

 - 2 -

Pure JSP -- Java Server Pages: A Code-Intensive
Premium Reference
by James Goodwill ISBN: 0672319020

Sams © 2000, 320 pages

If your next project is JSP, learn from this book's example
code, then bring the reference to work.

Companion Web Site

Table of Contents
Back Cover

Synopsis by Rebecca Rohan

Writing data applications is tricky in any language, but coders committed to
JSP will find a welcome side-kick in Pure Java Server Pages. The handy
volume is about two-thirds code and one-third reference. Code near the
beginning serves to illustrate crash courses in servlets, JavaBeans, JDBC,
and JSP concepts, while the rest of the coding section plunges straight into
building a shopping cart, sending JavaMail, and much more. The final third of
the book is a syntax reference for the javax.servlet.jsp,
javax.servlet.jsp.tagext, javax.servlet.package, and javax.servlet.http
packages. A trusty how-to by example and quick reference that you'll want by
your side when you write data applications.

 - 3 -

Table of Contents

 Pure Java Server Pages - 4
 Introduction - 6
 Part I Conceptual Reference
 Chapter 1 - JSP Overview: The Components of a JavaServer Page - 8
 Chapter 2 - Java Servlets - 17
 Chapter 3 - JavaBeans and JSP Concepts - 25
 Chapter 4 - JDBC and JSP Concepts - 38
 Part II Techniques Reference
 Chapter 5 - Configuring the JSP Server - 65
 Chapter 6 - Handling JSP Errors - 67
 Chapter 7 - Using the include Directive - 73
 Chapter 8 - JavaServer Pages and Inheritance - 77
 Chapter 9 - Using the JSP's Implicit Objects - 81
 Chapter 10 - Using JSP Standard Actions - 91
 Chapter 11 - JSPs and JavaBean Scope - 105
 Chapter 12 - JSP and HTML Forms - 113
 Chapter 13 - JSP and a Shopping Cart - 120
 Chapter 14 - JSP and a JDBC Connection Pool Bean - 129
 Chapter 15 - JSP and XML - 143
 Chapter 16 - JSP Communication with Servlets - 152
 Chapter 17 - JSP and JavaMail - 160
 Part III Syntax Reference (with UML Diagrams)
 Chapter 18 - The javax.servlet.jsp Package - 168
 Chapter 19 - The javax.servlet.jsp.tagext Package - 183
 Chapter 20 - The javax.servlet Package - 198
 Chapter 21 - The javax.servlet.http Package - 221
 List of Figures - 221
 List of Tables - 242
 List of Listings - 243

Back Cover
Pure JSP -- Java Server Pages is a premium reference for Java Server Pages
developers. It contains an accelerated introduction to JSP concepts and
implementation, as well as a concise reference to such key topics as
JavaBeans, JDBC, and Servlets.

But the heart of this book is the code. In addition to the usual snippets, there
are many complete, well-commented, commercial-quality programs that
demonstrate key Java Server Pages implementation techniques. Download
any of this code from www.samspublishing.com/product_support/ and you are
well on your way to working with Java Server Pages.

Administrator
Pure JSP - Java Server Pages

 - 4 -

Pure JSP -- Java Server Pages also includes rich, concise coverage of:

XML
JavaMail
JDBC and Connection Pools
Error Handling
Shopping Carts
Servlets
JSPs and the Model-View-Controller Design Pattern
JSPs and HTML Forms

About the Author

James Goodwill is the Chief Internet Architect and a Principal at Virtuas
Solutions, Inc., located in Denver, Colorado. He has extensive experience in
telecommunications and e-business applications. James is also the author of
Developing Java Servlets, which provides a through look at Java Servlets.
Over the last several years, he has been focusing his efforts on the design
and development of electronic commerce applications.

Pure Java Server Pages
James Goodwill
Pure Java Server Pages
Copyright © 2000 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

International Standard Book Number: 0-672-31902-0

Library of Congress Catalog Card Number: 99-68590
Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.
Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book.
Publisher
Michael Stephens
Acquisitions Editor
Steve Anglin
Development Editor
Tiffany Taylor
Managing Editor
Matt Purcell
Project Editor
Paul Schneider
Copy Editor
Mary Ellen Stephenson
Indexer
Rebecca Salerno

 - 5 -

Proofreaders
Kaylene Riemen
Linda Morris
Technical Editor
Al Saganich
Team Coordinator
Pamalee Nelson
Software Specialist
Jason Haines
Interior Designer
Karen Ruggies
Cover Designer
Aren Howell
Copywriter
Eric Borgert
Layout Technicians
Stacey DeRome
Ayanna Lacey
Heather Hiatt Miller
Tim Osborn
Dedication
To Christy, Abby, and our unborn child.
Acknowledgments
I would first like to thank everyone at my company, Virtuas Solutions, Inc., for their support while I was
completing this text. The entire staff contributed by picking up my assignments when my plate was too full.
In particular I would like to thank those whom I worked with on a daily basis including Matthew Filios,
Karen Jackson, Kothai Sengodan, Eric Johnson, and especially Aaron Bandell, for his contribution of the
ShoppingCart bean in Chapter 13 and his introduction to the JavaMail API in Chapter 17.

I would also like to thank the people who helped me create this text. I would like to thank my Development
Editor, Tiffany Taylor, who always had great input and suggestions as the book progressed. I would like to
thank my Copy Editor, Mary Ellen Stephenson, for her insightful comments. I would also like to thank my
Technical Editor, Al Saganich, for his technical suggestions. And last but not least, I would like to thank my
Acquisitions Editor, Steve Anglin, for his continued efforts in getting things taken care of for me along the
way.

Finally, the most important contributions to this book came from my wife, Christy, and our daughter, Abby.
They supported me again throughout this text, my second book, with complete understanding. They
provided time for me to write and support when I felt like I could not write anymore. They are truly the most
important people in my life.
About the Author
James Goodwill is the Chief Internet Architect and a Principal at Virtuas Solutions, Inc., located in
Denver, Colorado. He has extensive experience in telecommunications and e-business applications.
James is also the author of Developing Java Servlets, a Sams Professional title, which provides a
thorough look at Java servlets. Over the last several years he has been focusing his efforts on the design
and development of electronic commerce applications.
Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your opinion and
want to know what we're doing right, what we could do better, what areas you'd like to see us publish in,
and any other words of wisdom you're willing to pass our way.

As a Publisher for Sams, I welcome your comments. You can fax, email, or write me directly to let me
know what you did or didn't like about this book—as well as what we can do to make our books stronger.
Please note that I cannot help you with technical problems related to the topic of this book, and that due to
the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone or
fax number. I will carefully review your comments and share them with the author and editors who worked
on the book.

Fax: 317-581-4770

Email: java@mcp.com

 - 6 -

Mail: Michael Stephens
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction
How This Book Is Organized
Before you begin reading Pure JSP Java Server Pages, you might want to take a look at its basic
structure. This should help you outline your reading plan if you choose not to read the text from cover to
cover. This introduction gives you an overview of what each chapter covers.

Chapter 1, "JSP Overview: The Components of a JavaServer Page"
Chapter 1 takes a look at the basics of JSP and the components of JSPs. It shows you how to create a
JSP document and helps you to understand what is happening behind the scenes at request-time. It also
discusses the process a JSP file goes through when it is first requested.

Chapter 2, "Java Servlets"
Chapter 2 covers how to create, build, and install your own servlets. It also provides a basic understanding
of the servlet life cycle and where your servlets will fit into the Java servlet framework.

Chapter 3, "JavaBeans and JSP Concepts"
Chapter 3 covers the basics of JavaBeans. It takes a look at the standard actions involved in embedding a
bean within a JSP. It also covers the different types of scope in which a bean can exist.

Chapter 4, "JDBC and JSP Concepts"
Chapter 4 discusses the basics of the JDBC (Java Database Connectivity) interface and how to set up a
JDBC driver. It also examines how you can incorporate the JDBC into a JSP and how you can break up
your scriptlet code by embedding your HTML code into it.

Chapter 5, "Configuring the JSP Server"
Chapter 5 covers the necessary steps involved in installing and configuring the Tomcat server, including
how you add a new Web Application.

Chapter 6, "Handling JSP Errors"
Chapter 6 covers the types of errors that can occur in a JSP. It also shows you how you can handle and
respond to these errors, using a JSP error page.

Chapter 7, "Using the include Directive"
Chapter 7 covers how the JSP include directive works. It also discusses when the include directive is
processed. After reading this chapter, you should know how to include a JSP or HTML file using the
include directive; you should also know when included file changes take effect.

Chapter 8, "JavaServer Pages and Inheritance"
Chapter 8 discusses how you can subclass JSPs to provide common utility methods. It also covers the
requirements of both the superclass and the JSP subclass.

Chapter 9, "Using the JSP's Implicit Objects"
Chapter 9 discusses the JSP implicit objects and how they are commonly used. It also talks about how
they are created in the JSP's generated servlet.

 - 7 -

Chapter 10, "Using JSP Standard Actions"
Chapter 10 covers the JSP standard actions, including how they are implemented and how you can use
them.

Chapter 11, "JSPs and JavaBean Scope"
Chapter 11 covers how JSP beans are scoped. It discusses the different types of JSP scope. It also
covers how the life of a JSP bean is determined by its scope.

Chapter 12, "JSP and HTML Forms"
Chapter 12 covers how you can retrieve form data using JSPs. It also discusses retrieving data from forms
using either GET or POST requests.

Chapter 13, "JSP and a Shopping Cart"
Chapter 13 covers how to create, integrate, and use a shopping cart in a JSP.

Chapter 14, "JSP and a JDBC Connection Pool Bean"
Chapter 14 covers how to use a JDBC Connection Pool in a JSP. It also discusses how to share the pool
with other JSPs by creating it with a scope of application.

Chapter 15, "JSP and XML"
Chapter 15 covers the basics of Extensible Markup Language, or XML. It discusses how to use Sun's SAX
parser. It also shows an example of how you would incorporate XML and JSPs.

Chapter 16, "JSP Communication with Servlets"
Chapter 16 discusses the Model-View-Controller (MVC) design pattern. It talks about the drawbacks of a
servlet or JSP-only application model. And finally it looks at how we can solve the problems encountered
by the JSP- and servlet-only application models, by leveraging the MVC design pattern.

Chapter 17, "JSP and JavaMail"
Chapter 17 discusses what JavaMail is and how you use it with JSPs and other applications.

Chapter 18, "The javax.servlet.jsp Package"
Chapter 18 covers the classes, interfaces, and exceptions of the javax.servlet.jsp package.

Chapter 19, "The javax.servlet.jsp.tagext Package"
Chapter 19 covers the classes, interfaces, and exceptions of the javax.servlet.jsp.tagext
package.

Chapter 20, "The javax.servlet Package"
Chapter 20 covers the classes, interfaces, and exceptions of the javax.servlet package.

Chapter 21, "The javax.servlet.http Package"
Chapter 21 covers the classes, interfaces, and exceptions of the javax.servlet.http package.

Source Code
You should also note that in several places you will see servlet code that was generated from a Java
Server Page (JSP). This code is only given to show you how JSPs really work. It is meant to show how
JSPs are truly just dynamically created servlets. The code generated is completely dependent on the JSP
engine that is being used.
You can find the source code and support for this text at the Virtuas Solutions Web site,
http://www.virtuas.com/books.html. You can also download the source code files from
www.samspublishing.com. When you reach that page, click the Product Support link. On the next
page, enter this book's ISBN number (0672319020) to access the page containing the code.

 - 8 -

Part I: Conceptual Reference
Chapter List
Chapter 1: JSP Overview: The Components of a JavaServer Page
Chapter 2: Java Servlets
Chapter 3: JavaBeans and JSP Concepts
Chapter 4: JDBC and JSP Concepts

Chapter 1: JSP Overview: The Components of a JavaServer
Page
Overview
JavaServer Pages, also known as JSPs, are a simple but powerful technology used to generate dynamic
HTML on the server side. They are a direct extension of Java servlets and provide a way to separate
content generation from content presentation. The JSP engine is just another servlet that is mapped to the
extension *.jsp. The following code contains a simple example of a JSP file:
<HTML>
<BODY>

<% out.println("HELLO JSP WORLD"); %>

</BODY>
</HTML>
Its output would look similar to Figure 1.1.

Figure 1.1: Output of the JSP example.
You can see that this document looks like any other HTML document with some added tags containing
Java code. The source code is stored in a file called HelloJSPWorld.jsp and copied to the document
directory of the Web server. When a request is made for this document, the server recognizes the *.jsp
extension and realizes that special handling is required. The first time the file is requested, it is compiled
into a servlet object and stored in memory, and the output is sent back to the requesting client. After the
first request, the server checks to see whether the *.jsp file has changed. If it has not changed, then the
server invokes the previously compiled servlet object. In this chapter and throughout the rest of the book,
we will be discussing just how JSPs work and how to use them. Figure 1.2 shows these steps graphically.

 - 9 -

Figure 1.2: The steps of a JSP request.

Note

A key thing to remember about JSPs is that they are just servlets that are created from a
combination of HTML text and Java source code. This means that they contain all the
functionality of a normal servlet.

The Components of a JavaServer Page
In this section we are going to cover the components that make up a JavaServer Page. They are
discussed in detail in the following sections.

Directives
Directives are JSP elements that provide global information about an entire JSP page. An example would
be a directive that indicated the language to be used in compiling a JSP page. The syntax of a directive is
as follows:
<%@ directive {attribute="value"} %>
This states that, for this page directive, assign these values for these attributes. A directive can contain n
number of optional attribute/value pairs.

If we use our previous example for indicating the JSP language, the following line of code would indicate
that the JSP language to use would be Java:
<%@ page language="java" %>
There are three possible directives currently defined by the JSP specification: page, include, and
taglib. Each one of these directives and their attributes, if applicable, are defined in the following
sections.

The page Directive
The page directive defines information that will be globally available for that JavaServer Page. These
page level settings will directly affect the compilation of the JSP. Table 1.1 defines the attributes for the
page directive.

Note Because the mandatory attributes are defaulted, you are not required to specify any page

directives.
Table 1.1: The Attributes for the page Directive

Attribute Definition
language="scriptingLanguage" This attribute tells the server what language will be used to

compile the JSP file. Currently Java is the only available
language.

extends="className" This attribute defines the parent class that the JSP
generated servlet will extend from.

import="importList" This attribute defines the list of packages that will be
available to this JSP. It will be a comma-separated list of
package names.

session="true|false" This attribute determines whether the session data will be
available to this page. The default is true.

 - 10 -

buffer="none|size in kb" This attribute determines whether the output stream is
buffered. The default value is 8KB.

autoFlush="true|false" This attribute determines whether the output buffer will be
flushed automatically, or whether it will raise an exception
when the buffer is full. The default is true, which states
that the buffer should be flushed automatically.

isThreadSafe="true|false" This attribute tells the JSP engine that this page can service
more than one request at a time. By default this value is
true; if false, the SingleThreadModel is used.

info="text" This attribute represents information about the JSP page
that can be accessed by the page's
Servlet.getServlet Info() method.

errorPage="error_url" This attribute represents the relative URL to the JSP page
that will handle exceptions.

isErrorPage="true|false" This attribute states whether or not the JSP page is an
errorPage. The default is false.

contentType="ctinfo" This attribute represents the MIME type and character set of
the response.

The include Directive
The include directive is used to insert text and code at JSP translation time. The syntax of the include
directive is as follows:
<%@ include file="relativeURLspec" %>
The file that the file attribute points to can reference a normal text HTML file or it can reference a JSP
file, which will be evaluated at translation time.

Note Currently the JSP 1.1 specification does not have a defined method for notifying the JSP

engine that the included JSP file has changed.

The taglib Directive
The most recent version of the JSP specification defines a mechanism for extending the current set of JSP
tags. It does this by creating a custom set of tags called a tag library. That is what the taglib points to.
The taglib directive declares that the page uses custom tags, uniquely names the tag library defining
them, and associates a tag prefix that will distinguish usage of those tags. The syntax of the taglib
directive is as follows:
<%@ taglib uri="tagLibraryURI" prefix="tagPrefix" %>
The taglib attributes are described in Table 1.2.
Table 1.2: The Attributes for the taglib Directive

Attribute Definition
uri This attribute references a URI that uniquely names the set of custom

tags.
prefix This attribute defines the prefix string used to distinguish a custom tag

instance.

Actions
Actions provide an abstraction that can be used to easily encapsulate common tasks. They typically create
or act on objects, normally JavaBeans. The JSP technology provides some standard actions. These
actions are defined in the following sections.

 - 11 -

<jsp:useBean>
The <jsp:useBean> action associates an instance of a JavaBean defined with a given scope and ID, via
a newly declared scripting variable of the same ID. The <jsp:useBean> action will be covered in more
detail in Chapter 3, "JavaBeans and JSP Concepts."

<jsp:setProperty>
The <jsp:setProperty> action sets the value of a bean's property. The <jsp:setProperty> action
will be covered in more detail in Chapter 3.

<jsp:getProperty>
The <jsp:getProperty> action takes the value of the referenced bean instance's property, converts it
to a java.lang.String, and places it into the implicit out object. This action will be covered in more detail in
Chapter 3.

<jsp:include>
The <jsp:include> action provides a mechanism for including additional static and dynamic resources
in the current JSP page. The syntax for this action is as follows:
<jsp:include page="urlSpec" flush="true" />

and
<jsp:include page="urlSpec" flush="true">
 { jsp:param ... /> }
</jsp:include>
The first syntax example illustrates a request-time inclusion, whereas the second contains a list of param
sub-elements that are used to argue the request for the purpose of inclusion. Table 1.3 contains the
attributes and their descriptions for the <jsp:include> action.
Table 1.3: The Attributes for the <jsp:include> Action

Attribute Definition
page This attribute represents the relative URL of the resource to be

included.
flush This attribute represents a mandatory Boolean value, stating

whether or not the buffer should be flushed.

<jsp:forward>
The <jsp:forward> action enables the JSP engine to dispatch, at runtime, the current request to a
static resource, servlet, or another JSP. The appearance of this action effectively terminates the execution
of the current page.

Note A <jsp:forward> action can contain <jsp:param> sub-attributes. These subattributes provide

values for parameters in the request to be used for forwarding.
The syntax of the <jsp:forward> action is as follows:
<jsp:forward page="relativeURLspec" />

and
<jsp:forward page=relativeURLspec">
 { <jsp:param .../> }
</jsp:forward>
Table 1.4 contains the single attribute and its descriptions for the <jsp:forward> action.
Table 1.4: The Attribute for the <jsp:forward> Action

Attribute Definition
page This

 - 12 -

attribute
represents
the
relative
URL of
the target
to be
forwarded.

<jsp:param>
The <jsp:param> action is used to provide tag/value pairs of information, by including them as sub-
attributes of the <jsp:include>, <jsp:forward>, and the <jsp:plugin> actions. The syntax of the
<jsp:param> action is as follows:
<jsp:params>
 <jsp:param name="paramName"
 value="paramValue">
</jsp:params>
Table 1.5 contains the attributes and their descriptions for the <jsp:param> action.
Table 1.5: The Attributes for the <jsp:param> Action

Attribute Definition
name This attribute represents the name of the parameter being referenced.
value This attribute represents the value of the named parameter.

<jsp:plugin>
The <jsp:plugin> action gives a JSP author the ability to generate HTML that contains the appropriate
client-browser–dependent constructs, for example, OBJECT or EMBED, that will result in the download of a
Java plug-in and subsequent execution of the specified applet or JavaBeans component.
The <jsp:plugin> tag is replaced by either an <object> or <embed> tag, as appropriate for the
requesting user agent, and the new tag is written to the output stream of the response object. The
attributes of the <jsp:plugin> action provide configuration data for the presentation of the element. The
syntax of the <jsp:plugin> action is as follows:
<jsp:plugin type="pluginType"
 code="classFile"
 codebase="relativeURLpath">

 <jsp:params>
 ...
 </jsp:params>

</jsp:plugin>
Table 1.6 contains the attributes and their descriptions for the <jsp:plugin> action.
Table 1.6: The Attributes for the <jsp:plugin> Action

Attribute Definition
type This attribute represents the type of plug-in to include. An example of this

would be an applet.

 - 13 -

code This attribute represents the name of the class that will be executed by the
plug-in.

codebase This attribute references the base or relative path of where the code
attribute can be found.

The <jsp:params> attributes indicate the optional parameters that can be passed to the applet or
JavaBeans component.

Implicit Objects
As a JSP author, you have access to certain implicit objects that are available for use in JSP documents,
without being declared first. To satisfy the JSP specification, all JSP scripting languages must provide
access to the objects defined in Table 1.7. Each of these implicit objects has a class or interface type
defined in a core Java Development Kit (JDK) or Java Servlet Development Kit (JSDK).
Table 1.7: The JSP Implicit Objects

Implicit
Variable

Type Description Scope

application javax.servlet.Servlet
Context

Represents the servlet context returned
from a call to
getServletConfig().getContext()

Application

config javax.servlet.Servlet
Config

Represents the Servlet Config for
this JSP

Page

exception java.lang.Throwable Represents the uncaught Throwable
that resulted from a call to the error page

Page

out javax.servlet.jsp.
JspWriter

Represents the JspWriter object to the
output stream

Page

page java.lang.Object Represents the this object for this
instance of the JSP

Page

pageContext javax.servlet.jsp.
PageContext Represents the page context for the JSP Page

request Protocol-dependent subtype
of either
javax.servlet.Servlet
Request or javax.
servlet.HttpServlet
Request

Represents the request object that
triggered the request

Request

response Protocol-dependent subtype
of either
javax.servlet.
ServletResponse or
javax.servlet.
HttpServletResponse

Represents the response object that
triggered the request

Page

session javax.servlet.
http.HttpSession Represents the session object, if any,

created for the client during an HTTP
request

Session

JSP Scripting
JSP scripting is a mechanism for embedding code fragments directly into an HTML page. There are three
scripting language elements involved in JSP scripting. Each of these JSP scripting elements has its
appropriate location in the generated servlet. In this section we will look at these elements and how
together they will result in a complete servlet.

 - 14 -

Declarations
JSP declarations are used to declare variables and methods in the scripting language used in a JSP page.
A JSP declaration should be a complete declarative statement.

JSP declarations are initialized when the JSP page is initialized. After the declarations have been
initialized, they are available to other declarations, expressions, and scriptlets. The syntax for a JSP
declaration is as follows:
<%! declaration %>

A sample variable declaration using this syntax is declared here:
<%! String name = new String("BOB"); %>

A sample method declaration using the same syntax is declared as follows:
<%! public String getName() { return name; } %>
To get a better understanding of declarations, let's take the previous String declaration and actually use
it to create a JSP document. The sample document would look similar to the following code snippet:
<HTML>
<BODY>

<%! String name = new String("BOB"); %>

</BODY>
</HTML>

When this document is initially requested, the JSP code is converted to servlet code and the previous
declaration is placed in the declaration section of the generated servlet. The declarations section of the
generated servlet would look similar to the following code snippet:
// begin [file="D:\\Declarations.jsp";from=(3,3);to=(3,37)]
String name = new String("BOB");
// end

Expressions
JSP expressions are elements in a scripting language that are evaluated with the result being converted to
a java.lang.String. After the string is converted, it is written to the current out JspWriter object.
JSP expressions are evaluated at HTTP request-time, with the resulting String being inserted at the
expression's referenced position in the .jsp file. If the resulting expression cannot be converted to a
String, then a translation time error will occur. If the conversion to a String cannot be detected during
translation, a ClassCastException will be thrown at request-time. The syntax of a JSP expression is as
follows:
<%= expression %>

A code snippet containing a JSP expression is shown here:
Hello <%= getName() %>

To get a better understanding of expressions, let's take this snippet and insert it into a simple JSP
document. The sample document would look similar to the following code snippet:
<HTML>
<BODY>

<%! String name = new String("BOB"); %>
<%! public String getName() { return name; } %>

 - 15 -

Hello <%= getName() %>

</BODY>
</HTML>
When this document is initially requested, the JSP code is converted to servlet code and the previous
expression is resolved and placed in its referenced location of the generated servlet's _jspService()
method. The generated servlet would look similar to the following code snippet:
// begin
out.write("<HTML>\r\n<BODY>\r\n\r\n");
// end
// begin
out.write("\r\n");
// end
// begin
out.write("\r\n\r\nHello ");
// end
// begin [file="D:\\Expressions.jsp";from=(6,12);to=(6,23)]
out.print(getName());
// end
// begin
out.write("\r\n\r\n</BODY>\r\n</HTML>\r\n");
// end

Scriptlets
Scriptlets are what bring all the scripting elements together. They can contain any coding statements that
are valid for the language referenced in the language directive. They are executed at request-time and
they can make use of declarations, expressions, and JavaBeans. The syntax for a scriptlet is as follows:
<% scriptlet source %>
During the initial request the JSP scripting code is converted to servlet code and then compiled and
loaded into resident memory. The actual source code, which is found between scriptlet tags <% ... %>,
is placed into the newly created servlet's _jspService() method. See the following sample JSP source:
<HTML>
<BODY>

<% out.println("HELLO JSP WORLD"); %>

</BODY>
</HTML>
It has a very simple scriptlet section that will print HELLO JSP WORLD to the JspWriter implicit object
out. The actual servlet code, resulting from the initial request, would look similar to the following code
snippet:
public void _jspService(HttpServletRequest request,
HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;

 - 16 -

 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;

 try {

 if (_jspx_inited == false) {
 jspx_init();
 jspx_inited = true;
 }
 jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this,
 request, response,
 "", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 // begin
 out.write("<HTML>\r\n<BODY>\r\n\r\n");
 // end
 // begin [file="D:\\HelloJsp.jsp";from=(3,2);to=(3,35)]
 out.println("HELLO JSP WORLD");
 // end
 // begin
 out.write("\r\n\r\n</BODY>\r\n</HTML>\r\n");
 // end
 }
 catch (Exception ex) {

 if (out.getBufferSize() != 0)
 out.clear();
 pageContext.handlePageException(ex);
 }
 finally {

 out.flush();
 jspxFactory.releasePageContext(pageContext);
 }

 - 17 -

}
You don't need to dig too deeply into this code, because it is generated for you. You just need to
understand that it is being generated by the JSP engine and is the JSP equivalent to a servlet's
service() method. It is also important to know that the JSP engine creates a servlet equivalent to the
init() and destroy() methods. We will take a look at these methods in the later technique chapters.

Summary
In this chapter we covered quite a bit of information. We took a look at the different types of JSP
application models. We also covered the basics of JSPs and the components of JSPs. You now should be
able to create a JSP document and understand what is happening behind the scenes during request-time.
You should also understand the process a JSPsfile goes through when it is first requested.
In Chapter 2, "Java Servlets," we are going to cover Java servlets. Then in Chapter 3, "JavaBeans and
JSP Concepts," we'll look at JavaBeans and how they can be used in JSPs.

Chapter 2: Java Servlets
Overview
JavaServer Pages are extensions of Java servlets, therefore, you really need to understand Java servlets
before you can fully grasp the JSP architecture. Given the previous statement, servlets are generic
extensions to Java-enabled servers. Their most common use is to extend Web servers, providing a very
efficient, portable, and easy-to-use replacement for CGI. A servlet is a dynamically loaded module that
services requests from a Web server. It runs entirely inside the Java Virtual Machine. Because the servlet
is running on the server side, it does not depend on browser compatibility. Figure 2.1 depicts the execution
of a Java servlet. In this chapter, you'll learn the basics of working with servlets, and how servlets fit into
the framework of JSP.

Figure 2.1: Execution of a Java servlet.

Practical Applications for Java Servlets
Servlets can be used for any number of "Web-related" applications. When you start using servlets, you will
find more practical applications for them. The following list contains three examples that I believe are
some of the most important applications:

 Developing e-commerce "storefronts" will become one of the most common uses for Java
servlets. A servlet can build an online catalog based on the contents of a database. It can then
present this catalog to the customer using dynamic HTML. The customer will choose the items to be
ordered, enter the shipping and billing information, and then submit the data to a servlet. When the
servlet receives the posted data, it will process the orders and place them in the database for
fulfillment. Every one of these processes can easily be implemented using Java servlets.

 Servlets can be used to deploy Web sites that open up large legacy systems on the Internet.
Many companies have massive amounts of data stored on large mainframe systems. These
businesses do not want to reengineer their systems' architecture, so they choose to provide
inexpensive Web interfaces into the systems. Because you have the entire JDK at your disposal and
security provided by the Web server, you can use servlets to interface into these systems using
anything from TCP/IP to CORBA.

 When developing a distributed object application that will be deployed to the Web, you run
into access issues. If you choose to use applets in your client browser, you are only able to open a
connection to the originating server, which might be behind a firewall. Getting through a firewall using
Remote Method Invocation (RMI) is a very common problem. If servlets are employed, you can
tunnel through the firewall using a servlet technology called HTTPTunneling. This enables the applet
to access objects that can be running almost anywhere on the network.

These are just a few examples of the power and practicality of using Java servlets. Servlets are a very
viable option for most Web applications.

 - 18 -

The Java Servlet Architecture
Two packages make up the servlet architecture: the javax.servlet and javax.servlet.http
packages. The javax.servlet package contains the generic interfaces and classes that are
implemented and extended by all servlets. The javax.servlet.http package contains the classes that
are extended when creating HTTP-specific servlets. An example of this would be a simple servlet that
responds using HTML.
At the heart of this architecture is the interface javax.servlet.Servlet. It provides the framework for
all servlets. The Servlet interface defines five methods. The three most important are as follows:

 init() method—Initializes a servlet
 service() method—Receives and responds to client requests
 destroy() method—Performs cleanup

All servlets must implement this interface, either directly or through inheritance. It is a very clean object-
oriented approach that makes the interface very easy to extend. Figure 2.2 is an object model that gives
you a very high-level view of the servlet framework.

Figure 2.2: A high-level object model of the servlet framework.

GenericServlet and HttpServlet
The two main classes are the GenericServlet and HttpServlet classes. The HttpServlet class is
extended from GenericServlet. When you are developing your own servlets, you will most likely be
extending one of these two classes. If you are going to be creating Web Applications, then you will be
extending the HttpServlet class. Java servlets do not have a main() method, which is why all servlets
must implement the javax.servlet.Servlet interface. Every time a server receives a request that
points to a servlet, it calls that servlet's service() method.
If you decide to extend the GenericServlet class, you must implement the service() method. The
GenericServlet.service() method has been defined as an abstract method in order to force you to
follow this framework. The service() method prototype is defined as follows:
public abstract void service(ServletRequest req,
ServletResponse res) throws ServletException, IOException;
The two objects that the service() method receives are ServletRequest and ServletResponse.
The ServletRequest object holds the information that is being sent to the servlet, whereas the
ServletResponse object is where you place the data you want to send back to the server. Figure 2.3
diagrams the flow of a GenericServlet request.

 - 19 -

Figure 2.3: A GenericServlet request.
Unlike with GenericServlet, when you extend HttpServlet, you don't usually implement the
service() method. The HttpServlet class has already implemented it for you. The following is the
prototype:
protected void service(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException;
When the HttpServlet.service() method is invoked, it reads the method type stored in the request
and determines which method to invoke based upon this value. These are the methods that you will want
to override. If the method type is GET, it will call doGet(). If the method type is POST, it will call
doPost(). There are five other method types and these will be covered later in this chapter. All these
methods have the same parameter list as the service() method.
You might have noticed the different request/response types in the parameter list of the HttpServlet
versus the GenericServlet class. The HttpServletRequest and HttpServletResponse classes
are just extensions of ServletRequest and ServletResponse with HTTP-specific information stored
in them. Figure 2.4 diagrams the flow of an HttpServlet request.

Figure 2.4: An HttpServlet request

The Life Cycle of a Servlet
The life cycle of a Java servlet is a very simple object-oriented design. A servlet is constructed and
initialized. It then services zero or more requests until the service that it extends shuts down. At this point
the servlet is destroyed and garbage collected. This design explains why servlets are such a good
replacement for CGI. The servlet is loaded only once and it stays resident in memory while servicing
requests.
The interface that declares this framework is the javax.servlet.Servlet interface. The Servlet
interface defines the life cycle methods. These methods are init(), service(), and destroy().

init()
The init() method is where the servlet's life begins. It is called by the server immediately after the
servlet is instantiated. It is called only once. In the init() method, the servlet creates and initializes any
resources, including data members, that it will be using while handling requests. The init() method's
signature is defined as follows:
public void init(ServletConfig config) throws ServletException;
The init() method takes a ServletConfig object as a parameter. You should save this object so that
it can be referenced later. The most common way of doing this is to have the init() method call
super.init(), passing it the ServletConfig object.
You will also notice that the init() method can throw a ServletException. If, for some reason, the
servlet cannot initialize the resources necessary to handle requests, the init() method will throw a
ServletException.

service()
The service() method handles all requests sent by a client. It cannot start servicing requests until the
init() method has been executed. You will not usually implement this method directly, unless you
extend the GenericServlet abstract class.

 - 20 -

The most common implementation of the service() method is in the HttpServlet class. The
HttpServlet class implements the Servlet interface by extending GenericServlet. Its service()
method supports standard HTTP/1.1 requests by determining the request type and calling the appropriate
method. The signature of the service() method is as follows:
public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException;
The service() method implements a request and response paradigm. The ServletRequest object
contains information about the service request, encapsulating information provided by the client. The
ServletResponse object contains the information returned to the client.

destroy()
This method signifies the end of a servlet's life. When a service is being shut down, it calls the servlet's
destroy() method. This is where any resources that were created in the init() method will be cleaned
up. If you have an open database connection, you should close it here. This is also a good place to save
any persistent information that will be used the next time the servlet is loaded. The signature of the
destroy() is very simple, but I have displayed it here just to complete the picture:
public void destroy();

A Basic Servlet
In this section, we are going to look at building and running a very basic servlet. Its purpose will be to
service a request and respond with the request method used by the client. We will take a quick look at the
servlet's source code, the steps involved in compiling and installing the servlet, and the HTML necessary
to invoke the servlet.

The BasicServlet Source
Listing 2.1 contains the source code for this example. You can find the following source listing on this
book's Web site. If you have the time, it is probably best if you type the first few examples yourself. This
will help you become familiar with the basic parts of servlets.
Listing 2.1: BasicServlet.java Displays the Request Method Used by the Client

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class BasicServlet extends HttpServlet {

 public void init(ServletConfig config)

 throws ServletException {

 // Always pass the ServletConfig object to the super class

 super.init(config);

 }

 - 21 -

 //Process the HTTP Get request

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<head><title>BasicServlet</title></head>");

 out.println("<body>");

 // Prints the REQUEST_METHOD sent by the client

 out.println("Your request method was " + request.getMethod()

 + "\n");

 out.println("</body></html>");

 out.close();

 }

 //Process the HTTP Post request

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<head><title>BasicServlet</title></head>");

 - 22 -

 out.println("<body>");

// Prints the REQUEST_METHOD sent by the client

 out.println("Your request method was " + request.getMethod()

 + "\n");

 out.println("</body></html>");

 out.close();

 }

//Get Servlet information

 public String getServletInfo() {

 return "BasicServlet Information";

 }

}

The HTML Required to Invoke the Servlet
This servlet implements both the doGet() and the doPost() methods. Therefore there are two ways to
invoke this servlet.

The first is to just reference the servlet by name in the URL. The following URL will execute the servlet on
my local server:
http://localhost/servlet/BasicServlet
Using this method defaults the request method to GET, which will invoke the servlet's doGet() method.
The second way to invoke the servlet is to create an HTML page that will send a request to the servlet
using the POST method. This will invoke the servlet's doPost() method. Listing 2.2 shows the HTML
listing to complete this task.
Listing 2.2: BasicServlet.html Displays the HTML Required to Invoke the Servlet Using the POST
Method

<HTML>

<HEAD>

<TITLE>

BasicServlet

</TITLE>

 - 23 -

</HEAD>

<BODY>

<FORM

 ACTION=http://localhost/servlet/BasicServlet

 METHOD=POST>

 press Submit Query to launch servlet BasicServlet

 <INPUT TYPE=submit>

 <INPUT TYPE=reset>

</FORM>

</BODY>

</HTML>

When you invoke the servlet using either of these methods, the results will be similar to Figure 2.5. The
only notable difference will be the request method returned.

Figure 2.5: The BasicServlet HTML response page.

Dissecting the BasicServlet
Now that you have the BasicServlet installed and running, let's take a closer look at each of its integral
parts. We will be examining the location where the servlet fits into the framework, methods the servlet
implements, and the objects being used by the servlet.

 - 24 -

Where Does the BasicServlet Fit into the Servlet Framework?
The first thing we are going to look at is where the BasicServlet fits into the servlet framework. This
servlet extends the HttpServlet class. The HttpServlet class is an abstract class that simplifies
writing HTTP servlets. It extends the GenericServlet class and provides the functionality for handling
HTTP protocol-specific requests. The BasicServlet overrides four of its inherited methods. Figure 2.6
shows where the BasicServlet fits into this hierarchy.

Figure 2.6: The BasicServlet depicted in the framework.

The Methods Overridden by the BasicServlet
The following four methods are overridden by the BasicServlet:

 init()
 doGet()
 doPost()

 getServletInfo()

Let's take a look at each of these methods in more detail.

init()
The BasicServlet defines a very simple implementation of the init() method. It takes the
ServletConfig object that is passed to it and passes it to its parent's init() method, which stores the
object for later use. The parent that actually holds onto the ServletConfig object is the
GenericServlet class. GenericServlet provides your servlet, through inheritance, with methods to
access the ServletConfig object. The code that performs this action follows:
super.init(config);
This is a very important step. If you do not do this, you must hold a reference to the ServletConfig
object yourself.
You will also notice this implementation of the init() method does not create any resources. This is why
the BasicServlet does not implement a destroy() method.

doGet() and doPost()
The BasicServlet's doGet() and doPost() methods are identical. The only difference is the requests
they service. The doGet() method handles GET requests, and the doPost() method handles POST
requests.
Both of these methods receive HttpServletRequest and HttpServletResponse objects. These
objects encapsulate the request/response paradigm. The HttpServletRequest contains information
sent from the client and the HttpServletResponse contains the information that will be sent back to the
client. The first executed line of these methods is listed as follows:
response.setContentType("text/html");
This method sets the content type for the response. You can set this response property only once. You
must set this property before you can begin writing to a Writer or an OutputStream. In our example,
we are using a PrintWriter and setting the response type to text/html.
The next thing to do is get a reference to the PrintWriter. This is accomplished by calling the
ServletRequest's getWriter() method. This is done in the following line of code:
PrintWriter out = response.getWriter();

 - 25 -

Now you have a reference to an object that will enable you to write HTML text that will be sent back to the
client in the HttpServletResponse object. The next few lines of code show how this is done:
out.println("<html>");
out.println("<head><title>BasicServlet</title></head>");
out.println("<body>");

// Prints the REMOTE_METHOD sent by the client in the request
out.println("Your request method was " + request.getMethod()
 + "\n");

out.println("</body></html>");
out.close();
This is a very straightforward method of sending HTML text back to the client. You simply pass to the
PrintWriter's println() method the HTML text you want included in the response and close the
stream. The only thing that you might have a question about is the following few lines:
// Prints the REMOTE_METHOD sent by the client in the request
out.println("Your request method was " + request.getMethod()
 + "\n");
This takes advantage of the information sent from the client. It calls the HttpServletRequest's
getMethod() method, which returns the HTTP method with which the request, either GET/POST, was
made. The HttpServletRequest object holds HTTP-protocol specific header information.

getServletInfo()
The final method overridden in the BasicServlet is getServletInfo(). This method is like the
applet's getAppletInfo() method. It can be used to provide version, copyright, author, and any other
information about itself.

Summary
You should now be able to create, build, and install your own servlets. You should also have a basic
understanding of the servlet life cycle and where your servlets will fit into the Java Servlet framework. This
is very important knowledge in understanding how JavaServer Pages work. You will be putting this
information to use as we progress in the study of JSPs.
In Chapter 3, "JavaBeans and JSP Concepts," we begin to really take a look at the JavaServer Pages
technology. Some of the topics we will cover include JSP application models, syntax, semantics, scripting,
and directives.

Chapter 3: JavaBeans and JSP Concepts
Overview
Before we can start learning about how you can use JavaBeans in JavaServer Pages, we must take a
look at what a bean is. A JavaBean is a 100% Java component that works on any Java Virtual Machine.
The minimum requirements that make a component a JavaBean are as follows:

 It must support the JDK 1.1 and later Serialization model.
 It must use get/set accessors to expose its properties.

There is nothing magical about creating a JavaBean. You just create a Java class that implements the
java.io.Serializable interface and uses public get/set methods to expose its properties. Listing 3.1 contains
a simple JavaBean.
Listing 3.1: SimpleJavaBean.java

import java.io.Serializable;

 - 26 -

public class SimpleJavaBean implements java.io.Serializable{

 private String simpleProperty = new String("");

 public SimpleJavaBean() {

 }

 public String getSimpleProperty() {

 return simpleProperty;

 }

 public void setSimpleProperty(String value) {

 simpleProperty = value;

 }

}

This class is now a JavaBean. It satisfies the minimum requirements. You can now load the
SimpleJavaBean into any JavaBeans–aware program that uses introspection and change its properties.
Its state can then be saved and reloaded anytime, because of its support for serialization.
Let's take a look at an example that illustrates how to serialize our new bean. The example in Listing 3.2
creates an instance of our SimpleJavaBean, sets the simpleProperty to "simple property value", serializes
the bean to a file, reads the bean back in, and finally displays proof that its state was maintained.
Listing 3.2: SimpleJavaBeanTester.java

import java.io.*;

public class SimpleJavaBeanTester {

 public SimpleJavaBeanTester() {

 }

 public void storeBean(SimpleJavaBean value) {

 try {

 // Create the ObjectOutputStream passing it the

 // FileOutputStream object that points to our

 // persistent storage.

 - 27 -

 ObjectOutputStream os = new ObjectOutputStream(

 new FileOutputStream("file.dat"));

 // Write the SimpleJavaBean to the ObjectOutputStream

 os.writeObject(value);

 os.flush();

 os.close();

 }

 catch (IOException ioe) {

 System.err.println(ioe.getMessage());

 }

 }

 public SimpleJavaBean getBean() {

 SimpleJavaBean value = null;

 try {

 // Create the ObjectInputStream passing it the

 // FileInputStream object that points to our

 // persistent storage.

 ObjectInputStream is = new ObjectInputStream(

 new FileInputStream("file.dat"));

 // Read the stored object and downcast it back to

 // a SimpleJavaBean

 value = (SimpleJavaBean)is.readObject();

 is.close();

 }

 catch (IOException ioe) {

 System.err.println(ioe.getMessage());

 }

 catch (ClassNotFoundException cnfe) {

 System.err.println(cnfe.getMessage());

 }

 - 28 -

 return value;

 }

 public void testBean() {

 // Create the Bean

 SimpleJavaBean simpleBean = new SimpleJavaBean();

 // Use accessor to set property

 simpleBean.setSimpleProperty("simple property value");

 // Serialize the Bean to a Persistent Store

 storeBean(simpleBean);

 // Get the Bean from the Persistent Store

 SimpleJavaBean newBean = getBean();

 System.out.println("The newBean's simpleProperty == " +

 newBean.getSimpleProperty());

 }

 public static void main(String[] args) {

 SimpleJavaBeanTester simpleJavaBeanTester =

 new SimpleJavaBeanTester();

 simpleJavaBeanTester.testBean();

 try {

 System.out.println("Press enter to continue...");

 System.in.read();

 }

 catch (IOException ioe) {

 System.err.println(ioe.getMessage());

 }

 }

}

 - 29 -

If you build and run this application, the output will look similar to the following:
The newBean's simpleProperty == simple property value
Press enter to continue...

Chapter 3: JavaBeans and JSP Concepts
Overview
Before we can start learning about how you can use JavaBeans in JavaServer Pages, we must take a
look at what a bean is. A JavaBean is a 100% Java component that works on any Java Virtual Machine.
The minimum requirements that make a component a JavaBean are as follows:

 It must support the JDK 1.1 and later Serialization model.
 It must use get/set accessors to expose its properties.

There is nothing magical about creating a JavaBean. You just create a Java class that implements the
java.io.Serializable interface and uses public get/set methods to expose its properties. Listing 3.1 contains
a simple JavaBean.
Listing 3.1: SimpleJavaBean.java

import java.io.Serializable;

public class SimpleJavaBean implements java.io.Serializable{

 private String simpleProperty = new String("");

 public SimpleJavaBean() {

 }

 public String getSimpleProperty() {

 return simpleProperty;

 }

 public void setSimpleProperty(String value) {

 simpleProperty = value;

 }

}

This class is now a JavaBean. It satisfies the minimum requirements. You can now load the
SimpleJavaBean into any JavaBeans–aware program that uses introspection and change its properties.
Its state can then be saved and reloaded anytime, because of its support for serialization.
Let's take a look at an example that illustrates how to serialize our new bean. The example in Listing 3.2
creates an instance of our SimpleJavaBean, sets the simpleProperty to "simple property value", serializes
the bean to a file, reads the bean back in, and finally displays proof that its state was maintained.
Listing 3.2: SimpleJavaBeanTester.java

 - 30 -

import java.io.*;

public class SimpleJavaBeanTester {

 public SimpleJavaBeanTester() {

 }

 public void storeBean(SimpleJavaBean value) {

 try {

 // Create the ObjectOutputStream passing it the

 // FileOutputStream object that points to our

 // persistent storage.

 ObjectOutputStream os = new ObjectOutputStream(

 new FileOutputStream("file.dat"));

 // Write the SimpleJavaBean to the ObjectOutputStream

 os.writeObject(value);

 os.flush();

 os.close();

 }

 catch (IOException ioe) {

 System.err.println(ioe.getMessage());

 }

 }

 public SimpleJavaBean getBean() {

 SimpleJavaBean value = null;

 try {

 // Create the ObjectInputStream passing it the

 // FileInputStream object that points to our

 // persistent storage.

 ObjectInputStream is = new ObjectInputStream(

 - 31 -

 new FileInputStream("file.dat"));

 // Read the stored object and downcast it back to

 // a SimpleJavaBean

 value = (SimpleJavaBean)is.readObject();

 is.close();

 }

 catch (IOException ioe) {

 System.err.println(ioe.getMessage());

 }

 catch (ClassNotFoundException cnfe) {

 System.err.println(cnfe.getMessage());

 }

 return value;

 }

 public void testBean() {

 // Create the Bean

 SimpleJavaBean simpleBean = new SimpleJavaBean();

 // Use accessor to set property

 simpleBean.setSimpleProperty("simple property value");

 // Serialize the Bean to a Persistent Store

 storeBean(simpleBean);

 // Get the Bean from the Persistent Store

 SimpleJavaBean newBean = getBean();

 System.out.println("The newBean's simpleProperty == " +

 newBean.getSimpleProperty());

 }

 public static void main(String[] args) {

 SimpleJavaBeanTester simpleJavaBeanTester =

 new SimpleJavaBeanTester();

 - 32 -

 simpleJavaBeanTester.testBean();

 try {

 System.out.println("Press enter to continue...");

 System.in.read();

 }

 catch (IOException ioe) {

 System.err.println(ioe.getMessage());

 }

 }

}

If you build and run this application, the output will look similar to the following:
The newBean's simpleProperty == simple property value
Press enter to continue...

Adding JavaBeans to JavaServer Pages
Now that we understand what JavaBeans are and how they are commonly used, let's take a look at
embedding them into JavaServer Pages. In the following sections, we are going to look at the standard
actions used to reference JavaBeans and an example that uses these actions.

JavaBean Standard Actions
There are three standard actions defined to help integrate JavaBeans into JSPs: <jsp:useBean>,
<jsp:setProperty>, and <jsp:getProperty>.

<jsp:useBean>
The first standard action is <jsp:useBean>. It associates an instance of a JavaBean defined with a given
scope and id via a newly declared scripting variable of the same id.
The <jsp:useBean> action is very flexible. Its exact semantics depend on the values of the given
attributes. The basic action tries to find an existing object using the same id and scope. If it does not find
an existing instance, it will attempt to create the object. It is also possible to use this action only to give a
local name to an object defined elsewhere, as in another JSP page or in a servlet. This can be done by
using the type attribute, and by not providing the class or the beanName attribute. The syntax of the
<jsp:useBean> action is as follows:
<jsp:useBean id="name"
 scope="page|request|session|application"
 typeSpec>
 body
</jsp:useBean>

typeSpec ::=class="className" |
 class="className" type="typeName" |
 type="typeName" class="className" |

 - 33 -

 beanName="beanName" type="typeName" |
 type="typeName" beanName="beanName" |
 type="typeName"
Table 3.1 contains the attributes of the <jsp:useBean> action.
Table 3.1: The Attributes for the <jsp:useBean> Action

Attribute Definition
id This attribute represents the identity of the instance of the object in the

specified scope. The name is case sensitive and must satisfy the current
scripting language's variable naming conventions.

scope The scope attribute represents the life of the object. The scope options
are page, request, session, and application.

class The fully qualified class name that defines the implementation of the
object. The class name is case sensitive.

beanName This attribute references the name of the bean, as expected to be
instantiated by the instantiate() method of the
java.beans.Beans class.

type The type attribute specifies the type of scripting variable defined. If this
attribute is unspecified, then the value is the same as the value of the
class attribute.

<jsp:setProperty>
The second standard action to help integrate JavaBeans into JSPs is <jsp:setProperty>. It sets the
value of a bean's property. Its name attribute denotes an object that must already be defined and in scope.
The syntax for the <jsp:setProperty> action is as follows:
<jsp:setProperty name="beanName" prop_expr />
In the preceding syntax, the name attribute represents the name of the bean whose property you are
setting, and prop_expr can be represented in the following syntax:
property="*" |
property="propertyName" |
property="propertyName" param="parameterName" |
property="propertyName" value="propertyValue"
Table 3.2 contains the attributes and their descriptions for the <jsp:setProperty> action.
Table 3.2: The Attributes for the <jsp:setProperty> Action

Attribute Definition
name This attribute represents the name of the bean instance defined by a

<jsp:useBean> action or some other action.
property This attribute represents the bean property for which you want to set a

value. If you set propertyName to an asterisk (*), then the action will
iterate over the current ServletRequest parameters, matching
parameter names and value types to property names and setter method
types, and setting each matched property to the value of the matching
parameter. If a parameter has an empty string for a value, the
corresponding property is left unmodified.

param The param attribute represents the name of the request parameter
whose value you want to set the named property to. A
<jsp:setProperty> action cannot have both param and value
attributes referenced in the same action.

value The value attribute represents the value assigned to the named bean's
property.

 - 34 -

<jsp:getProperty>
The last standard action that references JavaBeans in JSPs is <jsp:getProperty>.It takes the value of
the referenced bean instance's property, converts it to a java.lang.String, and places it into the
implicit out object. The referenced bean instance must be defined and in scope before this action
references it. The syntax for the <jsp:getProperty> action is as follows:
<jsp:getProperty name="name" property="propertyName" />
Table 3.3 contains the attributes and their descriptions for the <jsp:getProperty> action.
Table 3.3: The Attributes for the <jsp:getProperty> Action

Attribute Definition
name This attribute represents the name of the bean instance, from which

the property is obtained, defined by a <jsp:useBean> action or some
other action.

property This attribute represents the bean property for which you want to get a
value.

A JSP Example Using JavaBeans
In our example, we are going to use a simple JavaBean that acts as a counter. It has a single int
property, count, that holds the current number of times the bean's property has been accessed. It also
contains the appropriate methods for getting and setting this property. Listing 3.3 contains the source code
for the Counter bean.
Listing 3.3: Counter.java

public class Counter {

 // Initialize the bean on creation

 int count = 0;

 // Parameterless Constructor

 public Counter() {

 }

 // Property Getter

 public int getCount() {

 // Increment the count property, with every request

 - 35 -

 count++;

 return this.count;

 }

 // Property Setter

 public void setCount(int count) {

 this.count = count;

 }

}

Now that we have defined our bean, let's look at how to integrate it into a JSP. Listing 3.4 contains the
JSP that will use the Counter bean.
Listing 3.4: BeanCounter.jsp

<HTML>

<HEAD>

<TITLE>JSP Bean Example</TITLE>

</HEAD>

<BODY>

<!-- Set the scripting language to java -->

<%@ page language="java" %>

<%@ page import="Counter" %>

<!-- Instantiate the Counter bean with an id of "counter" -->

<jsp:useBean id="counter" scope="session" class="Counter" />

<!-- Set the bean's count property to the value of -->

 - 36 -

<!-- the request parameter "count", using the -->

<!-- jsp:setProperty action. -->

<jsp:setProperty name="counter" property="count" param="count" />

<%

 // write the current value of the property count

 out.println("Count from scriptlet code : "

 + counter.getCount() + "
");

%>

<!-- Get the bean's count property, -->

<!-- using the jsp:getProperty action. -->

Count from jsp:getProperty :

 <jsp:getProperty name="counter" property="count" />

</BODY>

</HTML>

In the BeanCounter.jsp page, we perform five actions that give examples of using beans in a JSP. We
first tell the JSP engine that the scripting language we are using is Java, with the following snippet:
<%@ page language="java" %>
We then create an instance of the class Counter, with a scope of session, and assign it an id of
counter. We do this using the standard action <jsp:useBean>. Now we can reference this bean, by
using the name counter, throughout the rest of our JSP. The code snippet that creates the bean is as
follows:
<jsp:useBean id="counter" scope="session" class="Counter" />
The third action we take is to set the bean's count property to the value of the count parameter, if it
exists in the request. The code snippet that performs this action is as follows:
<!-- Set the bean's count property to the value of -->
<!-- the request parameter "count", using the -->
<!-- jsp:setProperty action. -->
<jsp:setProperty name="counter" property="count" param="count" />
In this snippet, we use the <jsp:setProperty> standard action to set the value of the count property.
We do this by setting the name attribute to the name of the bean we want to reference, the property
attribute to the name of the property to be set, and the param attribute to the name of the request
parameter we want to set the property to.

 - 37 -

The final two actions we perform show how you can get the current value of a bean's property. The first of
these two examples uses a scriptlet. It simply accesses the bean by its referenced name counter and
calls the getCount() method, just as any other Java code would. The scriptlet snippet is listed here:
<%

 // write the current value of the property count
 out.println("Count from scriptlet code : "
 + counter.getCount() + "
");

%>
The second example uses the <jsp:getProperty> standard action, which requires the name of the
bean and the property to be accessed. The action takes the attribute, calls the appropriate accessor,
and embeds the results directly into the resulting HTML document, as shown in the following:
<!-- Get the bean's count property, -->
<!-- using the jsp:getProperty action. -->
Count from jsp:getProperty :
 <jsp:getProperty name="counter" property="count" />

Notice that the second reference to the count property results in a value that is one greater than the first
reference. This is because both methods of accessing the count property result in a call to the
getCount() method, which increments the value of count.
Another thing you might want to try is changing the value of the <jsp:useBean> action's scope attribute.
This will affect the life of the bean and the value of the count property in the previous example. The
available options are described in Table 3.4.
Table 3.4: The scope Values for the <jsp:useBean> Action

Value Definition
page Objects with page scope are accessible only within the page where

they were created. References to an object with page scope will be
released when the response is sent back to the client or the request is
forwarded to another resource. Objects with page scope are stored in
the pagecontext.

request Objects with request scope are accessible only within pages
processing the same request in which the object was created.
References to the object will be released after the request is
processed completely. If the request is forwarded to a resource in the
same runtime, the object is still in scope. References to objects with
request scope are stored in the request object.

session Objects with session scope are accessible only within pages
processing requests that are in the same session as the one in which
the bean was created. It is illegal to define an object with session
scope within a page if that page's page directive has the session
attribute set equal to false (see Table 1.1 in Chapter 1). References
to the session objects will be released after their associated sessions
end. Objects with session scope are stored in the session object
associated with the page activation.

application Objects with application scope are accessible within pages
processing requests that are in the same application space as the
page in which they were created. References to the object will be
released when the runtime environment reclaims the
ServletContext. Objects with application scope can be defined
and reached within pages that are not session-aware. References to
objects with application scope are stored in the application
object associated with the page.

 - 38 -

Summary
In this chapter, we covered the basics of JavaBeans. We looked at the standard actions involved in
embedding a bean within a JSP. We also covered the different types of scope in which a bean can exist.

You now should be able to create a JavaBean and access the bean within a JSP. You should also have a
basic understanding of how the bean's scope affects its current state.
In Chapter 4, "JDBC and JSP Concepts," we are going to cover how you can perform JDBC operations
within JSPs.

Chapter 4: JDBC and JSP Concepts
Overview
The JDBC (short for Java Database Connectivity) interface is a pure Java API used to execute SQL
statements. This chapter will introduce the JDBC and then explore how to use it in JavaServer Pages.

The JDBC provides a set of classes and interfaces that can be used by developers to write database
applications. Basic JDBC interaction, in its simplest form, can be broken down into four steps:

1. Open a connection to the database.
2. Execute a SQL statement.
3. Process the results.
4. Close the connection to the database.

The following code fragment shows these steps in action:
// Step 1. Open a connection to the ODBC datasource titles.
con = DriverManager.getConnection("jdbc:odbc:titles",
 "admin", "password");

// Step 2. Execute the SQL statement.
Statement statement = con.createStatement();

ResultSet rs = statement.executeQuery("SELECT * " +
 "FROM Types");

// Step 3. Process the Results
while (rs.next()) {

 // get the type_id, which is an int
 System.err.println("Type ID = " + rs.getInt("type_id"));
 // get the type_name, which is a String
 System.err.println("Type Name = " + rs.getString("type_name"));
}

// Step 4. Close the Connection.
rs.close();
con.close();

Two- and Three-Tier Database Access Models
The JDBC provides support for two- and three-tier database access models. We are going to examine
both in this section.

 - 39 -

When you use the two-tier database access model, your Java application talks directly to the database.
This is accomplished through the use of a JDBC driver, which sends commands directly to the database.
The results of these commands are then sent back from the database directly to the application. Figure
4.1 shows the two-tier model.

Figure 4.1: The two-tier JDBC model.
The three-tier model, as you might have guessed, is a little more complicated. When you use the three-tier
model, your JDBC driver sends commands to a middle-tier, which in turn sends commands to the
database. The results of these commands are then sent back to the middle-tier, which communicates
them back to the application. Figure 4.2 shows the three-tier model.

Figure 4.2: The three-tier JDBC model.

JDBC Driver Types
Sun has defined four JDBC driver types:

 JDBC-ODBC Bridge, plus ODBC driver
 Native-API, partly-Java driver
 JDBC-net, pure Java driver
 Native-protocol, pure Java driver

Each of these types meets a different application need, as we'll discuss in the following sections.

Type 1: JDBC-ODBC Bridge, Plus ODBC Driver
The first type of JDBC driver is the JDBC-ODBC Bridge. This driver type is provided by Sun with the JDK
1.1 and later. It provides JDBC access to databases through ODBC drivers. The ODBC driver must be
configured on the client for the bridge to work. This driver type is commonly used for prototyping or when
there is no JDBC driver available for a particular Database Management System (DBMS). Figure 4.3
shows the driver interaction of the JDBC-ODBC Bridge.

 - 40 -

Figure 4.3: The Type 1 JDBC-ODBC Bridge.

Type 2: Native-API Driver
The native-API driver converts JDBC commands into DBMS-specific native calls. This is much like the
restriction of Type 1 drivers. The client must have some binary code loaded on its machine. These drivers
do have an advantage over Type 1 drivers, because they interface directly with the database. Figure 4.4
shows the interactions of a Type 2 driver.

Figure 4.4: The Type 2 Native-API JDBC driver.

Type 3: JDBC-Net, Pure Java Driver
The JDBC-Net drivers are a three-tier solution. This type of driver translates JDBC calls into a database-
independent network protocol that is sent to a middleware server. This server then translates this DBMS-
independent protocol into a DBMS-specific protocol, which is sent to a particular database. The results are
routed back through the middleware server and sent back to the client. This type of solution makes it
possible to implement a pure Java client. It also makes it possible to swap databases without affecting the
client. This is by far the most flexible JDBC solution. Figure 4.5 shows this three-tier solution.

 - 41 -

Figure 4.5: The Type 3 JDBC-Net driver.

Type 4: Native-Protocol, Pure Java Driver
The Type 4 drivers are pure Java drivers that communicate directly with the vendor's database. They do
this by converting JDBC commands directly into the database engine's native protocol. The Type 4 driver
has a very distinct advantage over all the other driver types. It has no additional translation or middleware
layers, which improves performance tremendously. Figure 4.6 diagrams the communications of a Type 4
driver.

Figure 4.6: The Type 4 native-protocol JDBC driver.

JDBC Basics
Now that we have discussed what the JDBC is and some of its characteristics, let's start learning how to
use it. In this section, we are going to discuss how to install and set up a Type 1 driver, make a connection
to the database, and perform the basic SQL commands.

Installing and Setting Up a Type 1 Driver
In the JDBC examples throughout this book, we will be connecting to a Microsoft Access database using a
Type 1 driver. To install the JDBC-ODBC Bridge, simply download the JDK and follow the installation
directions. The JDBC-ODBC Bridge is included in version 1.1 and later.
The JDBC-ODBC Bridge requires no specific setup steps, but the ODBC driver does. For our examples,
assume that you are using a PC and running Windows 9x or NT. If not, you will need to create your own
database using the drivers supplied by your database vendor.

To configure the ODBC data source for the examples, you will follow these steps:
1. Copy to your local drive the database file moviecatalog.mdb, which can be found on this

book's Web site.
2. Start the application ODBC Administrator found in the Windows Control Panel. You will see a

window similar to the one in Figure 4.7.

 - 42 -

Figure 4.7: The ODBC Administrator.

3. Select the Add button to add a new data source. Figure 4.8 shows the Create New Data
Source screen.

Figure 4.8: The Create New Data Source screen.

4. Select the Microsoft Access Driver and click the Finish button. You will now be presented
with the ODBC Microsoft Access Setup screen. Figure 4.9 shows this screen.

Figure 4.9: The ODBC Microsoft Access Setup screen.

5. Enter the string "Movie Catalog" as the data source name and click the database Select
button. Enter the path to the location of your moviecatalog.mdb file and click OK. You will now see
the ODBC Microsoft Access Setup screen with your changes displayed. Click OK to commit to your
changes.

6. You will now see the ODBC Data Source Administrator screen with the Movie Catalog data
source in the list. Click the OK button to close this window.

Establishing a Database Connection
The first thing you need to do when using the JDBC is establish a connection to the database. This is a
two-step process. You must load the JDBC driver and then make a connection.
Loading a JDBC driver is very simple. It takes only one line of code. In our examples, we will be using the
JDBC-ODBC Bridge. The class name for this driver is sun.jdbc.odbc.JdbcOdbcDriver. The
following code snippet shows you how to load this driver:
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
When you call the Class.forName() method, it creates an instance of the driver and registers it with the
DriverManager. This is all there is to loading a JDBC driver.
After you have the driver loaded, it is easy to make a connection. You make a call to the static method
DriverManager.getConnection(), which returns a connection to the database. Its method signature
is listed as follows:

 - 43 -

public static synchronized Connection getConnection(String url,
 String user, String password) throws SQLException
The first parameter is the URL that points to our data source. In the case of the JDBC ODBC Bridge, it
always begins with jdbc:odbc:DataSourceName, where the DataSourceName is the name of the
ODBC data source you set up.

The next two parameters are self-explanatory. They are the username and password associated with the
database login. For our example, we will use empty strings for each. Here is the code used to open a
connection to our Movie Catalog database:
con = DriverManager.getConnection("jdbc:odbc:Movie Catalog",
 "", "");
The Connection object returned from the DriverManager is an open connection to the database. We
will be using it to create JDBC statements that pass SQL statements to the database.

Performing the Basic SQL Commands
In this section we are going to look at how to create a JDBC Statement object and five JDBC examples
that use the Statement. In all our examples, we will be using the Movie Catalog database that we
configured earlier.

Creating a JDBC Statement Object
To execute any SQL command using a JDBC connection, you must first create a Statement object. To
create a Statement, you need to call the Connection.createStatement() method. It returns a
JDBC Statement that you will use to send your SQL statements to the database. The following code
snippet shows how to create a Statement:
Statement statement = con.createStatement();

Creating a Table
The first thing we are going to do is create a database table that represents a list of movie titles. Currently
there are two tables in the database: the Categories table and the Types table. Table 4.1 shows the
composition of our new Titles table.
Table 4.1: Titles Table Elements

Field Name Data Type
title_id INTEGER
title_name VARCHAR(50)
rating VARCHAR(5)
price FLOAT
quantity INTEGER
type_id INTEGER
category_id INTEGER

The application that creates this table can be found in Listing 4.1. Notice that it follows the step-by-step
process that I described earlier:

1. Open a connection to the database.
2. Execute a SQL statement.
3. Process the results.
4. Close the connection to the database.

Listing 4.1: CreateTablesApp.java

import java.sql.*;

 - 44 -

public class CreateTablesApp {

 public void createTables() {

 Connection con = null;

 try {

 // Load the Driver class file

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Make a connection to the ODBC datasource Movie Catalog

 con = DriverManager.getConnection("jdbc:odbc:Movie Catalog",

 "", "");

 // Create the statement

 Statement statement = con.createStatement();

 // Use the created statement to CREATE the database table

 // Create Titles Table

 statement.executeUpdate("CREATE TABLE Titles " +

 "(title_id INTEGER, title_name VARCHAR(50), " +

 "rating VARCHAR(5), price FLOAT, quantity INTEGER, " +

 "type_id INTEGER, category_id INTEGER)");

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 }

 catch (ClassNotFoundException cnfe) {

 - 45 -

 System.err.println(cnfe.getMessage());

 }

 catch (Exception e) {

 System.err.println(e.getMessage());

 }

 finally {

 try {

 if (con != null) {

 // Close the connection no matter what

 con.close();

 }

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 }

 }

 }

 public static void main(String[] args) {

 CreateTablesApp createTablesApp = new CreateTablesApp();

 createTablesApp.createTables();

 }

}

 - 46 -

The section we want to focus on is listed here:
// Create the statement
Statement statement = con.createStatement();

// Use the created statement to CREATE the database table
// Create Titles Table
statement.executeUpdate("CREATE TABLE Titles " +
 "(title_id INTEGER, title_name VARCHAR(50), " +
 "rating VARCHAR(5), price FLOAT, quantity INTEGER, " +
 "type_id INTEGER, category_id INTEGER)");
The first statement executed creates a Statement object with the given Connection. To perform the
actual creation of the table, call the Statement.executeUpdate() method, passing it the SQL
statement to create the table. Its signature is listed as follows:
public int executeUpdate(String sql) throws SQLException
This method is used for all update-type transactions. It takes a string representation of an SQL statement
and returns an integer. The return value is either a row count for INSERT, UPDATE, and DELETE
statements, or 0 for SQL statements that return nothing such as a CREATE.
After we have created the Titles table, the table relationships of our Movie Catalog database will look
something like Figure 4.10.

Figure 4.10: The Movie Catalog database.

Inserting Data into a Table
Now that we have all our tables in place, you can put some data into them. Listing 4.2 shows the
application used to populate our Movie Catalog database.
Listing 4.2: InsertDataApp.java

import java.sql.*;

public class InsertDataApp {

 public InsertDataApp() {

 }

 - 47 -

 public void insertData() {

 Connection con = null;

 try {

 // Load the Driver class file

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Make a connection to the ODBC datasource Movie Catalog

 con = DriverManager.getConnection("jdbc:odbc:Movie Catalog",

 "", "");

 // Create the statement

 Statement statement = con.createStatement();

 // Use the created statement to INSERT DATA into

 // the database tables.

 // Insert Data into the Types Table

 statement.executeUpdate("INSERT INTO Types " +

 "VALUES (0, 'VHS')");

 statement.executeUpdate("INSERT INTO Types " +

 "VALUES (1, 'DVD')");

 statement.executeUpdate("INSERT INTO Types " +

 "VALUES (2, 'Laserdisc')");

 // Insert Data into the Categories Table

 - 48 -

 statement.executeUpdate("INSERT INTO Categories " +

 "VALUES (0, 'Action Adventure')");

 statement.executeUpdate("INSERT INTO Categories " +

 "VALUES (1, 'Comedy')");

 statement.executeUpdate("INSERT INTO Categories " +

 "VALUES (2, 'Drama')");

 statement.executeUpdate("INSERT INTO Categories " +

 "VALUES (3, 'Western')");

 statement.executeUpdate("INSERT INTO Categories " +

 "VALUES (4, 'Sci-Fi')");

 statement.executeUpdate("INSERT INTO Categories " +

 "VALUES (5, 'Classics')");

 // Insert Data into the Titles Table

 statement.executeUpdate("INSERT INTO Titles " +

 "VALUES (0, 'The Adventures of Buckaroo Bonzai', " +

 "'PG', 19.95, 10, 0, 4)");

 statement.executeUpdate("INSERT INTO Titles " +

 "VALUES (1, 'Saving Private Ryan', " +

 "'R', 19.95, 12, 1, 0)");

 statement.executeUpdate("INSERT INTO Titles " +

 "VALUES (2, 'So I Married An Axe Murderer', " +

 "'PG', 19.95, 15, 1, 1)");

 - 49 -

 statement.executeUpdate("INSERT INTO Titles " +

 "VALUES (3, 'Happy Gilmore', " +

 "'PG', 19.95, 9, 1, 1)");

 statement.executeUpdate("INSERT INTO Titles " +

 "VALUES (4, 'High Plains Drifter', " +

 "'PG', 29.95, 10, 2, 3)");

 statement.executeUpdate("INSERT INTO Titles " +

 "VALUES (5, 'Cape Fear', " +

 "'NR', 6.99, 21, 0, 5)");

 statement.executeUpdate("INSERT INTO Titles " +

 "VALUES (6, 'The Last Emperor', " +

 "'PG', 19.95, 12, 1, 2)");

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 }

 catch (ClassNotFoundException cnfe) {

 System.err.println(cnfe.getMessage());

 }

 catch (Exception e) {

 System.err.println(e.getMessage());

 }

 finally {

 try {

 - 50 -

 if (con != null) {

 // Close the connection no matter what

 con.close();

 }

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 }

 }

 }

 public static void main(String[] args) {

 InsertDataApp insertDataApp = new InsertDataApp();

 insertDataApp.insertData();

 }

}

The InsertDataApp application uses the same executeUpdate() method we used to create our
tables. We only changed the SQL string that we passed to it, using a basic SQL INSERT statement
instead. We inserted data into our Types, Categories, and Titles tables, respectively. Also notice that we
were able to perform all our inserts using the same Statement object. There is nothing preventing you
from reusing this object, instead of creating a new one for each execution.

Selecting Data from a Table
The most common SQL statement is the SELECT. It gives you the ability to look at the data stored in your
tables. In the previous examples, we created and populated the Movie Catalog database. In this example,
we are going to look at the data we put in these tables, and we are going to do it with a SELECT
statement. Listing 4.3 contains the source for this example.
Listing 4.3: SelectDataApp.java

import java.sql.*;

 - 51 -

import java.io.*;

public class SelectDataApp {

 public SelectDataApp() {

 }

 public void selectData() {

 Connection con = null;

 try {

 // Load the Driver class file

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Make a connection to the ODBC datasource Movie Catalog

 con = DriverManager.getConnection("jdbc:odbc:Movie Catalog",

 "", "");

 // Create the statement

 Statement statement = con.createStatement();

 // Use the created statement to SELECT the DATA

 // FROM the Titles Table.

 ResultSet rs = statement.executeQuery("SELECT * " +

"FROM Titles");

 // Iterate over the ResultSet

 while (rs.next()) {

 - 52 -

 // get the title_name, which is a String

 System.err.println("Title Name = " + rs.getString("title_name"));

 // get the rating

 System.err.println("Title Rating = " + rs.getString("rating"));

 // get the price

 System.err.println("Title Price = " + rs.getString("price"));

 // get the quantity

 System.err.println("Title Quantity = " + rs.getString("quantity")

 + "\n");

 }

 // Close the ResultSet

 rs.close();

 System.in.read();

 }

 catch (IOException ioe) {

 System.err.println(ioe.getMessage());

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 }

 catch (ClassNotFoundException cnfe) {

 System.err.println(cnfe.getMessage());

 }

 catch (Exception e) {

 System.err.println(e.getMessage());

 }

 - 53 -

 finally {

 try {

 if (con != null) {

 // Close the connection no matter what

 con.close();

 }

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 }

 }

 }

 public static void main(String[] args) {

 SelectDataApp selectDataApp = new SelectDataApp();

 selectDataApp.selectData();

 }

}

To execute a query, use the same Statement object as in previous examples. You just call a different
method. The method to perform a query is executeQuery(). Its signature is listed here:
public ResultSet executeQuery(String sql) throws SQLException
It takes a SQL string like the executeUpdate() method. The difference from executeUpdate() is that
executeQuery() returns a ResultSet object containing the results of the query. In our example, we
passed it the string "SELECT * FROM Titles", which returns a collection of rows resulting from the
query.
After we have our ResultSet object returned from executeQuery(), we can iterate over it. The
following code snippet shows how our example processes the query results:

 - 54 -

// Iterate over the ResultSet
while (rs.next()) {

 // get the title_name, which is a String
 System.err.println("Title Name = " + rs.getString("title_name"));
 // get the rating
 System.err.println("Title Rating = " + rs.getString("rating"));
 // get the price
 System.err.println("Title Price = " + rs.getString("price"));
 // get the quantity
 System.err.println("Title Quantity = " + rs.getString("quantity")
 + "\n");
}
// Close the ResultSet
rs.close();
The first thing you do is call the ResultSet.next() method. This method returns a Boolean value,
indicating whether the next row in the set is valid. If it is, we can access that row using the Get accessors
provided by the ResultSet object. In our example, we use only the getString() method, but they all
function the same except for their return type. They take a string value representing the name of the
column in the table and return the type that is part of their method name. For example, getString()
returns a java.lang.String and getInt() returns an int. You can continue iterating over the
ResultSet until next() returns false; at that point you need to close the ResultSet object. When
you execute this application, the results will be similar to the following output:
Title Name = The Adventures of Buckaroo Bonzai
Title Rating = PG
Title Price = 19.95
Title Quantity = 10

Title Name = Saving Private Ryan
Title Rating = R
Title Price = 19.95
Title Quantity = 12

Title Name = So I Married An Axe Murderer
Title Rating = PG
Title Price = 19.95
Title Quantity = 15

Title Name = Happy Gilmore
Title Rating = PG
Title Price = 19.95
Title Quantity = 9

Title Name = High Plains Drifter
Title Rating = PG
Title Price = 29.95
Title Quantity = 10

 - 55 -

Title Name = Cape Fear
Title Rating = NR
Title Price = 6.99
Title Quantity = 21

Title Name = The Last Emperor
Title Rating = PG
Title Price = 19.95
Title Quantity = 12

Updating Tables
Another SQL command we need to examine is the UPDATE statement. It looks for a matching condition
and makes the specified changes if its WHERE clause is true. An example of this would be if you sold
seven copies of The Last Emperor. You would need to update its quantity to 5. The example in Listing 4.4
does just that.
Listing 4.4: UpdateDataApp.java

import java.sql.*;

public class UpdateDataApp {

 public UpdateDataApp() {

 }

 public void updateData() {

 Connection con = null;

 try {

 // Load the Driver class file

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Make a connection to the ODBC datasource Movie Catalog

 con = DriverManager.getConnection("jdbc:odbc:Movie Catalog",

 - 56 -

 "", "");

 // Create the statement

 Statement statement = con.createStatement();

 // Use the created statement to UPDATE DATA in

 // the database tables.

 // Update the Quantity of "The Last Emperor"

 statement.executeUpdate("UPDATE Titles " +

 "SET quantity = 5 " +

 "WHERE title_name = 'The Last Emperor'");

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 }

 catch (ClassNotFoundException cnfe) {

 System.err.println(cnfe.getMessage());

 }

 catch (Exception e) {

 System.err.println(e.getMessage());

 }

 finally {

 try {

 if (con != null) {

 // Close the connection no matter what

 - 57 -

 con.close();

 }

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 }

 }

 }

 public static void main(String[] args) {

 UpdateDataApp updateDataApp = new UpdateDataApp();

 updateDataApp.updateData();

 }

}

If you examine Listing 4.4's executeUpdate() method, you will see the appropriate SQL string used to
perform the previously mentioned update. Run this application and then run the example from Listing 4.3.
You will see the change to the quantity value of The Last Emperor.

Deleting Data from a Table
The last topic for this section is deleting data from the database. It is not much different from the previous
database updating functions, but it does deserve its own section.
To delete a row from a table, you again use the executeUpdate() method. The only change will be the
SQL statement you pass to it. In this example, we have decided to take Cape Fear off the market. It just
doesn't sell as well as it did in previous years. So, we put a SQL string together and substitute it into the
executeUpdate() method. The changed call will look something like the following snippet:
// Use the created statement to DELETE DATA
// FROM the Titles table.
statement.executeUpdate("DELETE FROM Titles " +
 "WHERE title_name = 'Cape Fear'");
After you have run this application, re-run SelectDataApp and you will see that the title Cape Fear is no
longer in the database.

 - 58 -

Using the JDBC in JavaServer Pages
Now that we have covered the basics of using the JDBC, let's look at how you can integrate it into a JSP.
It is really very simple. Listing 4.5 contains a sample JSP that performs a query on the previously used
Titles table.
Listing 4.5: JDBCExample.jsp

<HTML>

<HEAD>

<TITLE>JSP JDBC Example 1</TITLE>

</HEAD>

<BODY>

<!-- Set the scripting language to java and -->

<!-- import the java.sql package -->

<%@ page language="java" import="java.sql.*" %>

<%

 Connection con = null;

 try {

 // Load the Driver class file

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Make a connection to the ODBC datasource Movie Catalog

 con =

 DriverManager.getConnection("jdbc:odbc:Movie Catalog",

 "", "");

 // Create the statement

 Statement statement = con.createStatement();

 - 59 -

 // Use the created statement to SELECT the DATA

 // FROM the Titles Table.

 ResultSet rs = statement.executeQuery("SELECT * " +

 "FROM Titles");

 // Iterate over the ResultSet

 %>

 <!-- Add an HTML table to format the results -->

 <TABLE BORDER="1">

 <TR>

 <TH>Title</TH><TH>Rating</TH><TH>Price</TH><TH>Quantity</TH>

 <%

 while (rs.next()) {

 // get the title_name, which is a String

 out.println("<TR>\n<TD>" + rs.getString("title_name")

 + "</TD>");

 // get the rating

 out.println("<TD>" + rs.getString("rating") + "</TD>");

 // get the price

 out.println("<TD>" + rs.getString("price") + "</TD>");

 // get the quantity

 out.println("<TD>" + rs.getString("quantity")

 + "</TD>\n</TR>");

 }

 // Close the ResultSet

 - 60 -

 rs.close();

 }

 catch (IOException ioe) {

 out.println(ioe.getMessage());

 }

 catch (SQLException sqle) {

 out.println(sqle.getMessage());

 }

 catch (ClassNotFoundException cnfe) {

 out.println(cnfe.getMessage());

 }

 catch (Exception e) {

 out.println(e.getMessage());

 }

 finally {

 try {

 if (con != null) {

 // Close the connection no matter what

 con.close();

 }

 }

 catch (SQLException sqle) {

 out.println(sqle.getMessage());

 - 61 -

 }

 }

%>

</BODY>

</HTML>

Note

A key thing to note is the HTML code that is intermingled throughout the scriptlet code. This is
done by closing the scriptlet block with the %> symbol, inserting the HTML code, and then
reopening the scriptlet block with the <% symbol. As you look through the generated listing,
examine how this is implemented in the _jspService() method.

There is really nothing special about the JSP presented in Listing 4.5. You are simply taking a basic JDBC
query and embedding into a JSP scriptlet. When this JSP is first requested, it is compiled into a servlet
and the scriptlet code containing the query is placed into the generated _jspService() method. A code
snippet follows, containing the generated method, with small changes for readability:
public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;

 try {

 if (_jspx_inited == false) {

 jspx_init();
 jspx_inited = true;
}
 jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this,
 request, response, "", true, 8192, true);

 application = pageContext.getServletContext();

 - 62 -

 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 // begin out.write("<HTML>\r\n<HEAD>\r\n<TITLE>JSP
 JDBC " +
 "Example 1</TITLE>\r\n</HEAD>\r\n\r\n<BODY>\r\n\r\n");
 <!-- Set the scripting language to java and -->\r\n
 <!-- import the java.sql package -->\r\n");
 // end
 // begin
 out.write("\r\n\r\n");
 // end
 // begin [file="D:\\JDBCExample.jsp";
 // from=(11,2);to=(33,6)]

 Connection con = null;

 try {

 // Load the Driver class file
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Make a connection to the ODBC datasource
 con = DriverManager.getConnection(
 "jdbc:odbc:Movie Catalog",
 "", "");

 // Create the statement
 Statement statement = con.createStatement();

 // Use the created statement to SELECT the DATA
 // FROM the Titles Table.
 ResultSet rs = statement.executeQuery("SELECT * " +
 "FROM Titles");

 // Iterate over the ResultSet

 // end
 // begin
 out.write("\r\n<!-- Add an HTML -->\r\n" +
 "<TABLE BORDER=\"1\">\r\n <TR>\r\n" +
 "<TH>Title</TH><TH>Rating</TH>
 <TH>Price</TH>

 - 63 -

 <TH>Quantity</TH>\r\n ");
 // end
 // begin [file="D:\\JDBCExample.jsp";
 // from=(38,8);to=(89,0)]

 while (rs.next()) {

 // get the title_name, which is a String
 out.println("<TR>\n<TD>" +
 rs.getString("title_name") +
 "</TD>");

 // get the rating
 out.println("<TD>" +
 rs.getString("rating") + "</TD>");

 // get the price
 out.println("<TD>" +
 rs.getString("price") + "</TD>");

 // get the quantity
 out.println("<TD>" +
 rs.getString("quantity") +
 "</TD>\n</TR>");
 }
 // Close the ResultSet
 rs.close();
 }
 catch (IOException ioe) {

 out.println(ioe.getMessage());
 }
 catch (SQLException sqle) {

 out.println(sqle.getMessage());
 }
 catch (ClassNotFoundException cnfe) {

 out.println(cnfe.getMessage());
 }
 catch (Exception e) {

 out.println(e.getMessage());
 }

 - 64 -

 finally {

 try {

 if (con != null) {

 // Close the con no matter what
 con.close();
 }
 }
 catch (SQLException sqle) {

 out.println(sqle.getMessage());
 }
 }

 // end
 // begin
 out.write("\r\n\r\n</BODY>\r\n</HTML>\r\n");
 // end

 }
 catch (Exception ex) {

 if (out.getBufferSize() != 0)

 out.clear();
 pageContext.handlePageException(ex);
 }
 finally {

 out.flush();
 jspxFactory.releasePageContext(pageContext);
 }
}
You will notice as you look through the generated _jspMethod() method that the generated JDBC code
is almost verbatim to your JSP scriptlet code. That is really all there is to it. In Chapter 15, "JSP and XML,"
we will examine a more efficient method of database interaction by incorporating a JDBC connection pool
using a JavaBean.

Summary
In this chapter, we covered the basics of the JDBC and its characteristics, saw how to set up a JDBC
driver, and examined how you can incorporate the JDBC into a JSP. We also briefly examined how you
can break up your scriptlet code by embedding your HTML code into it.
This chapter marks the end of Part I, "Conceptual Reference," which introduces JSP concepts. In Part II,
"Techniques Reference," we examine some JSP techniques that really dig into what you have just
learned. The next 14 chapters demonstrate how you can put these concepts to practical use.

 - 65 -

Part II: Techniques Reference
Chapter List
Chapter 5: Configuring the JSP Server
Chapter 6: Handling JSP Errors
Chapter 7: Using the include Directive
Chapter 8: JavaServer Pages and Inheritance
Chapter 9: Using the JSP's Implicit Objects
Chapter 10: Using JSP Standard Actions
Chapter 11: JSPs and JavaBean Scope
Chapter 12: JSP and HTML Forms
Chapter 13: JSP and a Shopping Cart
Chapter 14: JSP and a JDBC Connection Pool Bean
Chapter 15: JSP and XML
Chapter 16: JSP Communication with Servlets
Chapter 17: JSP and JavaMail

Chapter 5: Configuring the JSP Server
Overview
Tomcat is the flagship product of the Apache Software Foundation's Jakarta Project. It is intended to be a
world-class implementation of Sun's Java Servlet SDK 2.2 and JavaServer Pages 1.1 specifications.
Tomcat is, at the time of this writing, the only released implementation of both of these specifications.
Because of Tomcat's compliance with the latest specifications, it will be the server used throughout this
text.

Note The default installation for Tomcat will run under Unix, Windows NT, and Windows 2000.

Users with Windows 9x should consult the Tomcat Web site for configuration information.

Installing the Tomcat Server
The first thing you need to do is get a copy of Tomcat from the Jakarta Project's Web site. You can find the
necessary links at http://jakarta.apache.org/. Figure 5.1 shows the Jakarta Project's homepage.

Figure 5.1: The Jakarta Project's homepage.
You can choose to download either class files or source code. For this text we are going to use the zipped
class files, so download the file tomcat.zip.
Once you have the file decompress it to a local drive. For this text I am installing it to drive D:; therefore,
my <SERVER_ROOT> directory is D:\tomcat\.
The next step is putting your JDK into the Tomcat's classpath. You do this by editing the
<SERVER_ROOT>/tomcat.bat file and setting the JAVA_HOME environment variable to the location of
your JDK installation. For my installation I have added the following line to the tomcat.bat file:
set JAVA_HOME=D:\jdk1.2.2\

 - 66 -

You need to make sure this line is added before any references to JAVA_HOME. To test your installation,
start the Tomcat server by executing the startup.bat file and open your browser to the following URL,
substituting your server name:
http://server_name:8080/
You should now see a screen similar to Figure 5.2.

Figure 5.2: The Tomcat default page.
The next step is to verify the installation of your JDK. You do this by executing one of the JSP examples
provided with the Tomcat server. To execute a sample JSP, start from the page shown in Figure 5.2 and
choose JSP Examples. You should see a screen similar to Figure 5.3.

Figure 5.3: JSP Samples page.
Now choose the JSP sample Date and select the Execute link. If everything was installed properly you
should see a page similar to Figure 5.4, with a different date of course.

Figure 5.4: The JSP Date page.
If you do not see the previous page, then you need to make sure the location of your JDK matches the
location specified, by the JAVA_HOME variable, in the tomcat.bat file.

 - 67 -

Creating the PUREJSP Web Application
With the Java Servlet specification 2.2, the concept of a Web Application was introduced. According to this
specification a "Web Application is a collection of servlets, html pages, classes, and other resources that
can be bundled and run on multiple containers from multiple vendors." In this text you are going to create
the Web Application directory structure, and create a new application entry in the server.xml file.
Because you will be developing your examples as you progress through the book, we will not deploy our
examples into a Web Archive File. If you would like further information about installing Web Applications,
which is beyond the scope of this book, refer to the Java Servlet Specification 2.2 Section 9.

The Directory Structure
The first step in creating the PUREJSP Web Application is creating the directory structure of the
PUREJSP Web Application. Table 5.1 contains the directories you will need to create. Each one of these
directories should be created from the Tomcat <SERVER_ROOT>.
Table 5.1: The PUREJSP Web Application Directories

Directory Description
/purejsp This is the root directory of the PUREJSP Web Application where we

will be installing all of our JSPs and HTML files.
/purejsp/WEB-INF This directory contains all resources related to the application that are

not in the document root of the application. Note that the WEB-INF
directory is not part of the public document tree of the application. No
file contained in this directory can be served directly to a client.

/purejsp/WEB-
INF/classes This directory is where servlet and utility classes are located.

Adding the PUREJSP Web Application
The final step in setting up the PUREJSP Web Application, which is also our final step in setting up the
Tomcat server, is to create a new Web Application entry in the <SERVER_ROOT>/server.xml file. This
is the configuration file for the Tomcat server. To add the new entry, add the following section of text
directly following the example entry:
<Context path="/purejsp" docBase="purejsp"
 defaultSessionTimeOut="30" isWARExpanded="true"
 isWARValidated="false" isInvokerEnabled="true"
 isWorkDirPersistent="false"/>
This entry tells the Tomcat server that we have a new Web Application and that it is located in the
<SERVER_ROOT>/purejsp/ directory with a document base of purejsp/.

Summary
In this chapter you covered the necessary steps involved in installing and configuring the Tomcat server,
including how to add a new Web Application. You should now feel comfortable with what a Web
Application is and how to set up a basic configuration.
In Chapter 6, "Handling JSP Errors," we cover how to handle errors in a JSP with an error page.

Chapter 6: Handling JSP Errors
Overview
Errors can occur in a JSP in two different phases of its life. The first type of error, which occurs during the
initial request, is known as a translation time error. The second type of JSP error occurs during
subsequent requests and is know as a request time error. These errors are discussed in the following
sections.

 - 68 -

JSP Translation Time Errors
The first type of JSP error occurs when a JavaServer Page is first requested and goes through the initial
translation from a JSP source file into a corresponding servlet class file. These errors are usually the result
of compilation failures and are known as translation time errors. They are reported to the requesting client
with an error status code 500 or Server Error and usually contain the reported compilation error.
Translation time errors are handled by the JSP engine.

JSP Request Time Errors
The second type of JSP error occurs during request time. These errors are runtime errors that can occur
in either the body of the JSP page or in some other object that is called from the body of the JSP page.

Request time errors result in an exception being thrown. These exceptions can be caught and
appropriately handled in the body of the calling JSP, which would be the end of the error. Those
exceptions that are not caught result in the forwarding of the client request, including the uncaught
exception, to the error page specified by the offending JSP. The following sections describe, in detail, how
to define and implement JSP error pages.

Creating a JSP Error Page
To create a JSP error page, you need to create a basic JavaServer page and then you need to tell the
JSP engine that the page is an error page. You do this by setting its page attribute isErrorPage to
true. Listing 6.1 contains a sample error page.
Listing 6.1: errorpage.jsp

<html>

<body text="red">

<%@ page isErrorPage="true" %>

<!-- Use the implicit exception object, which holds a reference -->

<!-- to the thrown exception. -->

Error: <%= exception.getMessage() %> has been reported.

</body>

</html>

There are two lines of code you need to look at to understand just how easy it is to create a JSP error
page. The first is the page directive line, which indicates that this JSP is an error page. This code snippet
is
<%@ page isErrorPage="true" %>

 - 69 -

The second line of code designates where the thrown exception is being used. This line is
Error: <%= exception.getMessage() %> has been reported.
You will notice that it uses the implicit exception object that is part of all JSP error pages. The
exception object holds the reference to the unhandled exception that was thrown in the offending JSP.
To get a complete understanding of how the error page works, let's take a look at the servlet code that is
generated from the JSP error page. The following code snippet contains the _jspService() method
generated from Listing 6.1:
public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 Throwable exception =
 (Throwable)request.getAttribute("javax.servlet.jsp.jspException");
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;

 try {

 if (_jspx_inited == false) {

 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 "", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 // begin
 out.write("<html>\r\n\r\n<body text=\"red\">\r\n\r\n");
 // end
 // begin
 out.write("\r\n\r\n<!-- Use the implicit exception object, " +
 out.write("which holds a reference -->\r\n<!-- to the thrown " +
 out.write("exception. -->\r\n\r\nError: ");

 - 70 -

 // end
 // begin [file="D:\\errorpage.jsp";from=(9,10);to=(9,34)]
 out.print(exception.getMessage());
 // end
 // begin
 out.write(" has been reported. \r\n\r\n</body>\r\n</html>\r\n");
 // end
 }
 catch (Exception ex) {

 if (out.getBufferSize() != 0)
 out.clear();
 pageContext.handlePageException(ex);
 }
 finally {

 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
}

Note The generated code included in our examples will differ depending upon the application

server used.
You will notice that the _jspService() method looks much like any other generated JSP, except that it
has the following lines:
Throwable exception =
 (Throwable)request.getAttribute("javax.servlet.jsp.jspException");
These two lines make it possible for the error page to access the implicit exception object. It does this
by getting the exception object from the request, using the request.getAttribute() method with a
key of javax.servlet.jsp.jspException. Now your JSP can do whatever it wants with the received
exception. In the next section, we will examine how the exception object gets placed into the request.

Using a JSP Error Page
Now that you know how to create a JSP error page, let's put one to use. It takes only one additional
attribute, in your page directive, to make your JSP aware of an error page. You simply need to add the
errorPage attribute and set its value equal to the location of your JSP error page. The JSP found in
Listing 6.2 uses the error page we created in the previous section.
Listing 6.2: testerror.jsp

<%@ page errorPage="errorpage.jsp" %>

<%

 if (true) {

 // Just throw an exception

 - 71 -

 throw new Exception("A Pure JSP Exception");

 }

%>

You will notice in this listing that the first line of code sets the errorPage equal to errorpage.jsp,
which is the name of our error page. The rest of our example is just used to throw an exception that will
not be caught. That is all there is to it. Just copy both of these JSPs to the <SERVER_ROOT>/purejsp/
directory and open the test-error.jsp page in your browser. You will see a page similar to Figure 6.1.

Figure 6.1: Output of the testerror.jsp example.
To see how this error is handled in the actual compiled code, let's take a look at the _jspService()
method generated from the testerror.jsp example. The following code snippet contains the generated
_jspService() method:
public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;

 try {

 if (_jspx_inited == false) {

 _jspx_init();
 _jspx_inited = true;

 - 72 -

 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");

 pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 // begin
 out.write("\r\n\r\n");
 // end
 // begin [file="D:\\testerror.jsp";from=(2,2);to=(10,0)]

 if (true) {

 // Just throw an exception
 throw new Exception("A Pure JSP Exception");
 }

 // end
 // begin
 out.write("\r\n");
 // end

 }
 catch (Exception ex) {

 if (out.getBufferSize() != 0)

 out.clear();
 pageContext.handlePageException(ex);
 }
 finally {

 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
}
The first section of code you need to look at is the call to get the PageContext object from the
JspFactory, using the getPageContext() method. This method obtains an instance of an
implementation dependent javax.servlet.jsp.PageContext abstract class for the calling servlet

 - 73 -

and currently pending request and response. You will also notice that one of its parameters is the name
we specified as our error page. The following code snippet shows you the call to getPageContext():
pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);
Now this instance of the PageContext object knows to which page to forward all uncaught errors. And
this is done in the following code snippet:
catch (Exception ex) {

if (out.getBufferSize() != 0)

 out.clear();
 pageContext.handlePageException(ex);
}
You can see that this catch block catches all uncaught exceptions and passes them to the
pageContext.handlePageException() method, which in turn places the exception into the request
and forwards it to the error page referenced during the creation of the PageContext.

Summary
In this chapter, you covered the types of errors that can occur in a JSP. You have also seen how you can
handle and respond to these errors, using a JSP error page.
In Chapter 7, "Using the include Directive," you are going to take a look at some techniques involved in
using the remaining JSP directives.

Chapter 7: Using the include Directive
Overview
This chapter discusses the JSP include directive. We'll talk about how it works and when it is processed.

The include Directive
As we discussed in Chapter 1, "JSP Overview: The Components of a Java Server Page," the JSP
include directive is used to insert text and code into a JSP at translation time. After the initial request is
processed, the data included does not change until the included file is changed and the server is restarted.
The syntax of the include directive is
<%@ include file="relativeURLspec" %>
The file that the file attribute points to can reference a normal text HTML file or a JSP file, which will be
evaluated at translation time.

Note Currently the JSP 1.1 specification does not have a defined method for notifying the JSP

engine that the included file has changed.

Example: A Standard Title Bar
One of the more frequent uses for the include directive is to easily establish a common look and feel for
JSPs. You can do this by creating a standard navigation or title bar in a separate file that will be included
in all of your JSPs. To further explain how this works, let's create our own title bar that includes a logo and
the name of the user that is logged in. Listing 7.1 contains the JSP file we will be including.
Listing 7.1: titlebar.jsp

<table>

 <tr>

 <td>

 - 74 -

 </td>

 <td>

 <%

 // Get the User's Name from the session

 out.println("Hello: " + request.getParameter("user") + "");

 %>

 </td>

 </tr>

</table>

You can see that this is a simple JSP that creates an HTML table with an image and the name of the user
retrieved from the implicit request object. You should copy this file to your <SERVER_ROOT>/purejsp/
directory.

Creating the JSP
Now let's create a JSP that will use the titlebar.jsp. To do this you should create a JSP file with an
include directive referencing the JSP in Listing 7.1. Listing 7.2 contains an example of how you could do
this.
Listing 7.2: welcome.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 <head>

 <title>Welcome to JSP</title>

 </head>

 <body>

 <table width="100%">

 <tr>

 <td>
 <%@ include file="titlebar.jsp" %>
 </td>
 </tr>
 <tr>
 <td>
 <%
 // Print a simple message in the client area.

 - 75 -

 out.println("<center>This is the client area.</center>");
 %>
 </td>
 </tr>
 </table>
 </body>
</html>

There is really only one section of this file that you need to examine. It is the line
<%@ include file="titlebar.jsp" %>
This line simply evaluates the referenced JSP, titlebar.jsp, and embeds the results into the
welcome.jsp. Copy this file and the image file sams.gif to the <SERVER_ROOT>/purejsp/ directory
and then open your browser to the URL
http://localhost:8080/purejsp/welcome.jsp?user=Joe
The resulting Web page should look similar to Figure 7.1.

Figure 7.1: Output of the welcome.jsp example.
As we have in many previous chapters, let's take a look at the generated servlet code to get a better
understanding of exactly what is happening. The following code snippet contains the welcome.jsp's
_jspService() method:
public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;

 try {

 if (_jspx_inited == false) {

 - 76 -

 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 // begin
 out.write("\r\n\r\n<html>\r\n <head>\r\n " +
 "<title>Welcome to JSP</title>\r\n </head>\r\n <body>\r\n " +
 "<table width=\"100%\">\r\n <tr>\r\n <td>\r\n ");
 // end
 // begin
 out.write("<table>\r\n <tr>\r\n <td>\r\n " +
 "\r\n </td>\r\n <td>\r\n ");
 // end
 // begin [file="D:\\titlebar.jsp";from=(6,8);to=(9,6)]

 // Get the User's Name from the session
 out.println("Hello: " + request.getParameter("user") + "");

 // end
 // begin
 out.write("\r\n </td>\r\n </tr>\r\n</table> \r\n\r\n " +
 "</td>\r\n </tr>\r\n <tr>\r\n <td>\r\n ");
 // end
 // begin [file="D:\\welcome.jsp";from=(15,10);to=(18,8)]

 // Print a simple message in the client area.
 out.println("<center>This is the client area.</center>");

 // end
 // begin
 out.write("\r\n </td>\r\n </tr>\r\n </table>\r\n " +
 "</body>\r\n</html>\r\n");
 // end

 - 77 -

 }
 catch (Exception ex) {

 if (out.getBufferSize() != 0)

 out.clear();
 pageContext.handlePageException(ex);
 }
 finally {

 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
}
You can see where the titlebar.jsp file is included by the comment reference:
// begin [file="D:\\titlebar.jsp";from=(6,8);to=(9,6)]
It marks the start of the output generated by the JSP engine during translation. You should also notice that
the resulting servlet code is just like the source generated by any other JSP. It is just embedded directly
into the _jspService() method of the JSP that included it.
To see the difference between translation and request-time JSP processing, try changing the
titlebar.jsp page, while the server is still running, and then reload the welcome.jsp file. You will
notice that your changes do not take effect until you restart the server, because they are processed at
translation time. This is one of the drawbacks of using the include directive. In Chapter 10, "Using JSP
Standard Actions," we will take a look at the standard action <jsp:include>, which overcomes this
limitation by processing the include at request time.

Summary
In this chapter, we covered how the JSP include directive works. We also discussed when the include
directive is processed. At this point you should know how to include a JSP or HTML file using the
include directive and you should also know when included file changes take effect.
In Chapter 8, "JavaServer Pages and Inheritance," we are going to cover how you can extend the
functionality of a JSP using inheritance.

Chapter 8: JavaServer Pages and Inheritance
Overview
Extending a JavaServer page from another servlet or JSP can be a very tricky task. It is also a task that is
not recommended by Sun, because in doing so you restrict the capability of the JSP Engine to provide
specialized superclasses that might improve the quality of a rendered servlet.

Note

Two of the more common reasons to use JSP subclasses are to provide a common look and
feel and also to provide a standard set of utility methods. You might want to investigate using
includes to satisfy the first reason and utility classes to satisfy the latter.

To extend a JSP from a superclass, your superclass and JSP must satisfy certain requirements.

The Superclass
The requirements for your superclass are as follows:

 It must implement the HttpJspPage, if it uses the HTTP protocol, or JspPage, if it does
not.

 All methods from the Servlet interface must be declared final.
 The service() method must invoke the _jspService() method.
 The init() method must invoke the jspInit() method.

 - 78 -

 The destroy() method must invoke the jspDestroy() method.
A sample superclass servlet, which provides two utility methods for getting the username and company
name, can be found in Listing 8.1.
Listing 8.1: PureJSPBase.java

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.HttpJspPage;

import java.io.*;

import java.util.*;

public abstract class PureJSPBase

 extends HttpServlet

 implements HttpJspPage {

 private ServletConfig config;

 //Initialize global variables

 final public void init(ServletConfig config)

 throws ServletException {

 this.config = config;

 jspInit();

 }

 // provide accessor to the ServletConfig Object

 final public ServletConfig getServletConfig() {

 return config;

 }

 // Provide a simple service method that calls the generated

 // _jspService method.

 - 79 -

 final public void service(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 _jspService(request, response);

 }

 // Create an abstract method that will be implemented by the JSP processor

 // in the subclass.

 abstract public void _jspService(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException;

 // Provide a destroy method

 final public void destroy() {

 jspDestroy();

 }

 // provide some utility methods

 public String getUser(HttpServletRequest request) {

 // get the User name from the request

 return (String)request.getParameter("user");

 }

 public String getCompany(HttpServletRequest request) {

 // get the Company name from the request

 return (String)request.getParameter("company");

 - 80 -

 }

 public String getServletInfo() {

 return new String("PureJSPBase");

 }

}

You can see that the PureJSPBase servlet satisfies the requirements for the superclass. It also provides
two utility methods that can be used in the subclass for getting the user's name and company from the
request object. Now any servlet that extends the PureJSPBase has access to these convenient methods.

The JSP Subclass
The requirements for your JSP subclass are as follows:

 It must provide a jspInit() method.
 It must provide a jspDestroy() method.

A sample JSP subclass can be found in Listing 8.2.
Listing 8.2: SubclassJSP.jsp

<%@ page errorPage="errorpage.jsp" extends="PureJSPBase" %>

<%!

 public void jspInit() {

 }

 public void jspDestroy() {

 }

%>

<html>

 <head>

 - 81 -

 <title>Welcome to JSP</title>

 </head>

 <body>

 <%

 out.println("Welcome : " + getUser(request) + "
From : "

 + getCompany(request));

 %>

 </body>

</html>

You can see that the SubclassJSP provides empty jspInit() and jspDestroy() life-cycle methods,
which satisfy the JSP subclass requirements. It also makes calls to its parent's getUser() and
getCompany() methods.
Now compile the PureJSPBase servlet to the <SERVER_ROOT>/purejsp/WEB-INF/classes directory
and move the SubclassJSP.jsp to the <SERVER_ROOT>/purejsp/ directory. You should then open
your browser to
http://localhost:8080/purejsp/SubclassJSP.jsp?user=Bob&company=Sams
You should see a page similar to Figure 8.1.

Figure 8.1: The output of SubclassJSP.jsp.

Summary
In this chapter, you saw how you can subclass JSPs to provide common utility methods. You also looked
at the requirements of both the superclass and the JSP subclass.
In Chapter 9, we are going to cover using the JSP's implicit objects.

Chapter 9: Using the JSP's Implicit Objects
Overview
As a JSP author, you have access to certain objects that are available for use in JSP documents without
being declared first. These objects are parsed by the JSP engine and inserted into the generated servlet
as if you defined them yourself.

 - 82 -

In reality the JSP engine recognizes the implicit object names and knows that they will be declared by, or
passed into, the generated servlet. Here's a example of a code snippet containing a _jspService()
method:
public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;

 try {

 if (_jspx_inited == false) {

 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 // begin
 out.write("\r\n\r\n<html>\r\n <head>\r\n <title>Hello " +
 "JSP</title>\r\n </head>\r\n <body>\r\n ");
 // end
 // begin [file="D:\\hello.jsp";from=(7,6);to=(10,4)]

 // Print a simple message in the client area.
 out.println("<center>Hello!</center>");

 // end
 // begin
 out.write("\r\n </body>\r\n</html>\r\n");

 - 83 -

 // end

 }
 catch (Exception ex) {

 if (out.getBufferSize() != 0)

 out.clear();
 pageContext.handlePageException(ex);
 }
 finally {

 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
}

As we continue with the rest of this chapter, we will be examining exactly where, in the previous code,
each of our implicit objects is declared. We will also look at examples, where applicable, of how you can
use each one of these objects.

Note To run these examples, you will need to copy the JSP file from each of the following listings

to the <SERVER_ROOT>/purejsp/ directory.

request
The implicit object request represents the javax.servlet.http.HttpServletRequest object that
is passed into the generated _jspService() method. The HttpServletRequest interface defines an
object that provides access to HTTP-protocol–specific header information sent by the client. You can see
how it is passed in the following code snippet:
public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
One of the more common uses for the request object is to access request parameters. You can do this
by calling the request object's getParameter() method, which is inherited from its parent
javax.servlet.ServletRequest, with the parameter name you are looking for. It will return a string
with the value matching the named parameter. An example of this can be found in Listing 9.1.
Listing 9.1: UseRequest.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 <head>

 <title>UseRequest</title>

 </head>

 <body>

 <%

 - 84 -

 // Get the User's Name from the request
 out.println("Hello: " + request.getParameter("user") + "");
 %>
 </body>
</html>

You can see that this JSP calls the request.getParameter() method passing in the parameter user.
This looks for the key user in the parameter list and returns the value, if it is found. Enter the following
URL into your browser to see the results from this page:
http://localhost:8080/purejsp/UseRequest.jsp?user=Bob
After loading this URL, you should see a screen similar to Figure 9.1.

response
The JSP implicit object response represents the javax.servlet.http.HttpServletResponse
object, which defines an object that provides the JSP with the capability to manipulate HTTP-protocol–
specific header information and return data to the client. The request object is passed into the generated
_jspService() method. You can see how it is passed in the following code snippet:
public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
The most common use for the response object is writing HTML output back to the client browser. You
would normally call the response.getWriter() method, but the JSP API abstracts you from this by
providing the implicit out object, which will be discussed in a later section of this chapter.

Figure 9.1: Output from UseRequest.jsp.

pageContext
The pageContext object provides access to the namespaces associated with a JSP page. It also
provides accessors to several other JSP implicit objects.
An instance of an implementation-dependent pageContext is created by a JSP implementation class at
the beginning of the generated servlet's _jspService() method. It is created via an implementation-
dependent JspFactory. An example of the pageContext object's creation and its use in the creation of
other implicit objects is shown in the following code snippet:
pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);

application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();

 - 85 -

out = pageContext.getOut();
You can see by examining the previous code snippet that the pageContext is used often in the
generated servlet. However it is not often used directly in a JavaServer Page. The exception to this is in
the creation of custom tags.

session
The implicit session object holds a reference to a javax.servlet.http.HttpSession object. The
HttpSession object is used to store objects in between client requests. It provides an almost state-full
HTTP interactivity. The session object is initialized by a call to the pageContext.getSession()
method in the generated servlet. The code snippet that initializes the session is as follows:
session = pageContext.getSession();
An example of using the implicit session object can be found in Listing 9.2.
Listing 9.2: UseSession.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 <head>

 <title>UseSession</title>

 </head>

 <body>

 <%

 // Try and get the current count from the session
 Integer count = (Integer)session.getAttribute("COUNT");

 // If COUNT is not found, create it and add it to the session
 if (count == null) {

 count = new Integer(1);
 session.setAttribute("COUNT", count);
 }
 else {

 count = new Integer(count.intValue() + 1);
 session.setAttribute("COUNT", count);
 }
 out.println("Hello you have visited this site: "
 + count + " times.");
 %>
 </body>
</html>

You should now move this JSP to the <SERVER_ROOT>/purejsp directory and open your browser to the
following URL:
http://localhost:8080/purejsp/UseSession.jsp
You should see a page similar to Figure 9.2.

 - 86 -

Figure 9.2: Output from UseSession.jsp.

Now go ahead and press your reload button a few times. The count should increment with every reload.

Note You should also note that the session object has session scope; therefore it will not hold the

objects added to it after its expiration.

application
The application object holds a reference to the javax.servlet.ServletContext retrieved from
the servlet configuration. The following code snippet, from the JSP's generated servlet, shows how the
application object is initialized:
pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);

application = pageContext.getServletContext();
You can see that the generated servlet simply gets a reference to the current ServletContext and
stores it in the application object. The application object has application scope, which means that
it is available to all JSPs until the JSP engine is shut down.
The application object is most often used to access environment information. One of the more
common pieces of information accessed by the application object is objects that are stored in the
ServletContext. These objects are stored there so that they will be available the whole time the servlet
engine is running.
The ServletContext is a great place to share objects between JSPs and servlets. In the following
example, we use the application object to store and access our application's specific information. We
will do this by creating a properties file named Chapter9Prop.txt, as follows:
PROP1:VAL1
PROP2:VAL2
PROP3:VAL3
You can see that our property file is a simple file with three name:value pairs. Next, we will create a JSP
that checks the application for a reference to the Properties object, by calling the
application.getAttribute() method with a key that represents the object in the
ServletContext. If we do not find the referenced object, we will create it and store the object in the
ServletContext using the application.setAttribute() method. Now the Properties object is
available to other JSPs and servlets. Listing 9.3 contains this JSP.
Listing 9.3: StoreInApplication.jsp.

<%@ page errorPage="errorpage.jsp" %>

<%@ page import="java.util.Properties, java.util.Enumeration" %>

<html>

 - 87 -

 <head>

 <title>UseApplication</title>

 </head>

 <body>

 <%

 // Check the application for the shared properties
 Properties props =
 (Properties)application.getAttribute("PROPERTIES");

 if (props == null) {

 // If the Properties were not in the application
 // load them and put them in the application
 props = new Properties();
 props.load(new FileInputStream("purejsp/Chapter9Prop.txt"));
 application.setAttribute("PROPERTIES", props);
 }

 %>
 </body>
</html>

Now we need to create a servlet that will use the shared Properties object that is stored in the
ServletContext. Listing 9.4 contains this JSP.
Listing 9.4: GetFromApplication.jsp

<%@ page errorPage="errorpage.jsp" %>

<%@ page import="java.util.Properties, java.util.Enumeration" %>

<html>

 <head>

 <title>Get From Application</title>

 </head>

 <body>

 <%

 // Check the application for the shared properties
 Properties props =
 (Properties)application.getAttribute("PROPERTIES");

 - 88 -

 if (props == null) {

 out.println("Could not get the Properties from the application!");
 }
 else {

 // The properties were found in the application, iterate over them
 Enumeration enum = props.propertyNames();

 while (enum.hasMoreElements()) {

 String name = (String)enum.nextElement();
 out.println("" + name + ":"
 + props.getProperty(name) + "
");
 }
 }

 %>
 </body>
</html>

As you can see, the GetFromApplication.jsp first checks the application object for a reference to
the Properties. If it cannot find the object, it writes a message to the implicit out object stating this. If it
does find the Properties object, then GetFromApplication.jsp iterates over the object, printing out
the name:value pairs.

Testing the JSPs
To test our JSPs, you need to perform the following steps:

1. Copy all the files into the <SERVER_ROOT>/purejsp/ directory.
2. Open your browser to the following URL:

http://localhost:8080/purejsp/StoreInApplication.jsp
 Note When you open your browser during step 2, there will not be any output displayed in

the browser.
3. Then, open your browser to the following URL:

http://localhost:8080/purejsp/GetFromApplication.jsp
When you open your browser in step 3, you should see a page similar to Figure 9.3.

Figure 9.3: Output from GetFromApplication.jsp.

 - 89 -

out
The implicit out object is a very simple object that represents a reference to a JspWriter, which is
derived from a java.io.Writer. You can see how the out object is initialized in the following code
snippet that was pulled from a JSP's generated servlet:
JspWriter out = null;
Object page = this;
String _value = null;

 try {

 if (_jspx_inited == false) {

 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
You have seen many examples of how the out object is used. It is used to write into the output stream
that is delivered back to the client. The most common use is to use the out.println() method, passing
it HTML text that will be displayed in the client's browser. Most of your output will be presented to the client
in out.println() method. Listing 9.5 contains an example of how you use the implicit out object.
Listing 9.5: UseOut.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 <head>

 <title>Use Out</title>

 </head>

 <body>

 <%

 // Print a simple message using the implicit out object.

 out.println("<center>Hello!</center>");

 %>

 - 90 -

 </body>

</html>

Copy this file to the <SERVER_ROOT>purejsp/ directory and then open your browser to the URL
http://localhost:8080/purejsp/UseOut.jsp
You should now see a page similar to Figure 9.4.

Figure 9.4: Output from UseOut.jsp.

config
The implicit config object represents the ServletConfig, which defines a servlet-engine–generated
object that contains configuration information. The configuration information that this servlet will have
access to is the ServletContext object, which describes the context within which the generated servlet
will be running. You can see how the config object is initialized in the following code snippet:
ServletConfig config = null;
JspWriter out = null;
Object page = this;
String _value = null;

try {

 if (_jspx_inited == false) {

 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();

 - 91 -

Most often, you will not need to use the config object, because you will already have access to the
ServletContext through the implicit application object.

page
The page object is just as it sounds, a reference to the current instance of the JSP. It is initialized to the
actual this reference by the generated servlet. The actual code snippet that does this follows:
Object page = this;
You use the page object just as you would a this object, to reference the current instance of your
generated servlet.

exception
The implicit exception object only exists in a defined errorPage. It holds a reference to the uncaught
exception that caused the error page to be invoked. You can find a complete description of the
errorPage mechanism, including use of the implicit exception object in Chapter 6, "Handling JSP
Errors."

Summary
In this chapter, we covered the JSP implicit objects and how they are commonly used. We also talked
about how they were created in the JSP's generated servlet. You should now have a clear understanding
of the implicit objects that are available to you and what they represent.
In Chapter 10, we cover using the JSP's standard actions.

Chapter 10: Using JSP Standard Actions
Overview
The JSP standard actions provide an abstraction that can be used to easily encapsulate common actions.
You have already seen the standard actions specific to a JavaBean in Chapter 3, "JavaBeans and JSP
Concepts." The remaining standard actions are defined and used, where appropriate, in the following
sections.

<jsp:param>
The <jsp:param> action is used to provide tag/value pairs of information, by including them as
subattributes of the <jsp:include>, <jsp:forward>, and the <jsp:plugin> actions. The syntax of
the <jsp:param> action is as follows:
<jsp:param name="paramName" value="paramValue"/>
Table 10.1 contains the attributes and their descriptions for the <jsp:param> action.
Table 10.1: The Attributes for the <jsp:param> Action

Attribute Definition
name This attribute represents the name of the parameter being

referenced.
value This attribute represents the value of the named parameter.

<jsp:include>
The <jsp:include> action provides a mechanism for including additional static and dynamic resources
in the current JSP page. The syntax for this action is as follows:
<jsp:include page="urlSpec" flush="true" />

and
<jsp:include page="urlSpec" flush="true">

 - 92 -

 <jsp:param ... />
</jsp:include>
The first syntax description does a request-time inclusion, whereas the second contains a list of param
subelements that are used to argue the request for the purpose of inclusion. Table 10.2 contains the
attributes and their descriptions for the <jsp:include> action.
Table 10.2: The Attributes for the <jsp:include> Action

Attribute Definition
page This attribute represents the relative URL of the resource to be included.
flush This attribute represents a mandatory Boolean value stating whether or not

the buffer should be flushed. Currently, true is the only valid value for this
attribute.

To further explain how the <jsp:include> works, we are gong to create two JSPs. The first, which will
be the included JSP, will act as the header of the second JSP document. This JSP will search the
request for an employee's name and title. Listing 10.1 contains the source for our first JSP.
Listing 10.1: header.jsp

<%

 // Get the Employee's Name from the request

 out.println("Employee: " +

 request.getParameter("employee"));

 // Get the Employee's Title from the request

 out.println("
Title: " +

 request.getParameter("title"));

%>

Our second JSP will include the header.jsp in the top row of its table and pass it the employee's name
and title, using the <jsp:param> standard action. It will then include some static text indicating the
employee's current statistics. Listing 10.2 contains the source code for our second JSP.
Listing 10.2: EmployeeInfo.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 <head>

 <title>Employee Information</title>

 </head>

 <body>

 - 93 -

 <table width="100%" cellspacing="0">

 <tr>

 <td>

 <jsp:include page="header.jsp" flush="true">

 <jsp:param name="employee" value="Bob"/>

 <jsp:param name="title" value="Engineer"/>

 </jsp:include>

 </td>

 </tr>

 <tr bgcolor="lightgrey">

 <td>

 Years of Employment:

 </td>

 <td>

 7

 </td>

 </tr>

 <tr>

 <td>

 Supervisor:

 </td>

 <td>

 Joe

 </td>

 </tr>

 <tr bgcolor="lightgrey">

 <td>

 Salary:

 </td>

 <td>

 $93,000

 - 94 -

 </td>

 </tr>

 <tr>

 <td>

 Email:

 </td>

 <td>

 bob@someemailaddress.com

 </td>

 </tr>

 </table>

 </body>

</html>

To see the <jsp:include> in action, copy both of these JSPs to the <SERVER_ROOT>/purejsp/
directory and open your browser to the following URL:
http://localhost:8080/purejsp/EmployeeInfo.jsp
You will now see a page similar to Figure 10.1.

Figure 10.1: The output from EmployeeInfo.jsp.
To see how this really works, let's take a look at the generated servlet's _jspService() method, which
is included in the following code snippet:
public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;

 - 95 -

 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;

 try {

 if (_jspx_inited == false) {

 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 "errorpage.jsp", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 // begin
 out.write("\r\n\r\n<html>\r\n <head>\r\n <title>Employee " +
 "Information</title>\r\n </head>\r\n <body>\r\n " +
 "<table width=\"100%\" cellpadding=\"0\">\r\n <tr>\r\n" +
 " <td>\r\n ");
 // end
 // begin [file="C:\\EmployeeInfo.jsp";from=(10,10);to=(13,24)]
 {
 String _jspx_qStr = "";
 out.flush();
 _jspx_qStr = _jspx_qStr + "?employee=" + "Bob";
 _jspx_qStr = _jspx_qStr + "&title=" + "Engineer";
 pageContext.include("header.jsp" + _jspx_qStr);
 }
 // end
 // begin
 out.write("\r\n </td>\r\n </tr>\r\n" +
 " <tr bgcolor=\"lightgrey\">\r\n <td>\r\n " +
 " Years of Employment:\r\n </td>\r\n <td>\r\n " +
 " 7\r\n </td>\r\n </tr>\r\n </table>\r\n " +
 "</body>\r\n</html>\r\n");

 - 96 -

 // end

 }
 catch (Exception ex) {

 if (out.getBufferSize() != 0)

 out.clear();
 pageContext.handlePageException(ex);
 }
 finally {

 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
}
The include is actually taking place in the following code snippet from the _jspService() method
mentioned earlier:
{
 String _jspx_qStr = "";
 out.flush();
 _jspx_qStr = _jspx_qStr + "?employee=" + "Bob";
 _jspx_qStr = _jspx_qStr + "&title=" + "Engineer";
 pageContext.include("header.jsp" + _jspx_qStr);
}
You can see that the String _jspx qStr is created and then our parameter list, which was created
using the <jsp:param> standard action, is appended to it. This is what forms our query string that will be
passed to our included JSP. When the string is ready, it is passed to the pageContext.include()
method with the name of the JSP to include. Now the included JSP can parse the passed-in query string.

As you can see, the generated servlet does not directly contain the output from the included JSP. This is
because the output is included during request-time. This makes it possible for you to make changes to the
included JSP without restarting the JSP engine.
To see this in action, open the included header.jsp and make some changes to it. Now reload the
EmployeeInfo.jsp. Your changes should take effect immediately. This is the difference between the
include directive and the <jsp:include> standard action. To propagate changes using the include
directive, you would have needed to restart the JSP engine. Using the <jsp:include> directive relieves
you of this need.

<jsp:forward>
The <jsp:forward> action enables the JSP engine to dispatch, at runtime, the current request to a
static resource, servlet, or another JSP. The appearance of this action effectively terminates the execution
of the current page.

Note A <jsp:forward> action can contain <jsp:param> subattributes. These subattributes provide

values for parameters in the request to be used for forwarding.
The syntax of the <jsp:forward> action is as follows:
<jsp:forward page="relativeURLspec" />

and
<jsp:forward page=relativeURLspec">
 <jsp:param .../>

 - 97 -

</jsp:forward>
Table 10.3 contains the attribute and its description for the <jsp:forward> action.
Table 10.3: The Attribute for the <jsp:forward> Action

Attribute Definition
page This

attribute
represents
the
relative
URL of
the target
of the
forward.

The <jsp:forward> standard action is commonly used as a conditional in a JSP. In our example, we
are going to get the company id from the request, and, based on it, we will use the <jsp:forward> to go
to the employee's particular company page. Listing 10.3 contains the JSP that does this.
Listing 10.3: UseForward.jsp

<%@ page errorPage="errorpage.jsp" %>

<html>

 <head>

 <title>Use JSP Forward</title>

 </head>

 <body>

 <%

 if ((request.getParameter("companyId")).equals("1")) {

 %>

 <jsp:forward page="SamsHome.jsp">

 <jsp:param name="employee" value="Bob" />

 <jsp:param name="title" value="Senior Engineer" />

 </jsp:forward>

 <%

 }

 else {

 - 98 -

 %>

 <jsp:forward page="MCPHome.jsp">

 <jsp:param name="employee" value="Joe" />

 <jsp:param name="title" value="Senior Engineer" />

 </jsp:forward>

 <%

 }

 %>

 </body>

</html>

As you can see, the UseForward.jsp simply checks the request for the company id and forwards the
user, along with a set of request parameters, to the appropriate company home page. Listings 10.4 and
10.5 contain the source of the company home pages.
Listing 10.4: SamsHome.jsp

<table>

 <tr>

 <td>

 </td>

 <td>

 <%

 // Get the Employee's Name from the request

 out.println("Employee: " +

 request.getParameter("employee"));

 // Get the Employee's Title from the request

 out.println("
Title: " +

 request.getParameter("title"));

 %>

 </td>

 </tr>

 - 99 -

</table>

Listing 10.5: MCPHome.jsp

<table>

 <tr>

 <td>

 </td>

 <td>

 <%

 // Get the Employee's Name from the request

 out.println("Employee: " +

 request.getParameter("employee"));

 // Get the Employee's Title from the request

 out.println("
Title: " +

 request.getParameter("title"));

 %>

 </td>

 </tr>

</table>

After you have copied the JSPs and image files from this chapter's source directory into the
<SERVER_ROOT>/purejsp/ directory, open your browser to the following URL:
http://yourserver:8080/purejsp/UseForward.jsp?companyId=1
You will see an image similar to Figure 10.2.

 - 100 -

Figure 10.2: The output from UseForward.jsp.
You should also go ahead and change the companyId request parameter to equal something other than
1. This will show you how the JSP forwards based on a conditional.
To see how the <jsp:forward> action is implemented, let's take a look at the following code snippet
removed from the generated servlet's _jspService() method:
// begin [file="C:\\UseForward.jsp";from=(7,6);to=(11,8)]

if ((request.getParameter("companyId")).equals("1")) {

// end
 // begin [file="C:\\UseForward.jsp";from=(12,10);to=(15,24)]
 if (true) {

 out.clear();
 String _jspx_qfStr = "";
 _jspx_qfStr = _jspx_qfStr + "?employee=" + "Bob";
 _jspx_qfStr = _jspx_qfStr + "&title=" + "Senior Engineer";
 pageContext.forward("SamsHome.jsp" + _jspx_qfStr);
 return;
 }
 // end
 // begin
 out.write("\r\n ");
 // end
 // begin [file="C:\\UseForward.jsp";from=(16,10);to=(19,8)]
}
else {

 // end
 // begin
 out.write("\r\n ");
 // end
 // begin [file="C:\\UseForward.jsp";from=(20,10);to=(23,24)]
 if (true) {

 - 101 -

 out.clear();
 String _jspx_qfStr = "";
 _jspx_qfStr = _jspx_qfStr + "?employee=" + "Joe";
 _jspx_qfStr = _jspx_qfStr + "&title=" + "Senior Engineer";
 pageContext.forward("MCPHome.jsp" + _jspx_qfStr);
 return;
 }
 // end
 // begin
 out.write("\r\n ");
 // end
 // begin [file="C:\\UseForward.jsp";from=(24,10);to=(26,4)]
}
You can see that there is nothing really complicated about this code snippet. It simply decides which JSP
to forward to, creates the query string, and calls the pageContext.forward() method with the name of
the JSP and the query string.

<jsp:plugin>
The <jsp:plugin> action enables a JSP author to generate HTML that contains the appropriate client-
browser–dependent constructs, for example, OBJECT or EMBED, that will result in the download of the
Java plug-in and subsequent execution of the specified applet or JavaBeans component.
The <jsp:plugin> tag is replaced by either an <object> or <embed> tag, as appropriate for the
requesting user agent, and written to the output stream of the response object. The attributes of the
<jsp:plugin> action provide configuration data for the presentation of the element. The syntax of the
<jsp:plugin> action is as follows:
<jsp:plugin type="pluginType"
 code="classFile"
 codebase="relativeURLpath">

 <jsp:params>

 </jsp:params>
</jsp:plugin>
Table 10.4 contains the attributes and their descriptions for the <jsp:plugin> action.
Table 10.4: The Attributes for the <jsp:plugin> Action

Attribute Definition
type This attribute represents the type of plug-in to include. An example of

this would be an applet.
code This attribute represents the name of the class that will be executed by

the plug-in.
codebase This attribute references the base or relative path of where the code

attribute can be found.

Note

There are additional attributes associated with the <jsp:plugin> standard action, but these
attributes are beyond the scope of this example. You can find further information in the JSP 1.1
specification.

 - 102 -

The <jsp:plugin> attributes indicate the optional parameters that can be passed to the applet or
JavaBeans component.
For our example, we are going to use an applet that contains a TextArea object into which a user can
type some notes. It does nothing else. Listing 10.6 contains the source for our sample applet.
Listing 10.6: Applet1.java

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import javax.swing.*;

public class Applet1 extends JApplet {

 boolean isStandalone = false;

 TextArea textArea1 = new TextArea();

 GridLayout gridLayout1 = new GridLayout(1,2);

 //Get a parameter value

 public String getParameter(String key, String def) {

 return isStandalone ? System.getProperty(key, def) :

 (getParameter(key) != null ? getParameter(key) : def);

 }

 //Construct the applet

 public Applet1() {

 }

 //Initialize the applet

 public void init() {

 try {

 - 103 -

 textArea1.setText("");

 this.setSize(new Dimension(400, 296));

 this.getContentPane().setLayout(gridLayout1);

 this.getContentPane().add(textArea1, null);

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 //Get Applet information

 public String getAppletInfo() {

 return "Applet Information";

 }

 //Get parameter info

 public String[][] getParameterInfo() {

 return null;

 }

 // static initializer for setting look & feel

 static {

 try {

 UIManager.setLookAndFeel(

 UIManager.getSystemLookAndFeelClassName());

 - 104 -

 }

 catch (Exception e) {}

 }

}

The JSP source that includes Applet1 is in Listing 10.7.
Listing 10.7: UseJSPPlugin.jsp

<table>

 <tr>

 <td>

 <jsp:plugin type="applet" code="Applet1.class"

 codebase="/purejsp/TestApplet"

 width="400"

 height="300">

 </jsp:plugin>

 </td>

 </tr>

</table>

The syntax for including an applet plug-in is very similar to including an applet directly in an HTML page.
To see the results of this JSP, copy the compiled Applet1.class and dt.jar files to the
<SERVER_ROOT>/purejsp/TestApplet directory and copy the UseJSPPlugin.jsp file to the
<SERVER_ROOT>/purejsp directory. Now open your browser to the following URL:
http://yourserver:8080/purejsp/UseJSPPlugin.jsp
You will now see an image similar to Figure 10.3.

 - 105 -

Figure 10.3: The output from UseJSPPlugin.jsp.

Summary
In this chapter, we covered the JSP standard actions. You should feel comfortable with how they are
implemented and how you can use them.
In Chapter 11, we cover the scope differences when using JavaBeans in a JSP.

Chapter 11: JSPs and JavaBean Scope
Overview
As we discussed in Chapter 3, "JavaBeans and JSP Concepts," the <jsp:useBean> standard action
provides four different options for the scope attribute: page, request, session, and application. We will
discuss each of these and give an example of how to use them in the following sections.

Note The complete syntax for the <jsp:useBean> action can be found in Chapter 3, "JavaBeans

and JSP Concepts."
For our examples, we will be using the Counter bean from Chapter 3, which acts as a simple Counter. It
has a single int property, count, that holds the current number of times the bean's property has been
accessed. It also contains the appropriate methods for getting and setting this property. Listing 11.1
contains the source for this bean.
Listing 11.1: Counter.java

import java.io.Serializable;

public class Counter implements Serializable{

 // Initialize the bean on creation

 int count = 0;

 // Parameterless Constructor

 public Counter() {

 }

 - 106 -

 // Property Getter

 public int getCount() {

 // Increment the count property, with every request

 count++;

 return this.count;

 }

 // Property Setter

 public void setCount(int count) {

 this.count = count;

 }

}

To use this bean you will need to compile it and move the class file to your
<SERVER_ROOT>/purejsp/WEB-INF/classes/ directory.

page
Beans with page scope are accessible only within the page where they were created. References to an
object with page scope will be released when the response is sent back to the client or the request is
forwarded to another resource. Objects with page scope are stored in the pageContext. A bean with
page scope is most often used for single instance calculations or transactions.
An example of using the Counter bean with page scope can be found in Listing 11.2.
Listing 11.2: PageBean.jsp

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the Counter bean with an id of "counter" -->

<jsp:useBean id="counter" scope="page" class="Counter" />

<html>

 <head>

 <title>Page Bean Example</title>

 </head>

 - 107 -

 <body>

 <H3>Page Bean Example</H3>

 <center>The current count for the counter bean is:

 <%=counter.getCount() %></center>

 </body>

</html>

You can see that this JSP simply creates an instance of the Counter bean with an id of "counter". It
then prints the current value of the beans count property.
To test the page scope example, move the PageBean.jsp to the <SERVER_ROOT>/purejsp/ directory
and open your browser to the following URL:
http://yourserver:8080/purejsp/PageBean.jsp
You should see a page similar to Figure 11.1.

Figure 11.1: The output from PageBean.jsp.
You should also go ahead and reload the page a few times. You will notice that the printed count is always
reset to 1. This is because each instance of the Counter bean is new every time the page is loaded.

request
Beans with request scope are accessible only within pages processing the same request that the object
was created in. References to the object will be released after the request is processed completely. If the
request is forwarded to another resource in the same runtime, then the object is still in scope. References
to objects with request scope are stored in the request object. Objects that have request scope are
most often used when you need to share information between resources that is pertinent for the current
request only.
For our example of a bean with request scope, we create an instance of our Counter bean and forward
it to another resource. Listing 11.3 contains the JSP that creates our bean and forwards it to a second
JSP.
Listing 11.3: RequestBean1.jsp

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the Counter bean with an id of "counter" -->

 - 108 -

<jsp:useBean id="counter" scope="request" class="Counter" />

<html>

 <head>

 <title>Request Bean Example</title>

 </head>

 <body>

 <!-- call the counter's setCount() method -->

 <!-- so that the current value of the property -->

 <!-- count is changed. -->

 <%

 counter.setCount(10);

 %>

 <jsp:forward page="RequestBean2.jsp" />

 </body>

</html>

The only thing you really need to notice about this JSP is the fact that the scope of bean is set to
request, and the counter.setCount() method is called with the value of 10. This is to prove that the
JSP to which the request is forwarded is receiving the same instance of the Counter bean. Listing 11.4
contains the source for the second JSP.
Listing 11.4: RequestBean2.jsp

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the Counter bean with an id of "counter" -->

<jsp:useBean id="counter" scope="request" class="Counter" />

<html>

 <head>

 - 109 -

 <title>Request Bean Example 2</title>

 </head>

 <body>

 <H3>Request Bean Example 2</H3>

 <center>The current count for the counter bean is:

 <%=counter.getCount() %></center>

 </body>

</html>

As you examine the source of our second JSP, you will see that it gets a reference to the Counter bean
from the request, and then prints the current value of the bean's count property. To see how it works,
copy both of these JSPs to the <SERVER_ROOT>/purejsp/ directory and open your browser to the
following URL:
http://yourserver:8080/purejsp/RequestBean1.jsp
You will see a page similar to Figure 11.2.

Figure 11.2: The output from RequestBean1.jsp.
You can reload the page several times, but the result will always be the same. The second JSP will print
the current value of the count property as 11. This is because the instance of the bean only lasts as long
as the request.

session
Beans with session scope are accessible only within pages processing requests that are in the same
session as the one in which the bean was created. It is illegal to define an object with session scope
from within a page whose page directive has an attribute session=false. References to the session
objects are released after their associated sessions expire. Objects with session scope are stored in the
session object associated with the page.
Beans that use session scope are most often used when there is a need to share information between
requests for a single client. A common application using bean scope is a shopping cart, which we cover in
Chapter 13, "JSP and a Shopping Cart." For our example, we use the Counter bean and two almost
identical JSPs. Each of the JSPs creates an instance of our bean and prints out the current value of the
count property. The two JSPs can be found in Listings 11.5 and 11.6, respectively.
Listing 11.5: SessionBean1.jsp

 - 110 -

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the Counter bean with an id of "counter" -->

<jsp:useBean id="counter" scope="session" class="Counter" />

<html>

 <head>

 <title>Session Bean Example 1</title>

 </head>

 <body>

 <H3>Session Bean Example 1</H3>

 <center>The current count for the counter bean is:

 <%=counter.getCount() %></center>

 </body>

</html>

Listing 11.6: SessionBean2.jsp

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the Counter bean with an id of "counter" -->

<jsp:useBean id="counter" scope="session" class="Counter" />

<html>

 <head>

 <title>Session Bean Example 2</title>

 </head>

 <body>

 <H3>Session Bean Example 2</H3>

 <center>The current count for the counter bean is:

 - 111 -

 <%=counter.getCount() %></center>

 </body>

</html>

You can see that the only difference between these two JSPs is the values of the HTML <title> and
<h3> tags.
To see how a session bean works, copy both of these JSPs to the <SERVER_ROOT>/purejsp/
directory and open your browser to the following URL:
http://yourserver:8080/purejsp/SessionBean1.jsp
You should see an image similar to Figure 11.3.

Go ahead and hit your reload button several times. You should see the count increase each time the page
is reloaded. Now use the same browser instance to open the following URL:
http://yourserver:8080/purejsp/SessionBean2.jsp
You will see the count increment from the last count from the first JSP. This is because the Counter bean
is stored in the session of the client. Now open a completely new instance of the browser and you will see
the value of the count property is reset. This is because each instance of a client creates its own instance
of the HttpSession, which is where the Counter bean is stored.

Figure 11.3: The output from SessionBean1.jsp.

application
Beans with application scope are accessible within pages processing requests that are in the same
application space as the page in which they were created. References to the object will be released when
the runtime environment reclaims the ServletContext. More simply put, this means that, until the JSP
engine is restarted, the bean created with application scope will be available. Beans with
application scope are best used when you need to share information between JSPs and servlets for
the life of your application.
To give an example of application scope, we are going to use two JSPs. The first will load the
Counter bean using an id of counter and a scope of application. It will then print out the current
value of the Counter bean, using the Counter.getCount() method. Listing 11.7 contains the source
for our first JSP.
Listing 11.7: ApplicationBean1.jsp

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the Counter bean with an id of "counter" -->

 - 112 -

<jsp:useBean id="counter" scope="application" class="Counter" />

<html>

 <head>

 <title>Application Bean Example 1</title>

 </head>

 <body>

 <H3>Application Bean Example 1</H3>

 <center>The current count for the counter bean is:

 <%=counter.getCount() %></center>

 </body>

</html>

Our second JSP does exactly as the first except that, because both beans have an id of counter and
application scope, it will find the bean and not have to create it. Listing 11.8 contains the source for
our second JSP.
Listing 11.8: ApplicationBean2.jsp

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the Counter bean with an id of "counter" -->

<jsp:useBean id="counter" scope="application" class="Counter" />

<html>

 <head>

 <title>Application Bean Example 2</title>

 </head>

 <body>

 <H3>Application Bean Example 2</H3>

 <center>The current count for the counter bean is:

 <%=counter.getCount() %></center>

 </body>

</html>

 - 113 -

Go ahead and copy both of these JSPs to the <SERVER_ROOT>/purejsp/ directory and open your
browser to the following URL:
http://yourserver:8080/purejsp/ApplicationBean1.jsp
Hit the reload button a few times and watch the count go up. You will see a page similar to Figure 11.4.

Figure 11.4: The output from ApplicationBean1.jsp.

Now open another browser window to the second JSP using the following URL:
http://yourserver:8080/purejsp/ApplicationBean2.jsp
Hit the reload button a few times and watch the count go up. You will see, as each page increments the
other page's instance, that both of these pages share the same instance of the Counter bean. They will
share this instance until the JSP engine is shut down.

Summary
In this chapter, we covered how JSP beans are scoped. You should feel comfortable with the different
types of JSP scope. You should also understand how the life of a JSP bean is determined by its scope.
In Chapter 12, we cover how to integrate JSPs and HTML forms.

Chapter 12: JSP and HTML Forms
Overview
In this chapter we are going to take a look at HTML forms. We are also going to look at how JSPs handle
requests from HTML forms.

What Is an HTML Form?
An HTML form is one of the most common ways to gather information from a Web client. It is made up of
two basic parts: the <form> tag and the <input> tags. Both of these elements are described below.

The <form> Tag
The <form> tag is what defines the form. It tells the HTML browser how to display the form and how the
browser should submit the form. The basic syntax of an HTML <form> tag is listed below:
<form method="GET|POST" action="URL">...</form>
The <form> tag's attributes are described in Table 12.1.
Table 12.1: The Attributes for the <form> Tag

Attribute Definition
method="GET|POST" This attribute determines which request method will be used to

transmit the gathered data. The default method is GET.
action="URL" This attribute defines the target of the form. It can be a CGI

application, Java servlet, or JSP.

 - 114 -

The differences between the GET and POST requests are very important to understand.
The GET appends form data to a URL in the form of a query string. The data sent in the query string is in
the form of tag/value pairs separated by ampersands (&). A sample URL with an appended query string is
listed below:
http://yourserver/search.jsp?keyword1=PureJSP&keyword2=servlets
In this example, our tag/value pairs are listed to the right of the ? character. The ? character is used to
separate the URL from the query string when using a GET request. You should note that the data sent
using a GET request is visible in the URL. The amount of data you can send in the query string is also
limited to 255 bytes.
The POST method passes data in the request headers sent from the client. It can send an unlimited
amount of data in the query string and the query string will not be displayed in the URL.

The <input> Tags
The <input> tags are used to capture form data. A basic form is made up of two <input> types. The
first are just your basic elements, such as text fields and radio buttons. The second is the Submit button,
which actually sends the data to the target URL referenced in the action attribute. The basic syntax of an
<input> tag is listed below:
<input type="text" name="inputname" value="inputvalue">

The equivalent syntax for creating a Submit button is listed below:
<input type="Submit" value="Submit">
The <input> tag's attributes are described in Table 12.2.
Table 12.2: The Attributes for the <input> Tag

Attribute Definition
type="text|submit|etc." This attribute determines which type of input object is being

used.
name="inputname" This attribute represents the tag in the tag/value pair that is

sent in the request.
value="inputvalue" This attribute represents the value in the tag/value pairs sent

in the request.

Using a JSP to Create an HTML Form
Creating an HTML form using a JSP is just like creating a form using any other tool. JSP just gives you the
ability to create form elements dynamically. An example of this would be to create a form to gather a
user's name and shipping address. The dynamic part would be to have a default value for the user's
company name, if the user has already logged in. Listing 12.1 contains a sample JSP that builds this type
of form.
Listing 12.1: CreateForm.jsp

<html>

<head>

 <title>Create A JSP Form</title>

</head>

<body>

 - 115 -

 <form action="/purejsp/RetrieveFormData.jsp" method="post">

 <table align="center" cellspacing="2" cellpadding="2" border="1">

 <tr>

 <td colspan="3">

 Company:
 <%
 String company = request.getParameter("company");
 if (company != null) {
 %>
 <input type="text"
 name="company"
 value="<%=company %>"
 size="40" maxlength="40">
 <%
 }
 else {
 %>
 <input type="text"
 name="company"
 size="40"
 maxlength="40">
 <%
 }
 %>
 </td>
 <tr>
 <td colspan="3">
 Street:
 <input type="text"
 name="street"
 size="43"
 maxlength="43">
 </td>
 </tr>
 <tr>
 <td>
 City:
 <input type="text"
 name="city"
 size="20"
 maxlength="20">
 </td>
 <td>
 State:
 <input type="text"
 name="state"
 size="2"
 maxlength="2">
 </td>
 <td>
 Zip:
 <input type="text"
 name="zip"
 size="5"
 maxlength="5">
 </td>
 </tr>

 - 116 -

 <tr>
 <td>
 <input type="Submit" value="Submit">
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

You can see in Listing 12.1 that the only thing differentiating this HTML form from others you may have
seen is that it contains a JSP scriptlet section that checks for the existence of the user's company name in
the request. If the user name is there, the scriptlet sets the value of the company input to the value
retrieved from the request. To see this in action, copy the JSP to the <SERVER_ROOT>/purejsp/
directory and open your browser to the following URL:
http://yourserver:8080/purejsp/CreateForm.jsp?company=Sams
You will see a page similar to Figure 12.1.

Figure 12.1: The output from CreateForm.jsp.

Retrieving Form Data with a JSP
Now we need to process the data sent from the CreateForm.jsp. To do this we are going to create a
bean that has properties that match the tag/value pairs sent in the request. Listing 12.2 contains the
source for our Company bean.
Listing 12.2: Company.java

/** This bean is used to encapsulate simple

 * company data.

 **/

public class Company {

 private String company = null;

 private String street = null;

 - 117 -

 private String city = null;

 private String state = null;

 private String zip = null;

 // Default Constructor

 public Company() {

 }

 // Public Accessors

 public String getCompany() {

 return company;

 }

 public void setCompany(String value) {

 company = value;

 }

 public String getStreet() {

 return street;

 }

 public void setStreet(String value) {

 street = value;

 }

 public String getCity() {

 - 118 -

 return city;

 }

 public void setCity(String value) {

 city = value;

 }

 public String getState() {

 return state;

 }

 public void setState(String value) {

 state = value;

 }

 public String getZip() {

 return zip;

 }

 public void setZip(String value) {

 zip = value;

 }

}

The source for the JSP used to retrieve the form data is included in Listing 12.3.

 - 119 -

Listing 12.3: RetrieveFormData.jsp

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the Company bean with an id of "company" -->

<jsp:useBean id="company" scope="request" class="Company" />

<!-- Set the values of the company bean to the request values -->

<jsp:setProperty name="company" property="*" />

<html>

 <head>

 <title>Retrieve Form Data</title>

 </head>

 <body>

 <!-- Output the values of the bean retrieved from the request -->

 Company: <%=company.getCompany() %>

 Street: <%=company.getStreet() %>

 City: <%=company.getCity() %>

 State: <%=company.getState() %>

 Zip: <%=company.getZip() %>

 </body>

</html>

You can see that the first thing this JSP does is create an instance of the company bean, with request
scope.
After the bean is created, we set the properties of the bean to the values passed in the request. This is
done by using the <jsp:setProperty> standard action. We tell the standard action that we want to use
the company bean and set the property attribute to an asterisk (*) character. This tells the
<jsp:setProperty> standard action to search the request for parameter names that match the
properties of the company bean. If there are any matches, then the standard action will set the bean
properties to those values.
To see the results of this JSP, copy it to the <SERVER_ROOT>/purejsp/ directory, compile and move
the Company.java.class to the <SERVER_ROOT>/purejsp/WEB-INF/classes, and press the Submit
button on the form created by the CreateForm.jsp. You will see an image similar to Figure 12.2.

 - 120 -

Note You can use the request.getParameter() method to retrieve form data if you do not have

matching parameters.

Figure 12.2: The output from RetrieveFormData.jsp.

Summary
In this chapter, we covered how you can retrieve form data using JSPs. You should now feel comfortable
with retrieving data from forms using either GET or POST requests.
In Chapter 13, we cover how you can incorporate a shopping cart into a JSP.

Chapter 13: JSP and a Shopping Cart
Overview
One of the more common components used in today's electronic commerce applications are shopping
carts. In this chapter, we are going to create a JavaBean that encapsulates a shopping cart, a JSP that
displays the contents of the shopping cart, and a JSP that uses the created shopping cart.

Creating a Shopping Cart
The shopping cart we are creating provides transient storage to hold any number of items selected by the
user. It provides the functionality to add items, remove items, and change the quantity of an item in the
cart. In a normal application you would create an object that would represent a cart item, but for this
example we are just adding the properties of an item. Listing 13.1 contains the source for the shopping
cart.
Listing 13.1: ShoppingCart.java

import java.lang.String;

import java.lang.Integer;

import java.lang.Float;

import java.util.Hashtable;

import java.util.Enumeration;

public class ShoppingCart {

 protected Hashtable items = new Hashtable();

 - 121 -

 public ShoppingCart() {

 }

 /**

 * Add a new item to the shopping cart.

 *

 * attributes

 * itemId - the unique key associated with the item

 * desc - a text description of the item

 * price - the unit price for this item

 * quantity - number of this item to insert into the

 * shopping cart

 */

 public void addItem(String itemId,

 String desc,

 float price,

 int quantity) {

 String[] item = {itemId, desc, Float.toString(price),

 Integer.toString(quantity)};

 if (items.containsKey(itemId)) {

 String[] tmpItem = (String[])items.get(itemId);

 int tmpQuant = Integer.parseInt(tmpItem[3]);

 quantity += tmpQuant;

 tmpItem[3] = Integer.toString(quantity);

 }

 else {

 - 122 -

 items.put(itemId, item);

 }

 }

 /**

 * Remove an item from the shopping cart.

 *

 * attributes

 * itemId - the unique key associated with the item to be

 * removed

 */

 public void removeItem(String itemId) {

 if (items.containsKey(itemId)) {

 items.remove(itemId);

 }

 }

 /**

 * Change the quantity of a specific item in the shopping cart.

 * The item must have previously been added to perform this

 * function.

 *

 * attributes

 * itemId - unique key for the item to be updated

 * quantity - the new quantity to be stored in the shopping

 * cart

 */

 public void updateQuantity(String itemId, int quantity) {

 - 123 -

 if (items.contains(itemId)) {

 String[] tmpItem = (String[])items.get(itemId);

 tmpItem[3] = Integer.toString(quantity);

 }

 }

 /**

 * Get an Enumeration to the list of items in the shopping cart.

 */

 public Enumeration getEnumeration() {

 return items.elements();

 }

 /**

 * Get the total cost of all of the items currently in the

 * shopping cart.

 */

 public float getCost() {

 Enumeration enum = items.elements();

 String[] tmpItem;

 float totalCost = 0.00f;

 while (enum.hasMoreElements()) {

 tmpItem = (String[])enum.nextElement();

 totalCost += (Integer.parseInt(tmpItem[3]) *

 Float.parseFloat(tmpItem[2]));

 - 124 -

 }

 return totalCost;

 }

 /**

 * Get the total number of items currently in the shopping cart.

 */

 public int getNumOfItems() {

 Enumeration enum = items.elements();

 String[] tmpItem;

 int numOfItems = 0;

 while (enum.hasMoreElements()) {

 tmpItem = (String[])enum.nextElement();

 numOfItems += Integer.parseInt(tmpItem[3]);

 }

 return numOfItems;

 }

}

To install this bean, compile it and move the resulting class file to the <SERVER_ROOT>/purejsp/WEB-
INF/classes/ directory.

Integrating the Shopping Cart
Now that we have a shopping cart bean, let's create a JSP that makes use of the cart. The JSP that we
have created to do this is in Listing 13.2.
Listing 13.2: AddToShoppingCart.jsp

<%@ page errorPage="errorpage.jsp" %>

 - 125 -

<!-- Instantiate the ShoppingCart bean with an id of "cart" -->
<jsp:useBean id="cart" scope="session" class="ShoppingCart" />

<html>
 <head>
 <title>DVD Catalog</title>
 </head>
 <body>
 <!-- If there is a new item on the request add it to the cart -->
 <%
 String id = request.getParameter("id");
 if (id != null) {

 String desc = request.getParameter("desc");
 Float price = new Float(request.getParameter("price"));

 cart.addItem(id, desc, price.floatValue(), 1);
 }
 %>
 <!-- Print the current quantity of the ShoppingCart -->
 Shopping Cart Quantity:
 <%=cart.getNumOfItems() %>
 <hr>
 <center><h3>DVD Catalog</h3></center>
 <table border="1" width="300" cellspacing="0"
 cellpadding="2" align="center">
 <tr><th>Description</th><th>Price</th></tr>
<!-- ("123", "First thing added", 123.45f, 4); -->
 <tr>
 <form action="/purejsp/AddToShoppingCart.jsp" method="post">
 <td>Happy Gilmore</td>
 <td>$19.95</td>
 <td><input type="submit" name="Submit" value="Add"></td>
 <input type="hidden" name="id" value="1">
 <input type="hidden" name="desc" value="Happy Gilmore">
 <input type="hidden" name="price" value="19.95">
 </form>
 </tr>
 <tr>
 <form action="/purejsp/AddToShoppingCart.jsp" method="post">
 <td>Wayne's World</td>
 <td>$19.95</td>
 <td><input type="submit" name="Submit" value="Add"></td>
 <input type="hidden" name="id" value="2">
 <input type="hidden" name="desc" value="Wayne's World">
 <input type="hidden" name="price" value="19.95">
 </form>
 </tr>
 <tr>
 <form action="/purejsp/AddToShoppingCart.jsp" method="post">
 <td>Tommy Boy</td>
 <td>$15.95</td>
 <td><input type="submit" name="Submit" value="Add"></td>
 <input type="hidden" name="id" value="3">
 <input type="hidden" name="desc" value="Tommy Boy">
 <input type="hidden" name="price" value="15.95">
 </form>
 </tr>
 <tr>
 <form action="/purejsp/AddToShoppingCart.jsp" method="post">
 <td>Lethal Weapon 4</td>
 <td>$19.95</td>
 <td><input type="submit" name="Submit" value="Add"></td>

 - 126 -

 <input type="hidden" name="id" value="4">
 <input type="hidden" name="desc" value="Lethal Weapon 4">
 <input type="hidden" name="price" value="19.95">
 </form>
 </tr>
 <tr>
 <form action="/purejsp/AddToShoppingCart.jsp" method="post">
 <td>Nutty Professor</td>
 <td>$19.95</td>
 <td><input type="submit" name="Submit" value="Add"></td>
 <input type="hidden" name="id" value="5">
 <input type="hidden" name="desc" value="Nutty Professor">
 <input type="hidden" name="price" value="19.95">
 </form>
 </tr>
 </table>
 </body>
</html>

There are four areas of this JSP on which you need to focus. The first is the line of code that instantiates
the ShoppingCart bean. This is done with the <jsp:useBean> standard action. The bean is created
with an id of cart and has session scope. The following code snippet contains this action:
<jsp:useBean id="cart" scope="session" class="ShoppingCart" />

Note You should notice that the cart object has session scope. This is the logical place for a

shopping cart to be stored. This is because the session is client specific.
The next area you need to examine is the JSP scriptlet section that checks the request for items to add to
the shopping cart. If the scriptlet finds any items in the request, it will add them using the
ShoppingCart.add() method. The code snippet that contains this scriptlet is listed below:
<%
 String id = request.getParameter("id");
 if (id != null) {

 String desc = request.getParameter("desc");
 Float price = new Float(request.getParameter("price"));

 cart.addItem(id, desc, price.floatValue(), 1);
 }
%>
The third section that needs to be looked at is the line that prints the current quantity of the cart object.
The value is printed in the JSP using a JSP expression. The line of code that does this is in the following
code snippet:
Shopping Cart Quantity: <%=cart.getNumOfItems() %>
The final section you need to notice is the form that submits items to be added to the cart. This form
references the JSP that contains it. This makes it possible for the previous scriptlet section to get items
from the request. To see this JSP in action, copy it to the <SERVER_ROOT>/purejsp/ directory and open
your browser to the following URL:
http://yourserver:8080/purejsp/AddToShoppingCart.jsp
You will see a page similar to Figure 13.1.

 - 127 -

Figure 13.1: The output of AddToShoppingCart.jsp.

Now add a few items to the cart. You will notice that for every item you add, the quantity of the cart's
content is incremented.

Creating a Shopping Cart JSP
Now that you have added several items to the ShoppingCart, let's create a JSP that will display the
cart's current contents. This JSP will be executed by clicking on the previous JSP's link Shopping Cart
Quantity. Listing 13.3 contains the source for this JSP.
Listing 13.3: ShoppingCart.jsp

<%@ page errorPage="errorpage.jsp" %>

<%@ page import="java.util.*" %>

<!-- Instantiate the ShoppingCart bean with an id of "cart" -->

<jsp:useBean id="cart" scope="session" class="ShoppingCart" />

<html>

 <head>

 <title>Shopping Cart Contents</title>

 </head>

 <body>

 <center>

 <table width="300" border="1" cellspacing="0"

 cellpadding="2" border="0">

 <caption>Shopping Cart Contents</caption>

 <tr>

 - 128 -

 <th>Description</th>

 <th>Price</th>

 <th>Quantity</th>

 </tr>

 <%
 Enumeration enum = cart.getEnumeration();
 String[] tmpItem;
 // Iterate over the cart
 while (enum.hasMoreElements()) {

 tmpItem = (String[])enum.nextElement();
 %>
 <tr>
 <td><%=tmpItem[1] %></td>
 <td align="center">$<%=tmpItem[2] %></td>
 <td align="center"><%=tmpItem[3] %></td>
 </tr>
 <%
 }
 %>
 </table>
 </center>
 Back to Catalog
 </body>
</html>

As you are looking over this JSP, you will notice that a ShoppingCart object is created, or found in the
session if it already exists, with an id of cart. The JSP then gets an Enumeration containing the
current items in the cart and prints them to an HTML table. That is all there is to it. To see how the
ShoppingCart.jsp works, copy it to the <SERVER_ROOT>/purejsp/ directory. After you have used
the previous JSP to add items to the cart, click on the Shopping Cart Quantity Link. You will see a page
similar to Figure 13.2.

Figure 13.2: The output of ShoppingCart.jsp.

Summary
In this chapter, we covered how to create and use a shopping cart using JSPs.
In Chapter 14, we cover how you can incorporate a JDBC connection pool into a JSP.

 - 129 -

Chapter 14: JSP and a JDBC Connection Pool Bean
Overview
In this chapter, we are going to remedy the inefficiencies that we encountered in Chapter 4, "JDBC and
JSP Concepts." Instead of opening a connection to the database with every request, as we did in Chapter
4, we are going to create a pool of connections to the database. This will give us access to a collection of
already opened database connections, which will reduce the time it takes to service a request and let us
service n number of requests at once.

Using a JDBC Connection Pool
There are two classes that we must define in order to create a connection pool: a pooled connection and
the connection pool itself. These objects are described in the following sections.

A Pooled JDBC Connection
The PooledConnection object simply wraps a JDBC Connection object in a class that holds the
Connection and a flag that determines if the Connection is in use or not. This object is shown in
Listing 14.1.
Listing 14.1: PooledConnection.java

package com.purejsp.connectionpool;

import java.sql.*;

public class PooledConnection {

 // Real JDBC Connection

 private Connection connection = null;

 // boolean flag used to determine if connection is in use

 private boolean inuse = false;

 // Constructor that takes the passed in JDBC Connection

 // and stores it in the connection attribute.

 public PooledConnection(Connection value) {

 if (value != null) {

 connection = value;

 }

 - 130 -

 }

 // Returns a reference to the JDBC Connection

 public Connection getConnection() {

 // get the JDBC Connection

 return connection;

 }

 // Set the status of the PooledConnection.

 public void setInUse(boolean value) {

 inuse = value;

 }

 // Returns the current status of the PooledConnection.

 public boolean inUse() {

 return inuse;

 }

 // Close the real JDBC Connection

 public void close() {

 try {

 connection.close();

 }

 catch (SQLException sqle) {

 System.err.println(sqle.getMessage());

 - 131 -

 }

 }

}

A JDBC Connection Pool
To make use of our pooled connections, we need a ConnectionPool object to manage them. The
requirements for our ConnectionPool object are

1. It must hold n number of open connections.
2. It must be able to determine when a connection is in use.
3. If n+1 connections are requested, it must create a new connection and add it to the pool.
4. When we close the pool, all connections must be released.

Now that we know what we want, let's look at what we came up with. The source for our
ConnectionPool object is in Listing 14.2.
Listing 14.2: ConnectionPool.java

package com.purejsp.connectionpool;

import java.sql.*;

import java.util.*;

public class ConnectionPool {

 // JDBC Driver Name

 private String driver = null;

 // URL of database

 private String url = null;

 // Initial number of connections.

 private int size = 0;

 // Username

 private String username = new String("");

 // Password

 private String password = new String("");

 // Vector of JDBC Connections

 private Vector pool = null;

 - 132 -

 public ConnectionPool() {

 }

 // Set the value of the JDBC Driver

 public void setDriver(String value) {

 if (value != null) {

 driver = value;

 }

 }

 // Get the value of the JDBC Driver

 public String getDriver() {

 return driver;

 }

 // Set the URL Pointing to the Datasource

 public void setURL(String value) {

 if (value != null) {

 url = value;

 }

 }

 // Get the URL Pointing to the Datasource

 public String getURL() {

 - 133 -

 return url;

 }

 // Set the initial number of connections

 public void setSize(int value) {

 if (value > 1) {

 size = value;

 }

 }

 // Get the initial number of connections

 public int getSize() {

 return size;

 }

 // Set the username

 public void setUsername(String value) {

 if (value != null) {

 username = value;

 }

 }

 // Get the username

 public String getUserName() {

 - 134 -

 return username;

 }

 // Set the password

 public void setPassword(String value) {

 if (value != null) {

 password = value;

 }

 }

 // Get the password

 public String getPassword() {

 return password;

 }

 // Creates and returns a connection

 private Connection createConnection() throws Exception {

 Connection con = null;

 // Create a Connection

 con = DriverManager.getConnection(url,

 username, password);

 return con;

 }

 // Initialize the pool

 - 135 -

 public synchronized void initializePool() throws Exception {

 // Check our initial values

 if (driver == null) {

 throw new Exception("No Driver Name Specified!");

 }

 if (url == null) {

 throw new Exception("No URL Specified!");

 }

 if (size < 1) {

 throw new Exception("Pool size is less than 1!");

 }

 // Create the Connections

 try {

 // Load the Driver class file

 Class.forName(driver);

 // Create Connections based on the size member

 for (int x = 0; x < size; x++) {

 Connection con = createConnection();

 if (con != null) {

 // Create a PooledConnection to encapsulate the

 // real JDBC Connection

 - 136 -

 PooledConnection pcon = new PooledConnection(con);

 // Add the Connection to the pool.

 addConnection(pcon);

 }

 }

 }

 catch (Exception e) {

 System.err.println(e.getMessage());

 throw new Exception(e.getMessage());

 }

 }

 // Adds the PooledConnection to the pool

 private void addConnection(PooledConnection value) {

 // If the pool is null, create a new vector

 // with the initial size of "size"

 if (pool == null) {

 pool = new Vector(size);

 }

 // Add the PooledConnection Object to the vector

 pool.addElement(value);

 }

 public synchronized void releaseConnection(Connection con) {

 // find the PooledConnection Object

 for (int x = 0; x < pool.size(); x++) {

 - 137 -

 PooledConnection pcon =

 (PooledConnection)pool.elementAt(x);

 // Check for correct Connection

 if (pcon.getConnection() == con) {

 System.err.println("Releasing Connection " + x);

 // Set its inuse attribute to false, which

 // releases it for use

 pcon.setInUse(false);

 break;

 }

 }

 }

 // Find an available connection

 public synchronized Connection getConnection()

 throws Exception {

 PooledConnection pcon = null;

 // find a connection not in use

 for (int x = 0; x < pool.size(); x++) {

 pcon = (PooledConnection)pool.elementAt(x);

 // Check to see if the Connection is in use

 if (pcon.inUse() == false) {

 // Mark it as in use

 pcon.setInUse(true);

 // return the JDBC Connection stored in the

 - 138 -

 // PooledConnection object

 return pcon.getConnection();

 }

 }

 // Could not find a free connection,

 // create and add a new one

 try {

 // Create a new JDBC Connection

 Connection con = createConnection();

 // Create a new PooledConnection, passing it the JDBC

 // Connection

 pcon = new PooledConnection(con);

 // Mark the connection as in use

 pcon.setInUse(true);

 // Add the new PooledConnection object to the pool

 pool.addElement(pcon);

 }

 catch (Exception e) {

 System.err.println(e.getMessage());

 throw new Exception(e.getMessage());

 }

 // return the new Connection

 return pcon.getConnection();

 }

 // When shutting down the pool, you need to first empty it.

 public synchronized void emptyPool() {

 - 139 -

 // Iterate over the entire pool closing the

 // JDBC Connections.

 for (int x = 0; x < pool.size(); x++) {

 System.err.println("Closing JDBC Connection " + x);

 PooledConnection pcon =

 (PooledConnection)pool.elementAt(x);

 // If the PooledConnection is not in use, close it

 if (pcon.inUse() == false) {

 pcon.close();

 }

 else {

 // If it is still in use, sleep for 30 seconds and

 // force close.

 try {

 java.lang.Thread.sleep(30000);

 pcon.close();

 }

 catch (InterruptedException ie) {

 System.err.println(ie.getMessage());

 }

 }

 }

 }

}

 - 140 -

Using the Connection Pool in a JSP
The best way see how the ConnectionPool works is to examine what it does while you learn how to use
it. To do this we are going to create a JSP that lists the current contents of Chapter 4's titles table. We
will use the moviecatalog.mdb including its ODBC settings. Listing 14.3 contains the source for our
JSP.
Listing 14.3: TitlesList.jsp

<html>

 <body>

<%@ page errorPage="errorpage.jsp" %>

<%@ page import="java.util.*" %>

<%@ page import="java.sql.*" %>

<!-- Instantiate the ConnectionPool bean with an id of "pool" -->
<jsp:useBean id="pool"
 scope="application"
 class="com.purejsp.connectionpool.ConnectionPool" />

<%

 Connection con = null;

 try {

 // The pool is not initialized
 if (pool.getDriver() == null) {

 // initialize the pool
 pool.setDriver("sun.jdbc.odbc.JdbcOdbcDriver");
 pool.setURL("jdbc:odbc:Movie Catalog");
 pool.setSize(5);
 pool.initializePool();
 }

 // Get a connection from the ConnectionPool
 con = pool.getConnection();

 // Create the statement
 Statement statement = con.createStatement();

 // Use the created statement to SELECT the DATA
 // FROM the Titles Table.
 ResultSet rs = statement.executeQuery("SELECT * " +
 "FROM Titles");

 // Iterate over the ResultSet
 %>
 <!-- Add an HTML table to format the results -->
 <center>
 <table border="1" cellspacing="0" cellpadding="2"width="500">

 - 141 -

 <tr>
 <th>Title</th><th>Rating</th><th>Price</th><th>Quantity</th>
 <%

 while (rs.next()) {

 // get the title_name, which is a String
 out.println("<tr>\n<td>" +
 rs.getString("title_name") + "</td>");

 // get the rating
 out.println("<td align=\"center\">" +
 rs.getString("rating") + "</td>");

 // get the price
 out.println("<td align=\"center\">" +
 rs.getString("price") + "</td>");

 // get the quantity
 out.println("<td align=\"center\">" +
 rs.getString("quantity") + "</td>\n</tr>");
 }
 // Close the ResultSet
 rs.close();
 out.println("</table></center>");
 }
 catch (IOException ioe) {

 out.println(ioe.getMessage());
 }
 catch (SQLException sqle) {

 out.println(sqle.getMessage());
 }
 catch (ClassNotFoundException cnfe) {

 out.println(cnfe.getMessage());
 }
 catch (Exception e) {

 out.println(e.getMessage());
 }
 finally {

 try {

 if (con != null) {

 // release the connection no matter what
 pool.releaseConnection(con);
 }
 }
 catch (Exception e) {

 out.println(e.getMessage());
 }
 }
%>
 </body>
</html>

 - 142 -

There are four sections of this JSP that need to be examined in order to understand how the
ConnectionPool works. The first section is included in the following code snippet:
<!-- Instantiate the ConnectionPool bean with an id of "pool" -->
<jsp:useBean id="pool"
 scope="application"
 class="com.purejsp.connectionpool.ConnectionPool" />
This section of code tries to find an instance of a ConnectionPool with application scope and an id
of pool. If it cannot find an instance of the pool, it will create one. This bean uses application scope,
because the application beans can be accessed by any JSP until the JSP engine is shut down.
The next section of code to be studied is contained in the following code snippet:
// The pool is not initialized
if (pool.getDriver() == null) {

 // initialize the pool
 pool.setDriver("sun.jdbc.odbc.JdbcOdbcDriver");
 pool.setURL("jdbc:odbc:Movie Catalog");
 pool.setSize(5);
 pool.initializePool();
}
In this code snippet we are checking to see if the pool has been initialized. If it has not, then we set the
appropriate properties to initialize the pool.

The third section of code to be looked at is
// Get a connection from the ConnectionPool
con = pool.getConnection();
This section gets a normal JDBC Connection object from the pool. At this point the JSP can use this
connection just like any other.
The final section to be examined is
finally {

 try {

 if (con != null) {

 // release the connection no matter what
 pool.releaseConnection(con);
 }
 }
 catch (Exception e) {

 out.println(e.getMessage());
 }
}
This final section is used to put our connection back into the ConnectionPool for further use. The
connection is released by calling the pool.releaseConnection() method with the Connection
object. This method call is placed in the finally block to guarantee its execution.

 - 143 -

To see how the ConnectionPool improves performance, compile the ConnectionPool and
PooledConnection objects and move them to the <SERVER_ROOT>/purejsp/WEB-
INF/classes/com/purejsp/connectionpool/ directory. Then move the
JDBCPooledExample.jsp to the <SERVER_ROOT>/purejsp/ directory and open your browser to the
following URL:
http://yourserver:8080/purejsp/JDBCExample.jsp
You will now see a page similar to Figure 14.1.

Figure 14.1: Output of the JDBCPooledExample.jsp.

Summary
In this chapter, we covered how to use a JDBC connection pool in a JSP. We also covered how to share
the pool with other JSPs, by creating it with a scope of application.
In Chapter 15, we cover how you can combine XML and JSPs.

Chapter 15: JSP and XML
Overview
The Extensible Markup Language, or XML, is a meta language for creating markup languages used to
describe structured data. XML is a self-describing language, composed of tags and values. It is often used
to describe objects that are passed in messages between applications. An example of a simple XML
document is included in Listing 15.1.
Listing 15.1: item.xml

<?xml version="1.0"?>

<ITEM>

 <ID>33445</ID>

 <DESCRIPTION>Austin Powers The International Man of Mystery</DESCRIPTION>

 <PRICE>19.95</PRICE>

 <QUANTITY>56</QUANTITY>

</ITEM>

 - 144 -

The first line of this snippet describes a processing instruction which states that this XML document is
based on version 1 of the XML specification. Processing instructions begin with a less-than sign and a
question mark (<?) and end with a question mark and a greater than sign (?>).
The rest of this document describes an ITEM object with four attributes: ID, DESCRIPTION, PRICE, and
QUANTITY. Each of these attributes is contained in an open <TAG> and closed </TAG> pair. You should
notice how the hierarchy of the object is described in a container-like fashion, wherein the attributes of the
ITEM are between the ITEM's open and closing tags. This shows the parent/child relationship of the ITEM
object. All XML documents can be viewed as navigable tree structures. Figure 15.1 shows the standard
structure of our XML document.

Figure 15.1: The XML document tree structure.

While this is hardly a complete definition of XML, which is well beyond the scope of this book, it is
complete enough to show how XML and JSP can be used together.

XML and Java
Now that you understand XML basics, let's take a look at how we can use XML and Java together. There
have been many Java parsers developed to interact with XML documents. The three most common have
been developed by Sun Microsystems, IBM, and Microsoft. For our example, we will be using Sun's Java
API for XML parsing, which can be downloaded from the following URL:
http://java.sun.com/xml/download.html
Follow the installation instructions for your platform, including adding the jaxp.jar and the parser.jar
files to your classpath.

Sun's API is composed of two core components, the Document Object Model (DOM) and the Simple API
for XML (SAX API). The DOM is a tree-based API, and the SAX is an event-based API. For our examples,
we will be using the SAX API.

The SAX API
As we stated earlier, the SAX API is an event-based API. This means that, as the parser parses the XML
document, it triggers certain events based upon encountered elements of the document. To see exactly
how this works, let's take a look at Listing 15.2.
Listing 15.2: XMLTest.java

import java.io.*;

import java.util.Hashtable;

import java.util.Enumeration;

import org.w3c.dom.*;

 - 145 -

import org.xml.sax.*;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

public class XMLTest {

 public static void main (String argv []) throws IOException {

 // Check for the appropriate usage

 if (argv.length != 1) {

 System.err.println ("USAGE: java XMLTest filename");

 System.exit(1);

 }

 try {

 // Get the path to the file

 String xmlResource = "file:" +

 new File(argv[0]).getAbsolutePath();

 Parser parser;
 // Get an instance of the SAXParserFactory
 SAXParserFactory spf = SAXParserFactory.newInstance();
 // Get a SAXParser instance from the factory
 SAXParser sp = spf.newSAXParser();

 // Create an instance of our HandlerBase
 SAXHandler handler = new SAXHandler();

 // Set the Document handler to call our SAXHandler when
 // SAX event occurs while parsing our XMLResource
 sp.parse(xmlResource, handler);
 // After the resource has been parsed get the resulting table
 Hashtable cfgTable = handler.getTable();

 // Print the config settings that we are interested in.
 System.out.println("ID == " +
 (String)cfgTable.get(new String("ID")));
 System.out.println("DESCRIPTION == " +
 (String)cfgTable.get(new String("DESCRIPTION")));
 System.out.println("PRICE == " +
 (String)cfgTable.get(new String("PRICE")));
 System.out.println("QUANTITY == " +

 - 146 -

 (String)cfgTable.get(new String("QUANTITY")));
 }
 catch (Exception e) {

 e.printStackTrace();
 }
 System.exit(0);
 }
}

As you look over this document, you can see that its main function is to take an XML file from the
command line, parse it, and print out the elements that we are looking for. The first thing you should notice
is the following section:
Parser parser;
// Get an instance of the SAXParserFactory
SAXParserFactory spf = SAXParserFactory.newInstance();
// Get a SAXParser instance from the factory
SAXParser sp = spf.newSAXParser();
In this section, we are creating a reference to a Parser that will be used to actually parse the XML
document. To do this we use the static factory method SAXParserFactory.newInstance(), which
obtains a new instance of a SAXParserFactory. Once we have an instance of a SAXParserFactory,
we create a new SAXParser, by calling the SAXParserFactory.newSAXParser() method. The
SAXParser defines the API that wraps an org.xml.sax.Parser implementation class. By using this
class an application can parse content using the SAX API.
The next section we need to examine is
// Create an instance of our HandlerBase
SAXHandler handler = new SAXHandler();
This section of code creates an instance of our event handler SAXHandler. To capture events invoked by
the parser, you need to either create a class that implements the org.xml.sax.DocumentHandler
interface or extend the class org.xml.sax.HandlerBase, which implements default handlers defined
by the DocumentHandler interface. For our example, we have extended HandlerBase so we only have
to implement the methods we are interested in handling. This is much like the event handlers of the AWT.

Once we have an instance of our event handler, we can start the parser. The snippet for this is
// Set the Document handler to call our SAXHandler when
// SAX event occurs while parsing our XMLResource
sp.parse(xmlResource, handler);
The SAXParser.parse() method takes an InputSource that contains an XML stream and a reference
to our handler. As the parser parses our XML document, it will trigger events that will be handled by our
SAXHandler, which can be found in Listing 15.3.
Listing 15.3: SAXHandler.java

import java.io.*;

import java.util.Hashtable;

import org.xml.sax.*;

 - 147 -

public class SAXHandler extends HandlerBase {

 private Hashtable table = new Hashtable();

 private String currentElement = null;

 private String currentValue = null;

 // Simple Accessor for the Hashtable of parsed values

 public void setTable(Hashtable table) {

 this.table = table;

 }

 // Simple Accessor for the Hashtable of parsed values

 public Hashtable getTable() {

 return table;

 }

 // Called when a new element is encountered
 public void startElement(String tag, AttributeList attrs)
 throws SAXException {

 // hold onto the new element tag, that will be placed in
 // our Hashtable when matching character data is encountered.
 currentElement = tag;
 }

 // Called when character data is found inside an element
 public void characters(char[] ch, int start, int length)
 throws SAXException {

 // create a String containing the characters
 // found in the element
 currentValue = new String(ch, start, length);
 }

 // Called when the end of element is encountered
 public void endElement(String name) throws SAXException {

 // Make sure we have a matching closing element
 if (currentElement.equals(name)) {

 // Put the element/value pair into the Hashtable
 table.put(currentElement, currentValue);
 }

 - 148 -

 }
}

As you look over our handler, you will notice that there are only five methods, two of which are only
accessors to a Hashtable. The other three methods represent the events we are interested in
responding to. Each of these methods will be discussed in the following sections. The first method we
have overridden is startElement(), which is shown here:
// Called when a new element is encountered
public void startElement(String tag, AttributeList attrs)
 throws SAXException {

 // hold onto the new element tag, that will be placed in
 // our Hashtable when matching character data is encountered.
 currentElement = tag;
}
This method is called whenever the parser encounters a new element in the XML document. A new
element would be a starting tag similar to <ID>. When our overridden method is called, we simply hold
onto the passed-in tag representing the element name.
The next method we override is the characters() method. Our overridden method is shown here:
// Called when character data is found inside an element
public void characters(char[] ch, int start, int length)
 throws SAXException {

 // create a String containing the characters
 // found in the element
 currentValue = new String(ch, start, length);
}
This method is invoked when the parser encounters character data inside an element. An example of this
would be the value 33445 found in the element <ID>33445</ID>. When our overridden method is
called, we create a String from the character array and hold onto the String for later use.
The last method we override from the HandlerBase class is the endElement() method, which is
included in the following code snippet:
// Called when the end of element is encountered
public void endElement(String name) throws SAXException {

 // Make sure we have a matching closing element
 if (currentElement.equals(name)) {

 // Put the element/value pair into the Hashtable
 table.put(currentElement, currentValue);
 }
}
The endElement() method is the final event handler that we are concerned with. It is called whenever
the end of an element is encountered. If we use the same example from the startElement() method,
then endElement() would be invoked when the </ID> tag was encountered. Our overridden
endElement() method takes the passed-in name and compares it with the current element being
processed. If they match, then the endElement() method puts the element and its character data into
the Hashtable.

 - 149 -

Now that you understand what happens as each event is triggered, we should get back to our XMLTest
application. The remainder of our application is listed in the following code snippet:
// After the resource has been parsed get the resulting table
Hashtable cfgTable = handler.getTable();

// Print the config settings that we are interested in.
System.out.println("ID == " +
 (String)cfgTable.get(new String("ID")));
System.out.println("DESCRIPTION == " +
 (String)cfgTable.get(new String("DESCRIPTION")));
System.out.println("PRICE == " +
 (String)cfgTable.get(new String("PRICE")));
System.out.println("QUANTITY == " +
 (String)cfgTable.get(new String("QUANTITY")));
As you can see after the parser is finished parsing, the application calls our handler's getTable()
method. This method returns a Hashtable containing the elements and their text data that was parsed
from the XML file. The final steps we perform are just printing the elements we are interested in from the
parsed file. To see this in action, compile and build the handler and application and then execute the
application with the XML file we described earlier. Your command line should be similar to the following:
java XMLTest item.xml

The output should look similar to the following:
ID == 33445
DESCRIPTION == Austin Powers The International Man of Mystery
PRICE == 19.95
QUANTITY == 56

Using XML in a JSP
Now let's take the previous example and incorporate it into a JSP. Listing 15.4 contains our JSP example.
Listing 15.4: XMLExample.jsp

<html>

<head>

<title>JSP XML Example </title>

</head>

<body>

<%@ page import="java.io.*" %>

<%@ page import="java.util.Hashtable" %>

<%@ page import="org.w3c.dom.*" %>

<%@ page import="org.xml.sax.*" %>

 - 150 -

<%@ page import="javax.xml.parsers.SAXParserFactory" %>

<%@ page import="javax.xml.parsers.SAXParser" %>

<%@ page import="SAXHandler" %>

<%

 // Get the path to the file

 File file = new File("purejsp/item.xml");

 FileReader reader = new FileReader(file);

 Parser parser;

 // Get an instance of the SAXParserFactory

 SAXParserFactory spf = SAXParserFactory.newInstance();

 // Get a SAXParser instance from the factory

 SAXParser sp = spf.newSAXParser();

 // Create an instance of our HandlerBase

 SAXHandler handler = new SAXHandler();

 // Set the Document handler to call our SAXHandler when

 // SAX event occurs while parsing our XMLResource

 sp.parse(new InputSource(reader), handler);

 // After the resource has been parsed get the resulting table

 Hashtable cfgTable = handler.getTable();

%>

 <table align="center" width="600">

 <caption>XML Item</caption>

<%

 // Print the config settings that we are interested in.

 out.println("<tr><td align=\"left\">ID</td>" +

 - 151 -

 "<td align=\"center\">" +

 (String)cfgTable.get(new String("ID")) + "</td></tr>");

 out.println("<tr><td align=\"left\">DESCRIPTION</td>" +

 "<td align=\"center\">" +

 (String)cfgTable.get(new String("DESCRIPTION")) + "</td></tr>");

 out.println("<tr><td align=\"left\">PRICE</td>" +

 "<td align=\"center\">" +

 (String)cfgTable.get(new String("PRICE")) + "</td></tr>");

 System.out.println("<tr><td align=\"left\">QUANTITY</td>" +

 "<td align=\"center\">" +

 (String)cfgTable.get(new String("QUANTITY")) + "</td></tr>");

%>

 </table>

</body>

</html>

As you can see, there is really very little difference in the application code and the JSP code. The only
noticeable differences are the way we load the XMLResource and the way we output the results. To see
this JSP run, you will need to copy the SAXHandler class file to the <SERVER_ROOT>/purejsp/WEB-
INF/classes/ directory, and the item.xml and the XMLExample.jsp to the
<SERVER_ROOT>purejsp/ directory. Then load the following URL into your browser:
http://yourserver:8080/purejsp/XMLExample.jsp
You should see a page similar to Figure 15.2.

Figure 15.2: Output from XMLExample.jsp.

Summary
In this chapter, we covered the basics of XML. We covered how to use Sun's SAX parser. We also look at
an example of how you would incorporate XML and JSPs.

 - 152 -

In Chapter 16, "JSP Communication with Servlets," you learn how you can use JSPs and servlets using
the Model-View-Controller design pattern.

Chapter 16: JSP Communication with Servlets
Overview
In this chapter we are going to discuss how you can incorporate servlets and JSPs using the Model-View-
Controller design pattern (MVC). The MVC originated from Smalltalk and was used to design user
interfaces, wherein the application was made up of three classes: a Model, a View, and a Controller. Each
of these classes is defined in Table 16.1.
Table 16.1: The Classes of the MVC

Class Definition

Model The Model represents the data or application object. It is what is being
manipulated and presented to the user.

View The View is the screen representation of the Model. It is the object that
presents the current state of the Model.

Controller The Controller defines the way the user interface reacts to the user's
input. The Controller is the object that manipulates the Model.

The major benefit of using the MVC design pattern is that it separates the Views and Models. This makes
it possible to create or change Views without having to change the Model. It also allows a Model to be
represented by multiple Views.

A Servlet-Only Application Model
While servlets are a very sound technology and are excellent for server-side processing, they do have
some drawbacks when used alone. Two of the most common of these drawbacks are

 Servlets require an advanced level of Java understanding that HTML programmers usually
do not have.

 Servlets generally require recompilation in order to change the client presentation layer.

If we consider these servlet drawbacks, we can determine that one of the greatest strengths of servlets is
their server-side processing capability.

A JSP-Only Solution
JavaServer Pages are also a very solid technology. Because JSPs are an extension of servlets, you can
do just about anything with a JSP that you can with a servlet. As we have been discussing throughout this
text, one of the JSP's greatest strengths is its capability to separate content from presentation. The main
drawback with a JSP-only application model is that, as your application becomes more complicated, so
does your scriptlet code. This results in confusing and difficult-to-maintain JSPs. If you plan on letting your
HTML programmers maintain your JSPs, which is very common, then they are going to have to have a
pretty good understanding of Java. This results in a very unclear definition of the programmer's role. It also
calls for a very skilled programmer.

A Server-Side Implementation of the MVC
The real power of JSPs and servlets come into being when they are used together. In this section, we
define a server-side implementation of the MVC, where the Model is a JavaBean, a shopping cart, that
represents the data being transmitted or received. The Controller is a servlet that manipulates or transmits
data, and the View is a JSP that presents the results of the performed transaction. Figure 16.1 models the
steps involved in a server-side implementation of the MVC.

 - 153 -

Figure 16.1: The steps in a server-side MVC.

These steps are as follows:
1. The Web browser makes a request to the Controller servlet.
2. The servlet performs necessary manipulations to the JavaBean Model and forwards the

result to the JSP View.
3. The JSP formats the Model for display and sends the HTML results back to the Web

browser.

A Server-Side Example Using the MVC
In this section, we create an MVC implementation using the Shopping Cart example we used in Chapter
13, "JSP and a Shopping Cart."
We will be using the following files from Chapter 13:

 ShoppingCart.java
 AddToShoppingCart.jsp
 ShoppingCart.jsp

The first thing we are going to do is to remove scriptlet code used to add an item to the ShoppingCart
from the AddToShoppingCart.jsp we used in Chapter 13. We will also need to change the action
attribute of the form we used to point to our controller servlet instead of the JSP. You should notice how
little scriptlet code is contained in our new JSP. Listing 16.1 contains the source for our changes. The new
file is called AddToShoppingCartMVC.jsp.
Listing 16.1: AddToShoppingCartMVC.jsp

<%@ page errorPage="errorpage.jsp" %>

<!-- Instantiate the ShoppingCart bean with an id of "cart" -->

<jsp:useBean id="cart" scope="session" class="ShoppingCart" />

<html>

 <head>

 <title>DVD Catalog</title>

 </head>

 <body>

 <!-- Print the current quantity of the ShoppingCart -->

 Shopping Cart Quantity:

 <%=cart.getNumOfItems() %>

 <hr>

 - 154 -

 <center><h3>DVD Catalog</h3></center>

 <table border="1" width="300" cellspacing="0"

 cellpadding="2" align="center">

 <tr><th>Description</th><th>Price</th></tr>

<!-- ("123", "First thing added", 123.45f, 4); -->

 <tr>

 <form action="/purejsp/servlet/ShopController" method" "post">

 <td>Happy Gilmore</td>

 <td>$19.95</td>

 <td><input type="submit" name="Submit" value="Add"></td>

 <input type="hidden" name="id" value="1">

 <input type="hidden" name="desc" value="Happy Gilmore">

 <input type="hidden" name="price" value="19.95">

 <input type="hidden" name="command" value="add">

 </form>

 </tr>

 <tr>

 <form action="/purejsp/servlet/ShopController" method="post">

 <td>Wayne's World</td>

 <td>$19.95</td>

 <td><input type="submit" name="Submit" value="Add"></td>

 <input type="hidden" name="id" value="2">

 <input type="hidden" name="desc" value="Wayne's World">

 <input type="hidden" name="price" value="19.95">

 <input type="hidden" name="command" value="add">

 </form>

 </tr>

 <tr>

 <form action="/purejsp/servlet/ShopController" method="post">

 <td>Tommy Boy</td>

 <td>$15.95</td>

 - 155 -

 <td><input type="submit" name="Submit" value="Add"></td>

 <input type="hidden" name="id" value="3">

 <input type="hidden" name="desc" value="Tommy Boy">

 <input type="hidden" name="price" value="15.95">

 <input type="hidden" name="command" value="add">

 </form>

 </tr>

 <tr>

 <form action="/purejsp/servlet/ShopController" method="post">

 <td>Lethal Weapon 4</td>

 <td>$19.95</td>

 <td><input type="submit" name="Submit" value="Add"></td>

 <input type="hidden" name="id" value="4">

 <input type="hidden" name="desc" value="Lethal Weapon 4">

 <input type="hidden" name="price" value="19.95">

 <input type="hidden" name="command" value="add">

 </form>

 </tr>

 <tr>

 <form action="/purejsp/servlet/ShopController" method="post">

 <td>Nutty Professor</td>

 <td>$19.95</td>

 <td><input type="submit" name="Submit" value="Add"></td>

 <input type="hidden" name="id" value="5">

 <input type="hidden" name="desc" value="Nutty Professor">

 <input type="hidden" name="price" value="19.95">

 <input type="hidden" name="command" value="add">

 </form>

 </tr>

 </table>

 </body>

 - 156 -

</html>

Our next step includes creating a servlet that will act as a controller for all shopping cart–related
transactions. Listing 16.2 contains the source for our controller servlet.
Listing 16.2: ShopController.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import ShoppingCart;

public class ShopController extends HttpServlet {

 //Initialize global variables

 public void init(ServletConfig config)

 throws ServletException {

 super.init(config);

 }

 //Process the HTTP Post request

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String command = request.getParameter("command");

 HttpSession session = request.getSession();

 ShoppingCart cart = (ShoppingCart)session.getAttribute("cart");

 // Determine which command to perform

 - 157 -

 if (command.equals("add")) {

 // Get the item from the request

 String id = request.getParameter("id");

 if (id != null) {

 String desc = request.getParameter("desc");

 Float price = new Float(request.getParameter("price"));

 // Add the selected item to the cart

 cart.addItem(id, desc, price.floatValue(), 1);

 }

 }

 // Redirect the response

 // after adding an item to the cart.

 response.sendRedirect("/purejsp/AddToShoppingCartMVC.jsp");

 }

 //Get Servlet information

 public String getServletInfo() {

 return "ShopController Information";

 }

}

As you look over this servlet, you will notice that it simply checks the request for the command it should
perform. In our case we only use one command add, which gets the item's attributes from the request and
adds a new item to the shopping cart. It then forwards the response back to the calling JSP for display.
One thing you should notice is that the ShopController servlet contains no presentation code. It simply
performs the necessary transaction and then leaves it up to the JSP to handle presentation.

Separating the presentation from the content in this manner makes it possible to change the presentation
layer without making any changes to the servlet code. This is where the real power exists in using JSPs
and servlets.

 - 158 -

The final step we need to perform is changing the Back to Catalog link that is found in our
ShoppingCart.jsp to point to our new AddToShoppingCartMVC.jsp. The new file is
ShoppingCartMVC.jsp, and the source can be found in Listing 16.3.
Listing 16.3: ShoppingCartMVC.jsp

<%@ page errorPage="errorpage.jsp" %>

<%@ page import="java.util.*" %>

<!-- Instantiate the ShoppingCart bean with an id of "cart" -->

<jsp:useBean id="cart" scope="session" class="ShoppingCart" />

<html>

 <head>

 <title>Shopping Cart Contents</title>

 </head>

 <body>

 <center>

 <table width="300" border="1" cellspacing="0"

 cellpadding="2" border="0">

 <caption>Shopping Cart Contents</caption>

 <tr>

 <th>Description</th>

 <th>Price</th>

 <th>Quantity</th>

 </tr>

 <%

 Enumeration enum = cart.getEnumeration();

 String[] tmpItem;

 // Iterate over the cart

 while (enum.hasMoreElements()) {

 tmpItem = (String[])enum.nextElement();

 - 159 -

 %>

 <tr>

 <td><%=tmpItem[1] %></td>

 <td align="center">$<%=tmpItem[2] %></td>

 <td align="center"><%=tmpItem[3] %></td>

 </tr>

 <%

 }

 %>

 </table>

 </center>

 Back to Catalog

 </body>

</html>

That is all there is to it. To make it a really functional application, you should probably add some more
transactions, but this only involves adding new commands. To see our new MVC application in action, you
should make sure the ShoppingCart.java and the ShopController.java files are compiled and
moved to the <SERVER_ROOT>/purejsp/WEB-INF/classes/ directory. You should also move the
AddToShoppingCartMVC.jsp and ShoppingCartMVC.jsp files to the <SERVER_ROOT>/purejsp/
directory. Now open your browser to the following URL:
http://localhost:8080/purejsp/AddToShoppingCartMVC.jsp
You will see a page similar to Figure 16.2.

Figure 16.2: Output from AddToShoppingCartMVC.jsp.
After you have loaded the initial JSP, go ahead and add items to the cart and view the contents of the cart
by selecting the Shopping Cart Quantity link. You will see a page similar to Figure 16.3.

 - 160 -

Figure 16.3: Output from ShoppingCartMVC.jsp.

Summary
In this chapter, we talked about the Model-View-Controller design pattern. We discussed the drawbacks of
a servlet- or JSP-only application model. And finally we looked at how we could solve the problems
encountered by the JSPs and servlets-only application model, by leveraging the MVC design pattern.
In Chapter 17, we cover how to work with JavaMail and JSPs.

Chapter 17: JSP and JavaMail
Overview
Traditionally when you needed to interact with a mail server from within code, you encountered a messy
collection of socket code containing a lot of string parsing. The code would have to send a request to the
server, wait for the response, and then break down the response to parse the necessary information. The
JavaMail API has provided a clean and easy-to-use Java interface to design and implement messaging
and Internet email solutions.

Internet email is comprised of several standards detailing the format and makeup of a message that is to
be sent across the Internet. There are also standards, as well as some proposed standards, that dictate
how Internet email services handle the messages.

The two types of services that JavaMail offers are the transport and store services. The transport service
has several jobs, but we will simply think of it as the service that takes our message and sends it to the
recipient. The message may make several stops along the way, but the intricacies of these stops are not
within the scope of this book.
The second type of service that a JavaMail system deals with is the store service. The store manipulates
the persistent storage of messages. The storage of messages is done in what most of us know as
mailboxes, for example, your inbox. JavaMail refers to these mailboxes as folders because it is possible
for one folder to contain other folders, messages, or both. The physical structure of the folders on a mail
server depends on the mail server used to create and manage them. So, to put it simply, a store service
allows you to read and manipulate your folders and messages.
Store and transport are generic terms used by the JavaMail API to refer to the protocols that actually
implement these services. In the case of Internet email, the most widely used transport protocol is the
Simple Mail Transfer Protocol (SMTP). The most widely used protocols that implement the store service
are the Post Office Protocol (POP3) and Internet Message Access Protocol (IMAP4).

JavaMail gives you an interface to a messaging system. In order for it to be useful, you also require
service providers that implement the JavaMail API. Packaged with the JavaMail API, Sun Microsystems
has supplied you with both an SMTP and an IMAP service provider. A POP provider can be downloaded
through Sun. These providers are their implementation of the JavaMail API, designed to interact with each
of the different protocols. Anyone can write his own implementation, to interact with these or other
protocols. The document "The JavaMail Guide for Service Providers" is packaged with the JavaMail
archive and specifies how to develop and package a service provider.

 - 161 -

Configuring JavaMail
Before we get started, you probably want to know what you will need in order to use the JavaMail API, and
where to get it. The JavaMail API can be downloaded from
http://www.javasoft.com/products/javamail/index.html

The archive you will get contains the JavaMail API jar file, all of the javadoc files, the JavaMail
Specification in PDF format, the guide for service providers in PDF format, and a decent collection of
demo code with documentation.

JavaMail makes extensive use of the JavaBeans Activation Framework (JAF). So, you will also need to
download this Java extension. It can be found at
http://www.javasoft.com/beans/glasgow/jaf.html
This archive contains a collection of files similar to the JavaMail archive. The two important files you will
need are the mail.jar and activation.jar files. Both of these archives must be added to your
classpath before you can begin working with JavaMail.

A JavaMail Example
Let's walk through a simple example of sending a message using JavaMail.

Note

The JavaMail API provides an interface to perform many more complex tasks, including
sending MIME-encoded attachments to your mail. And, as we discussed earlier, you can
retrieve and manipulate messages from your mailboxes. The demo code that accompanies
JavaMail gives good examples of some of the other features that you can use. With a little
creativity, you are not limited to what you can accomplish.

Listing 17.1 contains our JavaMail example.
Listing 17.1: SimpleSendMessage.java

import java.util.*;

import javax.mail.*;

import javax.mail.internet.*;

import javax.activation.*;

public class SimpleSendMessage {

 public static void main(String[] args) {

 // Collect the necessary information to send a simple message

 // Make sure to replace the values for host, to, and from with

 // valid information.

 // host - must be a valid smtp server that you currently have

 // access to.

 - 162 -

 // to - whoever is going to get your email

 // from - whoever you want to be. Just remember that many smtp

 // servers will validate the domain of the from address

 // before allowing the mail to be sent.

 String host = "server.myhost.com";

 String to = "YourFriend@somewhere.com";

 String from = "MeMeMe@myhost.com";

 String subject = "JSP Rules!";

 String messageText = "I am sending a message using the"

 + " JavaMail API.\n"

 + "I can include any text that I want.";

 boolean sessionDebug = false;

 // Create some properties and get the default Session.

 Properties props = System.getProperties();

 props.put("mail.host", host);

 props.put("mail.transport.protocol", "smtp");

 Session session = Session.getDefaultInstance(props, null);

 // Set debug on the Session so we can see what is going on
 // Passing false will not echo debug info, and passing true
 // will.
 session.setDebug(sessionDebug);

 try {

 // Instantiate a new MimeMessage and fill it with the
 // required information.
 Message msg = new MimeMessage(session);

 msg.setFrom(new InternetAddress(from));
 InternetAddress[] address = {new InternetAddress(to)};
 msg.setRecipients(Message.RecipientType.TO, address);
 msg.setSubject(subject);
 msg.setSentDate(new Date());
 msg.setText(messageText);

 // Hand the message to the default transport service
 // for delivery.
 Transport.send(msg);
 }
 catch (MessagingException mex) {

 mex.printStackTrace();

 - 163 -

 }
 }
}

In analyzing Listing 17.1, the first topic we must discuss is the Session class. The Session represents a
mail session and is typically the first thing that you will set up in code using the JavaMail API. It collects
properties and defaults that will be used by different pieces throughout the API.
In the following code snippet, we retrieve the system properties, add the JavaMail–specific information to
them, and retrieve a default Session using them. The properties we use here are just some of the
JavaMail–specific attributes that can be used; however, they are the only ones necessary to accomplish
sending a simple message:
String host = "server.myhost.com";
String to = "YourFriend@somewhere.com";
String from = "MeMeMe@myhost.com";
String subject = "JSP Rules!";
String messageText = "I am sending a message using the"
 + " JavaMail API.\nI can include any text that I want.";
 boolean sessionDebug = false;

// Create some properties and get the default Session.
Properties props = System.getProperties();
props.put("mail.host", host);
props.put("mail.transport.protocol", "smtp");

Session session = Session.getDefaultInstance(props, null);
The mail.host environment property specifies the default mail server. In many cases the server for
transport and store are the same machine. However, they can be specified separately if this is not the
case. For our purposes it does not matter, because we will only need access to the transport service.

Note You will need to change the mail host in the application to use your ISP's mail host.

Using the mail.transport.protocol property tells the Session what protocol to use as the default
transport provider. We specified smtp as the default transport, so the Session now knows that whenever
we use a transport this is the service provider we want. This becomes important later when we actually
send the message, because we use a static method in the Transport class to send and we never
specify what type of transport we want to use.

In the next code snippet, we create a message and prepare it to be shipped off. There is quite a bit more
that can take place before a message is sent, but we are only interested in the bare necessities:
String to = "YourFriend@somewhere.com";
String from = "MeMeMe@myhost.com";
String subject = "JSP Rules!";
String messageText =
 "I am sending a message using the JavaMail API.\n"
 + "I can include any text that I want.";

Message msg = new MimeMessage(session);

msg.setFrom(new InternetAddress(from));
InternetAddress[] address = {new InternetAddress(to)};

 - 164 -

msg.setRecipients(Message.RecipientType.TO, address);
msg.setSubject(subject);
msg.setSentDate(new Date());
msg.setText(messageText);
The first thing you may notice is the use of the MimeMessage class. It implements the Message abstract
class, and uses certain criteria to make sure the message adheres to the Internet email standards. It
formats the message and message headers in the proper MIME style to be sent over the Internet. (A
discussion on the MIME Standard is beyond the scope of this book.)
The next several method calls fill the message with the needed information. Addresses used by a
MimeMessage are implemented by the InternetAddress class. You will notice that this class is used
for both the sender and recipients. Neither the subject nor the content of the message are required to
successfully transport the message, but, let's face it, how exciting would it be without them?
Now that the Message is prepared to be sent, all we have to do is ask our default transport provider to
send it for us. The code snippet to accomplish this is simple and looks like this:
Transport.send(msg);

That is all there is to sending a simple email using the JavaMail API.

Using JavaMail in a JSP
Next we look at what is necessary to send an email using JavaMail and JSP. For our JSP example, we
are going to use an HTML form to submit the mail message and a JSP to parse and send the submitted
message. The HTML form can be found in Listing 17.2.
Listing 17.2: MailForm.html

<html>

 <head>

 <title>JavaMail Form</title>

 </head>

<body>

 <form action="/purejsp/MailExample.jsp" method="post">

 <table cellspacing="2" cellpadding="2" border="1">

 <tr>

 <td>To:</td>

 <td>

 <input type="text" name="to" size="30" maxlength="30">

 </td>

 </tr>

 <tr>

 <td>From:</td>

 <td>

 - 165 -

 <input type="text" name="from" size="30" maxlength="30">

 </td>

 </tr>

 <tr>

 <td>Subject</td>

 <td>

 <input type="text" name="subject" size="30" maxlength="30">

 </td>

 </tr>

 <tr>

 <td colspan="2">

 <textarea cols="40" rows="10" name="body"></textarea>

 </td>

 </tr>

 <tr>

 <td>

 <input type="submit" name="submit" value="Submit">

 <input type="Reset">

 </td>

 </tr>

 </table>

 </form>

</body>

</html>

You can see that there is nothing special about our form. You should only notice the action attribute of
the form points to our JSP, found in Listing 17.3.
Listing 17.3: MailExample.jsp

<html>

 <head>

 - 166 -

 <title>JSP JavaMail Example </title>

 </head>

<body>

<%@ page import="java.util.*" %>

<%@ page import="javax.mail.*" %>

<%@ page import="javax.mail.internet.*" %>

<%@ page import="javax.activation.*" %>

<%

 String host = "yourmailhost";
 String to = request.getParameter("to");
 String from = request.getParameter("from");
 String subject = request.getParameter("subject");
 String messageText = request.getParameter("body");
 boolean sessionDebug = false;

 // Create some properties and get the default Session.
 Properties props = System.getProperties();
 props.put("mail.host", host);
 props.put("mail.transport.protocol", "smtp");

 Session mailSession = Session.getDefaultInstance(props, null);

 // Set debug on the Session so we can see what is going on
 // Passing false will not echo debug info, and passing true
 // will.
 mailSession.setDebug(sessionDebug);

 // Instantiate a new MimeMessage and fill it with the
 // required information.
 Message msg = new MimeMessage(mailSession);

 msg.setFrom(new InternetAddress(from));
 InternetAddress[] address = {new InternetAddress(to)};
 msg.setRecipients(Message.RecipientType.TO, address);
 msg.setSubject(subject);
 msg.setSentDate(new Date());
 msg.setText(messageText);

 // Hand the message to the default transport service
 // for delivery.
 Transport.send(msg);

 out.println("Mail was sent to " + to);
 out.println(" from " + from);
 out.println(" using host " + host + ".");

%>
 </table>

 - 167 -

 </body>
</html>

As you look over the MailExample.jsp, you will notice only a few differences from our previously
covered JavaMail application. The first change is just the addition of the code to get the necessary
request parameters, which is included in the following snippet:
String to = request.getParameter("to");
String from = request.getParameter("from");
String subject = request.getParameter("subject");
String messageText = request.getParameter("body");
The only other notable change is that, instead of referring to the Session with the variable name
session, we have changed the variable name to mailSession. It still holds a reference to the mail
Session. It was changed because of the JSP implicit variable session, which references the
HttpSession.
To see the MailExample.jsp in action, copy both the HTML file and the JSP file to the
<SERVER_ROOT>/purejsp/ directory and load the following URL into your browser:
http://localhost:8080/purejsp/MailForm.html
You should see a page similar to Figure 17.1.

Figure 17.1: Output of the MailForm.html.

Note You will need to change the mail host in the JSP to use your ISP's mail host.

Now fill in the appropriate form data and click the Submit button. You should see a response that tells you
who received the mail, who sent the mail, and the mail host. To test the example, it is probably best to
send mail to yourself, so you can check the message.

Summary
In this chapter, we covered what JavaMail is and how you use it. We also took a look at how you can use
JavaMail with JSPs.
This is the last techniques chapter in this book. Chapter 18, "The javax.servlet.jsp Package," begins
the reference section of this text.

Part III: Syntax Reference (with UML Diagrams)
Chapter List
Chapter 18: The javax.servlet.jsp Package
Chapter 19: The javax.servlet.jsp.tagext Package
Chapter 20: The javax.servlet Package

 - 168 -

Chapter 21: The javax.servlet.http Package

Chapter 18: The javax.servlet.jsp Package
Overview
The javax.servlet.jsp package makes up the bulk of the JavaServer Pages API. It is covered
completely in this chapter. Figure 18.1 contains the javax.servlet.jsp object model.

Figure 18.1: javax.servlet.jsp object model.

Interfaces
The javax.servlet.jsp package has two interfaces, HttpJspPage and JspPage.

HttpJspPage Interface
public interface HttpJspPage extends JspPage
This is the interface that a JSP processor-generated class for the HTTP protocol must satisfy. It extends
JspPage and defines a single method.

_jspService() Method
public void _jspService(
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
The _jspService method corresponds to the body of the JSP page. It is defined automatically by the
JSP processor and should never be redefined by the JSP author. It returns no value.

Parameters
 HttpServletRequest
 HttpServletResponse

Exceptions Thrown
 javax.servlet.ServletException
 java.io.IOException

 - 169 -

JspPage Interface
public interface JspPage extends javax.servlet.Servlet

This is the interface that a JSP processor-generated class must implement.
The interface defines a protocol with three methods; only two of them, jspInit() and jspDestroy(),
are part of this interface. The signature of the third method, _jspService(), depends on the specific
protocol used and cannot be expressed in a generic way in Java.

A class implementing this interface is responsible for invoking the first two methods at the appropriate time
based on the corresponding servlet-based method invocations.
The jspInit() and jspDestroy() methods can be defined by a JSP author, but the _jspService()
method is defined automatically by the JSP processor based on the contents of the JSP page.

jspInit() Method
public void jspInit()
The jspInit() method is invoked when the JspPage is initialized. Once the JSP page is initialized, the
getServletConfig() method will return the desired value. It is synonymous with the init() method
of a servlet. It has no parameters, returns no value, and throws no exceptions.

jspDestroy() Method
public void jspDestroy()
The jspDestroy () is invoked when the JSP page is about to be destroyed. It is synonymous with the
destroy() method of a servlet. It has no parameters, returns no value, and throws no exceptions.

Classes
The javax.servlet.jsp package has four classes: JspEngineInfo, JspFactory, JspWriter, and
PageContext.

JspEngineInfo Class
public abstract class JspEngineInfo
The JspEngineInfo class is an abstract class that provides information on the current JSP engine. The
class has two methods, described in the following sections.

JspEngineInfo() Method
public JspEngineInfo()
The JspEngineInfo() method is an empty default constructor. It has no parameters, returns no value,
and throws no exceptions.

getImplementationVersion() Method
public java.lang.String getImplementationVersion()
The getImplementationVersion() method returns the current version of the JSP specification. The
version number must begin with a number. If the version is not defined, then a null will be returned. It
has no parameters and throws no exceptions.

Returns
 java.lang.String

JspFactory Class
public abstract class JspFactory extends java.lang.Object
JspFactory is an abstract class that defines a number of factory methods available to a JSP page at
runtime for the purposes of creating instances of various interfaces and classes used to support the JSP
implementation. The JspFactory class has one field and six methods, as described in the following
sections.

 - 170 -

deflt Field
private static JspFactory deflt
The deflt field represents the default JspFactory implementation.

JspFactory() Method
public JspFactory()
The JspFactory() method is an empty default constructor. It has no parameters, returns no value, and
throws no exceptions.

setDefaultFactory() Method
public static void setDefaultFactory(JspFactory deflt)
The setDefaultFactory() method sets the default factory for this JSP implementation. It is illegal for
any principal other than the JSP runtime engine to call this method. It returns no value and throws no
exceptions.

Parameters
 JspFactory

getDefaultFactory() Method
public static JspFactory getDefaultFactory()
The getDefaultFactory() method returns the default factory for this JSP implementation. It has no
parameters and throws no exceptions.

Returns
 JspFactory

getPageContext() Method
public abstract PageContext getPageContext(
 javax.servlet.Servlet servlet,
 javax.servlet.ServletRequest request,
 javax.servlet.ServletResponse response,
 java.lang.String errorPageURL,
 boolean needsSession,
 int buffer,
 boolean autoflush)
The getPageContext() method obtains an instance of an implementation-dependent
javax.servlet.jsp.PageContext abstract class for the calling servlet and currently pending request
and response. This method is typically called early in the processing of the _jspService() method of a
JSP implementation class in order to obtain a PageContext object for the request being processed.
Invoking this method will result in the PageContext.initialize() method being invoked. The
returned object is a properly initialized PageContext. All PageContext objects obtained via this method
must be released by invoking releasePageContext(). getPageContext() throws no exceptions.

Parameters
 javax.servlet.Servlet
 javax.servlet.ServletRequest
 javax.servlet.ServletResponse
 java.lang.String
 boolean
 int
 boolean

Returns
 PageContext

 - 171 -

releasePageContext() Method
public void releasePageContext(PageContext pc)
The releasePageContext() method is called to release a previously allocated PageContext object
returned from a call to getPageContext(). This method should be invoked prior to returning from the
_jspService() method of a JSP implementation class. releasePageContext()returns no value and
throws no exceptions.

Parameters
 PageContext

getEngineInfo() Method
public JspEngineInfo getEngineInfo()
The getEngineInfo() method is called to get implementation-specific information on the current JSP
engine. It has no parameters and throws no exceptions.

Returns
 JspEngineInfo

JspWriter Class
public abstract class JspWriter extends java.io.Writer
JspWriter is an abstract class that emulates some of the functionality found in the
java.io.BufferedWriter and java.io.PrintWriter classes. However, JspWriter differs from
these other classes in that it throws a java.io.IOException from the print methods where
PrintWriter does not. JspWriter class has four fields and numerous methods, as described in the
following sections.

NO_BUFFER Field
public static final int NO_BUFFER

This field is a constant indicating that the writer is not buffering output.

DEFAULT_BUFFER Field
public static final int DEFAULT_BUFFER

This field is a constant indicating that the writer is buffered and is using the implementation default buffer
size.

bufferSize Field
protected int bufferSize

This field indicates the writer's buffer size.

autoFlush Field
protected boolean autoFlush

This field indicates whether the buffer will be automatically flushed.

JspWriter() Method
protected JspWriter(int bufferSize, boolean autoFlush)
The JspWriter() method is a protected constructor. It returns no value and throws no exceptions.

Parameters
 int
 boolean

 - 172 -

newLine() Method
public void newLine() throws java.io.IOException

Exceptions Thrown
 java.io.IOException

print(boolean b) Method
public void print(boolean b) throws java.io.IOException
This print(boolean b) method prints a Boolean value. The string produced by
String.valueOf(boolean) is translated into bytes according to the platform's default character
encoding.

Note The print() method prints data type values, which are translated into bytes. For all values,

these bytes are written in exactly the same manner as the Writer.write(int) method.

Note The print() method's parameter is determined by the print value. The method always throws

a java.io.IOException exception. For all print values, the print() method returns no value.

Parameters
 boolean

print(char c) Method
public void print(char c) throws java.io.IOException
This print() method prints a character value. The character is translated into one or more bytes
according to the platform's default character encoding.

Parameters
 char

print(int i) Method
public void print(int i) throws java.io.IOException
This print(int i) method prints an integer. The string produced by String.valueOf(int) is
translated into bytes according to the platform's default character encoding.

Parameters
 int

print(long l) Method
public void print(long l) throws java.io.IOException
This print(long l) method prints a long. The string produced by String.valueOf(long) is
translated into bytes according to the platform's default character encoding.

Parameters
 long

print(float f) Method
public void print(float f) throws java.io.IOException
This print(float f) method prints a float. The string produced by String.valueOf(float) is
translated into bytes according to the platform's default character encoding.

Parameters
 float

print(double d) Method
public void print(double d) throws java.io.IOException
This print(double d) method prints a double. The string produced by String.valueOf(double) is
translated into bytes according to the platform's default character encoding.

Parameters

 - 173 -

 double

print(char[] s) Method
public void print(char[] s) throws java.io.IOException
This print(char[] s) method prints an array of characters. The characters are converted into bytes
according to the platform's default character encoding.

Parameters
 char[]

print(java.lang.String s) Method
public void print(java.lang.String s) throws java.io.IOException
The print(java.lang.String s) method prints a string. If the argument is null, then the string null
is printed. Otherwise, the string's characters are converted into bytes according to the platform's default
character encoding.

Parameters
 java.lang.String

print(java.lang.Object obj) Method
public void print(java.lang.Object obj) throws java.io.IOException
This print() method prints an object. The string produced by the String.valueOf(Object) method
is translated into bytes according to the platform's default character encoding.

Parameters
 java.lang.Object

println() Method
public void println() throws java.io.IOException
This println() method terminates the current line by writing the line separator string. The line separator
string is defined by the system property line.separator, and is not necessarily a single newline
character (\n). This method has no parameters.

Note The println() method always throws a java.io.IOException exception. It returns no value.

println(boolean b) Method
public void println(boolean b) throws java.io.IOException
This println(boolean b) method prints a Boolean value and then terminates the line. This method
behaves as though it invokes print(boolean) and then println().

Parameters
 boolean

println(char c) Method
public void println(char c) throws java.io.IOException
This println(char c) method prints a character and then terminates the line. This method behaves as
though it invokes print(char) and then println().

Parameters
 char

println(int i) Method
public void println(int i) throws java.io.IOException
This println(int i) method prints an integer and then terminates the line. This method behaves as
though it invokes print(int) and then println().

Parameters

 - 174 -

 int

println(long l) Method
public void println(long l) throws java.io.IOException
This println(long l) method prints a long integer and then terminates the line. This method behaves
as though it invokes print(long) and then println().

Parameters
 long

println(float f) Method
public void println(float f) throws java.io.IOException
This println(float f) method prints a float and then terminates the line. This method behaves as
though it invokes print(float) and then println().

Parameters
 float

println(double d) Method
public void println(double d) throws java.io.IOException
This println(double d) method prints a double-precision floating-point number and then terminates
the line. This method behaves as though it invokes print(double) and then println().

Parameters
 double

println(char[] s) Method
public void println(char[] s) throws java.io.IOException
This println(char[] s) method prints an array of characters and then terminates the line. This
method behaves as though it invokes print(char[]) and then println().

Parameters
 char[]

println(java.lang.String s) Method
public void println(java.lang.String s) throws java.io.IOException
The println(java.lang.String s) method prints a String and then terminates the line. This method
behaves as though it invokes print(String) and then println().

Parameters
 java.lang.String

println(java.lang.Object obj) Method
public void println(java.lang.Object obj) throws java.io.IOException
This println() method prints an object and then terminates the line. This method behaves as though it
invokes print(Object) and then println().

Parameters
 java.lang.Object

clear() Method
public void clear() throws java.io.IOException
The clear() method clears the contents of the buffer. If the buffer has already been flushed, then the
clear operation throws an IOException to signal the fact that some data has already been irrevocably
written to the client response stream. The method has no parameters.

 - 175 -

clearBuffer() Method
public void clearBuffer() throws java.io.IOException
The clearBuffer() method clears the current contents of the buffer. Unlike clear(), this method will
not throw an IOException if the buffer has already been flushed. It merely clears the current content of
the buffer and returns. clearBuffer() has no parameters.

flush() Method
public void flush() throws java.io.IOException
The flush() method flushes the stream. If the stream has saved any characters from the various
write() methods in a buffer, flush() writes them immediately to their intended destination. Then, if
that destination is another character or byte stream, the method flushes it. Thus, one flush() invocation
will flush all the buffers in a chain of writers and output streams. flush() has no parameters.

close() Method
public void close() throws java.io.IOException
The close() method closes the stream, flushing it first. Once a stream has been closed, further
write() or flush() invocations will cause an IOException to be thrown. Closing a previously closed
stream, however, has no effect. close() has no parameters.

getBufferSize() Method
public int getBufferSize() throws java.io.IOException
The getBufferSize() method returns the size of the buffer in bytes, or 0, if there is no buffer. It has no
parameters.

Returns
 int

Exceptions Thrown
 java.io.IOException

getRemaining() Method
public int getRemaining() throws java.io.IOException
The getRemaining() method returns the number of bytes unused in the buffer. It has no parameters.

Returns
 int

Exceptions Thrown
 java.io.IOException

isAutoFlush() Method
public boolean isAutoFlush()
The isAutoFlush() method returns whether auto-flush is on or not. It has no parameters.

Returns
 boolean

Exceptions Thrown
 java.io.IOException

PageContext Class
public abstract class PageContext extends java.lang.Object
The PageContext class is an abstract class, designed to be extended, to provide implementation-
dependent implementations, by the JSP runtime environments. A PageContext instance is obtained by a
JSP implementation class by calling the JspFactory.getPageContext() method; it is released by
calling JspFactory.releasePageContext().

 - 176 -

The PageContext object provides a number of useful tools to the page or component author and the
page implementer. A list of some of these tools includes

 A single API to manage the various scoped namespaces
 A number of convenience APIs to access various public objects
 A mechanism to obtain the JspWriter for output
 A mechanism to manage session usage by the page
 A mechanism to expose page directive attributes to the scripting environment
 Mechanisms to forward or include the current request to other active components in the

application
 A mechanism to handle errorpage exception processing

The PageContext class has numerous fields and methods, as described in the following sections.

APPLICATION Field
public static final java.lang.String APPLICATION
The APPLICATION field indicates a name used to store ServletContext in the PageContext name
table.

APPLICATION_SCOPE Field
public static final int APPLICATION_SCOPE
This field indicates that a named reference remains available in the ServletContext until it is reclaimed.

CONFIG Field
public static final java.lang.String CONFIG
This field indicates a name used to store ServletConfig in the PageContext name table.

EXCEPTION Field
public static final java.lang.String EXCEPTION
This field indicates a name used to store an uncaught exception in the ServletRequest attribute list and
the PageContext name table.

OUT Field
public static final java.lang.String OUT
This field indicates a name used to store the current JspWriter in the PageContext name table.

PAGE Field
public static final java.lang.String PAGE
This field indicates a name used to store the servlet in this PageContext name table.

PAGE_SCOPE Field
public static final int PAGE_SCOPE
This field indicates that the named reference remains available in this PageContext until its return from
the current Servlet.service() invocation.

PAGECONTEXT Field
public static final java.lang.String PAGECONTEXT
This field indicates a name used to store this PageContext in its own name tables.

REQUEST Field
public static final java.lang.String REQUEST
This field indicates a name used to store ServletRequest in the PageContext name table.

REQUEST_SCOPE Field
public static final int REQUEST_SCOPE
This field indicates that the named reference remains available from the ServletRequest associated
with the servlet until the current request is completed.

 - 177 -

RESPONSE Field
public static final java.lang.String RESPONSE
A name used to store ServletResponse in the PageContext name table.

SESSION Field
public static final java.lang.String SESSION
This field indicates a name used to store HttpSession in the PageContext name table.

SESSION_SCOPE Field
public static final int SESSION_SCOPE
This field indicates the named reference that determines the scope of the HttpSession (if any)
associated with the servlet until the HttpSession is invalidated.

PageContext() Method
public PageContext()
The PageContext() method is an empty default constructor. It has no parameters, returns no value, and
throws no exceptions.

findAttribute() Method
public abstract java.lang.Object findAttribute(java.lang.String name)
The findAttribute() method searches for the named attribute in page, request, session, and
application scopes (in that respective order) and returns the value associated or null.
findAttribute() throws no exceptions

Parameters
 java.lang.String

Returns
 java.lang.Object

forward() Method
public abstract void forward(java.lang.String relativeUrlPath)
 throws javax.servlet.ServletException,
 java.io.IOException
The forward() method is used to redirect, or "forward" the current ServletRequest and
ServletResponse to another active component in the application.
If the relativeUrlPath begins with a "/", then the URL specified is calculated relative to the DOCROOT
of the ServletContext for this JSP. If the path does not begin with a "/", then the URL specified is
calculated relative to the URL of the request that was mapped to the calling JSP. forward() returns no
value.

Parameters
 java.lang.String

Exceptions Thrown
 javax.servlet.ServletException
 java.io.IOException

getAttribute(java.lang.String name) Method
public abstract java.lang.Object getAttribute(java.lang.String name)
throws NullPointerException,
java.lang.IllegalArgumentException
The getAttribute() method returns the object associated with the name in the page scope or null.

Parameters

 - 178 -

 java.lang.String

Returns
 java.lang.Object

Exceptions Thrown
 NullPointerException
 java.lang.IllegalArgumentException

getAttribute(java.lang.String name, int scope) Method
public abstract java.lang.Object getAttribute(java.lang.String name,
 int scope)
 throws NullPointerException,
 java.lang.IllegalArgumentException
The getAttribute() method returns the object associated with the name in the specified scope or null.

Parameters
 java.lang.String
 int

Returns
 java.lang.Object

Exceptions Thrown
 NullPointerException
 java.lang.IllegalArgumentException

getAttributeNamesInScope() Method
public abstract java.util.Enumeration getAttributeNamesInScope(int scope)
The getAttributeNamesInScope() method returns an enumeration of names of all the attributes in
the specified scope. It throws no exceptions.

Parameters
 int

Returns
 java.util.Enumeration

getAttributesScope() Method
public abstract int getAttributesScope(java.lang.String name)
The getAttributesScope() method returns the scope of the object associated with the name
specified or 0. It has no exceptions thrown.

Parameters
 java.lang.String

Returns
 int

getException() Method
public abstract java.lang.Exception getException()
The getException() method returns any exception passed to this as an errorpage. It has no
parameters and throws no exceptions.

Returns
 java.lang.Exception

 - 179 -

getOut() Method
public abstract javax.servlet.jsp.JspWriter getOut()
The getOut() method returns the current JspWriter stream being used for client response. It has no
parameters and throws no exceptions.

Returns
 javax.servlet.jsp.JspWriter

getPage() Method
public abstract java.lang.Object getPage()
The getPage() method returns the Page implementation class instance associated with this
PageContext. It has no parameters and throws no exceptions.

Returns
 java.lang.Object

getRequest() Method
public abstract javax.servlet.ServletRequest getRequest()
The getRequest() method returns the ServletRequest for this PageContext. It has no parameters
and throws no exceptions.

Returns
 javax.servlet.ServletRequest

getResponse() Method
public abstract javax.servlet.ServletResponse getResponse()
The getResponse() method returns the ServletResponse for this PageContext. It has no
parameters and throws no exceptions.

Returns
 javax.servlet.ServletResponse

getServletConfig() Method
public abstract javax.servlet.ServletConfig getServletConfig()
The getServletConfig() method returns the ServletConfig for this PageContext. It has no
parameters and throws no exceptions.

Returns
 javax.servlet.ServletConfig

getServletContext() Method
public abstract javax.servlet.ServletContext getServletContext()
The getServletContext() method returns the ServletContext for this PageContext. It has no
parameters and throws no exceptions.

Returns
 javax.servlet.ServletContext

getSession() Method
public abstract javax.servlet.http.HttpSession getSession()
The getSession() method returns the HttpSession for this PageContext or null. It has no
parameters and throws no exceptions.

Returns
 javax.servlet.http.HttpSession

 - 180 -

handlePageException() Method
public abstract void handlePageException(java.lang.Exception e)
 throws javax.servlet.ServletException,
 java.io.IOException
The handlePageException() method is intended to process an unhandled "page" level exception
either by redirecting the exception to the specified error page for this JSP, or—if no error page was
specified—by performing some implementation-dependent action. handlePageException() returns no
value.

Parameters
 java.lang.Exception

Exceptions Thrown
 javax.servlet.ServletException
 java.io.IOException

include() Method
public abstract void include(java.lang.String relativeUrlPath)
 throws javax.servlet.ServletException,
 java.lang.IllegalArgumentException,
 java.lang.SecurityException,
 java.io.IOException
The include() method causes the resource specified to be processed as part of the current
ServletRequest and ServletResponse being processed by the calling thread. The output of the
target resource's processing of the request is written directly to the ServletResponse output stream.
The current JspWriter "out" for this JSP is flushed as a side effect of this call, prior to processing the
include.
It is valid to call this method only from a thread executing within a _jspService() method of a JSP.
include() returns no value.

Parameters
 java.lang.String

Exceptions Thrown
 javax.servlet.ServletException
 java.io.IOException
 java.lang.IllegalArgumentException
 java.lang.SecurityException

initialize() Method
public abstract void initialize(javax.servlet.Servlet servlet,
 javax.servlet.ServletRequest request,
 javax.servlet.ServletResponse response,
 java.lang.String errorPageURL,
 boolean needsSession,
 int bufferSize,
 boolean autoFlush)
 throws java.io.IOException,
 java.lang.IllegalStateException,
 java.lang.IllegalArgumentException
The initialize() method is called to initialize an uninitialized PageContext so that it may be used by
a JSP Implementation class to service an incoming request and response within its _jspService()
method.

 - 181 -

This method is typically called from JspFactory.getPageContext() in order to initialize state.
This method is required to create an initial JspWriter. Associate the "out" name in page scope with this
newly created object. initialize() returns no value.

Parameters
 javax.servlet.Servlet
 javax.servlet.ServletRequest
 javax.servlet.ServletResponse
 java.lang.String
 boolean
 int
 boolean

Exceptions Thrown
 java.io.IOException
 java.lang.IllegalStateException
 java.lang.IllegalArgumentException

popBody() Method
public abstract JspWriter popBody()
The popBody() method returns the previous JspWriter "out" saved by the matching pushBody(), and
updates the value of the "out" attribute in the page scope attribute namespace of the PageContext.
popBody() has no parameters and throws no exceptions.

 JspWriter

pushBody() Method
public abstract BodyJspWriter pushBody()
The pushBody() method returns a new BodyJspWriter object, saves the current "out" JspWriter,
and updates the value of the "out" attribute in the page scope attribute namespace of the PageContext.
pushBody() has no parameters and throws no exceptions.

Returns
 BodyJspWriter

Exceptions Thrown
 None

release() Method
public abstract void release()
The release() method "resets" the internal state of a PageContext, releasing all internal references,
and preparing the PageContext for potential reuse by a later invocation of initialize(). This method
is typically called from JspFactory.releasePageContext(). release() has no parameters, returns
no value, and throws no exceptions.

removeAttribute(java.lang.String name) Method
public abstract void removeAttribute(java.lang.String name)
The removeAttribute(java.lang.String name) method removes the object reference associated
with the specified name. It returns no value and throws no exceptions.

Parameters
 java.lang.String

removeAttribute(java.lang.String name, int scope) Method
public abstract void removeAttribute(java.lang.String name,
 int scope)
The removeAttribute() method removes the object reference associated with the specified name and
scope. It returns no value and throws no exceptions.

 - 182 -

Parameters
 java.lang.String
 int

setAttribute() Method
public abstract void setAttribute(java.lang.String name,
 java.lang.Object attribute)
 throws NullPointerException
The setAttribute() method registers the name and object specified with page scope semantics. It
returns no value.

Parameters
 java.lang.String
 java.lang.Object

Exceptions Thrown
 NullPointerException

setAttribute(java.lang.String name, java.lang.Object o, int scope)
Method
public abstract void setAttribute(java.lang.String name,
 java.lang.Object o,
 int scope)
 throws NullPointerException,
 java.lang.IllegalArgumentException
The setAttribute() method registers the name and object specified with appropriate scope semantics.
It returns no value.

Parameters
 java.lang.String
 java.lang.Object
 int

Exceptions Thrown
 NullPointerException
 java.lang.IllegalArgumentException

Exceptions
The javax.servlet.jsp package has two exceptions, JspError and JspException. Each has two
methods.

JspError Exception
public class JspError extends JspException
When the JspError exception is caught, output generation should stop and forward the exception to
errorpage.

JspError(java.lang.String msg) Method
public JspError(java.lang.String msg)
The JspError(java.lang.String msg) method is a constructor with a message. It returns no value
and throws no exceptions.

Parameters
 java.lang.String

 - 183 -

JspError() Method
public JspError()

This method is a default empty constructor. It has no parameters, returns no value, and throws no
exceptions.

JspException Exception
public class JspException extends java.lang.Exception
The JspException exception is a generic exception used by the JSP engine.

JspException(java.lang.String msg) Method
public JspException (java.lang.String msg)

This method is a constructor with a message. It returns no value and throws no exceptions.

Parameters
 java.lang.String

JspException() Method
public JspException ()

This method is a default empty constructor. It has no parameters, returns no value, and throws no
exceptions.

Parameters
 None

Returns
 None

Exceptions Thrown
 None

Chapter 19: The javax.servlet.jsp.tagext Package
Overview
The JavaServer Pages 1.1 specification provides a portable mechanism for the description of tag libraries.
Figure 19.1 contains the javax.servlet.jsp.tagext object model.

Figure 19.1: The javax.servlet.jsp.tagext object model.

 - 184 -

Classes
The eight classes for the definition of JavaServer Pages tag libraries are described in the following
sections. They are BodyJspWriter, Tag, TagAttributeInfo, TagData, TagExtraInfo, TagInfo,
TagLibraryInfo, and VariableInfo.

BodyJspWriter Class
public abstract class BodyJspWriter extends JspWriter
BodyJspWriter is a JspWriter subclass that can be used to process body evaluations so they can be
re-extracted at a later time. It has five methods.

BodyJspWriter() Method
protected BodyJspWriter(int buffersize, boolean autoflush)
This method is used to construct a BodyJspWriter. It should only to be used by a subclass.
BodyJspWriter() returns no values and throws no exceptions.

Parameters
 int
 boolean

clearBody() Method
public void clearBody()
The clearBody() method is another implementation of the JspWriter method clear(). The only
difference is that clearBody() is guaranteed not to throw an exception. clearBody() has no
parameters and returns no value.

getReader() Method
public abstract java.io.Reader getReader()
The getReader() method returns the value of this BodyJspWriter as a Reader, after the
BodyJspWriter has been processed. getReader() has no parameters and throws no exceptions.

Returns
 java.io.Reader

getString() Method
public abstract java.lang.String getString()
The getString() method returns the value of this BodyJspWriter as a String after the
BodyJspWriter has been processed. It has no parameters and throws no exceptions.

Returns
 java.lang.String

writeOut() Method
public abstract void writeOut(java.io.Writer out)
The writeOut() method writes the contents of this BodyJspWriter into a Writer. It returns no value
and throws no exceptions.

Parameters
 java.io.Writer

Tag Class
public abstract class Tag extends java.lang.Object
Actions in a tag library are defined through subclasses of the abstract class Tag. The class has 13 fields
and 19 methods, as described in the following sections.

 - 185 -

bodyOut Field
protected BodyJspWriter bodyOut
This field is used to hold the reference to the BodyJspWriter.

EVAL_BODY Field
public static final int EVAL_BODY
This field is used to hold the reference to the return value for doStartTag() and doAfterBody().

EVAL_PAGE Field
public static final int EVAL_PAGE
This field is used to hold the reference to the return value for doEndTag().

libraryPrefix Field
private java.lang.String libraryPrefix

This field is used to hold the prefix for the tag library of this tag.

pageContext Field
protected PageContext pageContext
This field is used to hold the reference to the current PageContext.

parent Field
private Tag parent
This field is a reference to the parent tag kept by each Tag instance, which effectively provides a runtime
execution stack.

previousOut Field
private JspWriter previousOut
This field is a reference to the JspWriter and is valid when the tag is reached.

SKIP_BODY Field
public static final int SKIP_BODY

This field indicates whether the body of the action should be evaluated.

SKIP_PAGE Field
public static final int SKIP_PAGE

This field indicates whether or not the action should continue to evaluate the rest of the page.

tagData Field
protected TagData tagData

This field contains the value information for a tag instance.

tagId Field
private java.lang.String tagId

This field contains the value information for a tag id.

tagName Field
private java.lang.String tagName
This field contains a reference to the Tag's short name.

 - 186 -

values Field
private java.util.Hashtable values
This field contains a reference to a Hashtable containing the Tags and their associated values.

Tag() Method
public Tag(java.lang.String libraryPrefix, java.lang.String tagName)
In this default constructor, all subclasses must define a public constructor with the same signature, and to
call the superclass's constructor. This constructor is called by the code generated by the JSP translator.
Tag() returns no value and throws no exceptions.

Parameters
 java.lang.String
 java.lang.String

doAfterBody() Method
public int doAfterBody() throws JspError
This method is invoked after every body evaluation. doAfterBody() has no parameters.

Returns
 int

Exceptions Thrown
 JspError

doBeforeBody() Method
public int doBeforeBody() throws JspError
This method is invoked before every body evaluation. doBeforeBody() has no parameters.

Returns
 int

Exceptions Thrown
 JspError

doEndTag() Method
public int doEndTag() throws JspException
This method processes the end tag. This method will be called on all Tag objects. It returns an indication
of whether the rest of the page should be evaluated or skipped. doEndTag() has no parameters.

Returns
 int

Exceptions Thrown
 JspException

doStartTag() Method
public int doStartTag() throws JspException
This method processes the start tag for this instance. The doStartTag() method assumes that
initialize() has been invoked prior to its own execution. When this method is invoked, the body has
not yet been invoked. doStartTag() has no parameters.

Returns
 int

Exceptions Thrown
 JspException

 - 187 -

findAncestorWithClass() Method
public static final Tag findAncestorWithClass(Tag from,
 java.lang.Class class)
This method finds the instance of a given class type that is closest to a given instance. This method is
used for coordination among cooperating tags. findAncestorWithClass() throws no exceptions.

Parameters
 Tag
 java.lang.Class

Returns
 Tag

getBodyOut() Method
protected final BodyJspWriter getBodyOut()
This method returns the value of the current "out" JspWriter. getBodyOut() has no parameters and
throws no exceptions.

Returns
 BodyJspWriter

getLibraryPrefix() Method
public java.lang.String getLibraryPrefix()
This method returns the library prefix being used with this tag. getLibraryPrefix() has no parameters
and throws no exceptions.

Returns
 java.lang.String

getPageContext() Method
public PageContext getPageContext()
This method returns the PageContext for this tag. getPageContext() has no parameters and throws
no exceptions.

Returns
 PageContext

getParent() Method
public Tag getParent()
This method returns the parent extension tag instance or null. getParent() has no parameters and
throws no exceptions.

Returns
 Tag

getPreviousOut() Method
protected final JspWriter getPreviousOut()
This method returns the value of the "out" JspWriter prior to pushing a BodyJspWriter.
getPreviousOut() has no parameters and throws no exceptions.

Returns
 JspWriter

getTagData() Method
public TagData getTagData()

 - 188 -

This method returns the immutable TagData for this tag. getTagData() has no parameters and throws
no exceptions.

Returns
 TagData

getTagId() Method
public java.lang.String getTagId()
This method returns the value of the id or null for the Tag. getTagID() has no parameters and throws no
exceptions.

Returns
 java.lang.String

getTagName() Method
public java.lang.String getTagName()
This method returns the short name for the Tag. getTagName() has no parameters and throws no
exceptions.

Returns
 java.lang.String

getValue() Method
public java.lang.Object getValue(java.lang.String key)
This method returns the value associated with the tag. getValue() throws no exceptions.

Parameters
 java.lang.Object

Returns
 java.lang.String

initialize() Method
public void initialize(Tag parent,
 TagData tagData,
 PageContext pc)
This method initializes a Tag instance so it can be used or reused. A newly created Tag instance has to
be prepared by invoking this method before invoking doStartTag(). A Tag instance that has been used
and released by invoking release() must be reinitialized by invoking this method. initialize()
returns no value and throws no exceptions.

Parameters
 Tag
 TagData
 PageContext

release() Method
public void release()
This method releases a Tag instance so it can be used or reused. release() has no parameters, returns
no value, and throws no exceptions.

setBodyOut() Method
public void setBodyOut(BodyJspWriter b)
This method sets the BodyJspWriter. It will be invoked once per action invocation at most. It will not be
invoked if there is no body evaluation. setBodyOut() returns no value and throws no exceptions.

 - 189 -

Parameters
 BodyJspWriter

setValue() Method
public void setValue(java.lang.String key,
 java.lang.Object value)
This method sets a user-defined value on the Tag. setValue() returns no value and throws no
exceptions.

Parameters
 java.lang.String
 java.lang.Object

TagAttributeInfo Class
public class TagAttributeInfo extends java.lang.Object
This class encapsulates information on Tag attributes. It is instantiated from the Tag Library Descriptor file
(TLD). TagAttributeInfo class has three fields and four methods, described in the following sections.

ID Field
public static final java.lang.String ID

 This field holds a reference to the tag's ID.

name Field
private java.lang.String name

 This field holds a reference to the tag's short name.

reqTime Field
private boolean reqTime

 This field holds a reference to the tag's request time.

setValue() Method
setValue(java.lang.String name,
 java.lang.String type,
 boolean reqTime)
This method is the constructor for TagAttributeInfo. There is no public constructor. This class is to be
instantiated only from the tag library code under request from some JSP code that is parsing a TLD (Tag
Library Descriptor). setValue() returns no value and throws no exceptions.

Parameters
 java.lang.String
 java.lang.String
 boolean

getIdAttribute() Method
public static TagAttributeInfo getIdAttribute(TagAttributeInfo[] a)
This method is a convenience method that goes through an array of TagAttributeInfo objects and
looks for "id". getIdAttribute() throws no exceptions.

Parameters
 TagAttributeInfo[]

Returns
 TagAttributeInfo

 - 190 -

getName() Method
public java.lang.String getName()
This method returns the name of the attribute for the Tag. getName() has no parameters and throws no
exceptions.

Returns
 java.lang.String

getTypeName() Method
public java.lang.String getTypeName()
This method returns the type of the attribute for the Tag. getTypeName() has no parameters and throws
no exceptions.

Returns
 java.lang.String

TagData Class
public class TagData extends java.lang.Object
 implements java.lang.Cloneable
This class encapsulates Tag instance attributes and values. Often, this data is fully static in the case
where none of the attributes have runtime expressions as their values. Thus this class is intended to
expose an immutable interface to a set of immutable attribute/value pairs. This class implements
Cloneable, so that implementations can create a static instance and then just clone it before adding the
request-time expressions. The TagData class has two fields and five methods, described in the following
sections.

attributes Field
private java.util.Hashtable attributes

 This field holds a reference to a Hashtable of the tag's attributes.

REQUEST_TIME_VALUE Field
public static final java.lang.Object REQUEST_TIME_VALUE
This field holds a reference to a distinguished value for an attribute. The value is a request-time
expression, which is not yet available because this TagData instance is being used at translation-time.

TagData() Method
public TagData(java.lang.Object[][] atts)
This method is the constructor for a TagData object. It takes a single parameter, a two-dimensional array
of static attributes and values. TagData() returns no values and throws no exceptions.

Parameters
 java.lang.Object[][]

getAttribute() Method
public java.lang.Object getAttribute(java.lang.String name)
This method returns the passed-in name's value. getAttribute() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.Object

getAttributeString() Method
public java.lang.String getAttributeString(java.lang.String name)

 - 191 -

This method returns the value of an attribute as a java.lang.String. getAttributeString()
throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

getId() Method
public java.lang.String getId()
This method returns the value of the id attribute or null. getID() has no parameters and throws no
exceptions.

Returns
 java.lang.String

setAttribute() Method
public void setAttribute(java.lang.String name,
 java.lang.Object value)
This method sets the value of an attribute/value pair. setAttribute() returns no value and throws no
exceptions.

Parameters
 java.lang.String
 java.lang.Object

TagExtraInfo Class
public abstract class TagExtraInfo extends java.lang.Object
This class provides extra tag information for a custom tag. It is mentioned in the Tag Library Descriptor file
(TLD). This class must be used if the tag defines any scripting variables, or if the tag wants to provide
translation-time validation of the tag attributes. The TagExtraInfo class has one field and five methods,
described in the following sections.

tagInfo Field
protected TagInfo tagInfo

 This field holds a reference to the TagInfo object.

TagExtraInfo() Method
public TagExtraInfo()
This method is the default empty constructor for the TagExtraInfo class. TagExtraInfo() has no
parameters, returns no value, and throws no exceptions.

getTagInfo() Method
public TagInfo getTagInfo()
This method returns the TagInfo object for this class. getTagInfo() has no parameters and throws no
exceptions.

Returns
 TagInfo

getVariableInfo() Method
public VariableInfo[] getVariableInfo(TagData data)
This method returns information on scripting variables defined by this tag. getVariableInfo() throws
no exceptions.

 - 192 -

Parameters
 TagData

Returns
 VariableInfo[]

isValid() Method
public boolean isValid(TagData data)
This method performs translation-time validation of the TagData attributes, returning a boolean value
indicating validity. isValid() throws no exceptions.

Parameters
 TagData

Returns
 boolean

setTagInfo() Method
public void setTagInfo(TagInfo info)
This method sets the TagInfo object for this class. setTagInfo() returns no value and throws no
exceptions.

Parameters
 TagInfo

TagInfo Class
public abstract class TagInfo extends java.lang.Object
This class provides Tag information for a tag in a tag library. It is instantiated from the Tag Library
Descriptor file (TLD). The TagInfo class has nine fields and eleven methods, described in the following
sections.

attributeInfo Field
private TagAttributeInfo[] attributeInfo

 This field holds a reference to an array of TagAttributeInfo objects.

BODY_CONTENT_JSP Field
public static final java.lang.String BODY_CONTENT_JSP

 This field holds a reference to a static constant for getBodyContent(), when it is a JSP.

BODY_CONTENT_TAG_DEPENDENT Field
public static final java.lang.String BODY_CONTENT_TAG_DEPENDENT
This field holds a reference to a static constant for getBodyContent(), when it is Tag dependent.

bodyContent Field
private java.lang.String bodyContent
This field holds a reference to a java.lang.String containing information on the body content of these
tags.

infoString Field
private java.lang.String infoString
This field holds a reference to a java.lang.String containing the optional string information for this
tag.

tagClassName Field
private java.lang.String tagClassName

 - 193 -

This field holds a reference to a java.lang.String containing the name of the tag handler class.

tagExtraInfo Field
private TagExtraInfo tagExtraInfo

This field holds a reference to an instance providing extra tag info.

tagLibrary Field
private TagLibraryInfo tagLibrary

This field holds a reference to an instance of the tag library that contains this tag.

tagName Field
private java.lang.String tagName
This field holds a reference to a java.lang.String containing the name of this tag.

TagInfo() Method
public TagInfo(java.lang.String tagName,
 java.lang.String tagClassName,
 java.lang.String bodycontent,
 java.lang.String infoString,
 TagLibraryInfo tagLib,
 TagExtraInfo tagExtraInfo,
 TagAttributeInfo[] attribInfo)
This method is the constructor for TagInfo. There is no public constructor. This class is to be instantiated
only from the tag library code under request from some JSP code that is parsing a TLD (Tag Library
Descriptor). TagInfo() returns no value and throws no exceptions.

Parameters
 java.lang.String
 java.lang.String
 java.lang.String
 java.lang.String
 TagLibraryInfo
 TagExtraInfo
 TagAttributeInfo[]

getAttributes() Method
public TagAttributeInfo[] getAttributes()
This method returns a reference to an array of TagAttributeInfo objects. If a null is returned, then
there is no attribute information. getAttributes() has no parameters and throws no exceptions.

Returns
 TagAttributeInfo[]

getBodyContent() Method
public java.lang.String getBodyContent()
This method returns a reference to a java.lang.String containing information on the body content of
these tags. getBody Content() has no parameters and throws no exceptions.

Returns
 java.lang.String

getInfoString() Method
public java.lang.String getInfoString()

 - 194 -

This method returns a reference to a java.lang.String containing the optional string information for
this tag. getInfoString() has no parameters and throws no exceptions.

Returns
 java.lang.String

getTagClassName() Method
public java.lang.String getTagClassName()
This method returns a reference to a java.lang.String containing the name of the tag handler class.
getTagClassName() has no parameters and throws no exceptions.

Returns
 java.lang.String

getTagExtraInfo() Method
public TagExtraInfo getTagExtraInfo()
This method returns a reference to the TagExtraInfo object. getTagExtraInfo() has no parameters
and throws no exceptions.

Returns
 TagExtraInfo

getTagLibrary() Method
public TagLibraryInfo getTagLibrary()
This method returns a reference to the TagLibraryInfo object. getTagLibrary() has no parameters
and throws no exceptions.

Returns
 TagLibraryInfo

getTagName() Method
public java.lang.String getTagName()
This method returns a reference to a java.lang.String containing the name of this tag.
getTagName() has no parameters and throws no exceptions.

Returns
 java.lang.String

getVariableInfo() Method
public VariableInfo[] getVariableInfo(TagData data)
This method returns information on the object created by this tag at runtime. If null is returned, then no
such object was created. The default is null if the tag has no id attribute. getVariableInfo() throws
no exceptions.

Parameters
 TagData

Returns
 VariableInfo[]

isValid() Method
public boolean isValid(TagData data)
This method performs translation-time validation of the TagData attributes. isValid() throws no
exceptions.

Parameters
 TagData

 - 195 -

Returns
 boolean

TagLibraryInfo Class
public abstract class TagLibraryInfo extends java.lang.Object
This class provides information on the tag library. It is instantiated from the Tag Library Descriptor file
(TLD). TagLibraryInfo class has three fields and nine methods.

prefix Field
private java.lang.String prefix

 This field holds a reference to the prefix actually used by the taglib directive.

tldis Field
protected java.io.InputStream tldis

 This field holds a reference to the input stream to the TLD.

uri Field
private java.net.URL uri

 This field holds a reference to the URI actually used by the taglib directive.

TagLibraryInfo() Method
public TagLibraryInfo(java.lang.String prefix,
 java.net.URL uri,
 java.io.InputStream tldis)
This method is the constructor for the TagLibraryInfo class. It will invoke the constructors for TagInfo
and TagAttributeInfo after parsing the TLD file. TagLibraryInfo() returns no value and throws no
exceptions.

Parameters
 java.lang.String
 java.net.URL
 java.io.InputStream

getInfoString() Method
public java.lang.String getInfoString()
This method returns the information string for this tag library. getInfoString() has no parameters and
throws no exceptions.

Returns
 java.lang.String

getPrefixString() Method
public java.lang.String getPrefixString()
This method returns the prefix assigned to this taglib from the taglib directive. getPrefixString() has
no parameters and throws no exceptions.

Returns
 java.lang.String

getReliableURN() Method
public java.lang.String getReliableURN()
This method returns a reliable URN to a TLD. getReliableURN() has no parameters and throws no
exceptions.

Returns

 - 196 -

 java.lang.String

getRequiredVersion() Method
public java.lang.String getRequiredVersion()
This method returns the required version for the taglib. getRequiredVersion() has no parameters and
throws no exceptions.

Returns
 java.lang.String

getShortName() Method
public java.lang.String getShortName()
This method returns the preferred short name for the taglib. getShortName() has no parameters and
throws no exceptions.

Returns
 java.lang.String

getTag() Method
public TagInfo getTag(java.lang.String name)
This method returns the TagInfo for a given tag short name. getTag() throws no exceptions.

Parameters
 java.lang.String

Returns
 TagInfo

getTags() Method
public TagInfo[] getTags()
This method returns an array of TagInfo objects for the tags defined in this tag library. getTags() has
no parameters and throws no exceptions.

Returns
 TagInfo[]

getURI() Method
public java.net.URL getURI()
This method returns the URI from the "<%@" taglib directive for this library. getURI() has no parameters
and throws no exceptions.

Returns
 java.net.URL

VariableInfo Class
public class VariableInfo extends java.lang.Object
This class provides information on the scripting variables that are created and modified by a tag at
runtime. This information is provided by TagExtraInfo classes and it is used by the translation phase of
JSP. VariableInfo class has seven fields and five methods, described in the following sections.

AT_BEGIN Field
public static final int AT_BEGIN

 This field states that the visibility of a variable begins after the start tag.

AT_END Field
public static final int AT_END

 - 197 -

 This field states that the visibility of a variable begins after the end tag.

className Field
private java.lang.String className

 This field holds a reference to the name of the scripting variable.

declare Field
private boolean declare

 This field determines if the variable is a new variable.

NESTED Field
public static final int NESTED

 This field states that the visibility of a variable is between the start and end tags.

scope Field
private int scope

 This field indicates the lexical scope of the variable.

varName Field
private java.lang.String varName

 This field represents the name of the scripting variable.

VariableInfo() Method
public VariableInfo(java.lang.String varName,
 java.lang.String className,
 boolean declare,
 int scope)
This method is the VariableInfo constructor. These objects can be created at translation time by the
TagExtraInfo instances. VariableInfo() returns no value and throws no exceptions.

Parameters
 java.lang.String
 java.lang.String
 boolean
 int

getClassName() Method
public java.lang.String getClassName()
This method returns the class name of the scripting variable. getClassName() has no parameters and
throws no exceptions.

Returns
 java.lang.String

getDeclare() Method
public boolean getDeclare()
This method returns a boolean that indicates whether the variable is a new variable. getDeclare() has
no parameters and throws no exceptions.

Returns
 boolean

getScope() Method
public int getScope()

 - 198 -

This method returns an integer indicating the lexical scope of the variable. getScope() has no
parameters and throws no exceptions.

Returns
 int

getVarName() Method
public java.lang.String getVarName()
This method returns to the class name of the scripting variable. getVarName() has no parameters and
throws no exceptions.

Returns
 java.lang.String

Chapter 20: The javax.servlet Package
Overview
The javax.servlet package is at the core of all servlet development. It contains the generic interfaces,
classes, and exceptions that are implemented and extended by all servlets. Figure 20.1 contains the
javax.servlet object model.

Figure 20.1: The javax.servlet object model.

javax.servlet Interfaces
Interfaces of the javax.servlet package include RequestDispatcher, Servlet, ServletConfig,
ServletContext, ServletRequest, ServletResponse, and SingleThreadModel. Each is
described in the following sections, along with its methods.

 - 199 -

RequestDispatcher Interface
public interface RequestDispatcher
The RequestDispatcher interface defines an object, which can serve as a wrapper around another
resource on the server. It is most often used to forward requests to other server resources. It defines two
methods.

forward() Method
public void forward(ServletRequest request,
 ServletResponse response)
 throws ServletException,
 java.io.IOException
The forward() method is used for forwarding a request from one servlet to another. It allows the first
servlet to perform some initial tasks on the request before forwarding it to another resource on the server.
forward() returns no value.

Parameters
 ServletRequest
 ServletResponse

Exceptions Thrown
 ServletException
 java.io.IOException

include() Method
public void include(ServletRequest request,
 ServletResponse response)
 throws ServletException,
 java.io.IOException
The include() method is used to merge content from another server resource in the response of the
final servlet. include() returns no value.

Parameters
 ServletRequest
 ServletResponse

Exceptions Thrown
 ServletException
 java.io.IOException

Servlet Interface
public abstract interface Servlet
The Servlet interface is implemented by all servlets either through direct implementation or inheritance.
It defines five methods, including the three life cycle methods, to be implemented by all servlets.

init() Method
public void init(ServletConfig config)
 throws ServletException
The init() method, being the first life cycle method, marks the beginning of a servlet's life. It is called
only when the servlet is first loaded, and it must execute successfully before the servlet can service
requests. The init() method should contain all initialization code for the servlet. It returns no value.

Parameters
 ServletConfig

Exceptions Thrown

 - 200 -

 ServletException

getServletConfig() Method
public ServletConfig getServletConfig()
The getServletConfig() method returns the servlet's ServletConfig object, which contains the
servlet's startup configuration and initialization parameters. getServletConfig() has no parameters
and throws no exceptions.

Returns
 ServletConfig

service() Method
public void service(ServletRequest request,
 ServletResponse response)
 throws ServletException,
 java.io.IOException
The service() method defines the servlet's entry point for servicing requests. It can be executed only
after the servlet's init() method has executed successfully. The service() method is the life cycle
method executed for every incoming request. It returns no value.

Parameters
 ServletRequest
 ServletResponse

Exceptions Thrown
 ServletException
 java.io.IOException

getServletInfo() Method
public java.lang.String getServletinfo()
The getServletInfo() method is used to provide the servlet user with information about the servlet
itself. You will usually include copyright or versioning information. getServletInfo() has no
parameters and throws no exceptions.

Returns
 String

destroy() Method
public void destroy()
The destroy() method is the life cycle method that marks the end of a servlet's life. It is executed only
once when the servlet is removed from the service. You should place all your clean-up functionality in this
method. destroy() has no parameters, returns no value, and throws no exceptions.

ServletConfig Interface
The ServletConfig interface defines an object generated by a servlet engine and is used to pass
configuration information to a servlet during start up. It contains name/value pairs of initialization
parameters for the servlet. It also contains a reference to the ServletContext object, which is described
in the next section. The ServletConfig interface defines four methods for accessing this information.

getServletContext() Method
public ServletContext getServletContext()
The getServletContext() method returns a reference to the current ServletContext object.
getServletContext() has no parameters and throws no exceptions.

Returns
 ServletContext

 - 201 -

getServletName() Method
public java.lang.String getServletName()
The getServletName() method returns the registered servlet's name. getServletName() has no
parameters and throws no exceptions.

Returns
 java.lang.String

getInitParameter() Method
public java.lang.String getInitParameter(java.lang.String)
The getInitParameter() method returns a String containing the value of the initialization
parameter's name/value pair referenced by the passed in String representing the name.
getInitParameter() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

getInitParameterNames() Method
public java.util.Enumeration getInitParameterNames()
The getInitParameterNames() method returns an Enumeration of Strings representing all of the
initialization parameters' names. getInitParameterNames() takes no parameters and throws no
exceptions.

Returns
 java.util.Enumeration

ServletContext Interface
public interface ServletContext
The ServletContext interface defines an object, to be created by a servlet engine, that contains
information about the servlet's environment. This interface provides several methods to access this
information.

getContext() Method
public ServletContext getContext(java.lang.String uripath)
The getContext() method returns a reference to a ServletContext object belonging to a particular
URI path. getContext() throws no exceptions.

Parameters
 java.lang.String

Returns
 ServletContext

getInitParameter() Method
public java.lang.String getInitParameter(java.lang.String name)
The getInitParameter() method returns the value for the named context parameter.
getInitParameter() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

 - 202 -

getInitParameterNames() Method
public Enumeration getInitParameterNames()
The getInitParameterNames() method returns an Enumeration of all the context parameter names.
getInitParameterNames() has no parameters and throws no exceptions.

Returns
 Enumeration

getMajorVersion() Method
public int getMajorVersion()
The getMajorVersion() method returns an integer representing the major version of the servlet API
that the servlet engine supports. If the servlet engine supported the servlet API 2.1, the result would be 2.
getMajorVersion() has no parameters and throws no exceptions.

Returns
 int

getMinorVersion() Method
public int getMinorVersion()
The getMinorVersion() method returns an integer representing the minor version of the servlet API
that the servlet engine supports. If the servlet engine supported the servlet API 2.1, the result would be 1.
getMinorVersion() has no parameters and throws no exceptions.

Returns
 int

getMimeType() Method
public java.lang.String getMimeType(java.lang.String file)
The getMimeType() method returns a String representing the MIME type of the passed in file name,
or null if the MIME type of the file is not known. getMimeType() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

getNamedDispatcher() Method
public RequestDispatcher getNamedDispatcher(java.lang.String name)
The getNamedDispatcher() method returns a reference to a RequestDispatcher object belonging
to a particular URI path. The getNamedDispatcher() method throws no exceptions.

Parameters
 java.lang.String

Returns
 RequestDispatcher

getResource() Method
public java.net.URL getResource(java.lang.String path)
 throws java.net.MalformedURLException
The getResource() method returns a URL object of a resource matching the passed in path parameter,
permitting a servlet to access content from the servlet engine's document space without system
dependencies.

Parameters

 - 203 -

 java.lang.String

Returns
 java.net.URL

Exceptions Thrown
 java.net.MalformedURLException

getResourceAsStream() Method
public java.io.InputStream
 getResourceAsStream(java.lang.String path)
The getResourceAsStream() method returns an InputStream object, which allows access to the
resource matching the passed in URL path. getResourceAsStream() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.io.InputStream

getRequestDispatcher() Method
public RequestDispatcher
 getRequestDispatcher(java.lang.String urlpath)
The getRequestDispatcher() method returns a RequestDispatcher object based on the passed in
URL path. getRequestDispatcher() throws no exceptions.

Parameters
 java.lang.String

Returns
 RequestDispatcher

log(java.lang.String msg) Method
public void log(java.lang.String msg)
The log() method writes the passed in message to the context's log. The location of the log is servlet
engine specific. log() returns no value and throws no exceptions.

Parameters
 java.lang.String

log(java.lang.String msg, java.lang.Throwable throwable) Method
public void log(java.lang.String msg,
 java.lang.Throwable throwable)
This log() method writes the passed in message and the stack trace of the passed in Throwable object
to the context's log. The location of the log is servlet engine specific. log() returns no value and throws
no exceptions.

Parameters
 java.lang.String
 java.lang.Throwable

getRealPath() Method
public java.lang.String getRealPath(java.lang.String path)
The getRealPath() method returns a String representing the passed in virtual path converted to the
real path based on the operating system that the servlet engine is running on. getRealPath() throws
no exceptions.

 - 204 -

Parameters
 java.lang.String

Returns
 java.lang.String

getServer Info() Method
public java.lang.String getServerInfo()
The getServerInfo() method returns a String representing the name and version of the server that
the servlet is running under. If the servlet was running under the Java Web Server 1.1.3, then the returned
String would be Java Web Server/1.1.3. getRealPath() has no parameters and throws no exceptions.

Returns
 java.lang.String

getAttribute() Method
public java.lang.Object getAttribute(java.lang.String name)
The getAttribute() method returns an Object stored in the ServletContext and keyed by the
name value passed in. This is one of methods used to share resources between servlets. The returning
object must be downcast to its original type before use. getAttribute() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.Object

getAttributeNames() Method
public java.util.Enumeration getAttributeNames()
The getAttributeNames() method returns an Enumeration of Strings representing the names of
the attributes currently stored in the ServletContext. getAttributeNames() has no parameters and
throws no exceptions.

Returns
 java.util.Enumeration

setAttribute() Method
public void setAttribute(java.lang.String name,
 java.lang.Object)
The setAttribute() method stores an Object in the ServletContext and binds the Object to the
given name. If the name already exists in the ServletContext, then it is replaced. setAttribute()
returns no value and throws no exceptions.

Parameters
 java.lang.String
 java.lang.Object

removeAttribute() Method
public void removeAttribute(java.lang.String name)
The removeAttribute() method removes the Object, which is bound to the passed in name, from the
ServletContext. removeAttribute() returns no value and throws no exceptions.

Parameters
 java.lang.String

 - 205 -

ServletRequest Interface
public interface ServletRequest
The ServletRequest interface defines an object used to encapsulate information about the client's
request. Information in the ServletRequest object includes parameter name/value pairs, attributes, and
an input stream. The ServletRequest interface defines the following methods to access this
information.

getAttribute() Method
public java.lang.Object getAttribute(java.lang.String name)
The getAttribute() method returns the value of the object keyed by the name string for the current
request. getAttribute() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.Object

getAttributeNames() Method
public java.util.Enumeration getAttributeNames()
The getAttributeNames() method returns an Enumeration containing the names of all the attributes
in the current request. getAttributeNames() has no parameters and throws no exceptions.

Returns
 java.util.Enumeration

getCharacterEncoding() Method
public java.lang.String getCharacterEncoding()
The getCharacterEncoding() method returns a String representing the character set encoding for
this request. getCharacterEncoding() has no parameters and throws no exceptions.

Returns
 java.lang.String

getContentLength() Method
public int getContentLength()
The getContentLength() method returns an integer value equal to the length of the request's data. It
is equivalent to the CGI variable CONTENT_LENGTH. getContentLength() has no parameters and
throws no exceptions.

Returns
 int

getContentType() Method
public java.lang.String getContentType()
The getContentType() method returns a String representing the MIME type of the request's data. It
is equivalent to the CGI variable CONTENT_TYPE. getContentLength() has no parameters and throws
no exceptions.

Returns
 java.lang.String

getInputStream() Method
public ServletInputStream getInputStream()
 throws java.io.IOException

 - 206 -

The getInputStream() method returns an input stream for reading binary data from the request's body.
getInputStream() has no parameters.

Returns
 ServletInputStream

Exceptions Thrown
 java.io.IOException

getLocale() Method
public Locale getLocale()
The getLocale() method returns the client's most preferred locale. getLocale() has no parameters
and throws no exceptions.

Returns
 Locale

getLocales() Method
public Enumeration getLocales()
The getLocales() method returns an Enumeration containing the client's most preferred Locale
objects. getLocales() has no parameters and throws no exceptions.

Returns
 Enumeration

getParameter() Method
public java.lang.String getParameter(java.lang.String name)
The getParameter() method returns the value of the requested parameter. If the parameter has or
could have more than one value, use the getParameterValues() method. getParameter() throws
no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

getParameterNames() Method
public java.util.Enumeration getParameterNames()
The getParameterNames() method returns an Enumeration of Strings representing the parameter
names for this request. getParameterNames() has no parameters and throws no exceptions.

Returns
 java.util.Enumeration

getParameterValues() Method
public java.lang.String[] getParameterValues(java.lang.String name)
The getParameterValues() method returns an array of Strings representing all of the values for the
named parameter in the current request. getParameterValues() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String[]

 - 207 -

getProtocol() Method
public java.lang.String getProtocol()
The getProtocol() method returns a String representing the protocol and version of the request. It is
the same as the CGI variable SERVER_PROTOCOL. getProtocol() has no parameters and throws no
exceptions.

Returns
 java.lang.String

getRequestDispatcher() Method
public RequestDispatcher getRequestDispatcher(java.lang.String path)
The getRequestDispatcher() method returns a RequestDispatcher object using a relative path.
getRequestDispatcher() throws no exceptions.

Parameters
 java.lang.String

Returns
 RequestDispatcher

getScheme() Method
public java.lang.String getScheme()
The getScheme() method returns a String representing the scheme of the URL used in the request.
Sample schemes include http, https, and ftp. getScheme() has no parameters and throws no exceptions.

Returns
 java.lang.String

getServerName() Method
public java.lang.String getServerName()
The getServerName() method returns a String representing the hostname of the server that received
the request. It is the same as the CGI variable SERVER_NAME. getServerName() has no parameters
and throws no exceptions.

Returns
 java.lang.String

getServerPort() Method
public int getServerPort()
The getServerPort() method returns an integer representing the port number on which the request
was received. It is the same as the CGI variable SERVER_PORT. getServerPort() has no parameters
and throws no exceptions.

Returns
 int

getReader() Method
public java.io.BufferedReader getReader()
 throws java.io.IOException
The getReader() method returns a BufferedReader for reading text input from the request body.
getReader() has no parameters.

Returns
 java.io.BufferedReader

Exceptions Thrown

 - 208 -

 java.io.IOException

getRemoteAddress() Method
public java.lang.String getRemoteAddress()
The getRemoteAddress() method returns a String representing the IP address of the client sending
the request. It is the same as the CGI variable REMOTE_ADDR. getRemoteAddress() has no
parameters and throws no exceptions.

Returns
 java.lang.String

getRemoteHost() Method
public java.lang.String getRemoteHost()
The getRemoteHost() method returns a String representing the qualified hostname of the client
sending the request. It is the same as the CGI variable REMOTE_HOST. getRemoteHost() has no
parameters and throws no exceptions.

Returns
 java.lang.String

isSecure() Method
public boolean isSecure()
The isSecure() method returns a boolean value indicating whether or not the request was made with
a secure channel. isSecure() has no parameters and throws no exceptions.

Returns
 boolean

removeAttribute() Method
public void removeAttribute(java.lang.String name)
The removeAttribute() method removes the named attribute from the ServletRequest.
removeAttribute() returns no value and throws no exceptions.

Parameters
 java.lang.String

setAttribute() Method
public void setAttribute(java.lang.String key,
 java.lang.Object object) throws IllegalStateException
The setAttribute() method adds an attribute to the request's context keyed by the passed in key
String. It throws a IllegalStateException, if the key already exists. setAttribute() returns no
value.

Parameters
 java.lang.String
 java.lang.Object

Exceptions Thrown
 IllegalStateException

ServletResponse Interface
public interface ServletResponse
The ServletResponse interface defines an object for sending MIME data back to the client from the
servlet's service method. The ServletResponse object is a parameter of the servlet's service method.
The ServletResponse interface defines several methods for implementing objects.

 - 209 -

flushBuffer() Method
public void flushBuffer()
 throws IOException
The flushBuffer() method flushes and commits the response. flushBuffer() has no parameters
and returns no value.

Exceptions Thrown
 java.io.IOException

getBufferSize() Method
public int getBufferSize()
The getBufferSize() method returns the size of the response buffer. getBufferSize() has no
parameters and throws no exceptions.

Returns
 int

getCharacterEncoding() Method
public java.lang.String getCharacterEncoding()
The getCharacterEncoding() method returns the character set encoding used for this request's body.
If there has been no content type assigned, it is, by default, set to text/plain. getCharacterEncoding()
has no parameters and throws no exceptions.

Returns
 java.lang.String

getLocale() Method
public Locale getLocale()
The getLocale() method returns the current response locale. getLocale() has no parameters and
throws no exceptions.

Returns
 Locale

getOutputStream() Method
public ServletOutputStream getOutputStream()
 throws java.io.IOException
The getOutputStream() method returns an output stream used for writing binary data to the response.
getOutputStream() has no parameters.

Returns
 ServletOutputStream

Exceptions Thrown
 java.io.IOException

getWriter() Method
public java.io.PrintWriter getWriter()
 throws java.io.IOException
The getWriter() method returns a print writer used for writing formatted text to the response object.
getWriter() has no parameters.

Returns
 java.io.PrintWriter

Exceptions Thrown

 - 210 -

 java.io.IOException

isCommitted() Method
public boolean isCommitted()
The isCommitted() method returns true if part of the response has already been sent.
isCommitted() has no parameters and throws no exceptions.

Returns
 boolean

reset() Method
public void reset()
The reset() method empties the response buffer and clears the response headers. reset() has no
parameters, returns no value, and throws no exceptions.

setBufferSize() Method
public void setBufferSize(int size)
The setBufferSize() method sets the size of the response buffer. setBufferSize() returns no
value and throws no exceptions.

Parameters
 int

setContentLength() Method
public void setContentLength(int len)
The setContentLength() method sets the content length of the current response.
setContentLength() returns no value and throws no exceptions.

Parameters
 int

setContentType() Method
public void setContentType(java.lang.String type)
The setContentType() method sets the content type of the current response. You can only set this
property once for the current response. This method must be called before calling the getWriter() or
getOutputStream() methods. setContentType() returns no value and throws no exceptions.

Parameters
 java.lang.String

setLocale() Method
public void setLocale(Locale locale)
The setLocale() method sets the response locale, including headers and character sets.
setLocale() returns no value and throws no exceptions.

Parameters
 Locale

SingleThreadModel Interface
public interface SingleThreadModel
The SingleThreadModel interface defines a single threaded model for the implementing servlet's
execution. Implementing this interface makes the servlet thread safe. This guarantees that the
implementing servlet's service method will not be executed concurrently by more than one thread. There
are no methods defined by the SingleThreadModel interface.

 - 211 -

Classes
Classes for the javax.servlet package are GenericServlet, ServletInputStream, and
ServletOutputStream. Their methods are described in the following sections.

GenericServlet Class
The GenericServlet class was created to provide a basic foundation of new servlets. It provides default
life cycle methods and default implementations of the ServletConfig's methods.

GenericServlet() Method
public GenericServlet()
The GenericServlet() method is an empty default constructor. GenericServlet() has no
parameters, returns no value, and throws no exceptions.

destroy() Method
public void destroy()
The destroy() method is executed when the servlet is removed from the running service. It performs
any cleanup of resources that were allocated in the init() method. destroy() has no parameters,
returns no value, and throws no exceptions.

getInitParameter() Method
public java.lang.String getInitParameter(
 java.lang.String name)
The getInitParameter() method returns a String containing the value of the initialization parameter
keyed by the passed in name. getInitParameter() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

getInitParameterNames() Method
public java.util.Enumeration getInitParameterNames()
The getInitParameterNames() method returns an Enumeration containing all of the names for
each initialization parameter. getInitParameterNames() has no parameters and throws no
exceptions.

Returns
 java.util.Enumeration

getServletConfig() Method
public ServletConfig getServletConfig()
The getServletConfig() method returns a ServletConfig object containing any startup
configuration information for this servlet. getServletConfig() has no parameters and throws no
exceptions.

Returns
 ServletConfig

getServletContext() Method
public ServletContext getServletContext()
The getServletContext() method returns a ServletContext object containing information about
the servlet's network service. getServletContext() has no parameters and throws no exceptions.

Returns
 ServletContext

 - 212 -

getServletInfo() Method
public java.lang.String getServletInfo()
The getServletInfo() method returns a String containing servlet-specific information about the
implementing servlet. getServletInfo() has no parameters and throws no exceptions.

Returns
 java.lang.String

init(ServletConfig config) Method
public void init(ServletConfig config)
 throws ServletException
The init() method marks the beginning of a servlet's life. It is called only when the servlet is first loaded,
and it must execute successfully before the servlet can service requests. The init() method should
contain all initialization code for the servlet. It returns no value.

Parameters
 ServletConfig (encapsulates the servlet's startup configuration and initialization parameters)

Exceptions Thrown
 ServletException

init() Method
public void init()
 throws ServletException
This parameterless implementation of the init() method is provided only for convenience. It prevents a
derived servlet from having to store the ServletConfig object. init() has no parameters and returns
no value.

Exceptions Thrown
 ServletException

log(java.lang.String message) Method
public void log(java.lang.String message)
The log() method takes the passed in message and the name of the servlet and writes them to a log file.
The location of the log is server specific. log() returns no value and throws no exceptions.

Parameters
 java.lang.String

log(java.lang.String message, java.lang.Throwable t) Method
public void log(java.lang.String message,
 java.lang.Throwable t)
This log() method takes the passed in message and Throwable object and logs the message with a
stack trace from the Throwable object. log() returns no value and throws no exceptions.

Parameters
 java.lang.String
 java.lang.Throwable

service() Method
public void service(ServletRequest request,
 ServletResponse response)
 throws ServletException,
 java.io.IOException

 - 213 -

The service() method defines the servlet's entry point for servicing requests. It can be executed only
after the servlet's init() method has executed successfully. The service() method is the life cycle
method executed for every incoming request. It returns no value.

Parameters
 ServletRequest
 ServletResponse

Exceptions Thrown
 ServletException
 java.io.IOException

ServletInputStream Class
The ServletInputStream is an abstract class defined for servlet writers to get data from the client. It is
meant to be implemented by a network services writer. This class has two methods.

ServletInputStream() Method
protected ServletInputStream()
The ServletInputStream() method is the empty default constructor. It has no parameters, returns no
value, and throws no exceptions.

readLine() Method
public void readLine(byte[] b,
 int off,
 int len)
 throws java.io.IOException
The readLine() method reads the len of bytes into the passed in byte array b, starting at position off.
If the character '\n' is encountered, then no more bytes are read in. readLine() returns no value.

Parameters
 byte[]
 int
 int

Exceptions Thrown
 java.io.IOException

ServletOutputStream Class
The ServletOutputStream class is used to write responses back to the client. It is an abstract class
that is implemented by the network services implementor. To access the ServletOutputStream, you
must call the ServletResponse's getOutputStream() method. The class has several methods.

ServletOutputStream() Method
public ServletOutputStream()
 throws java.io.IOException
The ServletOutputStream() method is the empty default constructor. It has no parameters and
returns no value.

Exceptions Thrown
 java.io.IOException

print(boolean value) Method
public void print(boolean value)
 throws java.io.IOException
This version of the print() method prints the passed in boolean value to the output stream.

 - 214 -

Parameters
 boolean

Note The print() method always throws a java.io.IOException exception. For all print values, the

print() method returns no value.

print(char value) Method
public void print(char value)
 throws java.io.IOException
This version of the print() method prints the passed in char value to the output stream.

Parameters
 char

print(double value) Method
public void print(double value)
 throws java.io.IOException
This version of the print() method prints the passed in double value to the output stream.

Parameters
 double

print(float value) Method
public void print(float value)
 throws java.io.IOException
This version of the print() method prints the passed in float value to the output stream.

Parameters
 float

print(int value) Method
public void print(int value)
 throws java.io.IOException
This version of the print() method prints the passed in int value to the output stream.

Parameters
 int

print(long value) Method
public void print(long value)
 throws java.io.IOException
This version of the print() method prints the passed in long value to the output stream.

Parameters
 long

print(java.lang.String value) Method
public void print(java.lang.String value)
 throws java.io.IOException
This version of the print() method prints the passed in String value to the output stream.

Parameters
 java.lang.String

 - 215 -

println() Method
public void println()
 throws java.io.IOException
This version of the println() method prints CRLF to the output stream and has no parameters.

Note The println() method always throws a java.io.IOException exception. For all print values, the

println() method returns no value.

println(java.lang.String value) Method
public void println(java.lang.String value)
 throws java.io.IOException
This version of the println() method prints the passed in String value to the output stream, followed
by a CRLF.

Parameters
 java.lang.String

println(boolean value) Method
public void println(boolean value)
 throws java.io.IOException
This version of the println() method prints the passed in boolean value to the output stream, followed
by a CRLF.

Parameters
 boolean

println(char value) Method
public void println(char value)
 throws java.io.IOException
This version of the println() method prints the passed in char value to the output stream, followed by
a CRLF.

Parameters
 char

println(int value) Method
public void println(int value)
 throws java.io.IOException
This version of the println() method prints the passed in int value to the output stream, followed by a
CRLF.

Parameters
 int

println(long value) Method
public void println(long value)
 throws java.io.IOException
This version of the println() method prints the passed in long value to the output stream, followed by
a CRLF.

Parameters
 long

println(float value) Method
public void println(float value)

 - 216 -

 throws java.io.IOException
This version of the println() method prints the passed in float value to the output stream, followed by
a CRLF.

Parameters
 float

println(double value) Method
public void println(double value)
 throws java.io.IOException
This version of the println() method prints the passed in double value to the output stream, followed
by a CRLF.

Parameters
 double

Classes
Classes for the javax.servlet package are GenericServlet, ServletInputStream, and
ServletOutputStream. Their methods are described in the following sections.

GenericServlet Class
The GenericServlet class was created to provide a basic foundation of new servlets. It provides default
life cycle methods and default implementations of the ServletConfig's methods.

GenericServlet() Method
public GenericServlet()
The GenericServlet() method is an empty default constructor. GenericServlet() has no
parameters, returns no value, and throws no exceptions.

destroy() Method
public void destroy()
The destroy() method is executed when the servlet is removed from the running service. It performs
any cleanup of resources that were allocated in the init() method. destroy() has no parameters,
returns no value, and throws no exceptions.

getInitParameter() Method
public java.lang.String getInitParameter(
 java.lang.String name)
The getInitParameter() method returns a String containing the value of the initialization parameter
keyed by the passed in name. getInitParameter() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

getInitParameterNames() Method
public java.util.Enumeration getInitParameterNames()
The getInitParameterNames() method returns an Enumeration containing all of the names for
each initialization parameter. getInitParameterNames() has no parameters and throws no
exceptions.

Returns
 java.util.Enumeration

 - 217 -

getServletConfig() Method
public ServletConfig getServletConfig()
The getServletConfig() method returns a ServletConfig object containing any startup
configuration information for this servlet. getServletConfig() has no parameters and throws no
exceptions.

Returns
 ServletConfig

getServletContext() Method
public ServletContext getServletContext()
The getServletContext() method returns a ServletContext object containing information about
the servlet's network service. getServletContext() has no parameters and throws no exceptions.

Returns
 ServletContext

getServletInfo() Method
public java.lang.String getServletInfo()
The getServletInfo() method returns a String containing servlet-specific information about the
implementing servlet. getServletInfo() has no parameters and throws no exceptions.

Returns
 java.lang.String

init(ServletConfig config) Method
public void init(ServletConfig config)
 throws ServletException
The init() method marks the beginning of a servlet's life. It is called only when the servlet is first loaded,
and it must execute successfully before the servlet can service requests. The init() method should
contain all initialization code for the servlet. It returns no value.

Parameters
 ServletConfig (encapsulates the servlet's startup configuration and initialization parameters)

Exceptions Thrown
 ServletException

init() Method
public void init()
 throws ServletException
This parameterless implementation of the init() method is provided only for convenience. It prevents a
derived servlet from having to store the ServletConfig object. init() has no parameters and returns
no value.

Exceptions Thrown
 ServletException

log(java.lang.String message) Method
public void log(java.lang.String message)
The log() method takes the passed in message and the name of the servlet and writes them to a log file.
The location of the log is server specific. log() returns no value and throws no exceptions.

Parameters
 java.lang.String

 - 218 -

log(java.lang.String message, java.lang.Throwable t) Method
public void log(java.lang.String message,
 java.lang.Throwable t)
This log() method takes the passed in message and Throwable object and logs the message with a
stack trace from the Throwable object. log() returns no value and throws no exceptions.

Parameters
 java.lang.String
 java.lang.Throwable

service() Method
public void service(ServletRequest request,
 ServletResponse response)
 throws ServletException,
 java.io.IOException
The service() method defines the servlet's entry point for servicing requests. It can be executed only
after the servlet's init() method has executed successfully. The service() method is the life cycle
method executed for every incoming request. It returns no value.

Parameters
 ServletRequest
 ServletResponse

Exceptions Thrown
 ServletException
 java.io.IOException

ServletInputStream Class
The ServletInputStream is an abstract class defined for servlet writers to get data from the client. It is
meant to be implemented by a network services writer. This class has two methods.

ServletInputStream() Method
protected ServletInputStream()
The ServletInputStream() method is the empty default constructor. It has no parameters, returns no
value, and throws no exceptions.

readLine() Method
public void readLine(byte[] b,
 int off,
 int len)
 throws java.io.IOException
The readLine() method reads the len of bytes into the passed in byte array b, starting at position off.
If the character '\n' is encountered, then no more bytes are read in. readLine() returns no value.

Parameters
 byte[]
 int
 int

Exceptions Thrown
 java.io.IOException

 - 219 -

ServletOutputStream Class
The ServletOutputStream class is used to write responses back to the client. It is an abstract class
that is implemented by the network services implementor. To access the ServletOutputStream, you
must call the ServletResponse's getOutputStream() method. The class has several methods.

ServletOutputStream() Method
public ServletOutputStream()
 throws java.io.IOException
The ServletOutputStream() method is the empty default constructor. It has no parameters and
returns no value.

Exceptions Thrown
 java.io.IOException

print(boolean value) Method
public void print(boolean value)
 throws java.io.IOException
This version of the print() method prints the passed in boolean value to the output stream.

Parameters
 boolean

Note The print() method always throws a java.io.IOException exception. For all print values, the

print() method returns no value.

print(char value) Method
public void print(char value)
 throws java.io.IOException
This version of the print() method prints the passed in char value to the output stream.

Parameters
 char

print(double value) Method
public void print(double value)
 throws java.io.IOException
This version of the print() method prints the passed in double value to the output stream.

Parameters
 double

print(float value) Method
public void print(float value)
 throws java.io.IOException
This version of the print() method prints the passed in float value to the output stream.

Parameters
 float

print(int value) Method
public void print(int value)
 throws java.io.IOException
This version of the print() method prints the passed in int value to the output stream.

Parameters
 int

 - 220 -

print(long value) Method
public void print(long value)
 throws java.io.IOException
This version of the print() method prints the passed in long value to the output stream.

Parameters
 long

print(java.lang.String value) Method
public void print(java.lang.String value)
 throws java.io.IOException
This version of the print() method prints the passed in String value to the output stream.

Parameters
 java.lang.String

println() Method
public void println()
 throws java.io.IOException
This version of the println() method prints CRLF to the output stream and has no parameters.

Note The println() method always throws a java.io.IOException exception. For all print values, the

println() method returns no value.

println(java.lang.String value) Method
public void println(java.lang.String value)
 throws java.io.IOException
This version of the println() method prints the passed in String value to the output stream, followed
by a CRLF.

Parameters
 java.lang.String

println(boolean value) Method
public void println(boolean value)
 throws java.io.IOException
This version of the println() method prints the passed in boolean value to the output stream, followed
by a CRLF.

Parameters
 boolean

println(char value) Method
public void println(char value)
 throws java.io.IOException
This version of the println() method prints the passed in char value to the output stream, followed by
a CRLF.

Parameters
 char

println(int value) Method
public void println(int value)
 throws java.io.IOException

 - 221 -

This version of the println() method prints the passed in int value to the output stream, followed by a
CRLF.

Parameters
 int

println(long value) Method
public void println(long value)
 throws java.io.IOException
This version of the println() method prints the passed in long value to the output stream, followed by
a CRLF.

Parameters
 long

println(float value) Method
public void println(float value)
 throws java.io.IOException
This version of the println() method prints the passed in float value to the output stream, followed by
a CRLF.

Parameters
 float

println(double value) Method
public void println(double value)
 throws java.io.IOException
This version of the println() method prints the passed in double value to the output stream, followed
by a CRLF.

Parameters
 double

Chapter 21: The javax.servlet.http Package
Overview
The java.servlet.http package contains the interfaces and classes that are implemented and
extended, respectively, to create HTTP-specific servlets. Figure 21.1 contains the javax.servlet.http
object model.

 - 222 -

Figure 21.1: The javax.servlet.http object model.

Interfaces
Interfaces for the java.servlet.http package are HttpServletRequest,
HttpServletResponse, HttpSession, and HttpSessionBindingListener.

HttpServletRequest Interface
public interface HttpServletRequest
 extends ServletRequest
The HttpServletRequest interface defines an object that provides the
HttpServlet.service() method with access to HTTP-protocol–specific header
information sent by the client. The HttpServletRequest interface has 26 methods,
described in the following sections.

addHeader() Method
public void addHeader(java.lang.String name, java.lang.String value)

The addHeader() method adds another value to the response for the given header.
addHeader() returns no value and throws no exceptions.

Parameters
 java.lang.String
 java.lang.String

addDateHeader() Method
public void addDateHeader(java.lang.String name, long date)
The addDateHeader() method adds another date value to the response for the
given header. addDateHeader() returns no value and throws no exceptions.

Parameters
 java.lang.String

 - 223 -

 long

addIntHeader() Method
public void addIntHeader(java.lang.String name, int value)
The addIntHeader() method adds another int value to the response for the given
header. addIntHeader() returns no value and throws no exceptions.

Parameters
 java.lang.String
 int

getAuthType() Method
public java.lang.String getAuthType()
The getAuthType() method returns the authentication scheme used in this request.
It is the same as the AUTH_TYPE CGI variable. getAuthType() has no parameters
and throws no exceptions.

Returns
 java.lang.String

getContextPath() Method
public java.lang.String getContextPath()
The getContextPath() method returns the context path of this request.
getContextPath() has no parameters and throws no exceptions.

Returns
 java.lang.String

getCookies() Method
public Cookie[] getCookies()
The getCookies() method returns an array of Cookie objects found in the client
request. getCookies() has no parameters and throws no exceptions.

Returns
 Cookie[]

getDateHeader() Method
public long getDateHeader(java.lang.String name)
The getDateHeader() method returns the value of the requested date header field
found in the client request. getDateHeader() throws no exceptions.

Parameters
 java.lang.String

Returns
 long

getHeader() Method
public java.lang.String getHeader(java.lang.String name)
The getHeader() method returns the value of the requested header field found in the
client request. getHeader() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

 - 224 -

getHeaders() Method
public Enumeration getHeaders(java.lang.String name)
The getHeaders() method returns an Enumeration of Strings containing all of
the values for the given header. getHeaders() throws no exceptions.

Parameters
 java.lang.String

Returns
 Enumeration

getHeaderNames() Method
public Enumeration getHeaderNames()
The getHeaderNames() method returns an Enumeration containing all of the
header names found in the client request. getHeaderNames() has no parameters
and throws no exceptions.

Returns
 Enumeration

getIntHeader() Method
public int getIntHeader(java.lang.String name)
The getIntHeader() method returns the int value of the named header field,
found in the client request. getIntHeader() throws no exceptions.

Parameters
 java.lang.String

Returns
 int

getMethod() Method
public java.lang.String getMethod()
The getMethod() method returns the HTTP method used by the client request. It is
the same as the CGI variable REQUEST_METHOD. getMethod() has no parameters
and throws no exceptions.

Returns
 java.lang.String

getPathInfo() Method
public java.lang.String getPathInfo()
The getPathInfo() method returns a String containing any additional path
information following the servlet path, but preceding the query string. It is the same as
the CGI variable PATH_INFO. getPathInfo() has no parameters and throws no
exceptions.

Returns
 java.lang.String

getPathTranslated() Method
public java.lang.String getPathTranslated()
The getPathTranslated() method returns the same information as the
getPathInfo() method, but translates the path to its real path name before
returning it. It is the same as the CGI variable PATH_TRANSLATED.
getPathTranslated() has no parameters and throws no exceptions.

 - 225 -

Returns
 java.lang.String

getQueryString() Method
public java.lang.String getQueryString()
The getQueryString() method returns the query string from the request. It is the
same as the CGI variable QUERY_STRING. getQueryString() has no parameters
and throws no exceptions.

Returns
 java.lang.String

getRemoteUser() Method
public java.lang.String getRemoteUser()
The getRemoteUser() method returns the name of the user making the request. If
the name is not available, null is returned. It is the same as the CGI variable
REMOTE_USER. getRemoteUser() has no parameters and throws no exceptions.

Returns
 java.lang.String

getRequestedSessionId() Method
public java.lang.String getRequestedSessionId()
The getRequestedSessionId() method returns the session id associated with the
request. getRequestedSessionId() has no parameters and throws no exceptions.

Returns
 java.lang.String

getRequestURI() Method
public java.lang.String getRequestURI()
The getRequestURI() method returns the first line of the request's URI. This is the
part of the URI that is found to the left of the query string. getRequestURI() has no
parameters and throws no exceptions.

Returns
 java.lang.String

getUserPrincipal() Method
public java.security.Principal getUserPrincipal()
The getUserPrincipal() method returns the Principal of the user making the
request. getUserPrincipal() has no parameters and throws no exceptions.

Returns
 java.security.Principal

getServletPath() Method
public java.lang.String getServletPath()
The getServletPath() method returns the part of the URI that refers to the servlet
being invoked. getServletPath() has no parameters and throws no exceptions.

Returns
 java.lang.String

getSession(boolean create) Method
public HttpSession getSession(boolean create)

 - 226 -

The getSession() method returns the session associated with the request. If there
is no valid session and the boolean parameter passed in is true, then it will create a
new session. getSession() throws no exceptions.

Parameters
 boolean

Returns
 HttpSession

getSession() Method
public HttpSession getSession()
The getSession() method performs the same as the previous getSession()
method; it just performs as if it was always passed a true value. getSession() has
no parameters and throws no exceptions.

Returns
 HttpSession

isRequestedSessionValid() Method
public boolean isRequestedSessionValid()
The isRequestedSessionValid() method returns true if the session is valid in the
current context; otherwise, it returns false. isRequestedSessionValid() has no
parameters and throws no exceptions.

Returns
 boolean

isRequestedSessionFromCookie() Method
public boolean isRequestedSessionFromCookie()
The isRequestedSessionFromCookie() method returns true if the session id from
the request came in as a cookie; otherwise, it returns false.
isRequestedSessionFromCookie() has no parameters and throws no
exceptions.

Returns
 boolean

isRequestedSessionFromURL() Method
public boolean isRequestedSessionFromURL()
The isRequestedSessionFromURL() method returns true if the session id from the
request came in as part of the URL; otherwise, it returns false.
isRequestedSessionFromURL() has no parameters and throws no exceptions.

Returns
 boolean

HttpServletResponse Interface
public interface HttpServletResponse
 extends ServletRequest
The HttpServletResponse interface defines an object that provides the
HttpServlet.service() method with the capability to manipulate HTTP-protocol–
specific header information and return data to the client. The HttpServletResponse
interface has 39 fields and 10 methods, described in following sections.

 - 227 -

SC_CONTINUE Field
public static final int SC_CONTINUE

This field represents a status code of (100), indicating that the client can continue.

SC_SWITCHING_PROTOCOLS Field
public static final int SC_SWITCHING_PROTOCOLS

This field represents a status code of (101), indicating the server is switching protocols
according to the Upgrade header.

SC_OK Field
public static final int SC_OK

This field represents a status code of (200), indicating the request succeeded normally.

SC_CREATED Field
public static final int SC_CREATED

This field represents a status code of (201), indicating the request succeeded and
created a new resource on the server.

SC_ACCEPTED Field
public static final int SC_ACCEPTED

This field represents a status code of (202), indicating that a request was accepted for
processing, but was not completed.

SC_NON_AUTHORITATIVE_INFORMATION Field
public static final int SC_NON_AUTHORITATIVE_INFORMATION

This field represents a status code of (203), indicating that the meta information
presented by the client did not originate from the server.

SC_NO_CONTENT Field
public static final int SC_NO_CONTENT

This field represents a status code of (204), indicating that the request succeeded but
that there was no new information to return.

SC_RESET_CONTENT Field
public static final int SC_RESET_CONTENT

This field represents a status code of (205), indicating that the agent should reset the
document view, which caused the request to be sent.

SC_PARTIAL_CONTENT Field
public static final int SC_PARTIAL_CONTENT
This field represents a status code of (206), indicating that the server has fulfilled the
partial GET request for the resource.

SC_MULTIPLE_CHOICES Field
public static final int SC_MULTIPLE_CHOICES

This field represents a status code of (300), indicating that the requested resource
corresponds to any one of a set of representations, each with its own specific location.

 - 228 -

SC_MOVED_PERMANENTLY Field
public static final int SC_MOVED_PERMANENTLY

This field represents a status code of (301), indicating that the resource has
permanently moved to a new location, and that future references should use a new
URI with their requests.

SC_MOVED_TEMPORARILY Field
public static final int SC_MOVED_TEMPORARILY

This field represents a status code of (302), indicating that the resource has
temporarily moved to another location, but that future references should still use the
original URI to access the resource.

SC_SEE_OTHER Field
public static final int SC_SEE_OTHER

This field represents a status code of (303), indicating that the response to the request
can be found under a different URI.

SC_NOT_MODIFIED Field
public static final int SC_NOT_MODIFIED
This field represents a status code of (304), indicating that a conditional GET operation
found that the resource was available and not modified.

SC_USE_PROXY Field
public static final int SC_USE_PROXY
This field represents a status code of (305), indicating that the requested resource
must be accessed through the proxy given by the Location field.

SC_BAD_REQUEST Field
public static final int SC_BAD_REQUEST

This field represents a status code of (400), indicating the request sent by the client
was syntactically incorrect.

SC_UNAUTHORIZED Field
public static final int SC_UNAUTHORIZED

This field represents a status code of (401), indicating that the request requires HTTP
authentication.

SC_PAYMENT_REQUIRED Field
public static final int SC_PAYMENT_REQUIRED

This field represents a status code of (402) for future use.

SC_FORBIDDEN Field
public static final int SC_FORBIDDEN

This field represents a status code of (403), indicating the server understood the
request but refused to fulfill it.

SC_NOT_FOUND Field
public static final int SC_NOT_FOUND

 - 229 -

This field represents a status code of (404), indicating that the requested resource is
not available.

SC_METHOD_NOT_ALLOWED Field
public static final int SC_METHOD_NOT_ALLOWED
This field represents a status code of (405), indicating that the method specified in the
Request-Line is not allowed for the resource identified by the Request-URI.

SC_NOT_ACCEPTABLE Field
public static final int SC_NOT_ACCEPTABLE

This field represents a status code of (406), indicating that the resource identified by
the request is only capable of generating response entities which have content
characteristics not acceptable according to the accept headers sent in the request.

SC_PROXY_AUTHENTICATION_REQUIRED Field
public static final int SC_PROXY_AUTHENTICATION_REQUIRED

This field represents a status code of (407), indicating that the client must first
authenticate itself with the proxy.

SC_REQUEST_TIMEOUT Field
public static final int SC_REQUEST_TIMEOUT

This field represents a status code of (408), indicating that the client did not produce a
request within the time that the server was prepared to wait.

SC_CONFLICT Field
public static final int SC_CONFLICT

This field represents a status code of (409), indicating that the request could not be
completed due to a conflict with the current state of the resource.

SC_GONE Field
public static final int SC_GONE

This field represents a status code of (410), indicating that the resource is no longer
available at the server and no forwarding address is known. This condition should be
considered permanent.

SC_LENGTH_REQUIRED Field
public static final int SC_LENGTH_REQUIRED
This field represents a status code of (411), indicating that the request cannot be
handled without a defined Content-Length.

SC_PRECONDITION_FAILED Field
public static final int SC_PRECONDITION_FAILED

This field represents a status code of (412), indicating that the precondition given in
one or more of the request-header fields evaluated to false when it was tested on the
server.

SC_REQUEST_ENTITY_TOO_LARGE Field
public static final int SC_REQUEST_ENTITY_TOO_LARGE

 - 230 -

This field represents a status code of (413), indicating that the server is refusing to
process the request because the request entity is larger than the server is willing or
able to process.

SC_REQUEST_URI_TOO_LONG Field
public static final int SC_REQUEST_URI_TOO_LONG
This field represents a status code of (414), indicating that the server is refusing to
service the request because the Request-URI is longer than the server is willing to
interpret.

SC_UNSUPPORTED_MEDIA_TYPE Field
public static final int SC_UNSUPPORTED_MEDIA_TYPE

This field represents a status code of (415), indicating that the server is refusing to
service the request because the entity of the request is in a format not supported by
the requested resource for the requested method.

SC_INTERNAL_SERVER_ERROR Field
public static final int SC_INTERNAL_SERVER_ERROR

This field represents a status code of (500), indicating an error inside the HTTP server
which prevented it from fulfilling the request.

SC_NOT_IMPLEMENTED Field
public static final int SC_NOT_IMPLEMENTED

This field represents a status code of (501), indicating the HTTP server does not
support the functionality needed to fulfill the request.

SC_BAD_GATEWAY Field
public static final int SC_BAD_GATEWAY

This field represents a status code of (502), indicating that the HTTP server received
an invalid response from a server it consulted when acting as a proxy or gateway.

SC_SERVICE_UNAVAILABLE Field
public static final int SC_SERVICE_UNAVAILABLE

This field represents a status code of (503), indicating that the HTTP server is
temporarily overloaded, and unable to handle the request.

SC_GATEWAY_TIMEOUT Field
public static final int SC_GATEWAY_TIMEOUT

This field represents a status code of (504), indicating that the server did not receive a
timely response from the upstream server while acting as a gateway or proxy.

SC_HTTP_VERSION_NOT_SUPPORTED Field
public static final int SC_HTTP_VERSION_NOT_SUPPORTED

This field represents a status code of (505), indicating that the server does not support
or refuses to support the HTTP version found in the request.

addCookie() Method
public void addCookie(Cookie cookie)
The addCookie() method adds a Cookie to the HttpServletResponse object.
addCookie() throws no exceptions. addCookie() returns no value.

 - 231 -

Parameters
 Cookie

containsHeader() Method
public boolean containsHeader(java.lang.String name)
The containsHeader() method returns true if the named header exists in the
response. containsHeader() throws no exceptions.

Parameters
 java.lang.String

Returns
 boolean

encodeURL() Method
public java.lang.String encodeURL(java.lang.String url)
The encodeURL() method's URL encodes the passed-in String and returns it. If no
changes are necessary, then it simply returns the String. encodeURL() throws no
exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

encodeRedirectURL() Method
public java.lang.String encodeRedirectURL(java.lang.String url)

The encodeRedirectURL() method's URL encodes the passed in String for use
in the sendRedirect() method. If no changes are necessary, then it simply returns
the String. encodeRedirectURL() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.String

sendError(int sc, java.lang.String message) Method
public void sendError(int sc,
 java.lang.String message)
throws java.io.IOException
The sendError() method sends an error to the client in the response object. The
error consists of the int status code and a String message. sendError() returns
no value.

Parameters
 int
 java.lang.String

Exceptions Thrown
 java.io.IOException

sendError(int sc) Method
public void sendError(int sc)
throws java.io.IOException

 - 232 -

This sendError() method sends an error to the client in the response object. The
error consists of only the int status code. sendError() returns no value.

Parameters
 int

Exceptions Thrown
 java.io.IOException

sendRedirect() Method
public void sendRedirect(java.lang.String url)
throws java.io.IOException
The sendRedirect() method redirects the client to the passed-in URL, which must
be an absolute URL. sendRedirect() returns no value.

Parameters
 java.lang.String

Exceptions Thrown
 java.io.IOException

setDateHeader() Method
public void setDateHeader(java.lang.String name,
 long date)
The setDateHeader() method adds a name/date-value field to the response
header. The date value is a long representing milliseconds since the epoch.
setDateHeader() returns no value and throws no exception.

Parameters
 java.lang.String
 long

setIntHeader() Method
public void setIntHeader(java.lang.String name,
 int value)
The setIntHeader() method adds a name/int-value field to the response header.
If the field is already present in the request, it is replaced. setIntHeader() returns
no value and throws no exceptions.

Parameters
 java.lang.String
 int

setStatus() Method
public void setStatus(int sc)
The setStatus() method sets the status code for the response. setStatus()
returns no value and throws no exceptions.

Parameters
 int

HttpSession Interface
public interface HttpSession
The HttpSession interface defines an object that provides an association between a
client and server persisting over multiple connections. Using HttpSession gives you the

 - 233 -

ability to maintain state between transactions. This interface has 12 methods, described in
the following sections.

getAttribute() Method
public java.lang.Object getAttribute(java.lang.String name)
The getAttribute() method returns a reference to the named object in the current
session. The object must be downcasted to its original type. getAttribute() throws
no exceptions.

Parameters
 java.lang.String

Returns
 java.lang.Object

getAttributeNames() Method
public Enumeration getAttributeNames()
The getAttributeNames() method returns an Enumeration of Strings
representing all of the data objects bound to this session. getAttributeNames()
has no parameters and throws no exceptions.

Returns
 Enumeration

getCreationTime() Method
public long getCreationTime()
The getCreationTime() method returns the time in which the session was created.
This time value is a long representing the milliseconds elapsed since January 1, 1970
UTC. getCreationTime() has no parameters and throws no exceptions.

Returns
 long

getId() Method
public java.lang.String getId()
The getId() method returns a String containing a unique identifier for the
current HttpSession. getId() has no parameters and throws no exceptions.

Returns
 java.lang.String

getLastAccessedTime() Method
public long getLastAccessedTime()
The getLastAccessedTime() method returns the last time, in milliseconds, the
client sent a request with HttpSession. getLastAccessedTime() has no
parameters and throws no exceptions.

Returns
 long

getMaxIntervalTime() Method
public int getMaxIntervalTime()
The getMaxIntervalTime() method returns the maximum interval between
requests that the server will keep the session valid. getMaxIntervalTime() has
no parameters and throws no exceptions.

 - 234 -

Returns
 int

getSessionContext() Method
public HttpSessionContext getSessionContext()
The getSessionContext() method returns a reference to a HttpSessionContext
object bound to the current session. getSessionContext() has no parameters and
throws no exceptions.

Returns
 HttpSessionContext

invalidate() Method
public void invalidate()
The invalidate() method forces the session to be invalidated and removed from
the context. invalidate() has no parameters, returns no value, and throws no
exceptions.

isNew() Method
public boolean isNew()
The isNew() method returns true if the server has just created the session and
the session has not been acknowledged by the client. isNew() has no parameters
and throws no exceptions.

Returns
 boolean

setAttribute() Method
public void setAttribute(java.lang.String name)
 java.lang.Object value)
The setAttribute() method binds the passed-in object to the passed-in String and
puts the object into the session. If there is an object in the session already bound
to the name, it is replaced. setAttribute() returns no value and throws no
exceptions.

Parameters
 java.lang.String
 java.lang.Object

removeAttribute() Method
public void removeAttribute(java.lang.String name)
The removeAttribute() method removes the object from the current session that
is bound to the passed-in name. All objects implementing the
HttpSessionBindingListener interface will have their valueUnbound() methods
called. removeAttribute() returns no value and throws no exceptions.

Parameters
 java.lang.String

setMaxIntervalTime() Method
public void setMaxIntervalTime(int interval)

 - 235 -

The setMaxIntervalTime() method sets the maximum interval between requests
before a server invalidates the session. setMaxIntervalTime() returns no value
and throws no exceptions.

Parameters
 int

HttpSessionBindingListener Interface
public interface HttpSessionBindingListener
 extends java.util.EventListener
The HttpSessionBindingListener interface defines methods that an object can
implement if it wants to be notified of an object in the session being bound or
unbound. The HttpSessionBindingListener interface has two methods, described in
the following sections.

valueBound() Method
public void valueBound(HttpSessionBindingEvent event)
The valueBound() method notifies a listener that the object is being bound into
a session. valueBound() returns no value and throws no exceptions.

Parameters
 HttpSessionBindingEvent

valueUnBound() Method
public void valueUnBound(HttpSessionBindingEvent event)
The valueUnBound() method notifies a listener that the object is being unbound
from a session. valueUnBound() returns no value and throws no exceptions.

Parameters
 HttpSessionBindingEvent

Classes
The four classes for the java.servlet.http package are Cookie, HttpServlet,
HttpSessionBindingEvent, and HttpUtils.

Cookie Class
public class Cookie
 extends java.lang.Object
 implements java.lang.Cloneable
The Cookie class represents a cookie used for session management in HTTP protocols. Cookies are
name/value pairs that are created by the server and stored in the client. The Cookie class has 17
methods, described in the following sections.

Cookie() Method
public Cookie(java.lang.String name,
 java.lang.String value)
The Cookie() constructor initializes a Cookie object with the passed-in name/value pair. Names cannot
contain whitespace, commas, or semicolons and should only contain ASCII alphanumeric characters.
Cookie() returns no value and throws no exceptions.

Parameters

 - 236 -

 java.lang.String
 java.lang.String

setComment() Method
public void setComment(java.lang.String purpose)
The setComment() method is used to describe the cookie's purpose, when requested by the client.
setComment() returns no value and throws no exceptions.

Parameters
 java.lang.String

getComment() Method
public java.lang.String getComment()
The getComment() method returns the comment used to describe the cookie's purpose. getComment()
has no parameters and throws no exceptions.

Returns
 java.lang.String

setDomain() Method
public void setDomain(java.lang.String pattern)
The setDomain() method sets the pattern to match the host's domain. If the host does not match, then
the cookie will not be presented to the host. setDomain() returns no value and throws no exceptions.

Parameters
 java.lang.String

getDomain() Method
public java.lang.String getDomain()
The getDomain() method returns the domain pattern of this cookie. getDomain() has no parameters
and throws no exceptions.

Returns
 java.lang.String

setMaxAge() Method
public void setMaxAge(int value)
The setMaxAge() method sets the maximum age of the cookie. The cookie will expire after the passed-
in number of seconds. setMaxAge() returns no value and throws no exceptions.

Parameters
 int

getMaxAge() Method
public int getMaxAge()
The getMaxAge() method returns the maximum age of the cookie in seconds. getMaxAge() has no
parameters and throws no exceptions.

Returns
 int

setPath() Method
public void setPath(java.lang.String uri)
The setPath() method sets the valid path for the cookie. If the URL does not begin with the passed-in
value, then it is not a valid path. setPath() returns no value and throws no exceptions.

 - 237 -

Parameters
 java.lang.String

getPath() Method
public java.lang.String getPath()
The getPath() method returns the URL prefix for which this cookie is targeted. getPath() has no
parameters and throws no exceptions.

Returns
 java.lang.String

setSecure() Method
public void setSecure(boolean flag)
The setSecure() method indicates to the user agent that the cookie should only be transmitted using a
secure protocol. setSecure() returns no value and throws no exceptions.

Parameters
 boolean

getSecure() Method
public boolean getSecure()
The getSecure() method returns true if the cookie can only be transmitted using a secure protocol.
getSecure() has no parameters and throws no exceptions.

Returns
 boolean

getName() Method
public java.lang.String getName()
The getName() method returns the name of the cookie. getName() has no parameters and throws no
exceptions.

Returns
 java.lang.String

setValue() Method
public void setValue(java.lang.String value)
The setValue() method sets the value of the cookie. setValue() returns no value and throws no
exceptions.

Parameters
 java.lang.String

getValue() Method
public java.lang.String getValue()
The getValue() method returns the value of the cookie. getValue() has no parameters and throws no
exceptions.

Returns
 java.lang.String

getVersion() Method
public int getVersion()
The getVersion() method returns the version number of the cookie. A zero indicates that the cookie is
based on the original specification developed by Netscape. A 1 indicates that the cookie is based on the
RFC 2109. getVersion() has no parameters and throws no exceptions.

 - 238 -

Returns
 int

setVersion() Method
public void setVersion(int value)
The setVersion() method sets the cookie protocol used when the cookie saves itself. setVersion()
returns no value and throws no exceptions.

Parameters
 int

clone() Method
public java.lang.Object clone()
The clone() method returns a copy of this object. clone() has no parameters and throws no
exceptions.

Returns
 java.lang.Object

HttpServlet Class
public class HttpServlet
 extends javax.servlet.GenericServlet
 implements java.io.Serializable
The HttpServlet class is meant to simplify the writing of HTTP servlets. It extends the
GenericServlet class and implements the java.io.Serializable interface. The HttpServlet
class is an abstract class; therefore, it cannot be instantiated directly. The HttpServlet class has 11
methods, described in the following sections.

HttpServlet() Method
public HttpServlet()
The HttpServlet() constructor is a default empty constructor. HttpServlet() has no parameters,
returns no value, and throws no exceptions.

doGet() Method
protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 java.io.IOException
The doGet() method services all GET requests for the servlet.

Note

The HttpServlet class's doGet, doPost, doPut, doDelete, doOptions, and doTrace methods
all receive the same two parameters—an HttpServletRequest object, which encapsulates the
client's request, and an HttpServletResponse object, which contains the response that is
sent back to the client. Each of these methods throws a ServletException if it cannot service
the request and throws a java.io.IOException if there was an I/O error. These methods return
no value.

doPost() Method
protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 java.io.IOException
The doPost() method services all POST requests for the servlet.

 - 239 -

doPut() Method
protected void doPut(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 java.io.IOException

 The doPut() method services all PUT requests for the servlet.

doDelete() Method
protected void doDelete(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 java.io.Exception

 The doDelete() method services all DELETE requests for the servlet.

doOptions() Method
protected void doOptions(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 java.io.Exception

 The doOptions() method services all OPTIONS requests for the servlet. The default
implementation automatically determines what HTTP options are supported.

doTrace() Method
protected void doTrace(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 java.io.Exception

 The doTrace() method services all TRACE requests for the servlet.

getLastModifiedTime() Method
protected long getLastModifiedTime(HttpServletRequest request)
The getLastModifiedTime() method returns the last time the requested entity was modified. The
value returned is measured in milliseconds since January 1, 1970. getLastModifiedTime() throws no
exceptions.

Parameters
 HttpServletRequest

Returns
 long

service(HttpServletRequest request, HttpServletResponse response)
Method
protected void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException
 java.io.Exception
This is an HTTP-specific implementation of the Servlet.service() method. It handles standard HTTP
requests by dispatching them to the appropriately implemented methods. The service() method throws
a ServletException if it cannot service the request and throws a java.io.IOException if there was
an I/O error. service() returns no value.

 - 240 -

Parameters
 HttpServletRequest
 HttpServletResponse

Exceptions Thrown
 ServletException
 java.io.IOException

service(ServletRequest request, ServletResponse response) Method
public void service(ServletRequest request,
 ServletResponse response)
 throws ServletException
 java.io.Exception
This method implements the Servlet.service() method by delegating requests to the appropriate
HTTP-specific service() method. The service() method throws a ServletException if it cannot
service the request and throws a java.io.IOException if there was an I/O error. service() returns
no value.

Parameters
 ServletRequest
 ServletResponse

Exceptions Thrown
 ServletException
 java.io.IOException

HttpSessionBindingEvent Class
public class HttpSessionBindingEvent
 extends java.util.EventObject
The HttpSessionBindingEvent class is sent, to all objects that implement the
HttpSessionBindingListener, when a listener is bound or unbound from an HttpSession. The
HttpSessionBindingEvent class has three methods, described in the following sections.

HttpSessionBindingEvent() Method
public HttpSessionBindingEvent(HttpSession session,
 java.lang.String name)
The HttpSessionBindingEvent() constructor initializes the object with the session acting as the
source of the event and the name of the object being bound or unbound.
HttpSessionBindingEvent() returns no value and throws no exceptions.

Parameters
 HttpSession
 java.lang.String

getName() Method
public java.lang.String getName()
The getName() method returns the name of the object that is being bound or unbound. getName() has
no parameters and throws no exceptions.

Returns
 java.lang.String

getSession() Method
public HttpSession getSession()

 - 241 -

The getSession() method returns the session from which the listener is being bound or unbound.
getSession() has no parameters and throws no exceptions.

Returns
 HttpSession

HttpUtils Class
public class HttpUtils
 extends java.util.EventObject
The HttpUtils class contains a collection of static utility methods that are useful to HTTP servlets. The
HttpUtils class has four methods, described in the following sections.

HttpUtils() Method
public HttpUtils()
The HttpUtils() constructor creates an empty HttpUtility object. HttpUtils() has no
parameters, returns no value, and throws no exceptions.

parseQueryString() Method
public static java.util.Hashtable
 parseQueryString(java.lang.String s)
The parseQueryString() method takes the passed-in query string and parses it into a Hashtable of
key/value pairs, where the values are arrays of strings. parseQueryString() throws no exceptions.

Parameters
 java.lang.String

Returns
 java.util.Hashtable

parsePostData() Method
public static java.util.Hashtable
 parsePostData(int len,
 ServletInputStream in)
The parsePostData() method takes HTML form data that is sent to the server as a POST request,
parses it, and returns a Hashtable of key/value pairs. If keys have multiple values, their values are
stored as an array of Strings. parsePostData() throws no exceptions.

Parameters
 int
 ServletInputStream

Returns
 java.util.Hashtable

getRequestURL() Method
public static java.lang.StringBuffer
 getRequestURL(HttpServletRequest request)
The getRequestURL() method takes a request object and reconstructs the URL used by the client to
make the request. getRequestURL() throws no exceptions.

Parameters
 HttpServletRequest

Returns
 java.lang.StringBuffer

 - 242 -

List of Figures
Chapter 1: JSP Overview: The Components of a JavaServer Page
Figure 1.1: Output of the JSP example.
Figure 1.2: The steps of a JSP request.
Chapter 2: Java Servlets
Figure 2.1: Execution of a Java servlet.
Figure 2.2: A high-level object model of the servlet framework.
Figure 2.3: A GenericServlet request.
Figure 2.4: An HttpServlet request
Figure 2.5: The BasicServlet HTML response page.
Figure 2.6: The BasicServlet depicted in the framework.
Chapter 4: JDBC and JSP Concepts
Figure 4.1: The two-tier JDBC model.
Figure 4.2: The three-tier JDBC model.
Figure 4.3: The Type 1 JDBC-ODBC Bridge.
Figure 4.4: The Type 2 Native-API JDBC driver.
Figure 4.5: The Type 3 JDBC-Net driver.
Figure 4.6: The Type 4 native-protocol JDBC driver.
Figure 4.7: The ODBC Administrator.
Figure 4.8: The Create New Data Source screen.
Figure 4.9: The ODBC Microsoft Access Setup screen.
Figure 4.10: The Movie Catalog database.
Chapter 5: Configuring the JSP Server
Figure 5.1: The Jakarta Project's homepage.
Figure 5.2: The Tomcat default page.
Figure 5.3: JSP Samples page.
Figure 5.4: The JSP Date page.
Chapter 6: Handling JSP Errors
Figure 6.1: Output of the testerror.jsp example.
Chapter 7: Using the include Directive
Figure 7.1: Output of the welcome.jsp example.
Chapter 8: JavaServer Pages and Inheritance
Figure 8.1: The output of SubclassJSP.jsp.
Chapter 9: Using the JSP's Implicit Objects
Figure 9.1: Output from UseRequest.jsp.
Figure 9.2: Output from UseSession.jsp.
Figure 9.3: Output from GetFromApplication.jsp.
Figure 9.4: Output from UseOut.jsp.
Chapter 10: Using JSP Standard Actions
Figure 10.1: The output from EmployeeInfo.jsp.
Figure 10.2: The output from UseForward.jsp.
Figure 10.3: The output from UseJSPPlugin.jsp.
Chapter 11: JSPs and JavaBean Scope
Figure 11.1: The output from PageBean.jsp.
Figure 11.2: The output from RequestBean1.jsp.
Figure 11.3: The output from SessionBean1.jsp.
Figure 11.4: The output from ApplicationBean1.jsp.
Chapter 12: JSP and HTML Forms
Figure 12.1: The output from CreateForm.jsp.
Figure 12.2: The output from RetrieveFormData.jsp.
Chapter 13: JSP and a Shopping Cart
Figure 13.1: The output of AddToShoppingCart.jsp.
Figure 13.2: The output of ShoppingCart.jsp.
Chapter 14: JSP and a JDBC Connection Pool Bean
Figure 14.1: Output of the JDBCPooledExample.jsp.

 - 243 -

Chapter 15: JSP and XML
Figure 15.1: The XML document tree structure.
Figure 15.2: Output from XMLExample.jsp.
Chapter 16: JSP Communication with Servlets
Figure 16.1: The steps in a server-side MVC.
Figure 16.2: Output from AddToShoppingCartMVC.jsp.
Figure 16.3: Output from ShoppingCartMVC.jsp.
Chapter 17: JSP and JavaMail
Figure 17.1: Output of the MailForm.html.
Chapter 18: The javax.servlet.jsp Package
Figure 18.1: javax.servlet.jsp object model.
Chapter 19: The javax.servlet.jsp.tagext Package
Figure 19.1: The javax.servlet.jsp.tagext object model.
Chapter 20: The javax.servlet Package
Figure 20.1: The javax.servlet object model.
Chapter 21: The javax.servlet.http Package
Figure 21.1: The javax.servlet.http object model.

List of Tables
Chapter 1: JSP Overview: The Components of a JavaServer Page
Table 1.1: The Attributes for the page Directive
Table 1.2: The Attributes for the taglib Directive
Table 1.3: The Attributes for the <jsp:include> Action
Table 1.4: The Attribute for the <jsp:forward> Action
Table 1.5: The Attributes for the <jsp:param> Action
Table 1.6: The Attributes for the <jsp:plugin> Action
Table 1.7: The JSP Implicit Objects
Chapter 3: JavaBeans and JSP Concepts
Table 3.1: The Attributes for the <jsp:useBean> Action
Table 3.2: The Attributes for the <jsp:setProperty> Action
Table 3.3: The Attributes for the <jsp:getProperty> Action
Table 3.4: The scope Values for the <jsp:useBean> Action
Chapter 4: JDBC and JSP Concepts
Table 4.1: Titles Table Elements
Chapter 5: Configuring the JSP Server
Table 5.1: The PUREJSP Web Application Directories
Chapter 10: Using JSP Standard Actions
Table 10.1: The Attributes for the <jsp:param> Action
Table 10.2: The Attributes for the <jsp:include> Action
Table 10.3: The Attribute for the <jsp:forward> Action
Table 10.4: The Attributes for the <jsp:plugin> Action
Chapter 12: JSP and HTML Forms
Table 12.1: The Attributes for the <form> Tag
Table 12.2: The Attributes for the <input> Tag
Chapter 16: JSP Communication with Servlets
Table 16.1: The Classes of the MVC

List of Listings
Chapter 2: Java Servlets
Listing 2.1: BasicServlet.java Displays the Request Method Used by the Client
Listing 2.2: BasicServlet.html Displays the HTML Required to Invoke the Servlet Using the POST Method
Chapter 3: JavaBeans and JSP Concepts
Listing 3.1: SimpleJavaBean.java
Listing 3.2: SimpleJavaBeanTester.java

 - 244 -

Listing 3.3: Counter.java
Listing 3.4: BeanCounter.jsp
Chapter 4: JDBC and JSP Concepts
Listing 4.1: CreateTablesApp.java
Listing 4.2: InsertDataApp.java
Listing 4.3: SelectDataApp.java
Listing 4.4: UpdateDataApp.java
Listing 4.5: JDBCExample.jsp
Chapter 6: Handling JSP Errors
Listing 6.1: errorpage.jsp
Listing 6.2: testerror.jsp
Chapter 7: Using the include Directive
Listing 7.1: titlebar.jsp
Listing 7.2: welcome.jsp
Chapter 8: JavaServer Pages and Inheritance
Listing 8.1: PureJSPBase.java
Listing 8.2: SubclassJSP.jsp
Chapter 9: Using the JSP's Implicit Objects
Listing 9.1: UseRequest.jsp
Listing 9.2: UseSession.jsp
Listing 9.3: StoreInApplication.jsp.
Listing 9.4: GetFromApplication.jsp
Listing 9.5: UseOut.jsp
Chapter 10: Using JSP Standard Actions
Listing 10.1: header.jsp
Listing 10.2: EmployeeInfo.jsp
Listing 10.3: UseForward.jsp
Listing 10.4: SamsHome.jsp
Listing 10.5: MCPHome.jsp
Listing 10.6: Applet1.java
Listing 10.7: UseJSPPlugin.jsp
Chapter 11: JSPs and JavaBean Scope
Listing 11.1: Counter.java
Listing 11.2: PageBean.jsp
Listing 11.3: RequestBean1.jsp
Listing 11.4: RequestBean2.jsp
Listing 11.5: SessionBean1.jsp
Listing 11.6: SessionBean2.jsp
Listing 11.7: ApplicationBean1.jsp
Listing 11.8: ApplicationBean2.jsp
Chapter 12: JSP and HTML Forms
Listing 12.1: CreateForm.jsp
Listing 12.2: Company.java
Listing 12.3: RetrieveFormData.jsp
Chapter 13: JSP and a Shopping Cart
Listing 13.1: ShoppingCart.java
Listing 13.2: AddToShoppingCart.jsp
Listing 13.3: ShoppingCart.jsp
Chapter 14: JSP and a JDBC Connection Pool Bean
Listing 14.1: PooledConnection.java
Listing 14.2: ConnectionPool.java
Listing 14.3: TitlesList.jsp
Chapter 15: JSP and XML
Listing 15.1: item.xml
Listing 15.2: XMLTest.java
Listing 15.3: SAXHandler.java
Listing 15.4: XMLExample.jsp

 - 245 -

Chapter 16: JSP Communication with Servlets
Listing 16.1: AddToShoppingCartMVC.jsp
Listing 16.2: ShopController.java
Listing 16.3: ShoppingCartMVC.jsp
Chapter 17: JSP and JavaMail
Listing 17.1: SimpleSendMessage.java
Listing 17.2: MailForm.html
Listing 17.3: MailExample.jsp

	Cover
	Contents
	Introduction
	Part I: Conceptual Reference
	1. JSP Overview
	2. Java Servlets
	3. JavaBeans & JSP Concepts
	4. JDBC & JSP Concepts
	5. Configuring the JSP Server
	Part II: Techniques Reference
	6. Handling JSP Errors
	7. The "include" Directive
	8. JSP and Inheritance
	9. JSP Implicit Objects
	10. JSP Standard Actions
	11. JavaBean Scope
	12. HTML Forms
	13. Shopping Cart
	14. JDBC Connection Pool Bean
	15. XML
	16. JSP-Servlet Communcation
	17. JavaMail
	Part III: Syntax Reference
	18. javax.servlet.jsp
	19. javax.servlet.jsp.tagext
	20. javax.servlet Package
	21. javax.servlet.http Package
	List of Figures
	List of Tables

