

Preface
An “early technology adopter” (also known as a techno-geek) like myself is
usually ready to evaluate an exciting new API the day it is released (if not
sooner). In late 1994, while attending a software developers’ conference in
California, I encountered a past acquaintance who, at the time, was employed
by Sun Microsystems. As I am apt to do, I began complaining to him about
the generally inadequate state of the business, and, in particular, the coding
effort and portability weaknesses in languages such as C and C++. After listen-
ing to my droning for a while, my friend told me about a particularly interest-
ing programming language coming from Sun Microsystems in just a couple of
months. A new language from Sun? Aren’t they a UNIX workstation com-
pany? What does a hardware company know about building computer lan-
guages? I was skeptical about trying to use any language produced by Sun
Microsystems.

 The language my friend was referring to was Java 1.0, which, as he pre-
dicted, was shipped at the beginning of 1995. In late January of 1995, I con-
nected to Sun’s World Wide Web site, pulled down the first version of the Java
Development Kit (JDK), and immediately began tinkering. Although I didn’t
yet understand the overall vision of Java, I was impressed with the platform
independence, and with the speed at which I could build relatively complex
prototypes. In these early stages, I viewed Java as a replacement for
Microsoft’s Visual Basic as a prototyping tool; however, I was soon to appreci-
ate the capabilities of this new language. Java 1.0 was still far from that uto-
pian software world that I was searching for, but it demonstrated some real
promise as an object-oriented language, and Sun’s commitment to future

xx PREFACE
enhancements convinced me that Java was the language for me. In spite of the
many skeptics around me, I was hooked.

 I continued to use Java 1.0, noting its weaknesses and doing my best to work
around them. I eventually discovered some serious limitations in Java, but, when I
was almost ready to give up on the language, Sun released Java 1.1 featuring a
totally new event model and offering significant new features like internationaliza-
tion and keyboard support. As an early technology adopter, I downloaded the 1.1
release, and my confidence in Java was renewed. Applications that crawled in the
Java 1.0 Virtual Machine (VM) raced, once they were adapted to the new event
model. However, like many other early adopters, I became exceedingly annoyed
with the lack of power of Java’s Abstract Windowing Toolkit (AWT). Still, I per-
sisted because, in my mind, Java’s potential was so great.

 My interest in Java continued, and, in April 1997, I attended my first JavaOne
conference, quickly getting lost among the thousands of other attendees. The con-
ference spanned all levels of developer expertise, and much of what I saw was famil-
iar to me. However, I heard many people (mostly Sun and JavaSoft employees)
talking about something code-named Swing. The (as yet) unreleased Swing was
Sun’s attempt to improve Java’s AWT and standardize the user interface compo-
nents for future versions of Java. Discarding my original plans for the conference, I
attended every session concerning Swing so that I could learn more about Sun’s
new Swing class library. Most of these sessions were primarily promotional, but a
few of the Swing demos caught my eye.

 By June 1997, Sun finally made a public alpha release of Swing, which coincided
with the start of a software project for which I wanted to employ Java. After consid-
ering several user interface (UI) class libraries from third-party vendors and com-
pletely disregarding Sun’s warnings that the API would change, I decided to take a
big risk and use Swing for my project. Through several subsequent alpha and beta
releases of Swing, my project paralleled its progress. Each time Sun offered a new
release, I had to spend a day fixing my code broken by the changes they made. It
was often frustrating, but I was steady in my resolve to integrate Swing into my
application.

 My persistence paid off. My application shipped about the same time that Sun
published the final release of Swing, and my work received a very positive response
from my peers. While still basking in my success, I began to realize that I had
invested a significant number of hours learning to make effective use of the Swing
classes. So, as an early technology adopter who had successfully conquered the
learning curve, I decided to share my knowledge with others, now that the Swing

PREFACE xxi
technology was in the mainstream. The results of my efforts are presented in this
book, and it is my sincerest hope that it will help smooth out some of the bumps
that developers may hit when starting to use Swing.

 In late February 1998, Sun shipped the finished Swing code; however, Swing is
a significant part of a larger group of technologies named Java Foundation Classes
(JFC). For developers using Java 1.1, JFC is available for downloading as a separate
package from JavaSoft’s web site. Java 1.2 users will discover that JFC is integrated
into the Java run time, so no additional installations will be required.

Intended audience
This book is intended to help Java developers who want to build user inter-
faces with Java, regardless of their level of expertise. However, this book is not
a Java tutorial, so, if you are a novice, you will certainly require some addi-
tional references to assist with the basic language syntax. In the appendices of
this book, you will find several good Java language resources. If you are an
expert user, this book will serve as a resource which you can keep close at
hand, referring to it when you hit a real snag.

 Regardless of your level of expertise, I will assume that you have some
experience building simple applications and/or applets with version 1.1 (or
later) of Java. One of the early chapters of this book is a Java AWT refresher
course, but it is by no means a complete tutorial for the language. This chapter
will serve only to help contrast Java, as it was with AWT, to Java as it now
exists with Swing.

 Since the last chapter of this book will discuss optimization of Java code
using multithreading, I will also assume that you have a solid understanding of
how to write Java code with threads and of the inner workings of multithread-
ing in general. Multithreading is a complex mechanism which can be either
your most indispensable optimization tool or your worst debugging night-
mare. You must use extreme caution when writing multithreaded applications,
and, though we will examine multithreading from the Swing perspective, this
book will not help you understand the pitfalls that multithreading can intro-
duce into a Java application.

 Finally, I will assume that you possess a thirst to learn. Though this book
will cover some advanced topics related to Swing, there will still be much to

INTENDED AUDIENCE xxiii
learn on your own. Swing is brimming with interesting classes that can save you
hours of work, but to adequately describe each individual class would require a
much larger book. Don’t be afraid to throw together some small test programs to
test aspects of the Swing classes which you do not immediately understand.

How this book is organized
This book consists of three parts. We begin with a bit of background on Java
and Swing, then look at the basic user interface functionality. Finally, we exam-
ine some of the more advanced capabilities of Swing. I’ve also included a
chapter to help you with optimization. The book is organized as follows:

 Part I contains all of the information you require to get started with Swing,
including a description of the software packages you need and how to set
them up. We will also have a quick Java refresher course for those who need it.
Then, we will examine the architecture of Swing and start to talk about some
of the advanced capabilities it offers.

 Part II contains details about the typical classes you will utilize in the pro-
cess of creating your own Swing applications. We will look at each of the com-
mon components and how to best use them, as well as techniques that can
extend and enhance them to better suit your needs.

 In Part III, we look at more advanced topics. We will describe how to cre-
ate components with a custom look-and-feel, and take a look at several ways
to make your Java code run faster.

 NOTE: Throughout this book, you will see sections containing partial
information regarding the Swing component APIs, including brief descrip-
tions of the contents of significant groups of methods. Although you can find
complete information in the online documentation provided with the JFC and
JDK toolkits, the partial reference allows you to quickly review the API for a
given class without requiring access to a computer.

Conventions
In order to present the information contained in this book in a consistent
manner, the following conventions are used throughout:

 The text contains many guidelines, recommendations, and warnings to
indicate where you might want to pay some special attention. For example:

Though significant in scope, Swing represents only one of many parts of
a larger technology group called Java Foundation Classes (JFC).

 The following table summarizes the types of information you will find
within these messages:

UI Guideline User Interface Guideline. These tips are only guidelines—not rules. Feel
free to accept or ignore any of these suggestions.

FYI For Your Information. These messages provide information that may be of
interest to you as you read the book or work with the examples. Mes-
sages of this type include tips, warnings, and general observations.

IMHO In My Humble Opinion. These messages contain editorial comments and
recommendations from the author which may not reflect the opinions of
Sun or other Java developers.

xxvi CONVENTIONS
 Except where noted, user-entered commands are capitalized (for example, DIR).
 Except where noted, filenames may use both upper and lower case. Java can be

sensitive about the case of file names (for example, SampleClassFile.java)
 All Universal Resource Locators (URLs) will be shown with Courier font, such

as the following web site address for IBM VisualAge for Java:

http://www.software.ibm.com/ad/vajava/.

 The source code in this book will follow a particular coding convention based
on the Java Coding Standards written by AmbySoft, Inc. Much of this standard is
based loosely on Hungarian Notation, and was originally devised for the C pro-
gramming language by Charles Simonyi of Microsoft, Inc. If you are unfamiliar
with this coding convention, you can find out more about it at the web site:

http://www.ambysoft.com.

 Variables will be prefixed with a type designator as follows:

 Methods will be named with full English names according to the AmbySoft cod-
ing convention (for example, isBordered() , setValue() , or testForOccur-

rence()). Constants will be names in hyphenated, uppercase text (for example,
MAXIMUM_OFFSET).

 All source code will appear in Courier font. For example:

//
// Sample program, main entry point
//
public void main(String args[])
{

TestFrame myFrame = new TestFrame();
myFrame.setVisible(true);

}

Prefix Data Type

off Offset

len Length

b Byte

c Character

d Double

f Float

l Long

o Object

s String

v Arbitrary value

http://www.software.ibm.com/ad/vajava/
http://www.ambysoft.com

Obtaining the source code
This book includes many sample applications, including all of the source code
for each sample. If you feel the need, you can type in the samples yourself, but
fortunately, there is a much better alternative. Manning Publications, Inc. has
provided a site on the World Wide Web:

http://www.manning.com/Gutz2

from which any owner of this book can download the example source code,
including any updates to correct bugs. This will save you the time and effort
required to type in the samples you want to run.

 All of the code in this book is 100 percent pure Java code, and should
compile in any Java environment on any platform. Additionally, the compiled
code should run on any Java virtual machine meeting the Sun Java 1.1 (or
later) specification. Some of the samples from the book may not run in con-
junction with the Microsoft virtual machine.

 The Manning web site also includes the entire text of this book in search-
able format, allowing you to keep the book on hand while you work and giving
you the capability to perform full-text searches for information.

http://www.manning.com/Gutz2

Author Online
Purchase of Up to Speed with Swing includes free access to a private Internet
forum where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other Swing users. To access
the Swing forum, point your web browser to:

http://www.manning.com/Gutz2

where you will be able to subscribe to the forum. This site also provides infor-
mation on how to access the forum once you are registered, what kind of help
is available, and the rules of conduct on the forum.

 I have tried to be complete and accurate within the limits of this book;
however, errors and omissions are inevitable. If you find mistakes in this book,
or if you think I have left something out, please let me know. There may be
another edition of this book, and, if so, I would like to make as many correc-
tions and implement as many suggestions as possible. Please direct them to me
using the Author Online forum.

http://www.manning.com/Gutz2

Special thanks
A book is never created by a single person. In my case, I had help from many
people who deserve special recognition. These people have gone above and
beyond the call of duty to offer assistance and encouragement, or they have
played a significant role in the development of Java or Swing.

 To James Gosling, the father of Java. Many thanks for the ingenuity and
persistence you invested to take a seemingly obscure idea and use it to create
an industry.

 To Adam Abramski, a JFC Evangelist (they have such interesting job titles
in California) with Sun Microsystems. Without Adam, I could never have bent
Sun’s ear the way I did. Thanks for listening.

 To Steve Wilson and Michael Albers of JavaSoft, who provided lots of wel-
come assistance developing the chapter dealing with custom look-and-feel. I
am not able to say enough about the contributions they provided.

 To Roger Chang, for taking time out of his busy schedule to add the user
interface tips and guidelines. I hope that you will find Roger’s insights as valu-
able as I do.

 To Randy Westman, who took the time to proofread my manuscript and
provide technical input. Thank you for the effort you made, even though I
know your spare time was scarce.

 To Manning Publications for producing such a fine book. Special thanks to
the efforts of Marjan Bace, Ted Kennedy, Mary Piergies, Leslie Aickin, Dottie
Marsico, Elizabeth Martin, and everyone else at Manning who contributed to
the task of producing this book.

xxx SPECIAL THANKS
 To the “Fulcrum Thursday Night Club” (you know who you are). Thanks for
the weekly reality check.

 To all of the brilliant people at Sun Microsystems who helped to design, imple-
ment, and support Java and Swing—their efforts are quite amazing when you real-
ize what they have accomplished in such a short time. Keep up the great work.

 Finally, to the thousands of Java developers out there—without you there would
be no reason for this book. I hope I am able to teach you things which will help you
prove that Java is a real contender for application development.

Review process for this book
Manning recognizes the importance to you of accurate, relevant and useful
content in the books you buy. We therefore put considerable emphasis on sub-
mitting each manuscript we develop to an exhaustive technical and editorial
review. This book was reviewed in two phases: early, while in partial manu-
script form, and again, after the completed manuscript reached us.

 Partial manuscript review led to some important realignments in the
book’s focus. Making those changes at mid-point, rather than after the final
manuscript had been completed, saved the author time-consuming revision—
and got the book into your hands more quickly.

 Complete manuscript review—in an orgy of opinion and occasional
counter-opinion—corrected, improved, and caused us to drop from and add
to the manuscript at tremendous rates that only an experienced author and
confident expert like Steve Gutz could sustain. An intense review such as this
can help a draft manuscript to mature in mere weeks into a balanced, rea-
soned, and correct work ready for publication. Thanks to Steve’s commitment
to first rate results, that’s exactly what happened in this case.

 Reviewer comments were analyzed by Manning staff and the author and in
many cases multiple exchanges with the reviewers led to clarifications and
improved understanding of individual problems. Along the way we gained a
firsthand feeling for the intensity of interest that Swing generates among peo-
ple who know it.

 Speed is critical in getting a book like this to market during the window
when readers want it most. Even the most adroit author must have substantial
experience with a technology in order to present the reader with a useful treat-
ment, and that requires time—to which the long process of writing, review-

xxxii REVIEW PROCESS FOR THIS BOOK
ing, revising, and production must be sequentially added before a manuscript can
become a book.

 Our manuscript review was done entirely online, resulting in valuable time sav-
ings that would otherwise have gone into transporting paper copies between us and
our reviewers. Online review also lets us avoid the additional delays and paperwork
associated with shipping documents to overseas reviewers, so that this book reflects,
quite literally, world-class feedback.

 The following six people participated in the technical review of the partial manu-
script:

James Begole, USA

Tom Bergman, USA

David Karr, USA

Martin Naedele, Austria

Michael Shimer, USA

William Wake, USA

 For the complete manuscript review, we had the benefit of advice from the fol-
lowing seven people:

David Anderson, Singapore

Jaideep Bafna of Dataware Technologies, USA

David Karr, USA

Alexis Moussine-Pouchkine, France

Michael Neylon of the University of Michigan, USA

Travis Shirk of Dimensional, USA

Vaino Vaher of IBM Sweden

 David Karr graciously offered to help with both review phases.

 Additionally, the following five members of the AWT/Swing Team at JavaSoft,
USA, offered detailed suggestions, complaints, corrections, and advice:

Michael Albers

Jeff Dinkins

Georges Saab

REVIEW PROCESS FOR THIS BOOK xxxiii
Will Walker

Steve Wilson

 Altogether 18 individuals donated their valuable time to this effort, resulting in
improvements that would have been impossible to achieve without them. Our sin-
cere thanks go to all the reviewers whose contributions helped keep us and the
author focused on what readers want and need.

About the cover illustration
“Homme de Javan” (Java Man), the cover illustration, is from the 1805 edi-
tion of Sylvain Maréchal’s four-volume collection of men’s and women’s
regional dress customs. This book was first published in Paris in 1788, one
year before the French Revolution. Its title alone required no less than 30
words:

“Costumes Civils actuels de tous les peuples connus dessinés
d’après nature gravés et coloriés, accompagnés d’une notice his-
torique sur leurs coutumes, moeurs, religions, etc., etc., redigés
par M. Sylvain Maréchal”

 The four volumes include an annotation on the illustrations: “gravé à la
manière noire par Mixelle d’après Desrais et colorié.”

 Clearly, the engraver and illustrator deserved no more than mention of
their last names—after all they were mere technicians. The workers who col-
ored each illustration by hand remain nameless.

 The remarkable diversity of this collection reminds us vividly of how dis-
tant and isolated the world’s towns and regions were from each other just 200
years ago. Dress codes have changed everywhere and the diversity by region,
so rich at the time, has practically disappeared. It is now hard to tell the inhab-
itant of one continent from another. Perhaps we have traded off some cultural
diversity for a richer and more varied personal life—including an incredibly
interesting technology environment.

 Dubbed the “Java Man Book,” this is the first Manning title to be illus-
trated with Sylvain Maréchal’s people of the past. At a time when it is hard to
tell one computer book from another, Manning celebrates the inventiveness

ABOUT THE COVER ILLUSTRATION xxxv
and initiative of the world of software with a new series of covers based on the rich
diversity of regional life brought back to life by these pictures. Just think,
Maréchal’s was a world so different from ours people would take the time to read a
book title 30 words long.

Related Manning books
Manning publishes several related books and has others in development.
Because of its cover illustration, Up to Speed with Swing is often referred to as
the “Java Man Book.” Up to Speed with Swing is a tutorial on how to develop
applications using the Swing piece of Java Foundation Classes. Manning also
has a companion book, the “Java Woman Book,” by Stephen Drye and Will-
iam Wake which is primarily a Swing reference.

 The Java Man Book brings the beginner and intermediate Swing program-
mer up to speed on this important part of the JFC. As such, it will probably be
most useful to you while you are learning this environment.

 The Java Woman Book is a programmer’s companion for the long run. It is
a reference work with a short tutorial section in part one of the book for those
who can get going without too much hand holding. We expect it to be used
by intermediate and advanced Java programmers who want concise, cross-ref-
erenced sources of factual information interlaced with examples.

 For many, the Swing online documentation simply isn’t enough. Program-
ming effectively in Swing may require significant experimentation and reading
of the raw source code, for which they may not have adequate time. The
authors of the Java Man Book and the Java Woman Book have done this work
for the reader. They relate their experience and gleaned know-how in these
two books.

 The Java Woman Book API descriptions contain everything in the Swing
JavaDoc, amplified with the authors’ pointers and examples derived from their
cumulative experience in developing fully featured applications with Swing.
The Reference section of the book includes discussions of how a given class

RELATED MANNING BOOKS xxxvii
relates to the rest of the API, as well as full descriptions of the use of each field and
method call. It also features a cross-reference index at the end of each class descrip-
tion, which provides links to other classes in the Swing API used by the class in
question. These features should prove valuable to the programmer in his daily work
environment.

 Manning also publishes the second edition of its Java Network Programming.
The success of the first edition has led us to update this book to make it even more
useful to network programmers. The encryption framework of the first edition has
been extended and moved to a new book, Applied Java Cryptography. The space
saved has allowed the second edition of JNP to offer a more complete treatment of
network programming in Java. The second edition details the Java platform support
for networked and distributed computing, with many supporting examples. It
develops advanced network clients and servers and a sophisticated messaging
library; it includes significantly extended examples including DNS and finger cli-
ents, and an advanced Web server. This new edition covers comprehensively the fea-
tures of JDK 1.1 and introduces the new features that will be in JDK 1.2. It is a
resource for the advanced networking questions that developers will encounter
when they start writing complex networked applications, including details of
advanced stream programming, implementation of complex Internet protocols,
RMI and CORBA.

 Manning publishes a growing list of advanced titles in the Java field. Manning’s
Server-Based Java Programming is a guide to the increasing use of Java for server
applications. Java Servlets by Example covers the use of Java for client/server appli-
cations that can be too difficult or too time consuming to even consider without
the servlet technology. As an example, it covers how CGI scripts, the inefficient,
memory-hungry, slow processes, can be replaced with leaner, faster, portable and
easy to maintain Java servlets. Both of these titles are planned for Summer 1998.

 Manning’s The Awesome Power of Java Beans, to be released May 98, is a second
generation Java Beans book. It transmits to the reader the maturity in understand-
ing derived from the now available experience with Java’s component technology,
teaching not only bean use and reuse but also bean development. It includes a selec-
tion of completed and tested beans for use by the reader. Manning’s Distributed
Java Applications Programming discusses how to develop sophisticated applications
that run on two or more computers. It includes discussions of low-level sockets,
RMI, CORBA using Visigenic’s Java VisiBroker, and Mobile Agents using
ObjectSpace’s Voyager. Its release is planned for Fall 1998.

xxxviii RELATED MANNING BOOKS
 Manning’s companion to the book you are holding, Java Foundation Classes:
Swing Reference, alias the Java Woman Book, will be available July 1998.

Part I
Getting started

Part I of this book contains the introductory information required to start you
down the road to building your own applications with Java and Swing. I begin by
describing the tools you will need or may choose to use. Then, I will review some of
Java’s key features. Finally, we will start to examine the concepts upon which the
Swing class library is built.

 NOTE: This part contains a review of the more basic areas of Java, AWT, and
Swing. If you are an experienced Java developer, much of part 1 will be review, so you
will probably use this material for reference only.

1A Java
refresher

In this chapter
■ A review of Java and AWT

■ The Java delegation event model

■ Delivering a final product

4 CHAPTER 1
A Java refresher
1.1 What is Java?

To many people, Java is simply a tool used to create insignificant applets to embel-
lish web pages. By now, everyone using the Web has probably visited at least one
web site implementing a Java applet to scroll text, play a video file, or display real-
time stock quotations. Java is certainly well suited as an applet builder.

 To application developers, Java is a relatively new language which permits
complex implementations of large programs. Many companies are now delivering
Java-based products into the mainstream of corporate and home use (such as office
suites and games). Companies like IBM, Sun Microsystems, and Hummingbird
Communications are building Java programs which do not depend on the presence
of a web browser at all. Most current Java applications are still related to the web in
some way (network administration, for example), but Java is quickly evolving into
an applications language that permits high speed animation, audio capabilities, and
much more. Java, then, is an application language as well.

 But is Java more than this? Sun Microsystems and JavaSoft certainly think it is.
Over the past two years, Sun has been investing in the concept of Java as an operat-
ing system platform. Figure 1.1 illustrates the architecture used to develop JavaOS.
Notice that large portions of the operating system are written in Java, suggesting
that the operating system could easily be ported to many different platforms. Jav-
aOS is a compact and powerful operating system which has the ability to scale down
to the smallest personal data assistant (PDA) or SmartCard and up to the largest
mainframe. JavaOS will run programs written in Java, and has been tuned to ensure
that performance is at its best. So, Java is also an operating system.

 Sun is also developing central processing units (CPUs) that execute the Java
bytecode natively. This represents a potentially massive performance boost for Java
applications running on computers with this chip. The Java processors are available
in several versions, with some suitable for SmartCard and PDAs, others for PC
coprocessor cards, and still others for stand-alone workstation systems. Java is also
now becoming part of the hardware platform.

 Java can be many things to many people. Sun and JavaSoft are committed to
Java in every conceivable way, and they are certainly not alone. IBM, Netscape,
Oracle, and several other large companies interested in Java’s market potential are
investing heavily in the effort started by Sun. For the purposes of this book,
though, we will assume that the Java world is limited to building applications and
applets, though one should be aware that all code described by this book will exe-
cute in any Java environment which supports a graphical user interface (GUI).

What is AWT? 5
1.2 What is AWT?

The AWT is the part of JDK responsible for the user interface, and since all Swing
components are based on AWT, we need to quickly review what functionality AWT
offers us as future Swing developers. AWT is a set of classes providing everything a
developer requires in order to create a front end for an applet or application. Cur-
rently, AWT includes over sixty classes, but with each new release, the class library
evolves to include new features. All of the user interface components are derived
from the Component class (see figure 1.2) which is responsible for all aspects of con-
figuration and display common to all components.

 AWT is a collection of high level classes intermingled with classes that provide a
much lower level of functionality. Too often, a class that you would expect to find is
absent from AWT, resulting in an unexpected effort to write volumes of new code.
In the version 1.0 release of Java, the AWT event model was horrendous. Every
event for every control passed through the handleEvent() method—even those
events that eventually got processed by some default handler internal to the virtual
machine. Sun recognized and acknowledged the shortcomings of Java 1.0 and
promised a solution in future releases of the language.

Figure 1.1 JavaOS architecture

6 CHAPTER 1
A Java refresher
 Sun did correct many of the known version 1.0 limitations with Java 1.1, but it
was becoming clear that if they wanted developers to build applications on a par
with those available on the Microsoft Windows and UNIX X Windows platforms,
Sun had to provide a new class library. This new class library would eventually
become known as Swing, and would include all of the advanced classes that devel-
opers expect. Swing is still not a perfect API, but it is certainly a technological leap
forward.

1.3 The Java event models

Throughout its brief history, Java has had two event models, and this represents the
most significant difference between versions 1.0 and 1.1 of the language. Version
1.2 of Java uses the same event model as 1.1. Understanding the 1.1 event model is
crucial to successfully building JFC applications, since most Swing components
either generate events or recognize that events have occurred.

Component

Button

Canvas

Checkbox

Choice

Container Panel Applet

Window Dialog

Frame

FileDialog

ScrollPane

Label

List

ScrollBar

TextComponent TextArea

TextField

Figure 1.2 A partial AWT class hierarchy

The Java event models 7
 In this section, we will review the differences between the two event models,
and explain the advantages and disadvantages of each. Unless you are building an
applet that must be compatible with an older version of Netscape Navigator or
Microsoft Internet Explorer, you should be writing code supporting the Java 1.1
event model, and if you are writing JFC code, as we are, you must use the 1.1 event
model. The 1.1 and 1.2 Java Virtual Machines still support the 1.0 event model,
but Sun could remove this backward compatibility from future versions of the lan-
guage specification, so you should avoid building code supported only by Java 1.0.

1.3.1 Java 1.0

Java 1.0 offered developers a simple event model. As shown in figure 1.3, all event
handling is performed by a single mechanism implemented as a cascading series of
test conditions. This is the same technique used by Windows to handle window
actions.

 Although easy to understand, the Java 1.0 event model is inefficient, since
every event passes through the event handler for testing and possible action pro-
cessing. The event model requires the developer to implement a method called
action with the following format:
public boolean action(Event actionEvent, Object oObj)
{

Event

Action() code

.

.

.

Control_1 Test

Control_2 Test

Control_n Test

Default action
Figure 1.3
Java 1.0 event handling

8 CHAPTER 1
A Java refresher
// Handle actions for MyControl
if(actionEvent.target instanceof myControl)
{

// Process event for MyControl

return true;
}

// Handle other actions

// Action code didn’t handle this event, so let Java do it.
return false;

}

 Since some frames within a typical application may have dozens of user action-
able controls, the length of the action() method can become quite unmanageable.
This can easily result in tedious debugging, and poor application performance.

1.3.2 Java 1.1 and beyond

Fortunately, Sun’s developers resolved to correct the crippling weaknesses in the
1.0 event model. The result, in the Java 1.1 virtual machine, was a completely
revamped model, called the delegation event model, which delivered greatly
improved performance. The basic change to the event model in 1.1 was the addi-
tion of listener classes to detect activity on a per control basis. Listeners are devel-
oper written classes which implement one or more of the Java 1.1 abstract listener
classes which listen for events (usually) initiated by some user action. For example,
to intercept actions for a button, the ActionListener interface must be
implemented.

 It is important to note that you can implement a listener class for each control,
or one class for all actions, or one class for all events (keyboard, mouse, actions, and
so on). The 1.1 event model allows a high level of flexibility, but this flexibility can
cause some confusion when creating applications.

 Figure 1.4 illustrates the Java 1.1 delegation event model. Suppose that Main
Class is a user interface object, such as a frame, and that it has two components (a
list box and a button) that have been added to the frame panel. The Control_1 class
has been configured to handle events for the list box and Control_2 handles events
for the button. When the user clicks the button, an event is sent to the main class,
which internally determines where the event should go. The event is sent to the
Control_2 class for processing. Notice that, unlike similarly configured frames in
Java 1.0, the code to detect list box activity was not executed at all, resulting in bet-
ter performance. Figure 1.4 represents a simple example where the performance

The Java event models 9
increase would be almost imperceptible. However, as the frame becomes more
complex, with many more components, the increase in speed becomes proportion-
ately more significant. The following listing shows the Java code to implement the
display in figure 1.4.

class MainClass extends Frame
{

// Set up the frame
.
.
.

// Create the list box
listbox = new List();
add(listbox);
listbox.addItemListener(new Control_1());

// Create the button
button = new Button("OK");
add(button);
button.addActionListener(new Control_2());

}

class Control_1 implements ItemListener
{

public void itemStateChanged(ItemEvent event)
{

// Handle list box selection events
}

}

Event

Main Class

Control_1 Event Handling Class Control_2 Event Handling Class
Figure 1.4
Java 1.1 event handling

10 CHAPTER 1
A Java refresher
class Control_2 implements ActionListener
{

public void actionPerformed (ActionEvent event)
{

// Handle button events
}

}

It is common to implement the listener class, but to forget to add the listener
to the instance of the component. Always make sure that the components are
created with code like the following:

button = new Button("OK");
add(button);
button.addActionListener(new Control_2());

 This new event handling technique in Java 1.1 is part of a larger scheme called
the Model-View-Controller architecture (MVC). MVC not only provides the dele-
gation event model, but also introduces an observer/observable model which
allows the uncoupling of the application, interface, and control elements. The
intent of MVC is to separate the user display from the control of the user input.
This really suggests that the user interface’s look-and-feel can be modified without
altering its operation. Figure 1.5 illustrates the MVC architecture implemented in
Java 1.1. The following table summarizes the components of the MVC architecture
and their basic purposes:

 Note that the Swing class library makes extensive use of the MVC architecture
to permit the creation of user interface components featuring a custom look-and-
feel and/or custom data model. We will be delving into these aspects of Swing in

Component Purpose

Model Represents the underlying data of the object
Notifies the view that its state has changed, forcing the view to be
redrawn

View Accesses the data from the model and specifies how it is displayed

Controller Determines how user interactions with the view cause data in the model
to change

JavaBeans 11
later chapters, but I should point out that tinkering with MVC is an advanced skill,
and it should be approached with due caution.

 Custom data models are more commonly implemented than custom look-and-
feel. You will undoubtedly use this aspect of MVC (and Swing) quite often. The
default data models for Swing components, though complete, are limited in scope,
so you will certainly want to implement your own.

 Unless you are concerned with building corporatewide applications running
across multiple platforms, and have a desire to maintain the same look-and-feel
everywhere, you may not want to get mired down in the custom look-and-feel
aspects of MVC. However, there may be times when you just want to create a
checkbox with a slightly different appearance, and since the functionality for a
checkbox already exists, you can alter the user interface rather than building an
entirely new component. Though it is possible that you may never build an applica-
tion with components that implement custom user interfaces or data models, it is
important to understand the concepts of MVC because it is fundamental to Java
today and into the future. We will examine these in more detail in the next chapter.

1.4 JavaBeans

Most of us love to find shortcuts to make our jobs easier, simpler, and faster, and
that coincides with the demands placed on us to build software in less time, for less
money. So, it was no accident that the software industry developed ways to “com-
ponentize” code, usually in the form of software objects. This allows us to take

Notification
Data

access
Data change

Gestures and
EventsDisplay

View
User Input

Control

Data Model

Figure 1.5 Model-View-Controller architecture

12 CHAPTER 1
A Java refresher
existing software components, and, with relatively little coding effort, plug them
together to create a useful application.

 The component model for software development was made popular by appli-
cations like Microsoft Visual Basic, and it has quickly become the way most applica-
tion environments generate code. Microsoft grew so enamored with the
component model concept that they developed the Component Object Model
(COM) for their Windows product, and now COM is embedded into almost every-
thing Microsoft does (and many other companies, as well). Unfortunately, COM is
plagued by a horrendous learning curve. Any developer who claims to be a COM
guru is probably lying, unless they have been completely immersed in it for at least
a year. COM is, without question, the single most difficult part of Windows pro-
gramming to understand.

 As part of the Java 1.1 effort, Sun decided that the language needed a standard
component model; however, they realized that a technology similar to COM would
probably fail miserably. Sun needed to re-examine the way programmers build code,
and then create a new component technology, while at the same time minimizing
the learning curve. The result was a totally new component model which Sun
dubbed JavaBeans. Since we are concerned with creating Swing applications in this
book, we need to appreciate that all Swing components are based on the JavaBeans
technology. Though you will not need to understand the inner workings of Java-
Beans, we do need understand what beans are and how we can use them.

 JavaBeans is simple to implement (at least when compared to COM), and it
integrates into most visual environments quite well. The most important distinction
between COM and JavaBeans is that applying JavaBeans’ technology does not alter
the existing language syntax. All aspects of the language work as they do without
beans, and the developer is not required to think differently when working with
beans. The same cannot be said for COM.

 Creating a bean does not require any advanced knowledge or training. So, as a
simple introduction to Java beans, here is an example of a simple JavaBean:

public class BeanExample implements java.io.Serializable
{

private int beanValue;

public BeanExample()
{

beanValue = 0;
}

public void setBeanValue(int newValue)

A review of components, listeners, and events 13
{
beanValue = newValue;

}

public int getBeanValue()
{

return beanValue;
}

}

 BeanExample is a real bean that is complete. It has no visual representation
(not a requirement for a bean), but it does have a state (represented by the bean-
Value attribute) which is automatically saved by the JavaBeans’ persistence mecha-
nism. It also implements a property called “Value” that will appear in any JavaBeans
compliant visual programming environment which loads this bean.

 This is really all that JavaBeans is about. It offers the same capabilities as
COM, but does not require developers to absorb volumes of knowledge before
they realize any return on their time investments. I have presented a simple view of
JavaBeans to demonstrate that the technology is much easier to comprehend than
COM, though, in practice, JavaBeans development is more complicated than what
I have shown here. However, if you compare the JavaBeans example here to a simi-
lar COM example written in C, you will immediately appreciate JavaBeans.

1.5 A review of components, listeners, and events

You have already seen some examples of component use in the sample code shown
earlier in this chapter, but we should take some time to quickly review the typical
procedures for using components and listeners. Component use in Java 1.0 was
much easier than it is with the delegation event model introduced in Java 1.1. All
you had to do was create a new instance of a component, add it to a panel, and it
will intercept any events it generated using the handleEvent() method. With Java
1.1, things become a bit more convoluted.

 In version 1.1 or later, a component is created in essentially the same way as it
was with Java 1.0, and it is also added to the panel the same way; however, event
handling is vastly different, and it is also unlike most other windowing environ-
ments. We have already touched on the Model-View-Controller architecture of Java
1.1, and briefly discussed event listeners, but we should examine these in a bit more
detail. As shown previously, the basic code to create any component and listen for
action events is:

14 CHAPTER 1
A Java refresher
button = new Button("OK");
add(button);
button.addActionListener(new Control_2());

 Action listeners are only one of several types of listeners provided by the Java
API (for example, selecting an item in a list box generates an ItemEvent , which is
intercepted by any ItemListener attached to the list box control). Note, however,
that list boxes can generate ActionEvent instances as well, so you may need to
attach multiple listeners to a component, depending on your needs. Below is a list of
AWT components and possible events and listeners for each:

 Handling an ActionEvent requires that you implement an actionPer-

formed() method in your listener class, for example:

public void actionPerformed(ActionEvent event)
{

if(event.getSource() == buttonOK)
Action_OK();

if(event.getSource() == buttonCancel)
Action_Cancel();

}

 But if, for example, you want to handle a more advanced event, such as inter-
cepting the string within a text field and using it to control the enabled state of a
button, you need to implement a TextListener rather than an ActionListener .
The following example code determines whether or not a text field contains infor-

Component Events Listeners

Button ActionEvent ActionListener

Checkbox ItemEvent ItemListener

Choice ItemEvent ItemListener

Container ContainerEvent ContainerListener

Window,
Dialog,
Frame

WindowEvent WindowListener

List ActionEvent
ItemEvent

ActionListener
ItemListener

ScrollBar AdjustmentEvent AdjustmentListener

TextComponent
TextArea

TextEvent TextListener

TextField TextEvent,
ActionEvent

TextListener,
ActionListener

A review of components, listeners, and events 15
mation. If it does, an OK button is enabled; otherwise, the button is disabled. This
is the type of code you would typically use within a dialog box to prevent the user
from omitting a required field value.

class DialogOfMine
extends Dialog
implements TextListener

{
private TextFieldtextField = null;

public DialogOfMine()
{

super("MyDialog", true);
.
.
.

// Create the text field
textField = new TextField();
add(textField);
textField.addTextListener(this);
.
.
.

}

public void textValueChanged(TextEvent event)
{

if(event.getSource() == textField)
{

if(textField.getText().length() == 0)
button.setEnabled(false);

else
button.setEnabled(true);

}
}

}

 The example adds a TextListener to the textField attribute. Since the lis-
tener is implemented within the DialogOfMine class, the “implements TextLis-
tener” clause has been added to the class definition. To implement a TextListener,
the dialog code must supply a textValueChanged() method, which is called any
time the user adds text or removes characters from the text field. With this method,
we can examine the contents of the field, and disable the OK button if the field is
empty.

16 CHAPTER 1
A Java refresher
1.6 Layout manager refresher

If you have been using AWT for a while, then you know that UI components are
inserted into a panel. There are many ways to accomplish this simple task. In most
windowing environments, components are added to their owner windows by using
hard-coded X-,Y-coordinates. Java supports this mechanism, but suppose we
wanted to add components to a resizable window. We don’t really want to concern
ourselves with having to handle a resize event to manually recalculate the sizes and
positions of the window’s components.

 Fortunately, unlike most windowing environments, Java offers several classes,
called layout managers, which are responsible for managing how UI components
get displayed within a panel. Layout managers alleviate many of the pains develop-
ers experience when attempting to build their user interfaces, and are one of the
features that separate Java from other languages.

 AWT supports five different layout managers, and Swing implements an addi-
tional five. We will examine the Swing layout managers in chapter 3. For now, let’s
review the layouts supported by AWT in Java 1.1.

1.6.1 BorderLayout

Panels configured with a border layout add components by accepting a geographi-
cal position: north, south, east, west or center (see figure 1.6). When the Java Vir-
tual Machine (JVM) shows the panel, the components around the edges are given
as much size as they require, and the component in the center gets whatever space
remains.

 The listing below creates five AWT buttons and applies them to each of the
valid positions in a frame which has been configured with the border layout. The
result is the output shown in figure 1.6.

import java.awt.*;

class TestFrame extends Frame
{

public TestFrame()
{

super();
setSize(200, 200);
setLayout(new BorderLayout());

add(new Button("North"), BorderLayout.NORTH);
add(new Button("South"), BorderLayout.SOUTH);
add(new Button("East"), BorderLayout.EAST);

Layout manager refresher 17
add(new Button("West"), BorderLayout.WEST);
add(new Button("Center"), BorderLayout.CENTER);

}
}

 If you ran this program, you would notice that, as the frame window is resized,
the internal components are automatically resized to accommodate the change in
their parent’s size.

1.6.2 CardLayout

The CardLayout manager is not like the others provided by Java. When you add
components to a frame configured for card layout, they are not displayed at the
same time. Instead, the components are stacked like cards, so only the topmost
component is visible. Think of a panel with a CardLayout manager as a slide show
viewer, except that, in addition to sequential viewing, cards in the card layout can
be accessed randomly, as well.

Figure 1.6 BorderLayout sample

18 CHAPTER 1
A Java refresher
 Figure 1.7 illustrates how card layout works. In a stack of several cards, only
the topmost card is visible. The code to generate a stack like the one shown in fig-
ure 1.7 is as follows:
setLayout(new CardLayout());
add("first", new Button("First");
add("second", new Button("Second");
add("third", new Button("Third");
add("fourth", new Button("Fourth");
show(this, "first");

// Step to the next pane
next(this);

 CardLayout manager is a bit obscure, but can be an incredibly useful mecha-
nism for displaying one of several panels. Though you probably will not use Card-
Layout often, we cannot ignore its significance, so it is important that you
understand how it works. This layout manager is particularly useful for building
composite components, like tabbed panels.

Visible Component

Invisible
Components

Figure 1.7 A diagram showing CardLayout

Layout manager refresher 19
1.6.3 FlowLayout

The most basic of all Java layout classes is
FlowLayout, and it is the default layout for all
panels. With FlowLayout, components are
added to the owner panel in a left to right
fashion, wrapping to the next row when nec-
essary. The alignment of rows can be specified,
but, by default, each row is centered within

the panel. The following code generates a simple frame of buttons that has the Flow-
Layout manager applied. The results are shown in figure 1.8.
import java.awt.*;

class TestFrame extends Frame
{

public TestFrame()
{

super();
setSize(200, 200);
setLayout(new FlowLayout());
setBackground(Color.lightGray);

add(new Button("One"));
add(new Button("Two"));
add(new Button("Three"));
add(new Button("Four"));
add(new Button("Five"));

}
}

1.6.4 GridLayout

The GridLayout manager allows developers to better control how and where com-
ponents are placed within a panel. The panel is divided into a configurable number
of equally sized rectangles organized into a row and column matrix. The X,Y cell
location of each component can be determined according to the order in which it
was added to the panel.

 The following code sample creates a simple framed window containing five
AWT buttons applied to a panel supporting a GridLayout manager. The display in
figure 1.9 shows the resultant output. Notice that, like FlowLayout, the grid is
filled by row, and wrapping to the new row when required.

import java.util.*;

Figure 1.8 FlowLayout sample

20 CHAPTER 1
A Java refresher
class TestFrame extends Frame
{

public TestFrame()
{

super();
setSize(200, 200);
setLayout(new GridLayout(3, 2));
setBackground(Color.lightGray);

add(new Button("One"));
add(new Button("Two"));
add(new Button("Three"));
add(new Button("Four"));
add(new Button("Five"));

}
}

1.6.5 GridBagLayout

The GridLayout manager requires that all components have the same dimensions.
Realizing that, for some applications, this limitation can be too restrictive, Sun
Microsystems decided to add a more advanced layout manager to AWT. Like Grid-
Layout, the GridBagLayout manager contains a dynamic rectangular grid of cells,
but each component added to the panel can occupy one or more cells.

 To accomplish this task, GridBagLayout uses a helper class called GridBag-
Constraints which specifies how the components are laid out within the panel’s dis-
play area. The placement of each component depends on the GridBagConstraints
object associated with it, and upon the minimum size and the preferred size of the
component’s container.

Figure 1.9
GridLayout sample

Layout manager refresher 21
 The following code listing creates a frame window using the GridBagLayout
manager. To this frame, several buttons are applied with varying constraints. The
output of this code sample is shown in figure 1.10. Notice that Button5 spans the
entire width of the panel, while the other buttons use only a single cell.

import java.awt.*;

class TestFrame extends Frame
{

public TestFrame()
{

super();

// Create the grid bag layout manager instance and

// an associated constraints object
GridBagLayout gridBag = new GridBagLayout();
GridBagConstraints gridConstraints =

new GridBagConstraints ();

setSize(200, 200);
setLayout(gridBag);
setBackground(Color.lightGray);

// Create some buttons, adding them to the grid bag
// using three equal portions
gridConstraints.fill = GridBagConstraints.BOTH;
gridConstraints.weightx = 1.0;
createButton("Button1", gridBag, gridConstraints);
createButton("Button2", gridBag, gridConstraints);
createButton("Button3", gridBag, gridConstraints);

// The fourth button on this line gets the space that’s left
gridConstraints.gridwidth =

GridBagConstraints.REMAINDER;
createButton("Button4", gridBag, gridConstraints);

Figure 1.10
GridBagLayout sample

22 CHAPTER 1
A Java refresher
// Create another button on the next line that uses
// the entire width.
gridConstraints.weightx = 0.0;
createButton("Button5", gridBag, gridConstraints);
gridConstraints.gridwidth = GridBagConstraints.RELATIVE;

}

protected void createButton(String sName,
GridBagLayout gridBag,
GridBagConstraints gridConstraint)

{
Button button = new Button(sName);
gridBag.setConstraints(button, gridConstraint);
add(button);

}
}

1.6.6 Combining multiple layouts

Most Java developers know that AWT fundamentally depends on the Component
class, and almost everything AWT displays is, at some level, based on this powerful
class. In this section, the recurring theme (when talking about layout managers) is
the AWT Panel, which is also derived from the Component class. We have seen how
a specific layout can be applied to a panel, but in all of the layout examples shown so
far, our frame had only one panel and hence, one layout manager.

 Fortunately, the people at Sun decided that Java should allow windows to con-
tain more than one panel. Since each panel has its own layout, we can easily create
some complex frames without the need to intercept window resize events and
manipulate the size or position of our components.

 The following sample code creates a frame using multiple panels to create a
much more complex user interface. Notice that, although the user interface appears
to be much more complicated, the code to create it is straightforward. This exam-
ple applies the BorderLayout manager to the frames’ main panel in the same way as
the border layout example shown previously. To the north pane of this panel, a
rudimentary tool bar has been added by creating a secondary panel with a FlowLay-
out manager.

import java.awt.*;

class TestFrame extends Frame
{

public TestFrame()
{

super();

Minimum software requirements 23
setSize(200, 200);
setLayout(new BorderLayout());
setBackground(Color.lightGray);

// Create a subpanel for the toolbar
Panel toolbar = new Panel();
toolbar.setLayout(new FlowLayout());
toolbar.add(new Button("Button 1"));
toolbar.add(new Button("Button 2"));
toolbar.add(new Button("Button 3"));
toolbar.add(new Button("Button 4"));
toolbar.add(new Button("Button 5"));

// Add the toolbar to the main panel
add(toolbar, BorderLayout.NORTH);

// Add a multi-line editor to the reset of the panel
add(new TextArea(), BorderLayout.CENTER);

}
}

 The resulting display, after compiling and executing this source code, is shown
in figure 1.11.

1.7 Minimum software requirements

Building software is the focus of this book, and most readers will need to know
what minimum set of software tools is required to start designing, building, and
testing JFC-based Java applications. From this point forward, we will be designing
complete JFC and Java applications, so now is a great time to review the software
requirements.

 The list of the minimum software packages required for Java development is
quite small. Most operating systems ship with a simple text editor, (for example
Microsoft Windows or UNIX). In the case of Windows, the NOTEPAD or
WORDPAD applications are adequate to get started, though a better editor capable
of showing line and column numbers, and managing some of the typical program-
ming features (like auto indenting) is a definite asset.

 Since much of the information regarding Java is on the World Wide Web, the
development system requires the installation of a browser. There is a continuing
argument among computer users about which browser is best, but any of the popu-
lar web browsers will be adequate for our purposes. Note that, if building Java
applets is planned, the web browser must support the Java 1.1 specification.
Microsoft’s Internet Explorer does not support some key features of Java 1.1, and it

24 CHAPTER 1
A Java refresher
has extensions not supported in the Java language specification, so caution should be
observed when using this browser for Java development. Production applets should
be tested on all available browsers, so testing can detect any language conflicts.

Microsoft Internet Explorer 4.0 has some relatively serious bugs in its vir-
tual machine. If you build or find an applet that does not appear to oper-
ate correctly in IE 4.0, try it with Netscape Communicator or Sun’s
HotJava browser.

 Below is a list of common web browsers and URLs where they can be down-
loaded.

Netscape Communicator http://www.netscape.com/download/client_download.html

Microsoft Internet Explorer http://www.microsoft.com/ie/download/

Sun HotJava http://java.sun.com/products/hotjava/index.1_0.html

Figure 1.11 A multiple layout sample

http://www.netscape.com/download/client_download.html
http://www.microsoft.com/ie/download/
http://java.sun.com/products/hotjava/index.1_0.html

Delivering a final product 25
 Finally, a copy of the latest Java Development Kit is required. The JDK
includes all of the basic tools needed to compile Java code. Swing applications
require JDK 1.1.2 or later; however, this book will assume that JDK 1.2 is being
used, which is the most recent release. The JDK can be downloaded free from the
Sun Microsystems web site at http://www.javasoft.com/jdk .

 With this limited set of tools, any imaginable Java application can be created.
For creating applications that depend heavily on the user interface, consideration
should be given to some form of visual authoring tool. Appendix A includes a par-
tial list of visual tools currently available.

1.8 Delivering a final product

Until Java 1.1 was released, deployment of applications built with Java was tedious
and usually involved a great deal of effort sorting out which files from the JDK
were necessary and which ones could be omitted. In addition, until Java 1.1, the
only mechanism for grouping class files was to store them (without compression)
in a ZIP archive file. This meant that it was necessary to add the 9MB
CLASSES.ZIP file to the application build, as well as any other ZIP files required
to run your program.

 To resolve some of the issues associated with delivering a Java-based product,
Sun release the Java Runtime Environment (JRE). JRE includes a collection of
runtime classes, a virtual machine, and other miscellaneous files necessary to deliver
a Java application. This package significantly reduces the amount of work effort,
allowing you to quickly package your application. Since Java 1.1 supports com-
pressed .JAR files, the large CLASSES.ZIP file is no longer necessary, and the
resultant application footprint is much smaller. In addition, Sun broke the run-time
classes into two pieces to help further reduce the size of the final application. The
RT.JAR file contains the required run-time classes, and the I18N.JAR file contains
classes that are required only for internationalized applications. By utilizing the
JRE, a typical English-only application written in Java can now have a delivered
footprint of about 1.5MB.

 To use JRE, you do not have to do anything special to create your application.
Build your code as you normally would, using the JDK, running with the Java VM
application. When your application is complete, create a product directory structure
like the one shown in figure 1.12.

http://www.javasoft.com/jdk

26 CHAPTER 1
A Java refresher
 Where:

 There are two ways to start your application using JRE. Sun recommends cre-
ating a small starter application in C, which can be as simple as:

void main(void)
{

system("jre/bin/jre -classpath .;./lib;./jre/lib "
"MyApplication");

}

 This simple boot program does not set any environment variables or accept
any command line parameters, so you may need to add a few more lines, but
regardless, the start-up program will remain quite simple.

 A second way is to create a shell script under UNIX or a .BAT file for Windows
(or a .CMD file for Windows NT) to accomplish the same task. You might find this
technique more useful during the alpha and beta cycles of a project, since it allows

App-Dir The root directory for your application

App-Dir/bin An optional directory containing any binary executables you may have.

App-Dir/lib Contains any .JAR files, classes, properties or other support files used by your
application

App-Dir/jre/bin Contains the binary files for JRE. This is usually a complete copy from the JRE
installation

App-Dir/jre/lib Contains the JRE .JAR files and other support files. This is usually a complete
copy from the JRE installation.

lib

App-Dir

bin lib jre

bin

Figure 1.12 A typical JRE-based product directory structure

Just-In-Time compilers 27
you to quickly edit the file to change class paths and other start-up parameters with-
out having to recompile the boot program.

Microsoft Windows Native Libraries. If your application uses a native
Windows library (.DLL), this file must be located in the executable search
PATH so the JRE’s virtual machine can find it.

Solaris Native Libraries. Sun issues the following warning. Your .so should
be placed in the App-Dir/lib/$(ARCH)/$(THREADS_TYPE) sub-direc-
tory, where $(ARCH) denotes the target architecture (for this example, the
architecture is “sparc”), and $(THREADS_TYPE) is the type of threads the
Solaris VM is using (for now, this must be “green_threads”).

 The Java Runtime Environment has no royalty fees associated with it, and is
available for free download from the Sun Microsystems Java World Wide Web site at
http://java.sun.com/products/jdk/1.1/jre . At this site, you will also find
details about JRE installation and some examples of its use.

1.9 Just-In-Time compilers

The most common complaint among users of Java-based applications relates to per-
formance. Java is well known for its platform independence, but this capability
comes with a significant associated cost. Java compilers do not build native executa-
bles; rather, they compile source code to produce class files of Java bytecode. Like
p-code produced by many Pascal compilers several years ago, Java bytecode is inter-
preted at run time, which can result in slower performance than expected.

 Once again, JavaSoft (and many other Java tool vendors) offers a solution to
this problem in the form of a Just-In-Time compiler (JIT). A JIT is embedded into
the Java virtual machine, and its purpose is to quickly compile Java classes into
native machine code as they are loaded into memory. There is a minor time penalty
paid for the JIT compilation, but the resultant code runs significantly faster than
Java code interpreted by other compilers. Sun claims that the performance increase
with the JIT can be as much as 10 times faster than running the same application

28 CHAPTER 1
A Java refresher
without it. Your mileage may vary depending on the type of application you are
writing.

 The beauty of the Just-In-Time compilers associated with Java is that they
require no special design or coding effort of the part of a developer. Like most
other aspects of Java, JITs just work! The JIT compiler for Windows 95/NT, cre-
ated by JavaSoft with assistance from Symantec, can be freely downloaded from
their Java web site at the URL http://java.sun.com/products/jdk/1.1/ . Sun
refers to the package as the Win32 Performance Pack. If you are a UNIX user you
may have to hunt a bit for a Just-In-Time compiler, but it should be available for
most platforms.

On a system running Microsoft Windows, the JDK should be installed first,
followed by the Java Runtime Environment, and finally, the Performance
Pack. If the Performance Pack is not installed last, the installation program
will not be able to update JRE

 After installing the Performance Pack, the Java Runtime Environment will
automatically be updated to include the JIT. You can also use the JIT with the
developer’s version of the virtual machine shipped with the JDK.

On a system running Microsoft Windows, if you are planning to run the
Just-In-Time compiler in conjunction with the JDK, remember to set the
following environment variable:

set JAVA_COMPILER=symcjit

1.10 Chapter summary

In this chapter, we have reviewed the Java language, AWT, and the details sur-
rounding the Java 1.1 delegation event model. We have also briefly examined Java-
Soft’s component object technology called JavaBeans, and, presented a simple
example of a bean. The layout manager section of this chapter presented an over-
view of the layout managers included with AWT, though you will see additional lay-
outs in chapter 3. Finally, we reviewed the Java Runtime Environment and how you
can use it to create stand-alone applications.

Chapter summary 29
 You have briefly heard about Sun’s new user interface library, Swing, but in the
next chapter we will begin to learn more about it, and you will start to see more
examples using Swing code. From this point on, you should consider AWT passé.
As you will see, Swing provides all the components required for building portable,
lightweight applications and applets.

2Swing
basics

In this chapter
■ What is Swing?

■ Model-View-Controller architecture

■ The JComponent class

30 CHAPTER 2
Swing basics
2.1 What is JFC?

As you know, Sun shook the computing world in 1995 with the introduction of an
object-oriented language for building client-side browser applets. That language
now spans the entire client/server space and the application space previously domi-
nated by programs written in C and C++. Unfortunately, in Java 1.0 and 1.1, some
debilitating weaknesses prevented Java from becoming the mainstream industrial-
strength language it needed to be in order to survive. Realizing these weaknesses,
Sun began an initiative in late 1996 and early 1997 to fill in some of the gaps in the
Java language, and they eventually settled on what is known as JFC.

 Sun (with the assistance of IBM, Netscape, and Lighthouse Designs) created
JFC to help address many of the issues about Java’s platform independence and
about its user interface consistency. The result is an AWT super-set framework of
prebuilt user interface components (written in 100 percent pure Java) which greatly
simplify the task of building application front ends. The JFC components, shown in
figure 2.1, provide developers with a completely portable set of user interface tools
delivered as part of the core Java 1.2 platform.

2.2 What is Swing?

Though this book will periodically discuss the pluggable look-and-feel support in
JFC, the primary concern is the top-most Swing layer. Swing is a subset of the Java
Foundation Classes, and consists of lightweight components to enhance existing

Figure 2.1
Java Foundation Classes

What is Swing? 31
AWT components and to provide advanced controls such as tables and hierarchical
trees. The class structure of Swing mimics that of AWT in that all user interface
components are derived from a single parent called JComponent (which is derived
from the existing AWT Container class).

 Figure 2.2 shows a partial hierarchy for the Swing class library. At first, it
appears fairly complex; but, if this diagram is compared to the AWT class structure
shown in the last chapter, you will see many similarities. Swing (a superset of AWT)
provides similar components; however, most components in Swing have been
extended and enhanced. Fortunately, the method structure for Swing is similar to
AWT, so you should already know how to use Swing for the common components,
such as text fields and labels.

Since JComponent, and hence all Swing components, are derived from the
AWT container class, they can contain other UI components. For example,
a table object can contain an instance of a button, a label, or even a graphic
image. This is an important distinction between Swing and AWT.

2.2.1 Swing package overview

In part 2 of this book, we will begin to use Swing components in earnest; however,
before this can be attempted, a quick overview of the Swing package organization is
needed. The following table identifies each Swing package and briefly describes its
purpose.

com.sun.java.swing This highest level package contains the basic Swing compo-
nents, default component models, and interfaces delegate
and model classes.

com.sun.java.swing.border This package specifies the interfaces and classes that
define and render specific border styles.

com.sun.java.swing.event The event package contains all Swing-specific event types
and listeners. Swing components can also support events
specified in java.awt.event .

com.sun.java.swing.plaf The plaf package contains the pluggable look-and-feel API
used to define custom user interfaces. It includes libraries
to emulate the look-and-feel of Windows, Macintosh, Motif,
and some custom interfaces created by Sun.

com.sun.java.swing.table The table package contains interfaces and classes which
support the Swing JTable control.

32 CHAPTER 2
Swing basics
2.3 Why use Swing?

For many developers, the resistance to change to a new user interface class library
may be too great; however, all Java programmers should seriously consider imple-
menting future applications with Swing rather than AWT. Swing makes the devel-
opment of Java-based programs both possible and attractive by offering capabilities
that simply do not exist with AWT. JFC has advantages over AWT that will be
examined in detail in this section.

2.3.1 JavaBeans compliance

All Swing components are JavaBeans compliant. The JavaBeans specification is a
crucial segment of the Java 1.1 architecture used to create standard visual and non-
visual software components. JavaBeans components have a consistent property API
and a common event handling mechanism which permit interoperability and code
reuse. What this means is that most visual environments will be able to load and use
Swing components without the need for software updates or complicated library
creation procedures.

2.3.2 Lightweight framework

The most difficult task that Sun faced, when building a portable user interface
library for Java, was how to handle the differences from one platform to another.
For example, a button on the Microsoft Windows platform differs in both opera-
tion and appearance from a similar control on an X-Motif screen, and the Apple
Macintosh interface is unlike either of these. In the past, any attempts to allow port-
ability usually involved creating an interface with functionality reduced to the low-
est common denominator of all platforms, leaving the developer at the mercy of the
target platform for nonstandard components. Sun devised a different solution that
implemented a platform specific look-and-feel, while still providing a common Java

com.sun.java.swing.text The text package consists of support classes for the Swing
document framework.

com.sun.java.swing.text.html This extension of the text package contains classes specific
to HTML text components.

com.sun.java.swing.tree The tree package contains interfaces and classes to sup-
port the Swing JTree hierarchical tree class.

com.sun.java.swing.undo The undo package contains support classes to implement
undo/redo functionality in Swing.

Why use Swing? 33
API. This technique required a thin veneer layer to implement the Java API, and a
somewhat larger native code layer (called a peer class) to map the Java API to the
platform specific component. Controls of this nature have become known as heavy-
weight components.

 When creating Swing, the architects at Sun decided that restricting an applica-
tion to the look-and-feel provided by the target platform was no longer desirable.
Despite all the efforts of the AWT developers, several problems with cross-platform

Figure 2.2 Partial Swing class structure

34 CHAPTER 2
Swing basics
applications persisted. For example, the use of scroll bars is not consistent on differ-
ent platforms. Though platform specific look-and-feel is still desirable for some
applications, a common look-and-feel across all platforms is becoming increasingly
important. Sun addressed these demands by introducing a lightweight component
framework that does not require platform-specific peer classes and is written entirely
in Java. Lightweight components provide a consistent interface across all platforms,
while remaining completely portable.

 In addition to platform consistency, lightweight components offer some other
distinct advantages. First, because lightweight components are “light,” they make
much more efficient use of resources in the virtual machine, resulting in smaller
program footprints and somewhat faster code. Second, unlike AWT components
(which are always opaque), lightweight components can have transparent pixels.
This means that several components can be overlain to give the perception of a
much more complex component. In addition, pixel transparency means that com-
ponents no longer have to be rectangular—we can create round or oval buttons if
desired.

 All Swing components implement a lightweight framework to eliminate the
restrictions of the peered interface in AWT. Since Swing components are not neces-
sarily restricted to the platform’s native user interface, you can configure the look-
and-feel in any way desired.

 Sun does not recommend mixing Swing components with older heavyweight
components because of some known conflicts. With the advantages that lightweight
Swing components offer, one would wonder why anyone would need to use heavy-
weight components, but there will be times when this is necessary. For example, if
you are integrating a third-party heavyweight component, such as a three-dimen-
sional chart, you hit an unavoidable boundary between the lightweight and heavy-
weight worlds, which will inevitably cause you grief.

 The problem between these two clashing technologies is one of Z-orders. All
graphical components are drawn according to a specified Z-order (the layers on
which certain components are drawn). Lightweight components reuse the screen
real estate of their nearest heavyweight ancestor, and, as a result, are restricted to
the same Z-order position. Since heavyweight components each receive their own
unique Z-order position, they can conflict with any lightweight components drawn
within the same panel.

 For example, assume you create an AWT Label and a Swing JLabel instance
within a panel. The JLabel receives the same Z-order position as its parent panel,
while the AWT Label is drawn at a higher Z-order position. Since layers are drawn

Model-View-Controller architecture 35
lowest to highest, the Label can cover its Swing sibling, obscuring the output of the
application.

 Since we will probably never be able to completely eliminate heavyweight
components from our designs, we have to learn to live with the limitations they
pose on a lightweight architecture. To help you address these issues, try to adhere
to the following four guidelines:

1 When possible, avoid mixing heavyweight and lightweight components in
containers where the lightweight component may overlap the heavy-
weight. Swing offers replacement components for those defined in AWT.
Use Swing whenever possible.

2 Never place heavyweight AWT components inside a lightweight container
such as a JScrollPane. To scroll heavyweight components, use AWT’s
ScrollPane class.

3 Never add a heavyweight component to a Swing internal frame (JInternal-
Frame) instance.

4 Be careful with pop-up components such as menus. If you use a pop-up
menu in a container holding heavyweight components, you need to force
them to display at the top of the Z-order. To control this for a JPopup-
Menu object, use the setDefaultLightWeightPopupEnabled() method
before the instance has been realized.

2.3.3 Interaction with external resources

A major drawback of early versions of Java and AWT was an inability to properly
interact with external resources, such as a mouse or keyboard. Java 1.1 partially
addresses these problems, but Swing further enhances these features by fully imple-
menting interactions with the mouse and keyboard. In particular, Swing now offers
full support for keyboard accelerators and mnemonics for menu items and most
other components. Additionally, Swing offers support for users with special needs
who are either unable to use a keyboard or to read the display.

2.4 Model-View-Controller architecture

Chapter 1 briefly noted the existence of the MVC architecture introduced in Java
1.1, but included little insight about the inner workings of MVC. Lightweight
component technology is also part of the MVC mechanism, though this may not be

36 CHAPTER 2
Swing basics
obvious. This section collects the many pieces of MVC into a single model to help
you better understand this technology. Understanding MVC is not critical to using
Swing; however, it is necessary for some of the advanced aspects of Swing, such as
pluggable look-and-feel.

2.4.1 How MVC works

MVC is a well known object-oriented design structure originally adopted and mod-
ified from SmallTalk to create and manage Java GUI components. The basic con-
cept of MVC is that every component consists of three parts: a Model, a View, and
a Controller. (see figure 2.3)

 The Model is responsible for maintaining all aspects of the component state.
This includes, for example, such values as the pressed/unpressed state of a push
button, or the currently selected item for a list box.

 The View determines the visual representation of the component’s model.
This is the “look” of the object. For example, the View displays the correct color of
a component, whether the component appears raised or lower (in the case of a but-
ton), or the rendering of the desired font.

 The Controller performs event handling for the entire component. This is the
“feel” of the component, and it determines what actions are performed when the
component is used. In the case of a push button component, the Controller detects
the button press from the user, and informs the Model that the state has changed.
The Model then tells the View to repaint to reflect the new Model data.

Figure 2.3
Simplified anatomy of
a Swing component

Model-View-Controller architecture 37
2.4.2 What can MVC accomplish?

You may ask, “Why do I care about MVC?” The short answer is, “You don’t have
to,” as long as you are willing to accept the default MVC provided by Swing for
each component. In this simple scenario, you can blindly implement user interfaces
with Swing components without any knowledge of MVC; however, you will soon
realize that the default Swing MVC for most components is unacceptable for many
applications. For example, let’s assume that you want one column of a table to con-
tain a simulated tree control. The existing MVC for a Swing JTable offers nothing
resembling this capability, so you need to implement this yourself by enhancing, or
completely replacing, the default MVC.

 Understanding and using MVC offers two distinct capabilities: the ability to
change the look-and-feel of a component, and the ability to change the data Model
that a component uses. The next two sections describe these concepts in more
detail.

2.4.3 Custom rendering

The primary point of interest for MVC, is the custom
look-and-feel of a component. The more advanced part
of the Swing API permits developers to completely
replace the look-and-feel (View and Controller) with a
new functionality. There are two main advantages to
doing this. First, the user interface can be made consis-
tent across several platforms, rather than relying on the
target platform to render the application’s user interface

using the GUI controls provided by the operating system. Second, since the Model
and Controller parts of the component can remain unchanged, completely different
components can be devised by reusing much of a component that already exists.
Figure 2.4 shows the same radio button group using two different user interfaces.
The important point to make about figure 2.4 is that the code underneath the UI
did not change at all to create the different views.

 A more subtle and simple use of MVC is custom rendering. This allows the
developer to intercept the drawing mechanism of a component and attach new
code. This is useful for rendering one column, or one cell of a table, differently
from the rest. In the example shown in figure 2.5, the columns of a table containing
stock market data are rendered. Note that the Stock column contains a larger font
than the others do, and that the color of each column is rendered independently.

Figure 2.4
Two views of a radio button
component

38 CHAPTER 2
Swing basics
Additionally, one column or cell could contain a bitmap with, or without, addi-
tional text. When we examine the use of tables in a later chapter, you will see how
simple custom rendering can be.

2.4.4 Custom data models

The second key aspect of MVC is the provision to modify or replace the data
model. In a previous example, we wanted to create an instance of a table with one
column containing a simulated hierarchical tree. To accomplish this task, we need
to understand that the data model requires some enhancement. For example, a tree
introduces the concept of nodes, and these nodes can usually be in either an
expanded or collapsed state. Additionally, a given node typically has at least one
child and, possibly, a parent as well. All of these rudimentary tree features must be
integrated into an expanded data model for the table. Fortunately, almost every
Swing UI component provides a method to apply a different data model. As you
will see throughout part 2 of this book, applying new or enhanced data models to a
Swing component is usually a simple task.

 For each component that supports a custom data model, Swing implements an
associated default data model which it uses if you do not elect to create your own.
The default model helps to simplify the creation of these fairly complex components.

 For example, if you write code to create a simple table (we will examine this in
chapter 11), Swing uses the default data model for a table. As a result, you can cre-
ate and load the table with data using just a few lines of code by specifying your
table’s headers and column data in vectored arrays. The table’s default data model
accepts these data vectors and knows how to use them to display the title of each
column, how to the correct data for each cell, and so on. As a developer, you have
minimal involvement after the instance is created.

Figure 2.5 Example of custom rendering

Delegates 39
 Custom data models allow you to change the default behavior to suit your
own needs. In our table example, you may want to associate addition attributes,
such as the color of the font, with each cell, or, if you are displaying numbers, per-
haps you need to add an attribute to the model to control the format of the display.
There is really no limit to what can be accomplished with a custom data model.

 Since custom data models are such an import part of Swing, we will examine
them in much greater detail as we progress through this book. Specifically, we will
design and implement custom data models for Swing’s list, hierarchical tree, and
table components.

2.5 Delegates

By now, you have probably realized that the diagram in figure 2.3 was an overly
simplified view of a Swing component. In practice, the path between the View and
Controller is not limited to a single data path. Many tasks demanded by the user of
the Controller can affect the visual representation of a component, resulting in a
complex and, possibly, intertwined series of connections between the Controller
and the View. As a result, the diagram from figure 2.3 must be modified to create a
truer representation of the component (see figure 2.6).

2.5.1 What are delegates?

Sun’s solution to this complexity was to simplify the components’ internal commu-
nications paths by wrapping the View and Controller parts with a new mechanism
which outwardly exhibits the original simple model shown in figure 2.3. The class

Figure 2.6
More realistic anatomy of a
Swing component

40 CHAPTER 2
Swing basics
that combines the View/Controller part of the Model is called a delegate. The
result is a component representation like that shown in figure 2.7.

 From the outside, the Viewer and Controller appear to be a single delegate
entity, and this offers some distinct advantages. The combined View/Controller
allows both the appearance and behavior (the look-and-feel) of a component to be
handled as a single unit.

2.5.2 The ComponentUI class

You now know that every Swing UI object wraps its View/Controller code with a
delegate to better package its look-and-feel; however, you may be unclear about
how this happens. In Swing, the delegate part of a component is derived from a
class named ComponentUI. With a few simple method calls to a ComponentUI
instance, you can change the look-and-feel of any associated Swing component
object. For example, to assign a new delegate to a component (again, this refers to a
component’s look-and-feel), you can call the ComponentUI setUI() method. The
following table identifies some ComponentUI methods and their purposes.

Method Purpose

installUI(JComponent c) Installs this ComponentUI for the specified component

uninstallUI(JComponent c) Removes this ComponentUI from the specified component

paint(Graphics g, JComponent c) Allows access to the Graphics instance associated with the
specified component

Figure 2.7
Real anatomy of a
Swing component

Pluggable LookAndFeel 41
2.6 Pluggable LookAndFeel

In a Swing-based application, a class called LookAndFeel characterizes the plugga-
ble look-and-feel of all GUI components. It accomplishes this task by creating del-
egates for each component through the instantiation of ComponentUI objects.

 Even though LookAndFeel manages all the mundane work required to create
new View-Controllers for Swing components, it is complicated to change the com-
plete set of ComponentUI classes for the look-and-feel of an application. This can
be a tedious operation using ComponentUI, and is not for the faint of heart.

 Fortunately, the developers of Swing created a much simpler mechanism for
changing the entire look-and-feel for an application. A class called UIManager is
used to manage the complete pluggable look-and-feel, and, with it, you can easily
change the appearance of your application. To do this, you simply call the UIMan-
ager’s setLookAndFeel() method. Here is an example:

try {
UIManager.setLookAndFeel(

 "com.sun.java.swing.motif.MotifLookAndFeel");
SwingUtilities.updateComponentTreeUI(myFrame);

}
catch (Exception e)
{

System.err.println("Could not load LookAndFeel");
}

 The call to SwingUtilities.updateComponentTreeUI() informs all compo-
nents in the UI hierarchy of the application that the look-and-feel has changed. In
response to this, each component discards its current ComponentUI instance and
creates one associated with the new interface.

getPreferredSize(JComponent c) Return the preferred size for the specified component
based on this ComponentUI

getMinimumSize(JComponent c) Return the minimum size for the specified component
based on this ComponentUI

getMaximumSize(JComponent c) Return the maximum size for the specified component
based on this ComponentUI

Method Purpose

42 CHAPTER 2
Swing basics
 Swing currently supports five different pluggable user interfaces:

The Windows and Macintosh pluggable look-and-feel libraries are supported
only on their native platforms. Attempts to use them on other platforms will
result in an UnsupportedLookAndFeel exception when the application calls
the UIManager.setLookAndFeel() method.

 According to Sun, this limitation is artificial, and is in place only because
Microsoft will neither confirm nor deny the right to present the Windows interface
on non-Windows platforms.

The Organic look-and-feel library is not currently part of the Swing release,
but will be available separately from the JavaSoft web site.

2.7 Creating UI objects

In the previous section, you heard a lot about a class named ComponentUI. What
you didn’t hear about were all of the child classes derived from ComponentUI. For
the pluggable look-and-feel interface to work, each component must have a UI
class derived from ComponentUI (which contains the user interface code).

 The diagram in figure 2.8 shows the hierarchy in place for the ButtonUI fam-
ily. Note that, for each pluggable look-and-feel library (Windows, Motif, Metal, and

Windows This interface provides a look-and-feel conforming to the Microsoft Windows 95 user
interface.

Motif The Motif look-and-feel conforms to the X Windows Motif interface found on many
UNIX workstations.

Organic This pluggable look-and-feel interface is cross platform compatible. It presents a user
interface that some might find objectionable, but it may suit your tastes. The Organic
look-and-feel is available in several themes, including Santa Fe, Vancouver, Dallas,
and Darkroom, all of which simply modify the color palette.

Metal This look-and-feel resembles the Macintosh user interface, but has a distinctly chis-
eled appearance.

Macintosh This interface allows developers to create applications with an Apple Macintosh look-
and-feel.

Creating UI objects 43
so on), there is a ButtonUI class to generate the user interface. If you do the math,
taking each GUI component into account, you will realize that Swing supplies a
large number of classes derived from ComponentUI. So, if you decide to create an
entire pluggable look-and-feel, be prepared to invest some time and effort. Fortu-
nately, this is usually a simple task.

2.7.1 Creating a simple component

We will deal with the task of creating a custom look-and-feel in greater detail in a
later chapter, so, for now, we will just create a simple custom component interface
for a button. Listing 2.1 derives a new class from ButtonUI that creates a button
with a flat face.

// Imports
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;

class MyButtonUI extends ButtonUI
{

public void installUI(JComponent component)
{

System.out.println("MYButtonUI:installUI");
}

Listing 2.1 A custom UI example

Figure 2.8 ComponentUI hierarchy for a JButton

44 CHAPTER 2
Swing basics
public void uninstallUI(JComponent component)
{

System.out.println("MYButtonUI:uninstallUI");
}

public Insets getDefaultMargin(AbstractButton button)
 {
 return button.getInsets();
 }

public Insets getInsets(JComponent component)
 {
 return new Insets(5, 5, 5, 5);
 }

public Dimension getMaximumSize(JComponent component)
{

return getPreferredSize(component);
}

public Dimension getMinimumSize(JComponent component)
{

return getPreferredSize(component);
}

public Dimension getPreferredSize(JComponent component)
{

Graphics g = component.getGraphics();
Dimension rect = new Dimension();
FontMetricsfm = g.getFontMetrics();
Insets insets = component.getInsets();

rect.width = fm.stringWidth(
((JButton)component).getText())

+ insets.left + insets.right;
rect.height = fm.getHeight() + insets.top + insets.bottom;

return rect;
}

public void paint(Graphics g, JComponent component)
{

Dimension rect = new Dimension();
FontMetricsfm = g.getFontMetrics();
Insets insets = component.getInsets();

g.setColor(Color.white);
g.fillRect(0, 0, size.width - 1, size.height - 1);

Listing 2.1 A custom UI example (continued)

JComponent, the mother of Swing 45
 The results of using component
look-and-feel in a Java program are
shown in figure 2.9. Note that the exam-
ple code in listing 2.1 does not handle
mouse events, such as “mouse over” or
“mouse click” operations, so the custom
button acts more like a label than a but-

ton; however, the example does show how a custom look-and-feel can be imple-
mented with relative ease.

 The example in figure 2.9 shows a simple application containing two buttons.
The button on the left, labeled “Basic Button”, is a standard JButton component
from the Swing class library, while the button on the right is an instance of the
class MyButtonUI (from the previous code fragment) to implement the custom
appearance.

2.8 JComponent, the mother of Swing

We already know that all AWT components stem from a single parent (called Com-
ponent) which is responsible for all generic component manipulation. Swing derives
a new class, named JComponent, to further enhance the capabilities of a compo-
nent. As shown in figure 2.2, all Swing components are derived from JComponent.
Since understanding JComponent contributes greatly to the knowledge needed to
utilize Swing effectively, this section describes the details of the key facets of this
class. JComponent provides much of the functionality of all Swing components,
supplying many features common to all graphical controls.

2.8.1 Pluggable look-and-feel

We have already discussed the ability to create custom user interfaces, so we won’t
dwell on this feature. It is enough to say that JComponent is responsible for all of
the pluggable look-and-feel logic of a Swing component, and that these user inter-

g.setColor(Color.black);
g.drawString(((JButton)component).getText(),

insets.left, insets.top + fm.getAscent());
}

}

Listing 2.1 A custom UI example (continued)

Figure 2.9
Example of a custom button

46 CHAPTER 2
Swing basics
face characteristics can be specified by the developer, or optionally by the user, at
run time.

2.8.2 Keystroke handling

The architecture of JComponent was designed to handle keyboard events for each
component. Additionally, keyboard events can be nested such that the component’s
owner processes all events. For example, the top level panel (the owner of a compo-
nent) can manage the keyboard event generated by pressing the <F1> key. This way
the <F1> will be recognized regardless of which child component of the panel cur-
rently has the focus.

2.8.3 Action objects

Action-interface objects provide a single control point for actions generated by the
user. For example, if an application provides a toolbar button and a menu option
that perform the same task, they can be configured to point to the same action
object. If the action is disabled, all GUI items that reference that object are auto-
matically disabled. This capability can greatly reduce the amount of code required
to manage toolbars and menus.

2.8.4 Borders

JComponent fully supports borders. The border can be a single border, such as a
raised bevel, or can be a compound border which consists of two different border
styles applied to the control at the same time. For example, a raised bevel combined
with a lowered bevel creates a border with a thin raised edge, much like that of a
typical status bar.

2.8.5 Accessibility

Though noncommercial developers may downplay the need to support users with
special needs, others, particularly those involved with government projects, under-
stand these needs and are required to design applications accessible to everyone. All
Swing components are compatible with Assistive Technologies (a standard that pro-
vides alternative interfaces, such as Braille). This is accomplished using the Swing
Accessible interface and, where necessary, the AccessibleText interface. We will
not delve into the details of accessibility in this book, though these features will be
mentioned, when appropriate.

JComponent, the mother of Swing 47
 Sun provides an excellent article on the subject on accessibility. This details not
only the relevance that accessibility has, but also the design concepts and guidelines
you can apply to your own applications. You can find this article on Sun’s web site
at http://www.sun.com/ access/updt.HCI.advance.html .

2.8.6 Other features of JComponent

There are a number of other features provided by JComponent. These features
include: internationalization/localization, tooltips, automatic scrolling (for trees,
tables, and so on), double buffering of computers (for faster repaints), and slow-
motion graphics rendering (for debugging applications).

2.8.7 Controlling component size

AWT offers a single mechanism for controlling the size of a component—set-

Size() , which sets the absolute size in pixels. This technique works fine for heavy-
weight components, where the look-and-feel of the user interface is constant, but
can cause problems when applied to the flexible user interfaces of Swing.

 For backward compatibility, JComponent does provide all of the original siz-
ing APIs from the AWT Component class, but Sun discourages the use of these
methods for absolute sizing and positioning of Swing components. In Swing-based
applications, the look-and-feel can be changed dynamically, and, as a result, apply-
ing absolute sizes is inappropriate. To address this issue, Swing provides three sizing
methods that will be used extensively in the examples in this book. These methods
are outlined below.

setPreferredSize()
getPreferredSize()

This method sets the desired size of the component when drawn. In
response to this method, Swing will make its best attempt to lay out the
component such that this size is accommodated. If the current look-and-
feel is incapable of drawing the component at the preferred size, it will
adjust the dimensions to offer a best fit.

setMinimumSize()
getMinimumSize()

This method determines the minimum dimensions with which the compo-
nent can be drawn. During lay out, the component will still make its best
effort to draw at the preferred size, but in circumstances where the pre-
ferred dimensions are smaller than the minimum size, the minimum
dimensions will be used.

setMaximumSize()
getMaximumSize()

This method controls the maximum dimensions at which a component
can be drawn. If, during component lay out, the current size exceeds the
maximum, the component size will default to the specified maximum
value.

http://www.sun.com/ access/updt.HCI.advance.html

48 CHAPTER 2
Swing basics
 Controlling the minimum, maximum, and preferred sizes of a component
object allows layout managers to resize dimensions without being concerned about
the current look-and-feel in place, or the potential that this user interface may be
changed at run time.

 The JComponent sizing methods are particularly useful for embedding com-
ponents inside a container object, such as, a split pane. Setting the minimum and
maximum sizes of embedded components controls the range of the divider within
the splitter pane, for example, preventing divider positioning to invalid or inappro-
priate positions.

2.8.8 JComponent constants

JComponent includes a number of constants used to control how the register-

KeyboardAction() method behaves. This method intercepts keyboard accelerator
activity for a component. The component can be configured to intercept keys when
the window is focused, or if the key is pressed while one of the component’s chil-
dren have the focus. The constants are as follows:

public static final int WHEN_FOCUSED
public static final int WHEN_ANCESTOR_OF_FOCUSED_COMPONENT
public static final int WHEN_IN_FOCUSED_WINDOW

public static final int UNDEFINED_CONDITION

 This constant is used by some of the API methods to indicate that no condi-
tion is defined.

public static final String TOOL_TIP_TEXT_KEY

 This constant contains the comment to display when the cursor is over the
component, also known as a value tip, flyover help, or flyover label.

2.8.9 JComponent variables

protected transient ComponentUI ui

This variable contains the associated instance of the UI component. This value is
dependent on the selected look-and-feel in use.

protected EventListenerList listenerList

 This variable holds the list of event listeners associated with this JComponent
instance.

protected AccessibleContext accessibleContext

JComponent, the mother of Swing 49
 This variable is used by the accessibility support mechanism. JComponent
contains all of the methods in interface Accessible , though it won’t actually imple-
ment the interface for them. Implementation is the responsibility of the individual
objects that extend JComponent.

2.8.10 JComponent constructors

JComponent()

The default constructor creates an instance of a JComponent. JComponent is an
abstract class, and, as such, only derived child classes may call this constructor.

2.8.11 JComponent significant method groupings

public void updateUI()
protected void setUI(ComponentUI x)
public String getUIClassID()

These pluggable look-and-feel methods are used to configure and control the user
interface being used.

protected Graphics getComponentGraphics(Graphics g)
protected void paintComponent(Graphics g)
protected void paintChildren(Graphics g)
protected void paintBorder(Graphics g)
public void update(Graphics g)
public boolean isPaintingTile()
public Graphics getGraphics()
public void setDebugGraphicsOptions(int debugOptions)
public int getDebugGraphicsOptions()
public void repaint(long tm, int x, int y, int width,

int height)
public void repaint(Rectangle r)
public boolean isOptimizedDrawingEnabled()
public void paintImmediately(int x, int y, int w, int h)
public void paintImmediately(Rectangle r)

 This group of methods offers support for handling the graphics instances and
repainting the component.

public boolean isFocusCycleRoot()
public void setNextFocusableComponent(Component aComponent)
public Component getNextFocusableComponent()
public void setRequestFocusEnabled(boolean aFlag)
public boolean isRequestFocusEnabled()
public void requestFocus()
public void grabFocus()

50 CHAPTER 2
Swing basics
public boolean requestDefaultFocus()
public boolean isFocusTraversable()
protected void processFocusEvent(FocusEvent e)
public boolean hasFocus()

 This group of methods controls how the component reacts to the focus. Like
the AWT Component class, Swing components support a series of methods to han-
dle the keyboard focusing mechanism. Components can request focus, or simply
grab it. Additionally, JComponent can enable or disable the focus to prevent
instances from receiving focus. For example, labels should never receive the key-
board focus because they do not support any form of editing.

public void setBorder(Border border)
public Border getBorder()

 These methods manage the border applied to a component. The next chapter
will illustrate that each JComponent derivative supports the capability to own a bor-
der. Border management of all Swing components is controlled at the JComponent
level.

public void setPreferredSize(Dimension preferredSize)
public Dimension getPreferredSize()
public void setMaximumSize(Dimension maximumSize)
public Dimension getMaximumSize()
public void setMinimumSize(Dimension minimumSize)
public Dimension getMinimumSize()
public Insets getInsets()
public float getAlignmentY()
public void setAlignmentY(float alignmentY)
public float getAlignmentX()
public void setAlignmentX(float alignmentX)
public void setBounds(int x, int y, int w, int h)
public void setBounds(Rectangle r)
public Rectangle getBounds(Rectangle rv)
public Dimension getSize(Dimension rv)
public Point getLocation(Point rv)
public int getX()
public int getY()
public int getWidth()
public int getHeight()

 JComponent controls all sizing, positioning, and alignment for all Swing-
based components. This group of methods controls such aspects of a component as
its minimum, maximum, and preferred size, and the alignment of the object.

public void registerKeyboardAction(ActionListener anAction,

JComponent, the mother of Swing 51
KeyStroke aKeyStroke, int aCondition)
public void unregisterKeyboardAction(KeyStroke aKeyStroke)
public KeyStroke[] getRegisteredKeyStrokes()
public int getConditionForKeyStroke(KeyStroke aKeyStroke)
public ActionListener getActionForKeyStroke(

KeyStroke aKeyStroke)
public void resetKeyboardActions()

 This method group manages keyboard actions for the component. Each
JComponent derivative inherently supports keyboard accelerator handling. Key-
board actions for any user-enterable character can be intercepted and assigned a
particular action. Actions for each component can be registered or unregistered.

public void setToolTipText(String text)
public String getToolTipText()
public String getToolTipText(MouseEvent event)
public Point getToolTipLocation(MouseEvent event)
public JToolTip createToolTip()

 ToolTips, also known as fly-over help or fly-over labels, are a trait of every
Swing-based UI component. As this list shows, JComponent supports a number of
methods to create and manage ToolTip text for the component instance.

public void setDoubleBuffered(boolean aFlag)
public boolean isDoubleBuffered()

 Unlike AWT, Swing components support double buffering. This simplifies
dynamic user interface aspects, such as animation. AWT demanded custom code to
manage display buffering, but for components derived from JComponent, double
buffering is simply controlled by these two methods.

public Accessible getNextAccessibleSibling()
public Accessible getPreviousAccessibleSibling()
public Accessible getAccessibleAt(Point p)
public String getAccessibleName()
public void setAccessibleName(String s)
public String getAccessibleDescription()
public void setAccessibleDescription(String s)
public AccessibleStateSet getAccessibleStateSet()
public AccessibleRole getAccessibleRole()
public Number getAccessibleValue()
public boolean setAccessibleValue(Number n)
public Number getMinimumAccessibleValue()
public Number getMaximumAccessibleValue()
public Accessible getAccessibleParent()
public void setAccessibleParent(Accessible a)
public int getAccessibleChildrenCount()

52 CHAPTER 2
Swing basics
public Accessible getAccessibleChild(int i)
public int getAccessibleActionCount()
public String getAccessibleActionDescription(int i)
public boolean doAccessibleAction(int i)
public AccessibleText getAccessibleText()
public int getAccessibleSelectionCount()
public Accessible getAccessibleSelection(int i)
public void addAccessibleSelection(int i)
public void removeAccessibleSelection(int i)
public void clearAccessibleSelection()
public void selectAllAccessibleSelection()

 Accessibility is significant if your applications will be used by people requiring
additional assistance, such those who are blind. Though we will not examine these
capabilities in this book, all Swing components derived from JComponent support
Assistive Technology as a result of this group of methods.

 For a description of other method groupings provided by the JComponent
class, see the online API description included with the JFC product.

2.9 Chapter summary

In this chapter, we have covered all of the basic concepts of the Swing class library,
starting with a definition of Swing and its component classes. Then, we reviewed
the Model-View-Controller architecture and applied it to the Swing class library.
This led to a quick study of pluggable look-and-feel, accompanied by a simple
example of a component with a custom user interface.

 Then, we looked at the internals and features of JComponent, and we exam-
ined the capabilities built into every Swing component. The use of these capabilities
will become more apparent in part 2 of this book, as we begin to create applications
using Swing components.

 Finally, we briefly described each of the packages that make up the Swing class
library. The contents and use of these packages will become clear as you progress
through the remainder of this book.

Part II
Using Swing
components

Part 2 of this book contains the details required to use each of the key Swing com-
ponents. You will start by looking at Swing panels and panes (the most basic compo-
nents) and then build on this knowledge to include buttons, menus, and more.
Finally, we will examine more complex components, such as tables and hierarchical
trees. When appropriate, we will also look at some of the more subtle aspects of Swing.
The concepts you will learn in this part of the book can be applied to your own appli-
cations for either visual effect or performance enhancement.

3Panels
and panes

In this chapter
■ Swing panels

■ Tabbed and scrolling panes

■ Additional Layout Manager provided by JFC

56 CHAPTER 3
Panels and panes
In this chapter, you will begin to learn about some of the common components
built into Swing. If you are familiar with AWT, then you know that you require
either an instance of Frame or Applet as a starting point, and from there you can
add additional panels and components to complete the code.

 With Swing, all user interface component class names begin with the letter J,
and, where possible, the name is the same as the AWT class it replaces. So, the basic
starting point for a Swing-based program is either JFrame or JApplet. We will exam-
ine both of these classes, followed by a discussion of JPanel (a replacement for the
AWT Panel class), the various flavors of panes provided by Swing, and the new lay-
out managers supplied in the Swing class library.

3.1 JFrame

Simply put, if you know how to use the AWT Frame class, then you can use JFrame.
JFrame is an extended version of Frame that adds support for special painting
behavior, and for child components that are managed by a JLayeredPane (you will
learn a little more about this class later in the chapter). Additionally, JFrame has
support for Swing MenuBars, allowing them to be placed not only at the top of the
window, but also anyplace within the frame (though, if the menu is attached to the
frame using the setMenuBar() method, it will always be located at the top of the
window).

 All objects associated with a JFrame are managed by its only child, an instance
of JRootPane. JRootPane is a simple container for all other panes for the JFrame
instance. The following hierarchy shows the nesting of objects within a JFrame
instance:

 JFrame
 JRootPane
 glassPane
 layeredPane
 [menuBar]
 contentPane

3.1.1 A JFrame application

As with the AWT Frame class, you use an instance of JFrame to build the primary
window of applications rather than applets. Of course, a JFrame can also be used to
create secondary windows to an application or an applet. The code below creates a
very simple application class using JFrame.

JFrame 57
 Listing 3.1 creates a very simple Java application using JFrame. Although
Swing provides its own panel and label classes, they have been intentionally left out
of this example. Instead, the AWT equivalents have been used. The result of this
application is shown in figure 3.1.

import java.awt.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
public TestFrame()
{

setTitle("Test Application");
setSize(100, 100);
setBackground(Color.gray);

Panel topPanel = new Panel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a label to look at
Label labelHello = new Label("Hello World!");
topPanel.add(labelHello, BorderLayout.NORTH);

}

// Main program started
public static void main(String args[])
{

// Create an instance of the Test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 3.1 “Hello World!” using JFrame

Figure 3.1
The “Hello World!” application

58 CHAPTER 3
Panels and panes
It is possible to mix AWT components and Swing components within a
Swing-based application; however, due to Z-order limitations, you may
experience some annoyances during screen repaints. AWT components
appear to get quickly painted in the upper-left corner of the frame before
being correctly positioned, resulting in unexpected flicker.

When possible avoid using AWT components in Swing applications.
Use the Swing equivalents instead.

 The example in listing 3.1 appears pretty much as expected, containing code as
it would exist using AWT. There is one significant difference, however. The line:

getContentPane().add(topPanel);

appears a bit odd, and, in particular, the call to getContentPane() . JFrame exhibits
a slight incompatibility when compared to the AWT Frame class because it contains
only a single child (which is an instance of JRootPane). In order to add any other
components to the JFrame instance, they must be added to the root pane. This is
unlike the AWT Frame class which creates an instance of a Panel automatically,
allowing components to be added directly to the frame instance. To access the root
pane, JFrame provides a method called getContentPane() .

It is impossible to add components directly to a JFrame using the following
syntax:

frame.add(component);

Instead you must always use this notation:
frame.getContentPane().add(component);

Failure to add components using the getContentPane() mechanism will
result in the generation of an exception. The best solution to this problem is
to create a panel, add it to the content pane, then add all components to the
new panel.

 The JFrame class offers some other interesting features. In addition to the
content pane, JFrame also provides two other panes: JLayeredPane and JGlassPane.
We will examine JLayeredPane in more detail later in this chapter.

JFrame 59
 The glass pane allows you to display components in front of the existing
JFrame instance, which can be useful in some applications. For example, suppose
you want to create a network application that allows users on different computers to
draw on a common “white board.” You can display the local user’s drawing on the
content pane of the application, while on the glass pane, you could display the
remote user’s mouse pointer and any drawing he or she performs.

 Another practical use for the glass pane is in game development. The back-
ground of your game can be shown in the content pane, and any animated items
can be drawn on the glass pane. Building your game in this way greatly simplifies
the redrawing you must do when an image moves on the screen.

3.1.2 JFrame variables

protected JRootPane rootPane

This variable contains an instance of the root pane associated with the frame. Note
that all components owned by the frame must be added to the root pane, which is
unlike the technique familiar to AWT users.

protected boolean canAdd

 This variable controls whether or not components can be added directly to the
frame. Under most circumstances, this variable will contains a false value.

protected AccessibleContext accessibleContext

 The accessibleContext variable contains an instance of the context used by
the Assistive Technology mechanism of the component. In most situations, this
variable will be unused.

3.1.3 JFrame constructors

JFrame()

This constructor creates a new JFrame instance that is initially invisible.

JFrame(String title)

 This constructor creates a new JFrame instance that is initially invisible. The
title of the frame (shown in the title bar of the frame) is assigned the text specified
by the title parameter.

3.1.4 JFrame significant method groupings

public void setJMenuBar(JMenuBar menu);

60 CHAPTER 3
Panels and panes
Like its AWT cousin, JFrame will support a single application menu bar. We will see
how menus are created in chapter 7; however, once created, they can be added with
the setMenuBar() method.

public void setDefaultCloseOperation(int operation);
public int getDefaultCloseOperation();

 A unique feature of JFrame is the ability to assign how the window’s close
operation works. JFrame implements a method to set and get the value of the
default close operation.

protected JRootPane createRootPane();
protected void setRootPane(JRootPane root);
public JRootPane getRootPane();
public Container getContentPane();
public void setLayeredPane(JLayeredPane layered);
public JLayeredPane getLayeredPane();
public void setGlassPane(Component glass);
public Component getGlassPane();

 A JFrame instance can contain three different panes: a layered pane, a glass
pane, and a root pane. We’ve already talked about the root pane. The layered pane
is the invisible pane on top of the frame’s root pane. It can be accessed to display
dynamic items (such as cursors) above the frame contents.

3.2 JApplet

JApplet is the Swing equivalent of the AWT Applet class. Much like JFrame, JAp-
plet has extensions to allow for interposing input and special painting behavior, and
also supports child components that are managed by a root pane (recall the root
pane description in the previous section) . Unlike the AWT applet class, JApplet
permits the addition of menu bars and toolbars. This is a feature sorely lacking from
AWT in previous versions of Java.

3.2.1 A JApplet sample applet

The code shown in listing 3.2 performs the same task as the example for JFrame
shown previously; however, this code executes within the AppletViewer or a
browser. Note that the restrictions of JFrame with regard to getContentPane()

JApplet 61
apply equally to JApplet. The output produced by executing the code in listing 3.2
is shown in figure 3.2.

3.2.2 JApplet variables

protected boolean canAdd

This variable controls whether or not components can be added directly to the
applet. Under most circumstances, this variable will contain a false value.

protected AccessibleContext accessibleContext

import java.awt.*;
import com.sun.java.swing.*;

public class TestApplet
extends JApplet

{
public TestApplet()
{
}

public void init()
{

setSize(100, 100);
setBackground(Color.gray);

Panel topPanel = new Panel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);
Label labelHello = new Label("Hello World!");
topPanel.add(labelHello, BorderLayout.NORTH);

}
}

Listing 3.2 “Hello World!” using JApplet

Figure 3.2
The “Hello World!” applet

62 CHAPTER 3
Panels and panes
 The accessibleContext variable contains an instance of the context used by
the Assistive Technology mechanism of the component. In most situations, this
variable will be unused.

3.2.3 JApplet constructors

JApplet()

This constructor creates a new JApplet instance.

3.2.4 JApplet significant method groupings

public void setJMenuBar(JMenuBar menu);
public JMenuBar getJMenuBar();

If you have written AWT applets in the past, then you realize that it was impossible
to assign a menu bar to an applet. With Swing, this limitation is a thing of the past.

public void setContentPane(Container contentPane);
public Container getContentPane();
public void setLayeredPane(JLayeredPane layered);
public JLayeredPane getLayeredPane();
public void setGlassPane(Component glass);
public Component getGlassPane();
protected void setRootPane(JRootPane root);
public JRootPane getRootPane();
protected JRootPane createRootPane();

 A JApplet instance, like a JFrame, can contain three different panes: a layered
pane, a glass pane, and a root pane. The methods in this group manage these panes
for the JApplet, allowing you to control where various panels, components, and
pop-ups are placed within the hierarchy of the window.

3.3 Creating simple panels

The Swing equivalent of AWT’s Panel class is JPanel. With few exceptions, every-
thing you know about Panel applies equally to JPanel. JPanel supports all of the
AWT layout managers and also the new layouts provided by Swing.

 For example, if you recall the GridLayout source code from chapter 1, we can
rewrite this as a Swing application in the following way:

import java.awt.*;
import com.sun.java.swing.*;

class TestFrame

Creating simple panels 63
extends JFrame
{

public TestFrame()
{

setSize(200, 200);
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new GridLayout(3, 2));
getContentPane().add(topPanel);
topPanel.setBackground(Color.lightGray);

topPanel.add(new Button("One"));
topPanel.add(new Button("Two"));
topPanel.add(new Button("Three"));
topPanel.add(new Button("Four"));
topPanel.add(new Button("Five"));

}
}

 Notice that the TestFrame class is now derived from JFrame rather than from
Frame, and it creates a JPanel to which the GridLayout manager is applied. The but-
tons are now added to the JPanel instance, rather than to the main frame.

An instance of JPanel is double buffered by default. Developers of AWT code
will appreciate this, since it simplifies dynamic aspects of a panel, such as an-
imation, and reduces flicker while repainting. Double buffering can be
turned off with a call to the following method from the JComponent class:

xcPanel.setDoubleBuffer(false);

3.3.1 JPanel constructors

JPanel(LayoutManager layout, boolean isDoubleBuffered)

This constructor creates a new JPanel instance with the specified layout. The dou-
ble buffering capabilities of the panel are controlled by the specified boolean value.

JPanel(LayoutManager layout)

 This constructor creates a new JPanel instance with the specified layout.

JPanel(boolean isDoubleBuffered)

64 CHAPTER 3
Panels and panes
 This constructor creates a new JPanel instance with a default FlowLayout and
the specified double buffering configuration.

JPanel()

 This constructor creates a new JPanel instance with a default FlowLayout and
the double buffering enabled.

3.4 Simple border types

Borders can be applied to any Swing component, but in most instances it is a panel
instance that gets a specific border style, so we will discuss these styles in this sec-
tion. All of the information in this section applies to all other Swing components;
for example, you can apply a border to a label or text field using the techniques
described in this section.

 Swing implements several distinct border styles, shown in the following table:

 Figure 3.3 shows all of the simple border styles provided by the Swing class
library. These borders range from the ordinary to the obscure. To set the border of
a JPanel, use code similar to the following fragment:

import com.sun.java.swing.*;
import com.sun.java.swing.border.*;
{

.

.

.
JPanel myPanel = new JPanel();

Border Description

BevelBorder A 3-D border that supports a raised or lowered appearance

CompoundBorder A border consisting of nested borders. The next section of this chapter
discusses this special case.

EmptyBorder A border permitting you to specify reserved space for an invisible border

EtchedBorder A border that has the appearance of an etched line

LineBorder A single color line of an arbitrary thickness

MatteBorder A border allowing tiling of a specified icon or color

SoftBevelBorder A border like BevelBorder , but having softer edges

TitledBorder A border allowing a title string to be displayed on one of several orienta-
tions and alignments

Simple border types 65
myPanel.setBorder(new BevelBorder (BevelBorder.RAISED));
.
.
.

}

 Swing provides a shortcut class specifically for creating borders. This class,
named BorderFactory, can be accessed by importing the com.sun.java.swing.bor-

der package. The following code fragment sets a raised, beveled border using Border-
Factory:

import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

{
.
.
.
JPanel myPanel = new JPanel();
myPanel.setBorder(BorderFactory.createRaisedBevelBorder());
.
.
.

}

Figure 3.3 Simple border styles supported by Swing

66 CHAPTER 3
Panels and panes
Use borders to create group boxes. Bordered panels may then be used to
group functionality and visually segregate UI components. They could be
used to enclose a set of related UI objects, such as radio buttons or check
boxes. The contents of a group box are usually at a lower level of detail than
is the label in the group box title. Use 3-D bevel border types to give the ap-
plication a less dated look.

3.4.1 Creating a custom border class

The borders supplied by Swing are adequate (and standard) enough for most appli-
cations, but there may be times when a custom border is desirable. You can derive
new borders by designing a class that implements the Border interface. This task is
relatively simple if you use the following code sample as a base:

class MyBorder implements Border
{

private Color color;

public MyBorder(Color color)
{

this.color = color;
}

public void paintBorder(Component component,
 Graphics g, int iX, int iY,

int iWidth, int iHeight)
{

Insets insets = getBorderInsets(component);

g.setColor(color);
g.fillRect(iX, iY, 3, iHeight);
g.fillRect(iX, iY, iWidth, 3);
g.setColor(xcColor.darker());
g.fillRect(iX + iWidth - insets.right, iY,

3, iHeight);
g.fillRect(iX, iY + iHeight - insets.bottom

iWidth, 3);
}

public Insets getBorderInsets(Component component)
{

return new Insets(3, 3, 3, 3);
}
public boolean isBorderOpaque()
{

Compound border creation 67
return false;
}

}

3.5 Compound border creation

Swing also supports compound borders (multiple borders applied to the same com-
ponent). The need for this feature may not be immediately obvious, but there will
certainly be times when you will want to create a component with a lowered border
inside a raised border. Think of a status line, for example. You can create a status
line by adding a text field to a raised panel, but this requires several lines of code
and the creation of at least one superfluous panel. You will also find a compound
border useful for applying an EmptyBorder around some other border type in order
to create a larger-than-normal white space around a component.

 A better solution is to use a compound border. The code fragment below
implements a compound border by combining a raised bevel with one that is
lowered.

import com.sun.java.swing.*;

{
.
.
.
JPanel myPanel = new JPanel();
myPanel.setBorder(BorderFactory.createCompoundBorder(

new BevelBorder (BevelBorder.RAISED),
new BevelBorder (BevelBorder.LOWERED)));

.

.

.
}

The first parameter to createCompoundBorder() represents the outside
border, and second parameter is the inside border.

 Another example of a compound border is a border that possesses a visual
style (an etched edge, for example) and also requires a title. Swing provides a
slightly different interface to achieve this type of border. As shown in the following
code fragment, the constructor of the TitledBorder class accepts a Border type as a

68 CHAPTER 3
Panels and panes
parameter. This border can be any of the current borders supplied by Swing, or can
be one of your own design if you create a class that extends Border.

import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

{
.
.
.
myPanel.setBorder(new TitledBorder(

new EtchedBorder(), "Border Title"));
.
.
.

}

 Finally, let’s take a look at some code that generates a very complex border.
Study the following code fragment to see if you can determine its results. Note that
the code could have been written as one continuous line, but that the use of the
temporary variable helps clarify its purpose.

import com.sun.java.swing.*;

import com.sun.java.swing.border.*;

{
.
.
.
Border border1 = new TitledBorder(new EtchedBorder(),

"A very complex title");
myPanel.setBorder(new TitledBorder(border1, "Another Title",

TitledBorder.RIGHT, TitledBorder.BOTTOM));
.
.
.

}

 Did you get it right? Figure 3.4 shows the actual output from these two lines
of code. As you can see, the TitledBorder class, and Swing border classes in general,
provides the flexibility to create a border in almost any way you choose.

Swing layout managers 69
3.6 Swing layout managers

In chapter 1, we reviewed layout managers provided by AWT in Java 1.1. Though the
AWT managers are completely compatible with Swing, and will be sufficient for most
applications, Swing supports four additional layout managers to meets its own needs.
The following table summarizes the Swing layout managers and their purposes:

 Of the layout managers listed here, only BoxLayout will be useful in typical
application development. The other layout managers discussed in the previous table
may be useful to advanced Swing users, though these managers are quite specific
and are usually applicable only to the components for which they are intended.
Unless you are writing a new scrolling pane, you are unlikely to be able to apply the
ViewportLayout manager to any other panel.

 Since BoxLayout will be useful, we should look at it in a bit more detail. The
BoxLayout organizes the components it manages along either the X- or Y-axis of
the owner panel. The alignment of these components can be left or right justified,
or centered (the default). The code in listing 3.3 creates two panels that support the
BoxLayout. The upper panel aligns its components along the Y-axis, and the lower

Layout Manager Description

BoxLayout A layout manager that aligns components along the X- or Y- axis of a
panel. It attempts to use the preferred width and height of components
during the layout process.

OverlayLayout Arranges components one on top of another, aligning the base point of
each component in a single location

ScrollPaneLayout A layout manager specific to scrolling panes

ViewportLayout A layout manager specific to view ports within scrolling panes

Figure 3.4
A very complex border

70 CHAPTER 3
Panels and panes
panel aligns along the X-axis. To each of these panels, we add three components of
varying sizes so we can note the effects they have on the BoxLayout manager.

import java.awt.*;
import com.sun.java.swing.*;

class TestFrame

extends JFrame
{

public TestFrame()
{

setTitle("BoxLayout Application");

JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create panels to display X- and Y-
// axis box layouts
JPanel yAxisPanel = createYAxisPanel();
topPanel.add(yAxisPanel, BorderLayout.CENTER);
JPanel xAxisPanel = createXAxisPanel();
topPanel.add(xAxisPanel, BorderLayout.SOUTH);

}

public JPanel createYAxisPanel()
{

JPanelpanel = new JPanel();
panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
panel.setBackground(Color.lightGray);
// Add some components to this panel
panel.add(new JButton("Button 1"));
panel.add(new TextArea("This is a text area"));
panel.add(new JCheckBox("Checkbox 1"));

return panel;
}

public JPanel createXAxisPanel()
{

JPanelpanel = new JPanel();
panel.setLayout(new BoxLayout(panel, BoxLayout.X_AXIS));
panel.setBackground(Color.gray);

// Add some components to this panel
panel.add(new JButton("Button 1"));

Listing 3.3 Sample using BoxLayout

Swing layout managers 71
 The output produced by this example is shown in figure 3.5. Notice how the
components are laid out in each of the panels. In the upper panel, components are
displayed vertically, and are centered horizontally. In the lower window (dark gray)
the components are centered vertically, but are laid out in a horizontal direction,
much like the FlowLayout manager would do it. Unlike FlowLayout, however, the
BoxLayout manager will not wrap components to the next line. Instead, compo-
nents will be reduced to the limits permitted by their specified minimum sizes, and
if there is still insufficient panel real estate, the layout manager will simply clip com-
ponents. This applies equally to panels with a vertical box layout.

 Since some Swing components are ideally suited to the BoxLayout manager,
we will examine a more practical implementation later. When adding Swing check
boxes or radio buttons to a panel, it is highly recommended that you use the Box-
Layout, particularly if you have several components to lay out in tabular form. If
you want to peek ahead to see an example using BoxLayout, you will find the
source code in chapter 4, listing 4.5.

 To make using the BoxLayout manager easier, Swing also provides a class
named Box that creates a container with the BoxLayout manger applied. To quickly
construct a panel of this type, use code similar to the following:

// Create a new panel
Box boxPanel = new Box(BoxLayout.Y_AXIS);

// Add components
boxPanel.add(new JButton("Button 1"));

panel.add(new TextArea("This is a text area"));
panel.add(new JCheckBox("Checkbox 1"));

return panel;
}

// Main program started
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.pack();
mainFrame.setVisible(true);

}
}

Listing 3.3 Sample using BoxLayout (continued)

72 CHAPTER 3
Panels and panes
boxPanel.add(new TextArea("This is a text area"));
boxPanel.add(new JCheckBox("Checkbox 1"));

3.7 Tabbed Panes

The tabbed pane is one of the most unique controls made popular by graphical user
interfaces (such as those provided by Microsoft Windows 95 and IBM OS/2 Work-
place Shell). This control allows developers to stack pages of information into a sin-
gle point of reference, and it helps the user navigate through the plethora of
features found in most modern software applications.

 Until the introduction of Swing, Java developers were forced to either live
without the conveniences of the tabbed control, or they had buy, or write, one that
met their needs. Of course, since most of us are unwilling to write a tabbed pane
control and likely too miserly to pay to use someone else’s code, we tend to find
other solutions. Fortunately, Swing offers Java developers a free tabbed pane com-
ponent that is both complete and powerful. This component is implemented by the
JTabbedPane class, and is the subject of this section.

Figure 3.5 BoxLayout program output

Tabbed Panes 73
 As far as we are concerned, a tabbed pane is just like any other Swing compo-
nent. We can add it to a panel, and we can add components to it, usually in the
form of pages. To each of the pages in a tabbed pane, we can associate any other
Java UI components, panes, or even other tabbed panes, and since the JTabbed-
Pane control extends JComponent, it derives a lot of functionality for special fea-
tures (such as tool tips, keyboard handling, and so on).

Avoid stacking tabs. If you are in need of more than six tabs in a single row,
consider that you may need another dialog. Users find it disconcerting to
hunt for items in many tabs, especially when they are stacked and a row of
tabs shifts forwards when selected. A common mistake is to overload a dialog
with tabs for new features.

 The best place to see an example of Swing’s tabbed pane component and the
capabilities it provides is the SWINGSET demonstration program that ships with
the Swing product. Figure 3.6 shows one of the many pages included in the
SWINGSET application tabbed pane. Notice that the tabs for each page have a
title, and can optionally also include graphics. The pages themselves can own an
array of graphical components. In the case of the page shown in figure 3.6, this
includes a very fancy list box, radio buttons, check boxes, and buttons.

3.7.1 Creating a tabbed pane

In spite of its apparent complexity, creating a tabbed pane is a simple exercise. The
following code fragment creates an instance of JTabbedPane:

import com.sun.java.swing.*;

{
.
.
.
tabbedPanel = new JTabbedPane();
topPanel.add(tabbedPanel, BorderLayout.CENTER);
.
.
.

}

74 CHAPTER 3
Panels and panes
 Note that this sample does not yet create any pages for the tabbed pane. The
code would run properly, but would produce a gray box where you would expect to
see the control.

Use tabs to group functionality within modal dialogs. In general, tabs are
found in modal dialogs, such as property sheets, rather than being used to
drive an entire application. Try to order the tabs from left to right by fre-
quency or by importance of use. Don’t overload a tab with too many con-
trols; if you are running out of space, consider that you may need to invoke
another dialog or create another tab.

Figure 3.6 Use of a tabbed pane in SWINGSET

Tabbed Panes 75
3.7.2 Adding and inserting pages

Adding pages to an existing tabbed pane is almost as easy as creating the control. A
page usually consists of a JPanel containing child components, and it is typically
constructed using the same techniques you would use for a dialog box or frame
window. The following code fragment demonstrates page creation.

import com.sun.java.swing.*;

{
.
.
.
// Create the page panel
pagePanel = new JPanel();
pagePanel.setLayout(new BorderLayout());
pagePanel.add(new JLabel("Sample Label"),

 BorderLayout.NORTH);
pagePanel.add(new JTextArea(""),

 BorderLayout.CENTER);
pagePanel.add(new JButton("Button 1"),

 BorderLayout.SOUTH);

// Add the panel to the tabbed pane
tabbedPanel.addTab("Page 1", pagePanel);
.
.
.

}

 You would, of course, use similar code for every page you want to add to the
tabbed pane. Note, however, that this code adds pages sequentially, a process that
may not always be appropriate. There may be occasions, while in the process of exe-
cuting an application, when you need to insert a page. In addition to adding pages,
the Swing JTabbedPane class also provides a mechanism to insert pages anywhere
within the page hierarchy. To accomplish this, the actual page creation is performed
using JPanel just as it was for the add operation, but the insertion is invoked with a
line of code similar to the following:

// Insert the panel into the tabbed pane
tabbedPanel.insertTab("Inserted Page",

new ImageIcon("image.gif"),
pagePanel,
"My tooltip text",
iLocation);

76 CHAPTER 3
Panels and panes
 In this example, the variable iLocation represents the page index (position)
where the page will be inserted. This example also slides in a couple of new fea-
tures you have not previously seen. The new ImageIcon("image.gif") parameter
loads a GIF file into an instance of the ImageIcon class and attaches it to the tab.
This is exactly how the graphics were added to the tabs in the figure 3.6 SWING-
SET sample.

All pages contained by a JTabbedPane are indexed starting at 0. For example,
in a tabbed pane with five pages, the first page is 0 and the last page is four.
Many of the JTabbedPane methods refer to page indices.

3.7.3 Removing pages

Pages contained by a JTabbedPane component can also be removed at run time.
This is accomplished using a line of code similar to the following:

tabbedPanel.removeTabAt(iLocation);

where iLocation is the index of the page to be removed. If, for some reason, you
want to remove all pages from the tabbed pane, you need to keep track of the num-
ber of pages remaining, otherwise the Java VM will generate an unexpected excep-
tion. To do this, use code similar to this:

while(tabbedPanel.getTabCount() > 0)
tabbedPanel.removeTabAt(0);

 The getTabCount() method returns an integer containing the total number of
pages in the panel.

3.7.4 Selecting pages

There are two mechanisms to select a page. The first and easier (since it involves no
additional code) is for the user to click the desired tab. When this operation is per-
formed, the JTabbedPane instance automatically moves the selected page to the
front of the pane and updates the tabs.

 However, as a developer, you can also write code to force any page in the
tabbed pane to move to the front of the page stack. To do this, call the setSelect-

edIndex() method with the index of the page you want up front. Use code similar
to this:

Tabbed Panes 77
tabbedPanel.setSelectedIndex(iLocation);

 A second method to accomplish this uses the component reference of the
page. The component reference is typically the instance of the panel that was refer-
enced when the page was added. Assuming you know the value of this instance, you
can utilize the following code:

tabbedPanel.setSelectedComponent(pagePanel);

3.7.5 A complete JTabbedPane example

So far, all you have seen are snippets of code to handle a few of the functions of a
tabbed control using the Swing JTabbedPane class. So before we move on, let’s put
some of these features together to create a simple application.

import java.awt.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
private JTabbedPane tabbedPane;
private JPanel panel1;
private JPanel panel2;
private JPanel panel3;
public TestFrame()
{

// NOTE: to reduce the amount of code in this example, it uses
// panels with a NULL layout. This is NOT suitable for
// production code since it may not display correctly for
// a look-and-feel.

setTitle("Tabbed Pane Application");
setSize(300, 200);
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the tab pages
createPage1();
createPage2();
createPage3();

// Create a tabbed pane
tabbedPane = new JTabbedPane();

Listing 3.4 Sample application with JTabbedPane

78 CHAPTER 3
Panels and panes
tabbedPane.addTab("Page 1", panel1);
tabbedPane.addTab("Page 2", panel2);
tabbedPane.addTab("Page 3", panel3);
topPanel.add(tabbedPane, BorderLayout.CENTER);

}

public void createPage1()
{

panel1 = new JPanel();
panel1.setLayout(null);

JLabel label1 = new JLabel("Username:");
label1.setBounds(10, 15, 150, 20);
panel1.add(label1);

JTextField field = new JTextField();

field.setBounds(10, 35, 150, 20);
panel1.add(field);

JLabel label2 = new JLabel("Password:");
label2.setBounds(10, 60, 150, 20);
panel1.add(label2);

JPasswordField fieldPass = new JPasswordField();
fieldPass.setBounds(10, 80, 150, 20);
panel1.add(fieldPass);

}

public void createPage2()
{

panel2 = new JPanel();
panel2.setLayout(new BorderLayout());

panel2.add(new JButton("North"), BorderLayout.NORTH);
panel2.add(new JButton("South"), BorderLayout.SOUTH);
panel2.add(new JButton("East"), BorderLayout.EAST);
panel2.add(new JButton("West"), BorderLayout.WEST);
panel2.add(new JButton("Center"), BorderLayout.CENTER);

}

public void createPage3()
{

panel3 = new JPanel();
panel3.setLayout(new GridLayout(3, 2));

panel3.add(new JLabel("Field 1:"));
panel3.add(new TextArea());
panel3.add(new JLabel("Field 2:"));
panel3.add(new TextArea());

Listing 3.4 Sample application with JTabbedPane (continued)

Tabbed Panes 79
 The application code in listing 3.4 creates an instance of JTabbedPane with
three pages, all based on the JPanel class mentioned earlier in this chapter. Each of
these pages uses a different AWT layout manager in order to demonstrate that each
page’s appearance is independent of others within the tabbed pane.

 The third page includes instances of the AWT TextArea class to show that
AWT components can be intermixed with Swing without any serious drawbacks.
Note that in the source code in listing 3.4, you will also see instances of classes that
you may not recognize, such as JTextField and JPasswordField. These are user
interface component classes supplied by Swing which will be examined in more
detail in the coming chapters. The result of executing the code contained in listing
3.4 is shown in the screen captures in figure 3.7.

Though the current release of Swing supports mixing AWT components
with Swing, you may notice some flicker when selecting tab pages contain-
ing them. Swing appears to paint AWT components into the upper-left
corner of a JPanel before repainting them in the correct position. This
seems to be a bug, but it is actually related to some limitations on the Z-
order positioning of heavyweight components. If possible, you should use
AWT components only when you absolutely must.

panel3.add(new JLabel("Field 3:"));
panel3.add(new TextArea());

}

// Main method to get things started
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 3.4 Sample application with JTabbedPane (continued)

80 CHAPTER 3
Panels and panes
Place buttons that terminate a tabbed dialog in a nontabbed area, typi-
cally, below the tabs. The biggest problem with tabs is that the user can of-
ten get confused with the scope of a terminating action such as OK or Cancel.
For example, when you make changes to multiple tabs, pressing OK or Can-
cel now has an ambiguous meaning when placed inside a tab. Actions applied
in the nontabbed area map to changes made to all tabs.

3.7.6 JTabbedPane variables

protected SingleSelectionModel model

Figure 3.7 Sample JTabbedPane application output

Tabbed Panes 81
This variable holds the current selection model in use by the tabbed pane. If the
developer specifies no model, Swing will assign a default selection model.

protected ChangeListener changeListener

 The ChangeListener is the listener that will be applied to the selection model.

protected transient ChangeEvent changeEvent

 This variable holds a transient change event value for a tab pane. Only one
ChangeEvent is needed per tab pane instance, since the event’s only (read-only)
state is the source property. The source of events generated is always the current
tabbed pane component (“this”).

3.7.7 JTabbedPane constructors

JTabbedPane()

This constructor creates a new JTabbedPane instance with no pages.

3.7.8 JTabbedPane significant method groupings

protected ChangeListener createChangeListener();
public void addChangeListener(ChangeListener l);
public void removeChangeListener(ChangeListener l);

These methods control the presence of a ChangeListener for the tabbed pane. The
listener is used to detect page selection changes and other events generated by the
control.

public void insertTab(String title, Icon icon,
Component component, String tip, int index);

public void addTab(String title, Icon icon,
Component component, String tip);

public void addTab(String title, Icon icon, Component component);
public void addTab(String title, Component component);
public void removeTabAt(int index);

 This group of methods is used to add and remove pages to the tabbed pane
component instance. Each tab can contain a title string, and/or an icon image.
Additionally, a ToolTip string can be assign to each pane.

public int getSelectedIndex();
public void setSelectedIndex(int index);
public Component getSelectedComponent();
public Component getComponentAt(int index);
public void setComponentAt(int index, Component component);

82 CHAPTER 3
Panels and panes
public void setSelectedComponent(Component c);
public int indexOfTab(String title);
public int indexOfComponent(Component component);

 Each tab in the tabbed page is assigned a unique index number starting with
zero and increasing in value. With this group of methods, the index of a specific
page can be determined or selected. Note that the last two methods in this list will
return the index of a page with the specified title or with the specified component
instance value.

public int getTabCount();

 This method returns the number of pages within the tabbed pane instance.

public SingleSelectionModel getModel();
public void setModel(SingleSelectionModel model);

 The selection model, though initially defaulted by Swing, can be set to a cus-
tom model, if desired. Additionally, the current selection model can be retrieved.

public String getTitleAt(int index);
public Icon getIconAt(int index);
public void setTitleAt(int index, String title);
public void setIconAt(int index, Icon icon);

 As previously mentioned, each tab can have an optional string or icon image.
This method group provides the capability to set and retrieve the tab’s title and
icon.

3.8 Scrolling panes

Using some window environments, creating scrolling windows can be a painful
experience because, after the window is created, the environment tells the applica-
tion that something needs repainting. It is entirely the developer’s responsibility to
recognize these messages from the windowing environment, determine exactly
what needs to be repainted, and then manage the repaint by collecting a set of
drawing rectangles. This a relatively primitive way in which to keep the screen
updated, and it can result in countless hours of debugging time.

 As usual, Java has the answer. Swing introduces a new class called JScrollPane
that manages almost all aspects of a scrollable view. There is no need to determine
drawing rectangles, and it is not necessary to intercept window movement events.
Simply put, JScrollPane makes a developer’s life much easier.

Scrolling panes 83
 Figure 3.8 shows an example of a scrolling pane from the SWINGSET demo
provided with the Swing product. Notice that this example contains both horizon-
tal and vertical scroll bars with which the user can manipulate the view. The pres-
ence of the scroll bars can be controlled either programmatically or automatically
(depending on the size of the window).

 The most important point to make with an application utilizing a scrolling
view is that the developer is responsible only for populating the pane. After this is
accomplished, Swing manages all of the movement, repainting, and resize activities
associated with the pane. You can simply create the view and be done with it!

Figure 3.8 Example of a scrolling pane

84 CHAPTER 3
Panels and panes
Favor vertical scrolling over horizontal scrolling in panes. Users tend not
to enjoy scrolling, but when users are forced into a scrolling situation, they
almost always scroll downward first rather than toward the right. Initially,
place the object being scrolled at the top-left most position, and then, place
more viewable information in a vertical path downward.

 Another key feature of a scrolling pane is that it is not limited to a static image
like the one shown in figure 3.8. An instance of JScrollPane can contain a series of
buttons, images, JPanels, or any other UI components. A special layout manager
called ScrollPaneLayout manages component layout in the JScrollPane, and another
class named JViewPort manages the actual viewing area of the scrolling pane.

 These concepts are illustrated in figure 3.9. The JViewPort class maintains size
information for the view and tracking information for the view port. With this data,
JScrollPane determines if there is a requirement for scroll bars, and, if so, it draws
them in the pane. Typically you will never want to handle the scrolling yourself, but
JViewPort does offer the flexibility to allow developers to access its internals.

Figure 3.9 Scrolling a viewport through a view

Scrolling panes 85
3.8.1 An example using JScrollPane

Listing 3.5 constructs an example using the JScrollPane class. In this example, we
create a scrolling pane, and to it we add a JLabel instance showing a rather larger
image. Since this image is too large for the panel to display entirely, scroll bars will
automatically appear. Without any coding effort on our part, these scroll bars are
active, and any attempts to move them will result in the graphic scrolling smoothly
though the viewing region. The output produced by this application is shown in
figure 3.10.

import java.awt.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
private JScrollPane scrollPane;

public TestFrame()

{
setTitle("Tabbed Pane Application");
setSize(300, 200);
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

Icon image = new ImageIcon("main.gif");

JLabel label = new JLabel(image);

// Create a scroll pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(label);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

public static void main(String args[])
{

// Create an instance of the Test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 3.5 Sample application with JScrollPane

86 CHAPTER 3
Panels and panes
3.8.2 Controlling the scroll bars

As convenient as it is to have scroll bars appear in a scrolling pane, you may not find
this behavior desirable in some situations. For example, if you are writing an appli-
cation in which you want to supply separate controls (like VCR buttons) to scroll
the pane, then you need to be able to hide the scroll bars.

 In other situations, you may elect to show the scroll bars at all times, regardless
of their necessity. Many Windows applications (NOTEPAD, for example), leave the
scroll bars visible at all times in order to avoid screen repainting as the amount of
information they contain increases or decreases.

 Swing’s JScrollPane class offers a mechanism to control the visibility characteris-
tics of its scroll bars, and the presence or absence of horizontal and vertical scroll bars

Figure 3.10 Sample program output

Scrolling panes 87
can be controlled individually. To manage the scroll bar policy, as it is known, the
JScrollPane class provides two methods. These can be used as follows:

scrollPane.setVerticalScrollBarPolicy(
ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER);

scrollPane.setHorizontalScrollBarPolicy(
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);

 In this code fragment, the first line sets the vertical scroll bar policy such that
the scrolling pane never displays a vertical scroll bar, regardless of the size of its con-
tents. The second line causes the horizontal scroll bar to always be visible. These
methods make reference to constants in the ScrollPaneConstants class. See the
Swing online documentation for more details regarding this class.

3.8.3 Controlling the scrolling programmatically

Since you can now eliminate the scroll bars from a JScrollPane instance, you now
need to know how to scroll the view by using code resembling the following:

Point pos = scrollPane.getViewport().getViewPosition();
pos.y -= 50;
scrollPane.getViewport().setViewPosition(pos);

 In this code fragment, the value of “pos” is loaded with the current viewport
position. To this, we add 50 (pixels) to the vertical value and then set the new view-
port position.

Some components you can add to a scrolling pane will implement the
Scrollable interface. This allows the scroll pane to query the component
for the preferred pixel size of a unit or block scroll increment. This is how
the JScrollPane class scrolls a list box or table instance by one line at a time.

3.8.4 Creating scrollable components

If you notice the scrolling characteristics in the previous example, you will observe
that clicking the unit increment arrows in the scroll bars moves the item just a single
pixel at a time. While the smooth scrolling is appealing in some situations, there will
be times when you expect a unit increment to move more than this. For example, in
a list box it is desirable to move the view by the equivalent of one line of text.

 The problem with the previous example arises as a result of displaying the
image within a JLabel instance. To apply correct scrolling, the component added to

88 CHAPTER 3
Panels and panes
the scrolling pane should implement an interface called Scrollable . This is what
Swing components like JTable, JList, and JTree do to apply appropriate scrolling
sizes. Scrollable is an interface class which requires the implementation of five
methods, shown in the table below.

 To improve the scrolling characteristics of the previous example, we need to
implement a new class (which we will arbitrarily name ScrollLabel) which imple-
ments the Scrollable interface. We can then use this class, instead of the Jlabel, to
implement a better image scroller. The ScrollLabel class is shown in the following
code fragment.

class ScrollLabel extends JLabel implements Scrollable
{

public ScrollLabel(Icon s)
{

// We will implement only the image constructor.
super(s);

}

public Dimension getPreferredScrollableViewportSize()
 {

Method Purpose

getPreferredScrollableViewportSize This method returns the preferred size of the viewport for a
view component. For example, in JList, this method returns
the dimensions of the viewport required to display all of the
rows.

getScrollableBlockIncrement This method is called by the scrolling pane code when the
user selects one of the block increments in the scroll bar (a
page up or page down). The caller supplies the direction of
movement and a parameter indicating the horizontal or verti-
cal orientation of the movement.

getScrollableUnitIncrement This method is called by the scrolling pane code when the
user selects one of the unit increments in the scroll bar. The
caller supplies the direction of movement and a parameter
indicating the horizontal or vertical orientation of the move-
ment.

getScrollableTracksViewportWidth This boolean method should return true if you want the view-
port to force the width of the scrollable component to match
the width of the viewport.

getScrollableTracksViewportHeight This boolean method should return true if you want the view-
port to force the height of the scrollable component to match
the height of the viewport.

Scrolling panes 89
// Return a predefined preferred viewport size
return new Dimension(120, 120);

 }

 public int getScrollableBlockIncrement(
Rectangle visibleRect, int orientation,
int direction)

 {
// When doing block increments, scroll by 30 pixels

 return 30;
 }

public int getScrollableUnitIncrement(
Rectangle visibleRect, int orientation,
int direction)

{
// When doing a unit increment, scroll by 10 pixels
return 10;

}

 public boolean getScrollableTracksViewportWidth()
{

return false;
}

public boolean getScrollableTracksViewportHeight()
{

 return false;
}

}

3.8.5 JScrollPane constructors

JScrollPane (Component view, int vsbPolicy, int hsbPolicy)

This constructor creates an instance of a scrolling pane containing the specified
component within its view. The scroll bar policies are also specified.

JScrollPane(Component view)

 This constructor creates an instance of a scrolling pane containing the specified
component within its view.

JScrollPane (int vsbPolicy, int hsbPolicy)

 This constructor creates an empty instance of a scrolling pane with the speci-
fied scroll bar policies.

JScrollPane()

90 CHAPTER 3
Panels and panes
 This constructor creates an empty instance of a scrolling.

3.8.6 JScrollPane significant method groupings

public int getVerticalScrollBarPolicy()
public void setVerticalScrollBarPolicy(int x)
public int getHorizontalScrollBarPolicy()
public void setHorizontalScrollBarPolicy(int x)
public JScrollBar createHorizontalScrollBar()
public JScrollBar createVerticalScrollBar()
public JScrollBar getHorizontalScrollBar()
public JScrollBar getVerticalScrollBar()

This method group manages the scroll bars associated with the scrolling pane. The
policies of the scroll bars can be retrieved or set, and additionally, the scroll bars can
be constructed with the creation methods.

public Border getViewportBorder()
public void setViewportBorder(Border viewportBorder)
protected JViewport createViewport()
public JViewport getViewport()
public void setViewport(JViewport x)
public void setViewportView(Component view)

 With these methods, all aspects of the viewport, which is the visible portion of
the view, can be managed.

public JViewport getRowHeader()
public void setRowHeader(JViewport x)
public void setRowHeaderView(Component view)
public JViewport getColumnHeader()
public void setColumnHeader(JViewport x)
public void setColumnHeaderView(Component view)

 The viewport of the scrolling pane can have a column header view added to it.
This is typically used by the JTable component (a child of JComponent used to dis-
play tabular information), but it can be added to the scrolling pane any time you
need to identify the contents. The methods in this group control the presence and
content of the column view.

3.9 Split panes

Occasionally, in the quest for that perfectly designed user interface, you need to
perform some really fancy layout operations. Many programs feature split frames

Split panes 91
that let the user view two or more pieces of information simultaneously and, with
the drag of a mouse, resize any of the frames to view more or less data.

 A late addition to the beta versions of Swing was a class named JSplitPane
which provides this capability, while at the same time doing most of the work for
you. As you will see, with just a few lines of code, you can add this functionality to
your applications.

 JSplitPane is used to divide two components which, by user intervention, can
be resized interactively. The split pane can be divided left-to-right using an orienta-
tion setting of JSplitPane.HORIZONTAL_SPLIT , or top-to-bottom with the orienta-
tion set to JSplitPane.VERTICAL_SPLIT .

JSplitPane will divide two, and only two, components. However, if you re-
quire a more complex interface, you can nest one JSplitPane inside another.
This provides the capability to intermix horizontally and vertically split
panes.

 The divider can be adjusted by the user using the mouse, or it can be set in the
software with a call to the setDividerLocation() method. When the divider is
moved by the user, the minimum and maximum size setting of the contained com-
ponents is used to determine the movement limits. Hence, if the minimum size of
the two components is greater than the size of the split pane, the JSplitPane code
will prevent resizing of the frames separated by the divider.

Refer to the JComponent.setMinimumSize() method in the Swing online
documentation for a description of a component’s minimum size and the
techniques used to alter it.

import java.awt.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
private JSplitPane splitPaneV;

Listing 3.6 Sample application with JSplitPane

92 CHAPTER 3
Panels and panes
private JSplitPane splitPaneH;
private JPanel panel1;
private JPanel panel2;
private JPanel panel3;

public TestFrame()
{

setTitle("Split Pane Application");
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the panels

createPanel1();
createPanel2();
createPanel3();

// Create a splitter pane
splitPaneV = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
topPanel.add(splitPaneV, BorderLayout.CENTER);

splitPaneH = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT);
splitPaneH.setLeftComponent(panel1);
splitPaneH.setRightComponent(panel2);

splitPaneV.setLeftComponent(splitPaneH);
splitPaneV.setRightComponent(panel3);

}

public void createPanel1()
{

panel1 = new JPanel();
panel1.setLayout(new BorderLayout());

// Add some buttons
panel1.add(new JButton("North"), BorderLayout.NORTH);
panel1.add(new JButton("South"), BorderLayout.SOUTH);
panel1.add(new JButton("East"), BorderLayout.EAST);
panel1.add(new JButton("West"), BorderLayout.WEST);
panel1.add(new JButton("Center"), BorderLayout.CENTER);

}

public void createPanel2()
{

panel2 = new JPanel();
panel2.setLayout(new FlowLayout());

Listing 3.6 Sample application with JSplitPane (continued)

Split panes 93
 Listing 3.6 contains a complete application to demonstrate the use of JSplit-
Pane. The example has a bit of added complexity to show how to manage split
panes contained within other split panes.

Allow user configuration of split panes. The user may wish to completely
hide a portion of the split window or never invoke one in the first place. Con-
sider making this a user configurable option in the UI, either by invoking
view modes or by allowing the user to move the splitter until the view is fully
hidden and then easily reopen the closed pane. Should the user resize the di-
alog, scroll bars should appear in the splitter pane dynamically when the view-
able region of any pane is compromised.

 Notice that, as the dividers are moved, the panels they contain are automati-
cally resized, including the buttons in the case of a panel with BorderLayout. Also
notice that the horizontal divider can be moved only a finite amount up or down.

panel2.add(new JButton("Button 1"));
panel2.add(new JButton("Button 2"));
panel2.add(new JButton("Button 3"));

}

public void createPanel3()
{

panel3 = new JPanel();
panel3.setLayout(new BorderLayout());
panel3.setPreferredSize(new Dimension(400, 100));
panel3.setMinimumSize(new Dimension(100, 50));

panel3.add(new JLabel("Notes:"), BorderLayout.NORTH);
panel3.add(new JTextArea(), BorderLayout.CENTER);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.pack();
mainFrame.ssetVisible();

}
}

Listing 3.6 Sample application with JSplitPane (continued)

94 CHAPTER 3
Panels and panes
This limit is imposed on the split pane by the minimum sizes of the component
panels (the minimum size of the buttons in the upper direction and the minimum
size of the panel holding the text area object in the lower window). The output of
this example is shown in figure 3.11.

3.9.1 Intercepting JSplitPane events

There may be situations when you need to know that the divider in a split pane has
moved; however, if you examine Sun’s online documentation for JSplitPane, you
will notice that this class does not offer any method like addChangeListener() . So
how, then, do you detect divider movement?

 The answer to this question is not obvious; though, if you shift your focus a
bit, you will see that you can detect changes to the splitter pane. A JSplitPane is
really just a container for other components, and that is where the solution to this
problem can be found. If you examine the JComponent class, you will notice a
method called addAncestorListener() , which is used to notify a component when
its owner has changed.

Figure 3.11 Sample program output

Split panes 95
 In any application supporting a JSplitPane instance, you can implement an
AncestorListener for one of the components it owns. The interface requires the
implementation of three methods, and one of these methods is called to notify the
component that its owner (the split pane in this case) has changed. We can imple-
ment this code as follows:

class MyPanel
extends JPanel
implements AncestorListener

{
// Add any special code for this component

// Ancestor Listener support
public void ancestorMoved(AncestorEvent event)
{

// Add code here to handle a split pane divider movement
}

// Not used
public void ancestorAdded(AncestorEvent event)
{
}
public void ancestorRemoved(AncestorEvent event)
{
}

}

 The MyPanel class can then be added to one side of the split pane and will
faithfully detect any changes to the divider.

3.9.2 JSplitPane constants

public static int VERTICAL_SPLIT
public static int HORIZONTAL_SPLIT

These constants are used to control the type of split used. The splitter bar dividing
the two contained components can be oriented either vertically or horizontally.

public static String LEFT
public static String RIGHT
public static String TOP
public static String BOTTOM
public static String DIVIDER

 These constants are used to specify where a component will be added to the
split pane. The pane accepts two components that will be either TOP/BOTTOM

96 CHAPTER 3
Panels and panes
or LEFT/RIGHT oriented. The third option is to add a component (DIVIDER
type) that will represent the divider.

public static final String ORIENTATION_PROPERTY
public static final String CONTINUOUS_LAYOUT_PROPERTY
public static final String DIVIDER_SIZE_PROPERTY
public static final String ONE_TOUCH_EXPANDABLE_PROPERTY
public static final String LAST_DIVIDER_LOCATION_PROPERTY

 These constants specify the names of properties that are used by the split pane
component.

3.9.3 JSplitPane variables

protected int orientation

This method contains the orientation of the splitter component’s divider. It con-
tains either HORIZONTAL_SPLIT or VERTICAL_SPLIT.

protected boolean continuousLayout

 This value is set if the split pane is configured to show continuous layout. In
this mode, the splitter pane is repainted continuously during resize operations.

protected Component leftComponent
protected Component rightComponent

 These variables hold the instances of the two components on either side of the
divider.

protected int dividerSize

 This variable holds the size of the divider in pixels. It is controlled with the
setDividerSize() method.

protected boolean oneTouchExpandable

 This variable is a flag that controls the expanded and collapsed state of the
split pane.

protected int lastDividerLocation

 This variable contains the previous location of the split pane’s divider relative
to the origin of the pane.

3.9.4 JSplitPane constructors

JSplitPane()

Split panes 97
This constructor creates a new JSplitPane instance configured to vertically divide
the child components.

JSplitPane(int newOrientation)

 This constructor creates a new JSplitPane instance with a divider configured as
specified by the orientation parameter.

JSplitPane(int newOrientation, Component newLeftComponent,
Component newRightComponent)

 This constructor creates a new JSplitPane instance with a divider configured as
specified by the orientation parameter. The components for each side of the divider
are specified as method parameters.

JSplitPane(int newOrientation, boolean newContinuousLayout,
Component newLeftComponent,

Component newRightComponent)

 This constructor creates a new JSplitPane instance with a divider configured as
specified by the orientation parameter. The components for each side of the divider
are specified as method parameters. Additionally, the caller can specify the use of
continuous layout for the components.

3.9.5 JSplitPane significant method groupings

public void setDividerSize(int newSize)
public int getDividerSize()
public void setLastDividerLocation(int newLastLocation)
public int getLastDividerLocation()
public void setDividerLocation(int location)
public int getDividerLocation()
public int getMinimumDividerLocation()
public int getMaximumDividerLocation()
public void resetToPreferredSizes()

This group of methods controls the divider present within the split pane. The
divider size can be retrieved or set to a specific location. Additionally, the minimum
and maximum positions of the divider can be determined.

public void setLeftComponent(Component comp)
public Component getLeftComponent()
public void setTopComponent(Component comp)
public Component getTopComponent()
public void setRightComponent(Component comp)
public Component getRightComponent()
public void setBottomComponent(Component comp)

98 CHAPTER 3
Panels and panes
public Component getBottomComponent()

 This group of methods controls the components displayed within the split pane.

public void setOrientation(int orientation)
public int getOrientation()

 The orientation of the split window can be changed from horizontal to verti-
cal, or vice versa. Also, the current orientation can be determined with the getOri-

entation() method.

public void setContinuousLayout(boolean newContinuousLayout)
public boolean isContinuousLayout()

 These methods control the continuous layout mechanism within the split pane.

public void remove(Component component)
public void remove (int index)
public void removeAll()

 This group of methods is used to remove components from the split pane.
Components can be specified by component instance or index, or, if desired, both
components can be removed.

protected void addImpl(Component comp,
Object constraints, int index)

 If orientation of the split pane is LEFT/TOP or RIGHT/BOTTOM, and a
component with that identifier was previously added, the old component will be
removed, and then the specified component will be added in its place. If constraint
is not one of the known identifiers, the layout manager will throw an IllegalArgu-

mentException .

3.10 Advanced scrolling

We have described some of the workings of a simple application utilizing the
JScrollPane and JSplitPane components, but neither of these examples was espe-
cially inspiring or advanced. Since these components (particularly JScrollPane) are
heavily used throughout most Swing-based applications, it would be useful to see
how they interact in a more advanced program.

 The application shown in listing 3.7 implements a JFrame containing a splitter
pane. Within this splitter, there are two subpanels, each containing an instance of a
Swing component. I purposely selected a text field and a graphic for this example to
illustrate that the contents of the scrolling panes can be almost anything you choose.

Advanced scrolling 99
 For now, ignore the code inside the CreateTopPane() method. It creates a
Swing-based text area and loads it with a file. You will see this code reviewed in
chapter 5 when we examine the JTextArea component.

 The remainder of the code in listing 3.6 should be straightforward; however,
there is a bit of code in the stateChanged() method to calculate the scale differ-
ences between the two scrolling panes. Actually, the scale calculation in this example
is inaccurate, since it does not completely account for the size of the panes. Move
the horizontal scroll bar in the top pane for a demonstration of this inaccuracy. With
a bit more math, you can compensate for this error. Experiment with the JViewport
getViewPosition() and getExtentSize() methods to correct the calculation.

import java.io.*;
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;

class TestFrame
extends JFrame
implements ChangeListener

{
private JSplitPane splitPaneV;
private JSplitPane splitPaneH;
private JScrollPane scrollPane1;
private JScrollPane scrollPane2;

public TestFrame()
{

setTitle("Advanced Scoller Application");
setSize(300, 200);

setBackground(Color.gray);
JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a text area for the top pane
createTopPane();

// Load a graphics for the bottom pane
createBottomPane();

// Create a split pane
splitPaneV = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
topPanel.add(splitPaneV, BorderLayout.CENTER);

Listing 3.7 Advanced scroller source code

100 CHAPTER 3
Panels and panes
// Add the components to the splitter pane
splitPaneV.setLeftComponent(scrollPane1);
splitPaneV.setRightComponent(scrollPane2);

}

public void stateChanged(ChangeEvent event)
{

// Event in the top pane??
if(event.getSource() == scrollPane1.getViewport())
{

// Get the current viewport position for the top pane
Point point = scrollPane1.getViewport().getViewPosition();

// Determine the correct scaling for the views
Dimension dim1 = scrollPane1.getViewport().getViewSize();
Dimension dim2 = scrollPane2.getViewport().getViewSize();
float fXScale = 1;
float fYScale = 1;
if(dim1.width > dim2.width)
{

fXScale = (float)dim1.width / (float)dim2.width;
fYScale = (float)dim1.height / (float)dim2.height;

// Scale the movement
point.x /= fXScale;
point.y /= fYScale;

}
else
{

fXScale = (float)dim2.width / (float)dim1.width;
fYScale = (float)dim2.height / (float)dim1.height;

// Scale the movement
point.x *= fXScale;
point.y *= fYScale;

}
// Move the other viewport accordingly
scrollPane2.getViewport().setViewPosition(point);

}
}

private void createBottomPane()
{

// Load a graphic into the display
Icon image2 = new ImageIcon("main.gif");
JLabel label2 = new JLabel(image2);

Listing 3.7 Advanced scroller source code (continued)

Advanced scrolling 101
// Create a tabbed pane
scrollPane2 = new JScrollPane();
scrollPane2.setVerticalScrollBarPolicy(
 ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER);
scrollPane2.setHorizontalScrollBarPolicy(
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
scrollPane2.getViewport().add(label2);
scrollPane2.getViewport().addChangeListener(this);

}

private void createTopPane()
{

// Create a text are
JTextArea area = new JTextArea();

// Load a file into the text area, catching any exceptions
try {

FileReader fileStream = new FileReader("TestFrame.java");
area.read(fileStream, "TestFrame.java");

}
catch(FileNotFoundException e)
{

System.out.println("File not found");

}
catch(IOException e)
{

System.out.println("IOException occurred");
}

// Create the scrolling pane for the text area
scrollPane1 = new JScrollPane();
scrollPane1.getViewport().add(area);
scrollPane1.getViewport().addChangeListener(this);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 3.7 Advanced scroller source code (continued)

102 CHAPTER 3
Panels and panes
 You can run the program and stretch out the frame so you can see both panes
(similar to the sample shown in figure 3.12). Now, move the vertical scroll bar in
the top pane and study the effect. Notice that the view in the bottom pane tracks
with the scroll bar activity in the top.

 Though the example shown here is impractical, it illustrates how to track one
scrolling pane with respect to another. The need for this type of functionality is
quite common in applications, and now you know how easy it is to create.

 Another, more subtle aspect of this program is the absence of the scroll bars
from the lower window, even though the image is larger than the viewport. This is
accomplished by setting the horizontal and vertical scroll bar policies which we
examined earlier in this chapter.

Figure 3.12 Advanced scroller output

Layered panes 103
3.11 Layered panes

We are delving into relatively obscure territory for the remainder of this chapter.
The panes described from here on are classes that you may never need, and they are
discussed here only to be thorough. These classes are used predominately for inter-
nal functions in Swing, but Sun has made them available in the event that you
require additional capability. These pane classes are for advanced users only.

 The first of these panes is the JLayeredPane class, which was briefly noted in
the section describing JFrame at the beginning of this chapter. JLayeredPane man-
ages a list of children in the same manner as the Container does; however, it allows
for the definition of several layers within itself. Child components belonging to the
same layer are managed exactly the same way as a normal Container object, but
components in higher layers display above lower ones. A distinct integer number
identifies each of the layers of a JLayeredPane.

 The layer attribute can be predefined for a Component by passing an Integer
object during the add operation. For example:

xcLayeredPane.add(xcComponent, JLayeredPane.DEFAULT_LAYER);

Or

xcLayeredPane.add(xcComponent, new Integer(5));

 Additionally, the layer attribute can be set on a Component object by calling:

xcLayeredPane.setLayer(xcComponent, 4);

The layer of a component should be set before the component is added to
the JLayeredPane instance.

 The layer of a component can be determined anytime with the call:

int iLayer = xcLayeredPane.getLayer(xcComponent);

 JLayeredPane supports other methods for determining layers, component ref-
erences, and so on, but we won’t be going into any more detail here. The Swing
online documentation describes the methods supported by this class.

3.11.1 JLayeredPane constants

public static final Integer DEFAULT_LAYER

104 CHAPTER 3
Panels and panes
public static final Integer PALETTE_LAYER
public static final Integer MODAL_LAYER
public static final Integer POPUP_LAYER
public static final Integer DRAG_LAYER
public static final Integer FRAME_CONTENT_LAYER

These constants are used to identify the layers within the layered pane. Each of
these predefined layers has a specific purpose that is dependent on the type of pane
over which it is applied.

3.11.2 JLayeredPane variables

protected boolean paintBackground

This boolean value controls the requirement to paint the background of the lay-
ered pane during a repaint. If the layered pane is transparent, this value will be
false.

3.11.3 JLayeredPane constructors

JLayeredPane()

 This default constructor creates a new instance of a layered pane.

3.11.4 JLayeredPane significant method groupings

public void setLayer(Component c, int layer)
public void setLayer(Component c, int layer, int position)
public int getLayer(Component c)
public int highestLayer()
public int lowestLayer()
public static void putLayer(JComponent c, int layer)
public static int getLayer(JComponent c)
public Component[] getComponentsInLayer(int layer)
protected int insertIndexForLayer(int layer, int position)
public int getComponentCountInLayer(int layer)

The methods within this group are used to manage the particular layers within the
pane. With these methods, the current, highest, or lowest layers can be determined.
Also, new components can be assigned to specific layers.

public int getIndexOf(Component c)
public void moveToFront(Component c)
public void moveToBack(Component c)
public void setPosition(Component c, int position)
public int getPosition(Component c)

Directory panes 105
 This group of methods controls the position of components within the layers
of the pane.

3.12 Directory panes

Swing provides another pane that may have more use in your applications than
JLayeredPane. If you have ever needed to implement a file dialog in an application,
you could use the standard FileDialog class provided by AWT; however, you may
want to create an application that embeds this functionality into a larger dialog. Per-
haps you just want to create your own file management interface instead using File-
Dialog.

 Swing provides a class called JDirectoryPane that does most of the work for
you. An instance of this class creates a scrollable window containing a list of files
and directories. You can control the starting path of the list using the correct con-
structor, and the class also implements a method interface to allow you to intercept
events that occur as a result of some user interaction.

As of the JFC 1.0 release, the JDirectoryPane class is not officially includ-
ed in the Swing library. Sun will not support the use of any classes in the
com.sun.java.swing.preview package, and this information may be
subject to change. You should not use this class to build production code.

 We won’t go into the complete details of JDirectoryPane here; however we can
quickly look at an example of some code that creates a directory pane. Listing 3.8
creates a panel to which it adds an instance of JDirectoryPane. Additionally, this
code provides an action listener to intercept events from the directory listing. If the
user double clicks on a file, the actionPerformed() code displays the details of the
file selected. Note that double clicking on a directory generates a different event
(doubleClickContainer) which you can intercept independently of file actions. For
other events supported by JDirectoryPane, see the Swing online documentation.

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.preview.*;

Listing 3.8 Sample application with JDirectoryPane

106 CHAPTER 3
Panels and panes
class TestFrame
extends JFrame
implements ActionListener

{
private JDirectoryPane directoryPane;

public TestFrame()
{

setTitle("Directory Pane Application");
setSize(300, 200);
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

directoryPane = new JDirectoryPane();
topPanel.add(directoryPane, BorderLayout.CENTER);

directoryPane.addActionListener(this);
}

public void actionPerformed(ActionEvent event)
{

// Get the event action string
String sAction = event.getActionCommand();
if(sAction != null)
{

// Did the user double click on a file
if(sAction.equals("doubleClick"))
{

// Display the selected file
TypedFile file = directoryPane.getSelectedFile();
System.out.println("Selected=" + file.toString());

}
}

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 3.8 Sample application with JDirectoryPane (continued)

Directory panes 107
 The resulting application output of this listing is shown in figure 3.13. Notice
the presence of the vertical scroll bar which is automatically applied to the window
when the listing becomes too large for the window’s viewport.

3.12.1 JDirectoryPane variables

protected DirectoryModel directoryModel

This variable hold the directory model used for the pane instance.

protected ListSelectionModel listSelectionModel

 This variable holds the list selection model. Swing defaults this model if no
user written model is specified.

protected transient JDirectoryPane.Redirector redirector

 This transient variable contains an instance of the redirector for this instance.
The redirector listens to property changes from the directory model and rebroad-
casts them with this instance as their source.

protected transient JDirectoryPane.SelListener selListener

 This transient variable contains an instance of the selection listener for this
instance. The selection listener reacts to value changes from list selection models
and fires an action, if appropriate.

Figure 3.13
Sample program output

108 CHAPTER 3
Panels and panes
protected String command
protected String doubleClickCommand
protected String doubleClickContainerCommand

 These variables hold the command strings associated with specific events
within the directory pane.

3.12.2 JDirectoryPane constructors

JDirectoryPane()

This constructor creates a JDirectoryPane instance beginning at the user’s home
directory.

JDirectoryPane(String path)

 This constructor creates a JDirectoryPane instance beginning at the directory
specified by the string parameter.

JDirectoryPane(File directory)

 This constructor creates a JDirectoryPane instance beginning at the directory
given by the File parameter.

3.12.3 JDirectoryPane significant method groupings

public TypedFile getSelectedFile()
public Vector getSelectedFiles()
public File getCurrentDirectory()
public void setCurrentDirectory(File dir)

These methods are used to manage the file and directory selections within the
directory pane instance.

public void setActionCommand(String command)
public String getActionCommand()
public void setDoubleClickCommand(String command)
public String getDoubleClickCommand()
public void setDoubleClickContainerCommand(String command)
public String getDoubleClickContainerCommand()
public Action getGoUpAction()
public ActionListener getDefaultActionListener()
public void performDoubleClick()
public void goUp()

 The methods within this group manage the action events associated with the
directory pane. For example, when the user clicks on a directory in the listing, a
doubleClick event is generated.

Chapter summary 109
3.13 Chapter summary

This chapter has covered a lot of the preliminary ground required to understand
Swing. You now know how Swing wraps the AWT application framework classes to
create JFrame and JApplet, and have seen examples using these new classes.

 This chapter also presented the JPanel class which, like AWT’s Panel class, is
used in almost every conceivable application. You saw how to take simple compo-
nents (including AWT components) and add them to a JPanel instance to create
forms, button arrays, and so on.

 Finally, this chapter described some of the pane classes provided by the Swing
class library. Of particular value, you saw working examples of tabbed panes, scroll-
ing panes, and split panes. Then we delved into the more obscure corners of Swing
with a quick overview of layered panes and directory panes. In a later chapter, you
will learn about other panes supported by Swing. For example, when we start dis-
cussing text management, you will see an example of a special text pane that can be
used to view Hypertext Markup Language (HTML) .

4Labels
and buttons

In this chapter
■ Adding labels to a user interface

■ Listening for button events

■ Radio buttons and check boxes

110 CHAPTER 4
Labels and buttons
4.1 Basic user interface components

The key to every user interface is the ability to inform the user about important
pieces of information and to allow him/her to invoke actions through the use of a
keyboard mouse or other input device. The API must implement a sufficient degree
of functionality to allow developers to detect user input and to display or alter pro-
gram data; however, this functionality should not hinder the user’s ability to com-
plete tasks. The software industry has standardized some basic controls—buttons
and text labels, for example. These have enabled us to create some slick applications
with relative ease.

 The designers of Java decided that the language needed a standard interface,
so they introduced components which were common to all platforms. In chapter 1,
we reviewed AWT and quickly covered the input and display mechanisms it pro-
vides. In the previous chapter, you began to see working examples of Java code
which created instances of AWT and Swing components, though that chapter
offered relatively little information regarding how to create user interface compo-
nents and how to control them.

 Starting with this chapter, we will begin to examine the key user interface
classes provided by Swing and, where necessary, to compare them with AWT. In
this chapter, we shall begin with the most basic of components: labels, buttons,
check boxes, and radio buttons.

 Though this book has, to this point, stressed application development, all
Swing user interface components are also compatible with applets. So, if you are
building applets, you should recognize that all of the information in this chapter
regarding applications applies equally to applets. There are some caveats to consider
when building applets, and these will be identified whenever possible.

4.2 Labels

Without question, the simplest form of user interface components is the label.
Labels are, essentially, just text strings that are used to identify other components.
Labels can have their own fonts, foreground and background colors, and can be
positioned anywhere within the bounds of their owner.

 Versions of Java previous to 1.2 offered only the AWT label class called Label;
however, Swing introduces a new JLabel class for the same purpose. JLabel is much
more than a simple wrapper around the old AWT label class. Since it is derived from
JComponent, JLabel implements all of the Swing component features, such as, key-

Labels 111
board accelerators, borders, and so on. For the remainder of this section, we will
take a look at some of these features, but first you need to know how to create an
instance of a JLabel.

Use a standard and consistent sans serif font. Users who stare at computer
monitors prefer a sans serif font for legibility. Whichever one you choose, be
consistent throughout. If you are going below 8 point on any font, it is prob-
ably too small. It’s best not to apply styles to standard fonts on labels in order
to improve legibility. It’s probably a good idea to make your label back-
grounds transparent to the dialog.

4.2.1 A JLabel sample program

If you compare the list of JLabel constructors to that of the AWT label class, you
see that Swing offers a much richer API, allowing many more constructors with
abilities not available in AWT. Listing 4.1 is a code fragment that creates JLabel
instances using some of the features provided by Swing:

class TestFrame
extends JFrame

{
public TestFrame()
{

setTitle("JLabel Application");
setSize(300, 200);
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new GridLayout(2, 2));
getContentPane().add(topPanel);

JLabel label1 = new JLabel();
label1.setText("Label1");
topPanel.add(label1);

JLabel label2 = new JLabel("Label2");
label2.setFont(new Font("Helvetica", Font.BOLD, 18));
topPanel.add(label2);

Icon image = new ImageIcon("screwdriver.gif");

Listing 4.1 JLabel program source code

112 CHAPTER 4
Labels and buttons
 The results of this sample program are shown in figure 4.1. Notice that Label2
demonstrates a change in font, and that Label3 includes a graphic. The size of the
graphic determines the minimum size for the label.

4.2.2 Setting fonts and colors

As you observed in the previous sample program, the font can be easily changed.
Simply create a new font and use the setFont() method in the JLabel class to effect
the change. The font can be any of the standard fonts and sizes supported by the
Java VM. Use a line similar to the following code to control the font used for a label:

label.setFont(new Font("Dialog", Font.PLAIN, 12));

JLabel label3 = new JLabel("Enabled", image,
SwingConstants.CENTER);

label3.setVerticalTextPosition(SwingConstants.TOP);
topPanel.add(label3);

JLabel label4 = new JLabel("Label4",
SwingConstants.RIGHT);

topPanel.add(label4);
}

public static void main(String args[])
{

// Create an instance of the Test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 4.1 JLabel program source code (continued)

Figure 4.1
JLabel program output

Labels 113
 The foreground and background colors of a label can also be changed. To
accomplish this, use the setForeground() and setBackground() methods. If you
are familiar with AWT, then you probably recognize these methods, and they can
be used in exactly the same way with Swing components. Write source code similar
to those shown below to set the color attributes of a JLabel instance:

label.setBackground(Color.blue);
label.setForeground(Color.yellow);

The color specified in the setForeground() and setBackground() meth-
ods can be any of the standard colors identified in the AWT Color or System-
Color classes, or may be an RGB value of your own specification.

4.2.3 Text alignment

The example in listing 4.1 included labels with text alignments other than the
default. In order to accomplish this task, the constructor referenced the SwingCon-
stants class, which is a class holding constant values for all classes in the Swing library.
Five of these constant values are applicable to the JLabel class’s text alignment.

 As the example shows, the alignment can be specified in the constructor; how-
ever, there are a number of methods implemented by the JLabel class that provide
additional control. To change the horizontal alignment, use a line of source code
like the following:

label.setHorizontalAlignment(SwingConstants.RIGHT);

 Or for vertical alignment:

label.setVerticalAlignment(SwingConstants.BOTTOM);

Constant Value Purpose

SwingConstants.LEFT Left horizontal alignment

SwingConstants.CENTER Center horizontal or vertical alignment

SwingConstants.RIGHT Right horizontal alignment

SwingConstants.TOP Top vertical alignment

SwingConstants.BOTTOM Bottom vertical alignment

114 CHAPTER 4
Labels and buttons
 Additional control is provided for labels that include both text and an image.
The text can be aligned in the vertical or horizontal aspects, and independently of
the image. Use the following code to perform this task:

label.setHorizontalTextAlignment(SwingConstants.LEFT);
label.setVerticalTextAlignment(SwingConstants.TOP);

 Figure 4.2 shows all combinations of vertical and horizontal alignments and
the effects they have on the text.

4.2.4 Adding an image to a label

The sample code in listing 4.1 included a label with an image of a screwdriver. As
we saw, the image can be set during the construction of the object using the follow-
ing code:

Icon image = new ImageIcon("screwdriver.gif");
JLabel label3 = new JLabel("Label3", image,

SwingConstants.CENTER);

 However, the icon can be set at any time using code similar to this:

Icon image = new ImageIcon("screwdriver.gif");
label2.setIcon(image);

 Icons are not scaled to fit the label bounds, so once a label has been drawn,
adding a large icon may cause clipping to occur. To remove an icon from an existing
label, execute the following code:

label2.setIcon(null);

Figure 4.2 JLabel text alignment

Labels 115
 Finally, JLabel supports the concept of a disabled icon (the image shown when
the component is disabled). To set the disabled image, add code similar to this:

ImageIcon image = new ImageIcon("disabled_driver.gif");
label2.setDisabledIcon(image);

Swing has a partially documented class named GrayFilter which can create a
disabled image for you automatically. This is how Swing toolbar buttons turn
gray when disabled. To create a normal image and a disabled image, you can
use code like the following:

ImageIcon image = new ImageIcon("screwdriver.gif");
ImageIcon DImage = new ImageIcon(GrayFilter

.createDisabledImage(image.getImage()));

 The results produced by a disabled image are shown in figure 4.3. Note that
this disabled image appears automatically if the label is disabled.

4.2.5 JLabel variables

protected Component labelFor

This variable holds the instance of the component associated with this label. This
part of the accessibility support in Swing can be used to help attach labels (with key-
board accelerators) to the components that they describe.

4.2.6 JLabel constructors

JLabel(String text, Icon icon, int horizontalAlignment)

Figure 4.3
Disabled and enabled icons in JLabel

116 CHAPTER 4
Labels and buttons
This constructor creates a JLabel instance with the specified string, icon, and hori-
zontal alignment.

JLabel(String text int horizontalAlignment)

 This constructor creates a JLabel instance with the specified string and hori-
zontal alignment.

JLabel(String text)

 This constructor creates a JLabel instance with the specified string.

JLabel(Icon image, int horizontalAlignment)

 This constructor creates a JLabel instance with the specified icon and horizon-
tal alignment.

JLabel(Icon image)

 This constructor creates a JLabel instance with the specified icon image.

JLabel ()

 This default constructor creates a JLabel instance with no text or icon. The
horizontal alignment is defaulted to right justification.

4.2.7 JLabel significant method groupings

public String getText()
public void setText(String text)

With exactly the same method prototypes as the Label class in AWT, JLabel pro-
vides two methods to get or set the text shown for the instance.

public Icon getIcon()
public void setIcon(Icon icon)
public Icon getDisabledIcon()
public void setDisabledIcon(Icon disabledIcon)
public int getIconTextGap()
public void setIconTextGap(int iconTextGap)

 The methods in this group control the icon images for the JLabel instance for
all possible states supported by the label.

public void setDisplayedMnemonic(char aKey)
public char getDisplayedMnemonic ()
protected int checkHorizontalKey(int x, String s)
protected int checkVerticalKey(int x, String s)

AbstractButton 117
 The methods in this group manage any keyboard accelerator keys associated
with this JLabel instance.

public int getVerticalAlignment()
public void setVerticalAlignment(int alignment)
public int getHorizontalAlignment()
public void setHorizontalAlignment(int alignment)
public int getVerticalTextPosition()
public void setVerticalTextPosition(int textPosition)
public int getHorizontalTextPosition()
public void setHorizontalTextPosition(int x)

 In some of the previous examples in this section, you were shown the capabili-
ties of JLabel to control the alignment of contained text and graphics. The methods
in this group manage these aspects of the JLabel component.

public Component getLabelFor()
public void setLabelFor(Component c)}

 Labels usually describe some other component in the user interface. These
methods allow developers to associate the JLabel instance to their related compo-
nents. This mechanism is closely related to keyboard acceleration. Any accelerator
for the label gives the focus to the component with which it is associated.

4.3 AbstractButton

Recalling the class hierarchy of Swing components, you will remember that all UI
classes are derived from JComponent. As shown in figure 4.4, one of the child
classes included in the JComponent tree is named AbstractButton. This intermedi-
ate class subsequently spawns two distinct forms of buttons: JButton and JToggle-
Button. You will never use AbstractButton directly, but, inevitably, you will
implement an application with some of its children. Since it plays such an important
role in the world of Swing buttons, we should examine it more closely.

JComponent AbstractButton JToggleButton

JButton

JCheckBox

JRadioButton

Figure 4.4 AbstractButton class hierarchy

118 CHAPTER 4
Labels and buttons
 AbstractButton manages most of the functionality of all other Swing button
classes shown in figure 4.4. It contains the code responsible for attaching icons to a
button face, managing keyboard accelerators, and setting the text alignment, to
name of few of its more important functions.

4.3.1 Listening for button events

In some of the previous sample applications in this book, I have shown how to lis-
ten for events; however, we haven’t really examined the code required to accom-
plish this. Let’s take a closer look at the types of events a button generates and how
you can write code to listen for them.

 The most frequently used listener for buttons is the ActionListener, which lis-
tens for user mouse clicks on buttons’ surfaces. To create a listener for actions, you
must create a class that implements ActionListener. All this really means is that you
need to provide an actionPerformed() method.

 An action listener class can be created as a separate entity which is independent
of the class containing the button instance. This is the most time efficient way to
handle button events, and has the added bonus of allowing buttons from several
window classes to be managed from a single class. For example, almost all Cancel
buttons perform the same task, so a single method can be written to handle this
operation for all your application’s dialogs.

 Having said this, I personally prefer to implement the ActionListener in the
class that owns the button instance. This is not as time efficient as using a separate
listener class and can require me to write common code in several places; however, I
find it much easier to understand the code several months after I’ve written it. I
know that the action event handler for all controls in my window-based class are
handled within that class., and I am not forced to hunt through an entire project to
find the ActionListener class for a given button. You may notice that most of the
examples in this book are written in this fashion, but this is not a requirement, and
you are certainly not obligated to follow my lead.

 The following sample application, listing 4.2, creates a JFrame instance con-
taining a JButton. The frame implements an action listener for the button to inter-
cept events through the actionPerformed() method.

AbstractButton 119
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements ActionListener

{
private int iCounter = 0; // Keep track of button presses
private JButton button = null; // A place to save the button

public TestFrame()
{

setTitle("ActionListener Application");
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new FlowLayout());
topPanel.setPreferredSize(new Dimension(300, 200));
getContentPane().add(topPanel);

// Create a button instance and add it to the panel
button = new JButton("Press Me");
topPanel.add(button);

// Attach an action listener to the button
button.addActionListener(this);

}

public void actionPerformed(ActionEvent event)
{

// Make sure the event is for the button
if(event.getSource() == button)
{

// Increment the button press count
iCounter++;

// Change the button text
button.setText("Pressed " + iCounter + " times");
System.out.println("Click");
pack();

}
}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();

Listing 4.2 An ActionListener sample

120 CHAPTER 4
Labels and buttons
If you have previously written Java 1.1+ code using AWT, then you will
recognize that the technique shown here to listen for button actions is ex-
actly the same. The point of the example in listing 4.2 is to show that
Swing and AWT share common roots, so, much of what you already
know about AWT is applicable to Swing. Sun’s Swing developers under-
stood that many people migrating from AWT would want to bring their
existing code with them, so they invested a great deal of time and effort
to ensure that AWT code is easy to port. Most of the concepts of AWT
still work with Swing.

button.addActionListener(this);

 The parameter this indicates that the instance of the JFrame actually imple-
ments the ActionListener by providing the actionPerformed() method.

 The actionPerformed() code determines
whether the event was generated by the user as a
result of clicking the button. If this is the reason
for the event, the action handler increments the
internal click counter and modifies the text on
the button face. The outcome of this code is a
frame similar to the one shown in figure 4.5,
containing a JButton instance with dynamically
changing button text.

4.3.2 Adding icons to buttons

We have already seen an example of a JLabel instance with an attached image. Even
though buttons and labels handle images in slightly different ways, the interfaces
for each are the same. Since you already know how to add an image to a label, you
also know how to perform the same task on a button. Consider modifying the pre-
vious example to include an icon image on the button surface, but let’s make this

mainFrame.pack();
mainFrame.setVisible(true);

}
}

Listing 4.2 An ActionListener sample (continued)

Figure 4.5
ActionListener sample output

AbstractButton 121
simple application a bit more interesting by adding an animated GIF file. Listing
4.3 shows you the code:

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements ActionListener

{
// Keep track of button presses
private int iCounter = 0;

// A place to save the button
private JButton button = null;

public TestFrame()
{

setTitle("Animated Button Application");
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new FlowLayout());
getContentPane().add(topPanel);

// Create a button instance and add it to the panel
ImageIcon image = new ImageIcon("earth.gif");
button = new JButton("Press Me", image);
button.setPreferredSize(new Dimension(250, 90));
topPanel.add(button);

// Attach an action listener to the button
button.addActionListener(this);

}

public void actionPerformed(ActionEvent event)
{

// Make sure the event is for the button
if(event.getSource() == button)
{

// Increment the button press count
iCounter++;
// Change the button text
button.setText("Pressed " + iCounter + " times");
System.out.println("Click");
pack();

Listing 4.3 An animated button sample

122 CHAPTER 4
Labels and buttons
 This code resembles listing 4.2, but it adds an icon image using code similar to
that of the JLabel image example. Like the JLabel example, an image can be applied
to a JButton instance either via the constructor or by using the setIcon() method.

 Notice that the code in listing 4.3 is required to do nothing to manage the
image animation. Behind the scenes, this method is actually starting an internal
thread to flip to each frame of the GIF animation. If you run the listing 4.3 code,
you will be amazed with the output. This example requires only 21 lines of code!

If a button contains an image, you can optionally assign individual icons for
the normal, selected, pressed, rollover, and disabled states. This allows for to-
tal flexibility when creating image-based buttons. See the Swing online doc-
umentation for AbstractButton for more detail on the following methods:

setIcon()
setDisabledIcon()
setDisabledSelectedIcon()
setPressedIcon()
setRolloverIcon()
setRolloverSelectedIcon()
setSelectedIcon()

4.3.3 Enabling and disabling buttons

With the exception of action event handling support, the code most often written
to manage buttons is used to enable or disable buttons. In a typical form-based dia-
log box, for example, it may be desirable to disable the OK button until the user

}
}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.pack();
mainFrame.setVisible(true);

}
}

Listing 4.3 An animated button sample (continued)

AbstractButton 123
populates any required fields. To disable or enable a button or check box, use the
following code:

button.setEnabled(bState);

where bState is either true (to enable) or false (to disable) the component. If dis-
abled, the button frame, its text, and image will all be redrawn in a flatter gray shade
to indicate to the user that no action can be performed.

4.3.4 Adding a keyboard mnemonic

A relatively recent addition to Java is the ability to create applications that support
mouseless operation (that is, use of the keyboard only). Swing applies this capability
to its family of user interface components, allowing the assignment of keyboard
mnemonics to any JComponent child, including buttons and check boxes. Figure
4.6 shows a collection of buttons with keyboard mnemonics.

Carefully choose keyboard mnemonics. The generally accepted guidelines
for mnemonics for text are in order of precedence:

• Use the first letter unless another letter provides a better association
• Use a distinctive consonant
• Use a vowel

Avoid using thin letters and those with descenders (for example, q and y) if
you can, as they are not easily visible when underlined.

Users in MS-Windows environments might be used to common accelerators
such as Enter (for OK), Esc (for Cancel) and F1 (for Help). If in doubt,
check the style guide or application exemplars of the target platform.

Figure 4.6
Keyboard mnemonics

124 CHAPTER 4
Labels and buttons
 To add a keyboard mnemonic to a button or check box, use code resembling
the following:

button.setMnemonic('R');

 This code assigns the key R to the button instance. Note that the first appear-
ance of the assigned accelerator in the button text will be underlined to indicate
which key represents the shortcut. Be careful not to duplicate keyboard shortcuts
for components sharing the same panel, or you will get unexpected results.

If you are building internationalized applications, you will need to specify
a mnemonic for each component in each language. Unlike the Microsoft
Windows resource style, you cannot add an & character to your strings to
identify the short cut character. In my opinion, this inability is a major
weakness in Swing.

4.3.5 AbstractButton variables

protected ButtonModel model

This variable holds the model associated with this button instance. Swing will ini-
tially default this variable to an instance of the ButtonModel class, but this can be
changed with a call to the setModel() method.

protected ChangeListener changeListener

 This variable contains an instance of the button’s model listeners.

protected ActionListener actionListener

 This variable contains an instance of the button’s action listeners.

protected ItemListener itemListener

 This variable contains an instance of the button’s item listeners.

protected transient ChangeEvent changeEvent

 This variable tracks the change event for the button instance. Only one
ChangeEvent is needed per button instance, since the event’s only state is the
source property. The source of events generated is always the this instance.

AbstractButton 125
4.3.6 AbstractButton significant method groupings

The API for AbstractButton is quite extensive, reflecting its importance. We will
examine some of the methods provided in this class, though many are somewhat
obscure and I will only gloss over them. The Swing online documentation and
examples will assist you in working with some of the less often used methods.

public String getText()
public void setText(String text)

 With exactly the same method prototypes as the Button class in AWT, JLabel
provides two methods to get or set the text shown for the instance.

public Icon getIcon()
public void setIcon(Icon defaultIcon)
public Icon getPressedIcon()
public void setPressedIcon(Icon pressedIcon)
public Icon getSelectedIcon()
public void setSelectedIcon(Icon selectedIcon)
public Icon getRolloverIcon()
public void setRolloverIcon(Icon rolloverIcon)
public Icon getRolloverSelectedIcon()
public void setRolloverSelectedIcon(Icon rolloverSelectedIcon)
public Icon getDisabledIcon()
public void setDisabledIcon(Icon disabledIcon)
public Icon getDisabledSelectedIcon()
public void setDisabledSelectedIcon(Icon disabledSelectedIcon)

 The methods in this group manage the icon images associated with each but-
ton state. If images are not specified for a given state, AbstractButton will assign a
default image based on the default icon.

public int getVerticalAlignment()
public void setVerticalAlignment(int alignment)
public int getHorizontalAlignment()
public void setHorizontalAlignment(int alignment)
public int getVerticalTextPosition()
public void setVerticalTextPosition(int textPosition)
public int getHorizontalTextPosition()
public void setHorizontalTextPosition(int textPosition)
protected int checkHorizontalKey(int key, String exception)
protected int checkVerticalKey(int key, String exception)

 Like the JLabel class, buttons can assign a particular alignment to the text and,
independently, to any icon image. The methods this group manage both the vertical
and horizontal alignments.

126 CHAPTER 4
Labels and buttons
Even though Swing implements the following old AWT Button APIs for
compatibility, they have been deprecated and should not be used in any new
code. For example, instead of:

String getLabel()
void setLabel(String label)

use:

String getText()
void setText(String label)

4.4 Push buttons

Most of the button examples shown in this chapter used a Swing class called JBut-
ton. JButton implements a basic push button, and since we have seen so many
examples of it already, I won’t bore you with it any further. You will, however, use
JButton extensively in GUI applications for common button operations, such as
OK and Cancel buttons.

Use consistent button size. An example of a standard button size is 100 pix-
els wide by 25 pixels high. Consider making text more concise in order to
minimize the width of buttons. Keep standard button sizes throughout the
applications to create more visually appealing dialogs. Wherever possible,
avoid placing differently sized buttons in close proximity.

4.4.1 Default buttons

Most graphical user interfaces use a default button. When a dialog box is opened, it
is customary to see at least one button component which is the button equivalent to
the user pressing the Enter key on the keyboard. This is called the default button.

 Swing provides this functionality, not only in dialog boxes, but also in any
frame or window. The default button mechanism is accessed through the JRoot-
Pane instance. Recall from our discussion of JFrame and JApplet in chapter 3 that
the base container object of these components is an instance of the JRootPane class.
If you examine Sun’s online documentation for JRootPane, you will notice the
method setDefaultButton() that accepts a JButton instance as a parameter.

Push buttons 127
 This setDefaultButton() method controls the button activated when the
user initiates an activation event (usually the Enter key) in the root pane. This
action occurs regardless of which component within the root pane currently has the
focus. To disassociate the default action and button, pass a null value to the root
pane using the same setDefaultButton() method.

 Since the default button must be a JButton instance, this class provides a
method used to determine if the given instance is the current default. The isDe-

faultButton() method in the JButton returns a boolean value indicating whether
or not this button instance is activated as a result of the default action.

4.4.2 JButton constructors

JButton()

This constructor creates an instance of a JButton component with no text or icon
image.

JButton(Icon icon)

 This constructor creates an instance of a JButton component with the speci-
fied icon image.

JButton(String sText)

 This constructor creates an instance of a JButton component with the speci-
fied button text.

JButton(String sText, Icon icon)

 This constructor creates an instance of a JButton component with the speci-
fied button text and icon image.

4.4.3 The JButton API

Recall that JButton extends AbstractButton, which in turn indirectly extends JCom-
ponent. As you can see from the online Swing documentation, JButton implements
only three methods, all of which have uses associated with the creation of pluggable
look-and-feel or accessibility. However, based on its parentage, the JButton class has
access to the methods in both AbstractButton and the JComponent class. You can
apply any methods from JButton’s parent to instances of any button, allowing oper-
ations such as color and font changes, border changes, and so on.

128 CHAPTER 4
Labels and buttons
4.5 Toggle buttons

Swing also provides a class named JToggleButton,
which presents buttons in much the same way as JBut-
ton. The real difference is one of operation. Toggle
buttons work like the Caps Lock key on a keyboard,
whereas JButton operates in the same manner as the

letter or number keys. JToggleButton provides a press-and-hold mechanism, so
they are ideal for user interfaces that demand modal operations. See figure 4.7 for
an example of an array of toggling buttons.

 If you refer back to the class hierarchy for AbstractButton (see figure 4.4), you
will notice that JToggleButton is the parent class for JCheckBox and JRadioButton.
Since both of these component types exhibit the same toggling behavior, Swing
provides these characteristics in JToggleButton. As such, JToggleButton takes on
many of the features of its children. For example, consider the following code
example in listing 4.4:

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
public TestFrame()
{

setTitle("ToggleButton Application");
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new FlowLayout());
getContentPane().add(topPanel);

// Create some buttons and add them to the panel
JToggleButton button1 = new JToggleButton("Button 1", true);
topPanel.add(button1);

JToggleButton button2 = new JToggleButton("Button 2", false);
topPanel.add(button2);

JToggleButton button3 = new JToggleButton("Button 3", false);
topPanel.add(button3);

Listing 4.4 JToggleButton sample code

Figure 4.7
Toggling buttons

Toggle buttons 129
 The program first adds the buttons to the panel, which in itself is enough to
make the program do something, but suppose that you want to prevent Button 2
and Button 3 from toggling when Button 1 is depressed. If you are familiar with
AWT radio buttons, you will recall that you could relate a group of them by creat-
ing a CheckboxGroup instance and adding the related radio buttons to it. In Swing,
you can group button components other than check boxes, so we use a new class
called ButtonGroup, which is functionally equivalent to its AWT counterpart.

 Well, it’s no big surprise to discover that this JToggleButton instances can also
be added to a ButtonGroup, and that is what the sample code in listing 4.4 does
with the last four lines of code. This means that you no longer need to write a lot of
code to manually untoggle each button in the array when a new button is pressed.

According to Sun, modern user interface design guidelines frown on creating
a toggling button array like the one produced by listing 4.4. However, im-
plementing an application exhibiting this behavior is left entirely in the hands
of the developer. The point of listing 4.4 is simply to show you that the ca-
pability to implement grouped toggle buttons is available, if required.

4.5.1 JToggleButton constructors

JToggleButton()

// Group the buttons so they interact with each other
ButtonGroup buttonGroup = new ButtonGroup();
buttonGroup.add(button1);
buttonGroup.add(button2);
buttonGroup.add(button3);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.pack();
mainFrame.setVisible(true);

}
}

Listing 4.4 JToggleButton sample code (continued)

130 CHAPTER 4
Labels and buttons
 This constructor creates an instance of a JToggleButton component with no
text or icon image.

JToggleButton(Icon icon)

 This constructor creates an instance of a JToggleButton component with the
specified icon image.

JToggleButton(Icon icon, boolean bSelected)

 This constructor creates an instance of a JToggleButton component with the
specified icon image. The bSelected parameter controls the initial toggle state of
the button.

JToggleButton(String sText)

 This constructor creates an instance of a JToggleButton component with the
specified button text.

JToggleButton(String sText, boolean bSelected)

 This constructor creates an instance of a JToggleButton component with the
specified button text. The bSelected parameter controls the initial toggle state of
the button.

JToggleButton(String sText, Icon icon)

 This constructor creates an instance of a JToggleButton component with the
specified button text and icon image.

JToggleButton(String sText, Icon icon, boolean bSelected)

 This constructor creates an instance of a JToggleButton component with the
specified button text and icon image. The bSelected parameter controls the initial
toggle state of the button.

4.6 Check boxes

Swing provides a class, named JCheckBox, that extends JToggleButton to imple-
ment a standard check box control. A check box has just two states (checked and
unchecked) which are toggled by the user using the mouse or the optional assigned
keyboard accelerator. Programmatically, the state of a check box can be determined
using code similar to the following fragment:

boolean bValue = checkbox.isSelected();

Check boxes 131
 To set the state of a check box at run time, use:

checkbox.setSelected(bValue);

 Where bValue is true or false, to set or reset the state of the check box.

Use check boxes to apply multiple simultaneous states. Check boxes are
used to show an on or off state. They can be used most effectively as groups
to convey the fact that an object or a view can have multiple states at once
and to allow the user to change any one of them without affecting the others.
Check boxes can also be used in isolation.

4.6.1 Special layout considerations

Previously, we briefly described some of the new layout managers provided by
Swing and focused on the BoxLayout manager; however, at that time we did not
delve too deeply into the use of this layout manager. Well, the time has come to take
a more practical look at BoxLayout because it greatly simplifies displaying JCheck-
Box components in a column format (and also the JRadioButton class, which we
will look at next).

 Though you can apply check boxes or radio buttons using any layout manager,
the BoxLayout manager offers the simplest approach. This suggestion to use Box-
Layout for check boxes and radio buttons does not, however, mandate that you use
this layout manager for all panels that contain these components. If you find your-
self in a situation where you need to intermix a group of check boxes with text
fields, for example, the easiest solution is to create a subpanel (using JPanel) with
box layout for the check box(es) and add it to the main panel at the correct location.

 For example, let’s assume we want to create a panel that looks like the one
shown in figure 4.8. Notice that there is a mix of text fields, labels, and check boxes
contained in what appears to be a single panel. In reality, this is a series of panels in
which the two check boxes appear in a JPanel (innerPanel) possessing an instance of
the BoxLayout manager. This panel is then added to the main panel (topPanel).
Listing 4.5 demonstrates the use of BoxLayout to produce the output in figure 4.8.

import java.awt.*;
import java.awt.event.*;

Listing 4.5 Check box and BoxLayout sample code

132 CHAPTER 4
Labels and buttons
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

class TestFrame
extends JFrame

{
public TestFrame()
{

setTitle("BoxLayout Application");
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(new FlowLayout());
getContentPane().add(topPanel);

// Create some buttons and add them to the panel
JButton button1 = new JButton("Button 1");
button1.setMaximumSize(new Dimension(100, 25));
topPanel.add(button1);

// Create a check box array
JPanel innerPanel = new JPanel();
innerPanel.setLayout(new BoxLayout(innerPanel,

BoxLayout.Y_AXIS));
innerPanel.setPreferredSize(new Dimension(100, 120));
innerPanel.setBorder(new TitledBorder(

new EtchedBorder(), "Checkboxes"));
topPanel.add(innerPanel);

JCheckBox check1 = new JCheckBox("Checkbox 1");
innerPanel.add(check1);
JCheckBox check2 = new JCheckBox("Checkbox 2");
innerPanel.add(check2);
JCheckBox check3 = new JCheckBox("Checkbox 3");
innerPanel.add(check3);

Listing 4.5 Check box and BoxLayout sample code (continued)

Figure 4.8
A sample panel
with check boxes

Check boxes 133
4.6.2 JCheckBox constructors

JCheckBox()

This constructor creates an instance of a check box with no text or icon image.

JCheckBox(Icon icon)

 This constructor creates an instance of a check box with the specified icon
image.

JCheckBox(Icon icon, boolean bSelected)

 This constructor creates an instance of a check box with the specified icon
image. The bSelected parameter controls the initial toggle state of the check box.

JCheckBox(String sText)

 This constructor creates an instance of a check box with the specified text.

JCheckBox(String sText, boolean bSelected)

 This constructor creates an instance of a check box with the specified text. The
bSelected parameter controls the initial toggle state of the check box.

JCheckBox(String sText, Icon icon)

JCheckBox check4 = new JCheckBox("Checkbox 4");
innerPanel.add(check4);

JPanel textPanel = new JPanel(new BorderLayout());
textPanel.setBorder(new TitledBorder(

new EtchedBorder(), "TextArea"));
JTextArea area = new JTextArea("", 10, 30);
area.setPreferredSize(new Dimension(170, 130));
textPanel.add(area);
topPanel.add(textPanel);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.pack();
mainFrame.setVisible(true);

}
}

Listing 4.5 Check box and BoxLayout sample code (continued)

134 CHAPTER 4
Labels and buttons
 This constructor creates an instance of a check box with the specified text and
icon image.

JCheckBox(String sText, Icon icon, boolean bSelected)

 This constructor creates an instance of a check box with the specified text
and icon image. The bSelected parameter controls the initial toggle state of the
check box.

4.7 Radio buttons

Most of the statements made regarding AbstractButton and
JCheckBox apply equally to radio buttons. Radio buttons are
arrays of buttons used to select the mode of a particular applica-
tion function, and Swing implements this component in a class
called JRadioButton. As with AWT radio buttons, those in Swing
are always associated with a ButtonGroup instance, which we
reviewed during the discussion of AbstractButton.

Use radio buttons to apply mutually exclusive states. Radio buttons are
binary, but are never found in isolation. These should only be used to toggle
within a group of mutually exclusive states, and they allow the user to select
a single state which clears the others.

 The suggestions regarding BoxLayout that were highlighted when we talked
about JCheckBox apply equally to JRadioButton. It should be noted that, within
the same BoxLayout panel, you are free to mix radio buttons, check boxes, and tog-
gle buttons, if appropriate. In fact, BoxLayout is not restricted to these compo-
nents. BoxLayout fully supports all Swing and AWT components; however, its use
will not be appropriate for every application.

4.7.1 JRadioButton constructors

JRadioButton()

This constructor creates an instance of a radio button with no text or icon image.

JRadioButton(Icon icon)

Figure 4.9
Example of Swing
radio buttons

Chapter summary 135
 This constructor creates an instance of a radio button with the specified icon
image.

JRadioButton(Icon icon, boolean bSelected)

 This constructor creates an instance of a radio button with the specified icon
image. The bSelected parameter controls the initial toggle state of the radio button.

JRadioButton(String sText)

 This constructor creates an instance of a radio button with the specified text.

JRadioButton(String sText, boolean bSelected)

 This constructor creates an instance of a radio button with the specified text.
The bSelected parameter controls the initial toggle state of the radio button.

JRadioButton (String sText, Icon icon)

 This constructor creates an instance of a radio button with the specified text
and icon image.

JRadioButton (String sText, Icon icon, boolean bSelected)

 This constructor creates an instance of a radio button with the specified text
and icon image. The bSelected parameter controls the initial toggle state of the
radio button.

4.8 Chapter summary

In this chapter, we started to examine some actual Swing components and ways in
which they could be used to create some simple applications. The first component
described was the simple label, which is commonly used to identify the purpose of
other components within a panel.

 Next, we examined the intricacies of the AbstractButton class. This class con-
tains almost all of the functionality for every button, check box, and radio button in
Swing. Then, we learned about more specific types of buttons, starting with the
JButton class, and presented techniques used to enable or disable it and to display
animated images on a button face.

 Finally, we quickly discussed check boxes and radio buttons, which are funda-
mental for building modal selections into a user interface. These components oper-
ate in much the same way as the equivalent AWT components, though, like
JButton, images and keyboard accelerators can be applied.

136 CHAPTER 4
Labels and buttons
 Though I have not relentlessly examined the purpose for every method in the
classes identified in this chapter, I have made an effort to highlight their most com-
mon features and describe the techniques used to implement applications with
them. This effort will continue into the next several chapters, though the complex-
ity and uniqueness of the components will increase. So far, the components we have
studied map almost directly onto the equivalent AWT components; however, as we
move forward from this chapter, you will see that the more complex and unique
aspects of Swing components relate less and less well to those of AWT.

5Text
management

In this chapter
■ Creating text fields and text areas

■ Special document handling in Swing

■ Viewing HTML documents

138 CHAPTER 5
Text management
The Swing components we have discussed have required simple input, and have a
simple feedback mechanism. For example, a check box or radio button needs only a
mouse click to toggle its state, and will display this state in the form of a check mark
or a highlighted dot. You have seen examples of components that allow keyboard
text input, but you have not yet seen any details about them.

 In this chapter, you will begin to see components that allow text input and
give you the capability to build something practical with Swing. We will start by
examining the JTextComponent class, which provides the basic intelligence found
in all derived text components.

 Then, we will look at the standard AWT-like text field, which provides an
interface to enter a single line of text. We will take a deeper look at the TextArea
component, which you can use to enter and/or display multiple lines of text. These
components are as functional as those you may already recognize in AWT, but
much more can be accomplished with Swing than with AWT.

 As we progress more deeply into text management, we will study the docu-
ment management capabilities built into Swing text components. We will show you
how to easily display HTML and Rich Text Format (RTF) documents, as well as
text with a custom document format. By the time you finish this chapter, you will
be able to create simple form-based user interfaces built entirely with Swing compo-
nents, and we will have laid the groundwork for learning about the more advanced
components.

 Finally, we will examine the combo box (or pull-down list), which is a hybrid
of a simple mouse-only component and a text field. The Swing combo box is similar
to the Choice control in AWT, but offers additional features, such as an editable
selection field.

5.1 JTextComponent

If you have previous experience with AWT, then you know that text support was
quite limited. The basic design approach in AWT is to wrap a thin native interface
around the plain text support provided by the operating system. This technique
provides the benefit of supporting internationalization, but it does not meet the
needs of many developers. For example, AWT doesn’t support multiple fonts within
the same text windows, nor does it allow embedding graphic images in the text.

 Due to these limitations, developers requiring special features were forced to
write their own text management classes. This can result in unscheduled project
delays because of the additional work. More significantly, the classes written to sup-

JTextComponent 139
port special features are nonstandard and often incomplete. For instance, many
developers either fail to consider or don’t need internationalization, so they omit it.
If foreign language support becomes important at some point in the future,
upgrading the existing code would be a nightmare.

 Swing has a solution to AWT’s text support problems. The developers of
Swing realized the limitations in AWT, and decided on a different approach
whereby all text manipulation classes are basically implementations of a text editor,
whether they be single line or multiple lines of plain text, HTML, or some custom
developer-written format. The result of their efforts is a tiered class hierarchy in
which the base text class, JTextComponent, holds all of the knowledge needed to
implement a text editor, and its children simply describe a technique to apply this
knowledge to a specific task.

 Figure 5.1 illustrates the class hierarchy for JTextComponent. Each of the
classes will be described in some detail as we progress through this chapter, but, for
now, let’s concentrate on JTextComponent. The designers of Swing set the follow-
ing requirements for JTextComponent:

■ JTextComponent supports the previous AWT API, as much as possible. This
greatly simplifies the conversion process from AWT to Swing. There are some
pitfalls when converting, but, in general, converting AWT text controls to
Swing is easy.

■ JTextComponent provides a rich set of components capable of interacting
with the native operating system for operations like direct manipulation (drag
and drop) and clipboard operations. This class also lays the foundation to sup-

JComponent JTextComponent JTextArea

JTextField

JEditorPane

JPasswordField

Figure 5.1 JTextComponent class hierarchy

140 CHAPTER 5
Text management
port formats beyond plain text, such as HTML and RTF. It also allows devel-
opers to design custom text formats.

■ JTextComponent fully supports Swing’s pluggable look-and-feel capabilities.
In addition to completely replacing the look-and-feel of text components, you
can also implement custom text and graphics styles.

 In the remainder of this section, we will make a more detailed examination of
some features provided in the JTextComponent class.

The AWT TextEvent and TextListener have been replaced by Document-
Event and DocumentListener interfaces in Swing. Though the Document-
Event interface provides substantially more information about the nature of
a text change, it is incompatible with AWT. If you are converting AWT code
which makes use of TextEvent or TextListener, you will have a bit more work
to do.

5.1.1 Clipboard operations

JTextComponent fully supports clipboard manipulations such as cut, copy, and
paste. The methods for these are as follows:

textComponent.copy();
textComponent.cut();
textComponent.paste();

 These operations work on any Swing text component, be it a text field, a text
area, or a user written text component supporting a custom format (including
graphics). Because JTextComponent provides the clipboard mechanism for you, a
great deal of time can be saved when you write text components with custom text
formats.

5.1.2 Saving and loading

You might expect JTextComponent to handle clipboard operations (and it does);
however, this class also offers features you might not be expecting. For example,
JTextComponent also includes the mechanism to save and load text within the
component. This is useful if you are writing something like a text editor application,
where you want to interact with the operating system to load or save files. The
beauty of the approach provided by JTextComponent is that it is totally system

JTextComponent 141
independent, and, in addition, is not restricted to disk files. JTextComponent can
save or load any type of stream (a URL, for example). To use these methods, add
code like the following:

textComponent.read(xcReadStream, “http://www.mysite.com”);
textComponent.read(xcStreamStream);

5.1.3 JTextComponent constants

public static final String FOCUS_ACCELERATOR_KEY

This constant contains the bound property name for the focus accelerator.

5.1.4 JTextComponent constructors

JTextComponent()

This constructor creates an instance of a text component. Only children of this class
will call it.

5.1.5 JTextComponent significant method groupings

public void setDocument(Document doc)
public Document getDocument()

Every JTextComponent (or derivative) instance has an associated Document. Swing
will assign a default which can be retrieved, but the document instance can be
changed with the setDocument() method.

public void setText(String t)
public String getText()
public String getSelectedText()
public void replaceSelection(String content)
public String getText(int offs, int len)

throws BadLocationException

 Using the same techniques as those in the AWT TextComponent class, the
methods in this group manage all text within the component. This group also
includes a method to replace the selected text with the specified string.

public Caret getCaret()
public void setCaret(Caret c)
public void setCaretPosition(int position)
public int getCaretPosition()
public void moveCaretPosition(int pos)

142 CHAPTER 5
Text management
 The caret (the blinking cursor), which is used as part of the selection mecha-
nism for a text component, can be controlled with the methods in this group.

public Highlighter getHighlighter()
public void setHighlighter(Highlighter h)

 By default, Swing will assign a highlighter to each text component instance.
The methods in this group manage the highlighter, allowing it to be changed to a
custom version if desired.

public Color getCaretColor()
public void setCaretColor(Color c)
public Color getSelectionColor()
public void setSelectionColor(Color c)
public Color getSelectedTextColor()
public void setSelectedTextColor(Color c)
public Color getDisabledTextColor()
public void setDisabledTextColor(Color c)

 This group of methods manages the colors of the various attributes of a text
component. The color for each text state (normal, disabled, and selected) can be
changed.

public void cut()
public void copy()
public void paste()

 Every text component supports clipboard manipulation. This group of meth-
ods supports copying and cutting the currently selected text, as well as pasting the
contents of the clipboard into the component’s document.

public void read(Reader in, Object desc) throws IOException
public void write(Writer out) throws IOException

 This group of methods handles loading documents from a stream and saving
them back again (unlike AWT’s text components).

public synchronized int getSelectionStart()
public synchronized void setSelectionStart(int selectionStart)
public synchronized int getSelectionEnd()
public synchronized void setSelectionEnd(int selectionEnd)
public void select(int selectionStart, int selectionEnd)
public synchronized void selectAll()

 Text selection is a very important feature of the text component class hierar-
chy. These methods allow developers to programmatically select regions of text
within the document.

Document handling 143
5.2 Document handling

The previous section contained a note concerning the lack of TextListener and Text-
Event in Swing’s text component classes. With AWT, these classes are used to deter-
mine if the user has changed the contents of a text component, for example. Since
Swing does not support this technique, it must offer developers another option.
The developers of Swing adopted a much more intelligent approach to handling
text changes and formatting, and it does this with a class named Document.

In the Swing MVC architecture, the Document class serves as a model. It
contains no capability for user interface. These functions originate with the
users of this class, such as JTextField and JTextArea.

 Document is a Swing-based container used to hold text and to provide notifi-
cation of changes to this text. The Document class also implements support for
mark-up (text selection) and includes an internal structure to manage changes to its
text. The structure of these elements (see figure 5.2) consists of a base unit of con-
tainment called an element, each of which includes an arbitrary set of attributes
associated with its text. At the front end, the element structure maps to an instance
of a view (described in chapter 3 when we discussed JScrollPane).

 Figure 5.2 shows how text and control information is packed into the Docu-
ment internal element structure. Typically, an instance of Document will contain
only a single element structure, but the interface supports building any number of

Root Element

Line/Paragraph Line/Paragraph

Content Element Break Content Element Break

T h i s ai s \n s a

m p l e \n

Elements

Selection Positions Range

Figure 5.2 Document internal element structure

144 CHAPTER 5
Text management
structural projections over the text element. Also, Document supports multiple
root elements and multiple data structures. For example, suppose you need to store
modification notes or annotations along with the text. In this case, you need to cre-
ate an additional data structure associated with the annotations, in addition to
structure that contains the actual text.

 Why is the Document class important, and what advantages does it offer over
AWT? AWT had only two classes for managing text entry and display: TextField and
TextArea. Both classes are limited exclusively to character data. With Swing, and a
little creativity, applications (like the one shown in figure 5.3) can be designed with
relative ease. Notice that this screen shot shows not only several different font styles
and colors, but also includes graphics. Accomplishing the same things with AWT
would be quite difficult.

 At this time, I won’t give you any specific examples for usage of the Document
class, since you do not have enough information yet to make such an example prac-

Figure 5.3 Sample application using the document class

Document handling 145
tical. As we progress through the rest of this chapter, you will see samples showing
you how to interface to the Document instance associated with the text classes we
will discuss.

5.2.1 Document constants

public static final String StreamDescriptionProperty

This constant contains the property name for the description of the stream used to
initialize the document instance. This should be used if you know anything about
the stream used to initialize the document.

public static final String TitleProperty

 This constant holds the property name for the title of the document, if there
is one.

5.2.2 Document significant method groupings

public abstract String getText(int offset, int length)
throws BadLocationException

public abstract void getText(int offset, int length, Segment txt)
throws BadLocationException

public abstract void insertString(int offset, String str,
AttributeSet a) throws BadLocationException

public abstract void remove(int offs,
int len) throws BadLocationException

These methods are used to retrieve, insert, and remove text strings from a docu-
ment. The specified offset and length determine the location and size of the string
being manipulated. All methods throw a BadLocationException if the location
specified is invalid.

public abstract int getLength()

 This method returns an integer containing the number of characters held by
the document.

public abstract void addDocumentListener(
DocumentListener listener)

public abstract void removeDocumentListener(
DocumentListener listener)

 The Document class supports a DocumentListener which waits for changes to
the document (insertion or removal of elements). DocumentListeners can be added
or removed with the methods in this group.

146 CHAPTER 5
Text management
public abstract Position getStartPosition()
public abstract Position getEndPosition()
public abstract Position createPosition(int offs)

throws BadLocationException

 Each of the methods in this group manages the positions of important parts of
the document. The start and end methods return the starting and ending positions
of the document, while the createPosition() method allows you to create a spe-
cific position within the document which tracks as changes are made.

public abstract Object getProperty(Object key)
public abstract void putProperty(Object key, Object value)

 These methods allow properties to be managed. It was previously mentioned
that custom properties could be assigned to the document and its elements, and
these methods implement this capability.

public abstract Element[] getRootElements()
public abstract Element getDefaultRootElement()

 These methods manage the root element(s) of the document.

public abstract void render(Runnable r)

 This method allows the model to be safely rendered, if the model supports
asynchronous updates. The given renderer will be executed in a safe way, preventing
changes while it is active.

5.3 Text fields and password fields

If you have experience with the AWT user interface,
you already know about the standard text field. Swing
offers a similar class, and we will start our study of text
components with this simple data entry object. Text
fields are simple entry boxes which allow a single line of
text entered with any character from the keyboard. It is
important to note that text fields, and Java in general,
are UNICODE compliant. This means that any charac-
ter from any language can be entered and displayed,
provided that the operating system supports the charac-
ter set. See figure 5.4 for examples of some text fields

from the SWINGSET demonstration supplied in the Swing example programs.

Figure 5.4
Example of Swing text fields

Text fields and password fields 147
A text field includes only the editable field itself. Normally, you would asso-
ciate JLabel instance with a text field to identify the purpose of the field.

 Text fields, having JComponent as its parent, have many of the same capabili-
ties as the JLabel we previously examined. They possess a font, a background color,
and a foreground color. They can be associated with a keyboard accelerator (which
is our next topic of discussion), and they generate events that can be handled with a
listener class. The Swing text field is defined by a class called JTextField, which is
derived from JTextComponent. As a result, JTextField exposes all of the functional-
ity of its parent, such as text selection and clipboard operations. The basic construc-
tion technique for a text field is as follows:

JTextField field = new JTextField(“Sample”);

 In this example, the word Sample is placed in the edit field once the instance is
created and added to a container. Note that it is possible to create instances that are
initially empty. See the API at the end of this section for more information regard-
ing constructors for JTextField.

Align and size your text fields consistently. A graphical rule of thumb is to
left align any group of text fields on a dialog, and make groups of text fields
the same width and height. The same goes for all types of grouped controls.

5.3.1 Associating keyboard mnemonics

You have seen several references to keyboard
support and mnemonics, but have not yet seen
an example. Now is the time! If you are familiar
with Microsoft Windows, you have seen appli-
cations which include label/text field combina-
tions, where the label offers a keyboard
mnemonic (see figure 5.5). When the under-
lined accelerator key is pressed in conjunction

with the ALT key, the focus is given to the text field. For example, in figure 5.5, the
field associated with the Top label will receive the focus when the ALT+T key com-
bination is pressed.

Figure 5.5
Example of keyboard mnemonics

148 CHAPTER 5
Text management
 When building applications with AWT, implementing a keyboard mnemonic
for a text field is nearly impossible, though you could accomplish this with a signifi-
cant amount of additional code. Fortunately, Swing provides this capability for you.

 When we examined the JLabel class and its API, you may have noticed a
method named setLabelFor() which accepts a single Component parameter. This
method causes the association of JLabel instance with whatever component is sup-
plied as a parameter. So, to associate a JLabel with an instance of JTextField, you
can add code similar to the following:

JTextField field = new JTextField();
JLabel label = new JLabel(“My Label:”);
label.setLabelFor(field);

 But this only partially addresses the keyboard mnemonics problem—we still
need to add a keyboard accelerator to the label and the field. JLabel includes a dif-
ferent method for this, called setDisplayedMnemonic() . To add an accelerator for
the previous example, use:

label.setDisplayedMnemonic(‘M’);

 Finally, we need to inform the text component that it now has an accelerator
that generates an action when the user selects it. This is accomplished like this:

field1.setFocusAccelerator('m');

 This code generates an action event when the ALT+M key combination is
typed by the user, and the action event requires an actionPerformed() implemen-
tation in the code to service the request. As a result of the action, the code must
change the focus to the correct component. To do this, the example code executes:

Component fieldComponent = label.getLabelFor();
fieldComponent.requestFocus();

If you add accelerators as shown here, you will not be able to easily create
foreign language versions of your application. To create a language indepen-
dent application which implements accelerators, you will require a Java prop-
erty file from which accelerators will be loaded. To review the use of a
property file, see the Swing Notepad example which ships with JavaSoft JFC
product.

Text fields and password fields 149
 This completes the solution to the problem. Now the M key is attached as an
accelerator, and the association between the label and the text field automatically
sets the focus to the text field when the accelerator is selected by the user.

5.3.2 Special event handling

As noted previously, classes derived from JText-
Component do not support TextListener from
the AWT class library. So how does one deter-
mine when changes to text contents or some
other action occur? Swing offers a technique
that is better than the one offered by AWT,
because it transparently supports the Document
interface. This means that the Document inter-
face supports internationalization and the other
significant features offered by this model.
 Let’s take a closer look at some sample code. In

this example, we have two labels, associated text fields, and a single button. This
button should be disabled until the first text field contains text, and, as an added
requirement, the contents of the text field must be numeric. The user interface lay-
out of the sample should appear as it does in figure 5.6.

Notice that the example also implements keyboard accelerators, as described
in the previous section. This was done purely for demonstration purposes,
and plays no active part in this application.

 As shown in listing 5.1 below, the code to create and lay out this example is
straightforward, consisting of bits of code you have seen previously. The TestFrame
class, however, implements a DocumentListener which requires three additional
methods in order to handle insertions, removals, and changes of the text field.

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.text.*;

Listing 5.1 Event handling sample code

Figure 5.6
Output of the event handling example

150 CHAPTER 5
Text management
import com.sun.java.swing.event.*;

class TestFrame
extends JFrame
implements DocumentListener,

ActionListener
{

private JTextFieldfield1;
private JTextFieldfield2;
private JButton button1;
private JLabel label1;
private JLabel label2;

public TestFrame()
{

// NOTE: In order to create the desired output, this example
// uses a NULL layout manager and hard-codes the sizes and
// positions of components. This is NOT something you want
// to do in production code.

setTitle("TextHandling Application");
setSize(300, 190);
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(null);
getContentPane().add(topPanel);

// Create afield and label
field1 = new JTextField();
field1.setBounds(20, 40, 260, 25);
field1.setFocusAccelerator('v');
topPanel.add(field1);

label1 = new JLabel("Value 1:");
label1.setBounds(20, 15, 260, 20);
label1.setLabelFor(field1);
label1.setDisplayedMnemonic('V');
topPanel.add(label1);

// Create asecond label and text field
JTextField field2 = newJTextField();
field2.setBounds(20, 90, 260, 25);
field2.setFocusAccelerator('a');
topPanel.add(field2);

label2 = new JLabel("Value 2:");
label2.setDisplayedMnemonic('a');

Listing 5.1 Event handling sample code (continued)

Text fields and password fields 151
label2.setBounds(20, 65, 260, 20);
label2.setLabelFor(field2);
topPanel.add(label2);

// Create a button and add it to the panel
button1 = new JButton("OK");
button1.setBounds(100, 130, 100, 25);
button1.setEnabled(false);
topPanel.add(button1);

// Add a document listener to the first field
Document document = field1.getDocument();
document.addDocumentListener(this);

}

// Handle keyboard accelerators
public voidactionPerformed(ActionEvent e)
{

// Get the source of the action event
JLabel label = (JLabel)e.getSource();

// Give the associated component the focus
Component fieldComponent = label.getLabelFor();
fieldComponent.requestFocus();

}

// Handle insertions into the text field
public voidinsertUpdate(DocumentEvent event)
{

StringsString = field1.getText();

try {
int iValue = Integer.parseInt(sString);
button1.setEnabled(true);

}
catch(NumberFormatException e)
{

button1.setEnabled(false);
}

}

// Handle deletions from the text field
public void removeUpdate(DocumentEvent event)
{

// Prevent the user from entering a blank field
if(field1.getText().length() == 0)

button1.setEnabled(false);

Listing 5.1 Event handling sample code (continued)

152 CHAPTER 5
Text management
 The main points of interest in this sample are the two lines of code that assign
the listener to the TestFrame class. These lines, shown below, retrieve the Docu-
ment instance connected to field1 and add a document listener to it.

Document document = field1.getDocument();
document.addDocumentListener(this);

 From this point on, the application will detect any changes to the first field.
This is accomplished by implementing the following abstract method from the
DocumentListener class:

public void insertUpdate(DocumentEvent event)
public void removeUpdate(DocumentEvent event)
public void changedUpdate(DocumentEvent event)

Intelligently grabbing and controlling the focus of text fields. When en-
tering an editable field into a dialog, the first text field should have the focus.
Tabbing should grab the focus of the remaining text fields in the order in
which the fields are grouped together. If a dialog contains all text fields, typing
in the data on the last field, then pressing enter, should terminate the dialog.

else
{

// Do the same error checking as insertUpdate()
insertUpdate(event);

}
}

// Handle changes to the text field
public void changedUpdate(DocumentEvent event)
{

// Nothing to do here
}

// Main() method to get the ball rolling
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 5.1 Event handling sample code (continued)

Text fields and password fields 153
5.3.3 JTextField constructors

JTextField()

This constructor creates an instance of a text field with no text.

JTextField(String text)

 This constructor creates an instance of a text field with the specified text.

JTextField(int columns)

 This constructor creates an instance of a text field with no text. The field is
limited to the selected number of columns.

JTextField(String text, int columns)

 This constructor creates an instance of a text field with the specified text. The
field is limited to the selected number of columns.

JTextField(Document doc, String text, int columns)

 This constructor creates an instance of a text field with the specified text and
implements the chosen document model. The field is limited to the selected num-
ber of columns.

Swing also implements a JPasswordField which acts much like JTextField,
except that the output is hidden from the user. This is used for entry of con-
fidential input ,such as passwords.

 JPasswordField constructors

JPasswordField()

 This constructor creates an instance of a password field with no text.

JPasswordField(String text)

 This constructor creates an instance of a password field with the specified text.

JPasswordField(int columns)

 This constructor creates an instance of a password field with no text. The field
is limited to the selected number of columns.

JPasswordField(String text, int columns)

154 CHAPTER 5
Text management
 This constructor creates an instance of a password field with the specified text.
The field is limited to the selected number of columns.

JPasswordField(Document doc, String text, int columns)

 This constructor creates an instance of a password field with the specified text
and implementing the chosen document model. The field is limited to the selected
number of columns.

5.3.4 JPasswordField significant method groupings

public char getEchoChar()
public void setEchoChar(char c)
public boolean echoCharIsSet()

The JPasswordField class prevents unmasked output from appearing in the field.
The character that is echoed to the field is defaulted to an asterisk (*), but it can be
changed by the methods in this group.

5.4 Text areas

Though text fields offer answers to many implementation questions, they fall short
in some situations. Often, as a developer, you need to present a text component to
the user which will accept more than one line of text. The text component which
allows this is called a text area, and it is characterized by its ability to accept entry or
display many lines of text simultaneously.

 Like the text field in the last section, the text area has its origins in AWT (in the
TextArea class). TextArea supports internationalization, albeit in a limited manner,
and automatically provides horizontal and vertical scroll bars if the text buffer is
larger than the presentation space. The AWT TextArea class does have some limita-
tions, but, in general, offers most of the functionality required; however, for consis-
tency, the Swing development team designed a new class called JTextArea (see figure
5.7). Since JTextField is derived from JTextComponent, it inherently supports the
capability to save or load the contents of the text area both to and from a stream.

 The screen capture in figure 5.7 contains some source code loaded into the
JTextArea instance by using the read() method in its JTextComponent parent. The
source code to produce this output is show in listing 5.2. We can accomplish these
results with just 27 lines of code!

Text areas 155
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
public TestFrame()
{

setTitle("Text Area Application");
setSize(310, 230);
setBackground(Color.gray);
getContentPane().setLayout(new BorderLayout());

JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());

Listing 5.2 JTextArea sample

Figure 5.7 An example of JTextArea

156 CHAPTER 5
Text management
Notice that the sample code in listing 5.2 creates an instance of a JscrollPane,
and inserts the JTextArea into it. JTextArea does not provide scrolling capa-
bility, so you must use this technique to implement the ability to scroll.

 This completes our look at basic text components. The examples shown so far
in this chapter have been simple, but components based on the JTextComponent
class can become quite complex. If you are interested in a more detailed sample of
text components, study the STYLEPAD example provided with the Swing package.

getContentPane().add(topPanel, BorderLayout.CENTER);

// Create a text area
JTextArea area = new JTextArea();

JScrollPane scrollPane = new JScrollPane();
scrollPane.getViewport().add(area);
scrollPane.setBounds(10, 10, 280, 180);
topPanel.add(scrollPane, BorderLayout.CENTER);

// Load a file into the text area, catching any exceptions
try {
 FileReader fileStream = new FileReader(

"TestFrame.java");
area.read(fileStream, "TestFrame.java");

}
catch(FileNotFoundException e)
{

 System.out.println("File not found");
}
catch(IOException e)
{

 System.out.println("IOException occurred");
}

 }

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 5.2 JTextArea sample (continued)

Text areas 157
5.4.1 JTextArea constructors

JTextArea()

This constructor creates an instance of a text area with no text.

JTextArea(String text)

 This constructor creates an instance of a text area with the specified text.

JTextArea(int rows, int columns)

 This constructor creates an instance of a text field with the specified number of
rows and columns, and having no text.

JTextArea(String text, int rows, int columns)

 This constructor creates an instance of a text field with the specified number of
rows and columns, and having the specified text.

JTextArea(Document doc)

 This constructor creates an instance of a text field implementing the specified
Document model, and having no text.

JTextArea(Document doc, String text, int rows, int columns)

 This constructor creates an instance of a text field populated using the speci-
fied Document model. It contains the supplied text, formatted with the desired
number of rows and columns.

5.4.2 JTextArea significant method groupings

public void insert(String str, int pos)
public void append(String str)
public void replaceRange(String str,

int start, int end)

Like the AWT TextArea class, JTextArea implements methods to insert and append
text into the component’s document. To facilitate porting, the methods in the
Swing class are compatible with their AWT cousin.

public void setTabSize(int size)
public int getTabSize()

 The text area will pad tab characters with a specified number of spaces. The
methods in this group allow the tab size to be changed or retrieved. This is useful if
you want to present some custom display format.

158 CHAPTER 5
Text management
5.5 Combo boxes

All of the components we have examined in this chapter have been derived from
JTextComponent; however, there are other components in Swing which handle
text. Though these components are generally not parented by JTextComponent,
they are usually composed of at least one JTextComponent child with the addition
of some other functionality.

 Our first example of this type of class is the combo box (also known as a pull-
down list). A combo box is the combination of a text field, a button, and a list—all
in a single component. By default, the selected text is displayed in the text field,
which acts as the current selection box. The button to the right of the text field
controls the display of the list box, and is used to select a preconfigured list of items.
In AWT, this was as much capability as a combo box could offer. In Swing, the
combo box has been improved with the addition of editing capability in the selec-
tion text field, and with the ability to display icons along with, or in place of, the
text. Figure 5.8 shows some sample combo boxes created with Swing. Notice the
presence of icons in the pull-down list and selection fields.

 In Swing, the combo box class is named JComboBox, and its API is typically a
super-set of AWT’s ComboBox. This helps to make conversions from AWT to
Swing much easier.

Use combo boxes to conserve real estate. Combo boxes are ideal for allow-
ing the user to choose a single item from a long list of options, without con-
suming a lot of dialog real estate. If you are running out of room in a dialog,
and you need a UI that allows for either selecting from a list of choices or
typing in place, use a combo box. Consider deploying the scroll bar when the
item list reaches ten items, or if you need to display a hierarchy. The Swing
JComboBox will automatically add scroll bars after approximately seven
items, but you can change this by setting the preferred size of the instance.

 Listing 5.3 contains sample code to create a Swing-based combo box and pop-
ulate it with the names of some countries. This sample does not support graphical
images, but we will look at this in chapter 9 when we discuss list boxes (which are
implemented with the same technique). If you wish to preview list boxes, you can

Combo boxes 159
study the SWINGSET code that ships with the JFC product—and specifically, the
ComboBoxPanel.java file.

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;

class TestFrame
extends JFrame
implements ItemListener

{
private JComboBox combo;

final String[] sList =
 {
 "Canada",
 "USA",
 "Australia",
 "Bolivia",
 "Denmark",
 "Japan"
 };
public TestFrame()
{

setTitle("ComboBox Application");
setSize(300, 80);
setBackground(Color.gray);

JPanel topPanel = new JPanel();
topPanel.setLayout(null);
getContentPane().add(topPanel);

// Create a combo box
combo = new JComboBox();
combo.setBounds(20, 15, 260, 20);
topPanel.add(combo);

Listing 5.3 JComboBox sample code

Figure 5.8
Some examples of combo boxes

160 CHAPTER 5
Text management
5.5.1 Adding and removing list items

Listing 5.3 adds items to the combo box instance by using the following code:

// Populate the combo box list
for(int iCtr = 0; iCtr < sList.length; iCtr++)
 combo.addItem(sList[iCtr]);

 This addItem() method accepts a string, and places it in the combo box list at
the end of the list. To remove items, Swing implements three methods. The first
removes the item specified in the parameter list, while the second removes a speci-
fied item from the list according to the supplied index. The third technique
removes all items from the list portion of the combo box. Examples of these meth-
ods, in the order given, are as follows:

comboBox.removeItem((String)”Canada”);

// Populate the combo box list

for(int iCtr = 0; iCtr < sList.length; iCtr++)
 combo.addItem(sList[iCtr]);

// Allow edits
combo.setEditable(true);

// Watch for changes
combo.addItemListener(this);

}

public void itemStateChanged(ItemEvent event)
{

if(event.getSource() == combo
&& event.getStateChange() == ItemEvent.SELECTED)

{
System.out.println("Change:"

+ combo.getSelectedItem());
}

}

public static void main(String args[])
{

// Create an instance of the Test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 5.3 JComboBox sample code (continued)

Combo boxes 161
comboBox.removeItemAt(3);
comboBox.removeAllItems();

List indices begin at zero , and count upward. There is a theoretical limit of
232 items in any list; however, the practical limit should be less than twenty.
Swing will apply scroll bars to the list if required.

When using the removeItem() method to remove items by string, make
sure you use the (String) cast. removeMethod() assumes an Object data type
by default, and failing to cast will result in a compiler error.

5.5.2 Selecting items

There are two ways to select an item in a combo box. The first, and easier, is to have
the user select an item via a mouse click. The second is to perform the selection
operation programmatically using code like this:

comboBox.setSelectedItem((String)“Canada”);

or

comboBox.setSelectedIndex(4);

 Similarly, you can determine which item is selected, by using the following
code:

String sString = comboBox.getSelectedItem();

 Or, to determine the selected index number, use:

int iIndex = comboBox.getSelectedIndex();

5.5.3 Allowing field editing

With the AWT combo boxes, you loaded the list, and the user took what was avail-
able. The AWT component totally lacks the capability to allow user editing, even
when the available options are unsuitable. The Swing JComboBox component
allows editing of the selection field with the addition of one simple line of code. To
enable or disable editing, use code such as this:

comboBox.setEditable(true);

 If you run the sample code in listing 5.3, you will notice that the combo field
is editable. If the user changes the selection field by typing new text with the key-

162 CHAPTER 5
Text management
board, followed by an Enter key, the combo box will generate an item change
event. Since the sample program includes an ItemListener, you should see a console
message indicating the selection text.

5.5.4 Other combo box tricks

There are other features of the JComboBox control. For instance, the display of the
pop-up list can be controlled programmatically using the following methods:

showPopup();// Displays the pop-up list
hidePopup();// Hides the pop-up list

 Another useful method is the getItemCount() which returns that number of
items in the list. Also, you can retrieve any item using the getItemAt() method.
For additional features of the JComboBox component, study the API and check the
online documentation provided with Swing.

5.5.5 JComboBox constructors

JComboBox()

This constructor creates an instance of a combo box with a default data model.

JComboBox(ComboBoxModel aModel)

 This constructor creates an instance of a combo box with a specified data
model.

5.5.6 JComboBox significant method groupings

public void addItem(Object anObject)
public void insertItemAt(Object anObject,
public void removeItem(Object anObject)
public void removeItemAt(int anIndex)
public void removeAllItems()

Combo box items can be added or removed with the methods in this group. For
portability, these methods are generally compatible with those of their cousins in
the AWT Choice component.

public void setSelectedItem(Object anObject)
public Object getSelectedItem()
public Object[] getSelectedObjects()
public void setSelectedIndex(int anIndex)
public int getSelectedIndex()
public int getItemCount()
public Object getItemAt(int index)

Viewing HTML and other content types 163
 Methods in this group manage the selected item and index references for the
list. This includes methods to determine the list size, and the currently selected item
or index.

public void showPopup()
public void hidePopup()

 These methods control the presence of the selection list on the screen.

public void setModel(ComboBoxModel aModel)
public ComboBoxModel getModel()

 These methods manage the model used by the combo box instance. By
default, JComboBox will assign a default model, but custom models can be created
and added to the instance.

public void setRenderer(ListCellRenderer aRenderer)
public ListCellRenderer getRenderer()
public void setEditor(ComboBoxEditor anEditor)
public ComboBoxEditor getEditor()
public void configureEditor(ComboBoxEditor anEditor,
 Object anItem)

 JComboBox supports the ability to custom render the list items and current
selection. Additionally, the field can have a custom editor applied in order to
achieve some desired special effect. These methods manage the editor and the ren-
derer used for the combo box instance.

public void addItemListener(ItemListener aListener)
public void removeItemListener(ItemListener aListener)
public void addActionListener(ActionListener l)
public void removeActionListener(ActionListener l)

 These methods regulate the presence of listeners for the combo box instance.
Combo boxes support two types of events: action events and item selection events.

5.6 Viewing HTML and other content types

In chapter 3, we examined several of the pane classes provided in the Swing class
library, but you were warned that we would see more. Now we will look at a new
type of pane—one that you will probably find an unexpected and pleasant surprise.
In this section, we will discuss the JEditorPane class, which is capable of displaying
HTML text. Figure 5.9 shows a sample of the features this class provides. In this

164 CHAPTER 5
Text management
example, the HTML viewer has loaded a sample page from a file, but it can just as
easily pull web pages from live Internet sites.

JEditorPane is not limited to displaying HTML content. Within each JEdi-
torPane instance is an assigned EditorKit which controls the policy of a spe-
cific MIME content type. If you load the editor pane from a URL, the
instance will automatically determine the content type, and display data in
the correct format.

 With the JEditorPane class, you can quickly and easily create HTML viewers for
online help files, or for simply integrating Internet capability into your applications.
As you will see, JEditorPane supports a listener that can be used to detect hyperlink
changes. This offers you the option of tracking URL changes in the control that you
can utilize to build a simple web browser. Let’s take a look at an example.

 Listing 5.4 contains a great deal of useful information, and we will examine
some of this information in the following section. The basic construction and

Figure 5.9 An example of a text pane containing HTML

Viewing HTML and other content types 165
import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;

class TestFrame
extends JFrame
implements HyperlinkListener

{
private JEditorPane html;
private String sPath = System.getProperty("user.dir") + "/";

public TestFrame()
{

setTitle("HTML Application");
setSize(400, 300);
setBackground(Color.gray);
getContentPane().setLayout(new BorderLayout());

JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel, BorderLayout.CENTER);

try {
// Load the URL we want to display

 URL url = new URL("file:/// " + sPath + "Main.htm");

// Create an HTML viewer to display the URL
 html = new JEditorPane(url);
 html.setEditable(false);

 JScrollPane scrollPane = new JScrollPane();
 scrollPane.getViewport().add(html, BorderLayout.CENTER);

 topPanel.add(scrollPane, BorderLayout.CENTER);

 html.addHyperlinkListener(this);
}
catch(MalformedURLException e)
{
 System.out.println("Malformed URL: " + e);
}
catch(IOException e)
{
 System.out.println("IOException: " + e);
}

Listing 5.4 HTML viewer sample code

166 CHAPTER 5
Text management
layout code in this listing is straightforward, since we created only a single compo-
nent. Note, however, that like the JTextArea component, JEditorPane must be
placed within a scrolling pane in order to support scroll bars.

5.6.1 Listening for hyperlink changes

Listing 5.3 contains some particularly interesting code. First, it associates a hyper-
link listener with the instance of the JEditorPane. This allows us to detect and man-
age changes when the user follows a hyperlink on an HTML page. The listener is
attached with the following code:

html.addHyperlinkListener(this);

 In the case of our sample application, the listener is the TestFrame class, so we
are required to implement the hyperlinkUpdate() method. This method has the
following format:

}

public void hyperlinkUpdate(HyperlinkEvent event)
 {

if(event.getEventType() ==
HyperlinkEvent.EventType.ACTIVATED)

{
// Load some cursors
Cursor cursor = html.getCursor();
Cursor waitCursor = Cursor.getPredefinedCursor(

Cursor.WAIT_CURSOR);
html.setCursor(waitCursor);

// Handle the hyperlink change
SwingUtilities.invokeLater(new PageLoader(html,

event.getURL(), cursor));
}

 }

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 5.4 HTML viewer sample code (continued)

Viewing HTML and other content types 167
public void hyperlinkUpdate(HyperlinkEvent event)

 The HyperlinkEvent which is received contains all the information needed to
determine the new URL. In our example, the new URL is passed to another class to
load the web page into the viewer, using the following line of code:

SwingUtilities.invokeLater(new PageLoader(html,
event.getURL(), cursor));

 There are a couple of points to make about this line. First, the PageLoader
class is a class built into the listing 5.3 application. The source code for this class is
contained in an online source code package for this book. I haven’t shown it here,
because it is essentially a duplicate of the code from the SWINGSET sample appli-
cation which is included with JFC.

 The second point of interest in this line of source code is the call to Swing-

Utilities.invokeLater() . This is a special method, supported by Swing, to cause
some processing to occur at a later time. You cannot interact with Swing compo-
nents within a thread, so Swing provides the invokeLater() method. This method
accepts a task (in our case, the creation of a new class instance), and places it on
Swing’s internal task queue for execution whenever it becomes possible.

In the final chapter of this book we will discuss the use of this method, and
situations in which SwingUtilities.invokeLater() can be utilized to
make your applications perform better.

5.6.2 JEditorPane constructors

JEditorPane()

This constructor creates an instance of an editor pane with no associated URL.

JEditorPane(URL initialPage)

 This constructor creates an instance of an editor pane with an associated URL.

JEditorPane(String url)

 This constructor creates an instance of an editor pane with the associated
string containing a URL specification.

168 CHAPTER 5
Text management
5.6.3 JEditorPane significant method groupings

public synchronized void addHyperlinkListener(
HyperlinkListener listener)

public synchronized void removeHyperlinkListener(
HyperlinkListener listener)

These methods control the presence of hyperlink listeners. These listeners detect
changes invoked by the user when an HTML hyperlink is selected.

public void fireHyperlinkUpdate(HyperlinkEvent e)

 This method notifies all registered hyperlink listeners that a new hyperlink has
been selected. The hyperlink is passed as a parameter to this method. This method is
normally called by the currently installed EditorKit when there is hyperlink activity.

public final EditorKit getEditorKit()
public final void setEditorKit(EditorKit kit)
public EditorKit getEditorKitForContentType(String type)
public void setEditorKitForContentType(

String type, EditorKit k)
public static EditorKit createEditorKitForContentType(

String type)
public static void registerEditorKitForContentType(

String type, String classname)

 These methods manage the editor kit used by the JEditorPane instance. An
editor kit is a policy keeper for a specific content type. For example, HTML has a
specific editor kit which is the default for JEditorPane; however, other editor kits
could be implemented for other document formats. For example, an editor kit for
RTF could be loaded into the editor instance.

public void setPage(URL page) throws IOException
public void setPage(String url) throws IOException
public URL getPage()

 The methods in this group manage the page currently loaded into the control.
The setPage() methods allow new pages to be loaded into memory.

public final String getContentType()
public final void setContentType(String type)

 These methods determine and assign the content type for the editor pane.

Viewing RTF format 169
5.7 Viewing RTF format

In the previous section, we examined ways to view HTML text using Swing’s JEdi-
torPane class. JEditorPane creates an instance of an EditorKit class to help manage
the format of the text in the view. In the case of HTML text, JEditorPane uses the
HTMLEditorKit. In the previous example, HTML text was handled automatically,
based on the content type of the URL we provided.

 Swing not only allows you to create your own custom editor kits, but also pro-
vides an important, second kit, called RTFEditorKit. The RTFEditorKit class han-
dles reading and parsing of RTF files, including all character attributes and text
styles. RTF files can be produced by most word processors, or by the WORDPAD
application in Microsoft Windows.

The current RTFEditorKit class will not handle graphical images embedded
in the RTF file. If graphics do exist, the RTF parser will simply ignore them.

 The best way to demonstrate the Swing mechanism for viewing RTF is with an
example. Listing 5.5 contains code to create a JEditorPane, and apply an instance of
RTFEditorKit to it. Unlike the HTML example, we load sample RTF from a file,
rather than from a URL, so we need to identify the document format manually.
This is done with a call to the setEditorKit() method, providing it with our
instance of the RTFEditorKit. Once the editor pane has been correctly configured,
the sample code uses the read() method in the editor kit to load a sample RTF file
(TEST.RTF) into the document handler.

import java.awt.*;
import java.io.*;
import com.sun.java.swing.*;
import com.sun.java.swing.text.*;
import com.sun.java.swing.text.rtf.*;

class TestFrame
extends JFrame

{
public TestFrame()
{

Listing 5.5 RTF viewer sample code

170 CHAPTER 5
Text management
setTitle("RTF Text Application");
setSize(400, 240);
setBackground(Color.gray);
getContentPane().setLayout(new BorderLayout());

JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel, BorderLayout.CENTER);

// Create an RTF editor window
RTFEditorKit rtf = new RTFEditorKit();
JEditorPane editor = new JEditorPane();
editor.setEditorKit(rtf);
editor.setBackground(Color.white);

// This text could be big, so add a scroll pane
JScrollPane scroller = new JScrollPane();
scroller.getViewport().add(editor);
topPanel.add(scroller, BorderLayout.CENTER);

// Load an RTF file into the editor
try {

FileInputStream fi = new FileInputStream("test.rtf");
rtf.read(fi, editor.getDocument(), 0);

}
catch(FileNotFoundException e)
{

System.out.println("File not found");
}
catch(IOException e)
{

System.out.println("I/O error");
}
catch(BadLocationException e)
{
}

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 5.5 RTF viewer sample code (continued)

Simple document processing 171
 The result of this listing is shown in figure 5.10. The editor pane receives the
TEST.RTF sample, which was created using Microsoft Word on the Windows plat-
form. The pane supports varying fonts, font sizes, and attributes (such as underlin-
ing and italics). We can even accurately reproduce changes to the color of a font.

The current RTFEditorKit class will not handle tables produced by Mi-
crosoft Word. Rendering RTF containing these tables will result in inaccu-
rate document formatting.

5.8 Simple document processing

Before we leave text management, we should develop a simple example to demon-
strate some of the features that we have not yet covered. We have seen how the JEd-
itorPane class works to display HTML text and other formats, but in most text-
based applications, HTML is of little value. We need to find a class in Swing which
will provide the capability to display several different text styles in a format of our
own choosing.

 Swing offers a class named JTextPane, which extends JEditorPane to allow
support for character and text attributes. Like the JTextArea class, JTextPane allows
the user to enter and edit text from the keyboard; however, JTextPane also supports
the display of an infinite number of configurable text styles. Using a very simple
word processing example, we will examine how this simple, powerful class can be
integrated into our own code.

 This example offers text style changes similar to the STYLEPAD application
which ships with JFC; however, in our example, the code has been greatly reduced

Figure 5.10
RTF viewer application output

172 CHAPTER 5
Text management
in order to focus on how text style changes work within the JTextPane class. So, the
example shows only how the text style mechanism works, but the code does not sup-
port file management, or most of the other features of a complete word processor.

 The code show in listing 5.6 creates an application window with an instance of
a JTextPane, and a simple toolbar containing only a combo box. We will also create
several different text styles which we can apply to any test we enter into the editor.
Each of the styles we create is added to an instance of a hash table, so we can sup-
port a number of different styles in our editor. The createStyles() method builds
each text style, and inserts them into this table for later reference when the user
makes a choice from the combo box.

class TestFrame
extends JFrame
implements ActionListener

{
private Hashtable attributes;
private JComboBox styleCombo;
private DefaultStyledDocument doc;
private JTextPane textComponent;

public TestFrame()
{

setTitle("Document Handling Application");
setSize(300, 190);
setBackground(Color.gray);

JPanel topPanel = new JPanel(new BorderLayout());
getContentPane().add(topPanel);

// Create styles for the document
StyleContext sc = new StyleContext();
doc = new DefaultStyledDocument(sc);
createStyles(sc);

// Create a text pane to display text
textComponent = new JTextPane(doc);
textComponent.setBackground(Color.white);
topPanel.add(textComponent, BorderLayout.CENTER);

// Create a toolbar to handle style changes
topPanel.add(createToolBar(), BorderLayout.NORTH);

}

// Create a VERY simple toolbar panel

Listing 5.6 Simple word processor application

Simple document processing 173
public JPanel createToolBar()
{

JPanel panel = new JPanel(new FlowLayout());

styleCombo = new JComboBox();
styleCombo.addActionListener(this);
panel.add(styleCombo);

// Add each style to the combo box
for(Enumeration e = attributes.keys(); e.hasMoreElements();)

styleCombo.addItem(e.nextElement().toString());

return panel;
}

// Handle changes to the combo box (style changes)
public void actionPerformed(ActionEvent e)
{

if(e.getSource() == styleCombo)
{

try {
// Determine the new style
Style s = (Style)attributes.get(

styleCombo.getSelectedItem());

// Set the style from the current caret location
doc.insertString(textComponent.getCaret().getDot(),

" ", s);

// Return to the editor window
textComponent.grabFocus();

}
catch(BadLocationException exception)
{
}

}
}

// Create some different font styles
public void createStyles(StyleContext sc)
{

Style myStyle;

// Allocate a hash table for our styles
attributes = new Hashtable();

// No style
myStyle = sc.addStyle(null, null);
attributes.put("none", myStyle);

Listing 5.6 Simple word processor application (continued)

174 CHAPTER 5
Text management
 The result of executing the code in this application is illustrated in figure 5.11.
Notice how easily styles can be mixed within the display. By selecting a choice from
the toolbar combo box, the user can easily change to one of the four preconfigured
text styles, and then continue typing. This program isn’t a threat to Microsoft
Word, but, as you can see, the effort needed to support similar font style capabilities
is relatively simple.

 One other point we should make, before leaving this example, is that we are
not limited to displaying only text. Unlike the JTextArea component we saw earlier,
JTextPane also supports graphical content. The STYLEPAD application in the
Swing package includes a good example of how this can be accomplished.

// Normal
myStyle = sc.addStyle(null, null);
StyleConstants.setLeftIndent(myStyle, 10);
StyleConstants.setRightIndent(myStyle, 10);
StyleConstants.setFontFamily(myStyle, "Helvetica");
StyleConstants.setFontSize(myStyle, 14);
StyleConstants.setSpaceAbove(myStyle, 4);
StyleConstants.setSpaceBelow(myStyle, 4);
attributes.put("normal", myStyle);

// Big
myStyle = sc.addStyle(null, null);
StyleConstants.setFontFamily(myStyle, "Dialog");
StyleConstants.setFontSize(myStyle, 28);
attributes.put("big", myStyle);

// Bold
myStyle = sc.addStyle(null, null);
StyleConstants.setBold(myStyle, true);
attributes.put("bold", myStyle);

}

// Main() method to get the ball rolling
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 5.6 Simple word processor application (continued)

Chapter summary 175
5.9 Chapter summary

This chapter has covered the basics of text management, and the text component
provided in Swing. We started by discussing the JTextComponent class, which is
the parent of most text-based controls in Swing. Then, we got a bit more specific by
examining the capabilities of the JTextField component. This class allows the user
to input a single line of text.

 Next, we made a detailed study of some of the multiline text controls sup-
ported by Swing, starting with the simple text area. You also saw an example of a
Swing technique which you can use to load a text file into a text component and
which (unlike the older AWT component) doesn’t require dozens of line of code.

 Then, you saw the powerful JEditorPane class, which allows you to embed a
viewer for HTML into your applications. With a few lines of code, we created a
sample which opened and displayed a file-based HTML document, and also pro-
vided hyperlinks to several external Internet sites. With the addition of a few more
lines of code, you could implement a complete, but limited, web browser.

 Next, we discussed the Swing combo box control. Though it visually resem-
bles its AWT cousin, the Swing component allows user editing and graphical dis-
play. When we look at list boxes in chapter 9, you will see how to render the list
portion to include these graphics, and more.

 Finally, we examined the JTextPane class as a tool for displaying mixed text
styles and graphics. The capability of this class lies between the text area and the
JEdtorPane components, allowing custom text styles defined by the developer.

Figure 5.11
Word processor
application output

6Progress bars,
scroll bars, and sliders

In this chapter
■ Using progress bars

■ Using scroll bars

■ Using sliders

178 CHAPTER 6
Progress bars, scroll bars, and sliders
In the previous two chapters, we began a study of the most common components
in Swing, most of which also existed in some form in AWT. User interaction with
these components is generally simple, involving only a mouse click or keyboard
entry, though some features, such as clipboard manipulation, do have some hidden
complexity.

 In this chapter, we will examine some of the components which require much
more user interaction than those we have previously seen. Some of these compo-
nents require the user to drag the mouse or click the mouse on one or more hot
spots within the control. None of these operations will stress a user’s abilities, but,
beneath the surface, these components are much more complex than the ones we
have previously used.

 However, the first class we will look at, the progress bar, may be the simplest in
this book—at least, from a user perspective. The progress bar requires no user inter-
action, but it does blend nicely with the second component we will discuss, the
scroll bar. As we have seen, the scroll bar is a frequent participant in text areas and
other components using scrolling panes, but scroll bars can also appear as indepen-
dent components within your user interface.

 Finally, we will study the Swing slider class. The slider component acts like the
sliding volume control on a stereo system. The user can change a value by dragging
the mouse to slide a control bar in the slider from one end to the other, changing
the value.

6.1 Progress bars

In typical applications, there will inevitably be places where a time consuming task
occurs which requires the user to wait. In the past, you could address this situation
in one of two ways when building Java applications. If you were writing with Java
1.0, you could either do nothing, or you could display a text message somewhere in
your user interface indicating that a time intensive task was occurring. With Java
1.1, Sun introduced the capability to change the cursor to an hourglass (oooh!).

Use a progress bar every chance you get. Feedback is essential to the user
for any action which is not immediate. If you know approximately how long
the task will take, use a progress bar, even if it displays only momentarily. For
longer tasks, consider that even a mock progress meter which flows back and
forth is better than no feedback at all.

Progress bars 179
 Neither of these alternatives is particularly effective from a user’s perspective,
since neither really tells the user how long the wait will be. Swing addresses this
problem by providing developers with a new component, called a progress bar, to
provide capability has been available in other graphical user interfaces for several
years. The progress bar class, JProgressBar, presents the user with a segmented bar
graph much like the LED audio meters which are common on stereo cassette
recorders. This component indicates, in real-time, the progress that a lengthy task is
making, and offers a viewable status for your users. It lets the user know that the
program and the computer have not crashed.

 Because they are all closely related, examining the components in this chapter
will involve concepts that have already been presented. Progress bars are much like
scroll bars and sliders, and, in fact all of these components use the same data model.
A progress bar can be thought of as a read-only slider control, capable only of indi-
cating the current position within the total range.

 Figure 6.1 shows a typical progress bar from the SWINGSET sample applica-
tion which ships with Swing. If you have run the SWINGSET sample, you will rec-
ognize this as the first screen the application displays. Since the application loads all
of its panels at startup, the user must wait quite a while before he or she can start
using the components. To eliminate this problem, we need to create an initial dia-
log with a progress bar indicating in real-time the status of the initialization process.

 The technique used to accomplish this feat is actually quite simple, requiring
only a few lines of additional source code. Let’s take a look at a small sample appli-
cation which you can adapt to any time demanding process of your own. The code
in listing 6.1 implements a simple panel containing a progress bar, a label, and a
button. When the Start button is pressed, the application simulates some time con-
suming task. At the completion of each task, the program updates its progress bar,
showing the user the relative time remaining for the process to complete. Notice
that the code responsible for creating the progress bar is only 7 lines long.

Figure 6.1
Example of a progress bar

180 CHAPTER 6
Progress bars, scroll bars, and sliders
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;

class TestFrame
extends JFrame
implements ActionListener

 {
private JProgressBar progress;
private JButton button;
private JLabel label1;
private JPanel topPanel;

public TestFrame()
{

setTitle("Progress Bar Application");
setSize(310, 130);
setBackground(Color.gray);

topPanel = new JPanel();
topPanel.setPreferredSize(new Dimension(310, 130));
getContentPane().add(topPanel);

// Create a label and progress bar
label1 = new JLabel("Waiting to start tasks...");
label1.setPreferredSize(new Dimension(280, 24));
topPanel.add(label1);

progress = new JProgressBar();
progress.setPreferredSize(new Dimension(300, 20));
progress.setMinimum(0);
progress.setMaximum(20);
progress.setValue(0);
progress.setBounds(20, 35, 260, 20);
topPanel.add(progress);

button = new JButton("Start");
topPanel.add(button);
button.addActionListener(this);

}

public void actionPerformed(ActionEvent event)
{

if(event.getSource() == button)
{

// Prevent more button presses

Listing 6.1 Sample code for a progress indicator

Progress bars 181
button.setEnabled(false);

// Perform all of our bogus tasks
for(int iCtr = 1; iCtr < 21; iCtr++)
{

// Do some sort of simulated task
DoBogusTask(iCtr);

// Update the progress indicator and label
label1.setText("Performing task " + iCtr + " of 20");
Rectangle labelRect = label1.getBounds();
labelRect.x = 0;
labelRect.y = 0;
label1.paintImmediately(labelRect);

progress.setValue(iCtr);
Rectangle progressRect = progress.getBounds();
progressRect.x = 0;
progressRect.y = 0;
progress.paintImmediately(progressRect);

}
 }

}

public void DoBogusTask(int iCtr)
{

Random random = new Random(iCtr);

// Waste some time
for(int iValue = 0;

iValue < random.nextFloat() * 10000; iValue++)
{

System.out.println("iValue=" + iValue);
}

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);
mainFrame.pack();

}
}

Listing 6.1 Sample code for a progress indicator (continued)

182 CHAPTER 6
Progress bars, scroll bars, and sliders
 The action handler code does something a bit peculiar which I need to clarify
for you. After the value of the label and progress indicator are changed, the applica-
tion executes these four lines of code:

Rectangle progressRect = progress.getBounds();
progressRect.x = 0;
progressRect.y = 0;
progress.paintImmediately(progressRect);

 Since the release of Java 1.1.3, Sun changed the way that the painting of com-
ponents is handled. In these later versions of the language specification, paint mes-
sages are queued into a single repaint to help improve performance. Unfortunately,
this can cause problems in situations where it is desirable to force a component
repaint. To work around this new problem, the Swing architects added a paintIm-

mediately() method. This method requires a rectangle, so, in our example, we
determine the rectangle for the progress bar and call the paintImmediately()

method to refresh the component after its value is changed. Without these lines of
code, the progress bar would repaint only after all of our time consuming tasks have
finished because it would receive only a single cached paint message.

 Another technique to solve this problem would be to start a thread to execute
our time consuming tasks. This frees up execution time on the main thread, but
Swing components cannot be accessed reliably on the secondary thread. If compo-
nent access is a requirement, then you will have to use a procedure similar to the
one shown in listing 6.1.

Integrate the progress bar as part of the overall feedback to the user. The
progress bar can be part of a dialog which tells the user that a normal, time
consuming event is still ongoing. Explanatory text should always be given,
and a Cancel component should be provided, whenever possible. The
progress bar gives the user an estimate of the time necessary for completion
of the task, but other feedback elements (such as animation or a sequence of
timely visuals) may be in order, particularly for longer tasks.

6.1.1 JProgressBar variables

protected int orientation

This variable contains the orientation (HORIZONTAL or VERTICAL) for the
progress bar.

Progress bars 183
protected boolean paintBorder

 This boolean value is set if the border of the progress bar border is to be
repainted when repaint events are received.

protected BoundedRangeModel barModel

 This variable contains the instance of the current progress bar model. This is
defaulted at object creation time, but can be changed to a custom model if desired.

protected transient ChangeEvent changeEvent

 This variable holds the change event for this instance. Only one ChangeEvent

is needed per instance, since the event’s only interesting property is the immutable
source—the progress bar.

protected ChangeListener changeListener

 This variable contains the current change listener for this instance.

6.1.2 JProgressBar constructors

JProgressBar()

This constructor creates an instance of a JProgressBar.

6.1.3 JProgressBar significant method groupings

public int getValue()
public int getMinimum()
public int getMaximum()
public void setValue(int n)
public void setMinimum(int n)
public void setMaximum(int n)

The methods in this group control the minimum, maximum, and current values of
the progress bar.

protected ChangeListener createChangeListener()
public void addChangeListener(ChangeListener l)
public void removeChangeListener(ChangeListener l)

 These methods manage the change listener used by the progress bar. A change
event can optionally be generated each time the progress bar value changes.

public BoundedRangeModel getModel()
public void setModel(BoundedRangeModel newModel)

184 CHAPTER 6
Progress bars, scroll bars, and sliders
 These methods manage the model used by the progress bar instance. By
default, JProgressBar will assign a default model, but custom models can be created
and added to the instance, if desired.

6.2 Scroll bars

Scroll bars have become a common element in all graphical user interfaces. In most
applications, they are used as an indicator to the user that there is more data to see
than can currently be displayed. The most typical use of scroll bars is for scrolling
panes; however, as you will see, scroll bars can be used for other applications as well.

 AWT provides an adequate scroll bar component, but it does not support the
pluggable look-and-feel capabilities of Swing, so the designers at Sun implemented
a new class to replace the old one in AWT. This class, named JScrollBar, supports an
API virtually identical to its AWT predecessor, but which includes the extensions
necessary to function in the Swing world.

If you require a scale associated with the scroll bar, then you probably
want to use a slider control instead of a scroll bar. See the next section for
details on sliders. Scroll bars do not include a scale, so you need to imple-
ment this yourself, if required.

 The screen capture in figure 6.2 shows an
example of some scroll bars at work in an applica-
tion other than a scrolling pane. This application
is somewhat obsolete with Swing, since a better
solution would be to use slider component
instances (which we will look at in the next sec-
tion), but it suits our needs for the purposes of
demonstration.

 This screen was generated with the code
shown in listing 6.2. This simple application cre-
ates a scroll bar for each of the primary system
colors (red, green, and blue), and allows the user

to manipulate these scrollers to control the color of the sample chip at the bottom
of the window.

Figure 6.2
An example of scroll bars

Scroll bars 185
 Notice that the sample code implements an AdjustmentListener to watch for
changes to any of the scrollers. If the values of any of the scroll bars change, the
adjustmentValueChanged() method retrieves the scroll values and changes the
labels for each color, then adjusts the color of the sample.

The orientation field in the scroll bar accepts a value of SwingCon-

stants.HORIZONTAL or SwingConstants.VERTICAL to set the scroll bar
horizontally or vertically. See the SwingConstants class in the online Swing
documentation for more details.

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements AdjustmentListener

 {
private JScrollBar scrollerR;
private JScrollBar scrollerG;
private JScrollBar scrollerB;
private JLabel fieldR;
private JLabel fieldG;
private JLabel fieldB;
private JLabel labelR;
private JLabel labelG;
private JLabel labelB;
private JPanel labelColor;
private Jpanel topPanel;

public TestFrame()
{

setTitle("ScrollBar Application");
setBackground(Color.gray);

topPanel = new JPanel();
topPanel.setPreferredSize(new Dimension(300, 220));
getContentPane().add(topPanel);

// Create the labels

Listing 6.2 Sample code for a JScrollBar

186 CHAPTER 6
Progress bars, scroll bars, and sliders
labelR = new JLabel("Red");
labelR.setPreferredSize(new Dimension(300, 24));
topPanel.add(labelR);

// Create the scroll bars
scrollerR = new JScrollBar(SwingConstants.HORIZONTAL,

0, 0, 0, 255);
scrollerR.setPreferredSize(new Dimension(200, 15));
scrollerR.addAdjustmentListener(this);
 topPanel.add(scrollerR);

fieldR = new JLabel("0");
fieldR.setPreferredSize(new Dimension(50, 20));
topPanel.add(fieldR);

labelG = new JLabel("Green");
labelG.setPreferredSize(new Dimension(300, 24));
topPanel.add(labelG);

scrollerG = new JScrollBar(SwingConstants.HORIZONTAL,
0, 0, 0, 255);

scrollerG.setPreferredSize(new Dimension(200, 15));
scrollerG.addAdjustmentListener(this);
topPanel.add(scrollerG);

fieldG = new JLabel("0");
fieldG.setPreferredSize(new Dimension(50, 20));
topPanel.add(fieldG);

labelB = new JLabel("Blue");
labelB.setPreferredSize(new Dimension(300, 24));
topPanel.add(labelB);

scrollerB = new JScrollBar(SwingConstants.HORIZONTAL,
0, 0, 0, 255);

scrollerB.setPreferredSize(new Dimension(200, 15));
scrollerB.addAdjustmentListener(this);
topPanel.add(scrollerB);

fieldB = new JLabel("0");
fieldB.setPreferredSize(new Dimension(50, 20));
topPanel.add(fieldB);

labelColor = new JPanel();
labelColor.setPreferredSize(new Dimension(100, 40));
labelColor.setBackground(new Color(0, 0, 0));
topPanel.add(labelColor);

}

Listing 6.2 Sample code for a JScrollBar (continued)

Scroll bars 187
Use a scroll bar to specify ranged values in proportional terms. Although
much more frequently used as part of a scrolling area, scroll bars can also al-
low the user to select imprecise numeric or qualitative data which lie on a
continuum. Consider using different components for discrete numeric or
text selections.

// Watch for scroll bar adjustments
public void adjustmentValueChanged(AdjustmentEvent event)
{

// The event came from our scrollers, handle it.
if(event.getSource() == scrollerR ||

event.getSource() == scrollerG ||
event.getSource() == scrollerB)

{
// Get the current color settings
int iRed = scrollerR.getValue();
int iGreen = scrollerG.getValue();
int iBlue = scrollerB.getValue();

// Set the value labels
fieldR.setText("" + iRed);
fieldG.setText("" + iGreen);
fieldB.setText("" + iBlue);

// Update the color chip
labelColor.setBackground(

new Color(iRed, iGreen, iBlue));
labelColor.repaint();

}
}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);
mainFrame.pack();

}
}

Listing 6.2 Sample code for a JScrollBar (continued)

188 CHAPTER 6
Progress bars, scroll bars, and sliders
6.2.1 JScrollBar variables

protected int orientation

This variable contains the orientation (HORIZONTAL or VERTICAL) for the
progress bar.

protected BoundedRangeModel model

 This variable contains the instance of the current scroll bar model. This is
defaulted at object creation time, but can be changed to a custom model if desired.

protected int unitIncrement

 This variable contains the size of the increment or decrement used for unit
changes. A unit change occurs when the user clicks the up or down arrow buttons
in the scroll bar.

protected int blockIncrement

 This variable contains the size of the increment used for block changes. A
block change occurs when the user clicks the mouse button in the gray area above
and below the slider button in the scroll bar.

6.2.2 JScrollBar constructors

JScrollBar()

This constructor creates an instance of a JScrollBar.

JScrollBar(int orientation, int value,
int extent, int minimum, int maximum)

 This constructor creates an instance of a JScrollBar with the specified orienta-
tion (HORIZONTAL or VERTICAL) and assigns minimum, maximum, and cur-
rent values.

6.2.3 JScrollBar significant method groupings

public int getValue()
public int getMinimum()
public int getMaximum()
public void setValue(int n)
public void setMinimum(int n)
public void setMaximum(int n)

The methods in this group control the minimum, maximum, and current values of
the scroll bar.

Sliders 189
protected ChangeListener createChangeListener()
public void addChangeListener(ChangeListener l)
public void removeChangeListener(ChangeListener l)

 These methods manage the change listener used by the scroll bar. A change
event can optionally be generated each time the scroll bar value changes (usually,
through some user interaction).

public BoundedRangeModel getModel()
public void setModel(BoundedRangeModel newModel)

 These methods manage the model used by the scroll bar instance. By default,
JScrollBar will assign a default model, but custom models can be created and added
to the instance if desired.

6.3 Sliders

Typically, when building applications with AWT, scroll bars were used to get user
input for ranged values. The scroll bar application created in the previous section is
a classic example of this technique. Unfortunately, as shown in figure 6.2, this
requires the addition of a label to indicate the current value of the scroll bar, requir-
ing the additional burden of code to update this label when the scroll bar value
changes. This results in a crude user interface when compared to more advanced
interfaces, such as Windows 95.

 Fortunately, JavaSoft recognized this limitation and devised a new control
which Windows developers will immediately recognize. The slider control, though
similar in nature to the scroll bar, presents a much cleaner user interface. Addition-
ally, sliders can include a value scale, which offers immediate value feedback to the
user and reduces the amount of code needed to support the interface.

Use a slider to specify ranged values in discrete terms. Sliders allow the
user to select a fixed number of numeric or text values within a range of val-
ues. This is particularly true if the tick marks accurately represent the ratios
of change within the range, but this does not necessarily have to be the case.
For example, a text label could be used in conjunction with a slider to allow
selection of qualitative items. If the real estate is limited, transfer the contents
to a combo box. For more precise numeric input, create a spin control.

190 CHAPTER 6
Progress bars, scroll bars, and sliders
 In Swing, the slider class is called JSlider, and has no equivalent in AWT. Fig-
ure 6.3 shows several examples of the JSlider control showing the variations on ori-
entation and scale which are supported.

If you are porting AWT applications containing interfaces like the one shown
in figure 6.2, you will need to rewrite some portions of your code. Fortu-
nately, the API for JSlider is almost identical to that of the AWT ScrollBar
component.

 Listing 6.3 duplicates the color selector you saw in the previous section. The
difference is the use of the Swing JSlider controls, rather than scroll bars. As you
can see from the sample output in figure 6.4, the user interface is cleaner than the
scroll bar example.

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;

Listing 6.3 Sample code for a JSlider

Figure 6.3 Example of sliders using tick marks and text labels

Sliders 191
class TestFrame
extends JFrame
implements ChangeListener

 {
private JSlider scrollerR;
private JSlider scrollerG;
private JSlider scrollerB;
private JLabel labelR;
private JLabel labelG;
private JLabel labelB;
private Label labelColor;
private JPanel topPanel;

public TestFrame()
{

setTitle("Slider Application");
setSize(330, 280);
setBackground(Color.gray);

topPanel = new JPanel();
topPanel.setLayout(null);
topPanel.setDoubleBuffered(false);
getContentPane().add(topPanel);

// Create the labels
labelR = new JLabel("Red");
labelR.setBounds(20, 15, 250, 20);
topPanel.add(labelR);

labelG = new JLabel("Green");
labelG.setBounds(20, 75, 250, 20);

Listing 6.3 Sample code for a JSlider (continued)

Figure 6.4
Output of slider sample application

192 CHAPTER 6
Progress bars, scroll bars, and sliders
topPanel.add(labelG);

labelB = new JLabel("Blue");
labelB.setBounds(20, 135, 250, 20);
topPanel.add(labelB);

labelColor = new Label();
labelColor.setBounds(100, 210, 100, 30);
labelColor.setBackground(new Color(0, 0, 0));
topPanel.add(labelColor);

// Create the sliders
scrollerR = new JSlider(SwingConstants.HORIZONTAL,

0, 255, 0);
scrollerR.setBounds(20, 35, 290, 40);
scrollerR.setMajorTickSpacing(40);
scrollerR.setMinorTickSpacing(10);
scrollerR.setPaintTicks(true);
scrollerR.setPaintLabels(true);
scrollerR.addChangeListener(this);
topPanel.add(scrollerR);

scrollerG = new JSlider(SwingConstants.HORIZONTAL,
0, 255, 0);

scrollerG.setBounds(20, 95, 290, 40);
scrollerG.setMajorTickSpacing(40);
scrollerG.setMinorTickSpacing(10);
scrollerG.setPaintTicks(true);
scrollerG.setPaintLabels(true);
scrollerG.addChangeListener(this);
topPanel.add(scrollerG);

scrollerB = new JSlider(SwingConstants.HORIZONTAL,
0, 255, 0);

scrollerB.setBounds(20, 155, 290, 40);
scrollerB.setMajorTickSpacing(40);
scrollerB.setMinorTickSpacing(10);
scrollerB.setPaintTicks(true);
scrollerB.setPaintLabels(true);
scrollerB.addChangeListener(this);
topPanel.add(scrollerB);

}

// Watch for scroll bar adjustments
public void stateChanged(ChangeEvent event)
{

// The event came from our scrollers, handle it.

Listing 6.3 Sample code for a JSlider (continued)

Sliders 193
6.3.1 Listening for slider activity

Comparing the slider code in listing 6.3 to the scroll bar code in listing 6.2, you
should recognize that there are many similarities, but there are also some significant
differences. The most noticeable of these is the way the code listens for changes.
The slider example implements a ChangeListener, requiring the implementation of
a stateChanged() method. Each of the sliders then adds a change listener using the
following lines of code:

scrollerR.addChangeListener(this);
scrollerG.addChangeListener(this);
scrollerB.addChangeListener(this);

 The stateChanged() method is almost identical to the listener implemented
for the scroll bar example. Since we no longer need the fields to show the values of
the scrollers, the lines of code to control them have been deleted from the listener.

6.3.2 JSlider variables

protected int orientation

if(event.getSource() == scrollerR ||
event.getSource() == scrollerG ||
event.getSource() == scrollerB)

{
// Get the current color settings
int iRed = scrollerR.getValue();
int iGreen = scrollerG.getValue();
int iBlue = scrollerB.getValue();

// Update the color chip
labelColor.setBackground(

new Color(iRed, iGreen, iBlue));
}

}
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 6.3 Sample code for a JSlider (continued)

194 CHAPTER 6
Progress bars, scroll bars, and sliders
This variable contains the orientation (HORIZONTAL or VERTICAL) for the
slider component.

protected BoundedRangeModel sliderModel

 This variable contains the instance of the current slider model. This is
defaulted at object creation time, but can be changed to a custom model if desired.

protected transient ChangeEvent changeEvent

 This variable holds the change event for this instance. Only one ChangeEvent
is needed per instance since the event’s only interesting property is the immutable
source—the slider.

protected ChangeListener changeListener

 This variable contains the current change listener for this instance.

protected int majorTickSpacing
protected int minorTickSpacing

 These variables control the size of major and minor tick mark spacing within
the slider instance.

protected boolean snapToTicks

 This boolean value is set to “true” if the slider control will automatically snap
to the tick marks on the control’s scale.

6.3.3 JSlider constructors

JSlider()

This constructor creates an instance of a JSlider.

JSlider(int orientation, int value, int minimum, int maximum)

 This constructor creates an instance of a JSlider with the specified orientation
(HORIZONTAL or VERTICAL) and the assign minimum, maximum, and current
values.

6.3.4 JSlider significant method groupings

public int getValue()
public int getExtent()
public int getMinimum()
public int getMaximum()
public void setValue(int n)

Chapter summary 195
public void setExtent(int n)
public void setMinimum(int n)
public void setMaximum(int n)

The methods in this group control the extent, minimum, maximum, and current
values of the slider.

protected ChangeListener createChangeListener()
public void addChangeListener(ChangeListener l)
public void removeChangeListener(ChangeListener l)

 These methods manage the change listener used by the slider. A change event
can optionally be generated each time the slider value changes (usually through
some user interaction).

public BoundedRangeModel getModel()
public void setModel(BoundedRangeModel newModel)

 These methods manage the model used by the slider instance. By default
JSlider will assign a default model, but custom models can be created and added to
the instance, if desired.

public int getMajorTickSpacing()
public int getMinorTickSpacing()
public boolean getSnapToTicks()
public void setMajorTickSpacing(int n)
public void setMinorTickSpacing(int n)
public void setSnapToTicks(boolean b)

 These methods manage the characteristics of the major and minor tick marks
displayed on the scale when the slider is drawn.

public void setLabelTable(Dictionary labels)
public Dictionary getLabelTable()
protected void updateLabelUIs()
public Hashtable createStandardLabels(int increment, int start)

 The methods in this group manage the labels drawn on the slider scale. JSlider
offers full control of the mechanism used to draw each of the value labels on the
scale.

6.4 Chapter summary

This chapter covered the dragging controls provided by the Swing class library.
First, we examined the JProgressBar class, which implements a read-only scroller
that can be utilized in applications where time intensive tasks occur.

196 CHAPTER 6
Progress bars, scroll bars, and sliders
 Then, the Swing JScrollBar class was presented. This class is used primarily to
create scrolling panes, but it is also appropriate for some types of user input, such as
the color selection application presented in this chapter.

 Finally, we studied a new user interface class, called a slider. The Swing JSlider
control is more appropriate than the scroll bar for collecting most ranged user
input. The color selection application was rewritten with the slider, which presented
a much cleaner interface than the example that used scroll bars.

 This concludes our examination of the basic components provided by Swing.
In the coming chapters, we will start discussing classes which are either enhanced
versions of AWT counterparts, or are completely unique to Swing; however, you
should now have enough knowledge to build many complex applications and
applets.

7Menus and
toolbars

In this chapter
■ Creating and using applications menus

■ Creating and using pop-up menus

■ Creating and using toolbars

198 CHAPTER 7
Menus and toolbars
When Xerox, Apple, Sun, and Microsoft introduced graphical user interfaces several
years ago, they all implemented menu capabilities. Previous to this, older text inter-
faces either offered nothing comparable, or presented a menu-like hodgepodge of
text elements restricted by the limitations of a text-based interface. Menus were a
godsend to many people intimidated by computers, because they were finally able
to understand the functionality of the applications they were using.

 Today, the implementation of menus has become a requirement of any com-
mercial application—you are not likely to see a product without some form of
menu. The reason for this is obvious—all of the graphical user interface platforms
available today simplify the use of menus to the point where it is more difficult to
build an application without a menu than it is to simply support one.

 Since all GUIs provide at least basic menuing capability, Sun added support for
menus into Java. This feature has been available in some form in all versions of Java
since version 1.0. In version 1.1, Sun improved menu support by adding keyboard
accelerators and pop-up menus, but, for the most part, menuing support in Java has
remained unchanged—at least, until the release of Swing.

 I should begin by defining exactly what a menu is. This may seem obvious to
an application user, since it is simply the typical interface he or she will use to inter-
face to program options and features. To a developer, a menu is a much more com-
plex piece of technology than a simple group of options. Menus are objects
attached to an application, and they are made up of many smaller components,
including panels, pull-down lists, and, possibly, even tool tips and graphics. In Java,
the menu instance manages its own mouse events and, usually, also handles key-
board events stimulated by some user interaction.

Provide all of the functionality via menus. All of the software’s function-
ality should be provided via the menu, along with any accelerators which have
been assigned. Menus are designed for the novice user, and they present a
precise description of the intended action. In addition, they teach the novice
about the functionality of an application and lead the novice toward short-
cuts which make tasks more efficient.

 Back in chapter 3, I mentioned that Swing’s JFrame and JApplet instances
could have menus attached to them; however, so far in this book you haven’t seen
an example code to create a menu. In this chapter, we will discuss the menu support
provided by Swing, and I will present several examples illustrating many of the key

Menu bars 199
features of menus. By the end of this chapter, you should be able to create complete
applications with capabilities comparable to applications you may have previously
created with AWT.

 We will identify and learn about all of the classes in the Swing menu hierarchy
(see figure 7.1). Each class will be examined in detail, and an example will be pre-
sented to illustrate its use. You will also find details regarding the toolbar support
implemented in the Swing class library. Toolbars and menus typically go hand-in-
hand, so it is convenient to discuss them at the same time.

7.1 Menu bars

Most applications include some form of menu to allow the user to select functions
provided the program. Commonly, menu options are listed in a row at the top of
the application window. This row is known as a menu bar.

 Menu bars in Java programs are typically shown in the same orientation and
position as they are for any other application on the operating system platform.
Under Microsoft Windows, this means that the menu bar is a horizontal list of pull-
down menus appearing at the top of the application window. With AWT, the menu
bar could appear only in this position and could be applied only to an application
because AWT applets do not support menu bars.

 Swing implements a JMenuBar class which, for compatibility, fully supports
the AWT API for menu bars; however, this class offers some features not found in
AWT. For example, Swing menu bars can be placed anywhere within the application
window, and JMenuBar instances can be applied to applets, as well.

JComponent

JMenuBar

JPopupMenu

AbstractButton JMenuItem JMenu

JCheckBoxMenuItem

JRadioButtonMenuItem

Figure 7.1 Swing menu class hierarchy

200 CHAPTER 7
Menus and toolbars
7.1.1 Creating application menus

The easiest way to show you how an application menu can be created is with an
example. Listing 7.1 shows sample code which implements only the menu bar itself.
Later, we will extend this example with more complex functionality.

 Figure 7.2 illustrates the output resulting from executing the code in listing
7.1. It isn’t a particularly inspiring application. In fact, if we omitted the last line of

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

 {
private JPanel topPanel;
private JMenuBar menuBar;

public TestFrame()
{

setTitle("MenuBar Application");
setSize(310, 130);

topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the menu bar
menuBar = new JMenuBar();

// Set this instance as the application's menu bar
setJMenuBar(menuBar);

menuBar.add(new JMenu("Test"));
}
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 7.1 Simple JMenuBar code

Menu bars 201
the constructor, the program would output nothing at all. We will talk about the
purpose of this last line in the next section.

 There is one final point to make. The line:

setJMenuBar(menuBar);

is a special method call to assign the menu bar to the JFrame instance. This method
is really a convenience for AWT developers, but you can use it to add a menu bar to
the upper part of any frame. Menu bars, in Swing, are not limited to the traditional
location, however. Since JMenuBar instances are derived from JComponent, you
can add them to any location you choose. Try replacing the setJMenuBar() call in
listing 7.1 with this line:

topPanel.add(menuBar, BorderLayout.SOUTH);

Using this technique, you can also add menus to a JApplet instance. Unlike
the AWT Applet class, JApplet does provide a setJMenuBar() method.

7.1.2 JMenuBar constructors

public JMenuBar()

This constructor creates a new instance of a JMenuBar. The menu bar can be added
to a JFrame or JApplet instance. Note that the ability to add menu bars to applets is
unique to Swing and is not possible with AWT.

7.1.3 JMenuBar significant method groupings

public void setSelected(Component sel)
public boolean isSelected()

Figure 7.2
Simple JMenuBar example

202 CHAPTER 7
Menus and toolbars
These methods manage the selection state of the JMenuBar component. Any menu
object can be disabled, which also disables all of its child menu items.

public SingleSelectionModel getSelectionModel()
public void setSelectionModel(SingleSelectionModel model)

 These methods manage the selection model used by the menu bar. Swing will
assign a default selection model, but you can create and specify a new selection
model, if desired.

public JMenu add(JMenu c)
public void remove(int index)
public JMenu getMenu(int index)
public int getMenuCount()

 The methods in this group are responsible for adding and removing menu
instances from the menu bar. Additionally, you can obtain a count containing the
number of menu instances contained by the menu bar. Individual menu instances
can be retrieved with the getMenu() method.

public void setHelpMenu(JMenu menu)
public JMenu getHelpMenu()

 Like AWT menus, you can identify a menu instance in the menu bar as the
Help menu for the application. The Help menu is invoked when the F1 accelerator
key is pressed.

7.2 Menus

In the last section, we developed an example program showing a menu bar. This
example included a line of source code like the one shown below. This line created a
menu instance labeled “Test.”

menuBar.add(new JMenu("Test"));

 A menu implemented in Swing with the JMenu class contains instances of
menu items or separators. If you examine any application containing a menu bar,
you will notice that the menu bar contains pull-down menu objects which you can
select with a mouse-click or, quite often, a keyboard accelerator. In this section, we
will examine menu implementation, and we will extend our sample application from
listing 7.1 to include some standard pull-down menu instances. To address porta-
bility concerns, menu creation in Swing closely resembles that of AWT—a JMenu
instance is created and inserted into the menu bar using the add() method.

Menus 203
 User interface guidelines recommend that menus appear in a standard format.
Typically, the first menu on the menu bar is the File menu, which contains options
for file related operations. The second object in the menu bar is usually the Edit
menu, which holds options for editing information in the program. This usually
includes options for clipboard manipulation, such as copy, cut, and paste operations.

7.2.1 Creating cascading menus

As you know from using most graphical applications, menus include items which
link to internal functionality in the program; however, not all objects in a menu are
items which perform a program task. Some objects found in a menu are actually
submenus, which implement more specific items. This technique is known as menu
cascading.

 Cascading menus (menus added to menus) provide a mechanism to reduce the
number of top level menus required in an application, thereby reducing the overall
complexity of the user interface. For example, suppose your application supports
configuration of several types of properties (for example, system properties, editor
properties, display properties, and so on). You could add each of these options to a
menu using a menu separator as a way to group them (see figure 7.3); however, a
better approach is to create a new JMenu instance containing only the property
items, then add this instance to the parent menu. Figure 7.4 shows the improved
interface using cascading menus.

 Listing 7.2 shows an enhanced menu application, including menu objects
attached to the menu bar and some cascading menus added to the File menu. The
additional code is highlighted to show you what has been added in this section.

Figure 7.3
Possible menu layout
(a bad approach)

204 CHAPTER 7
Menus and toolbars
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
private JPanel topPanel;
private JMenuBar menuBar;
private JMenu menuFile;
private JMenu menuEdit;
private JMenu menuProperty;

public TestFrame()
{

setTitle("Menu Application");
setSize(310, 130);

topPanel = new JPanel();

Listing 7.2 Sample JMenu code

Figure 7.4
Cascading menu layout
(a better approach)

Figure 7.5
JMenu application output

Menus 205
 The output of this program is shown in figure 7.5. Notice that the File menu
includes a Properties submenu which we will populate in the next section. If you
examine the output closely, you will also see that above and below the Properties
menu, horizontal lines have been drawn. These lines are known as separators and
were created by executing the following line of code:

menuFile.addSeparator();

 Any time you need to logically divide menus and menu items you can insert a
separator. This helps clarify blocks of options within your menus, making it easier to
use your program.

topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the menu bar
menuBar = new JMenuBar();

// Set this instance as the application's menu bar
setJMenuBar(menuBar);

// Build the property submenu
menuProperty = new JMenu("Properties");

// Create the file menu
menuFile = new JMenu("File");
menuBar.add(menuFile);

// Add the property menu
menuFile.addSeparator();
menuFile.add(menuProperty);
menuFile.addSeparator();

// Create the file menu
menuEdit = new JMenu("Edit");
menuBar.add(menuEdit);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 7.2 Sample JMenu code (continued)

206 CHAPTER 7
Menus and toolbars
7.2.2 JMenu variables

protected MenuUI ui

This variable contains an instance of the user interface component loaded by the
pluggable look-and-feel controller.

protected JMenu.WinListener popupListener

 This variable holds an instance of the listener responsible for pop-up menus.

7.2.3 JMenu constructors

public JMenu()

This constructor creates a new instance of a JMenu object with no text label.

public JMenu(String s)

 This constructor creates a new instance of a JMenu object with the specified
text label.

public JMenu(String s, boolean b)

 This constructor creates a new instance of a JMenu object with the specified
text label. The boolean parameter value controls the enabled/disabled state of the
menu instance.

7.2.4 JMenu significant method groupings

public boolean isSelected()
public void setSelected(boolean b)

These methods manage the selection state of the JMenu component. Any menu
object can be disabled, which also disables all of its child menu items.

public JPopupMenu getPopupMenu()
public boolean isPopupMenuVisible()
public void setPopupMenuVisible(boolean b)

 These methods control the visibility of pop-up menu associated with this
JMenu instance. Each submenu is shown as a pop-up menu instance, and its visibil-
ity is managed by these methods.

public int getDelay()
public void setDelay(int d)

Menus 207
 The methods in this group control the time which elapses before a menu tool
tip appears in conjunction with the menu instance.

public JMenuItem add(JMenuItem menuItem)
public Component add(Component c)
public void add(String s)
public JMenuItem add(Action a)
public void addSeparator()
public void insert(String s, int pos)
public JMenuItem insert(JMenuItem mi, int pos)
public JMenuItem insert(Action a, int pos)
public void insertSeparator(int index)

 The methods in this group are responsible for adding and inserting new menu
items into the menu instance. Additionally, menu separators can be added using the
addSeparator() or insertSeparator() methods.

public void remove(JMenuItem item)
public void remove(Action a)
public void remove(int pos)
public void removeAll()

 This method group is used to remove items from a menu instance. Items can
be removed by specifying their instance, index position, or associated action.

public JMenuItem getItem(int pos)
public int getItemCount()
public Component getMenuComponent(int n)
public Component[] getMenuComponents()
public boolean isMenuComponent(Component c)
public int getMenuComponentCount()

 These methods return menu components and counts. Of these methods, get-

ItemCount() will be most often used, since it returns the number of items associ-
ated with the menu instance.

public void addMenuListener(MenuListener l)
public void removeMenuListener(MenuListener l)

 This method group manages the menu and window listeners which can be
attached to a JMenu instance. The menu listener is responsible for detecting
changes to the enabled or disabled state of the menu instance.

208 CHAPTER 7
Menus and toolbars
7.3 Menu items

So far in this chapter, we have created a simple application with a menu bar and
extended it by adding some pull-down menus, but we have not yet provided any
way for a user to invoke any program functionality. Before we can complete our
application menu, we need to understand a few things about menu items.

 A menu item is a member of a group of options associated with a menu
instance, like those shown in the previous section. Menu items include associated
text to distinguish them from other options and may also include a graphical image.
Menu items typically have an optional shortcut key to help users accelerate through
menus using only the keyboard. The shortcut activates a predefined action event
normally intercepted by the application’s code in order to initiate some program
function.

 Swing has a complete set of classes for creating menu items. In this section, we
will limit ourselves to the standard text menu item so we can become familiar with
simple application menuing. In subsequent sections, we will discuss more advanced
types of menu items.

 If you are experienced with the AWT menuing mechanism, you need to know
that menuing in JFC is not necessarily backward compatible with older AWT tech-
niques. Pay attention to the class names, particularly if you are porting AWT code
to Swing, and do not mix AWT menu objects with any provided by Swing. In
Swing, a menu item is represented by the JMenuItem class, which, for upward com-
patibility, functions the same as its AWT counterpart. In this section, we will exam-
ine all aspects of the JMenuItem class and how it fits into the menuing environment
supported by JFC.

 Though JMenuItem supports several constructors, the most frequently used
form looks like this:

JMenuItem menuItem = new JMenuItem(“Sample”);

 Another common form of constructor is:

JMenuItem menuItem = new JMenuItem();
.
.
.
menuItem.setText(“Sample”);

 You might question the efficiency of this second form; however, it is useful if
you write your code such that menus are constructed in one part of the code, while

Menu items 209
menu text is added in another. If you are writing code to support several languages,
you may have a menu population method for each language. Each of these methods
consists of a list of setText() method calls for each menu item.

 Let’s take a look at an expanded version of the application we have been build-
ing in this chapter. Listing 7.3 extends the pull-down menus to include some of the
menu items you would typically see in the File and Edit menus of most applications.
The code creates New, Open…, Save, Save as…, and Exit menu items using the
JMenuItem class. It also populates the Properties submenu, so you can appreciate
the effects of cascading menus. Listing 7.3 shows the entire example, with high-
lighting on the source code added in this section.

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements ActionListener

{
private final int ITEM_PLAIN = 0; // Item types
private final int ITEM_CHECK = 1;
private final int ITEM_RADIO = 2;

private JPanel topPanel;
private JMenuBar menuBar;
private JMenu menuFile;
private JMenu menuEdit;
private JMenu menuProperty;
private JMenuItem menuPropertySystem;
private JMenuItem menuPropertyEditor;
private JMenuItem menuPropertyDisplay;
private JMenuItem menuFileNew;
private JMenuItem menuFileOpen;
private JMenuItem menuFileSave;
private JMenuItem menuFileSaveAs;
private JMenuItem menuFileExit;
private JMenuItem menuEditCopy;
private JMenuItem menuEditCut;
private JMenuItem menuEditPaste;

public TestFrame()
{

setTitle("Complete Menu Application");
setSize(310, 130);

Listing 7.3 Sample code for JMenuItem

210 CHAPTER 7
Menus and toolbars
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the menu bar
menuBar = new JMenuBar();

// Set this instance as the application's menu bar
setJMenuBar(menuBar);

// Build the property submenu
menuProperty = new JMenu("Properties");
menuProperty.setMnemonic('P');

// Create property items
menuPropertySystem = CreateMenuItem(menuProperty, ITEM_PLAIN,

"System...", null, 'S', null);
menuPropertyEditor = CreateMenuItem(menuProperty, ITEM_PLAIN,

"Editor...", null, 'E', null);
menuPropertyDisplay = CreateMenuItem(menuProperty, ITEM_PLAIN,

"Display...", null, 'D', null);

// Create the file menu
menuFile = new JMenu("File");
menuFile.setMnemonic('F');

menuBar.add(menuFile);

// Build a file menu items
menuFileNew = CreateMenuItem(menuFile, ITEM_PLAIN,

"New", null, 'N', null);
menuFileOpen = CreateMenuItem(menuFile, ITEM_PLAIN, "Open...",

new ImageIcon("open.gif"), 'O',
"Open a new file");

menuFileSave = CreateMenuItem(menuFile, ITEM_PLAIN, "Save",
new ImageIcon("save.gif"), 'S',
" Save this file");

menuFileSaveAs = CreateMenuItem(menuFile, ITEM_PLAIN,
"Save As...", null, 'A',
"Save this data to a new file");

// Add the property menu
menuFile.addSeparator();
menuFile.add(menuProperty);
menuFile.addSeparator();
menuFileExit = CreateMenuItem(menuFile, ITEM_PLAIN,

"Exit", null, 'x',
"Exit the program");

Listing 7.3 Sample code for JMenuItem (continued)

Menu items 211
// Create the file menu
menuEdit = new JMenu("Edit");
menuEdit.setMnemonic('E');
menuBar.add(menuEdit);

// Create edit menu options

menuEditCut = CreateMenuItem(menuEdit, ITEM_PLAIN,
"Cut", null, 't',
"Cut data to the clipboard");

menuEditCopy = CreateMenuItem(menuEdit, ITEM_PLAIN,
"Copy", null, 'C',
"Copy data to the clipboard");

menuEditPaste = CreateMenuItem(menuEdit, ITEM_PLAIN,
"Paste", null, 'P',
"Paste data from the clipboard");

}

public JMenuItem CreateMenuItem(JMenu menu, int iType,
String sText, ImageIcon image,

int acceleratorKey, String sToolTip)
{

// Create the item
JMenuItem menuItem;

switch(iType)
{

case ITEM_RADIO:
menuItem = new JRadioButtonMenuItem();
break;

case ITEM_CHECK:
menuItem = new JCheckBoxMenuItem();
break;

default:
menuItem = new JMenuItem();
break;

}

// Add the item test
menuItem.setText(sText);

// Add the optional icon
if(image != null)

menuItem.setIcon(image);

Listing 7.3 Sample code for JMenuItem (continued)

212 CHAPTER 7
Menus and toolbars
 Figure 7.6 shows the File menu produced by this example. Note the presence
of keyboard mnemonics and graphics in this screen capture. We will examine these
in more detail in the remainder of this section.

 The key to this example is the CreateMenuItem() method, which is a helper to
eliminate duplicate code for each of the menu items. The rest of this section will
describe the details of this important method. If you wish, you can add this method
to your own applications, modifying it to suit your own specific needs.

7.3.1 Adding graphics to menu items

If you examine figure 7.6, you will notice that the menu options Open and Save
appear a bit different than the others because they include graphics. Each item ren-
dered in a menu pull-down is really just an extended instance of AbstractButton ,
which, as we know from chapter 4, can include an ImageIcon in addition to text

// Add the accelerator key
if(acceleratorKey > 0)

menuItem.setMnemonic(acceleratorKey);

// Add the optional tool tip text
if(sToolTip != null)

menuItem.setToolTipText(sToolTip);

// Add an action handler to this menu item
menuItem.addActionListener(this);

menu.add(menuItem);

return menuItem;
}

public void actionPerformed(ActionEvent event)
{

System.out.println(event);
}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 7.3 Sample code for JMenuItem (continued)

Menu items 213
information. To accomplish this in the CreateMenuItem() method, we implement
the following code:

// Add the optional icon
if(image != null)

menuItem.setIcon(image);

 The image variable contains an instance of a GIF file loaded from a disk. You
can even add animated images to a menu item using the same technique, and Swing
will manage all of resources required to handle the animated GIF file.

Place graphics, check boxes, and accelerators inside menus. Any graphics
and check boxes for menu items should be placed to the left of menu items,
and shortcut descriptions should be placed to the right. The trend is to du-
plicate the toolbar icon of a feature beside the associated menu item as a mne-
monic. There are existing guidelines for mnemonics for different platforms,
so you might want to consult a style guide.

7.3.2 Adding tool tips

Run the code shown in listing 7.3, and place the mouse pointer on the Save menu
item. If you leave the pointer still for a second, you will see a pop-up line showing a
brief description of the item’s function. Look at the CreateMenuItem() method,
and you will see the code to do this:

// Add the optional tool tip text

Figure 7.6
Complete menu application

214 CHAPTER 7
Menus and toolbars
if(sToolTip != null)
menuItem.setToolTipText(sToolTip);

 This line of code sets the tool tip text displayed for a menu item based on text
supplied by the calling method. Tool tips were originally referenced in chapter 3,
but, until now, you have not seen any practical examples.

Though you will see tool tips in listing 7.3, it is important to note that they
are associated with the JComponent portion of the menu item. As such, you
can use exactly the same code to apply tool tips to buttons, text fields, or any
other Swing user interface component described in this book.

7.3.3 Menu item keyboard mnemonics

There is one other oddity in the CreateMenuItem() method of listing 7.3. The line
which is shown as

// Add the accelerator key
if(acceleratorKey > 0)

menuItem.setMnemonic(acceleratorKey);

is something you may not have seen before. This line assigns a keyboard accelerator,
or shortcut key, to the JMenuItem instance. The setMnemonic() method accepts a
character (the actual shortcut character) and scans the menu item string for the first
instance of it. If you observe the Exit menu item in figure 7.6, you will see that the
x is underlined, indicating that the x key is the shortcut.

Make sure that you do not use the same shortcut key for more than one
menu item within the same menu, otherwise, you may experience some un-
predictable results when the keyboard accelerator is invoked.

 The implementation of menus with keyboard accelerators is now commonplace
in applications, and I urge you to add them to the programs you write. Though user
interface standards and guidelines are far beyond the scope of this book, you should
pay attention to the accelerators you select as well as to the layout of your menus.
Unless you are a user interface designer, you will probably lack the knowledge and
experience needed to comply with all the rules. So, your best option is to examine

Menu items 215
the multitude of commercial products to see what accelerators they use and how
their menus are formatted. For example, the File menu is universally accepted as the
first menu in the menu bar, and, almost exclusively, its shortcut key is F.

7.3.4 Responding to a menu selection

Menu items selected by the user generate action events which can be intercepted by
the application. To accomplish this, simply add an action listener to the item as you
would for a button. For example, consider the following code:

JMenuItem menuFileSave = new JMenuItem("Save");
MenuFileSave.addActionListener(myMenuListener);

 The listener’s actionPerformed() method looks something like this:

public void actionPerformed(ActionEvent event)
{

if(event.getSource() == menuFileSave)
{

// Handle this menu selection
}

}

7.3.5 JMenuItem constructors

public JMenuItem()

This constructor creates a default menu item instance with no set text or icon.

public JMenuItem(Icon icon)

 This constructor creates a default menu item instance with the specified icon
image.

public JMenuItem(String text)

 This constructor creates a default menu item instance with the specified text.

public JMenuItem(String text, Icon icon)

 This constructor creates a default menu item instance with the specified text
and icon image.

public JMenuItem(String text, MenuShortcut shortcut)

 This constructor creates a default menu item instance with the specified text.
The supplied AWT MenuShortcut parameter contains the keyboard accelerator
used to invoke this menu option.

216 CHAPTER 7
Menus and toolbars
7.3.6 JMenuItem significant method groupings

public void setArmed(boolean b)
public boolean isArmed()

The methods in this group manage the armed state of the menu item. If the item is
armed and the mouse button is released while the mouse pointer is over the item,
that menu will fire an action event. If the mouse pointer is not over the item when
the button is released, no action event will be fired and the item will be disarmed.

public void setEnabled(boolean b)

 This method accepts a boolean value used to control the enabled or disabled
state of the menu item.

public void setAccelerator(KeyStroke keyStroke)
public KeyStroke getAccelerator()

 This method group controls the keyboard accelerator for the menu item.

7.4 Check box menu items

In additional to the standard menu item, Swing (and AWT) offers a second, and
more interactive, menu item. The check box menu item offers modal operation
within a menu, in that the option can be checked or unchecked. This is quite useful
when you require menu options which control the state of a particular feature in
your code. The use of check box menu items has the added effect of eliminating the
need for an additional dialog box to control application parameters, usually result-
ing in smaller, cleaner code.

 In Swing, the check box menu item is implemented in a class called JCheck-
BoxMenuItem, which deliberately mimics the capability and API of its AWT
cousin. The components can be freely mixed with other menu items, and like the
JMenuItem component, can support text or graphic images (even those with ani-
mation). The object construction process is essentially the same as for JMenuItem,
except for the ability to set the initial checked/unchecked state of the instance. List-
ing 7.4 shows a sample of some code implementing several instances of JCheckBox-
MenuItem.

import java.awt.*;
import com.sun.java.swing.*;

Listing 7.4 Sample code for JCheckBoxMenuItem

Check box menu items 217
 The screen capture in figure 7.7 shows the result of executing this applica-
tion. Though we did not implement an action listener in this sample, the menu
items can be checked and unchecked. This functionality comes automatically when
using a JCheckBoxMenuItem. Notice in this figure that two of the three menu

class TestFrame
extends JFrame

 {

private JPanel topPanel;

public TestFrame()
{

setTitle("Menu Application #2");
setSize(310, 130);
setBackground(Color.gray);

topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

JMenuBar menuBar = new JMenuBar();
setJMenuBar(menuBar);

JMenu optionMenu = new JMenu("Menu");
menuBar.add(optionMenu);

// Create the check box menu items
JCheckBoxMenuItem menuEditInsert

= new JCheckBoxMenuItem("Insert");
optionMenu.add(menuEditInsert);
JCheckBoxMenuItem menuEditWrap

= new JCheckBoxMenuItem("Wrap lines");
optionMenu.add(menuEditWrap);
JCheckBoxMenuItem menuEditCaps

= new JCheckBoxMenuItem("Caps Lock");
optionMenu.add(menuEditCaps);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 7.4 Sample code for JCheckBoxMenuItem (continued)

218 CHAPTER 7
Menus and toolbars
options include a checkmark in the left-hand margin indicating that the state for
these is “true”.

7.4.1 Managing check box state

Each JCheckBoxMenuItem instance contains a state attribute containing a boolean
“true” value if the item is checked and a “false” value if it is not. This checked state
of the item can be controlled in one of two ways: the user can select the menu item
to toggle the state, or the developer can control the state programmatically. To
change the checked state of a check box menu item or to monitor its value, use lines
of code like the two shown below:

// Set the checked menu item
menuCheckItem.setState(true);

// Get the state of the item
boolean bState = menuCheckItem.getState();

7.4.2 JCheckBoxMenuItem variables

protected Action action

This variable contains the instance of the action invoked when an action event
occurs.

7.4.3 JCheckBoxMenuItem constructors

public JCheckBoxMenuItem()

This first constructor creates an initially unselected JCheckBoxMenuItem with no
set text or icon.

public JCheckBoxMenuItem(Icon icon)

Figure 7.7
JCheckBoxMenuItem sample

Radio button menu items 219
 This constructor creates an initially unselected JCheckBoxMenuItem with the
specified icon.

public JCheckBoxMenuItem(String text)

 This constructor creates an initially unselected JCheckBoxMenuItem with the
specified text identifier.

public JCheckBoxMenuItem(String text, Icon icon)

 This first constructor creates an initially unselected JCheckBoxMenuItem with
the specified text and icon image.

public JCheckBoxMenuItem(String text, boolean b)

 This first constructor creates a JCheckBoxMenuItem initially set to the sup-
plied selection state in the b parameter. The component is constructed with the
specified text.

public JCheckBoxMenuItem(String text, Icon icon, boolean b)

 This first constructor creates a JCheckBoxMenuItem initially set to the sup-
plied selection state in the b parameter. The component is constructed with the
specified text and icon image.

7.4.4 JCheckBoxMenuItem significant method groupings

public synchronized void setState(boolean b)
public boolean getState()

These methods manage the current selection state of the JCheckBoxMenuItem
instance.

public synchronized Object[] getSelectedObjects()

 This method returns an array of objects based on the selections currently cho-
sen by the user.

7.5 Radio button menu items

The menu items shown so far in this chapter relate directly to comparable classes in
AWT, but Swing also provides a third menu item type not found in AWT. Resem-
bling the check box menu item shown in the previous section, the radio button menu
item, provides the capability to implement arrays of radio buttons within a menu.

220 CHAPTER 7
Menus and toolbars
 Swing provides the JRadioButtonMenuItem class, which exhibits the com-
bined characteristics of the JMenuItem and JRadioButton classes, allowing the
presence of this functionality within an application menu. A product of this class is
shown in figure 7.8, where you will see three menu items grouped as a set of radio
buttons, with the Medium Cursor item selected.

 Listing 7.5 shows the code used to create this menu; however, as with the pre-
vious examples in this chapter, executing this code will not yet produce the
expected results. This example should be straightforward, but one point should be
made in its regard. In chapter 4, when we discussed JRadioButton, you saw an
example of the ButtonGroup class, which is used to link the components into a sin-
gle user interface entity. Since JRadioButtonMenuItem instances are a type of radio
button, you also need to relate these components with a ButtonGroup instance.

import java.awt.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
private JPanel topPanel;

public TestFrame()
{

setTitle("Menu Application #3");
setSize(310, 130);

topPanel = new JPanel();
getContentPane().add(topPanel);

JMenuBar menuBar = new JMenuBar();
setJMenuBar(menuBar);

JMenu optionMenu = new JMenu("Menu");

Listing 7.5 Sample code for JRadioButtonMenuItem

Figure 7.8
JRadioButtonMenuItem sample

Radio button menu items 221
7.5.1 JRadioButtonMenuItem variables

protected Action action

This variable contains the instance of the action invoked when an action event
occurs.

7.5.2 JRadioButtonMenuItem constructors

public JRadioButtonMenuItem()

This constructor creates an initially unselected JRadioButtonMenuItem with no set
text or icon.

public JRadioButtonMenuItem(Icon icon)

 This constructor creates an initially unselected JRadioButtonMenuItem with
the specified icon.

public JRadioButtonMenuItem(String text)

menuBar.add(optionMenu);

JRadioButtonMenuItem menuCursorSmall =
new JRadioButtonMenuItem("Small Cursor");

optionMenu.add(menuCursorSmall);
JRadioButtonMenuItem menuCursorMedium =

new JRadioButtonMenuItem("Medium Cursor");
optionMenu.add(menuCursorMedium);
JRadioButtonMenuItem menuCursorLarge =

new JRadioButtonMenuItem("Large Cursor");
optionMenu.add(menuCursorLarge);

ButtonGroup cursorGroup = new ButtonGroup();
cursorGroup.add(menuCursorSmall);

 cursorGroup.add(menuCursorMedium);
cursorGroup.add(menuCursorLarge);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 7.5 Sample code for JRadioButtonMenuItem (continued)

222 CHAPTER 7
Menus and toolbars
 This constructor creates an initially unselected JRadioButtonMenuItem with
the specified text identifier.

public JRadioButtonMenuItem(String text, Icon icon)

 This constructor creates an initially unselected JRadioButtonMenuItem with
the specified text and icon image.

7.6 Pop-up menus

Menu bars in conjunction with menus do not address all of the issues associated
with menus in applications and applets. A second type of menu exists in Swing (and
AWT) which provides additional utility in Java programs.

 The pop-up menu (sometimes referred to as a context menu) gets its name
from the way it “pops” up when you click the correct mouse button (sometimes
with the inclusion of a key press, on some platforms). This type of menu is used
most often for quick access to context-sensitive options for a given task. For exam-
ple, in an application like the Microsoft Word word processor on the Windows plat-
form, you can click the right mouse button in the document window to display
options appropriate to document editing (such as clipboard operations, font selec-
tion, and paragraph formatting).

Think about the user’s task when designing pop-up menus. Pop-up
menus are context sensitive to the area in which they are invoked, thus, the
most frequently used features for any given area must be determined before-
hand to populate these effectively. Pop-up menus should not be a substitute
for other portions of a UI, but rather, they are a redundant method of invok-
ing a subset of the features when the user needs them. If targeting Macintosh
users, keep in mind that their mouse interactions primary involve single clicks
with one mouse button.

 The final Swing menu class we will examine in this chapter is the JPopupMenu
class. It provides platform independent pop-up menuing which can be attached to
any other component (for example, a text field or text area). The basic construction
process for a JPopupMenu instance uses code similar to the following:

// Create the submenu items
JMenuItem menuItem1 = new JMenuItem(“Copy”);

Pop-up menus 223
JMenuItem menuItem2 = new JMenuItem(“Cut”);
JMenuItem menuItem3 = new JMenuItem(“Paste”);

// Constructor the pop-up menu
JPopupMenu popupMenu = new JPopupMenu();
popupMenu.add(menuItem1);
popupMenu.add(menuItem2);
popupMenu.add(menuItem3);

 Let’s a take a look at a complete example. The code in listing 7.5 creates a
basic JFrame instance and adds a pop-up menu to it. The menu contains some stan-
dard Swing menu items without graphics, though you could also add radio button
and check box menu items, as well as graphical images.

 Each of the menu items supports an action listener which is intercepted by the
frame through the actionPerformed() method. Mouse operations are examined in
the processMouseEvent() method in order to detect context menu triggering. All
mouse events are then subsequently sent to the parent class for possible further pro-
cessing.

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements ActionListener

 {
private JPanel topPanel;
private JPopupMenu popupMenu;

public TestFrame()
{

setTitle("Popup Menu Application");
setSize(310, 130);
setBackground(Color.gray);

topPanel = new JPanel();
topPanel.setLayout(null);
getContentPane().add(topPanel);

// Create some menu items for the pop-up
JMenuItem menuFileNew = new JMenuItem("New");
JMenuItem menuFileOpen = new JMenuItem("Open...");
JMenuItem menuFileSave = new JMenuItem("Save");
JMenuItem menuFileSaveAs = new JMenuItem("Save As...");

Listing 7.6 Sample code for JPopupMenu

224 CHAPTER 7
Menus and toolbars
JMenuItem menuFileExit = new JMenuItem("Exit");

// Create a pop-up menu
popupMenu = new JPopupMenu("Menu");
popupMenu.add(menuFileNew);
popupMenu.add(menuFileOpen);

popupMenu.add(menuFileSave);
popupMenu.add(menuFileSaveAs);
popupMenu.add(menuFileExit);

topPanel.add(popupMenu);
// Action and mouse listener support
enableEvents(AWTEvent.MOUSE_EVENT_MASK);
menuFileNew.addActionListener(this);
menuFileOpen.addActionListener(this);
menuFileSave.addActionListener(this);
menuFileSaveAs.addActionListener(this);
menuFileExit.addActionListener(this);

}

public void processMouseEvent(MouseEvent event)
{

if(event.isPopupTrigger())
{

popupMenu.show(event.getComponent(),
event.getX(), event.getY());

}

super.processMouseEvent(event);
}

public void actionPerformed(ActionEvent event)
{

// Add action handling code here
System.out.println(event);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 7.6 Sample code for JPopupMenu (continued)

Pop-up menus 225
 Listing 7.6 contains the source code for a complete application. You can com-
pile and execute this code to produce the results shown in figure 7.9. Note that,
although the frame in figure 7.8 contains no components, you can easily add them,
and then create a different pop-up context menu for each. The parameter supplied
in the JPopupMenu constructor controls which user interface component owns the
pop-up menu.

If you are mixing heavyweight AWT components and lightweight Swing
components in the same application, you may experience some problems re-
lating to pop-up menus. Since heavyweight components are always drawn on
top of lightweights, it is possible to have the pop-up menu appear under-
neath a component. To solve this problem, add the following line of code to
the pop-up menu code:

setLightWeightPopupEnabled(false);

This code forces the pop-up menu to be shown as a heavyweight component,
drawing it on top of all other components

7.6.1 JPopupMenu constructors

public JPopupMenu()

This constructor creates a new instance of a JPopupMenu initially containing no
menu items.

public JPopupMenu(String label)

 This constructor creates a new instance of a JPopupMenu initially containing
no menu items. The String parameter associates a pop-up menu with a named label
for the pop-up menu.

Figure 7.9
JPopupMenu sample

226 CHAPTER 7
Menus and toolbars
7.6.2 JPopupMenu significant method groupings

public SingleSelectionModel getSelectionModel()
public void setSelectionModel(SingleSelectionModel model)

These methods manage the selection model used by the pop-up menu. Swing will
assign a default selection model, but you can create and specify a new selection
model, if desired.

public JMenuItem add(JMenuItem menuItem)
public JMenuItem add(Action a)
public void addSeparator()
public void insert(Action a, int index)
public void insert(Component component, int index)

 The methods in this group are responsible for adding and inserting new menu
items into the pop-up menu instance. Additionally, menu separators can be added
using the addSeparator() methods.

public void addPopupMenuListener(PopupMenuListener l)
public void removePopupMenuListener(PopupMenuListener l)

 These methods manage the presence of pop-up listeners for the menu. With a
pop-up menu listener, you can detect if the menu is about to appear or disappear, or
if the menu has been canceled.

public void setVisible(boolean b)
public boolean isVisible()

 The two methods shown in this group manage the visibility of the pop-up
menu. A “true” value passed to the setVisible() method causes the pop-up to be
drawn.

public void setLocation(int x, int y)
public void setPopupSize(Dimension d)
public void setPopupSize(int width, int height)
public void show(Component invoker, int x, int y)

 This method group controls the size and location of the pop-up menu
instance.

7.7 Toolbars

One of the most recognizable features of applications today is the toolbar. Toolbars
allow users to quickly invoke the most common program features without forcing
them to sift through menus. The addition of toolbars can significantly improve the

Toolbars 227
user interface of a typical application, and toolbars can add a certain aesthetic polish
which users appreciate. Since we talked about menus in the previous sections, and
toolbars are closely related, a discussion of toolbars is a natural progression.

 Previous to the introduction of Swing, if you wanted to add toolbar support to
a Java application, you were pretty much on your own. AWT offers no capability for
toolbars, so the only recourse, in the past, was to implement a set of buttons in its
own panel; however, the lack of support for images in the AWT Button class results
in an archaic user interface.

Provide frequently used functions with toolbars. The toolbar should con-
tain only the most frequently used features. Toolbars are targeted more to-
wards experienced users in order to give them fast access to common actions.
Group toolbar buttons together by similar functionality, and tile them by or-
der of frequency of use and importance, from left to right.

 The developers of Swing appreciated that the current direction of user inter-
face design demanded that they implement a toolbar class capable of the latest fea-
tures, including graphical buttons, fly-over tool tips, and the ability to dock and
undock the toolbar. The result of their efforts is a toolbar which easily supports all
of these abilities and also allows for non-button components such as images, combo
boxes, and so on.

 Now, we will examine many of the aspects and nuances of the Swing toolbar
class. This class, JToolBar, (like all Swing classes) is rooted from JComponent, so it
supports all of the features we have been discussing so far in this book. Since JTool-
Bar is a Swing component (and hence a container), instances of this class can hold
any other Swing or AWT user interface component.

7.7.1 Toolbar basics

In this section, we will examine the details of the Swing JToolBar class, and you will
be presented with some examples demonstrating the most important concepts. As
you will come to appreciate, implementing toolbars in your programs is simple.

 We will just dive right into Swing toolbars by presenting an example of a sim-
ple toolbar. Listing 7.7 creates a frame which offers the user a toolbar with several
buttons. Each of the buttons generates an event which is handled by the action-

228 CHAPTER 7
Menus and toolbars
Performed() method, though, in this example, the result of each toolbar action is
simply a string written to the console.

Graphics and toolbar button details. Typical toolbar button sizes include
24 by 22 pixels for small, and 32 by 30 pixels for large buttons (including the
bevel); and you may place, respectively, 16 by 16 and 24 by 24 pixel graphics
on these buttons. When using GIF images to place onto graphics, make the
graphics backgrounds transparent so that they bleed into the toolbar. GIF
images should ideally use a Web-safe 216-color palette. There is a trend to-
wards coolbars, a term denoting multiple state toolbar buttons with a flat ap-
pearance which pop out on mouseovers (as in, when the user places the
mouse pointer on something).

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements ActionListener

 {
private JPanel topPanel;
private JButton buttonNew;
private JButton buttonOpen;
private JButton buttonSave;
private JButton buttonCopy;
private JButton buttonCut;
private JButton buttonPaste;

public TestFrame()
{

setTitle("Basic Toolbar Application");
setSize(310, 130);
setBackground(Color.gray);

topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a new toolbar
JToolBar myToolbar = new JToolBar();
topPanel.add(myToolbar, BorderLayout.NORTH);

Listing 7.7 JToolBar sample

Toolbars 229
// Add some buttons to the toolbar
buttonNew = addToolbarButton(myToolbar, false, "New",

"new", "Create a new document");
buttonOpen = addToolbarButton(myToolbar, true, "Open",

"open", "Open an existing document");
buttonSave = addToolbarButton(myToolbar, true, "Save",

"save", "Open an existing document");
myToolbar.addSeparator();
buttonCopy = addToolbarButton(myToolbar, true, null,

"copy", "Copy selection to the clipboard");
buttonCut = addToolbarButton(myToolbar, true, null,

"cut", "Cut selection to the clipboard");
buttonPaste = addToolbarButton(myToolbar, true, null,

"paste", "Paste selection from the clipboard");

// Add a text area just to fill up the space
JTextArea textArea = new JTextArea();
topPanel.add(textArea, BorderLayout.CENTER);

}

// Helper method to create new toolbar buttons
public JButton addToolbarButton(JToolBar toolBar,

boolean bUseImage, String sButtonText,
String sButton, String sToolHelp)

{
JButton b;

// Create a new button
if(bUseImage)

b = new JButton(new ImageIcon(sButton + ".gif"));
else

b = (JButton)toolBar.add(new JButton());

// Add the button to the toolbar
toolBar.add(b);

// Add optional button text
if(sButtonText != null)

b.setText(sButtonText);
else
{

// Only a graphic, so make the button smaller
b.setMargin(new Insets(0, 0, 0, 0));

}

// Add optional tool tip help
if(sToolHelp != null)

Listing 7.7 JToolBar sample (continued)

230 CHAPTER 7
Menus and toolbars
 The results produced by executing listing 7.7 are shown in figure 7.10. Notice
that the example implements several different styles of buttons ranging from a sim-
ple, unadorned button, to those including graphics and text, and those with only a
graphic. As an added feature, each button on the toolbar includes fly-over help to
indicate its function more clearly.

b.setToolTipText(sToolHelp);

// Make sure this button sends a message when the user

// clicks it
b.setActionCommand("Toolbar:" + sButton);
b.addActionListener(this);

return b;
}

public void actionPerformed(ActionEvent event)
{

// Add action handling code here
System.out.println(event);

}

public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 7.7 JToolBar sample (continued)

Figure 7.10
Toolbar program output

Toolbars 231
7.7.2 A toolbar with many faces

There is a more subtle feature of toolbars which is not shown in figure 7.10—the
ability to undock the toolbar and move it someplace else. When the mouse is posi-
tioned over the gray area of the toolbar, press and hold the mouse button and drag
the toolbar out of the application window. Note the effect this has—the toolbar
appears within its own frame on the desktop (see figure 7.11). This is functionality
which our application provided with no additional development.

 Dragging the menu back onto the application frame can restore an undocked
toolbar. If you try this with the example in listing 7.6, you may notice something
interesting. Not only can the toolbar be dropped in its original location, but you can
also orient it vertically along either side of the frame, or horizontally at the bottom.

7.7.3 Docking and undocking toolbars

As you now know, the toolbar class supports docking and undocking with simple
mouse drag operations; however, in some situations this feature is undesirable. The
following line of code disables toolbar docking regardless of the look-and-feel
library in use:

myToolbar.setFloatable(false);

 If you are creating a program to run on several platforms, a dockable toolbar
may be inappropriate in some situations. For example, in the Microsoft Windows
environment, many applications support this feature, but let’s assume that you do
not want this functionality to appear when your application is executed on a UNIX
platform. When using the Swing toolbar class, it is also possible to disable toolbar

Figure 7.11 Toolbar program output

232 CHAPTER 7
Menus and toolbars
docking for a specific look-and-feel, while letting this capability remain in the look-
and-feel of other toolbars. To accomplish this, the code needs to access the Compo-
nentUI class for the toolbar, since the docking feature is UI model specific. The fol-
lowing code disables toolbar docking and undocking only on the Motif platform,
while the Windows version of the program would allow this feature.

// Make sure the toolbar doesn't float
ToolBarUI ui = myToolBar.getUI();
if(ui instanceof MotifToolBarUI)
{

MotifToolBarUI toolbarUI = (MotifToolBarUI)ui;
toolbarUI.setFloatable(false);

}

Be careful about implementing undocking toolbars. While this feature is
quite slick and tempting to use, some users have problems with accidentally
undocking toolbars, redocking the toolbars, or losing toolbars once un-
docked. Should there be a need to undock toolbars, make every attempt to
ensure that any undocked toolbars do not ever disappear when undocked in
a multiple window environment.

7.7.4 Adding other components to a toolbar

A JToolBar instance is not limited to the inclusion of buttons. Remember that the
JToolBar class is derived from JComponent, so, by definition, it is a container which
can hold any Swing or AWT component. For example, the following code adds a
checkbox and an image to a toolbar instance.

myToolbar.add(new JCheckBox("Click here"));
myToolbar.add(new JLabel(new ImageIcon("save.gif")));

7.7.5 JToolBar constructors

public JToolBar()

This constructor creates a new instance of a JToolBar initially containing no but-
tons or other components. With some user interface models, the toolbar is float-
able, by default.

7.7.6 JToolBar significant method groupings

public int getComponentIndex(Component c)

Chapter summary 233
public Component getComponentAtIndex(int i)

This pair of methods returns information about the components contained within
the toolbar. Each component has an associated index. Given the index, the compo-
nent can be retrieved, and, by specifying a component, the index can be found.

public void addSeparator()

 This method adds a new separator to the toolbar at the current index location.
This is used to leaves gaps in the layout to improve component grouping within the
toolbar.

public JButton add(Action a)

 This method is unique in that you can have the toolbar instance automatically
create a JButton instance simply by adding a new action. Actions can be jointly
associated with menu operations and toolbar buttons.

7.8 Chapter summary

In this chapter, we have examined much of the material required to support menus
within your Swing-based applications and applets. We started by implementing a
basic menu bar using the JFC JMenuBar class. Then, we discussed the JMenu class
and used it to add pull-down menus to our sample code. You now know that menus
can be easily applied to Java applications. In addition, this chapter pointed out that
Swing menus could be applied to applets, too. This is a new Swing feature with
which AWT applet developers will immediately identify and appreciate.

 This chapter identified the three basic types of menu items which are sup-
ported by swing menus, include the standard JMenuItem as well as menu items
which implement check boxes and grouped radio buttons.

 As a final examination of menu support in Swing, we examined the JPopup-
Menu class, which Swing provides to support context menus (the menu that
appears when you click the right mouse button on something). This class is essen-
tially a clone of AWT’s PopupMenu class, so developers knowledgeable with that
API can quickly convert their existing applications.

 Finally, this chapter described the JToolBar class which Swing uses to imple-
ment and support toolbars within an application or applet. We saw how toolbars
can be undocked from their owner frame and how to prevent this from occurring.
Also, this section described how to add other components to a toolbar to meet your
specific needs.

234 CHAPTER 7
Menus and toolbars
 This chapter marks the end of AWT compatibility in this book, and with the
presentation of JToolBar, we have seen the last of our old friend, AWT. Though
comparisons to AWT may still be drawn occasionally, the remaining chapters in this
book discuss features found only in Swing.

8Dialogs and
internal frames

In this chapter
■ Basic dialog creation with Swing

■ Using chooser dialogs

■ Internal frames

236 CHAPTER 8
Dialogs and internal frames
We have already examined several ways that a Swing application can obtain input
from the user; but, in the examples presented so far, all user input came from com-
ponents created within a main application frame. In most cases, the main window of
an application holds the primary content of the program, and it is not possible for
the user to accomplish all of their tasks from the main window. For example, in a
word processor or text editor, the user must have some mechanism for saving and
loading files into the application. Some of these needs can be met with additional
toolbar and menu options, but, in most situations, this is impractical.

 To address this problem, the architects of early graphical user interfaces
adopted an approach allowing secondary application windows to appear within the
interface. These extra windows permitted the user to briefly divert from normal pro-
gram procedures to carry on a separate conversation with the application in a sepa-
rate window. These separate windows became known as dialog boxes (or dialogs),
and they have been implemented in every GUI available today, including Java.

Use dialogs only for actions that deviate from the primary task flow. Any
dialog pauses the interaction of an application with the user. Dialogs should
ideally be designed such that they could be ignored altogether, without dis-
rupting the user’s ability to complete their job. This implies that it is best to
minimize the use of dialogs and emphasize direct manipulation within the UI
design.

 Dialog box implementation with AWT is limited to creating a simple window
which presents a blank panel on which the developer must construct the desired
components. Where possible, AWT also provides peer classes to map operating-sys-
tem-specific operations onto a Java class. For example, on the Windows platform,
Java provides a FileDialog class supplying a link to the standard native file dialog.
Though AWT’s support of dialogs is adequate for most purposes, it lacks the com-
pleteness demanded by many developers.

 In this chapter, we will examine the dialog support implemented by Swing.
Some of these classes will overlap those currently available in AWT, but Swing
improves on these and provides many prewritten specialty dialogs that you can reuse
in your own applications. Figure 8.1 shows the set of Swing classes that we will dis-
cuss in this chapter.

Simple dialogs 237
8.1 Simple dialogs

The first class we will examine is the one used to create simple dialogs. The JDialog
component operates much like JFrame—it creates a window possessing a title bar,
control menu, and other embellishments familiar to most users. Like JFrame, JDia-
log also implements an instance of JContentPane on which other components and
panels are added (as well as the other specialized panes described in our coverage of
JFrame, for example, JRootPane, JGlassPane, JLayeredPane, and so on).

 Let’s start by taking a look at a basic JDialog example. In this example, we will
create an application frame containing a single button which, when clicked, creates a
new instance of a JDialog-based dialog box. Listing 8.1A contains the source code
for the main frame, and it is the same code that will be implemented in each of the
examples in this chapter.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements ActionListener

{
// Instance attributes used in this example
private JPanel topPanel;
private JButton buttonDialog;

Listing 8.1A Main application frame source code

Dialog JDialog

JComponent JOptionPane

JColorChooser

JFileChooser

Figure 8.1
Swing dialog class hierarchy

238 CHAPTER 8
Dialogs and internal frames
 Listing 8.1B contains the code that implements that actual dialog box. It cre-
ates a new class, TestDialog, derived from the Swing JDialog class, and it only imple-
ments a scrollable text area loaded with a source file. Notice that the dialog contains
its own title and can be resized and repositioned independently of its parent frame.

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Dialog Test Frame");
setSize(310, 130);
setBackground(Color.gray);
// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a button to get things started
buttonDialog = new JButton("Open Dialog");
topPanel.add(buttonDialog, BorderLayout.CENTER);

// Add an action listener to listen for button clicks
buttonDialog.addActionListener(this);

}

// ActionListener handler to listen for button clicks
// within this application frame
public void actionPerformed(ActionEvent event)
{

// Display a message on the console
System.out.println(event);

// Create an instance of the test dialog
TestDialog testDialog = new TestDialog(this);
testDialog.setVisible(true);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 8.1A Main application frame source code (continued)

Simple dialogs 239
// Imports
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestDialog
extends JDialog

 {
// Instance attributes used in this dialog
private JFrame parentFrame;
private JScrollPane scrollPane1;

// Dialog constructor
public TestDialog(JFrame parentFrame)
{

// Make sure we call the parent
super(parentFrame);
// Save the owner frame in case we need it later
this.parentFrame = parentFrame;

// Set the characteristics for this dialog instance
setTitle("Test Dialog");
setSize(200, 200);
setDefaultCloseOperation(DISPOSE_ON_CLOSE);

// Create a panel for the components
JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Populate the panel with something the user
// can play with
CreateTopPane(topPanel);

}

private void CreateTopPane(JPanel topPanel)
{

// Create a text area
JTextArea area = new JTextArea();

// Load a file into the text area, catching any exceptions
try {

FileReader fileStream = new FileReader("TestFrame.java");
area.read(fileStream, "TestFrame.java");

}
catch(FileNotFoundException e)

Listing 8.1B Simple dialog source code

240 CHAPTER 8
Dialogs and internal frames
 When you execute the examples in listings 8.1A and 8.1B, you will be pre-
sented with the basic frame containing the Open Dialog button. If you click this
button, a new instance of the TestDialog class is created and displayed. There is a
subtlety in this example, however.

 Click the main frame’s button two or three times and note the effect—each
time the button is pressed, a new, independent dialog instance appears. The main
frame still responds to each user input, as do each of the dialog instances that have
been created. The result of this example is shown in figure 8.2.

8.1.1 Handling the close operation

Listing 8.1B contains one line of code that you may not have seen before, so it
deserves a bit of explanation:

setDefaultCloseOperation(DISPOSE_ON_CLOSE);

 This line of code controls how the window reacts to the user’s request to close
it. By default, the window will be hidden if the user closes it, which is unacceptable
in our example; so, by using the setDefaultCloseOperation() method, the code
notifies the dialog that the dialog will be discarded by calling its dispose() method.
We could also configure the dialog to do nothing on close, in which case, we would
need to supply a WindowListener within our source code. See the description of the
class WindowConstants in the online Swing documentation for more details on the
closure options supported.

{
System.out.println("File not found");

}
catch(IOException e)
{

System.out.println("IOException occurred");
}

// Create the scrolling pane for the text area
scrollPane1 = new JScrollPane();
scrollPane1.getViewport().add(area);
topPanel.add(scrollPane1, BorderLayout.CENTER);

}
}

Listing 8.1B Simple dialog source code (continued)

Simple dialogs 241
8.1.2 Modal vs. nonmodal dialogs

The simple example shown in figure 8.2 allowed the user to create an unlimited
number of dialogs, while still providing independent control of the main frame of
the application. This type of dialog box is referred to as nonmodal because each
instance operates on its own, disregarding anything else that the user might be
doing to the application.

Use modal dialogs to stop the application until the user decides to either
choose an action or cancel the dialog.

Use nonmodal dialogs to allow for continuing actions to the application
while the dialog waits for user input.

Figure 8.2 Simple dialog example

242 CHAPTER 8
Dialogs and internal frames
 The JDialog class also supports modal operation, whereby only a single dialog
box instance can be created, and, while it is active, its parent (TestFrame in our case)
ignores further input from the user. To control the modality of the dialog, Swing
supplies the setModal() method, which can be used as follows:

TestDialog.setModal(true);

You can also assign the modality of a dialog box while it is being constructed,
eliminating one line of source code from your application. See the list of con-
structors for more detail on constructing modal dialogs.

 Whether you implement a dialog box as modal or nonmodal depends on the
specific situation in which it will be used. For example, there would be no benefit in
implementing your file save/load dialogs as nonmodal, since this would greatly con-
fuse the user (because he or she could continue to make changes to the data being
saved while the dialog box is active). However, there may be some merit to imple-
menting a dialog box to perform string searches as nonmodal because it allows the
user to search for multiple strings simultaneously.

Use appropriate terminating buttons and proper terminology in modal dia-
logs. Always place both OK and Cancel functionality on modal dialogs. The
former confirms the action specified in the dialog, and the second cancels the
action in the dialog; both actions terminate the dialog. Try to use affirmative
terms in modal dialogs and avoid the word Cancel in a modal dialog as the
OK and Cancel buttons now become ambiguous.

8.1.3 A more advanced JDialog example

The example shown in listing 8.1A and 8.1B helps to demonstrate the use of a JDi-
alog instance, but it is quite impractical, so, we should take a little time to examine
something a bit more advanced. In this example, we will create a dialog box which
implements a tabbed pane with three pages, and, for effect, we will also add a tool-
bar. Note that none of these user interface components is actually active because
this example does not provide any action listeners to handle UI events.

 Though I told you this would be a more advanced example of a dialog, it is
really more an example of enhanced Swing features. The JDialog class is purposely

Simple dialogs 243
simple to use, so, instead of attempting to complicate JDialog, I opted to demon-
strate the flexibility of Swing dialog boxes. Listing 8.2 contains source code that has
been reused from previous examples in this book, but using the code within an
instance of JDialog, instead of JFrame.

// Imports
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestDialog
extends JDialog
implements ActionListener

 {
// Instance attributes used in this dialog
private JFrame parentFrame;
private JButton buttonCopy;
private JButton buttonCut;
private JButton buttonPaste;
private JTabbedPane tabbedPane;
private JPanel panel1;
private JPanel panel2;
private JPanel panel3;

// Dialog constructor
public TestDialog(JFrame parentFrame)
{

// Make sure we call the parent
super(parentFrame, true);

// Save the owner frame in case we need it later
this.parentFrame = parentFrame;

// Set the characteristics for this dialog instance
setTitle("Advanced Test Dialog");
setSize(400, 300);
setDefaultCloseOperation(DISPOSE_ON_CLOSE);

// Create a panel for the components
JPanel topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create an instance of a toolbar
CreateToolbar(topPanel);

Listing 8.2 Advanced dialog source code

244 CHAPTER 8
Dialogs and internal frames
// Create a tabbed pane containing some pages
CreateTabbedPane(topPanel);

}

// This method creates a toolbar for the dialog panel
private void CreateToolbar(JPanel topPanel)
{

// Create a new toolbar
JToolBar myToolbar = new JToolBar();
topPanel.add(myToolbar, BorderLayout.NORTH);

// Add some buttons to the toolbar
buttonCopy = addToolbarButton(myToolbar, true, null,

"copy", "Copy selection to the clipboard");
buttonCut = addToolbarButton(myToolbar, true, null,

"cut", "Cut selection to the clipboard");
buttonPaste = addToolbarButton(myToolbar, true, null,

"paste", "Paste selection from the clipboard");
}

// This method creates a tabbed pane with three pages
private void CreateTabbedPane(JPanel topPanel)
{

// Create the tab pages
CreatePage1();
CreatePage2();
CreatePage3();

// Create a tabbed pane
tabbedPane = new JTabbedPane();
tabbedPane.addTab("Page 1", panel1);
tabbedPane.addTab("Page 2", panel2);
tabbedPane.addTab("Page 3", panel3);
topPanel.add(tabbedPane, BorderLayout.CENTER);

}

public void CreatePage1()
{

panel1 = new JPanel();
panel1.setLayout(null);

JLabel label1 = new JLabel("Username:");
label1.setBounds(10, 15, 150, 20);
panel1.add(label1);

JTextField field = new JTextField();
field.setBounds(10, 35, 150, 20);
panel1.add(field);

Listing 8.2 Advanced dialog source code (continued)

Simple dialogs 245
JLabel label2 = new JLabel("Password:");
label2.setBounds(10, 60, 150, 20);
panel1.add(label2);

JPasswordField fieldPass = new JPasswordField();
fieldPass.setBounds(10, 80, 150, 20);
panel1.add(fieldPass);

}

public void CreatePage2()
{

panel2 = new JPanel();
panel2.setLayout(new BorderLayout());

panel2.add(new JButton("North"), BorderLayout.NORTH);
panel2.add(new JButton("South"), BorderLayout.SOUTH);
panel2.add(new JButton("East"), BorderLayout.EAST);
panel2.add(new JButton("West"), BorderLayout.WEST);
panel2.add(new JButton("Center"), BorderLayout.CENTER);

}

public void CreatePage3()
{

panel3 = new JPanel();
panel3.setLayout(new GridLayout(3, 2));
panel3.add(new JLabel("Field 1:"));
panel3.add(new TextArea());
panel3.add(new JLabel("Field 2:"));
panel3.add(new TextArea());
panel3.add(new JLabel("Field 3:"));
panel3.add(new TextArea());

}

// Helper method to create new toolbar buttons
public JButton addToolbarButton(JToolBar toolBar,

boolean bUseImage, String sButtonText,
String sButton, String sToolHelp)

{
JButton b;

// Create a new button
if(bUseImage)

b = new JButton(new ImageIcon(sButton + ".gif"));
else

b = (JButton)toolBar.add(new JButton());

// Add the button to the toolbar
toolBar.add(b);

Listing 8.2 Advanced dialog source code (continued)

246 CHAPTER 8
Dialogs and internal frames
Use appropriate terminating buttons and multiple Undos for nonmodal
dialogs. Non-modal dialogs are less frequently used than modal dialogs, but
do serve a purpose because they allow the application to regain focus without
forcing the user to terminate the dialog. Since actions on nonmodal dialogs
are immediate, the terminating buttons should have OK and Close function-
ality. This will distinguish them from the meaning of a Cancel when multiple
action have already been applied. If you can, also offer multiple Undo fea-
tures somewhere in the application. Consider visually differentiating the
nonmodal dialog from its modal counterparts, since the user can easily con-
fuse them with one another.

 Figure 8.3 shows the output of our advanced sample. Notice that this dialog
contains a toolbar, which may be an attribute you were not expecting. We could just

// Add optional button text
if(sButtonText != null)

b.setText(sButtonText);
else
{

// Only a graphic, so make the button smaller
b.setMargin(new Insets(0, 0, 0, 0));

}

// Add optional tool tip help
if(sToolHelp != null)

b.setToolTipText(sToolHelp);

// Make sure this button sends a message when the
// user clicks it
b.setActionCommand("Toolbar:" + sButton);
b.addActionListener(this);

return b;
}

public void actionPerformed(ActionEvent event)
{

// Add action handling code here
System.out.println(event);

}
}

Listing 8.2 Advanced dialog source code (continued)

Simple dialogs 247
as easily attach a menu to the dialog, a feature that might amaze some AWT devel-
opers. The example also provides a tabbed pane containing three pages using the
same code as listing 3.3 from chapter 3.

When you can, avoid cascading modal dialogs. Rather than forcing the user
to respond to many modal dialogs before continuing with their task, consider
placing the UI on a single modal dialog (if real estate permits). Advanced
functions, infrequently used features, or critical confirmations are the excep-
tions to this suggestion. Use ellipses to indicate any text-based control that
invokes a modal dialog (for example, “Advanced…”).

8.1.4 JDialog variables

protected boolean realModal

This variable contains the current modality flag for the dialog. This is independent
of any similar support in its parent, the AWT Dialog class.

protected JRootPane rootPane

 This variable contains a reference to the root pane of the dialog. Each dialog
instance supports a single component (and an instance of JRootPane) into which all
other components are added.

protected AccessibleContext accessibleContext

Figure 8.3
Advanced dialog output

248 CHAPTER 8
Dialogs and internal frames
 The accessibleContext variable is used by the accessibility support in Swing.
It contains a handle to the context that holds information about the access sup-
ported by this instance.

8.1.5 JDialog constructors

public JDialog(Frame parent)

This constructor creates an instance of JDialog that is owned by the specified par-
ent. The dialog has no title and is, by default, nonmodal.

public JDialog(Frame parent, boolean modal)

 This constructor creates an instance of JDialog that is owned by the specified
parent. The dialog has no title, and its modality is determined by the modal parame-
ter supplied by the caller.

public JDialog(Frame parent, String title)

 This constructor creates an instance of JDialog that is owned by the specified
parent instance and has the title supplied by the caller.

public JDialog(Frame parent, String title, boolean modal)

 This constructor creates an instance of JDialog that is owned by the specified
parent instance and has the title supplied by the caller. The modality of the instance
is controlled by the specified modal value.

8.1.6 JDialog significant method groupings

public void setModal(boolean newValue)
public boolean isModal()

This group of methods controls and determines the current modality of the dialog
box instance. These methods override methods of the same name within the AWT
Dialog class.

public void setContentPane(Container content)
public Container getContentPane()
public void setLayeredPane(JLayeredPane layered)
public JLayeredPane getLayeredPane()
public void setGlassPane(Component glass)
public Component getGlassPane()
protected void setRootPane(JRootPane root)
public JRootPane getRootPane()

Option dialogs 249
 This group of methods manages all of the predefined panes associated with the
dialog instance. All components added to a dialog are actually added to the content
pane, which differs from the way AWT manages dialog components.

public void setDefaultCloseOperation(int operation)
public int getDefaultCloseOperation()

 This method group determines the reaction the dialog instance has to a user
request to close. The following list describes the options available:

■ DO_NOTHING_ON_CLOSE This requires the dialog to provide a Win-

dowListener to handle the windowClosing() operation.
■ HIDE_ON_CLOSE The dialog is automatically hidden during a close oper-

ation.

■ DISPOSE_ON_CLOSE The dialog is automatically hidden and disposed of
during a close operation.

8.2 Option dialogs

One of the biggest disadvantages of Java, from a Microsoft Windows developer’s
perspective, has been the absence of a dialog box that can be used to display
generic messages. Windows programmers have grown accustomed to the Message-

Box API to quickly display simple feedback to the user. With standard Java and
AWT, creating a component as simple as a MessageBox involves a significant
amount of coding effort.

 Fortunately, Swing now offers Java user interface developers an alternative to
address this problem. The JOptionPane class is designed to simplify the process of
popping up information to the user, and, in fact, this component goes beyond what
the MessageBox API offers Windows developers. At first, this class appears quite
complex (due to the number of methods it provides), so, we will examine it more
closely in this section. As you will see, the JOptionPane class is both invaluable and
easy to use.

 The basic appearance of a JOptionPane dialog is fairly consistent, though, ulti-
mately, the look-and-feel is responsible for the results displayed. Figure 8.4 illustrates
the standard appearance of an option pane, showing its four basic components.

 The icon area displays an icon, which is completely under programmer con-
trol. A default platform-dependent icon is assigned, depending on the type of mes-
sage being displayed. Similarly, the button area is populated with one or more

250 CHAPTER 8
Dialogs and internal frames
buttons (Yes, No, OK, Cancel, and so on) according to an option type specified by
the developer the option type of the dialog controls which buttons are displayed in
the button area. The message area within the JOptionPane instance shows a simple
text string, which is usually some form of warning or error message. Finally, the
input area content is controlled by the setWantsInput() method within JOption-
Pane, allowing the presence of a data entry field that requires the user to enter
some text.

 This is enough information to start examining some sample code for JOption-
Pane. This example, with source code shown in listing 8.3, creates a set of JOption-
Pane instances for the predefined message types.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements ActionListener

{
// Instance attributes used in this example
private JPanel topPanel;
private JButton buttonError;
private JButton buttonWarning;
private JButton buttonInfo;
private JButton buttonQuestion;
private JButton buttonPlain;

Listing 8.3 JOptionPane sample source code

Figure 8.4
Anatomy of a JOptionPane dialog

Option dialogs 251
// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Dialog Test Frame");
setSize(310, 130);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new FlowLayout());
getContentPane().add(topPanel);

// Create a button for each message type
buttonError = new JButton("Error");
topPanel.add(buttonError);
buttonWarning = new JButton("Warning");
topPanel.add(buttonWarning);
buttonInfo = new JButton("Informational");
topPanel.add(buttonInfo);
buttonQuestion = new JButton("Question");
topPanel.add(buttonQuestion);
buttonPlain = new JButton("Plain");
topPanel.add(buttonPlain);

// Add an action listener to listen for button clicks
buttonError.addActionListener(this);
buttonWarning.addActionListener(this);
buttonInfo.addActionListener(this);
buttonQuestion.addActionListener(this);
buttonPlain.addActionListener(this);

}

// ActionListener handler to listen for button clicks
// within this application frame
public void actionPerformed(ActionEvent event)
{

// Display a message on the console
System.out.println(event);

if(event.getSource() == buttonError)
{

JOptionPane dialog = new JOptionPane();
dialog.showMessageDialog(this, "This is an error",

"Error", JOptionPane.ERROR_MESSAGE);
}

Listing 8.3 JOptionPane sample source code (continued)

252 CHAPTER 8
Dialogs and internal frames
 If the code from listing 8.3 is complied and executed, you will see results
resembling those shown in figure 8.5, which shows various types of option panes

else if(event.getSource() == buttonWarning)
{

Object[] possibleValues = { "First", "Second", "Third" };
JOptionPane dialog = new JOptionPane();
Object selectedValue = dialog.showInputDialog(this,

"This is a warning",
"Warning", JOptionPane.WARNING_MESSAGE,
null, possibleValues, possibleValues[0]);

}
else if(event.getSource() == buttonInfo)
{

JOptionPane dialog = new JOptionPane();
dialog.showConfirmDialog(this,

"This is an informational message",
"Information", JOptionPane.CANCEL_OPTION,
JOptionPane.INFORMATION_MESSAGE, null);

}
else if(event.getSource() == buttonQuestion)
{

JOptionPane dialog = new JOptionPane();
dialog.showConfirmDialog(this, "Is this a question?",

"Question", JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE, null);

}
else if(event.getSource() == buttonPlain)
{

JOptionPane dialog = new JOptionPane();
dialog.showConfirmDialog(this, "This is a plain message",

"Plain", JOptionPane.DEFAULT_OPTION,
JOptionPane.PLAIN_MESSAGE, null);

}
}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 8.3 JOptionPane sample source code (continued)

Option dialogs 253
available. Notice the warning option pane containing a combo box control that
allows the user to select information and return this information to the owner of the
option pane instance.

8.2.1 JOptionPane constants

public static final Object UNINITIALIZED_VALUE

This constant contains an uninitialized value used as the initial value returned from
the input field if the user has not yet made a selection.

public static final int DEFAULT_OPTION
public static final int YES_NO_OPTION
public static final int YES_NO_CANCEL_OPTION
public static final int OK_CANCEL_OPTION
public static final int YES_OPTION
public static final int NO_OPTION
public static final int CANCEL_OPTION
public static final int OK_OPTION
public static final int CLOSED_OPTION

Figure 8.5 JOptionPane sample output

254 CHAPTER 8
Dialogs and internal frames
 These constants control what buttons are displayed in the button area of the
JOptionPane instance.

public static final int ERROR_MESSAGE
public static final int INFORMATION_MESSAGE
public static final int WARNING_MESSAGE
public static final int QUESTION_MESSAGE
public static final int PLAIN_MESSAGE

 This list of constants defines the message type support by the JOptionPane class.

public static final String ICON_PROPERTY
public static final String MESSAGE_PROPERTY
public static final String VALUE_PROPERTY
public static final String OPTIONS_PROPERTY
public static final String INITIAL_VALUE_PROPERTY
public static final String MESSAGE_TYPE_PROPERTY
public static final String OPTION_TYPE_PROPERTY
public static final String SELECTION_VALUES_PROPERTY
public static final String INITIAL_SELECTION_VALUE_PROPERTY
public static final String INPUT_VALUE_PROPERTY
public static final String WANTS_INPUT_PROPERTY

 These constants hold property name strings for the properties of the JOption-
Pane instance. These values are used to reference specific option pane properties.

8.2.2 JOptionPane variables

protected static Frame sharedFrame

This variable is used to simplify access to static methods while creating a frame.

protected transient Icon icon

 This transient variable holds an instance of the icon displayed within the option
pane.

protected transient Object message

 This message variable contains the message that is displayed in the message area
of the option pane. This is usually a string type, but this variable can contain other
data types, as well.

protected transient Object options[]

 This variable contains an array of objects used in the optional selection list
(combo box) in the input area of the option pane.

protected transient Object initialValue

Option dialogs 255
 This variable holds the initial value selected in the selection list within the
option pane. If unspecified, this variable has the value UNINITIALIZED_VALUE.

protected int messageType

 This variable holds the message type specified for the option pane. See the list
of message types shown in the section on JOptionPane Constants.

protected int optionType

 The optionType variable contains the option value specified for this option
pane instance. See the list of predefined option types shown in the section on JOp-
tionPane Constants.

protected transient Object value

 This variable holds the value of the item currently selected in the option pane’s
selection list. It will contain either a valid option, UNINITIALIZED_VALUE, or a
null value.

protected transient Object selectionValues[]

 This array of objects contains the values that the user can choose from within
the selection list. The current look-and-feel will provide the UI component from
which the values can be chosen.

protected transient Object inputValue

 This variable contains the value that the user has input in the input area of the
option pane.

protected transient Object initialSelectionValue

 The initialSelectionValue variable contains the initial value to select from
the selectionValues[] array.

protected boolean wantsInput

 If this boolean value is true, a UI component will be provided to allow the user
to supply input.

8.2.3 JOptionPane constructors

public JOptionPane()

This constructor creates a simple instance of JOptionPane.

public JOptionPane(Object message)

256 CHAPTER 8
Dialogs and internal frames
 This constructor creates a simple instance of JOptionPane containing the spec-
ified message within its message area.

public JOptionPane(Object message, int messageType)

 This constructor creates a simple instance of JOptionPane containing the spec-
ified message within its message area, and implementing the supplied message type.

public JOptionPane(Object message, int messageType, int optionType)

 This constructor creates a simple instance of JOptionPane containing the spec-
ified message within its message area and implementing the supplied message and
option types.

public JOptionPane(Object message, int messageType,
int optionType, Icon icon)

 This constructor creates a simple instance of JOptionPane containing the spec-
ified message within its message area, and implementing the supplied message and
option types. The icon’s parameter provides a programmer specified icon image to
be displayed within the option pane.

public JOptionPane(Object message, int messageType, int optionType,
Icon icon, Object options[])

 This constructor creates a simple instance of JOptionPane containing the spec-
ified message within its message area and implementing the supplied message and
option types. The icon’s parameter provides a programmer specified icon image to
be displayed within the option pane. The options array holds a list of options that
will be inserted into the instance’s input area.

public JOptionPane(Object message, int messageType, int optionType,
Icon icon, Object options[], Object initialValue)

 This constructor creates a simple instance of JOptionPane containing the spec-
ified message within its message area, and implementing the supplied message and
option types. The icon’s parameter provides a programmer specified icon image to
be displayed within the option pane. The options array holds a list of options that
will be inserted into the instance’s input area, and the supplied initialValue deter-
mines the list item initially selected.

8.2.4 JOptionPane significant method groupings

public static String showInputDialog(Object message)
public static String showInputDialog(Component parentComponent,

Option dialogs 257
Object message)
public static String showInputDialog(Component parentComponent,

Object message, String title, int messageType)
public static Object showInputDialog(Component parentComponent,

Object message, String title, int messageType,
Icon icon, Object selectionValues[],
Object initialSelectionValue)

public static String showInternalInputDialog(
Component parentComponent, Object message)

public static String showInternalInputDialog(
Component parentComponent, Object message,
String title, int messageType)

public static Object showInternalInputDialog(
Component parentComponent, Object message,
String title, int messageType,
Icon icon, Object selectionValues[],
Object initialSelectionValue)

The methods in this group create and display an option pane instance that accepts
input from the user. Input can come from a default input component, such as a text
field, or from a combo box.

public static void showMessageDialog(Component parentComponent,
 Object message)

public static void showMessageDialog(Component parentComponent,
Object message, String title, int messageType)

public static void showMessageDialog(Component parentComponent,
Object message, String title, int messageType,

Icon icon)
public static void showInternalMessageDialog(

Component parentComponent, Object message)
public static void showInternalMessageDialog(

Component parentComponent, Object message,
String title, int messageType)

public static void showInternalMessageDialog(
Component parentComponent, Object message,
String title, int messageType, Icon icon)

 This group of methods displays instances of simple message dialog boxes. They
can contain an icon and message text, but do not accept input from the user. This
type of option pane is typically used to display status information to the user, usually
requiring only an OK acknowledgement.

public static int showConfirmDialog(Component parentComponent,
Object message)

public static int showConfirmDialog(Component parentComponent,
Object message, String title, int optionType)

258 CHAPTER 8
Dialogs and internal frames
public static int showConfirmDialog(Component parentComponent,
Object message, String title, int optionType,

int messageType)
public static int showConfirmDialog(Component parentComponent,

Object message, String title, int optionType,
int messageType, Icon icon)

public static int showInternalConfirmDialog(
Component parentComponent, Object message)

public static int showInternalConfirmDialog(
Component parentComponent, Object message,
String title, int optionType)

public static int showInternalConfirmDialog(
Component parentComponent, Object message,
String title, int optionType, int messageType)

public static int showInternalConfirmDialog(
Component parentComponent, Object message,
String title, int optionType, int messageType,
Icon icon)

 The methods in this group create and display instances of a JOptionPane to
confirm user selections. This type of option pane is generally used to prompt the
user to answer a Yes or No type question (also, OK or Cancel).

public static int showOptionDialog(Component parentComponent,
Object message, String title, int optionType,
int messageType, Icon icon, Object options[],

Object initialValue)
public static int showInternalOptionDialog(

Component parentComponent, Object message,
String title, int optionType, int messageType,
Icon icon, Object options[],
Object initialValue)

 The two methods in this group display option panes containing user selectable
options. This is typically useful in situations where the user will select one of several
options from a combo box.

public JDialog createDialog(Component parentComponent, String title)

 This method creates an instance of a JDialog that wraps the current option
pane instance and positions the dialog such that it is centered on the specified
component.

public JInternalFrame createInternalFrame(
Component parentComponent, String title)

public static Frame getFrameForComponent(Component parentComponent)
public static JDesktopPane getDesktopPaneForComponent(

Option dialogs 259
Component parentComponent)
public static void setRootFrame(Frame newRootFrame)
public static Frame getRootFrame()

 This group of methods handles access to frames supporting the JOptionPane
instance. They can be used to determine the owner frame, as well as the desktop
positioning for the component that owns this option pane instance.

public void setMessage(Object newMessage)
public Object getMessage()
public void setIcon(Icon newIcon)
public Icon getIcon()
public void setValue(Object newValue)
public Object getValue()
public void setOptions(Object newOptions[])
public Object[] getOptions()
public void setInitialValue(Object newInitialValue)
public Object getInitialValue()
public void setMessageType(int newType)
public int getMessageType()
public void setOptionType(int newType)
public int getOptionType()
public void setSelectionValues(Object newValues[])
public Object[] getSelectionValues()
public void setInitialSelectionValue(Object newValue)
public Object getInitialSelectionValue()
public void setInputValue(Object newValue)
public Object getInputValue()
public void selectInitialValue()

 This group of methods is used to control and access the various component
areas within the option pane. For example, the icon can be controlled, or option val-
ues can be loaded into the input area, and subsequent selections by the user can be
detected and returned.

public void setWantsInput(boolean newValue)
public boolean getWantsInput()

 These methods control and determine whether the user needs to input some
information. If so, the option pane will provide a component into which the user can
either type text, or from which he or she can select one of several options.

260 CHAPTER 8
Dialogs and internal frames
8.3 The color chooser

In an effort to standardize the general feel of Java applications, the folks at Sun
added some common dialog classes to Swing. Not only are these classes easy to use,
they can significantly improve the appearance of your applications and, further, pro-
vide a standard user interface across all operating system platforms that support Java
language. The result of Sun’s effort is a collection of software components that you
can plug into an application with a minimum of coding effort and time.

 The first of the common dialogs that we will examine is the color chooser,
implemented in Swing as the JColorChooser class. This class offers two typical
modes of operation. First, it can be used as an independent dialog, returning the
user’s color selection to the caller. The second, and most distinguishing aspect, is its
ability to operate as a complex component which can be added to a frame that
already exists. In this section, we will examine both of these techniques.

8.3.1 The JColorChooser dialog

The simpler form of JColorChooser implementation is that of an independent dia-
log. In this configuration, the color chooser creates its own independent dialog
box, which minimizes the work required on your part. With just a few lines of code,
you can implement color selection and quickly attach it to your application.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.preview.*;

class TestFrame
extends JFrame
implements ActionListener

{
// Instance attributes used in this example
private JPanel topPanel;
private JButton buttonFile;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics

Listing 8.4 JColorChooser dialog source code

The color chooser 261
 Listing 8.4 shows the source code required to display a JColorChooser dialog
and retrieve the user selected color values. Notice that most of the code in this appli-
cation is simply there to support the application itself (such as, create the frame and
button, intercept button events, and so on) The actual code we are interested in is
limited to a single line of code:

setTitle("Color Chooser Dialog Example");
setSize(380, 120);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new FlowLayout());
getContentPane().add(topPanel);

// Create a button for each message type
buttonFile = new JButton("Select Color");
topPanel.add(buttonFile);
// add an action listener to listen for button clicks
buttonFile.addActionListener(this);

}

// ActionListener handler to listen for button clicks
// within this application frame
public void actionPerformed(ActionEvent event)
{

// Display a message on the console
System.out.println(event);

if(event.getSource() == buttonFile)
{

// Open a color chooser dialog and retrieve the color
Color color = JColorChooser.showDialog(this,

"Select Color", Color.white);
}

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 8.4 JColorChooser dialog source code (continued)

262 CHAPTER 8
Dialogs and internal frames
// Open a color chooser dialog and retrieve the color
Color color = JColorChooser.showDialog(this,

"Select Color", Color.white);

 Note that the showDialog() method in JColorChooser is static, so a formal
instantiation of an object is not required—we can simply use the method, and Swing
manages the object construction for us. The results of the simple application in list-
ing 8.4 are shown in figure 8.6. Notice that the entire dialog box, including the but-
tons and their control logic, has been created automatically for us by Swing.

The JColorChooser, when implemented as a dialog, creates three buttons:
OK, Cancel, and Reset. Currently, there is no way to change the text on
these buttons. If you are building internationalized applications, this can be
a serious limitation because the color chooser buttons will display English
text regardless of the locale or country code of the target platform. You will
need to create you own JDialog instance, add JColorChooser as a compo-
nent, and manage your own control buttons to allow localization of the but-
ton text. Note, however, that the HSB and RGB tags shown on the tabbed
pane pages cannot be modified.

Figure 8.6
JColorChooser dialog output

The color chooser 263
8.3.2 JColorChooser as a component

As noted in the introduction to this section, you are not limited to a self-contained
dialog box to implement a JColorChooser. The JColorChooser can also be used in
a complex component added to a dialog. For example, if you are a Microsoft Win-
dows user, you will undoubtedly know about the Windows Color Chooser, which
allows not only color-wheel selection, but also permits you to choose from one of a
number of preconfigured color choices. The Swing JColorChooser class, as you
now know, offers no such capability, but that does not prevent us from implement-
ing a similar capability in a Java application.

 So, here’s an example that uses an instance of JColorChooser in conjunction
with other Swing components in order to allow color selection from the pinwheel or
from one of several hard coded color choices. Listing 8.5 contains all of the source
code required to implement a JColorChooser component and several standard JBut-
ton instances for each of the preconfigured color choices. The JButton instances tap
into the color chooser to set their specified color into the space allotted for the cur-
rent color selection.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.preview.*;

class TestFrame
extends JFrame
implements ActionListener

{
// Instance attributes used in this example
private JPanel topPanel;
private JPanel buttonPanel;
private JColorChooser chooser;
private Button buttonColor[];

// Pre-configured colors for each button
private int colors[][] =
{

{ 255, 255, 255 },
{ 255, 0, 0 },
{ 0, 255, 0 },
{ 0, 0, 255 },

Listing 8.5 JColorChooser advanced example

264 CHAPTER 8
Dialogs and internal frames
{ 192, 192, 192 },
{ 128, 128, 128 },
{ 0, 0, 128 },
{ 0, 0, 0 }

};

// Constructor of main frame

public TestFrame()
{

// Set the frame characteristics
setTitle("Advanced Color Chooser");
setSize(380, 260);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a color chooser component and add it
// to the top panel
chooser = new JColorChooser();
topPanel.add(chooser, BorderLayout.CENTER);

// Create a panel to hold color buttons
buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(4, 2));
buttonPanel.setPreferredSize(new Dimension(70, 180));
topPanel.add(buttonPanel, BorderLayout.WEST);

// Create a button for each color
buttonColor = new Button[8];
for(int iCtr = 0; iCtr < 8; iCtr++)
{

buttonColor[iCtr] = new Button();
buttonColor[iCtr].setBackground(new Color(

colors[iCtr][0], colors[iCtr][1],
colors[iCtr][2]));

buttonPanel.add(buttonColor[iCtr]);

// Add an action listener to listen for button clicks
buttonColor[iCtr].addActionListener(this);

}
}

// ActionListener handler to listen for button clicks
// within this application frame

Listing 8.5 JColorChooser advanced example (continued)

The color chooser 265
 First, the code in listing 8.5 creates an instance of JColorChooser, which is a
complex Swing component. Then, the program creates an array of buttons, each
with a specific preset background color. When a button is clicked, the action handler
retrieves the button’s background color and sends it to the color chooser, which, in
turn, changes the current color selection.

 The output of this code is shown in figure 8.7. The program creates a frame
rather than a dialog, so there are no OK or Cancel buttons shown. You can easily
modify this code to extend a JDialog instead, then add some buttons to create a
complete color chooser dialog.

8.3.3 JColorChooser constants

public static final String COLOR_PROPERTY

This constant is of little use to most developers. It contains a string holding the
color property name (the string “color”).

public void actionPerformed(ActionEvent event)
{

// Display a message on the console
System.out.println(event + ":" + chooser.COLOR_PROPERTY);

// NOTE: This action handler will only receive events
// from the color selection buttons. If other events
// must be handled, the events will need to be fully
// decoded.

// Get the button instance that caused the event
JButton button = (JButton)event.getSource();
Color newColor = button.getBackground();

// Set the current color selection in the chooser
chooser.setColor(newColor);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 8.5 JColorChooser advanced example (continued)

266 CHAPTER 8
Dialogs and internal frames
8.3.4 JColorChooser constructors
public JColorChooser()

This constructor creates an instance of a JColorChooser object. By default, the ini-
tial color selection value is white.

public JColorChooser(Color initialColor)

 This constructor creates an instance of a JColorChooser object and sets the ini-
tial color selection to the specified initialColor value.

8.3.5 JColorChooser significant method groupings

public static Color showDialog(Component component,
String title, Color initialColor)

This method creates a modal dialog box containing an instance of a color chooser
object. In addition, the dialog contains and supports an OK button to accept the
current color selection, and a Cancel button to abort the selection. Finally, the dia-
log contains a reset button that will restore the current color selection to the value
it had when the chooser object was created.

public static JDialog createDialog(Component c, String title,
boolean modal, JColorChooser chooserPane,
ActionListener okListener,

ActionListener cancelListener)

 This method is called by the showDialog() method to create a new dialog.
However, if you require additional control over the dialog (including the ability to
configure the dialog title, modality, action listeners for the buttons, and so on) you
can call this method directly.

Figure 8.7
JColorChooser advanced program output

The file chooser 267
public Color getColor()
public void setColor(Color color)
public void setColor(int r, int g, int b)
public void setColor(int c)

 This group of methods provides the capability to access and manage the cur-
rent color selection from within the color chooser instance.

8.4 The file chooser

If you have previously used AWT, you may recall Sun’s attempt to provide standard
dialog boxes, including the file selection dialog in the FileDialog class. Unfortu-
nately, the file selector dialog in AWT was implemented using a peer class mapped
to the operating system’s standard file selector (if available). Though the FileDialog
class does allow Java applications to access files from the operating system, it suffers
from some serious drawbacks.

 If the operating system vendor does not supply a standard dialog, then AWT
must provide one, which will undoubtedly differ from file selection dialogs in other
applications. Also, if the operating system vendor elects to change or replace the API
to access the standard dialog, your application may no longer work properly (until a
new version of AWT is released). Finally, if your application uses a specific file exten-
sion to designate its files (for example, text files traditionally use *.TXT), there is no
convenient way to add this type as the default file type in the standard file dialog.

 Swing alleviates many of these problems by providing a new file selection dialog
called JFileChooser. This class implements all of the functionality found in the AWT
FileDialog class, but does so with a pure Java solution. This means that you, as a
developer, have more access and more control over the operation of the class, and
you are no longer at the mercy of an operating system vender’s whims.

 Listing 8.6 contains the source code to open a JFileChooser dialog and retrieve
a file selection from the user. The example code dumps the file selection string and
other interesting pieces of information into the Java console window. Figure 8.8
shows the result of running this code listing.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

Listing 8.6 JFileChooser example

268 CHAPTER 8
Dialogs and internal frames
class TestFrame
extends JFrame
implements ActionListener

{
// Instance attributes used in this example
private JPanel topPanel;
private JButton buttonFile;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("File Chooser Application");
setSize(300, 100);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();

Listing 8.6 JFileChooser example (continued)

Figure 8.8 JFileChooser program output

The file chooser 269
topPanel.setLayout(new FlowLayout());
getContentPane().add(topPanel);

// Create a button to start the dialog
buttonFile = new JButton("Open");
topPanel.add(buttonFile);
buttonFile.addActionListener(this);

}

// ActionListener handler to listen for button clicks
// within this application frame
public void actionPerformed(ActionEvent event)
{

if(event.getSource() == buttonFile)
{

// Create an instance of the file chooser dialog
JFileChooser fileChooser = new JFileChooser();

// Configure some file type parameters
fileChooser.addChooseableFileType(

"Text Files (*.txt)", "*.txt", null);
fileChooser.addChooseableFileType(

"Word Files (*.doc)", "*.doc", null);
fileChooser.addChooseableFileType(

"My Files (*.my)", "*.my", null);

// Do some personalized text changes
fileChooser.setOkayTitle("Yep!");
fileChooser.setCancelTitle("No way!");

// Get a selection from the user
int returnValue = fileChooser.showDialog(null);
if(returnValue == 0) // User selected OK
{

// Figure out what file the user selected
TypedFile selectedFile = fileChooser.getSelectedFile();
String selectedFileString = selectedFile.toString();
System.out.println("Selected File = "

+ selectedFileString);
}
else
{

System.out.println("User cancelled operation");
}

}
}

Listing 8.6 JFileChooser example (continued)

270 CHAPTER 8
Dialogs and internal frames
8.4.1 JFileChooser variables

protected Vector choosableTypes

This variable contains a vectored array of choosable file types. These items are
shown in the combo box at the bottom of the file chooser dialog.

protected String typesTitle
protected String locationTitle
protected String okayTitle
protected String cancelTitle
protected static String DefaultPrompt
protected static String DefaultTypesTitle
protected static String DefaultLocationTitle
protected static String DefaultOkayTitle
protected static String DefaultCancelTitle

 This group of variables holds strings pertinent to the file chooser dialog. Each
of the titles and labels within the file chooser is under program control, allowing the
programmer to change the displayed text at any time.

protected String okayCommand
protected String cancelCommand
protected static String DefaultOkayCommand
protected static String DefaultCancelCommand

 These variables hold the strings associated with action commands for the OK
and Cancel operations. The action strings are under programmer control and can be
changed if these actions are being handled by the application.

protected JDirectoryPane directoryPane

 This variable holds the instance of the JDirectoryPane owned by the file
chooser dialog. In the user interface, this pane is represented by the central scrollable
window containing the list of files and directories.

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 8.6 JFileChooser example (continued)

The file chooser 271
8.4.2 JFileChooser constructors

public JFileChooser()

This constructor creates a new instance of the file chooser, which, by default, loads
the file list with the contents of the user’s home directory.

public JFileChooser(String path)

 This constructor creates a new instance of the file chooser, which, by default,
loads the file list starting at the specified path.

public JFileChooser(File directory)

 This constructor creates a new instance of the file chooser, which, by default,
loads the file list starting at the path specified in the supplied file descriptor.

8.4.3 JFileChooser significant method groupings

public String getPrompt()
public void setPrompt(String prompt)
public String getTypesTitle()
public void setTypesTitle(String prompt)
public String getLocationTitle()
public void setLocationTitle(String locationTitle)
public String getOkayTitle()
public void setOkayTitle(String okayTitle)
public String getCancelTitle()
public void setCancelTitle(String cancelTitle)

This group of methods manages the various text labels displayed within the JFi-
leChooser instance. Each of the text labels can be individually configured, which
permits dialogs to easily support different languages and localizations.

public JDirectoryPane getDirectoryPane()

 This method retrieves the JDirectoryPane instance used by the file chooser.

public TypedFile getSelectedFile()

 The getSelectedFile() method can be called after the user selects the OK
button in the file chooser dialog. This method returns a TypedFile instances con-
taining information regarding the file selected by the user.

public void performOkay()
public void performCancel()

272 CHAPTER 8
Dialogs and internal frames
 The OK and Cancel operations in the file chooser dialog can be imitated pro-
grammatically using the methods in this group.

public String getOkayCommand()
public void setOkayCommand(String okayCommand)
public String getCancelCommand()
public void setCancelCommand(String cancelCommand)

 This group of methods controls the action commands produced within the file
chooser dialog instance. If a custom handler inside the application is handling these
actions, the command strings can be changed to suit the program’s particular needs.

public int showDialog(Component parent)

 This method initiates the file selection process by opening the chooser dialog
on the user’s display. Since the file chooser dialog is modal, this method will not
return until the user selects either the OK or Cancel button.

public void addChooseableFileType(String presentationName,
 String extension, Icon icon)
public void addChooseableFileType(String presentationName,
 String extensions[], Icon icon)
public void addChooseableFileType(FileType type)
public Enumeration enumerateChoosableFileTypes()
public Vector getChoosableFileTypes()
public boolean isChoosableFileType(FileType t)
public void setChoosableFileTypes(FileType types[])

 This group of methods controls and maintains the list of choosable file types.
In the user interface, this list is represented by the combo box at the bottom of the
dialog.

8.5 Internal frames

Most graphical user interfaces in use today offer the ability to embed windows (or
Frames, in the Java world) inside parent frames, allowing the child frame to move
freely within its parent and to be minimized, maximized, or restored. Microsoft
Windows users will recognize this capability as the Multi-Document Interface
(MDI).

 Previous to the release of Swing, MDI was foreign to Java developers; how-
ever, with Swing, the features of the MDI are easily accessible. Note that Swing
refers to embedded windows as internal frames and implements them in the JInter-
nalFrame class.

Internal frames 273
Help the user manage internal frames by using same type document
windows. In general, users run into window management problems with in-
ternal frames; the UI should support easy switching between windows of
same type documents (for example, as a menu option). Users run into more
serious problems managing internal frames with different document types,
and you should seriously consider redesigning in order to avoid this scenario
altogether.

 Like other frames and dialogs we have discussed, an internal frame supports a
single component pane onto which all panels and other embellishments are added.
Also, since an internal frame is a container (by virtue of extending JComponent), it
can support toolbars, menus, tabbed panes, and all other Swing derived compo-
nents. Let’s take a look at an example.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame
implements ActionListener

{
// Instance attributes used in this example
private JPanel topPanel;
private JMenuItem menuFileNew;
private JDesktopPane desktopPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Internal Frame Application");
setSize(600, 400);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

Listing 8.7A Sample frame class

274 CHAPTER 8
Dialogs and internal frames
// Create an application menu
JMenu menuFile = new JMenu("File");
menuFile.setMnemonic('F');
menuFileNew = CreateMenuItem(menuFile, "New",

'N', "Create a new internal frame");
JMenuBar menuBar = new JMenuBar();
menuBar.add(menuFile);
setJMenuBar(menuBar);

// Create a desktop pane to support the internal
// frame interface
desktopPane = new JDesktopPane();
topPanel.add(desktopPane, BorderLayout.CENTER);

}

public void actionPerformed(ActionEvent event)
{

System.out.println(event);

// Create a new internal frame and add it to the desktop panel
TestInternalFrame internalFrame = new TestInternalFrame();
desktopPane.add(internalFrame, JLayeredPane.PALETTE_LAYER);

}

public JMenuItem CreateMenuItem(JMenu menu, String sText,
int acceleratorKey, String sToolTip)

{
// Create the item
JMenuItem menuItem = new JMenuItem();

// Add the item test
menuItem.setText(sText);

// Add the accelerator key
if(acceleratorKey > 0)

menuItem.setMnemonic(acceleratorKey);

// Add the optional tool tip text
if(sToolTip != null)

menuItem.setToolTipText(sToolTip);

// Add an action handler to this menu item
menuItem.addActionListener(this);

menu.add(menuItem);

return menuItem;
}

Listing 8.7A Sample frame class (continued)

Internal frames 275
 Listing 8.7A contains all of the code needed to create the main frame, includ-
ing the JDesktopPane instance that acts as a container for any internal frame that the
user creates. Note that the internal frames will be added to the palette layer of the
desktop pane, which, by convention, is the layer where frames of this type should be
inserted.

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

// Imports
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestInternalFrame
extends JInternalFrame

{
// Instance attributes used in this example
private JPanel topPanel;
private JScrollPane scrollPane1;

// Constructor of main frame
public TestInternalFrame()
{

// Configure the internal frame embellishments
setClosable(true);
setMaximizable(true);
setIconifiable(true);
setResizable(true);

// Set the frame characteristics
setTitle("Internal Frame");
setSize(300, 200);

Listing 8.7B TestInternalFrame class

Listing 8.7A Sample frame class (continued)

276 CHAPTER 8
Dialogs and internal frames
 Listing 8.7B contains the source code to implement an internal frame. This
code first sets frame widgets to control minimizing, maximizing, and restoring the
frame, as well as the close button to dispose of the frame instance. All of the window
operations are managed automatically by the desktop pane in the main frame, so you
do not need to add extra code to support them. The remainder of listing 8.7B

setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Populate the panel with something the user
// can play with
CreateTopPane(topPanel);

}

// Create a scrollable pane containing a source code file
private void CreateTopPane(JPanel topPanel)
{

// Create a text area
JTextArea area = new JTextArea();

// Load a file into the text area, catching any exceptions
try {

FileReader fileStream = new FileReader("TestFrame.java");
area.read(fileStream, "TestFrame.java");

}
catch(FileNotFoundException e)
{

System.out.println("File not found");
}
catch(IOException e)
{

System.out.println("IOException occurred");
}

// Create the scrolling pane for the text area
scrollPane1 = new JScrollPane();
scrollPane1.getViewport().add(area);
topPanel.add(scrollPane1, BorderLayout.CENTER);

}
}

Listing 8.7B TestInternalFrame class (continued)

Internal frames 277
implements a scrollable pane with a text area containing a sample source file. The
results produced by executing the source code in listings 8.7A and 8.7B is shown in
figure 8.9.

 Notice that each time the New menu option is selected, the program creates a
new instance of an internal frame which it adds to the desktop pane. Each internal
frame operates independently of its siblings, and there is no limitation on adding
internal frames supporting different functionality. For example, you could create
internal frames for toolbar palettes, text editors, or graphics display, and they could
all be visible simultaneously.

8.5.1 JInternalFrame constants

public static final String CONTENT_PANE_PROPERTY
public static final String MENU_BAR_PROPERTY
public static final String TITLE_PROPERTY
public static final String LAYERED_PANE_PROPERTY
public static final String ROOT_PANE_PROPERTY
public static final String GLASS_PANE_PROPERTY
public static final String IS_SELECTED_PROPERTY
public static final String IS_CLOSED_PROPERTY
public static final String IS_MAXIMUM_PROPERTY

Figure 8.9 JInternalFrame program output

278 CHAPTER 8
Dialogs and internal frames
public static final String IS_ICON_PROPERTY
public static final String CONTENT_PANE_PROPERTY
public static final String MENU_BAR_PROPERTY
public static final String TITLE_PROPERTY
public static final String LAYERED_PANE_PROPERTY
public static final String ROOT_PANE_PROPERTY
public static final String GLASS_PANE_PROPERTY
public static final String IS_SELECTED_PROPERTY
public static final String IS_CLOSED_PROPERTY
public static final String IS_MAXIMUM_PROPERTY
public static final String IS_ICON_PROPERTY

The constants defined in the JInternalFrame class are all static strings holding the
names of bound properties. These constants are used internally by the class, and, as
a result, you should have little need for them.

8.5.2 JInternalFrame variables

protected JRootPane rootPane

This variable holds an instance of the root pane. The root pane is the only compo-
nent added to the internal frame—all other components must be added to the root
pane.

protected boolean closable
protected boolean isClosed
protected boolean maximizable
protected boolean isMaximum
protected boolean iconable
protected boolean isIcon
protected boolean resizable
protected boolean isSelected

 This group of boolean variables contains the current configuration parameters
for the internal frame. These control whether the frame can be minimized, maxi-
mized, iconified, and so on.

protected Icon frameIcon

 This variable holds an instance of the frame icon. This icon is displayed in the
upper-left corner of the title bar when the frame is visible.

protected String title

 This variable maintains a copy of the current title string for the internal frame
instance.

protected JDesktopIcon desktopIcon

Internal frames 279
 The variable maintains an instance of the icon displayed when the internal
frame is minimized (iconified).

8.5.3 JInternalFrame constructors

public JInternalFrame()

This constructor creates an instance of an internal frame with default parameters.

public JInternalFrame(String title)

 This constructor creates an instance of an internal frame with the specified title
string.

public JInternalFrame(String title, boolean resizable)

 This constructor creates an instance of an internal frame with the specified title
string. The specified flag controls the resizability of the window.

public JInternalFrame(String title, boolean resizable,
boolean closable)

 This constructor creates an instance of an internal frame with the specified title
string. The specified flag controls the resizability of the window. The availability of a
Close button is controlled by the supplied boolean value.

public JInternalFrame(String title, boolean resizable,
boolean closable, boolean maximizable)

 This constructor creates an instance of an internal frame with the specified title
string. The specified flag controls the resizability of the window. The availability of
Close and Maximize buttons is controlled by the supplied boolean values.

public JInternalFrame(String title, boolean resizable,
boolean closable, boolean maximizable,
boolean iconifiable)

 This constructor creates an instance of an internal frame with the specified title
string. The specified flag controls the resizability of the window. The availability of
Close, Maximize, and Minimize buttons is controlled by the supplied boolean values.

8.5.4 JInternalFrame significant method groupings

public JMenuBar getMenuBar()
public void setMenuBar(JMenuBar m)

280 CHAPTER 8
Dialogs and internal frames
These methods control and manage an instance of a JMenuBar assigned to this
internal frame instance. Like JFrame, JInternalFrame can support the addition of a
menu bar, even if its owner frame already has one.

public Container getContentPane()
public void setContentPane(Container c)
public JLayeredPane getLayeredPane()
public void setLayeredPane(JLayeredPane layered)
public Component getGlassPane()
public void setGlassPane(Component glass)
public JRootPane getRootPane()
protected void setRootPane(JRootPane root)

 This group of methods manages the various panes available to an internal
frame instance. Note that all programmer-written components must be added to
one of these preassigned panes. It is not possible to add components directly to an
internal frame.

public void setVisible(boolean b)
public void setClosable(boolean b)
public boolean isClosable()
public boolean isClosed()
public void setClosed(boolean b) throws PropertyVetoException
public void setResizable(boolean b)
public boolean isResizable()
public void setIconifiable(boolean b)
public void setIcon(boolean b) throws PropertyVetoException
public boolean isIconifiable()
public boolean isIcon()
public void setMaximizable(boolean b)
public boolean isMaximum()
public void setMaximum(boolean b) throws PropertyVetoException

 This large group of methods manages the display states that an internal frame
instance supports. This include the minimized/maximized states, a state to control
whether the frame can be closed, and control of the resizability of the frame.

public String getTitle()
public void setTitle(String title)

 This method group manages the string displayed in the title bar of the inter-
nal frame.

public void moveToFront()
public void moveToBack()
public void toFront()

Chapter summary 281
public void toBack()

 When several internal frame instances are present in the desktop pane, they can
become buried. This group of methods allows the programmer to control where a
frame is displayed in the window stack. Frames can be moved to the front or back of
the stack by using these methods.

public synchronized void addInternalFrameListener(
InternalFrameListener l)

public synchronized void removeInternalFrameListener(
InternalFrameListener l)

 These two methods are used to add or remove an internal frame listener. This
type of listener can detect changes to the internal frame, such as, when the frame is
moved or resized, iconified, restored to its original size, and so on.

8.6 Chapter summary

In this chapter, we have discussed the classes needed to implement dialogs. The
JDialog class permits the developer to create generic dialog boxes that can contain
any other Swing and/or AWT components. Dialog boxes are used when an applica-
tion needs to deviate from its main task to display information or request data input
by the user.

 Next, we examined the JOptionPane class, which can be used to display simple
messages, errors, and warnings to the user. The class is a functional extension of the
MessageBox API available on the Windows platform. JOptionPane allows a devel-
oper to create a simple input form to request information from the user. Input can
be acquired from a simple text field or from a combo box.

 Then we looked at the JColorChooser class, which allows the user to select a
color using either RGB slider controls or an HSB pinwheel. This class can be used as
a complex component which can be integrated into complete design or can be pre-
sented as a complete dialog requiring no developer intervention. Examples for each
form were shown in this chapter.

 In a similar vein, we discussed the JFileChooser class, which gives your pro-
grams a finished look. This class can be used to request a filename from the user,
usually as part of a save or load operation. JFileChooser replaces the AWT FileDialog
class and offers a standard look-and-feel across all target Java platforms.

 Finally, we studied the JInternalFrame class. The availability of internal frames
allows Java developers the same type of capabilities that Windows developers cur-

282 CHAPTER 8
Dialogs and internal frames
rently have with the MDI. The ability to display multiple frames within an applica-
tion allows us to expand the types of functions that we can present to a user. For
example, we can now offer palettes, floating toolbars, and so on—all within the same
application frame.

9List
boxes

In this chapter
■ Creating and using list boxes

■ Rendering custom list formats

■ Creating multiline list items

284 CHAPTER 9
List boxes
A list box is simply a user interface control containing a collection of similar items
from which the user can make one or more selections. This is the premise behind
the AWT List control, which presents a Java component equivalent to list box
objects found in all other graphics interfaces. The List class provides the basic func-
tionality to add and remove items, display them (including the ability to scroll
through long lists) and to allow the user to make selections. Though List is ade-
quate for many applications, it falls short when you need to perform special opera-
tions, such as rendering lists of graphics or other peculiar data.

 Swing provides a completely different approach to list management by supply-
ing an entirely new list box component in a class called JList. In addition to the
capabilities of the AWT List class, JList also has the ability to display graphics, with
or without associated text, and also provides some additional event handling.

Though many of the methods in the JList API are similar to those of AWT’s
List class, the two classes are generally incompatible. If you are planning to
port an existing AWT application that uses List, you will need to do some
additional work to correctly implement JList replacements.

 Unlike AWT List, JList is a lightweight component, so it implements its dis-
play and data handling capabilities in separate models. Throughout our discussion
of Swing’s list box class, we will examine some techniques to create and manage
special models, and we will generate some advanced examples to demonstrate key
features. First, we will start by looking at a simple example of an application using a
JList component.

9.1 A simple JList example

Listing 9.1 shows the source code needed to implement a simple list box example
using the Swing API. This example generates a static list from which the user can
make a selection. Currently, this code provides no mechanism to detect the selec-
tions made, nor does it include the capability to scroll the list, if required. We will
add these features as we progress through this chapter.

A simple JList example 285
// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
// Instance attributes used in this example
private JPanel topPanel;
private JList listbox;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Simple ListBox Application");
setSize(300, 100);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create some items to add to the list
String listData[] =
{

"Item 1",
"Item 2",
"Item 3",
"Item 4"

};

// Create a new list box control
listbox = new JList(listData);
topPanel.add(listbox, BorderLayout.CENTER);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 9.1 Simple JList application

286 CHAPTER 9
List boxes
The JList class has no provision to handle scrolling. If your list contains more
information than can be shown in the space provided, you need to add the
list to a JScrollPane instance. This is identical to the technique used for JTex-
tArea and for any other component capable of displaying more information
than you have space for.

 If you are familiar with the AWT List class, you will see that there isn’t an add
method in the JList class. JList does not store the data shown in the list; instead, it
relies on a data model to manage that task. Listing 9.1 included an array of strings
(the data model, for this sample) and associated that data with the user interface
when the JList object was constructed.

 As you will see later in this chapter, the use of a separate data model opens up
many new opportunities for list boxes within your application. With AWT, if you
want to display dynamic data from a data array in a list, you are required to copy the
data from the array into the List instance using the add() method. With the JList
class in Swing, all you need to do is identify the data array as the JList instance’s
data model, which reduces the amount of code you need to write and maintain.

 Figure 9.1 shows the output produced by the simple example presented in list-
ing 9.1. Notice that you can use the mouse to click on any of the items to highlight
them. This example is quite simple, but, as you will soon see, the JList component
can be much more complex.

9.2 A more advanced JList example

The previous example demonstrated the most basic list box example which included
only static data and supported no selection management. However, there is much
more to the JList class. Let’s create a more advanced list box application to demon-
strate some of the functionality provided by this useful Swing component.

Figure 9.1
JList application output

A more advanced JList example 287
 In this sample, we want to show a list box that will be dynamically updated by
the user. Additionally, we must provide the capability to add new text to the list, so
we will create an Add button and a text field into which the user can type. Also,
since the user may want to delete items, we will create a Remove button and, to it,
attach code to delete list items. Finally, we will intercept list selections and transfer
the selected item back into the text field.

Design a list that doesn’t require horizontal scrolling. As noted previous-
ly, users can get a little annoyed with horizontal scrolling and might ignore
horizontally occluded data. Use concise terms for list items.

 Listing 9.2 presents the source code for this more complex list box example. A
string vector has replaced the static string array (of listing 9.1) so that the code can
dynamically insert and remove strings. Additionally, since the list may grow beyond
the bounds of the application frame, the list instance has been added to a scrolling
pane, and it will automatically attach scroll bars when required.

// Imports
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;

class TestFrame
extends JFrame
implements ActionListener,

ListSelectionListener
{

// Instance attributes used in this example
private JPanel topPanel;
private JList listbox;
private Vector listData;
private JButton addButton;
private JButton removeButton;
private JTextField dataField;
private JScrollPane scrollPane;

// Constructor of main frame

Listing 9.2 Advanced JList application

288 CHAPTER 9
List boxes
public TestFrame()
{

// Set the frame characteristics
setTitle("Advanced List Box Application");
setSize(300, 100);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the data model for this example
listData = new Vector();

// Create a new list box control
listbox = new JList(listData);
listbox.addListSelectionListener(this);

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(listbox);
topPanel.add(scrollPane, BorderLayout.CENTER);

CreateDataEntryPanel();
}

public void CreateDataEntryPanel()
{

// Create a panel to hold all other components
JPanel dataPanel = new JPanel();
dataPanel.setLayout(new BorderLayout());
topPanel.add(dataPanel, BorderLayout.SOUTH);

// Create some function buttons
addButton = new JButton("Add");
dataPanel.add(addButton, BorderLayout.WEST);
addButton.addActionListener(this);

removeButton = new JButton("Delete");
dataPanel.add(removeButton, BorderLayout.EAST);
removeButton.addActionListener(this);

// Create a text field for data entry and display
dataField = new JTextField();
dataPanel.add(dataField, BorderLayout.CENTER);

}

Listing 9.2 Advanced JList application (continued)

A more advanced JList example 289
// Handler for list selection changes
 public void valueChanged(ListSelectionEvent event)
 {
 // See if this is a list box selection and the
 // event stream has settled

if(event.getSource() == listbox
&& !event.getValueIsAdjusting())

{
// Get the current selection and place it in the
// edit field
String stringValue = (String)listbox.getSelectedValue();
if(stringValue != null)

dataField.setText(stringValue);
}

 }

// Handler for button presses
public void actionPerformed(ActionEvent event)
{

if(event.getSource() == addButton)
{

// Get the text field value
String stringValue = dataField.getText();
dataField.setText("");

// Add this item to the list and refresh
if(stringValue != null)
{

listData.addElement(stringValue);
listbox.setListData(listData);
scrollPane.revalidate();
scrollPane.repaint();

}
}

if(event.getSource() == removeButton)
{

// Get the current selection
int selection = listbox.getSelectedIndex();
if(selection >= 0)
{

// Add this item to the list and refresh
listData.removeElementAt(selection);
listbox.setListData(listData);
scrollPane.revalidate();
scrollPane.repaint();

Listing 9.2 Advanced JList application (continued)

290 CHAPTER 9
List boxes
 The output of listing 9.2 is shown in figure 9.2. Initially, the list in the center
of the frame is empty; however, by typing text and pressing the Add button, items
can be added to the list. The vertical scroll bar (and horizontal scroll bar, if neces-
sary) appears whenever the number of items in the list exceeds the frame size.

9.3 Listening for list activity

The code in listing 9.2 implements a ListSelectionListener that is responsible for
detecting user list selections. The list box attaches the listener code using the fol-
lowing line:

listbox.addListSelectionListener(this);

// As a nice touch, select the next item
if(selection >= listData.size())

selection = listData.size() - 1;
listbox.setSelectedIndex(selection);

}
}

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 9.2 Advanced JList application (continued)

Figure 9.2
Advanced JList application output

Custom data model 291
 The valueChanged() method is called any time the user selects an item from
the list. When this occurs, the code determines the current list selection and copies
its text to the text field. The valueChanged() method, like other action handlers
shown previously, uses the event.getSource() call to determine the component
generating the event.

if(event.getSource() == listbox
&& !event.getValueIsAdjusting())

 But, this line of code does something else, too. List selection events are gener-
ated in clusters, one for each item that is being deselected, one for each selected
item, and one final event that indicates that the selection values are no longer
changing. This final event is the one the program needs to detect, while all others
can be disregarded. To accomplish this, the code uses the event’s getValueIsAd-

justing() method.

9.4 Custom data model

The examples shown in listings 9.1 and 9.2 implement the default data model built
into Swing. This suggests that even though you didn’t specifically make a copy of
the data while elements were being added to the list, a copy operation was still
occurring. For large arrays of list data, this can negatively effect performance.

 Being a lightweight component, JList easily accepts the replacement of its data
model with a custom version implemented by a programmer. In listing 9.3A, we
revisit the simple list example, however, you might notice that the example does not
include a string array or a vector holding any list strings. Instead, the code creates
an instance of the CustomListModel class (see listing 9.3B). Except for the addition
of a scrolling pane, this example is otherwise unchanged from the first simple list
example shown in listing 9.1.

// Imports
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;

class TestFrame
extends JFrame

Listing 9.3A Custom data model application

292 CHAPTER 9
List boxes
 Listing 9.3B shows the CustomListModel class, which is responsible for
answering requests for list element data. Notice that the code does not store list ele-
ments in an array or vector—instead, data are manufactured on the fly. A custom
data model for a list extends the AbstractListModel class, and, as such, it must
implement two methods.

{
// Instance attributes used in this example
private JPanel topPanel;
private JList listbox;
private CustomListModel listData;
private JScrollPane scrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Custom Data Model List Application");
setSize(300, 100);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the data model for this example
listData = new CustomListModel();

// Create a new list box control
listbox = new JList(listData);

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(listbox);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 9.3A Custom data model application

Basic custom list rendering 293
 The first of these, getSize() , returns the number of items in the model. In
our case, the method returns a constant value of 300. The second method, getEle-

mentAt() , returns the actual list item at the specified item offset (starting at zero).
In our example, we manufacture the value string using the format Item n, where n
is the index number.

 The output of listing 9.3 is a 300-element list, shown in figure 9.3. Note that,
since there is no actual data array in the example, everything you see when you run
the code is artificial. For large, static lists, this is an excellent technique to reduce
the memory requirements of your application and its overall performance.

9.5 Basic custom list rendering

But wait, there’s more! So far, all of the JList examples shown in this chapter
included only textual data. This is adequate in most situations, but we can improve
the appearance of our Java applications by adding graphics to the list and changing
the font and color used to display list elements. Much like the custom data model
shown previously, the viewer can also be replaced simply by adding a custom ren-
derer to the list.

// Imports
import com.sun.java.swing.*;

class CustomListModel
extends AbstractListModel

{
// Return the size of the list
public int getSize()
{

return 300;
}

// Return an element from the list
public Object getElementAt(int index)
{

return "Item " + index;;
}

}

Listing 9.3B Custom data model class

294 CHAPTER 9
List boxes
Simulate UI components using graphics in lists. Small graphics (such as,
16 by 16 pixels) can add a lot of visual appeal to a list. Consider drawing UI
components, such as, checkboxes or radio buttons, as graphics to enable cus-
tom selection behaviors in list controls.

 Listings 9.4A and 9.4B make up an application that implements a simple list
like the example shown in listing 9.1; however, the example also provides a custom
cell renderer, which has the responsibility of drawing each element in the list. Items
can be drawn differently depending on whether or not they are selected, including
the foreground and background colors and the font. The example shown here dis-
plays selected item in a 24-point font and changes the background color of the
selection to red. Notice, also, that this example includes images for each item to
help the user better identify the style associated with each selection, greatly improv-
ing the user experience with this application.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{

Listing 9.4A Custom rendering list example

Figure 9.3
Custom data model application output

Basic custom list rendering 295
 The CustomCellRenderer class first loads the required images in its construc-
tor, then waits for the list box to request a rendering operation. The getListCell-

Renderer() method performs the actual rendering, determining the colors and

// Instance attributes used in this example
private JPanel topPanel;
private JList listbox;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Rendered ListBox Application");
setSize(300, 160);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create some items to add to the list
StringlistData[] =
{

"Circles",
"Bubbles",
"Thatch",
"Pinstripes"

};

// Create a new list box control
listbox = new JList(listData);
listbox.setCellRenderer(new CustomCellRenderer());
topPanel.add(listbox, BorderLayout.CENTER);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 9.4A Custom rendering list example (continued)

296 CHAPTER 9
List boxes
font required to display the item. Additionally, this method assigns the correct
image to the item being drawn.

// Imports
import java.awt.*;
import com.sun.java.swing.*;

class CustomCellRenderer
extends JLabel
implements ListCellRenderer

{
private ImageIcon image[];

public CustomCellRenderer()
{

setOpaque(true);

// Pre-load the graphics images to save time
image = new ImageIcon[4];
image[0] = new ImageIcon("circles.gif");
image[1] = new ImageIcon("bubbles.gif");
image[2] = new ImageIcon("thatch.gif");
image[3] = new ImageIcon("pinstripe.gif");

}

public Component getListCellRendererComponent(
JList list, Object value, int index,
boolean isSelected, boolean cellHasFocus)

{
// Display the text for this item
setText(value.toString());

// Set the correct image
setIcon(image[index]);

// Draw the correct colors and font
if(isSelected)
{

// Set the color and font for a selected item
setBackground(Color.red);
setForeground(Color.white);
setFont(new Font("Roman", Font.BOLD, 24));

}
else
{

// Set the color and font for an unselected item

Listing 9.4B Custom cell renderer class

Advanced custom list rendering 297
 Figure 9.4 shows the output produced by listing 9.4B. Notice that the selected
item, Thatch, is presented in a much larger font than the other items, and each item
includes an associated image indicating graphically what the text is describing.

9.6 Advanced custom list rendering

But, that’s still not all! The custom renderer in listing 9.4 extended the JLabel con-
trol and used it to draw what is essentially a label in the space provided for each item
in the list. Though the addition of a graphic provided a unique interface, it still
exhibits some limitations for some applications.

 Well, the good news is that JLabel is only one of several classes that can be dis-
played in a list box. You can also display instances of JButton, JTextField, JCheck-
Box, and so on—even JTextArea (a multiline component nestled into a list box
item). Here’s the code:

setBackground(Color.white);
setForeground(Color.black);
setFont(new Font("Roman", Font.PLAIN, 12));

}

return this;
}

}

Listing 9.4B Custom cell renderer class (continued)

Figure 9.4
Custom rendering list application output

298 CHAPTER 9
List boxes
// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
// Instance attributes used in this example
private JPanel topPanel;
private JList listbox;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Advanced Rendered ListBox Application");
setSize(300, 160);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create some items to add to the list
StringlistData[] =
{

"Chapter 1\nIntroduction",
"Chapter 2\nA Java Refresher",
"Chapter 3\nSwing Basics",
"Chapter 4\nPanels, Panes and More Layout Managers"

};
// Create a new list box control
listbox = new JList(listData);
listbox.setCellRenderer(new CustomCellRenderer());
topPanel.add(listbox, BorderLayout.CENTER);

}
// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 9.5A Advanced custom rendering list example

Advanced custom list rendering 299
 Listing 9.5A is still based on the first example shown in the chapter, and
includes almost no new functionality when compared to the previous example list-
ing 9.1. Notice, in listing 9.5A, the values loaded into the list:

"Chapter 1\nIntroduction",
"Chapter 2\nA Java Refresher",
"Chapter 3\nSwing Basics",
"Chapter 4\nPanels, Panes and More Layout Managers"

 Each value includes a \n new line character to force a line break in the middle
of the text. Listing 9.5B implements a custom cell renderer, but, this time, it
extends JTextArea instead of JLabel. Since JTextArea does not support graphics, we
have abandoned the icons from the previous example.

// Imports
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

class CustomCellRenderer
extends JTextArea
implements ListCellRenderer

{
public Component getListCellRendererComponent(

JList list, Object value, int index,
boolean isSelected, boolean cellHasFocus)

{
setBorder(new BevelBorder(BevelBorder.RAISED));

// Display the text for this item
setText(value.toString());

// Draw the correct colors and font
if(isSelected)
{

// Set the color and font for a selected item
setBackground(Color.red);
setForeground(Color.white);

}
else
{

// Set the color and font for an unselected item
setBackground(Color.lightGray);
setForeground(Color.black);

}

Listing 9.5B Advanced custom cell renderer class

300 CHAPTER 9
List boxes
 The result is a nicely formatted list resembling the screen output shown in fig-
ure 9.5. Note that, although I elected to eliminate the font changes included with
the previous example, the JTextArea class does support them. Since the height of
each list item is determined when constructed, it is possible to cause display clipping
if the font is set to a large value.

9.7 JList constructors

public JList()

This constructor creates an instance of a JList object with an empty data model.

public JList(ListModel dataModel)

 This constructor creates an instance of a JList object with the data model spec-
ified in the supplied parameter. The data model must not be empty.

public JList(Object listData[])

 This constructor creates an instance of a JList object with the data specified in
the supplied array. This array is inserted into a default list model.

public JList(Vector listData)

 This constructor creates an instance of a JList object with the data specified in
the supplied vector. This array is inserted into a default list model.

return this;
}

}

Listing 9.5B Advanced custom cell renderer class

Figure 9.5
Advanced custom rendering list application
output

JList significant method groupings 301
9.8 JList significant method groupings

public Object getPrototypeCellValue()
public void setPrototypeCellValue(Object prototypeCellValue)

These methods managed the cell prototype value. The prototype value is used to
calculate the width of each cell in the list. Using a cell prototype is much more effi-
cient than inspecting each item in the list to determine the maximum width.

public int getFixedCellWidth()
public void setFixedCellWidth(int width)
public int getFixedCellHeight()
public void setFixedCellHeight(int height)

 These methods are used to determine and control the width and height of
each cell in the list.

public ListCellRenderer getCellRenderer()
public void setCellRenderer(ListCellRenderer cellRenderer)

 These methods manage the delegate class used to paint each cell in the list.

public Color getSelectionForeground()
public void setSelectionForeground(Color selectionForeground)
public Color getSelectionBackground()
public void setSelectionBackground(Color selectionBackground)

 As the names suggest, these methods manage the foreground and back-
ground colors used to display the currently selected item. A custom cell renderer
can override these values, or that renderer can reference these colors during a
painting operation.

public int getVisibleRowCount()
public void setVisibleRowCount(int visibleRowCount)

 These methods detect and control the number of rows visible within a list. The
row count (overall height) of a JList instance can be managed at run time with
these methods.

public int getFirstVisibleIndex()
public int getLastVisibleIndex()
public void ensureIndexIsVisible(int index)

 The methods in this group are used to determine the index of the first or last
index visible in the list. Additionally, the ensureIndexIsVisible() method can
force any item into the visible region of the list.

302 CHAPTER 9
List boxes
public int locationToIndex(Point location)
public Point indexToLocation(int index)

 These methods are used to calculate the correlation of a list item, referenced
by index, and an actual pixel location within the list. These methods are typically
used to determine which item is currently under the mouse pointer.

public Rectangle getCellBounds(int index1, int index2)

 This method returns a rectangular region bound by two list items specified by
index numbers.

public ListModel getModel()
public void setModel(ListModel model)
public void setListData(Object listData[])
public void setListData(Vector listData)

 These methods are used to manage the data referenced in the list. Data can be
stored within a custom data model, a simple array, or a vectored array. Any time
data is changed dynamically, one of the set method shown here must be called to
update the list.

public void addListSelectionListener(ListSelectionListener listener)
public void removeListSelectionListener(

ListSelectionListener listener)

 These methods manage the presence of a list selection listener for the current
JList instance. A list selection listener intercepts events generated by the list object
when the user changes the current selection.

public int getSelectionMode()
public void setSelectionMode(int selectionMode)

 These methods control the selection mode used in the list instance. The mode
is limited to:

■ SINGLE_SELECTION for selecting only one item at a time
■ SINGLE_INTERVAL_SELECTION to allow selection of single contiguous

blocks of items

■ MULTIPLE_INTERVAL_SELECTION to allow multiple item or block
selection

public int getAnchorSelectionIndex()
public int getLeadSelectionIndex()
public int getMinSelectionIndex()
public int getMaxSelectionIndex()

Chapter summary 303
 This group of methods returns list indices based on various restrictions. For
example, the first selected item in a range of selections can be determined with the
getAnchorSelectionIndex() method.

public boolean isSelectedIndex(int index)
public boolean isSelectionEmpty()
public void clearSelection()
public int[] getSelectedIndices()
public void setSelectedIndex(int index)
public void setSelectedIndices(int indices[])
public Object[] getSelectedValues()
public int getSelectedIndex()
public Object getSelectedValue()
public void setSelectedValue(Object anObject, boolean shouldScroll)
public void setSelectionInterval(int anchor, int lead)
public void addSelectionInterval(int anchor, int lead)
public void removeSelectionInterval(int index0, int index1)

 This method group manages information about the selections within the list
object. Additionally, selections can be added or removed with methods from this
group.

public void setValueIsAdjusting(boolean b)
public boolean getValueIsAdjusting(boolean b)

 These two methods manage the state of the is value adjusting flag.

9.9 Chapter summary

In this chapter, we have examined the Swing JList class, which is a super-set of the
AWT List control. However, unlike List, JList requires a separate data model to
hold the item values it displays. This makes porting AWT List code to JList a much
more extensive exercise than most other Swing-based components.

 We began this chapter with a simple list example which contained only four
static items and offered no scrolling capability. This example showed that creating
lists with the JList class can be quite simple.

 Next, we started to examine custom data models. The second example shown
in this chapter used a vectored data array, which permitted us to add or remove lists
items at run time. This example was followed closely by a third example that used
no data array at all. Instead, a completely custom data model was used to manufac-
ture the requested data on the fly.

304 CHAPTER 9
List boxes
 Finally, we got our first taste of custom display rendering, by replacing the UI
delegate with a new one of our own design. We created a simple example that
changed the font and color of the list and any selected systems, but we also added
graphics to perk up the user interface. In the final example, we created an interest-
ing multiline list box, where every list element used two lines instead of the typical
one line.

 In the next chapter, we will expand on the idea of lists by studying a com-
pletely new Swing class which implements a more complex form of list called the
hierarchical tree. As you will see, we can employ much of what we already know
about lists when we create trees in our applications.

10Trees

In this chapter
■ Creating simple graphical trees

■ Custom tree cell rendering

■ Handling user actions on the tree

306 CHAPTER 10
Trees
In the last chapter, we examined the Swing JList, and, though it differed from the
AWT List component in implementation, the two classes are equivalent function-
ally. In this chapter, we will discuss the hierarchical tree control—a class which is
now a part of the standard Java tool set. This component is familiar to Windows
API programmers, but so far unknown to Java, excluding many of the third party
libraries.

 List boxes are great for displaying simple lists of information from which the
user can make single or multiple selections; however, in many situations, a list is
inadequate. For example, if you were writing a program containing several general
selection topics, and each of these topics could be subdivided into many specific
subtopics, you would require a list of subtopics for each general topic. Not only
would these numerous list boxes consume vital screen real estate, but also, a presen-
tation of dozens of lists would intimidate your users. Another difficulty with this
type of interface is the huge amount of code you would need to write to support it.
For four or five separate lists, you could still manage a scenario like this, but what if
you had a hundred general topics?

 A better solution to this problem is to implement a single control containing
all of the lists. Not only does this greatly reduce the amount of code that must be
written and maintained, but also, it greatly simplifies the interface presented to the
user. The key to this solution is the hierarchical tree, since it can nest lists of lists, to
any depth required. The tree control gets its name from the series of collapsible/
expandable branches it can contain. Each of the tree’s branches can be divided into
successively more specific branches, and there is no practical limit to the number of
items that each branch can hold, nor to the nesting of subbranches.

 In Swing, the hierarchical tree is implemented in the JTree class, which, like all
other Swing components, is derived from JComponent. Since JTree is indirectly
based on the Container class, it reaps all of the benefits we have seen with other
Swing classes, including the ability to contain a collection of (almost) any other
components. But, of course, we need to start with a much more basic example of a
tree application.

10.1 Basic tree implementation

In this section, we will examine most of the aspects of creating and displaying Swing
JTree components. We will start with a simple example and work our way through
to more advanced data modeling and display characteristics support by the class. At
the conclusion of this section, you will know how to create any sort of tree you

Basic tree implementation 307
want, including trees with default characteristics and tree instances that implement
customer graphical images and data formats.

Novice software users have problems working with hierarchical data
structures. If you are designing for a more sophisticated user, this is not an
issue. But, for the average user, try to avoid using a tree control that doesn’t
already strongly conform to an existing UI metaphor which users are com-
fortable. This may mean using a tree in combination with a list to display low-
est level tree nodes (for example, Windows Explorer). Trees have the
unfortunate side effect of encouraging the creation of deep nested structures
that become difficult for the user to navigate and manage.

10.1.1 A basic JTree example

In the first example, we will create a simple tree containing only a few items and
having no ability to add or remove items. Additionally, this example will include a
scrollable pane, which will become more important as we add features to our appli-
cation. The icons shown in this example are defaults provided by Swing, but, later
in this chapter, we will do a little work to change these.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
// Instance attributes used in this example
private JPanel topPanel;
private JTree tree;
private JScrollPane scrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Simple Tree Application");
setSize(300, 100);

Listing 10.1 Simple JTree example

308 CHAPTER 10
Trees
 Listing 10.1 is a short example, creating a JTree instance. Notice that the code
does not perform any sort of item insertion, so, this tree should be empty. Actually,
when no specific data model has been specified, JTree reverts to a sample model
which is impractical, but which is quite suitable to demonstrate the use of JTree.

 Figure 10.1 shows the output produced by listing 10.1. Aside from the cute
content of the tree, notice that, when the program is executed, the tree is initially
collapsed down to the root level. Opening the root expands it, showing the next
level of indentation. Notice the change in icon for the lowest element of the tree.
This is the default operation for the simple tree.

setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a new tree control
tree = new JTree();

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(tree);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 10.1 Simple JTree example

Figure 10.1
Simple JTree example output

Basic tree implementation 309
10.1.2 Adding new tree items

Doubtless, many would argue that the code in listing 10.1 is adequate; but, because
this first example uses the sample data model, it is generally useful only for demon-
stration purposes. Adding branches and items to a tree instance involves a bit of
additional code, but the process of creating and using the JTree class will remain
clear. Study the following sample code:

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.tree.*;

class TestFrame
extends JFrame

{
// Instance attributes used in this example
private JPanel topPanel;
private JTree tree;
private JScrollPane scrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("More Advanced Tree Application");
setSize(300, 100);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create data for the tree
DefaultMutableTreeNode root

= new DefaultMutableTreeNode("Deck");

DefaultMutableTreeNode itemClubs
= new DefaultMutableTreeNode("Clubs");

addAllCard(itemClubs);
root.add(itemClubs);

DefaultMutableTreeNode itemDiamonds
= new DefaultMutableTreeNode("Diamonds");

Listing 10.2 More advanced JTree example

310 CHAPTER 10
Trees
addAllCard(itemDiamonds);
root.add(itemDiamonds);

DefaultMutableTreeNode itemSpades
= new DefaultMutableTreeNode("Spades");

addAllCard(itemSpades);
root.add(itemSpades);

DefaultMutableTreeNode itemHearts
= new DefaultMutableTreeNode("Hearts");

addAllCard(itemHearts);
root.add(itemHearts);

// Create a new tree control
DefaultTreeModel treeModel = new DefaultTreeModel(root);
tree = new JTree(treeModel);

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(tree);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Helper method to write an entire suit of cards to the
// current tree node
public void addAllCard(DefaultMutableTreeNode suit)
{

suit.add(new DefaultMutableTreeNode("Ace"));
suit.add(new DefaultMutableTreeNode("Two"));
suit.add(new DefaultMutableTreeNode("Three"));
suit.add(new DefaultMutableTreeNode("Four"));
suit.add(new DefaultMutableTreeNode("Five"));
suit.add(new DefaultMutableTreeNode("Six"));
suit.add(new DefaultMutableTreeNode("Seven"));
suit.add(new DefaultMutableTreeNode("Eight"));
suit.add(new DefaultMutableTreeNode("Nine"));
suit.add(new DefaultMutableTreeNode("Ten"));
suit.add(new DefaultMutableTreeNode("Jack"));
suit.add(new DefaultMutableTreeNode("Queen"));
suit.add(new DefaultMutableTreeNode("King"));

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();

Listing 10.2 More advanced JTree example (continued)

Basic tree implementation 311
 Listing 10.2 contains the code required to generate a JTree instance contain-
ing all of the cards in a deck of playing cards. The key feature in this application is
the use of the DefaultMutableTreeNode class, which is a general-purpose node item
compatible with the Swing graphical tree component. Each child node is inserted
into its parent node using the add() method, and any child node can itself act as a
parent for subsequent child nodes.

 The root is a special node because it is the ultimate parent of all of the other
tree nodes. It is inserted into the tree’s data model, which, in the case of listing
10.2, is an instance of the DefaultTreeModel class. This is the model that a JTree
instance should use, unless a custom data model is used. We will discuss custom
data models for JTree next.

 The results produced by executing the code shown in listing 10.2 have been
captured in figure 10.2. Notice that once a node is added to one of the suits (Clubs,
for example), the node becomes a branch with a folder-like icon and the addition of
a graphic (+/-) to the left of the entry, which can be used to expand or collapse the
branch.

mainFrame.setVisible(true);
}

}

Listing 10.2 More advanced JTree example (continued)

Figure 10.2
More advanced JTree example output

312 CHAPTER 10
Trees
10.1.3 Custom data models

When we were discussing the JList class in the previous chapter, you got your first
taste of Swing’s custom data models. The JList class is not unique in its ability to
manage data using a custom model—JTree also supports custom data modeling,
though, because of the hierarchical nature of a tree, the model is a bit more complex.

 In the following example, we will recreate the tree containing the deck of cards;
however, this example will use a custom data model to manufacture the cards within
each suit. The result is an application consisting of approximately the same number
of code lines, but with much better performance, particularly for large data sets.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.tree.*;

class TestFrame
extends JFrame

 {
// Instance attributes used in this example
private JPanel topPanel;
private JTree tree;
private JScrollPanescrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Custom Data Model Tree Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create data for the tree
DefaultMutableTreeNode root

= new DefaultMutableTreeNode("Deck");

CreateSuit(root, "Clubs");
CreateSuit(root, "Diamonds");
CreateSuit(root, "Spades");

Listing 10.3A Custom data model application example

Basic tree implementation 313
 Listing 10.3A recreates the main class for the application that creates a JTree
holding every card in a deck. The CreateSuit() method adds an entire suit to the
deck tree; however, the cards added all consist of a null string, which is shorter, and
hence, faster to manage.

CreateSuit(root, "Hearts");

// Create a new tree control
MyDataModel treeModel = new MyDataModel(root);
tree = new JTree(treeModel);

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(tree);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

public void CreateSuit(DefaultMutableTreeNode root,
String suitName)

{
DefaultMutableTreeNode itemSuit

= new DefaultMutableTreeNode(suitName);
for(int iCtr = 0; iCtr < 13; iCtr++)

itemSuit.add(new DefaultMutableTreeNode(""));

root.add(itemSuit);
}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

// Imports
import java.util.*;
import com.sun.java.swing.*;
import com.sun.java.swing.tree.*;

class MyDataModel

Listing 10.3B Custom data model application example

Listing 10.3A Custom data model application example (continued)

314 CHAPTER 10
Trees
 Listing 10.3B contains the code for the custom data model class that extends
DefaultTreeModel. Though we could have overridden other methods from the par-
ent class, only the getChild() method is handled. In this method, the code ignores
any tree node (the suits, in our example) whose parent is the root node: however,
for nodes that do not belong to the root node (the cards, in our example), the get-

Child() method instead uses a lookup table to generate the node name. The result
is an application that is not only faster, but also uses much less dynamic memory.

extends DefaultTreeModel
{

private DefaultMutableTreeNoderoot;
private String rootName = "";
private StringcardArray[] = {

"Ace", "Two", "Three", "Four",
"Five", "Six", "Seven", "Eight",
"Nine", "Ten", "Jack", "Queen",
"King"

};

public MyDataModel(TreeNode root)
{

super(root);
DefaultMutableTreeNode parentNode =

(DefaultMutableTreeNode)root;
rootName = (String)parentNode.getUserObject();

}

public Object getChild(Object parent, int index)
{

DefaultMutableTreeNode parentNode =
(DefaultMutableTreeNode)parent;

String parentName = (String)parentNode.getUserObject();

if(parentName.equals(rootName))
return super.getChild(parent, index);

else
return new DefaultMutableTreeNode(cardArray[index]);

}
}

Listing 10.3B Custom data model application example (continued)

Basic tree implementation 315
Remember that strings in Java are immutable, so any opportunity to elimi-
nate them or replace them with static strings should be exploited. Custom
data models for the Swing JTree class can often provide this opportunity.

10.1.4 Custom rendering

In addition to handling custom data modeling, the JTree class also supports custom
rendering of individual items within the list. This is useful for adding graphics or
changing the font of specific items in the tree. For example, it may be important, in
your application, to display top-level items with bolded text to highlight their
importance, or you may want to add an icon image to each tree item to help denote
its significance. These capabilities are added to a tree by using custom rendering.

Imitate UI components by using graphics in trees. Consider drawing UI
components (for example, check boxes) to allow for disjointed selections
within the tree and tri-state check boxes (for example, a gray check box) on
parent nodes to show the partially disjointed selections of the children below.

 In listings 10.4A and 10.4B, we again re-create the playing card tree example,
but this time we will implement a custom renderer class to handle some special fea-
tures. For example, the top-level items (the suits) include graphics for each of the
suits in a deck of cards, and the individual cards also include graphics. I stopped
short of displaying the entire graphic for each card, but doing so would require only
minor changes to the rendering method presented here.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.tree.*;

class TestFrame
extends JFrame

{

Listing 10.4A Custom rendered JTree application example

316 CHAPTER 10
Trees
// Instance attributes used in this example
private JPanel topPanel;
private JTree tree;
private JScrollPane scrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Custom Rendered Tree Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create data for the tree
DefaultMutableTreeNode root

= new DefaultMutableTreeNode("Deck");

DefaultMutableTreeNode itemClubs
= new DefaultMutableTreeNode("Clubs");

addAllCard(itemClubs);
root.add(itemClubs);

DefaultMutableTreeNode itemDiamonds
= new DefaultMutableTreeNode("Diamonds");

addAllCard(itemDiamonds);
root.add(itemDiamonds);

DefaultMutableTreeNode itemSpades
= new DefaultMutableTreeNode("Spades");

addAllCard(itemSpades);
root.add(itemSpades);

DefaultMutableTreeNode itemHearts
= new DefaultMutableTreeNode("Hearts");

addAllCard(itemHearts);
root.add(itemHearts);

// Create a new tree control
DefaultTreeModel treeModel = new DefaultTreeModel(root);
tree = new JTree(treeModel);

// Tell the tree it is being rendered by our application
tree.setCellRenderer(new CustomCellRenderer());

Listing 10.4A Custom rendered JTree application example

Basic tree implementation 317
 Listing 10.4A is almost identical to the code shown in previous examples. It
creates a tree instance and inserts all of the pertinent data: however, it has an addi-
tional line to notify the tree that we will provide a custom renderer.

 The code in listing 10.4B constitutes the rendering code for this application.
To save time during execution, the class implements a constructor to load the
graphics that will be used to display the cards and suits. The getTreeCellRen-

dererComponent() method, which must be provided as a requirement of the Tree-
CellRender implementation used by this class, is responsible for the actual drawing
of tree cells.

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(tree);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Helper method to write an entire suit of cards to the
// current tree node
public void addAllCard(DefaultMutableTreeNode suit)
{

suit.add(new DefaultMutableTreeNode("Ace"));
suit.add(new DefaultMutableTreeNode("Two"));
suit.add(new DefaultMutableTreeNode("Three"));
suit.add(new DefaultMutableTreeNode("Four"));
suit.add(new DefaultMutableTreeNode("Five"));
suit.add(new DefaultMutableTreeNode("Six"));
suit.add(new DefaultMutableTreeNode("Seven"));
suit.add(new DefaultMutableTreeNode("Eight"));
suit.add(new DefaultMutableTreeNode("Nine"));
suit.add(new DefaultMutableTreeNode("Ten"));
suit.add(new DefaultMutableTreeNode("Jack"));
suit.add(new DefaultMutableTreeNode("Queen"));
suit.add(new DefaultMutableTreeNode("King"));

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 10.4A Custom rendered JTree application example

318 CHAPTER 10
Trees
 In our example, getTreeCellRendererComponent() determines what it is
drawing (based on the text in the specified tree node) and then assigns the correct
image to the displayed items. Additionally, this method sets the correct foreground
color, depending on the selection state of the item.

Currently, the background color of the tree item cannot be set within the
rendering method (at least, setting it has no effect). It is unknown whether
this limitation is a Swing bug or a feature. To work around this problem, a
paint() method is required within the custom rendering class.

// Imports
import com.sun.java.swing.*;
import com.sun.java.swing.tree.*;
import java.awt.*;

public class CustomCellRenderer
extends JLabel
implementsTreeCellRenderer

{
private ImageIcon deckImage;
private ImageIcon[] suitImages;
private ImageIcon[] cardImages;
private boolean bSelected;

public CustomCellRenderer()
{

// Load the images
deckImage = new ImageIcon("deck.gif");

suitImages = new ImageIcon[4];
suitImages[0] = new ImageIcon("clubs.gif");
suitImages[1] = new ImageIcon("diamonds.gif");
suitImages[2] = new ImageIcon("spades.gif");
suitImages[3] = new ImageIcon("hearts.gif");

cardImages = new ImageIcon[13];
cardImages[0] = new ImageIcon("ace.gif");
cardImages[1] = new ImageIcon("two.gif");
cardImages[2] = new ImageIcon("three.gif");
cardImages[3] = new ImageIcon("four.gif");
cardImages[4] = new ImageIcon("five.gif");

Listing 10.4B CustomCellRenderer class code

Basic tree implementation 319
cardImages[5] = new ImageIcon("six.gif");
cardImages[6] = new ImageIcon("seven.gif");
cardImages[7] = new ImageIcon("eight.gif");
cardImages[8] = new ImageIcon("nine.gif");
cardImages[9] = new ImageIcon("ten.gif");
cardImages[10] = new ImageIcon("jack.gif");
cardImages[11] = new ImageIcon("queen.gif");
cardImages[12] = new ImageIcon("king.gif");

}

public Component getTreeCellRendererComponent(JTree tree,
Object value, boolean bSelected, boolean bExpanded,

boolean bLeaf, int iRow, boolean bHasFocus)
{

// Find out which node we are rendering and get its text
DefaultMutableTreeNode node = (DefaultMutableTreeNode)value;
StringlabelText = (String)node.getUserObject();

this.bSelected = bSelected;

// Set the correct foreground color
if(!bSelected)

setForeground(Color.black);
else

setForeground(Color.white);

// Determine the correct icon to display
if(labelText.equals("Deck"))

setIcon(deckImage);
else if(labelText.equals("Clubs"))

setIcon(suitImages[0]);
else if(labelText.equals("Diamonds"))

setIcon(suitImages[1]);
else if(labelText.equals("Spades"))

setIcon(suitImages[2]);
else if(labelText.equals("Hearts"))

setIcon(suitImages[3]);
else if(labelText.equals("Ace"))

setIcon(cardImages[0]);
else if(labelText.equals("Two"))

setIcon(cardImages[1]);
else if(labelText.equals("Three"))

setIcon(cardImages[2]);
else if(labelText.equals("Four"))

setIcon(cardImages[3]);
else if(labelText.equals("Five"))

setIcon(cardImages[4]);

Listing 10.4B CustomCellRenderer class code (continued)

320 CHAPTER 10
Trees
 The output produced by this application is shown in figure 10.3. Notice that
each of the suits displays its correct image and each card shows a graphic of the
number (or letter) on the card, along with the text. In order to reduce the number

else if(labelText.equals("Six"))
setIcon(cardImages[5]);

else if(labelText.equals("Seven"))
setIcon(cardImages[6]);

else if(labelText.equals("Eight"))
setIcon(cardImages[7]);

else if(labelText.equals("Nine"))
setIcon(cardImages[8]);

else if(labelText.equals("Ten"))
setIcon(cardImages[9]);

else if(labelText.equals("Jack"))
setIcon(cardImages[10]);

else if(labelText.equals("Queen"))
setIcon(cardImages[11]);

else if(labelText.equals("King"))
setIcon(cardImages[12]);

// Add the text to the cell
setText(labelText);

return this;
}

// This is a hack to paint the background. Normally, a JLabel can
// paint its own background, but due to an apparent bug or
// limitation in the TreeCellRenderer, the paint method is
// required to handle this.
public void paint(Graphics g)
{

Color bColor;
Icon currentI = getIcon();

// Set the correct background color
bColor = bSelected ? SystemColor.textHighlight : Color.white;
g.setColor(bColor);

// Draw a rectangle in the background of the cell
g.fillRect(0, 0, getWidth() - 1, getHeight() - 1);

super.paint(g);
}

}

Listing 10.4B CustomCellRenderer class code (continued)

Basic tree implementation 321
of graphics needed for this example, the images for the cards are all black (so, red
cards have black numbers); however, updating this to include the additional graph-
ics for red numbers is a simple exercise.

10.1.5 Editing tree nodes

One concept that we have not touched on yet is node editing. In a manner similar
to custom rendering, we can also perform custom editing of any item in a tree con-
trol. JTree supports three techniques for editing tree nodes. The easiest is to simply
call the setEditable() method like this:

tree.setEditable(true);

 In this mode, the tree values are editable using a simple text editor—not very
intriguing, but, for many applications, this is exactly what you will need.

 The second technique is to create a real custom editor for the tree, and this is
what we will do in listing 10.5. In this sample, we create a tree instance and set the
default cell editor to point to a combo box which allows node changes only from
the list of selections.

Figure 10.3
Custom rendering JTree output

322 CHAPTER 10
Trees
 The third technique for tree editing is to replace the DefaultCellEditor()

reference in listing 10.5 with a class that implements CellEditor . You can refer to
the online Swing documentation for details about the CellEditor implementation.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

 {
// Instance attributes used in this example
private JPanel topPanel;
private JTree tree;
private JScrollPanescrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Editable Tree Application");
setSize(300, 100);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a new tree control
tree = new JTree();
tree.setEditable(true);

// Create a combo box of editing options
JComboBox box = new JComboBox();
box.addItem("Swing");
box.addItem("Java");
box.addItem("neat");
box.addItem("funky");
box.addItem("life");
box.addItem("awesome");
box.addItem("cool!");

// Add a cell editor to the tree
tree.setCellEditor(new DefaultCellEditor(box));

Listing 10.5 Editable JTree example

Listening for tree actions 323
 Figure 10.4 shows the output produced as a result of executing this sample. In
this example, the cell editor is set to an instance of JComboBox. In addition to this
class, the cell editor can also be configured to use a JTextField or JCheckBox
instance, but the implementation is the same as the one shown here.

10.2 Listening for tree actions

In the examples shown so far, no provision has been made to detect when the user
actually makes a selection or performs some other significant action on a JTree
instance. In this section, we will discuss the types of selection listeners supported by
the JTree class. Examples of each of these listeners are included in this section.

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(tree);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 10.5 Editable JTree example (continued)

Figure 10.4
Editable JTree application output

324 CHAPTER 10
Trees
10.2.1 Listening for tree selections

The listener we will examine is the TreeSelectionListener , which is responsible
for handling events generated as a result of the user making item selections. Listing
10.6 contains the code required to create a list and handle user selection events
through the provision of the valueChanged() method. Inside this method, the
application extracts the current selection from the user and displays this information
in the Java console display

 In the valueChanged() method, you will notice another Swing class named
TreePath . This class is used to contain and describe all aspects of a path, including
the string it contains and details about its parent and child relationships. For details
on the TreePath class, see the Swing online documentation.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;
import com.sun.java.swing.tree.*;

class TestFrame
extends JFrame
implements TreeSelectionListener

 {
// Instance attributes used in this example
private JPanel topPanel;
private JTree tree;
private JScrollPane scrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("TreeSelectionListener Application");
setSize(300, 100);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a new tree control
tree = new JTree();

Listing 10.6 Example JTree application with a selection listener

Listening for tree actions 325
10.2.2 Listening for tree expansions

Determination of the tree node selected by a user is the most common function an
application developer will implement, but there is another user action that generates
events from the JTree class. A Swing-based program can intercept events caused by
the user expanding or collapsing a node in a tree object. You can use this for many
purposes—for example, you can enable or disable specific program features depend-
ing on the expansion state of a specific node in the tree.

 Listing 10.7 contains a sample application implementing a tree object with an
attached expansion listener. When the user expands a tree branch, the treeEx-

// Add a selection listener
tree.addTreeSelectionListener(this);

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(tree);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Handle tree item selections
public void valueChanged(TreeSelectionEvent event)
{

if(event.getSource() == tree)
{

// Display the full selection path
TreePath path = tree.getSelectionPath();
System.out.println("Selection path="

+ path.toString());

// Get the text for the last component
System.out.println("Selection="

+ path.getLastPathComponent());
}

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 10.6 Example JTree application with a selection listener (continued)

326 CHAPTER 10
Trees
panded() method is called, which displays the full path of the expanded node. In a
similar fashion, when a node is collapsed, the treeCollapsed() method handles
the event.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;
import com.sun.java.swing.tree.*;

class TestFrame
extends JFrame
implements TreeExpansionListener

 {
// Instance attributes used in this example
private JPanel topPanel;
private JTree tree;
private JScrollPane scrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("TreeExpansionListener Application");
setSize(300, 300);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a new tree control
tree = new JTree();

// Add a selection listener
tree.addTreeExpansionListener(this);

// Add the list box to a scrolling pane
scrollPane = new JScrollPane();
scrollPane.getViewport().add(tree);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Handle tree item expansion
public void treeExpanded(TreeExpansionEvent event)

Listing 10.7 Example JTree application with an expansion listener

Tips and tricks for enhancing trees 327
10.3 Tips and tricks for enhancing trees

There are many, more subtle aspects of the JTree component that we have not dis-
cussed so far in this chapter. These features involve adding simple, one line or two
line extensions to your code to effect changes (in some cases, dramatic changes) in
the character of the tree control. In this section, we will quickly examine some of
these nuances.

10.3.1 Hiding the root node

A major apparent drawback of a JTree component instance is the presence of a root
node within the visible window. Often, it is undesirable to display this top-level node
in your application since, in many situations, the root is simply a nonfunctional con-

{
if(event.getSource() == tree)
{

// Display the full selection path
TreePath path = event.getPath();
System.out.println("Node Expanded=" + path.toString());

}
}

// Handle tree item expansion
public void treeCollapsed(TreeExpansionEvent event)
{

if(event.getSource() == tree)
{

// Display the full selection path
TreePath path = event.getPath();
System.out.println("Node Collapsed=" + path.toString());

}
}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 10.7 Example JTree application with an expansion listener (continued)

328 CHAPTER 10
Trees
tainer for all other nodes in the tree. Fortunately, it is simple to hide the root node
from the user’s view by adding a line like the following to your application:

tree.setRootVisible(false);

 The root node’s visibility can be controlled during the normal execution pro-
cess of an application, so, it is also possible to toggle the root as part of some user
configurable feature in the program.

10.3.2 Expanding and collapsing the tree

In addition to tree expansion and collapse events generated by the user, JTree also
provides a programmatic interface to these functions. First, there are two distinct
techniques for identifying a node: by index number and by TreePath . TreePath is
the simple container for node data which we saw in the previous section, while the
index number is a unique tag identifying the node (The node index count is zero-
based).

 The methods that are provided for expanding and collapsing tree nodes are:

tree.expandPath(path);
tree.collapsePath(path);
tree.expandPath(index);
tree.collapsePath(index);

 So, for example, if you wanted to expand whatever node the user has selected,
you could execute the following code:

tree.expandPath(tree.getSelectedPath());

10.3.3 Selecting and deselecting nodes

The final aspect of the JTree class which we will discuss is the technique used to
select and deselect nodes within the tree. This capability is useful for building spe-
cial features into an application. For example, if you add code to perform a search of
the tree data, you need a method of highlighting items when they are found.

 To select nodes, you again have the option of referencing the item by its
index number or by a TreePath data structure, which is how you most likely access
the node. To select a node specified in a given TreePath , use code similar to the
following:

TreePath path = …
tree.setSelectionPath(path);

JTree class information 329
 JTree provides a method used to clear selections, as well. This is useful for
deselecting all highlighted items, particularly if the tree allows multiple selections.
Using this method, you can avoid having to keep track of every selected item. The
format of this method is:

tree.clearSelection();

 It is also possible to remove single nodes from the selection group. Some sam-
ple code to perform this task follows:

TreePath path = …
tree.removeSelectionPath(path);

10.4 JTree class information

This section lists the constants variables and methods for the JTree class.

10.4.1 JTree constants

public static final String CELL_RENDERER_PROPERTY
public static final String TREE_MODEL_PROPERTY
public static final String ROOT_VISIBLE_PROPERTY
public static final String SHOWS_ROOT_HANDLES_PROPERTY
public static final String ROW_HEIGHT_PROPERTY
public static final String CELL_EDITOR_PROPERTY
public static final String EDITABLE_PROPERTY
public static final String LARGE_MODEL_PROPERTY
public static final String SELECTION_MODEL_PROPERTY
public static final String VISIBLE_ROW_COUNT_PROPERTY
public static final String INVOKES_STOP_CELL_EDITING_PROPERTY

JTree provides several constants used to access the various properties within the
class. Though you can access these constants, you will probably have little need of
them in normal use of the JTree component.

10.4.2 JTree variables

protected transient TreeModel treeModel

This variable holds the instance of the current tree model used by the JTree
instance.

protected transient TreeSelectionModel selectionModel

 This variable holds the instance of the current selection model used by the
JTree instance.

330 CHAPTER 10
Trees
protected boolean rootVisible

 If true, this flag indicates that the root node of the tree is visible; otherwise,
the root is not shown to the user.

protected transient TreeCellRenderer cellRenderer

 This variable holds the instance of the current tree cell renderer object used by
the JTree instance for the renderer to draw node items.

protected int rowHeight

 The rowHeight variable contains an integer value indicating the height of each
row in the table. If this value is less than or equal to zero, the cell renderer will be
used to determine the height of each row.

protected boolean showsRootHandles

 This boolean flag controls whether or not there should be handles shown at
the top level of the tree. If the root node is not shown, it is recommended that this
flag be set as true.

protected transient TreeCellEditor cellEditor

 This variable holds the instance of the current tree cell editor object used by
the JTree instance.

protected int visibleRowCount

 This variable contains an integer value representing the number of rows of the
table that are visible in the user interface.

protected boolean editable
protected boolean largeModel
protected boolean invokesStopCellEditing

 These boolean variables control other miscellaneous characteristics of the
JTree instance.

10.4.3 JTree constructors

public JTree()

This constructor creates an instance of a JTree component providing a sample data
model.

public JTree(Object value[])

JTree class information 331
 This constructor creates an instance of a JTree component providing a default
data model that receives the data contained in the supplied object array.

public JTree(Vector value)

 This constructor creates an instance of a JTree component providing a default
data model that receives the data contained in the supplied vectored array of
objects.

public JTree(Hashtable value)

 This constructor creates an instance of a JTree component providing a default
data model that receives the data contained in the supplied hash table.

public JTree(TreeNode root)

 This constructor creates an instance of a JTree component providing a default
data model with the root node specified. By default, the asksAllowsChildren flag
is false, so the leaf state of nodes is determined by the isLeaf() method.

public JTree(TreeNode root, boolean asksAllowsChildren)

 This constructor creates an instance of a JTree component providing a default
data model with the root node specified. If the asksAllowsChildren flag is false, the
leaf state of nodes is determined by the isLeaf() method: otherwise, the getAl-

lowsChildren() method is supported.

public JTree(TreeModel newModel)

 This constructor creates an instance of a JTree component providing a speci-
fied data model containing the tree data.

10.4.4 JTree significant method groups

public TreeCellRenderer getCellRenderer()
public void setCellRenderer(TreeCellRenderer x)

This group of methods manages the cell renderer used for the JTree instance. When
the tree object is constructed, the DefaultTreeCellRenderer is instantiated.

public void setEditable(boolean flag)
public boolean isEditable()
public void setCellEditor(TreeCellEditor cellEditor)
public TreeCellEditor getCellEditor()
public void setInvokesStopCellEditing(boolean newValue)
public boolean getInvokesStopCellEditing()
public boolean isPathEditable(TreePath path)

332 CHAPTER 10
Trees
public boolean isEditing()
public boolean stopEditing()
public void startEditingAtPath(TreePath path)
public TreePath getEditingPath()

 These methods manage and control the characteristics of the cell editor for the
JTree instance. Though the tree object will create a default cell editor, a new one
can be created and inserted.

public TreeModel getModel()
public void setModel(TreeModel newModel)

 This group of methods manages the data model used for the JTree instance.
When the tree object is constructed, the DefaultTreeModel is instantiated.

public boolean isRootVisible()
public void setRootVisible(boolean rootVisible)
public void setShowsRootHandles(boolean newValue)
public boolean getShowsRootHandles()

 The methods in this group control the presence or absence of the root node
and root handles in the tree’s user interface.

public void setRowHeight(int rowHeight)
public int getRowHeight()
public boolean isFixedRowHeight()

 These methods control the height of each row shown in the tree. The JTree
class supports both fixed and variable row heights, which are controlled by either
the default cell renderer or by a custom rendering class provided by the developer.

public void setLargeModel(boolean newValue)
public boolean isLargeModel()

 This group of methods manages the large data model flag, which controls how
the tree reacts to large data. Note that not all user interfaces support a large model.

public int getRowCount()

 This method returns the number of rows contained in the tree. Each item in
the tree is considered a row, regardless of its expansion state.

public void setSelectionPath(TreePath path)
public void setSelectionPaths(TreePath paths[])
public void setSelectionRow(int row)
public void setSelectionRows(int rows[])
public void addSelectionPath(TreePath path)
public void addSelectionPaths(TreePath paths[])

JTree class information 333
public void addSelectionRow(int row)
public void addSelectionRows(int rows[])
public void setSelectionInterval(int index0, int index1)
public void addSelectionInterval(int index0, int index1)
public void removeSelectionInterval(int index0, int index1)
public void removeSelectionPath(TreePath path)
public void removeSelectionPaths(TreePath paths[])
public void removeSelectionRow(int row)
public void removeSelectionRows(int rows[])
public void clearSelection()
public Object getLastSelectedPathComponent()
public TreePath getSelectionPath()
public TreePath[] getSelectionPaths()
public int[] getSelectionRows()
public int getSelectionCount()
public int getMinSelectionRow()
public int getMaxSelectionRow()
public int getLeadSelectionRow()
public TreePath getLeadSelectionPath()\
public boolean isRowSelected(int row)
public boolean isSelectionEmpty()
public boolean isPathSelected(TreePath path)

 This large group of methods manages selections within the tree object. Single
nodes can be added or removed from the selection group; however, entire ranges of
items can also be handled with ease. This group also provides several methods to
determine not only the range of selected nodes, but also the minimum and maxi-
mum indices for selected nodes.

public boolean isExpanded(TreePath path)
public boolean isExpanded(int row)
public boolean isCollapsed(TreePath path)
public boolean isCollapsed(int row)
public void expandPath(TreePath path)
public void expandRow(int row)
public void collapsePath(TreePath path)
public void collapseRow(int row)

 This group of methods manages the visible state of the tree nodes within the
user interface. Any parent node can be expanded or collapsed programmatically
with these methods, and the current state can be determined with the boolean
method in this group.

public void makeVisible(TreePath path)
public boolean isVisible(TreePath path)
public Rectangle getPathBounds(TreePath path)
public Rectangle getRowBounds(int row)

334 CHAPTER 10
Trees
public void scrollPathToVisible(TreePath path)
public void scrollRowToVisible(int row)

 With these methods, the developer can control the visibility of a specified node
within the user interface. With these methods, it is possible to reposition the tree
viewport to display any node you choose.

public TreePath getPathForRow(int row)
public int getRowForPath(TreePath path)
public TreePath getPathForLocation(int x, int y)
public int getRowForLocation(int x, int y)
public TreePath getClosestPathForLocation(int x, int y)
public int getClosestRowForLocation(int x, int y)

 This group of methods act as helpers to resolve row-to-path and path-to-row
conversions. Additionally, some of these methods resolve node to X-, Y-coordinate
conversions, which can be used when handling mouse events.

public void setSelectionModel(TreeSelectionModel selectionModel)
public TreeSelectionModel getSelectionModel()

 This group of methods manages the selection model used for the JTree
instance. When the tree object is constructed, the DefaultTreeSelectionModel is
instantiated.

public void addTreeExpansionListener(TreeExpansionListener tel)
public void removeTreeExpansionListener(TreeExpansionListener tel)
public void addTreeSelectionListener(TreeSelectionListener tsl)
public void removeTreeSelectionListener(TreeSelectionListener tsl)

 The four methods shown here control the listeners supported by the JTree
class. A tree object supports two listeners: one for selection events and one for tree
node expansion and collapse.

10.5 Chapter summary

This chapter encapsulated most of what you need to know to create graphical tree
components in your Swing-based Java applications. We started by examining a sim-
ple tree example that implemented a sample data model, allowing us to create a
small sample from which to build the other examples in this chapter. In a more
advanced example, we created a hierarchical tree containing all of the cards in a
deck and used the tree to divide each suit.

 Next, we examined the subject of customer data models within a tree compo-
nent and rebuilt the card deck code example. Instead of accessing a large dynamic

Chapter summary 335
array inside the default data model, the customer data model manufactured its data
single static array, eliminating the duplication for the cards in each suit. The result
was a smaller, faster application that would exhibit even better performance as the
size of the data model increases.

 In the third segment of this chapter, we examined custom rendering, which
allowed us to add pizzazz to the revamped card application. In the new sample,
each suit was represented by a graphic rendering of the correct symbol, and each
card in the tree displayed a graphic representing its value. Custom rendering
empowers us to create almost any sort of presentation we choose—be it color and
font changes (depending on what the tree is displaying), or the addition of ani-
mated graphics.

 Following custom rendering, we quickly studied the (closely related) editing
capabilities of JTree, which allow the user to modify the contents of nodes in the
tree hierarchy. By default, Swing supports editors for text fields, combo boxes, and
check boxes, but, with a bit more work, new TreeCellRender classes can be imple-
mented to support other types of editing.

 Finally, we looked at some of the subtler, but no less important, aspects of
Swing’s JTree. With the addition of just a few lines of code, an application can
present a tree without a root node, programmatically expanding or collapsing
selected nodes.

 In the next chapter, we will complete our examination of the Swing compo-
nents by taking an in-depth look at the table component, sometimes referred to as a
spreadsheet component or a grid. Then, we will move into the final segment of this
book to discuss more advanced topics in Swing and the Java environment.

11Tables

In this chapter
■ Creating simple tables

■ Custom data models for tables

■ Custom table cell rendering

338 CHAPTER 11
Tables
For the final chapter of part 2, we will cover a particularly interesting topic—tables.
In the two previous chapters, you were introduced to Swing’s list box and graphical
tree controls, both of which are useful for displaying large amounts of data. But, in
many situations, they are inappropriate because they simply cannot display enough
data. So, in many applications, you will need to display a grid of data consisting of
rows and columns similar to a spreadsheet.

 Swing’s JTable control is a Java component that provides the power to present
large amounts of data in a simple two-dimensional display, and it supports custom
data modeling and display rendering. There is no equivalent to JTable in the stan-
dard AWT component library; however, many third-party venders do offer spread-
sheet components. Though JTable’s look is similar to these spreadsheet
components, it does not have the same feel. The JTable class has some limitations
that will prevent you from using it as a spreadsheet, but it supports many features
that make it superior to a simple spreadsheet component.

Use a consistent tabular presentation. There are style guides devoted en-
tirely to tables. Some of the rules are: centering and bolding column head-
ings, left aligning row headers and text, right aligning numerical data, and
bolding of totals. Acceptable deviations include aligning the column header
with the data below (for example, right aligning column headers with right
aligned numerical data below). Also, you will need to determine what hap-
pens to the data display when the user resizes columns—the view of the data
should remain contiguous. Whatever rules you follow or establish, be consis-
tent throughout your table implementation.

11.1 Basic table use

Like other advanced components in the Swing library, JTable implementations can
be as simple or as complex as you wish. For example, in its simplest form, you can
implement a JTable-based application with just a few lines of code, or, with much
more code, you can offer custom data modeling and display rendering. The results
are directly proportional to the amount of code you write.

 In this section, we will start by creating two simple examples. The first will
only display a small amount of data. In the second example, we will add scrolling
capability and implement some JTable features.

Basic table use 339
11.1.1 The simplest of table examples

This example contains code to generate a tree column table with four rows of
numerical data, and, as you will see, even in this simple example we get a lot of
functionality with very little code.

// Imports
import java.awt.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

 {
// Instance attributes used in this example
private JPanel topPanel;
private JTable table;
private JScrollPanescrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Simple Table Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create columns names
String columnNames[] = { "Column 1", "Column 2", "Column 3" };

// Create some data
String dataValues[][] =
{

{ "12", "234", "67" },
{ "-123", "43", "853" },
{ "93", "89.2", "109" },
{ "279", "9033", "3092" }

};

// Create a new table instance
table = new JTable(dataValues, columnNames);

// Add the table to a scrolling pane

Listing 11.1 Simple JTable sample source code

340 CHAPTER 11
Tables
 Listing 11.1 implements arrays containing the column names and sample data,
which are added to the table when it is constructed. The example also includes
scrolling capability with a simple call to the createScrollPaneForTable()

method.
 Figure 11.1 shows the execution results of this example. Clicking the left

mouse button on an individual cell will highlight the entire row and select the indi-
vidual cell (notice the select rectangle surrounding the 89.2 value. The example
appears quite simple at first, but there is more than meets the eye.

 If you reduce the height of the window, the vertical scroll bar appears by
default. Resizing the frame in the horizontal direction automatically adds the hori-
zontal scroll bar. Another feature that the application inherits is the ability to reor-
ganize and resize the columns. For example, placing the mouse pointer on a

scrollPane = table.createScrollPaneForTable(table);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 11.1 Simple JTable sample source code (continued)

Figure 11.1 Simple JTable sample output

Basic table use 341
column name and dragging it (with the left mouse button pressed) allows the entire
column to be moved to a new position. When the mouse button is released, the
selected column is dropped into its new location and the entire table is repainted to
accommodate the adjustment. Placing the mouse pointer on the vertical separator
between two column headers causes the pointer to change to a resize indicator.
Holding down the left mouse button while dragging resizes the columns.

11.1.2 A more complex table example

Many JTable features (column movement, and so forth) are enabled by default, so
even our simple example was more advanced than we might have expected. Our
second example shows a few of the somewhat more advanced features of the
JTable class.

 This example builds on the first by using loader methods to load an array of
eight columns by one hundred rows. Additionally, the table is configured to show
only the vertical grid lines and to allow simultaneous row and column selection.
Listing 11.2 contains all of the source code for this example.

// Imports
import java.awt.*;
import java.util.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class TestFrame
extends JFrame

{
// Instance attributes used in this example
private JPanel topPanel;
private JTable table;
private JScrollPanescrollPane;

private String columnNames[];
private String dataValues[][];

// Constructor of main frame

public TestFrame()
{

// Set the frame characteristics
setTitle("Advanced Table Application");

Listing 11.2 More complex JTable sample source code

342 CHAPTER 11
Tables
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create columns
CreateColumns();
CreateData();

// Create a new table instance
table = new JTable(dataValues, columnNames);

// Configure some of JTable's parameters
table.setShowHorizontalLines(false);
table.setRowSelectionAllowed(true);
table.setColumnSelectionAllowed(true);

// Change the selection color
table.setSelectionForeground(Color.white);
table.setSelectionBackground(Color.red);

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

public void CreateColumns()
{

// Create column string labels
columnNames = new String[8];

for(int iCtr = 0; iCtr < 8; iCtr++)
columnNames[iCtr] = "Col:" + iCtr;

}

public void CreateData()
{

// Create data for each element
dataValues = new String[100][8];

for(int iY = 0; iY < 100; iY++)
{

for(int iX = 0; iX < 8; iX++)
{

dataValues[iY][iX] = "" + iX + "," + iY;

Listing 11.2 More complex JTable sample source code (continued)

Basic table use 343
 Figure 11.2 shows the result produced by executing this code. Notice that
with this example, when an individual cell is selected, a cross-hair selection pattern
is formed, centered around the selected cell. In this sample, the foreground and
background colors for the selection region have been altered for effect (JTable sup-
ports color changes for the selection area).

}
}

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 11.2 More complex JTable sample source code (continued)

Figure 11.2 More complex JTable sample output

344 CHAPTER 11
Tables
This example implements a relatively large array of data. The JTable class
in the 1.0 release of Swing does not handle large data particularly well,
resulting in generally poor performance. If your application demands
large arrays (more than 2,000 elements), you should probably consider a
grid component from a third-party vendor.

11.2 Adding a custom data model

As with other most other Swing components, JTable supports the replacement of
its data model in order to improve performance or to help reduce the size of the
code required for a given application. The custom data model feature used in
JTable is actually simpler than the one used for (for example) the JTree class
because JTable manages a simple two-dimensional matrix of data rather than a con-
voluted array of nested information. With a custom data model, JTable supports
additional data elements for each cell (used, typically, with custom data rendering to
control how cells are displayed).

 In this section, we will examine the benefits of supporting a custom data
model for JTable. The example in this section will demonstrate the ease with which
a custom data model can be implemented, its better performance, and its extended
functionality. Later in this chapter, we will use custom data modeling in a more
practical example when we link custom data modeling with custom data rendering
to embed a hierarchical data tree into a column of a JTable instance. For now, we
will stick to the basics.

11.2.1 A simple data model example

The most useful example of a custom data model for JTable can be found by re-
engineering the code from listing 11.2. In this example, we will build a new applica-
tion that uses a custom data model but produces exactly the same results as listing
11.2. Though the output looks the same as the one shown previously, it offers
much better performance, particularly as the size of the data set grows. Listing
11.3A contains the code for the main frame class, which is a modified version of the
previous example.

 Notice that in this source code listing, the CreateData() method has been
removed—it is no longer required because the custom data model generates the
data set. Also, the CreateColumns() method has been changed. Since the code no

Adding a custom data model 345
// Imports
import java.awt.*;
import java.util.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class TestFrame
extends JFrame

 {
// Instance attributes used in this example
private JPanel topPanel;
private JTable table;
private JScrollPanescrollPane;

private String columnNames[];
private String dataValues[][];

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Custom Table Data Model Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the custom data model
CustomDataModel customDataModel = new CustomDataModel();

// Create a new table instance
table = new JTable(customDataModel);

// Create columns
CreateColumns();

// Configure some of JTable's parameters
table.setShowHorizontalLines(false);
table.setRowSelectionAllowed(true);
table.setColumnSelectionAllowed(true);

// Change the selection color
table.setSelectionForeground(Color.white);
table.setSelectionBackground(Color.red);

Listing 11.3A Custom data modeling JTable sample source code

346 CHAPTER 11
Tables
longer uses an instance of the DefaultDataModel class (instantiated automatically
by JTable in the previous example), the application is now required to create its
own columns. To accomplish this, the CreateColumns() method reverts to first
principles by creating an instance of a TableColumn object and populating it with
the appropriate text before adding it to the table. Also, since the example now gen-
erates its own column data, it notifies the table not to attempt to determine this
information from the data. It does this by calling JTable’s setAutoCreateColumns-

FromModel() method.
 Listing 11.3B holds the code for the custom data model, which extends the

AbstractTableModel class and provides four methods called by the JTable code
when data is accessed. Since the data model is now synthesized, the getValueAt()

method simply determines the row and column being accessed and generates a
string representing the cell data.

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

public void CreateColumns()
{

// Say that we are manually creating the columns
table.setAutoCreateColumnsFromModel(false);

for(int iCtr = 0; iCtr < 8; iCtr++)
{

// Manually create a new column
TableColumn column = new TableColumn(iCtr);
column.setHeaderValue((Object)("Col:" + iCtr));

// Add the column to the table
table.addColumn(column);

}
}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 11.3A Custom data modeling JTable sample source code (continued)

Adding a custom data model 347
 The getColumnCount() method returns a value of zero, which may not be
what you expected. Remember, though, that this method returns the number of
columns managed by the table code. In the CreateColumns() method in listing
11.3A, we informed the table that it should not attempt to generate any of its own
columns. As a result, the value of getColumnCount() is zero.

 As indicated previously, custom data models are much more useful when used
in conjunction with custom rendering. In the next section, we will discuss render-
ing, and, in the last section of this chapter, we will merge both topics to create an
interesting and powerful application.

// Imports
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class CustomDataModel
extends AbstractTableModel

{

public Object getValueAt(int iRowIndex, int iColumnIndex)
{

return "" + iColumnIndex + "," + iRowIndex;
}

public void setValueAt(Object aValue, int iRowIndex,
int iColumnIndex)

{
// All data is manufactured - nothing to do here

}

public int getColumnCount()
{

// Return 0 because we handle our own columns
return 0;

}

public int getRowCount()
{

// Return the number of rows in this table
return 500;

}
}

Listing 11.3B CustomDataModel source code

348 CHAPTER 11
Tables
11.3 Adding custom rendering

With other Swing user interface classes, we discussed techniques to add custom ren-
dering support. This usually involves creating a new rendering object that extends
an abstract class supplied by Swing. With the JTable class, rendering is accom-
plished using a mechanism similar to the other Swing classes we have seen. If you
are comparing JTable to most third-party grid components, the greater flexibility of
JTable rendering is obvious because it allows developers more display options for
the contents of each cell.

 In this section, we will generate some sample code to demonstrate the sorts of
things you can accomplish with custom rendering. As usual, we will begin simply
and continue to build on the sample to include the full complement of rendering
features. Since we have already seen much of the actual rendering code, only the
rendering engine for the JTable will be new to you.

11.3.1 Simple table cell rendering

Let’s start by looking at an example program that implements a custom rendered
JTable. The sample presented here implements the custom rendering on top of the
modified code from the first example in this chapter. Instead of displaying numeri-
cal (X, Y) data, the code revisits the card deck example from the previous chapter;
however, the display is in tabular form rather than in a tree. Each column represents
a suit in the deck, with each cell drawn as a graphical suit and a card number.

 Listing 11.4A contains the code for the main frame of the application. The
only significant notable in this file is the call the JTable’s setCellRenderer()

method, which informs the table object that all of its drawing will be handled by an
external rendering class.

// Imports
import java.awt.*;
import java.util.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class TestFrame
extends JFrame

 {
// Instance attributes used in this example

Listing 11.4A Custom rendering JTable sample source code

Adding custom rendering 349
private JPanel topPanel;
private JTable table;
private JScrollPane scrollPane;

private String columnNames[];
private String dataValues[][];

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Custom Cell Rendering Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the custom data model
CustomDataModel customDataModel = new CustomDataModel();

// Create a new table instance
table = new JTable(customDataModel);

// Create columns
CreateColumns();

// Configure some of JTable's parameters
table.setShowHorizontalLines(false);
table.setRowSelectionAllowed(true);
table.setColumnSelectionAllowed(true);

// Change the selection color
table.setSelectionForeground(Color.white);
table.setSelectionBackground(Color.red);

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

public void CreateColumns()
{

// Say that we are manually creating the columns
table.setAutoCreateColumnsFromModel(false);
for(int iCtr = 0; iCtr < 8; iCtr++)
{

Listing 11.4A Custom rendering JTable sample source code (continued)

350 CHAPTER 11
Tables
 Listing 11.4B contains the code for the custom table cell renderer, implement-
ing a method named getTableCellRendererComponent() to handle the drawing
of individual cells. This method determines if the item it is drawing is selected or
has the focus, and uses this information to control the foreground color. Because of
the restrictions noted in a previous chapter with regard to painting the background
color, this class also provides a paint() method, which uses the selection and focus
flags as well.

 The developers of Swing wisely decided to design custom rendering to ensure
as much commonality as possible between the various user interface components.
For this reason, you should notice remarkable similarities between the custom ren-
derer presented here and those shown in previous chapters. You may observe that
the code in listing 11.4B does not change the font, but we implemented this capa-
bility in the JList rendering example in chapter 9. You can duplicate the font chang-
ing code in this example, if desired.

// Manually create a new column
TableColumn column = new TableColumn(iCtr);
column.setHeaderValue((Object)("Col:" + iCtr));

// Add a cell renderer for this class
column.setCellRenderer(new CustomCellRenderer());

// Add the column to the table
table.addColumn(column);

}
}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

Listing 11.4B CustomCellRender source code

Listing 11.4A Custom rendering JTable sample source code (continued)

Adding custom rendering 351
class CustomCellRenderer
extends JLabel
implements TableCellRenderer

{
private boolean isSelected;
private boolean hasFocus;
private ImageIcon[]suitImages;

public CustomCellRenderer()
{

suitImages = new ImageIcon[4];
suitImages[0] = new ImageIcon("clubs.gif");
suitImages[1] = new ImageIcon("diamonds.gif");
suitImages[2] = new ImageIcon("spades.gif");
suitImages[3] = new ImageIcon("hearts.gif");

}

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected, boolean hasFocus,
int row, int column)

{
StringsText = (String)value;
this.isSelected = isSelected;
this.hasFocus = hasFocus;

if(isSelected)
setForeground(Color.red);

else
setForeground(Color.black);

if(hasFocus)
setForeground(Color.cyan);

setIcon(suitImages[column]);

setText("" + row);
return this;

}

// This is a hack to paint the background. Normally, a JLabel can
// paint its own background, but due to an apparent bug or
// limitation in the TreeCellRenderer, the paint method is
// required to handle this.
public void paint(Graphics g)
{

Color bColor;
Icon currentI = getIcon();

// Set the correct background color

Listing 11.4B CustomCellRender source code (continued)

352 CHAPTER 11
Tables
 The application implemented in listings 11.4A, 11.4B, and 11.4C also
includes a custom data model, which is similar to previous examples. The only dif-
ference is in the number of rows in the model—thirteen, in this case. Listing 11.4C
is provided only for reference.

if(isSelected)
bColor = Color.cyan;

else
bColor = Color.white;

if(hasFocus)
bColor = Color.red;

g.setColor(bColor);

// Draw a rectangle in the background of the cell
g.fillRect(0, 0, getWidth() - 1, getHeight() - 1);

super.paint(g);
}

}

// Imports
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class CustomDataModel
extends AbstractTableModel

{

public Object getValueAt(int iRowIndex, int iColumnIndex)
{

return "" + iColumnIndex + "," + iRowIndex;
}

public void setValueAt(Object aValue, int iRowIndex,
int iColumnIndex)

{
// All data is manufactured - nothing to do here

}

public int getColumnCount()
{

// Return 0 because we handle our own columns
return 0;

Listing 11.4C CustomDataModel source code

Listing 11.4B CustomCellRender source code (continued)

Rendering column headers 353
 Figure 11.3 shows the output produced by this program. Each cell contains
the individual card value, though, in this example, card numbers start at zero and
there are no face cards. Since much of the data, particularly the graphics, are repli-
cated from one cell to the next, the example is not particularly practical. The only
purpose of this example is to demonstrate that each cell can be individually dis-
played. You can easily draw completely different graphic images for each cell.

 In the last section of this chapter, we will create a more interesting example in
which a column of the table will be rendered as a hierarchical tree. This will require
a more complex data model, and, in order to represent the model graphically, we
will need to implement a more advanced custom cell renderer.

11.4 Rendering column headers

In the previous section, you saw how to render the individual cells of a table, but
tables also contain another key piece of information—the column headers. By
default, JTable renders a column header as a gray box with black text and a beveled
border—not particularly inspiring. Fortunately, a table column header is really just
another type of cell, and, as such, we can modify it to suit our own needs.

}

public int getRowCount()
{

return 13;
}

}

Listing 11.4C CustomDataModel source code

Figure 11.3
Custom renderer program output

354 CHAPTER 11
Tables
 In this section, we will discuss rendering techniques for the column headers of
a JTable instance. As you will see, the syntax for accomplishing this is just a slight
modification of our previous cell rendering examples. In fact, we could render the
headers using the same code if we wanted to, but, in the examples presented in this
section, we will exploit more interesting aspects of the column header.

11.4.1 Simple header rendering

Listing 11.5A shows the source code for the main frame of the header rendering
application. This code is virtually identical to the code in the previous example,
except that, in this case, the call to setCellRender() in the CreateColumns() class
method has been replaced with a call to JTable’s setHeaderRender() method. This
new method call informs the table instance that the specified rendering class is tak-
ing responsibility for drawing the column headers.

// Imports
import java.awt.*;
import java.util.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class TestFrame
extends JFrame

{
// Instance attributes used in this example
private JPanel topPanel;
private JTable table;
private JScrollPane scrollPane;

private String columnNames[];
private String dataValues[][];

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Custom Header Rendering Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());

Listing 11.5A Custom header rendering sample frame source code

Rendering column headers 355
getContentPane().add(topPanel);

// Create the custom data model
CustomDataModel customDataModel = new CustomDataModel();

// Create a new table instance
table = new JTable(customDataModel);

// Create columns
CreateColumns();

// Configure some of JTable's parameters
table.setShowHorizontalLines(false);
table.setRowSelectionAllowed(true);
table.setColumnSelectionAllowed(true);

// Change the selection color
table.setSelectionForeground(Color.white);
table.setSelectionBackground(Color.red);

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

public void CreateColumns()
{

// Say that we are manually creating the columns
table.setAutoCreateColumnsFromModel(false);

for(int iCtr = 0; iCtr < 4; iCtr++)
{

// Manually create a new column
TableColumn column = new TableColumn(iCtr);
column.setHeaderValue((Object)("Col:" + iCtr));

// Add a cell renderer for this class
column.setHeaderRenderer(new CustomHeaderRenderer());

// Add the column to the table
table.addColumn(column);

}
}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();

Listing 11.5A Custom header rendering sample frame source code (continued)

356 CHAPTER 11
Tables
 The actual header rendering class, CustomHeaderRenderer, is shown in listing
11.5B. Since a column header is just a specialized type of cell, it makes sense that
this class implements a TableCellRender . However, in the getTableCellRen-

dererComponent() method, we can ignore the row value and the boolean flag con-
taining the selection and focus state.

 The rendering code first sets the alignment of the text and icon such that the
text will be positioned underneath the icon and both attributes will be centered
within the header label. Next, a border is applied which, in this case, is a titled bor-
der showing the true column label used in the table. Finally, the method performs a
bit of its own data modeling by determining the column (0 through 3) and assign-
ing the label text to the appropriate card suit.

mainFrame.setVisible(true);
}

}

import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;
import com.sun.java.swing.table.*;

class CustomHeaderRenderer
extends JLabel
implements TableCellRenderer

{
private boolean isSelected;
private boolean hasFocus;
private ImageIcon[]suitImages;

public CustomHeaderRenderer()
{

suitImages = new ImageIcon[4];
suitImages[0] = new ImageIcon("clubs.gif");
suitImages[1] = new ImageIcon("diamonds.gif");
suitImages[2] = new ImageIcon("spades.gif");
suitImages[3] = new ImageIcon("hearts.gif");

}

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected, boolean hasFocus,

Listing 11.5B CustomHeaderRenderer source code

Listing 11.5A Custom header rendering sample frame source code (continued)

Rendering column headers 357
This example also requires the CustomDataModel.java file shown in the pre-
vious example. Since this file is unchanged from the one shown in listing
11.4C, it has been omitted.

int row, int column)
{

// Retreive the text to display
StringsText = (String)value;

// Set all sorts of interesting alignment options
setVerticalAlignment(SwingConstants.CENTER);
setHorizontalAlignment(SwingConstants.CENTER);
setHorizontalTextPosition(SwingConstants.CENTER);
setVerticalTextPosition(SwingConstants.BOTTOM);

// Assign a border
setBorder(new TitledBorder(new EtchedBorder(), sText));

// Populate the icon and text
setIcon(suitImages[column]);

// Set the text to the correct suit
switch(column)
{

case 0:
setText("Clubs");
break;

case 1:
setText("Diamonds");
break;

case 2:
setText("Hearts");
break;

case 3:
setText("Spades");
break;

}

return this;
}

}

Listing 11.5B CustomHeaderRenderer source code (continued)

358 CHAPTER 11
Tables
 Figure 11.4 illustrates the output produced by this example. Notice the dra-
matic difference between the headers shown here and those of the default JTable
rendering engine. Like table cells, the possibilities for the content of custom ren-
dered headers is virtually limitless—you can display just about anything you wish to,
even if you use only the simple JLabel derivative shown in the previous two examples.

11.5 Listening for table actions

In all of the shown examples so far in this chapter, no effort has been made to
detect changes in the characteristics or attributes of the table. Many situations
demand that the application immediately detect changes initiated by the user, so,
we need to examine the mechanisms supported by JTable to recognize user activity.
These events can be sorted into two basic categories: cell selections made by the
user, and user-invoked changes to the table itself. In this section, we will examine
the possible actions that a Swing-based table object generates, and we will develop
some simple examples to demonstrate how to listen for and handle these actions.

11.5.1 Detecting table selections

The first type of action we will study is the user-invoked selection, which usually
involves a mouse click to select a single cell or a drag operation to select a range of
values from the table. In chapter 10, we created an application containing a JList
instance, and implemented a ListSelectionListener to handle selections. JTable
and JList share many common concepts and, fortunately, implement selection lis-
teners in exactly the same way. You already know how to detect user selections in a

Figure 11.4
Custom header renderer program output

Listening for table actions 359
JTable, so, all we need to do here is to develop a simple example which includes
user-invoked selections.

// Imports
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;
import com.sun.java.swing.table.*;

class TestFrame
extends JFrame
implements ListSelectionListener

 {
// Instance attributes used in this example
private JPanel topPanel;
private JTable table;
private JScrollPanescrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Simple Table Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create columns names
String columnNames[] = { "Column 1", "Column 2", "Column 3" };

// Create some data
String dataValues[][] =
{

{ "12", "234", "67" },
{ "-123", "43", "853" },
{ "93", "89.2", "109" },
{ "279", "9033", "3092" }

};

// Create a new table instance
table = new JTable(dataValues, columnNames);

// Handle the listener

Listing 11.7 Table selection example source code

360 CHAPTER 11
Tables
 Listing 11.7 illustrates code implementing the cell selection mechanism pro-
vided by the JTable class. To enable selection events, the code adds a ListSelec-

tionListener to the table’s selection model. This is accomplished by executing the
following code:

// Handle the listener
ListSelectionModel selectionModel = table.getSelectionModel();
selectionModel.addListSelectionListener(this);

ListSelectionModel selectionModel = table.getSelectionModel();
selectionModel.addListSelectionListener(this);

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Handler for list selection changes
 public void valueChanged(ListSelectionEvent event)
 {
 // See if this is a valid table selection

if(event.getSource() == table.getSelectionModel()
&& event.getFirstIndex() >= 0)

{
// Get the data model for this table
DefaultTableModel model =

(DefaultTableModel)table.getModel();

// Determine the selected item
String string = (String)model.getValueAt(

table.getSelectedRow(),
table.getSelectedColumn());

// Display the selected item
System.out.println("Value selected = " + string);

}
 }

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 11.7 Table selection example source code (continued)

Listening for table actions 361
 The valueChanged() method is required in order to implement ListSelec-

tionListener . In this example, this method first determines if the event originates
from our JTable instance’s selection model, and then it ensures that the event refer-
ences a valid selection. To access the selected cell, the code references the table’s
data model and simply extracts the data based on the selected row and column.

11.5.2 Detecting column property changes

The second significant series of events produced by table activity relate to manipula-
tions of the column presentation. Any time the user moves a column from one place
to another, or adds a new column, the table generates an event—more specifically a
column model change event. To intercept these events, a listener must be associated
with the table’s column model. This is done using the following code:

// Handle the listener
DefaultTableColumnModel columnModel =

(DefaultTableColumnModel)table.getColumnModel();
columnModel.addColumnModelListener(this);

 Then all that remains is the implementation of the column model listener
methods:

public void columnAdded(TableColumnModelEvent event)
public void columnRemoved(TableColumnModelEvent event)
public void columnMoved(TableColumnModelEvent event)
public void columnMarginChanged(ChangeEvent event)
public void columnSelectionChanged(ListSelectionEvent event)

 Let’s take a look at an example that demonstrates the implementation of a col-
umn model listener and its association to a table. Listing 11.8 shows the source
code to implement the methods required to support the TableColumnModelLis-

tener interface.

// Imports
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.event.*;
import com.sun.java.swing.table.*;

class TestFrame
extends JFrame
implements TableColumnModelListener

Listing 11.8 Column property change example

362 CHAPTER 11
Tables
 {
// Instance attributes used in this example
private JPanel topPanel;
private JTable table;
private JScrollPanescrollPane;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Simple Table Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create columns names
String columnNames[] = { "Column 1", "Column 2", "Column 3" };

// Create some data
String dataValues[][] =
{

{ "12", "234", "67" },
{ "-123", "43", "853" },
{ "93", "89.2", "109" },
{ "279", "9033", "3092" }

};

// Create a new table instance
table = new JTable(dataValues, columnNames);

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
topPanel.add(scrollPane, BorderLayout.CENTER);

// Handle the listener
DefaultTableColumnModel columnModel =

(DefaultTableColumnModel)table.getColumnModel();
columnModel.addColumnModelListener(this);

}

// Handler called when a column is added
public void columnAdded(TableColumnModelEvent event)
{

System.out.println("columnAdded");

Listing 11.8 Column property change example (continued)

Listening for table actions 363
}

// Handler called when a column is removed
public void columnRemoved(TableColumnModelEvent event)
{

System.out.println("columnRemoved");
}

// Handler called when a column is moved
public void columnMoved(TableColumnModelEvent event)
{

System.out.println("columnMoved");
}

// Handler called when the column margin is changed
public void columnMarginChanged(ChangeEvent event)
{

int iColumn = table.getSelectedColumn();
if(iColumn >= 0)
{

System.out.println("columnMarginChanged=" + iColumn);
}

}

// Handler called when the column selection changes
public void columnSelectionChanged(ListSelectionEvent event)
{

int iColumn = table.getSelectedColumn();
if(iColumn >= 0)
{

System.out.println("columnSelectionChanged=" + iColumn);
}

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 11.8 Column property change example (continued)

364 CHAPTER 11
Tables
11.6 Other tips and tricks

We have now covered all of the important aspects of Swing JTable, and you should
now be familiar enough with it to create some interesting applications using this
powerful class. But there are few more tips and tricks that will help you make better
use of JTable. In this section, we will briefly discuss some of the more subtle issues
regarding tables and some simple techniques you can apply to help create more
appealing applications.

11.6.1 Eliminating the annoying gray background

You may have noticed, from the examples in this chapter, that if you stretch out a
frame containing an instance of JTable, you will see a gray background. None of the
applications in this chapter custom-colored this background, so, there it is—by
default. It will quickly become annoying to the user, especially if the table has a
white background. Eliminating this annoying gray background from your applica-
tions is really quite simple, once you understand its origin.

 In all of the examples presented in this chapter, the JTable instance was
inserted into a scrolling pane created for us by the table itself when the create-

ScrollPaneForTable() method was called. The gray background, shown when the
frame area is larger than the table component, is actually the background color of
the scrolling pane, and it can easily be changed. In the examples in this chapter, the
source code to create the scrolling pane appears like this:

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
topPanel.add(scrollPane, BorderLayout.CENTER);

To eliminate the gray background, modify this code so it now looks like:

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
scrollPane.getViewport().setBackground(Color.white);
topPanel.add(scrollPane, BorderLayout.CENTER);

 This code applies the white color to the background of the scrolling pane’s
viewport, and that corrects the problem. Note that, if your application is rendering
cells with a different background color, change the Color.white in the code above
to the correct color for your cell background.

Other tips and tricks 365
11.6.2 Intercepting mouse and keyboard events

In some situations (you will see one in the next section), you need to have addi-
tional control over the table to perform special tasks. For example the application
may perform a special task when the mouse is positioned over a particular column
or cell, or you may want to handle a special keyboard sequence. By default, the
JTable class does not give you this capability, so, in order to handle the mouse or
keyboard, some alternative method must be developed.

 Fortunately, JTable is a Java class, and, like any other class, it can be sub-
classed. Sub-classing allows the developer to take control of normally unsupported
aspects of the JTable control, including special mouse and keyboard handling. Con-
sider the following code snippet:

class MyTable
extends JTable
implements MouseListener

{

public MyTable(DefaultDataModel model)
{

super(model);

// Configure the table
setFont(new Font("Helvetica", Font.PLAIN, 12));
setColumnSelectionAllowed(false);
setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
setShowGrid(false);
setIntercellSpacing(new Dimension(0, 1));
setAutoCreateColumnsFromModel(false);
sizeColumnsToFit(true);

// Prevent table column reordering
JTableHeader header = getTableHeader();
header.setUpdateTableInRealTime(false);
header.setReorderingAllowed(false);

// Attach a mouse listener
addMouseListener(this);

}

public void mouseClicked(MouseEvent e)
{

int iMouseX = e.getX();
int iMouseY = e.getY();

int iSelectedColumn = columnAtPoint(
new Point(iMouseX, iMouseY));

int iSelectedRow = rowAtPoint(new Point(iMouseX, iMouseY));

366 CHAPTER 11
Tables
.

.

.
}

public void mouseEntered(MouseEvent e)
{
}

public void mouseExited(MouseEvent e)
{
}

public void mousePressed(MouseEvent e)
{
}

public void mouseReleased(MouseEvent e)
{
}
}

 This subclass of JTable allows custom configuration of the table within the
constructor, and it also implements a mouse listener. The example partially imple-
ments the mouseClicked() method in order to show you how to convert a mouse
position into an absolute cell location. With this information, you can perform any
special task you require, and the next section will present an example of some code
where this is necessary.

11.7 Putting it all together

Since you now know almost everything you need to regarding the JTable class, we
can developer a much more intricate application based on this powerful class. In this
section, we will create an application that employs all of the features we have covered
in this chapter. These features include custom rendering, custom data models, mouse
interactions, and a host of special tricks. The finished product will be an example
from which you can extract any parts that are suitable for your own applications.

 This example creates a simulated server-administrator application which uses a
JTable instance to display server information, including the server site name, an
associated location, and a server status. All of the server information is fabricated for
this example—the emphasis of this code is to demonstrate the capabilities of JTable.
The user interface presentation includes columns of information and a hierarchical
tree; however, due to limitations of the JTable class, we cannot simply insert an

Putting it all together 367
instance of JTree. Instead, the code presented in this section implements a rudi-
mentary tree display for the first column of the table.

 Listing 11.9A contains the code for the main applications frame. It creates an
instance of the custom data model class (CustomDataModel) and populates it with
data. We will see the implementation for this class later. Next, the main frame cre-
ates an instance of the subclassed table (MyTable), assigning the data model to it.
The code in this listing should be relatively straightforward, since it is simply a
modified version of the frame code presented in previous examples in this chapter.

// Imports
import java.awt.*;
import java.util.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class TestFrame
extends JFrame

{
// Instance attributes used in this example
private JPanel topPanel;
private JTable table;
private JScrollPanescrollPane;

private String columnNames[];
private String dataValues[][];

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Advance JTable Application");
setSize(500, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create the custom data model and insert some data
CustomDataModel customDataModel = new CustomDataModel();

int iParent = customDataModel.InsertParent("JavaSoft",
"www.javasoft.com", "OK");

Listing 11.9A Advanced JTable main frame source code

368 CHAPTER 11
Tables
customDataModel.InsertChild(iParent, "Developer Tools",
"/developer", "OK");

customDataModel.InsertChild(iParent, "Products",
"/products", "Unavailable");

customDataModel.InsertChild(iParent, "Marketing",
"/marketing", "OK");

iParent = customDataModel.InsertParent("Netscape",
"www.netscape.com", "OK");

customDataModel.InsertChild(iParent, "Products",
"/products", "OK");

customDataModel.InsertChild(iParent, "Client Tools",
"/navigator", "Unavailable");

customDataModel.InsertChild(iParent, "Server Tools",
"/servers", "OK");

iParent = customDataModel.InsertParent("Microsoft",
"www.microsoft.com", "Delayed");

customDataModel.InsertChild(iParent, "Operating Systems",
"/windows", "OK");

customDataModel.InsertChild(iParent, "Java",
"/java", "Unavailable");

customDataModel.InsertChild(iParent, "Games",
"/games", "OK");

customDataModel.InsertChild(iParent, "Office97",
"/office", "OK");

// Create a new table instance
table = new MyTable(customDataModel);

// Add the table to a scrolling pane
scrollPane = table.createScrollPaneForTable(table);
scrollPane.getViewport().setBackground(Color.white);
topPanel.add(scrollPane, BorderLayout.CENTER);

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 11.9A Advanced JTable main frame source code (continued)

Putting it all together 369
 The code shown in listing 11.9B implements a new table class called MyTable,
which has been subclassed from the Swing JTable class. This new class also imple-
ments a MouseListener to detect mouse clicks in the table. This code in necessary
to determine when the user clicks on the tree expansion button (the +/- box in the
image) associated with server nodes in the tree.

 The constructor configures the table as specified and creates the columns
(Server, Location, and Status). For each of these columns, the code assigns a cus-
tom cell renderer and a header renderer. Finally, the constructor adds a mouse lis-
tener to intercept mouse clicks from the user.

 The mouseClicked() method converts the mouse location to a table row/col-
umn position to ensure that the click occurred in the first column (we ignore clicks
elsewhere). Next, this method determines if the click occurred within the area occu-
pied by the expansion button. If it does, the code expands or collapses the tree, as
required.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class MyTable
extends JTable
implements MouseListener

{
private CustomDataModelmodel = null;

public MyTable(CustomDataModel model)
{

super(model);

this.model = model;

// Configure the table
setFont(new Font("Helvetica", Font.PLAIN, 12));
setColumnSelectionAllowed(false);
setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
setShowGrid(false);
setIntercellSpacing(new Dimension(0, 1));
setAutoCreateColumnsFromModel(false);
sizeColumnsToFit(true);

// Prevent table column reordering

Listing 11.9B MyTable class source code

370 CHAPTER 11
Tables
JTableHeader header = getTableHeader();
header.setUpdateTableInRealTime(false);
header.setReorderingAllowed(false);

// Added our columns into the column model
TableColumn newColumn = new TableColumn();
newColumn.setCellRenderer(new CustomCellRenderer(model));
newColumn.setHeaderValue("Server");
newColumn.setHeaderRenderer(new CustomHeaderRenderer());
addColumn(newColumn);

newColumn.setCellRenderer(new CustomCellRenderer(model));
newColumn.setHeaderValue("Location");
newColumn.setHeaderRenderer(new CustomHeaderRenderer());
addColumn(newColumn);

newColumn.setCellRenderer(new CustomCellRenderer(model));
newColumn.setHeaderValue("Status");
newColumn.setHeaderRenderer(new CustomHeaderRenderer());
addColumn(newColumn);

// Attach a mouse listener
addMouseListener(this);

}

public void mouseClicked(MouseEvent e)
{

int iMouseX = e.getX();
int iMouseY = e.getY();

int iSelectedColumn = columnAtPoint(
new Point(iMouseX, iMouseY));

int iSelectedRow = rowAtPoint(new Point(iMouseX, iMouseY));

if(iSelectedRow >= 0 && iSelectedRow < model.getRowCount())
{

// Get the type of service we are rendering
MyTableNode node = (MyTableNode)

model.vectorDisplayService.elementAt(iSelectedRow);

// Test to see if the user clicked on the
// expand/collapse button
if(iSelectedColumn == 0 && iMouseX >= 4 && iMouseX <= 12

&& node.typeString.equals(model.SERVER))
{

// Expand the tree
if(node.iChildren == 0 && node.iActualChildren > 0)
{

Listing 11.9B MyTable class source code (continued)

Putting it all together 371
 Every row in the table loosely equates to a tree node, and contains the dis-
played information and data critical to controlling the graphical tree. Listing 11.9C
shows a structure used to hold the data for each row of the table. Note that there
are two types of nodes in the table: SERVER and RESOURCE.

model.ExpandParent(node);
repaint();

}
else if(node.iChildren > 0)
{

model.CollapseParent(node);
repaint();

}
}

}
}

public void mouseEntered(MouseEvent e)
{
}

public void mouseExited(MouseEvent e)
{
}

public void mousePressed(MouseEvent e)
{
}

public void mouseReleased(MouseEvent e)
{
}

}

class MyTableNode
{

public int iParentOffset;
public int iChildren; // Number of visible children
public int iActualChildren; // Number of children that the

// node actually has

public StringtypeString;

Listing 11.9C MYTableNode class source code

Listing 11.9B MyTable class source code (continued)

372 CHAPTER 11
Tables
 Listing 11.9D shows the code used to render the column headers for the table.
Similar code was shown in a previous example. This rendering code is completely
independent from the code used to render the cells.

public StringnameString;
public StringlocationString;
public StringstatusString;

public MyTableNode()
{

typeString = "";
nameString = "";
locationString = "";
statusString = "";

iParentOffset = 0;
iChildren = 0;
iActualChildren = 0;

}

public MyTableNode(MyTableNode node, int iOffset)
{

this.typeString = new String(node.typeString);
this.nameString = new String(node.nameString);
this.locationString = new String(node.locationString);
this.statusString = new String(node.statusString);

this.iParentOffset = iOffset;
this.iChildren = node.iChildren;
this.iActualChildren = node.iActualChildren;

}
}

import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;
import com.sun.java.swing.table.*;

class CustomHeaderRenderer
extends JLabel
implements TableCellRenderer

{

Listing 11.9D CustomHeaderRenderer class source code

Listing 11.9C MYTableNode class source code (continued)

Putting it all together 373
 The custom cell renderer is shown in listing 11.9E. This code, though it
appears complex, is actually quite similar to the cell renderer shown in a previous
listing. Since only the first column contains an image, the render determines if the
column being rendered is the server column. If so, a determination is made to
ensure that the correct icon is drawn—there is an icon for each possible state and
node type (icons depict: a server with no children, a server in an expanded state, a
server in a collapsed state, and two resource images). The final stage of the cell ren-
dering is to display the correct text in the cell. This is accomplished by extracting
the string information from the data structure of the node being rendered.

 The final source file in this example, shown in listing 11.9F, implements a class
called CustomDataModel. This class manages the data model used for the custom

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected, boolean hasFocus,
int row, int column)

{
// Retrieve the text to display
String sText = (String)value;

// Set all sorts of interesting alignment options
setVerticalAlignment(SwingConstants.CENTER);
setHorizontalAlignment(SwingConstants.LEFT);

// Assign a border
setBorder(new EtchedBorder());

// Set the text to the correct value
switch(column)
{

case 0:
setText("Server");
break;

case 1:
setText("Location");
break;

case 2:
setText("Status");
break;

}

return this;
}

}

Listing 11.9D CustomHeaderRenderer class source code

374 CHAPTER 11
Tables
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;
import com.sun.java.swing.table.*;

class CustomCellRenderer
extends JLabel
implements TableCellRenderer

{
private boolean isSelected;
private boolean hasFocus;
private CustomDataModel model;
private ImageIcon[] images;

public CustomCellRenderer(CustomDataModel model)
{

this.model = model;

// Create all of the images
images = new ImageIcon[5];
images[0] = new ImageIcon("server.gif");
images[1] = new ImageIcon("server+.gif");
images[2] = new ImageIcon("server-.gif");
images[3] = new ImageIcon("resource.gif");
images[4] = new ImageIcon("resource_last.gif");

}

public Component getTableCellRendererComponent(
JTable renderTable, Object value, boolean isSelected,
boolean hasFocus, int iRowIndex, int iColumnIndex)

{
MyTable table = (MyTable)renderTable;
this.hasFocus = hasFocus;
this.isSelected = isSelected;

if(iRowIndex < model.getRowCount())
{

// Get the node we are rendering
MyTableNode node = (MyTableNode)

model.vectorDisplayService.elementAt(iRowIndex);

// Draw the correct text color depending on the
// selection state
if(hasFocus || isSelected)

setForeground(Color.white);
 else

setForeground(Color.black);

Listing 11.9E CustomCellRenderer class source code

Putting it all together 375
// Draw the correct icon for this service
if(iColumnIndex == 0)
{

if(node.typeString.equals(model.SERVER))
{

// Get a reference to the shadow parent
int iShadowParent = model.GetShadowNode(

node.nameString, model.SERVER);
MyTableNode shadow = (MyTableNode)model.

vectorService.elementAt(iShadowParent);

if(node.iChildren == 0 && shadow.iChildren == 0)
setIcon(images[0]);

else if(node.iChildren == 0
&& shadow.iChildren > 0)

setIcon(images[1]);
else

setIcon(images[2]);
}
else
{

// Get a reference to the parent node
int iParent = iRowIndex - node.iParentOffset;
MyTableNode parent = (MyTableNode)model.

vectorDisplayService.elementAt(iParent);

if(iParent + parent.iChildren <= iRowIndex)
setIcon(images[4]);

else
setIcon(images[3]);

}
}
else

setIcon(null);

// Draw the node text
switch(iColumnIndex)
{

case 0:
setText(node.nameString);
break;

case 1:
setText(node.locationString);
break;

case 2:
setText(node.statusString);

Listing 11.9E CustomCellRenderer class source code (continued)

376 CHAPTER 11
Tables
table, including the data handling for the graphical tree. The first four methods in
the source file are required to implement a data model, and you have already seen
examples of these in a previous sample. The remaining methods manage the data
requirements of the graphical tree, including the capability to insert new parent
(SERVER) and child (RESOURCE) objects.

 We won’t exhaustively discuss the inner workings of this source file; however,
there is a particular point that needs clarification. The model includes two different
data vectors that appear to contain matching information, but, in fact, only one of
these vectors is guaranteed to hold a complete copy of the data for all nodes in the
tree. The other vector, vectorDisplayService , contains only those nodes that are
visible in the tree—child nodes hidden as a result of a collapsed tree are not con-
tained in this vector. All methods that access or manipulate data elements must
ensure that the data in both remains synchronized.

break;
}

}

return this;
}

// This is a hack to paint the background. Normally, a JLabel can
// paint its own background, but, due to an apparent bug or
// limitation in the TreeCellRenderer, the paint method is
// required to handle this.
public void paint(Graphics g)
{

Color bColor;

// Set the correct background color
if(isSelected || hasFocus)

bColor = Color.red;
else

bColor = Color.white;
g.setColor(bColor);

// Draw a rectangle in the background of the cell
g.fillRect(0, 0, getWidth(), getHeight() - 1);

super.paint(g);
}

}

Listing 11.9E CustomCellRenderer class source code (continued)

Putting it all together 377
// Imports
import java.util.*;
import java.io.*;
import com.sun.java.swing.*;
import com.sun.java.swing.table.*;

class CustomDataModel
extends AbstractTableModel

{
// Constant node types
public static String SERVER = "0";
public static String RESOURCE = "1";

// Vectored arrays to hold grid data
public VectorvectorService;
public VectorvectorDisplayService;

public CustomDataModel()
{

super();

// Create instances of the vector data arrays
vectorService = new Vector();
vectorDisplayService = new Vector();

}

public int getColumnCount()
{

// Return 0 because we handle our own columns
return 0;

}

public int getRowCount()
{

return vectorDisplayService.size();
}

public Object getValueAt(int iRowIndex, int iColumnIndex)
{

if(iRowIndex >= 0 && iRowIndex < vectorDisplayService.size())
{

// Get the node we are referencing
MyTableNode node = (MyTableNode)

vectorDisplayService.elementAt(iRowIndex);

switch(iColumnIndex)
{

case 0:

Listing 11.9F CustomCellRenderer class source code

378 CHAPTER 11
Tables
return node.nameString;
case 1:

return node.locationString;
case 2:

return node.statusString;
}

}

return "";
}

public void setValueAt(Object aValue,
int iRowIndex, int iColumnIndex)

{
// Get the node we are referencing
MyTableNode node = (MyTableNode)

vectorDisplayService.elementAt(iRowIndex);

switch(iColumnIndex)
{

case 0:
node.nameString = (String)aValue;
break;

case 1:
node.locationString = (String)aValue;
break;

case 2:
node.typeString = (String)aValue;
break;

}

// Update the node
vectorDisplayService.setElementAt(node, iRowIndex);

}

public synchronized int GetDisplayNode(
String string, String type)

{
MyTableNode node;
for(int iCtr = 0; iCtr < vectorDisplayService.size(); iCtr++)
{

node = (MyTableNode)vectorDisplayService.elementAt(iCtr);
if(node.nameString.equalsIgnoreCase(string)

&& node.typeString.equals(type))
return iCtr;

}
return -1;

Listing 11.9F CustomCellRenderer class source code (continued)

Putting it all together 379
}

public synchronized int GetShadowNode(
String string, String type)

{
MyTableNode node;
for(int iCtr = 0; iCtr < vectorService.size(); iCtr++)
{

node = (MyTableNode)vectorService.elementAt(iCtr);
if(node.nameString.equalsIgnoreCase(string)

&& node.typeString.equals(type))
return iCtr;

}
return -1;

}

// Expand the specified parent node
public void ExpandParent(MyTableNode node)
{

// Determine the parent offsets
int iParent = GetDisplayNode(node.nameString, SERVER);
int iShadowParent = GetShadowNode(node.nameString, SERVER);
MyTableNode shadow = (MyTableNode)

vectorService.elementAt(iShadowParent);

if(shadow.iChildren > 0)
{

// Reinsert the children
MyTableNode child;
for(int iCtr = 0; iCtr < shadow.iChildren; iCtr++)
{

// Insert items from the shadow parent back into the
// display parent record
child = (MyTableNode)new MyTableNode((MyTableNode)

vectorService.elementAt(iShadowParent
+ iCtr + 1), iCtr + 1);

vectorDisplayService.insertElementAt(child,
iParent + iCtr + 1);

}

// Update the parent record
node.iChildren = shadow.iChildren;
vectorDisplayService.setElementAt(node, iParent);

}
}

// Collapse the specified parent node

Listing 11.9F CustomCellRenderer class source code (continued)

380 CHAPTER 11
Tables
public void CollapseParent(MyTableNode node)
{

// Determine the parent offsets
int iParent = GetDisplayNode(node.nameString, SERVER);

// Remove any children
for(int iCtr = node.iChildren; iCtr > 0; iCtr--)

vectorDisplayService.removeElementAt(iParent + iCtr);

// Update the parent record
node.iChildren = 0;
vectorDisplayService.setElementAt(node, iParent);

}

// Insert a new parent node into the tree
public int InsertParent(String nameString,

String locationString, String statusString)
{

// Create a new child record
MyTableNode node = (MyTableNode)new MyTableNode();
node.typeString = SERVER;
node.nameString = nameString;
node.locationString = locationString;
node.statusString = statusString;
vectorDisplayService.addElement(node);

// Add data to the shadow data area
node = (MyTableNode)new MyTableNode();
node.typeString = SERVER;
node.nameString = nameString;
node.locationString = locationString;
node.statusString = statusString;
vectorService.addElement(node);

return vectorDisplayService.size() - 1;
}

// Insert a new child node into the tree within the
// specified parent node
public void InsertChild(int iParent, String nameString,

String locationString, String statusString)
{

// Get the node we are referencing
MyTableNode parent = (MyTableNode)

vectorDisplayService.elementAt(iParent);

// Create a new child record
MyTableNode node = (MyTableNode)new MyTableNode();

Listing 11.9F CustomCellRenderer class source code (continued)

Putting it all together 381
node.typeString = RESOURCE;
node.nameString = nameString;
node.locationString = locationString;
node.statusString = statusString;

// Set the offset
parent.iChildren++;
parent.iActualChildren++;
node.iParentOffset = parent.iChildren;

// Insert the new node
if(iParent + parent.iChildren >= vectorDisplayService.size())

vectorDisplayService.addElement(node);
else

vectorDisplayService.insertElementAt(node, iParent
+ parent.iChildren);

// Update the parent record
vectorDisplayService.setElementAt(parent, iParent);

// Add data to the shadow data area, too
node = (MyTableNode)new MyTableNode();
node.typeString = RESOURCE;
node.nameString = nameString;
node.locationString = locationString;
node.statusString = statusString;

int iShadowParent = GetShadowNode(parent.nameString, SERVER);
parent = (MyTableNode)vectorService.elementAt(iShadowParent);
parent.iChildren++;
parent.iActualChildren++;
node.iParentOffset = parent.iChildren;
if(iParent + parent.iChildren >= vectorService.size())

vectorService.addElement(node);
else

vectorService.insertElementAt(node, iShadowParent
+ parent.iChildren);

vectorService.setElementAt(parent, iShadowParent);
}

}

Listing 11.9F CustomCellRenderer class source code (continued)

382 CHAPTER 11
Tables
This example has a known limitation. Only a single level of nesting can occur
within the tree column. For example, server nodes can have one or more re-
source children, but resources cannot have children. This restriction will lim-
it the use of this code in some applications.

 The example presented in this section, when executed, produces the output
shown in figure 11.5. Notice the added appeal offered by the graphical tree, which
is fully functional. The addition of a tree to a JTable instance seems to be a subject
of recurring questions in Java-related USENET new groups, and now you know
how to handle this advanced topic.

11.8 JTable class information

This section lists the constants variables and methods for the JTable class.

11.8.1 JTable constants

public static final int AUTO_RESIZE_LAST_COLUMN
public static final int AUTO_RESIZE_OFF
public static final int AUTO_RESIZE_ALL_COLUMNS

These constants contain flags to control the resize state of columns in the table.
These constants are used as parameters to the setAutoResizeMode() method.

Figure 11.5 Advanced JTable example output

JTable class information 383
11.8.2 JTable variables

protected TableModel dataModel
protected TableColumnModel columnModel
protected ListSelectionModel selectionModel

These variables hold instances of the various models associated with a JTable object.

protected JTableHeader tableHeader

 This variable holds the instance of the table headers for this JTable object. The
header holds particulars, such as, the column object.

protected int rowHeight
protected int rowMargin

 These variables contain information to manage the attributes of a table row.

protected Color gridColor

 The color of the grid lines drawn in the table is stored in this variable.

protected boolean showHorizontalLines
protected boolean showVerticalLines
protected boolean autoCreateColumnsFromModel
protected boolean rowSelectionAllowed

 These boolean flags contain information about the states of particular modes
within the JTable object.

protected int autoResizeMode

 The value of this variable determines if the table object automatically resizes
the width the columns to occupy the entire width of the table. It is also used to
decide how the resizing is done.

protected Dimension preferredViewportSize

 This variable is used by the scrolling pane instance associated with the table
object. It determines the initial visible area for the table.

protected transient Component editorComp

 When the table is performing a cell editing operation, this variable holds an
instance of the component used to handle the editing operation.

protected transient TableCellEditor cellEditor

 This variable holds an instance of the cell editor used by this table object.

protected transient int editingRow

384 CHAPTER 11
Tables
protected transient int editingColumn

 When editing table cells, these variables contain the row and column address
of the cell being edited.

protected Hashtable defaultRenderersByColumnClass
protected Hashtable defaultEditorsByColumnClass

 These variables are used to keep track of the default cell editors and renderers
known to this table object.

protected Color selectionForeground
protected Color selectionBackground

 These variables contain the colors of the foreground and background used to
draw selected text. These values are overridden by any custom cell render code.

11.8.3 JTable constructors

public JTable()

This constructor creates an instance of the JTable class that is initialized with a
default data model, column model, and selection model.

public JTable(TableModel dm)

 This constructor creates an instance of the JTable class that is initialized with a
default column model and selection model, and with the specified data model.

public JTable(TableModel dm, TableColumnModel cm)

 This constructor creates an instance of the JTable class that is initialized with a
default selection model. The data model and column models specified are assigned
to the instance.

public JTable(TableModel dm,
TableColumnModel cm, ListSelectionModel sm)

 This constructor creates an instance of the JTable class that is initialized with
the specified selection model, data model, and column model.

public JTable(int numColumns, int numRows)

 This constructor creates an instance of the JTable class that is initialized with a
default data model, column model, and selection model. The data model contains
an array of empty cells specified by the number of rows and column from the caller.
By default, the column names will have the form “A”, “B”, “C”, and so on.

JTable class information 385
public JTable(Vector data, Vector columnNames)

 This constructor creates an instance of the JTable class that is initialized with a
default data model, column model, and selection model. The data model receives
the data from the first vector parameter. The second vector is transferred to the
default column model.

public JTable(Object data[][], Object columnNames[])

 This constructor creates an instance of the JTable class that is initialized with a
default data model, column model, and selection model. The data model receives
the data from the first object array parameter. The second array is transferred to the
default column model.

11.8.4 JTable significant method groups

public static JScrollPane createScrollPaneForTable(JTable aTable)

This method creates in instance of a JScrollPane object and attaches it to the JTable
object.

public void setTableHeader(JTableHeader newHeader)
public JTableHeader getTableHeader()

 These methods manage the header associated with the JTable object. The
table header object holds information about the columns and their characteristics.

public void setRowHeight(int newHeight)
public int getRowHeight()

 These methods managed the height of the rows within the JTable object. A
custom cell renderer can override the row height.

public void setIntercellSpacing(Dimension newSpacing)
public Dimension getIntercellSpacing()

 The methods in this group manage the space between cells within the table.
The intercell spacing can be overridden by a custom cell renderer.

public void setGridColor(Color newColor)
public Color getGridColor()
public void setShowGrid(boolean b)
public void setShowHorizontalLines(boolean b)
public void setShowVerticalLines(boolean b)
public boolean getShowHorizontalLines()
public boolean getShowVerticalLines()

386 CHAPTER 11
Tables
 These methods control the color of the grid lines and determine if the grid
lines are visible within the table. The grid lines in the horizontal and vertical planes
are individually configurable with methods from this group.

public void setAutoResizeMode(int mode)
public int getAutoResizeMode()
public void sizeColumnsToFit(boolean lastColumnOnly)

 This group of methods controls the automatic sizing of columns. This feature
resizes the columns whenever the owner panel is resized.

public void setAutoCreateColumnsFromModel(boolean createColumns)
public boolean getAutoCreateColumnsFromModel()
public void createDefaultColumnsFromModel()

 These methods manage the creation of columns within the table. Columns can
be generated automatically from the data model; however, column creation can be
overridden if the developer manually creates them.

public void setDefaultRenderer(Class columnClass,
TableCellRenderer renderer)

public TableCellRenderer getDefaultRenderer(Class columnClass)
public void setDefaultEditor(Class columnClass,

TableCellEditor editor)
public TableCellEditor getDefaultEditor(Class columnClass)

 The methods in this group return instances of the default model owned by the
table object.

public void setSelectionMode(int selectionMode)
public void setRowSelectionAllowed(boolean flag)
public void setColumnSelectionAllowed(boolean flag)
public boolean getColumnSelectionAllowed()
public void setCellSelectionEnabled(boolean flag)
public boolean getCellSelectionEnabled()
public void selectAll()
public void clearSelection()
public void setRowSelectionInterval(int index0, int index1)
public void setColumnSelectionInterval(int index0, int index1)
public void addRowSelectionInterval(int index0, int index1)
public void addColumnSelectionInterval(int index0, int index1)
public void removeRowSelectionInterval(int index0, int index1)
public void removeColumnSelectionInterval(int index0, int index1)
public int getSelectedRow()
public int getSelectedColumn()
public int[] getSelectedRows()
public int[] getSelectedColumns()
public int getSelectedRowCount()

JTable class information 387
public int getSelectedColumnCount()
public boolean isRowSelected(int row)
public boolean isColumnSelected(int column)
public boolean isCellSelected(int row, int column)

 This large group of methods manages all aspects of cell selection in a JTable
instance. Selection resolution can be performed at the row, column, or individual
cell level. Selections can be returned as a single item or an array of items.

public Color getSelectionForeground()
public void setSelectionForeground(Color selectionForeground)
public Color getSelectionBackground()
public void setSelectionBackground(Color selectionBackground)

 These methods control the foreground and background colors used to identify
the selected cells, rows, and columns within the JTable.

public TableColumn getColumn(Object identifier)
public int convertColumnIndexToModel(int viewColumnIndex)
public int convertColumnIndexToView(int modelColumnIndex)
public String getColumnName(int column)
public Class getColumnClass(int column)
public void addColumn(TableColumn aColumn)
public void removeColumn(TableColumn aColumn)
public void moveColumn(int column, int targetColumn)

 The methods in this group are responsible for retrieving information about
columns and for controlling the organization of columns within the table. Columns
can be added, removed, or moved with these methods.

public int getRowCount()
public int getColumnCount()

 These methods return the count of rows and columns within the JTable
instance’s data model.

public Object getValueAt(int row, int column)
public void setValueAt(Object aValue, int row, int column)

 The methods shown here are responsible for retrieving and setting the values
of individual cells in the table. The cell location is identified by its row and column
values.

public boolean isCellEditable(int row, int column)
public boolean editCellAt(int row, int column)
public boolean editCellAt(int row, int column, EventObject e)
public boolean isEditing()
public Component getEditorComponent()

388 CHAPTER 11
Tables
public int getEditingColumn()
public int getEditingRow()
public TableCellEditor getCellEditor()
public void setCellEditor(TableCellEditor anEditor)
public void setEditingColumn(int aColumn)
public void setEditingRow(int aRow)

 These methods manage the editing features of the JTable class. Individual cells
can be edited using either the default editor or one specified programmatically.

public void setModel(TableModel newModel)
public TableModel getModel()
public void setColumnModel(TableColumnModel newModel)
public TableColumnModel getColumnModel()
public void setSelectionModel(ListSelectionModel newModel)
public ListSelectionModel getSelectionModel()

 This group of methods manages the models used by the JTable class. By
default, the table will assign default model objects which can be retrieved with
methods from this group, or new custom models can be attached to the table.

11.9 Chapter summary

In this chapter, we examined the many facets of the JTable class, which is responsi-
ble for managing and displaying two-dimensional data arrays. As indicated, JTable
supports many significant features, such as column reordering, and selection, avoid-
ing additional coding on your part.

 After presenting some basic examples of table applications, we examined some
of the more advanced aspects of JTable. First, we discussed the concept of custom
data modeling, which involves replacing the default model created by the table with
a new one of our own design. In the example for this, we re-engineered a previous
example such that all data displayed in the table was manufactured rather than
recalled from a large data array. The result of this effort is a faster application, espe-
cially for larger data sets.

 Next, we examined custom display rendering, a feature that permits developers
to replace the default drawing of table cells and headers with a new rendering
engine of their own design. In the examples for this section, we presented code to
redraw cells, add graphics, and change the selection colors of the table. Then, we
authored an application to alter the format of the headers. In this example, we
replaced the default column header with larger headers (including a graphic and a
title) and modified the border used to draw them.

Chapter summary 389
 Finally, we developed a much larger application based on JTable which used all
of the concepts reviewed in this chapter. In this example, we replaced one of the
default column displays with a graphical tree of our own design, clearly demonstrat-
ing the flexibility that the JTable class offers us.

 This is the end of part 2 of this book, and we have now examined all of the
important components and classes provided by the Swing portion of the Java Foun-
dation Classes. There are, of course, many more classes in Swing that we did not
touch upon; however, the purpose of this book is to help bring you up to speed,
and, to that end, we have covered only the important classes that you will use in
everyday work.

Part III
Advanced topics

In part 3 of this book, we will take a look at some of the more obscure and
advanced topics related to Swing and to Java. If you are already content with what you
know about Swing, these topics will only be of passing interest; however, the final
chapter, which deals with optimization in Java and Swing applications, is worthy of
some attention. We will also study in greater detail the pluggable look-and-feel inter-
face built into Swing, which is important if you are planning to build platform inde-
pendent applications.

12Creating custom
look-and-feel

In this chapter
■ What is look-and-feel?

■ Listing available look-and-feel libraries

■ Creating a custom look-and-feel

394 CHAPTER 12
Creating custom look-and-feel
12.1 Model-View-Controller architecture revisited

In chapter 3 of this book, we discussed the MVC architec-
ture built into the Java 1.1 JDK; however, even though
MVC was supported in the version 1.1 virtual machine, the
AWT user interface classes were not based on MVC.
Instead, AWT components were based on a peer model in
which a portion of the component was written using native
code (usually C) specific to the operating system platform
(see figure 12.1). The dependence on the operating system
implies that AWT components take on the same look-and-
feel as native applications. For example, on the Microsoft
Windows platform, Java applications closely resemble other
Windows applications.

 With the JFC user interface components, the MVC
model is fully integrated (see figure 12.2), allowing com-
plete control over how the component displays itself, how it

manages its data, and how it handles interactions with the user. Since JFC user
interface components have an MVC heritage, we are free to replace any of these
modules with one of our own design. In many of the sample applications shown in
this book, we have already seen examples of replacement data models and viewers,
though we did not formally change the look-and-feel of the component.

 In this chapter, we will explore the look-and-feel aspects of Swing compo-
nents, and we will create some examples of familiar components—but with a com-
pletely new appearance. If you are interested in other variations of component look-

AWT component
(Java code)

Peer
(Native code)

Native GUI
component

Figure 12.1
AWT look–and-feel

Figure 12.2
JFC (Swing) look-and-feel architecture

Why create a look-and-feel? 395
and-feel in JFC, you can study the source code for the look-and-feel libraries
included with JFC.

12.2 Why create a look-and-feel?

The obvious question with regard to JFC’s look-and-feel support is, “Why would
anyone care?” There are many answers to this simple question, and we will investi-
gate them in more detail as we progress through this chapter, but let’s take a quick
overview of the advantages of custom look-and-feel.

12.2.1 Corporate standard user interface

The obvious advantage of the look-and-feel capabilities built into JFC is the power
it provides to create a standard user interface. With intranets supporting custom
applications (now a standard feature in many companies) there is a definite appeal
to creating programs that look and feel the same, even across different operating
systems.

 A common user interface for all corporate applications can save a company a
great deal of time and money otherwise lost to employee training. JFC provides
corporations with the power to invest modestly to create a standard user interface
and apply it to all network applications throughout the corporation.

12.2.2 Ease of portability

You may have heard the “Write Once, Run Everywhere” slogan made famous by
Sun while promoting the Java language; however, this promise was never really real-
ized until the release of JFC. Generally, Java code (with AWT) can be written and
completely debugged on one platform, but, due to differences in virtual machines
across operating systems, this can cause problems ranging from minor user interface
misrepresentation to more major inconsistencies (possibly, causing the application
to crash during use, or simply refusing to start). The real problem is not Java, but
AWT—more specifically, the hoops that the AWT designers had to jump through to
make the user interface components portable.

 With JFC, these problems are ancient history. Using the look-and-feel libraries
built into JFC, applications can be written and debugged using a single common
user interface. When the applications are ported to other platforms, the user inter-
face appears identical. Though JFC supplies several look-and-feel libraries, these
may be undesirable in some situations—some libraries run only on a single plat-
form, others are just not appealing to users on some platforms. A custom look-and-

396 CHAPTER 12
Creating custom look-and-feel
feel can help meet the demands of all users, and simplify the transfer of code from
one platform to another.

12.2.3 New component creation

Though JFC supplies several look-and-feel libraries, there may still be times when
you are unable to find the exact component you need. Creating a custom look-and-
feel permits you to create a new component (actually, a new feel for an existing
component) while still using the controller and/or viewer portions of a similar
component. For example, assume you have an application that needs a component
resembling a button, but, to meet your requirements, the button must look like
something completely different—such as, an octagonal stop sign or a three-dimen-
sional metallic button.

 To save you hours of effort creating a completely new user interface compo-
nent, you can take portions of the existing button class and augment them with a
new look. Redesigning every component in the user interface library sounds intimi-
dating, but as you will see from examples in this chapter, much of this code is simple
and repetitive.

Be careful about using a custom look-and-feel. It may seem blatantly obvi-
ous, but remember that users on your target platform(s) already use software
and a UI that they are familiar with, so any deviation will create a learning
curve. Use the power of custom look-and-feel with due caution.

12.3 UIManager and JFC look-and-feel

Before you can appreciate what is involved in building your own look-and-feel, we
should examine the existing user interfaces supported by JFC, and, more impor-
tantly, how the look-and-feel of an application is handled. An object called the
UIManager, which is created as part of the startup procedure for a JFC application,
controls the entire look-and-feel interface for an application.

 UIManager is responsible for loading the default look-and-feel library when
the application starts, and for providing an interface allowing a new look-and-feel to
be loaded at runtime. Later in this chapter, when we create our own custom look-
and-feel library, we will use UIManager to install it for the application we will use

UIManager and JFC look-and-feel 397
for testing our user interface. Let’s take a closer look at UIManager using a sample
application.

12.3.1 Listing available look-and-feel libraries

Listing 12.1 contains an application that lists all of the look-and-feel libraries cur-
rently supported by the JFC installation. It accomplishes this task by accessing the
static instance of the UIManager object for this application, calling the getIn-

stalledLookAndFeels() method to obtain the list of user interfaces available.

// Imports
import java.awt.*;
import com.sun.java.swing.*;

class TestFrame
extends JFrame

{
// Instance attributes used in this example
private JPanel topPanel;

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Available L&F Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Crete a text area to display the results
JTextArea area = new JTextArea();
topPanel.add(area, BorderLayout.CENTER);
area.setText("This system supports the following " +

"list of pluggable L&F libraries:\n\n");

// Get the LAF list
UIManager.LookAndFeelInfo laf[]

= UIManager.getInstalledLookAndFeels();

// List each item in the text area
for(int iCtr = 0; iCtr < laf.length; iCtr++)

Listing 12.1 Look-and-feel list application source code

398 CHAPTER 12
Creating custom look-and-feel
 The results produced by this application will vary depending on the number of
look-and-feel libraries on your system. Figure 12.3 shows one possible combination
of library names and paths to the class responsible for this user interface.

12.3.2 Changing the current look-and-feel

JFC can support as many look-and-feel user interfaces as you care to create, so we
will examine the techniques we can apply to dynamically change the interface either
during program initialization or at run time. To handle this, our applications need
to call the UIManager’s setLookAndFeel() method, which assigns the specified
look-and-feel.

{
area.append("LAF #" + iCtr + ":\t" + laf[iCtr].getName()

+ "\n\t" + laf[iCtr].getClassName() + "\n");
}

}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 12.1 Look-and-feel list application source code (continued)

Figure 12.3 Look-and-feel list output

UIManager and JFC look-and-feel 399
 Listing 12.2 extends the previous application to include the ability to change
the user interface to any one of the available look-and-feel libraries. It creates an
array of buttons (one for each look-and-feel) and allows the user to choose which
interface should be used for the program.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

class TestFrame
extends JFrame
implements ActionListener

{
// Instance attributes used in this example
private JPanel topPanel;
private JTextArea area;
private JButton lafButtons[];

// Constructor of main frame
public TestFrame()
{

// Set the frame characteristics
setTitle("Selectable L&F Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);

// Create a panel to store LAF selection buttons
JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new FlowLayout());
buttonPanel.setBorder(new BevelBorder(BevelBorder.RAISED));
topPanel.add(buttonPanel, BorderLayout.NORTH);

// Create a text area to display the results
area = new JTextArea();
topPanel.add(area, BorderLayout.CENTER);

// Get the LAF list
UIManager.LookAndFeelInfo laf[]

= UIManager.getInstalledLookAndFeels();

Listing 12.2 Look-and-feel selection application source code

400 CHAPTER 12
Creating custom look-and-feel
 Figure 12.4 shows the different user interfaces we can achieve with this pro-
gram. This figure shows the look-and-feel for Motif, Windows, and Organic,
respectively. The Organic user interface is a special library developed by Sun specifi-
cally for JFC. In addition to the basic display format, Organic also includes support
for themes which allow the application to assign different color schemes to the user

// Create a button for each LAF
lafButtons = new JButton[laf.length];
for(int iCtr = 0; iCtr < laf.length; iCtr++)
{

lafButtons[iCtr] = new JButton(laf[iCtr].getName());
buttonPanel.add(lafButtons[iCtr]);
lafButtons[iCtr].setActionCommand(

laf[iCtr].getClassName());
lafButtons[iCtr].addActionListener(this);

}
}

public void actionPerformed(ActionEvent event)
{

// Set the look-and-feel according to the button press
try {

UIManager.setLookAndFeel(event.getActionCommand());
SwingUtilities.updateComponentTreeUI(this);

area.append("Look-and-Feel: "
+ event.getActionCommand() + "\n");

}
catch(Exception e)
{

area.append("L&F unavailable: "
+ event.getActionCommand() + "\n");

}
}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 12.2 Look-and-feel selection application source code (continued)

Creating a new look 401
interface without altering its visual format. Organic does not ship with JFC, but is
available from the Sun Java web site at http://www.javasoft.com .

12.4 Creating a new look

Creating components with a new look-and-feel is definitely not for the faint-
hearted. Unless you crave the satisfaction of creating your own custom user inter-
face, you will probably be content with the look-and-feel libraries provided in JFC.
However, if you are a user interface designer and you want to tap into the power
that custom look-and-feel offers, then this is the section you need to read.

 In this section, we will create a look-and-feel library called Chrome, which is
based on the existing Basic look-and-feel user interface. This allows us to create
components one at a time while still providing Basic defaults for those components
not yet implemented with the new interface.

Figure 12.4
Look-and-feel selection
application output

http://www.javasoft.com

402 CHAPTER 12
Creating custom look-and-feel
 The goal for the Chrome look-and-feel is to provide an interface having the
appearance of polished metal. Ultimately, this look-and-feel could include all user
interface components, but we will implement only a few.

12.4.1 Building a new button

Listing 12.3A shows the source code for the main TestFrame class in this example,
which is used to test the Chrome look-and-feel button user interface. The code first
sets the Chrome look-and-feel for the program, then creates four buttons, includ-
ing both text and graphics, and draws them with this new user interface.

When the look-and-feel is changed, the use of the JFC component does not
change. In listing 12.3A we create JButton instances, regardless of the look-
and-feel library loaded for the application.

// Imports
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.border.*;

class TestFrame
extends JFrame

 {
// Instance attributes used in this example
private JPanel topPanel;
private JButton clubsButton;
private JButton diamondsButton;
private JButton heartsButton;
private JButton spadesButton;

// Constructor of main frame
public TestFrame()
{

// Set the look-and-feel according to the button press
try {

UIManager.setLookAndFeel("Chrome.ChromeLookAndFeel");
SwingUtilities.updateComponentTreeUI(this);
System.out.println("L&F Loaded");

}

Listing 12.3A Custom look-and-feel selection main frame source code

Creating a new look 403
 We can implement a new look-and-feel library in one of several ways. If you
are creating an entire user interface which implements every JFC component, you
can extend the LookAndFeel class; however, you will have a great deal of work to
do. An easier approach to creating a new look-and-feel is to extend one that already

catch(Exception e)
{

System.out.println("L&F unavailable");
}

// Set the frame characteristics
setTitle("Custom L&F Application");
setSize(300, 200);
setBackground(Color.gray);

// Create a panel to hold all other components
topPanel = new JPanel();
topPanel.setLayout(new FlowLayout());
getContentPane().add(topPanel);

// Create instances of chrome buttons
JButton clubsButton = new JButton("Clubs",

new ImageIcon("clubs.gif"));
topPanel.add(clubsButton);

JButton diamondsButton = new JButton("Diamonds",
new ImageIcon("diamonds.gif"));

topPanel.add(diamondsButton);

JButton spadesButton = new JButton("Spades",
new ImageIcon("spades.gif"));

topPanel.add(spadesButton);

JButton heartsButton = new JButton("Hearts",
new ImageIcon("hearts.gif"));

topPanel.add(heartsButton);
}

// Main entry point for this example
public static void main(String args[])
{

// Create an instance of the test application
TestFrame mainFrame = new TestFrame();
mainFrame.setVisible(true);

}
}

Listing 12.3A Custom look-and-feel selection main frame source code (continued)

404 CHAPTER 12
Creating custom look-and-feel
exists. In the case of Chrome, we will minimize the amount of work required by
extending the Basic look-and-feel that comes with JFC.

 Listing 12.3B shows the source code to implement the Chrome look-and-feel.
In this example, the initClassDefaults provides the mechanism to set the user
interfaces we will implement in the library. In this case, we plan to implement only
the ButtonIU.

 The initComponentDefaults() is a special method that defines some new
attributes for any ComponentUI classes we create. This method defines the names
and default values for any colors and fonts we will support within our user interface,
dictating how our components appear. Supporting this mechanism (as opposed to
hard coding fonts and colors) is one of the central ideas behind the look-and-feel
technology built into JFC. We can put defaults in place for our interface, but we
allow these values to be changed by the developer, if desired. The Organic look-
and-feel uses the default interface to change the colors and fonts for all of the com-
ponents, and allows support for different look-and-feel themes.

package Chrome;

import java.io.Serializable;
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;
import com.sun.java.swing.plaf.basic.*;

public class ChromeLookAndFeel
extends BasicLookAndFeel
implements Serializable

{

// Set up the UIs that we will implement
protected void initClassDefaults(UIDefaults defaults)
{

// Give the basic LAF first crack at initialization
super.initClassDefaults(defaults);

String packageName = "Chrome.";
Object[] uiDefaults =
{

"ButtonUI", packageName + "ChromeButtonUI"
};

// Add the ui defaults to the look-and-feel

Listing 12.3B ChromeLookAndFeel class source code

Creating a new look 405
defaults.putDefaults(uiDefaults);
}

// Return an identifier for this class
public String getID()
{

return "Chrome";
}

// Return the name of our look-and-feel
public String getName()
{

return "Chrome Look and Feel";
}

// Return a description of the LAF
public String getDescription()
{

return "Up to Speed Chrome Look and Feel";
}

// Our LAF is not native
public boolean isNativeLookAndFeel()
{

return false;
}

// Our LAF is always supported
public boolean isSupportedLookAndFeel()
{

return true;
}

protected void initComponentDefaults(UIDefaults table)
{

super.initComponentDefaults(table);

Object[] defaults =
{

"Button.HighBackground", getHighBackground(),
"Button.LowBackground", getLowBackground(),
"Button.font", getFont()

};

// Add our defaults to the default table
table.putDefaults(defaults);

}

Listing 12.3B ChromeLookAndFeel class source code (continued)

406 CHAPTER 12
Creating custom look-and-feel
 The ChromeButtonUI class, which is the biggest class in this section, imple-
ments all aspects of the button face, excluding the border. Though, at first, this
source code seems intimidating, it is really quite simple, and in fact, later in this
chapter, you will discover that we have actually done much more work than we
need to. The first three methods defined (createUI() , installUI() , and unin-

stallUI()) are responsible for setting up and removing this component user inter-
face from the look-and-feel. These methods are largely repeated in each component
interface, and will become commonplace if you are implementing an entire look-
and-feel. Equally repetitive are the next eight methods, which are responsible for
controlling the minimum, maximum, and preferred sizes, as well as the default mar-
gins for the component.

 Take special note of the first three attributes in this class:

private final staticColordefaultLowColor
= UIManager.getColor("Button.LowBackground");

private final staticColordefaultHighColor
= UIManager.getColor("Button.HighBackground");

protected final staticFontdefaultFont
= UIManager.getFont("Button.font");

 When we discussed the ChromeLookAndFeel class, I noted the presence of
default color and font values that we could use for all ComponentUI classes defined
under the Chrome look-and-feel umbrella. The ChromeButtonUI class references
these attributes to obtain the color and font values its uses to draw the button.

 If you examine the source code for the Basic look-and-feel, you will notice an
ample supply of default properties for every conceivable color and font, but you are
not restricted to these simple user interface characteristics. The BasicLookAndFeel

// *** Fonts
FontUIResource dialogPlain12 = new FontUIResource(

"Dialog", Font.PLAIN, 12);

// *** Colors
ColorUIResource white = new ColorUIResource(Color.white);
ColorUIResource gray = new ColorUIResource(Color.gray);

public FontUIResource getFont() { return dialogPlain12; }
public ColorUIResource getHighBackground() { return white; }
public ColorUIResource getLowBackground() { return gray; }

}

Listing 12.3B ChromeLookAndFeel class source code (continued)

Creating a new look 407
class also defines defaults for borders, icons, and even ToolTips, all of which it will
readily change to suit your needs. This allows new look-and-feel libraries to be
developed much more quickly than would be achievable without this support. The
Metal look-and-feel developed as part of Sun’s Swing project, uses these attributes
extensively, avoiding a lot of unnecessary implementation of paint handling. The
MetalButtonUI class, which implements a new look-and-feel for JButton, was
implemented with less than 50 lines of code.

 All of the real work for the custom user interface is handled by the paint
method, which, like any other paint() method in Java, is invoked by the VM when
the component needs to be redrawn. In listing 12.3C, the paint() method has
been broken into three basic parts. The first two are responsible for painting the
icon and text, and are essentially unchanged from the original BasicButtonUI class.
The third part of the painting process draws the background of the button, which is
the most interesting part of this example. The PaintBackground() method in list-
ing 12.3C draws the chrome background for the button.

package Chrome;

import java.io.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;
import com.sun.java.swing.plaf.basic.*;
import com.sun.java.swing.border.*;

public class ChromeButtonUI
extends ButtonUI
implements Serializable

{
private final staticColordefaultLowColor

= UIManager.getColor("Button.LowBackground");
private final staticColordefaultHighColor

= UIManager.getColor("Button.HighBackground");
protected final staticFontdefaultFont

= UIManager.getFont("Button.font");
private final staticBorderdefaultBorder

= new CompoundBorder(
new BevelBorder(BevelBorder.RAISED),
BasicMarginBorder.getMarginBorder());

Listing 12.3C ChromeButtonUI class source code

408 CHAPTER 12
Creating custom look-and-feel
protected static final int textIconGap = 3;
protected static ButtonUI buttonUI;
private ChromeButtonListener listener;

public static ComponentUI createUI(JComponent c)
{

if (buttonUI == null)
buttonUI = new ChromeButtonUI();

return buttonUI;
}

public void installUI(JComponent c)
{

// Add listeners for mouse activity
listener = new ChromeButtonListener(c);
c.addMouseListener(listener);
c.addMouseMotionListener(listener);

// Assign the default font to this item
if(c.getFont() == null

|| c.getFont() instanceof UIResource)
c.setFont(defaultFont);

// If there is no border, assign the default border
if(c.getBorder() == null

|| c.getBorder() instanceof UIResource)
c.setBorder(defaultBorder);

// Force this button to be opaque by default
c.setOpaque(true);

}

public void uninstallUI(JComponent c)
{

// Remove the mouse listeners
c.removeMouseListener(listener);
c.removeMouseMotionListener(listener);

// Remove the border
if(c.getBorder() == defaultBorder)

c.setBorder(null);
}

public void paint(Graphics g, JComponent c)
{

AbstractButtonab = (AbstractButton)c;
ButtonModel bm = ab.getModel();

Listing 12.3C ChromeButtonUI class source code (continued)

Creating a new look 409
Dimension size= ab.getSize();

g.setFont(c.getFont());
FontMetrics fm = g.getFontMetrics();

// Layout the label text
Rectangle viewRect = new Rectangle(size);
Rectangle iconRect = new Rectangle();
Rectangle textRect = new Rectangle();
String text = SwingUtilities.layoutCompoundLabel(

fm, ab.getText(), ab.getIcon(),
ab.getVerticalAlignment(),
ab.getHorizontalAlignment(),
ab.getVerticalTextPosition(),
ab.getHorizontalTextPosition(),
viewRect, iconRect, textRect, textIconGap);

// Determine the offset of pixels during a button press
int shiftOffset = 0;
if(bm.isArmed() && bm.isPressed())

shiftOffset = 1;

// Paint background
PaintBackground(g, ab, size, shiftOffset);

// Draw Icon
PaintIcon(g, ab, size, shiftOffset, iconRect);

// Draw Text
PaintText(g, ab, shiftOffset, textRect, text);

}

public void PaintText(Graphics g, AbstractButton ab,
int shiftOffset, Rectangle textRect, String text)

{
FontMetricsfm = g.getFontMetrics();
ButtonModelbm = ab.getModel();

if(text != null && text.length() != 0)
{

if(bm.isEnabled())
{

g.setColor(ab.getForeground());
 BasicGraphicsUtils.drawString(g, text,

bm.getMnemonic(),
textRect.x + shiftOffset,
textRect.y + fm.getAscent() + shiftOffset);

}

Listing 12.3C ChromeButtonUI class source code (continued)

410 CHAPTER 12
Creating custom look-and-feel
else
{

g.setColor(defaultLowColor.brighter());
BasicGraphicsUtils.drawString(g, text,

bm.getMnemonic(),
textRect.x, textRect.y + fm.getAscent());

g.setColor(defaultLowColor.darker());
BasicGraphicsUtils.drawString(g, text,

bm.getMnemonic(), textRect.x - 1,
textRect.y + fm.getAscent() - 1);

}
}

}

public void PaintIcon(Graphics g, AbstractButton ab,
Dimension size, int shiftOffset, Rectangle iconRect)

{
ButtonModel bm = ab.getModel();

if(ab.getIcon() != null)
{

Icon icon = null;
if(!bm.isEnabled())

icon = ab.getDisabledIcon();
else if(bm.isPressed() && bm.isArmed())

icon = ab.getPressedIcon();
else if(bm.isRollover())

icon = ab.getRolloverIcon();

if(icon == null)
icon = ab.getIcon();

if(bm.isPressed() && bm.isArmed())
icon.paintIcon(ab, g, iconRect.x + shiftOffset,

iconRect.y + shiftOffset);
else

icon.paintIcon(ab, g, iconRect.x, iconRect.y);
}

}

public void PaintBackground(Graphics g, AbstractButton ab,
Dimension size, int shiftOffset)

{
if(ab.isOpaque())
{

// Draw the correct button background
if(shiftOffset == 0)
{

Listing 12.3C ChromeButtonUI class source code (continued)

Creating a new look 411
ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, 0, 1);

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, size.height/2, -1);

}
else
{

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, 0, -1);

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, size.height/2, 1);

}
}

}

public Dimension getMinimumSize(JComponent c)
{

return getPreferredSize(c);
}

public Dimension getMaximumSize(JComponent c)
{

return getPreferredSize(c);
}

public Dimension getPreferredSize(JComponent c)
{

if((c.getComponentCount() > 0)
|| !(c instanceof AbstractButton))

{
return null;

}

AbstractButton ab = (AbstractButton)c;
Icon icon = ab.getIcon();
String text = ab.getText();
Font font = ab.getFont();
FontMetrics fm = ab.getToolkit().getFontMetrics (font);
Rectangle viewRect = new Rectangle(Short.MAX_VALUE,

Short.MAX_VALUE);
Rectangle iconRect = new Rectangle();
Rectangle textRect = new Rectangle();
SwingUtilities.layoutCompoundLabel(fm, text, icon,

ab.getVerticalAlignment(), ab.getHorizontalAlignment(),
ab.getVerticalTextPosition(),
ab.getHorizontalTextPosition(),

Listing 12.3C ChromeButtonUI class source code (continued)

412 CHAPTER 12
Creating custom look-and-feel
The code in listing 12.3C deliberately overrides some methods that do not
need to be addressed by our code. Methods such as setMinimumSize() ,
setMaximumSize() , and setPreferredSize() have been overridden in
this example simply to show you that you can do this in your own code. If
your button interface demands certain dimensional restrictions, you can im-
plement these methods to prevent a size outside of your acceptable limits.
Otherwise, we would not implement these methods for the Chrome button
because they add no additional value to our code.

 The previous listing references a method named SwingUtilities.

DrawHalf() . This method is responsible for drawing one half of the chrome appear-
ance. Since any component that has a chrome look will need to execute this code,
we create a separate class containing a static method that can be called by a UI class

viewRect, iconRect, textRect, textIconGap);

// Find union of icon and text rectangles
Rectangle rect = iconRect.union(textRect);
Insets insets = getInsets(c);
rect.width += insets.left + insets.right;
rect.height += insets.top + insets.bottom;
return rect.getSize();

}

public Insets getDefaultMargin(AbstractButton b)
{

// Return the default margins for this control
return new Insets (2, 5, 2, 5);

}

public Insets getInsets(JComponent c)
{

Border border = c.getBorder();
Insets insets = ((border != null)

? border.getBorderInsets (c)
: new Insets (0,0,0,0));

return insets;
}

}

Listing 12.3C ChromeButtonUI class source code (continued)

Creating a new look 413
in the Chrome look-and-feel library. You can add any other common methods to
this utility class. Listing 12.3D shows this method.

package Chrome;

import java.io.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;
import com.sun.java.swing.plaf.basic.*;
import com.sun.java.swing.border.*;

public class ChromeUtilities
{

// Draw one half of the button
public static void DrawHalf(Color defaultLowColor,

Color defaultHighColor, Graphics g,
Dimension size, int start, int direction)

{
// Determine the increment
int inc = size.height / 2;

// Determine the amount of change for each color
int redDelta = (defaultHighColor.getRed()

- defaultLowColor.getRed()) / inc;
int greenDelta = (defaultHighColor.getGreen()

- defaultLowColor.getGreen()) / inc;
int blueDelta = (defaultHighColor.getBlue()

- defaultLowColor.getBlue()) / inc;

Color color = defaultLowColor;

// Loop through each increment to draw the correct color
for(int iCtr = 0; iCtr <= inc; iCtr++)
{

g.setColor(color);

// Draw the line in the correct location
if(direction < 0)

g.drawLine(0, start + inc - iCtr, size.width,
start + inc - iCtr);

else
g.drawLine(0, start + iCtr, size.width, start + iCtr);

// update the color
int red = color.getRed() + redDelta;

Listing 12.3D ChromeUtilities class source code

414 CHAPTER 12
Creating custom look-and-feel
 The final segment of the Chrome button user interface is the mouse listener,
which is shown in listing 12.3E. This code is responsible for handling mouse clicks
and drag operations over the button in order to ensure that the correct icon is draw
and that the background reflects and selection. This code is attached to the button
when the installUI() method is called in the ChromeButtonUI class.

int green = color.getGreen() + greenDelta;
int blue = color.getBlue() + blueDelta;

// Make sure we don't run out of range
if(red > 255) red = defaultHighColor.getRed();
if(green > 255) green = defaultHighColor.getGreen();
if(blue > 255) blue = defaultHighColor.getBlue();

color = new Color(red, green, blue);
}

}
}

package Chrome;

import java.io.*;
import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

class ChromeButtonListener
implements Serializable,

MouseListener,
MouseMotionListener

{
private AbstractButtonab;

public ChromeButtonListener(JComponent c)
{

// Save a copy of the component we are listening to
ab = (AbstractButton)c;

}

public void mouseDragged(MouseEvent event)
{

ButtonModel bm = ab.getModel();

Listing 12.3E ChromeButtonListener class source code

Listing 12.3D ChromeUtilities class source code (continued)

Creating a new look 415
if (bm.isPressed())
{

Graphics g = ab.getGraphics();
if(g != null)
{

Rectangle r = g.getClipBounds();
if(r.contains(event.getPoint()))

bm.setArmed(true);
else

bm.setArmed(false);
}

}
}

public void mouseMoved(MouseEvent event)
{
}

public void mouseClicked(MouseEvent event)
{
}

public void mousePressed(MouseEvent event)
{

ButtonModel bm = ab.getModel();
bm.setArmed(true);
bm.setPressed(true);

}

public void mouseReleased(MouseEvent event)
{

ButtonModel bm = ab.getModel();
bm.setPressed (false);

}

public void mouseEntered(MouseEvent event)
{

ButtonModel bm = ab.getModel();
if(ab.getRolloverIcon() != null)

bm.setRollover(true);
}

public void mouseExited(MouseEvent event)
{

ButtonModel bm = ab.getModel();
if(ab.getRolloverIcon() != null)

bm.setRollover(false);

Listing 12.3E ChromeButtonListener class source code (continued)

416 CHAPTER 12
Creating custom look-and-feel
The Basic look-and-feel provides an adequate listener to meet our needs for
the chrome button; however, in your own user interface, you may wish to
change how the button reacts to mouse events. In order to show an example
of how this is accomplished, we have implemented listener code in listing
12.3E. This code should be omitted if you are simply building a different
button face and retaining the existing mouse control—BasicButtonUI will
look after this for us.

 Figure 12.5 shows the output of this exam-
ple. Notice that all instances of JButton now have
a raised and polished appearance, and, when the
buttons are pressed, the colors reverse such that
the button then appears depressed. Since we
extended the Basic JFC look-and-feel, all other
components would still appear as they normally
would, but you can just as easily replace every
other component in the user interface. Most of
the work involved is repetitive, so you can simply

cut and paste common code between components and, relatively quickly, have a
new user interface up and running.

12.4.2 Building chrome menus

In the Chrome button user interface, we created several classes, and implemented a
lot code just to make a button work correctly. The good news is that the ButtonUI
derivatives are one of the hardest classes to work with, and you have now mastered
it. Fortunately, not every ComponentUI requires this sort of effort.

 To extend our Chrome look-and-feel even further, let’s create a chrome men-
uing system. As you will see, this requires much less code because we can take some
short cuts that reuse code from the Basic parent menu classes. To completely
replace the application menu, we will need to implement classes for MenuBarUI ,

}
}

Listing 12.3E ChromeButtonListener class source code (continued)

Figure 12.5
Chrome look-and-feel output

Creating a new look 417
MenuUI , and MenuItemUI (we will ignore check box and radio button menu items in
this example).

 The ChromeMenuBarUI class, shown in listing 12.4A extends the BasicMen-
uUI class, so, we can save time by using this parent’s code for all functions except
painting. The paint method looks remarkably like a scaled-down version of the one
we used previously in the ChromeButtonUI class.

package Chrome;

import com.sun.java.swing.*;
import java.awt.*;

import com.sun.java.swing.plaf.*;
import com.sun.java.swing.plaf.basic.*;

public class ChromeMenuBarUI extends BasicMenuBarUI
{

private final static Color defaultLowColor
= UIManager.getColor("Menu.LowBackground");

private final static Color defaultHighColor
= UIManager.getColor("Menu.HighBackground");

public static ComponentUI createUI(JComponent c)
{

return new ChromeMenuBarUI();
}

public void paint(Graphics g, JComponent c)
{

Dimension size = c.getSize();

g.setColor(defaultLowColor);

// Calculate the shading grades
int incs = size.height / 2;

// initial colors
Color color = defaultLowColor;
int delta = (255 - color.getRed()) / incs;

// Draw the background
ChromeUtilities.DrawHalf(defaultLowColor,

defaultHighColor, g, size, 0, 1);
ChromeUtilities.DrawHalf(defaultLowColor,

defaultHighColor, g, size, size.height / 2, -1);

Listing 12.4A ChromeMenuBarUI class source code

418 CHAPTER 12
Creating custom look-and-feel
 To draw menus, we need to do a little more work. Menus function much like
buttons, so we need to write a paint() method that can handle the background
shading, text, and graphics. Listing 12.4B shows the source code to implement a
chrome menu.

}
}

package Chrome;

import java.awt.*;

import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;
import com.sun.java.swing.plaf.basic.*;

public class ChromeMenuUI extends BasicMenuUI
{

private final static Color defaultLowColor
= UIManager.getColor("Menu.LowBackground");

private final static Color defaultHighColor
= UIManager.getColor("Menu.HighBackground");

protected static final int textIconGap = 3;

public static ComponentUI createUI(JComponent c)
{

return new ChromeMenuUI();
}

public void paint(Graphics g, JComponent c)
{

AbstractButton ab = (AbstractButton)c;
ButtonModel bm = ab.getModel();
Dimension size = c.getSize();

g.setFont(c.getFont());
FontMetrics fm = g.getFontMetrics();

// Layout the label text
Rectangle viewRect = new Rectangle(size);
Rectangle iconRect = new Rectangle();
Rectangle textRect = new Rectangle();

Listing 12.4B ChromeMenuUI class source code

Listing 12.4A ChromeMenuBarUI class source code

Creating a new look 419
String text = SwingUtilities.layoutCompoundLabel(
fm, ab.getText(), ab.getIcon(),
ab.getVerticalAlignment(),
ab.getHorizontalAlignment(),
ab.getVerticalTextPosition(),
ab.getHorizontalTextPosition(),
viewRect, iconRect, textRect, textIconGap);

// Determine the offset of pixels during a button press
int shiftOffset = 0;
if(bm.isSelected())

shiftOffset = 1;

// Paint background
PaintBackground(g, ab, size, shiftOffset);

// Draw Icon
PaintIcon(g, ab, size, iconRect);

// Draw Text
PaintText(g, ab, textRect, text);

}

public void PaintText(Graphics g, AbstractButton ab,
Rectangle textRect, String text)

{
FontMetrics fm = g.getFontMetrics();
ButtonModel bm = ab.getModel();

if(text != null && text.length() != 0)
{

if(bm.isEnabled())
{

g.setColor(ab.getForeground());
BasicGraphicsUtils.drawString(g, text,

bm.getMnemonic(),
textRect.x, textRect.y + fm.getAscent());

}
else
{

g.setColor(defaultLowColor.brighter());
BasicGraphicsUtils.drawString(g, text,

bm.getMnemonic(),
textRect.x, textRect.y + fm.getAscent());

g.setColor(defaultLowColor.darker());
BasicGraphicsUtils.drawString(g, text,

bm.getMnemonic(),

Listing 12.4B ChromeMenuUI class source code (continued)

420 CHAPTER 12
Creating custom look-and-feel
textRect.x - 1,
textRect.y + fm.getAscent() - 1);

}
}

}

public void PaintIcon(Graphics g, AbstractButton ab,
Dimension size, Rectangle iconRect)

{
ButtonModel bm = ab.getModel();

if(ab.getIcon() != null)
{

Icon icon = null;
if(!bm.isEnabled())

icon = ab.getDisabledIcon();
else if(bm.isPressed() && bm.isArmed())

icon = ab.getPressedIcon();
else if(bm.isRollover())

icon = ab.getRolloverIcon();

if(icon == null)
icon = ab.getIcon();

if(bm.isPressed() && bm.isArmed())
icon.paintIcon(ab, g, iconRect.x, iconRect.y);

else
icon.paintIcon(ab, g, iconRect.x, iconRect.y);

}
}

public void PaintBackground(Graphics g, AbstractButton ab,
Dimension size, int shiftOffset)

{
if(ab.isOpaque())
{

// Draw the correct button background
if(shiftOffset == 0)
{

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, 0, 1);

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, size.height / 2, -1);

}
else
{

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, 0, -1);

Listing 12.4B ChromeMenuUI class source code (continued)

Creating a new look 421
 To complete the chrome implementation of the menu system, we need to
manage the drawing of JMenuItem instances. Listing 12.4C shows the code for
this. Notice that this code is almost a duplication of the code used to handle
ChromeMenuUI drawing.

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, size.height / 2, 1);

}
}

}
}

package Chrome;

import java.awt.*;

import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;
import com.sun.java.swing.plaf.basic.*;

public class ChromeMenuItemUI extends BasicMenuItemUI
{

private final static Color defaultLowColor
= UIManager.getColor("Menu.LowBackground");

private final static Color defaultHighColor
= UIManager.getColor("Menu.HighBackground");

protected static final int textIconGap = 3;

public static ComponentUI createUI(JComponent c)
{

return new ChromeMenuItemUI();
}

public void paint(Graphics g, JComponent c)
{

AbstractButton ab = (AbstractButton)c;
ButtonModel bm = ab.getModel();
Dimension size = c.getSize();

g.setFont(c.getFont());

FontMetrics fm = g.getFontMetrics();

Listing 12.4C ChromeMenuItemUI class source code

Listing 12.4B ChromeMenuUI class source code (continued)

422 CHAPTER 12
Creating custom look-and-feel
// Layout the label text
Rectangle viewRect = new Rectangle(size);
Rectangle iconRect = new Rectangle();
Rectangle textRect = new Rectangle();
String text = SwingUtilities.layoutCompoundLabel(

fm, ab.getText(), ab.getIcon(),
ab.getVerticalAlignment(),
ab.getHorizontalAlignment(),
ab.getVerticalTextPosition(),
ab.getHorizontalTextPosition(),
viewRect, iconRect, textRect, textIconGap);

// Determine the offset of pixels during a button press
int shiftOffset = 0;
if(bm.isSelected())

shiftOffset = 1;

// Paint background
PaintBackground(g, ab, size, shiftOffset);

// Draw Icon
PaintIcon(g, ab, size, iconRect);

// Draw Text
PaintText(g, ab, textRect, text);

}

public void PaintText(Graphics g, AbstractButton ab,
Rectangle textRect, String text)

{
FontMetrics fm = g.getFontMetrics();
ButtonModel bm = ab.getModel();

if(text != null && text.length() != 0)
{

if(bm.isEnabled())
{

g.setColor(ab.getForeground());
BasicGraphicsUtils.drawString(g, text,

bm.getMnemonic(),
textRect.x,
textRect.y + fm.getAscent());

}
else
{

g.setColor(defaultLowColor.brighter());

BasicGraphicsUtils.drawString(g, text,

Listing 12.4C ChromeMenuItemUI class source code (continued)

Creating a new look 423
bm.getMnemonic(),
textRect.x, textRect.y + fm.getAscent());

g.setColor(defaultLowColor.darker());
BasicGraphicsUtils.drawString(g, text,

bm.getMnemonic(),
textRect.x - 1,
textRect.y + fm.getAscent() - 1);

}
}

}

public void PaintIcon(Graphics g, AbstractButton ab,
Dimension size, Rectangle iconRect)

{
ButtonModel bm = ab.getModel();

if(ab.getIcon() != null)
{

Icon icon = null;
if(!bm.isEnabled())

icon = ab.getDisabledIcon();
else if(bm.isPressed() && bm.isArmed())

icon = ab.getPressedIcon();
else if(bm.isRollover())

icon = ab.getRolloverIcon();

if(icon == null)
icon = ab.getIcon();

if(bm.isPressed() && bm.isArmed())
icon.paintIcon(ab, g, iconRect.x, iconRect.y);

else
icon.paintIcon(ab, g, iconRect.x, iconRect.y);

}
}

public void PaintBackground(Graphics g, AbstractButton ab,
Dimension size, int shiftOffset)

{
if(ab.isOpaque())
{

g.setColor(defaultLowColor);

// Draw the correct button background
if(shiftOffset == 0)
{

ChromeUtilities.DrawHalf(defaultLowColor,

Listing 12.4C ChromeMenuItemUI class source code (continued)

424 CHAPTER 12
Creating custom look-and-feel
 Figure 12.6 shows the new chrome menu created with the user interface code
from listings 12.4A-C. Adding a simple menu hierarchy to the existing sample
application produced this example. Admittedly, the appearance of this menu will
not be appealing to some users, but the advantage of custom look-and-feel is that
you now have the knowledge required to change it.

 The point of this exercise is to show that adding new user interface compo-
nents is really quite simple. If all you want to do is change the visual part of the
component, you can cut and paste in the same way we did here. Since we are deriv-
ing all of our classes from their Basic look-and-feel equivalents, we can let the parent
do all the work. However, if you want to add new characteristics (such as additional
keyboard support) then you need to develop more code to support them. In any
case, use what you can from the parent class to save coding writing time.

defaultHighColor, g, size, 0, 1);
ChromeUtilities.DrawHalf(defaultLowColor,

defaultHighColor, g, size, size.height / 2, -1);
}
else
{

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, 0, -1);

ChromeUtilities.DrawHalf(defaultLowColor,
defaultHighColor, g, size, size.height / 2, 1);

}
}

}
}

Listing 12.4C ChromeMenuItemUI class source code (continued)

Figure 12.6
Chrome menu output

Creating a new look 425
12.4.3 Supporting themes

One of the late additions to the Swing Look-and-Feel interface was support for
themes. Themes are simply different color schemes supported by the look-and-feel
library that can be changed at run time without affecting how the application is
written. The Organic and Metal look-and-feel classes both support themes, and, as
you will see here, implementation of themes is really quite simple.

 You may ask, “Why would anyone care about themes?” If you are building an
application that exploits Java’s full potential of platform independence, you have no
assurance that your color scheme will appeal to all users. In fact, some of your users
may be using desktop systems (such as Sun SparcStation or Windows NT) which
support millions of colors, but others may be running your code on a PDA which
may not support color at all. Color rendering on a monochrome screen is usually
handled poorly, so you need to address this issue, and the way to manage it with
Swing is to implement color themes.

 Since the Chrome look-and-feel is, for the most part, already monochrome,
we will not add this code to our project; however, if you are going to create a
theme, you need to know how it is accomplished, so we will use Chrome in all of
the code shown here. Most of this code was simply taken from the existing Metal
look-and-feel and modified to meet our needs.

 The first task is to associate themes with the ChromeLookAndFeel class shown
earlier. To do this, we need to add a new attribute to track the current theme. List-
ing 12.5A shows the update ChromeLookAndFeel class source code.

package Chrome;

import java.io.Serializable;
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;
import com.sun.java.swing.plaf.basic.*;

public class ChromeLookAndFeel
extends BasicLookAndFeel

{
private static ChromeTheme currentTheme;

// Return the name of our look-and-feel
public String getName()
{

Listing 12.5A ChromeLookAndFeel update source code

426 CHAPTER 12
Creating custom look-and-feel
return "Chrome Look and Feel";
}

// Return an identifier for this class
public String getID()
{

return "Chrome";
}

// Return a description of the LAF
public String getDescription()
{

return "Up to Speed Chrome Look and Feel";
}

// Our LAF is not native
public boolean isNativeLookAndFeel()
{

return false;
}

// Our LAF is always supported
public boolean isSupportedLookAndFeel()
{

return true;
}

// Set up the UIs that we will implement
protected void initClassDefaults(UIDefaults defaults)
{

// Give the basic LAF first crack at initialization
super.initClassDefaults(defaults);

String packageName = "Chrome.";
Object[] uiDefaults =
{

"MenuBarUI", packageName + "ChromeMenuBarUI",
"MenuUI", packageName + "ChromeMenuUI",
"MenuItemUI", packageName + "ChromeMenuItemUI",
"ButtonUI", packageName + "ChromeButtonUI"

};

// Add the ui defaults to the look-and-feel
defaults.putDefaults(uiDefaults);

}

protected void initComponentDefaults(UIDefaults table)
{

Listing 12.5A ChromeLookAndFeel update source code (continued)

Creating a new look 427
super.initComponentDefaults(table);

Object[] defaults =
{

"Button.HighBackground", getHighBackground(),
"Button.LowBackground", getLowBackground(),
"Button.font", getFont()

};

// Add our defaults to the default table
table.putDefaults(defaults);

}

protected void createDefaultTheme()
{

if(currentTheme == null)
currentTheme = new DefaultChromeTheme();

}

public UIDefaults getDefaults()
{

// Create the default theme for this look-and-feel
createDefaultTheme();

// return the table of defaults
UIDefaults table = super.getDefaults();
currentTheme.addCustomEntriesToTable(table);

return table;
}

public static void setCurrentTheme(ChromeTheme theme)
{

if (theme == null)
{

throw new NullPointerException("Can't have null theme");
}

// Set the new theme
currentTheme = theme;

}

public FontUIResource getFont() { return currentTheme.getFont(); }
public ColorUIResource getHighBackground()

{ return currentTheme.getHighBackground(); }
public ColorUIResource getLowBackground()

{ return currentTheme.getLowBackground(); }
}

Listing 12.5A ChromeLookAndFeel update source code (continued)

428 CHAPTER 12
Creating custom look-and-feel
 In the code shown in listing 12.5A, we referenced some new classes. The first
of these was the class, ChromeTheme, which is an abstract class that defines the for-
mat of all themes used by the Chrome look-and-feel. This class is shown in listing
12.5B.

 From the ChromeTheme class, we derive all possible themes for our look-and-
feel. The first theme we define is the DefaultChromeTheme class, which imple-
ments the default colors and fonts that were originally defined in the ChromeLook-
AndFeel class. Listing 12.5C contains the code to build the default theme for our
Chrome look-and-feel.

package Chrome;

import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;

public abstract class ChromeTheme
{

public abstract String getName();

public abstract FontUIResource getFont();

public abstract ColorUIResource getHighBackground();
public abstract ColorUIResource getLowBackground();

public void addCustomEntriesToTable(UIDefaults table) {}
}

Listing 12.5B ChromeTheme class

package Chrome;

import java.io.Serializable;
import java.awt.*;
import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;
import com.sun.java.swing.plaf.basic.*;

public class DefaultChromeTheme extends ChromeTheme
{

FontUIResource dialogPlain12 = new FontUIResource(
"Dialog", Font.PLAIN, 12);

Listing 12.5C DefaultChromeTheme class

Creating a new look 429
 To create another theme, we can derive a second class from ChromeTheme. In
this example, we will choose a distinctive red color to draw the buttons, and we will
enlarge the font to 14 points from the default 12 points. The source code for the
RedChromeTheme class is shown in listing 12.5D.

ColorUIResource white = new ColorUIResource(Color.white);
ColorUIResource gray = new ColorUIResource(Color.gray);

public String getName()
{

return "Default";
}

public FontUIResource getFont() { return dialogPlain12; }

public ColorUIResource getHighBackground() { return white; }
public ColorUIResource getLowBackground() { return gray; }

public void addCustomEntriesToTable(UIDefaults table) {}
}

package Chrome;

import com.sun.java.swing.*;
import com.sun.java.swing.plaf.*;

public class RedChromeTheme extends ChromeTheme
{

FontUIResource dialogPlain12 = new FontUIResource(
"Dialog", Font.PLAIN, 14);

ColorUIResource white = new ColorUIResource(Color.white);
ColorUIResource red = new ColorUIResource(Color.red);

public String getName()
{

return "Red";
}

public FontUIResource getFont() { return dialogPlain12; }

public ColorUIResource getHighBackground() { return white; }
public ColorUIResource getLowBackground() { return red; }

public void addCustomEntriesToTable(UIDefaults table) {}
}

Listing 12.5D RedChromeTheme class

Listing 12.5C DefaultChromeTheme class (continued)

430 CHAPTER 12
Creating custom look-and-feel
 Now that the themes have been created, you need to know how to select them
from the main TestFrame class. To accomplish this, you need to call the setCur-

rentTheme() method that we added to the ChromeLookAndFeel class. Modify the
TestFrame class and replace the current look-and-feel setting code with the code
shown below:

// Create an instance of the chrome LAF
ChromeLookAndFeel laf = new ChromeLookAndFeel();

// Set the Red theme
laf.setCurrentTheme(new RedChromeTheme());

// Set the look-and-feel
try {

UIManager.setLookAndFeel(laf);
SwingUtilities.updateComponentTreeUI(this);
System.out.println("L&F Loaded");

}
catch(Exception e)
{

System.out.println("L&F unavailable");
}

12.5 Chapter summary

In this chapter, we have started to dig much deeper into Swing and JFC by examin-
ing the plugable look-and-feel interface. We started by revisiting the MVC architec-
ture and briefly describing its benefit to application building with JFC. We
examined the UIManager and developed some applications that enumerate the
look-and-feel libraries supported by JFC, permitting the user interface to be recon-
figured with the click of a button.

 Next, we started to create our own look-and-feel user interface called Chrome,
which displays components with a polished metal finish. We started our interface by
implementing a ChromeButtonUI class, which we added to our look-and-feel in
order to manage the drawing of standard JButton components. Finally, we added
support for chromed menus and menu items (reusing much of the code imple-
mented in the Basic UI classes) with our own UI classes containing only a method
to handle our specific painting requirements.

13Optimizing JFC
applications

In this chapter
■ Using optimization tools to find code

bottlenecks

■ General Java performance tuning

■ Special tips for tuning JFC programs

432 CHAPTER 13
Optimizing JFC applications
13.1 Why optimize?

For the last chapter of this book, I thought it would be a great idea to discuss opti-
mization of Java programs and, more specifically, applications based on JFC. With-
out question, code optimization is one of my favorite topics. Since the Java
compiler builds bytecode (which is an interpreted intermediate machine code) opti-
mization is extremely important—every bytecode instruction that can be eliminated
will result in better performance of your applications.

 Java has received a bit of criticism from some developers who experienced
poor performance with Java, but these criticisms are, for the most part, rooted in a
lack of understanding of the language. Extensive UI applications written in Java can
be every bit as responsive as a similar program written in C++. There is no question
that C++ can crunch numbers better than a Java interpreter, but we will demon-
strate how to narrow this gap, as well. It is my hope that this chapter will be a
rewarding experience for you and will help you write better code.

 We will discuss many of the reasons that Java code can run slowly, and we will
discuss solutions and workarounds to some of these problems. To help us write
faster (and possibly smaller) Java applications, we will not only examine some of the
performance tools available, but we will also create a few of our own which you can
use in your applications. So, let’s dig in and have some fun.

13.2 Using optimization tools

The greatest assistant in the war against poor performance is a code profiler. These
utilities provide detailed feedback about where an executing application spends its
time, offering a clear indicator of what parts of an application require the most
attention during the optimization phase of your project. Though the list of compe-
tent Java profilers is growing, we will concentrate on only two.

13.2.1 A poorly performing test case

For our work with profilers, we will need a test application which we know is poorly
written and requires a significant amount of time to execute. Listing 13.1 is an
example of such a program. It contains an iterating loop and some poorly written
internals designed specifically to produce bad performance; however, even though
we know this is an example of a poorly written program, it contains code commonly
found in many programs. Software development cycles today are so tight that,
often, overall code quality (and usually performance) suffers as a direct result of try-

Using optimization tools 433
ing to adhere to a product development schedule. So, we will assume that the code
in listing 13.1 is fairly representative of the code that many developers write.

13.2.2 Sun’s JDK profiler

The first profiler we will examine is the free one built into every JDK installation.
When the Java VM is started for an application, you have the option of specifying
that the code should be profiled. This is accomplished like this:

Java_g –prof:out.txt MainClass

In order to get accurate profiling information, you must build your code to
include debugging information. The VM must be executed with java_g,
rather than java, so it will use the debugging data.

 This command executes the program as it normally would; however, behind
the scenes, the VM is collecting run time information about the methods being

class MainClass
{

public static void main(String args[])
{

int constantMultiplier = 2;

for(int iCtr = 0; iCtr < 20000; iCtr++)
{

String string = new String("Option: ");
int tempValue = iCtr * constantMultiplier;
String valueString = new String("" + iCtr);

myMethod(string, valueString, tempValue, iCtr);

}
}

public static void myMethod(String string, String valueString,
int tempValue, int iCtr)

{
System.out.println(string + valueString + "," + tempValue);

}
}

Listing 13.1 Example of a poorly performing application

434 CHAPTER 13
Optimizing JFC applications
called, the amount of time expended for each line, and so on. The results of this
command produce a file, OUT.TXT, containing the profile information. As you can
see, this data (shown in the following listing) is quite confusing, but we will attempt
to decode it.

count callee caller time
183335 java/lang/Character.forDigit(II)C

java/lang/Integer.toString(II)Ljava/lang/String; 1176
183335 java/lang/StringBuffer.ensureCapacity(I)V

java/lang/StringBuffer.append(C)Ljava/lang/StringBuffer; 892
183335 java/lang/StringBuffer.append(C)Ljava/lang/StringBuffer;

java/lang/Integer.toString(II)Ljava/lang/String; 3633
183335 java/lang/StringBuffer.copyWhenShared()V

java/lang/StringBuffer.append(C)Ljava/lang/StringBuffer; 293
160000 java/lang/System.arraycopy(Ljava/lang/Object;ILjava/lang/Object;II)V

java/lang/String.getChars(II[CI)V 352
80000 java/lang/String.length()I java/lang/StringBuffer.append

(Ljava/lang/String;)Ljava/lang/StringBuffer; 113
80000 sun/io/CharToByte8859_1.flush([BII)I

java/io/OutputStreamWriter.flushBuffer()V 359
80000 java/lang/StringBuffer.copyWhenShared()V java/lang/StringBuffer.append

(Ljava/lang/String;)Ljava/lang/StringBuffer; 143
80000 java/lang/String.getChars(II[CI)V java/lang/StringBuffer.append

(Ljava/lang/String;)Ljava/lang/StringBuffer; 830
80000 java/lang/StringBuffer.ensureCapacity(I)V java/lang/StringBuffer.append

(Ljava/lang/String;)Ljava/lang/StringBuffer; 374
60000 java/lang/String.<init>(Ljava/lang/StringBuffer;)V

java/lang/StringBuffer.toString()Ljava/lang/String; 1276
60000 java/io/OutputStream.flush()V java/io/BufferedOutputStream.flush()V 48
60000 java/io/BufferedOutputStream.flushBuffer()V

java/io/BufferedOutputStream.flush()V 5064
60000 java/lang/StringBuffer.getValue()[C

java/lang/String.<init>(Ljava/lang/StringBuffer;)V 100
60000 java/lang/StringBuffer.setShared()V

java/lang/String.<init>(Ljava/lang/StringBuffer;)V 132
60000 java/lang/StringBuffer.length()I

java/lang/String.<init>(Ljava/lang/StringBuffer;)V 83
40000 java/io/BufferedWriter.ensureOpen()V

java/io/BufferedWriter.flushBuffer()V 65
40000 java/io/BufferedWriter.write(Ljava/lang/String;II)V

java/io/Writer.write(Ljava/lang/String;)V 1879
40000 sun/io/CharToByte8859_1.convert([CII[BII)I

java/io/OutputStreamWriter.write([CII)V 7772
40000 java/lang/Math.min(II)I

java/io/BufferedWriter.write(Ljava/lang/String;II)V 99
40000 java/lang/StringBuffer.copyWhenShared()V

java/lang/StringBuffer.reverse()Ljava/lang/StringBuffer; 81

Using optimization tools 435
40000 java/lang/String.<init>(Ljava/lang/String;)V
MainClass.main([Ljava/lang/String;)V 1145

40000 java/io/PrintStream.write([BII)V
java/io/OutputStreamWriter.flushBuffer()V 6865

40000 java/lang/String.getChars(II[CI)V
java/io/BufferedWriter.write(Ljava/lang/String;II)V 506

40000 java/lang/StringBuffer.toString()Ljava/lang/String;
java/lang/Integer.toString(II)Ljava/lang/String; 1182

40000 java/lang/StringBuffer.reverse()Ljava/lang/StringBuffer;
java/lang/Integer.toString(II)Ljava/lang/String; 1138

40000 java/lang/StringBuffer.<init>(I)V
java/lang/Integer.toString(II)Ljava/lang/String; 411

40000 java/io/FileOutputStream.write([BII)V
java/io/BufferedOutputStream.flushBuffer()V 4660

40000 java/io/OutputStreamWriter.write([CII)V
java/io/BufferedWriter.flushBuffer()V 8832

40000 java/io/OutputStreamWriter.ensureOpen()V
java/io/OutputStreamWriter.flushBuffer()V 75

40000 java/io/BufferedWriter.ensureOpen()V
java/io/BufferedWriter.write(Ljava/lang/String;II)V 73

40000 java/io/OutputStreamWriter.ensureOpen()V
java/io/OutputStreamWriter.write([CII)V 80

40000 java/lang/String.getChars(II[CI)V
java/lang/String.<init>(Ljava/lang/String;)V 635

40000 java/io/PrintStream.ensureOpen()V java/io/PrintStream.write([BII)V 94
40000 java/lang/System.arraycopy(Ljava/lang/Object;ILjava/lang/Object;II)V

java/io/BufferedOutputStream.write([BII)V 83
40000 java/lang/Integer.toString(II)Ljava/lang/String;

java/lang/String.valueOf(I)Ljava/lang/String; 10145
40000 java/io/BufferedOutputStream.write([BII)V

java/io/PrintStream.write([BII)V 615
40000 java/io/BufferedOutputStream.flush()V

java/io/PrintStream.write([BII)V 5458
40000 java/lang/StringBuffer.append(Ljava/lang/String;)

Ljava/lang/StringBuffer; MainClass.myMethod(Ljava/lang/String;
Ljava/lang/String;II)V 1360

40000 java/io/FileOutputStream.writeBytes([BII)V
java/io/FileOutputStream.write([BII)V 4260

20000 java/io/PrintStream.ensureOpen()V
java/io/PrintStream.write(Ljava/lang/String;)V 35

20000 java/io/PrintStream.ensureOpen()V java/io/PrintStream.newLine()V 59
20000 java/io/PrintStream.print(Ljava/lang/String;)V

java/io/PrintStream.println(Ljava/lang/String;)V 14250
20000 java/lang/StringBuffer.append(Ljava/lang/String;)Ljava/

lang/StringBuffer; java/lang/StringBuffer.append(I)
Ljava/lang/StringBuffer; 807

20000 java/io/Writer.write(Ljava/lang/String;)V
java/io/BufferedWriter.newLine()V 1066

436 CHAPTER 13
Optimizing JFC applications
20000 java/lang/StringBuffer.append(Ljava/lang/String;)Ljava/
lang/StringBuffer; java/lang/StringBuffer.<init>(
Ljava/lang/String;)V 797

20000 java/io/PrintStream.write(Ljava/lang/String;)V
java/io/PrintStream.print(Ljava/lang/String;)V 14168

20000 java/lang/String.indexOf(I)I
java/io/PrintStream.write(Ljava/lang/String;)V 1210

20000 java/lang/String.valueOf(Ljava/lang/Object;)Ljava/
lang/String; MainClass.myMethod(Ljava/lang/String;
Ljava/lang/String;II)V 134

20000 java/io/Writer.write(Ljava/lang/String;)V
java/io/PrintStream.write(Ljava/lang/String;)V 1002

20000 java/lang/String.valueOf(I)Ljava/lang/String;
MainClass.main([Ljava/lang/String;)V 4961

20000 java/io/BufferedWriter.flushBuffer()V
java/io/PrintStream.newLine()V 1980

20000 java/io/BufferedWriter.flushBuffer()V
java/io/PrintStream.write(Ljava/lang/String;)V 7483

20000 java/io/BufferedWriter.newLine()V java/io/PrintStream.newLine()V 1150
20000 java/lang/StringBuffer.toString()Ljava/lang/String;

MainClass.myMethod(Ljava/lang/String;Ljava/lang/String;II)V 590
20000 java/io/OutputStreamWriter.flushBuffer()V

java/io/PrintStream.write(Ljava/lang/String;)V 3982
20000 java/io/OutputStreamWriter.flushBuffer()V

java/io/PrintStream.newLine()V 4510
20000 java/io/PrintStream.newLine()V

java/io/PrintStream.println(Ljava/lang/String;)V 8336
20000 java/io/PrintStream.println(Ljava/lang/String;)V

MainClass.myMethod(Ljava/lang/String;Ljava/lang/String;II)V 22803
20000 java/lang/String.indexOf(II)I java/lang/String.indexOf(I)I 1133
20000 java/lang/StringBuffer.<init>(I)V

java/lang/StringBuffer.<init>(Ljava/lang/String;)V 148
20000 MainClass.myMethod(Ljava/lang/String;Ljava/lang/String;II)V

MainClass.main([Ljava/lang/String;)V 32820
20000 java/lang/StringBuffer.<init>(Ljava/lang/String;)V

MainClass.myMethod(Ljava/lang/String;Ljava/lang/String;II)V 1204
20000 java/lang/String.length()I

java/lang/StringBuffer.<init>(Ljava/lang/String;)V 33
20000 java/lang/StringBuffer.append(I)Ljava/lang/StringBuffer;

MainClass.myMethod(Ljava/lang/String;Ljava/lang/String;II)V 6283
20000 java/lang/String.toString()Ljava/lang/String;

java/lang/String.valueOf(Ljava/lang/Object;)Ljava/lang/String; 24
20000 java/io/BufferedOutputStream.flush()V java/io/PrintStream.newLine()V
228
20000 java/lang/String.valueOf(I)Ljava/lang/String;

java/lang/StringBuffer.append(I)Ljava/lang/StringBuffer; 5347
6 java/lang/System.gc()V java/lang/StringBuffer.<init>(I)V 167
4 java/lang/System.gc()V MainClass.main([Ljava/lang/String;)V 77

Using optimization tools 437
4 java/lang/String.<init>(II[C)V <unknown caller> 0
1 java/lang/Object.<init>()V java/lang/String.<init>(Ljava/lang/String;)V 0
1 java/lang/Float.floatToIntBits(F)I java/lang/Math.<clinit>()V 0
1 java/lang/String.length()I java/io/Writer.write(Ljava/lang/String;)V 0
1 java/lang/System.gc()V sun/io/CharToByte8859_1.convert([CII[BII)I 19
1 java/lang/Float.<clinit>()V <unknown caller> 0
1 java/lang/Class.getPrimitiveClass(Ljava/lang/String;)Ljava/lang/Class;

 java/lang/Double.<clinit>()V 0
1 MainClass.main([Ljava/lang/String;)V <unknown caller> 39594
1 java/lang/Double.longBitsToDouble(J)D java/lang/Double.<clinit>()V 0
1 java/lang/String.length()I java/lang/String.<init>(Ljava/lang/String;)V 0
1 java/lang/Class.getPrimitiveClass(Ljava/lang/String;)Ljava/lang/Class;

java/lang/Float.<clinit>()V 0
1 java/lang/System.gc()V

java/lang/StringBuffer.toString()Ljava/lang/String; 23
1 java/lang/Double.doubleToLongBits(D)J java/lang/Math.<clinit>()V 0
1 java/lang/Double.<clinit>()V <unknown caller> 0
1 java/lang/Math.<clinit>()V <unknown caller> 20
handles_used: 1010, handles_free: 26214, heap-used: 105184, heap-free: 733672
sig count bytes indx
[C 14518802 5
[B 519200 8
*** tab[979] p=1d78558 cb=f80140 cnt=609 ac=1 al=0

Ljava/lang/String; 609 7308
 [Ljava/lang/String; 1 0
*** tab[946] p=1d78348 cb=f830b0 cnt=22 ac=0 al=0

Ljava/util/Locale; 22 352
*** tab[941] p=1d782f8 cb=f800a8 cnt=2 ac=1 al=4

Ljava/lang/ThreadGroup; 2 80
 [Ljava/lang/ThreadGroup; 1 16
*** tab[899] p=1d78058 cb=f80000 cnt=3 ac=2 al=8

Ljava/lang/Thread; 3 132
 [Ljava/lang/Thread; 2 32
*** tab[603] p=1d76dd8 cb=f83b50 cnt=2 ac=0 al=0

Ljava/io/BufferedWriter; 2 48
*** tab[414] p=1d76208 cb=f80868 cnt=2 ac=0 al=0

Ljava/io/BufferedOutputStream; 2 24
*** tab[398] p=1d76108 cb=f80828 cnt=1 ac=0 al=0

Ljava/io/FileInputStream; 1 4
*** tab[392] p=1d760a8 cb=f80810 cnt=1 ac=0 al=0

Ljava/io/FileDescriptor; 1 4
*** tab[384] p=1d76028 cb=f807f0 cnt=2 ac=0 al=0

Ljava/io/FileOutputStream; 2 8
*** tab[376] p=1d75fa8 cb=f807d0 cnt=1 ac=0 al=0

Ljava/io/BufferedInputStream; 1 24
*** tab[370] p=1d75f48 cb=f807b8 cnt=2 ac=0 al=0

Ljava/io/PrintStream; 2 48
*** tab[358] p=1d75e88 cb=f80788 cnt=2 ac=0 al=0

438 CHAPTER 13
Optimizing JFC applications
Ljava/io/OutputStreamWriter; 2 48
*** tab[38] p=1d74a88 cb=f80288 cnt=1 ac=0 al=0

Ljava/util/Properties; 1 20
*** tab[36] p=1d74a68 cb=f80280 cnt=1 ac=0 al=0

Ljava/util/Hashtable; 1 16
*** tab[28] p=1d749e8 cb=f80260 cnt=203 ac=2 al=1002

Ljava/util/HashtableEntry; 203 3248
 [Ljava/util/HashtableEntry; 2 4008

 In order to decipher the meaning of this list, we will use the single line shown
below. You will find this line of data in the OUT.TXT file generated by the profiler.

20000 MainClass.myMethod(Ljava/lang/String;Ljava/lang/String;II)V
MainClass.main([Ljava/lang/String;)V 32820

 The format of this line is “count callee caller time” where:

■ count indicates the number of times the method is called
■ callee is the name of the method called

■ caller lists the method which invoked the called method

■ time is the total elapsed time measured in milliseconds used to execute the
called method

 From the sample line, you can see that the myMethod() code is called 20,000
times from main() , and used 32.82 seconds, or 1.641 seconds per call.

 We won’t dwell on Sun’s profiler because you are likely to shy away from it.
The output it produces is quite informative, but requires a great deal of developer
intervention in order to manually sift through the volumes of data produced. As we
will see next, Sun offers a tool that enhances the abilities of its profiler by automati-
cally performing the laborious task of examining the raw profiler data

13.2.3 Profiling with Java workshop

The JDK is not the only place Sun provides a profiler. In fact, the Sun Java Work-
Shop product also includes a profiler which is arguably the best profiler for Java
today. This profiler allows you view method execution time at a millisecond resolu-
tion, and this value can include or exclude the time used by anything else an indi-
vidual method executes.

 Figure 13.1 shows the profiler output produced by the test program in listing
13.1. Since our sample includes only two methods, the output is quite simple. In
the top window, the main method is highlighted; the middle window shows the

Using optimization tools 439
times used by any methods that main() calls; and the lower window would show
the times for any caller methods, if there were any.

 Figure 13.1 shows that our untuned example required 106.551 seconds to
execute. With some quick performance tuning, we can reduce this time to approxi-
mately 98 seconds. This 8.6 percent time saving doesn’t sound significant, but
remember, this is only one method call. In a much more complex application, you
can usually save more time than this, so, profiling is definitely a worthwhile exercise.
One of the easiest ways to accomplish this task is with Sun’s Java Workshop profiler
tool.

13.2.4 Profiling with OptimizeIt

Fortunately, there is an even better tool for profiling Java code—OptimizeIt, which
has been developed specifically for tuning Java applications. Its downside is that it

Figure 13.1 Java WorkShop profiler output for test application

440 CHAPTER 13
Optimizing JFC applications
comes with a price tag attached but this tool is well worth its modest price. Appen-
dix B contains an overview of OptimizeIt and other tools you may want to acquire.

 Figure 13.2 shows a sample of the output produced when the sample applica-
tion (listing13.1) is executed. In this case, it shows that the program spends 96.65
percent of its time within MainClass.myMethod() , which is not unexpected since
this method handles the console output. However, note that our sample spends
over 8 percent of its time handling strings. Strings in Java are notorious for poor
performance, and we will look at ways to eliminate some of these bottlenecks and
improve on others a little later in this chapter.

Figure 13.2 OptimizeIt output for test application

Using optimization tools 441
 OptimizeIt is an excellent tool that all Java developers concerned with perfor-
mance should have in their toolboxes. This application faithfully details where CPU
is being spent with an application or applet. Unfortunately, OptimizeIt only indi-
cates performance as a percentage of total execution time, rather than absolute
time. This does make it more difficult to tune specific methods with the tool, but
OptimizeIt’s benefits far outweigh any disadvantages.

13.2.5 A custom profiler class

The tools we have reviewed so far tap into an application from the outside. Though
both the Sun Java profiler and OptimizeIt are each powerful in their own right,
they are hampered by the fact that they cannot penetrate to the internals of the
application. These tools are unable to determine exactly how much time is required
to execute groups of source code lines—or even a single line.

 To address these issues, we can implement a special class that we can use to
determine elapsed time between two or more lines of code. It is important to note
that once we start adding code to an application for profiling purposes, we begin to
affect the real performance of the program—basically, the profiling code is also pro-
filing itself. For this reason, we must insure that whatever code we add is optimized
as much as possible, in order to minimize the effect that profiling has on overall
performance.

 Listing 13.2A shows the code for the DebugProfile class, which simply keeps
track of the profile start time and the time of each Print() method invocation.
From this information, it is easy to determine how long a task takes, as well as how
much time has elapsed between one or more lines of code.

class DebugProfile
{

private long lStart = 0;
private long lLast = 0;
private String titleString;

public DebugProfile(String titleString)
{

this.titleString = titleString;
}

public void Print(String string)
{

Listing 13.2A DebugProfile class source code458

442 CHAPTER 13
Optimizing JFC applications
 Listing 13.2B shows the modified MainClass source code containing the
debugging profiling code. Notice that in the constructor for the profiler object,
there is a string called Main. This string is prefixed to any printed profile data, so it
can be used to identify the part of the code to which the profile information is refer-
ring. This is especially useful if you are profiling several methods in the code at the
same time.

// Keep track of the current elpased time and the
// time from start
long lCurrent = System.currentTimeMillis();
if(lStart == 0)
{

lLast = lCurrent;
lStart = lCurrent;

}

// Display the string along with a time stamp
System.out.println(titleString + "\t" + (lCurrent-lStart)

+ "\t" + (lCurrent-lLast) + "\t" + string);

// Save the last time
lLast = lCurrent;

}
}

class MainClass
{

public static void main(String args[])
{

DebugProfile log = new DebugProfile("Main");

int constantMultiplier = 2;

log.Print("Starting Loop");
for(int iCtr = 0; iCtr < 1000; iCtr++)
{

log.Print("Iteration:" + iCtr);

String string = new String("Option: ");
int tempValue = iCtr * constantMultiplier;
String valueString = new String("" + iCtr);

myMethod(string, valueString, tempValue, iCtr);

Listing 13.2B Sample MainClass source code with profiling

Listing 13.2A DebugProfile class source code458 (continued)

Using optimization tools 443
 The partial list below shows the results of the profiling class. It indicates the
profile name (Main, in this case) followed by two columns: the first showing the
time from the start, and the second showing the time from the last print. From this
information, we can determine that the program consumes 30 milliseconds to exe-
cute the line containing the for statement the first time through. This time can be
attributed to initializing the loop control (iCtr).

Main 0 0 Starting Loop
Main 30 30 Iteration:0
Main 30 0 Done iteration:0
Main 30 0 Iteration:1
Main 30 0 Done iteration:1

 The times shown are absolute, but do include any time consumed by the pro-
filing code itself; however, since any time used by the profiling code is relatively
constant, the displayed time values are representative of the real time used by the
application.

 The best way to use the DebugProfile class is in conjunction with a tool like
OptimizeIt. The profiling tool can narrow down the search for hot spots in the
code, and the DebugProfile class can zoom right in to individual lines of slow code.

Currently, the DebugProfile class writes its output to the system console
stream, which may not be desirable in some applications. The source code
could be modified to write to a file stream in order to archive logged profile
data; however, file streaming will increase the impact that the profiling code
has on overall performance of the application that it is testing.

log.Print("Done iteration:" + iCtr);
}
log.Print("Finished Loop");

}

public static void myMethod(String string, String valueString,
int tempValue, int iCtr)

{
System.out.println(string + valueString + "," + tempValue);

}
}

Listing 13.2B Sample MainClass source code with profiling (continued)

444 CHAPTER 13
Optimizing JFC applications
13.2.6 Native compilation—the easy way out

Making applications run fast is of prime concern to any serious developer. We can
spend huge amounts of time in an attempt to steal back CPU cycles from poorly
performing applications, an effort which is critical for VM-interpreted Java code.
But squeezing every last unnecessary instruction out of a program may still result in
unacceptable performance, so, we need to seek an alternative.

 Some of the newer Java development environments are now addressing this
issue; however, there is a significant technical cost associated with these tools. Some
development environments now offer the ability to compile the Java code to a plat-
form native executable—which may not increase performance by an order of mag-
nitude, but, in most situations, the increase is significant. At the present time, the
only mainstream environment supporting native compilation is Symantec’s Visual
Café product, but others will undoubtedly follow. You can find more information
concerning native code compilers at:

http://www.roaster.com/news/dec97/1201/pr/133.html.

 There is an important distinction between native compilation and optimiza-
tion. Native compilation is simply a lazy technique for improving the performance
of a Java application by generating native machine code, but it comes at the expense
of platform independence. For example, a compiled Java program for Microsoft
Windows will not run on a Sun Solaris system because they use different CPUs;
however, if you are targeting a single platform or you are prepared to recompile your
application on each target platform, you may want to investigate native compilation.

 To see the effect of native compilation, we need to run some rudimentary
benchmark tests. These tests were performed on a Compaq DeskPro 300Mhz Pen-
tium II system with 128MB of memory. The looping code from listing 13.1 (with
20,000 iterations) requires an average of 10.85 seconds to run as an interpreted
Java application. The same program, when compiled to a native application,
requires just 7.2 seconds.

 Before you begin thinking that native compilation will save you from the evils
of optimization, we should test an optimized version of the sample code. In the same
situation and on the same hardware, the speed-tuned version of listing 13.1, shown
below, requires just 6.4 seconds to complete the loop test with 20,000 iterations.

class MainClass

{
public static void main(String args[])
{

http://www.roaster.com/news/dec97/1201/pr/133.html

General rules for Java optimization 445
DebugProfile log = new DebugProfile("Main");

log.Print("Starting Loop");
int iCtr = 0;
while(iCtr < 20000)
{

System.out.println("Option: " + iCtr + "," + (iCtr << 2));
iCtr++;

}
log.Print("Finished Loop");

}
}

13.3 General rules for Java optimization

In the previous section we examined some of the techniques and tools available for
determining where Java applications and applet contain performance bottlenecks.
Except for the noticeable differences between the original poorly performing sam-
ple in listing 13.1, and the final optimized version, we have not discussed why some
code is slow, nor has there been any attempt to solve this problem.

 In this section, we will outline some of the common performance problems
associated with writing Java code and the techniques you can employ to eliminate
them from your applications. The rules described in this section apply to all types of
Java code. In the next section, we will focus in on ways you can improve the perfor-
mance of JFC-based code.

The golden rule of optimization: In a typical program, 90 percent of the
total execution time will occur within 10 percent of the code (Some people
use an 80 percent/20 percent ratio). Using a profiling tool like OptimizeIt,
determine where the bulk of the execution time is occurring and concentrate
on improving the performance there—ignore the 90 percent of the code
where 10 percent of the time is spent. There is little gained by improving the
performance of code that is executed only once or twice. The most common
place to find performance problems occurs within loops.

13.3.1 Loop optimization

Loops in the code can pose special performance problems. If a loop contains a
poorly written section of code, this problem becomes compounded by each itera-

446 CHAPTER 13
Optimizing JFC applications
tion of the loop. Let’s examine some of the more common ways to improve looping
performance.

Be careful when altering code that already works well. Attempts to opti-
mize a program can sometimes introduce subtle bugs.

Object creation in loops
 Study the following code fragment which shows code that most developers

would write:

for(int iCtr = 0; iCtr < 20000; iCtr++)
{

String stringValue = new String(“Sample:” + iCtr);
System.out.println(stringValue);

}

 Notice that a new String object is created within the loop, and, as a side effect,
the object is destroyed at the end of each loop iteration—leaving fragmented mem-
ory for the Java garbage collector (GC) to clean up. Since strings in Java are immu-
table, we can do little to improve on the implied append operation when the loop
value is added to the string, but the implied object creation can be eliminated. Look
at the following improved code:

String stringValue = new String(“Sample:”);
for(int iCtr = 0; iCtr < 20000; iCtr++)
{

System.out.println(stringValue + iCtr);
}

 In this case, the string is created only once, eliminating the 20,000 object cre-
ations in the previous example, and, equally important, the 20,000 fragmented
chunks of memory left for GC to handle.

Loop unrolling
 Another way to improve loop performance is to reduce the number of itera-

tions that the loop control must manage. The code to handle the loop control is
definitely significant, so, reducing the number of iterations can dramatically
improve performance—especially for loops that execute a single line of code. Con-
sider the following code:

General rules for Java optimization 447
for(int iCtr = 0; iCtr < 20000; iCtr++)
{

arrayA[iCtr] = iCtr * 12.5;
}

 To reduce the number of iterations by a factor of two, and significantly
improve performance, we could write this code as:

for(int iCtr = 0; iCtr < 20000; iCtr += 2)
{

arrayA[iCtr] = iCtr * 12.5;
arrayA[iCtr+1] = (iCtr+1) * 12.5;

}

 In this second example, each iteration of the loop increments the control by
two rather than one. This means that instead of the original 20,000 iterations the
code now executes only 10,000.

In the process of optimizing an application, it is quite easy to obfuscate
the code, which can be a real headache later on when you need to main-
tain the program. Optimizing code generally sacrifices its readability.

Loop elimination
 Another technique commonly used by optimizing compilers is a technique

known as loop elimination, which eliminates the loop if doing so will result in
smaller, faster code. Let’s assume that we have the following code, which iterates a
loop just three times:

String stringValue = new String(“Sample:”);
for(int iCtr = 0; iCtr < 3; iCtr++)
{

System.out.println(stringValue + iCtr);
}

 A better way to implement this is to unfold the loop into three lines of code.

String stringValue = new String(“Sample:”);
System.out.println(stringValue + 0);
System.out.println(stringValue + 1);
System.out.println(stringValue + 2);

 Though the code produced might be larger in some situations, it will execute
faster because it eliminates the code required to manage the loop iteration.

448 CHAPTER 13
Optimizing JFC applications
13.3.2 String handling

Strings in the Java language have become notorious for causing performance prob-
lems within programs, and, in this regard, it is unfortunate that strings are so con-
venient. There are several techniques that can be implemented to either reduce the
use of the Java String class or to better control them. We will concentrate on two
of the most important ones.

Using StringBuffer
 String concatenation is quite slow in Java, due largely to its immutable strings.

When one string is added to another, the Java VM creates a third string containing
the added result. The garbage collector thread is trusted to remove the old data.
Consider the following code:

String string1 = new String("");
for(int iCtr = 0; iCtr < 20000; iCtr++)
string1 = string1 + "A";

 On a test system, this code required an average of 7.93 seconds to complete.
 The StringBuffer class, though often ignored by Java developers, offers vastly

better performance than its String cousin does. Furthermore, it is simple to convert
a StringBuffer to a String instance, if it is required. Let’s rewrite the previous code
using a StringBuffer instead of a String:

StringBuffer string2 = new StringBuffer("");
for(int iCtr = 0; iCtr < 20000; iCtr++)

string2.append("A");
string1 = string2.toString();

 This code required one more line of code, so it will generate a slightly larger
footprint; however, on the same test machine, this code requires just 0.15 seconds
to execute—that’s almost 50 times faster!

Using StringBuffer is probably the most likely way to improve performance
in your application, so it deserves special mention. Where possible eliminate
the use of the String class. Instead, replace strings with instances of String-
Buffer and use the toString() method to convert them to strings if
required.

General rules for Java optimization 449
Reducing string manipulations
 Another way to improve performance with strings is to eliminate unnecessary

manipulations, especially in and around loops. For example, consider the follow-
ing code:

for(int iCtr = 0; iCtr < 100; iCtr++)
{

String stringValue = anotherString + “ value of this is “
+ testString + “:” + iCtr);

System.out.println(stringValue);
}

 In this example, the string addition is performed for every iteration of the
loop, so, the common elements should be factored out to produce tighter code.
This is actually a form of code movement, which we will examine in the next sec-
tion. The previous example should be written as:

String stringValue = anotherString + “ value of this is “
+ testString + “:”;

for(int iCtr = 0; iCtr < 100; iCtr++)
{

System.out.println(stringValue + iCtr);
}

13.3.3 Numerical data handling

Java offers a number of opportunities to improve performance when handling
numerical values. Calculations (particularly in loops) can present performance prob-
lems which can easily be optimized out, sacrificing little in terms of readability. Let’s
examine a few of the problems around numerical data, and ways in which we can
solve them.

Strength reduction
 A simple technique to improve performance of integer calculations is known as

strength reduction, and though this technique does compromise code readability
somewhat, it can offer a significant performance boost. Consider the following
code:

int value = otherValue * 16;

 This line of code requires a multiplication operation. The value 16 is actually a
binary weighted value of 24, so we can easily eliminate the multiplication operation

450 CHAPTER 13
Optimizing JFC applications
by using a bit shift of 4, resulting in better performance. Thus we can rewrite the
code as:

int value = otherValue << 4;

Eliminating common sub-expressions
 It is quite easy to implement code containing common subexpressions. To

improve performance, these redundant calculations should be factored out. Look at
the following code:

float x = value * (lowRange / hiRange) * deltaX;
float y = value * (lowRange / hiRange) * deltaY;

 Notice the two lines of code contain common subexpressions that can be fac-
tored. This code would be more efficiently written as:

float rangeValue = value * (lowRange / hiRange);
float x = rangeValue * deltaX;
float y = rangeValue * deltaY;

Code motion
 When performing numerical calculations, we need to avoid performing unnec-

essary operations within loops. Calculation of values invariant to the loop should be
moved outside the looping code. This technique is known as code motion. Con-
sider the following code fragment:

for(int iCtr = 0; iCtr < valueArray.length; iCtr++)
{

valueArray[iCtr] *= currentTime * 1000;
}

 In this sample, the calculation currentTime * 1000 is invariant. This code
should be written as:

int invariantValue = currentTime * 1000;
for(int iCtr = 0; iCtr < valueArray.length; iCtr++)
{

valueArray[iCtr] *= invariantValue;
}

Improving integer math
 Let’s examine one final technique to make integer addition and subtraction

faster. Look at the following code:

int iValue = 10;

General rules for Java optimization 451
iValue = iValue + 27;

 Though this code seems harmless enough, it is actually less efficient than the
alternative. This code generates the following bytecode:

;int iValue = 10;
0 bipush 10
2 istore_1

;iValue = iValue + 27;
3 iload_1
4 bipush 27
6 iadd
7 istore_1

 A better way to achieve the same result is to use the autoincrement or autodec-
rement operator:

int iValue = 10;
iValue += 27;

 This source code generates a slightly shorter stream of bytecode:

;int iValue = 10;
0 bipush 10
2 istore_1
3 iinc 1 27

 As you can see, instead of the original 4 bytecode instructions, the new code
executes only one, saving 3 bytes in the process. Incidentally, the ++ and — opera-
tors generate similarly tight code and should always be used instead of adding one
to an integer.

13.3.4 Native code

One final technique you can employ to tune performance is to exchange slower Java
code with native C code; however, this technique is undesirable because it greatly
complicates the development environment in which you need to work. Once a deci-
sion to implement native code has been made, you need to support not only your
existing Java environment, but also whatever native language development environ-
ment you decide to use.

 While the use of native methods provides the ultimate performance boost to
Java code, it presents some serious drawbacks. For example, in addition to the build
process complications noted previously, the use of native methods also sacrifices

452 CHAPTER 13
Optimizing JFC applications
platform independence. If you are writing code targeted to several different plat-
forms, do not use native methods.

13.3.5 Other tips for optimizing Java code

Avoid synchronized methods and variables
 When implementing multiple threads in an application, is it sometimes impos-

sible to avoid synchronized methods and variables, and careless use of the synchro-
nized keyword can substantially degrade program performance. A synchronized
method requires about 30 percent more CPU time to set up and execute than a
normal method, so only apply synchronization if it is required. Since use of threads
is discouraged in JFC-based programs (more on this in the next section), it should
be easy to avoid synchronized methods and variables.

13.4 Optimizing JFC applications

So far in this chapter, we have focussed on improving the general performance of
Java applications, identifying common techniques that can be applied to any code
(including JFC). In this section, we will focus only on the performance issues for
JFC and Swing—including ways in which we can apply multithreading to JFC
applications to help improve performance (as well as some other tricks that I have
learned from my often painful experiences with JFC).

13.4.1 Adding threads to a JFC application

If you are familiar with Java, then you probably already understand how Java’s
threads can help improve perceived performance by allowing simultaneous execu-
tion of two or more unrelated tasks. This inherent capability in Java means that you
can create and manage the user interface on one thread and handle the data collec-
tion portion of your program (for example) on another thread. At some point dur-
ing program execution, the two threads inevitably interact, but, with careful coding
and synchronization, it works.

 Swing components pose special problems in a multithreaded application, and
they require a unique approach. Once a Swing component has been realized (its
paint() method has been called), any code that affects it, or that it affects, must by
executed on the event-dispatching thread. This restriction might imply that Swing-
based programs must be single threaded, but Swing offers some alternative tech-
niques for threading, and some methods in the Swing classes are thread-safe.

Optimizing JFC applications 453
In JComponent, the repaint() , revalidate() , and invalidate() meth-
ods can be safely used within threads. They can be called from any thread ex-
ecuting within the application. The repaint() and revalidate() methods
queue requests until the event-dispatch thread can process them.

 To allow serialized execution of tasks within the event-dispatch thread, Swing
provides two methods in the SwingUtilities class (see the following table). These
methods virtualize the concept of multithreading by queuing tasks until it is safe for
the event-dispatch thread to execute them.

Whenever possible, you should use the invokeLater() method rather
than invokeAndWait() . If you must use invokeAndWait() make sure
that the code it executes does not lock any other threads; otherwise, you
can run into a potential deadlock situation.

 The following code fragment shows the invokeLater() method in use. This
method requires that the code to be executed is implemented within a runnable
class. Within the run() method of this sample, you can execute any code you want,
including code that manipulates one or more Swing components.

class RunnableClass implements Runnable
{

public void run()
{

// Do work here
}

};
SwingUtilities.invokeLater(new RunnableClass());

 Though this chapter has focused on techniques you can use to make your pro-
grams faster, using invokeLater() will not necessarily directly help you improve

invokeLater() This method asks the event-dispatch thread to execute the specified code while
the program continues to execute. Once the event-dispatch thread reaches the
queued request, it will be executed, but there is no guarantee when this action will
be performed.

invokeAndWait() This method accepts a runnable class and requests that the event-dispatching
thread execute it. The program will wait until the task has been completed.

454 CHAPTER 13
Optimizing JFC applications
performance; however, internally in JFC, placing tasks on the event-dispatch thread
improves how code is managed and executed, which does result in better perfor-
mance.

13.4.2 Using JFC timers to reduce CPU usage

When creating separate threads in JFC applications (using the invokeLater()

method), there will inevitably be times when you want the thread code to execute
for the life of the program, coming to life on a regular basis to perform some low
priority task. For example, let’s say we are building a program to display the time in
a window. We can create a thread to retrieve the time and display it, but there is lit-
tle point in performing this task more than once per second. We could implement
our thread code like this:

public void run()
{

while(1 == 1)
{

// Load the time

// Display the time

sleep(1000);
}

}

 The problem with this approach should be fairly obvious. Once the sleep()

method is called, our program really loses control over the CPU. Internally,
sleep() presumably executes on a one millisecond interval, checking the elapsed
time, and timing out after 1,000 milliseconds. The means that even though our
code is effectively idle, it can still be consuming CPU cycles.

 JFC offers a better approach by providing an event driven timer class which
generates an action event when the specified time has elapsed. Using the Timer
class, the code fragment above can be rewritten:

class MyClass
{

Timer myTimer;

public MyClass()
{

.

.

.

Optimizing JFC applications 455
myTimer = new Timer(1000, this);
myTimer.start();
myTimer.setRepeats(true);

}

public void actionPerformed(ActionEvent event)
{

if(event.getSource() == myTimer)
{

// Load the time

// Display the time
}

}
}

 The code creates a timer with a 1,000 millisecond repeatable interval which
invokes the actionPerformed() method to fetch the time and display it. With this
mechanism, we eliminate the constant CPU usage incurred with the sleep()

method, and, as a pleasant side effect, the code becomes much cleaner.

13.4.3 Other tips for optimizing JFC applications

There are a number of other minor tips and tricks you can use to improve the per-
formance or size of a JFC-based application.

Optimizing custom renderers
 Customer renders for Swing components are a great place to concentrate on

performance tuning. In the renderer for a JTable instance, the code is executed for
each visible cell, so any performance problems will manifest themselves in the form
of a sluggish user interface.

 If the custom rendering code involves changing fonts, you have the potential
for problems. Look at the following code:

public Component getTableCellRendererComponent(JTable xcTable,
Object value, boolean hasFocus,
boolean isSelected, int iRowIndex,
int iColumnIndex)

{
// Draw the service name
setFont(new Font("Helvetica", Font.BOLD, 12));
setText(value.toString());

}

 In this example, the font is set every time the renderer is called (for every visi-
ble cell in the table). Creating a new font instance is a relatively time consuming

456 CHAPTER 13
Optimizing JFC applications
operation, so you certainly don’t want to perform this operation within a rendering
method. Instead, implement a constructor that creates the font as a class attribute,
then reference this in the renderer code when setting the font. If the renderer uses
several fonts, depending on the data it is displaying, create a font attribute for each
font.

Use Basic look-and-feel
 If you are more concerned with size than performance (an issue applet devel-

opers can appreciate), then avoid using a look-and-feel other than the Basic one. All
other stock look-and-feel class libraries are based on Basic, so using Motif, for
example, requires both the Basic and the Motif library, resulting in the code foot-
print increasing by approximately 175K bytes. Since the JAR file for both look-and-
feels must be loaded, there are also performance considerations for the applet/
application startup time.

13.5 Chapter summary

In this final chapter we deviated somewhat from the JFC and Swing focus to inves-
tigate reasons for poor performance in Java code. The first part of this chapter was
devoted to general improvements in Java performance, including standard optimi-
zation techniques that apply to most languages. We examined some of the weapons
at our disposal in the war against poor performance, including optimizers such as
OptimizeIt, and a DebugProfile class that you can embed in your own code to
determine the execution duration for even single lines of code.

 Next, we examined some of the performance techniques applicable to JFC-
based programs. We discussed reasons to avoid using Java threads, and the alterna-
tive provision made by JFC—the invokeLater() method. The Swing Timer class
was presented as an alternative to building threads that poll in order to execute peri-
odic maintenance code (such as, garbage collection). Timer provides a much
cleaner event-driven approach to help reduce the CPU consumption of idle threads.

 Finally, we discussed some of the other miscellaneous tips you can apply to
make Swing-based applications run faster. The primary message of this section is to
eliminate costly code from rendering methods. Renders are called frequently, so any
performance concerns will quickly compound to produce an application that runs
very slowly.

 Since this is the last chapter of the book, we have to say good-bye. I hope that
this book has helped you to consolidate and clarify the information available for

Chapter summary 457
JFC, and, in particular, the Swing user interface library. Good-luck with your
Swing-based designs!

 In the appendices, you will find a wealth of information about Java develop
environments and available tools. Appendix C contains a list of information sources
available on the Internet.

AVisual
development tools

In this appendix
■ A review of some visual development tools

for Java applications

460 APPENDIX A
Visual development tools
Building Java applications today no longer requires using a text editor to create
source files and compiling them with the command-line compiler from Sun’s JDK.
However, it may be wise to compile all release builds with Sun’s JDK just to ensure
absolute compatibility across all of the target platforms for the application. Events
in the past, with Microsoft and Sun arguing over VM compatibility, have taught us
all something about trusting the ubiquity of the Java VM.

 Today, several vendors offer much better environments in which to build Java
applications. This new breed of tools offers a completely integrated development
environment with debugging capability, and some include code profiling. Most of
these tools (and all of the tools discussed here) offer the power to create applica-
tions visually by allowing components to be laid out graphically, then connecting
them functionally using simple mouse clicks or menu selections. The result can be a
complete Java application created without writing a single line of code. Often, the
visual tools will provide insufficient capability, so, all of these tools offers a mecha-
nism to allow developers to integrate user-written code as well.

 This section will examine some of the most popular visual tools available for
Java development. This list is not all-inclusive and is certainly not an endorsement
of these tools over others currently available. The tools described in this section are
sold by large software companies, but, with a bit of searching in the Internet, you
can undoubtedly find other acceptable Java development environments for free.

A.1 IBM VisualAge for Java

IBM has made some very heavy investments in Java, and one of the key compo-
nents in its strategy is a product called VisualAge for Java. VisualAge for Java is an
extremely powerful and complex tool that many users may find intimidating. Like
the other products in IBM’s VisualAge family, the Java tool is based on the Visu-
alAge engine. This engine does not use traditional files to store source code.
Instead, VisualAge stores all of its source code in a repository. This permits
advanced capabilities, such as automatic revision control and editing-while-debug-
ging, but users more familiar with the Microsoft Developer Studio may be
unnerved by the inability to examine source files any time they choose. Fortunately,
VisualAge for Java does provide an export capability for release builds of source and
class files.

 Figure A.1 shows a screen depicting the typical usage of VisualAge for Java,
illustrating three commonly referenced windows. The window in the upper-left cor-
ner contains the repository view that allows the user to browse and examine all of

IBM VisualAge for Java 461
the source code currently managed by VisualAge. Developers who have used IBM’s
VisualAge for SmallTalk product will already know about the code repository, but
those more familiar with Microsoft’s development environment will initially find
this concept a bit confusing. Unfortunately, unlike VisualAge for SmallTalk, the
Java tool is unable to compress the repository, so there is potential for extreme
growth of the associated data file on disk.

 The window in the upper-right side of the screen shot in figure A.1 shows the
Workbench. This window is where typical users will spend most of their time work-
ing, as it permits package and class selection, and source code editing.

Figure A.1 A typical VisualAge for Java screen

462 APPENDIX A
Visual development tools
 The final window in the lower portion of figure A.1 is the visual composition
editor. This window provides an interface for users to create screens graphically
rather than by writing Java code. All connections between components are shown
graphically through the use of arrow-headed lines. In theory, this is an excellent
idea, but, as the design becomes more complex, the VisualAge for Java visual com-
poser screen begins to get very congested.

 VisualAge for Java also provides a powerful debugger, shown in figure A.2.
This debugger, combined with the code registry, has the unique ability to allow
modification of source code while debugging without forcing the user to restart the
debugger session.

 The IBM web site for VisualAge Java is at

Figure A.2 A VisualAge for Java debugger

Symantec Visual Café 463
http://www.software.ibm.com/ad/vajava/.

 This site contains complete specifications, pricing information, and a trial ver-
sion of the program that can be downloaded for free. This site is also an excellent
place to find out about current Java news.

A.2 Symantec Visual Café

Another exciting environment for Java development originates from Symantec—
Visual Café. This integrated editor, compiler, and debugger really lives up to its
name. This tool assists the user in quickly implementing complete Java applications
visually. Like VisualAge for Java, Visual Café fully supports an environment which
allows the user to write Java code manually and then compile it and run it. It also
has a more seamless technique (than VisualAge for Java) for visually creating dia-
logs, frames, and so on, which doesn’t require the user to write the Java code
behind them. Visual Café also includes a very nice feature for graphically displaying
and editing the class hierarchy of an application. This is shown in figure A.3.

 Figure A.4 is a screen shot of Symantec Visual Café, showing several of the
many windows used in a typical session. Unlike VisualAge for Java, Visual Café is
more toolbar driven. (Note the impressive toolbar at the top of the screen.) The
Project Window in the upper-left corner contains a list of the Java files needed to
construct the application. The user can click on these files to manually edit the Java
source code at any time, as shown in the source code window in the lower right-
hand corner.

 The two frames in the upper-center and upper-right corners of figure A.4 con-
tain portions of the visual builder, showing the representation of the frame being
created and a property sheet of the selected component. Unlike VisualAge for Java,
Café shows a grid in its visual builder, and components added to the layout are
automatically sized and positioned according to this grid. Café does not apply con-
nection lines on the visual diagram the way VisualAge does. Instead, it allows for
logic connections using a connection wizard. This has the benefit of maintaining a
clear visual representation of the dialog or frame under construction, but it offers
no clear indication of how the visual components interact. The ability to toggle a
connection view would be a welcome feature in both VisualAge for Java and Visual
Café (as well as for Borland’s JBuilder, which will be examined next).

 Finally, Visual Café offers a feature unconnected to visual application creation,
but it deserves an honorable mention. With Café, developers can compile Java code

http://www.software.ibm.com/ad/vajava/

464 APPENDIX A
Visual development tools
to native Microsoft Windows executables and DLLs. This provides significantly
improved performance on the Windows platform and still allows non-Windows
users to use the application class files. Native code output is a very nice touch, and
this feature alone may win Symantec many votes of approval for Visual Café.

 Symantec provides a wealth of information about Visual Café at their web site
at:

http://www.symantec.com/domain/cafe/deved/index.html.

A.3 Borland JBuilder

Borland International is less of an industry force now than it was in their days as a
powerhouse in the C/C++ and Pascal worlds. However, with the release of their
JBuilder product, Borland might regain their previous stature. JBuilder is a com-

Figure A.3 Visual Café class display

http://www.symantec.com/domain/cafe/deved/index.html

Borland JBuilder 465
pletely integrated development environment for Java, and it includes a visual
builder. Figure A.5 is a screen shot of JBuilder showing the toolbar and the three
panes normally visible to the user. Borland appears to have adopted the best features
from Microsoft’s Developer Studio product and combined them with the best fea-
tures of Visual Café.

 JBuilder does not offer a native code compiler, and its visual tool (shown in
figure A.6) is not as smoothly integrated as those found in Café or VisualAge for
Java, but JBuilder is a solid product that is certainly worth a test drive.

Figure A.4 A screen shot of Symantec Visual Café Professional

466 APPENDIX A
Visual development tools
 Figure A.6 shows a very simple frame creation in the visual builder. Like
Symantec’s Café, JBuilder also provides a separate property/events window that
allows users to customize the components in the visual panel and to specify their
interrelationships.

 For further information regarding Borland JBuilder, visit its web site at:

http://www.borland.com/jbuilder/

Figure A.5 A screen shot of Borland JBuilder

http://www.borland.com/jbuilder/

Other tools 467
A.4 Other tools

Although this appendix cannot include reviews of all of the visual tools available to
Java developers, there are a number of other tools that deserve some recognition—
and new tools and updates are emerging into the marketplace on a daily basis.

 Sun offers two tools to assist with the visual development of Java programs.
Java Workshop, shown in figure A.7, is a typical development environment offering
visual composition and the ability to interface user-written Java code. Java Studio
offers a complete visual environment in which users can create complete applica-
tions and applets without writing any Java code.

 Java Workshop and Java Studio are available from Sun at:

http://shop.sun.com/.

 This site provides sales information for the products and a thirty-day test ver-
sion of each tool.

 Another excellent product comes from Bulletproof Corporation—JDesigner
Pro, which is a complete and comprehensive tool, at a reasonable price. JDesigner

Figure A.6 JBuilder visual designer

http://shop.sun.com

468 APPENDIX A
Visual development tools
offers a visually oriented design environment and even supports an ODBC interface
for database application developers.

Figure A.7
A screen shot of
Sun’s Java Workshop

BOther
tools

In this appendix
■ A review of some tools to fine tune your

source code

470 APPENDIX B
Other tools
Visual development environments only partially complete the developer’s arsenal of
Java tools. None of the development tools described in appendix A provides any
sort of code validation or optimization—both of which are crucial in the Java
world. Since Java is a bytecode interpreted language, performance can easily suffer
if care is not taken when coding, so developers must rely on optimization tools to
assist them. Also, portability can be compromised without the developer being
aware of it, so developers need some form of validation tool to indicate where port-
ability concerns might crop up.

 In this appendix, we will review some of the tools available to help Java devel-
opers write better code. Many of these tools are freely available from web sites on
the Internet, and others are available for a modest charge. You will find that even
the retail products are well worth the cost if you plan to write production Java code.

B.1 PureCheck

PureCheck is one part of Sun Microsystems’ 100 percent Pure Java initiative,
which intends to make Java the industry standard. It is a tool designed to report
portability conflicts in Java code. This utility scans compiled Java class files, ZIP
archives, and JAR files looking for code that might sacrifice platform
independence.

If your application depends on external .JAR or .ZIP files or other classes,
make sure these are specified as input to the PureCheck program. Otherwise,
undefined reference errors will be reported.

 The tool is quite simple to use, requiring only a list of compiled files for which
the check will occur. The utility scans these files (a process that can take several min-
utes for larger applications) and creates a report showing all instances in the code
where warnings or errors have occurred (see figure B.1).

 Once the Analyze phase is completed, the user can inquire about the details of
any portability errors reported for the code. Figure B.2 shows an example of a typi-
cal error screen, indicating, among other things, that the erroneous class Dia-
logServerChangePassword contains a hard-coded path to a file.

 If the finished application must run on platforms other than the one on which
it was developed, then PureCheck is an absolute requirement. Fortunately, the
PureCheck utility can be downloaded for free from Sun’s web site at:

Jikes Debugger 471
http://www.suntest.com/100percent/tools.html.

B.2 Jikes Debugger

Most of the debuggers provided with Java-integrated development environments
are adequate for simple debugging. However, few of them stand up to the pound-
ing they may get when attempting to debug larger, more complex applications or
applications which require remote debugging and testing.

 Fortunately, Derek Lieber (of the Java Tools Group at IBM’s Watson Research
Center) invested some time to create a simply superb utility called the Jikes Debug-
ger (JD). JD offers all of the typical features found in most integrated development
environments, but it offers the improvement of showing all of the required infor-
mation at the same time without requiring the developer to sift through dozens of
independent data panes. Additionally, the Jikes Debugger can debug applications
across a network, an uncommon feature among Java debuggers.

Figure B.1 The PureCheck report screen

http://www.suntest.com/100percent/tools.html

472 APPENDIX B
Other tools
 Figure B.3 contains a screen capture for the Jikes Debugger, showing the pro-
cess of an executing application. Note that virtually everything a developer could
ever need is visible, including local variables, threads, and even the console output.

 The best feature of JD is that IBM has made it available for no charge. You can
download the current release from its web site at:

http://www.alphaworks.ibm.com/alphapreview_tools.

 This site also contains several other utilities that may be of interest, including
the Jikes compiler, which promises faster compilation and an intelligent incremental
build facility.

B.3 OptimizeIt

So far, we have discussed some tools for building applications and for debugging
them, but we have not described any tools for improving the performance of an
application. Naturally, there are many products of varying degrees of capability and
quality available, but one particular product stands out— OptimizeIt, from Intui-

Figure B.2 A PureCheck detailed error screen

http://www.alphaworks.ibm.com/alphapreview_tools

OptimizeIt 473
tive Systems, Inc. In chapter 13, we examined techniques for using OptimizeIt to
fine-tune Java code for performance. Here, you will see the merits of OptimizeIt as
we use it to find performance problems in some sample code.

 OptimizeIt can analyze a running Java application or applet and identify where
performance improvements can be made, and it also displays a graph identifying
each class in the application and how often it is called. The graph helps you to iden-
tify methods in your code that have to service a large number callers, which is often
an indicator that some class or method is a traffic bottleneck.

 Figure B.4 shows the typical call heap for a running application. This diagram
shows that the java.lang.String class is the most frequently called class in this appli-

Figure B.3 Jikes Debugger

474 APPENDIX B
Other tools
cation. Since internal classes such as String are part of the Java run time library, no
performance improvement can be made. As a result, the graph can become clut-
tered with classes external to the application. Fortunately, OptimizeIt provides a fil-
tering feature to eliminate such distracting data. However, it is important to note
that the extensive use of an internal class could indicate that a better algorithm
might be needed.

 To find out exactly how much time is required for each method of a running
application, the user needs to switch to OptimizeIt’s CPU Profiler mode of opera-
tion. In this mode, data is collected by a recorder and is displayed once the recorder
is stopped. The ability to start and stop the data recorder at any time offers a high
level of granularity when performing tests. For example, OptimizeIt can determine
the time required for displaying and populating a specific dialog within an applica-
tion. Figure B.5 shows an example of this function.

Figure B.4 OptimizeIt main screen

DashO optimizer 475
 Although there may be many other code profilers for Java, OptimizeIt is defi-
nitely one that deserves some serious consideration. Intuitive Systems offers a thirty-
day trial version of OptimizeIt that can be downloaded from its web site at:

http://www.optimizeit.com.

B.4 DashO optimizer

Another technique for optimizing Java code is to find a tool that makes its best
attempt to do all the work for you. PreEmptive Solutions offers a tool called DashO
that helps take some of the guesswork out of optimization. Figure B.6 illustrates a
typical session with DashO.

Figure B.5 OptimizeIt profiler screen

http://www.optimizeit.com

476 APPENDIX B
Other tools
 The program itself does not conjure any real magic; rather, it applies some of
the performance tuning techniques we discussed in chapter 13. Some users may find
DashO a bit unnerving because there is no real indication of how it changes your
code. Many developers will find manual tuning techniques much more pleasing.

 A thirty-day trial version of DashO can be downloaded directly from the Pre-
Emptive Solutions web site at:

http://www.preemptive.com/dasho.

Figure B.6 The DashO optimizer

http://www.preemptive.com/dasho

DashO optimizer 477
 This concludes our examination of the most commonly used development
tools available for Java. This list is far from exhaustive, but it should provide enough
information to get you started. No doubt, some users will prefer a text editor and a
JDK compiled solution, but for most developers, an integrated development envi-
ronment will save countless hours of time, particularly at the debugging stage of a
project.

CSources of
information

In this appendix
■ URLs for web sites with information about

Java and Swing

480 APPENDIX C
Sources of information
The Internet has become an incredible library of information. The wealth and detail
of Java information is simply amazing. This appendix outlines some of the most
common places to find information about Java and Swing. For clarity, the informa-
tion sources are grouped by general subject and, where appropriate, are identified
by company or author.

C.1 Search engines

Internet search engines are usually the quickest tool for locating useful information.
Browser URLs for a number of the more common search engines follow:

http://www.altavista.digital.com/
http://www.excite.com/
http://www.infoseek.com/
http://www.lycos.com/
http://www.search.com/
http://www.yahoo.com/

C.2 Tools

The Internet contains an abundance of excellent tools for Java development. The
following is a list of commonly available tools and related support pages.

Manufacturer/Tool URL

Borland
JBuilder

http://www.borland.com/jbuilder/

IBM
VisualAge for Java

http://www.software.ibm.com/ad/vajava/

IBM
Jikes Debugger

http://www.alphaworks.ibm.com/alphapreview_tools

Intuitive Systems Inc.
OptimizeIt

http://www.optimizeit.com

Microsoft Inc.
Internet Explorer

http://www.microsoft.com/ie/download/

Netscape Inc.
Communicator

http://www.netscape.com/download/client_download.html

PreEmptive Solutions
DashO

http://www.preemptive.com/dasho

Sun Microsystems
PureCheck

http://www.suntest.com/100percent/tools.html

http://www.altavista.digital.com/
http://www.excite.com/
http://www.infoseek.com/
http://www.lycos.com/
http://www.search.com/
http://www.yahoo.com/
http://www.borland.com/jbuilder/
http://www.software.ibm.com/ad/vajava/
http://www.alphaworks.ibm.com/alphapreview_tools
http://www.optimizeit.com
http://www.microsoft.com/ie/download/
http://www.netscape.com/download/client_download.html
http://www.preemptive.com/dasho
http://www.suntest.com/100percent/tools.html

Documentation 481
C.3 Documentation

The Internet also includes many useful documents. The following list shows some
of the sites for useful information about Java and Swing.

Sun Microsystems
HotJava Browser

http://java.sun.com/products/hotjava/1.1.2/index.html

Sun Microsystems
Java Workshop

http://shop.sun.com

Sun Microsystems
Java Runtime Environ-
ment

http://java.sun.com/products/jdk/1.1/jre (JDK 1.1.x)
http://java.sun.com/products/jdk/1.2/jre (JDK 1.2)

Sun Microsystems
JavaBeans

http://java.sun.com/beans/index.html

Symantec
Visual Café for Java

http://www.symantec.com/domain/cafe/deved/index.html

Description URL

Java Frequently Asked
Questions

http://java.sun.com/products/jdk/faq.html

JDK Known and Fixed
Bugs

http://java.sun.com/products/jdk/1.1/bugs.html

Java Developer Connec-
tion

http://developer.javasoft.com/developer/index.html

Java Class Libraries http://java.sun.com/products/jdk/1.1/docs/api/
packages.html

JavaBeans API http://java.sun.com/products/jdk/1.1/docs/guide/beans/
index.html

Java Foundation Classes
White Paper

http://java.sun.com/marketing/collateral/
foundation_classes.html

AmbySoft
A Java Coding Conven-
tion

http://www.ambysoft.com/javaCodingStandards.html

Developer.com http://java.developer.com

Gamelan http://www.gamelan.com/

JavaWorld http://www.javaworld.com

Think in Java http://www.EckelObjects.com

The Swing Connection http://java.sun.com/products/jfc/swingdoc-current/

Manufacturer/Tool URL

http://java.sun.com/products/hotjava/1.1.2/index.html
http://shop.sun.com
http://java.sun.com/products/jdk/1.1/jre
http://java.sun.com/products/jdk/1.2/jre
http://java.sun.com/beans/index.html
http://www.symantec.com/domain/cafe/deved/index.html
http://java.sun.com/products/jdk/faq.html
http://java.sun.com/products/jdk/1.1/bugs.html
http://developer.javasoft.com/developer/index.html
http://java.sun.com/products/jdk/1.1/docs/api/packages.html
http://java.sun.com/products/jdk/1.1/docs/api/packages.html
http://java.sun.com/products/jdk/1.1/docs/guide/beans/index.html
http://java.sun.com/products/jdk/1.1/docs/guide/beans/index.html
http://java.sun.com/marketing/collateral/foundation_classes.html
http://java.sun.com/marketing/collateral/foundation_classes.html
http://www.ambysoft.com/javaCodingStandards.html
http://java.developer.com
http://www.gamelan.com/
http://www.javaworld.com
http://www.EckelObjects.com
http://java.sun.com/products/jfc/swingdoc-current/

482 APPENDIX C
Sources of information
C.4 Tutorials

Not all tutorials require you to buy a book. There are some very nice Java and
Swing tutorials available in the Internet for free. Here is a partial list.

Java Guidelines http://www.chimu.com/publications/javaStandards/
index.html

Description URL

The Sun Java Tutorial http://java.sun.com/docs/books/tutorial/

Swing Tutorial
(Requires free registra-
tion for Java Developer
Connection)

http://developer.javasoft.com/developer/onlineTraining/
swing/index.html

Dick Baldwin’s Java
Programming Tutorials

http://www.phrantic.com/scoop/onjava.html

The Java Tutor http://www1.mercury.com/java-tutor/

Description URL

http://www.chimu.com/publications/javaStandards/index.html
http://www.chimu.com/publications/javaStandards/index.html
http://java.sun.com/docs/books/tutorial/
http://developer.javasoft.com/developer/onlineTraining/swing/index.html
http://developer.javasoft.com/developer/onlineTraining/swing/index.html
http://www.phrantic.com/scoop/onjava.html
http://www1.mercury.com/java-tutor/

DReferences

In this appendix
■ Sources of further information about Java

and Swing

484 APPENDIX D
References
Ambler, S. Java Coding Convention Summary Document. AmbySoft, Inc., 1997.
http://www.ambysoft.com/javaCodingStandards.html.

Bartlett, N., A. Leslie, and S. Simkin, Java Programming Explorer. Scottsdale, AZ: The
Coriolis Group, 1996.

Bell, D. Make Java Fast: Optimize!. JavaWorld. IDG Publications, 1997.
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-optimize.html.

Bergman, E., and E. Johnson, Towards Accessible Human-Computer Interaction. Sun
Microsystem, 1995.
http://www.sun.com/access/updt.HCI.advance.html.

ChiMu Corporation. Java Guidelines. ChiMu Corporation, 1998.
http://www/chimu.com/publications/javaStandards/index.html.

Cooper, A. The Essentials of User Interface Design. Foster City, CA: IDG Books World-
wide, 1995.

Flanagan, D. Java in a Nutshell. 2nd ed. Sepbastopol, CA: O’Reilly and Associates, Inc.,
1997.

Fowler, Amy. Mixxing Heavy and Lightweight Components. The Swing Connection. Sun
Microsystems, 1998.
http//java.sun.com/products/jfc/swingdoc-current/mixing.html.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns : Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley Publishing Co., 1995.

Geary, D. JFC’s Swing, Part I: Model/View/Controller. Java Report, November 1997. pp.
28-38.

IBM. Common User Access Advanced Interface Design Reference. Systems Application Ar-
chitecture Library, IBM: 1991.

Lemay, L., and C. Perkins, Teach Yourself Java in 21 Days. Indianapolis, IN: Sams Pub-
lishing, Inc., 1995.

MageLang Institute. Swing Short Course, Part I. San Mateo, CA: MageLang Institute,
1997.
http://developer.javasoft.com/onlineTrainging/swing/swing.htm.

MageLang Institute. Swing Short Course, Part II. San Mateo, CA: MageLang Institute,
1997.
http://developer.javasoft.com/onlineTrainging/swing2/swing.htm.

Muller, H., and K. Walrath, All About Threads. The Swing Connection. Palo Alto, CA:
Sun Microsystems, 1998.
http://java.sun.com/products/ifc/swingdoc-archive/threads.html.

Petrich, D., and D. Flanagan, Netscape IFC in a Nutshell. Sepbastopol, CA: O’Reilly and
Associates, Inc., 1997. (ISBN 1-56592-343-X)

The Windows Interface Guidelines for Software Design: An Application Design Guide.
Redmond WA: Microsoft Press, 1995.

Zukowski, J. Java AWT Reference. Sepbastopol, CA: O’Reilly and Associates, Inc., 1997.

http://www.ambysoft.com/javaCodingStandards.html
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-optimize.html
http://www.sun.com/access/updt.HCI.advance.html
http://www/chimu.com/publications/javaStandards/index.html
http://java.sun.com/products/jfc/swingdoc-current/mixing.html
http://developer.javasoft.com/onlineTrainging/swing/swing.htm
http://developer.javasoft.com/onlineTrainging/swing2/swing.htm
http://java.sun.com/products/ifc/swingdoc-archive/threads.html

	Cover
	Preface
	Contents
	Part I Getting started
	Chapter 1 A Java refresher
	Chapter 2 Swing basics

	Part II Using Swing components
	Chapter 3 Panels and panes
	Chapter 4 Labels and buttons
	Chapter 5 Text management
	Chapter 6 Progress bars, scroll bars, and sliders
	Chapter 7 Menus and toolbars
	Chapter 8 Dialogs and internal frames
	Chapter 9 List boxes
	Chapter 10 Trees
	Chapter 11 Tables

	Part III Advanced topics
	Chapter 12 Creating custom look-and-feel
	Chapter 13 Optimizing JFC applications

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Index
	Back cover

