cmd.toLowerCase()) ;
else
throw new CommandException("Invalid Command Identifier");

}

private void initCommands ()
commands = new HashMap () ;
commands .put ("main-menu", new NullCommand ("menu.jsp")) ;
commands .put ("abort", new AbortCommand ("menu.jsp"));
commands .put ("add", new NullCommand ("add.jsp")) ;
commands .put ("do-add", new AddCommand ("menu.jsp")) ;
commands .put ("update-menu", new GetAllCommand ("upd_menu.jsp")) ;
commands .put ("update", new GetCommand ("update.jsp"));
commands .put ("do-update", new UpdateCommand ("menu.jsp")) ;
commands .put ("delete-menu", new GetAllCommand ("del menu.jsp")) ;
commands .put ("delete", new GetCommand ("delete.jsp"));
commands .put ("do-delete", new DeleteCommand ("menu.jsp")) ;

Transaction integrity

Now to explain the meaning of that CommandToken.set () call following a success-
ful command execution. As explained in chapter 10, some actions in a JSP applica-
tion are vulnerable to accidental re-execution due to the user reloading a page or
clicking Back.

Take for example the steps involved in adding a new FAQ to the database. In the
first step, we collect information for the new FAQ through a form. In the second
step it takes the question and answer from the request, and instructs the FagRepos-
itory to process it, adding it to the database. The FAQ is added and the user ends
up back at the main menu. However, the URL that the browser has stored in mem-
ory for the current page request now includes the add request and the appropriate
question and answer variables. If the user clicks Reload, the request is resubmitted,
all the request parameters are resent, and another instance is added to the database.
A similar problem can also happen with Delete and Update. We need to trap each of
these cases and act accordingly. Something has to alert the servlet to the fact that
we’ve already performed this operation once and that we should not do it a second
or third time.

292

CHAPTER 11
An example JSP project

In our servlet we will apply the command token technique discussed in
chapter 10 to assure that sensitive commands are performed only once. To issue and
manage our tokens we’ll use an application independent utility class we’ve designed
called commandToken, which has two public methods, both of which are static:

public static void set (HttpServletRequest req)
public static boolean isValid (HttpServletRequest req)

The first method, set (), creates a unique transaction token and stores it (as a string
of hex characters) in the user’s session and in the request as an attribute. The sec-
ond method, isvalid(), can be used to validate a request, and will search for the
existence of a token in the request and the session and compare them for equality. If
they are equal, it returns true—otherwise it returns false indicating that there is
either a missing or mismatched token. The token itself is an MD5 message digest (a
kind of checksum) generated from the combination of the user’s session ID and the
current system time. This assures that each token is unique to the user and will not
be repeated. The code for the commandToken class is in listing 11.7:

Listing 11.7 CommandToken

package com.taglib.wdjsp.fagtool;

import javax.servlet.http.*;
import java.security.*;

public class CommandToken {
public static void set (HttpServletRequest req) {
HttpSession session = reqg.getSession(true) ;

long systime = System.currentTimeMillis() ;

byte[] time = new Long(systime) .toString() .getBytes() ;
byte[] id = session.getId() .getBytes();

try {

MessageDigest md5 = MessageDigest.getInstance ("MD5") ;
md5.update (id) ;
md5.update (time) ;
String token = toHex (md5.digest()) ;
req.setAttribute ("token", token);
session.setAttribute ("token", token);
}
catch (Exception e) {
System.err.println("Unable to calculate MD5 Digests") ;
}

}

public static boolean isValid (HttpServletRequest req) {
HttpSession session = reg.getSession(true);
String requestToken = req.getParameter ("token") ;

The administration module 293

String sessionToken = (String)session.getAttribute ("token") ;
if (requestToken == null || sessionToken == null)

return false;
else

return requestToken.equals (sessionToken) ;

}

private static String toHex (byte[] digest) {
StringBuffer buf = new StringBuffer() ;
for (int 1=0; i < digest.length; i++)
buf.append (Integer.toHexString((int)digest[i] & 0x00ff)) ;
return buf.toString() ;

}
-

To make use of this class, we need to set a new token after the successtul completion
of each command. That’s the reason for the call to CommandToken.set () in our
servlet’s service () method. We are essentially creating a single-use token each
time to help regulate flow between pages. On pages that precede flow-critical com-
mands we must include the token as a hidden element of our form data by retriev-
ing it from the request. Then, we’ll have each sensitive command pass the request
object to the isvalid () method to verify that this is a valid request before handling
it. We’ll see this in praCtiCC in the AddCommand, UpdateCommand, and DeleteCom-
mand classes and their respective front-end JSP pages.

11.3.2 The main menu

This screen is the main interface for managing the FAQ list. Here the user can select
to add, modify, or delete an entry. Selecting an action for an FAQ will lead to other
screens. The user will be returned to this screen after completing any operations
from the other screens, and should have a status message area that can be used to
report the results of each operation.

You are taken to the main menu via the main-menu command. Visiting the main
menu is also the default activity if no command identifier is specified. In either case,
no action is required, and the command is handled by a very simple implementation
of the command interface called NullcCommand.

The NullCommand class

The simplest of our commands, as you might expect, is the NullCommand class
(listing 11.8). It simply returns its next URL value, performing no operation. This
class is used for commands that are simply requests to visit a particular page, such
as visiting the main menu and collecting the information necessary to add an FAQ
to the database.

294 CHAPTER 11
An example JSP project

Listing 11.8 NullCommand

package com.taglib.wdjsp.fagtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class NullCommand implements Command {
private String next;

public NullCommand (String next) {
this.next = next;

}

public String execute (HttpServletRequest req)
throws CommandException {
return next;

}

The AbortCommand class

We also created an AbortCommand class to handle the case where the user wants to
abort the current operation and return to the main menu from any page. Abort -
Command differs from NullCommand in only one way: it adds a message to the request
in the form of a request attribute—creating a simple page-to-page communication
system. This message is retrieved by the main menu JSP page, and used to update
the status area of the main menu interface (figure 11.3.) This is a way to give feed-
back to the user about the status of the last operation. We’ll use this technique in sev-
eral other commands as well. The Abortcomand code is shown in listing 11.9.

Listing 11.9 AbortCommand

package com.taglib.wdjsp.faqgtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class AbortCommand implements Command {
private String next;

public AbortCommand (String next) {
this.next = next;

}

public String execute (HttpServletRequest req)
throws CommandException {
req.setAttribute ("fagtool.msg", "Operation Aborted") ;
return next;

}

The administration module ‘ 295

g Main Menu - Microsoft Internet Explorer =] B3
Fle Edt View Favoites Tools Help |
*.@Eﬁi'ﬁ&?%‘é!.
Fonyard Stop Refresh Home Search Favortes History b ail Frint
JLmks &) Akavista €£]DOCS £]J0K1.2 £]Yahoo! &]Deja @€]0VD Coupons &]DVD Deals amz e
| Adaress [€] hitp:/7siide. dev.tivoli. com 8000 /fagtool | @6
=
FAQ Administration: Main Menu
Create New FAQ I
Update An Exiting FAQ |
Delete An Existing FAQ |
Operation Aborted
=
|&] Done [[[Intemet Y

Figure 11.3 A status message on the main menu

The main menu JSP page

The operation of this page is straightforward. The main menu page allows the user
to add, update, or delete an FAQ from the database. That is the page’s only job.
The source code for the main menu page, menu. jsp is shown in listing 11.10.

Listing 11.10 menu.jsp

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>

<html>

<head>

<title>Main Menu</title>

<script language="JavaScript"s>

function setCmd(value) {
document .menu.cmd.value =

}

</scripts>

</head>

<body bgcolor="white">

<form name="menu" action="/fagtool"

value;

method="post">

296

CHAPTER 11
An example JSP project
<input type="hidden" name="cmd" value="">

<table bgcolor="tan" border="0" align="center" cellpadding="10">
<tr><th>FAQ Administration: Main Menu</th></tr>

<tr><td align="center">

<input type="submit" value="Create New FAQ"
onClick="setCmd('add') "></td></tr>

<tr><td align="center">

<input type="submit" value="Update An Existing FAQ"
onClick="setCmd ('update-menu')"></td></tr>

<tr><td align="center">

<input type="submit" value="Delete An Existing FAQ"
onClick="setCmd('delete-menu')"></td></tr>

<tr><td bgcolor="white">

<% if (request.getAttribute ("fagtool.msg") != null) { %>
<i><%= request.getAttribute ("fagtool.msg") %></i>

<% } %>

</td></tr>

</table>

</form>

</body>

</html>

|

We’ve created a simple form, which, upon submittal, posts the form data back to
the URL /faqtool, which we’ve mapped to the FagAdminServlet in our JSP con-
tainer. The command action will be specified through the request parameter cmd,
which must be set by our form. There are a number of ways to include this request
parameter into our form submission. We could have three separate forms on the
page each with its own appropriate values assigned to the hidden element called
cmd, and the three selection buttons would be the submit buttons for each form.
We could also have named our submit buttons cmd, and set the value of each to the
appropriate command identifiers. We could have even used anchor tags with URLs
such as the following, which encode the cmd identifier into the URL as a parameter:

Create New FAQ

Create New FAQ

Create New FAQ

The servlet and application logic classes don’t care how the front-end code works,
as long as it sets the appropriate request parameters. We chose to set the command
identifier through a hidden element (cmd) by using JavaScript to change the value
depending on the user’s selection. Each button on the page is a submit button—all
for the same, single form. However, each has its own JavaScript onclick event han-
dler which sets the value of our cmd element to the appropriate value upon the user
selecting the button. This approach gives us more flexibility in how we describe
cach button, and lets us stick to POST style form processing rather than mucking up

The administration module 297

our URLs by tacking on parameters as we did in the hypothetical example. If you
change the form handler’s method type to GET it will still work, and you will see
that the resulting request looks exactly like those shown. We are just setting the
same request parameters after all. The posT approach keeps our URLs nice and
clean and avoids tempting the user to bookmark deep into the application.

At the bottom of our little interface we check for the presence of a status mes-
sage, and display it if necessary. As we talked about in the discussion of the Abort -
Command, feedback messages may be placed into the request by our other
commands to update us as to the status of things.

11.3.3 Adding an FAQ

Adding an FAQ to the database involves two steps, but only one screen. The users
first choose to create an FAQ from the main menu. We don’t need to do anything
database related at this point, so in our servlet we use the NullCommand (which does
nothing, remember) to handle this activity, forwarding us to the add.jsp page,
which collects the question and the answer information that make up an FAQ. From
this form the user selects to either abort the action, which simply takes them back
to the main menu courtesy of the AbortCommand class, or commit the new FAQ to
the database via a do-add request, which calls the AddCommand class to add the FAQ
to the database, ending back at the main menu once it has been added successfully.

The add page

We must remember our earlier discussion on transaction integrity for sensitive,
flow-dependent commands which we do not want to inadvertently process multiple
times. Adding an FAQ to the database definitely qualifies as a sensitive command,
and it will be looking for a token in the request it receives which matches the one
stored in the session. We therefore need to include the single use token, which was
stored as a request attribute following the successful completion of the command
that brought us to this page. This is simple enough to include in our form.

<input type="hidden" name="token"
value="<%= request.getAttribute ("token") %>">

which turns into something like this at request processing time:

<input type="hidden” name="token” value="485a4b73c03ef8149e6a438b6aa749e3">

This value, along with input from the user detailing the new question and answer
will be sent to FagadminServlet for processing by an instance of the AddCommand
class, which we will discuss in a moment. The source code for add. jsp is shown in
listing 11.11 and the page shown in figure 11.4

298 CHAPTER 11
An example JSP project

Listing 11.11 add.jsp

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<html>
<head><title>Add FAQ</title></head>
<body bgcolor="white">
<form name="menu" action="/fagtool" method="post">
<table bgcolor="tan" border="0" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Add FAQ</th></tr>
<tr><td>Question:</td>
<td><input type="text" name="question" size="41" value="">
</td></tr>
<tr><td>Answer:</td>
<td>
<textarea name="answer" cols="35" rows="5">
</textarea>
</td></tr>
<tr><td colspan="2" align="center">
<input type="submit" value="Abort Addition">
<input type="submit" value="Add This FAQ"
onClick="document .menu.cmd.value="'do-add'">
</td></tr>
</table>
<input type="hidden" name="token"
value="<%= request.getAttribute ("token") %>">
<input type="hidden" name="cmd" value="abort"s>
</form>
</body>
</html>
|

As with the main menu, we use JavaScript to manipulate the value of the hidden
form field emd, which directs our action within the controller servlet, which defaults
to the abort directive, changing its value to do-add if the user indicates he or she
wishes to add the FAQ to the database. If you refer to the FagAdminServilet’s
initCommands () method you will see that the do-add directive is handled by an
instance of the AddCommand class.

The AddCommand class

The source for the Addcommand class is relatively straightforward, because most of
the hard work is done inside the FagRepository class we described earlier. We
merely have to use the information placed into the request through the JSP form to
build an FagBean object to pass to the put method of FagRepository, and carry
out a few sanity checks. The code is shown in listing 11.12:

The administration module ‘ 299

g Add FAQ - Microsoft Internet Explorer =] B3
Fle Edt View Favoites Tools Help |

j *.@3&@@&3%'5

Fonward Refresh Home Search Favorites History b ail Frint Edit
JLmks &) AltaVista @DUCS £]JDK1.2 &]Yahoo! &]Deja £]DVD Coupons &]DVD Deaks £]DVD2 >
| Adaress [€] hitp:/7siide. dev.tivoli. com 8000 /fagtool x| @6

-

FAQ Administration: Add FAQ

Question: [Whatis the high score for Space Paranoids?

The high score for Space Paranoids‘:J
iz 999,999,999
Answer:

I

Abort Addition Add This FAQ |

=l
/€] Dore [[[intemet Y
Figure 11.4 Adding an FAQ

Listing 11.12 AddCommand

package com.taglib.wdjsp.faqgtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class AddCommand implements Command {
private String next;

public AddCommand (String next) {
this.next = next;
}

public String execute (HttpServletRequest req)
throws CommandException {
try {
if (CommandToken.isValid(req)) ({

FagRepository fags = FagRepository.getInstance() ;
FagBean fagq = new FagBean() ;
fag.setQuestion (reqg.getParameter ("question")) ;
fag.setAnswer (req.getParameter ("answer")) ;
fags.put (faq) ;

300

CHAPTER 11
An example JSP project
reqg.setAttribute ("fagtool.msg", "FAQ Added Successfully");
}
else {
reqg.setAttribute ("fagtool.msg", "Invalid Reload Attempted") ;

}

return next;

}
catch (FagRepositoryException fe) {
throw new CommandException ("AddCommand: " + fe.getMessage()) ;

}
}

Before we process the request, we must check that we received a valid token in the
request by passing the request to the CommandToken.isvValid () method. This
command validator will expect to find a token in the user’s session that matches the
token passed in through the JSP form’s hidden token field. If it does, we can add
the FAQ to the database. If there is an error, we catch the appropriate exception and
rethrow it as an exception of type CommandException. This allows the servlet that
called the command to handle it—in this case FagadminServlet bundles it up as a
request attribute and forwards the whole request to our error page. If it succeeds, it
inserts an appropriate status message in the form of a request attribute to indicate
what happened before returning the user to the main menu.

11.3.4 Deleting an FAQ

Deleting an FAQ takes three steps spread over two screens. After selecting delete
from the main menu, the user is given a list of FAQs to select for removal. Before
anything is deleted however, the FAQ’s information is displayed and the user is
asked for confirmation and given a final chance to abort the process and return to
the main menu. Like adding an FAQ, deleting one is considered a sensitive opera-
tion, so we’ll be checking that token again.

The GetAllCommand class

The first step in the deletion process, as you can see from the command mapping
tor the delete directive, is handled by the Getallcommand class whose job is to
retrieve the entire collection of FAQs from the database, wrap them into an array,
and store them as a request attribute under the attribute name fags. This allows the
JSP page following this command to display a listing of all of the FAQs in the data-
base. As before, most of the work is done inside the already covered FagReposi-
tory. The source for this class is shown in listing 11.13.

The administration module ‘ 301

Listing 11.13 GetAllCommand

package com.taglib.wdjsp.fagtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class GetAllCommand implements Command {
private String next;

public GetAllCommand (String next) {
this.next = next;

}

public String execute (HttpServletRequest req)

throws CommandException {

try {
FagRepository fags = FagRepository.getInstance() ;
FagBean[] faqglList = fags.getFags() ;
req.setAttribute ("fags", faqlist);
return next;

}

catch (FagRepositoryException fe) {
throw new CommandException("GetCommand: " + fe.getMessage()) ;

}

}

The deletion selection screen

The del menu.jsp page is responsible for displaying the available FAQs and allow-
ing the user to select one for deletion. It is delivered after GetAllCommand has
retrieved the FAQs from the database and stored them as an array in request. We
simply have to pull them out one by one, and build up our form. The end result is
shown in figure 11.5, the source code is in listing 11.14. There are a few tricky
parts, which we’ll discuss.

Listing 11.14 del_menu.jsp

<%@ page import="com.taglib.wdjsp.faqgtool.*"
errorPage="/jsp/error.jsp" %>

<jsp:useBean id="faqg" class="com.taglib.wdjsp.faqtool.FagBean"/>

<%
FagBean[] fags = (FagBean[])request.getAttribute("fags");

%>

<html>

<head><titlesDelete Menu</title></head>

<form name="menu" action="/fagtool" method="post">

302

CHAPTER 11
An example JSP project

ft Internet Explo

Figure 11.5 The deletion selection screen

<table bgcolor="tan" border="1" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Delete Menu</th></tr>
<%
for (int i=0; i < fags.length; i++) {
faq = fagsl[il;
%>
<tr>
<td><input type="radio" name="id"
value="<jsp:getProperty name="faq" property="ID"/>">
<jsp:getProperty name="faq" property="ID"/></td>
<td><jsp:getProperty name="faq" property="question"/></td>
</tr>
<% } %>
<tr><td colspan=2>
<input type="submit" value="Abort Delete">
<input type="submit" value="Delete Selected FAQ"
onClick="document .menu.cmd.value="'delete'">
<input type="hidden" name="cmd" value="abort"s>
</td></tr>
</table>
</form>
</html>

The administration module 303

Looping through the array of FagBean objects we pulled from the request seems
straightforward, but there’s a tricky part here. We wanted to use the Bean tags
inside our loop, but remember that there are no standard tags for handling indexed
properties or elements of an array like this. Therefore, we have to pull each item out
of the array and create a reference to it accessible by the PageContext object, most
importantly for the bean tag <jsp:getProperty>. We simply declare the reference,
faq, at the top of the page via <jsp:useBeans, even though we actually assign a
FagBean object to the reference through a scriptlet. Leaving out the <jsp:use-
Bean> tag would cause an error when the page tried to use <jsp:getPropertys on
the faq variable.

The form itself is straightforward. We need to obtain the ID number of the FAQ
that is to be deleted, as well as give the user the abort option. The submit buttons
are handled as before, through JavaScript, and radio buttons give us an easy way to
pick up the selected ID. If the user chooses to continue on to the second of the
three steps, we set the cmd identifier to the delete action, which is handled by the
GetCommand class to ask for confirmation.

The GetCommand class

The GetCommand class can retrieve a single FAQ from the database by its ID value. It
looks in the request for the id parameter, then uses the FagRepository class we
created in our storage module to retrieve the matching FAQ from the database. We
use the id value pulled from the request to call the getFaq () method of our FagRe-
pository. If we are successful fetching the FAQ from the database, we store it in the
request under the attribute name fag. This allows the destination screen, in this
case delete.jsp, to retrieve it from the request to make sure the user really wants
to delete this FAQ. The only thing new here is that we have to catch several differ-
ent exceptions and react accordingly. When we’re done we return the next screen to
the servlet. The source for the Get Command class is shown in listing 11.15.

Listing 11.15 GetCommand

package com.taglib.wdjsp.fagtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class GetCommand implements Command {
private String next;

public GetCommand (String next) {
this.next = next;

}

304 CHAPTER 11
An example JSP project

public String execute (HttpServletRequest req)

throws CommandException {

try {
FagRepository fags = FagRepository.getInstance() ;
int id = Integer.parselnt (req.getParameter ("id")) ;
FagBean faqg = fags.getFaqg(id) ;
req.setAttribute ("faqg", faq);
return next;

}

catch (NumberFormatException e) {
throw new CommandException ("GetCommand: invalid ID") ;

}

catch (UnknownFagException uf)
throw new CommandException ("GetCommand: " + uf.getMessage());
}

catch (FagRepositoryException fe) {
throw new CommandException ("GetCommand: " + fe.getMessage());
}

}

The delete confirmation screen

This page allows the user to confirm the selection and triggers the deletion on the
server. We simply need to retrieve the FAQ from the request, display its properties,
and get the user’s decision. Because the handler class for the do-delete action,
DeleteCommand, is vulnerable we must include the current command token in our
request, just as we did on the screen where we were creating an FAQ entry. The
source for this page is shown in listing 11.16 and a screen is shown in figure 11.6

Listing 11.16 delete.jsp

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>

<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FaqgBean" scope="request"/
>

<html>

<head><titles>Delete FAQ</title></head>

<form name="menu" action="/fagtool" method="post">

<table bgcolor="tan" border="0" align="center" cellpadding="10">

<tr><th colspan="2">FAQ Administration: Delete FAQ</th></tr>

<tr><td>ID:</td>

<td><jsp:getProperty name="faq" property="ID"/></td>

</tr>

<tr><td>Question:</td>

<td><jsp:getProperty name="faq" property="question"/></td>

</tr>

The administration module 305

3 Delete FAQ - Microsoft Internet Explorer

=
Fonyard

Figure 11.6 The deletion confirmation screen

<tr><tdsAnswer:</td>

<td><jsp:getProperty name="faq" property="answer"/></td>
</tr>

<tr>

<td colspan="2">

<input type="submit" value="Abort Deletion">

<input type="submit" value="Delete This FAQ"
onClick="document .menu.cmd.value='do-delete'">
</td></tr>

</table>

<input type="hidden" name="token"

value="<%= request.getAttribute ("token") %>">

<input type="hidden" name="id"
value="<jsp:getProperty name="faq" property="id"/>">
<input type="hidden" name="cmd" value="abort"s
</forms>

</html>

306 CHAPTER 11
An example JSP project

The DeleteCommand class
Another straightforward command handler, DeleteCommand, requires an FAQ ID,
which it obtains from the request. It calls the appropriate FagRepository method,
catching exceptions where appropriate. This is a sensitive command, so we check
the token before proceeding.

package com.taglib.wdjsp.fagtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class DeleteCommand implements Command {
private String next;

public DeleteCommand (String next) {
this.next = next;

}

public String execute (HttpServletRequest req)
throws CommandException {
try {
if (CommandToken.isValid(req)) ({
FagRepository fags = FagRepository.getInstance() ;
int id = Integer.parselnt (reqg.getParameter ("id")) ;
fags.removeFaqg(id) ;

reqg.setAttribute ("fagtool.msg", "FAQ Deleted Successfully");
}
else {

reqg.setAttribute ("fagtool.msg", "Invalid Reload Attempted") ;

}

return next;

catch (NumberFormatException e) {
throw new CommandException("DeleteCommand: invalid ID");

catch (UnknownFagException u) {
throw new CommandException("DeleteCommand: "+u.getMessage()) ;

catch (FagRepositoryException fe) {
throw new CommandException("DeleteCommand: "+fe.getMessage()) ;

}
}

}
11.3.5 Updating an FAQ

Updating an FAQ—that is, editing its question and answer values—is a three-step
process. In the first step, just as with deleting an FAQ, the user picks an FAQ from
the list in the database. The next step is a screen which looks like the add screen we

The administration module 307

built earlier, but this time has default values equal to the current values for the
selected FAQ in the database. Committing changes on this screen updates the data-
base with the new values.

Update selection screen

This screen is nearly identical to the one we created for the Delete menu. Its source
is shown in listing 11.17 and its screen shot in figure 11.7. Submitting the form on
the page causes the servlet to execute the GetCommand on the selected servlet, in
preparation for the update screen.

Listing 11.17 upd_menu.jsp

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faqg" class="com.taglib.wdjsp.faqtool.FagBean"/>
<%
FagBean[] fags = (FagBean[])request.getAttribute("fags");
%>
<html>
<head><title>Update Menu</titles></head>
<form name="menu" action="/fagtool" method="post">
<table bgcolor="tan" border="1" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Update Menu</th></tr>
<%
for (int i=0; i < fags.length; i++) {
faq = fagsl[i];
%>
<tr>
<td><input type="radio" name="id"
value="<jsp:getProperty name="faq" property="ID"/>">
<jsp:getProperty name="faq" property="ID"/></td>
<td><jsp:getProperty name="faq" property="question"/></td>
</tr>
<% } %>
<tr><td colspan=2>
<input type="submit" value="Abort Updating"s>
<input type="submit" value="Update Selected FAQ"
onClick="document .menu.cmd.value="update'">
<input type="hidden" name="cmd" value="abort"s>
</td></tr>
</table>
</form>
</html>

308 ‘ CHAPTER 11

An example JSP project
3 Update Menu - Microsoft Internet Explorer M= E3
| Fle Edt View Favoites Iooks Hep |-

£ .5 .0 A 39 @ 3D g W

Back Forward Refresh Home Search Favortes History il Print Edit
JAgdresslg] hittp:/ #slide: 8000/faqgtool ;I r(’950

=

FAQ Administration: Update Menu

= 10262 | What is the maximum speed of a Solar Sailer?

10263 | Why do programs continue to believe in users?

C 10264 | Were all programs created equal?

10265 | What is the high score for Space Paranoids?

AbortUpdating |[

=
|€] Done l_ [_ E‘g Local intranet 4

Figure 11.7 The Update menu

Update screen

This page operates nearly identically to the page for adding FAQs. The only ditfer-
ence (other than passing a different command identifier) is that we have to prepop-
ulate the form fields with the current values for the selected FAQ. The GetCommand
has placed a FagBean corresponding with the selection into the request, so all we
have to do is retrieve its values and place them into the form fields. More detailed
information on populating forms—including radio buttons, select lists, and other
elements—with JSP can be found in chapter 14. The listing for this page is shown in
listing 11.18, and the screenshot in figure 11.8.

Listing 11.18 update.jsp

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FagBean" scope="request"/
>

<html>
<head><title>Update FAQ</title></head>
<body bgcolor="white">

The administration module ‘ 309

/3 Update FAQ - Microsoft Internet Explorer

| Fie Edt View Favoites Tools Help

oI S BD) IR B = BN~ I B IES DO R - B

Back Fonwatd Stop Refresh Home Search Favortes History Mail Print Edit

|| Address |1 hitp://side:8000/faatool

=l @6

FAQ Administration: Update FAQ

Question: [Whatis the maximum speed of & Solar Sailer?

A standard Solar Sailer can travel :J
at a rate of up to 200,000 pixels
Amswen per second.

-

Abort Update Update This FAQ |

=l

|€] Done [| [$® Localintranet

I
/

Figure 11.8 The update screen

<form name="menu" action="/fagtool" method="post">

<table bgcolor="tan" border="0" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Update FAQ</th></tr>
<tr><td>Question:</td>

<td><input type="text" name="question" size="41"
value="<jsp:getProperty name="faqg" property="question"/>">
</td></tr>

<tr><td>Answer:</td>

<td>

<textarea name="answer" cols="35" rows="5">
<jsp:getProperty name="faq" property="answer"/>
</textarea>

</td></tr>

<tr><td colspan="2" align="center">

<input type="submit" value="Abort Update">

<input type="submit" value="Update This FAQ"
onClick="document .menu.cmd.value='do-update'">

</td></tr>

</table>

<input type="hidden" name="cmd" value="abort"s>

<input type="hidden" name="token"

value="<%= request.getAttribute("token") %>">

<input type="hidden" name="id"

310

CHAPTER 11
An example JSP project

value="<jsp:getProperty name="faq" property="ID"/>">
</form>
</body>
</html>

The UpdateCommand class

The operation of this command is very similar to that of AddCommand discussed ear-
lier. We take elements of the request to populate a FagBean object which is passed
to the update () method of the Fagrepository class. Again, we catch the appropri-
ate exceptions. The source is shown in listing 11.19.

Listing 11.19 UpdateCommand

package com.taglib.wdjsp.fagtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class UpdateCommand implements Command {
private String next;

public UpdateCommand (String next) {
this.next = next;

}

public String execute (HttpServletRequest req)
throws CommandException {
try {
if (CommandToken.isValid(req)) ({

FagRepository fags = FagRepository.getInstance() ;
FagBean fagq = new FagBean() ;
fag.setID(Integer.parselnt (req.getParameter ("id"))) ;
fag.setQuestion (reqg.getParameter ("question")) ;
fag.setAnswer (req.getParameter ("answer")) ;
fags.update (faq) ;

reqg.setAttribute ("fagtool.msg", "FAQ Updated Successfully");
}
else {

reqg.setAttribute ("fagtool.msg", "Invalid Reload Attempted") ;

}

return next;
catch (NumberFormatException e) {
throw new CommandException ("UpdateCommand: invalid ID");
catch (UnknownFagException uf)
throw new CommandException ("UpdateCommand: "+uf.getMessage()) ;

}

The web access module 311

catch (FagRepositoryException fe) {
throw new CommandException ("UpdateCommand: "+fe.getMessage()) ;

}
}
}

Error screen
This application has a single, very simple error screen, as shown in listing 11.20.

Listing 11.20 error.jsp

<%@ page isErrorPage="true" %>

<html>

<body>

The ERROR : <%= exception.getMessage() %>
<% exception.printStackTrace(); %>
</body>

</html>

11.4 The web access module

When we started thinking about how the FAQs would be represented on the web,
we realized that with a JSP solution, it was less important to know how they would
look (which would be determined by our content team), and more important to
know what type of information they would need to convey. From talking with the
content team we knew that they would need a way to access the information per-
taining to a single FAQ in the database as well as a way to access the entire list of
FAQs at once. With these capabilities, they could use JSP to design any number of
displays. The decision then was to concentrate on providing them these necessary
components (through JavaBeans), and leaving the details of the page design up to
them. We also wanted to allow them to create pages in additional styles of formats
without the development team having to modify any servlets.

An important consideration that went into the design of this module is that the
exact requirements of how the FAQs will be displayed on the web will never be
nailed down. We have some basic ideas, but in implementation it is limited only by
the creativity of the design team and will certainly change over time and with each
site redesign. The goal was to provide the content team with a collection of flexible
JSP components that would allow them to fill just about whatever content needs
might arise now, or in the future. We’ll implement several possible FAQ presenta-
tions that work with the components we create.

312 CHAPTER 11
An example JSP project

11.4.1 The FaqServiet

For the web access module we created FagsServlet which can be used to retrieve
cither a single FAQ or all of the FAQs from the database. Its operation depends on
the information passed into the servlet through request parameters. The servlet
stores the FAQ (or FAQs) as a request attribute before forwarding it to the
front-end JSP page, which, unlike our administration servlet, is also specified by the
user through the request at run time. The source code for this servlet is shown in
listing 11.21.

Listing 11.21 FaqServiet

package com.taglib.wdjsp.faqgtool;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class FagServlet extends HttpServlet ({
private String jspdir = "/jsp/";
private String error = "error.jsp";

public void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
String next;
Command cmd;

try {
next = reqg.getParameter ("page") ;
if (next == null)
throw new CommandException ("Page not specified");
if (reqg.getParameter("id") != null)
cmd = new GetCommand (next) ;
else

cmd = new GetAllCommand (next) ;

cmd . execute (req) ;
catch (CommandException e) {

reqg.setAttribute ("javax.servlet.jsp.jspException", e);

next = error;
RequestDispatcher rd;
rd = getServletContext () .getRequestDispatcher (jspdir + next) ;
rd.forward (req, res);

The web access module 313

We were able to reuse the GetCommand and GetAllCommand classes that were devel-
oped for the administration module in this servlet. However, since there are only a
couple of possible actions in this servlet, we eliminated the command identifiers and
instead base our actions on what parameters were present in the request. If a single
FAQ is to be retrieved, its ID values should be passed in through the id request
parameter. If this parameter doesn’t exist, we’ll default to fetching all of the FAQs.
In either case, we need to know which JSP page will be ultimately handling the
request, and this should be indicated through the page request parameter. If this
parameter is missing we have no choice but to throw an exception and visit the
error page. We mapped the servlet to /faqs/ on the external web server. So, for
example, to retrieve FAQ number 1437 and display it in the JSP page showfag.jsp
we would use a URL such as this:

/fags?page=showfaq.jsp&id=1437

This simple servlet is quite flexible; it is basically an FAQ lookup service for JSP
pages. It allows the web team to develop many different pages that display FAQs in
a variety of formats and styles without having to modify the application or control
logic. They can have a hundred different versions if they want to. This simple core
service can serve them all. Let’s look at a couple of examples of how this service can
be used to display FAQs.

11.4.2 Viewing a single FAQ

To view a single FAQ we simply pass in the page name, in this case single.jsp, and
the ID number of the FAQ we want to display. We then retrieve the FAQ from the
request and display its properties. The source for the page is shown in listing 11.22
and a screen shot in figure 11.9.

Listing 11.22 single.jsp

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>

<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FagBean" scope="request"/
>

<html>

<head>

<title>FAQ <jsp:getProperty name="faq" property="ID"/></title>

</head>

<body bgcolor="white">

Question: <jsp:getProperty name="faq" property="question"/>

Answer: <jsp:getProperty name="faq" property="answer"/>

<p>

314

11.4.3

CHAPTER 11
An example JSP project

a FAQ 10262 - Microsoft Internet Explorer

| Ele Edt View Favoites Iooks Help |
]A;Idress I@I http: //slide.dev.tivoli.com:8000/faqs?id=102624page=single.isp _ j @ Go

Question: What is the maximum speed of a Solar Sailer?
Answer: A standard Solar Sailer can travel at a rate of up to 200,000 pixels per second.

Last Modified: A% Dec 10 10:29:20 C5T 1999

|&] Dore [[|4 Intemet Vi

Figure 11.9 Viewing a single FAQ

Last Modified:

<i><jsp:getProperty name="faq" property="lastModified"/></i>

</body>

</html>

Viewing all the FAQs

Showing the contents of all of the FAQs on a single page is not much different. We
use the same looping constructs we developed for the delete and update menus in
the Administration module to cycle through the FAQs. The source code is shown in
listing 11.23, and a screen shot is shown in figure 11.10.

Listing 11.23 all.jsp

<%@ page import="com.taglib.wdjsp.faqgtool.*"
errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faqg" class=" FagBean"/>
<% FagBean[] fags = (FagBean[])request.getAttribute("fags"); %>
<html>
<head><title>FAQ List</title></head>
<body bgcolor="white">
<h2>FAQ List</h2>
<%
for (int i=0; i < fags.length; i++) {
faq = fagsl[il;
%>
Question: <jsp:getProperty name="faq" property="question"/>

The web access module ‘ 315

3 FAQ List - Microsoft Internet Explorer
| Fle Edt View Favoites Iools Help |
J Address IE http: //slide.dev tivoli. com: 8000/fags ?page=all jsp j o Go

FAQ List

Question: What is the maximum speed of a Solar Sailer?
Answer: A standard Solar Sailer can travel at a rate of up to 200,000 pixels per second.

Question: Why do programs continue to believe in users?
Answer: Most programs are weak and use this silly belief as a means of justifinng their own
existence.

Question: Were all programs created equal?
Answer: Yes, but some programs were created more equal than others.

Question: What is the high score for Space Paranoids?
Answer: The high score for Space Paranoids is 999,999,999 points - set by Flynn, the

game's inventor.

\

|€] Done [[Intemet

Figure 11.10 All the FAQs

Answer: <jsp:getProperty name="faq" property="answer"/>
<p>

<% } %>

</body>

</html>

11.4.4 A table of contents view

A more imaginative use of the FAQ lookup servlet is to create a table of contents
view of the FAQs in the database. To do this we need to reference all of the FAQs,
just as we did when we wanted to view all of them. This time, however, we only dis-
play the questions as a link to our single FAQ view. This dynamically generates links
to each individual FAQ. The source for this page is shown in listing 11.24, and a
screen shot in figure 11.11.

316

CHAPTER 11
An example JSP project

“} FAQ Index - Microsoft Internet Explorer

| Ele Edt View Favoies Iook Help l

JAddess |ﬂ hitp: //slide. dev. tivoli. com: 8000/ ags Ppages=toc. jsp j ("} Go |

FAQ Index

Q: What is the mammum speed of a Solar Sailer?

: Why do programs continue to believe in users?

Q: Were all programs created equal?
Q

+ What is the high score for Space Paranoids?

N

23] [[Intemet

Figure 11.11 The FAQ index page

Listing 11.24 toc.jsp

<%@ page import="com.taglib.wdjsp.faqgtool.*"
errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faqg" class="com.taglib.wdjsp.faqtool.FagBean"/>
<% FagBean[] fags = (FagBean[])request.getAttribute("fags"); %>
<html>
<head><title>FAQ Index</title></head>
<body bgcolor="white">
<h2>FAQ Index</h2>
<%
for (int i=0; i < fags.length; i++) {
faq = fagsl[i];
%>
Q:
<a href="/fags?page=single.jsp&id=
<jsp:getProperty name="faq" property="ID"/>">
<jsp:getProperty name="faq" property="question"/>
<p>
<% } %>
</body>
</html>

11.4.5

The web access module 317

M MotePad+ - [faqs[1]] H=]E3
[£) File Edit Options Window Help =181
D@ Sl=| & |5 x| =] Al«[

FAQs List: =]

Question: What is the maximum speed of a Solar Sailer?
Answer: A standard Solar Sailer can travel at a rate of up to 200,000 pixels per second.

Question: Why do programs continue to beliewe in users?
Answer: Most programs are weak and use this silly belief as a means of justifying their own existence.

Question: Were all programs created equal?
Answer: Yes, but some programs were created more ecqual than others.

Question: What is the high score for Space Paranoids?
Answer: The high score for Space Paranoids is 999,999,999 points - set by Flynn, the game's inventor.

]
/

| Changed INS Line 14, Cokumn 1

Figure 11.12 A plain text view

Plain text view

As an alternative view of the FAQs we create a plain text version of the list by simply
changing the content type and omitting HTML code. This view is shown in
listing 11.25 and can be seen in action (loaded into a text viewer) in figure 11.12.

Listing 11.25 plain.jsp

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faqg" class=" FagBean"/>
<% FagBean[] fags = (FagBean[])request.getAttribute("fags"); %>
FAQs List:
<%
for (int i=0; i < fags.length; i++) {
faq = fagsl[i];
%>
Question: <jsp:getProperty name="faq" property="question"/>
Answer: <jsp:getProperty name="faq" property="answer"/>
<% } %>

Introducing filters
and listeners

This chapter covers

= Life-cycle event listeners
= Filtering application resources
= Request and response wrappers

318

12.1

Life-cycle event listeners 319

As described in previous chapters, JSP is an extension of Java servlets. The text of a
JSP page is automatically translated into Java source code for a servlet that produces
the content, both static and dynamic, designated by the original page. As such, each
version of JSP is tied to an associated version of the Servlet specification. JSP 1.2, for
example, is based on version 2.3 of the Servlet specification.

As a result, features added to the Servlet specification also become new features
of the dependent JSP specification. In chapter 6, for example, we saw that JSP 1.2
supports both true and false values for the £lush attribute of the <jsp:include>
action, whereas JSP 1.1 requires this attribute to be true always. This enhanced
functionality of JSP 1.2 is a result of improvements in Servlet 2.3.

Filters and life-cycle event listeners are two additional Servlet 2.3 features that
can likewise be taken advantage of in JSP 1.2 applications. Filters allow developers
to layer new functionality on top of existing web-based resources (e.g., servlets, JSP
pages, and static content), by intercepting requests and responses and performing
new operations on them, in addition to—or even instead of—those associated with
the original resource. Listeners allow developers to hook into the operations of the
container itself, running custom code in response to events associated with applica-
tions and HTTP sessions.

Life-cycle event listeners

Listeners allow web application developers to monitor certain types of operations
performed by the container, and take appropriate application-specific actions in
response to those operations. As of Servlet 2.3 and JSP 1.2, there are six such life-
cycle event listeners, all taking the form of Java interfaces which define methods for
receiving notifications of container activities. Four of these may be used to monitor
session activity, and two are focused on application-level life-cycle events.

12.1.1 Session listeners

We have seen one example of a life-cycle event listener, the javax.serv-
let.http.HttpSessionBindingListener interface, described in chapter 8. By
implementing this interface, objects that expect to be interacting with an end user’s
HTTP session can be notified whenever they are added to or removed from a ses-
sion, via the methods summarized in table 12.1. An example of its use was pre-
sented in chapter 9, where the HttpSessionBindingListener interface is
implemented by the ConnectionBean class.

320

CHAPTER 12
Introducing filtevs and listeners

Table 12.1 Methods of the javax.servlet.http.HttpSessionBindingListener interface

Method Description
valueBound (event) Notifies the listening object that it is being added to a session.
valueUnbound (event) Notifies the listening object that it is being removed from a session.

This particular listener interface predates JSP 1.0. Five new listener interfaces have
been added with Servlet 2.3, and are therefore only available with JSP containers
supporting JSP 1.2 and higher.

The first, the javax.servlet.http.HttpSessionActivationListener inter-
face, works very similarly to HttpSessionBindingListener. Objects that are added
to the session whose classes implement the HttpSessionActivationListener
interface will automatically be notified whenever the session is activated or passi-
vated, using the methods listed in table 12.2. Activation and passivation are features
of advanced application servers that supported distributed processing. Such servers
implement load balancing by transferring sessions between different JVMs, running
either on the same machine or on multiple machines across a network.

Table 12.2 Methods of the javax.servlet.http.HttpSessionActivationListener interface

Method Description
sessionDidActivate (event) Notifies the listening object that its session has been acti-
vated.
sessionWillPassivate (event) Notifies the listening object that its session is about to be
passivated.

When a session is being stored for transfer to another JVM, it is said to be passi-
vated. Any objects currently stored as attributes of that session which happen to
implement the HttpSessionActivationListener interface will be notified by call-
ing their sessionwillPassivate () method. After the session has been migrated to
the other JVM, it is said to be activated. When this happens, all session attributes
implementing HttpSessionActivationListener will have their sessionDidActi-
vate () methods called. In both cases, the method is passed an instance of the
javax.servlet.http.HttpSessionEvent, from which the HttpSession ObjCCt
may be retrieved via the event’s getSession () method.

Life-cycle event listeners 321

NOTE Since HttpSessionBindingListener and HttpSessionActivationLis-
tener are interfaces, they are not subject to Java’s restrictions regarding
multiple inheritance of classes. Objects that expect to be placed in a session
are therefore free to implement both HttpSessionBindingListener and
HttpSessionActivationListener, allowing them to respond appropriate-
ly to both sets of events.

The other new life-cycle event handlers operate rather differently. The Httpses-
sionBindingListener and HttpSessionActivationListener interfaces must be
implemented directly by the objects that are involved in session-related activity, and
it is these objects that will receive, and must therefore respond to, the event notifi-
cations associated with the individual interactions with the session. Also, there is no
need to register such listeners with the container; the association is automatic. If an
object implementing HttpSessionBindingListener is added to a session, its val-
ueBound () method is automatically called, just as its valueUnbound () method is
automatically called when the object is removed from the session. For an object
implementing HttpSessionActivationListener, its sessionWillPassivate ()
and sessionDidActivate () methods are automatically called when the session to
which the object belongs is either passivated or activated.

In contrast to HttpSessionBindingListener and HttpSessionActivation-
Listener, then, the other new listener interfaces are typically implemented via ded-
icated classes, rather than adding them to a class that is already performing some
other application functionality. As a result, these listeners need to be explicitly regis-
tered with the application, since there is no way for the application to detect them
automatically. This is accomplished via the application’s deployment descriptor file,
an XML document containing configuration information about the application. As
an application is being loaded and initialized, it reads the configuration information
in the deployment descriptor, including the set of listener classes registered there.
The container then creates an instance of each such class, and begins sending it the
appropriate events as they occur. Deployment descriptors are described in detail in
chapter 14.

In addition, these other new interfaces are designed to receive all events associ-
ated with a particular category of container activity, rather than just those events
affecting a single object. An object implementing HttpSessionBindingListener
or HttpSessionActivationListener only receives events regarding its own inter-
actions with the application. An object implementing one or more of the new life-
cycle event listener interfaces receives all application events of the corresponding

322

CHAPTER 12
Introducing filtevs and listeners

types, independent of the specific objects involved in the event. Of these remaining
four listener interfaces, two are concerned with session-related activity and two are
for monitoring activity of the applications.

Notification of events indicating the creation and destruction of sessions is
prOVidCd by the javax.servlet.http.HttpSessionListener interface. As indi-
cated in table 12.3, listeners implementing this interface are informed when new
sessions are created by means of the interface’s sessionCreated () method.
When a session is destroyed, either because it has expired or because application
code has called its invalidate () method, the container will notity the applica-
tion’s HttpSessionListener instances by calling their sessionDestroyed ()
methods. Both methods are passed an instance of the aforementioned HttpSes-
sionEvent class as their sole parameter.

Table 12.3 Methods of the javax.servlet.http.HttpSessionListener interface

Method Description

sessionCreated (event) Notifies the listening object that the session has been loaded
and initialized.

sessionDestroyed (event) Notifies the listening object that the session has been unloaded.

Events related to session attributes are handled by the javax.servlet.http.Http-
SessionAttributeListener interface. Its methods, summarized in table 12.4, allow
the developer to monitor the creation, setting, and deletion of session attributes.

Table 12.4 Methods of the javax.servlet.http.HttpSessionAttributeListener interface

Method Description
attributeAdded (event) Notifies the listening object that a value has been assigned to a
new session attribute.
attributeReplaced (event) Notifies the listening object that a new value has been assigned
to an existing session attribute.
attributeRemoved (event) Notifies the listening object that an session attribute has been
removed.

Whenever an attribute is added to a session—for example, by calling the session’s
setAttribute () method or via a <jsp:useBean> action with its scope attribute set
to ”session”—it will call the attributeadded () method of all registered instances
of the HttpSessionAttributeListener interface. A single parameter will be pro-
vided, in the form of an instance of the javax.servlet.http.HttpSession-

Life-cycle event listeners 323

BindingEvent class. This event class is actually a subclass of the HttpSessionEvent
class introduced previously, and supports two additional methods, getName () and
getvalue (), for recovering the name of the attribute being added and its initial
value, respectively.

If a new value is subsequently assigned to such an attribute, the application will
post a new event by calling these listeners’ attributeReplaced () methods. The
event will again be an instance of HttpSessionBindingEvent. In this case, how-
ever, the event instance’s getvalue () method will return the attribute’s former
value, not its new value. If the attribute is removed from the session, each HttpSes-
sionAttributeListener will have its attributeRemoved () method called, again
with an instance of HttpSessionBindingEvent as its sole argument. The event
object’s getName () method will return the name of the attribute that has been
removed, while its getvalue () method will return the last value assigned to that
attribute before it was removed.

The HttpSessionAttributeListener thus provides very similar functionality
to HttpSessionBindingListener. As already suggested, the primary difference is
that HttpSessionBindingListener must be implemented directly by objects
being added to the session, whereas classes implementing HttpSession-
AttributeListener are not direct participants in session activity. The Http-
SessionAttributeListener interface can thus be considered noninvasive,
because it allows session activity to be monitored without needing to modity the
objects involved in that session activity. Implementing HttpSessionBindingLis-
tener, however, requires access to the source code for the object whose session
activity is to be monitored.

NOTE Direct access to the source code of a class to which you wish to add Http-
SessionBindingListener support is not strictly required. You can always
create a subclass of the original class that inherits the methods of the original
and also implements the HttpSessionBindingListener interface. Alterna-
tively, the delegation design pattern can be used to create a class implement-
ing HttpSessionBindingListener, which incorporates an instance of the
original class as one of its instance variables. The methods of HttpSession-
BindingListener are implemented directly by this new class, while those of
the original class are forwarded (i.e., delegated) to the object stored in this
instance variable.

The choice of which listener to use is application-dependent. If a given object is
generic and intended for use in a wide range of applications (i.e., not necessarily

324

CHAPTER 12
Introducing filtevs and listeners

web-related) then HttpSessionAttributeListener may be more appropriate. By
doing so, the session-related functionality can be isolated in a separate class that
need only be included when the object is used in a web-based application. If the
object is specifically geared toward deployment with servlets and JSP pages, then
having its class also implement HttpSessionBindingListener may be preferred.
This approach is particularly appropriate if the object needs to track session activa-
tion and passivation as well, since this will require it to also implement HttpSes-
sionActivationListener.

12.1.2 Application listeners

The final pair of new life-cycle event listeners are concerned with the activity of the
web application itself. As described in chapter 6, a set of interrelated servlets, JSP
pages, and other resources are grouped as a web application. One feature of such an
application is that all of its resources have URLs which share the same top-level
directory name. The application’s resources also share an associated instance of the
javax.servlet.ServletContext class. This instance, which is made available to its
JSP pages as the application implicit object, provides access to the application’s
global attributes and initialization parameters.

A given servlet or JSP container can be simultaneously running any number of
web applications. Each such application is assumed to be self-contained, with no
dependencies upon or detailed knowledge of the inner workings of any of the other
applications running in the container. Based on this assumption, the container is
allowed to load and unload individual applications as it sees fit. If, for example, a
particular application’s resources have not been accessed recently, the container is
allowed to unload the application in order to free memory for the other applica-
tions it is running. As soon as it receives a new request for that resource, however, it
must reload it in order to handle that request.

Because it is shared among all of its servlets and JSP pages, an application’s
ServletContext instance is often a convenient place to store long-lived global
resources such as database connection pools or large in-memory data structures
intended to be accessed by multiple users. When doing so, however, it is often nec-
essary to take special action to manage these resources any time the application is
loaded or unloaded. Keeping track of the loading and unloading of an application is
the role of the javax.servlet.ServletContextListener interface, the methods
of which are summarized in table 12.5.

Life-cycle event listeners 325

Table 12.5 Methods of the javax.servlet.ServletContextListener interface

Method Description
contextInitialized (event) Notifies the listening object that the application has been loaded
and initialized.
contextDestroyed (event) Notifies the listening object that the application has been
unloaded.

When a container loads an application that includes listeners implementing the
ServletContextListener interface, all such listeners are sent a corresponding
javax.servlet.ServletContextEvent instance via their contextInitialized()
methods, indicating that the application is now ready to receive requests. The appli-
cation’s ServletContext instance can be retrieved from this event via its getServ-
letContext () method. When the application is unloaded by the container, those
listeners are then sent another ServletContextEvent event via their contextDe-
stroyed () methods.

As indicated in chapter 6, an application’s ServletContext instance—like its
sessions—may also be used to store and retrieve attributes. A second listener has
been provided in Servlet 2.3 for monitoring access to such application-level
attributes. The methods of this interface, javax.servlet.ServletContextAt-
tributeListener, are summarized in table 12.6.

Table 12.6 Methods of the javax.servlet.ServletContextAttributeListener interface

Method Description
attributeAdded (event) Notifies the listening object that a value has been assigned to a
new application attribute.
attributeReplaced (event) Notifies the listening object that a new value has been assigned
to an existing application attribute.
attributeRemoved (event) Notifies the listening object that an application attribute has been
removed.

As indicated in table 12.6, servletContextAttributeListener’s methods have the
same names as those of the HttpSessionAttributeListener interface, and perform
similar roles. The most significant difference between these methods and those of
HttpSessionAttributeListener is the class of the event object serving as the meth-
ods’ parameter. Where the HttpSessionAttributeListener methods are passed
HttpSessionBindingEvent ObjCCts, the ServletContextAttributeListener’s
methods are passed instances of the ServletContextAttributeEvent class.

326

12.2

CHAPTER 12
Introducing filtevs and listeners

ServletContextAttributeEvent is a subclass of ServletContextEvent, and there-
fore inherits its getServletContext () method. The ServletContextAttribute-
Event class defines two additional methods, getName () and getvalue (). getName ()
is used to retrieve the name of the attribute that was added, removed, or had its value
replaced. For events associated with the attributeadded () method, the getvalue ()
method returns the value to be assigned to the new attribute. For those associated
with the attributeRemoved () method, getvalue () returns the last value assigned to
the attribute prior to its removal. And for events associated with the attributeRe-
placed () method, the getvalue () method will return the attribute’s old value (i.e.,
the value that had been assigned to attribute just before it was set to its new, replace-
ment value).

NOTE Listener classes to be added to a web application can implement any combi-
nation of one or more of these last four interfaces. An example listener to be
presented in the next chapter implements both of the session life-cycle
event listener interfaces, HttpSessionListener and HttpSessionAttri-
buteListener.

Filters

For maximum modularity, servlets and JSP pages that are focused on delivering spe-
cific web-based content or resources are preferred. In a complex application, how-
ever, multiple layers of functionality may need to be added on top of the underlying
content in order to satisty overall system requirements. For example, access to
resources may need to be restricted to properly authenticated users, or responses
may need to be transformed before they are returned to the end user. Compression
and encryption are common examples of response transformations, but more com-
plex data manipulation, such as dithering of color images, is also possible. Or per-
haps the application content takes the form of XML documents which must be
translated (via a set of XSLT stylesheets, say) into platform-specific formats based on
the origin of the request: requests from a browser are translated into HTML, while
those from a WAP cell phone are translated into WML.

Prior to Servlet 2.3 and JSP 1.2, functionality such as this had to be built into
any servlet or JSP page needing it, reducing the modularity of the resulting code.
Early implementations of servlet technology (prior to the standardization efforts
that led to Servlet 2.0) included a feature known as serviet chaining which allowed a
sequence of servlets to be applied to a single request, each performing one step in
the generation of a response. One servlet in the chain, for example, might supply
the basic content, another performs user authentication, and a third performs data

Filters 327

compression. Using this approach, multiple layers of application functionality could
be implemented as individual servlets, and then combined in a modular fashion
through servlet chaining.

Ultimately, the details of servlet chaining proved to be too idiosyncratic to be
included in the formal servlet specification. Servlets intended to take part in servlet
chaining needed to be implemented differently from servlets that were meant to be
stand-alone. The resulting dual nature of servlets was not conducive to the technol-
ogy standardization effort, so support for servlet chaining was dropped from the
Servlet 2.0 specification.

12.2.1 How filters work

The functionality provided by servlet chaining is highly useful, however, and efforts
to restore such capabilities to the servlet standard have materialized in Servlet 2.3 in
the form of filters. Rather than the use of a sequence of servlets to layer functional-
ity, a sequence of filters is used, each handing oft control to the next as a request is
being handled, until the resource that was originally requested is reached. This
resource may be a servlet, a JSP page, an image file, or any other content to be
delivered by the container. After the response representing this resource is con-
structed, control is handed back to the sequence of filters, this time in the reverse
order, for further processing. At any point in the process, a filter can transfer control
to another resource, by means of a RequestDispatcher or by calling the sendre-
direct () or sendError () methods of the response object.

Filters are created as Java classes implementing the javax.servlet.Filter
interface. In deference to their servlet-chaining heritage, when the container is
building up the sequence of filters to be applied to a particular request, the resulting
data structure is a container-specific Java object that implements the javax.serv-
let.FiltercChain interface. Chain, however, may be a bit misleading in this case,
because the relationship between the elements of the chain is more than just
sequential. As indicated in figure 12.1, each filter is nested inside its predecessor,
with the originally requested resource at the center of the nesting hierarchy,
wrapped inside all of the filters comprising the chain.

A closer analogy would be Matryoshka dolls, the wooden dolls from Russia, in
which each one fits inside the next. Like Matryoshka dolls, each filter in a chain is a
shell around the next filter to be called. Inside the last filter is the resource being
delivered, analogous to the true doll hidden inside all of the doll shells of a Matry-
oshka toy.

When a request is received, the container determines which resource the request
is mapped to, as well as the set of applicable filters. This is akin to selecting a

328

CHAPTER 12
Introducing filtevs and listeners

Filter
Filter
Filter
Requested
resource
Request Response
- - - - — -?»
S \ \ \
¥ ¥ ¥ ¥

Y Y ¥ \ Y Y

Dispatch L

or
redirect

Figure 12.1 Nested processing of requests by a filter chain

particular set of Matryoshka dolls. The request is handled by first passing it to the
outermost filter, which can allow processing to continue or can opt to dispatch or
redirect the request to some other resource, or even return an error condition. If all
of the filters allow processing to continue, the request will ultimately make its way
to the resource (servlet, JSP page, static document, etc.) that was requested. Once
that resource has generated its response, control passes back to the filters once
more. Now that the response has been generated, each filter is given another
opportunity to either continue or interrupt the handling of the request. The filter
can dispatch to another resource via a RequestDispatcher, or transfer control back
to the user’s browser by calling the response’s sendrRedirect () or sendError ()
messages. Because the filters are called in a nested manner, control passes among
the filters in the opposite order after the requested resource is processed as it was
before. Control passes back to the innermost filter first, and then back up the filter
chain to the outermost filter.

NOTE If a filter interrupts the handling of a request by creating a RequestDis-
patcher and calling its forward() or include () methods, the dispatched
request will not be subject to filtering. Recall that when the sendRedirect ()
method of the HttpServletResponse class is called, it has the effect of caus-
ing the end user’s browser to issue a new request for the resource indicated by
the method’s parameter. The bottom line, then, is that if you want to bypass
turther filtering, you should use a RequestDispatcher. If your filter wants to

Filters 329

transfer control but requires the new request to also be filtered, then sendre-
direct () is the right strategy to follow. Keep in mind, as well, that this
choice also affects whether or not a new URL is displayed by the browser.

To continue the analogy, then, each doll is opened in turn, and given a chance to
say whether or not the doll that was inside it should be opened. Ultimately, the
innermost, solid doll—which represents the requested resource—is reached. Then
the process of putting the dolls back together begins. The dolls must be assembled
in the reverse order of their disassembly, just as the nested filters are processed in
inverse order after the requested resource is reached. And as the dolls are put back
together, each decides whether or not the reassembly should continue or halt.

Filters also have the opportunity to manipulate the request and/or the response
being handled by the filter chain. By wrapping the request in an instance of the
javax.servlet.ServletRequestWrapper Or javax.servlet.http.HttpServlet-
RequestWrapper class, request headers or other request data can be modified by a
filter before passing control to the next item in the chain. Responses can likewise be
wrapped via the javax.servlet.ServletResponseWrapper and javax.serv-
let.http.HttpServletResponseWrapper classes, allowing the filter to modify
response header, content, and other data.

These wrapper classes implement the corresponding request and response inter-
faces, so no other elements in the chain—either another filter or the requested
resource—can distinguish between the original request or response and a wrapped
request or response. Each filter receives a request and a response, which it can
optionally wrap and pass to the next item in the filter chain. It may in fact be the
case, however, that the request and/or the response it received may already have
been wrapped by a previous filter in the chain. As far as the filter is concerned, it is
working with a standard request/response pair. There is no way, short of Java’s
instanceof operator, for the filter to determine whether or not it is working with a
wrapped request or response.

To stretch the Matryoshka doll analogy nearly to its breaking point, request and
response wrappers are like gloves that must be worn while taking the dolls apart and
putting them back together. The wrapping of the request and /or response by a fil-
ter is analogous to a given doll requiring the owner to put on a pair of gloves before
opening the next doll. In this case, the gloves must be kept on until the same doll is
put back together again. Also, no doll is aware of any other doll’s gloves. The toy’s
owner may already be wearing one or more pairs of gloves before the current doll
adds another pair.

330

CHAPTER 12
Introducing filtevs and listeners

12.2.2 Filter classes

As indicated, filters classes must implement the javax.servlet.Filter interface.
This interface defines three methods; any concrete filter class must provide imple-
mentations for all three. The first of these is the init () method which, as its name
suggests, is used to run any initialization code required by the filter. This method
takes a single parameter, an instance of the javax.servlet.FilterConfig inter-
face, which may be used by the filter to access initialization parameters set in the
application’s deployment descriptor. A filter instance will not be called upon to pro-
cess any requests until it has finished running its init () method.
The methods of the Filterconfig interface are presented in table 12.7.

Table 12.7 Methods of the javax.servlet.FilterConfig interface

Method Description

getFilterName () Returns the name of the filter, as specified in the deployment descrip-
tor.

getServletContext () Retrieves the servlet context for the application for which the filter is
being created.

getInitParameterNames () Constructs an enumeration of the names of the filter’s initialization
parameters.

getInitParameter (name) Returns the value of the named initialization parameter.

The filter’s destroy () method is called by the container to indicate that a filter
instance is no longer needed (e.g., when the web application to which the filter
belongs is being shut down, or the container needs to reclaim some memory).This
method allows the developer to deallocate any long-term resources used by the fil-
ter while processing requests.

The actual handling of requests is the focus of the Filter interface’s third and
final method, whose signature is as follows:
void doFilter (ServletRequest request, ServletResponse response,

FilterChain chain)
throws ServletException, java.io.IOException

If this looks familiar, it is because it is very similar to the signatures of the ser-
vice (), doGet (), and doPut () methods of the servlet and HttpServlet classes,
introduced in chapter 2. This method’s only significant departure from its servlet
counterparts is in its third parameter, which will be an instance of the javax.serv-
let.FilterChain interface.

Filters 331

The Filterchain instance represents the sequence of filters to be applied to the
request. Surprisingly, it only exposes a single public method, also called doFil-
ter (), with the following signature:

void doFilter (ServletRequest request, ServletResponse response)
throws ServletException, java.io.IOException

This method, when applied to the chain passed to the filter’s doFilter () method,
causes the next item in the chain to be called upon to process the request and its
response. In the course of running its own doFilter () method, then, the filter calls
the chain’s doFilter () method in order to hand off processing to the next filter or—
if the end of the chain has been reached—the resource that was originally requested.
This call need not be the first or the final operation performed by the filter’s
doFilter () method. In order to allow for both pre- and post-processing of both
requests and responses, the doFilter () method of a filter generally follows this
structure:
void doFilter (ServletRequest request, ServletResponse response,

FilterChain chain)
throws ServletException, java.io.IOException {

Pre-process request andfor response. ..
Optionally wrap request and/or response. ..

chain.doFilter (request or wrapped request, response or wrapped response) ;
Post-process (optionally wrapped) request andlor response. ..

}

As this pseudocode indicates, if the filter introduces wrapped requests or responses,
these are propagated down the chain by providing them, rather than the original
request and/or response, as the arguments to the chain’s doFilter () method.
After the remaining elements of the chain have finished their processing, control
returns back to the filter’s doFilter () method, which can then postprocess the
chain’s results.

Note that, using this programming model, the filter has no information about
where it is being called in the chain. It does not have access to any of the other fil-
ters in the chain, and in fact does not know whether the request and response
objects passed as arguments to its doFilter () method are the genuine article, or
just wrappers provided by some other filter that preceded it in the filter chain.

In fact, the only filter that is aware of the presence of request and response wrap-
pers is the filter that created them and passed them down the chain via its doFilter ()
method. Any extraction of information or transformation of data to be performed via
such wrappers must be performed by the filter that added them in the first place.

332

12.2.3

CHAPTER 12
Introducing filtevs and listeners

The programming model for filters thus requires them to be stand-alone, inde-
pendent constructs that can be combined and reused in a modular fashion. Use of
filters promotes separation of application functionality into small, targeted units
that can be integrated with existing resources (servlets, JSP pages, image files, etc.)
to add features as well as increase the maintainability of the overall application.

Wrapper classes

Four classes are provided in the Servlet 2.3 specification for wrapping requests
and responses. For generic servlet applications, the javax.servlet.Servlet-
RequestWrapper and javax.servlet.ServletResponseWrapper classes are pro-
vided. For applications based on the HTTP protocol, wrappers that support the
additional functionality of HTTP requests and responses are also available, via the
javax.servlet.http.HttpServletRequestWrapper and javax.servlet.http.Http-
ServletResponseWrapper classes.

The constructor for the ServletRequestWrapper class takes an instance of the
ServletRequest interface as its sole argument, which may then be retrieved or
replaced via the getter and setter methods listed in table 12.8. The servletRe-
questWrapper class implements the ServletRequest interface, so it includes imple-
mentations of all of the methods associated with that interface. The default
implementations of these interface methods simply forward the calls to the corre-
sponding methods of the wrapped servletRequest instance, so it is usually neces-
sary to subclass the servletRequestWrapper class in order to provide any required
custom behavior. It is because ServletRequestWrapper implements the Servlet-
Request interface, of course, that it can stand in for a request in any method requir-
ing one. This includes the service () method of a servlet, the doFilter () method
of a filter or filter chain, and even the constructor and setRequest () methods of
the ServletRequestWrapper class itself.

The HttpServletRequestWrapper class is a subclass of ServlietRequestWrap-
per, and has the same relationship with the HttpServletRequest interface as Serv-
letRequestWrapper has with the servlietRequest interface.

Table 12.8 Wrapper-specific methods of the javax.servlet.ServletRequest class

Method Description
getRequest () Retrieves the request being wrapped.
setRequest (request) Sets the request being wrapped.

In a similar manner, the constructor the ServletResponseWrapper class takes an
instance of the ServletResponse interface as its sole parameter, with corresponding

12.3

Using filters and listeners 333

getter and setter methods as listed in table 12.9. It also implements that interface,
providing definitions for the interface’s methods which delegate to this wrapped
ServletResponse instance. Filters that employ response wrappers must therefore
define their own subclasses of ServletResponseWrapper in order to implement fil-
ter-specific wrapper functionality. By implementing the servletResponse interface,
instances of the ServletResponseWrapper class are indistinguishable from actual
response objects.

Like their request counterparts, the HttpServletResponseWrapper class is a
subclass of ServletResponseWrapper, and has the same relationship with the
HttpServletResponse interface as ServletResponseWrapper has with the serv-
letResponse interface.

Table 12.9 Wrapper-specific methods of the javax.servlet.ServletResponse class

Method Description
getResponse () Retrieves the response being wrapped.
setResponse (response) Sets the response being wrapped.

Using filters and listeners

There are two primary steps in the application of filters and listeners. First, the Java
classes that implement the required filter and /or listener behavior must be defined.
In the case of filters, support for any associated initialization parameters must also
be included in the class definition.

After these classes have been created, the second step is to incorporate the filters
and listeners into the web application. For listeners, this is done by simply specifying
the listeners classes which must be instantiated and registered with the application.
Deployment of filters is slightly more complex. Like listeners, the filter classes to be
instantiated must be specified, along with the values for their initialization parame-
ters. In addition, the resources within the application to which each filter is to be
applied must be specified. Filters can be mapped to individual resources (e.g., a serv-
let, a JSP page, or a static document such as an image or HTML file), or they can be
applied to a collection of resources (such as those sharing the same directory or file
extension). Filters can also be configured to cover all of an application’s resources.

The implementation of filter and life-cycle event listener classes is demonstrated
in chapter 13, in the context of an example web application to which both filter and
listener classes will be added. The deployment of filters and listeners—as well as
other web application resources—will be covered in chapter 14, with examples
drawn from the sample application introduced in chapter 13.

Applying filters and listeners

This chapter covers

= An intranet example application
= Filters for access control

= Alogging listener

= String replacement filter

334

Application descviption 335

Recall from chapter 12 that filters and life-cycle event listeners may be layered on
top of existing applications in a modular fashion to provide enhanced functionality.
To demonstrate this advantage, however, it is first necessary to have an application
to which filters and listeners may be added. To that end, this chapter presents an
example web application, a simple web-based intranet for the fictitious Encom Cor-
poration, to which three filters and a listener will be applied to incrementally add
new capabilities.

13.1 Application description

Before adding any filters and listeners, the Ej
Filters

original intranet application—as depicted
in figure 13.1—consists of six JSP pages
located in two directories. The top-level
directory, named filters, contains a single
page, representing the “front door” of the

application. All of the content is stored in :_1
Departments,

a subdirectory named departments, which

Index
page

has a welcome page for all users and three —L
departmental home pages: one for man- Welcome
page
agement, one for the development team,
and one for system administrators. .Thc —L
epartments subdirectory also contains a Header
depart ts subdirectory al t
. . . . page
fitth JSP page which contains navigational
elements shared by all of the pages in this L
subdirectory. This header page is refer- Deﬁfﬁf—“"ﬁ?ﬂiﬂ—sﬁiﬂ
enced by the other pages via the P P P
<jsp:include> action. Figure 13.1 Site map for the original intranet
application

The primary enhancement to be
added to the intranet is user authentica-
tion. The company would like to personalize all content, as well as ensure that the
information contained in these pages is accessed by authorized personnel only. All
users will be required to log on to the intranet with a username and password.
Individual access will be logged for auditing purposes. Furthermore, Encom man-
agement will restrict access to the various departmental pages to the employees of
those departments.

To achieve maximum modularity, these requirements will be fulfilled using a
combination of two filters and one listener. The first filter will be used to manage

336 CHAPTER 13
Applying filters and listeners

the login requirement, and enforce global access control. The second will provide
local access control, implementing the departmental access restrictions using role-
based security. The listener will implement the required logging functionality.

To support these new features,
several modifications must be made Filters

to the contents of the site, as indi-

cated in figure 13.2. First, the ndex“" LOQHL" Goodb:;‘

department’s subdirectory has been pase paee paee

renamed secure. This is strictly a

cosmetic change, but it serves as a :s%ﬂ Authenticaton Fier

useful indication that all content in

that subdirectory will be protected L L

against unauthorized access. welcome| | Logout
Next, two new documents have e o

been added to the top-level filters L L

directory. The first is a login page, Header | | Denied

which will contain the form used - -

for entering the employee’s user-

name and password. The second is ..

evelope Manager Sysadmin
the good-bye page, which will be home B fome nome
displayed after a user has logged DevaERe Manager Sysadmin

role role role

out. Since both pages must be able
to be viewed by users who are not
logged in, they cannot be located
in the secure subdirectory. (As indi-
cated in figure 13.2, access to all of
the pages in the secure subdirectory is controlled by the authentication filter.) The
filter’s directory, which is not subject to the authentication filter, provides a conve-
nient location for insecure content such as this.

Two new pages have been added to the secure subdirectory. The logout page
presents a form that enables users to log out. Since this action only makes sense for
users who are already logged in, placing this page in the secure subdirectory ensures
that it can only be viewed by users who have already been authenticated. The role-
based security filter will be used to restrict access to the three departmental home
pages. The other new page in this subdirectory, the denied page, contains content
that will be displayed whenever a user attempts to access a departmental home page
for which that user does not have the corresponding role.

Figure 13.2 Site map for the revised intranet
application, with filters

13.2

13.2.1

User authentication 337

Although it is not depicted in figure 13.2, we will also be adding two new serv-
lets to the intranet application. These will be mapped to the /filters/login and
/filters /logout application URLs and, as their names suggest, will be used to per-
form the actual login and logout operations for users visiting the site.

User authentication

Although our primary interest in this example application lies in its filters and lis-
tener, very little of the code that implements the underlying functionality is con-
tained in the filter and listener classes themselves. As we will see later in the chapter,
these particular classes are quite compact. Instead, most of the Java code is located
in the auxiliary classes that implement the security mechanisms for user and role-
based authentication.

User account representation

There are two key classes with respect to user authentication in this example appli-
cation. The first is the com.taglib.wdjsp.filters.UserBean class, presented in
listing 13.1. This JavaBean represents a user’s login account information, including
the username, first and last name, and assigned roles. Note that this bean is
designed to be incorporated into a JSP page in order to personalize its content; for
security reasons it does not include a property representing the user’s password.

Listing 13.1 UserBean class

package com.taglib.wdjsp.filters;
import java.util.List;
import java.util.ArrayList;

public class UserBean {
private String username, firstName, lastName;
List roles;

public UserBean () {
this("", "”, ||”)’.

}

public UserBean (String username, String firstName, String lastName) {

this.username = username;
this.firstName = firstName;
this.lastName = lastName;

this.roles = new ArrayList () ;

}

public String getUsername () { return username; }
public String getFirstName () { return firstName; }

338

13.2.2

CHAPTER 13
Applying filters and listeners

public String getLastName () { return lastName; }

public void setUsername (String username) { this.username = username; }
public void setFirstName (String firstName) { this.firstName = firstName; }
public void setLastName (String lastName) { this.lastName = lastName; }

public void addRole (String role) ({
if (! roles.contains(role)) roles.add(role) ;
1

public void removeRole (String role)
int index = roles.indexOf (role) ;
if (index >= 0) roles.remove (index) ;

}

public boolean hasRole (String role)

}
}

return roles.contains (role) ;

Like other JavaBeans we have seen in previous chapters, UserBean includes a default
constructor and getter and setter methods for its username, first name, and last
name properties. It also includes a second constructor for setting those three prop-
erties during initialization, as well as a set of methods for managing and querying its
roles, which are stored via an instance of the java.util.ArrayList class.

User management interface

The second key class is actually an interface, com.taglib.wdjsp.filters.User-
DataManager. This interface, presented in listing 13.2, provides an abstraction layer
intended to hide the details of the underlying authentication system. As the listing
indicates, it defines only two methods, validate () and lookupUserData (). The
validate () method returns a boolean value indicating whether or not the user-
name and password provided as its parameters represent valid login credentials,
while the lookupUserData () method is used to populate an instance of the User-
Bean class with the account information corresponding to the provided username.

Listing 13.2 UserDataManager interface

package com.taglib.wdjsp.filters;

public interface UserDataManager {
public boolean validate (String username, String password) ;
public UserBean lookupUserData (String username) ;

}

13.2.3

User authentication 339

By using this interface, the other components of the application, such as the login
servlet, do not need to be exposed to the mechanics of authenticating users. If the
web components only interact with the authentication code via this interface, it
becomes possible to plug in a variety of authentication schemes without having to
alter those components in order to accommodate them. The same login servlet, for
example, could be used with an authentication system based on a configuration file,
an LDAP repository, or a complex database system, without modification.

NOTE Because this is example code, the UserDataManager interface, as presented
here, is incomplete. At the very least, methods for modifying a user’s password
and other account information would be required in a production system.
Methods for adding and removing accounts would likely also prove useful.

User management implementation

To keep things simple, our authentication system will rely on hard-coded usernames
and passwords. This is not terribly practical, but hopefully possesses the virtue of
being easy to understand and therefore not prone to distracting us from the topic at
hand. With this in mind, the source code for the com.taglib.wdjsp.filters.Sim-
pleUserBase class is presented in listing 13.3.

Listing 13.3 SimpleUserBase class

package com.taglib.wdjsp.filters;
import java.util.StringTokenizer;

public class SimpleUserBase {

static public boolean validate (String username, String password) {
int count = USER_DATA.length;
for (int i = 0; i < count; ++i) {
String[] entry = USER DATA[i];
if (username.equals (entry[0])) return password.equals (entry[1l]);

}

return false;
}
static public void populate (UserBean bean, String username) {
int count = USER_DATA.length;
for (int i = 0; 1 < count; ++i) ({
String[] entry = USER DATA[i];
if (username.equals (entry[0])) populate (bean, entry);
}
}

static private void populate (UserBean bean, Stringl[] entry) ({
bean.setUsername (entry[0]) ;

340

CHAPTER 13
Applying filters and listeners

bean.setFirstName (entry[2]) ;
bean.setLastName (entry[3]) ;
StringTokenizer tokens = new StringTokenizer (entry[4], ":");
while (tokens.hasMoreTokens()) {
bean.addRole (tokens.nextToken ()) ;
}

}

static private Stringl[] [] USER_DATA =

{

{ "clu", "starman", "Kevin", "Flynn", "user:dev:admin" },
{ "tron", "scarecrow", "Alan", "Bradley", "user:dev" },

{ "yori", "galaxis", "Lora", "Morgan", "user:dev" },

{ "dumont", "doc", "Walter", "Gibbs", "user:mgr" }

{ "sark", "gorkon", "Ed", "Dillinger", "user:mgr:admin" },

This class is simply a combination of static methods and a data structure, named
USER_DATA, which stores the account information for a handful of employees. This
data structure takes the form of a two-dimensional array of character strings, each
row of which represents a single account. For each account, the username and pass-
word are listed, followed by the user’s first name and last name. Finally, the roles
assigned to the user are listed as a single text string in which multiple roles are
delimited by colon characters.

The three static methods defined by this class perform authentication against the
data in this array. The validate () method checks the array for the specified user-
name/password combination, while the two populate () methods set the proper-
ties of a UserBean instance based on a provided username.

The methods of the simpleUserBase class do not correspond to those required
by the UserDataManager interface, so one more class is required to complete our
user authentication system. The sole task of the com.taglib.wdjsp.filters.Sim-
pleUserDataManager class is to provide a mapping between the SimpleUserBase
class’s methods and those of UserDataManager. Its source code is provided in
listing 13.4. This class’s validate () method simply calls the static validate ()
method of SimpleUserBase, while its 1ookupUserData () method creates a User-
Bean instance and then calls the populate () method of SimpleUserBase to set the
new bean’s properties.

13.3

13.3.1

Web authentication ‘ 341

Listing 13.4 SimpleUserDataManager class

package com.taglib.wdjsp.filters;

public class SimpleUserDataManager implements UserDataManager {
public boolean validate (String username, String password) {
return SimpleUserBase.validate (username, password) ;
}
public UserBean lookupUserData (String username) {
UserBean data = new UserBean() ;
SimpleUserBase.populate (data, username) ;
return data;
}
}

Web authentication

The objects described in the previous section for implementing user authentication,
including the UserBean class, are not web-specific. These classes and interfaces
could provide user authentication for other types of software requiring access con-
trol, such as desktop or client/server applications. From this point forward, how-
ever, our focus will be on applying this functionality to web-based settings in
general, and our intranet example application in particular.

Session interactions

Since the only way to keep track of a user’s ongoing interactions with a web site is
via his or her session, this is an appropriate place to indicate whether or not the user
has logged in. Since we will want to be able to customize content with a user’s
account information, a simple way to indicate login status is the presence or absence
of a UserBean instance in the user’s session. If the user has UserBean instance as the
value of a designated session attribute, this is taken as an indication that the user has
been authenticated. Furthermore, the properties of that UserBean can be assumed
to reflect the session owner’s account information.

To manage this interaction with the session, the com.taglib.wdjsp.£fil-
ters.UserSessionManager class is introduced. This class has three static variables,
one of which is used to implement the singleton pattern (introduced in chapter 11),
as follows:
public class UserSessionManager {

final static public String SESSION USER ATTRIBUTE = "user";
final static public String SESSION_ LOGINTARGET_ATTRIBUTE = "loginTarget";

static private UserSessionManager INSTANCE = new UserSessionManager() ;

342

CHAPTER 13
Applying filters and listeners

private UserSessionManager () {}

static public UserSessionManager getInstance () {
return INSTANCE;

}
}

The first two static variables are used to store attribute names for a pair of attributes
to be stored in the session. The third static variable, INSTANCE, stores the singleton
instance of this class, which may be retrieved via the getInstance () static method.
Note that the constructor method is private, thereby preventing any other class
from creating additional instances of UserSessionManager.

Instances of the UserBean class are stored in the session by means of the set-
SessionUser () method, defined as follows:

public void setSessionUser (HttpSession session, UserBean user) {
session.setAttribute (SESSION USER ATTRIBUTE, user);

if (user.hasRole("admin")) {
session.setMaxInactiveInterval (60 * 60 * 8);
} else {

session.setMaxInactiveInterval (60 * 15);
}

}

Given a session and a UserBean, this method stores the bean in the session using
the attribute name specified in the class’s SESSION USER_ATTRIBUTE static variable.
The UserBean instance is then checked to see whether or not the corresponding
user has the admin role, in which case the session is set to expire after eight hours of
inactivity, rather than the default fifteen minutes. The bean can subsequently be
retrieved or removed from the session via the getSessionUser () and removeSes-
sionUser () methods:

public UserBean getSessionUser (HttpSession session)
return (UserBean) session.getAttribute (SESSION_USER_ATTRIBUTE) ;

}

public void removeSessionUser (HttpSession session)
session.removeAttribute (SESSION_USER_ATTRIBUTE) ;

}
Like setSessionUser (), these methods take advantage of the SESSION_
USER_ATTRIBUTE static variable to abstract the name of the session attribute.

In addition to managing the session attribute for storing the UserBean instance,
this class is used to manage a second session attribute related to the user login pro-
cess. The job of the authentication filter is to prevent access to content in the appli-
cation’s secure subdirectory by users who have not yet logged in. Once a user has

Web authentication 343

successfully logged in, however, there is nothing preventing a user from creating a
bookmark containing the URL for that secured content. If the user attempts to fol-
low that bookmark at a later date without first logging in, the authentication filter
will redirect them to the login page to be authenticated.

As a convenience, it is preferable to automatically take the user to the page they
were originally trying to access, once the login has been authenticated (i.e., rather
than sending them to a generic welcome page). In order to facilitate this behavior,
store the URL for the page that was originally requested—referred to as the “login
target”—in the user’s session. This is accomplished by means of the UserSession-
Manager class’s setSessionLoginTarget () method:

public void setSessionLoginTarget (HttpSession session, String loginTarget) {
session.setAttribute (SESSION LOGINTARGET ATTRIBUTE, loginTarget) ;

}

The login target can subsequently be retrieved via the class’s getSessionLoginTar-
get () method, which provides a second parameter for indicating whether or not
the attribute should be removed from the session after it has been retrieved:

public String getSessionLoginTarget (HttpSession session, boolean clear) ({
String target = (String) session.getAttribute (SESSION_LOGINTARGET ATTRIBUTE) ;
if (clear) session.removeAttribute (SESSION LOGINTARGET ATTRIBUTE) ;
return target;

}

Both methods make use of the SESSION LOGINTARGET ATTRIBUTE static variable
for specifying the name of the attribute used to store the login target.

The final element of the UsersessionManager class is a static method named
doRedirect (). As mentioned, the authentication filter will redirect unauthenti-
cated users to the login page when they attempt to access restricted content. Redi-
rection is also used to forward the user to the login target after they have been
authenticated. The doredirect () utility method allows the various steps required
to perform this redirection to be defined once and reused throughout the applica-
tion. It is defined as follows:

static public void doRedirect (HttpServletRequest request,
HttpServletResponse response, String url)
throws IOException {
String redirect = response.encodeRedirectURL (request.getContextPath() + url);
response.sendRedirect (redirect) ;

}

The first step in this method is to call the request’s getContextPath () method to
retrieve the top-level directory name under which the application has been

344 CHAPTER 13
Applying filters and listeners

deployed (see chapter 14). This is prepended to the URL passed in as the method’s
third parameter, to result in an absolute URL as required by the response’s send-
Redirect () method. Before the sendrRedirect () method can be called, however,
the response’s encodeRedirectURL () method must be called. This method will
ensure that the user’s session ID is encoded into the URL, should the user not have
cookies enabled in the browser. Given the important role played by the session in
our access control system, it is critical that the association between the user and
their session not be lost. Finally, by defining this as a static method, it can easily be
leveraged by the application’s other classes.

The source code for the UserSessionManager class, in abbreviated form,
appears in listing 13.5.

Listing 13.5 UserSessionManager class

package com.taglib.wdjsp.filters;

import javax.servlet.http.HttpSession;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

public class UserSessionManager {
final static public String SESSION USER ATTRIBUTE = "user";
final static public String SESSION_ LOGINTARGET_ATTRIBUTE = "loginTarget";

static private UserSessionManager INSTANCE = new UserSessionManager() ;
private UserSessionManager () {}

static public UserSessionManager getInstance () { ... }

public void setSessionUser (HttpSession session, UserBean user) { ... }
public UserBean getSessionUser (HttpSession session) { ... }
public void removeSessionUser (HttpSession session) { ... }

public void setSessionLoginTarget (HttpSession session, String loginTarget) {

}

public String getSessionLoginTarget (HttpSession session, boolean clear) {

}

static public void doRedirect (HttpServletRequest request,
HttpServletResponse response, String url)
throws IOException { ... }

13.3.2 Login serviet

The process of logging in is implemented via the com.taglib.wdjsp.£il-
ters.LoginServlet class. This servlet validates login credentials and, when valid,

Web authentication 345

adds a corresponding UserBean instance to the session. If the provided username
and password are not valid, an error message is displayed and the user is given
another opportunity to log in. If they are valid, the servlet will display the user’s
login target, if specified, or a generic welcome page, if it is not.

The LoginServlet class defines several instance variables, as well as a pair of
static class variables:
public class LoginServlet extends HttpServlet ({

final private static String USERNAME REQPARM = "username";
final private static String PASSWORD REQPARM "password";

private String loginPage;

private String welcomePage;

private UserDataManager userMgr;

private UserSessionManager sessionMgr = UserSessionManager.getInstance() ;

}

The two class variables store the names of the request parameters that will be passed
in by the form on the login page. The values of the loginpage and welcomePage
instance variables will be passed in as initialization parameters, and will store URLs
for the login form and for the default page to be displayed after a successful user
authentication (i.e., in the absence of a login target). The userMgr instance variable
stores an object implementing the UserbDataManager interface, described earlier in
the chapter, and is also set by means of an initialization parameter. The sessionMgr
instance variable stores a pointer to the singleton UserSessionManager instance.

Initialization parameters are processed via the servlet’s init () method, defined
as follows:

public void init (ServletConfig config) throws ServletException {
welcomePage = config.getInitParameter ("welcomePage") ;
if (welcomePage == null)
throw new ServletException("The welcomePage init parameter"
+ " must be specified.");
loginPage = config.getInitParameter ("loginPage") ;
if (loginPage == null)
throw new ServletException("The loginPage init parameter"
+ " must be specified.");
String userDataMgrClassname = config.getInitParameter ("userDataManager") ;
if (userDataMgrClassname == null)
throw new ServletException ("The userDataManager init parameter"
+ " must be specified.");
userMgr = (UserDataManager) makeInstance (userDataMgrClassname,
UserDataManager.class, "user data manager") ;

346

CHAPTER 13
Applying filters and listeners

The values of the welcomePage and loginPage initialization parameters are
assigned directly to the instance variables of the same names, and an exception is
raised if either of the two initialization parameters was not specified. An initializa-
tion parameter named userDataManager must also be specified, the value of which
should be a fully qualified class name for a Java class that implements the UserData-
Manager interface. The specified class is instantiated by means of an auxiliary
method named makeInstance (). This approach of specifying a class name, pro-
vided in the form of an initialization parameter, is a manifestation of the plug-in
approach to user authentication enabled by our introduction of the UserbataMan-
ager interface.

The makeInstance () auxiliary method takes advantage of several methods
defined by the java.lang.Class class to instantiate the class named by the user-
DataManager initialization parameter:

private Object makeInstance (String classname,
Class interfaceClass, String description)
throws ServletException {
try {
Class klass = Class.forName (classname) ;
if (! interfaceClass.isAssignableFrom(klass)) {
throw new ServletException(classname + " does not implement required"
+ " interface" + interfaceClass.getName ()
+ " for " + description + ".");

}

return klass.newlInstance();

}

catch (ClassNotFoundException e) ({
throw new ServletException ("Unable to instantiate" + description + ".", e);

}

catch (InstantiationException e) ({
throw new ServletException ("Unable to instantiate" + description + ".", e);

}

catch (IllegalAccessException e) ({
throw new ServletException ("Unable to instantiate" + description + ".", e);

}

}

The forName () static method retrieves the class object corresponding to a fully
qualified class name. Once the class is retrieved, the isAssignableFrom() method
(also defined by the class class) is used to make sure that the named class imple-
ments the required interface. If so, the class object’s newInstance () method is
called to create the required instance. Since the class of the instance cannot be
known in advance, this method returns the result as an instance of the root Object

Web authentication 347

class. The calling method (in this case, the servlet’s init () method) must cast the
result to the desired class (or, in this case, the desired interface).

Trying to construct an object from an arbitrary character string presumed to
name a defined class is something of a risky proposition. The methods called upon
to perform this task may throw a number of exceptions, which makeInstance ()
handles by rethrowing them as instances of the servletException class.

For security reasons, it is reccommended that request parameters corresponding
to login passwords be submitted only via the HTTP POST method. Because the
GET method passes request parameters as part of the URL, the values of those
parameters are much more visible. On the client side, they will appear in the
browser’s history list of visited pages. They may also be stored in the activity logs of
the web server hosting the login form. Based on this consideration, the Loginserv-
let class defines a doPost () method, but not a a doGet () method.

This dopost () method has three primary tasks: retrieve the request parameters
for the username and password, validate them, and take appropriate action. The
method is defined as follows:

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
String username = request.getParameter (USERNAME REQPARM) ;
if (username == null)
throw new ServletException("No username specified.");
String password = request.getParameter (PASSWORD REQPARM) ;
if (password == null)
throw new ServletException ("No password specified.");
if (userMgr.validate (username, password)) {
doLoginSuccess (request, response, username) ;
} else {
doLoginFailure (request, response, username) ;
}
}

The request parameters are retrieved by calling the getParameter () method of the
request object provided as the method’s first argument. The static variables discussed
carlier are used to reference the names of the two parameters, and an exception is
raised if either is missing. Authentication of the username and password is accom-
plished by calling the validate () method of the UserDataManager object created in
the servlet’s init () method. Based on the results of this validation, one of two util-
ity methods is called to indicate the success or failure of the login attempt.

If user authentication is successful, doPost () calls the servlet’s doLoginSuc-
cess () method:

348

CHAPTER 13
Applying filters and listeners

private void doLoginSuccess (HttpServletRequest request,

HttpServletResponse response,
String username)

throws IOException {

UserBean user = userMgr.lookupUserData (username) ;

HttpSession session = request.getSession(true) ;

sessionMgr.setSessionUser (session, user);

String targetPage = sessionMgr.getSessionLoginTarget (session, true);

if (targetPage == null) {
UserSessionManager.doRedirect (request, response, welcomePage) ;
} else {

targetPage = response.encodeRedirectURL (targetPage) ;
response.sendRedirect (targetPage) ;

}
}

This method’s first step is to fetch a UserBean instance representing the user’s
account information from the servlet’s UserDataManager object (stored in the
userMgr instance variable). This bean is then stored in the user’s session via the
setSessionUser () method of the UserSessionManager singlcton (referenced by
the servlet’s sessionMgr instance variable). The UsersessionManager object is
then used to determine whether or not a login target has been stored in the user’s
session. If so, that class’s dorRedirect () static method is used to instruct the user’s
browser to issue a new request for the login target. If not, the doRedi-
rect () method is used to send the user to the application’s welcome page.
If the login validation fails, the servlet’s dopost () method instead calls its

doLoginFailure () method:
private void doLoginFailure (HttpServletRequest request,

HttpServletResponse response,

String username)

throws IOException {

String loginURL = loginPage + "?retry=true&username=" + username;
UserSessionManager.doRedirect (request, response, loginURL) ;

}

This method also relies on the doRedirect () method of the UserSessionManager
class, but instead sends the user back to the page with the login form. In addition, it
appends two request parameters to the URL for the login page. The retry request
parameter is a signal to the login page that a previous attempt at logging in failed,
so that an appropriate error message may be displayed. The username request
parameter is used to prefill the corresponding form field, presuming that the user is
more likely to have mistyped the password (whose characters will have been masked
during entry) than the username. (Also, the redirect operation will use the more
vulnerable HTTP GET method, providing another good reason for not attempting
to prefill the password field.)

Web authentication 349

This completes the methods of the Loginservlet class. The source code for the
class is presented in abbreviated form in listing 13.6.

Listing 13.6 LoginServiet class

package com.taglib.wdjsp.filters;

import javax.servlet.ServletConfig;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;
import java.io.IOException;

public class LoginServlet extends HttpServlet {
final private static String USERNAME REQPARM "username" ;
final private static String PASSWORD REQPARM = "password";

private String welcomePage;

private String loginPage;

private UserSessionManager sessionMgr = UserSessionManager.getInstance () ;
private UserDataManager userMgr;

public void init (ServletConfig config) throws ServletException { ... }
private Object makeInstance (String classname,
Class interfaceClass, String description)
throws ServletException {

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

}

private void doLoginSuccess (HttpServletRequest request,
HttpServletResponse response,
String username)
throws IOException {

}

private void doLoginFailure (HttpServletRequest request,
HttpServletResponse response,
String username)
throws IOException {

350

CHAPTER 13
Applying filters and listeners

13.3.3 Login pages

Given this description of the operation of the login servlet, a look at the JSP pages
supporting this servlet is in order. The first of these three pages is the index.jsp
page for the filters directory, which displays a warning notice and provides a link to
the login form. Its source code appears in listing 13.7. The only JSP element in this
page is an expression which modifies the link to the login form by calling the
encodeURL () method of the response implicit object. Like the encode-
RedirectURL () method discussed previously, this method ensures that the user’s
session ID is encoded into the HTML link, for those users who have disabled cookies
in their browser.

Listing 13.7 index.jsp

<html>

<head><title>Encom Intranet</title></heads>

<body>

<hl>Encom Intranet</hl>

<p>

This is the Encom intranet. Unauthorized use is prohibited.
</p>

<p>

Click <a href='<%= response.encodeURL("login.jsp") %>'>here to log in.
</p>

</body>

</html>

The source code for the login form, login.jsp, is presented in listing 13.8. The
first JSP elements on this page are two scriptlets that conditionally include an error
message in the presence of a request parameter named retry. As indicated in the
previous section, this request parameter is set by the login servlet as an indicator
that a previous login attempt has failed. The third scriptlet attempts to assign the
value of a request parameter named username to a local variable of the same name,
setting the local variable to an empty character string if the request parameter is not
present.

Listing 13.8 login.jsp

<html>
<head><title>Please log in...</title></head>

<body>
<hl>Please log in...</hl>

<% if (request.getParameter ("retry") != null) { %>
<p align=centers>

Web authentication 351

Invalid username/password combination.

</p>

<% } %>

<% String username = request.getParameter ("username") ;
if (username == null) username = ""; %>

<center>

<form action='<%= response.encodeURL (request.getContextPath()
+ "/filters/login") %>'
method="POST" >
<table>
<tr>
<td align="right">Username:</td>
<td align="left">
<input type="text" name="username" size="16" value="<%= username %>">
</td>
</tr>
<tr>
<td align="right">Password:</td>
<td align="left">
<input type="password" name="password" size="20">
</td>
</tr>
</table>

<input type="submit" value="Log In">
</form>
</center>

</body>

</html>
||

The remaining two JSP elements are expressions. The simpler is the second one,
which inserts the value of the username local variable as the default value for the
form field of the same name. The first expression is a bit more complex. Its task is to
set the URL for the logon servlet as the action handler for the form. Once again,
the encodeURL () method of the response object is employed to embed the session
ID in the URL (if necessary). In addition, the getContextPath () method of the
request implicit object is prepended to the URL for the logon servlet. This allows
us to construct an absolute URL for the servlet, which includes the name of the top-
level directory under which the application has been deployed. (For further discus-
sion of application deployment issues, see chapter 14.) The page’s static content
implements the HTML layout of the form itself.

Figure 13.3 shows the logon form. Figure 13.4 shows the results of an unsuc-
cessful logon attempt.

352 CHAPTER 13
Applying filters and listeners

I 5

File Edit View Favortes Tools Help

¢« . =» . @ k| at Q £
Back Stop Refresh Home Search Favortes

Address | hitp: //locathost 8080/ webdev/filtersAogin. jsp

|
=

Please log in...

Username:]dumont

Password: 1"“‘

Logn I

B 2]
&) Done % Internet
Figure 13.3 The logon form
e log in. -0| x|
File Edit View Favoites Tools Help -
»

] | o Q Gl

& b
Back] Stop Refresh Haome Search Favorites
Address I hitp: /localhost: 8080//webdev/filters/login.jsp Tretry=truetusername=dumont j
=

Please log in...

Invalid usemame/password combination

Username: Idumont

Password: |

LogIn |

ﬁ] Done % Intemet

Figure 13.4 The logon form after an unsuccessful logon attempt

The third JSP page associated with the logon process is the welcome page, to
which users whose session does not contain a logon target are directed after they

Web authentication 353

log on. The welcome.jsp page is located in the secure subdirectory of the £il-
ters directory, and its source code is presented in listing 13.9.

Listing 13.9 welcome.jsp

<html>
<head><title>Welcome</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<hl>Welcome</hl>

<p>
...to the Encom intranet.
</p>

</body>
</html>
|

This JSP page has only one scripting element, used to include the navigational
header for the content pages. (See listing 13.10.)

13.3.4 Content pages

The application has three content pages, corresponding to the three departmental
home pages. Like the welcome page presented in the previous section, all are located
in the secure subdirectory of the filters directory and use the <jsp:include> action
to incorporate the content of the header page located in that subdirectory.

The source code for the header page appears in listing 13.10. As indicated in
figure 13.2, all pages in the secure subdirectory will be subject to access control via
the authentication filter. Anyone viewing these pages can therefore be presumed to
be logged on. As indicated earlier in the chapter, this means that all users viewing
content in the secure subdirectory will have an instance of the UserBean class in
their session.

Listing 13.10 header.jsp

<center>

<jsp:useBean id="user" scope="session"
class="com.taglib.wdjsp.filters.UserBean">
Illegal User Access!
</jsp:useBean>

<table bgcolor="grey">

354

CHAPTER 13
Applying filters and listeners

<tr>

<td><jsp:getProperty name="user" property="username"/>@Encom:</td>

<td> </td>

<td><a href='<%= response.encodeURL ("welcome.jsp") %>'>Home</td>

<td>|</td>

<td><a href='<%= response.encodeURL ("development.jsp") %>'>Development</td>

<td>|</td>

<td><a href='<%= response.encodeURL ("management.jsp") %>'s>Management</td>

<td>|</td>

<td><a href='<%= response.encodeURL("admin.jsp") %>'>System
Administration</td>

<td>|</td>

<td><a href='<%= response.encodeURL("logout.jsp") %>'>Log Out</td>

</tr>

</table>

</center>

The first JSP element in the header page, then, is a <jsp:useBean> action for making
this bean available within the page. Note that, as a debugging aid, body content has
been added to the action to print out a warning message if the <jsp:useBeans action
does not find the bean already in the session and ends up instantiating a new one.

The remainder of the page implements an HTML table that provides a naviga-
tion banner for accessing each of the JSP pages in the secure subdirectory. As with
previous links, the response object’s encodeURL () method is called up to preserve
the association between the user and the session if cookies have been disabled. In
addition, the <jsp:getProperty> action is applied to display the username for the
current user within the navigational banner. A screenshot of the welcome page
described in the previous section, which incorporates the header. jsp page via the
<jsp:include> action, is presented in figure 13.5.

The incorporation of the UserBean instance into the page by the included
header can be taken advantage of by the other pages that use it. Each of the three
departmental home pages, for example, displays one of the properties of this bean
using the <jsp:getPropertys action. The development home page, presented in
listing 13.11, uses this action to retrieve the user’s first name, while the manage-
ment home page, presented in listing 13.12, uses it to retrieve the user’s last name.
A screen shot of the management home page is depicted in figure 13.6.

Web authentication 355

3 Welca . = N [=]E3]
Fle Edt View Favoites Tools Help “
» - p »

S @ [oA Q@ @ @ | B

Back Stop Refresh ~ Home Search Favortes History Mai
Agddress l hittpc /flocalhost 8080/ webdev/filters/secure/welcome. jsp j Go | |Links ®
H

dumont@Encom: Home | Development | Management | System Administration | Log Out
Welcome

..to the Encom intranet.

£] %0 Internet

Figure 13.5 The welcome page, including the navigational header

Listing 13.11 development.jsp

<html>
<head><titles>Development News</titles></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<hlsDevelopment News for
<jsp:getProperty name="user" property="firstName"/></hl>

<uls>

<1i>The development team meeting for Space Paranoids II will be next Tuesday
at 11 am.

Bring your laptop.

<1i>The Encom quarterly meeting will be next Friday at 9am.

Bring your pillow.

</body>
</html>

356

CHAPTER 13
Applying filters and listeners

‘7 Corporate News - Microsoft Intemet Explor o =] B
Fie Edt View Favortes Tooks Help E
L * 7 \ k =l »
N - J j ﬁ d :._I J _j
Back Stop Refresh ~ Home Search Favortes History Mai
Agdress| hittp: /localhast: 8080/ webdev/filkers/ secure/management jsp l] o Go || Links ®

-

dumont@Encom: Home | Development | Management | System 4

Corporate News for Manager Gibbs

Important Announcement

As you are well aware, the Encom quarterly meeting will be next Friday at 9am. Please inform your
staff that attendance is mandatory as we are preparing to make several key announcements
regarding the upcoming product releases.

Please make sure that all MCP audit logs for your department are submitted by Spm on Wednesdays
until further notice

|
2] % Intemet

Figure 13.6 The management home page

Listing 13.12 management.jsp

<html>
<head><title>Corporate News</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<hl>Corporate News for Manager
<jsp:getProperty name="user" property="lastName"/></hl>

<h2>Important Announcement</h2>

<p>

As you are well aware, the Encom quarterly meeting will be

next Friday at 9am. Please inform your staff that attendance is mandatory

as we are preparing to make several key announcements regarding the upcoming
product releases.

</p>

<p>
Please make sure that all MCP audit logs for your department are submitted by
5pm on Wednesdays until further notice.

</p>

</body>
</html>

Web authentication 357

The third and final departmental home page is presented in listing 13.13. Like the
first two, it uses the <jsp:getProperty> action to retrieve a property from the
UserBean stored in the user’s session. An even more noteworthy characteristic of all
three of these pages is what they do not include: nowhere within these pages do you
see any code related to access control. The header page’s <jsp:useBeans tag is an
indirect dependence on the user authentication code, but there are no explicit
checks in any of these JSP pages that the user is logged in or has been assigned the
required role.

Instead, all of the code required to enforce the system’s access control require-
ments will be provided by the filters to be introduced later in the chapter. No
changes will need to be made to the pages themselves. As described in the previous
chapter, this ability to add functionality to an application in a modular fashion,
without having to modify existing resources, is one of the key advantages of both
filters and listeners.

Listing 13.13 admin.jsp

<html>
<head><title>SysAdmin News</titles></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<hl>SysAdmin News for user
<jsp:getProperty name="user" property="username"/></hl>

<uls>
Network status: The game grid is up</bs>.
</uls>

</body>
</html>

13.3.5 Logout serviet

The counterpart to the logon servlet is the logout servlet, which allows a user to
cleanly exit the intranet application. It defines only two methods, an init ()
method and a doPost () method, as indicated in listing 13.14.

Listing 13.14 LogoutServlet class

package com.taglib.wdjsp.filters;

import javax.servlet.ServletConfig;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

358

13.3.6

CHAPTER 13
Applying filters and listeners

import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;
import java.io.IOException;

public class LogoutServlet extends HttpServlet {

private String goodbyePage;
private UserSessionManager sessionMgr = UserSessionManager.getInstance() ;

public void init (ServletConfig config) throws ServletException {
goodbyePage = config.getInitParameter ("goodbyePage") ;
if (goodbyePage == null)
throw new ServletException("The goodbyePage init parameter"
+ " must be specified.");

}

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
HttpSession session = request.getSession(true);
sessionMgr.removeSessionUser (session) ;
UserSessionManager.doRedirect (request, response, goodbyePage) ;

The com.taglib.wdjsp.filters.LogoutServlet class also defines two instance
variables. The first, goodbyePage, will hold the URL for the page to be displayed
after a user has successfully logged out. Initializing this instance variable is the sole
task of the servlet’s init () method, which sets its value from an initialization
parameter of the same name, throwing an exception if that initialization parameter
is not found.

The servlet’s second instance variable, sessionMgr, holds a reference to the
UserSessionManager singleton, just like the sessionMgr instance variable of the
LoginServlet class. This reference is used by the servlet’s dopost () method to
remove the UserBean instance from the user’s session when logging them out. It
then calls the UserSessionManager class’s doRedirect () utility method to forward
the user to the page specified by the servlet’s goodbyePage instance variable.

Logout pages

There are two JSP pages in the application supporting the logout operation. The
logout form is in a file named logout.jsp, which is in the secure subdirectory of the
application’s filters directory. After logging out, users are directed to goodbye.jsp,
which resides in the filters directory itself.

Web authentication 359

The contents of the logout page are provided in listing 13.15. Like the content
pages, it includes the header page containing navigational elements for the applica-
tion, and it also uses the <jsp:getPropertys> action to print the username of the
account currently logged in. As was the case for the logon form, an expression
using the encodeURL () method of the response ObjCCt and the getContextPath ()
method of the request object is used to construct an absolute URL for the form
handler (i.e., the logout servlet).

Listing 13.15 logout.jsp

<html>
<head><title>Log Out</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<hl>Logout</hl>

<p>
Select the button to log out account

<jsp:getProperty name="user" property="username"/>
from the Encom intranet.

</p>

<center>
<form action='<%= response.encodeURL (request.getContextPath()
+ "/filters/logout") %>' method="POST">
<input type="submit" value="Log Out">
<form>
</centers>

</body>

</html>
||

The good-bye page, presented in listing 13.16, is noteworthy in that it does not
include any actual JSP elements. All of its content is static HTML. In particular, it
does not use the response object’s encodeURL () method to ensure that the user’s
session 1D is preserved. This is because, having logged out, the user’s connection to
a particular session is no longer relevant.

Listing 13.16 goodbye.jsp

<html>
<head><title>Thank You</title></head>

<body>
<hl>Thank You</hl>

360

13.4

CHAPTER 13
Applying filters and listeners

<p>
..for using the Encom intranet.

Click here to log back in.

</p>

</body>

</html>
||

Screen shots of the logout form and good-bye page appear in figures 13.7 and 13.8.

Access control filters

Now, with all the content and infrastructure in place, we are ready to return to the
topics introduced in chapter 12. In this section, we will examine the two filters used
to enforce the required access control policies on the intranet’s JSP pages. The
authentication filter restricts access to secure content to users who have successfully
logged in. The role filter imposes an additional layer of access control, further
restricting access to certain resources to users who have been assigned the corre-
sponding role.

| 3 Log Out - Microsoft Intemet Explorer

Fle Edt View Favortes Took Help | @ |
0 = "
R S~ A @a G 3B
Back Forward Refresh ~ Home Search Favortes History Mail |
Addml hlip:Mncalhnsl:Bﬂmfwebdev!fllle:sfsecureilngnut_|sp J @Go || Links ”:

=

Logout

Select the button to log out account dumont from the Encom intranet.

Log Out I

& | % Intemet

Figure 13.7 The logout form

13.4.1

Access control filters ‘ 361

Fle Edt View Favortes Took Help El
* - alf = 2=
-, J ﬂ ﬁ @ E” | J _j =
Back Stop Refresh ~ Home Search Favortes History Mail
Addiess | http: / localhost 8080/ webdev/filters/goodbye. jsp Ll o Go | Links ®
=
Thank You
..for using the Encom intranet.
Click here to log back in.
E

Sg] Done % Internet

Figure 13.8 The goodbye page

Authentication filter

The authentication filter is implemented via the com.taglib.wdjsp.£fil-
ters.AuthenticationFilter class. Its task is to ensure that a user is logged in
before it will permit access to the resources to which it has been mapped. It does
this by checking the user’s session for the presence of a UserBean instance, which
will only be present if the user has been authenticated via the login servlet. If the
bean is present, access is permitted. If not, the user is redirected to the login form.
The AuthenticationFilter class defines two instance variables, one of which is
set via a filter initialization parameter, and one of which is set by the class’s con-
structor. The instance variables and constructors are defined as follows:
public class AuthenticationFilter implements Filter {

private String loginPage;
private UserSessionManager sessionMgr;

public AuthenticationFilter () ({
sessionMgr = UserSessionManager.getInstance(); }

362

CHAPTER 13
Applying filters and listeners

Like the logon and logout servlets, AuthenticationFilter also stores a reference
to the UserSessionManager singleton in an instance variable named sessionMgr.
The value of the 1oginPage instance variable—which will store the location of the
application’s logon form—is obtained from a filter initialization parameter of the
same name, via the filter’s init () method:

public void init (FilterConfig config) throws ServletException {
loginPage = config.getInitParameter ("loginPage") ;
if (loginPage == null)
throw new ServletException("The loginPage init parameter"
+ " must be specified.");

}

Recall from the discussion in chapter 12 that filter initialization parameters are
exposed to the filter via a corresponding FilterConfig object. The value of the
loginPage parameter is obtained by calling this object’s getInitParameter ()
method. If not found, an exception is raised. (Filter initialization parameter values
are specified via the application deployment descriptor, an XML document for con-
figuring the components of a web application. For further details, see chapter 14.)

Enforcement of the filter’s access control responsibilities is provided by the
doFilter () method. As indicated in the previous chapter, the signature of this
method (as defined by the Filter interface) requires it to accept generic requests
and responses. Because this filter must interact with the user’s session, which is
only applicable in the context of HTTP requests and responses, this method first
ensures that its request and response parameters are actually instances of the
HttpServletRequest and HttpServletResponse interfaces, rCSpCCtiVCly:

public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain)
throws IOException, ServletException {
if (request instanceof HttpServletRequest
&& response instanceof HttpServletResponse) {
HttpServletRequest req = (HttpServletRequest) request;

HttpSession session = reqg.getSession(true);
UserBean user = sessionMgr.getSessionUser (session) ;

if (user == null) {
requireLogin(req, (HttpServletResponse) response, session);
} else {

chain.doFilter (request, response) ;

}

} else {
throw new ServletException("Filter only applicable"
+ " to HTTP and HTTPS requests.");

Access control filters 363

If they are not, an exception is raised. If they are, then they are cast to the required
interfaces, and the user’s HttpSession object is retrieved from the request. The
getSessionUser () method of the UserSessionManager singleton is then called
upon to retrieve the user’s corresponding UserBean instance for that session. If a
UserBean object is present, then access to the requested resource is granted by call-
ing the FilterChain parameter’s doFilter () method, passing it the request and
response objects originally passed to the filter itself. Control then passes to the next
item in the chain, which will either be another filter or the resource that was origi-
nally requested.

If the required UserBean instance is not present in the user’s session, the filter

will instead call its requireLogin () method, defined as follows:
private void requireLogin (HttpServletRequest request,
HttpServletResponse response,
HttpSession session)
throws IOException {
StringBuffer buffer = request.getRequestURL() ;
String query = request.getQueryString() ;
if (query !'= null) {
buffer.append('?');
buffer.append (query) ;

}

sessionMgr.setSessionLoginTarget (session, buffer.toString()) ;
UserSessionManager.doRedirect (request, response, loginPage) ;

}

The requireLogin () method has three tasks. First, it reconstructs the URL which
the user was trying to reach, including any query parameters (i.e., any request
parameters passed in as part of the URL, via the HTTP GET method). This URL is
then stored in the user’s session as the logon target, via the UserSessionManager
singleton’s setSessionLoginTarget () method. That class’s doRedirect () static
method is then called upon to cause the user’s browser to display the application’s
login form.

The full source code for the AuthenticationFilter class is presented in
listing 13.17. As indicated there, the class also includes a definition of the destroy ()
method, as required by the Filter interface. Since this filter does not need to allo-
cate any long-term resources, the body of its destroy () method is empty.

Listing 13.17 AuthenticationFilter class

package com.taglib.wdjsp.filters;
import javax.servlet. Filter;

import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;

364

13.4.2

CHAPTER 13
Applying filters and listeners

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;
import java.io.IOException;

public class AuthenticationFilter implements Filter
private String loginPage;
private UserSessionManager sessionMgr;

public AuthenticationFilter () { ... }
public void init (FilterConfig config) throws ServletException { ... }
public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain)
throws IOException, ServletException {

}

private void requireLogin (HttpServletRequest request,
HttpServletResponse response,
HttpSession session)
throws IOException {

}

public void destroy () {}

Just as the content pages have no direct knowledge of the filter that will be applied
to them in order to implement access control, the filter itself has no direct knowl-
edge of the resources to which it will be applied. The only JSP page it knows any-
thing about is the login page, and even then the location of this page is provided via
an initialization parameter to provide maximum flexibility. The ability to keep the
functionality of the filter completely separate from the functionality of the applica-
tion’s other resources improves the reusability of both, and leads to greater main-
tainability and more flexible deployment of applications that leverage this approach.

Role filter

The implementation of the role filter is very similar to that of the authentication fil-
ter. One minor difference is that its class, com.taglib.wdjsp.filters.RoleFil-
ter, has three instance variables rather than just two:

public class RoleFilter implements Filter

private String role, denyPage;
private UserSessionManager sessionMgr;

Access control filters 365

public RoleFilter () { sessionMgr = UserSessionManager.getInstance(); }

}

As was the case for the AuthenticationFilter class, this class’s sessionMgr
instance variable holds a reference to the UserSessionManager singleton and is ini-
tialized in the filter’s constructor. The other two instance variables, role and
denyPage, get their values from like-named initialization parameters, via the class’s
init () method:

public void init (FilterConfig config) throws ServletException {
role = config.getInitParameter ("role");
if (role == null)
throw new ServletException("The role init parameter"
+ " must be specified.");
denyPage = config.getInitParameter ("denyPage") ;
if (denyPage == null)
throw new ServletException("The denyPage init parameter"
+ " must be specified.");

}

The role instance variable stores the name of the role which the filter is to restrict
access to, while the denyPage instance variable stores the location of the resource to
be displayed to users who attempt to access a resource protected by this filter but do
not have the required role. An exception is thrown if either of the corresponding
initialization parameters is not specified.

Enforcement of role-based security is performed by the filter’s doFilter ()
method, defined as follows:

public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain)
throws IOException, ServletException {
if (request instanceof HttpServletRequest
&& response instanceof HttpServletResponse)
HttpServletRequest req = (HttpServletRequest) request;
HttpSession session = reqg.getSession(true);
UserBean user = sessionMgr.getSessionUser (session) ;

if ((user != null) && user.hasRole(role)) {
chain.doFilter (request, response) ;
} else {
HttpServletResponse resp = (HttpServletResponse) response;

UserSessionManager.doRedirect (req, resp, denyPage) ;

}

} else {
throw new ServletException("Filter only applicable"
+ " to HTTP and HTTPS requests.");

366

CHAPTER 13
Applying filters and listeners

Like its counterpart in the AuthenticationFilter class, this method’s interaction
with the user’s session requires that the filter only be applied to HTTP requests and
responses. This method’s first step, then, is to make sure that the request and
response instances passed in as its first two parameters are of the appropriate types.
If not, an exception is raised.

If the request and response objects are of the required types, the cast operator is
applied to allow the user’s session to be retrieved from the request. The getses-
sionUser () method of the UserSessionManager singleton is then called to retrieve
the UserBean instance for the user. If a UserBean object is present, its hasRole ()
method is called to determine whether or not the user has been assigned the role
named in the filter’s role instance variable. If so, the doFilter () method of the
FilterChain object provided as the method’s third parameter is called in order to
continue processing the request. If not, the user is redirected to the location speci-
fied by the filter’s denyPage instance variable, using the doRedirect () method of
the UserSessionManager class.

The filter class’s remaining method is destroy (). It is required to implement
this method by the Filter interface, but because it allocates no long-term
resources, this method performs no operations. This method, as well as abbreviated
versions of the RoleFilter class’s other methods, is presented in listing 13.18.

Listing 13.18 RoleFilter class

package com.taglib.wdjsp.filters;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;
import java.io.IOException;

public class RoleFilter implements Filter
private String role, denyPage;
private UserSessionManager sessionMgr;

public RoleFilter () { ... }
public void init (FilterConfig config) throws ServletException { ... }
public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain)
throws IOException, ServletException {

Access control filters 367

}

public void destroy () {}

}
-

Note that, since there are three different resources (i.e., the departmental home
pages) to be restricted to three different roles, the application will have to create
three different instances of the RoleFilter class. This allows each instance to have
a different value for its role instance variable, and to be mapped to a different
resource. (The mapping of filters to application resources is covered in the next
chapter.) In contrast, only a single instance of the AuthenticationFilter class is
required, since only one setting is needed for its loginPage instance variable.

The final element in the implementation of the role-based security requirement
is the application’s access denial page, the denied.jsp page located in the secure
subdirectory of the filters directory. This is the resource that will be displayed when
a user who has not been assigned the required role attempts to access a resource
protected by the role filter. The source code for this JSP page, which leverages the
navigational header page introduced earlier in the chapter, is presented in
listing 13.19, and a representative screen shot appears in figure 13.9. Although
each of the required RoleFilter instances has its own value for the role instance
variable, each can share this single access denial page as the value for each of their
denyPage instance variables.

Listing 13.19 denied.jsp

<html>
<head><title>Access Denied</titles></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<hl>Access Denied</hl>

<p>

The <jsp:getProperty name="user" property="username"/> account
is not authorized to access the requested resource.<brs>

Please make another selection.

</p>

</body>
</html>

368

13.5

CHAPTER 13
Applying filters and listeners

Fle Edit View Favoites ook Help El
< = al = »
L Q [a HE 9 | B
Back Stop Refresh ~ Home Search Favortes History Mail
Addiess http: / localhost 8080/ webdev/filters/secure/denied jsp Ll (?GD Links **
=

Access Denied

The dumont account
Please make another

s not authonzed to access the requested resource

election.

Sg] % Internet

Figure 13.9 The access denial page

Logging listener

The authentication and role filters, when applied to the application’s resources as
illustrated in 13.2, implement all of the access control requirements described ear-
lier in the chapter. The last of the desired enhancements to the original application
is the addition of logging features. As was the case for the implementation of access
control via the two filter classes, this will be accomplished without making any
changes to the existing code, including that of the two filters.

The logging functionality will be implemented by means of a life-cycle event lis-
tener named com.taglib.wdjsp.filters.LoginSessionListener. Given that a
user’s logon status is represented by the presence or absence of a session attribute
named user holding an instance of the UserBean class, monitoring that status is most
casily accomplished by implementing the HttpSessionAttributeListener interface.
(This monitoring could also be accomplished using the HttpSessionBinding-
Listener interface, but that would necessitate modifications to the UserBean class,
which we would prefer to avoid. The HttpSessionAttributeListener interface
allows us to accomplish our goals without adding web-specific code to that class.) As

Logging listener 369

a debugging aid, we will also have our new listener class implement the HttpsSes-
sionListener interface, so that we can monitor session creation and destruction.

13.5.1 HttpSessionListener methods

For this HttpSessionListener interface, two methods must be defined: The first,
sessionCreated (), is defined as follows:

public void sessionCreated (HttpSessionEvent event)
HttpSession session = event.getSession() ;
System.out .println(new Date () .toString() + ": session created"
+ " (" + session.getId() + ")");

}

This method retrieves the newly created session from the event passed in as the
method’s sole parameter, and then prints a log message containing a timestamp and
the ID of the new session. (To keep things simple for this example, all logging mes-
sages are printed to the System.out output stream. In practice, a dedicated log file
for all messages related to access control would be preferable.)

The other method required by this interface, sessionDestroyed(), is defined
similarly:

public void sessionDestroyed (HttpSessionEvent event) (
HttpSession session = event.getSession() ;

System.out.println(new Date().toString() + ": session destroyed"
+ " (" + session.getId() + ")");

}

This method’s only significant difference from the sessionCreated () method is
the wording of its log message.

13.5.2 HttpSessionAttributeListener methods

Three methods must be defined in order to implement the HttpSessionAt-
tributeListener: interface: attributeAdded(), attributeReplaced(), and
attributeRemoved (). The first of these is defined as follows:

public void attributeAdded (HttpSessionBindingEvent event) {
if (event.getName () .equals (UserSessionManager.SESSION USER ATTRIBUTE))
UserBean user = (UserBean) event.getValue() ;
HttpSession session = event.getSession();
System.out .println(new Date () .toString()
+ ": session login for " + user.getUsername ()
+ " (" + session.getId() + ")");

370

CHAPTER 13
Applying filters and listeners

First, the name of the newly added attribute is extracted from the event via its
getName () method. If the attribute’s name matches that used by the Usersession-
Manager singleton for storing the UserBean instance, then that instance is retrieved
from the session and used to print a logon message that includes a timestamp, the
username associated with that UserBean, and the session ID. Since this specific
attribute is only added to the session by the logon servlet, the logging message will
only be produced while the user is in the process of logging on. Of course, this is
exactly when we want the message to be produced.

An individual user’s UserBean object is never replaced within a session (the user
only logs in once), so no method body is required for the LoginSessionListener
class’s attributeReplaced () method (see listing 13.20).

The listener’s attributeRemoved () method is very similar in structure to its
attributeAdded () method:

public void attributeRemoved (HttpSessionBindingEvent event) {
if (event.getName () .equals (UserSessionManager.SESSION USER ATTRIBUTE)) {
UserBean user = (UserBean) event.getValue() ;
HttpSession session = event.getSession() ;
System.out .println(new Date () .toString()

+ ": session "

+ (isTimedOut (session) ? "timeout" : "logout")
+ " for " + user.getUsername ()

+ " (" + session.getId() + ")");

}
}
Again, the name of the removed attribute is retrieved from the event, and checked
against the attribute name used to store the UserBean object in the user’s session. If
they match, an appropriate log message is generated.

In this case, however, two different circumstances may be responsible for the
attribute removal event. If the user logs out of the application via the logout form,
the logout servlet will call the removesessionUser () method of the UserSession-
Manager singleton, thereby explicitly removing the attribute holding the UserBean
instance. If the user neglects to log out, eventually the session will expire. As part of
the session expiration process, the container will automatically remove all of the
attributes stored in the session.

In order to distinguish between these two possible causes, the attributeRe-
moved () method calls a utility method named isTimedout (). This method’s task is
to determine whether the session has expired (i.e., timed out) or the user logged

out, and is defined as follows:
private boolean isTimedOut (HttpSession session) {
try {

Logging listener 371

long idle = new Date() .getTime() - session.getLastAccessedTime () ;
return idle > (session.getMaxInactivelInterval() * 1000);

}

catch (IllegalStateException e) { return true; }
}
First, this method determines how long the session provided as its sole parameter
has been idle, by subtracting the time it was last accessed from the current time.
This value, in milliseconds, is compared against the session’s expiration period, as
retrieved via its getMaxInactiveInterval () method, which must be multiplied by
1,000 in order to convert from seconds to milliseconds. If the idle period is greater
than the expiration period, then the session must have timed out. If not, the user
must have explicitly logged out.

Upon expiring a session, however, the container may refuse to allow methods
such as getLastAccessedTime () and getMaxInactiveInterval () to be called. If
so, attempts to call those methods will result in an I1legalStateException. For
this reason, the isTimedout () method includes a try/catch block for intercepting
these exceptions. If such an exception is caught, the session can be presumed to
have timed out, and the method will therefore return a value of true.

Listing 13.20 LoginSessionListener class

package com.taglib.wdjsp.filters;

import javax.servlet.http.HttpSession;

import javax.servlet.http.HttpSessionEvent;

import javax.servlet.http.HttpSessionListener;

import javax.servlet.http.HttpSessionBindingEvent;
import javax.servlet.http.HttpSessionAttributeListener;
import java.util.Date;

public class LoginSessionlistener
implements HttpSessionListener, HttpSessionAttributelListener {

public void sessionCreated (HttpSessionEvent event) { ... }
public void sessionDestroyed (HttpSessionEvent event) { ... }

public void attributeAdded (HttpSessionBindingEvent event) { ... }
public void attributeReplaced (HttpSessionBindingEvent event) {}
public void attributeRemoved (HttpSessionBindingEvent event) { ... }

private boolean isTimedOut (HttpSession session) { ... }

The resulting source code of the LoginSessionListener class (in abbreviated
form) is presented in listing 13.20. A transcript of representative output from the
listener appears in listing 13.21.

372

13.6

CHAPTER 13
Applying filters and listeners

Listing 13.21 LoginSessionListener output

package com.taglib.wdjsp.filters;

Mon Jul 02 23:45:37 CDT 2001: session created (9910339382D7D242C44545C0357)

Mon Jul 02 23:45:53 CDT 2001: session login for sark
(9910339382D7D242C44545C0357)

Mon Jul 02 23:46:16 CDT 2001: session logout for sark
(9910339382D7D242C44545C0357)

Mon Jul 02 23:46:22 CDT 2001: session created (39D1C293B7D5D2D751F5D417826)

Mon Jul 02 23:46:38 CDT 2001: session login for dumont
(39D1C293B7D5D2D751F5D417826)

Mon Jul 02 23:48:55 CDT 2001: session created (A4611187A5F480C4B121C477F14)

Mon Jul 02 23:49:07 CDT 2001: session login for yori
(A4611187A5F480C4B121C477F14)

Mon Jul 02 23:49:16 CDT 2001: session logout for yori
(A4611187A5F480C4B121C477F14)

Tue Jul 03 00:01:41 CDT 2001: session destroyed (9910339382D7D242C44545C0357)

Tue Jul 03 00:01:41 CDT 2001: session timeout for dumont
(39D1C293B7D5D2D751F5D417826)

Tue Jul 03 00:01:41 CDT 2001: session destroyed (39D1C293B7D5D2D751F5D417826)

Tue Jul 03 00:04:41 CDT 2001: session destroyed (A4611187A5F480C4B121C477F14)

Content filter

The two filters presented earlier in this chapter are focused on access control. Access
to specific resources is filtered according to the credentials (or lack thereof) associ-
ated with the user submitting the request.

As indicated in chapter 12, however, filters can also be used to manipulate the
content provided by a resource. This is typically accomplished by means of request
and/or response wrappers, for which the examples presented thus far have not had
any need. In order to demonstrate this second type of filter, as well as the use of
wrapper classes, we will close the chapter with the presentation of one final filter,
embodied in the com.taglib.wdjsp.filters.StringReplaceFilter class.

As its name suggests, this filter may be used to replace one string with another in
the content associated with a response. Without making any changes to the original
documents of the application, occurrences of a specified string within the body of a
response will be translated into occurrences of the specified replacement text. If, for
example, the Encom Corporation were to change its name, the string replacement
filter could be used to immediately replace all occurrences of the original name with
the new corporate moniker. Such an effect could readily be achieved by mapping an
instance of the stringReplaceFilter class to all of the resources comprising the
application, as indicated in figure 13.10.

13.6.1

Content filter 373

String replacement filter
Filters

Index Login Goodbye
page page page
Authentication filter
Secure
| | &
Welcome Logout
page page
[b
Header Denied
page page
[\
Developel Manager Sysadmin
home home home
page page page
Developer Manager Sysadmin
role role role

Figure 13.10 Final site map, including the string replacement filter

The string replacement filter operates by placing a wrapper around the response
it passes down the filter chain. This wrapper introduces a second, temporary output
stream to which the remaining items in the chain, including the resource originally
requested, will write their content. When control returns to the filter after the
response has been written, the contents of this temporary output stream are copied
in the output stream of the response originally passed to the result, substituting all
occurrences of a given string with the specified replacement string. The response
wrapper and its temporary output stream are implemented via a pair of inner classes
named StringReplaceResponse and TmpServletOutputStream, respcctively.

Filter methods

Two instance variables are defined for the stringReplaceFilter class, both of
whose values are set in the class’s init () method.

public class StringReplaceFilter implements Filter {
private String from, to;

374

CHAPTER 13
Applying filters and listeners

public void init (FilterConfig config) throws ServletException {
from = config.getInitParameter ("from") ;
if (from == null)
throw new ServletException("The from init parameter"
+ " must be specified.");
to = config.getInitParameter ("to") ;
if (to == null)
throw new ServletException("The to init parameter"
+ " must be specified.");

}

The from instance variable specifies the character string, occurrences of which are to
be replaced. The to instance variable specifies the character string to be substituted
in place of those occurrences. The values for both instance variables are provided by
filter initialization parameters with corresponding names. Initialization parameter
values are set in the application’s deployment descriptor (see chapter 14), and are
made available to the filter via the FilterConfig instance passed as the sole param-
eter to its init () method. A new ServletException is raised if a value for either of
the initialization parameters has not been specified.

The filtering of response content is performed by the class’s doFilter ()
method. As already described, this filter works by creating a wrapped response that
diverts the output of the remaining items in the filter to a temporary output stream.
The output is then copied to the output stream associated with the real response,
performing the specified string replacement in the process.

For compatability with the other filters defined for this application, however, the
filter must be careful to wrap HTTP responses via the HttpResponseWrapper class,
rather than the more generic ResponseWrapper class. Rather than trying to handle
both cases, this filter—like its predecessors—will restrict itself to working with only
HTTP requests and responses. The first step in the doFilter () method, then, is to
check the types of the request and response objects passed in as the method’s first
two parameters:

public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain)
throws IOException, ServletException {
if (request instanceof HttpServletRequest
&& response instanceof HttpServletResponse) {

HttpServletResponse resp = (HttpServletResponse) response;
StringReplaceResponse wrappedResponse = new StringReplaceResponse (resp) ;
chain.doFilter (request, wrappedResponse) ;
transferData (wrappedResponse, resp) ;

} else {

Content filter 375

throw new ServletException("Filter only applicable"
+ " to HTTP and HTTPS requests.");

}

An exception is raised if the request and response are not of the required types.
Otherwise, the response is cast to the required class and then provided as the sole
parameter for the wrapped response’s constructor.

The original request and the wrapped response are then passed to the filter
chain’s doFilter () method, to allow the remaining items in the chain to handle
the request. After these items have finished processing the request/response pair,
control will be returned to the string replacement filter’s doFilter () method,
which then calls its transferData () private method to copy the output stored by
the wrapped response to the output stream of the original response.

NOTE As pointed out in chapter 12, the original response passed in as the second
parameter to the filter’s doFilter () method may itself have been wrapped
by another filter that preceded it in the chain. A response wrapper can wrap
another response wrapper, just as easily as it can wrap a true response.

The inner workings of the transferData () method are dependent upon the two
inner classes used to implement the wrapped response and its output stream. For
this reason, we will first examine the details of those inner classes before reviewing
the remaining methods of the stringReplaceFilter class.

13.6.2 Response wrapper inner class

The response wrapper used by the stringReplaceFilter class is implemented as
an inner class named StringReplaceResponse as follows:

private class StringReplaceResponse extends HttpServletResponseWrapper {
TmpServletOutputStream surrogate = new TmpServletOutputStream() ;

private StringReplaceResponse (HttpServletResponse response) {
super (response) ;
public ServletOutputStream getOutputStream ()
throws java.io.IOException {
return surrogate;
public PrintWriter getWriter ()
throws java.io.IOException {
return new PrintWriter (new OutputStreamWriter (surrogate)) ;

}
}

376

CHAPTER 13
Applying filters and listeners

The wrapper class extends the HttpServletResponseWrapper base class present in
chapter 12, and defines one instance variable and three methods.

The surrogate instance variable holds an instance of the filter’s other inner
class, TmpServletoutputStream. The response wrapper overrides the getoutput-
Stream() and getWriter () methods of the javax.servlet.ServletResponse
class to return this surrogate output stream (wrapped in a java.io.PrintWriter
instance in the case of the latter method) to all items that follow the stringRe-
placeFilter in the filter chain. By overriding these two methods, all response out-
put generated by those items will be written to this surrogate stream, rather than
the output stream associated with the response object originally passed to the filter.

The other method defined by this class is its constructor, which takes that origi-
nal response object as its parameter and passes it to the constructor of its HttpServ-
letResponseWrapper superclass. As a result, all HttpServletResponse methods
except for getOutputStream() and getWriter () will automatically be delegated to
the original response.

13.6.3 Output stream inner class

The TmpServletoutputStream inner class implements the temporary stream to
which subsequent filters and resources in the filter chain will write their output. For
compatibility with the servletResponse class’s getOutputStream() method, this
class is a subclass of the javax.servlet.ServletOutputStrean class, and is defined
as follows:

private class TmpServletOutputStream extends ServletOutputStream {
private ByteArrayOutputStream baos = new ByteArrayOutputStream(1024) ;

public void write (int b) { baos.write(b); }

public void write (bytel[]l b, int off, int len) {
baos.write (b, off, len);

}

private ByteArrayInputStream getInputStream () {
return new ByteArrayInputStream(baos.toByteArray());

}

Implementing an output stream is basically a matter of providing definitions for the
two write () methods indicated in the definition of the TmpServletOutputStream
class. The default implementations for all of the other output methods defined by
the java.io.outputStream base class ultimately call one of these two methods, so
a subclass that defines both—and provides some place for the output to go—will
have sufficient functionality to act as a Java output stream.

Content filter 377

In the case of TmpServletOutputStream, an instance of the java.io.ByteAr-
rayOutputStream class serves as the destination for all output, and the inner class’s
two write () methods delegate to this ByteArrayoutputStream instance. This
instance provides an in-memory byte array (set in its constructor to an initial size of
1 KB) for storing all data written to the TmpServletOutputStream object.

Such data can be subsequently read from that byte array via the java.io.Byte-
ArrayInputStream instance returned by the inner class’s getInputStream ()
method. This method first retrieves the output written to the ByteArrayoOutput-
Stream by calling the output stream’s toByteArray () method, and then creates an
input stream for reading the data directly from the resulting byte array.

13.6.4 More filter methods

We are now ready to return to the methods of the top-level filter class, StringRe-
placeFilter. As indicated in the discussion of the filter’s doFilter () method,
transferData () is a private method defined by the filter that copies the data stored
in a wrapped response to the output stream of another response:

private void transferData (StringReplaceResponse fromResponse,
HttpServletResponse toResponse)
throws IOException {
ByteArrayInputStream bais = fromResponse.surrogate.getInputStream() ;
BufferedReader reader =
new BufferedReader (new InputStreamReader (bais)) ;
ServletOutputStream original = toResponse.getOutputStream() ;
PrintWriter writer =
new PrintWriter (new OutputStreamWriter (original)) ;
String line;
while ((line = reader.readLine()) != null) {
writer.println(doReplacement (line)) ;
}
writer.close() ;
reader.close () ;

}
Since the call to transferbata () occurs after the filter chain’s doFilter () method
is called, the output generated by the requested resource and any intervening filters
will have already been written to the temporary output stream associated with the
response wrapper. The first action taken by the transferData () method, then, is
to call the getInputStream() method of the wrapper’s surrogate output stream so
that the data that has been written to it can be read. In order to read this data one
line at a time, the ByteArrayInputStream returned by the getInputStream()
method is wrapped in an instance of the java.io.BufferedReader class. (This is
accomplished by means of an intermediate java.io.InputStreamReader class to

378

CHAPTER 13
Applying filters and listeners

bridge the gap between Java’s byte-oriented input stream classes and its character-
oriented reader classes.) For similar reasons, the ServletOutputStream instance
associated with the original request object is wrapped in an instance of the
java.io.PrintWriter class.

The method then reads from the Bufferedreader, one line at a time, until all of
the data is consumed (i.e., until the reader’s readLine () method returns null).
Each line is then written to the PrintWriter representing the original request
object’s output stream, after being processed by the filter’s dorReplacement () utility
method. The reader and writer are then closed.

The job of the dorReplacement () utility method is to perform text substituion
for the filter on a single string object, passed in as a parameter to the method.
Within that string instance, all occurrences of the character string stored in the fil-
ter’s £rom instance variable are replaced by the character string stored in the filter’s
to instance variable. The method is defined as follows:

private String doReplacement (String s) {

int start = s.indexOf (from) ;
if (start < 0) {

return s;
} else {

return s.substring(0, start) + to
+ doReplacement (s.substring(start + from.length()));
}

}

The method operates by locating the first occurrence of £rom in the string passed in
as the method’s parameter. If none is found, the string parameter is returned
unmodified. If an occurrence of from is found, a new string in constructed to serve
as the return value of the dorReplacement () method. This return value is created by
appending the replacement text in the to instance variable to the portion of the
string that precedes the occurrence of £rom. Finally, the result of applying the
doReplacement () method to the remainder of the string is also appended to the
return value. This recursive call to doReplacement () ensures that any additional
occurrences of £rom are also replaced.

In addition to the four methods already presented, the filter class defines a default
constructor and a destroy () method, as indicated in listing 13.22. Because this fil-
ter allocates no long-term resources, however, both of these methods do nothing.

Content filter ‘ 379

Listing 13.22 StringReplaceFilter class

package com.taglib.wdjsp.filters;

import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import

import
import

public

javax.servlet.Filter;
javax.servlet.FilterChain;
javax.servlet.FilterConfig;
javax.servlet.ServletRequest;
javax.servlet.ServletResponse;
javax.servlet.http.HttpServletRequest;
javax.servlet.http.HttpServletResponse;
javax.servlet.http.HttpServletResponseWrapper;
javax.servlet.ServletOutputStream;

java.io.OutputStream;
java.io.ByteArrayOutputStream;
java.io.ByteArrayInputStream;
java.io.InputStreamReader;
java.io.BufferedReader;
java.io.OutputStreamWriter;
java.ilo.PrintWriter;

javax.servlet.ServletException;
java.io.IOException;

class StringReplaceFilter implements Filter ({

private String from, to;

public StringReplaceFilter () {}
public void init (FilterConfig config) throws ServletException { ... }
public void doFilter (ServletRequest request, ServletResponse response,

FilterChain chain)

throws IOException, ServletException {

}

public void destroy () {}
private void transferData (StringReplaceResponse fromResponse,

HttpServletResponse toResponse)

throws IOException {

}

private String doReplacement (String s) { ... }

private class StringReplaceResponse extends
HttpServletResponseWrapper {

}

private class TmpServletOutputStream extends ServletOutputStream { ... }

380

CHAPTER 13
Applying filters and listeners

Authentication filter
Role filter
String replacement filter
Requested
resource
Wrapped
Request response Response
- - T» -
i Y
Al \
L L

login.jsp denied.jsp

Figure 13.11 Default page for the filters directory, after string replacement

13.6.5 Filter results

Upon adding this filter to the other two being used by the intranet application, the
overall flow of requests and responses for resources to which all three filters have
been mapped is as depicted in figure 13.11. First, requests are passed to the authen-
tication filter to check whether or not the user has logged on. Users who have not
been authenticated are redirected to the logon page, login.jsp.

If the user is logged on, the request is then passed to the role filter. This filter
examines the roles that have been assigned to the user, attempting to find a match
for the filter’s own role. Note that roles can only be checked after the user has
logged on and thus been identified. It is therefore criticial that the role filter follow
the authentication filter in the filter chain. If the current user has been assigned the
required role, the request is passed to the next item in the filter chain. If not, the
user is redirected to the access denial page, denied. jsp.

Since additional resources (in the form of a ByteArrayOutputStream) must be
allocated in order to run the string replacement filter, it is best to place this filter last
in the filter chain. In this way, the overhead associated with allocating the Bytear-
rayOutputStream can be avoided until it is clear that those resources will be
required. When run, this filter passes a wrapped response to the next item in the fil-
ter chain which, in this case, will be the resource that was originally requested. This

Content filter ‘ 381

@ mnnCi 3 oft Interne _]G[_)_(_I
Fle Edt View Favortes Took Help El
* - o = 2=
o @ [A | @ @ I | B
Back Stop Refresh ~ Home Search Favortes History Mail
Addiess | hittp: / ocalhost 8080/ webdev/filters/index. jsp Ll o Go | Links ®
=

FlynnCom Intranet

This is the FlynnCom intranet. Unauthonzed use is prohibited.

Click here to login.

Sg] Done % Internet

Figure 13.12 Default page for the filters directory, after string replacement

resource writes its content to the wrapped response, and control is passed back to
the string replacement filter.

The filter then unwraps the response, performing the string substitution in the
process. The other two filters need take no special action during this phase of the
processing, so the unwrapped response is ultimately returned to the user.

Representative results of applying this filter to the intranet sample application,
replacing all occurrences of the name Encom with the alternative name Flynncom,
are depicted in figures 13.12-13.14. As indicated in figures 13.13 and 13.14, note
that the contents of the header page, incorporated via the <jsp:include> action,
are also subject to string replacement.

13.6.6 Other content filters

The same basic approach used to implement stringReplaceFilter can also be
applied to other filters for manipulating content. The actions taken by this class’s
doFilter () method can be summarized as follows:

1 Creates a response wrapper which provides temporary storage for all output
intended for the original response.

382

CHAPTER 13
Applying filters and listeners

Fle Edit View Favoites ook Help E3
< = al = »
L Q [a HE 9 | B
Back Stop Refresh ~ Home Search Favortes History Mail
Addiess hitp: #ocalhost 8080/ webdev/filters/secure/welcome. jsp Ll p> Go | |Links *®
=
Welcome
..to the FlyrnCom intranet.
€] Opening page http://10.0.1.15:8080/ % Internet

Figure 13.13 The welcome page, after string replacement

2 Passes the wrapped response to the filter chain for further processing.

3 When control returns to the filter, extracts the chain's output from tempo-
rary storage, transforms it, and writes the transformed output to the output
stream associated with the original response.

The only aspect which will vary from one filter to the next is the type of transforma-
tion to be applied. For stringReplaceFilter, this transformation is content
substitution.

A wide range of other transformations can be imagined. For example, a filter
could be used to transform dynamically generated XML (such as a Simple Object
Access Protocol [SOAP] or XML-RPC [remote procedure call] response) into a
more user-friendly presentation format. For example, the filter could examine the
User-Agent: Or Accept: header ofarequestin order to select an appropriate XSLT
style sheet for displaying the dynamic content. If the header indicates a web
browser, a style sheet for rendering HTML might be selected. If the header indicates
a Wireless Application Protocol (WAP) browser, a style sheet for rendering WML
would be chosen instead. The filter would apply the selected XSLT stylesheet to the

Content filter ‘ 383

Fle Edt View Favoites Tooks Help
& . .0 B A Qa =@ 9| B "
Back Wa Stop Refresh Home Search Favortes History Mail |
Agdml hittp: / ocalhost 8080/ webdev/filters/secure/development. jsp j @ Go || Links
=

Development News for Lora

s The development team meeting for Space Paranoids II will be next Tuesday at 11 am.

Bring your laptop.
= The FlynnCom quarterly meeting will be next Friday at Sam.
Bring your pillow,
&1 Opening page http://10.0.1.15:8080/ | %D Intemet 4

Figure 13.14 The development home page, after string replacement

generated XML stored by the response wrapper, and write the results to the output
stream associated with the original response.

Similarly, consider the case of a PNG image generated dynamically by a servlet
(for example, a bar chart depicting the current load on the server). As browser sup-
port for the PNG image format is relatively new, a filter could be wrapped around
this servlet to determine which image formats (GIF, JPEG, etc.) are supported by
the browser making the request, by examining the Accept: header supplied with
that request. For browsers that don’t support the PNG format, the filter could
translate the image into an alternate, supported format on the fly. In this case,
binary streams would be required rather than the character-oriented streams more
common in JSP applications (i.e., the java.io.Reader and java.io.Writer sub-
classes, such as used in the transferData () method), but the underlying approach
is the same.

Deploying JSP applications

This chapter covers

= Web application archives

= Components of WAR files

= Application deployment descriptors
= Developing for deployment

384

14.1

This means WAR 385

Regardless of the components or architecture you have selected for your JSP devel-
opment, a web-based application can’t be used until it has been successfully
deployed on a web server. Whereas desktop applications are often packaged with
customized installation programs that walk the user through the required configu-
ration and deployment steps, the installation of applications targeted toward the
server environment has historically been somewhat less user-friendly.

In an effort to remedy this situation, at least for Java-based web applications, the
Servlet and JSP specifications support the bundling of an application’s files into a
single web archive, which can be deployed as is to a Java-enabled web server. All of
the resources required for a given web application—]JSP files and servlets, as well as
associated content such as HTML documents, images, applets, and JavaBeans—are
deposited in a web archive, along with an XML-based configuration file. This
archive can then be placed into a designated directory on the web server and, after
customizing the included configuration file as necessary, the associated application
is run straight from the archive file. When requests are received for URLs corre-
sponding to the contents of the archive, the JSP container extracts those resources
as needed. Processing then resumes as if the extracted resources were part of the
server’s normal document hierarchy.

This means WAR

Web archives take the form of JAR files, the standard file archive format for the Java
platform. Each web archive also contains a special descriptor file describing how the
files in the archive are used to implement a web-based application. So that tools can
casily distinguish between web archives and other JAR files, web archives are assigned
the extension .war, and for this reason are commonly referred to as WAR files.

As mentioned in chapters 5 and 6, a Java web application is mapped to a direc-
tory hierarchy, rooted in a single top-level directory. The URLs for all of the ele-
ments of the application will therefore all begin with the same initial directory, the
name of which also serves as the name of the application. In an application named
clu, for example, its resources are all accessed in or below a top-level directory
named clu, using URLs such as http://server/clu/index.jsp, http://server/clu/
servlet/dashboard, and http: //server/clu/images/reticle.gif.

As also described in chapter 6, all Java-based resources in an application (i.e., serv-
lets and JSPs) share the same javax.servlet.ServletContext instance, which is
made available to the application’s JSP pages via the application implicit object.
This object, by means of the standard attribute methods outlined in table 6.2,

386

CHAPTER 14
Deploying JSP applications

provides a simple data-sharing mechanism for use within an application, which serves
as the foundation for storing objects (e.g., beans) with application scope.

WAR files are designed to store the contents of a single application. The hypo-
thetical clu application introduced previously would therefore be stored in a web
archive named clu.war. By registering the WAR file with the JSP container, all of the
resources stored in that file become available for use by the container and, by exten-
sion, end users accessing the associated HTTP server.

NOTE The process by which WAR files are registered is currently container-specific.
Some containers provide graphical tools for dragging and dropping new web
applications, while others have designated directories into which WAR files
must be copied in order to be automatically deployed. Still others rely on the
editing of a container-specific configuration file, and many support a combi-
nation of these approaches.

14.1.1 WAR is XML

In addition to its web application content, a WAR file also contains a deployment
descriptor file—formally referred to as the Web Application Descriptor file—that
specifies how that content is used to provide the corresponding application func-
tionality. For example, the descriptor file itemizes the servlets contained in an appli-
cation, providing any associated initialization parameters or URL mappings. A web
application can also contain JSP pages that have already been compiled into servlets,
and the descriptor file is where the JSP container looks to find the original URLs for
such pages.

TIP By deploying JSP pages as precompiled servlets, you can avoid the run-time
overhead of compiling a page the first time it is requested by an end user. It
also eliminates the need to include a Java compiler on the production web
server, thereby reducing the memory footprint for the server’s JVM. Tech-
niques for JSP precompilation are described later in this chapter.

The descriptor file is named web.xml, and resides in a special top-level directory of the
WAR file named WEB-INF. This subdirectory is an analog of the META-INF subdirec-
tory found in all JAR files, containing metainformation about the archive itself. An
archive serves as a repository of information; the data it stores about itself is therefore
considered metainformation, in the sense that it is information about information. In a
similar vein, the WEB-INF subdirectory contains information about how the contents of

This means WAR 387

the repository are deployed via the Web, with the web.xml file serving as the central
configuration file for the archive.

As its file extension suggests, the markup language for the data in the web.xml file is
XML. For example, the contents of a basic deployment descriptor file for the intranet
example presented in the previous chapter would take the following form:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
"http://java.sun.com/j2ee/dtds/web-app_2.3.dtd”>
<web-app>
<display-name>Encom Intranet</display-name>
<filter>
<filter-names>authentication</filter-name>
<filter-class>
com.taglib.wdjsp.filters.AuthenticationFilter</filter-class>
<init-param>
<param-name>loginPage</param-name>
<param-value>/filters/login.jsp</param-value>
</init-param>
</filters>
<filter>
<filter-name>devRole</filter-name>
<filter-class>com.taglib.wdjsp.filters.RoleFilter</filter-class>
<init-params>
<param-name>role</param-name>
<param-value>dev</param-value>
</init-param>
<init-param>
<param-name>denyPage</param-name>
<param-value>/filters/secure/denied.jsp</param-value>
</init-param>
</filters>
<filter>
<filter-name>mgrRole</filter-name>
<filter-class>com.taglib.wdjsp.filters.RoleFilter</filter-class>
<init-params>
<param-names>role</param-name>
<param-value>mgr</param-value>
</init-param>
<init-param>
<param-name>denyPage</param-name>
<param-value>/filters/secure/denied.jsp</param-value>
</init-param>
</filters>
<filter>
<filter-names>adminRole</filter-name>
<filter-class>com.taglib.wdjsp.filters.RoleFilter</filter-class>

388 CHAPTER 14
Deploying JSP applications

<init-params>
<param-names>role</param-name>
<param-value>admin</param-value>
</init-param>
<init-params>
<param-name>denyPage</param-name>
<param-value>/filters/secure/denied.jsp</param-value>
</init-param>
</filters>
<filter-mapping>
<filter-namesauthentication</filter-name>
<url-pattern>/filters/secure/*</url-patterns>
</filter-mapping>
<filter-mapping>
<filter-name>devRole</filter-name>
<url-pattern>/filters/secure/development.jsp</url-patterns>
</filter-mapping>
<filter-mapping>
<filter-name>mgrRole</filter-name>
<url-pattern>/filters/secure/management.jsp</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-names>adminRole</filter-name>
<url-pattern>/filters/secure/admin. jsp</url-patterns
</filter-mapping>
<listeners
<listener-class>com.taglib.wdjsp.filters.LoginSessionlListener</listener-class>
</listeners>
<servlets>
<servlet-name>login</servlet-name>
<servlet-class>com.taglib.wdjsp.filters.LoginServlet</servliet-class>
<init-params>
<param-name>userDataManager</param-name>
<param-value>
com.taglib.wdjsp.filters.SimpleUserDataManager
<param-values>
</init-param>
<init-params>
<param-name>loginPage</param-name>
<param-value>/filters/login.jsp</param-value>
</init-param>
<init-param>
<param-name>welcomePage</param-name>
<param-value>/filters/secure/welcome. jsp</param-value>
</init-param>
</servlets>
<servlets>
<servlet-name>logout</servlet-name>
<servlet-class>com.taglib.wdjsp.filters.LogoutServlet</servlet-class>
<init-params>

This means WAR 389

<param-name>goodbyePage</param-name >
<param-value>/filters/goodbye.jsp</param-value>
</init-param>
</servlets>
<servlet-mapping>
<servlet-name>login</servlet-name>
<url-pattern>/filters/login</url-patterns>
</servlet-mapping>
<servlet-mapping>
<servlet-name>logout</servlet-name>
<url-pattern>/filters/logout</url-patterns>
</servlet-mapping>
</web-app>
The details of the entries in a web.xml file will be presented later in the chapter. This
particular example indicates that the intranet web application contains four filters and
two servlets, all of which are mapped to corresponding URL patterns, and one listener.
Note that this deployment descriptor says nothing about the JSP pages used by
this application. One might infer that the application does not make use of JSP, but
as we saw in chapter 13, this is definitely not the case. Instead, because JSP servlets
are generated as needed and are automatically mapped to URLs based on their orig-
inal file names, there is no need to specify configuration information for them in the
web.xml file. As a result, the JSP container is able to gather all of the information it
typically requires about an application’s JSP pages by simply scanning the contents

of its WAR file.

14.1.2 Waging WAR

Like most configuration files, even though it uses a human-readable format, the
web.xml file is a bit awkward to work with. For this reason, most of the commercial
application servers that include graphical tools for installing web applications usu-
ally include user-friendly tools for creating and maintaining them as well. In addi-
tion to allowing developers to graphically select class files and web content (JSP
pages, HTML documents, image files, etc.) for inclusion in the application, such
tools typically provide forms for specifying URL mappings and other configuration
settings in order to construct the corresponding web.xml file automatically.

If your budget doesn’t support investing in feature-rich application servers,
however, you may find your platform of choice does not include any bundled “wiz-
ards” for constructing and deploying web applications. If this is the case, you will
likely find it necessary to package your web application by hand, including the man-
ual construction and editing of deployment descriptors. And even if you are using a
JSP container that does have all the bells and whistles, you may choose not to use

390 CHAPTER 14
Deploying JSP applications

them. Integrating a graphical web application deployment tool into your existing
source code control and build processes, for example, may prove not to be the right
approach for your development organization.For these and other reasons, then,
understanding the contents of a web.xml file and knowing how to construct WAR
files manually are useful skills to have. To that end, the next section of this chapter
focuses on the structure of WAR files and the entries which comprise an archive’s
web.xml deployment descriptor.

14.2 The art of WAR

Deploying a Java-based application, then,
has two phases. First, all of the files used by
an application are bundled, along with a
web.xml deployment descriptor, into a

JSP pages,
HTML documents,
image files

JSP pages,
. . . C t t
WAR file. The Pa'ckaglng of an application oot HTML docurmens,
is the responsibility of the development
team. The second phase is the installation | —D o
. . WEB-INF web.xm|
of the packaged application on the web

server.

Because installation is a server-specific
operation, our focus here will be on con-
structing the web archive. WAR files are
meant to be portable between JSP contain-
ers. As such, their contents and those of

a——
the deployment descriptor are well- 1 4@] AR files
defined by the servlet and JSP specifi-
cations. In the sections to follow we will —
provide an overview of the WAR file for- o tds 4@] TLD files

mat, and then describe the web.xml entries
required to specify an application’s servlets
and JSP pages.

Figure 14.1 Contents of a WAR file for web
application deployment

14.2.1 WAR materiel

As already described, a WAR (figure 14.1) file is essentially a JAR file that contains
extra information allowing its contents to be deployed in a servlet or JSP container.
This extra information is stored in the WAR file’s top-level WEB-INF directory,
which contains the archive’s web.xml deployment descriptor, as well as two special
subdirectories for storing Java classes.

The art of WAR 391

The web-based content for an application can appear at the top-level of a web
archive, or in arbitrary content directories and subdirectories. As indicated in
tigure 14.1, this content typically consists of JSP pages, HTML documents, and
image files, but any file type that may be delivered over the web—including sound
files, animations, portable documents, and Java applets—can be placed in a WAR
file. That file will then be accessible from the web server to which the WAR file is
deployed. Listing 14.1 is the source code for contents of an example WAR file.

Listing 14.1 Contents of an example WAR file, webdev.war

index.jsp

commontasks/error.jsp

filters/goodbye.jsp

filters/login.jsp

filters/index.jsp

filters/secure/admin.jsp

filters/secure/denied.jsp

filters/secure/development.jsp

filters/secure/header.jsp

filters/secure/logout.jsp

filters/secure/management.jsp

filters/secure/welcome. jsp

filters/secure/admin.jsp

images/logo.gif

images/icons/security.gif

images/icons/role.gif

images/edillinger.jsp

WEB-INF/web.xml
WEB-INF/classes/com/taglib/wdjsp/filters/AuthenticationFilter.class
WEB-INF/classes/com/taglib/wdjsp/filters/LoginServlet.class
WEB-INF/classes/com/taglib/wdjsp/filters/LoginSessionListener.class
WEB-INF/classes/com/taglib/wdjsp/filters/LogoutServlet.class
WEB-INF/classes/com/taglib/wdjsp/filters/RoleFilter.class
WEB-INF/classes/com/taglib/wdjsp/filters/SimpleUserBase.class
WEB-INF/classes/com/taglib/wdjsp/filters/SimpleUserDataManager.class
WEB-INF/classes/com/taglib/wdjsp/filters/UserBean.class
WEB-INF/classes/com/taglib/wdjsp/filters/UserDataManager.class
WEB-INF/classes/com/taglib/wdjsp/filters/UserSessionManager.class
WEB-INF/lib/mail.jar

WEB-INF/lib/activation.jar

WEB-INF/lib/mut.jar

WEB-INF/tlds/mut.tld

||

Content in a Java-based web application is accessed via a URL that begins with the
name of the application. Consider, for example, an application named webdev that
is packaged in a web archive named webdev.war with the contents in listing 14.1.

392

CHAPTER 14
Deploying JSP applications

An end user accessing this application’s index.jsp file would use a URL of the form
http: //server/webdev/index.jsp, in which the name of the application, webdev,
provides the top-level directory for all URLs that reference the application’s con-
tent. Directories and subdirectories are treated similarly. The URL for retrieving the
image named security.gif, for instance, would be http: //server /webdev/images/
icons/security.gif.

On the front

Note from listing 14.1 that the WAR file itself contains no references to a top-level
directory named webdev. This directory name is automatically recognized by the
JSP container once the application has been registered with the container. Applica-
tion names are arbitrary, and are assigned at the time of installation. The name of an
application is completely independent of the name of the corresponding WAR file. It
is common, but not mandatory for them to be the same. If the local server adminis-
trator wished to install the webdev.war file as an application named intranet, the JSP
container will be happy to translate URLs such as http://server/intranet/filters /
login.jsp into the corresponding content from the webdev.war archive.

This top-level URL directory, then, is completely under the control of the con-
tainer. The directory name is mapped to an application, and is removed from the
URL behind the scenes when translating it into a file name for retrieving content
from the WAR file. Given that the application name is not built into the application,
you may be wondering how the pages within an application can refer to one
another via URLs. Relative URLs function as expected, but if the first directory in an
absolute URL cannot be known until the application is installed, it would appear
that absolute URLs must be avoided within an application’s documents.

To address this deficiency, JSP containers are required to automatically account
for this top-level directory when processing elements that use absolute URLs. Spe-
cifically, when a JSP page that is part of an application calls the include directive, the
<jsp:includes action, or the <jsp: forwards action with an absolute URL, the con-
tainer is required to map that URL into the page’s application. In effect, the applica-
tion name is transparently added to the beginning of such absolute URLs so that
references within the application are properly maintained. For example, the login.jsp
file for the sample application in listing 14.1 might wish to forward control to the
welcome jsp file in the secure directory, using an absolute URL as follows:

<jsp:forward page="/filters/secure/welcome.jsp” />

If the application has been named webdev, then when the JSP container processes
this action it will automatically map the page reference to /webdev /filters/secure/

The art of WAR 393

welcome.jsp. If intranet was chosen as the application name, it would instead map
this absolute URL to /intranet/filters/secure /welcome.jsp.

References to URLs from standard HTML tags, however, are not automatically
mapped. A relative URL appearing in the Src attribute of an tag or the HREF
attribute of an <aA> tag would be resolved correctly, but when an absolute URL is
more convenient, an alternate approach is warranted. The most direct approach to
using absolute URLs is to mandate a specific name under which the application
must be installed on the server.

A more flexible approach is to take advantage of HTML’s <BASE> tag. When this
tag is specified in the <HEAD> section of an HTML document, all relative URLSs in
the document are resolved relative to the value specified for this tag’s HREF
attribute. In a JSP page, then, the following construct can be used to set this base
URL to that of the application, as in the following page fragment:
<HTML>
<HEAD>

<BASE HREF="<%= request.getScheme () %>://<%= request.getServerName () %>:<%=
request.getServerPort () %><%= request.getContextPath() %>/">

<HEAD>
<BODY>

</BODY>
</HTML>
The getcontextPath () method of the javax.servlet.http.HttpServlet-
Request class is used to retrieve the top-level directory of the URL associated with
the request, which will correspond to the name assigned to the application on the
server. Note that the result returned by this method will start with an initial forward
slash character, but will not end with one. The closing directory delimiter is there-
fore added explicitly by specitying it as static text in the <BASE> tag (i.e., immedi-
ately following the final JSP expression).

If the application has been assigned the name webdeyv, the result of calling the
getContextPath () method will be 7 /webdev”. When the JSP page is processed, the

resulting <BASE> tag sent back to the end user’s browser will therefore be some-
thing like the following:

<BASE HREF="http://www.example.com:80/webdev/">

In the example page, the two relative URLs will be resolved by the browser relative
to this base URL, resulting in an effective URL of /webdev /filters/index.jsp for the

394

CHAPTER 14
Deploying JSP applications

link and /webdev/images/logo.gif for the image. In this way, it becomes possible
to reference other resources within the application using URLs that behave very
similarly to absolute URLs, without having to know in advance the name (and
therefore the top-level URL directory) of the installed application.

The fog of WAR

The translation by the JSP container of URLs into WAR file contents applies to all
files and directories in the archive except those appearing within the WEB-INF
directory. More specifically, the contents of the directory and its subdirectories can-
not be accessed via URLs at all. Instead, these files are reserved for use by the JSP
container, and fall into four major categories.

NOTE The servletContext object associated with an application, accessible from its
JSP pages via the application implicit object, is able to programmatically access
the contents of the WAR file’s WEB-INF directory, using its getResource ()
and getResourceAsStream() methods. In this way, developers can use the
WEB-INF directory for storing additional application-specific data that can be
accessed via Java code, but is not directly exposed to end users via URLSs.

The first type of file found in the WEB-INF directory, the web.xml deployment
descriptor, has already been mentioned. This file provides configuration informa-
tion for the JSP container to use when running the application contained in the
archive, the details of which are provided later in this chapter.

The second type are compiled Java class files. As illustrated in figure 14.1, Java
class files appear in the classes subdirectory of the WEB-INF directory. Classes
which are part of the default Java package should be placed directly in the classes
directory, while those with explicitly named packages should be placed in subdirec-
tories whose names correspond to the various elements of the package’s name. For
example, the LoginServlet and UserBean classes were defined in the previous
chapter as being part of the com.taglib.wdjsp.£filters package. Their class files
thus appear in listing 14.1 within the com/taglib/wdjsp/filters subdirectory of
the classes directory.

The classes appearing in the WAR file in the WEB-INF /classes directory and its
subdirectories are automatically added to the class path used by the JSP container’s
JVM whenever it is accessing the application associated with the archive. As such, it is
intended to provide a convenient location for storing the Java classes used by the
application’s servlets and JSP pages. The classes implementing the servlets themselves
can appear here, as well as any auxiliary classes used by those servlets. JavaBeans,

The art of WAR 395

filters, listeners, and other Java classes referenced by the application’s JSP pages can
also be stored here.

The third type are JAR files, stored in the lib subdirectory of the WEB-INF direc-
tory. Like the individual class files found in the WEB-INF/classes directory, all of
the classes found in the JAR files located here are automatically added to the JVM’s
class path whenever the JSP container is accessing the corresponding application.
For the web archive presented in listing 14.1, classes stored in mail.jar would auto-
matically be available when responding to requests for the webdev application’s
servlets and JSP pages.

The fourth type of file often found in the WEB-INF directory are Tag Library
Descriptor (TLD) files for custom tag libraries. By convention, these are placed in a
subdirectory named tlds. The deployment of custom tag libraries and TLDs will be
discussed later in this chapter, but for the complete details see chapters 18-20.

In the absence of custom deployment tools, a common means for creating WAR
files is Java’s standard application for creating archive files, the jar command-line
tool. The jar command can be used to create archives and to extract their contents.
It can also be used to list the contents of an existing JAR file. When creating an
archive, jar takes a list of files to be archived, as well as a file name for the archive.
To create a WAR file, simply provide the jar command with a list of all of the files to
be placed in the archive—web content files as well as those appearing in the WEB-
INF directory—and specify a file name with a .war extension as the destination for
the new archive.

NOTE When creating an archive, the jar command automatically inserts a top-level
directory named META-INF, to which is added a file named MANIFEST.MF.
This manifest file contains a listing of the contents of the archive, and may
optionally be augmented with additional information about the archive’s
files. When the jar command is used to create a WAR file, the resulting web
archive will also contain a META-INF/MANIFEST.MF file. Like the contents
of the archive’s WEB-INF directory, the JSP container will not make a mani-
fest file accessible over the web via a URL.

For further details on the use of jar, including descriptions of the command line
options that control its behavior, consult the documentation that accompanies the
Java Development Kit (JDK), available from Sun Microsystems.

396

CHAPTER 14
Deploying JSP applications

14.2.2 Drafting deployment descriptors

We next set our sights on a single file within the archive, the web.xml deployment
descriptor. As discussed previously, this file contains entries describing the configu-
ration of the application’s Java-based assets. In the sections to follow, we will out-
line the format of this file and describe the XML directives used in the deployment
descriptor to manage an application’s servlets and, where appropriate, its JSP pages.

A prelude to WAR
As an XML document, the deployment descriptor must begin with the standard
XML header material. Typically, a tag declaring the XML version number and the
document’s character encoding appear first, followed by a specification of the DTD
for the document. As its name implies, it describes the valid tags for a given docu-
ment type, and may thus be used to validate the syntax of an XML document.

For a Web Application Descriptor file, the DTD is provided by Sun Microsys-
tems, at a published URL associated with the J2EE specification. A typical header for
a web.xml file targeting a JSP 1.1 container would therefore be as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

< !DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
"http://java.sun.com/j2ee/dtds/web-app_2.2">

For applications that take advantage of JSP 1.2 and/or Servlet 2.3 features, the fol-
lowing header is required:

<?xml version="1.0" encoding="ISO-8859-1" ?>

< !DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
"http://java.sun.com/j2ee/dtds/web-app_2.3.dtd”>

The root element for deployment descriptors in either case is the <web-app> tag. All
of the elements of a web.xml file, except for the header items just described, must
appear within the body content of a single <web-app> tag, as in the intranet exam-
ple presented earlier in this chapter.
Several subelements of the <web-app> tag are available for specifying properties
of the application itself, as illustrated in the following web.xml fragment:
<web-app>
<icon>
<large-icon>/icons/encom32x32.gif</large-icon>
<small-icon>/icons/encomléxl6.gif</small-icon>
</icon>
<display-name>Encom Intranet</display-name>
<description>

The art of WAR 397

Provides departmental information to authorized users.
</description>
<distributable/>

<welcome-file-list>
<welcome-filesdefault.html</welcome-file>
<welcome-file>index.jsp</welcome-file>
</welcome-file-list>

</web-app>
All of these subelements are optional, and should appear at most once within the
parent <web-app> element. The <descriptions tag is used to document the appli-
cation, while the <icon> tag and its subelements, <large-icon> and <small-
icons, are provided for use with graphical configuration tools, as is the <display-
name> tag.

The <welcome-file-1list> element is used to specify which file within an appli-
cation directory should be displayed to the end user when a URL is requested that
contains only a directory. Each such file name is specified via the <welcome-file>
tag, and order is significant. When a directory URL is requested, the JSP container
will search the corresponding directory in the application for the files in this list, in
the order in which they appear in the deployment descriptor. The first one found
generates the response to that request. If none is found, the response will contain
an appropriate error message.

The remaining element in this example is the <distributables> tag. Unlike the
others, this tag has no body content, but simply signals whether or not the applica-
tion is distributable by its presence or absence. If this tag is included in the deploy-
ment descriptor, it serves as an indicator that the application has been written in such
a way as to support distributing the application across multiple JSP containers. If the
tag is not present, it must be assumed that distributed processing is not supported.

DEFINITION A distributed web application runs in multiple JSP containers simultaneously,
typically on multiple web servers, while sharing some common resources
and/or functionality. As discussed in chapter 4, the capacity for a web-based
application to be distributed is an important consideration for scalability.

Targeting serviets
A web application’s servlets are specified in the deployment descriptor via the
<servlet> tag and its subelements, as in the following example:

398

CHAPTER 14
Deploying JSP applications

<web-app>
<servlets>
<icon>
<small-icon>/images/icons/security.gif</small-icon>
</icon>
<servlet-name>logout</servlet-name>
<display-name>Logout Handler</display-name>
<descriptions>
Logs a user out of the application.
</description>
<servlet-class>
com.taglib.wdjsp.filters.LogoutServlet
</servlet-class>

<init-param>
<param-name>goodbyePage</param-name>
<param-value>/filters/goodbye.jsp</param-value>
<descriptions>

The page to which users are sent after a successful logout.

</description>

</init-param>

<load-on-startup>3</load-on-startup>

</servlets>

</web-app>
Within the bOdy of the <servilets> tag, the <descriptions, <display-names>, and
<icons tags play an analogous role to those they play when appearing at the top
level in the body of the <web-app> tag. The functionality of the other tags is specific
to servlets. Only the <servlet-name> and <servlet-class> tags are mandatory.

The <servlet-name> tag, as you might expect, provides a name for the servlet.
The value provided in the body of this tag can be used to request the servlet via a
URL composed of the application name, a subdirectory named servlet, and the
specified servlet name. For example, if the servlet specified here were part of an
application named webdev, the URL for accessing this servlet would be http://
server/webdev/servlet/login. Note, therefore, that servlet names must be unique.
No two servlet specifications within a single application deployment descriptor can
have the same values for their <servlet-name> elements

The <servlet-class> tag specifies the Java class that implements the servlet.
The JSP container instantiates this class in order to respond to requests handled by
the servlet.

After instantiating the servlet class, but before servicing any requests, the con-
tainer will call the class’s init () method. Initialization parameters, which are

The art of WAR 399

passed to the servlet’s init () method via an instance of javax.servlet.Servlet-
Config, are specified via the <init-param> tag. This tag has three subelements,
<param-name>, <param-value>, and <descriptions>, the last of which is optional.
There should be one <init-param> tag for each initialization parameter to be
passed to the init () method.

As their names suggest, the body of the <param-name> tag corresponds to the
parameter name, while the body of the <param-values tag supplies its value. In the
example above, an initialization parameter named goodbyePage has been assigned a
value of /filters/goodbyePage. Note that parameter names and values are both
passed to the servlet as String objects. If the parameter value is intended to repre-
sent some other type of data (e.g., a numeric value), it is up to the servlet’s init ()
method to parse the value appropriately. As has been the case elsewhere, the
<descriptions tag is provided for documentation purposes.

The remaining <servlet> subelement is the <load-on-startup> tag. The
presence of this tag indicates to the JSP container that this servlet should be loaded
into the container’s JVM (and initialized via its init () method) during the JSP con-
tainer’s startup process. If this tag is not present, the container is free to wait until a
request is received for the servlet before loading it.

The <load-on-startups> tag can be specified either as an empty tag (i.e.,
<load-on-startup/>), or with body content specifying an integer value. This tag’s
body content is used to indicate when the servlet should be loaded, relative to oth-
ers which are also designated as being loaded on startup. If the tag is empty, the JSP
container is free to load the servlet whenever it wishes during startup. If the body
content specifies an integer value, that value is used to order the loading of all serv-
lets that specify integer values for this tag. Lower values are loaded first, followed by
servlets specifying higher values. If more than one servlet specifies the same value
for <load-on-startup>, the ordering of the servlets within that group is arbitrary.
The effect is that all servlets which specify a value of 1 for this tag will be loaded first
(in an unspecified order), followed by all servlets which specified a value of 2, then
all servlets specifying a value of 3, and so on.

Typically, the servlets within one application are not dependent upon those in
another. As long as you specify unique values for the <load-on-startup> tags
within a single application, you can be assured that the servlets within that applica-
tion will be loaded in the specified order. Servlets from other applications may also
be loaded within that sequence, but you can at least be certain that any order
dependencies within an individual application will be maintained.

400

CHAPTER 14
Deploying JSP applications

Mapping the terrain

It is often desirable to specify an alternate URL for a servlet. It is good program-
ming practice to hide the implementation details of a given set of functionality, and
URLs that contain the word “servlet” are pretty much a dead giveaway that the
underlying implementation of an application is based on servlets. This is not to sug-
gest that you shouldn’t be proud of selecting servlets as your implementation
technology—indeed, the authors would wholeheartedly endorse that decision—but
studies have shown that memorable URLs improve the usability of a web site and,
frankly, end users don’t care about what makes it work.

Given that the default URL for an application’s servlets, as described in the pre-
vious section, includes a subdirectory component named servlet, those wishing to
follow this advice need a mechanism for specifying alternate URLs. This is accom-
plished in the web.xml file via use of the <servlet-mapping> tag, as in the follow-
ing example:

<web-app>

<servlet-mapping>
<servlet-name>logout</servlet-name>
<url-pattern>/filters/logout</url-patterns>
</servlet-mapping>

</web-app>

Here, the <servlet-names> tag identifies the servlet for which the alternate URL is
being specified, and should correspond to a servlet defined elsewhere in the deploy-
ment descriptor via the <servlets> tag. The body of the <url-patterns tag speci-
fies a URL pattern, such that requests whose URLs match the specified pattern will
be handled by the indicated servlet. Both subelements are required.

Like all URLs associated with an application, any URL specified in this manner
must be preceded by the name of the application when it is requested by an end
user. For the example shown here then, the alternate URL for the logout servlet,
again assuming webdev is the name assigned to the application, will be http://
server/webdev /filters /logout.

Although the URL pattern in the example shown here is an alphabetic string
specifying a directory and a file name, more complex patterns are also supported.
The number of directory levels is completely arbitrary. There can be none, as in
<url-patterns>/control</url-patterns, or there can be many. If even the file
name portion is left out, as in <url-pattern>/</url-patterns, then the servlet
becomes the default resource for the web application. If a request is received that
specifies no directory or file name components beyond that of the application, this

The art of WAR 401

default servlet will handle the request. (In fact, it will even override the functionality
specified via the <welcome-file-1list> element, if present.)

In addition, an asterisk can take the place of the final element in such map-
pings—for example, /filters/access/group7/*— indicating that all URLs that
start with the specified directory pattern (plus the application name, of course),
should be mapped to the corresponding servlet. As a special case, a URL pattern of
/* indicates that all requests associated with the application should be mapped to
the associated servlet. In either case, the additional directory and file name compo-
nents of the actual URL used to access such a servlet will be available via the get-
PathInfo () method of javax.servlet.http.HttpServletRequest.

This tag can also be used to map requests for specific file types—based on their
file name extensions—to a servlet. In this case the body of the <url-patterns tag
should take the form of an asterisk followed by a period and the extension to be
mapped. For example, a URL pattern of *.user would map all requests within an
application that have an extension of .user to the corresponding servlet.

NOTE In fact, this is how JSP itself works: all requests for files ending with the .jsp
extension are mapped to a special servlet—historically referred to as the page
compiler servlet—that maps requests for JSP pages into calls to the compiled
servlets implementing those pages. This servlet will also take care of compil-
ing the JSP page into a servlet if this is the first time it has been requested, or
if its contents have changed since the last time it was compiled.

While a given servlet may be mapped to multiple URL patterns, the reverse is not
true. A given URL pattern can be mapped to only one servlet, otherwise the servlet
container would not be able to determine which servlet should be applied to
requests that match the overloaded pattern.

There is still the potential for ambiguity, however, since even though two URL
patterns are not identical, it is possible to imagine requests that match both pat-
terns. Imagine, for example, three servlets mapped to three different URL patterns,
/*, /filters/*, and *.jsp. A request for the URL http://server/filters/index.jsp
would match all three of these patterns, so which servlet should the container actu-
ally call upon to handle the request?

To resolve situations such as this, a set of precedence rules have been specified.
First, if a URL pattern is an exact match for the path in the request, the servlet asso-
ciated with that pattern is to be called. If there is no exact match, then the direc-
tory-style patterns—those specifying one or more directory names followed by an
asterisk—are next compared against the request path. Following these, servlets

402

CHAPTER 14
Deploying JSP applications

corresponding to URL patterns based on file name extensions (i.c., *.jsp and the
like) are matched. If the path in the request does not match any of the URL patterns
tollowing these forms, then the servlet mapped to the default path, /*, is called. If
there is no such default servlet, then an HTTP status code of 404, indicating the
requested resource was not found, is returned.

WAR and JSPs

Since this is a JSP book, why has so much space been devoted here to the configura-
tion of servlets. The first reason, as indicated in chapter 10, is that servlets and JSPs
are natural companions in the construction of complex web applications. If you will
be deploying an application that uses JSP pages, there’s a strong chance the applica-
tion also includes servlets.

In addition, recall that JSP pages are implemented as servlets. As a result, the
deployment descriptor elements provided for configuring an application’s servlets
are also, in most cases, applicable to the configuration of its JSP pages. As already
mentioned in this chapter, it is usually not necessary to mention an application’s JSP
pages in the web.xml file. When it is necessary, however, the servlet-related tags
again come into play.

In the discussion of the <servlets tag earlier in this chapter, it was pointed out
that the only required subelements are the <servlet-names and <servlet-class>
tags. This is not completely true. When referencing JSP pages, the <servlet-
class> tag is replaced by, appropriately enough, the <jsp-file> tag. In the inter-
est of full disclosure then, the only required subelement of the <servlets tag is the
<servlet-name> tag. In addition, either the <servlet-classs> tag or the <jsp-
files> tag must be present.

In this way, the initialization parameters and startup behavior of the servlet cor-
responding to a JSP file can be configured using the same techniques described ear-
lier for configuring servlets. The body of the <jsp-file> tag is used to specity the
tull path to the JSP page within the application, as in the following example:

<web-app>
<servlets>
<servlet-name>developmentHome</servlet-name>
<jsp-files>/filters/secure/development.jsp</jsp-file>
<description>Home page of the development group.</descriptions>
<init-params>
<param-name>conferenceRoom</param-name>
<param-value>Klaatu</param-value>

<description>
Current location for the weekly development meeting.

The art of WAR 403

</description>
</init-param>
<load-on-startup>4</load-on-startup>
</servlets>

</web-app>

As with other application-specific paths, the body of the <jsp-file> tag does not
include the top-level directory named after the application. Note also that when the
<load-on-startup> tag is specified in the <servlets tag for a JSP page, it is an
indication to the JSP container that the page should be compiled as well as loaded
during container startup.

Instead of precompiling the JSP servlet during container startup, however, it
might be desirable under certain circumstances to deploy the fully compiled servlet
rather than the original JSP page. This can also be accomplished via the web.xml
deployment descriptor. After writing the JSP file and deploying it in a JSP container,
a copy can be made of the compiled JSP servlet constructed by the container. Sup-
pose, for example, that the /filters/secure/development.jsp page from our
example intranet application has been compiled into a servlet class named
_jsp_filters secure development JspImpl. A copy of the generated class file,
_jsp_filters_secure_development_JspImpl.class, can be added to the application’s
WAR file, in place of the original /filters/secure/development.jsp file. Appropriate
<servlet> and <servlet-mapping> tags must then be added to the deployment
descriptor to mimic the original JSP behavior, as in the following web.xml fragment:

<web-app>
<servlet>
<servlet-name>developmentHome</servlet-name>
<servlet-class> jsp filters secure development JspImpl</servlet-class>
</servlet>
<servlet-mappings>
<servlet-name>developmentHome</servlet-name>

<servlet-mapping>/filters/secure/development.jsp</servliet-mapping>
</servlet-mapping>

</wé£:app>

As a result of this mapping, the URL associated with the original JSP page is explic-
itly mapped to the corresponding servlet, rather than relying on the aforemen-
tioned page compiler servlet to make this association automatically. In fact, when
responding to requests for a JSP page mapped in this fashion, the page compiler

servlet is bypassed altogether, and requests are routed directly to the precompiled
page servlet.

404

CHAPTER 14
Deploying JSP applications

WARNING Recall from chapter 5 that the requirement imposed by the JSP specification
on servlets generated from JSP pages is that they implement the
javax.servlet.jsp.JspPage interface. The concrete superclass for gener-
ated JSP pages is therefore implementation-specific. Keep in mind, then, that
if you use the technique described here for deploying JSP pages as pre-
compiled servlets, the resulting WAR file will not be portable. By virtue of its
reliance on an implementation-specific servlet class, the WAR file will be
compatible only with the JSP container originally used to generate the
precompiled servlet.

In addition to the <load-on-startups element, JSP provides a second mechanism
for triggering the precompilation of deployed pages, by means of a special request
parameter. When a request that includes a jsp precompile is sent to a JSP page,
this will be interpreted by the JSP container as a signal to compile that page without
executing it. The request parameter should have a value of true, or no value, as in
the following examples:
http://server/filters/secure/development.jsp?jsp precompile
http://server/filters/secure/admin.jsp?jsp_precompile=true

A value of false is also acceptable, but this will result in the normal behavior when
a request is sent to a JSP page: it is compiled if necessary, and then the request is
delivered to the corresponding servlet for processing. Other values for this request
parameter are invalid.

A successful precompilation request will cause the JSP container to compile the
page into a servlet and send back a container-specific response, which is typically
cither a simple “compilation successful” message or a list of compilation errors. This
simple precompilation protocol makes it easy to test the syntax of your JSP pages
without an elaborate setup, and also has the advantage of being vendor-neutral. It is
fairly easy, for example, to put together a small program or shell script which visits
each page of your application immediately after deployment to trigger precompila-
tion. Keep in mind that this is just a compilation test, however. Like any Java code,
just because it compiles, that doesn’t mean it works. This test won’t detect potential
run-time errors.

The art of WAR 405

NOTE Some JSP containers also support other, nonstandard mechanisms for pre-
compiling pages. The Tomcat reference implementation, for example, in-
cludes a command-line utility named jspc that can be run to precompile JSP
pages without requiring them to first be deployed to a server.

Mobilizing custom tag libraries

In previous chapters, custom tag libraries have been described as a powerful feature
for adding functionality to JSP pages. As indicated in chapter 5, tag libraries are
loaded into a JSP page by means of the taglib directive, which locates a tag library
based on a URL. Until now, however, we haven’t been in a position to discuss
where this URL comes from.

A custom tag library has two basic components: a set of Java classes implement-
ing the custom actions provided by the tag library and a TLD file which provides a
mapping between the library’s tags and those implementation classes.

A tag library’s classes are typically bundled into a JAR file, for storage in an appli-
cation’s WEB-INF/lib directory. Alternatively, the individual class files may be
placed in the appropriate package-specific subdirectories of the application’s WEB-
INF/classes directory. As already mentioned, TLD files are typically stored in the
WEB-INF/tlds directory.

The taglib directive loads a custom tag library by referencing the library’s TLD
file in its uri attribute. Because the contents of the WEB-INF directory are not nor-
mally accessible via URLs, it is usually necessary to provide a mapping for the TLD
file in the application’s deployment descriptor. This is accomplished via the
<taglibs tag, as in the following web.xml fragment:

<web-app>
<taglib>
<taglib-uris/mutlib</taglib-uris>

<taglib-location>/WEB-INF/tlds/mut.tld</taglib-location>
</taglib>

</web-app>

As illustrated in this example, the <taglibs> tag has two subelements, <taglib-
uri> and <taglib-locations, both of which are required. The <taglib-uri> tag
is used to specify the URI by which taglib directives in the application’s JSP pages
can access the TLD. The <taglib-locations> tag specifies the actual location of that

TLD within the application’s file hierarchy. Multiple <taglib> elements may appear
in a single web.xml file, one for each custom tag library used by the application.

406

CHAPTER 14
Deploying JSP applications

NOTE When referencing the URI of a TLD in a taglib directive, the top-level direc-
tory corresponding to the application name should not be specified. To ac-
cess the TLD in the example presented here, then, the appropriate directive
would be of the form <%@ taglib uri="/mutlib" prefix="mut" %>.

Note that in JSP 1.2, the tag library itself can specify the URI of its TLD, obviating
the need for deployment descriptor <taglibs> elements under some circumstances.
For further details, see chapter 20.

Infiltrating the supply lines

For containers supporting Servlet 2.3 and JSP 1.2, filters are specified using the
<filters> and <filter-mapping> tags. The <filter> tag supports six subele-
ments, as in this example:

<filters>

<icon>
<small-icon>/images/icons/replacel6xl6.gif</small-icon>
<small-icon>/images/icons/replace32x32.gif</small-icon>

</icon>

<filter-name>stringReplace</filter-name>

<display-name>String Replacement Filter</display-names>

<description>
Replaces all occurrences of the "from" string
with the contents of the "to&guot; string.

</description>

<filter-class>
com.taglib.wdjsp.filters.StringReplaceFilter

</filter-class>

<init-param>
<param-name>from</param-name>
<param-value>Encom</param-value>

</init-param>

<init-param>
<param-name>to</param-names>
<param-value>FlynnCom</param-value>

</init-param>

</filter>

By now, the <icons, <display-names, and <descriptions> subelements should be
quite familiar. The <description> tag is used to specify a documentation string for
the filter, while the other two are used to support graphical tools.

The <init-params> subelement is also familiar, and plays the same role for filters
as it does for servlets: specifying the names and values of its initialization parame-
ters. As you will recall from chapter 12, all filters are required to implement an

The art of WAR 407

init () method which takes an instance of the javax.servlet.FilterConfig class
as its sole argument. This FilterConfig instance in turn provides methods that
enable the filter to access the initialization parameters specified in the deployment
descriptor via the <init-param> tag and its <param-name> and <param-value>
subelements.

The final two elements, however, are unique to filters, and are the only two
<filters subelements which are not optional. The first is the <filter-name> tag,
which is used to provide a unique name for the filter within the application. The
second is the <filter-class> tag, which specifies the Java class to be instantiated
when constructing the filter. These elements are thus analogous to the <servlet>
tag’s <servlet-name> and <servlet-class> clements.

The similarities between filter specification and servlet specification don’t end
there. Just as the URLs to which servlets are mapped are specified via the <servlet-
mapping> tag, the <filter-mapping> tag is used to specify the resources to which
filters are to be applied. The <filter-mapping> element takes two forms. First, a
filter can be mapped to a specific servlet, by specitying them both by name:
<filter-mapping>

<filter-name>stringReplace</filter-name>

<servlet-name>login</url-patterns>
</filter-mapping>
The filter to be mapped is indicated via the <filter-name> tag, the body of which
must match a filter name that is also specified via the <filter-name> element of a
corresponding <filters tag. The servlet to which the filter is to be applied is spec-
ified via the <servlet-name> tag, which must similarly match a servlet name speci-
fied via the <servlet-name> element of a corresponding <servlets tag.

Alternatively, a filter can be mapped to a set of resources matching a given URL
pattern, as in this example:
<filter-mapping>

<filter-name>stringReplace</filter-name>

<url-pattern>/filters/*</url-patterns>

</filter-mapping>

Here, the <filter-name> tag once again identifies which filter is being mapped,
and must match the name of a filter specified elsewhere in the deployment descrip-
tor via the <filters element. The <url-pattern> element indicates to which
requests the filter should be applied. The named filter will be applied to all requests
whose path matches the specified pattern. All of the different forms of URL patterns
supported by the <url-patterns subelement of the <servlet-mapping> tag may
also be used within the <url-patterns> subelement of the <filter-mapping> tag.

408

CHAPTER 14
Deploying JSP applications

As with servlets, a given filter may be mapped to multiple URL patterns or serv-
let names. Unlike servlets, however, you are also permitted to map more than one
filter to the same URL pattern or servlet name. This is because, as described in
chapter 12, all of the filters applicable to a given request will be chained together,
each handing off the request to the next filter in the chain for further processing,
receiving the resulting response as it is passed back up the chain.

For filters, then, there is no need for rules to determine which filter to apply
when a request path matches multiple servlet names and /or URL patterns: all of the
matching filters are applied. Instead, the issue is in what order those matching filters
should be applied.

Consider, for example, the three example filters presented in the previous chap-
ter. It does not make sense to check the user’s role until after they have logged in
and you know who they are. Requests should therefore be validated by the authen-
ticationFilter before being passed on to the rRoleFilter. For efficiency rea-
sons, it would also be preferable to avoid the overhead of instantiating the
java.io.ByteArrayOutputStream object associated with the stringReplace-
Filter until you’re certain you’re going to be using it. Since the login and role val-
idation filters can cause a request to be redirected, it would be preferable to place
the string replacement filter at the end of the chain. That way, if the original request
is redirected by either of the other two filters, the doFilterMethod () of StringRe-
placeFilter will never be called, and the overhead of wrapping its response and
creating the ByteArrayoutputStream will never be incurred.

The ability to control the order in which filters are applied to requests is thus
very important. To that end, Servlet 2.3 containers are required to follow two basic
rules for determining the order in which filters are to be applied, both of which are
based on the order in which <filter-mapping> elements appear within an applica-
tion’s deployment descriptor. For a given request, first all of the matching filters
which have been mapped via URL patterns are applied. These filters must be applied
in the order in which the corresponding <filter-mapping> elements occur within
the web.xml file. Next all of the matching filters which have been mapped via
explicit servlet names are applied, again in the order in which their <filter-
mapping> elements appear.

For this reason, it is generally a good rule of thumb to keep the <filter-
mapping> elements separated within the deployment descriptors. First specify all of
the <filter-mapping> tags which include <url-patterns subelements, and then
specify all of the <filter-mappings> tags which include <servlet-names subele-
ments. By following this practice, the ordering that will be imposed on the applica-
tion’s filters by the container will exactly match the ordering within the web.xml

The art of WAR 409

file. A quick visual examination of that file will then suffice to remind you how the
container will be handling any given request: simply examine each of the <filter-
mapping> elements in order, and each filter which is mapped to the resource speci-
fied in that request will become part of the FiltercChain created for handling that
request, in exactly the same order as they are encountered in the file.
The proper sequence of <filter-mapping> elements for the filters introduced
in the previous chapter, then, is as follows:
<filter-mapping>
<filter-namesauthentication</filter-name>
<url-pattern>/filters/secure/*</url-patterns
</filter-mapping>
<filter-mapping>
<filter-name>devRole</filter-name>
<url-pattern>/filters/secure/development.jsp</url-patterns>
</filter-mapping>
<filter-mapping>
<filter-name>mgrRole</filter-name>
<url-pattern>/filters/secure/management.jsp</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-names>adminRole</filter-name>
<url-pattern>/filters/secure/admin. jsp</url-patterns
</filter-mapping>
<filter-mapping>
<filter-name>stringReplace</filter-name>
<url-pattern>/filters/*</url-patterns
</filter-mapping>
where the filter names are as specified in the example <filters> tags presented previ-
ously in this chapter. This sequence ensures that the login authentication filter is
applied first, and the string replacement filter is applied last, with the role authentica-
tion filters running in between. Note that the login authentication and string replace-
ment filters use directory-style URL patterns, while the role authentication filters are

only applied to specific URLs (in this case, three different individual JSP pages).

Developing listening posts

Like filters, listeners are a new feature introduced by the Servlet 2.3 specification,
and are therefore available in JSP 1.2. Listeners are added to a web application via the
intuitively named <listeners element, which has a single, required subelement. For
the LoginSessionListener introduced in chapter 13, the corresponding <1lis-
teners> element for incorporating that listener into a web application is as follows:

<listener>
<listener-class>

410

CHAPTER 14
Deploying JSP applications

com.taglib.wdjsp.filters.LoginSessionListener
</listener-class>
</listener>

For each such <listeners> element appearing in the deployment descriptor, the
container will create one instance of the Java class specified in the body of'its <1is-
tener-class> subelement. The instance will then be registered with the container
according to which of the five life-cycle event handler interfaces it implements, and
will automatically begin receiving the events specified by those interfaces as they
occur. The class specified via the <listener-class> tag must implement at least
one of these five interfaces:

» javax.servlet.ServletContextListener

» javax.servlet.ServletContextAttributelListener

» Jjavax.servlet.http.HttpSessionListener

» Jjavax.servlet.http.HttpSessionAttributeListener

» Jjavax.servlet.http.HttpSessionActivationListener

The LoginSessionListener, defined in chapter 13, implements both Httpses-
sionListener and HttpSessionAttributeListener.

Special forces

In addition to standard web file types, such as HTML and JSP documents and GIF
and JPEG images, it is often desirable to provide access to other types of informa-
tion via a web server. For this reason, whenever the server sends a document to a
web browser, it includes a specification of the type of document it is sending,
referred to as the document’s MIME type. MIME was originally developed for
identifying documents sent as electronic mail attachments. It is now used for many
applications, including the identification of document types on the Web.

Most web servers are configured to associate MIME types with specific file name
extensions. For instance, file names ending with .html are typically associated with
the text/html MIME type, while those whose extension is .doc might be assigned
the application/msword MIME type, identifying them as Word documents. By
examining the MIME type returned by the server for a given request, the browser
can determine how to handle the data contained in the response. If the MIME type
of the response is text/html, the browser will render that data as an HTML docu-
ment. If the MIME type is application/msword, the browser might instead attempt
to open Word in order to view the document contents.

The art of WAR 411

TIP The official registry of Internet MIME types is managed by the IANA, and is
available from its website at http: //www.iana.org.

For web applications running in a JSP container, the web server will forward all URLs
associated with the application (i.e., all URLs whose top-level directory corresponds
to the name of the application) to the application itself for processing. The applica-
tion is therefore responsible for assigning a MIME type to the generated response.
Most JSP containers will automatically recognize the standard extensions for HTML,
GIF, and JPEG files, and return the correct MIME type. The default MIME type for
responses generated by servlets and JSP files is text/html, but this can be overridden.
Ina servlet, the setContentType () method of javax.servlet.ServletResponse
may be used to set the MIME type of the response. The contentType attribute of the
page directive provides the same functionality in a JSP page.

If you are deploying a web application that includes other document types, you
must configure the application to recognize the extensions used by those docu-
ments and assign the appropriate MIME type. The <mime-mapping> tag is provided
for this purpose, as demonstrated in this web.xml fragment:

<web-app>

<mime-mapping>
<extension>pdf</extension>
<mime-type>application/pdf</mime-type>
</mime-mapping>

</web-app>

The <mime-mapping> tag has two subelements, <extensions and <mime-types.
The <extension> element is used to specity the file name extension to be mapped
to a particular MIME type, while the <mime-type> element identifies the MIME
type to which it should be mapped. In our example, the pdf extension is mapped to
the application/pdf MIME type, indicating that file names ending with .pdf are to
be identified as being in Adobe’s Portable Document Format.

A web.xml file can contain an arbitrary number of <mime-mapping> elements.
While each individual extension should be mapped to only a single MIME type, the
reverse is not necessarily the case: multiple extensions can be mapped to the same
MIME type. For example, web servers commonly map both the .jpg and .jpeg file
extensions to the same image/jpeg MIME type.

412

CHAPTER 14
Deploying JSP applications

Controlling the theater of operations

In addition to its capabilities for configuring servlets and JSP pages, the deployment
descriptor provides applications with the ability to control certain aspects of the JSP
container in which it is running. For example, security restrictions may be specified
for controlling access to an application’s resources. If the JSP container also happens
to be an EJB container, the web.xml file can be used to specity means for referenc-
ing EJBs.

While we will not cover topics such as these in-depth, there are three more
deployment descriptor tags we will discuss. First, we will see how the <session-
configs> tag may be used to control the behavior of sessions created by an applica-
tion. Second is the use of the <context-params tag to specify initialization
parameters for the application as a whole. Finally, it is the <error-page> tag, which
can be used to indicate specific URLs to which control should be transferred when
various types of errors occur.

The <session-configs> tag is used to specity a default time-out value for ses-
sions created by the application’s servlets and JSP pages, via its single required
subelement, the <session-timeout> tag. The body of <session-timeout> should
be an integral value indicating how many minutes of inactivity are required before a
session is considered to have expired, as in the following example:

<web-app>

<session-configs>
<session-timeout>30</session-timeouts>
</session-configs>

</web-app>

In this case, the application’s sessions are set to expire, by default, after half an hour
of inactivity. This default value can be explicitly overridden for individual sessions by
means of the setMaxInactiveInterval () method of the javax.serv-
let.http.HttpSession interface. At most one <session-configs> element may
appear in a web.xml application descriptor. Note that a value of zero or less in the
body of the <session-timeouts tag indicates to the JSP container that, by default,
sessions should never time-out. In such a case, the setMaxInactiveInterval ()
method should be used to set the expiration period programmatically, or the appli-
cation should itself take care of keeping track of and invalidating sessions. Other-
wise, the container will keep accumulating sessions that never expire until it runs
out of memory.

The art of WAR 413

NOTE As the language here suggests, sessions are application-specific. A session ob-
ject created by one application running in a JSP container cannot be accessed
from another application running in that same container. As a result, objects
stored in the session as attributes by one application cannot be retrieved from
the session by code running in another. The <session-timeouts> tag, there-
fore, only controls the expiration of sessions associated with the application
defined in the web.xml file in which that tag appears.

As described earlier, the <init-params> tag specifies values for a servlet’s or filter’s
initialization parameters. In a similar manner, the <context-params> tag specifies
initialization parameter values for an entire application or, more specifically, the
ServletContext object associated with an application. The <context-param> tag
supports the same three subelements as the <init-params> tag, serving analogous
roles, as in this web.xml fragment:

<web-app>

<context-param>
<param-name>dbUsername</param-name>
<param-value>sark</param-value>
<description>Username for the employee database.</description>
</context-param>
<context-param>
<param-name>dbPassword</param-name>
<param-value>gorgon</param-value>
<description>Password for the employee database.</description>
</context-param>

</web-app>

Here, two application initialization parameters, dbUsername and dbPassword, are
specified. Their values are automatically set when the container first loads the appli-
cation, and can be retrieved from the ServletContext object associated with the
application by means of its getInitParameter () method. Within the JSP pages of
the application, this ServletContext object is available via the application
implicit object. Because this object is accessible from all of an application’s servlets
and JSP pages, it provides a convenient mechanism for specifying configuration data
that is applicable across multiple resources within the same application.

The <error-page> eclement is used to configure the behavior of the container
when exceptional circumstances occur, and takes two different forms. The first is
used to specify the behavior of the container when it detects an HTTP status code
indicating an error, as in this example:

414

CHAPTER 14
Deploying JSP applications

<error-pages
<error-