
Programming Jakarta Struts
By Chuck Cavaness

Table of Contents

Preface
The road to successful web applications is paved with the sweat and heartache of the many who came
before us. The idea of taking a rich client application and allowing it to execute over the Internet was a
great leap of faith, and maybe just a little shortsighted. By "web applications," I don't mean small,
trivial applications that accept a form or two of input and push it into a database; I mean large
applications that cross several tiers, use many different technologies, and cover the spectrum of
analysis and design-pattern uses.

The design and construction of these types of applications push developers to the limit of what's
logically and physically possible. Myriad solutions have been thrown at the problems these
applications present. Some of the solutions stuck, and some did not—and when a solution didn't serve
the needs of the users, it was obvious. But as with human evolution, the valuable characteristics
eventually were passed on, and the characteristics that failed to serve their intended purposes fell by
the wayside.

The user interface (UI) in Smalltalk-80™ was designed around the Model-View-Controller (MVC)
framework. Over time, this framework has been adopted as a classic design pattern and used in many
different scenarios. Other UI frameworks, such as the one written for Java™ Swing, use similar
concepts. The architects of the JavaServer Pages™ (JSP) specification formally introduced the
abstract idea of two types of models for web-based solutions: Model 1 and Model 2. The
distinguishing feature between the two is that Model 2 uses a separate component to handle the
controller responsibilities. This allows JSP to focus exclusively on rendering the view while using
JavaBeans™ as the model, thereby effectively becoming an abstract implementation of a web-based
MVC architecture.

The Struts framework, created by Craig R. McClanahan and donated to the Apache Software
Foundation (ASF) in 2000, is an open source implementation of Model 2 ideas. This book covers
Version 1.1 of the Struts framework, but because backward compatibility was one of the design goals
of 1.1, 1.0 Struts developers also will find value in reading this book.

If you learn one thing from this book, it should be that frameworks such as Struts are a great time
investment. If you are building applications, web-based or not, you should be using at least one
framework, and as web frameworks go, Struts is one of the best.

Organization

This book begins with a preliminary discussion that lays the groundwork for the rest of the material.
This discussion will be a refresher for some and completely new for others. From there, we explore
the components of Struts's MVC implementation, including a look at the JSP custom tags that are
included as part of the framework. Then, to round out your understanding of the value of the Struts
framework, we look at several complicated but important topics related to building web-based
applications.

Chapter 1

This chapter discusses some preliminary concepts, such as the MVC pattern, Model 2, and the
idea of a software framework. Although many developers may already be familiar with some
or all of the ideas presented here, I wanted to ensure that all readers are starting from the same
place. The concepts presented in this chapter help to lay the foundation for the rest of the
book.

Chapter 2

The Struts framework is based on the Java Servlet technology and, to a lesser extent,
JavaServer Pages, and therefore is tightly coupled to a web container. For Struts developers,
understanding how the web container processes client requests is fundamental to
understanding the framework itself. This chapter discusses the components of the web
container and the responsibilities of each.

Chapter 3

This chapter provides an overview of the Struts framework; it does not attempt to cover all of
the features or go into significant depth. It emphasizes how all the pieces fit into the MVC
and Model 2 architecture presented in Chapter 1.

Chapter 4

The Struts framework uses two separate but somewhat related types of configuration files,
which must be configured properly before an application will function properly. Due to the
popularity and flexibility of XML, both types of configuration files are based on XML. This
chapter presents the syntax of the files.

Chapter 5

The Struts framework uses a servlet to process incoming requests; however, it relies on many
other components that are part of the controller domain to help it carry out its responsibilities.
This chapter takes in-depth look at the components that are responsible for the controller
functionality in the framework.

Chapter 6

This chapter introduces the components that make up the model portion of a Struts
application. The model represents the business data for an application and should closely
resemble the real-world entities and business processes for the organization. This chapter
explores the roles and responsibilities of the model components within the Struts framework
and focuses on building an architecturally correct implementation for the Storefront
application. Special attention is given to using a persistence framework that can be integrated
into a Struts application easily and effortlessly.

Chapter 7

Chapter 7 introduces the components that make up the view portion of the Struts framework.
The framework uses the view components to render dynamic content for the client. Based
primarily on JavaServer Pages, the components provide support for internationalized

applications as well as for user-input acceptance, validation, and error handling, all of which
make it easier for the developer to focus on business requirements. This chapter concludes the
three-part discussion of how the Struts framework implements the MVC pattern.

Chapter 8

This chapter looks at the different categories of tags and how they can help make developing
applications with the Struts framework even easier. It is not meant to be an exhaustive
reference for every tag that's part of the Struts tag libraries—that information can be found
within the Struts user guide or JavaDocs. The real purpose of this chapter is to put forth the
benefits of using the Struts tag libraries and to provide a few strategies that can help make the
switch to using the tags less painful.

Chapter 9

One of the biggest advantages of using a framework is the ability to extend and customize it
based on the needs of the application. The Struts framework is no exception; it provides
several important extension points for developers. This chapter takes a quick glance at several
of those extension points and examines the benefits and drawbacks of extending the
framework.

Chapter 10

This chapter looks at how to use the Java exception-handling mechanism within your Struts
applications to make them more robust and allow them to respond gracefully when things
don't go as expected. Special attention is given to the differences between performing the
exception handling programmatically and using the new declarative feature added to the
Struts framework in Version 1.1.

Chapter 11

This chapter introduces the Validator framework, which was created specifically to work with
Struts components. The Validator allows you to declaratively configure validation routines
for a Struts application without having to program special validation logic.

Chapter 12

This chapter focuses on what it takes to make a Struts application available to customers from
around the world, regardless of their language or geographical location. As is often the case in
software development, planning ahead is the most important thing that you can do to help
ensure success. After reading this chapter, you should be able to build Struts applications that
can support a broad range of customers.

Chapter 13

Chapter 13 covers the issues you need to consider when developing an interface between your
Struts actions and an application tier. It focuses on interfacing to a model built using
Enterprise JavaBeans™ (EJB).

Chapter 14

This chapter looks at the Tiles framework, which now is part of the core Struts distribution.
The Tiles framework is an advanced templating framework that reduces the amount of
redundant code a web application contains and allows developers to better separate content
from layout.

Chapter 15

This chapter examines how the use of logging in your Struts applications can help you
identify defects before the applications get into production and, if your software already is
being used in production, how logging can help you identify problems and arrive at solutions
much more quickly.

Chapter 16

This chapter discusses the best practices for packaging and deploying a Struts application and
what it takes to automate the build process for your environment. Special coverage is given to
Ant, the Java-based build tool available from Jakarta.

Chapter 17

This chapter explores the performance implications of using the Struts framework and its
associated technologies to build web applications and discusses how certain design and
programming decisions affect the overall performance of the applications. It covers
performance, load, and stress testing, and the steps necessary to carry out each.

Appendix A

This appendix enumerates the new features within the 1.1 release.

Appendix B

This appendix discusses the steps for downloading and installing Struts in your environment.

Appendix C

This appendix lists several resources that can help increase your knowledge once you've
mastered the concepts in this book.

Conventions Used in This Book

The following font conventions are used in this book:

Italic is used for:

• Unix pathnames, filenames, and program names
• Internet addresses, such as domain names and URLs
• New terms where they are defined

Boldface is used for:

• Names of GUI items (window names, buttons, menu choices, etc.)

Constant width is used for:

• Command lines and options that should be typed verbatim
• Names and keywords in Java programs, including method names, variable names, and class

names
• XML element names and tags, attribute names, and other XML constructs that appear as they

would within an XML document

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, and additional information. You can
access this page at:

http://www.oreilly.com/catalog/jakarta/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

Acknowledgments

Writing a book of this type is never the work of just one person; it literally takes an army of hardened
soldiers, and this book is no exception. From the editors to the marketing organization to the reviewers
of the manuscript, this book simply would not have been possible without the group of dedicated folks
that gave up many of their nights and weekends to help ensure that the quality was the highest
possible. Any credit should be given to all of the great people involved; any mistakes are mine alone.

First, I need to thank my two O'Reilly editors, Brett McLaughlin and Robert Eckstein, two of the most
dedicated and sincere editors that I have worked with. I hope we have a chance to work together on
future projects. Your advice and leadership made the task much easier than I could have imagined. I
also would like to thank Kyle Hart from O'Reilly's marketing department. Your help was dearly
appreciated.

Next, I would like to acknowledge the team of fine developers that I first learned Struts with. The
bond that our little NV team had was something special that comes around only once in a while. I
really enjoyed working with all of you.

The following people played a special role by giving me advice on the book's content and direction:
Steve Ardis, Jill Entinger, See Yam Lim, and Ted Husted (although Ted may not realize that he
contributed in this way).

When I first decided to post the draft chapters of the book, I made a comment that if any reviewers
went beyond the call of duty, I would personally thank them in the acknowledgments of the book.
Little did I realize how many would take me up on it! There are so many that I can't thank each and
every one individually. Over 100 people contributed feedback for one or more chapters of this book.
The Struts community is by far one of the best. Almost every person on the Struts mailing list has
contributed in one way or another. To each of you, thank you!

Thanks to the following people: John Guthrie, David Karr, Brent Kyle, Stefano Scheda, and Rick
Reumann for asking all the right questions, Mark Galbreath for reminding me of my tenth-grade
English teacher, and James Mitchell and James Holmes for getting me involved with the Atlanta
Struts group.

I need to say a special thanks to Tim Drury for his help on Chapter 16 . His Ant skills are known
worldwide. Special thanks also to Brian Keeton, who wrote Chapter 13 because I'm too slow—he's the
smartest EJB developer I know. Both of you are great friends and simply the finest humans that I've
ever met. Just knowing you has made me a better person. I hope we can work together again.

The group at TheServerSide.com deserves special thanks from me and the reviewers for allowing the
draft chapters of this book to be available for download. This is a great example of what the future
holds for book publishing.

I would be remiss if I didn't thank the entire Struts community. I have met and corresponded with
many smart developers who also strike me as just really fun people to hang around with. The feedback
and suggestions I received during this process were awesome. I hope that all of you got some benefit
out of this, and I appreciate everyone's patience while some of this was figured out as I went.

Finally, all Struts developers should give thanks to Craig McClanahan for having the wits about him
to create the framework and make it freely available to the community. He could have tried to make a
profit from it by starting Struts, Inc., but he realized that he would be rewarded ten-fold anyway, and
I'm sure he has been. Craig, it's a nice framework, you should be proud. And to all of the committers
on the Struts project, what would it really be without you? Thanks for all of your help.

Chapter 1. Introduction
The Struts open source framework was created to make it easier for developers to build web
applications based on the Java Servlet and JavaServer Pages (JSP) technologies. Like a building, a
web application must have a solid foundation from which the rest of the structure can grow. The Struts

framework provides developers with a unified infrastructure upon which Internet applications can be
based. Using Struts as the foundation allows developers to concentrate on building the business
application rather than on the infrastructure.

The Struts framework was created by Craig R. McClanahan and donated to the Apache Software
Foundation (ASF) in 2000. The project now has several committers from around the world, and many
developers are contributing to the overall good of the framework. The Struts framework is one of
many well-known and successful Apache Jakarta projects. Others include Ant, log4j, and Tomcat. The
overall mission of the Jakarta project is to provide commercial-quality server solutions, based on the
Java platform, in an open and cooperative fashion.

1.1 A Brief History of the Web

No book on web technology would be complete without a brief look at how the World Wide Web
(WWW) has become as popular as it is today. The Web has come a long way since the days when the
first hypertext documents were sent over the Internet. In 1989, when the physicists at the CERN
laboratory proposed the idea of sharing research information between researchers using hypertext
documents, they had no idea how big the Web would grow or how essential it would become to daily
life for much of the industrialized world. The Web is now an accepted part of our vernacular.

It took a while for the benefits of using the Web to become clear to others outside of CERN, but as we
all know, it eventually erupted into what we use today. From its beginnings, the Web was designed for
dealing with static documents, but it was a natural progression to want the ability to generate
document content dynamically. The Common Gateway Interface (CGI) was created to do that very
thing. CGI is a standard that allows web servers to interact with external applications in such a way
that hypertext pages no longer have to be static. A CGI program can retrieve results from a database
and insert those results as a table in a hypertext document. Likewise, data entered into a hypertext
page can be inserted into the database. This technology opened up infinite possibilities and, in fact,
started the Internet craze of the mid-1990s and today.

Although CGI applications are very good at what they do, there are some serious limitations to this
approach. For one thing, CGI applications are very resource-intensive. A new operating system (OS)
heavyweight process is created to handle every request that comes from a browser. Once the CGI
script is finished executing, the process has to be reclaimed by the OS. This constant starting and
stopping of heavyweight processes is terribly inefficient. You can imagine how bad the response time
might be if hundreds of concurrent users were making requests to the same web application. Another
major limitation of CGI is that it's difficult to link to other stages of request processing, because it is
running in a separate process from the web server. This makes it difficult to handle things such as
authorization, workflow, and logging.

A few alternatives to standard CGI applications have been put forward. One alternative is FastCGI, a
language-independent extension to CGI that doesn't have the same process model as standard CGI. It's
able to create a single heavyweight process for each FastCGI program, allowing multiple requests to
run within the same process space. However, when clients interact concurrently with the same
FastCGI program, the program needs to create a pool of processes to handle each request. This is not
much better than standard CGI. Another problem with FastCGI applications is that they're only as
portable as the languages in which they are written. Other alternatives to CGI include mod_perl for
Apache, NSAPI for Netscape, and ISAPI for Microsoft's IIS web server. While these solutions often
offer better performance and scalability than standard CGI programs, they still have portability issues.

In 1997, while the Java language was experiencing tremendous growth and use by application
developers, the Java Servlet technology was created. This new web technology opened up an entirely
new avenue for web developers to explore.

1.2 What Are Java Servlets?

Java servlets have become the mainstay for extending and enhancing web applications using the Java
platform. They provide a component-based, platform-independent method for building web
applications. Servlets don't suffer from the same performance limitations that standard CGI
applications incur. Servlets are more efficient than the standard CGI threading model because they
create a single heavyweight process and allow each user request to use a much more lightweight
thread, which is maintained by the Java Virtual Machine (JVM), to fulfill the request. Multiple user
requests can be threaded through the same instance of a servlet. A servlet is mapped to one or more
uniform resource locators (URLs), and when the server receives a request to one of the servlet URLs,
the service method in the servlet is invoked and it responds. Because each user request is associated
with a separate thread, multiple threads or users can invoke the service method at the same time. This
multithreaded nature of servlets is one of the main reasons that they are more scalable than standard
CGI applications. Also, because servlets are written in Java, they are not proprietary to a platform or
OS.

Another significant advantage of being written in the Java language is that servlets are able to exploit
the entire suite of Java application programming interfaces (APIs), including Java DataBase
Connectivity™ (JDBC) and Enterprise JavaBeans (EJB). This was one of the factors in servlets
becoming part of the mainstream so quickly; there already was a rich Java library in place for them to
leverage.

Servlets are not executed directly by a web server. They require a servlet container, sometimes
referred to as a servlet engine, to host the servlet. This servlet container is loosely coupled to a
particular instance of a web server, and together they cooperate to service requests. Figure 1-1
illustrates how a web server and servlet container cooperate to service a request from a web browser.

Figure 1-1. Processing a client request

Developers are free to choose from one of many servlet containers available to host their servlets; they
are not locked into a particular vendor or platform. Servlets can be ported to any of these containers
without recompiling the source code or making any changes. This leads to a "best of breed" solution
for web applications—you get the best product or component for a specialized need, while at the same
time avoiding the high risk normally associated with a single solution.

There are several popular servlet containers on the market. Some are standalone servlet containers that
must be connected to an external web server to work, while others provide both the web server and

servlet container in the same product. There are even a few that are integrated into application servers
and provide much more functionality than just a servlet container. Table 1-1 lists some of the more
popular servlet containers. Some of the products are commercial products and some have a small or
insignificant cost to use.

Table 1-1. Popular servlet containers
Servlet container URL

Bluestone http://www.bluestone.com
Borland Enterprise Server http://www.inprise.com
iPlanet Application Server http://www.sun.com/software/iplanet/
Orbix E2A (formally iPAS) http://www.iona.com
Jetty http://www.mortbay.com
JRun http://www.macromedia.com/software/jrun/
Orion Application Server http://www.orionserver.com
Resin http://www.caucho.com
SilverStream http://www.silverstream.com
Apache Tomcat http://jakarta.apache.org/tomcat/
Weblogic Application Server http://www.bea.com
WebSphere http://www-4.ibm.com/software/webservers/appserv/
EAServer http://www.sybase.com

For a more complete listing of available servlet containers, visit Sun's servlet industry momentum web
site at http://java.sun.com/products/servlet/industry.html.

Although servlets are great at what they do, it quickly became apparent that hardcoding HyperText
Markup Language (HTML) output in a servlet as a response to a request had some serious limitations.
First and foremost, it was hard to make changes to the HTML because for every change, a
recompilation of the servlet had to take place.

Secondly, supporting different languages is difficult because the HTML is hardcoded. Determining
the user's language, region, and optional variant and then displaying the output is not easily
accomplished. Many web applications built with servlets avoid the entire issue of internationalization[1]
by having different servlets, one for each supported locale.

[1] Internationalization is commonly referred to as "I18N" because the word begins with the letter I, ends with
the letter N, and contains 18 characters in between.

Finally, because HTML was embedded within the servlet, there was a problem with responsibility.
Web designers build HTML pages; they are not usually experienced with Java programming, let alone
skilled at object-oriented design and programming. When you mix HTML and Java code within the
servlet, it becomes hard to separate the page design and programming duties. Even when a developer
has the necessary skills to perform both functions, modifications to the page layout require
recompilation, which adds to development and testing time.

Servlet programming is such a broad topic that it can't be covered in great detail here. If you feel that
you need more information on Java Servlet technology, a great source of material is Jason Hunter's

Java Servlet Programming (O'Reilly). You can also find more information at the Sun Servlet web site
(http://java.sun.com/products/servlet/index.html).

JavaServer Pages was the next step in the linear progression of developing web technologies based on
the Java platform. The introduction of JSP pages, as they are commonly referred to, helped to alleviate
the servlet limitations mentioned earlier and opened up many new doors for web developers.

1.3 JavaServer Pages

The first thing to understand about JavaServer Pages is that it's a natural extension to the Java Servlet
technology. In fact, after some preprocessing by a translator, JSP pages end up being nothing more
than Java servlets. This is a point that many beginning developers have a hard time understanding. JSP
pages are text documents that have a .jsp extension and contain a combination of static HTML and
XML-like tags and scriptlets. The tags and scriptlets encapsulate the logic that generates the content
for the pages. The .jsp files are preprocessed and turned into .java files. At this point, a Java compiler
compiles the source and creates a .class file that can be executed by a servlet container.

The translator that turns the .jsp file into a .java file takes care of the tedious work of creating a Java
servlet from the JSP page. Figure 1-2 illustrates how a JSP page is translated and compiled into a
servlet.

Figure 1-2. A JSP page is translated and compiled into a Java servlet

JSP technology has become an extremely popular solution for building web applications using the
Java platform. JSP offers several advantages over its competitors:

• JSP is a specification, not a product. Developers are able to choose a "best of breed" approach.
• JSP pages are compiled, not interpreted, which can lead to better performance.
• JSP pages support both scripting and access to the full Java language and can be extended

through the use of custom tags.
• JSP pages share the Write Once, Run Anywhere™ characteristics of Java technology.

As mentioned in the previous section, one of the limitations of using hardcoded HTML inside of
servlets is the problem of separating page design and application logic programming responsibilities.
This separation is easier with JSP pages, because the HTML designers are free to create web pages
with whatever tools they choose (many of today's popular tools are capable of working with JSP and

custom tags). When they are comfortable with the page layout, the JSP developers can insert JSP
scriptlets and custom tags and save the files with a .jsp extension. That's pretty much all there is to it.
When the time comes to change either the page layout or page logic, the developer modifies the JSP
page as needed and allows it to be recompiled automatically.

Together, JSP pages and servlets are an attractive alternative to other types of dynamic web
programming. Because both are based on the Java language, they offer platform-independence,
extensibility into the enterprise, and, most importantly, ease of development.

JSP Scriptlets or Tag Libraries?
Many developers believe custom tags, rather than scriptlets or expressions, should be used
in JSP pages. The rationale is:

• Scriptlets mix logic with presentation.
• Scriptlets break the separation of roles.
• Scriptlets make JSP pages difficult to read and maintain.

Custom tags, on the other hand, centralize code in one place and help maintain the
separation of responsibilities. They also support the concept of reuse, as the same tag can be
inserted into multiple pages while the implementation resides in a single location. There
also is less redundancy and potential for copy-and-paste errors with custom tags.

1.4 JSP Model 1 and Model 2 Architectures

The early JSP specifications presented two approaches for building web applications using JSP
technology. These two approaches were the JSP Model 1 and Model 2 architectures. Although these
terms are no longer used in the JSP specification, they still are widely used throughout the web tier
development community.

The two JSP architectures differ in several key areas. The major difference is in how and by which
component the processing of a request is handled. With the Model 1 architecture, the JSP page
handles all of the processing of the request and is responsible for displaying the output to the client.
This is illustrated in Figure 1-3.

Figure 1-3. JSP Model 1 architecture

Notice that there is no extra servlet involved in the process. The client request is sent directly to a JSP
page, which may communicate with JavaBeans or other services, but ultimately the JSP page selects
the next page for the client. The next view is determined based on either the JSP selected or
parameters within the client's request.

In contrast, in the Model 2 architecture, the client request is first intercepted by a servlet, referred to as
a controller servlet. This servlet handles the initial processing of the request and determines which
JSP page to display next. This approach is illustrated in Figure 1-4.

Figure 1-4. JSP Model 2 architecture

As shown in the figure, a client never sends a request directly to a JSP page in the Model 2
architecture. This allows the servlet to perform front-end processing, including authentication and
authorization, centralized logging, and help with internationalization. Once request processing has
completed, the servlet directs the request to the appropriate JSP page. How the next page is
determined varies widely across different applications. For example, in simpler applications, the next
JSP page to display may be hardcoded in the servlet based on the request, parameters, and current
application state. In more sophisticated web applications, a workflow/rules engine might be used.

As you can see, the main difference between the two approaches is that the Model 2 architecture
introduces a controller servlet that provides a single point of entry and encourages more reuse and
extensibility than the Model 1 approach. With the Model 2 architecture, there is a clear separation of
the business logic, presentation output, and request processing. This separation often is referred to as a
Model-View-Controller (MVC) pattern. While the Model 2 architecture might seem overly
complicated, it actually can simplify an application greatly. Web applications built using the Model 2
approach generally are easier to maintain and can be more extensible than comparable applications
built around the Model 1 architecture.

1.5 Why Is Model-View-Controller So Important?

The MVC architectural pattern is not directly related to web applications. In fact, it's quite common in
Smalltalk applications, which generally have nothing to do with the Web.

As we saw in the previous section, the Model 2 approach is concerned with separating responsibilities
in web applications. Allowing a JSP page to handle the responsibilities of receiving the request,
executing some business logic, and then determining the next view to display can make for an
unattractive JSP page, not to mention the maintenance and extensibility problems this entanglement
causes. Application development and maintenance are much easier if the different components of a
web application have clear and distinct responsibilities.

As an example, say you want to integrate security into your web site. Your first page, in this case,
usually is a login screen that collects and validates the username and password. This page then directs
the user to another screen that allows her to continue in a secure manner. However, as there is nothing
to prevent the user from going directly to a page, each page (in a non-MVC world) needs to be aware
of security. This can be accomplished by including a security check on every page, but that can be
unwieldy, especially if there are some pages that need to be secure and some that do not. In the MVC

world, the security is put inside the controller object. Because the interface to the customer is driven
through the controller object, there is a single entry point and a single location for the security checks
to be performed.

The MVC pattern is categorized as a design pattern in many software design books. Although there is
much disagreement on the precise definition of the pattern, there are some fundamental ideas.

The MVC pattern has three key components:

Model

Responsible for the business domain state knowledge

View

Responsible for a presentation view of the business domain

Controller

Responsible for controlling the flow and state of the user input

With the MVC pattern, a form of event notification usually takes place to notify the view when some
portion of the model changes. However, because a browser in a typical web application has a stateless
connection, the notification from the model to the view cannot occur easily.[2] Of course, an
application could perform some type of push mechanism to push notification or data all the way to a
client, but this is overkill for most web applications. A user can close the browser at any time, and
generally no notification is sent to the server. A great deal of overhead is necessary to manage remote
clients from the server side. This type of behavior is not necessary for typical B2C and B2B web
applications.

[2] Web applications are considered stateless because the browser doesn't maintain a constant open
connection to the web server. However, a web application still may maintain session data for a user or even
store data within the browser on behalf of the user.

With standard web applications, a client typically sends another request to the server to learn about
any changes to the model. This is known as a "pull" approach. For example, if a user is viewing
pricing information for an item and at the same time the administrator changes the price for that item,
the user will not know it changed until he refreshes the page.

1.5.1 The MVC Model

Depending on the type of architecture your application uses, the model portion of the MVC pattern
can take many different forms. In a two-tier application, where the web tier interacts directly with a
data store such as a database, the model classes may be a set of regular Java objects. These objects
may be populated manually from a ResultSet returned by a database query, or they may be
instantiated and populated automatically by an object-to-relational mapping (ORM) framework such
as TopLink or CocoBase.

In a more complex enterprise application (where the web tier communicates with an EJB server, for
example), the model portion of the MVC pattern will be Enterprise JavaBeans. Although the EJB 2.0
specification made performance improvements through the use of local interfaces, there still can be a

significant performance impact if the web tier attempts to use entity beans directly as the model
portion of the application, due to the overhead of making remote calls. In many cases, JavaBeans are
returned from session beans and used within the web tier. These JavaBeans, commonly referred to as
data transfer objects or value objects, are used within the views to build the dynamic content.

1.5.2 The MVC View

The views within the web tier MVC pattern typically consist of HTML and JSP pages. HTML pages
are used to serve static content, while JSP pages can be used to serve both static and dynamic content.
Most dynamic content is generated in the web tier. However, some applications may require client-
side JavaScript. This does not interfere with or infringe upon the MVC concept.

HTML and JSP are not the only choice for the view. You easily can support WML, for example,
instead of HTML. Because the view is decoupled from the model, you can support multiple views,
each for a different client type, using the same model components.

1.5.3 The MVC Controller

The controller portion of the web tier MVC design generally is a Java servlet. The controller in a web
tier application performs the following duties:

1. Intercepts HTTP requests from a client
2. Translates each request into a specific business operation to perform
3. Either invokes the business operation itself or delegates it to a handler
4. Helps to select the next view to display to the client
5. Returns the view to the client

The Front Controller pattern, which is part of the Java 2 Platform, Enterprise Edition (J2EE) Design
Patterns (found at http://java.sun.com/blueprints/patterns/index.html), describes how a web tier
controller should be implemented. Because all client requests and responses go through the controller,
there is a centralized point of control for the web application. This helps when adding new
functionality. Code that would normally need to be put in every JSP page can be put in the controller
servlet, which processes all the requests. The controller also helps to decouple the presentation
components (views) from the business operations, further aiding development.

1.6 What Is a Framework?

I have been using the term framework in this chapter without having defined what exactly it is, or how
it adds value in software development. In its simplest form, a framework is a set of classes and
interfaces that cooperate to solve a specific type of software problem. A framework has the following
characteristics:

• A framework comprises multiple classes or components, each of which may provide an
abstraction of some particular concept.

• The framework defines how these abstractions work together to solve a problem.
• Framework components are reusable.
• A framework organizes patterns at a higher level.

A good framework should provide generic behavior that many different types of applications can
make use of.

There are many interpretations of what constitutes a framework. Some might consider the classes and
interfaces provided by the Java language a framework, but these are really a library. There's a subtle,
but very important, difference between a software library and a framework. A software library
contains functions or routines that your application can invoke. A framework, on the other hand,
provides generic, cooperative components that your application extends to provide a particular set of
functions. The places where the framework can be extended are known as extension points. A
framework commonly is referred to as an "upside-down" library because of the alternate manner in
which it operates. Figure 1-5 illustrates the subtle differences between frameworks and software
libraries.

Figure 1-5. A framework and a library are not the same thing

1.7 Creation of the Struts Framework

The Struts framework was created by Craig R. McClanahan and donated to the ASF in 2000. Craig is
deeply involved in the expert groups for the Servlet and JSP specifications and wrote a large portion
of the Tomcat 4.0 implementation. He also speaks at various conferences, including JavaOne and
ApacheCon.

Several committers[3] have joined the Struts project, and even more developers have volunteered their
time and effort to improve it and increase its value. As a result, the framework has gone through
several beta releases and a few general availability (GA) releases, and although many new features
have been added, the framework hasn't strayed far from its core ideas.

[3] A committer is a developer who provides expert direction and advice to steer the Struts framework on the
correct course. A committer has the ability to modify the source code repository and can cast votes that
affect the future of the framework.

1.7.1 Contribution to the Struts Project

The Struts group always welcomes new participants. To become a contributor, it's recommended that
you first join the Struts User mailing list. If you like what you see there, take a look at the Struts
Developers mailing list. This is the best way to get started and become familiar with the direction of
the project. You should read the mailing list guidelines, at http://jakarta.apache.org/site/mail.html,
before joining. You can then join one or more of the Jakarta Project's mailing lists, including those for
Struts, from the URL http://jakarta.apache.org/site/mail2.html.

The main project web site for Struts is located at http://jakarta.apache.org/struts/. For more
information on downloading and installing Struts, see Appendix B.

1.8 Alternatives to Struts

Before we get too far into our discussion of the Struts framework, this section will briefly introduce
some alternatives to Struts. Because versions and features may change with each new release, you
should conduct your own research. This list of alternatives is by no means exhaustive, but it will
provide you with a launching pad. I could have saved this section for the end of the book, but I wanted
to familiarize you with some other frameworks so that you can compare them with Struts as you work
through this book.

Note that only solutions based on or around the Java platform are listed here. Microsoft also offers a
competing technology based on Active Server Pages (ASP). Although the goal of ASP is similar to
that of JSP, ASP and ASP+ are not discussed here—they're better left for a book on JSP and servlets.
Furthermore, the Struts framework goes well beyond what is offered by JSP alone, and comparing
ASP or other similar technologies to Struts wouldn't make sense.

1.8.1 Building Your Own Framework

At first, it might seem strange to present building your own framework as an alternative to using
Struts. Why would you want to build frameworks from scratch, when they already exist in many
different forms? The answer is the same reason that other open source or commercial products are
developed. The available selection of products just might not be close enough to your desired
framework, and it might be preferable to build it in-house.

The best advice I can give regarding building your own framework is to ask yourself several questions:

1. Have I taken the time to inspect what's available and build a prototype using an available
framework?

2. What does my application need that doesn't exist in one of the available frameworks?
3. Can I extend an existing framework to suit my needs or find what I need at another source

and add it?
4. Do I know enough about building this type of framework to be able to meet my requirements?

Depending on the honest answers to these questions, you might find that building your own
framework isn't the best decision. A good guideline to which many in the software-development
industry subscribe is that if it pertains to your core business, you should build it in-house, but if the
software component is not directly related to your core business, it might be wise to get it elsewhere.
Play to your team's strengths and minimize its weaknesses.

1.8.2 Barracuda

The Barracuda presentation framework is a type of Model 2 architecture similar to Struts, but it goes a
step further and provides a model event-notification mechanism. Unlike a strictly JSP approach, the
Barracuda framework has created a template engine component, which is supposed to allow for more
flexibility and extensibility. The framework leverages code-content separation provided by the XMLC
approach of creating user interfaces. XMLC is a Java-based compiler that uses either an HTML or
XML document and creates Java classes that can recreate the document when executed. The generated
Java classes can be used to insert dynamic content into the document at runtime by manipulating
Document Object Model (DOM) interfaces. The separation of markup and application logic allows
web designers to focus on markup and programmers to focus on coding.

The one downside to using a framework like this one is that it may have a steeper learning curve for
developers. The use of XMLC and the fact that Java classes are created from HTML or XML
documents may confuse less experienced developers.

Version 1.0 of the Barracuda framework was released recently. You can find more information on the
Barracuda presentation framework at http://barracuda.enhydra.org.

1.8.3 Cocoon

Stefano Mazzocchi founded the Cocoon project in January 1999 as an open source project under the
ASF. The goal of Cocoon is to help separate the content style, logic, and management functions for
XML-based web sites. Cocoon leverages XML, Extensible Stylesheet Language Transformations
(XSLT), and Simple API for XML (SAX) technologies to help create, deploy, and maintain XML
server applications. Cocoon currently is at Release 2.0. Most types of data sources, including RDBMS,
LDAP, and File Systems, are supported. More information on Cocoon can be found at
http://xml.apache.org/cocoon/.

1.8.4 Expresso

The Expresso framework from Jcorporate is an application development framework that provides a
component framework for developing database-driven web applications. The Expresso framework can
be integrated into Struts and adds capabilities for security, object-to-relational mapping, background
job handling and scheduling, and many other features. Expresso is more of a companion product to
Struts than a competitor. It is currently at Release 4.0. More information on the Expresso framework
can be found at http://www.jcorporate.com.

1.8.5 Freemarker, Velocity, and WebMacro

These three products are grouped together because they all represent similar types of template engines.

Freemarker is an open source HTML template engine for Java servlets. With Freemarker, you store
the HTML in templates, which eventually get compiled into template objects. These template objects
then generate HTML dynamically, using data provided by servlets. Freemarker uses its own template
language and claims speeds approaching those of static HTML pages. The software is free and
licensed under the GNU Library Public License. It currently is at Release 2.0. You can find more
information about Freemarker at http://freemarker.sourceforge.net.

Velocity is another Jakarta project like Struts. It is a Java-based template engine that is similar in
many ways to Freemarker, but it is capable of more than just creating dynamic content for web sites.
Velocity can generate SQL, PostScript, and XML from templates, for example, and can be used either
as a standalone utility for generating source code and reports or as an integrated component of other
systems. Velocity also provides template services for the Turbine web application framework. Many
other frameworks either support the Velocity scripting syntax or actually depend on it. For more
information on Velocity, go to http://jakarta.apache.org/velocity/.

WebMacro is an open source Java servlet framework used by several large web sites. The WebMacro
framework uses a lightweight scripting language that allows separation of how a page looks from the
page logic. WebMacro can be run in standalone mode or with a servlet container. It currently is at
Release 1.0. More information about WebMacro can be found at http://www.webmacro.org.

1.8.6 Maverick

The Maverick MVC framework offers the ability to render views using JSP, the Velocity scripting
language, or XSLT. Maverick is an MVC-type architecture, but it actually provides a view template
mechanism. One neat feature of Maverick is that it can use reflection on JavaBeans in the presentation
layer to create a DOM interface, so no XML generation or parsing is required. This allows for a little
less clutter and probably better performance when using XSLT to generate the views. You can find
more information on the Maverick framework at http://mav.sourceforge.net.

1.8.7 SiteMesh

SiteMesh is a web page layout and integration system that makes it easier to create web sites that need
a consistent look and feel. SiteMesh intercepts requests to any web page, whether it's static or
dynamically generated, parses the content, and generates a final page. This process is based on the
well-known Decorator pattern.[4]

[4] The Decorator pattern is a structural design pattern mentioned in the book Design Patterns (Addison
Wesley), by Gamma, Helm, Johnson, and Vlissides, affectionately known as the "gang of four."

SiteMesh is built with Servlet, JSP, and XML technologies, which makes it appropriate for J2EE
applications. However, it also claims to be easy to integrate with other web technologies, such as CGI.
More information on SiteMesh can be found at http://www.opensymphony.com/sitemesh/.

1.8.8 Jakarta Turbine

Turbine is a servlet-based framework and an open source Jakarta project. Currently, there isn't a great
deal of documentation for Turbine, but it seems to be similar to Struts, with a few major differences.
For one thing, it doesn't seem to be coupled to JSP. The focus of Turbine appears to be to provide a
collection of reusable components. A large set of components is included with the framework, but
they are quite disparate. It seems to present more of a component library, but as it's lacking
documentation, it's hard to get a good feel for the complete architecture. More information on Turbine
can be found at http://jakarta.apache.org/turbine/.

1.8.9 WebWork

WebWork is a small web application framework that uses the Pull Hierarchical Model View
Controller (HMVC) design. With a standard MVC design, changes made to the model are pushed to
the view. In the case of WebWork, the views pull the data when they need it. Interestingly, WebWork
doesn't seem to be tied to a servlet; therefore, it can support other types of clients such as Swing. More
information on the WebWork framework can be found at http://sourceforge.net/projects/webwork/.

1.8.10 JavaServer Faces

At the time of this writing, there is a Java Specification Request (JSR) to create a new Java technology
called JavaServer Faces . The specification defines the architecture and a set of APIs for the creation
and maintenance of Java server web applications. The idea is to create a standard set of JSP tags and
Java classes to help developers create complex HTML forms and other graphical user interface (GUI)
components based on the Servlet and JSP technologies. I18N and input validation seem to be big parts
of the intended support.

JavaServer Faces will be a specification defining a set of standard APIs, not an actual implementation.
Vendors will be able to create their own implementations, so developers will have more than one
implementation to choose from.

The JSR indicates that the creators of JavaServer Faces are aware that other projects, such as Struts,
already have addressed many of the problems that this specification attempts to solve. The JSR is
aimed at creating a standard that will help unify this fragmented area. Keep your eye on this
specification, as it may have a huge impact on Struts and the entire web application area as a whole.

Recently, Craig McClanahan has been appointed as specification lead for JavaServer Faces. This
surely will help ensure a smooth transition for the Struts framework. More information on the
specification can be found at http://www.jcp.org/jsr/detail/127.jsp.

Chapter 2. Inside the Web Tier
This chapter discusses the relationship between the architectural tiers and their roles in an application.
Special attention is given to the web tier, which allows an application to communicate and
interoperate with clients over the Web. In particular, this chapter focuses on the physical and logical
aspects of designing and using a web tier for your applications.

The Struts framework is based on the Java Servlet technology and, to a lesser extent, JavaServer Pages,
and therefore is dependent on a web container. For Struts developers, understanding how the web
container processes client requests is fundamental to a deeper understanding of the framework itself.
This chapter illustrates the various components that are part of the web container and discusses each
component's responsibilities.

2.1 An Architecture Overview

This section presents a high-level architectural view of a Struts application. Although this section
shows an architecture for an enterprise application, not all applications written using Struts will be of
this size and makeup. However, this type of application does allow us to present many facets of how
Struts applications may be configured.

Many applications—especially J2EE applications—can be described in terms of their tiers. The
application's functionality is separated across these tiers, or functional layers, to provide separation of
responsibility, reusability, improved scalability, and many other benefits. The separation of tiers may
be a physical separation where each is located on a separate hardware resource, or it may be purely
logical. In the latter case, one or more tiers are collocated (i.e., arranged or grouped together) on the
same hardware resource, and the separation exists in terms of software. Figure 2-1 illustrates the tiers
that may be used by a typical Struts application.

Figure 2-1. Functional application tiers

Not every Struts application will contain all of the tiers illustrated in Figure 2-1. For many smaller
applications, the middle tier may consist primarily of a web container that interacts directly with a
database in the enterprise information system (EIS) tier.

What Is a Container?
There are many different types of containers—EJB containers, web containers, servlet
containers, and so on. In general, containers provide a hosting environment for software
components to run in. Containers provide general services that the components within the
environment can use, so that the component developers don't have to worry about providing
these services. A web container allows servlets, JSP components, and other Java classes to
be deployed and executed within the container. Services such as the Java Naming and
Directory Interface (JNDI), connection pooling, and transaction services can be configured
at the container level—similar to the way in which EJB containers manage security,
transactions, and bean pooling—and the component developers don't have to worry about
managing these resources.

When using the services provided by a container, component developers may have to give
up some control of the environment to the container. Third-party vendors, who must follow
certain guidelines that are explicitly laid out in public specifications, build these containers.
Although each vendor is allowed to implement certain portions of the container in a
proprietary manner, they must follow the specifications to ensure that applications are
portable.

2.1.1 The Client Tier

The client tier provides a way for users to interact with the application. This interaction may be
through a web browser, or it may be programmatic, through a web services interface. Regardless of
the type of client, the interaction includes submitting a request and receiving some type of response
from the middle tier.

In the case of the Struts framework, the most common type of client is a web browser. However, it is
also possible to have clients such as wireless devices and Java applets.

2.1.2 The Web Tier

Figure 2-1 shows the middle tier as an aggregate of the web tier plus some type of application server
component (in this case, an EJB container). These two tiers often are combined, and many application
servers include web tier functionality.

The web tier allows the client tier to communicate and interact with application logic that resides in
other tiers. In more traditional web applications, it's not uncommon for some or all of the application
logic to reside in this tier. In larger, enterprise-scale applications, the web tier acts as a translator and
maps HTTP requests into service invocations on the middle tier.

The web tier also is responsible for managing screen flow based on application and user state. The
web tier communicates with either a database or, in the case of an enterprise application, an
application server. The web tier is the glue that binds client applications to the core backend business
systems.

The components that reside in the web tier allow developers to extend the basic functionality of a web
service. In the case of Struts, it does this through framework components that run in a servlet container.

2.1.3 The Middle Tier

The middle tier is often referred to as the " application tier" or "server." This is due in part to the fact
that there is often an application server within this tier. Not all Struts applications have an application
tier. This is especially true for small web applications—many small projects forgo using a large
application server and communicate directly with a database or some other data store. When an
application server is present, the web tier communicates with it using some variation of Remote
Method Invocation (RMI). If an EJB server is present in the application tier, the communication
protocol is RMI over IIOP (Internet Inter-ORB Protocol).

RMI over IIOP
Remote Method Invocation (RMI) allows methods to be invoked on remote objects. Java's
implementation of RMI, known as the Java Remote Method Protocol (JRMP), has been
around for quite some time and is specifically designed for Java-to-Java remote
communications.

One of the issues with JRMP is that a JVM must be running on both the client and the
server. With the number of so-called legacy applications that are written in languages such
as C++, Java needed a way to communicate with these systems. This is where RMI over
IIOP helps out.

The Internet Inter-ORB Protocol (IIOP) was designed to allow distributed components to
communicate with one another using TCP/IP. IIOP is language- and platform-independent.

By using RMI on top of IIOP, Java can communicate with applications written in many
other languages and on various platforms. RMI/IIOP, as it often is written, is required to be
supported by all EJB servers and exists in the EJB and J2EE specifications.

When included, the application tier might provide a more scalable, fault-tolerant, and highly available
architecture. One of the main purposes of using an application tier is to separate the responsibilities of

presentation from those of the model and the business rules for the application. Today, many web
applications use EJB servers for their application tiers. They may not use all available aspects of the
J2EE architecture, such as EJBs, but there are other benefits that can be leveraged from a J2EE server.

2.1.4 The Enterprise Information System Tier

The EIS tier contains data and services that are used throughout the enterprise. It provides access to
enterprise resources such as databases, mainframes, customer relationship management (CRM)
applications, and resource-planning systems.

The middle tier communicates with components in the EIS tier using resource-specific protocols. For
example, to communicate with a relational database, the middle tier normally will use a JDBC driver.
For enterprise resource planning (ERP) systems, a proprietary adapter is used, although some ERP
systems and other enterprise resources are starting to support a more web service-like access approach.

2.1.5 Where Does Struts Fit In?

As illustrated in Figure 2-2, the Struts framework resides in the web tier. Struts applications are hosted
by a web container and can make use of services provided by the container, such as handling requests
via the HTTP and HTTPS protocols. This frees developers to focus on building applications that solve
business problems.

Figure 2-2. The Struts framework is used within the web tier

2.2 The HTTP Request/Response Phase

To better illustrate how the web server and servlet container work together to service clients, this
section discusses the protocol for an HTTP request and response, from the time a client request is
received until the server returns a response. Struts makes heavy use of the request and response
objects, and a complete understanding of the round-trip process will help clarify some topics discussed
later in the book.

Although the browser is not the only type of client that can be used with Struts,
it certainly is the most common. More and more developers are starting to use
Struts for wireless applications and even some interaction with web services,
but the web browser remains the predominant client.

HTTP is based on a request/response model, so there are two types of HTTP messages: the request
and the response. The browser opens a connection to a server and makes a request. The server
processes the client's request and returns a response. Figure 2-3 illustrates this process.

Figure 2-3. The HTTP request/response model

Both types of messages consist of a start line, zero or more header fields, and an empty line that
indicates the end of the message headers. Both message types also may contain an optional message
body.

The format and makeup of the request and response messages are very similar, but there are a few
differences. We'll discuss each type of message separately.

2.2.1 The HTTP Request

The start line of an HTTP request is known as the request line. It's always the first line of the request
message, and it contains three separate fields:

• An HTTP method
• A universal resource identifier (URI)
• An HTTP protocol version

Although there are several HTTP methods for retrieving data from a server, the two used most often
are GET and POST . The GET method requests from the server the resource, indicated by the request
URI. If the URI points to a data-producing resource such as a servlet, the data will be returned within
the response message. Although the GET message can pass information in the query string, the POST
method is used to explicitly pass to the server data that can be used for processing by the request URI.

The URI identifies the resource that should process the request. For the purposes of this discussion, it
can be either an absolute or a relative path. A request with an invalid URI will return an error code
(typically 404).

The HTTP request protocol version identifies to the server which version of the HTTP specification
the request conforms to. The following example illustrates the request line for a sample GET request:

GET /index.html HTTP/1.0

You can execute this example by opening up a Telnet session to a server running a web server. You
must specify the hostname and port number of the web server. For example:

telnet localhost 80

Then type the GET command. You will need to press Enter twice after issuing the command: once for
the end of the request line and again to let the server know you are finished with the request.
Assuming there's a file called index.html in the root directory, the HTML response will be returned.
(Actually, you will always see a response—it just may not be the one that you expected.) We'll talk
more about using Telnet to interact with a web server when we discuss redirects and forwards later in
this chapter.

As mentioned earlier, the HTTP request may contain zero or more header fields. Request header fields
allow the client to pass to the server additional information about the request and the client itself. The
format of a header field, for both the request and the response, is the name of the header field,
followed by a colon (:) and the value. If multiple values are specified for a single header field, they
must be separated with commas. Table 2-1 lists some of the more commonly used request headers.

Table 2-1. Common HTTP request header fields
Name Purpose

Accept
Indicates the media types that are acceptable for the response. If no Accept header
field is present, the server can safely assume that the client accepts all media types.
An example of an Accept header value is "image/gif, image/jpeg".

Accept-
Charset

Indicates what character sets are acceptable for the response. If the Accept-
Charset header is not present in the request, the server can assume that any
character set is acceptable. The ISO-8859-1 character set can be assumed to be
acceptable by all user agents.

Accept-
Encoding

Similar to the Accept header field, but further restricts the content-encoding
values that are acceptable by the client. An example of an Accept-Encoding
header value is "compress, gzip".

Accept-
Language

Indicates which languages the client would prefer the response to be in. An example
of an Accept-Language header value is "en-us, de-li, es-us".

Content-
Encoding

Indicates what encoding mechanism has been applied to the body of the message
and, therefore, what decoding mechanism must be used to get the information. An
example of a Content-Encoding header value is "gzip".

Content-
Type

Indicates the media type of the body sent to the recipient. An example of a
Content-Type header value is "text/html; charset=ISO-8859-1".

Host
Indicates the hostname and port number of the resource being requested, as obtained
from the original URL. An example of a Host header value is
"www.somehost.com".

Referer
Allows the client to specify the address (URI) of the resource from which the request
URI was obtained. This header is used mainly for maintenance and tracking
purposes.

User-Agent

Contains information about the client that originated the request. This header is used
mainly for statistical purposes and tracing of protocol violations. An example of a
User-Agent header value is "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.0)".

The message body for a request is used to carry to the server data associated with the request. The data
included within the body is different from the values used by the header fields in terms of both format
and content. The header fields can be thought of as metadata about the message body.

2.2.2 The HTTP Response

Once the server has received and processed the request, it must return an HTTP response message to
the client. The response message consists of a status line and zero or more header fields, followed by
an empty line. It also may have an optional message body.

The first line of the HTTP response message is known as the status line. It consists of the HTTP
protocol version that the response conforms to, followed by a numeric status code and its textual
explanation. Each field is separated from the next by a space. An example response status line is
shown here:

HTTP/1.1 200 OK

The status code is a three-digit numeric value that corresponds to the result code of the server's
attempt to satisfy the request. The status code is for programmatic applications, while the text that
accompanies it is intended for human readers. The first digit of the status code defines the category of
the result code. Table 2-2 lists the allowed first digits and the corresponding categories.

Table 2-2. Status code categories
Numeric Value Meaning

100-199 Informational—The request was received and is being processed.
200-299 Success—The action was successfully received, understood, and accepted.
300-399 Redirection—Further action must be taken to complete the request.
400-499 Client Error—The request contains bad syntax or cannot be fulfilled.
500-599 Server Error—The server failed to fulfill an apparently valid request.

Quite a few status codes have been defined. They also are extensible, which allows applications to
extend the behavior of the server. If a client application doesn't recognize a status code returned by the
server, it can determine the general meaning of the response by using the first digit of the returned
status code. Table 2-3 lists some of the most common response status codes.

Table 2-3. Common HTTP response status codes
Code Meaning
200 OK—The request succeeded.

302
Moved Temporarily —The request resides temporarily at a different URI. If the new URI is a
location, the Location header field in the response will give the new URL. This code
typically is used when the client is being redirected.

400 Bad Request—The server couldn't understand the request due to malformed syntax.
401 Unauthorized—The request requires authentication and/or authorization.

403 Forbidden—The server understood the request but for some reason is refusing to fulfill it. The
server may or may not reveal why it is refusing the request.

404 Not Found—The server has not found anything matching the request URI.

500 Internal Server Error—The server encountered an unexpected condition that prevented it from
fulfilling the request.

The header fields in the response are similar in format to those found in the request message. They
allow the server to pass to the client additional information that cannot be placed in the status line.
These fields give information about the server and about further access to the URI contained within
the request. After the last response header, which is followed by an empty line, the server can insert
the response message body. In many cases, the response message body is HTML output. Figure 2-4
illustrates an example response to the following request:

GET /hello.html HTTP/1.0

Figure 2-4. An example HTTP response message

2.2.3 HTTP Versus HTTPS

You've probably noticed that the request and response message text shown in the previous examples
all have been standard readable text. This is fine when you don't need to protect the data; however,
you would never want to send confidential data in the clear. When you need to ensure the integrity and
privacy of information that is sent over a network, especially an open one like the Internet, one of the
options is to use the HTTPS protocol, rather than standard HTTP.

HTTPS is normal HTTP wrapped by a Secure Sockets Layer (SSL). SSL is a communication system
that ensures privacy when communicating with other SSL-enabled applications. It's really just a
protocol that runs on top of the TCP/IP layer. It encrypts the data through the use of symmetric
encryption and digital certificates. An SSL connection can be established between a client and server
only when both systems are running in SSL mode and are able to authenticate each other.

The fact that SSL encrypts the transmitted data has no impact on the underlying request and response
messages. The encryption and subsequent decryption on the other side occur after the message body is
constructed and is decoupled from the HTTP portion of the message.

2.3 Struts and Scope

The Struts framework uses various shared resource areas to store objects. The shared resource areas
all have a lifetime and visibility rule that defines the scope of the resource. This section discusses
these resources, their scopes, and how the framework uses them.

2.3.1 Request Scope

Each time a client issues an HTTP request, the server creates an object that implements the
javax.servlet.http.HttpServletRequest interface. Among other things, this
object contains a collection of key/value attribute pairs that can be used to store objects for the lifetime
of the request. The key of each pair is a String, and the value can be any type of Object. The
methods to store objects in and retrieve them from the request scope are:

public void setAttribute(String name, Object obj);
public Object getAttribute(String name);

Request-scope attributes can be removed using the removeAttribute() method; however,
because the scope of the attribute is only for the lifetime of the request, it is not as important to
remove them as it is for other scoped attributes. Once the server fulfills a request and a response is
returned to the client, the request and its attributes are no longer available to the client and may be
garbage-collected by the JVM.

The Struts framework provides the ability to store JavaBeans in a request, so that they can be used by
presentation components such as JSP pages. This makes it much easier to access JavaBeans data,
without having to do a manual cleanup of the objects later. There's seldom a need to remove objects
from request scope; the web container takes care of it for you. Objects stored at the request level are
visible only to resources that have access to that request. Once the response has been returned to the
client, the visibility is gone. Objects that are stored in one request are not visible to any other client
request.

2.3.2 Session Scope

The next-higher level of visibility is session scope. The web container creates an object that
implements the javax.servlet.http.HttpSession interface to identify a user across
multiple page requests. When the session is created depends on the application and the container
implementation. The user's session will persist for a period of time that is based on how often the user
makes requests. This allowed inactivity time is configurable through the application deployment
descriptor. It also can be destroyed prematurely by calling the invalidate() method on the
session object.

The session also allows for a collection of objects to be stored based on a key/value pair schema, as
with the request object. The only difference between this one and the one provided by the request is
the duration of the objects. Because sessions exist across multiple requests, objects stored in the
session scope live longer than those at the request level. The Struts framework uses session attributes
extensively. An example of an object that may be stored as a session attribute is the Locale object
for the user. This allows the entire framework access to the user's locale to perform localized behavior.
Objects stored in one user's session are not visible to users with a different session.

The web container provides no synchronization for objects stored in the
session. If multiple threads attempt to access an object stored in the session
and modify the value, it's up to the developer to provide synchronization.
Although the need to synchronize access to the session is quite low, the
developer is responsible for protecting the resources. For example, if your
application uses frames, or if you have a process that takes a long time to
complete, multiple threads might be accessing the session at the same time.

2.3.3 Application Scope

An even higher level of visibility and duration comes with objects stored at the application-scope level.
Application-scoped objects are visible to all clients and threads of the current web application. They
live until they are programmatically removed or until the application is terminated. The servlet
container creates an object that implements the javax.servlet.ServletContext
interface for each and every web application that is installed within the container. This is done when
the container is first started.

Beyond the scope for the request and session objects, the ServletContext allows application
objects to be stored and retrieved by the entire application and to persist for the lifetime of the
application. The Struts framework uses application scope to store JavaBeans that need to be visible to
all users. Normally, objects are stored in this scope during application startup and remain there until
the application exits.

2.3.4 Page Scope

The last scope we will discuss, page scope, has to do exclusively with JSP pages. Objects with page
scope are stored in the javax.servlet.jsp.PageContext for each page and are
accessible only within the JSP page in which they were created. Once the response is sent to the client
or the page forwards to another resource, the objects are no longer available.

Every JSP page has an implicit object reference named pageContext that can be used to store and
retrieve page-level objects. It includes the same getAttribute() and setAttribute()
methods that the other scopes offer, and they function in the same manner.

2.4 Using URL Parameters

URL parameters are strings that are sent to the server with the client request. The parameters are
inserted into the HttpServletRequest object from the URI query string and data that is sent in
a POST method. The parameters are formatted as key/value pairs and are accessed by applications as
request parameters. URL parameters play an important role in all web applications, and the Struts
framework is no exception.

Don't get request parameters confused with request attributes. Attributes are
objects that typically are inserted into the request so that they can be made
available to other servlets, such as JSP pages.

2.5 Forward Versus Redirect

It's often necessary for more than one component to share control of a request. For example, one
servlet may be responsible for authenticating and authorizing a client, while it's the job of a different
servlet to retrieve some data for the user. The sharing of a request can be accomplished in several
different ways.

There are important differences between how a web container processes a forward request versus how
it processes a redirect. The Struts front controller servlet, discussed in Chapter 1, will always perform

one or the other for a typical request, so it's important that you understand these differences and the
impact that each mechanism will have on your application.

2.5.1 Using a Redirect

When the sendRedirect() method is invoked, it causes the web container to return to the
browser a response indicating that a new URL should be requested. Because the browser issues a
completely new request, any objects that are stored as request attributes before the redirect occurs will
be lost. This is one of the biggest differences between a forward and redirect. Figure 2-5 illustrates
why this occurs.

Figure 2-5. A redirect causes the browser to issue a new request

Because of the extra round trip that occurs, a redirect is slower than a forward. Example 2-1 provides
an example servlet that performs a redirect for a JSP page called result.jsp when a request for the
servlet is issued.

Example 2-1. A Java servlet that performs a redirect when it receives a request
package com.oreilly.struts.chapter2examples;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.RequestDispatcher;

/**
 * Perform a redirect for the page "redirect.jsp"
 */
public class RedirectServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException{
 redirect(request, response);
 }

 public void doPost(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException{
 redirect(request, response);
 }
 /**
 * Set a few URL parameters and objects for the request to
see what happens
 * to them during a redirect.
 */
 protected void redirect(HttpServletRequest
req,HttpServletResponse resp)
 throws ServletException, IOException{
 log("A request arrived for " + req.getServletPath());

 // Put some objects into request scope
 req.setAttribute("firstName", "John");
 req.setAttribute("lastName", "Doe");

 String contextPath = req.getContextPath();
 String redirectStr = contextPath +
"/result.jsp?username=foo&password=bar";

 log("redirecting to " + redirectStr);

 // Always call the encodeRedirectURL() method when
perfoming a redirect
 resp.sendRedirect(resp.encodeRedirectURL(redirectStr));
 }
}

When the servlet in Example 2-1 receives either a GET or POST request, it calls the redirect()
method and passes to it the HttpServletRequest and HttpServletResponse objects.
The method sets two String objects into the request, to demonstrate that they will not be available
after the redirect, and it creates a String that will become the URL for which the client is told to
make a new request. After the encodeRedirectURL() method is called and passed the
redirect string, the sendRedirect() method is invoked on the response object.

All URLs passed to the sendRedirect() method should be run
through the encodeRedirectURL() method, so that the session ID
can be included if the browser doesn't support cookies and session tracking
needs to occur. The Struts framework performs this step automatically in the
RequestProcessor during normal action processing.

The JSP page to which the servlet will redirect is shown in Example 2-2.

Example 2-2. The result.jsp page

<html>
 <head>
 <title>Struts Redirect/Forward Example</title>
 </head>

<body>

 <%
 String firstName =
(String)request.getAttribute("firstName");
 if (firstName == null){
 firstName = "Not found in request";
 }

 String lastName = (String)request.getAttribute("lastName");
 if (lastName == null){
 lastName = "Not found in request";
 }
 %>

 First Name: <%=firstName%>

 Last Name: <%=lastName%>

</body>
</html>

When you enter the URL for this servlet
(http://localhost:8080/servlet/com.oreilly.struts.chapter2examples.RedirectServlet) in a browser, the
browser output will look like Figure 2-6.

Figure 2-6. The output page when the RedirectServlet is called

Notice that the first name and last name arguments that were set in the servlet were not found in the
request. This is because a second request actually was issued for this page. Fortunately, we can peek
behind the scenes and observe what's taking place.

The URL parameters username and password were included in this example
just to illustrate that they are still present after a redirect occurs. You should
never add confidential information such as passwords to the query string.

Let's look at the HTTP response that comes back to the client when the RedirectServlet is
requested. We can view the response using a standard Telnet session. An HTTP connection uses a
simple network socket to communicate with the server, so we can partially simulate the interaction
between a browser and a server using the Telnet application. You can establish a connection to a web
server using Telnet by connecting to the port on which the server is listening (usually port 80 or, in the
case of Tomcat, 8080):

telnet localhost 8080

You can do this from the command line, whether you're using a DOS shell or Unix. The Telnet
session will alert you if it's unable to connect to a server with the specified hostname and port number.

If a connection is established, the Telnet session will sit and wait for you to enter the HTTP request
information. The only information you are required to enter is the first line of the request, which tells
the server what resource the client wants. Each line in the request is a text line, separated by a newline
character. The request header ends with a blank line, so you actually have to press Enter twice to let
Telnet know you are done with the request. Figure 2-7 shows the HTTP response message Tomcat
returns when a request is made for the RedirectServlet resource.

Figure 2-7. Telnet can be used to inspect the HTTP response headers

In Figure 2-7, the first line of the request issues a GET and a path for a resource. The path is the
portion of the HTTP request that comes after the hostname and includes the preceding "/" character.
The "HTTP/1.0" string at the end of the GET request is the HTTP version protocol.

HTTP Version 1.1 added a number of optimizations over 1.0. However, there
are additional request headers that must be included in an HTTP 1.1 request,
which would make this example more complicated than necessary. Therefore,
1.0 was used to issue the request.

Everything after the first line is a response from the server. The entire HTML output at the bottom
comes from Tomcat; it indicates that the original request has performed a redirect and that the client
should request a new URL.

If you look at the Location response header, which is the third line in Figure 2-7, you can see that
the server has informed the client what the URL for the new request should be. Any URL parameters
attached to the original request will be present in the new request. When the browser issues the new
request, these parameters will be sent along with it. This technique of using Telnet provides a simple
way of interacting with a web server and viewing what responses it sends back to the client.

Hopefully, you now have a better understanding of how a redirect works. It should also be clear why
any objects placed into the original request are not available to the redirected resource. This will
become very important later, when we discuss the Struts framework.

Notice that in Example 2-1, the redirect string didn't explicitly contain the
hostname and port that the client needed to use for the new request. It's the job
of the servlet container to translate the relative URL to a fully qualified URL
for transmission back to the client.

2.5.2 Using a Forward

A forward differs from a redirect in several ways. When you invoke a forward for a request, the
request is sent to another resource on the server, without the client being informed that a different
resource is going to process the request. This process occurs completely within the web container, and
the client is never the wiser. Unlike with a redirect, objects can be stored in the request and passed
along for the next resource to use. Figure 2-8 illustrates the steps that take place when a request is
forwarded.

Figure 2-8. When a forward occurs, the client is not notified

Because a forward takes place completely on the server and there is no communication with the client,
the performance is better than with a redirect. However, there are some differences in how a forward
deals with relative URLs. Example 2-3 should make this clearer.

Example 2-3. A Java servlet that performs a forward when it receives a request
package com.oreilly.struts.chapter2examples;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;
import javax.servlet.RequestDispatcher;
/**
 * Perform a forward to the page "redirect.jsp"
 */
public class ForwardServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException{
 forward(request, response);
 }

 public void doPost(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException{
 forward(request, response);
 }
 /**
 * Set a few URL parameters and objects for the request to
see what happens
 * to them during a forward.
 */
 protected void forward(HttpServletRequest req,
HttpServletResponse resp)
 throws ServletException, IOException{
 log("A request arrived for " + req.getServletPath());

 // Put some objects into request scope
 req.setAttribute("firstName", "John");
 req.setAttribute("lastName", "Doe");

 String redirectStr =
"/result.jsp?username=foo&password=bar";

 this.log("forwarding to " + redirectStr);
 RequestDispatcher dispatcher =
req.getRequestDispatcher(redirectStr);
 dispatcher.forward(req, resp);
 }
}

When the servlet in Example 2-3 receives either a GET or POST request, it calls the forward()
method and passes the HttpServletRequest and HttpServletResponse objects to it.
As with the redirect example, two String objects are set into the request. However, in contrast with
the redirect example, the objects will be available after the forward. Next, the servlet creates a redirect
path to which the request will be passed. A RequestDispatcher is created, and the
forward() method is invoked on it. We'll use the same JSP page from Example 2-2. In the
browser, we enter a URL like

http://localhost:8080/servlet/com.oreilly.struts.chapter2examples.ForwardServlet. The browser output
should look similar to Figure 2-9.

Figure 2-9. The output page when the ForwardServlet is called

There are two things to note about Figure 2-9. The first is that the first and last name fields have
values. This is because the objects were placed into the request before the forward occurred, and
result.jsp was able to retrieve the values and use them in the page.

The second is the URL in the address bar. Notice that the URL back in Figure 2-6 showed the new
URL, whereas it didn't change in Figure 2-9. This shows further that the client is not aware that a
forward occurred—the browser was not notified that a different servlet handled the request.

The forward() method of the RequestDispatcher class can be
called only when no output has been committed to the client. Writing
something to the response object and then calling forward() may result in
an IllegalStateException being thrown by the container.

2.5.3 Which Is Best for Struts?

It's difficult to decree whether Struts applications should use redirects or forwards, as we haven't
discussed the framework yet. However, there are some key points about using each approach. Both
mechanisms have their pros and cons within Struts and web applications in general. For many
situations, a forward is recommended over a redirect, because objects that are stored in the request
scope are easily available to the presentation components. In fact, using a forward is the default for the
Struts framework. Another advantage of forwards is that they're much more efficient, as the client is
not required to issue a new request.

There are some situations, however, where a redirect is necessary or preferred over a forward. When
forwards are used, the URLs are not always consistent with the state of the client application. If the
browser's Refresh button is pressed, an incorrect request may occur. This problem will be explored
further in Chapter 5.

If you are using relative paths for images and other resources in your JSP pages, forwards can be
problematic. Because the browser has no indication that a forward has occurred, the relative paths will

be relative to the initial servlet, not to the JSP to which it was forwarded. As you'll see in Chapter 8,
the Struts framework provides a JSP custom tag that can help to alleviate the hassle associated with
this behavior.

Chapter 3. Overview of the Struts Framework
It's finally time to introduce the Struts framework. Familiarity with the material from the previous two
chapters will allow you to absorb the information here much faster. This chapter provides an overview
of the Struts framework. It does not attempt to cover all of its features or go into significant depth;
instead, it emphasizes how all the pieces fit into the MVC and Model 2 architecture presented in
Chapter 1.

The rest of the book will be spent pulling back the layers and uncovering the details of the framework,
expanding on the basic concepts and terminology introduced here. It is important that you have a firm
grasp of the fundamentals presented in this chapter—even if you are familiar with the basic concepts
of the Struts framework, you should read through this chapter before going on.

3.1 A Banking Account Example

This section introduces an online banking application that will be used to familiarize you with Struts.
The example presented here is not complete, but it provides an overview of the major components that
are present in all Struts applications and shows how those components fit together. A more
comprehensive and thorough shopping-cart example will be used throughout the rest of the book.

Most people are familiar with the concept of online banking, so we won't spend too much time
explaining the business requirements. In short, the online banking application will allow an end user to
log in to the financial institution's web site, view account information, and transfer funds from one
account to another (assuming the user has more than one account). The user must present a valid set of
credentials to enter the site—in this case, an access number and a personal identification number
(PIN).

If the user leaves one or both fields blank, the application will display a formatted message informing
the user that both fields are required. If the user enters values for both fields but the authentication
fails, the login screen will be redisplayed, along with a formatted error message informing the user
that the login has failed. Figure 3-1 shows the online banking login screen after an invalid login
attempt has been detected.

Figure 3-1. Login screen for the online banking application

If the proper credentials are entered for an account, the user is taken to the account information screen.
This screen shows all of the accounts that the user has with the financial institution, as well as the
current balance for each account.

For this example, we are not going to provide a robust, full-fledged security service and security realm.
Handling security in a web application can be complicated, and there's no reason to muddy the waters
with it at the moment. For the purposes of this chapter, we'll use a simple Java interface that contains a
single login() method to authenticate users. The authentication interface is shown in Example 3-
1.

Example 3-1. The IAuthentication interface used by the banking application
package com.oreilly.struts.banking.service;

import com.oreilly.struts.banking.view.UserView;
/**
 * Provides methods that the banking security service should
implement.
 */
public interface IAuthentication {
 /**
 * The login method is called when a user wants to log in to
 * the online banking application.
 * @param accessNumber- The account access number.
 * @param pin- The account private id number.
 * @returns a DTO object representing the user's personal
data.
 * @throws InvalidLoginException if the credentials are
invalid.
 */
 public UserView login(String accessNumber, String pin)
 throws InvalidLoginException;

}

The IAuthentication interface contains a very simple login() method, which takes the
accessNumber and pin from the login page. If the authentication is successful, a
com.oreilly.struts.banking.view.UserView object is returned. If the login is
unsuccessful, an InvalidLoginException is thrown.

The UserView is a simple JavaBean that can be stored within the user's session and used to display
customer-specific content in the application. Although it's not completely relevant to the current
discussion, the source listing for the UserView will be shown later in the chapter.

The com.oreilly.struts.banking.service.SecurityService class is shown
in Example 3-2. It implements the IAuthentication interface from Example 3-1 and allows the
application to authenticate users. We are not going to authenticate against a security realm for this
example, so the SecurityService class will contain hardcoded logic to authenticate users.

Example 3-2. The security service used by the example banking application
package com.oreilly.struts.banking.service;

import com.oreilly.struts.banking.view.UserView;
/**
 * Used by the example banking application to simulate a
security service.
 */
public class SecurityService implements IAuthentication {

 public UserView login(String accessNumber, String pin)
 throws InvalidLoginException {

 // A real security service would check the login against a
security realm.
 // This example is hardcoded to let in only 123/456.
 if("123".equals(accessNumber) && "456".equals(pin)){
 /* Dummy a UserView for this example.
 * This data/object would typically come from the
business layer
 * after proper authentication/authorization had been
done.
 */
 UserView userView = new UserView("John", "Doe");
 userView.setId("39017");
 return userView;
 }
 else {
 // If the login method is invalid, throw an
InvalidLoginException.
 // Create a msg that can be inserted into a log file.
 String msg = "Invalid Login Attempt by " + accessNumber
+ ":" + pin;

 throw new InvalidLoginException(msg);
 }
 }
}

For this example application, we will authenticate the user only if the accessNumber entered is
"123" and the pin entered is "456".

If the SecurityService were being used in a real application, it would
have to check the credentials against some type of security realm, such as a
relational database or an LDAP server.

Once the user has logged in successfully, she may perform one of three actions:

• View an account detail
• Transfer funds from one account to another (if the user has two or more accounts)
• Log out

Figure 3-2 shows the account information screen to which the user is taken after a successful login.
The user can view detailed information about an account by clicking on that account. Figure 3-3
shows the account detail screen for the checking account listed in Figure 3-2.

Figure 3-2. The account information screen

Figure 3-3. The account detail screen

The user also can transfer funds from one account to another by clicking on the Transfer button next
to the account from which she wants to transfer the funds. As the purpose of this chapter is to
familiarize you with the components of the Struts framework, not to teach you the correct
functionality of a web banking application, the funds-transfer functionality will not actually be
implemented here (feel free to implement it as a practical exercise if you'd like!). Finally, the user may
log out of the application altogether by clicking on the Logout button. When she does so, she will be
logged out of the application and returned to the login screen.

3.2 Looking at the Big Picture

Now that we have described the example application that will be the basis of this chapter's discussion,
it's time to start looking at how we can implement it using the Struts framework. Although Chapter 1
discussed the MVC pattern in the order of model, view, and then controller, it doesn't necessarily
make sense to follow that order as we explore the Struts components. In fact, it's more logical to cover
the components in the order in which the Struts framework uses them to process a request. Thus, we'll
discuss the components that make up the controller portion of the framework first.

3.2.1 The Struts Component Packages

The Struts framework is made up of approximately 300 Java classes, divided into 8 core packages
("approximately" is an appropriate term because the framework is continuously growing and being
shaped). In this chapter, we'll focus on only the top-level packages. Figure 3-4 shows the top-level
packages and their dependencies within the framework.

Figure 3-4. The eight top-level packages in the Struts framework

The validator package shown in Figure 3-4 does not represent the entire
set of classes and interfaces necessary for the Validator framework. These are
only the Struts-specific extensions necessary to use the Validator framework
with Struts.

The framework components are not arranged by what role they play in the MVC pattern—actually,
they are arranged a little haphazardly. You might have noticed this by some of the circular
dependencies shown in Figure 3-4. This has to do more with how fast the framework has evolved than
with poor decisions made by the designers. For example, the action package contains classes for
the controller, some that are used by the view domain, and even a few that probably would have been
better off in the util package. While it may be confusing at first, it's not that hard to get accustomed
to where everything is. Table 3-1 enumerates the top-level packages and provides brief descriptions of
their purposes. A few of these top-level packages also contain subpackages, which will be covered in
later chapters.

Table 3-1. Top-level packages in the Struts framework
Package

name Description

action Contains the controller classes, the ActionForm, ActionMessages, and
several other required framework components.

actions Contains the "out-of-box" Action classes, such as DispatchAction, that can
be used or extended by your application.

config Includes the configuration classes that are in-memory representations of the Struts
configuration file.

taglib Contains the tag handler classes for the Struts tag libraries.
tiles Contains the classes used by the Tiles framework.

upload Includes classes used for uploading and downloading files from the local filesystem,
using a browser.

util Contains general-purpose utility classes used by the entire framework.

validator
Contains the Struts-specific extension classes used by Struts when deploying the
validator. The actual Validator classes and interfaces are in the commons package,
separate from Struts.

Now that you have a feel for the packages that are contained within the framework, it's time to look at
the layers in the Struts architecture.

3.3 Struts Controller Components

The controller component in an MVC application has several responsibilities, including receiving
input from a client, invoking a business operation, and coordinating the view to return to the client. Of
course, the controller may perform many other functions, but these are a few of the primary ones.

For an application built using the JSP Model 2 approach, the controller is implemented by a Java
servlet. This servlet is the centralized point of control for the web application. The controller servlet
maps user actions into business operations and then helps to select the view to return to the client
based on the request and other state information. As a reminder, Figure 3-5 shows the figure used in
Chapter 1 to illustrate how this works.

Figure 3-5. The Struts framework uses a servlet as a controller

In the Struts framework, however, the controller responsibilities are implemented by several different
components, one of which is an instance of the
org.apache.struts.action.ActionServlet class.

3.3.1 The Struts ActionServlet

The ActionServlet extends the javax.servlet.http.HttpServlet class and is
responsible for packaging and routing HTTP traffic to the appropriate handler in the framework. The
ActionServlet class is not abstract and therefore can be used as a concrete controller by your
applications. Prior to Version 1.1 of the Struts framework, the ActionServlet was solely
responsible for receiving the request and processing it by calling the appropriate handler. In Version
1.1, a new class, called org.apache.struts.action.RequestProcessor , was
introduced to process the request for the controller. The main reason for decoupling the request
processing from the ActionServlet is to provide you with the flexibility to subclass the
RequestProcessor with your own version and modify how the request is processed.

For the banking application example, we will keep it simple and use the default ActionServlet
and RequestProcessor classes provided by the framework. For brevity in this chapter, we will
refer to these two components simply as "the controller." Chapter 5 describes in detail how these
classes can be extended to modify the default controller behavior and explains the roles and
responsibilities of each component.

Like any other Java servlet, the Struts ActionServlet must be configured in the deployment
descriptor for the web application. We won't go into detail about the deployment descriptor here,
though—it's covered in Chapter 4.

Once the controller receives a client request, it delegates the handling of the request to a helper class.
This helper knows how to execute the business operation associated with the requested action. In the
Struts framework, this helper class is a descendant of the
org.apache.struts.action.Action class.

Is the Action Part of the Controller or Model?
The various articles, tutorials, and other resources available on the Struts framework
disagree about whether the Action class is part of the controller or the model. The
argument for it being part of the controller is that it isn't part of the "real" business logic. If
Struts were replaced with an alternative framework, chances are the Action class would
be replaced with something else. Therefore, it really isn't part of the model domain, but
rather is tightly coupled to the Struts controller. It doesn't make sense to put business logic
into the Action, because other types of clients can't easily reuse it.

Another reason to consider the Struts Action class part of the controller is that it has
access to the ActionServlet, and therefore all of the controller resources, which the
model domain shouldn't know about. Hypothetically, the Action class's behavior could
have been left in the servlet, and the servlet would call the appropriate method on itself. If
this were the case, there would be no doubt about whether this was controller or model
functionality.

With all of that said, the Action class may invoke operations on the business model, and
many developers end up trying to insert too much of their business logic into the Action
classes. Eventually, the line becomes blurry. Perhaps this is why some developers consider
it part of the model. However, this book will take the approach that the Action class is
part of the controller.

3.3.2 Struts Action Classes

An org.apache.struts.action.Action class in the Struts framework is an extension of
the controller component. It acts as a bridge between a client-side user action and a business operation.
The Action class decouples the client request from the business model. This decoupling allows for
more than a one-to-one mapping between the user request and an Action. The Action class also
can perform other functions, such as authorization, logging, and session validation, before invoking
the business operation.

The Struts Action class contains several methods, but the most important is the execute()
method. Here is the method signature:

public ActionForward execute(ActionMapping mapping,
 ActionForm form,

HttpServletRequest request,

HttpServletResponse response)
 throws Exception;

The execute() method is called by the controller when a request is received from a client. The
controller creates an instance of the Action class if one doesn't already exist. The Struts framework
will create only a single instance of each Action class in your application. Because there is only
one instance for all users, you must ensure that all of your Action classes operate properly in a
multithreaded environment, just as you would do when developing a servlet. Figure 3-6 illustrates
how the execute() method is invoked by the controller components.

Figure 3-6. The execute() method is called by the controller

Although the execute() method is not abstract, the default implementation returns null, so you
will need to create your own Action class implementation and override this method.

There is some debate over how best to implement Action classes using
Struts. Whether you create a different Action class for each operation or put
several business operations in the same Action class is subjective, and each
approach has pros and cons.

In Chapter 5, we'll discuss an action provided by the Struts framework called
org.apache.struts.actions.DispatchAction . This action
gives you the ability to create a single Action class and implement several
similar operations, such as Create, Read, Update, and Delete (CRUD), within
it. This has the effect of creating a smaller number of Action classes, but it
might make maintenance a little more cumbersome.

For the banking application, we will create a unique Action class for each action that the user can
perform:

• Login
• Logout
• GetAccountInformation

• GetAccountDetail

Each of the banking Action classes will extend the Struts Action class and will override the
execute() method to carry out a specific operation. In Chapter 5, you'll learn that it's best to
create an abstract base Action class, which all of your other Action classes extend. The
application-specific base Action extends the Struts Action class and provides you with added
flexibility and extensibility by allowing common Action behavior to be handled by a single parent
class. For example, if you want to verify for each request that the user's session has not timed out, you
can put this behavior in the abstract base Action before calling the subclass. For the banking
application, however, things will be kept simple, and the actions will be direct descendants of the
Struts Action class.

The com.oreilly.struts.banking.action.LoginAction class is shown in
Example 3-3. It extends the Struts Action class and is invoked by the controller when a user
attempts to log in to the banking application.

Example 3-3. The LoginAction used by the banking application
package com.oreilly.struts.banking.action;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import com.oreilly.struts.banking.IConstants;
import com.oreilly.struts.banking.service.IAuthentication;
import com.oreilly.struts.banking.service.SecurityService;
import
com.oreilly.struts.banking.service.InvalidLoginException;
import com.oreilly.struts.banking.view.UserView;
import com.oreilly.struts.banking.form.LoginForm;
/**
 * This Action is called by the ActionServlet when a login
attempt
 * is made by the user. The ActionForm should be an instance
of
 * a LoginForm and contain the credentials needed by the
SecurityService.
 */
public class LoginAction extends Action {
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {

 // The ActionForward to return when completed

 ActionForward forward = null;
 UserView userView = null;

 // Get the credentials from the LoginForm
 String accessNbr = ((LoginForm)form).getAccessNumber();
 String pinNbr = ((LoginForm)form).getPinNumber();

 /*
 * In a real application, you would typically get a
reference
 * to a security service through something like JNDI or
a factory.
 */
 IAuthentication service = new SecurityService();

 // Attempt to log in
 userView = service.login(accessNbr, pinNbr);

 // Since an exception wasn't thrown, login was
successful

 // Invalidate existing session if it exists
 HttpSession session = request.getSession(false);
 if(session != null) {
 session.invalidate();
 }

 // Create a new session for this user
 session = request.getSession(true);

 // Store the UserView into the session and return
 session.setAttribute(IConstants.USER_VIEW_KEY,
userView);
 forward = mapping.findForward(IConstants.SUCCESS_KEY);
 return forward;
 }
}

The LoginAction in Example 3-3 gets the credentials from the ActionForm that was passed
in as an argument in the execute() method.

The ActionForm class will be discussed later in this chapter in Section 3.5.

A SecurityService is then created, and the security credentials are passed to the login()
method. If the login succeeds, a new HttpSession is created for the user, and the UserView
returned from the login() method is put into the session. If authentication fails, an

InvalidLoginException is thrown. Note that there is no try/catch block for the
InvalidLoginException in the execute() method. This is because one of the new
features of Struts 1.1 is its declarative exception-handling capabilities, which remove much of the
burden of exception handling from the developer. With the declarative exception handling in Struts,
you specify what exceptions can be thrown from the actions and what you want the framework to do
with them. You specify this information in the Struts configuration file:

<global-exceptions>
 <exception
 key="global.error.invalidlogin"
 path="/login.jsp"
 scope="request"

 type="com.oreilly.struts.banking.service.InvalidLoginEx
ception"/>
</global-exceptions>

This fragment from the banking configuration file tells the framework that if an
InvalidLoginException is thrown by any action, it should forward the request to the
login.jsp resource and build an error message using the key global.error.invalidlogin
from the resource bundle. You also have the ability to override the default exception-handling
behavior with whatever functionality you need it to perform. Exception handling is covered at length
in Chapter 10.

3.3.3 Mapping the Actions

At this point, you might be asking yourself, "How does the controller know which Action instance
to invoke when it receives a request?" It determines this by inspecting the request information and
using a set of action mappings.

Action mappings are part of the Struts configuration information that is configured in a special XML
file. This configuration information is loaded into memory at startup and made available to the
framework at runtime. Each action element is represented in memory by an instance of the
org.apache.struts.action.ActionMapping class. The ActionMapping object
contains a path attribute that is matched against a portion of the URI of the incoming request. We'll
talk more about action mappings and the Struts configuration file in Chapter 4.

The following XML fragment illustrates the login action mapping from the configuration file used
by the banking application:

<action
 path="/login"
 type="com.oreilly.struts.banking.action.LoginAction"
 scope="request"
 name="loginForm"
 validate="true"
 input="/login.jsp">
 <forward name="Success" path="/action/getaccountinformation"
redirect="true"/>

 <forward name="Failure" path="/login.jsp" redirect="true"/>
</action>

The login action mapping shown here maps the path "/login" to the Action class
com.oreilly.struts.banking.LoginAction. Whenever the controller receives a
request where the path in the URI contains the string "/login", the execute() method of the
LoginAction instance will be invoked. The Struts framework also uses the mappings to identify
the resource to forward the user to once the action has completed. We'll talk more about configuring
action mappings in Chapter 4.

3.3.4 Determining the Next View

So far, we've discussed how the controller receives the request and determines the correct Action
instance to invoke. What hasn't been discussed is how or what determines the view to return to the
client.

If you looked closely at the execute() method signature in the Action class from the
previous section, you might have noticed that the return type for the method is an
org.apache.struts.action.ActionForward class. The ActionForward class
represents a destination to which the controller may send control once an Action has completed.
Instead of specifying an actual JSP page in the code, you can declaratively associate an action forward
mapping with the JSP and then use that ActionForward throughout your application.

The action forwards are specified in the configuration file, similar to action mappings. They can be
specified at an Action level, as this forward is for the logout action mapping:

<action
 path="/logout"
 type="com.oreilly.struts.banking.action.LogoutAction"
 scope="request">
 <forward name="Success" path="/login.jsp" redirect="true"/>
</action>

The logout action declares a forward element named "Success", which forwards to the
"/login.jsp" resource. The redirect attribute is specified and set to "true". Now, instead of
performing a forward using a RequestDispatcher, the request will be redirected.

The action forward mappings also can be specified in a global section, independent of any specific
action mapping. In the previous case, only the logout action mapping could reference the action
forward named "Success", However, all action mappings can reference forwards declared in the
global-forwards section. Here is an example global-forwards section from the
banking configuration file:

<global-forwards>
 <forward name="SystemFailure" path="/systemerror.jsp" />
 <forward name="SessionTimeOut" path="/sessiontimeout.jsp" />
</global-forwards>

The forwards defined in this section are more general and don't apply to specific action mappings.
Notice that every forward must have a name and path, but the redirect attribute is optional. If
you don't specify a redirect attribute, its default value of "false" is used, and thus the framework
will perform a forward. The path attribute in an action forward also can specify another Struts
Action. You'll see an example of how to do this in Chapter 5.

Now that you understand from a high level how the Struts controller components operate, it's time to
look at the next piece of the MVC puzzle—the model.

3.4 Struts Model Components

There are several different ways to look at what constitutes a model for Struts. The lines between
business and presentation objects can get quite blurry when dealing with web applications—one
application's business objects are another's data transfer objects (DTOs).

It's important to keep the business objects separate from the presentation so that the application is not
tightly coupled to one type of presentation. It's likely that the look and feel of a web site will change
over time. Studies show that the freshness of a web site's appearance helps to attract new customers
and keep existing customers coming back. This may not be as true in the business-to-business (B2B)
world, but it's definitely true for business-to-consumer (B2C) applications, which make up the
majority of the web applications used today.

Using Data Transfer Objects
DTOs (also referred to as value objects) often are used to provide a coarse-grained view of
remote, fine-grained data. If your application were using entity beans, for example, instead
of making several remote calls to get individual state about the object, you could make a
single call that would return a local DTO containing all the data you need. Sometimes there
is a summary and a detailed version for the remote object to mitigate how much data is
returned.

Although the DTO represents the remote business object, it doesn't necessarily contain the
same business logic. In fact, it generally doesn't contain any business logic at all—it
represents a "snapshot" of the remote object at a particular instance in time, namely, when
the client requested the data. DTOs also can be used to update the business object.
However, this gets a little more complicated because of issues such as optimistic locking
and synchronization.

For performance reasons, using DTOs in a distributed application is almost a necessity. It
helps to reduce the network bandwidth and improve response time. It's also a good idea to
use the same technique for smaller applications. Using a DTO in a Struts application helps
to decouple the business objects from the presentation, making maintenance and future
enhancements easier.

The type of model components that you use might also depend on whether you're building a
traditional two-tier application or a multi-tiered distributed application. Typically, with a two-tiered
application, the business objects are collocated with the web application. Collocation means that
objects are deployed within the same JVM. This makes it easier to use these business objects to
retrieve data for the views. However, just because it's easier doesn't necessarily make this a smart
thing to do. The business objects may be made up of deep object graphs and may contain references to

many other nonpresentation resources. If you're not careful, the business objects quickly can become
coupled to a specific presentation, which can have unintended side effects each time the look and feel
of the web site changes.

One benefit of separating your business objects from the presentation is that you can build coarse-
grained objects that your JSP pages and custom tags will have an easier time dealing with. All of your
business logic should remain separate from the presentation, and the presentation views should simply
retrieve data from the DTO and display it.

The LoginAction class shown in Example 3-3 didn't contain the actual authentication logic.
Because the Action class is part of the controller functionality, it delegates the handling of the
business logic to another service. In the case of the LoginAction, it relies on a
SecurityService component. The SecurityService component may be a session EJB,
or just a wrapper around some JDBC code that performs the authentication. In either case, the
LoginAction doesn't know or care how the service is implemented. This is helpful, because even
if the implementation changes drastically, no code will have to change as long as the
IAuthentication interface remains unchanged and is implemented by the service.

This approach also helps with reuse. Say you have another type of client, such as a Swing GUI, that
needs to be authenticated. Because the logic is encapsulated in a separate component and not in the
Action class, you are free to reuse this security service.

You should strive to keep business logic out of the Action classes to protect against change. In the
case of the LoginAction, the login() method returns an object of class
com.oreilly.struts.banking.view.UserView. This is an example of a DTO.
Example 3-4 shows the UserView used in the example application.

Example 3-4. The UserView value object used by the presentation tier
package com.oreilly.struts.banking.view;

import java.util.Set;
import java.util.HashSet;
/**
 * A value object that wraps all of the user's security
information
 */
public class UserView implements java.io.Serializable {
 private String id;
 private String lastName;
 private String firstName;

 // A unique collection of permission String objects
 private Set permissions = null;

 public UserView(String first, String last) {
 this(first, last, new HashSet());
 }

 public UserView(String first, String last, Set
userPermissions) {
 super();
 firstName = first;
 lastName = last;
 permissions = userPermissions;
 }

 public boolean containsPermission(String permissionName) {
 return permissions.contains(permissionName);
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String name) {
 lastName = name;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String name) {
 firstName = name;
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
}

The UserView provides a coarse-grained view of a remote object. There might be five security
tables, all joined by foreign keys that contain the data, but when the web tier gets a UserView, it
already has been consolidated and made easier to access. In fact, one implementation of this
application could get the data from a relational database and another from an LDAP instance. The nice
thing about encapsulating the authentication behind the security service is that the presentation tier
does not have to change if the security realm is switched. The Action is free to put the UserView
object in the request or session and then forward it to a JSP, where the data can be extracted and
presented to the user.

The Struts framework doesn't have a great deal of support in the way of model components. This is
better left for EJB, CORBA, or some other type of component framework. You can access a database
directly from the framework, but you still should attempt to separate that layer from all other parts of

the framework. You can do this by making use of the appropriate design patterns to encapsulate the
behavior.

3.5 Struts View Components

The last of the MVC components to discuss are the view components. Arguably, they are the easiest to
understand. The view components typically employed in a Struts application are:

• HTML
• Data transfer objects
• Struts ActionForms
• JavaServer Pages
• Custom tags
• Java resource bundles

3.5.1 Using the Struts ActionForm

Struts ActionForm objects are used in the framework to pass client input data back and forth
between the user and the business layer. The framework automatically collects the input from the
request and passes this data to an Action using a form bean, which then can be passed along to the
business layer. To keep the presentation layer decoupled from the business layer, you should not pass
the ActionForm itself to the business layer; rather, create the appropriate DTO using the data from
the ActionForm. The following steps illustrate how the framework processes an ActionForm
for every request:

1. Check the mapping for the action and see if an ActionForm has been configured.
2. If an ActionForm is configured for the action, use the name attribute from the action

element to look up the form bean configuration information.
3. Check to see if an instance of the ActionForm already has been created.
4. If an ActionForm instance is present in the appropriate scope and it's the same type as

needed for the new request, reuse it.
5. Otherwise, create a new instance of the required ActionForm and store it in the

appropriate scope (set by the scope attribute for the action element).
6. Call the reset() method on the ActionForm instance.
7. Iterate through the request parameters, and populate every parameter name that has a

corresponding setter method in the ActionForm with the value for that request parameter.
8. Finally, if the validate attribute is set to "true", invoke the validate() method on

the ActionForm instance and return any errors.

For every HTML page where form data is posted, you should use an ActionForm. The same
ActionForm can be used for multiple pages if necessary, as long as the HTML fields and
ActionForm properties match up.

Example 3-5 shows the com.oreilly.struts.banking.form.LoginForm that is
used with the banking application.

Example 3-5. The LoginForm used by the banking application
package com.oreilly.struts.banking.form;

import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.util.MessageResources;
/**
 * This ActionForm is used by the online banking appliation to
validate
 * that the user has entered an accessNumber and a pinNumber.
If one or
 * both of the fields are empty when validate() is called by
the
 * ActionServlet, error messages are created.
 */
public class LoginForm extends ActionForm {
 // The user's private ID number
 private String pinNumber;
 // The user's access number
 private String accessNumber;

 public LoginForm() {
 super();
 resetFields();
 }
 /**
 * Called by the framework to validate the user has entered
values in the
 * accessNumber and pinNumber fields.
 */
 public ActionErrors validate(ActionMapping mapping,
HttpServletRequest req){
 ActionErrors errors = new ActionErrors();

 // Get access to the message resources for this
application.
 // There's no easy way to access the resources from an
ActionForm.
 MessageResources resources =

(MessageResources)req.getAttribute(Action.MESSAGES_KEY);

 // Check and see if the access number is missing.
 if(accessNumber == null || accessNumber.length() == 0) {
 String accessNumberLabel =
resources.getMessage("label.accessnumber");
 ActionError newError =

 new ActionError("global.error.login.requiredfield",
accessNumberLabel);
 errors.add(ActionErrors.GLOBAL_ERROR, newError);
 }

 // Check and see if the pin number is missing.
 if(pinNumber == null || pinNumber.length() == 0) {
 String pinNumberLabel =
resources.getMessage("label.pinnumber");
 ActionError newError =
 new ActionError("global.error.login.requiredfield",
pinNumberLabel);
 errors.add(ActionErrors.GLOBAL_ERROR, newError);
 }
 // Return the ActionErrors, if any.
 return errors;
 }

 /**
 * Called by the framework to reset the fields back to their
default values.
 */
 public void reset(ActionMapping mapping, HttpServletRequest
request) {
 // Clear out the accessNumber and pinNumber fields.
 resetFields();
 }
 /**
 * Reset the fields back to their defaults.
 */
 protected void resetFields() {
 this.accessNumber = "";
 this.pinNumber = "";
 }

 public void setAccessNumber(String nbr) {
 this.accessNumber = nbr;
 }

 public String getAccessNumber() {
 return this.accessNumber;
 }

 public String getPinNumber() {
 return this.pinNumber;
 }
 public void setPinNumber(String nbr) {
 this.pinNumber = nbr;
 }

}

The ActionForm class provided by the Struts framework implements several methods, but by far
the two most important are the reset() and validate() methods:

public void reset(ActionMapping mapping, HttpServletRequest
request);
public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request);

The default implementation for both methods in the Struts ActionForm class doesn't perform any
default logic. You'll need to override these two methods in your ActionForm classes, as was done
in the LoginForm class shown in Example 3-5.

The controller calls the reset() methodright before it populates the ActionForm instance
with values from the request. It gives the ActionForm a chance to reset its properties back to the
default state. This is very important, as the form bean instance may be shared across different requests
or accessed by different threads. However, if you are using an ActionForm instance across
multiple pages, you might not want to implement the reset() method so that the values don't get
reset until you're completely done with the instance. Another approach is to implement your own
resetFields() method and call this method from the Action class after a successful update
to the business tier.

The validate() method is called by the controller after the values from the request have been
inserted into the ActionForm. The ActionForm should perform any input validation that can
be done and return any detected errors to the controller. Business logic validation should be performed
in the business objects, not in the ActionForm. The validation that occurs in the ActionForm
is presentation validation only. Where to perform certain types of validation logic will be covered in
detail in Chapter 6 and Chapter 7.

The validate() method in the LoginForm in Example 3-5 checks to see if the access
number and/or pin number is missing and creates error messages if they are. If no errors are generated,
the controller passes the ActionForm and several other objects to the execute() method.
The Action instance can then pull the information out of the ActionForm.

You might have noticed that the execute() method in the Action
class contains an argument that is always of the type ActionForm. You
will need to cast this argument to the appropriate subclass to retrieve the
needed properties. To see an example of this, look back at Example 3-3.

Once you have coded your ActionForm classes, you need to inform your Struts application that
they exist and tell it which action mappings should use which ActionForms. This is done in the
configuration file. The first step is to configure all of the ActionForms for your application in the
form-beans section of the configuration file. The following fragment from the banking
configuration file informs Struts of the three ActionForm beans used by the banking application:

<form-beans>
 <form-bean

 name="loginForm"
 type="com.oreilly.struts.banking.form.LoginForm"/>
 <form-bean
 name="accountInformationForm"
 type="org.apache.struts.action.DynaActionForm">
 <form-property name="accounts" type="java.util.ArrayList"/>
 </form-bean>
 <form-bean
 name="accountDetailForm"
 type="org.apache.struts.action.DynaActionForm">
 <form-property
 name="view"

type="com.oreilly.struts.banking.view.AccountDetailView"/>
 </form-bean>
</form-beans>

The name attribute for each form bean must be unique, and the type attribute must define a fully
qualified Java class that extends the Struts ActionForm class. The next step is to use one of the
form-bean names from the form-beans section in one or more action elements. The
following fragment shows the mapping for the LoginAction, which you've already seen earlier in
this chapter:

<action
 path="/login"
 type="com.oreilly.struts.banking.action.LoginAction"
 scope="request"
 name="loginForm"
 validate="true"
 input="/login.jsp">
 <forward name="Success" path="/action/getaccountinformation"
redirect="true"/>
 <forward name="Failure" path="/login.jsp" redirect="true"/>
</action>

Notice that the name attribute of the login mapping matches one of the names in the form-beans
section from earlier.

Instances of the ActionForm class commonly are referred to as "form
beans." I use this term throughout the book to refer to an object of type
ActionForm.

One of the new features in Struts 1.1 is shown in the previous form-beans fragment. With
previous versions of the framework, you always had to extend the ActionForm class with your
own subclass, even if the ActionForm performed very generic behavior. With Struts 1.1, a new
type of action form, called org.apache.struts.action.DynaActionForm , has been
added. This class can be configured for an action mapping and will automatically handle the data
passed from the HTML form to the Action. The DynaActionForm is able to deal with the data

generically because it uses a Map to store the values internally. Chapter 7 will cover the
DynaActionForm in more detail.

You may be wondering what the difference is between an ActionForm and the DTOs mentioned
earlier. This is a good question, and one that is a little confusing for developers new to Struts.

The view components can use both ActionForm s and DTOs to populate dynamic content. When
no ActionForm is configured for a mapping, you can use DTOs to build the views. And when a
form bean is defined for the mapping, there are several ways to handle extracting the data from the
bean. One approach is to always wrap a form bean around one or more DTOs returned from the
business tier and to force the Struts view components to access the DTO data through the form bean.
Likewise, when a client submits an HTML page, Struts will invoke the form bean setter methods,
which can shove the data back into the DTO after the validation method has completed successfully.
This provides a single, cohesive interface to which the views can retrieve and submit the HTML data
to. We'll discuss the various pros and cons of this and other approaches in Chapter 7.

3.5.2 Using JSP for Presentation

JSP pages make up the majority of what has to be built for the Struts view components. Combined
with custom tag libraries and HTML, JSP makes it easy to provide a set of views for an application.

Although JSP is the technology most commonly used by organizations and developers to display
dynamic content, it's not the only option. Many developers feel that JSP has the following problems:

• Developers are free to embed application logic into the JSP pages, which can lead to
applications that are difficult to maintain (with JSP 2.0, you can configure JSP pages to not
allow scriptlets).

• Developers must learn the JSP syntax and how to program custom tags (although this will not
be true when JSP 2.0 is final and the new expression language is available).

• The container must recompile the JSP page when a change is made to the page.

Some developers do not see these issues as a major problem, and many sites have been built using the
JSP technology. However, for those that want alternatives, there are other forms of presentation
technologies that can be combined with the Struts framework. One popular alternative is the
XML/XSLT combination. This model combines the controller servlet from the Struts framework with
XSLT and beans serialized from DTOs to render the views.

3.5.3 Using Custom Tag Libraries

The Struts framework provides six core tag libraries that your applications can use. Each one has a
different purpose and can be used individually or alongside others. You also may extend the Struts
tags or create your own custom tags if you need additional functionality. The custom tag libraries that
are included with the framework are the HTML, Bean, Logic, Template, Nested, and Tiles tag
libraries.

To use these libraries in your application, you first need to register them with the web application in
the web.xml file. You need to register only the tag libraries that you plan to use in your application.
For example, if you are planning on using the HTML and Logic tag libraries, you must add the
following fragment to the deployment descriptor for the web application:

<web-app>
 <taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-
location>
 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-
location>
 </taglib>
</web-app>

More information on installing and configuring Struts for your application is provided in Appendix B.

The next step is to create your JSP pages and include the necessary taglib elements, depending on
which tag libraries the page will need:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

Once this is done and the JAR files are in the web application's CLASSPATH, you can use the custom
tags in your JSP pages. Example 3-6 illustrates the usage of several of the Struts custom tags inside
the login.jsp page for the banking application.

Example 3-6. The login.jsp page used by the banking application
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html:html>
<head>
 <html:base/>
 <title><bean:message key="title.login"/></title>
 <link rel="stylesheet" href="stylesheets/login_style_ie.css"
type="text/css">
</head>

<body topmargin="0" leftmargin="5" marginheight="0"
marginwidth="0" bgcolor="#6699FF">

<html:form action="login" focus="accessNumber">

<table border="0" cellpadding="0" cellspacing="0" width="100%"
bgcolor="#6699FF">
 <tr><td>
 <html:img srcKey="image.logo" width="79" height="46"
 altKey="image.logo.alt" border="0"/>
 </td></tr>
</table>

<table border="0" cellpadding="0" cellspacing="0"
width="100%">
 <tr><td bgcolor="#000000">
 <table border="0" cellpadding="0" cellspacing="0" width="1"
height="2"></table>
 </td></tr>
</table>

<table border="0" cellpadding="0" cellspacing="0" width="1"
height="1">
 <tr><td></td></tr>
</table>

<table>
 <tr><td></td></tr>
</table>

<table border="0" cellpadding="0" cellspacing="0" width="590">
 <tr><td width="15" height="31"></td><td width="12"></td></tr>
 <tr>
 <td width="15"></td>
 <td width="575" bgcolor="#FFFFFF" colspan="2">
 <table cellpadding="0" cellspacing="0" border="0"
width="575" height="3">
 <tr><td></td></tr>
</table>
 </td>
</tr>
</table>

<table border="0" cellpadding="0" cellspacing="0" width="590"
bgcolor="#ffffff">
 <tr>
 <td width="15" bgcolor="#6699FF"></td>
 <td width="15"></td><td width="379"></td>
 <td width="15"></td>
 <td width="15"></td>
 <td width="15"></td>
 </tr>
 <tr>
 <td bgcolor="#6699FF" width="15"></td>
 <td></td>
 <td valign="top">
 <table border="0" cellpadding="0" cellspacing="0">
 <tr class="fieldlabel">
 <td><bean:message key="label.accessnumber"/></td>
 </tr class="fieldlabel">
 <tr>

 <td><html:text property="accessNumber" size="9"
maxlength="9"/></td>
 <td class="error"><html:errors/></td>
 </tr>
 <tr class="fieldlabel"><td height="10"></td></tr>
 <tr class="fieldlabel"><td><bean:message
key="label.pinnumber"/></td></tr>
 <tr class="fieldlabel">
 <td><html:password property="pinNumber" size="4"
maxlength="4"/></td>
 </tr>
 <tr><td height="10"></td></tr>
 <tr><td><html:submit styleClass="fieldlabel"
value="Login"/></td></tr>
 <tr><td></td></tr>
</table>
</td>
 <td width="151" valign="top">
 <html:img srcKey="image.strutspower"
altKey="image.strutspower.alt"/>
 </td>
</tr>
</table>
<%@include file="include/footer.jsp"%>

</html:form>
</body>
</html:html>

One of the first things that should strike you about the login page in Example 3-6 is that there's no
Java code in it. Instead, you see mostly HTML formatting tags and several uses of Struts tag libraries.
This is exactly the purpose of using custom tag libraries. No Java programming is necessary, so
HTML designers can work freely with the page layout without being burdened by the programming
aspects of the page. The other nice feature is that many JSP pages can use the same tags. For more
information on tag libraries, see Chapter 8.

As you can probably imagine by looking at the JSP page in Example 3-6, maintenance and
customization are easy when you use custom tag libraries.

3.5.4 Using Message Resource Bundles

One of the hardest customizations that developers face is to quickly and effortlessly customize a web
application for multiple languages. Java has several built-in features that help support
internationalization; Struts builds on those features to provide even more support.

The Java library includes a set of classes to support reading message resources from either a Java class
or a properties file. The core class in this set is the java.util.ResourceBundle. The Struts
framework provides a similar set of classes, based around the

org.apache.struts.util.MessageResources class, that provides similar
functionality but allows for more of the flexibility that the framework requires.

With a Struts application, you must provide a resource bundle for each language you want to support.
The name of the class or properties file must adhere to the guidelines listed in the JavaDocs for the
java.util.ResourceBundle class. Example 3-7 shows the properties file used by the
example banking application.

Example 3-7. The resource bundle for the banking application
Labels
label.accessnumber=Access Number
label.pinnumber=Pin Number
label.accounts=Accounts
label.balance=Balance
label.totalassets=Total Assets
label.account=Account
label.balance=Available Balance
label.description=Description
label.amount=Amount
label.deposits=Deposits
label.withdrawls=Withdrawls
label.openingbalance=Opening Balance

Links
link.customeragreement=Customer Agreement
link.privacy=Privacy
link.security=Security
link.viewaccountdetail=View Account Detail

Page Titles
title.login=Struts Online Banking - Account Login
title.accountinfo=Struts Online Banking - Account Information
title.accountdetail=Struts Online Banking - Account Detail

Button Labels
label.button.login=Login

Error messages
global.error.invalidlogin=Invalid Access Number and/or
Pin

global.error.login.requiredfield=The {0} is required for
login

Images
image.logo=images/logo.gif
image.logo.alt=Struts Online Banking

image.logout=images/logout.gif

image.logout.alt=Logout

image.strutspower=images/struts-power.gif
image.strutspower.alt=Powered By Struts

image.transfer=images/transfer.gif
image.transfer.alt="Transfer Funds"

image.clear=images/clear.gif

If you look back at the login.jsp page in Example 3-6, you can see how the messages from the bundle
are used. For example, the following fragment from the login page illustrates the key title.login from
Example 3-6 being used and inserted between the HTML title tags in the page.

<title><bean:message key="title.login"/></title>

The Struts org.apache.struts.taglib.bean.MessageTag is one of several custom
tags included in the framework that can take advantage of the resource bundle. JSP pages can retrieve
values from the resource bundle using the MessageTag based on a key, as shown in the login page
in Example 3-6. The key in the message tag must correspond to a value on the left side of the equals
sign in the bundle. Case is important, and the value must match exactly.

A message resource bundle can be used for more than just localization—it also
can save you time during application maintenance. For example, if you use the
same text messages or labels throughout various parts of your web site or
application, when one or more of these values need to change, you need make
the change only in a single location. Even if you don't have internationalization
requirements, you still should use resource bundles.

With Struts 1.1, you can define multiple MessageResource s for an application. This allows you
to isolate certain types of resources into separate bundles. For example, you might want to store the
image resources for an application in one bundle and the rest of the resources in another. How you
organize your application's resources is up to you, but you now have the flexibility to separate them
based on some criteria. For example, some applications choose to separate along component lines: all
resources relating to the catalog go into one bundle, order and shopping-cart resources go into another,
and so on.

3.6 Multiple Application Support

Prior to Version 1.1, each Struts application was limited to a single configuration file. The single
instance of the file, normally called struts-config.xml, was specified in the web application
deployment descriptor. It was the sole provider of the configuration information for the Struts
application. The fact that there was only one place to put configuration information made it very
difficult for larger projects, because it often became a bottleneck and caused contentions to use and
modify this file.

With the advent of multi-application support in Version 1.1, this problem has been alleviated. You
now can define multiple configuration files, allowing developers to work better in parallel.

Applications modules, as they currently are known, are discussed further in Chapter 4, Chapter 5,
Chapter 6, and Chapter 7.

3.7 Summary

The Struts framework provides an implementation for the MVC structure, tailored for a web
application. The Struts ActionServlet, RequestProcessor, and Action classes
provide the controller components; the Action communicates with your application's model
components; and the combination of the ActionForm, DTOs, JSP pages, and tag libraries make up
the view.

This chapter focused on Struts at a high level and left out many of the details that make the framework
even better. Struts, like other valuable software frameworks, allows you to focus on developing the
business logic, instead of spending expensive development time on low-level infrastructure
functionality such as request dispatching and field-level validation. Hopefully, this peripheral
discussion has enticed you to read on and explore the framework details in the rest of the book.

Chapter 4. Configuring Struts Applications
The Struts framework uses two separate but somewhat related types of configuration files, which must
be configured properly before an application will work correctly. Due to the popularity, flexibility,
and self-describing nature of XML, both types of configuration files are based on XML.

The web application deployment descriptor named web.xml is described fully in the Java Servlet
specification.[1] This configuration file is necessary for all web applications, not just those built with
the Struts framework. However, there is Struts-specific deployment information within it that must be
configured when building Struts applications.

[1] See the Java Servlet Specification Version 2.3, Chapter SRV.13.

Although the Struts framework supports the 2.2 Servlet specification, many
servlet containers already have support for Version 2.3. This book includes
coverage of the 2.2 and 2.3 specifications.

The second configuration file that we will examine is the Struts configuration file. It is commonly
named struts-config.xfile, but you can name it just about anything you want. The Struts configuration
file makes it possible for you to declaratively configure many of your application's settings. You can
think of the Struts configuration file as the rules for the web application.

4.1 The Storefront Application

Throughout the rest of this book, we will construct a shopping-cart type application to use for all of
the examples. By the end of the book, we should have a fairly complete application that uses most of
the Struts 1.1 features. Figure 4-1 shows the main page of the Storefront example application.

Figure 4-1. The main page of the Storefront application

The Storefront application will demonstrate an e-commerce automotive parts supplier, but you can
substitute any items you want as long as you have your own images and data to put into the
application. In the end, the Storefront application will be a complete web archive (WAR) file that can
be deployed into any compliant web container and used as an example for many different purposes.

4.2 What Is a Web Application?

Applications built using the Struts framework are, at their core, web applications. A web application is
a collection of individual components that, once bound together, form a complete application that can
be installed and executed by a web container. The components are tied together because they reside in
the same web context, which permits them to refer to one another, directly or indirectly. For example,
if you have an application running in a web container under a directory called storefront, all of the
files in that directory and the directories below it are considered part of the Storefront web application.
Any reference to a resource with the "storefront" prefix is routed to this web application. So, if a user
types http://www.somehost.com/storefront/index.jsp into his browser's location bar, the JSP page will
be served from the root of the Storefront web application.

A web application can be installed and executed in multiple web containers concurrently. For that
matter, multiple instances of the same web application can be installed in the same web container.
However, because of the manner in which URLs are matched to web applications, each web

application must have a unique name within the web container. This means that you can't have two
web applications running in the same web container using the same name. The next section takes a
closer look at exactly what types of components can reside in a web application.

4.2.1 Elements of a Web Application

Not all web applications are created equal. They will not have the same functional and nonfunctional
requirements across organizations and departments, or even the same vertical markets. Therefore, not
all web applications will contain the same types of resources. In general, however, web applications
can consist of one or more of the following types of components:

• Servlets
• JSP pages
• Standard JavaBeans and utility classes
• HTML documents
• Multimedia files (images, audio and video files, CAD drawings, etc.)
• Client-side applets, stylesheets, and JavaScript files
• Text documents
• Meta-information, which ties together all of the above components

4.3 The Web Application Directory Structure

A web application typically consists of a structured hierarchy of directories. Although the Servlet
specification does not require servlet containers to support a hierarchical structure, it recommends that
they do so, and most, if not all, comply with this recommendation. The root directory of the hierarchy
serves as the document root for the web application. As discussed earlier, requests made using a web
application's root context path are served out of the directory for that web application.

Within the web application directory hierarchy, a special directory named WEB-INF must be created.
This directory is the repository for meta-information relating to the web application. It is a private
directory; no resource within it is accessible to a client. However, the resources in the WEB-INF
directory are visible to servlets and Java classes that reside within the web application.

Because the Servlet specification requires that the WEB-INF directory should
not be visible to a web client, this is an ideal location for files and other
resources that you do not want to expose outside the application. Web
application resources such as XML configuration files and other private
application resources should be placed within this directory. As you'll see later
in this chapter, the Struts configuration file is also normally located here.

The WEB-INF directory is where the deployment descriptor for the web application should be placed.
The deployment descriptor is covered in detail in the next section.

There are two special directories underneath WEB-INF that get special treatment by the web container.
The WEB-INF/classes directory is used for servlets and utility classes that can be used by the web
application. If the Java classes are scoped within a Java package, the classes directory must contain
the proper subdirectories that match the package name. For example, suppose you had a Java servlet
named com.oreilly.struts.framework.StorefrontController for a web
application named Storefront. The StorefrontController.class file would have to be
placed in the framework directory as shown in Figure 4-2.

Figure 4-2. Java classes must be in the proper directories

The other special subdirectory is WEB-INF/lib . This subdirectory is where Java Archive (JAR) files
can be deployed and will be picked up by the class loader for the web application.

Based on the 2.3 Servlet specification, the web application class loader must
load classes first from the WEB-INF/classes directory, then from library JARs
located in the WEB-INF/lib directory.

Other than these special requirements, the directory structure for a web application is left up to the
developer. It should be based on the functional and nonfunctional needs of the application. With
smaller web applications, files and resources may be combined into a few common directories. For
larger web applications, however, each component may need to have a separate directory underneath
the web application root directory. This will allow for easier development and maintenance. Figure 4-
3 shows the directory structure for the Storefront web application.

Figure 4-3. The directory structure for the Storefront web application

Here are a few things to consider when choosing the directories for your Struts application:

• Keep optional components separate from required ones so that partial deployment will be
easier to support.

• Take into account the size of the development team and the necessity of preventing file and
checkout contention.

• Be careful to consider file and resource dependencies, and make sure to take advantage of
reuse and include files.

• Make the directory structure and package-naming convention as intuitive and self-evident as
possible.

For many containers, directory and file names are case-sensitive. Make sure
that you are consistent with whatever case convention you choose for your
application.

4.3.1 Web Application Archive Files

Web applications are often packaged as web archive (WAR) files, which must have an extension
of .war. For example, if we packaged the Storefront application as a WAR file, it would be named
storefront.war. When a web application is packaged as a WAR file, it must maintain its relative
directory structure, as illustrated in Figure 4-3.

Although there are some subtle differences, a WAR file is really just a ZIP file
with a different extension. In fact, you can also use a ZIP utility application
such as WinZip to create and unpack WAR files.

Web containers are capable of loading a WAR file and exploding the resources back into the structure
required by the container. The WAR file format is most useful when you need to distribute an
application. It also can be part of a much larger distributable file called an enterprise archive (EAR)
file. Chapter 16 discusses the best practices of packaging your application using these different
formats.

4.4 The Web Application Deployment Descriptor

The web application deployment descriptor conveys configuration information between application
developers, deployers, and assemblers. Web containers also use the descriptor to configure and load
web applications when the container is started.

All servlet containers that are compliant with the 2.3 Servlet specification are required to support the
following types of deployment information:

• Initialization parameters
• Session configuration
• Servlet declarations
• Servlet mappings
• Application lifecycle listener classes
• Filter definitions and mappings
• MIME type mappings
• Welcome file list
• Error pages

Security configuration information is not required unless the servlet container is part of a J2EE
implementation. The following elements are not required unless the servlet container is using JSP
pages or is part of a J2EE application server:

• Tag library mappings
• JNDI References

Much of the functionality described in this list was added in the 2.3 version of
the Servlet specification. If you are using a 2.2-compliant container, it will not
be available to you. Struts 1.1 supports the 2.2 and 2.3 Servlet specifications.

4.4.1 Web Application Deployment Descriptor DTD

The format for both the web application deployment descriptor and the Struts configuration file is
based on a Document Type Definition (DTD), which defines the legal building blocks that may be
used in the XML files. From the DTD point of view, all XML documents, including the web
application deployment descriptor and the Struts configuration file, are made up of the following
elements:

• Elements
• Tags
• Attributes
• Entities
• PCDATA
• CDATA

Using these components, DTDs help to specify valid and well-formed XML documents.[2] The DTD
for the 2.3 web application deployment descriptor can be downloaded from
http://java.sun.com/dtd/index.html.

[2] A well-formed XML document is one that is properly formatted with all beginning tags closed with end tags,
all attributes quoted properly, all entities declared, and so on. When an XML document is well-formed, it is
easier for a computer program to parse it and deliver it over a network. A valid XML document is one that
declares a DTD and adheres to the rules set forth in that DTD. For more information, see Java & XML by
Brett McLaughlin (O'Reilly).

The following DTD declaration shows the top-level elements that make up the deployment descriptor
for a web application:

<!ELEMENT web-app (icon?, display-name?, description?,
 distributable?, context-param*, filter*, filter-mapping*,
 listener*, servlet*, servlet-mapping*, session-config?,
mime-
 mapping*, welcome-file-list?, error-page*, taglib*,
resource-
 env-ref*, resource-ref*, security-constraint*, login-
config?,
 security-role*, env-entry*, ejb-ref*, ejb-local-ref*)
>

The web-app element is the root of the deployment descriptor for a web application. The other
elements inside the parentheses are child elements, which must be placed inside the root web-app
element within the XML file. The symbols next to the child elements indicate the allowed multiplicity
of the child elements within the XML file. Table 4-1 provides a brief explanation of the symbols.

The order of the child elements is implied by their order inside of the parent
element. For instance, in the web-app syntax, the servlet element must
come before the servlet-mapping element, the servlet-
mapping element must come before the taglib element, and so on.

Table 4-1. Multiplicity symbols of child elements within a DTD
Symbol Meaning

No
symbol Indicates that the child element must occur once and only once within the parent element.

+ Declares that the child element can occur one or more times within the parent element.

* Declares that the child element can occur zero or more times within the parent element.
This symbol is used quite often.

? Declares that the child element can occur zero or one time within the parent element. In
other words, the child element is optional. This symbol is used quite often.

4.5 Configuring the web.xml File for Struts

Although the web.xml file is used for configuring any generic web application, there are a few Struts-
specific configuration options that you must configure within this file when using the Struts
framework. The next section describes the necessary steps that you'll need to perform to ensure that
your Struts application is properly configured.

4.5.1 Mapping the Struts ActionServlet

The first and perhaps most important step that you need to perform is to configure the
ActionServlet that will receive all incoming requests for the application.

You need to configure only a single ActionServlet, regardless of the
number of subapplications that are being used. Some developers choose to set
up multiple controller servlets to handle different functional areas of the
application. Because servlets are multithreaded, you don't gain any real
performance or scalability value by using multiple ActionServlet
mappings. Currently, the Struts framework allows only a single controller
servlet to work. This problem surely will be fixed in a future release and might
even be resolved before 1.1 goes final. However, you should verify that the
problem has been fixed before attempting to use multiple controllers in your
application.

There are two steps in configuring the Struts controller servlet in the web.xml file. The first step is to
use the servlet element to configure the servlet instance that can later be mapped in the
servlet-mapping element. The child elements that can be used in the servlet element are
shown here:

<!ELEMENT servlet (icon?, servlet-name, display-name?,
description?,
 (servlet-class|jsp-file), init-param*, load-on-startup?,
run-

 as?, security-role-ref*)
>

The child elements that we are most interested in are servlet-name, servlet-class, and
init-param. The servlet-name elementspecifies the name used by the deployment
descriptor to reference the servlet throughout the remainder of the file. When you're configuring the
servlet-class element for a Struts application, this element must specify a fully qualified class
that extends the org.apache.struts.action.ActionServlet class.

Because the Struts ActionServlet class is not abstract, you are free to
use that class and avoid having to create a subclass of the ActionServlet
for your application. With earlier versions of the Struts framework, it was
more important to extend the ActionServlet class with one of your own
because most of the processing occurred there, and subclassing allowed you to
override that functionality with your own. With Version 1.1, however, most of
the processing functionality has been moved to another class, which you can
configure declaratively (as you'll see later in this chapter). There is little reason
to create your own ActionServlet class, although you are still free to do
so.

The following web.xml fragment illustrates how to use the servlet element to configure the servlet
class:

<web-app>
 <servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-
class>org.apache.struts.action.ActionServlet</servlet-class>
 </servlet>
</web-app>

The next step that needs to be performed to configure the Struts controller servlet in the deployment
descriptor is to configure the servlet mapping. This is done using the servlet-mapping element.
The following partial deployment descriptor illustrates how to combine the servlet-mapping
element with the servlet element shown previously:

<web-app>
 <servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-
class>org.apache.struts.action.ActionServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>storefront</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
</web-app>

Notice that the value in the servlet-name element within the servlet element must match
the value in the servlet-name element within the servlet-mapping element. This tells
the web container that the ActionServlet should service all requests having an extension of .do.

4.5.1.1 Mapping requests to servlets

This is a good time to digress for a moment and discuss how the URLs that a user types into a browser
are mapped to the correct web application and servlet. When a web application is installed in a
container, the container is responsible for assigning a ServletContext to it. There is a single
instance of a ServletContext object for each web application deployed in a container.

If the container is distributable and uses more than one JVM, the web
application may have a separate ServletContext instance for each
JVM.

The ServletContext provides an external view of the web container environment for a servlet.
A servlet can use the ServletContext object to gain access to external resources, log events,
and store attributes and objects that other servlet instances in the same context can access. It's
essentially an application-scope shared resource.

Because a servlet is associated with a specific web application, all requests that begin with a specific
request path (known as the context path) are routed to the web application associated with that servlet.
Servlets associated with the default application have an empty string ("") as the context path.

When a web container receives a client request, it must determine the correct web application to
forward it to. The web container determines this by matching the URL with the longest context path
that matches an installed web application.

For example, suppose that there are two web applications installed in a container. One web application
is given the name Storefront and is located off the root directory of the container at /storefront. The
second web application is called Storefront_demo and is located off the root directory at
/storefront_demo.

If a client request arrives at the server with a URL of
http://www.somehost.com/storefront_demo/login.do, the server will match it to the web application
that has the closest match, which in this case would be the Storefront_demo application. Once the
container determines the correct context or web application, it must determine which servlet in the
web application should process the request. The web container uses the request URL, minus the
context path, to determine the path that will be used to map the request to the correct servlet.

The web container uses the following guidelines to find the first successful match:

1. The container attempts to locate an exact match of the request path to the path of a servlet.
2. The container recursively tries to match the longest path prefix. The servlet that contains the

longest match, if any, is selected.
3. If the URL path contains an extension—for example, .do—the servlet container tries to match

a servlet that handles requests for that extension. The extension is defined as the part of the
segment after the last dot (.).

4. If none of the previous rules produces a match, the container attempts to use a default servlet,
if one is configured. Otherwise, the request returns an error response.

The web container uses case-sensitive string comparisons when checking for a
match.

The concept of extension mappings was mentioned in Step 3 of the matching guidelines. There is
another type of mapping that can be used, known as path mapping . A servlet-mapping that
uses path mapping allows a URL that doesn't contain an extension to match to the servlet. Using the
earlier Storefront servlet mapping, the following partial web.xml file illustrates how path mapping is
configured:

<web-app>
 <servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-
class>org.apache.struts.action.ActionServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>storefront</servlet-name>
 <url-pattern>>/action/*</url-pattern>
 </servlet-mapping>
</web-app>

Using path mapping, all requests mapped to this web application that contain the string "/action" in the
request URL will be serviced by the Storefront servlet, regardless of what is in place of the * character.

4.5.2 Specifying Multiple Application Modules

As was briefly discussed in Chapter 3, the Struts 1.1 release added the ability to define multiple Struts
configuration files, one for each supported application module. In previous versions of the framework,
you specified a relative path to the single Struts configuration file using the config initialization
parameter. With Version 1.1 and introduction of the concept of application modules, you can now
create multiple Struts configuration files and specify them in the web.xml file using multiple config
initialization parameters and the application module prefix. The next section discusses the
initialization parameters that can be configured for a servlet.

4.5.3 Declaring the Initialization Parameters

Initialization parameters are used to make configuration options available to a servlet. This allows the
developer to declaratively affect the runtime environment of the servlet. Initialization parameters are
configured within the servlet element using init-param elements, as shown in the following
web.xml fragment:

<web-app>
 <servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-
class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>

 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>host</param-name>
 <param-value>localhost</param-value>
 </init-param>
 <init-param>
 <param-name>port</param-name>
 <param-value>7001</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>storefront</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
</web-app>

You can specify any parameter you need within the init-param element, as long as it's a
name/value pair. For example, the previous web deployment descriptor included initialization
parameters for a host and port. If you were using EJB, this might be a way to include the server
connection information. Zero or more init-param elements are allowed.

There are specific initialization parameters that can be specified for the Struts servlet. In earlier
versions of Struts, many of the configuration options that are now in the Struts configuration file were
configured by adding init-param elements. Although applications that were built and tested with
Version 1.0 will continue to work using Version 1.1, you may want to move some of the initialization
parameters that currently are specified in the web deployment descriptor to the proper location in the
Struts configuration file. Although the framework includes functionality that allows the previous
initialization parameters to work in the web.xml file, we will cover the 1.1 parameters here. Table 4-2
identifies the initialization parameters that can be specified for Struts 1.1.

Table 4-2. Initialization parameters for web.xml using Struts 1.1
Name Purpose/default value

config A context-relative path to the default Struts configuration file. The default value is
/WEB-INF/struts-config.xml, which serves as the default application.

config/sub1

You can specify additional subapplications by using the value config/ and the
prefix of the subapplication. In this example, the init-param name would be
config/sub1 and the value might be WEB-INF/struts-sub1-
config.xml. This tells the controller to load the subapplication sub1 from the
additional Struts configuration file. You can declare as many subapplications as
you need.

debug
The debugging detail level for this servlet, which controls how much information is
logged. This parameter is optional and defaults to 0 if not specified, which is the
least amount of logging information possible.

detail The debugging detail level for the Digester, which logs information as it parses the

configuration files. This parameter is optional and defaults to 0 if not specified,
which is the least amount of logging information possible.

convertHack

If this Boolean value is set to true, any ActionForm that uses Java wrapper
class types such as java.lang.Integer will be set to null rather than the
default value for the class type. This behavior is indicative of Struts 1.0. The flag is
optional and the default value is false, which means that properties will be
initialized to their Java default values (e.g., Integer to 0, Boolean to false, etc.).

If you are supporting a Struts 1.0 application using the 1.1 release, the web.xml
file may contain many of the configuration parameters that are now defined in
the Struts configuration file. The parameters apply only to the default
application and will eventually be removed in future releases. It's better to get
used to setting them in the Struts configuration file.

4.5.4 Configuring the Tag Libraries

The Struts framework provides several JSP tag libraries that you must configure in the web
application deployment descriptor if you choose to use them. You inform the container of these tag
libraries by declaring one or more taglib elements within the web deployment descriptor. The
following partial web.xml file illustrates how the tag libraries are configured within the web-app
element:

<web-app>
 <servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-
class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>host</param-name>
 <param-value>localhost</param-value>
 </init-param>
 <init-param>
 <param-name>port</param-name>
 <param-value>7001</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>storefront</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

 <taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>

 </taglib>

 <taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
 </taglib>
</web-app>

The taglib element has two subelements: taglib-uri and taglib-location. The
taglib-uri element specifies a URI identifying a tag library that is used by the web application.
The value may be either a relative or an absolute URI. It must be a valid URI, but here it's used as a
unique identifier for the tag library. The taglib-location element specifies the location (as a
resource) of the tag library descriptor file.

The Struts tag libraries are not the only ones that can be declared in the web application deployment
descriptor. If you create any of your own custom tag libraries, you should create taglib elements
for them here as well.

4.5.5 Setting Up the Welcome File List

The welcome-file-list element allows you to configure default resources that should be used
when a valid but partial URI is entered for a web application. You can specify multiple welcome files,
and they will be used in the order in which they are listed.

Suppose we configured the welcome-file-list element for the Storefront application as in
Example 4-1.

Example 4-1. The welcome-file-list element for the Storefront application
<welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
</welcome-file-list>

This indicates that a request to the server for http://www.somehost.com/storefront, which is the root of
the Storefront application, should resolve to http://www.somehost.com/storefront/index.jsp. This is
beneficial because most containers would, by default, look for index.html or index.htm instead. You
can specify multiple welcome-file elements within the welcome-file-list. This might
be helpful if, for example, you deployed your application on various types of containers and the first
welcome-file resource was not found on the server. The container would continue to try to
match the welcome files up to the request URI until it found one on the server and served that resource
to the client. The order of the welcome file entries in the deployment descriptor is used for the
matching process.

There should be no trailing or leading "/" characters in the welcome-file element. If no welcome
files are declared for the web application or the URI entered by a client, the web container may handle

the request appropriately—for example, it may return a 404 (File Not Found) error response or a
directory listing. It's a good idea to configure a welcome file for at least the root web application.

4.5.5.1 Using a Struts action in the welcome file list

Because the web containers don't use the servlet mappings for resources in the welcome-file-
list, you can't directly set up a welcome-file element to use a Struts action.

However, there is an alternate way that allows you to achieve the same results. First, create a global
forward in the Struts configuration file for the action that you would like to invoke:

<global-forwards>
 <forward name="welcome" path="viewsignin.do"/>
</global-forwards>

Then create a JSP page called welcome.jsp (the name actually can be anything you want) and use the
Struts forward tag to forward to the global forward when the page is loaded. The welcome.jsp page
only has to contain:

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<html>
 <body>
 <logic:forward name="welcome"/>
 </body>
</html>

You then need to add a welcome-file element for the welcome.jsp page:

<welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>

When the container uses the welcome.jsp resource, it will automatically forward to the forward named
welcome, which was defined in the global-forwards section. The welcome forward in
turn invokes the viewsignin.do action and achieves the desired result.

4.5.6 Configuring Error Handling in web.xml

Although the Struts framework provides a suitable error-handling mechanism, there are times that
problems slip through the exception-handling crack and users are shown a servlet or JSP exception.
To absolutely prevent this from happening, you should use the error-page element available to
the web application deployment descriptor. Example 4-2 shows a partial web.xml file that uses the
error-page element to prevent users from seeing a 404 or a 500 (Internal Server) error.

Example 4-2. Using the error-page element
<web-app>
 <!-- Other elements go here -->

 <error-page>

 <error-code>404</error-code>
 <location>/common/404.jsp</location>
 </error-page>

 <error-page>
 <error-code>500</error-code>
 <location>/common/500.jsp</location>
 </error-page>
</web-app>

When an error status code is set in the response, the container consults the list of error-page
declarations for the web application. If a match is found, the container returns the resource indicated
by the location element. The value of the location element must begin with a "/" character,
and it must refer to a resource within the web application.

If you need to refer to a resource outside of the web application, you can use the HTML Refresh
meta tag. To do this, refer to a static HTML document in the location element that contains only
the following line:

<meta http-equiv="Refresh"
content="0;URL=http://www.somehost.com/404.jsp">

When the error occurs, the Refresh meta tag will reload immediately, but it will use the alternate
URL provided. This strategy also is a good way to allow users to refer to resources with a static
extension, such as .htm, but then reload to a dynamic page, such as a JSP page.

For example, you can use this approach to show a "Still Processing" page. You
might want to set the reload time to a value greater than zero. The URL can be
a Struts action, and if the processing isn't finished, it will just call the same
page again. If processing has completed, it can forward to a completed page.

A servlet also can generate exceptions for which you can declare error pages. Instead of specifying the
error-code element, you can specify a fully qualified Java class using the exception-type
element. Servlets can throw the following exceptions during processing:

• RuntimeException or Error
• ServletException or subclasses
• IOException or subclasses

The Java exception class declared in the exception-type element must be one of these.

Example 4-3 illustrates how you would substitute the exception-type element for the
error-code.

Example 4-3. Using the exception-type instead of the error-code element
<web-app>
 <error-page>

 <exception-type>javax.servlet.ServletException</exception-
type>
 <location>/common/system_error.jsp</location>
 </error-page>
</web-app>

For the majority of this chapter, you have been shown partial deployment descriptors. This was done
mainly to save space, but also so that we could ease our way into the various supported elements. Now
it's time to include a complete example of a web deployment descriptor. Example 4-4 shows the web
deployment descriptor for the Storefront application.

Example 4-4. A complete web.xml file configured for Struts 1.1
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-
class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>3</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>3</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>storefront</servlet-name>
 <url-pattern>/action/*</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>

 <error-page>

 <error-code>404</error-code>
 <location>/common/404.jsp</location>
 </error-page>
 <error-page>
 <error-code>500</error-code>
 <location>/common/500.jsp</location>
 </error-page>

 <taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
 </taglib>
</web-app>

4.6 The Struts Configuration File

The Struts framework depends on one or more configuration files to be able to load and create the
necessary application-specific components at startup. The configuration files allow the behavior of the
framework components to be specified declaratively, rather than having the information and behavior
hardcoded. This gives developers the flexibility to provide their own extensions, which the framework
can discover dynamically.

The configuration file is based on the XML format and can be validated against the Struts DTD struts-
config_1_1.dtd. Although there are some similarities between the 1.0 and 1.1 versions of the
framework with respect to the configuration file, there are at least as many differences. Fortunately,
the designers of the framework have made backward compatibility a goal of the Struts 1.1 release;
therefore, your 1.0 applications should continue to work properly with the new version.

4.6.1 Configuring Multiple Application Modules

Application modules were mentioned briefly in Chapter 3, but we haven't yet fully introduced this
new feature. With application modules, you can define multiple Struts configuration files, one for each
supported module. Each application module can provide its own configuration information, including
message resources, and be completely independent from other modules.

Application modules allow a single Struts application to be split into separate projects, making parallel
development easier to accomplish. Although the functionality for application modules exists in the
framework, you are not required to implement more than one (the default application module). We'll
discuss application modules further in Chapter 5, Chapter 6, and Chapter 7. For now, we'll concentrate
on configuring the default application; we'll see how easy it is to add additional modules later.

4.7 The org.apache.struts.config Package

The org.apache.struts.config package was added to Struts 1.1. The framework uses
JavaBeans at runtime to hold the configuration information it reads from the Struts configuration files.
Figure 4-4 shows the main classes from the config package.

Figure 4-4. Class diagram for the org.apache.struts.config package

Each class in the config package holds information from a specific section of the configuration file.
After the configuration file has been validated and parsed, the Struts framework uses instances of
these beans to represent in-memory versions of the information that has been declared in the
configuration file. These classes act as runtime containers of the configuration information and are
used by the framework components as needed.

The org.apache.struts.config.ConfigRuleSet class shown in Figure 4-4 has a
slightly different, but related, job—it contains the set of rules that are required to parse a Struts
configuration file. Its job is to construct instances of the configuration JavaBeans mentioned in the
previous paragraph when the application is started.

4.7.1 The ApplicationConfig Class

The org.apache.struts.config.ApplicationConfig class deserves a special
introduction, as it plays a very important role in the framework. As Figure 4-4 indicates, it is central to
the entire config package and holds onto the configuration information that describes an entire
Struts application. If multiple subapplications are being used, there is one ApplicationConfig
object for each subapplication. The ApplicationConfig class will surface throughout the
remainder of our discussion of the framework.

4.7.2 The Struts Configuration DTD

As the web application's DTD is used to validate the web.xml file, the Struts DTD is used to validate
the Struts configuration file.

A complete struts-config.xfile file is shown later, in Example 4-5. It may help
to refer to that example following the discussion of these elements.

The following Struts DTD declaration indicates that the struts-config element is the root
element for the XML file and that it has eight child elements:

<!ELEMENT struts-config (data-sources?, form-beans?, global-
exceptions?, global-
 forwards?, action-mappings?, controller?, message-
resources*, plug-in*)
>

4.7.2.1 The data-sources element

The data-sources element allows you to set up a rudimentary data source that you can use from
within the Struts framework. A data source acts as a factory[3] for database connections and provides a
single point of control. Many data source implementations use a connection-pooling mechanism to
improve performance and scalability.

[3] See the discussion of the Abstract Factory pattern in the Gang of Four's Design Patterns: Elements of
Reusable Object-Oriented Software (Addison Wesley).

Many vendors provide their own implementations of data source objects. The Java language provides
the javax.sql.DataSource interface, which all implementations must implement. Most
application servers and some web containers provide built-in data source components. All of the major
database vendors also provide data source implementations.

The data-sources element can contain zero or more data-source elements:

<!ELEMENT data-sources (data-source*)>

The data-source element allows for multiple set-property elements to be specified:

<!ELEMENT data-source (set-property*)>

The set-property element allows you to configure properties that are specific to your data
source implementation.

Throughout the discussion of the Struts configuration elements in the rest of
this chapter, you will notice a child element called set-property in
many of the major elements of the configuration file. The set-property
element specifies the name and value of an additional JavaBeans configuration

property whose setter method will be called on the object that represents the
surrounding element. This element is especially useful for passing additional
property information to an extended implementation class. The set-
property element is optional, and you will use it only if you need to pass
additional properties to a configuration class.

The set-property element defines three attributes, including the id
attribute, which is seldom used. The property attribute is the name of the
JavaBeans property whose setter method will be called. The value attribute
is a string representing the value that will be passed to the setter method after
proper conversion. This section provides an example of using the set-
property element. The same format is replicated wherever the set-
property element is declared.

The attributes for the data-source element are listed in Table 4-3.

Table 4-3. Attributes of the data-source element
Name Description

id Not currently used.

className

The implementation class of the configuration bean that will hold the data source
information. If specified, it must be a descendant of
org.apache.struts.config.DataSourceConfig, which is the
default class when no value is specified. This attribute is optional.

key The servlet context attribute under which this data source will be stored. This attribute
is optional; the default value is Action.DATA_SOURCE_KEY.

type

The fully qualified Java class name of the data source implementation class. The class
represented by this value must implement javax.sql.DataSource and be
configurable from JavaBeans properties. This attribute is optional; the default value is
org.apache.struts.util.GenericDataSource.

The GenericDataSource class included with the Struts framework has
been deprecated in favor of the Database Connection Pool (DBCP) project
from Jakarta or an implementation from your container.

The following code illustrates how to configure a data source within the Struts configuration file:

<data-sources>
 <data-source>
 <set-property property="autoCommit" value="true"/>
 <set-property property="description" value="MySql Data
Source"/>
 <set-property property="driverClass"
value="com.caucho.jdbc.mysql.Driver"/>
 <set-property property="maxCount" value="10"/>
 <set-property property="minCount" value="2"/>
 <set-property property="user" value="admin"/>
 <set-property property="password" value="admin"/>

 <set-property property="url"
 value="jdbc:mysql-
caucho://localhost:3306/storefront"/>
 </data-source>
</data-sources>

This code illustrates a data-source element configured to connect to a MySQL database using a
JDBC driver from Caucho Technology, the developers of the Resin™ servlet/EJB container.

You can specify multiple data sources within the configuration file, assign each one a unique key, and
access a particular data source in the framework by its key. This gives you the ability to access
multiple databases if necessary.

Although the default data source functionality provided by the framework does work, your application
may require a more robust data source implementation. There are several other popular data source
implementations you can use. Table 4-4 lists a few of the more popular alternative implementations.

Table 4-4. Alternative data source implementations
Name Vendor URL

Poolman Open source http://sourceforge.net/projects/poolman/
Expresso Jcorporate http://www.jcorporate.com
JDBC Pool Open source http://www.bitmechanic.com/projects/jdbcpool/
DBCP Jakarta http://jakarta.apache.org/commons/index.html

The creator of the Poolman open source libraries is no longer supporting it.
Although it works well and still is available on SourceForge.net, it has not
been updated for quite some time. Of course, since it's open source, you can
make necessary fixes and changes yourself.

4.7.2.2 The form-beans element

The form-beans element allows you to configure multiple ActionForm classes that are used
by the views. Within the form-beans section, you can configure zero or more form-bean
child elements. Each form-bean element also has several child elements.

<!ELEMENT form-bean (icon?, display-name?, description?, set-
property*, form-
 property*)
>

Each form-bean element also has four attributes that you can specify. Table 4-5 lists the attributes.

Table 4-5. Attributes of the form-bean element
Name Description

className If you don't want to use the standard configuration bean
org.apache.struts.config.FormBeanConfig, you can specify your

own class here. It must extend the FormBeanConfig class. This attribute is
optional; the framework will use an instance of the FormBeanConfig class if it's
not specified.

dynamic

If the class identified by the type attribute is an instance of
org.apache.struts.action.DynaActionForm or a subclass, this
value should be set to true. Otherwise, this value is false. This attribute is
optional; the default value is false. This has been deprecated and the framework
will not determine this automatically.

name A unique identifier for this bean, which is used to reference it throughout the
framework. This value is required and must be unique within a subapplication.

type

The fully qualified name of a Java class that extends the Struts ActionForm class.
If this value is specified as
org.apache.struts.action.DynaActionForm, Struts will
dynamically generate an instance of the DynaActionForm. This attribute is
required.

Be careful when configuring the value for the type attribute. It must be the
fully qualified name of the ActionForm implementation class. If you
misspell the name, it can be very hard to debug this problem.

As mentioned in Chapter 3, a form bean is a JavaBeans class that extends the
org.apache.struts.action.ActionForm class. The following code shows how the
form-beans element can be configured in the Struts configuration file:

<struts-config>
 <form-beans>
 <form-bean
 name="loginForm"
 type="org.apache.struts.action.DynaActionForm">
 <form-property name="username" type="java.lang.String"/>
 <form-property name="password" type="java.lang.String"/>
 </form-bean>

 <form-bean
 name="shoppingCartForm"
 type="com.oreilly.struts.order.ShoppingCartForm"/>
 </form-beans>
</struts-config>

One of the form-bean elements in this code uses a feature new in Struts 1.1, called dynamic action
forms. Dynamic action forms were discussed briefly in Chapter 3 and will be discussed in detail in
Chapter 7.

You can pass one or more dynamic properties to an instance of the
org.apache.struts.action.DynaActionForm class using the form-property
element. It is supported only when the type attribute of the surrounding form-bean element is
org.apache.struts.action.DynaActionForm, or a descendant class.

Each form-property element also has four attributes that you can specify. Table 4-6 lists the
attributes allowed in the form-property element.

Table 4-6. Attributes of the form-property element
Name Description

className
If you don't want to use the standard configuration bean
org.apache.struts.config.FormPropertyConfig, you can
specify your own class here. This attribute is not required.

initial A string representation of the initial value for this property. If not specified, primitives
will be initialized to zero and objects to null. This attribute is not required.

name The JavaBeans property name of the property being described by this element. This
attribute is required.

type
The fully qualified Java class name of the implementation class of this bean property,
optionally followed by "[]" to indicate that this property is indexed. This attribute is
required.

The following form-bean fragment illustrates the use of the form-property element:

<form-bean
 name="checkoutForm"
 type="org.apache.struts.action.DynaActionForm">
 <form-property name="firstName" type="java.lang.String"/>
 <form-property name="lastName" type="java.lang.String"/>
 <form-property name="age" type="java.lang.Integer"
initial="18"/>
 </form-bean>

4.7.2.3 The global-exceptions element

The global-exceptions section allows you to configure exception handlers declaratively. The
global-exceptions element can contain zero or more exception elements:

<!ELEMENT global-exceptions (exception*)>

Later in this chapter, when action mappings are discussed, you will see that the exception
element also can be specified in the action element. If an exception element is configured for
the same type of exception both in the global-exceptions element and in the action
element, the action level will take precedence. If no exception element mapping is found at
the action level, the framework will look for exception mappings defined for the exception's parent
class. Eventually, if a handler is not found, a ServletException or IOException will be
thrown, depending on the type of the original exception. Chapter 10 deals with both declarative and
programmatic exception handling in detail. This section illustrates how to configure declarative
exception handling for your applications.

The exception element describes a mapping between a Java exception that may occur during
processing of a request and an instance of
org.apache.struts.action.ExceptionHandler that is responsible for dealing with

the thrown exception. The declaration of the exception element illustrates that it also has several
child elements:

<!ELEMENT exception (icon? display-name? description? set-
property*)>

Probably more important than the child elements are the attributes that can be specified in the
exception element. The attributes are listed in Table 4-7.

Table 4-7. Attributes of the exception element
Name Description

className

The implementation class of the configuration bean that will hold the exception
information. If specified, it must be a descendant of
org.apache.struts.config.ExceptionConfig, which is the default
class when no value is specified.

handler

The fully qualified Java class name of the exception handler that will process the
exception. If no value is specified, the default class
org.apache.struts.action.ExceptionHandler will be used. If a
class is specified for this attribute, it must be a descendant of the
ExceptionHandler class.

key A message key that is specified in the resource bundle for this subapplication. This
value is used by the ActionError instance.

path
The application-relative path of the resource to forward to if this exception occurs.
This attribute is optional; the framework will default to the input attribute for the
action mapping if no value is specified here.

scope
The identifier of the scope level where the ActionError instance should be
stored. The attribute value must be either request or session. This attribute is
optional and will default to request if not specified.

type
The fully qualified Java class name of the exception that is to be handled. This
attribute is required because it identifies the exception, which can't be assumed by the
framework.

bundle The ServletContext attribute that identifies a resource bundle from which the
key attribute of this element should come.

The following is an example of a global-exception element:

<global-exceptions>
 <exception
 key="global.error.invalidlogin"
 path="/security/signin.jsp"
 scope="request"

type="com.oreilly.struts.framework.exceptions.InvalidLoginExce
ption"/>
</global-exceptions>

4.7.2.4 The global-forwards element

Every action that is executed finishes by forwarding or redirecting to a view. This view is a JSP page
or static HTML page, but might be another type of resource. Instead of referring to the view directly,
the Struts framework uses the concept of a forward to associate a logical name with the resource. So,
instead of referring to login.jsp directly, a Struts application may refer to this resource as the login
forward, for example.

The global-forwards section allows you to configure forwards that can be used by all actions
within an application. The global-forwards section consists of zero or more forward
elements:

<!ELEMENT global-forwards (forward*)>

The forward element maps a logical name to an application-relative URI. The application can then
perform a forward or redirect, using the logical name rather than the literal URI. This helps to
decouple the controller and model logic from the view. The forward element can be defined in
both the global-forwards and action elements. If a forward with the same name is defined
in both places, the action level will take precedence.

The declaration of the forward element illustrates that it also has several child elements:

<!ELEMENT forward(icon?, display-name?, description, set-
property*)>

As with the exception element, the attributes probably are more interesting than the child
elements. The attributes for the forward element are shown in Table 4-8.

Table 4-8. Attributes of the forward element
Name Description

className

The implementation class of the configuration bean that will hold the
forward information. The default class is
org.apache.struts.action.ActionForward when no
value is specified. This attribute is not required.

contextRelative

Set to true to indicate that the resource specified in the path attribute
should be interpreted as application-relative if the path starts with a "/"
character. This is so the resource specified by the path attribute can reside
in another subapplication. This attribute is not required; the default value is
false.

name A unique value that is used to reference this forward in the application. This
attribute is required.

path

An application-relative (if the contextRelative attribute is false)
or context-relative (if the contextRelative attribute is true) URI to
which control should be forwarded or redirected. This attribute is required
and must begin with a "/" character.

redirect

A Boolean value that determines whether the RequestProcessor
should perform a forward or a redirect when using this forward mapping.
This attribute is not required; the default value is false, which means that
a forward will be performed.

The following is an example of a global-forwards element from the Storefront application:

<global-forwards>
 <forward name="Login" path="/security/signin.jsp"
redirect="true"/>
 <forward name="SystemFailure"
path="/common/systemerror.jsp"/>
 <forward name="SessionTimeOut"
path="/common/sessiontimeout.jsp" redirect="true"/>
 <forward name="Welcome" path="viewsignin"/>
</global-forwards>

The org.apache.struts.action.ActionForward class is used to hold the
information configured in the controller element (discussed later). The ActionForward
class now extends org.apache.struts.config.ForwardConfig for backward
compatibility.

4.7.2.5 The action-mappings element

The action-mappings element contains a set of zero or more action elements for a Struts
application:

<!ELEMENT action-mappings (action*)>

The action element describes a mapping from a specific request path to a corresponding Action
class. The controller selects a particular mapping by matching the URI path in the request with the
path attribute in one of the action elements. The action element contains the following child
elements:

<!ELEMENT action (icon?, display-name?, description, set-
property*, exception*, forward*)>

Two child elements should stand out in the list of children for the action element, because you've
already seen them earlier in this chapter: exception and forward.

We talked about the exception element when we discussed the global-exceptions
element. We mentioned then that exception elements could be defined at the global or at the
action level. The exception elements defined within the action element take precedence over
any of the same type defined at the global level. The syntax and attributes are the same, regardless of
where they are defined.

We introduced the forward element when we discussed the global-forwards element. As
with exception elements, a forward element can be defined both at the global level and at the
action level. The action level takes precedence if the same forward is defined in both locations. The
action element contains quite a few attributes, shown in Table 4-9.

Table 4-9. Attributes of the action element

Name Description

attribute

The name of the request- or session-scope attribute under which the form bean for this
action can be accessed. A value is allowed here only if there is a form bean specified
in the name attribute. This attribute is optional and has no default value. If both this
attribute and the name attribute contain a value, this attribute will take precedence.

className
The implementation class of the configuration bean that will hold the action
information. The org.apache.struts.action.ActionMapping class
is the default class when no value is specified. This attribute is optional.

forward

The application-relative path to a servlet or JSP resource that will be forwarded to,
instead of instantiating and calling the Action class. The attributes forward,
include, and type are mutually exclusive, and exactly one must be specified.
This attribute is optional.
org.apache.struts.actions.ForwardAction can be used to
achieve the same behavior. This action is discussed in Chapter 5.

include

The application-relative path to a servlet or JSP resource that will be included with the
response, instead of instantiating and calling the Action class. The attributes
forward, include, and type are mutually exclusive, and exactly one must be
specified. This attribute is optional.
org.apache.struts.actions.IncludeAction can be used to
achieve the same behavior. This action is discussed in Chapter 5.

input
The application-relative path to the input form to which control should be returned if a
validation error is encountered. Required if the name attribute is specified. Not
allowed if the name attribute is not specified.

name
The name of the form bean associated with this action. This value must be the name
attribute from one of the form-bean elements defined earlier. This attribute is
optional and has no default value.

path

The application-relative path to the submitted request, starting with a "/" character and
without the filename extension if extension mapping is used. In other words, this is the
name of the action—for example, /addToShoppingCart. This value is
required. This attribute probably should have been called "name" because it really is
the name of the action.

parameter

A general-purpose configuration parameter that can be used to pass extra information
to the action instance selected by this action mapping. The core framework does not
use this value. If you provide a value here, you can obtain it in your Action by
calling the getParameter() method on the ActionMapping passed to the
execute() method.

prefix

Used to match request parameter names to form bean property names. For example, if
all of the properties in a form bean begin with "pre_", you can set the prefix
attribute so the request parameters will match to the ActionForm properties. You
can provide a value here only if the name attribute is specified.

roles
A comma-delimited list of security role names allowed to invoke this Action.
When a request is processed, the RequestProcessor verifies that the user has at
least one of the roles identified within this attribute. This attribute is optional.

scope
Used to identify the scope in which the form bean is placed—either request or
session. This attribute can be specified only if the name attribute is present. The
default value is session.

suffix Used to match request parameter names to form bean property names. For example, if

all of the properties in a form bean end with "_foo", you can set the suffix attribute
so the request parameters will match to the ActionForm properties. You can
provide a value here only if the name attribute is specified.

type

A fully qualified Java class name that extends the
org.apache.struts.action.Action class. This attribute is used to
process the request if the forward and include attributes are not specified. The
attributes forward, include, and type are mutually exclusive, and exactly one
must be specified.

unknown

A Boolean value indicating whether this action should be configured as the default for
this application. If this attribute is set to true, this action will handle any request that
is not handled by another action. Only one action mapping per application can have
this value set to true. This attribute is optional and defaults to false. This is a
good place to set up a default action that will catch any invalid action URL entered by
the user. The name of this attribute would have been better as "default".

validate
A Boolean value indicating whether the validate() method of the form bean,
specified by the name attribute, should be called prior to calling the execute()
method of this action. This attribute is optional and defaults to true.

The following is an example of the "signin" action element from the Storefront application:

<action
 path="/signin"
 type="com.oreilly.struts.storefront.security.LoginAction"
 scope="request"
 name="loginForm"
 validate="true"
 input="/security/signin.jsp">
 <forward name="Success" path="/index.jsp" redirect="true"/>
 <forward name="Failure" path="/security/signin.jsp"
redirect="true"/>
 </action>

The org.apache.struts.action.ActionMapping class is
used to represent the information configured in the action element. The
ActionMapping class extends
org.apache.struts.config.ActionConfig for backward
compatibility.

4.7.2.6 The controller element

The controller element is new to Struts 1.1. Prior to Version 1.1, the ActionServlet
contained the controller functionality, and you had to extend that class to override the functionality. In
Version 1.1, however, Struts has moved most of the controller functionality to the
RequestProcessor class. The ActionServlet still receives the requests, but it delegates
the request handling to an instance of the RequestProcessor. This allows you to declaratively
assign the processor class and modify its functionality.

If you're familiar with Version 1.0, you'll notice that many of the parameters that were configured in
the web.xml file for the controller servlet now are configured using the controller element.

Because the controller and its attributes are defined in the struts-config.xml file, you can define a
separate controller element for each subapplication. The controller element has a single
child element:

<!ELEMENT controller (set-property*)>

The controller element can contain zero or more set-property elements and many
different attributes. The attributes are shown in Table 4-10.

Table 4-10. Attributes of the controller element
Name Description

bufferSize The size of the input buffer used when processing file uploads. This attribute
is optional; the default value is 4096.

className

The implementation class of the configuration bean that will hold the
controller information. If specified, it must be a descendant of
org.apache.struts.config.ControllerConfig, which is
the default class when no value is specified. This attribute is not required.

contentType
The default content type and optional character encoding that gets set for each
response. This attribute is not required; the default value is text/html.
Even when a value is specified here, an action or a JSP page may override it.

debug

The debugging level for this application. The value is used throughout the
framework to determine how verbose the logging information should be for
events that take place internally. The larger the value, the more verbose the
logging is. This attribute is not required; the default value is 0, which causes
little or no logging information to be written out.

forwardPattern

A replacement pattern defining how the path attribute of a forward
element is mapped to a context-relative URL when it starts with a slash (and
when the contextRelative property is false). This value may
consist of any combination of the following:

• $A—Replaced by the application prefix of this subapplication
• $P—Replaced by the path attribute of the selected forward

element
• $$—Causes a literal dollar sign to be rendered
• $x (where x is any character not defined above)—Silently

swallowed, reserved for future use

If not specified, the default forwardPattern is AP, which is
consistent with previous hardcoded behavior of forwards.

inputForward

Set to true if you want the input parameters of action elements to be
the names of local or global forward elements used to calculate the
ultimate URLs. Set to false (the default) to treat the input parameters of
action elements as subapplication-relative paths to the resources used for
the input form.

locale
A Boolean value indicating whether the user's preferred locale is stored in the
user's session if not already present. This attribute is not required; the default
value is false.

maxFileSize

The maximum size (in bytes) of a file to be accepted as a file upload. This
value can be expressed as a number followed by "K", "M", or "G" (interpreted
to mean kilobytes, megabytes, or gigabytes, respectively). This attribute is not
required; the default value is 250M.

multipartClass

The fully qualified Java class name of the multipart request-handler class to be
used. This is used when uploading files from a user's local filesystem to the
server. This attribute is not required; the default value is the
DiskMultipartRequestHandler class in the
org.apache.struts.upload package.

nocache

A Boolean value indicating whether the framework should set nocache
HTTP headers in every response. This attribute is not required; the default
value is false. Note that the letter "c" in nocache is lowercase. To be
consistent with the other attributes shown here, it should have been
noCache, but it's not.

pagePattern

A replacement pattern defining how the page attributes of custom tags using
it are mapped to context-relative URLs of the corresponding resources. This
value may consist of any combination of the following:

• $A—Replaced by the application prefix of this subapplication
• $P—Replaced by the value of the page attribute
• $$—Causes a literal dollar sign to be rendered
• $x (where x is any character not defined above)—Silently

swallowed, reserved for future use

If not specified, the default forwardPattern is AP, which is
consistent with previous hardcoded behavior of URL evaluation for page
attributes.

processorClass

The fully qualified Java class name of the request-processor class to be used
to process requests. The value specified here should be a descendant of
org.apache.struts.action.RequestProcessor, which is
the default value. This attribute is not required.

tempDir
Specifies the temporary working directory that is used when processing file
uploads. This attribute is not required; the servlet container will assign a
default value for each web application.

The org.apache.struts.config.ControllerConfig class is used to represent the
information configured in the controller element in memory. The following fragment shows an
example of how to configure the controller element:

<controller
 contentType="text/html;charset=UTF-8"
 debug="3"
 locale="true"
 nocache="true"

processorClass="com.oreilly.struts.framework.CustomRequestProc
essor"/>

4.7.2.7 The message-resources element

The message-resources element specifies characteristics of the message resource bundles that
contain the localized messages for an application. Each Struts configuration file can define one or
more message resource bundles; therefore, each subapplication can define its own bundles. The
message-resources element contains only a set-property element:

<!ELEMENT message-resources (set-property*)>

Table 4-11 lists the attributes supported by the message-resources element.

Table 4-11. Attributes of the message-resources element
Name Description

className

The implementation class of the configuration bean that will hold the message-
resources information. If specified, it must be a descendant of
org.apache.struts.config.MessageResourcesConfig, which is
the default class when no value is specified. This attribute is optional.

factory

The fully qualified Java class name of the MessageResourcesFactory class
that should be used. This attribute is optional. The
PropertyMessageResources class of the package
org.apache.struts.util is the default.

key
The servlet context attribute with which this message resource bundle will be stored.
This attribute is optional. The default value is specified by the string constant
Action.MESSAGES_KEY. Only one resource bundle can be the default bundle.

null

A Boolean value indicating how the MessageResources subclass should handle
the case when an unknown message key is used. If this value is set to true, an empty
string will be returned. If set to false, a message that looks something like
"???global.label.missing???" will be returned. The actual message will contain the
bad key. This attribute is optional. The default value is true.

parameter

The base name of the resource bundle. For example, if the name of your resource
bundle is ApplicationResources.properties, you should set the
parameter value to ApplicationResources. This attribute is required. If your
resource bundle is within a package, you must provide the fully qualified name in this
attribute.

The following example shows how to configure multiple message-resources elements for a
single application. Notice that the second element had to specify the key attribute, because only one
can be stored with the default key:

<message-resources
 null="false"
 parameter="StorefrontMessageResources"/>
<message-resources
 key="IMAGE_RESOURCE_KEY"
 null="false"
 parameter="StorefrontImageResources"/>

4.7.2.8 The plug-in element

The concept of a plug-in was added in Struts 1.1. This powerful feature allows your Struts
applications to discover resources dynamically at startup. For example, if you need to create a
connection to a remote system at startup and you didn't want to hardcode this functionality into the
application, you can use a plug-in, and the Struts application will discover it dynamically. To use a
plug-in, create a Java class that implements the org.apache.struts.action.PlugIn
interface and add a plug-in element to the configuration file. The PlugIn mechanism itself will
be discussed further in Chapter 9.

The plug-in element specifies a fully qualified class name of a general-purpose application plug-in
module that receives notification of application startup and shutdown events. An instance of the
specified class is created for each element; the init() method is called when the application is
started, and the destroy() method is called when the application is stopped. The class specified
here must implement the org.apache.struts.action.PlugIn interface and implement
the init() and destroy() methods.

The plug-in element may contain zero or more set-property elements, so that extra
configuration information may be passed to your PlugIn class:

<!ELEMENT plug-in (set-property*)>

The allowed attribute for the plug-in element is shown in Table 4-12.

Table 4-12. Attributes of the plug-in element
Name Description

className The fully qualified Java class name of the PlugIn class. It must implement the
PlugIn interface.

The following fragment shows two plug-in elements being used:

<plug-in

className="com.oreilly.struts.storefront.service.StorefrontSer
viceFactory"/>

<plug-in
 className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-
INF/validation.xml"/>
</plug-in>

The ValidatorPlugIn shown in the second plug-in element shows
how the Struts framework initializes the Validator. The Validator framework is
discussed in Chapter 11.

4.7.3 A Complete struts-config.xml File

Up to this point, you haven't seen a complete example of a Struts configuration file. Example 4-5
provides a complete listing.

Example 4-5. A complete Struts configuration file
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts
Configuration 1.1//EN"
 "http://jakarta.apache.org/struts/dtds/struts-
config_1_1.dtd">

<struts-config>

 <data-sources>
 <data-source>
 <set-property property="autoCommit" value="true"/>
 <set-property property="description" value="Resin Data
Source"/>
 <set-property property="driverClass"
value="com.caucho.jdbc.mysql.Driver"/>
 <set-property property="maxCount" value="10"/>
 <set-property property="minCount" value="2"/>
 <set-property property="user" value="admin"/>
 <set-property property="password" value="admin"/>
 <set-property
 property="url"
 value="jdbc:mysqlcaucho://localhost:3306/storefront"/>
 </data-source>
 </data-sources>

 <form-beans>
 <form-bean
 name="loginForm"
 type="com.oreilly.struts.storefront.security.LoginForm"/>
 <form-bean
 name="itemDetailForm"
 type="org.apache.struts.action.DynaActionForm">
 <form-property name="view"
type="com.oreilly.struts.catalog.view.ItemView"/>
 </form-bean>
 </form-beans>

 <global-exceptions>
 <exception
 key="global.error.invalidlogin"
 path="/security/signin.jsp"
 scope="request"

type="com.oreilly.struts.framework.exceptions.InvalidLoginExce
ption"/>
 </global-exceptions>

 <global-forwards>
 <forward name="Login" path="/security/signin.jsp"
redirect="true"/>
 <forward name="SystemFailure"
path="/common/systemerror.jsp"/>
 <forward
 name="SessionTimeOut"
 path="/common/sessiontimeout.jsp"
 redirect="true"/>
 </global-forwards>

 <action-mappings>
 <action
 path="/viewsignin"
 parameter="/security/signin.jsp"
 type="org.apache.struts.actions.ForwardAction"
 scope="request"
 name="loginForm"
 validate="false"
 input="/index.jsp">
 </action>
 <action
 path="/signin"
 type="com.oreilly.struts.storefront.security.LoginAction"
 scope="request"
 name="loginForm"
 validate="true"
 input="/security/signin.jsp">
 <forward name="Success" path="/index.jsp" redirect="true"/>
 <forward name="Failure" path="/security/signin.jsp"
redirect="true"/>
 </action>
 <action
 path="/signoff"
 type="com.oreilly.struts.storefront.security.LogoutAction"
 scope="request"
 validate="false"
 input="/security/signin.jsp">
 <forward name="Success" path="/index.jsp" redirect="true"/>
 </action>
 <action
 path="/home"
 parameter="/index.jsp"
 type="org.apache.struts.actions.ForwardAction"

 scope="request"
 validate="false">
 </action>
 <action
 path="/viewcart"
 parameter="/order/shoppingcart.jsp"
 type="org.apache.struts.actions.ForwardAction"
 scope="request"
 validate="false">
 </action>
 <action path="/cart"

type="com.oreilly.struts.storefront.order.ShoppingCartActions"
 scope="request"
 input="/order/shoppingcart.jsp"
 validate="false"
 parameter="method">
 <forward name="Success" path="/action/viewcart"
redirect="true"/>
 </action>
 <action
 path="/viewitemdetail"
 name="itemDetailForm"
 input="/index.jsp"

type="com.oreilly.struts.storefront.catalog.GetItemDetailActio
n"
 scope="request"
 validate="false">
 <forward name="Success" path="/catalog/itemdetail.jsp"/>
 </action>
 <action
 path="/begincheckout"
 input="/order/shoppingcart.jsp"
 type="com.oreilly.struts.storefront.order.CheckoutAction"
 scope="request"
 validate="false">
 <forward name="Success" path="/order/checkout.jsp"/>
 </action>
 <action
 path="/getorderhistory"
 input="/order/orderhistory.jsp"

type="com.oreilly.struts.storefront.order.GetOrderHistoryActio
n"
 scope="request"
 validate="false">
 <forward name="Success" path="/order/orderhistory.jsp"/>
 </action>

 </action-mappings>

 <controller
 contentType="text/html;charset=UTF-8"
 debug="3"
 locale="true"
 nocache="true"

processorClass="com.oreilly.struts.framework.CustomRequestProc
essor"/>

 <message-resources
 parameter="StorefrontMessageResources"
 null="false"/>
 <message-resources
 key="IMAGE_RESOURCE_KEY"
 parameter="StorefrontImageResources"
 null="false"/>
 <plug-in

className="com.oreilly.struts.storefront.service.StorefrontSer
viceFactory"/>
 <plug-in
 className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-
INF/validation.xml"/>
 </plug-in>
</struts-config>

4.7.4 Using Multiple Application Modules

Now that you've seen how to configure the default application for Struts, the last step is to discuss
how you include multiple application modules. With Struts 1.1, you have the ability to set up multiple
Struts configuration files. Although the application modules are part of the same web application, they
act independently of one another. You also can switch back and forth between subapplications if you
like.

Using multiple application modules allows for better organization of the components within a web
application. For example, you can assemble and configure one application module for everything that
deals with catalogs and items, while another module can be organized with the configuration
information for a shopping cart and ordering. Separating an application into components in this way
facilitates parallel development.

The first step is to create the additional Struts configuration files. Suppose we created a second
configuration file named struts-order-config.xml. We must modify the web.xml file for the application
and add an additional init-param element for the new module. This was shown earlier in the

chapter, but it's repeated here for convenience. Example 4-6 shows the servlet instance mapping from
before with an additional init-param for the second Struts configuration file.

Example 4-6. A partial web.xml file that illustrates how to configure multiple
subapplications
<servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-
class>org.apache.struts.action.ActionServlet</servlet-class>

 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>

 <init-param>
 <param-name>config/order</param-name>
 <param-value>/WEB-INF/struts-order-config.xml</param-value>
 </init-param>

 <load-on-startup>1</load-on-startup>
 </servlet>

Notice that the param-name value for the nondefault application module in Example 4-6 begins
with config/. All nondefault application modules' param-name elements must begin with
config/; the default application's param-name element contains the config value alone. The
part that comes after config/ is known as the application module prefix and is used throughout the
framework for intercepting requests and returning the correct resources.

With the current version of the Struts framework, only extension mapping is
supported when using multiple application modules. Path mapping is not yet
supported.

Pay special attention to the configuration attributes available in the various Struts XML elements.
Some of them, as mentioned in this chapter, have a profound effect on how an application operates in
a multiapplication module environment.

4.7.5 Specifying a DOCTYPE Element

To ensure that your Struts configuration file is valid, it can and should be validated against the Struts
DTD. To do this, you must include the DOCTYPE element at the beginning of your Struts
configuration XML file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts
Configuration 1.1//EN"

 "http://jakarta.apache.org/struts/dtds/struts-
config_1_1.dtd">

In earlier versions of the framework, there were some issues with applications not being able to start
up if they couldn't get to the Jakarta site and access the DTD from there. This is no longer the case, as
Struts now provides local copies of the DTDs.

Some users prefer to specify a SYSTEM DOCTYPE tag, rather than a PUBLIC one. This allows
you to specify an absolute path instead of a relative one. Although this may solve a short-term
problem, it creates more long-term ones. You can't always guarantee the directory structure from one
target environment to another. Also, different containers act differently when using a SYSTEM
DOCTYPE tag. You probably are better off not using it. However, if you decide that you need to do
so, it should look something like the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config SYSTEM "file:///c:/dtds/struts-
config_1_1.dtd">

<struts-config>
 <!--The rest of the struts configuration file goes next -->

As you can see, the location of the DTD is an absolute path. If the path of the target environment is
not the same, you'll have to modify the XML file. This is why this approach is not recommended.

4.8 The Digester Component

When a Struts application is initialized, one of the first things that it must do is to read and parse the
configuration file, which, as you've seen in this chapter, is in XML. The Digester component is a
separate Jakarta project made up of several classes that read XML files and create and initialize Java
objects based on those files.

The Digester component uses a set of rules, written as a Java class, to invoke callback methods. These
methods instantiate and populate the objects with data read from the Struts configuration file.

The Struts framework uses the Digester to parse the configuration files and to create the necessary
configuration objects within the org.apache.struts.config package. The rules that the
Digester uses for Struts are contained within the
org.apache.struts.config.ConfigRuleSet class. There is little need to modify the
ConfigRuleSet class unless you need to extend the configuration file. If this is necessary for
your application, you should view the documentation for the Digester component before you get
started. This can be found at http://jakarta.apache.org/commons/digester.html.

4.9 The Struts Console Tool

When you're developing a small application, the Struts configuration is manageable. It's still XML,
but typically it's not much of a problem. Some developers use XML editors, while others use ordinary
text editors. Both of these are fine when the application is relatively small, but when you are working
on a large Struts project, the size and complexity of the file can be staggering.

The Struts Console application was created by James Holmes to solve this and other problems
associated with managing large configuration files. It is a Swing-based application that provides an
easy-to-use interface for editing the various elements of the Struts configuration file.

You can download the Struts Console for free from http://www.jamesholmes.com/struts/console/,
even though it's not open source software. No license currently is necessary, but you should check the
web site to make sure this hasn't changed. You can download the Struts console

The formatting of your Struts configuration file might be modified when you
save the file using the Console. The Console uses an XML parser to read in the
configuration file, and the parser can't maintain complete knowledge of how
the file was originally formatted. The Console does provide several output
options that you can use to format the XML file based on different formats.

Figure 4-5 shows the action screen from the Struts Console.

Figure 4-5. The action configuration screen from the Struts Console

The Struts Console application also plugs into multiple popular Java integrated development
environments (IDEs). Currently, the supported IDEs include:

• JBuilder (4.0 or higher)
• NetBeans (3.2 or higher)
• Oracle JDeveloper (9i or higher)
• Sun Forte for Java (3.2 or higher)

Figure 4-6 shows what the Console application looks like in JBuilder.

Figure 4-6. The Struts Console running in the JBuilder IDE

4.10 Reloading the Configuration Files

The web deployment descriptor is loaded and parsed when the web container is first started. By
default, changes to the descriptor are not detected and reloaded while the container is running. In fact,
not many containers even provide this functionality—it's typically not a wanted feature, due to the
possible security issues involved. The Struts configuration files also are loaded and parsed when the
container is launched, and changes to these configuration files also are not automatically detected; the
same security issues are present.

Some applications might require the ability to reload the Struts configuration files without restarting
the web container. If your application is one of them, there are ways you can do this. One approach is
to create a Struts action that will reinitialize the ActionServlet (you may want to restrict which
users can call this action). Once the ActionServlet is reinitialized, everything will be new and
the application can again service requests, just like before.

A second strategy is to create a thread that monitors the lastModifiedTime of the
configuration file. It can sleep for a few seconds and, upon awakening, compare the
lastModifiedTime of the file against the one stored in a variable. If they are different, the file
has changed and it's time to reload the application. This approach is nice because you don't have to
worry about an unwelcome user reloading your application. However, the time that it gets reloaded is
entirely up to the thread.

Chapter 5. Struts Controller Components
As discussed in Chapter 1, the controller components are responsible for detecting user input, possibly
updating the domain model, and selecting the next view for the client. The controller helps to separate
the presentation of the model from the model itself. This separation gives you much more freedom to
develop a variety of presentations based on a single domain model.

Using a controller provides a centralized point of control where all client requests are initially
processed. Centralizing control in this way realizes two requirements of MVC design. First, the
controller acts as the mediator/translator between client input and the model, providing common
functionality such as security, logging, and other important services on behalf of each client request.
Second, because all requests are filtered through the controller, the view is decoupled both from the

business logic and from other view components. The view returned to the client is entirely up to the
controller. This makes your applications much more flexible.

The Struts framework uses a servlet to process incoming requests. However, it relies on many other
components that are part of the controller domain to help carry out its responsibilities. The Struts
controller components were mentioned briefly in previous chapters, but it's time to take an in-depth
look at what components have responsibility for the controller functionality in the framework.

5.1 The Controller Mechanism

The J2EE Front Controller design pattern uses a single controller to funnel all client requests through
a central point. Among the many advantages this pattern brings to application functionality is that
services such as security, internationalization, and logging are concentrated in the controller. This
permits the consistent application of these functions across all requests. When the behavior of these
services needs modification, changes potentially affecting the entire application need to be made only
to a relatively small and isolated area of the program.

As discussed in Chapter 1, the Struts controller has several responsibilities. Chief among these are:

• Intercepting client requests.
• Mapping each request to a specific business operation.
• Collecting results from the business operation and making them available to the client.
• Determining the view to display to the client based on the current state and result of the

business operation.

In the Struts framework, several components are responsible for the controller duties. Figure 5-1 is a
simple class diagram of the components in the Struts framework that share some portion of the
controller responsibility.

Figure 5-1. Struts controller components

There also are secondary helper components that assist those in Figure 5-1 in fulfilling their
responsibilities, but for now, let's focus on the ones in Figure 5-1.

5.1.1 The ActionServlet Class

The org.apache.struts.action.ActionServlet class acts as an interceptor for a
Struts application. All requests from the client tier must pass through the ActionServlet before
proceeding anywhere else in the application.

When an instance of the ActionServlet receives an HttpRequest, through either the
doGet() or doPost() method, the process() method is called to handle the request.
The process() method of ActionServlet is shown in Example 5-1.

Example 5-1. The ActionServlet process() method
protected void process(HttpServletRequest
request,HttpServletResponse response)
 throws IOException, ServletException {

 RequestUtils.selectApplication(request,
getServletContext());

getApplicationConfig(request).getProcessor().process(requ
est, response);
}

The process() method might not look complicated, but the methods invoked within it are. First,
the static selectApplication() method in the
org.apache.struts.util.RequestUtils class is called and passed the current request
and the ServletContext for the web application. The job of the selectApplication()
method is to select an application module to handle the current request by matching the path returned
from the request.getServletPath() to the prefix of each configured application module.

If you use only a single Struts configuration file, you will have only a single
application. This is known as the default application. To make processing
requests for the default application and the application modules simple and
consistent, the default application is treated as just another application module.
Therefore, any requests that don't contain an application suffix will be routed
and handled by the default application.

The selectApplication() method stores the appropriate ApplicationConfig and
MessageResources objects into the request. This makes it easier for the rest of the framework
to know which application and application components should be used for the request.

5.1.1.1 Extending the ActionServlet class

Prior to Struts 1.1, the ActionServlet class contained much of the code to process each user
request. Starting with 1.1, however, most of that functionality has been moved to the
org.apache.struts.action.RequestProcessor class, which is discussed in a
moment. This new controller component was added to help relieve the ActionServlet class of
most of the controller burden.

Although the framework still allows you to extend the ActionServlet class, the benefit is not as
great as with earlier versions because most of the functionality lies in the new
RequestProcessor class. If you still want to use your own version, just create a class that
extends ActionServlet and configure the framework to use this class instead of the
ActionServlet itself. Example 5-2 shows a Java servlet that extends the Struts
ActionServlet and overrides the init() method.

Example 5-2. The Struts ActionServlet can be extended to perform custom
initialization
package com.oreilly.struts.storefront.framework;

import javax.servlet.ServletException;
import javax.servlet.UnavailableException;
import org.apache.struts.action.ActionServlet;
import
com.oreilly.struts.storefront.service.IStorefrontService;
import
com.oreilly.struts.storefront.service.StorefrontServiceImpl;
import com.oreilly.struts.storefront.framework.util.IConstants;
import
com.oreilly.struts.storefront.framework.exceptions.DatastoreEx
ception;
/**
 * Extend the Struts ActionServlet to perform your own special
 * initialization.
 */
public class ExtendedActionServlet extends ActionServlet {

 public void init() throws ServletException {

 // Make sure to always call the super's init() first
 super.init();

 // Initialize the persistence service
 try{
 // Create an instance of the service interface
 IStorefrontService serviceImpl = new
StorefrontServiceImpl();

 // Store the service into the application scope

getServletContext().setAttribute(IConstants.SERVICE_INTERFA
CE_KEY,
 serviceImpl);
 }catch(DatastoreException ex){
 // If there's a problem initializing the service,
disable the web app
 ex.printStackTrace();
 throw new UnavailableException(ex.getMessage());

 }
 }
}

Overriding the init() method is just an example; you can override any method you need to. If
you do override init(), make sure that you call the super.init() method so that the
default initialization occurs.

Don't worry about what the code in Example 5-2 is doing for now. The goal is
to understand how to extend the ActionServlet.

To configure the framework to use your ActionServlet subclass instead of the default in the
Struts framework, you will need to modify the web.xml file as follows:

<servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-class>

com.oreilly.struts.storefront.framework.ExtendedActionServlet
 </servlet-class>
</servlet>

5.1.1.2 Struts initialization process

Depending on the initialization parameters configured in the web.xml file, the servlet container will
load the Struts ActionServlet either when the container is first started or when the first request
arrives for the servlet. In either case (as with any other Java servlet) the init() method is
guaranteed to be called and must finish before any request is processed by the servlet. The Struts
framework performs all of the compulsory initialization when init() is called. Let's take a look
at what goes on during that initialization process. Understanding these details will make debugging
and extending your applications much easier.

The following steps occur when the init() method of the Struts ActionServlet is invoked
by the container:

1. Initialize the framework's internal message bundle. These messages are used to output
informational, warning, and error messages to the log files. The
org.apache.struts.action.ActionResources bundle is used to obtain the
internal messages.

2. Load from the web.xml file the initialization parameters that control various behaviors of the
ActionServlet class. These parameters include config, debug, detail, and
convertNull. For information on how these and other servlet parameters affect the
behavior of an application, refer to Section 4.5.3 in Chapter 4.

3. Load and initialize the servlet name and servlet mapping information from the web.xml file.
These values will be used throughout the framework (mostly by tag libraries) to output
correct URL destinations when submitting HTML forms. During this initialization, the DTDs
used by the framework also are registered. The DTDs are used to validate the configuration
file in the next step.

4. Load and initialize the Struts configuration data for the default application, which is specified
by the config initialization parameter. The default Struts configuration file is parsed and
an ApplicationConfig object is created and stored in the ServletContext. The
ApplicationConfig object for the default application is stored in the
ServletContext with a key value of
org.apache.struts.action.APPLICATION.

5. Each message resource that is specified in the Struts configuration file for the default
application is loaded, initialized, and stored in the ServletContext at the appropriate
location, based on the key attribute specified in each message-resources element. If
no key is specified, the message resource is stored at the key value
org.apache.struts.action.MESSAGE. Only one message resource can be
stored as the default because the keys have to be unique.

6. Each data source declared in the Struts configuration file is loaded and initialized. If no
data-sources elements are specified, this step is skipped.

7. Load and initialize each plug-in specified in the Struts configuration file. The init()
method will be called on each and every plug-in specified.

8. Once the default application has been properly initialized, the servlet init() method will
determine if any application modules are specified and, if so, will repeat Steps 4 through 7 for
each one.

Figure 5-2 uses a sequence diagram to illustrate the eight major steps that occur during the
initialization of the ActionServlet.

Figure 5-2. Sequence diagram for the ActionServlet init() method

You may be tempted to set up multiple Struts controller servlets for a single
application in an attempt to achieve better performance. This most likely will
not achieve better performance or scalability and is discouraged by the Struts
architects. Servlets are multithreaded and allow many clients to execute
simultaneously. A single servlet is capable of servicing many clients at once.
In fact, the Struts 1.1 framework assumes that there is only one servlet
mapping. You should not attempt to set up multiple servlet mappings.

5.1.2 The RequestProcessor Class

The second step in Example 5-1 is to call the process() method of the
org.apache.struts.action.RequestProcessor class. It's called by the
ActionServlet instance and passed the current request and response objects.

The RequestProcessor class was added to the framework to allow developers to customize the
request-handling behavior for an application. Although this type of customization was possible in
previous versions by extending the ActionServlet class, it was necessary to introduce this new
class to allow each application module to have its own customized request handler. The
RequestProcessor class contains many methods that can be overridden if you need to modify
the default functionality.

As shown in Example 5-1, once the correct application module has been selected, the process()
method of the RequestProcessor is called to handle the request. The behavior of the
process() method in the RequestProcessor class is similar to its behavior in earlier
versions of the ActionServlet class. Example 5-3 shows the implementation of the
process() method in the RequestProcessor class.

Example 5-3. The process() method processes all requests
public void process(HttpServletRequest request,
HttpServletResponse response)
 throws IOException, ServletException {

 // Wrap multipart requests with a special wrapper
 request = processMultipart(request);

 // Identify the path component we will use to select a
mapping
 String path = processPath(request, response);
 if (path == null) {
 return;
 }
 if (log.isInfoEnabled()) {
 log.info("Processing a '" + request.getMethod() +
 "' for path '" + path + "'");
 }

 // Select a Locale for the current user if requested
 processLocale(request, response);

 // Set the content type and no-caching headers if
requested
 processContent(request, response);
 processNoCache(request, response);

 // General-purpose preprocessing hook
 if (!processPreprocess(request, response)) {
 return;

 }

 // Identify the mapping for this request
 ActionMapping mapping = processMapping(request, response,
path);
 if (mapping == null) {
 return;
 }

 // Check for any role required to perform this action
 if (!processRoles(request, response, mapping)) {
 return;
 }

 // Process any ActionForm bean related to this request
 ActionForm form = processActionForm(request, response,
mapping);
 processPopulate(request, response, form, mapping);
 if (!processValidate(request, response, form, mapping)) {
 return;
 }

 // Process a forward or include specified by this mapping
 if (!processForward(request, response, mapping)) {
 return;
 }
 if (!processInclude(request, response, mapping)) {
 return;
 }

 // Create or acquire the Action instance to process this
request
 Action action = processActionCreate(request, response,
mapping);
 if (action == null) {
 return;
 }

 // Call the Action instance itself
 ActionForward forward =
 processActionPerform(request, response, action, form,
mapping);

 // Process the returned ActionForward instance
 processActionForward(request, response, forward);
}

As Example 5-3 shows, there's quite a lot going on in the process() method of the
RequestProcessor. Let's go through the method step by step:

1. The processMultipart() method is called. If the HttpServletRequest
method is a POST and the contentType of the request starts with
multipart/form-data, the standard request object is wrapped with a special version
from the Struts framework that deals exclusively with multipart requests. If the request
method is a GET or the contentType is not multipart, the original request is returned.
Unless your application supports uploading files, you don't need to worry about multipart
functionality in Struts.

2. The processPath() method is called to determine the path component from the URI
for the request. Among other things, this information is used to select the appropriate Struts
Action to invoke.

3. The processLocale() method is called to determine the locale of the user making the
request and to store a Locale object into the user's HttpSession object. The locale
isn't always obtained into the user's session—it depends on the locale attribute in the
controller configuration element. See Chapter 4 for more details on the attributes of the
controller element.

4. Determine the content type and optional encoding of the request by calling the
processContent() method. The content type may be configured in the configuration
settings and also overridden by the JSPs. The default content type is text/html.

5. The processNoCache() method is called to determine whether the noCache
attribute is set to true. If it is, add the proper header parameters in the response object to
prevent the pages from being cached in the browser. The header parameters include Pragma,
Cache-Control, and Expires.

6. The processPreprocess() method is called next. It's a general-purpose
preprocessing hook that, by default, just returns true. However, subclasses can override this
method and perform conditional logic to decide whether to continue processing the request.
Because this method gets called before an Action is invoked, this is a good place to
validate whether the user contains a valid session. If this method returns true, processing of
the request will continue. If it returns false, processing will stop. It's up to you to
programmatically redirect or forward the request—the controller will assume that you are
handling the request and will not send a response to the client.

7. Determine the ActionMapping for the request using the path information by calling the
processMapping() method. If a mapping can't be found using the path information,
an error response will be returned to the client.

8. Check to see if any security roles are configured for the Action by calling the
processRoles() method. If there are roles configured, the isUserInRole()
method is called on the request. If the user doesn't contain the necessary role, processing will
end here and an appropriate error message will be returned to the client.

9. Call the processActionForm() method to determine whether an ActionForm is
configured for the ActionMapping. If an ActionForm has been configured for the
mapping, an attempt will be made to find an existing instance in the appropriate scope. Once
an ActionForm is either found or created, it is stored within the proper scope using a key
that is configured in the name attribute for the Action element.

10. The processPopulate() method is called next, and if an ActionForm is
configured for the mapping, its properties are populated from the request parameter values.
Before the properties are populated from the request, however, the reset() method is
called on the ActionForm.

11. The processValidate() method is called, and if an ActionForm has been
configured and the validate attribute is set to true for the action element, the
validate() method is called. If the validate() method detects errors, it will
store an ActionErrors object into the request scope, and the request automatically will

be forwarded to the resource specified by the input attribute for the action mapping. If no
errors were detected from the validate() method or there was no ActionForm for
the action mapping, processing of the request continues. You can configure the
controller element to interpret the input attributes as defined forwards. See Chapter
4 for more information on this feature.

12. Determine if a forward or an include attribute is configured for the action mapping. If
so, call the forward() or include() method on the RequestDispatcher,
depending on which one is configured. The processing of the request ends at this point if
either one of these is configured. Otherwise, continue processing the request.

13. Call the processActionCreate() method to create or acquire an Action
instance to process the request. An Action cache will be checked to see if the Action
instance already has been created. If so, that instance will be used to process the request.
Otherwise, a new instance will be created and stored into the cache.

14. Call the processActionPerform() method, which in turn calls the execute()
method on the Action instance. The execute() call is wrapped with a try/catch block
so that exceptions can be handled by the RequestProcessor.

15. Call the processActionForward() method and pass it the ActionForward
object returned from the execute() method. The processActionForward()
method determines whether a redirect or a forward should occur by checking with the
ActionForward object, which in turn depends on the redirect attribute in the
forward element.

5.1.2.1 Extending the RequestProcessor class

It's easy to create your own custom RequestProcessor class. Let's look at an example of how
and why you might do this. Suppose your application needs to allow the user to change her locale at
any time during the session. The default behavior of the processLocale() method in
RequestProcessor is to set the user's Locale only if it hasn't already been stored in the
session, which typically happens during the first request.

The default behavior of the Struts framework is not to store the Locale in
the user's session. This can easily be overridden using the locale attribute
of the controller element.

Example 5-4 shows a customized RequestProcessor class that checks the request for a locale
each time and updates the user's session if it has changed from the previous one. This allows the user
to change her locale preference at any point during the application.

Example 5-4. Customized RequestProcessor that overrides the default Locale
processing
package com.oreilly.struts.framework;

import javax.servlet.http.*;
import java.util.Locale;
import org.apache.struts.action.Action;
import org.apache.struts.action.RequestProcessor;

/**

 * A customized RequestProcessor that checks the user's
preferred locale
 * from the request each time. If a Locale is not in the
session or
 * the one in the session doesn't match the request, the
Locale in the
 * request is set in the session.
 */
public class CustomRequestProcessor extends RequestProcessor {

 protected void processLocale(HttpServletRequest request,
 HttpServletResponse response) {

 // Are we configured to select the Locale automatically?
 if (!appConfig.getControllerConfig().getLocale()){
 // The locale is configured not to be stored, so just
return
 return;
 }

 // Get the Locale (if any) that is stored in the user's
session
 HttpSession session = request.getSession();
 Locale sessionLocale =
(Locale)session.getAttribute(Action.LOCALE_KEY);

 // Get the user's preferred locale from the request
 Locale requestLocale = request.getLocale();

 // If the Locale was never added to the session or it has
changed, set it
 if (sessionLocale == null || (sessionLocale !=
requestLocale)){
 if (log.isDebugEnabled()) {
 log.debug(" Setting user locale '" + requestLocale +
"'");
 }
 // Set the new Locale into the user's session
 session.setAttribute(Action.LOCALE_KEY, requestLocale);
 }
 }
}

To configure the CustomizedRequestProcessor for your application, you will need to add
a controller element to the Struts configuration file and include the processorClass
attribute as shown here:

<controller
 contentType="text/html;charset=UTF-8"

 debug="3"
 locale="true"
 nocache="true"

processorClass="com.oreilly.struts.framework.CustomRequestProc
essor"/>
You need to specify the fully qualified class name of the CustomizedRequestProcessor,
as shown in this fragment. Although not every application has a reason to create a custom request
processor, having one available in your application can act as a placeholder for future customizations.
Therefore, it's a good idea to create one for your application and specify it in the configuration file. It
doesn't have to override anything when you create it; you can add to it as the need arises. For more
information on the controller element, see Section 4.7.2 in Chapter 4.

5.1.3 The Action Class

The org.apache.struts.action.Action class is the heart of the framework. It's the
bridge between a client request and a business operation. Each Action class typically is designed to
perform a single business operation on behalf of a client. A single business operation doesn't mean the
Action can perform only one task. Rather, the task that it performs should be cohesive and centered
around a single functional unit. In other words, the tasks performed by the Action should be related
to one business operation. For instance, you shouldn't create an Action that performs shopping-cart
functionality as well as handling login and logout responsibilities. These areas of the application are
not closely related and shouldn't be combined.

Later in this chapter, we'll introduce the DispatchAction provided by
the framework, which supports multiple operations in a single class. These
multiple operations still should be cohesive and handle a common functional
unit of the application.

Once the correct Action instance is determined, the processActionPerform() method
is invoked. The processActionPerform() method of the RequestProcessor class
is shown in Example 5-5.

Example 5-5. The processActionPerform() method
protected ActionForward
processActionPerform(HttpServletRequest request,

HttpServletResponse response,
 Action action,
 ActionForm form,
 ActionMapping
mapping)
 throws IOException, ServletException {
 try {
 return (action.execute(mapping, form, request,
response));
 }catch (Exception e){

 return (processException(request, response, e, form,
mapping));
 }
}

The processActionPerform() method is responsible for calling the execute()
method on the Action instance. In earlier versions of the Struts framework, the Action class
contained only a perform() method. The perform() method has been deprecated in favor
of the execute() method in Struts 1.1. This new method is necessary because the perform()
method declares that it throws only IOExceptions and ServletExceptions. Due to the
added declarative exception-handling functionality, the framework needs to catch all instances of
java.lang.Exception from the Action class.

Instead of changing the method signature for the perform() method and breaking backward
compatibility, the execute() method was added. The execute() method invokes the
perform() method, but eventually the perform() method will go away. You should use the
execute() method in place of the perform() method in all of your Action classes.

If you look at the source code for the Action class, you'll see that there are
two different versions of the execute() and perform() methods.
One version takes a non-HTTP request and response, while the second version
contains the HTTP versions. Generally, you'll only ever need to use the HTTP
version, unless you are using a non-HTTP servlet. For now, the non-HTTP
versions just attempt to cast the request and response objects to their HTTP
counterparts and invoke the HTTP versions of their respective methods.

You will need to extend the Action class and provide an implementation of the execute()
method. Example 5-6 shows the LoginAction from the Storefront application.

Example 5-6. The LoginAction class from the Storefront application
package com.oreilly.struts.storefront.security;

import java.util.Locale;
import javax.servlet.http.*;
import org.apache.struts.action.*;
import com.oreilly.struts.storefront.customer.view.UserView;
import
com.oreilly.struts.storefront.framework.exceptions.BaseExcepti
on;
import com.oreilly.struts.storefront.framework.UserContainer;
import
com.oreilly.struts.storefront.framework.StorefrontBaseAction;
import com.oreilly.struts.storefront.framework.util.IConstants;
import
com.oreilly.struts.storefront.service.IStorefrontService;

/**

 * Implements the logic to authenticate a user for the
Storefront application.
 */
public class LoginAction extends StorefrontBaseAction {
 /**
 * Called by the controller when the user attempts to log in
to the
 * Storefront application.
 */
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception{

 // The email and password should have already been
validated by the ActionForm
 String email = ((LoginForm)form).getEmail();
 String password = ((LoginForm)form).getPassword();

 // Log in through the security service
 IStorefrontService serviceImpl = getStorefrontService();
 UserView userView = serviceImpl.authenticate(email,
password);

 // Create a single container object to store user data
 UserContainer existingContainer = null;
 HttpSession session = request.getSession(false);
 if (session != null){
 existingContainer = getUserContainer(request);
 session.invalidate();
 }else{
 existingContainer = new UserContainer();
 }

 // Create a new session for the user
 session = request.getSession(true);

 // Store the UserView in the container and store the
container in the session
 existingContainer.setUserView(userView);
 session.setAttribute(IConstants.USER_CONTAINER_KEY,
existingContainer);

 // Return a Success forward
 return mapping.findForward(IConstants.SUCCESS_KEY);
 }
}

When the execute() method in LoginAction is called, the email and password values are
retrieved and passed to the authenticate() method. If no exception is thrown by the
authenticate() business operation, a new HttpSession is created and a JavaBean that
contains user information is stored into the user's session.

A common bug that inexperienced Struts developers sometimes introduce into
their applications is to not implement the execute() method correctly. If
you misspell it or don't implement the signature exactly, the method will never
be called. Unfortunately, you will not get a compiler error or even a runtime
error telling you this, because the Struts Action class, which all action
classes must extend, has a default execute() method that returns null.

The UserView class contains simple properties such as firstName and lastName that can be
used by the presentation. These types of presentation JavaBeans are commonly referred to as value
objects (VOs), but are more formally called data transfer objects (DTOs) because they are used to
transfer data from one layer to another. In the UserView class shown in Example 5-7, the data is
transferred from the security service to the presentation layer.

Example 5-7. The UserView DTO
package com.oreilly.struts.storefront.customer.view;

import com.oreilly.struts.storefront.framework.view.BaseView;
/**
 * Mutable data representing a user of the system.
 */
public class UserView extends BaseView {
 private String lastName;
 private String firstName;
 private String emailAddress;
 private String creditStatus;

 public UserView(){
 super();
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getLastName() {

 return lastName;
 }

 public String getEmailAddress() {
 return emailAddress;
 }

 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }

 public void setCreditStatus(String creditStatus) {
 this.creditStatus = creditStatus;
 }
 public String getCreditStatus() {
 return creditStatus;
 }
}

Data transfer objects are discussed in Chapter 6.

Example 5-6 also uses a class called UserContainer. This class has not
yet been fully introduced, so don't worry about having missed something. The
UserContainer class is a wrapper around any data that might normally
be put directly into the user's session. Using this object and storing everything
within it makes retrieval and cleanup much easier. It's a good idea to use a
container like this for your applications as well.

5.1.3.1 The Action class cache

Because Action instances are expected to be thread-safe, only a single instance of each Action
class is created for an application. All client requests share the same instance and are able to invoke
the execute() method at the same time.

The RequestProcessor contains a HashMap, the keys of which are the names of all the
Action classes that are specified in the configuration file; the value for each key is the single
instance of that Action. During the processActionCreate() method of the
RequestProcessor class, the framework checks the HashMap to see whether an instance
already has been created. If it has, this instance is returned. Otherwise, a new instance of the Action
class is created, stored into the HashMap, and returned. The section of the code that creates a new
Action instance is synchronized to ensure that only one thread will create an instance. Once a
thread creates an instance and inserts it into the HashMap, all future threads will use the instance
from the cache.

5.1.3.2 The ActionForward class

As you saw in the discussion of the Action class, the execute() method returns an
ActionForward object. The ActionForward class represents a logical abstraction of a web
resource. This resource typically is a JSP page or a Java servlet.

The ActionForward is a wrapper around the resource, so there's less coupling of the application
to the physical resource. The physical resource is specified only in the configuration file (as the name,
path, and redirect attributes of the forward element), not in the code itself. The
RequestDispatcher may perform either a forward or redirect for an ActionForward,
depending on the value of the redirect attribute.

To return an ActionForward from an Action, you can either create one dynamically in the
Action class or, more commonly, use the action mapping to locate one that has been preconfigured
in the configuration file. The following code fragment illustrates how you can use the action mapping
to locate an ActionForward based on its logical name:

 return mapping.findForward("Success");

Here, an argument of "Success" is passed to the findForward() method of an
ActionMapping instance. The argument in the findFoward() method must match either
one of the names specified in the global-forwards section or one specific to the action from
which it's being called. The following fragment shows forward elements defined for the /signin
action mapping:

<action
 input="/security/signin.jsp"
 name="loginForm"
 path="/signin"
 scope="request"
 type="com.oreilly.struts.storefront.security.LoginAction"
 validate="true">
 <forward name="Success" path="/index.jsp" redirect="true"/>
 <forward name="Failure" path="/security/signin.jsp"
redirect="true"/>
 </action>

The findForward() method in the ActionMapping class first calls the
findForwardConfig() method to see if a forward element with the corresponding name
is specified at the action level. If not, the global-forwards section is checked. When an
ActionForward that matches is found, it's returned to the RequestProcessor from the
execute() method. Here's the findForward() method from the ActionMapping
class:

public ActionForward findForward(String name) {
 ForwardConfig config = findForwardConfig(name);
 if (config == null) {
 config = getApplicationConfig().findForwardConfig(name);
 }
 return ((ActionForward) config);
}

If the findForward() method does not find a forward that matches the
name argument, it will not complain. A null will be returned, and you will
receive a blank page because no output will be written to the response.

5.1.4 Creating Multithreaded Action Classes

A single Action instance is created for each Action class in the framework. Every client request
will share the same instance, just as every client request shares the same ActionServlet
instance. Thus, as with servlets, you must ensure that your Action classes operate properly in a
multithreaded environment.

To be thread-safe, it's important that your Action classes do not use instance variables to hold
client-specific state. You may use instance variables to hold state information; it just shouldn't be
specific to one client or request. For example, you can create an instance variable of type
org.apache.commons.logging.Log to hold onto a logger, as the Struts
RequestProcessor class does. The log instance can be used by all requests because the logger
is thread-safe and does not hold state for a specific client or request.

For client-specific state, however, you should declare the variables inside the execute() method.
These local variables are allocated in a different memory space than instance variables. Each thread
that enters the execute() method has its own stack for local variables, so there's no chance of
overriding the state of other threads.

5.1.5 Business Logic and the Action Class

Some developers get confused about what logic belongs in an Action class. The Action class is
not the proper place to put your application's business logic. If you look back to Figure 3-6, you can
see that the Action class is still part of the controller; it's just been separated out from the
ActionServlet and RequestProcessor for the sake of convenience.

Business logic belongs in the model domain. Components that implement this logic may be EJBs,
CORBA objects, or even services written on top of a data source and a connection pool. The point is
that the business domain should be unaware of the type of presentation tier that's accessing it. This
allows your model components to be more easily reused by other applications. Example 5-8 illustrates
the GetItemDetailAction from the Storefront application, which calls the model to retrieve
the detail information for an item in the catalog.

Example 5-8. The Action class should delegate the business logic to a model
component
package com.oreilly.struts.storefront.catalog;

import javax.servlet.http.*;
import org.apache.struts.action.*;
import
com.oreilly.struts.storefront.framework.exceptions.BaseExcepti
on;
import com.oreilly.struts.storefront.framework.UserContainer;
import
com.oreilly.struts.storefront.framework.StorefrontBaseAction;
import
com.oreilly.struts.storefront.catalog.view.ItemDetailView;
import com.oreilly.struts.storefront.framework.util.IConstants;

import
com.oreilly.struts.storefront.service.IStorefrontService;

/**
 * An action that gets an ItemView based on an id parameter in
the request and
 * then inserts the item into an ActionForm and forwards to
whatever
 * path is defined as Success for this action mapping.
 */
public class GetItemDetailAction extends StorefrontBaseAction
{
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 // Get the primary key of the item from the request
 String itemId = request.getParameter(IConstants.ID_KEY);

 // Call the storefront service and ask it for an ItemView
for the item
 IStorefrontService serviceImpl = getStorefrontService();
 ItemDetailView itemDetailView =
serviceImpl.getItemDetailView(itemId);

 // Set the returned ItemView into the Dynamic Action Form
 // The parameter name 'view' is what is defined in the
struts-config
 ((DynaActionForm)form).set("view", itemDetailView);

 // Return the ActionForward that is defined for the
success condition
 return mapping.findForward(IConstants.SUCCESS_KEY);
 }
}

The GetItemDetailAction class in Example 5-8 delegates to the Storefront service the real
work of getting the item information. This a good approach because the Action doesn't know the
internals of the Storefront service or the getItemDetailView() method. It can be a local
object that performs JDBC calls, a session bean performing a remote call to an application server, or
some other implementation. If the model implementation changes (which it will when we discuss EJB
in Chapter 13), the Action will be protected from that change. Because the Storefront service is
unaware of the type of client using it, clients other than Struts can use it. Decoupling the Action
classes from the business objects is explored further in the next chapter.

5.1.6 Using the Prebuilt Struts Actions

The Struts framework includes five out-of-the-box Action classes that you can integrate into your
applications easily, saving yourself development time. Some of these are more useful than others, but
all of them deserve some attention. The classes are contained within the
org.apache.struts.actions package.

5.1.6.1 The org.apache.struts.actions.ForwardAction class

There are many situations where you just need to forward from one JSP page to another, without
really needing to go through an Action class. However, calling a JSP directly should be avoided,
for several reasons. The controller is responsible for selecting the correct application module to handle
the request and storing the ApplicationConfig and MessageResources for that
application module in the request. If this step is bypassed, functionality such as selecting the correct
messages from the resource bundle may not work properly.

Another reason that calling a JSP directly is not a good idea is that it violates the component
responsibilities of MVC. The controller is supposed to process all requests and select a view for the
client. If your application were allowed to call the page directly, the controller would not be able to
fulfill its obligations to the MVC contract.

To solve these problems and to prevent you from having to create an Action class that performs
only a simple forward, you can use the provided ForwardAction. This Action simply
performs a forward to a URI that is configured in the parameter attribute. In the Struts
configuration file, you specify an action element using the ForwardAction as the type
attribute:

<action
 input="/index.jsp"
 name="loginForm"
 path="/viewsignin"
 parameter="/security/signin.jsp"
 scope="request"
 type="org.apache.struts.actions.ForwardAction"
 validate="false"/>
</action>

When the /viewsignin action is selected, the perform() method of the ForwardAction class
gets called. When you use the ForwardAction in an action element, the parameter
attribute (instead of an actual forward element) is used to specify where to forward to. Other than
this difference, you call the ForwardAction in the same way as any other Action.

The ForwardAction class comes in handy when you need to integrate your Struts application
with other servlets or JSP pages while still taking advantage of the controller functionality. The
ForwardAction class is one of the most valuable of the pre-built Action classes included with
the framework.

5.1.6.2 The org.apache.struts.actions.IncludeAction class

The IncludeAction class is similar in some respects to the ForwardAction class. It
originally was created to make it easier to integrate existing servlet-based components into Struts-
based web applications. If your application is using the include() method of a
RequestDispatcher, you can implement the same behavior using the IncludeAction.

You specify the IncludeAction in an action element in the same manner that you do for
ForwardAction, except that you use IncludeAction in the type attribute:

<action
 input="/subscription.jsp"
 name="subscriptionForm"
 path="/saveSubscription"
 parameter="/path/to/processing/servlet"
 scope="request"
 type="org.apache.struts.actions.IncludeAction"/>
You must include the parameter attribute and specify a path to the servlet you want to include.

5.1.6.3 The org.apache.struts.actions.DispatchAction class

The purpose of the DispatchAction class is to allow multiple operations that normally would be
scattered throughout multiple Action classes to reside in a single class. The idea is that there is
related functionality for a service, and instead of being spread over multiple Action classes, it
should be kept together in the same class. For example, an application that contains a typical
shopping-cart service usually needs the ability to add items to the cart, view the items in the cart, and
update the items and quantities in the cart. One design is to create three separate Action classes
(e.g., AddItemAction, ViewShoppingCartAction, and
UpdateShoppingCartAction).

Although this solution is a valid approach, all three Action classes probably would perform similar
functionality before carrying out their assigned business operations. By combining them, you would
be making it easier to maintain the application—if you exchanged the current shopping-cart
implementation for an alternate version, all of the code would be located in a single class.

To use the DispatchAction class, create a class that extends it and add a method for every
function you need to perform on the service. Your class should not contain the typical execute()
method, as other Action classes do. The execute() method is implemented by the abstract
DispatchAction class.

You must include one method in your DispatchAction for every Action you want to invoke
for this DispatchAction. Example 5-9 will help illustrate this. One thing should be noted about
this example, however. Instead of extending the Struts DispatchAction, it actually extends a
Storefront version called StorefrontDispatchAction. This was done to allow for utility-
type behavior to exist as a superclass without modifying the Struts version. It's a fairly common
practice.

Example 5-9. The shopping-cart functionality is put into a single DispatchAction
package com.oreilly.struts.storefront.order;

import java.io.IOException;
import java.text.Format;
import java.text.NumberFormat;
import java.util.*;
import javax.servlet.ServletException;
import javax.servlet.http.*;
import org.apache.struts.action.*;
import org.apache.struts.actions.DispatchAction;
import
com.oreilly.struts.storefront.service.IStorefrontService;
import
com.oreilly.struts.storefront.catalog.view.ItemDetailView;
import com.oreilly.struts.storefront.framework.UserContainer;
import com.oreilly.struts.storefront.framework.util.IConstants;
import
com.oreilly.struts.storefront.framework.ShoppingCartItem;
import com.oreilly.struts.storefront.framework.ShoppingCart;
import
com.oreilly.struts.storefront.framework.StorefrontDispatchActi
on;
/**
 * Implements all of the functionality for the shopping cart.
 */
public class ShoppingCartActions extends
StorefrontDispatchAction {
 /**
 * This method just forwards to the success state, which
should represent
 * the shoppingcart.jsp page.
 */
 public ActionForward view(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {

 // Call to ensure that the user container has been created
 UserContainer userContainer = getUserContainer(request);
 return mapping.findForward(IConstants.SUCCESS_KEY);
 }

 /**
 * This method updates the items and quantities for the
shopping cart from the
 * request.
 */
 public ActionForward update(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,

 HttpServletResponse response)
 throws Exception {

 updateItems(request);
 updateQuantities(request);
 return mapping.findForward(IConstants.SUCCESS_KEY);
 }

 /**
 * This method adds an item to the shopping cart based on the
id and qty
 * parameters from the request.
 */
 public ActionForward addItem(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {

 UserContainer userContainer = getUserContainer(request);

 // Get the id for the product to be added
 String itemId = request.getParameter(IConstants.ID_KEY);
 String qtyParameter =
request.getParameter(IConstants.QTY_KEY);

 int quantity;
 if(qtyParameter != null) {
 Locale userLocale = userContainer.getLocale();
 Format nbrFormat =
NumberFormat.getNumberInstance(userLocale);
 try {
 Object obj = nbrFormat.parseObject(qtyParameter);
 quantity = ((Number)obj).intValue();
 }
 catch(Exception ex) {
 // Set the default quantity
 quantity = 1;
 }
 }

 // Call the Storefront service and ask it for an ItemView
for the item
 IStorefrontService serviceImpl = getStorefrontService();
 ItemDetailView itemDetailView =
serviceImpl.getItemDetailView(itemId);

 // Add the item to the cart and return
 userContainer.getCart().addItem(

 new ShoppingCartItem(itemDetailView, quantity));

 return mapping.findForward(IConstants.SUCCESS_KEY);
 }

 /**
 * Update the items in the shopping cart. Currently, only
deletes occur
 * during this operation.
 */
 private void updateItems(HttpServletRequest request) {
 // Multiple checkboxes with the name "deleteCartItem" are
on the
 // form. The ones that were checked are passed in the
request.
 String[] deleteIds =
request.getParameterValues("deleteCartItem");

 // Build a list of item ids to delete
 if(deleteIds != null && deleteIds.length > 0) {
 int size = deleteIds.length;
 List itemIds = new ArrayList();
 for(int i = 0;i < size;i++) {
 itemIds.add(deleteIds[i]);
 }
 // Get the ShoppingCart from the UserContainer and
delete the items
 UserContainer userContainer = getUserContainer(request);
 userContainer.getCart().removeItems(itemIds);
 }
 }

 /**
 * Update the quantities for the items in the shopping cart.
 */
 private void updateQuantities(HttpServletRequest request) {
 Enumeration enum = request.getParameterNames();
 // Iterate through the parameters and look for ones that
begin with
 // "qty_". The qty fields in the page were all named
"qty_" + itemId.
 // Strip off the id of each item and the corresponding qty
value.
 while(enum.hasMoreElements()) {
 String paramName = (String)enum.nextElement();
 if(paramName.startsWith("qty_")) {
 String id = paramName.substring(4,
paramName.length());
 String qtyStr = request.getParameter(paramName);

 if(id != null && qtyStr != null) {
 ShoppingCart cart =
getUserContainer(request).getCart();
 cart.updateQuantity(id, Integer.parseInt(qtyStr));
 }
 }
 }
 }
}

The com.oreilly.struts.storefront.order.ShoppingCartActions class
contains the methods addItem(), update(), and view(). Each of these methods would
normally be put into a separate Action class. With the DispatchAction class, they can be
kept together in the same one.

There are two other methods in the ShoppingCartActions class that
we didn't mention: updateItems() and updateQuantities().
These methods are private utility methods used by the other action methods
within the class. They are not called outside of this Action class. You can
tell this by noting they do not have the required method signature.

To use your specialized DispatchAction class, you need to configure each action element
that uses it a little differently than the other mappings. Example 5-10 illustrates how the
ShoppingCartActions class from Example 5-9 is declared in the configuration file.

Example 5-10. The parameter attribute must be specified when using a subclass of the
DispatchAction
<action path="/cart"
 input="/order/shoppingcart.jsp"
 parameter="method"
 scope="request"

type="com.oreilly.struts.storefront.order.ShoppingCartActions"
 validate="false">
 <forward name="Success" path="/order/shoppingcart.jsp"
redirect="true"/>
 </action>

The /cart action mapping shown in Example 5-10 specifies the parameter attribute and sets the
value to be the literal string "method". The value specified here becomes very important to the
DispatchAction instance when invoked by a client. The DispatchAction uses this
attribute value to determine which method in your specialized DispatchAction to invoke.
Instead of just calling the /cart action mapping, an additional request parameter is passed; the key is
the value specified for the parameter attribute from the mapping. The value of this request
parameter must be the name of the method to invoke. To invoke the addItem() method on the
Storefront application, you might call it like this:

http://localhost:8080/storefront/action/cart?method=addItem&id
=2

The request parameter named method has a value of "addItem". This is used by the
DispatchAction to determine which method to invoke. You must have a method in your
DispatchAction subclass that matches the parameter value. The method name must match
exactly, and the method must include the parameters normally found in the execute() method.
The following fragment highlights the method signature for the addItem() method from
Example 5-9:

public ActionForward addItem(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception;

DispatchAction uses reflection to locate a method that matches the same name as the request
parameter value and contains the same number and type of arguments. Once found, the method will be
invoked and the ActionForward object will be returned, just as with any other Action class.

Although the DispatchAction does use Java reflection to invoke the
correct method, the performance of the reflection APIs in Java 1.3 and newer
are so much better that it's not a problem for this small amount of work.
Because reflection is being used, however, the method must be declared
public, or the perform() method in the abstract DispatchAction
will not be able to invoke it. You can still declare other private or protected
methods, but the ones to be called by DispatchAction must be declared
public.

5.1.6.4 The org.apache.struts.actions.LookupDispatchAction class

LookupDispatchAction, as you might guess, is a subclass of the DispatchAction class.
From a high level, it performs a similar task as the DispatchAction.

Like DispatchAction, the LookupDispatchAction class allows you to specify a class
with multiple methods, where one of the methods is invoked based on the value of a special request
parameter specified in the configuration file. That's about where the similarity ends. While
DispatchAction uses the value of the request parameter to determine which method to invoke,
LookupDispatchAction uses the value of the request parameter to perform a reverse lookup
from the resource bundle using the parameter value and match it to a method in the class.

An example will help you understand this better. First, create a class that extends
LookupDispatchAction and implements the getKeyMethodMap() method. This
method returns a java.util.Map containing a set of key/value pairs.

The keys of this Map should match those from the resource bundle. The value that is associated with
each key in the Map should be the name of the method in your LookupDispatchAction
subclass. This value will be invoked when a request parameter equal to the message from the resource
bundle for the key is included.

The following fragment shows an example of the getKeyMethodMap() method for
ProcessCheckoutAction in the Storefront application:

protected Map getKeyMethodMap() {
 Map map = new HashMap();
 map.put("button.checkout", "checkout");
 map.put("button.saveorder", "saveorder");
 return map;
}

For the purposes of this discussion, let's suppose we have the following resources in the message
resource bundle:

button.checkout=Checkout
button.saveorder=Save Order

and that we have specified the following action element in the Struts configuration file:

<action path="/processcheckout"
 input="/checkout.jsp"
 name="checkoutForm"
 parameter="action"
 scope="request"

type="com.oreilly.struts.storefront.order.ProcessCheckoutActio
n">
 <forward name="Success" path="/order/ordercomplete.jsp"/>
</action>

Then create a JSP that performs a POST using the processcheckout action. A URL parameter
of action="Checkout" will be sent in the request header. Example 5-11 shows the JSP that
calls the processcheckout action.

Example 5-11. The checkout.jsp file that calls the ProcessCheckoutAction when
posted
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<html:html>
<head>
<title>Virtual Shopping with Struts</title>
<html:base/>
<script language=javascript src="include/scripts.js"></script>
<link rel="stylesheet"
href="../stylesheets/format_win_nav_main.css" type="text/css">
</head>

<body topmargin="0" leftmargin="0" bgcolor="#FFFFFF">

<!-- Header Page Information -->
<%@ include file="../include/head.inc"%>

<!-- Nav Bar -->
<%@ include file="../include/menubar.inc"%>

 Display order summary and take credit card information here

 <html:form action="/processcheckout">
 <html:submit property="action">
 <bean:message key="button.checkout"/>
 </html:submit>
 </html:form>

<%@ include file="../include/copyright.inc"%>
</body>

</html:html>

The key to understanding how all of this works is that the submit button in Example 5-11 will have a
name of "action" and its value will be the value returned from the <bean:message> tag. This is
more evident when you see the HTML source generated from this JSP page. The following fragment
shows the source generated inside the <html:form> tag:

<form
 name="checkoutForm"
 method="POST"
 action="/storefront/action/processcheckout">
 <input type="submit" name="action" value="Checkout"
alt="Checkout">
 </form>

You can see in this HTML source that when the checkoutForm is posted, the
action="Checkout" URL parameter will be included. ProcessCheckoutAction will
take the value "Checkout" and find a message resource key that has this value. In the instance, the
key will be button.checkout, which, according to the getKeyMethodMap() method
shown earlier, maps to the method checkout().

Whew! That's a long way to go just to determine which method to invoke. The intent of this class is to
make it easier when you have an HTML form with multiple submit buttons with the same name. One
submit button may be a Checkout action and another might be a Save Order action. Both buttons
would have the same name (for example, "action"), but the value of each button would be different.
This may not be an Action class that you will use often, but in certain situations, it can save you
scarce development time.

5.1.6.5 The org.apache.struts.actions.SwitchAction class

The SwitchAction class is new to the framework. It was added to support switching from one
application module to another and then forwarding control to a resource within the application.

There are two required request parameters. The prefix request parameter specifies the application
prefix, beginning with a "/", of the application module to which control should be switched. If you
need to switch to the default application, use a zero-length string ("â?�). The appropriate
ApplicationConfig object will be stored in the request, just as it is when a new request arrives
at the ActionServlet.

The second required request parameter is the page parameter. This parameter should specify the
application-relative URI, beginning with a "/", to which control should be forwarded once the correct
application module is selected. This Action is very straightforward. You'll need it only if you use
more than one Struts application module.

5.2 The Utilities Classes

When building web applications, many of the tasks to retrieve and process requests are quite repetitive.
Like any good framework, Struts places most of this tedious functionality into utility classes, so it can
be shared and used by many different components and applications. This separation of utilitarian
functionality from regular application-specific functionality allows for greater reuse and less
redundancy throughout the framework and within your applications.

The utility classes used by Struts are located in several packages. Many of the utility components were
so generic and beneficial to so many applications that they have been moved out of the Struts
framework and into the larger Jakarta Commons project. These packages include BeanUtils,
Collections, and the Digester component mentioned in Chapter 3.

One of the Java packages that remain in the Struts package hierarchy is
org.apache.struts.util. Everything from the MessageResources class to
StrutsValidatorUtil (part of the new Validator component added to the core framework in
1.1) is part of this package. This package contains many classes with different purposes and
responsibilities. Although the Struts framework classes have strong dependencies on the utility classes,
utility classes generally should have dependencies only on other utility classes and framework
components that are lower in the food chain. This is mostly true in the Struts framework, with a few
minor exceptions.

The utility classes within the util package assist the rest of the framework in solving mundane
problems that all web applications encounter. We will not cover all of the classes in the package, but
instead will highlight some of the more useful components.

5.2.1 The RequestUtils Class

The org.apache.struts.util.RequestUtils class provides general-purpose utility
methods that are common when processing a servlet request within Struts. You've already seen several
examples that use the RequestUtils class. One of the most important, and the first to be invoked
for a request, is the selectApplication() method that is called by the ActionServlet
when a new request arrives. Every method in the RequestUtils class is designed to be thread-
safe and doesn't declare any instance variables. In fact, every method in the class also is static.

You seldom need to modify any of the methods within the RequestUtils class. However, you
should become familiar with the methods implemented by the RequestUtils class, so you don't
replicate that same behavior in your application. Another reason to be familiar with the methods is that
it will help you understand what the entire framework is doing on your behalf.

5.2.2 The ResponseUtils Class

The purpose of the org.apache.struts.util.ResponseUtils class is similar to that
of the RequestUtils class except that it aids in building a response rather than handling a request.

There are only a few methods within the class, but the JSP tag libraries included with Struts use them
extensively for filtering and writing data destined for the response object.

5.2.3 The Commons BeanUtils Package

The org.apache.commons.beanutils package contains several classes that are used
throughout the Struts framework. From the standpoint of the Struts framework, the two most
important are the BeanUtils and PropertyUtils classes.

The BeanUtils class is used with JavaBeans. Struts components primarily use just three of the
methods in the BeanUtils class:

populate()

Fills a JavaBean with data, using a map of key/value pairs. The method signature for the
populate() method is shown here:

public static void populate(Object bean, Map properties)
 throws IllegalAccessException,
InvocationTargetException;

getProperty()

Returns a String representation of the property stored in the variable with the name that
matches the value of the name parameter. Here is the method signature for the
getProperty() method:

public static String getProperty(Object bean, String
name)
 throws IllegalAccessException,
InvocationTargetException,
 NoSuchMethodException;

Regardless of the type of property that the name argument references, it will be converted
and returned as a String.

getArrayProperty()

Returns the value of the specified array property of the specified bean as a String array.
Here is the method signature for the getArrayProperty() method:

public static String[] getArrayProperty(Object bean,
String name)
 throws IllegalAccessException,
InvocationTargetException,
 NoSuchMethodException;

Although the Java language provides reflection and introspection as part of its core APIs, the
BeanUtils class provides convenience wrappers around these APIs.

The other class the Struts framework uses is PropertyUtils . Only the getProperty()
method of this class currently is used. The getProperty() method in the PropertyUtils
class returns the value of the specified property, without attempting to convert the type. Here is its
method signature:

public static Object getProperty(Object bean, String name)
 throws IllegalAccessException, InvocationTargetException,
NoSuchMethodException;

Much of the code in the PropertyUtils class originally was implemented in the BeanUtils
class. It was moved to its own class because BeanUtils was becoming so large.

5.2.4 The Commons Collection Package

Although Java 1.3 added the much-requested and needed Collection classes, a few holes were
left unfilled by the new additions. The classes within the Commons Collection package address these
remaining deficiencies.

Among the features of the Collection package are:

• Implementations of Lists and Maps that are designed for fast access
• Methods to utilize set-theory properties of collections, such as unions, intersections, and the

closure properties
• Adaptor classes that allow conversions between Java 1.1 containers and Java 1.2-style

containers

Currently, the Struts framework uses only the FastHashMap class from the Collection package.
The FastHashMap class is designed to operate in a multithreaded environment, where most of the
calls are read-only. The FastHashMap extends java.util.HashMap and provides two
different modes, slow and fast. In slow mode, all access is synchronized. This is appropriate for when
initialization is taking place. Once initialization is complete and mostly read-only calls occur, the Map
can be switched to fast mode by calling setFast(true). In fast mode, read access is not
synchronized, and write calls use cloning for performance.

5.2.5 Security in the Action Classes

Action classes, if designed and scoped properly, can perform some very important functionality for
an application. To prevent unauthorized users from finding a way to execute an action, Action
classes should have a way to authorize certain users to perform the intended action. The
processRoles() method is designed to check whether any roles are defined in the
configuration file for the Action and, if so, to call the isUserInRole() method on the
request. The problem with this approach is that not all applications can define their roles ahead of time.
In some applications, roles can be added and removed dynamically and can be enumerated beforehand.
In this case, there must be an alternative approach to dealing with users, roles, and permissions—
container-managed security might not be enough, and an application might have to handle more of the
details programmatically.

Chapter 6. Struts Model Components
This chapter introduces the components that make up the model portion of a Struts application. The
model represents the business data for an application and should closely resemble the real-world
entities and business processes for the organization. In this chapter, we'll explore the roles and
responsibilities of the model components within the Struts framework and focus on building an
architecturally correct implementation for the Storefront application. Special attention will be given to
using a persistence framework that can easily and effortlessly be integrated into a Struts application.

6.1 The "M" in MVC

The model components of an application arguably are the most valuable software artifacts to an
organization. The model includes the business entities and the rules that govern access to and
modification of the data. It's vital that this be kept in a single location in order to maintain valid data
integrity, reduce redundancy, and increase reusability.

The model should remain independent of the type of client that's being used to access the business
objects and their associated rules. In fact, the components within the model should not be aware of
what type of client or framework is using it. There's an axiom that goes, "Dependencies go down, data
goes up." The idea is that when using a layered architecture, the upper layer may have dependencies
on lower layers, but the lower layers should not depend on the layers above them. Figure 6-1
illustrates how this principle is applied to a typical Struts architecture.

Figure 6-1. Application layers should depend only on lower layers

If you find yourself importing packages or classes from the Struts framework into your model, you are
violating this principle. Coupling a lower layer to an upper one will make maintenance, reuse, and
future enhancements more difficult.

Before we get into the details of designing and building a model for a Struts application, let's look at
the different types of models and how each one is relevant to a project.

6.1.1 Types of Models

The term "model" has many different meanings. In very general terms, a model is a representation of
some aspect of reality, such as a shop where products are bought and sold, an auction house where
bids are placed, or a way to predict how a weather storm will move. All of these examples are based
on real concepts. The main purpose of creating a model is to help understand, describe, or simulate
how things work in the real world.

In software development, the term "model" is used to indicate both the logical representation of real-
world entities and the physical creation of classes and interfaces that programs can use. The first step,
however, always should be to perform a thorough analysis of the problem domain. Once use-cases are
complete, the next step should be to develop a conceptual model.

6.1.1.1 The conceptual model

During analysis of the problem domain, a conceptual model should be developed based on the real-life
entities within the problem space. The entities in a conceptual model have less to do with the software
components of the system and more to do with the physical entities that are fundamental to the
business. The conceptual model usually illustrates the concepts, the relationships between them, and
the attributes that belong to each concept. The behavior usually is not represented in this type of
model.

The conceptual model is developed from a set of use-cases for the system. The purpose of building the
model is to help identify the entities that most likely will become classes in the design stage and to
help better understand the problem domain. Figure 6-2 illustrates a conceptual model for the
Storefront application. Notice that only relationships and the attributes for the entities are shown; no
methods are specified.

Figure 6-2. The Storefront conceptual model

If you are familiar with Entity-Relationship (E-R) diagrams, you shouldn't be
too confused by the conceptual model. They are very similar.

The value of a conceptual model is that it clearly shows the entities that are used by the problem
domain. Everyone involved in the business, technical or not, should be able to look at the conceptual
model and make sense of it. They also should be able to quickly point out problems with the model.
For example, maybe an item can't belong to more than one catalog at a time. By examining the
conceptual model, someone would be able to point this out, and the analysts could make the change
early. The later in the design and development cycle that a change is required, the more costly that
change becomes.

6.1.1.2 The design model

The conceptual model is just one artifact of the analysis stage; there can be many others. In smaller
development groups or on smaller projects, the conceptual model may be skipped in favor of moving
to the design stage sooner. The risk of doing this, however, is that you might leave the analysis stage
without a clear and concise understanding of the requirements. The better you understand the
requirements for a project, the closer to meeting them the end product will be.

Even if you build a conceptual model, you still will need to create the appropriate design documents.
This usually includes class diagrams, interaction diagrams, and possibly other artifacts such as state
diagrams. At minimum, your design-stage artifacts should include one or more class diagrams. Figure
6-3 illustrates a class diagram based on the conceptual model for the Storefront application illustrated
in Figure 6-2.

Figure 6-3. The class diagram for the Storefront business objects

The class diagram in Figure 6-3 shows the business objects used within the Storefront application. For
brevity, only the attributes and relationships are shown here.

The way you arrive at the proper design for your application is definitely beyond the scope of this
book. There are a multitude of excellent analysis and design books available. One of the more popular
references is Applying UML and Patterns by Craig Larman (Prentice Hall).

The exact type and structure of business objects and processing rules
obviously are dependent on the domain of your application, and no two
applications are exactly the same. Even within a single application, it's
understood that requirements change. However, conducting a thorough
analysis of the problem domain and constructing a resilient design goes a long
way toward protecting your application from unexpected change.

6.2 What Is a Business Object?

This question may sound a little too simplistic for a book on Struts. However, the term "business
object" has many connotations, and some developers use it when they really mean something else. A
business object (BO) is simply a software abstraction of a real-world entity. It represents a person,
place, thing, or concept from the business domain. So, concepts such as items, orders, and customers
are all business objects from the Storefront business domain.

Business objects consist of state and behavior. The OrderBO, for example, is aware of information
relating to a single customer purchase order, including price, tax, and order status. An OrderBO also

should know who the customer is and be able to provide this information. Having both state and
behavior is an important criterion for a class to be considered a business object. Let's examine a few
other business object characteristics.

6.2.1 Requirements for Business Objects

For a class to be considered a business object, several conditions should be met:

• Consists of state and behavior
• Represents a person, place, thing, or concept from the business domain
• Is reusable

Business objects also can be grouped into different classifications. Generally, there are three types:

• Entity business object
• Process business object
• Event business object

Probably the most familiar, an entity BO represents a person, place, thing, or concept. These usually
are extracted straight from the business domain by considering the nouns in the business. Again, these
are concepts such as customers, orders, items, and so on. In an EJB application, these are modeled as
entity beans (hence the name). In a more traditional web application, these may be regular JavaBeans
that contain the state and behavior of the business application.

Process BO s represent business processes or workflow tasks within an application. They usually are
dependent on entity BO objects and are the verbs of the business. In an EJB application, these
normally are modeled as session beans or, in some cases, message-driven beans. In a non-EJB
application, these may be regular JavaBeans that contain specialized behavior to operate as a manager
or controller for the application. Even though these types of business objects are used for processing
workflow, they still can hold state for an application. With EJB, for example, there are stateless and
stateful session beans.

The final category of business object is the event BO. An event BO represents some event in the
application (exception, alert, timed event) that causes or is generated by some action in the system. In
a Java Swing application, for example, when you press a button, an event is raised notifying the
underlying framework so that an event handler can handle the button press.

6.2.2 The Importance of Business Objects

Using business objects in an application has several benefits. Probably the most important is that
business objects provide common terminology and ideas that can be shared across an organization by
technical and nontechnical people alike. Because they represent real-world concepts and ideas, they
are very intuitive and should make sense to the entire organization. If multiple applications from the
same business domain exist, it's likely that the same business objects exist across the application
boundaries. This reuse of information and behavior allows for faster application development and
reduces redundancy.

Business objects also have the ability to evolve with the organization through modifications to the
original object or through proper specialization. This is very important because as an organization
changes, the information and behavior must adapt and change with it.

Finally, business objects have well-defined interfaces—not interfaces in the Java sense, but a clear and
cohesive set of functionalities. The internal implementation should be hidden from the client to protect
the callers from changes to the implementation details. For example, suppose you have a business
object that uses a java.util.ArrayList. Instead of exposing the type ArrayList, you
should expose java.util.List. If the implementation changes internally from ArrayList
to LinkedList, the caller will not be impacted because the client is programming against the
List interface, not the implementation class.

By now, you should be fully aware of the importance that business objects have in an organization.
They are present in all but the most trivial applications. You also know that they contain state and
behavior that, in most cases, acts on that data. So the next questions should be, where does that state
originate and where does it go when the application is stopped? This leads us into the topic of object
persistence.

6.3 Persistence

In general, persistence means that the data that is input into an application, either by a human user or
by other means, will exist beyond the lifetime of the application. Even though the application may exit
or the computer may shut down, the information will survive. This obviously is very important to an
organization. Every small, medium, and large organization has the need to persist data.

6.3.1 Persisting Business Objects

When objects are created in memory for an application, they can't stay there forever. Eventually, they
must either be cleaned up or persisted to a data store. Memory is volatile, and an application might
crash or need to be stopped for maintenance. Without data persistence, there's no record to indicate
what was ordered, for example, or whom to charge.

Business objects represent information that must be kept. To be of value, orders, items, and customer
information must be persisted for an application like the Storefront. Losing a customer's order is not
going to make the customer a customer for long. Once the data has been persisted, it can be retrieved
and used to reconstruct the business objects at a later time.

6.3.2 Storing Objects into a Relational Model

Although there are many different types of data stores, relational databases are used quite frequently
to store the data for an organization, especially with applications like the Storefront. Relational
databases are a necessity, and their use is widespread. There are, however, several obstacles that must
be overcome to use them successfully. One of the biggest challenges is solving the so-called
"impedance mismatch."

6.3.2.1 The impedance mismatch

Objects hold state and behavior and can be traversed through their relationships with other objects.
The relational paradigm, on the other hand, is based on storing data and joining sets of data by
matching overlapping fields. Essentially, a relational database is a very "flat" view of the data. This
difference leads to a challenging mismatch between the two worlds: objects must be flattened before
they can be stored into a relational database, but the relationships that objects have to one another also
must be persisted in order for the object hierarchy to be reassembled correctly.

Object databases don't require the data to be flattened out. However, they are
not yet as widespread as relational databases.

There's not enough room in this chapter for a detailed tutorial on mapping objects to a relational model.
Suffice it to say that there are many challenges. Fortunately, many resources and references are
available to help in overcoming these challenges. A definitive source of information on how to
correctly map objects to a relational database can be found in Scott Ambler's white paper, "Mapping
Objects to Relational Databases" (see http://www.ambysoft.com/mappingObjects.pdf).

As you'll see shortly, there are many object-to-relational mapping (ORM) frameworks that make this
job much easier for the Java developer. Such frameworks don't completely eliminate your need for a
good understanding of the problems, but they can hide many of the ugly chores that no developer
wants to perform.

6.4 What Does Struts Offer for the Model?

To be honest, the Struts framework doesn't offer much in the way of building model components, but
this probably is as it should be. Many frameworks and component models already are available for
dealing with the business domain of an application, including Enterprise JavaBeans and Java Data
Objects (JDO), or you can use regular JavaBeans and an ORM. The good news is that the Struts
framework does not limit you to one particular model implementation. This chapter will present one
approach. In Chapter 13, we'll take a completely different approach and see how the framework is
affected by this change.

6.5 Building the Storefront Model

After all this discussion of what constitutes a model for a Struts application, it's finally time to apply
the previously discussed concepts using the Storefront application as the business domain. Obviously,
the Storefront is a fictitious example and doesn't represent a complete model for what a "real" e-
commerce application would need to support. However, it does provide enough of an object model for
you to understand the semantics of this chapter.

6.5.1 Accessing a Relational Database

The state of the Storefront application will be persisted using a relational database. This is, in fact,
how it would be done if Storefront were a real application. Of course, an ERP system often is used in
conjunction with the relational database, but many e-commerce applications use a relational database
closer to the frontend for performance and ease of development. When both are deployed in an
enterprise, there's usually a middleware service to keep the data between the two synchronized, either
in real time or using batch mode.

As you probably are aware, there are many relational databases to choose from. You can choose one
of several major database vendors or, if your requirements don't call for such a large and expensive
implementation, you can choose one of the cheaper or free products on the market. Because we will
not be building out every aspect of the application and our intended user load is small, our
requirements for a database are not very stringent. That said, the database-specific examples in this
chapter should be fine for most database platforms. If you understand the SQL Data Definition
Language (DDL), you can tweak the DDL for the database that's available to you.

We have quite a bit of work to do before we can start using the Storefront model. The following tasks
need to be completed before we are even ready to involve the Struts framework:

• Create the business objects for the Storefront application
• Create the database for the Storefront application
• Map the business objects to the database
• Test that the business objects can be persisted in the database

As you can see, none of these tasks mentions the Struts framework. You should approach this part of
the development phase without a particular client in mind. The Struts Storefront web application is
just one potential type of client to the business objects. If designed and coded properly, many different
types may be used. The business objects are used to query and persist information regarding the
Storefront business. They should not be coupled to a presentation client.

To help insulate the Struts framework from changes that may occur in the business objects, we also
will look at using the Business Delegate design pattern within the Storefront application. The business
delegate acts as a client-side business abstraction. It hides the implementation of the actual business
service, which helps to reduce the coupling between the client and the business objects.

6.5.2 Creating the Storefront Business Objects

Business objects contain data and behavior. They are a virtual representation of one or more records
within a database. In the Storefront application, for example, an OrderBO object represents a
physical purchase order placed by a customer. It also contains the business logic that helps to ensure
that the data is valid and remains valid.

Where Does Business Validation Belong?
Deciding where to put your validation logic in a Struts application can be frustrating. On the
one hand, it seems to belong within the framework itself, as this is the first place that the
user data can be obtained and validated. The problem with placing business-logic validation
within the Action or ActionForm class is that the validation then becomes coupled to
the Struts framework, which prevents the validation logic from being reused by any other
clients.

There is a different type of validation, called presentation validation, that can and should
occur within the framework. Presentation validation, or "input validation," as it's sometime
called, can be grouped into three distinct categories:

• Lexical
• Syntactic
• Semantic

Lexical validation checks to make sure data is well formed. For example, is the quantity
value an integer? Syntactic validation goes one step further and makes sure that values
made from a composite are valid and well formed. For example, date fields in a browser
typically are accepted as month/day/year values. Syntactic validation ensures that the value
entered is in the proper format. However, it doesn't ensure that the values make a valid date.
Ensuring that the date entered is valid and meaningful is the job of semantic validation,
which ensures that the values entered have meaning for the application. For example,

putting a quantity value of -3 in the order quantity field for an item is lexically and
syntactically valid but not semantically valid.

Presentation validation belongs within the Struts framework, but business validation does
not. The business objects have the final responsibility of ensuring that any data inserted into
the database is valid, and therefore it should have the rules necessary to perform this duty.

The first step is to create the business objects with which we'll need to interact. For this
implementation, they will just be regular JavaBean objects. Many component models are specific to a
single implementation. Entity beans, for example, will work only within an EJB container. For this
example, the Storefront business objects will not be specific to a particular implementation. If later we
want to use these same business objects with an EJB container, we can wrap them with entity beans or
just delegate the call from a session bean method to one of these objects. In Chapter 13, we'll show
how this can be done without impacting the Storefront application.

Because all the business objects share several common properties, we are going to create an abstract
superclass for the business objects. Every business object will be a subclass of the
BaseBusinessObject class shown in Example 6-1.

Example 6-1. BaseBusinessObject is the superclass for all business objects
package com.oreilly.struts.storefront.businessobjects;

/**
 * An abstract superclass that many business objects will
extend.
 */
abstract public class BaseBusinessObject implements
java.io.Serializable {
 private Integer id;
 private String displayLabel;
 private String description;

 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public String getDescription() {
 return description;
 }

 public void setDisplayLabel(String displayLabel) {

 this.displayLabel = displayLabel;
 }

 public String getDisplayLabel() {
 return displayLabel;
 }
}

The BaseBusinessObject prevents each business object from needing to declare these
common properties. We also can put common business logic here if the opportunity presents itself.

Example 6-2 shows the OrderBO business object that represents a customer purchase order in the
Storefront application. There's nothing that special about the OrderBO class; it's an ordinary
JavaBean object. Other than the recalculatePrice() method, the class just provides setter
and getter methods for the order properties.

Example 6-2. The OrderBO object represents an order placed by a customer
package com.oreilly.struts.storefront.businessobjects;

import java.math.BigDecimal;
import java.sql.Timestamp;
import java.util.Iterator;
import java.util.List;
import java.util.LinkedList;

/**
 * The OrderBO, which represents a purchase order that a
customer
 * has placed or is about to place.
 */
public class OrderBO extends BaseBusinessObject{

 // A list of line items for the order
 private List lineItems = new LinkedList();
 // The customer who placed the order
 private CustomerBO customer;
 // The current price of the order
 private double totalPrice;
 // The id of the customer
 private Integer customerId;
 // Whether the order is in process, shipped, canceled, etc.
 private String orderStatus;
 // The date and time that the order was received
 private Timestamp submittedDate;

 public OrderBO(Integer id, Integer custId, String
orderStatus,
 Timestamp submittedDate, double
totalPrice){

 this.setId(id);
 this.setCustomerId(custId);
 this.setOrderStatus(orderStatus);
 this.setSubmittedDate(submittedDate);
 this.setTotalPrice(totalPrice);
 }

 public void setCustomer(CustomerBO owner){
 customer = owner;
 }

 public CustomerBO getCustomer(){
 return customer;
 }

 public double getTotalPrice(){
 return this.totalPrice;
 }

 private void setTotalPrice(double price){
 this.totalPrice = price;
 }

 public void setLineItems(List lineItems){
 this.lineItems = lineItems;
 }

 public List getLineItems(){
 return lineItems;
 }

 public void addLineItem(LineItemBO lineItem){
 lineItems.add(lineItem);
 }

 public void removeLineItem(LineItemBO lineItem){
 lineItems.remove(lineItem);
 }

 public void setCustomerId(Integer customerId) {
 this.customerId = customerId;
 }

 public Integer getCustomerId() {
 return customerId;
 }

 public void setOrderStatus(String orderStatus) {
 this.orderStatus = orderStatus;

 }

 public String getOrderStatus() {
 return orderStatus;
 }

 public void setSubmittedDate(Timestamp submittedDate) {
 this.submittedDate = submittedDate;
 }

 public Timestamp getSubmittedDate() {
 return submittedDate;
 }

 private void recalculatePrice(){
 double totalPrice = 0.0;

 if (getLineItems() != null){
 Iterator iter = getLineItems().iterator();
 while(iter.hasNext()){
 // Get the price for the next line item and make sure
it's not null
 Double lineItemPrice =
((LineItemBO)iter.next()).getUnitPrice();
 // Check for an invalid lineItem. If found, return
null right here.
 if (lineItemPrice != null){
 totalPrice += lineItemPrice.doubleValue();
 }
 }
 // Set the price for the order from the calcualted value
 setTotalPrice(totalPrice);
 }
 }
}

We won't show all of the business objects here; they all have similar implementations to the
OrderBO class.

When designing your business objects, don't worry about how they will be
mapped to the database. There will be plenty of time for that. Don't be afraid to
use object-oriented techniques such as inheritance and polymorphism, just as
you would with any other object model. The BaseBusinessObject in
Example 6-1 will not actually be mapped to a table in the database, but its
properties will get mapped with the respective subclasses. Although most
persistence mapping frameworks support multiple approaches to mapping
inheritance in the database, adding the properties to each table allows fewer
SQL joins to occur, which may have a positive impact on performance.

6.5.3 The Storefront Data Model

Once all the business objects have been created for the Storefront application, we need to create a
database model and schema. The details of creating a database schema for the Storefront application
are beyond the scope of this book. It's seemingly easy to throw a bunch of tables into a database and
add columns to them. However, it's quite another thing to understand the trade-offs between database
normalization and issues that surface due to the object-relational mismatch discussed earlier.

If the application is small enough, almost anyone can create a database schema, especially with the
tools available from database vendors and third-party sources. If your schema is more than just a few
tables, or if the complexity of foreign keys, triggers, and indexes is high, it's best to leave creating a
schema to the experts. The Storefront schema is quite small, mainly because we've chosen to
implement only a portion of what normally would be required. Figure 6-4 shows the data model that
will be implemented for the Storefront application.

Figure 6-4. The Storefront data model

The table definitions in Figure 6-4 are fairly self-explanatory. There are several items of interest that
should be pointed out, however. The first is that every table, except for the many-to-many link table
CATALOGITEM_LNK, has been assigned an object identifier (OID). OIDs simplify the navigation
between objects, and should have no business meaning at all. Values that are based on business
semantics will sooner or later change, and basing your keys on values that change is very problematic.
In the database world, using the OID strategy is known as using surrogate keys.

To generate the schema for the data model shown in Figure 6-4, we need to create the DDL. The SQL
DDL is used to create the physical entities in the database. The Storefront SQL DDL that will create
the set of tables in Figure 6-4 is shown in Example 6-3.

Example 6-3. The Storefront SQL DDL
The
SQL DDL for the Storefront Application
(Programming Jakarta Struts by O'Reilly)
Chuck Cavaness

Execute the next line if you need to clear the storefront
database
DROP DATABASE storefront;

Creates the initial database
CREATE DATABASE storefront;

Make sure you are creating the tables in the storefront
tablespace
use storefront;

CREATE TABLE CATALOG(
 id int NOT NULL,
 displaylabel varchar(50) NOT NULL,
 featuredcatalog char(1) NULL,
 description varchar(255) NULL
);

ALTER TABLE CATALOG ADD
 CONSTRAINT PK_CATALOG PRIMARY KEY(id);

CREATE TABLE CUSTOMER (
 id int NOT NULL,
 firstname varchar(50) NOT NULL,
 lastname varchar(50) NOT NULL,
 email varchar(50) NOT NULL,
 password varchar(15) NOT NULL,
 description varchar(255) NULL,
 creditStatus char(1) NULL,
 accountstatus char(1) NULL,
 accountnumber varchar(15) NOT NULL
);

ALTER TABLE CUSTOMER ADD
 CONSTRAINT PK_CUSTOMER PRIMARY KEY(id);

CREATE TABLE ITEM (
 id int NOT NULL,
 itemnumber varchar (255) NOT NULL,

 displaylabel varchar(50) NOT NULL,
 description varchar (255) NULL,
 baseprice decimal(9,2) NOT NULL,
 manufacturer varchar (255) NOT NULL,
 sku varchar (255) NOT NULL,
 upc varchar (255) NOT NULL,
 minsellingunits int NOT NULL,
 sellinguom varchar (255) NOT NULL,
 onhandquantity int NOT NULL,
 featuredesc1 varchar (255) NULL,
 featuredesc2 varchar (255) NULL,
 featuredesc3 varchar (255) NULL,
 smallimageurl varchar (255) NULL,
 largeimageurl varchar (255) NULL
)

ALTER TABLE ITEM ADD
 CONSTRAINT PK_ITEM PRIMARY KEY(id);

CREATE TABLE CATALOGITEM_LNK(
 catalogid int NOT NULL,
 itemid int NOT NULL
)

ALTER TABLE CATALOGITEM_LNK ADD
 CONSTRAINT PK_CATALOGITEM_LNK PRIMARY KEY(catalogid, itemid);

ALTER TABLE CATALOGITEM_LNK ADD
 CONSTRAINT FK_CATALOGITEM_LNK_CATALOG FOREIGN KEY
 (catalogid) REFERENCES CATALOG(id);

ALTER TABLE CATALOGITEM_LNK ADD
 CONSTRAINT FK_CATALOGITEM_LNK_ITEM FOREIGN KEY
 (itemid) REFERENCES ITEM(id);

CREATE TABLE PURCHASEORDER (
 id int NOT NULL,
 customerid int NOT NULL,
 submitdttm timestamp NOT NULL,
 status varchar (15) NOT NULL,
 totalprice decimal(9,2) NOT NULL,
)

ALTER TABLE PURCHASEORDER ADD
 CONSTRAINT PK_PURCHASEORDER PRIMARY KEY(id);

ALTER TABLE PURCHASEORDER ADD
 CONSTRAINT FK_PURCHASEORDER_CUSTOMER FOREIGN KEY

 (customerid) REFERENCES CUSTOMER(id);

CREATE TABLE LINEITEM (
 id int NOT NULL,
 orderid int NOT NULL,
 itemid int NOT NULL,
 lineitemnumber int NULL,
 extendedprice decimal(9, 2) NOT NULL,
 baseprice decimal(9, 2) NOT NULL,
 quantity int NOT NULL
)

ALTER TABLE LINEITEM ADD
 CONSTRAINT PK_LINEITEM PRIMARY KEY(id);

ALTER TABLE LINEITEM ADD
 CONSTRAINT FK_LINEITEM_ORDER FOREIGN KEY
 (orderid) REFERENCES PURCHASEORDER(id);

ALTER TABLE LINEITEM ADD
 CONSTRAINT FK_LINEITEM_ITEM FOREIGN KEY
 (itemid) REFERENCES ITEM(id);

The DDL shown in Example 6-3 has been tested on Oracle 8.1.7 and
Microsoft SQL Server 2000. If you plan to use it with other database
platforms, it might be necessary to modify the ALTER statements. For
example, due to the limitations of foreign keys with MySQL, you may have to
eliminate the FOREIGN KEY statements entirely. The only parts that are
absolutely necessary to run the example are the CREATE TABLE sections
and the primary keys, which all databases should support.

Once you have executed the DDL from Example 6-3, you will need to insert some data for the tables.
The data must be in the database for the Storefront application to work properly.

6.5.4 Mapping the Business Objects to the Database

When it comes time to connect or map the business objects to the database, there are a variety of
approaches from which you can choose. Your choice depends on several factors that may change from
application to application and situation to situation. A few of the approaches are:

• Use straight JDBC calls
• Use a "home-grown" ORM approach (also known as the "roll-your-own" approach)
• Use a proprietary ORM framework
• Use a nonintrusive, nonproprietary ORM framework
• Use an object database

Keeping in mind that some tasks are better done in-house and others are better left to the experts,
building a Java persistence mechanism is one that typically you should avoid doing. Remember that
the point of building an application is to solve a business problem. You generally are better off
acquiring a persistence solution from a third party.

There are many issues that must be dealt with that are more complicated than just issuing a SQL select
statement through JDBC, including transactions, support for the various associations, virtual proxies
or indirection, locking strategies, primary-key increments, caching, and connection pooling, just to
name a few. Building a persistence framework is an entire project in and of itself. You shouldn't be
spending valuable time and resources on something that isn't the core business. The next section lists
several solutions that are available.

6.5.5 Object-to-Relational Mapping Frameworks

There are a large number of ORM products available for you to choose from. Some of them are
commercially available and have a cost that is near to or exceeds that of most application servers.
Others are free and open source. Table 6-1 presents several commercial and noncommercial solutions
that you can choose from.

Table 6-1. Object-to-relational mapping frameworks
Product URL

TopLink http://otn.oracle.com/products/ias/toplink/content.html
CocoBase http://www.cocobase.com
Torque http://jakarta.apache.org/turbine/torque/index.html
ObJectRelationalBridge http://jakarta.apache.org/ojb/
FrontierSuite http://www.objectfrontier.com
Castor http://castor.exolab.org
FreeFORM http://www.chimu.com/projects/form/
Expresso http://www.jcorporate.com
JRelationalFramework http://jrf.sourceforge.net
VBSF http://www.objectmatter.com
JGrinder http://sourceforge.net/projects/jgrinder/

Although Table 6-1 is not an exhaustive list of available products, it does present many solutions to
choose from. Regardless of whether you select a commercial or noncommercial product, you should
make sure that the mapping framework implementation does not "creep" into your application. Recall
from Figure 6-1 that dependencies always should go down the layers, and there should not be a top
layer depending on the persistence framework. It's even advantageous to keep the business objects
ignorant about how they are being persisted. Some persistence frameworks force you to import their
classes and interfaces, but this is problematic if you ever need to change your persistence mechanism.
Later in this chapter, you'll see how you can use the Business Delegate pattern and the Data Access
Object (DAO) pattern to limit the intrusion of the persistence framework.

You can find a product comparison between these and other mapping products at http://www.object-
relational.com/object-relational.html. There is a cost for the compiled information, but if your
application is large, it may be money well spent.

Another thing to be careful of is that a few of the persistence frameworks need to alter the Java
bytecode of the business objects after they are compiled. Depending on how you feel about this, it
could introduce some issues. Just make sure you fully understand how a persistence framework needs
to interact with your application before investing time and resources into using it.

6.5.6 The Storefront Persistence Framework

We could have chosen almost any solution from Table 6-1 and successfully mapped the Storefront
business objects to the database. Our requirements are not that stringent, and the model isn't that
complicated. We evaluated several options, but our selection process was very informal and quick, an
approach you should not follow for any serious project. The criteria that the frameworks were judged
against were:

• The cost of the solution
• The amount of intrusion the persistence mechanism needed
• How good the available documentation was

Cost was a big factor. We needed a solution that you could use to follow along with the examples in
this book without incurring any monetary cost. All of the solutions evaluated for this example
performed pretty well and were relatively easy to use, but we finally selected the open source
ObJectRelationalBridge (OJB) product to use for the Storefront example.

Just because this solution was chosen for this example, don't assume that it
will be the best solution for your application. Take the necessary time and
evaluate the products based on your specific criteria.

The documentation for OJB is pretty good, considering that documentation for open source projects
tends to be one of the last tasks completed. Essentially, the entire mapping of the business objects to
the database tables takes place in a single XML file, called repository_user.xml. The file is parsed by
the mapping framework at runtime and used to execute SQL to the database. The portion of the
mapping file that maps the customer business object is shown in Example 6-4.

At the time that this source was written, the newest version of OJB was
0.8.375. When this chapter was last updated, Version 0.9.4 had been released
and added to the list of Jakarta projects. The code shown here is for the earlier
version. For the latest changes to OJB, go to http://jakarta.apache.org/ojb/.

Example 6-4. The mapping XML for the CustomerBO class
<ClassDescriptor id="120">

<class.name>com.oreilly.struts.storefront.businessobjects.Cust
omerBO</class.name>
 <table.name>CUSTOMER</table.name>

 <FieldDescriptor id="1">
 <field.name>id</field.name>
 <column.name>id</column.name>
 <jdbc_type>INTEGER</jdbc_type>
 <PrimaryKey>true</PrimaryKey>
 <autoincrement>true</autoincrement>
 </FieldDescriptor>

 <FieldDescriptor id="2">
 <field.name>firstName</field.name>

 <column.name>firstname</column.name>
 <jdbc_type>VARCHAR</jdbc_type>
 </FieldDescriptor>

 <FieldDescriptor id="3">
 <field.name>lastName</field.name>
 <column.name>lastname</column.name>
 <jdbc_type>VARCHAR</jdbc_type>
 </FieldDescriptor>

 <FieldDescriptor id="4">
 <field.name>email</field.name>
 <column.name>email</column.name>
 <jdbc_type>VARCHAR</jdbc_type>
 </FieldDescriptor>

 <FieldDescriptor id="5">
 <field.name>password</field.name>
 <column.name>password</column.name>
 <jdbc_type>VARCHAR</jdbc_type>
 </FieldDescriptor>

 <FieldDescriptor id="6">
 <field.name>accountStatus</field.name>
 <column.name>accountstatus</column.name>
 <jdbc_type>CHAR</jdbc_type>
 </FieldDescriptor>

 <FieldDescriptor id="7">
 <field.name>creditStatus</field.name>
 <column.name>creditstatus</column.name>
 <jdbc_type>CHAR</jdbc_type>
 </FieldDescriptor>

 <CollectionDescriptor id="1">
 <cdfield.name>submittedOrders</cdfield.name>

<items.class>com.oreilly.struts.storefront.businessobjects.Ord
erBO</items.class>
 <inverse_fk_descriptor_ids>2</inverse_fk_descriptor_ids>
 </CollectionDescriptor>
</ClassDescriptor>

The rest of the mappings are mapped in a similar manner. Once all of the mappings are specified in
the XML file, you must configure the database connection information to allow the JDBC driver to
connect to the correct database. With the OJB product, you configure the connection information in
the repository.xml file. This is shown in Example 6-5.

Example 6-5. The respository.xml file contains the database connection information

<?xml version="1.0" encoding="UTF-8"?>

<!-- defining entities for include-files -->
<!DOCTYPE MappingRepository SYSTEM "repository.dtd" [
 <!ENTITY user SYSTEM "repository_user.xml">
 <!ENTITY junit SYSTEM "repository_junit.xml">
 <!ENTITY internal SYSTEM "repository_internal.xml">
]>

<MappingRepository>
<JdbcConnectionDescriptor id="default">
 <dbms.name>MsSQLServer2000</dbms.name>
 <jdbc.level>1.0</jdbc.level>

<driver.name>com.microsoft.jdbc.sqlserver.SQLServerDriver</dri
ver.name>
 <url.protocol>jdbc</url.protocol>
 <url.subprotocol>microsoft:sqlserver</url.subprotocol>
 <url.dbalias>

//localhost:1433;DatabaseName=storefront;user=sa;SelectMethod=
cursor
 </url.dbalias>
 <user.name>sa</user.name>
 <user.passwd></user.passwd>
</JdbcConnectionDescriptor>

<!-- include user-defined mappings here -->
&user;

<!-- include ojb internal mappings here -->
&internal;

</MappingRepository>

You need to configure the settings in this file for your specific environment. That's really all there is to
configuring the persistence framework for your application. To initialize the framework within your
application, you simply call three methods, as shown later in this section.

OJB offers two different APIs that you can use: the PersistenceBroker and the
ODMG implementation. You can read the documentation to understand the
differences, but the ODMG is much more powerful and has an Object Query
Language (OQL). However, with that extra functionality comes a little more
complexity. The Storefront application will use the ODMG API because it has
better features. ODMG also allows the framework to be used in standalone
mode or in client/server mode. The client/server mode is useful when there are
multiple servers in the same environment. We have chosen to use it in
standalone mode, because the Storefront application will not need to scale for
multiple servers. This means that the persistence framework is running within
the same JVM as the Storefront application itself.

There's not enough room in this chapter for a better explanation of the OJB framework. For more
detailed information, review the documentation for the product at http://jakarta.apache.org/ojb/. Don't
forget that you will need to have an appropriate database and a JDBC driver in your web application's
classpath.

6.5.7 The Business Delegate and DAO Patterns in Action

The final piece of the puzzle is to create a service interface that the Storefront Action classes can
use instead of interacting with the persistence framework directly. Again, the idea is to decouple the
persistence from as much of the application as possible. Before we show the details of how we are
going to accomplish this for the Storefront example, we need to briefly discuss the Data Access Object
(DAO) pattern.

The purpose of the DAO pattern is to decouple the business logic of an application from the data
access logic. When a persistence framework is being used, the pattern should help to decouple the
business objects from that framework. A secondary goal is to allow the persistence implementation to
easily be replaced with another, without negatively affecting the business objects.

There actually are two independent design patterns contained within the DAO—the Bridge and the
Adaptor—both of which are structural design patterns explained in the Gang of Four's Design
Patterns: Elements of Reusable Object-Oriented Software (Addison Wesley).

For the Storefront application, we are going to combine the DAO and Business Delegate patterns to
insulate the Action and business object classes from the persistence implementation. The abstract
approach is shown in Figure 6-5.

Figure 6-5. The Business Delegate and DAO patterns combined

The client object in Figure 6-5 represents the Struts Action classes. They will acquire a reference to
a service interface, which is referred to in the diagram as the Business Delegate Interface. The
Storefront business interface is shown in Example 6-6.

Example 6-6. The Storefront business interface
package com.oreilly.struts.storefront.service;

import java.util.List;
import
com.oreilly.struts.storefront.catalog.view.ItemDetailView;
import
com.oreilly.struts.storefront.catalog.view.ItemSummaryView;
import
com.oreilly.struts.storefront.framework.exceptions.DatastoreEx
ception;
import
com.oreilly.struts.storefront.framework.security.IAuthenticati
on;
/**
 * The business interface for the Storefront application. It
defines all
 * of the methods that a client may call on the Storefront
application.
 * This interface extends the IAuthentication interface to
provide a
 * single cohesive interface for the Storefront application.
 */
public interface IStorefrontService extends IAuthentication {

 public List getFeaturedItems() throws DatastoreException;

 public ItemDetailView getItemDetailView(String itemId)
 throws DatastoreException;
}

The IStorefrontService interface in Example 6-6 defines all of the methods a client may
call on the Storefront application. In our case, the client will be the set of Action classes in the
Storefront application. The IStorefrontService is designed so that there is no web
dependency. It's feasible that other types of clients could use this same service.

The IStorefrontService extends the IAuthentication class to encapsulate the
security methods. The IAuthentication class, shown in Example 6-7, contains only two
methods for this simple example.

Example 6-7. The IAuthentication Interface
package com.oreilly.struts.storefront.framework.security;

import com.oreilly.struts.storefront.customer.view.UserView;
import
com.oreilly.struts.storefront.framework.exceptions.InvalidLogi
nException;
import
com.oreilly.struts.storefront.framework.exceptions.ExpiredPass
wordException;
import
com.oreilly.struts.storefront.framework.exceptions.AccountLock
edException;
import
com.oreilly.struts.storefront.framework.exceptions.DatastoreEx
ception;
/**
 * Defines the security methods for the system.
 */
public interface IAuthentication {

 /**
 * Log the user out of the system.
 */
 public void logout(String email);

 /**
 * Authenticate the user's credentials and either return a
UserView for the
 * user or throw one of the security exceptions.
 */
 public UserView authenticate(String email, String password)
 throws InvalidLoginException, ExpiredPasswordException,

 AccountLockedException, DatastoreException;
}

One implementation for the IStorefrontService interface is shown in Example 6-8. The
implementation could be swapped out with other implementations, as long as the new
implementations also implement the IStorefrontService interface. No clients would be
affected because they are programmed against the interface, not the implementation.

You'll see an example of switching the implementation of the
IStorefrontService interface in Chapter 13, when we substitute an
EJB tier into the Storefront application.

Example 6-8. The Storefront service implementation class
package com.oreilly.struts.storefront.service;

import java.sql.Timestamp;
import java.util.List;
import java.util.ArrayList;
import
com.oreilly.struts.storefront.catalog.view.ItemDetailView;
import
com.oreilly.struts.storefront.catalog.view.ItemSummaryView;
import
com.oreilly.struts.storefront.framework.security.IAuthenticati
on;
import com.oreilly.struts.storefront.customer.view.UserView;
import com.oreilly.struts.storefront.businessobjects.*;
// Import the exceptions used
import
com.oreilly.struts.storefront.framework.exceptions.DatastoreEx
ception;
import
com.oreilly.struts.storefront.framework.exceptions.InvalidLogi
nException;
import
com.oreilly.struts.storefront.framework.exceptions.ExpiredPass
wordException;
import
com.oreilly.struts.storefront.framework.exceptions.AccountLock
edException;

// Import the implementation-specific packages
import org.odmg.*;
import ojb.odmg.*;

public class StorefrontServiceImpl implements
IStorefrontService{

 // Implementation-specific references
 Implementation odmg = null;
 Database db = null;

 /**
 * Create the service, which includes initializing the
persistence
 * framework.
 */
 public StorefrontServiceImpl() throws DatastoreException {
 super();
 init();
 }
 /**
 * Return a list of items that are featured.
 */
 public List getFeaturedItems() throws DatastoreException {
 // Start a transaction
 Transaction tx = odmg.newTransaction();
 tx.begin();

 List results = null;
 try{
 OQLQuery query = odmg.newOQLQuery();
 // Set the OQL select statement
 query.create("select featuredItems from " +
ItemBO.class.getName());
 results = (List)query.execute();
 tx.commit();
 }catch(Exception ex){
 // Roll back the transaction
 tx.abort();
 ex.printStackTrace();
 throw DatastoreException.datastoreError(ex);
 }
 int size = results.size();
 List items = new ArrayList();
 for(int i = 0; i < size; i++){
 ItemBO itemBO = (ItemBO)results.get(i);
 ItemSummaryView newView = new ItemSummaryView();
 newView.setId(itemBO.getId().toString());
 newView.setName(itemBO.getDisplayLabel());
 newView.setUnitPrice(itemBO.getBasePrice());
 newView.setSmallImageURL(itemBO.getSmallImageURL());
 newView.setProductFeature(itemBO.getFeature1());
 items.add(newView);
 }
 return items;
 }

 /**
 * Return a detailed view of an item based on the itemId
argument.
 */
 public ItemDetailView getItemDetailView(String itemId)
 throws DatastoreException{
 // Start a transaction
 Transaction tx = odmg.newTransaction();
 tx.begin();

 List results = null;
 try{
 OQLQuery query = odmg.newOQLQuery();

 // Set the OQL select statement
 String queryStr = "select item from " +
ItemBO.class.getName();
 queryStr += " where id = $1";
 query.create(queryStr);
 query.bind(itemId);

 // Execute the transaction
 results = (List)query.execute();
 tx.commit();
 }catch(Exception ex){
 // Roll back the transaction
 tx.abort();
 ex.printStackTrace();
 throw DatastoreException.datastoreError(ex);
 }

 if (results.isEmpty()){
 throw DatastoreException.objectNotFound();
 }

 ItemBO itemBO = (ItemBO)results.get(0);

 // Build a ValueObject for the Item
 ItemDetailView view = new ItemDetailView();
 view.setId(itemBO.getId().toString());
 view.setDescription(itemBO.getDescription());
 view.setLargeImageURL(itemBO.getLargeImageURL());
 view.setName(itemBO.getDisplayLabel());
 view.setProductFeature(itemBO.getFeature1());
 view.setUnitPrice(itemBO.getBasePrice());
 view.setTimeCreated(new
Timestamp(System.currentTimeMillis()));
 view.setModelNumber(itemBO.getModelNumber());
 return view;

 }

 /**
 * Authenticate the user's credentials and either return a
UserView for the
 * user or throw one of the security exceptions.
 */
 public UserView authenticate(String email, String password)
throws

InvalidLoginException,ExpiredPasswordException,AccountLockedEx
ception,
 DatastoreException {

 // Start a transaction
 Transaction tx = odmg.newTransaction();
 tx.begin();

 // Query the database for a user that matches the
credentials
 List results = null;
 try{
 OQLQuery query = odmg.newOQLQuery();
 // Set the OQL select statement
 String queryStr = "select customer from " +
CustomerBO.class.getName();
 queryStr += " where email = $1 and password = $2";
 query.create(queryStr);

 // Bind the input parameters
 query.bind(email);
 query.bind(password);

 // Retrieve the results and commit the transaction
 results = (List)query.execute();
 tx.commit();
 }catch(Exception ex){
 // Roll back the transaction
 tx.abort();
 ex.printStackTrace();
 throw DatastoreException.datastoreError(ex);
 }

 // If no results were found, must be an invalid login
attempt
 if (results.isEmpty()){
 throw new InvalidLoginException();
 }

 // Should only be a single customer that matches the
parameters
 CustomerBO customer = (CustomerBO)results.get(0);

 // Make sure the account is not locked
 String accountStatusCode = customer.getAccountStatus();
 if (accountStatusCode != null &&
accountStatusCode.equals("L")){
 throw new AccountLockedException();
 }

 // Populate the value object from the Customer business
object
 UserView userView = new UserView();
 userView.setId(customer.getId().toString());
 userView.setFirstName(customer.getFirstName());
 userView.setLastName(customer.getLastName());
 userView.setEmailAddress(customer.getEmail());
 userView.setCreditStatus(customer.getCreditStatus());

 return userView;
 }

 /**
 * Log the user out of the system.
 */
 public void logout(String email){
 // Do nothing with it right now, but might want to log it
for auditing reasons
 }
 /**
 * Opens the database and prepares it for transactions
 */
 private void init() throws DatastoreException {
 // Get odmg facade instance
 odmg = OJB.getInstance();
 db = odmg.newDatabase();
 // Open database
 try{
 db.open("repository.xml", Database.OPEN_READ_WRITE);
 }catch(Exception ex){
 throw DatastoreException.datastoreError(ex);
 }
 }
}

The service implementation provides all of the required methods of the IStorefrontService
interface. Because the IStorefrontService interface extends the IAuthentication
interface, the StorefrontServiceImpl class also must implement the security methods.

Again, notice that the implementation knows nothing about the Struts framework or web containers in
general. This allows it to be reused across many different types of applications. This was our goal
when we set out at the beginning of this chapter.

We mentioned earlier that we have to call a few methods of the OJB framework so that the mapping
XML can be parsed and the connections to the database can be made ready. This initialization is
shown in the init() method in Example 6-8. When the constructor of this implementation is
called, the XML file is loaded and parsed. Upon successful completion of the constructor, the
persistence framework is ready to be called.

The constructor needs to be called by the client. In the case of the Storefront application, we'll use a
factory class, which will also be a Struts PlugIn, to determine which Storefront service to initialize.
The factory is shown in Example 6-9.

Example 6-9. The StorefrontServiceFactory class
package com.oreilly.struts.storefront.service;

import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import org.apache.struts.action.PlugIn;
import org.apache.struts.action.ActionServlet;
import org.apache.struts.config.ApplicationConfig;
import com.oreilly.struts.storefront.framework.util.IConstants;

/**
 * A factory for creating Storefront service implementations.
The specific
 * service to instantiate is determined from the
initialization parameter
 * of the ServiceContext. Otherwise, a default implementation
is used.
 *
 */
public class StorefrontServiceFactory implements
IStorefrontServiceFactory,PlugIn{

 // Hold on to the servlet for the destroy method
 private ActionServlet servlet = null;

 // The default is to use the debug implementation
 String serviceClassname =

"com.oreilly.struts.storefront.service.StorefrontDebugServiceI
mpl";

 public IStorefrontService createService() throws
 ClassNotFoundException, IllegalAccessException,
InstantiationException {

 String className =
servlet.getInitParameter(IConstants.SERVICE_CLASS_KEY);

 if (className != null){
 serviceClassname = className;
 }
 return
(IStorefrontService)Class.forName(className).newInstance();
 }

 public void init(ActionServlet servlet, ApplicationConfig
config)
 throws ServletException{
 // Store the servlet for later
 this.servlet = servlet;

 /* Store the factory for the application. Any Storefront
service factory
 * must either store itself in the ServletContext at this
key or extend
 * this class and don't override this method. The
Storefront application
 * assumes that a factory class that implements the
IStorefrontServiceFactory
 * is stored at the proper key in the ServletContext.
 */

servlet.getServletContext().setAttribute(IConstants.SERVICE
_FACTORY_KEY, this);
 }

 public void destroy(){
 // Do nothing for now
 }
}

The StorefrontServiceFactory class in Example 6-9 reads an initialization parameter
from the web.xml file, which tells it the name of the IStorefrontService implementation
class to instantiate. If it doesn't have an init-param for this value, a default implementation class
(in this case, the debug implementation) is created.

Because the factory class implements the PlugIn interface, it will be instantiated at startup, and the
init() method will be called. The init() method stores an instance of the factory into the
application scope, where it can be retrieved later. To create an instance of the Storefront service, a
client just needs to retrieve the factory from the ServletContext and call the
createService() method. The createService() method calls the no-argument
constructor on whichever implementation class has been configured.

The final step that needs to be shown is how we invoke the Storefront service interface from an
Action class. The relevant methods are highlighted in Example 6-10.

Example 6-10. The LoginAction from the Storefront application
package com.oreilly.struts.storefront.security;

import java.util.Locale;
import javax.servlet.http.*;
import org.apache.struts.action.*;
import com.oreilly.struts.storefront.customer.view.UserView;
import
com.oreilly.struts.storefront.framework.exceptions.BaseExcepti
on;
import com.oreilly.struts.storefront.framework.UserContainer;
import
com.oreilly.struts.storefront.framework.StorefrontBaseAction;
import com.oreilly.struts.storefront.framework.util.IConstants;
import
com.oreilly.struts.storefront.service.IStorefrontService;

/**
 * Implements the logic to authenticate a user for the
Storefront application.
 */
public class LoginAction extends StorefrontBaseAction{
 /**
 * Called by the controller when a user attempts to log in
to the
 * Storefront application.
 */
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception{

 // Get the user's login name and password. They should
have already
 // been validated by the ActionForm.
 String email = ((LoginForm)form).getEmail();
 String password = ((LoginForm)form).getPassword();

 // Log in through the security service
 IStorefrontService serviceImpl = getStorefrontService();
 UserView userView = serviceImpl.authenticate(email,
password);

 UserContainer existingContainer = null;
 HttpSession session = request.getSession(false);

 if (session != null){
 existingContainer = getUserContainer(request);
 session.invalidate();
 }else{
 existingContainer = new UserContainer();
 }

 // Create a new session for the user
 session = request.getSession(true);
 existingContainer.setUserView(userView);
 session.setAttribute(IConstants.USER_CONTAINER_KEY,
existingContainer);

 return mapping.findForward(IConstants.SUCCESS_KEY);
 }
}

The first highlighted line calls the getStorefrontService() method. This method is
located in the superclass called StorefrontBaseAction because every Action class will
need to call this method. The implementation for the getStorefrontService() method
retrieves the factory and calls the createService() method. The
StorefrontBaseAction class, which includes the getStorefrontService()
method, is shown in Example 6-11.

Example 6-11. The StorefrontBaseAction class
package com.oreilly.struts.storefront.framework;

import java.util.Collection;
import java.util.LinkedList;
import java.util.List;
import java.util.Locale;
import java.util.Iterator;
import javax.servlet.http.*;
import org.apache.struts.action.*;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.oreilly.struts.storefront.framework.util.IConstants;
import com.oreilly.struts.storefront.framework.exceptions.*;
import
com.oreilly.struts.storefront.service.IStorefrontService;
import
com.oreilly.struts.storefront.service.IStorefrontServiceFactor
y;
/**
 * An abstract Action class that all Storefront action classes
should
 * extend.
 */
abstract public class StorefrontBaseAction extends Action{

 Log log = LogFactory.getLog(this.getClass());

 protected IStorefrontService getStorefrontService(){
 IStorefrontServiceFactory factory =
(IStorefrontServiceFactory)
 getApplicationObject(IConstants.SERVICE_FACTORY_KEY);

 IStorefrontService service = null;

 try{
 service = factory.createService();
 }catch(Exception ex){
 log.error("Problem creating the Storefront Service",
ex);
 }
 return service;
 }

 /**
 * Retrieve a session object based on the request and the
attribute name.
 */
 protected Object getSessionObject(HttpServletRequest req,
String attrName) {
 Object sessionObj = null;

 // Don't create a session if one isn't already present
 HttpSession session = req.getSession(true);
 sessionObj = session.getAttribute(attrName);
 return sessionObj;
 }

 /**
 * Return the instance of the ApplicationContainer object.
 */
 protected ApplicationContainer getApplicationContainer() {
 return (ApplicationContainer)

getApplicationObject(IConstants.APPLICATION_CONTAINER_KEY);
 }

 /**
 * Retrieve the UserContainer for the user tier to the
request.
 */
 protected UserContainer getUserContainer(HttpServletRequest
request) {
 UserContainer userContainer =

 (UserContainer)getSessionObject(request,
IConstants.USER_CONTAINER_KEY);

 // Create a UserContainer for the user if it doesn't exist
already
 if(userContainer == null) {
 userContainer = new UserContainer();
 userContainer.setLocale(request.getLocale());
 HttpSession session = request.getSession();
 session.setAttribute(IConstants.USER_CONTAINER_KEY,
userContainer);
 }
 return userContainer;
 }

 /**
 * Retrieve an object from the application scope by its name.
This is
 * a convenience method.
 */
 protected Object getApplicationObject(String attrName) {
 return
servlet.getServletContext().getAttribute(attrName);
 }
}

The getApplicationObject() method is just a convenience method for the Storefront
Action classes; it calls the getAttribute() method on the ServletContext object.

Finally, the second highlighted line in Example 6-10 invokes a service method on the implementation.
The authenticate() method is called and a value object called UserView is returned back
to the Action:

 UserView userView = serviceImpl.authenticate(email,
password);

This object is placed inside a session object, and the Action returns. If no user with a matching set
of credentials is found, the authenticate() method will throw an
InvalidLoginException.

Notice that the Action class is using the IStorefrontService interface, not the
implementation object. As we said, this is important to prevent alternate implementations from having
a ripple effect on the Action classes.

6.5.8 Conclusion

We covered a lot of ground in this chapter, and it may be little overwhelming if you are new to the
concepts of models and persistence. Some of the future chapters will assume that these topics are

familiar to you and will not spend any time discussing them, so make sure you understand this
material before moving on.

Chapter 7. Struts View Components
This chapter introduces the components that make up the view portion of the Struts framework. The
framework uses the view components to render dynamic content for the client. Based primarily on
JavaServer Pages, the components provide support for internationalization, user-input acceptance,
validation, and error handling, making it easier for the developer to focus on business requirements.
This chapter concludes the three-part discussion of how the Struts framework implements the MVC
pattern.

This chapter also briefly discusses the up-and-coming JavaServer Faces specification. Although it's
still in early draft form, this specification is likely to impact the Struts framework.

7.1 What Is a View?

In a general sense, a view represents a display of the domain model in a user interface. There can be
many different views of the same model. As discussed in Chapter 5, the domain model contains the
business entities, which hold the state for the application. Metaphorically speaking, a view is a
window that clients can use to look at the state of the model, and the perspective may be different
depending on which window a client looks through. For example, in the Storefront application, the
front page shows a set of featured items in the catalog. It doesn't show all of the information about
each item, only a small portion. This "summary" view is used in the Storefront application wherever
real estate is scarce, such as on the main page (shown in Figure 7-1).

Figure 7-1. The Storefront main page is one perspective of the model

When a user selects one of the items for sale, all of the item details are displayed. The user is still
looking at the same business model, but the view is different. This alternate view of the model is
shown in Figure 7-2.

Figure 7-2. An alternate view of the Storefront model

A more detailed view of the business model is necessary for this page—there may be different JSP
pages, images, multimedia files, and other view-related components. These two different perspectives
are in fact two different views of the same model.

Because business objects don't have a natural way of representing themselves externally, it's up to the
view components to present the domain model information to the clients. This presentation may be in
the form of XML and XSLT, SOAP messages returned to a web service client, or, in the case of the
Storefront application, HTML rendered in a browser. A different type of client, such as a wireless
device, could look at a completely different set of views but still use the same model. The model is
used to represent the state of the application, while the views are used to present the model, or a
portion of it, to the client.

Although the Storefront demo is a B2C application, it's possible to have a B2B application use the
same model to make part-ordering functionality available to partners. As long as the proper separation
is maintained between the model and the presentation layer, you can build any number of views for
any number of clients on top of the same domain model.

7.1.1 Using Views Within the Struts Framework

Generally speaking, the views in the Struts framework are built using JSP pages. Other approaches
and frameworks are available for performing the same functions, but JSP is the most widely used
presentation technology in the Struts community. Additional components that can be used by or in
conjuction with JSP pages to render the views include:

• HTML documents
• JSP custom tag libraries
• JavaScript and stylesheets
• Multimedia files

• Message resource bundles
• ActionForm classes

7.1.1.1 HTML documents

Although HTML documents generate only static content, there's nothing wrong with using standard
HTML documents within your Struts applications. Obviously, they will be unable to render any
dynamic data, but they still are valid to use whenever the view is static and you don't need the
dynamic capabilities of JSP.

For example, a login page may just be an ordinary HTML document that invokes a Struts login action.
However, to take advantage of many of the automatic features of the Struts framework, especially
ones related to custom tags, you will need to use JSP instead of straight HTML.

7.1.1.2 JSP custom tags

JSP custom tags can play an important role within a Struts application. Although applications are not
required to use them, some scenarios would be difficult to program without them. Future versions of
the framework should make it easier to use alternate technologies, but custom tags likely will maintain
their importance.

7.1.1.3 JavaScript and stylesheets

The Struts framework doesn't prevent you from using JavaScript within an application. On the
contrary, it provides functionality within the tag libraries to facilitate using JavaScript. JavaScript
support within custom tags is discussed in Chapter 8.

The Struts framework does not prevent you from using stylesheets, either. You can include stylesheets
in a JSP page, and they will be rendered in the browser just as standard HTML pages would be.

Stylesheets are used to help web designers gain more control over the appearance of a web site.
Features such as character size, color, font, and other look-and-feel characteristics can be changed in a
central location and have an immediate effect throughout the entire site.

7.1.1.4 Multimedia files

Multimedia files are used in just about every web application. These include but are not limited to:

• Images (.gif, .jpg, etc.)
• Audio (.wav, .mp3, etc.)
• Video (.avi, .mpg, etc.)

Images probably are the most widely used, although for B2B applications, audio and video files also
are prevalent (e.g., for displaying CAD drawings and specifications). The Struts framework supports
using multimedia files within an application. This support is achieved mainly through the use of
custom tags, but you can also use standard HTML to render these types of resources.

There are a few sore spots when it comes to rendering images using custom
tags. Differences between absolute and relative paths can cause some images
not to display properly. The best advice is to decide whether you are going to
need relative or absolute paths and then be as consistent as possible.

7.1.1.5 Message resource bundles

Message resource bundles, commonly referred to simply as resource bundles, are a very important
component for Struts applications. They provide a means to support localization and also help to
reduce maintenance time and redundancy throughout an application.

For example, suppose your web application uses certain text labels or messages in multiple locations.
Instead of hardcoding the string in every page, you can specify it in the bundle and retrieve it using
one of the custom tags. Then, if the text label or message needs to change, you need to modify it only
in one location. This helps to reduce maintenance time.

Some developers consider the resource bundles as belonging to the model,
rather than the view. This is because application data (in the form of messages)
is stored within the bundles. However, because the bundles also contain labels
and strings for such things as text fields, checkbox labels, page titles, and so
on, a valid argument can be made either way.

7.1.2 Using JavaBeans Within the View Components

It might seem weird to talk about JavaBeans within a chapter on views. However, because JavaBeans
make up a large portion of how the model data is used within the framework, it makes sense to discuss
them briefly.

7.1.2.1 Quick refresher

JavaBeans itself is a portable, platform-independent component model written in the Java
programming language. The JavaBeans component architecture allows developers to create reusable
components that can be used on any platform that supports a JVM. The JavaBeans model supports
properties, events, methods, and persistence.

The Struts framework (and Java web applications in general) uses only a small portion of the
capabilities defined in the JavaBeans specification. JavaBeans in Struts applications are used like
ordinary Java objects, but they must follow certain guidelines:

• Must provide a zero-argument constructor.
• Should provide both a get<PropertyName> and set<PropertyName> method

for all properties defined within the bean.
• For Boolean properties, if the method is<PropertyName> is present, it will be used to

return the property value.
• For indexed properties where a property like <PropertyElement>[] is defined, the

following methods should be present: get<PropertyName>(int a) and
set<PropertyName>(int a, PropertyElement b).

These guidelines are necessary for the beans to be introspected at runtime by the framework.

One of the common traps that Struts developers fall into when dealing with
JavaBeans is to use a return type that's different from the parameter type. If
you create a method in a JavaBean that passes a String as an argument:

public void setDescription(String
newDescription);

you must have a corresponding get method that returns the same type:

public String getDescription();

If the return type differs from the parameter type, the Struts framework may
not recognize it as a bean, and you likely will get an error message stating that
"No getter method could be found" or "No setter method could be found" for
the property name.

7.1.2.2 How Struts applications use JavaBeans

In a strict MVC architecture, as shown in Figure 7-3, the view gets updates directly from the model
when it receives a notification that something has changed within the model. With web applications,
this notification is not possible, or at least is difficult to achieve. Normally, it's up to the client to issue
a request to the controller to refresh a view from the model state. In other words, the client "pulls" the
view from the model, instead of the model "pushing" changes out to the view.

Figure 7-3. The view queries the model for state information

7.1.2.3 The Data Transfer Object pattern

Chapter 6 discussed one approach to building the model components for a Struts application. The one
thing that was intentionally left out was exactly how the view accesses the data from the model. To
understand this, it will help to understand the Data Transfer Object (DTO) pattern (sometimes
referred to as the Value Object or Replicate Object pattern).

The DTO pattern is used quite frequently in J2EE applications, where distributed components making
remote calls can suffer serious performance setbacks from using too many remote invocations. It is
used in other technologies as well, under different names and guises.

A DTO is a coarse-grained view of what is typically fine-grained information. It aggregates various
attributes from one or more business entities and puts this information into a JavaBean instance. This
instance can then be passed throughout the local application, or even be serialized and sent over the

network, and clients can retrieve the model information from a local object without suffering any
negative performance impact.

The DTO normally doesn't provide any business logic or validation; it just provides access to the
properties of the bean. Some documentation on this pattern suggests that the bean should be
immutable, to help reinforce that the object is local and that changes will not be reflected in the system.
However, this can cause problems because the JavaBeans specification requires that all private
properties have get<PropertyName> and set<PropertyName> methods. It is up to you
to determine how best to handle the mutability of DTOs based on your requirements.

DTOs effectively are part of the model—they are just local, possibly immutable copies of the business
objects. Within Struts applications, they are used by the view to deliver the model data that is rendered
along with the static information in the page.

7.2 What Are ActionForms?

Almost every web application has to accept input from users. Some examples of user input are
usernames and passwords, credit card information, and billing and shipping address information.
HTML provides the necessary components to render the input fields in a browser, including text boxes,
radio buttons, checkboxes, and buttons. When you're building these types of pages, you must nest the
input components inside HTML form elements. Example 7-1 illustrates a very basic sign-in page,
similar to the one used in the Storefront application.

Example 7-1. A simple sign-in page
<html>
<head>
<title>Example 7-1. OReilly Struts Book</title>
<link rel="stylesheet" href="stylesheets/main.css"
type="text/css">
</head>

<body>

<form method="post" action="/action/signin">

<!-- The table layout for the email and password fields -->
<table BORDER="0" cellspacing="0" cellpadding="0">
<tr>
 <td>Email: </td>
 <td> </td>
 <td>
 <input type="text" name="email" size="20" maxlength="20"/>
 </td>
</tr>

<tr>
 <td>Password:</td>
 <td> </td>
 <td class="alignformslist">

 <input type="text" name="password" size="20"
maxlength="25"/>
 </td>
</tr>

<!-- The table layout for the signin button -->
<table width="250" border="0">
<tr>
 <td>
 <input type="submit" name="Submit" value="Signin"
class="Buttons">
 </td>
</tr>
</table>
</form>
</body>
</html>

When the user presses the Signin button on the HTML form from Example 7-1, the values within the
fields are submitted along with the HTTP request. The server application can retrieve the values that
were entered, perform input validation on the data, and then pass the data to another component in the
application where the actual authentication process occurs. If the input data fails the input validation
rules, the application should return to the previous location, redisplay some or all of the values entered,
and display an error message indicating that the login attempt failed.

Manually performing all of this functionality, retrieving the values, executing the validation, and
displaying error messages on failure can be a daunting task. This type of behavior is performed in
many places throughout a web application, and it would be nice to have it taken care of by the
framework and to be able to reuse it across applications.

Fortunately, the Struts framework does provide this functionality and will handle these tasks on behalf
of your application. The Struts framework relies on the
org.apache.struts.action.ActionForm class as the key component for handling
these tasks.

The ActionForm class is used to capture input data from an HTML form and transfer it to the
Action class. Because users often enter invalid data, web applications need a way to store the input
data temporarily so that it can be redisplayed when an error occurs. In this sense, the ActionForm
class acts as a buffer to hold the state of the data the user entered while it is being validated. The
ActionForm also acts as a "firewall" for your application in that it helps to keep suspect or invalid
input out of your business tier until it has been scrutinized by the validation rules. Lastly, when data is
returned from the business tier, a particular ActionForm can be populated and used by a JSP page
to render the input fields for an HTML form. This allows more consistency for your HTML forms, as
they always pull data from the ActionForm, not from different JavaBeans.

When the user-input data does pass input validation, the ActionForm is passed into the
execute() method of the Action class. From there, the data can be retrieved from the
ActionForm and passed on to the business tier.

Because the ActionForm imports packages from the Servlet API, you
shouldn't pass the ActionForm to the business tier—doing so would
couple the business methods to the Servlet API and make it more difficult to
reuse the business tier components. Instead, the data within the
ActionForm should be transferred to an object from the domain model. A
common approach is to create a DTO and populate it with the data from the
ActionForm.

You don't have to declare an ActionForm for every HTML form in your application. The same
ActionForm can be associated with one or more action mappings. This means that they can be
shared across multiple HTML forms. For example, if you had a wizard interface where a set of data
was entered and posted across multiple pages, you could use a single ActionForm to capture all of
this data, a few fields at a time.

7.2.1 ActionForms and Scope

ActionForms can have two different levels of scope: request and session. If request scope is used,
the ActionForm is available only until the end of the request/response cycle. Once the response
has been returned to the client, the ActionForm and the data within it are no longer accessible.

If you need to keep the form data around for longer than a single request, you can configure an
ActionForm to have session scope. This might be necessary if your application captures data
across multiple pages, like a wizard dialog does. An ActionForm that has been configured with
session scope will remain in the session until it's removed or replaced with another object, or until the
session times out. The framework doesn't have a built-in facility for automatically cleaning up session-
scoped ActionForm objects. As with any other object placed into the HttpSession, it's up to
the application to routinely perform cleanup on the resources stored there. This is slightly different
from what happens with objects placed into request scope, because once the request is finished, they
no longer can be referenced and so can be reclaimed by the garbage collector.

Unless you need to hold the form data across multiple requests, you should use request scope for your
ActionForm objects.

If you don't specify the scope attribute for an action mapping, the
ActionForm will default to session scope. To be safe, you should always
explicitly specify the scope of the ActionForm. To see how to specify the
scope for an action element, see Section 4.7.2 in Chapter 4.

When the controller receives a request, it attempts to recycle an ActionForm instance from either
the request or the session, depending on the scope that the ActionForm has in the action
element. If no instance is found, a new instance is created.

7.2.2 The Lifecycle of an ActionForm

Section 3.5.1 in Chapter 3 described the steps the framework takes when an ActionForm is being
used by an application. From these steps, it's easy to get a picture of the lifecycle of an

ActionForm. Figure 7-4 illustrates the main steps taken by the framework that have some effect
on the ActionForm.

Figure 7-4. The lifecycle of an ActionForm

Figure 7-4 shows only the steps that are relevant to an ActionForm, not all those that a request
goes through during request processing. Notice that when an ActionForm detects one or more
validation errors, it performs a forward back to the resource identified in the input attribute. The
data that was sent in the request is left in the ActionForm so that it can be used to repopulate the
HTML fields.

7.2.3 Creating an ActionForm

The ActionForm class provided by the Struts framework is abstract, and you need to create
subclasses of it to capture your application-specific form data. Within your subclass, you should
define a property for each field that you want to capture from the HTML form. For example, suppose
you want to capture the email and password fields from a form, similar to the one in Example 7-1.
Example 7-2 illustrates the LoginForm for the Storefront application that can be used to store and
validate the email and password fields.

Example 7-2. The LoginForm stores the email and password fields
package com.oreilly.struts.storefront.security;

import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.*;
/**
 * Form bean for the user signin page.
 */

public class LoginForm extends ActionForm {
 private String email = null;
 private String password = null;

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return (this.email);
 }

 public String getPassword() {
 return (this.password);
 }

 public void setPassword(String password) {
 this.password = password;
 }

 /**
 * Validate the properties that have been sent from the HTTP
request,
 * and return an ActionErrors object that encapsulates any
 * validation errors that have been found. If no errors are
found, return
 * an empty ActionErrors object.
 */
 public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();

 if(getEmail() == null || getEmail().length() < 1) {
 errors.add("email", new
ActionError("security.error.email.required"));
 }
 if(getPassword() == null || getPassword().length() <
1){
 errors.add("password", new
ActionError("security.error.password.required"));
 }
 return errors;
 }

 public void reset(ActionMapping mapping, HttpServletRequest
request) {
 /** Because this ActionForm should be request-scoped, do
nothing here.

 * The fields will be reset when a new instance is
created. We could
 * have just not overriden the parent reset() method,
but we did so
 * to provide an example of the reset() method
signature.
 */
 }
}

When the form is submitted, an instance of the LoginForm will be created and populated from the
request parameters. The framework does this by matching each request parameter name against the
corresponding property name in the ActionForm class.

The ActionForm is populated from request parameters, not request
attributes. If you are forwarding from one action to anther, you can't add a
request attribute and expect that the ActionForm will be populated from it.
Request parameters and request attributes are two separate resources.

7.2.3.1 The validate() method

The RequestProcessor may call the validate() method for every request. Whether it's
called depends on two things. First, an ActionForm must be configured for an action mapping.
This means that the name attribute for an action element must correspond to the name attribute
of one of the form-bean elements in the configuration file.

The second condition that must be met for the RequestProcessor to invoke the
validate() method is that the validate attribute in the action mapping must have a value
of true. The following fragment shows an action element that uses the LoginForm from
Example 7-2 and meets both requirements:

<action
 path="/signin"
 type="com.oreilly.struts.storefront.security.LoginAction"
 scope="request"
 name="loginForm"
 validate="true"
 input="/security/signin.jsp">
 <forward name="Success" path="/index.jsp" redirect="true"/>
 <forward name="Failure" path="/security/signin.jsp"
redirect="true"/>
 </action>

When the signin action is invoked, the framework will populate an instance of a LoginForm using
the values it finds in the request. Because the validate attribute has a value of true, the
validate() method in the LoginForm will be called. Even if the validate attribute is set
to false, the ActionForm still will be populated from the request.

The validate() method in the base ActionForm class simply
returns null. If you want to perform validation on the data submitted with the
request, you'll need to override the validate() method in your
ActionForm subclasses, as in Example 7-2.

The validate() method may return an ActionErrors object, depending on whether any
validation errors were detected; it also can return null if there are no errors. The framework will check
for both null and an empty ActionErrors object. This saves you from having to create an
instance of ActionErrors when there are no errors. The ActionError class and its parent
class, ActionMessage, are discussed later in this chapter.

7.2.3.2 The reset() method

The reset() method has been a bane for much of the Struts user community at one time or
another. Exactly when the reset() method is called and what should be done within it almost
always are misinterpreted. This doesn't mean that one implementation is more correct than another,
but many new Struts developers pick up misconceptions about reset() that they have a hard time
shaking.

As Figure 7-4 showed, the reset() method is called for each new request, regardless of the scope
of the ActionForm, before the ActionForm is populated from the request. The method was
originally added to the ActionForm class to facilitate resetting Boolean properties back to their
defaults. To understand why they need to be reset, it's helpful to know how the browser and the
HTML form-submit operation process checkboxes.

When an HTML form contains checkboxes, only the values for the checkboxes that are checked are
sent in the request. Those that are not checked are not included as a request parameter. The
reset() method was added to allow applications to reset the Boolean properties in the
ActionForm to false—because false wasn't included in the request, it was possible for the
Boolean values to be stuck in the true state.

The reset() method in the base ActionForm contains no default behavior, as no properties
are defined in this abstract class. Applications that extend the ActionForm class are allowed to
override this method and reset the ActionForm properties to whatever state they want. This may
include setting Boolean properties to true or false, setting String values to null or some
initialized value, or even instantiating instances of other objects that the ActionForm holds on to.
For an ActionForm that has been configured with request scope, the framework will create a new
instance for each new request; hence, there's not much need to reset the values back to any default
state. ActionForms that are configured with session scope are different, however, and this is
where the reset() method comes in handy.

7.2.4 Declaring ActionForms in the Struts Configuration File

Once you have created a class that extends ActionForm, you need to configure the class in the
Struts configuration file. The first step is to add a new form-bean element to the form-beans
section of the file:

<form-beans>

 <form-bean
 name="loginForm"
 type="com.oreilly.struts.storefront.security.LoginForm"/>
</form-beans>

The value for the type attribute must be a fully qualified Java class name that is a descendant of
ActionForm.

Once you have defined your form-bean, you can use it in one or more action elements. It's
common to share one ActionForm across several actions. For example, suppose there was an
admin application that managed the items in the Storefront application. There would need to be an
HTML form for adding new items to the system. This might be the createItem action. There also
would need to be a getItemDetail action to show the details of an existing item. These HTML forms
would look similar, but they might be submitted to different actions. Still, because they contained the
same properties, both forms could use the same ActionForm.

To use an ActionForm in an action element, you need to specify a few attributes for each
action mapping that uses the ActionForm. These attributes are name, scope, and validate:

<action
 path="/signin"
 input="/security/signin.jsp"
 name="loginForm"
 scope="request"
 type="com.oreilly.struts.storefront.security.LoginAction"
 validate="true">
 <forward name="Success" path="/index.jsp" redirect="true"/>
 <forward name="Failure" path="/security/signin.jsp"
redirect="true"/>
 </action>

For more information on the attributes of the action element, see Section 4.7.2 in Chapter 4.

7.2.5 Using an ActionForm in an Action

Once you have configured the ActionForm for a particular Action, you can insert values into it
and retrieve values from it within the execute() method, as Example 7-3 illustrates.

Example 7-3. The ActionForm is available within the execute() method
public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception{

 // Get the user's login name and password. They should
already have
 // been validated by the ActionForm.

 String email = ((LoginForm)form).getEmail();
 String password = ((LoginForm)form).getPassword();

 // Log in through the security service.
 IStorefrontService serviceImpl = getStorefrontService();
 UserView userView = serviceImpl.authenticate(email,
password);

 UserContainer existingContainer = null;
 HttpSession session = request.getSession(false);
 if (session != null){
 existingContainer = getUserContainer(request);
 session.invalidate();
 }else{
 existingContainer = new UserContainer();
 }

 // Create a new session for the user.
 session = request.getSession(true);
 existingContainer.setUserView(userView);
 session.setAttribute(IConstants.USER_CONTAINER_KEY,
existingContainer);

 return mapping.findForward(IConstants.SUCCESS_KEY);
 }

It's not mandatory that you use an ActionForm to capture the data from an
HTML form. Even if you don't declare an ActionForm for a form, the data
is still available from the request. However, your application will have to
manually handle the process of validation and error handling from the
Action class.

7.2.6 Declaring ActionForm Properties as Strings

All request parameters that are sent by the browser are strings. This is true regardless of the type that
the value will eventually map to in Java. For example, dates, times, Booleans, and other values all are
strings when they are pulled out of the request, and they will be converted into strings when they are
written back out to the HTML page. Therefore, all of the ActionForm properties where the input
may be invalid should be of type String, so that the data can be displayed back to the user in its
original form when an error occurs. For example, say a user types in "12Z" for a property expecting an
Integer. There's no way to store "12Z" into an int or Integer property, but you can store it
into a String until it can be validated. This value can be used to render the input field with the
value, so the user can see his mistake. Even the most inexperienced users have come to expect and
look for this functionality.

ActionForms Are Not the Model
Many developers get confused when they learn about the ActionForm class. Although it
can hold state for an application, the state that it holds should be limited and constrained to

the user input that is received from the client, and the ActionForm should hold it only
until it can be validated and transferred to the business tier.

You've already seen why it's important to separate the model from the presentation tier in an
application. Business objects can be persisted and should contain the business logic for an
application. They also should be reusable. This set of criteria does not match up well when
compared against ActionForms. For one thing, the ActionForm class is tied to the
Struts framework and explicitly to a web container, as it imports javax.servlet
packages. It would be very difficult to port ActionForm classes to a different type of
framework, such as a Swing application.

ActionForms are designed exclusively to capture the HTML data from a client, allow
"presentation validation" to occur, and provide a transport vehicle for the data back to the
more persistent business tier. They also transport data from the business tier forward to the
views. Apart from these uses, you should keep the ActionForms separate from your
business components.

7.2.7 Using ActionForms Across Multiple Pages

Many applications require wizard-like functionality where data is captured across multiple pages.
ActionForm s can be used for this but the scope must be set to session to ensure that the data
collected from a previous page will be present throughout the set of wizard pages.

When programming this type of functionality into your application, you must be careful to validate
only the fields that are ready to be validated. For instance, if you go from page 1 to page 2, only the
properties populated from page 1 should be validated. You also must be careful with the reset()
method. You don't want to reset fields that already have been entered, but, you might want to reset the
properties for the upcoming page. This can be a little tricky, but keeping these thoughts in mind will
save time.

7.3 Using ActionErrors

Earlier in this chapter, we saw that the validate() method returned an ActionErrors
object. The ActionErrors class encapsulates one or more errors that have been discovered by the
application. Each problem discovered is represented by an instance of
org.apache.struts.action.ActionError.

An ActionErrors object has request scope. Once an instance is created and populated by the
validate() method, it is stored into the request. Later, the JSP page can retrieve the object from
the request and use the ActionError objects contained within it to display error messages to the
user.

The Struts framework includes a JSP custom tag that makes retrieving and
displaying the error messages very easy. This tag, called ErrorsTag, will
be discussed in Chapter 8.

An instance of ActionErrors can be instantiated in the validate() method and populated
by adding instances of the ActionError class to it. The LoginForm from Example 7-2
demonstrated this and is illustrated again here for convenience:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request){
 ActionErrors errors = new ActionErrors();

 if(getEmail() == null || getEmail().length() < 1){
 errors.add("email", new
ActionError("security.error.email.required"));
 }

 if(getPassword() == null || getPassword().length() < 1){
 errors.add("password", new
ActionError("security.error.password.required"));
 }
 return errors;
}

The validate() method in this fragment checks to make sure that the email and password fields
have been set with values other than an empty string. If not, ActionError objects are added to the
ActionErrors instance.

The ActionError class contains several useful constructors; a few are listed here:

public ActionError(String key);
public ActionError(String key, Object value0);
public ActionError(String key, Object value0, Object value1);
public ActionError(String key, Object[] values);

The key argument is a String value that corresponds to a key from one of the application's resource
bundles. The custom tag ErrorsTag uses this value to look up the message to display to the user.
The remaining arguments are used as parametric replacement values for the message. For example, if
you had a bundle message defined like this:

global.error.login.requiredfield=The {0} field is required for
login

you could create an instance of an ActionError like this:

ActionError error = new
ActionError("global.error.login.requiredfield", "Email");

The message displayed to the user after substituting in the "Email" string would be:

The Email field is required for login

If building I18N applications is a requirement for you, you must be careful
when using hardcoded String values, as in the previous example. The
string "Email" can't easily be localized, because it's hardcoded into the source
code.

In this case, you should get the localized value from the bundle as well before
passing it as an argument in the ActionError constructor.

When adding instances of the ActionError class to the ActionErrors object, the first
argument in the add() method is a property that can be used to retrieve a specific
ActionError instance. For example, if you have a login input field and a password field and you
want to display a particular message next to each corresponding field, you could do:

errors.add("login",
 new ActionError("security.error.login.required"));
errors.add("password",
 new
ActionError("security.error.password.required"));

By associating a specific name with each error, you can retrieve the respective error in the JSP page
using the ErrorsTag tag, which we'll discuss in the next chapter.

If instead you want to show all of the errors at the top of the page, you can use the constant
ActionErrors.GLOBAL_ERROR, like this:

errors.add(ActionErrors.GLOBAL_ERROR,
 new
ActionError("security.error.password.required"));

7.3.1 The ActionMessage Class

In Struts 1.1, a new message class was added that also can be used to display messages to a user. The
org.apache.struts.action.ActionMessage class operates in the same manner that
the ActionError class does—in fact, it was added as the superclass to the ActionError class.

The main reason that the ActionMessage class was added to the framework was that the name
ActionError implies that it shouldn't be used for general-purpose informational or warning
messages, although it is used that way by many developers. A more general-purpose message class
made sense.

The ActionMessage is used exactly like the ActionError class, except that it can represent
a less severe message that needs to be displayed to the user. Instances of this class are created the
same way and added to an ActionMessages object instead of an ActionErrors object.
Because ActionError is just a specialized message, it extends the ActionMessage class.
Figure 7-5 illustrates the relationship between these classes.

Figure 7-5. ActionErrors are specialized ActionMessages

7.3.2 Creating ActionErrors in the Action Class

The ActionForm is not the only place that you can create ActionMessages or
ActionErrors. You also can create them in other parts of the framework. If, for example, a
business operation called from an Action raised an exception and you wanted to insert an error
message informing the user, you could create an ActionError from the Action class itself.
The Struts Action class includes functionality to support this.

When the business operation throws the exception, the Action class catches it and takes the
appropriate steps—usually returning to the previous page and displaying an error message to the user.
Returning to the previous state can be accomplished by returning the appropriate ActionForward,
but the ActionError needs to be put in the request before the forward occurs.

In Chapter 10, you'll learn how to take advantage of the declarative exception
handling in Struts 1.1 and thus avoid having to deal with the exceptions in the
Action class completely.

Example 7-4 illustrates how to put the ActionError into the request using the LoginAction
class.

Example 7-4. Creating ActionErrors from the execute() method
public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception{

 /**
 * Get the user's email and password, which should already
have been
 * validated by the ActionForm.
 */

 String email = ((LoginForm)form).getEmail();
 String password = ((LoginForm)form).getPassword();

 // Log in through the security service
 IStorefrontService serviceImpl = getStorefrontService();

 UserView userView = null;
 try{
 userView = serviceImpl.authenticate(email, password);
 }catch(InvalidLoginException ex){
 ActionErrors errors = new ActionErrors();
 ActionError newError = new
ActionError("security.login.failed");
 errors.add(ActionErrors.GLOBAL_ERROR, newError);
 saveErrors(request, errors);
 // Return back to the previous state
 return mapping.findForward(mapping.getInput());
 }

 // Authenticate was successful
 UserContainer existingContainer = null;
 HttpSession session = request.getSession(false);
 if (session != null){
 existingContainer = getUserContainer(request);
 session.invalidate();
 }else{
 existingContainer = new UserContainer();
 }

 // Create a new session for the user
 session = request.getSession(true);
 existingContainer.setUserView(userView);
 session.setAttribute(IConstants.USER_CONTAINER_KEY,
existingContainer);

 return mapping.findForward(IConstants.SUCCESS_KEY);
 }
}

In Example 7-4, when an InvalidLoginException is thrown by the authenticate()
method, the exception is caught and an ActionError is created. The saveErrors()
method exists in the Struts base Action class and stores the ActionErrors object into the
request. A corresponding saveMessages() method also exists for a similar purpose.

Once the ActionError or ActionMessage is stored in the request and control is forwarded
to a JSP page, one of the framework's JSP custom tags can be used to print out the messages to the
user. These tags are discussed in the next chapter.

7.4 Performing Presentation Validation

This chapter has touched on performing your application's input validation in the validate()
method of the ActionForm. You can create whatever presentation validation rules you need in this
method. For example, the LoginForm from Example 7-2 validated that the email and password
fields were entered and were not empty strings. Although this is a trivial example, you can validate
anything you like. A common validation rule is to ensure that a string value that should be a number is
in fact a string representation of a valid number. The validate() routine for this rule might look
like the one in Example 7-5.

Example 7-5. Performing a number validation rule
public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();

 String orderQtyStr = getQuantity();

 if(orderQtyStr == null || orderQtyStr.length() < 1){
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("order.quantity.required"));
 }

 // Validate that the qty entered was in fact a number
 try{
 // Integer.parse was not used because it's not really
I18N-safe
 java.text.Format format =
java.text.NumberFormat.getNumberInstance();
 Number orderQty =
(Number)format.parseObject(orderQtyStr);
 }catch(Exception ex){
 // The quantity entered by the user was not a valid qty
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("order.quantity.invalid"));
 }
 return errors;
}

As you can imagine, web applications often need to check for required values or validate that data
entered fits a certain format or is of a certain type. Because all data that is retrieved from a request is
of type String, you must ensure that the data is not going to corrupt your business components.

Although you can perform the validation programmatically, the Struts framework provides an
alternative that can be external to the ActionForm and the validate() method. In fact, most
of the standard validation rules already are defined, so you don't have to write any code for them. All
you need to do is to declaratively configure the rules that you need in an extra XML file. The Struts
Validator will be covered in Chapter 11.

7.5 Using the DynaActionForm Class

Using the ActionForm class has many advantages over performing the functionality yourself in
the Action class or some set of helper utility classes. Because the behavior the ActionForm
class provides is needed in nearly every web application and often many times in the same application,
using the framework to perform the work can really reduce the development time and your frustration
level. However, there are a few very important downsides to using ActionForms.

The biggest problem with using ActionForm s is the sheer number of classes that it can add to a
project. Even if you share ActionForm definitions across many pages, the additional classes make
it more difficult to manage and maintain a project. This is why some developers create a single
ActionForm and implement the properties for all of the HTML forms within it. The problem with
this approach, of course, is that combining the fields into one class makes it a point of contention on a
project that has more than just a few developers.

Another major liability is the requirement to define the properties in the ActionForm that need to
be captured from the HTML form. If a property is added or removed from the HTML form, the
ActionForm class may need to be modified and recompiled.

For these reasons, a new type of ActionForm, which is dynamic in nature and allows you to avoid
having to create concrete ActionForm classes for your application, was added to the framework.
The dynamic ActionForm is implemented by the base class
org.apache.struts.action.DynaActionForm, which extends the ActionForm
class. There are only three real differences between the ActionForms for any application:

• The properties that the ActionForm defines
• The validate() method
• The reset() method

The properties for a DynaActionForm are configured in the Struts configuration file and will be
illustrated in the next section. The reset() method is called at exactly the same time during
request processing as it is for a standard ActionForm. The one difference is that you have a little
less control over what you do during the method invocation. However, you can subclass the
DynaActionForm to override the reset or validate behavior.

The validation of the presentation data for a DynaActionForm is a little more complicated. We'll
need to wait until we talk about the Struts Validator components before covering this topic.

7.5.1 Configuring Dynamic ActionForms

To use the DynaActionForm in your Struts application, first you need to add a form-bean
element to the configuration file, just as with regular ActionForms.

In early beta releases of Struts 1.1, the form-bean section required that you
set the dynamic attribute to true when using dynamic ActionForms.
This is no longer necessary, as the framework will determine whether the class
specified in the type attribute is a descendant of the DynaActionForm
class.

When it comes to the configuration file, the difference between a regular ActionForm and a
DynaActionForm is that you must include one or more form-property elements in order
for the dynamic form to have properties. The DynaActionForm uses a java.util.Map
internally to store the property key/value pairs. The form-property elements are loaded into the
Map and become the properties that get populated by the framework.

The attributes for the form-bean and form-property were discussed
in Chapter 4.

An example of configuring a DynaActionForm in the Struts configuration file is shown in
Example 7-6.

Example 7-6. A DynaActionForm must be specified in the Struts configuration file
<form-beans>
 <form-bean
 name="loginForm"
 type="org.apache.struts.action.DynaActionForm">

 <!-- Specify the dynamic properties of the form -->
 <form-property
 name="email"
 type="java.lang.String "/>
 <form-property
 name="password"
 type="java.lang.String "/>

 <!-- You can also set the initial value of a property -->
 <form-property
 initial="false"
 name="rememberMe"
 type="java.lang.Boolean "/>
 </form-bean>
<form-beans>

The declarative properties are what make the ActionForm dynamic. At runtime, the framework
creates an instance of the DynaActionForm class and makes it possible to set and get the
configured property values. To add new properties, you only need to modify the configuration file; no
source code needs to be changed. This provides immense power and flexibility.

As Chapter 4 outlined, the form-property element also allows you to specify the initial value
for each property. The framework sets the property to that value when the application is started. The
initial value also is used when the reset() method is called to reset the values back to their
original states.

Unlike with the ActionForm class, where the default behavior for reset() does nothing, the
reset() method in the DynaActionForm class resets all the properties back to their initial
values. If you don't include the initial attribute for a property, it will be assigned a default value
based on the Java programming language's conventions: numbers will be reset to zero (0) and
properties of type Object will be reset to null.

The type attribute expects a fully qualified Java class name. Therefore, you
will need to use the wrapper classes for primitives (for example,
java.lang.Boolean for a boolean property type,
java.lang.Integer for an int property, and so on). However, as was
explained previously in this chapter, you should try to use only String
properties, even with a DynaActionForm.

7.5.2 Performing Validation with the DynaActionForm

The DynaActionForm doesn't provide any default behavior for the validate() method.
Unless you subclass the DynaActionForm class and override the validate() method,
there's no easy way to validate using the DynaActionForm. Fortunately, the framework comes to
your aid again with a feature called the Struts Validator.

The Struts Validator was created by David Winterfeldt and is now in the main Struts distribution. The
Validator is a framework that was intended to work with Struts from the beginning. It supports basic
validation rules such as checking for required fields, email, date and time fields, and many others. One
of the biggest benefits is that it provides many of the validation rules that web applications need to
perform. It is also very easy to create your own validation rules. The Struts Validator will be covered
in Chapter 11.

7.6 Looking Ahead to JavaServer Faces

JavaServer Faces (JSF) is designed to provide a standard set of JSP tags and Java classes that will
make it easier to build Java server application GUIs. One of the problems that JSF is trying to address
is that the Servlet and JSP technologies don't provide specific enough APIs for creating the client GUI,
and developers have to rely on HTML components and one of several alternatives to facilitate style
and behavioral changes to all of the views. The mechanism to manage all of this eventually takes on a
life of its own and overshadows the business of the application. Instead of performing maintenance on
business operations and logic, more and more time is needed to manage the presentation controls.

JSF plans to fix this by creating a standard way to define complex HTML forms and other GUI
elements. This will enable developers to focus their attention on a single component framework.

The first release of the framework includes the following design goals:

1. Create a standard GUI component framework, which can be leveraged by development tools
to make it easier for tool users to both create high-quality GUIs and manage the GUIs'
connections to application behavior.

2. Define a set of simple, lightweight Java base classes for GUI components, component state,
and input events. These classes will address GUI lifecycle issues, notably managing a
component's persistent state for the lifetime of its page.

3. Provide a set of common GUI components, including the standard HTML form input
elements. These components will be derived from the simple set of base classes (outlined in
#2) that can be used to define new components.

4. Provide a JavaBeans model for dispatching events from client-side GUI controls to server-
side application behavior.

5. Define APIs for input validation, including support for client-side validation.
6. Specify a model for internationalization and localization of the GUI.
7. Automate the generation of appropriate output for the target client, taking into account all

available client configuration data (browser version, etc.).
8. Automate the generation of output containing required hooks for supporting accessibility.

7.6.1 What Does JSF Have to Do with Struts?

JSF and Struts will fit together quite well, and developers eventually will be able to supplement or
substitute the Struts custom tag libraries with JSF components. The rest of the Struts framework (both
model and controller components) will remain relatively unaffected by the JSF architecture.

JSF also will include an event model, but the architecture will be designed so
that developers can choose to use the GUI components with or without the
event mechanism.

Because there currently is no public specification for JSF, it's hard to be specific on exactly how the
two will tie into each other. However, Craig McClanahan, the founder of the Struts framework, is now
also the specification lead for the JavaServer Faces JSR. We can look closely at Craig's comments on
JSF and Struts and know that he is speaking with subject-matter expertise.

You can find the JavaServer Faces JSR at http://jcp.org/jsr/detail/127.jsp.

Chapter 8. JSP Custom Tag Libraries
Support for custom actions (or custom tags) within JSP was introduced in the JSP 1.1 specification.
This feature allows developers to extend the available tags beyond what JSP alone provides for. The
custom tags are grouped together into tag libraries, which can be reused across applications.

The Struts framework takes advantage of the tag library feature of JSP to include several different
categories of tags that help to make the presentation layer more manageable and reusable. Using the
Struts custom tag libraries, developers are able to interact with the rest of the framework without
including Java code in the JSP pages.

This chapter provides an overview of the different categories of tags available in the Struts framework
and how they can make developing applications even easier. This chapter is not meant to be an
exhaustive reference for every tag that's part of the Struts tag libraries—that information can be found
within the Struts user guide or JavaDocs. The real purpose of this chapter is to put forth the benefits of

using the Struts tag libraries and to provide a few strategies that can help make the switch to using the
tags less painful.

Finally, this chapter will touch upon a new initiative going through the Java Community Process (JCP)
that is intended to help standardize some of the more commonly used custom tags. This, in turn, will
make applications built using these tags even more portable across containers and frameworks.

8.1 Custom Tags Overview

This section provides a brief overview of JSP custom tags and how they can add value to an
application. They are explicitly tied to the JavaServer Pages technology and therefore are used only
when building web applications based on JSP, such as those built using the Struts framework.

8.1.1 What Is a Tag?

Before we talk specifically about JSP tags, it's important that you understand what a tag is in general
terms. Keep in mind that this section refers to tags in general, not JSP custom tags or Struts tags. We'll
discuss those shortly.

If you're familiar with HTML, you already should have a good understanding of the concept of a tag.
There are two basic types of tags:

• Bodyless tags
• Tags with a body

Bodyless tags are tags that specify attributes but contain no content. They have the syntax:

<tagName attributeName="someValue"
attributeName2="someValue2"/>

Bodyless tags are most often used to perform simple actions such as rendering HTML fields or
displaying images. An example of a bodyless tag is:

Tags can define certain predefined attributes, which supply information to the tag and can affect how
the tag performs its duties. In the HTML img tag, for example, the src attribute supplies the tag
with the path to a graphical image that will be rendered by the tag.

Tags with a body have a start tag and a matching end tag, with some content between them. The
syntax looks like:

<tagName attributeName="someValue"
attributeName2="someValue2">
 <!-- The Tag body is between the start and end tags -->
</tagName>

Tags with a body are used to perform operations on the body content, such as iterating over a
collection, formatting HTML output, and so on. Here's another example from HTML:

<html>
 <!-- The HTML body inside the start and end HTML tags -->
</html>

The end tag must always begin with a "/" character.

8.1.2 What Is a JSP Custom Tag?

When parsing an HTML file, the browser determines how to process and handle the tags the file
contains based on a set of standards. The purpose of JSP custom tags is to give the developer the
ability to extend the set of tags that can be used inside a JSP page. With ordinary HTML tags, the
browser contains the logic to process the tag and render the output. With JSP custom tags, the
functionality exists in a special Java class called the tag handler.

The tag handler is a Java class that carries out the specific behavior of the tag. It implements one of
several custom tag interfaces, depending on the type of tag that you need to develop. The handler class
has access to all of the JSP resources, such as the PageContext object and the request, response,
and session objects. The tag also is populated with the attribute information, so it can customize its
behavior based on the attribute values.

8.1.2.1 Advantages of using custom tags

There are many benefits of using custom tags instead of scriptlets and Java code in your JSP pages:

• Tags are reusable, which saves precious development and testing time.
• Tags can be customized using attributes, either statically or dynamically.
• Tags have access to all of the objects available to the JSP page, including request, response,

and output variables.
• Tags can be nested, which allows for more complex interactions within a JSP page.
• Tags simplify the readability of a JSP page.

In general, using JSP tags helps to further the concept of reuse, as the behavior is implemented in a
single location, the tag handler; it's not replicated throughout multiple JSP pages.

8.1.3 What Is a Tag Library?

A tag library is a set of JSP custom tags grouped together from a packaging perspective. Although it's
not a requirement, the tags within a tag library should solve a similar type of problem. Because web
applications can include multiple tag libraries, there's no need to place all of the tags into a single
library.

You can see an example of how tags can be grouped logically by looking at the Jakarta Taglibs project
at http://jakarta.apache.org/taglibs/. Tag libraries are available for rendering dates and times,
manipulating strings, and many other purposes. Notice that each tag library is focused on a single
concept or task. The Jakarta Taglibs project will be discussed further later in this chapter.

8.1.3.1 Tag library components

A tag library is made up of the following components:

• Tag handler
• Tag library descriptor file
• The application deployment descriptor (web.xml) file
• The tag library declaration in the JSP page

8.1.3.2 Tag handler

You've already been introduced to the tag handler. This is where the implementation of the tag is
located. It's a Java class that gets invoked at runtime and that performs some predefined behavior.

8.1.3.3 The TLD file

The tag library descriptor (TLD) file is an XML file that contains meta-information about the tags
within a library. Information such as the tag name, the attributes that are required, and the tag handler
class name are all contained in this file and read in by the JSP container.

8.1.3.4 The web.xml file

We discussed web application deployment descriptors in Chapter 3. Within this descriptor, you must
define what tag libraries are being used in the web application and which TLD files should be used to
describe each tag library.

8.1.3.5 The JSP page

Obviously, the JSP page is a key component. It contains the include directives for one or more tag
libraries, as well as the needed calls to the tag libraries within the JSP page. There is essentially no
limit to how many tag libraries or tag references you can have in a JSP page.

There have been some reports of sluggishness in JSP containers when the
number of tags in a single JSP page approaches 40-50. Vendors have a lot of
freedom in terms of how they initialize and process custom tags; some are
better than others. If this becomes a problem for your implementation, you
might try to redesign the page to reduce the number of tags, or combine some
of the tags into a single handler. If that doesn't solve your problem, run your
tags in a different container and evaluate the performance.

Attempting to cover all aspects of JSP custom tags is beyond the scope of this book. In fact, there are
entire books written on the subject. A good source of information on custom tags and their use in
applications is Hans Bergsten's JavaServerPages (O'Reilly).

8.2 Tag Libraries Included with Struts

The Struts framework provides a fairly rich set of framework components. It also includes a set of tag
libraries that are designed to interact intimately with the rest of the framework. The custom tags
provided by the Struts framework are grouped into four distinct libraries:

• HTML
• Bean
• Logic
• Template

There also is a fifth special library, called the Nested tag library, that we'll talk about separately later
in this chapter.

Earlier versions of the Struts framework contained a tag library called Form. It
was replaced with the HTML tag library several versions ago, but form tags
still sometimes show up in the documentation or example applications.

The tags within a particular library perform similar or related functions. For example, the tags within
the HTML tag library are used to render HTML presentation components inside HTML forms. There's
a tag to generate a checkbox, another for a button, and yet another to generate a hyperlink.

8.2.1 Using Tag Libraries with Struts Applications

There's nothing special about using the Struts tags—they are like any other JSP custom tags. You
must include the TLD declarations for each tag library you use in every page in which you need to use
them. If you need to use the HTML and Logic tag libraries in a JSP page, for example, insert the
following two lines at the top of the JSP page:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

Once these lines are included and your web application deployment descriptor contains the necessary
taglib elements, you can use the HTML and Logic tags within your JSP page. Continuing with the
previous example, you need to add the following lines to your web.xml file:

<taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>

For more information on configuring the deployment descriptor for the web application, see Section
4.5 in Chapter 4.

8.3 Using JavaBeans with Struts Tags

In many cases, you'll use the tags from the various tag libraries in conjunction with JavaBeans. The
JavaBeans may be ActionForms, whose properties correspond to input fields in the HTML form.
In other cases, however, the beans will be ordinary value objects from the model layer. These beans
can be in any scope: page, request, session, or application.

There are three ways to access the properties of a JavaBean:

• Accessing simple properties

• Accessing nested properties
• Accessing indexed properties

8.3.1 Accessing Simple Properties

Accessing simple bean properties works similarly to the JSP <jsp:getProperty> action. A
reference to a property named "firstName" is converted into a method call to getFirstName()
or setFirstName(value), using the standard JavaBeans specification naming conventions for
bean properties.

Struts uses the Java introspection APIs to identify the names of the actual property getter and setter
methods, so your beans can provide customized method names through the use of a BeanInfo class.
See the JavaBeans specification, available at http://java.sun.com/products/javabeans/, for more
information.

8.3.2 Accessing Nested Properties

Nested references are used to access a property through a hierarchy of property names separated by
periods (.), similar to the way that nested properties are accessed in JavaScript. For example, the
following property reference:

property="user.address.city"

is translated into the equivalent Java expression:

getUser().getAddress().getCity()

If a nested reference is used in a setter (such as when an input form is processed), the property setter is
called on the last property in the chain. For the above property reference, the equivalent Java
expression would be:

getUser().getAddress().setCity(value)

Nested properties are very convenient to use with custom tags. They almost always are used with the
property attributes of the supported tags.

8.3.3 Accessing Indexed Properties

Subscripts can be used to access individual elements of properties whose values are actually arrays, or
whose underlying JavaBeans offer indexed getter and setter methods. For example, the following
property reference:

property="address[2]"

is translated into the equivalent Java expression:

getAddress(2);

while the same property reference in a setter would call the equivalent of:

setAddress(2, address)

As you can see from these examples, the subscripts used in indexed references are zero-relative (that
is, the first element in an array is address[0]), just as is true in the Java language.

8.4 Struts HTML Tags

The Struts HTML tag library contains tags used to create HTML input forms, as well as other tags
generally useful in the creation of HTML-based user interfaces. For example, instead of using a
regular HTML text-input field, you can use the text tag from this library.

These tags are designed to work very closely with the other components of the Struts framework,
including ActionForms. You always should attempt to use one of these tags first, rather than using
standard HTML. These tags' special knowledge of the rest of the Struts components makes it
worthwhile to use them.

Most of the tags within this library must be nested inside of a Struts form tag. There are a few tags
included in this library that address issues not necessarily related to forms or form widgets. Those tags
also will be discussed briefly in this section. Although not every HTML tag will be discussed, Table
8-1 provides a complete list of the tags that are available in the HTML tag library.

Table 8-1. Custom tags within the Struts HTML tag library
Tag name Description

base Renders an HTML base element
button Renders a button input field
cancel Renders a cancel button
checkbox Renders a checkbox input field
errors Conditionally renders a set of accumulated error messages
file Renders a file select input field
form Defines an HTML form element
frame Renders an HTML frame element
hidden Renders a hidden field
html Renders an HTML html element
image Renders an input tag of type "image"
img Renders an HTML img tag

javascript Renders JavaScript validation based on the validation rules loaded by the
ValidatorPlugIn

link Renders an HTML anchor or hyperlink
messages Conditionally displays a set of accumulated messages
multibox Renders multiple checkbox input fields
option Renders a select option
options Renders a collection of select options
optionsCollection Renders a collection of select options

password Renders a password input field
radio Renders a radio button input field
reset Renders a reset button input field
rewrite Renders a URI
select Renders a select element
submit Renders a submit button
text Renders an input field of type "text"
textarea Renders a textarea input field

As was stated earlier, this chapter will not discuss every tag within the Struts framework; to do so
would be redundant, as that material is covered thoroughly in the Struts JavaDocs. Instead, certain
tags will be selected and discussed based on their importance, on how confusing they are to new
developers, and on whether there are practical strategies for using the tags. If you need a reference to
the complete set of available tags, you can find information in the Struts framework API documents at
http://jakarta.apache.org/struts/api/.

8.4.1 The html Tag

The html tag renders an HTML html element. It allows you to include a locale attribute that
will write out the user's locale, assuming one has been stored into the session:

<html:html locale="true">
 <!-- Body of the JSP page -->
</html:html>

8.4.2 The base Tag

This tag renders an HTML base element with an href attribute pointing to the absolute location of
the enclosing JSP page. This tag is useful because it allows you to use relative URL references that are
calculated based on the URL of the page itself, rather than the URL to which the most recent submit
took place (which is what the browser normally would resolve relative references against). This tag
must be placed within the HTML head element. The following is an example of using the base tag:

<html:html locale="true">
 <head>
 <html:base/>
 <title><bean:message key="title.login"/></title>
 </head>
</html:html>

The base tag example here would produce the following output when executed in the main page of
the Storefront application:

<html lang="en">
 <head>
 <base href="http://localhost:8080/storefront/index.jsp">
 <title>Virtual Shopping with Struts</title>

 </head>
<html>

This tag is very important when using relative URLs for images in a JSP page. There are no attributes
associated with this tag.

8.4.3 The form Tag

The Struts form tag is one of the most important tags in the HTML tag library. Its purpose is to
render a standard HTML form tag and to link the HTML form with an ActionForm configured
for the application.

Each field in the HTML form should correspond to a property of the ActionForm. When an
HTML field name and a property name match, the property from the ActionForm is used to
populate the HTML field. When the HTML form is submitted, the framework will store the user's
input into the ActionForm, again matching up the HTML field names to the property names.

All of the HTML custom tags that render HTML controls must be nested
within the html tag. DynaActionForm and its subclasses function the
same way with the form tag.

The form tag controls many important aspects of the page. Its attributes are shown in Table 8-2.

Table 8-2. The form tag attributes
Name Description

action The URL to which this form will be submitted
enctype The content encoding to be used when submitting this form.
focus The field name to which initial focus will be assigned for this page.
method The HTTP method that will be used to submit this request.

name The name of the ActionForm whose properties will be used to populate the input
field values.

onreset The JavaScript event handler executed if the form is reset.
onsubmit The JavaScript event handler executed if the form is submitted.
scope The scope of the ActionForm for this form.
style The CSS styles to be applied to this HTML element.
styleClass The CSS stylesheet class to be applied to this HTML element.
styleId The identifier to be assigned to this HTML element.
target The frame target to which this form is submitted.
type The fully qualified class name of the ActionForm for this page.

8.4.3.1 The action attribute

The value for the action attribute is used to select the ActionMapping the page is assumed to
be processing, from which we can identify the appropriate ActionForm and scope.

If extension mapping is being used (*.do), the action value should be equal to the value of the
path attribute of the corresponding action element, optionally followed by the correct extension
suffix. An example of this is:

<html:form action="login.do" focus="accessNumber">

If path mapping is used instead, the action attribute value should be exactly equal to the value of
the path attribute of the corresponding action element:

<html:form action="login" focus="accessNumber">

8.4.3.2 The enctype attribute

Typically, you won't need to set the enctype attribute. However, if your form is performing file
uploads, you should set the enctype attribute to multipart/form-data. You also must
make sure the method attribute is set to POST, which is the default method if none is specified.

8.4.3.3 The name attribute

The name attribute specifies the name of the request- or session-scope ActionForm whose
properties will be used to populate the input field values. If no such bean is found, a new bean will be
created and added to the appropriate scope, using the Java class name specified by the type attribute.

If no value is specified for the name attribute, it will be calculated by using the value of the action
attribute to look up the corresponding ActionMapping element, from which the form bean name
will be determined. In other words, if no name attribute is specified for the form tag, the tag will
use the value from the name attribute in the action element from the configuration file. This is a
very important point that confuses many new Struts developers. Let's look at an example. Suppose
there is an action element configured like the following:

<action
 path="/signin"
 type="com.oreilly.struts.storefront.security.LoginAction"
 scope="request"
 name="loginForm"
 validate="true"
 input="/security/signin.jsp">
 <forward name="Success" path="/index.jsp" redirect="true"/>
 <forward name="Failure" path="/security/signin.jsp"
redirect="true"/>
</action>

Now say you have a form tag that looks like this declared in a JSP page:

<html:form action="signin">

Because the name attribute is not specified in the form tag, the tag will look up the signin action
from the configuration file. It will retrieve the value of the name attribute from the action element
and use that to check for an ActionForm in either the request or session scope. In this case, the
loginForm will be selected because it's the value for the name attribute in the action element.

8.4.3.4 The scope attribute

The scope attribute defines where the tag should look for the ActionForm. Its value must be
either request or session. If the scope attribute is not specified, it will be calculated by
using the value of the action attribute to look up the corresponding ActionMapping element,
from which we will select the specified form bean scope. This is similar to how the name attribute is
determined if it's not specified in the form tag.

8.4.3.5 The type attribute

The type attribute specifies the fully qualified class name of the ActionForm to be created if no
such bean is found in the specified scope. If this attribute is not specified, it will be calculated by using
the value of the action attribute to look up the corresponding ActionMapping element, from
which we will select the specified form bean type.

8.4.4 Using Multiple form Tags

As with standard HTML, you can include more than one form tag within a JSP page. Obviously,
only one form can be submitted at a time, but that doesn't stop you from declaring multiple form tags.
For example, you might have a form tag for a search area of the page. When the user presses the
search button, that form is submitted along with the search criteria fields. In that same page, you might
also have another form tag that performs a different function. When a button within that form is
pressed, that form and its corresponding fields are submitted. Example 8-1 provides an example of
what that might look like.

Example 8-1. Using multiple form tags
<html:html locale="true">
 <head>
 <html:base/>
 </head>

 <body>
 <!-
 <html:form action="searchAction">
 <!-- The search fields -->
 <html:submit styleClass="button" value="Go"/>
 </html:form>

 <html:form action="anotherAction">
 <!-- The other form fields -->
 <html:submit styleClass="button"/>
 </html:form>
 </body>
</html:html>

8.4.5 The button and cancel Tags

These two tags render HTML input elements of type button , populated from the specified value
or from the content of the tag body. These tags are valid only when nested inside a form tag body.

Stylesheets also can be used with these tags by supplying a value for the styleClass attribute. By
default, the button label is set to the value "Click" and the cancel label is set to the value
"Cancel". You can override this using the value attribute.

The button produced by the cancel tag has a special characteristic that causes the validate()
method to be skipped when it's pressed. The RequestProcessor just calls the execute()
method, without going through the validation routine.

8.4.6 The checkbox Tag

This tag renders an HTML input element of type checkbox, populated from the specified value
or the specified property of the bean associated with the current form. This tag is valid only when
nested inside a form tag body.

The underlying property value associated with this field should be of type boolean, and any value
you specify should correspond to one of the strings that indicate a true value ("true", "yes", or "on").

The browser will send values in the request only for those checkboxes that are
checked. To correctly recognize unchecked checkboxes, the ActionForm
bean associated with this form must include a statement setting the
corresponding boolean property to false in the reset() method.

8.4.7 The messages and errors Tags

These two tags are responsible for displaying a set of general-purpose messages or errors to the user.
Messages correspond to ActionMessages, and errors to ActionErrors. The messages/errors
are created either in the validate() method or by the exception-handling framework. If no
messages or errors are present, nothing will be rendered.

When using the errors tag, the message bundle must include message keys for the following
values:

errors.header

Text that will be rendered before the error messages list. Typically, this message text will end
with to start the error messages list.

errors.footer

Text that will be rendered after the error messages list. Typically, this message text will begin
with to end the error messages list.

For example, we might set the header and footer values to:

errors.header=<h3>Validation
Error</h3>You must correct the
following error(s) before proceeding:

errors.footer=<hr>

When the errors are written out to the HTML page, they'll appear inside a bulleted list. Now that the
Struts framework supports multiple MessageResources within the configuration file, you can
specify which one should be used using the bundle attribute.

8.4.8 JavaScript Event Handlers

Many of the HTML tags support JavaScript event handlers through the use of their attributes. For
example, to configure an onClick handler for a supported tag, you need to include the function
name in the onClick attribute for the tag. Table 8-3 lists the attributes for the supported event
handlers.

Table 8-3. Attributes for the supported JavaScript event handlers
Attribute Description

onblur Executed when this element loses input focus.
onchange Executed when this element loses input focus and its value has changed.
onclick Executed when this element receives a mouse click.
ondblclick Executed when this element receives a mouse double-click.
onfocus Executed when this element receives input focus.
onkeydown Executed when this element has focus and a key is depressed.
onkeypress Executed when this element has focus and a key is depressed and released.
onkeyup Executed when this element has focus and a key is released.

onmousedown Executed when this element is under the mouse pointer and a mouse button is
depressed.

onmousemove Executed when this element is under the mouse pointer and the pointer is moved.

onmouseout Executed when this element is under the mouse pointer but the pointer is moved
outside the element.

onmouseover Executed when this element is not under the mouse pointer but the pointer is
moved inside the element.

onmouseup Executed when this element is under the mouse pointer and a mouse button is
released.

onreset Executed if the parent form is reset.
onsubmit Executed if the parent form is submitted.

8.4.9 HTML Navigation Attributes

Many of the tags also support navigation using only the keyboard. This is done using the attributes
listed in Table 8-4.

Table 8-4. Attributes for the keyboard navigational support
Attribute Description

acesskey The keyboard character used to move focus immediately to this element.
tabindex The tab order (ascending positive integers) for this element.

8.5 Logic Tags

The Logic tag library contains tags that are useful for managing conditional generation of output text,
looping over object collections for repetitive generation of output text, and application flow
management. Table 8-5 lists the tags available within the Logic tag library.

Table 8-5. Custom tags within the Logic tag library
Tag name Description

empty Evaluate the nested body content of this tag if the requested variable is
either null or an empty string.

equal Evaluate the nested body content of this tag if the requested variable is
equal to the specified value.

forward Forward control to the page specified by the ActionForward
entry.

greaterEqual Evaluate the nested body content of this tag if the requested variable is
greater than or equal to the specified value.

greaterThan Evaluate the nested body content of this tag if the requested variable is
greater than the specified value.

iterate Repeat the nested body content of this tag over a specified collection.

lessEqual Evaluate the nested body content of this tag if the requested variable is
less than or equal to the specified value.

lessThan Evaluate the nested body content of this tag if the requested variable is
less than the specified value.

match Evaluate the nested body content of this tag if the specified value is an
appropriate substring of the requested variable.

messagesNotPresent Generate the nested body content of this tag if the specified message is
not present in this request.

messagesPresent Generate the nested body content of this tag if the specified message is
present in this request.

notEmpty Evaluate the nested body content of this tag if the requested variable is
neither null nor an empty string.

notEqual Evaluate the nested body content of this tag if the requested variable is
not equal to the specified value.

notMatch Evaluate the nested body content of this tag if the specified value is not
an appropriate substring of the requested variable.

notPresent Generate the nested body content of this tag if the specified value is not
present in this request.

present Generate the nested body content of this tag if the specified value is
present in this request.

redirect Render an HTTP redirect.

The tags within the Logic tag library can be divided into four separate categories based on how they
are used:

• Value comparison
• Substring matching
• Redirecting and forwarding
• Collection utilities

This division into categories is done for the purpose of explanation. The tags are not packaged or
arranged into these categories; they all belong to the Logic package.

8.5.1 Value Comparison

The value-comparison tags print out the body of the tag if and only if the comparison evaluates to true.
There are several different types of comparison tags that you can use, depending on your specific
needs.

Each of the value-comparison tags takes a value and compares it to the value of a comparison attribute.
If the value given can be successfully converted to a number, a number comparison is performed;
otherwise, a string comparison is performed.

The comparison tags share the common attributes listed in Table 8-6.

Table 8-6. Common attributes of the comparison tags
Name Description

name
The name of a bean to use to compare against the value attribute. If the
property attribute is used, the value is compared against the property of the bean,
instead of the bean itself.

parameter The name of a request parameter to compare the value attribute against.

property
The variable to be compared is the property (of the bean specified by the name
attribute) specified by this attribute. The property reference can be simple, nested,
and/or indexed.

scope The scope within which to search for the bean named by the name attribute. All
scopes will be searched if not specified.

value The constant value to which the variable, specified by another attribute(s) of this tag,
will be compared.

A few examples will help solidify how these comparison tags can be used. To check whether a
particular request parameter is present, you can use the Logic present tag:

<logic:present parameter="id">
 <!-- Print out the request parameter id value -->
</logic:present>

To check whether a collection is empty before iterating over it, you can use the notEmpty tag:

<logic:notEmpty name="userSummary" property="addresses">
 <!-- Iterate and print out the user's addresses -->
</logic:notEmpty>

Finally, here's how to compare a number value against a property within an ActionForm:

<logic:lessThan property="age" value="21">
 <!-- Display a message about the user's age -->
</logic:lessThan>

8.5.2 Substring Matching

The substring-matching tags take all the same arguments as the value-comparison tags. You compare
the string specified by the value attribute to any of the comparison values you give it, specified by
cookie, header, parameter, property, or name. Matching tags also have an additional
location attribute that informs the tag where to start matching from (either "start" or "end").

In this example, the matchTag is being used to determine whether the request parameter action
begins with the string "processLogin":

<logic:matchTag parameter="action" value="processLogin"
location="start">
 Processing Login....
</logic:matchTag>

If the location attribute is not specified, a match between the variable and the value may occur at
any position within the variable string.

8.5.3 Redirecting and Forwarding

The forward and redirect tags within the Logic tag library might have been better suited to
the HTML tag library. However, the fact that they are in the Logic tag library doesn't make them any
less valuable. In fact, combined with one of the other Logic tags, these two tags become extremely
useful.

The redirect tag is responsible for sending a redirect to the client's browser, complete with URL-
rewriting if the container supports it. Its attributes are consistent with the Struts HTML link tag.
The base URL is calculated based on which of the following attributes you specify (you must specify
exactly one of them):

forward

Use the value of this attribute as the name of a global ActionForward to be looked up,
and use the context-relative URI found there.

href

Use the value of this attribute unchanged.

page

Use the value of this attribute as a context-relative URI, and generate a server-relative URI by
including the context path.

The forward tag is responsible for either redirecting or forwarding to a specified global
ActionForward. The forward tag has one attribute, name, which is the logical name of the
ActionForward from the configuration file.

8.5.4 Collection Utilities

One of the most useful and most widely used tags within the Struts tag libraries is the iterate tag.
The iterate tag is responsible for executing its body content once for every element inside the
specified collection. It has one required attribute:

id

The name of a page-scope JSP bean that will contain the current element during an iteration.

An example is the best way to understand how to use the iterate tag:

<logic:iterate id="address" name="userSummary"
property="addresses">
 <!-- Print out the address obejct in a table -->
</logic:iterate>

Here, the iterate tag will get the collection of addresses by calling the getAddresses()
method on the userSummary bean. During each iteration, an individual address will be assigned to
the address variable. This variable can be used inside the body of the iterate tag as if you had
assigned it directly. During the next iteration, the next address object will be assigned to the
address variable. This continues until the entire collection of addresses has been traversed.

The iterate tag is very flexible in terms of where it gets the collection to iterate over. The
attributes that control how the iterate tag performs this behavior are listed in Table 8-7.

Table 8-7. Attributes of the iterate tag
Name Description

collection A runtime expression that evaluates to a collection (conforming to the requirements
listed above) to be iterated over.

id The name of a page-scope JSP bean that will contain the current element of the
collection on each iteration, if it is not null.

indexed The name of a page-scope JSP bean that will contain the current index of the
collection on each iteration.

length

The maximum number of entries (from the underlying collection) to be iterated
through on this page. This can be either an integer that directly expresses the desired
value, or the name of a JSP bean (in any scope) of type java.lang.Integer
that defines the desired value. If not present, there is no limit on the number of

iterations performed.

name
The name of the JSP bean containing the collection to be iterated over (if
property is not specified), or the JSP bean whose property getter returns the
collection to be iterated over (if property is specified).

offset

The zero-relative index of the starting point at which entries from the underlying
collection will be iterated through. This can be either an integer that directly
expresses the desired value, or the name of a JSP bean (in any scope) of type
java.lang.Integer that defines the desired value. If not present, zero is
assumed (meaning that the collection will be iterated from the beginning).

property The name of the property of the JSP bean specified by name whose getter returns
the collection to be iterated.

scope The bean scope within which to search for the bean named by the name property, or
"any scope" if not specified.

type

The fully qualified class name of the element to be exposed through the JSP bean
named from the id attribute. If not present, no type conversions will be performed.
The elements of the collection must be assignment-compatible with this class, or a
request-time ClassCastException will occur.

8.5.5 Messages and Errors

The messagesPresent and messagesNotPresent tags evaluate the body content,
depending on whether an ActionMessages or ActionErrors object is present in the request
scope. Table 8-8 lists the attributes of these two tags.

Table 8-8. Attributes of the messagesPresent and messagesNotPresent tags
Name Description

name The parameter key to retrieve the message from request scope.

property The name of the property for which messages should be retrieved. If not specified, all
messages (regardless of property) are retrieved.

message

By default the tag will retrieve the request-scope bean it will iterate over from the
Action.ERROR_KEY constant string, but if this attribute is set to true, the
request-scope bean will be retrieved from the Action.MESSAGE_KEY constant
string. Also, if this is set to true, any value assigned to the name attribute will be
ignored.

8.6 Bean Tags

The tags that are part of the Bean tag library are used for accessing JavaBeans and their associated
properties as well as for defining new beans that are accessible to the remainder of the page via
scripting variables and page-scope attributes. Convenient mechanisms to create new beans based on
the values of request cookies, headers, and parameters are also provided. Table 8-9 lists the tags
within the Bean tag library.

Table 8-9. Custom tags within the Bean tag library
Tag name Description

cookie Define a scripting variable based on the value(s) of the specified request cookie.
define Define a scripting variable based on the value(s) of the specified bean property.
header Define a scripting variable based on the value(s) of the specified request header.
include Load the response from a dynamic application request and make it available as a bean.
message Render an internationalized message string to the response.
page Expose a specified item from the page context as a bean.
parameter Define a scripting variable based on the value(s) of the specified request parameter.
resource Load a web application resource and make it available as a bean.
size Define a bean containing the number of elements in a Collection or Map.
struts Expose a named Struts internal configuration object as a bean.
write Render the value of the specified bean property.

Many of the tags in this tag library throw a JspException at runtime
when they are used incorrectly (e.g., when you specify an invalid combination
of tag attributes). JSP allows you to declare an "error page" in the <%@
page %> directive. If you want to process the actual exception that caused
the problem, it is passed to the error page as a request attribute under key
org.apache.struts.action.EXCEPTION.

8.6.1 The define Tag

This tag retrieves a specified bean property and defines it as an attribute that is accessible to the
remainder of the current page. No type conversion is performed on the returned property value unless
it is a Java primitive type, in which case it is wrapped in the appropriate wrapper class (e.g., int is
wrapped by java.lang.Integer). The property value is stored in the scope defined by the
toScope variable.

8.6.2 The header Tag

This tag retrieves the value of the specified request header and defines the result as a page-scope
attribute of type String. If no header with the specified name can be located and no default value is
specified in the value attribute, a request-time exception will be thrown. If the attribute
multiple is set to any non-null value, the id attribute will contain the result of the call to
HttpServletRequest.getHeaders() rather than a call to
HttpServletRequest.getHeader().

8.6.3 The include Tag

This tag performs an internal dispatch to the specified application component (or external URL) and
makes the response data from that request available as a bean of type String. The value is stored
into the id attribute. This tag has a function similar to that of the standard <jsp:include> tag,
except that the response data is stored in a page-scope attribute instead of being written to the output
stream. This allows you to position the output as needed.

If the current request is part of a session, the generated request for the include will also include the
session ID.

The URL used to access the specified application component is calculated based on which of the
following attributes you specify (you must specify exactly one of them):

forward

Use the value of this attribute as the name of a global ActionForward to be looked up,
and use the application-relative or context-relative URI found there.

href

Use the value of this attribute unchanged (as this might link to a resource external to the
application, the session identifier is not included).

page

Use the value of this attribute as an application-relative URI to the desired resource. This
value must start with a "/".

8.6.4 The message Tag

The message tag is one of the most widely used tags within the Struts tag libraries. It retrieves an
internationalized message for the specified locale, using the specified message key, and writes it to the
output stream. You can supply up to five parametric replacements (such as "{0}").

The message key may be specified directly, using the key attribute, or indirectly, using the name
and property attributes to obtain it from a bean. The bundle attribute allows you to specify the
name of an application-scope bean under which a MessageResources object can be found. If no
locale attribute is specified, the Locale will be retrieved from the session using the key
Action.LOCALE_KEY.

The following is an example of the message tag:

<td><bean:message key="global.user.firstName"/>:</td>

8.6.5 The parameter Tag

This tag retrieves the value of the specified request parameter and defines the result as a page-scope
attribute of type String. If any non-null value is specified for the multiple attribute, the result
will be a String[] obtained from calling getParameters() instead of
getParameter().

8.6.6 The resource Tag

This tag retrieves the value of the specified web application resource and makes it available as either
an InputStream or a String, depending on the value of the input attribute. If the input
attribute contains any non-null value, an InputStream will be created. Otherwise, the resource
will be loaded as a String.

This tag calls the getResourceAsStream() method using the name
attribute. The name attribute must start with a "/".

8.6.7 The write Tag

The write tag is another important tag within the Bean tag library, and it gets a great deal of use. It
retrieves the value of the specified bean property and renders it to the page output as a String. The
write tag uses the following rules:

• If the format attribute is specified, the value will be formatted based on the format string
and the default locale. The formatKey attribute can also be used. It should specify the
name of a format string from the message resource bundle.

• The formatKey attribute is used to specify a format string from the resource bundle. The
specific resource bundle and locale can also be specified. If the bundle and locale are not
specified, the default resource bundle and current user locale will be used.

• Otherwise, the usual toString() conversions will be applied.

The following is an example of using the write tag:

<td>Hello <bean:write name="user" property="firstName"/></td>

If the ignore attribute is set to true and the bean specified by the name
and scope attributes is not found, the tag will not throw an exception. If not
set, or set to false, a runtime exception will be thrown.

8.7 Template Tags

The concept of templates has not been discussed yet in this book. The Template library supplies tags
that are useful for creating dynamic JSP templates for pages that share a common format. These tags
provide capabilities similar to stylesheets or the standard include directive in JSP technology, but
they can be dynamic.

With the advent of the Tiles framework, which we'll discuss in Chapter 14, the template tags become
less widely used. Thus, I'll provide a list of the tags within the library, but won't go into detail about
them. If you require more information on the tags within the Template tag library, you can find it in
the Struts API at http://jakarta.apache.org/struts/api/.

The tags within the Template library are listed in Table 8-10.

Table 8-10. Custom tags within the Template tag library
Tag

name Description

insert
Retrieve (or include) the specified template file, and then insert the specified content into
the template's layout. By changing the layout defined in the template file, any other file that
inserts the template will automatically use the new layout.

put Create a request-scope bean that specifies the content to be used by the get tag. Content
can be printed directly or included from a JSP or HTML file.

get Retrieve content from a request-scope bean, for use in the template layout.

Again, the Tiles components provide much more functionality than these standard template tags.
Although some organizations still use them, many developers are moving over to the Tiles library.

8.8 Nested Tags

The Struts custom tag libraries provide a great deal of power and flexibility to the developer. The
freedom to access properties of a bean at any level using nested properties is very powerful.

There are some restrictions in how this technique can be deployed, however. When attempting to nest
one tag inside another, the inside tag has certain dependencies on the outside tag that may make it
cumbersome or impossible to cleanly render the dynamic data. There are workarounds, but these
usually involve using scriptlets with Java within the JSP page. "Nested" tags were created to solve this
problem and to enrich the Struts tag libraries.

The Nested tag library was created by Arron Bates to make it easier to nest Struts tags inside one
another and to match the ability of the model layer to nest beans inside one another. The nested tags
have become so popular that they have been added to the core libraries.

Nested tags parallel the current tags supported by the Struts framework. For example, there are HTML
nested tags, Logic nested tags, and Bean nested tags. There is no need for nested Template tags, so
those don't exist. The major difference is that nesting is better supported in the nested versions.

The tags within the Nested tag library are used in the same way that the non-nested versions are.
Minor differences exist to allow for tags to know when they are nested within one another and
therefore can access properties of the parent tag. Other than these small differences, they are very
similar.

You can find more information on the nested tags in the Struts API documents. Tutorials and more
information on the nested tags are available at http://www.keyboardmonkey.com/struts/index.html.

8.9 Other Useful Tag Libraries

The Struts custom tags aren't the only tag libraries that work with Struts applications. Although some
of the Struts tags make it very easy to use certain facets of the framework, other tags can assist you in
developing applications and help to reduce the development time for a project.

We will mention only two of the more popular locations at which you can find additional tag libraries,
but many other sites and vendors provide free or low-cost tag libraries too. You should always check
to see if the tag you need already exists or if there's one that's close enough for you to simply extend
or modify.

8.9.1 The Jakarta Taglibs Project

One of the best resources is another Jakarta project named Taglibs. The goal of the Taglibs project is
to provide an open source repository for JSP custom tag libraries and web publishing tool extensions.

There are around 25 separate tag libraries in the Taglibs project, each of which provides some unique
functionality that most web applications need to perform sooner or later. The tag libraries are free and
provide the source code, which allows you to not only get a better understanding of how to develop
JSP tags but also to modify or extend the tags as your application dictates.

There's no sense in listing the available tags, as new ones are added regularly. The best idea is to
check the site itself. You can find the Taglibs project on the Jakarta site at
http://jakarta.apache.org/taglibs/.

8.9.2 JSPTags.com

Another useful web site that contains many JSP tags is http://jsptags.com. This site has been around
for several years and has many tag libraries that you can use for free. It's also a great resource for other
web application information. Make sure to check this site as well before setting off to create your own
tag. Somebody may have already created the tag you need, saving you the development and testing
time—always a good thing.

8.10 The JSP Standard Tag Library (JSTL)

The intent of the early JSP specification group members was to define a set of standard JSP tags
within the specification. This would allow vendors to generate their own versions of the standard tags
but also allow developers to count on this set of standard tags to be available in all compliant
containers. However, due to time constraints, that feature of the early JSP specification was not
included.

Since then, many vendors have created their own versions of commonly used tag libraries, but these
versions are different enough that developers can't easily port their JSP pages from one container to
another without having to modify the pages. JSR 52, the JSP Standard Tag Library (JSTL), aims to fix
that problem.

JSR 52 defines a set of standard tags that should be present in any compliant container. The first
version of the specification has been finalized and approved, and the group has released a reference
implementation of the tag library.

The tags provided in the first release can be grouped into four distinct areas:

• Core tags
• Internationalization tags
• XML tags
• SQL tags

8.10.1 JSTL Core Tags

The core tags include those related to expressions, flow control, and a generic way to access URL-
based resources whose content can then be included or processed within the JSP page. They include
tags such as if, forEach, import, redirect, and many more.

8.10.2 JSTL Internationalization Tags

The internationalization tags are divided into two groups: messaging and formatting.

The messaging tags assist page authors with creating messages that can be adapted to any locale
available in the JSP container. They include tags such as bundle and message.

The formatting tags allow various data elements, such as numbers, currencies, dates, and times, to be
formatted and parsed in a locale-sensitive manner. They include tags such as formatDate,
parseNumber, and timeZone.

8.10.3 JSTL XML Tags

The JSTL XML tag library includes tags that allow XML documents to be accessed. The tags are
based on XPath. The XML tags use XPath as a local expression language.

8.10.4 JSTL SQL Tags

The JSTL SQL tags allow direct access to JDBC resources. They are designed for quick prototyping
and simple applications. For larger, more advanced applications, database operations should not be
present in the presentation layer—they are normally performed in the model layer. This helps to
ensure separation of responsibility.

The tags within the JSTL SQL library include tags for configuring the JDBC resource as well as for
querying and updating the database.

8.10.5 A New Expression Language

JSTL will also introduce a new expression language (EL) to make it easier for page authors to access
application data without forcing them to learn a full-fledged programming language like Java. The EL
will eventually be part of JSR 152 (the JSP 1.3 specification), but it has been included with JSTL to
ensure that a specification is available for the JSTL schedule. The two groups are working closely
together so that the EL fulfills both sets of needs.

The JSTL tag libraries come in two versions. One version, known as the JSTL-RT, will continue to
support expressions as they are used today. The second version, known as JSTL-EL, will support the
new expression language. Both versions will be supported.

For more information on the EL, refer to the JSTL 1.0 specification, which can be downloaded from
http://jcp.org/jsr/detail/52.jsp.

8.10.6 JSTL Requirements

JSTL requires a servlet container that supports the Servlet 2.3 specification and Version 1.2 of the JSP
specification. If you are using a container that doesn't support these specifications, you will not be able
to use JSTL. Tomcat is one container that supports both, but there are many more. Make sure to check
with your vendor before attempting to use JSTL.

8.10.7 JSTL and Struts

The Struts Bean and Logic tag libraries may eventually be phased out in favor of the JSTL tags. In the
next few versions of the Struts framework, look for changes in these two libraries to help ease that
migration.

It should be obvious from looking at the tags included with JSTL that not all of the Struts tags are
being replaced. The tags within the HTML tag library in particular will be around for some time.

Chapter 9. Extending the Struts Framework
One of the biggest advantages of using a framework is the ability to extend and customize it based on
the needs of the application. The Struts framework is no exception—it provides several very important
extension points for developers. This chapter takes a quick glance at some of those extension points
and discusses the benefits (as well as a few downsides) of extending the framework.

9.1 What Are Extension Points?

Think of a framework as a house that comes with part of the structure already complete, but gives you
the option to modify certain characteristics, such as the wallpaper and paint colors. If the default
characteristics already suit your needs, you don't have to change anything. If you like the paint job, for
example, that's one less thing to worry about.

This is similar to how a framework functions, and that's a big advantage when building applications. If
functionality that suits the needs of your application is present in the framework, you don't have to
worry about that aspect of the application. This, in turn, frees up developers to focus on the core
application rather than the infrastructure.

This is not a perfect analogy, but the point is that a good framework should provide much of the
infrastructure—the foundation and the plumbing, for example. The most important aspect of a
framework, however, is that it should provide extension points throughout.

Framework extension points, also referred to as "hooks," allow you to extend the framework in
specific places to adapt it to meet the application's requirements. Where and how a framework
provides these hooks is very important. If they're provided incorrectly or in the wrong locations, it
becomes very hard for an application to adapt the framework, which makes the framework less useful.
The rest of this chapter focuses on where the Struts framework provides these extension points and
how you can take advantage of them to build out specialized functionality for your application.

9.2 General Extension Points

This section discusses some extension points that affect the overall framework, not necessarily one
particular layer. Arguably the most important of these is the PlugIn mechanism.

9.2.1 Using the PlugIn Mechanism

The Struts framework provides a mechanism to allow components to be plugged in and loaded
dynamically. This feature was added in Version 1.1 and is supported through the use of the
org.apache.struts.action.PlugIn interface. Any Java class can function as a plug-in,
as long as it implements the PlugIn interface.

A plug-in is simply any Java class that you need to initialize when the Struts application starts up, and
destroy when the application shuts down.

The PlugIn interface contains two methods, as shown in Example 9-1.

Example 9-1. The org.apache.struts.action.PlugIn interface
public interface PlugIn {
 /**
 * Notification that the specified application module is
being started.
 */
 public void init(ActionServlet servlet, ApplicationConfig
config)
 throws ServletException;

 /**
 * Notification that the application module is being shut
down.
 */
 public void destroy();
}

During startup of a Struts application, the ActionServlet calls the init() method for each
PlugIn that is configured; the framework supports configuration of one or more PlugIns for each
application. Initialization routines that your plug-in needs to perform should be done during the
init() method. This is a good time to initialize a database connection or establish a connection to
a remote system, for example.[1]

[1] You also can initialize a database connection through the use of a datasource.

The second method that your plug-in must implement is the destroy() method. The framework
calls this method when the application is being shut down. You should perform any necessary cleanup
during this time. For example, this is the perfect time to close database connections, remote sockets, or
any other resources that the plug-in is using.

Let's provide a concrete example of how to use the Struts framework's PlugIn mechanism. Suppose
that your application needs the ability to communicate with an EJB tier. One of the first things you
must do before that can occur is to get a reference to the Java Naming and Directory Interface (JNDI)
service. JNDI enables clients to access various naming and directory services, such as datasources,
JavaMail sessions, and EJB home factories. Example 9-2 illustrates a simple example of acquiring an
InitialContext for a JNDI service using the Struts PlugIn mechanism.

Example 9-2. An example of using the Struts PlugIn mechanism
package com.oreilly.struts.storefront.framework.ejb;

import java.util.Hashtable;
import javax.naming.InitialContext;
import javax.naming.Context;
import org.apache.struts.action.ActionServlet;
import org.apache.struts.config.ApplicationConfig;
import org.apache.struts.action.PlugIn;
import javax.servlet.ServletException;

public class JNDIConnectorPlugin implements PlugIn {

 private String jndiFactoryClass;
 private String jndiURL;
 private Context initCtx = null;

 public JNDIConnectorPlugin() {
 super();
 }

 public void init(ActionServlet servlet, ApplicationConfig
config)
 throws ServletException{
 // Get the host and port where the JNDI service is
running
 jndiFactoryClass = servlet.getInitParameter("jndi-
factory-class");
 jndiURL = servlet.getInitParameter("jndi-url");

 try{
 Hashtable props = new Hashtable();
 // The EJB spec also allows these to be read from the
jndi.properties file
 props.put(Context.INITIAL_CONTEXT_FACTORY,
jndiFactoryClass);
 props.put(Context.PROVIDER_URL, jndiURL);
 initCtx = new InitialContext(props);
 }catch(Exception ex){
 throw new ServletException(ex);
 }
 // Store the JNDI Context into the ServletContext

servlet.getServletContext().setAttribute("Storefront.InitCt
x", initCtx);
 }

 public void destroy(){
 try{
 if (initCtx != null){
 initCtx.close();
 initCtx = null;
 // No need to remove from ServletContext because app
is being shut down
 }
 }catch(Exception ex){
 ex.printStackTrace();
 }
 }
}

When the framework calls the init() method of the JNDIConnectorPlugin class, the
plug-in creates an InitialContext object and stores it into the ServletContext. This
allows the JNDI InitialContext to be used by the entire application, when needed.

This is just a simple example; there are many possible uses for the PlugIn mechanism. For example,
the Validator framework, which we'll discuss in Chapter 11, uses the PlugIn mechanism to
initialize the validation rules for an application.

9.2.1.1 Adding the plug-in to the configuration file

The plug-in must be declared in the Struts configuration file in order for the framework to be aware of
it and initialize it at startup. It's specified in the configuration file using the plug-in element:

<plug-in

className="com.oreilly.struts.storefront.framework.ejb.JNDICon
nectorPlugin"/>

You also can pass properties to your PlugIn class by using the set-property element.

If more than one plug-in element is specified, they will be initialized in the
order in which they are listed in the configuration file.

For more information on configuring the plug-in element or passing properties to an instance, see
Section 4.7.2 in Chapter 4.

9.2.2 Extending the Struts Configuration Classes

One of the biggest changes to Version 1.1 of the Struts framework is the
org.apache.struts.config package. This package contains all of the classes that are used
as in-memory representations of the information stored in the Struts configuration file. They represent
everything from Action configurations to PlugIn configurations.

If you look back at Chapter 4, you'll see that most of the configuration elements in the Struts
configuration file allow you to supply a fully qualified Java class name for the configuration class
through the className attribute. This gives you the freedom to customize the configuration
element and pass additional information.

For example, suppose that you want to pass an additional parameter to your Action classes. By
default, the ActionMapping class, which extends ActionConfig from the config
package, is used. To pass an additional parameter called ssl-required that controls whether
HTTP or HTTPS is used, you can extend the ActionMapping class and configure this extension
through the className attribute. The ability to extend the Struts configuration elements through
this mechanism makes the framework extremely extensible and flexible enough to meet just about any
application need.

9.3 Controller Extension Points

The next set of possible extension points is within the controller layer. Some of these have been
mentioned briefly in previous chapters, but they're repeated here for completeness.

9.3.1 Extending the ActionServlet Class

In earlier versions of the Struts framework, it was almost a given that an application needed to extend
the ActionServlet class because most of the controller functionality, excluding the Action
class behavior, was present in this class. With Struts 1.1, this is no longer true. However, there are still
a few good reasons why you might need to extend the ActionServlet class.

As was pointed out in Chapter 5, the initialization routines that are invoked when a Struts application
is first launched reside in the ActionServlet class. If you need to modify the way the
framework initializes itself, this is the place to do so. To extend the ActionServlet class, just
create a subclass of org.apache.struts.action.ActionServlet. You can then
override the method or methods that you need to function differently. Once this is done, you need to
modify the deployment descriptor so that the Struts application will use your custom
ActionServlet:

<servlet>
 <servlet-name>storefront</servlet-name>
 <servlet-class>

com.oreilly.struts.storefront.framework.ExtendedActionServlet
 </servlet-class>
</servlet>

Most of the runtime request-processing behavior has been moved to the RequestProcessor
class in Struts 1.1. If you need to customize the manner in which your Struts application processes a
request, see the next section.

9.3.2 Extending the RequestProcessor Class

If you need to override functionality within the RequestProcessor class, you must let the
framework know that it should use your customized version rather than the default. You can make the
framework aware of your specialized RequestProcessor by modifying the configuration file
for the Struts application. If your configuration file doesn't already have a controller element
within it, you'll need to add one (there are several attributes that can be configured within the
controller element—see Chapter 4 for more details):

<controller
 contentType="text/html;charset=UTF-8"
 debug="3"
 locale="true"
 nocache="true"

processorClass="com.oreilly.struts.framework.CustomRequestProc
essor"/>

The processorClass attribute allows you to specify the fully qualified Java class name of your
specialized RequestProcessor. The Struts framework will create an instance of your
specialized RequestProcessor at startup and use it to process all of the requests for the
application. Because each application module can have its own Struts configuration file, you can
specify a different RequestProcessor for each module.

9.3.2.1 Using the processPreprocess() method

There are many methods that can be overridden within the RequestProcessor class. One of the
methods that was designed with extension in mind is the processPreprocess() method.
This method is called for each request. By default, it does nothing with the requests, but you can use
this method in various ways to change the default request-processing behavior. The
processPreprocess() method looks like this:

protected boolean processPreprocess(HttpServletRequest
request,
 HttpServletResponse
response){
 return (true);
}

This method is called early in the request-processing stage, before the ActionForm is called and
before the execute() method is called on the Action object. By default, the
processPreprocess() method returns true, which tells the RequestProcessor to
continue processing the request. However, you can override this method and perform some type of
conditional logic, and if the request should not be processed any further, you can return false.
When processPreprocess() returns false, the RequestProcessor stops
processing the request and simply returns from the doPost() or doGet() call. Consequently,
it's up to you to programmatically forward or redirect the request within the
processPreprocess() method.

Example 9-3 illustrates this approach. This example checks to see whether the request is from a local
host. If so, it returns true and the request continues. If the request is from any other host, the request
is redirected to the unauthorized access page and the method returns false.

Example 9-3. Using the processPreprocess() method
protected boolean processPreprocess(HttpServletRequest
request,
 HttpServletResponse
response){

 boolean continueProcessing = true;

 // Get the name of the remote host and log it
 String remoteHost = request.getRemoteHost();
 log.info("Request from host: " + remoteHost);

 // Make sure the host is from one that you expect

 if (remoteHost == null
|| !remoteHost.startsWith("127.")){
 // Not the localhost, so don't allow the host to access
the site
 continueProcessing = false;

 ForwardConfig config =
appConfig.findForwardConfig("Unauthorized");
 try{
 response.sendRedirect(config.getPath());
 }catch(Exception ex){
 log.error("Problem sending redirect from
processPreprocess()");
 }
 }
 return continueProcessing;
}

The most important thing to note in this example is that even though the
processPreprocess() method is returning false, it's still up to the method to take care of
redirecting the request. Returning false just lets the RequestProcessor know that it doesn't
need to continue. The controller doesn't do anything with the request; that's the responsibility of the
processPreprocess() method.

The manner in which Example 9-3 specifies the path in the
sendRedirect() method prevents us from having to hardcode the URI
of the unauthorized_access.jsp resource. This way, if the actual page for the
forward changes, this method will not have to be modified.

There are other ways that you can perform the same logic without using the
processPreprocess() method. One alternative is to use a servlet filter (part of the Servlet
2.3 API). Filters allow you to inspect the request before it ever reaches the Struts controller. However,
there are two problems to be aware of with filters.

First, because filters are part of the 2.3 API, you will not be able to use them if you are using a servlet
container that supports only 2.2. Second, because the filter inspects the request very early in the
processing stage, filters don't have easy access to the Struts API. This makes it hard to look up
ActionForwards or anything else that you might normally use in the
processPreprocess() method. In fact, because the Struts controller hasn't even seen the
request at the time the filter inspects it, the controller hasn't had a chance to select the proper
application module.

9.3.3 Extending the Base Action Class

There have been several places in previous chapters where I've mentioned a technique of creating a
base Action that extends the Struts Action class and then using it as a superclass for other
actions. One of the reasons for doing this is that in many applications, there is common logic that must
be implemented by most of the Action classes. Letting this Action superclass contain most of

this code eliminates the redundancy. Example 9-4 provides a very simple version of a base Action
class that performs this type of behavior.

Example 9-4. A base Action class
import java.util.Collection;
import java.util.LinkedList;
import java.util.List;
import java.util.Locale;
import java.util.Iterator;
import javax.servlet.http.*;
import org.apache.struts.action.*;
import com.oreilly.struts.storefront.framework.util.IConstants;
import com.oreilly.struts.storefront.framework.exceptions.*;
import com.oreilly.struts.storefront.framework.UserContainer;
import
com.oreilly.struts.storefront.service.IStorefrontService;

/**
 * An abstract Action class that all Storefront Action classes
can extend.
 */
abstract public class StorefrontBaseAction extends Action {
 /**
 * The default execute() method that all actions must
implement.
 */
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
throws Exception{

 // It just calls a worker method that contains the real
execute logic
 return
executeAction(mapping,form,request,response,getUserContainer(
request));
 }

 /**
 * The actual do work method that must be overridden by the
subclasses.
 */
 abstract public ActionForward executeAction(ActionMapping
mapping,
 ActionForm form,

HttpServletRequest request,

HttpServletResponse response,
 UserContainer
userContainer)
 throws Exception;

 // This super Action is also a good place to put common
utility methods

 public boolean isLoggedIn(HttpServletRequest request){
 UserContainer container = getUserContainer(request);
 return (container != null && container.getUserView() !=
null);
 }

 /**
 * Retrieve the UserContainer for the user tied to the
request.
 */
 protected UserContainer getUserContainer(HttpServletRequest
request) {
 HttpSession session = request.getSession();
 UserContainer userContainer =

(UserContainer)session.getAttribute(IConstants.USER_CONTAINER_
KEY);

 // Create a UserContainer if one doesn't exist already
 if(userContainer == null) {
 userContainer = new UserContainer();
 userContainer.setLocale(request.getLocale());
 session.setAttribute(IConstants.USER_CONTAINER_KEY,
userContainer);
 }
 return userContainer;
 }
}

The StorefrontBaseAction class shown in Example 9-4 illustrates how you can use a base
Action to perform repetitive behavior so that all of the subclasses need not perform it themselves.

Suppose, for example, that all of your Action classes needed to obtain the UserContainer for
the current user and use some information within it (e.g., user ID or security permissions). One
approach is to force all of the Action classes to obtain the UserContainer on their own,
handle the situation when there isn't one, and so on. An alternate, more manageable approach is to put
that behavior in a super Action and pass the UserContainer to the subclasses.

As Example 9-4 shows, the StorefrontBaseAction implements the execute() method,
but inside that method, it gets an instance of a UserContainer and passes it as an argument to

the executeAction() method. Each subclass implements the abstract
executeAction() method and has the UserContainer passed in, instantiated, and
guaranteed not to be null. This is only a trivial example of what you can do. Any behavior that all
actions need to perform is a candidate for being implemented in the Action superclass, so that when
the time comes to modify the implementation, only the behavior in the superclass needs to change.

9.4 Extending View Components

There generally is less reason or need to extend components located within the view layer than there is
to extend components in the controller layer. Typically, views are written exclusively for an
application; for example, it's unlikely that a JSP page written for one application will be used within a
different application. This is not always the case, but differences between look-and-feel and content
make such reuse improbable. The one area within the Struts view layer where extensions often are
created, however, is in the JSP tag libraries.

9.4.1 Extending Struts Custom Tags

The custom tags provided by the Struts framework can be reused across applications and application
domains. Therefore, it makes sense that customization and extensions are more likely with these
components than with JSP pages. Because the tag handlers are regular Java classes, specialization is
achieved through subclassing.

Although you can extend any tag, the HTML tag library is the one that you'll most likely need to
customize (mainly because the custom tags within this library have the greatest impact on the view
content). Regardless of which tags you extend, you'll need to create your own tag library to hold your
tag extensions.

You could modify the Struts tag libraries and include your new tag class, but
that would make upgrading to newer versions of the Struts framework much
harder. You're better off creating your own tag library that contains just your
application's tags.

Once you've created a .tld file for your extensions and registered it with the web application
deployment descriptor, you are free to use your tags just as you would any others.

9.5 Extending Model Components

Because the Struts framework doesn't provide a great deal of components for the model layer,
extensions to these components are better discussed in other Java programming books. However, there
are two classes that might be placed into the category of extensible model components. They aren't the
best representations of what a model component is, but they are responsible for holding model state.

9.5.1 The UserContainer and ApplicationContainer Classes

I've mentioned the UserContainer and ApplicationContainer classes in previous
chapters without defining exactly what they are. These two classes are not part of the Struts
framework—I created them as part of the example Storefront application. The purpose of these classes
is to store user and application-specific information in instances of these classes, rather than in the
HttpSession and ServletContext objects, respectively.

One of the problems with storing data in the HttpSession is that the interface to store and
retrieve data from the session object is not strongly typed. In other words, the interface for any data is:

public void setAttribute("permissionsKey", permissions);
public Object getAttribute("permissionsKey");

The client must be aware of the key at which the data is stored in order to put an object into or retrieve
an object from storage. Some programmers prefer a more strongly typed interface instead:

userContainer.setPermissions(permissions);
userContainer.getPermissions();

Here, the client doesn't have to worry about what key the object is being stored under or how it's being
stored. It can be an HttpSession object or some other data store; the client is not made aware of
this because it's not forced to use the methods of the HttpSession directly.

There's nothing really complicated about the UserContainer class itself. It's an ordinary
JavaBean that contains instance variables, along with public getters and setters for the properties.
Example 9-5 illustrates a basic UserContainer class.

Example 9-5. A basic UserContainer class
package com.oreilly.struts.storefront.framework;
import java.util.Locale;
import javax.servlet.http.HttpSessionBindingListener;
import javax.servlet.http.HttpSessionBindingEvent;
import com.oreilly.struts.storefront.customer.view.UserView;

/**
 * Used to store information about a specific user. This class
is used
 * so that the information is not scattered throughout the
HttpSession.
 * Only this object is stored in the session for the user.
This class
 * implements the HttpSessionBindingListener interface so that
it can
 * be notified of session timeout and perform the proper
cleanup.
 */
public class UserContainer implements
HttpSessionBindingListener {

 // The user's shopping cart
 private ShoppingCart cart = null;
 // Data about the user that is cached
 private UserView userView = null;

 /**

 * The Locale object for the user. Although Struts stores a
Locale for
 * each user in the session, the locale is also maintained
here.
 */
 private Locale locale;

 public UserContainer() {
 super();
 initialize();
 }

 public ShoppingCart getCart() {
 return cart;
 }

 public void setCart(ShoppingCart newCart) {
 cart = newCart;
 }

 public void setLocale(Locale aLocale) {
 locale = aLocale;
 }

 public Locale getLocale() {
 return locale;
 }

 /**
 * The container calls this method when it is being unbound
from the
 * session.
 */
 public void valueUnbound(HttpSessionBindingEvent event) {
 // Perform resource cleanup
 cleanUp();
 }

 /**
 * The container calls this method when it is being bound to
the
 * session.
 */
 public void valueBound(HttpSessionBindingEvent event) {
 // Don't need to do anything, but still have to implement
the
 // interface method.
 }

 public UserView getUserView() {
 return userView;
 }

 public void setUserView(UserView newView) {
 userView = newView;
 }

 /**
 * Initialize all of the required resources
 */
 private void initialize() {
 // Create a new shopping cart for this user
 cart = new ShoppingCart();
 }

 /**
 * Clean up any open resources. The shopping cart is left
intact
 * intentionally.
 */
 public void cleanUp() {
 setUserView(null);
 }
}

One thing to notice is that the UserContainer class in Example 9-5 implements the
HttpSessionBindingListener interface. The methods of this interface allow the
UserContainer to be notified when it is bound to and unbound from the session. This allows it
to perform any necessary cleanup on the object. An instance of the UserContainer is created for
each new user at the time the user enters the application. The UserContainer object itself is
stored in the session, and it must have the duration of the session. If the user exits and re-enters the
site, a new UserContainer typically is created for that user.

The ApplicationContainer is used for a similar purpose, but at the application level, not the
session level. It's useful for storing or caching information that is needed by all users across the
application. Things such as selection lists, configuration properties, and other non-client-specific data
that you need to get once and hold on to are candidates for the ApplicationContainer class.
This class is created when the application is first started and destroyed when the application exits.

9.6 Downsides to Extending the Framework

There are a few downsides to customizing or extending a framework. Although I've suggested that
customization is a forecasted goal of using a framework, as with other things in software development,
there are trade-offs.

When extending a framework, one of the biggest issues that you may face is what to do when newer
versions of the framework are made available. Unless the framework developers paid careful attention
to backward compatibility, your application may no longer work correctly with a newer version of the

framework. The Struts framework, for example, underwent some significant changes to its APIs
between Versions 1.0 and 1.1. In particular, the perform() method is no longer the controller's
preferred method for invoking the Action; instead, it uses the execute() method. Fortunately,
the developers working on the Struts framework were careful and ensured that the new functionality
was compatible with applications built using earlier versions.

You should take that same care when building your applications. If, for example, you override
methods of the Struts framework to achieve specialized behavior, it's not out of the realm of
possibility that the method will be deprecated or removed in future Struts versions. In fact, several
comments in the framework source indicate that certain portions of the Struts framework eventually
will be retired. Although it's nearly impossible to protect your application from all potential changes,
it's best that you go into developing it with your eyes wide open. Using a framework, even one that is
as good and as complete as Struts, is not a silver bullet. You will have the same upgrade issues
whether you build your own framework or use one provided by another source.

Chapter 10. Exception Handling
Throwing exceptions is Java's way of informing dependent clients that something abnormal occurred
during the processing of a method. The client is notified of the type of problem by an instance of a
specific exception being thrown, and it's entirely up to the client what course of action to take when an
exception occurs. In some cases, the client may even choose not to take any action, which causes the
JVM to continue to search for a handler for the exception.

Handling exceptions within your Struts applications is not much different. When an abnormal
condition occurs, an exception is thrown to the calling client to notify it of the abnormality. What is
different for web applications, and specifically the Struts framework, is what action is taken on behalf
of the client and how these exceptions are reported back to the end user.

This chapter looks at how you can properly use the Java exception-handling mechanism within your
Struts applications to help make your applications more robust and allow them to gracefully respond
when things do not go as expected. Special attention is given to the differences between performing
the exception handling programmatically and using the new declarative feature added to the Struts
framework in Version 1.1.

10.1 Java Exception Handling

Before we dive into how best to handle exceptions in the Struts framework, you should have a picture
in your mind of what actually occurs when a method throws an exception. An understanding of the
processes taking place in the JVM when an exception occurs may enlighten you as to the importance
of throwing exceptions for the right reason, as well as the importance of throwing the right exceptions.
Because there is additional overhead for the JVM to handle an exception, you should always take care
to use exceptions correctly.

10.1.1 Java Exceptions

In Java, exceptions are objects that are created when an abnormal condition, often referred to as an
exception condition, occurs during the execution of an application. When a Java application throws an
exception, it creates an object that is a descendant of java.lang.Throwable. The
Throwable class has two direct subclasses: java.lang.Error and
java.lang.Exception. Figure 10-1 shows a partial hierarchy tree for the Throwable class.

Figure 10-1. A partial class hierarchy for the Throwable class

Space does not permit all of the descendants of the Throwable class to be shown, as there are more
than 100 direct and indirect subclasses in the core Java library alone. Normally, members of the
Exception branches of the tree are thrown to indicate abnormal conditions that can usually be
handled by the application. All of the exceptions your Struts application creates and throws should be
subclasses of the Exception class. The other branch of Throwable, the Error class and its
descendants, is reserved for more serious problems that occur during an application's lifecycle. For
example, if there's no more memory available for an application, an OutOfMemoryError will
occur, and there's typically nothing a client can do about it. Therefore, clients generally don't worry
about handling the subclasses of Error. In most cases, it's the JVM itself that throws instances of
Error or its subclasses.

10.1.2 The Method Invocation Stack

The JVM uses a method invocation stack, also referred to as a call stack, to keep track of the
succession of method invocations of each thread. The stack holds local information about each method
that has been called, going all the way back to the original main() method of the application.
When each new method is invoked, a new stack frame is pushed onto the top of the stack, and the new
method becomes the executing method. The local state of each method is also saved with each stack
frame. Figure 10-2 illustrates an example Java call stack.

Figure 10-2. An example of a Java method invocation stack

When a Java method completes normally, the JVM pops the current method's stack frame from the
stack and continues processing in the previous method where it left off. When an exception condition
occurs, however, the JVM must find a suitable exception handler. It first checks to see if the current
method catches the exception or one of its parent exceptions. If so, execution will continue in that
catch clause. If the current method doesn't provide a catch clause to handle the exception raised, the
JVM will start popping method frames off the call stack until it finds a handler for the exception or
one of its parent exceptions. Eventually, if it pops all the way back to the main() method and still
doesn't find a handler for the exception, the thread will terminate. If that thread is the main thread and
there are no other non-daemon threads running, the application itself will terminate. If the JVM does
find an exception handler along the way, that method frame will become the top of the stack and
execution will continue from there.

It's important to know how the JVM handles exceptions because there is plenty going on underneath
the hood when exceptions occur in your applications. It can be a lot of work for the JVM to locate an
exception handler for a particular exception, especially if the handler is located far down the call stack.
It's very important that you provide sufficient exception handlers at the appropriate levels. If you let
exceptions go, they are likely to halt your application.

10.1.3 What About the throws Clause?

When determining the method signatures for classes that are part of an application, you should give as
much attention to deciding which exceptions the methods will throw as to what the parameters are and
what the return type is.

You might have heard of the concept "design by contract." The idea behind this principle is that the
set of public methods that a class exposes represents a virtual contract between a client and the class
itself. The client has certain obligations in the way in which it invokes the method, and there may also
be requirements on the class itself as part of the contract.

When something abnormal occurs and an exception is thrown from a method in the class, the contract,
in a sense, has been broken. The class is informing the client that it can't fulfill its terms of the contract.
It's entirely up to the caller to decide how to handle the exception. This is why the throws clause of a
method signature is so important—it forces a client to decide what it will do when one of these
abnormal conditions occurs. However, as you'll see in the next section, all Java exceptions are not
equal.

10.1.4 Checked and Unchecked Exceptions

Java exceptions can be separated into two distinct groups: checked and unchecked. A checked
exception signals an abnormal condition that the client must handle. All checked exceptions must
either be caught and handled within the calling method or be declared in the throws clause following
the method signature. This is why they are called "checked." The compiler and the JVM will verify
that all checked exceptions that can occur in a method are handled. The compiler and JVM don't care
if unchecked exceptions are ignored, because these are exceptions that the client usually cannot handle
anyway. Unchecked exceptions, such as java.lang.ClassCastException, are typically
the result of incorrect logic or programming errors.

The determination of whether an exception is checked or unchecked is based simply on its location in
the exception hierarchy. All classes that are descendants of the java.lang.Exception class,
except for subclasses of RuntimeException , are checked exceptions; the compiler will ensure
that they are either handled by the method or listed in the throws clause. RuntimeException
and its descendants are unchecked exceptions, and the compiler will not complain about these not
being listed in a throws clause for a method or being handled in a try/catch block. This is why they are
referred to as "unchecked."

10.1.5 Performance Impact of Exception Handling

In general, wrapping your Java code with try/catch blocks doesn't have a significant performance
impact on your applications. Only when exceptions actually occur is there a negative performance
impact, which is due to the lookup the JVM has to perform to locate the proper handler for the
exception. If the catch block for the exception is located in the same method, the impact is not so bad.
However, the further down the call stack the JVM has to go to find the exception handler, the greater
the impact becomes.

This is why you should use a try/catch block only for error conditions. You should never use
exceptions for things such as controlling program flow. The following use of a try/catch block is
probably fine, but it's getting very close to improper use of exception handling:

Double basePrice = null;
String basePriceStr =
request.getParameter("BASE_PRICE_AMOUNT");

// Use a try/catch to make sure the value is a number
try{
 basePrice = Double.valueOf(basePriceStr);
}catch(NumberFormatException ex){
 // The value could not be converted to a valid Double; set
the default
 basePrice = ApplicationDefaults.DEFAULT_BASE_PRICE;
}

The previous code fragment shows a try/catch block determining an error condition and taking
corrective action. The error condition is an invalid price value, and the corrective action is to assign a
default value. There are other ways to determine whether a string is a valid Double value, but using
this approach is fairly popular. Fortunately, the exception handler is located in the same method, and
the JVM doesn't incur a large penalty for this occurrence.

Of course, rules are always somewhat subjective, and what is a valid reason to one developer may not
be to another. You should be aware of the drawbacks and avoid using try/catch blocks other than for
actual error conditions.

10.2 System Versus Application Exceptions

Exceptions can be further classified into either system exceptions or application exceptions. System
exceptions are more serious in nature. These are typically low-level problems that aren't related to the
application logic and from which end users are not expected to recover. In many cases, system
exceptions are unchecked, and your application isn't supposed to catch them because they are either
non-programming errors or are so severe that nothing can be done about them.

Application exceptions are errors that occur because of a violation of a business rule or some other
condition in the application logic. For example, you might throw an application exception when a user
attempts to log in to the application but the account has been locked. This isn't a catastrophic error, but
it is a problem that needs to be reported and handled.

Within Struts applications (and web applications in general), there are essentially two approaches you
can take when an exception occurs. If the exception is an application exception from which the end
user may be able to recover, you typically want to return control back to the input page and display a
user-friendly statement of the problem and some action that can be taken to resolve it. Continuing with
the locked account example, you could throw an AccountLockedException back to the
action class, which would forward control back to the login page and inform the user that the account
is locked.

If the thrown exception is a low-level exception such as a RemoteException, the only
meaningful action the application can take is to display a system error page. There's nothing the user
can do to fix the problem. It may be a programming error or some type of network issue, but the point
is that you don't want to let the user see the stack trace of the exception. Instead, forward to a system
error page that's more user-friendly to look at and optionally informs the user to notify the system
administrator. The exception should also be logged to aid the developer in determining the root cause
of the problem.

Later in this chapter, you'll see examples of how to return control back to the input page and show a
localized message to the user. You will also learn ways of dealing with system errors by forwarding
control to a system error page, all of which will add value to the application and to the user experience.

10.3 Using Chained Exceptions

It's often suitable to catch a particular type of exception and rethrow a different one. This is sometimes
necessary because a client might not know or care to handle the original exception. For example, say
that a client invokes an action on a Struts application to upload an image file to a database. Let's
further assume the Action class calls an update method whose signature looks like the following:

public void updateImageFile(String imagePath) throws
UploadException;

When the method is called with an image to upload and a problem occurs, an UploadException
will be thrown. However, the underlying problem will be more specific—for example, the filesystem
is full or the database already has the image, depending on the destination of the image upload. The

original exception thrown may be IOException or SQLException, but the user doesn't need
to know or care about this level of detail; all he needs to know is that the update function failed.
Although the end user doesn't care about the specific exception thrown, the system administrator or
the developers who will be assigned the task of debugging and fixing the problem do. That's why you
don't want to throw away the root cause of the problem when you rethrow a different exception.

Prior to Version 1.4, Java didn't provide a built-in mechanism to wrap the original exception with a
new one. Developers were left to their own devices to solve the problem. Most homegrown solutions
looked something like the exception class in Example 10-1.

Example 10-1. An exception class that supports chained exceptions
import java.io.PrintStream;
import java.io.PrintWriter;
/**
 * This is the common superclass for all application
exceptions. This
 * class and its subclasses support the chained exception
facility that allows
 * a root cause Throwable to be wrapped by this class or one
of its
 * descendants.
 */
public class BaseException extends Exception {
 protected Throwable rootCause = null;

 protected BaseException(Throwable rootCause) {
 this.rootCause = rootCause;
 }

 public void setRootCause(Throwable anException) {
 rootCause = anException;
 }

 public Throwable getRootCause() {
 return rootCause;
 }

 public void printStackTrace() {
 printStackTrace(System.err);
 }

 public void printStackTrace(PrintStream outStream) {
 printStackTrace(new PrintWriter(outStream));
 }

 public void printStackTrace(PrintWriter writer) {
 super.printStackTrace(writer);

 if (getRootCause() != null) {

 getRootCause().printStackTrace(writer);
 }
 writer.flush();
 }
}

The exception class in Example 10-1 allows you to wrap the original Throwable with an instance
of this exception class or any of its descendants. The nice thing about this feature is that it allows you
to abstract out the ugly details of lower-level exceptions, while at the same time keeping those details
available so they can be printed out to a log and used by developers. Because these exceptions can be
chained together endlessly, this concept is commonly referred to as exception chaining.

Exception chaining is an excellent way of preventing lower-layer abstractions, such as JDBC access,
from propagating outward to an end user. The end user doesn't care about the lower-layer problem,
and abstracting the problem to a higher-level exception will keep him from seeing many of the details.

Another benefit of using a higher-layer exception class is that the API of the upper layer is not tied nor
coupled to the details of the implementation. Continuing our earlier example, suppose that a
filesystem is initially used to store the images, and therefore the throws clause of the
updateImageFile() method declares that it throws an IOException. If later the
implementation changes to use JDBC instead, the throws clause and the clients invoking the method
must be changed to declare or catch a SQLException. By using a higher level of abstraction, the
client only needs to be concerned about the UploadException, regardless of the underlying
implementation.

10.3.1 Dealing with Multiple Exceptions

A slight variation on the exception chaining idea is the concept of throwing multiple exceptions from
a method. For example, say a user is filling out a form that has several price fields that must fall
between some minimum and maximum values. Let's further assume the price values can be validated
only on the backend and not within an ActionForm.

Unless your application can throw multiple exceptions from a method, the user will see only one
exception at a time. This approach will work, but will probably become very annoying for end users,
who will have to fix one field and then resubmit only to receive the next error. It would be easier for
users if all of the errors were displayed and could be fixed at the same time. Unfortunately, a Java
method can throw only a single instance of Throwable.

One solution to dealing with multiple exceptions is to allow an exception class to have a primary
exception while supporting a collection of other exceptions. Each exception can be treated the same,
but the primary exception is used when only a single exception occurs, and the client can check the
exception collection to see if there are more. Example 10-2 illustrates what the BaseException
class from Example 10-1 would look like with this feature added to it.

Example 10-2. An exception class that supports multiple nested exceptions
package com.oreilly.struts.framework.exceptions;

import java.util.List;
import java.util.ArrayList;
import java.io.PrintStream;

import java.io.PrintWriter;
/**
 * This is the common superclass for all application
exceptions. This
 * class and its subclasses support the chained exception
facility that allows
 * a root cause Throwable to be wrapped by this class or one
of its
 * descendants. This class also supports multiple exceptions
via the
 * exceptionList field.
 */
public class BaseException extends Exception{

 protected Throwable rootCause = null;
 private List exceptions = new ArrayList();

 public BaseException(){
 super();
 }

 public BaseException(Throwable rootCause) {
 this.rootCause = rootCause;
 }

 public List getExceptions() {
 return exceptions;
 }

 public void addException(BaseException ex){
 exceptions.add(ex);
 }

 public void setRootCause(Throwable anException) {
 rootCause = anException;
 }

 public Throwable getRootCause() {
 return rootCause;
 }

 public void printStackTrace() {
 printStackTrace(System.err);
 }

 public void printStackTrace(PrintStream outStream) {
 printStackTrace(new PrintWriter(outStream));
 }

 public void printStackTrace(PrintWriter writer) {
 super.printStackTrace(writer);

 if (getRootCause() != null) {
 getRootCause().printStackTrace(writer);
 }
 writer.flush();
 }
}

Notice in Example 10-2 that a java.util.List has been added to the class. If more than one
exception occurs during the processing of a method, the additional exceptions can be added and
returned to the client. If the client wants to deal with only a single exception, it doesn't have to retrieve
the additional ones.

10.4 Exception Handling Provided by Struts

Prior to Version 1.1, the Struts framework provided very minimal exception handling for
applications—it was left to you to extend the framework with your own exception-handling
capabilities. This encouraged each development group to approach a solution from a different
direction and made it difficult to discuss common solutions.

In Version 1.1, Struts added a small but effective exception-handling framework for your applications.
The approach that the Struts designers took follows the EJB and Servlet specifications for handling
security, allowing developers to use a declarative and/or a programmatic approach.

Using the AppException Class
The org.apache.struts.util.AppException class is included with the
Struts framework. This class is a wrapper around an ActionError and extends
java.lang.Exception. It provides the ability to throw exceptions in a Struts
application like:

throw new AppException("error.password.mismatch");

where the argument to the AppException constructor is a resource bundle key. The
framework will automatically create ActionError objects from these exceptions and
store them in the appropriate scope. You can extend the AppException class with
application-specific exceptions for your application.

One problem with using this class, however, is that it couples your application, and
specifically your exception-handling code, to the Struts framework. It relies on classes that
are specific to the Struts framework, which is problematic if you are using a true application
tier such as EJB. You don't want to couple your entire application to Struts if you can avoid
it. If you are building a small web application where you will never need to replace Struts
with something else and you are not worried about coupling your model components to
Struts, the AppException can add value. Otherwise, you might be better off avoiding
its use.

10.4.1 Declarative Versus Programmatic Exception Handling

Declarative exception handling is accomplished by expressing an application's exception-handling
policy, including which exceptions are thrown and how they are to be handled, in a text file (typically
using XML) that is completely external to the application code. This approach makes it easier to
modify the exception-handling logic without major recompilation of the code.

Programmatic exception handling is the opposite. It is the traditional method, involving writing
application-specific, intra-method code to handle the exceptions, rather than simply modifying an
external configuration file. However, it is quite a bit more complex within a Struts application.

As with other Struts configuration options, the declarative mappings are done in the Struts
configuration file. As you saw in Chapter 4, you can specify the exceptions that may occur and what
to do if they occur, both at a global level and for a specific action mapping. For a discussion of the
parameters available for the exception-handling elements, refer back to Chapter 4.

Example 10-3 shows a partial Struts configuration file that declares three different exceptions that
may be thrown from the login action.

Example 10-3. A Struts configuration file that uses declarative exception handling
<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts
Configuration 1.1//EN"
 "http://jakarta.apache.org/struts/dtds/struts-
config_1_1.dtd">

<struts-config>
 <action-mappings>
 <action
 path="/login"
 type="com.oreilly.struts.storefront.security.LoginAction"
 name="loginForm"
 scope="request"
 input="/login.jsp">
 <!--The following exceptions can be thrown during the
login action -->
 <exception
 key="security.error.changepassword"
 path="/changePassword.jsp"

type="com.oreilly.struts.framework.exceptions.ExpiredPasswordE
xception"/>
 <exception
 key=" security.error.loginfailed"

type="com.oreilly.struts.framework.exceptions.InvalidLoginExce
ption"
 path="/login.jsp"/>

 <exception
 key="security.error.accountlocked"

type="com.oreilly.struts.framework.exceptions.AccountLockedExc
eption"
 path="/accountLocked.jsp"/>
 </action>
 </action-mappings>
</struts-config>

The exception element that is defined either in the action mapping or in the global exceptions
section specifies the path to which to forward when one of the specified exceptions occurs during the
corresponding action invocation. For example, if an ExpiredPasswordException is thrown
during the login action, the controller will forward control to the changePassword.jsp page. Likewise,
if an AccountLockedException is thrown, control will be forwarded to the
accountLocked.jsp page.

Whenever an exception is not programmatically handled in the Action class, the
RequestProcessor gets a chance to see if there is an exception element configured for
that specific exception type. If there is, control is forwarded to the resource specified in the path
attribute of the exception element. Example 10-4 shows the processException()
method from the RequestProcessor class.

Example 10-4. The processException() method from the Struts RequestProcessor
protected ActionForward processException(HttpServletRequest
request,
 HttpServletResponse
response,
 Exception exception,
 ActionForm form,
 ActionMapping mapping)
 throws IOException, ServletException {

 // Is there a defined handler for this exception?
 ExceptionConfig config =
mapping.findException(exception.getClass());

 if (config == null){
 if (log.isDebugEnabled()){

log.debug(getInternal().getMessage("unhandledException",except
ion.getClass()));
 }
 if (exception instanceof IOException){
 throw (IOException) exception;
 }else if (exception instanceof ServletException){
 throw (ServletException) exception;
 }else{
 throw new ServletException(exception);

 }
 }

 // Use the configured exception handling
 try {
 Class handlerClass = Class.forName(config.getHandler());
 ExceptionHandler handler =
(ExceptionHandler)handlerClass.newInstance();
 return (handler.execute(exception, config, mapping,
form,request, response));
 }catch (Exception e){
 throw new ServletException(e);
 }
}

Notice that an ExceptionConfig object may be returned from the findException()
method at the beginning of the processException() method. The ExceptionConfig
object is an in-memory representation of the exception element specified in the configuration file.
If the findException() method doesn't find an exception element for the specific type of
exception that occurred, the exception is thrown back to the client without going through a Struts
exception handler. Unless the exception is an IOException or one of its subclasses, the exception
will be wrapped by a ServletException instance and rethrown.

If there is an exception element specified in the action mapping for the specific type of exception
that occurs, an ExceptionConfig object is returned from the findException() method.
The getHandler() method is then called on the ExceptionConfig object, and the
handler retrieved is used to process the exception.

The Struts framework has a default exception-handler class that is used to process the exceptions if
you don't configure one of your own. The default handler class is
org.apache.struts.action.ExceptionHandler . The execute() method of
this handler creates an ActionError, stores it into the proper scope, and returns an
ActionForward object that is associated with the path attribute specified in the exception
element. To summarize, if you declare an exception element inside an action element, the
default exception handler will create and store an ActionError into the specified scope and give
control to the resource specified in the path attribute.

As you saw back in Chapter 4, the exception element also allows you to override the exception
handler's behavior if you want a different behavior when an exception occurs. You can do this by
specifying a fully qualified Java class that extends the
org.apache.struts.action.ExceptionHandler class in the exception's
handler attribute. This class will override the execute() method of
ExceptionHandler in order to perform the specialized behavior. For example, your application
exceptions could extend the BaseException class shown in Example 10-5.

Example 10-5. An exception class that supports a message key and arguments
package com.oreilly.struts.framework.exceptions;

import java.util.List;

import java.util.ArrayList;
import java.io.PrintStream;
import java.io.PrintWriter;
/**
 * This is the common superclass for all application
exceptions. This
 * class and its subclasses support the chained exception
facility that allows
 * a root cause Throwable to be wrapped by this class or one
of its
 * descendants. This class also supports multiple exceptions
via the
 * exceptionList field.
 */
public class BaseException extends Exception{

 protected Throwable rootCause = null;
 private List exceptions = new ArrayList();
 private String messageKey = null;
 private Object[] messageArgs = null;

 public BaseException(){
 super();
 }

 public BaseException(Throwable rootCause) {
 this.rootCause = rootCause;
 }

 public List getExceptions() {
 return exceptions;
 }

 public void addException(BaseException ex){
 exceptions.add(ex);
 }

 public void setMessageKey(String key){
 this.messageKey = key;
 }

 public String getMessageKey(){
 return messageKey;
 }

 public void setMessageArgs(Object[] args){
 this.messageArgs = args;
 }

 public Object[] getMessageArgs(){
 return messageArgs;
 }

 public void setRootCause(Throwable anException) {
 rootCause = anException;
 }

 public Throwable getRootCause() {
 return rootCause;
 }

 public void printStackTrace() {
 printStackTrace(System.err);
 }

 public void printStackTrace(PrintStream outStream) {
 printStackTrace(new PrintWriter(outStream));
 }

 public void printStackTrace(PrintWriter writer) {
 super.printStackTrace(writer);

 if (getRootCause() != null) {
 getRootCause().printStackTrace(writer);
 }
 writer.flush();
 }
}

The BaseException class in Example 10-5 contains a messageKey that can be used as a key
in the Struts resource bundle. This key can be passed into the constructor of the ActionError
class, and the Struts framework will match it to a message in the Struts resource bundle. This class
also contains an object array that the creator of the exception can populate. These objects can then be
used to substitute into a message from the bundle that contains substitution parameters based on the
MessageFormat class. A message in the bundle might look like this:

global.error.invalid.price=The price must be between {0} and
{1}.

When creating an ActionError object, you can pass an array of objects as the second parameter,
and each object will be substituted into the parameters enclosed by the braces. The 0th element in the
array will be inserted into the {0} position, the object at index 1 will be inserted into the {1} position,
and so on. Chapter 12 covers this topic in more detail.

Example 10-6 illustrates how to extend the default exception-handler class and provide specialized
behavior for substituting the arguments from the exception into the ActionError constructor.

Example 10-6. A specialized exception handler

package com.oreilly.struts.chapter10examples;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.ExceptionHandler;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionError;
import org.apache.struts.util.AppException;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.config.ExceptionConfig;

import com.oreilly.struts.framework.exceptions.BaseException;

public class SpecialExceptionHandler extends ExceptionHandler
{

 protected ActionForward execute(Exception ex,
 ExceptionConfig config,
 ActionMapping mapping,
 ActionForm formInstance,
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException {
 ActionForward forward = null;
 ActionError error = null;
 String property = null;

 /* Get the path for the forward either from the
exception element
 * or from the input attribute.
 */
 String path = null;
 if (config.getPath() != null) {
 path = config.getPath();
 }else{
 path = mapping.getInput();
 }
 // Construct the forward object
 forward = new ActionForward(path);

 /* Figure out what type of exception has been thrown.
The Struts
 * AppException is not being used in this example.
 */
 if(ex instanceof BaseException) {
 // This is the specialized behavior
 BaseException baseException = (BaseException)ex;

 String messageKey = baseException.getMessageKey();
 Object[] exArgs = baseException.getMessageArgs();
 if (exArgs != null && exArgs.length > 0){
 // If there were args provided, use them in the
ActionError
 error = new ActionError(messageKey, exArgs);
 }else{
 // Create an ActionError without any arguments
 error = new ActionError(messageKey);
 }
 }else{
 error = new ActionError(config.getKey());
 property = error.getKey();
 }

 // Store the ActionError into the proper scope
 // The storeException method is defined in the parent
class
 storeException(request, property, error, forward,
config.getScope());

 return forward;
 }
}

The specialized behavior that you perform in your handler class is up to you. The behavior shown in
Example 10-6 makes the error messages more informative by inserting arguments into the
ActionError.

For further information on how to install a custom exception handler, see
Section 4.7.2.

There are plenty of other instances where you might need to override the default behavior. The default
exception handler provided by the Struts framework doesn't support an exception object that stores
multiple exceptions. If your application needs to support this behavior, you'll need to create your own
ExceptionHandler class.

In most cases, the Struts exception handler is sufficient. Only when you need specialized exception
handling that can't be obtained from the Struts exception handler should you bother to create your own.
Figure 10-3 illustrates a sequence diagram for the Struts default exception-handling mechanism.

Figure 10-3. A sequence diagram for Struts exception handling

Using the Struts declarative exception-handling mechanism does not preclude you from also using a
programmatic approach. In fact, they can work quite well together. Your Action classes will get the
first opportunity to handle any specific exceptions and only if an exception is not caught and handled
by the Action instance will it be caught by the processActionPerform() method in the
RequestProcessor class. The RequestProcessor will then use the declarative
exception-handling mechanism to process the error. The next section discusses how to handle
exceptions using a programmatic approach.

10.4.2 Using Programmatic Exception Handling

The alternate approach to the declarative exception handling provided by Struts is to build the
application-specific exception handling into the code itself. This means that you will have to extend
the framework with behavior specific to your application.

As mentioned earlier in this chapter, there are two basic courses of action when an exception is thrown
within an Action class. If the exception is an application exception, the course of action is to log
the exception, create and store an ActionError into the appropriate scope, and forward control to
the appropriate ActionForward. Recall from the discussion of declarative exception handling
that this is the same behavior that the Struts default exception handler performs, minus the logging.

In the case of the Storefront application, application exceptions would all be descendants of
BaseException; it's easy to detect when an application exception occurs because you can simply
use a catch block for BaseException. If the exception is not an instance of BaseException,
you can assume that it's a system exception and should be treated as such. The course of action for
system exceptions is normally to log the exception and return an ActionForward for the system
error page.

At first, you might be tempted to add try/catch blocks in your Action classes and perform the
exception handling like this:

try{

 // Peform some work that may cause an application or system
exception

}catch(BaseException ex){
 // Log the exception

 // Create and store the action error
 ActionErrors errors = new ActionErrors();
 ActionError newError = new ActionError(ex.getErrorCode(),
ex.getArgs());
 errors.add(ActionErrors.GLOBAL_ERROR, newError);
 saveErrors(request, errors);

 // Return an ActionForward for the Failure resource
 return mapping.findForward("Failure")

}catch(Throwable ex){
 // Log the exception

 // Create and store the action error
 ActionError newError = new
ActionError("error.systemfailure");
 ActionErrors errors = new ActionErrors();
 errors.add(ActionErrors.GLOBAL_ERROR, newError);
 saveErrors(request, errors);

 // Return an ActionForward for the system error resource
 return mapping.findForward(IConstants.SYSTEM_FAILURE_PAGE);
}

The problem with this approach is that you end up having the same redundant code inside almost
every Action class. Eliminating this redundancy is one of the benefits of using the declarative
approach. However, if you don't want to use the declarative approach, or if you can't because you're
using an earlier version of Struts, there's an alternate approach that doesn't involve so much
redundancy.

In Chapter 5, you saw how the use of an abstract base Action like the
StorefrontBaseAction class can reduce the redundancy inside the Action classes for
other issues. You can also push the programmatic exception-handling functionality up to the
abstract class, so you don't need to have it in all of your Action classes. To do this, you will
need to implement the additional executeAction() method. The executeAction()
method is introduced by the StorefrontBaseAction class and is an implementation of the
Template design pattern. Example 10-7 shows the execute() method of the
StorefrontBaseAction class.

Example 10-7. The execute() method of the StorefrontBaseAction
public ActionForward execute(ActionMapping mapping,
 ActionForm form,

 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 ActionForward forwardPage = null;
 try{
 UserContainer userContainer =
getUserContainer(request);

 // Inform the specific action instance to do its thing
 forwardPage = executeAction(mapping, form, request,
response, userContainer);
 }catch (BaseException ex){
 // Log the application exception using your logging
framework
 // Call the generic exception handler routine
 forwardPage = processExceptions(request, mapping,
ex);
 }catch (Throwable ex){
 // Log the system exception using your logging framework

 // Make the exception available to the system error page
 request.setAttribute(Action.EXCEPTION_KEY, ex);

 // Treat all other exceptions as system errors
 forwardPage =
mapping.findForward(IConstants.SYSTEM_FAILURE_KEY);
 }
 return forwardPage;
 }

The execute() method invokes the executeAction() method, which all Action
subclasses must override, and wraps the invocation with the appropriate try/catch blocks.

The StorefrontBaseAction class is abstract and provides an abstract version of the
executeAction() method, which is shown here:

abstract public ActionForward executeAction(ActionMapping
mapping,
 ActionForm form,

HttpServletRequest request,

HttpServletResponse response,
 UserContainer
userContainer)
 throws BaseException;

When any application exception occurs, as long as it extends StorefrontBaseAction, it will
be caught in the try/catch block inside the execute() method. The subclasses don't have to

worry about providing a catch block unless they plan to provide further specialized behavior for the
exception.

The execute() method passes the exception, along with the request and mapping objects, to the
processExceptions() method shown in Example 10-8.

Example 10-8. The processExceptions() method in the StorefrontBaseAction
protected ActionForward processExceptions(HttpServletRequest
request,
 ActionMapping
mapping,
 BaseException
ex){
 ActionErrors errors = new ActionErrors();
 ActionForward forward = null;

 // Get the locale for the user
 Locale locale = getUserContainer(request).getLocale();
 if (locale == null){
 // If it hasn't been configured, get the default for the
environment
 locale = Locale.getDefault();
 }

 processBaseException(errors, (FieldException) ex, locale);

 // Either return to the input resource or a configured
failure forward
 String inputStr = mapping.getInput();
 String failureForward =
mapping.findForward(IConstants.FAILURE_KEY);

 if (inputStr != null) {
 forward = new ActionForward(inputStr);
 }else if (failureForward != null){
 forward = failureForward;
 }

 // See if this exception contains a list of subexceptions
 List exceptions = ex.getExceptions();
 if (exceptions != null && !exceptions.isEmpty()){
 int size = exceptions.size();
 Iterator iter = exceptions.iterator();

 while(iter.hasNext()){
 // All subexceptions must be BaseExceptions
 BaseException subException =
(BaseException)iter.next();
 processBaseException(errors, subException, locale);

 }
 }

 // Tell the Struts framework to save the errors into the
request
 saveErrors(request, errors);

 // Return the ActionForward
 return forward;
}

The processExceptions() method seems quite complex, but it's really not that bad. Here
are the steps that the method performs:

1. Obtain the locale for the user.
2. Call the processBaseException() method to process the top-level exception.
3. If there are any subexceptions, process each one.
4. Save all of the ActionErrors that were created.
5. Return control back to either the resource identified in the input attribute of the action or a

"Failure" ActionForward that has been configured for the action.

The processBaseException() method is where the ActionError objects are created.
This method is shown in Example 10-9.

Example 10-9. The processBaseException() method of the StorefrontBaseAction
class
 protected void processBaseException(ActionErrors errors,
 BaseException ex,
 Locale locale) {

 // Holds the reference to the ActionError to be added
 ActionError newActionError = null;

 // The errorCode is the key to the resource bundle
 String errorCode = ex.getMessageKey();
 /**
 * If there are extra arguments to be used by the
MessageFormat object,
 * insert them into the argList. The arguments are context
sensitive
 * arguments for the exception; there may be 0 or more.
 */
 Object[] args = ex.getMessageArgs();

 /**
 * In an application that had to support I18N, you might
want to
 * format each value in the argument array based on its
type and the

 * user locale. For example, if there is a Date object in
the array, it
 * would need to be formatted for each locale.
 */

 // Now construct an instance of the ActionError class
 if (args != null && args.length > 0){
 // Use the arguments that were provided in the exception
 newActionError = new ActionError(errorCode, args);
 }else{
 newActionError = new ActionError(errorCode);
 }

 errors.add(ActionErrors.GLOBAL_ERROR, newActionError);
 }

The processBaseException() method is responsible for creating the ActionError
object. It uses the messageKey field to look up a bundle message, and if any arguments are
included, it includes those in the ActionError constructor as well.

As you can see, adding programmatic exception handling to your applications definitely requires more
work than using the default behavior provided by the Struts framework. It also makes maintenance
more difficult if you drastically change your exception hierarchy or change how you want to handle
certain exceptions. However, if you are using an earlier version of Struts, this may be your only choice.
You may have to extend these examples for your own applications, but they show a well-designed
approach that you can build upon.

Within the EJB and Servlet specifications, programmatic security is frowned upon because it's too
easy to couple your application to the physical security environment. With exception handling, it's
unlikely that you'll need to change the exceptions that are thrown based on the target environment.
Therefore, there isn't the same stigma associated with programmatic exception handling as there is
with programmatic security. It is true, though, that if you can take advantage of declarative exception
handling, your application will be easier to maintain than if you have the same functionality in your
source code. An application will almost always be modified over time, and new exceptions will need
to be thrown and caught. The more you can specify declaratively, the easier time you'll have
maintaining it.

10.5 Tying Up the Loose Ends

Before we leave the topic of exception handling, there are several special cases that we should discuss.
Each one of these is unique, and you may or may not need them in your applications.

10.5.1 Handling Remote Exceptions

Remote Java objects are allowed to throw instances of java.rmi.RemoteException. In fact,
every EJB method that is exposed to a remote client must declare that it throws
RemoteException. Dealing with RemoteExceptions is very similar to handling system
exceptions except that they are not descendants of either java.lang.Error or
java.lang.RuntimeException.

Often, the application will not be able to recover from a RemoteException and will have to
display the system error page. If you're using EJB and you get a RemoteException, you can
attempt to recover by acquiring a new remote reference, but there's probably some type of
programming or environment error that will prevent the end user from continuing. Whether you're
using a programmatic or a declarative approach, you'll likely want to log the exception, create and
store an ActionError object, and then forward to the system error page. You can also define the
exception-handling behavior to forward the user back to the previous page and give her the choice of
trying again. If some type of network blip caused the remote exception, it may be possible for the user
to continue to use the application.

10.5.2 Exceptions in Custom Tags

JSP custom tags usually throw JSPException objects or one of their descendants. Prior to the
JavaServer Pages 1.2 specification, the JSPException class didn't support exception chaining,
and because Struts was introduced before the 1.2 specification, several places inside the Struts custom
tag libraries still disregard the original exception when a JSPException is created.

However, the Struts tags do usually store the exception in the request scope under the key
Action.EXCEPTION_KEY, which maps to a literal string of
org.apache.struts.action.Action.EXCEPTION_KEY. If you need to get access to
the root cause, you can probably use this key to retrieve the exception object.

Version 1.2 of the JSP specification modified the JSPException to support exception chaining;
however, the Struts developers will probably choose to leave the current tags alone for backward
compatibility and will take advantage of this new functionality only for future tags. However, in the
custom tags that you create, you should use the rootCause field in the JSPException class
when you rethrow exceptions as different types.

10.5.2.1 The TryCatchFinally interface

The JSP 1.2 specification also introduced a new interface called TryCatchFinally. This
interface, which is referred to as a "mix-in" interface, can be implemented by a tag handler in addition
to one of the other tag interfaces.

The TryCatchFinally interface provides two methods:

public void doCatch(Throwable);
public void doFinally();

The container calls the doCatch() method if the tag body or one of the doStartEnd(),
doEndTag(), doInitBody(), or doAfterBody() methods throws a Throwable.
The doCatch() method can rethrow the same or a different exception after handling the error.

The container calls the doFinally() method after the doEndTag() or after the
doCatch() method when an exception condition occurs.

The TryCatchFinally interface allows for better exception handling in custom tags. It is very
important to allow limited resources that are being used by custom tags to be released. Without this

interface, there's no guarantee that the container will provide the tag with an opportunity to release the
resources being used by the tags.

10.5.3 Internationalized Exception Handling

Chapter 12 covers internationalization in detail, but it's relevant to say a few words here about how
exception handling and internationalization are connected. While throwing exceptions in Java,
developers often do something like the following:

// Detect some problem and throw an exception
throw new InvalidLoginException("An exception has
occurred.");

The problem with hardcoding the string into the exception is that it's useful only for developers from
the same locale. It might be difficult for developers or system administrators from different locales to
use the log files where these exceptions are logged. Instead of hardcoding the messages for the
exceptions, it may be better to get the message from a resource bundle. Obviously, exceptions that are
thrown from third-party packages are not within your control, just as stack traces are hard to localize.
Many organizations don't worry about localizing the exception messages, which is fine as long as no
one from locales other than your own will ever need to use the information.

10.6 Conclusion

The new declarative exception handling is a great addition to the Struts framework and one that
should certainly save developers time, during both initial development and maintenance. Whenever
possible, you should make a serious effort to take advantage of the declarative exception-handling
features rather than attempting to write your own. The good news remains, however, that if you do
need to create your own customized exception handling, the freedom and flexibility for you to do so
exists in the framework.

Chapter 11. The Validator Framework
The Struts framework allows input validation to occur inside the ActionForm. To perform
validation on data passed to a Struts application, developers must code special validation logic inside
each ActionForm class. Although this approach works, it has some serious limitations. This
chapter introduces David Winterfeldt's Validator framework, which was created specifically to work
with the Struts components and to help overcome some of these limitations.

The Validator allows you to declaratively configure validation routines for a Struts application without
programming special validation logic. The Validator has become so popular and widely used by Struts
developers that it has been added to the list of Jakarta projects and to the main Struts distribution.

11.1 The Need for a Validation Framework

Chapter 7 discussed how to provide validation logic inside the ActionForm class. The solution
presented there requires you to write a separate piece of validation logic for each property that you
need to validate. If an error is detected, you have to manually create an ActionError object and
add it to the ActionErrors collection. Although this solution works, there are a few problems
with the approach.

The first problem is that coding validation logic within each ActionForm places redundant
validation logic throughout your application. Within a single web application, the type of validation
that needs to occur across HTML forms is very similar. The need to validate required fields, dates,
times, and numbers, for example, typically occurs in many places throughout an application. Most
nontrivial applications have multiple HTML forms that accept user input that must be validated. Even
if you use a single ActionForm for your entire application, you might still end up duplicating the
validation logic for the various properties.

The second major problem is one of maintenance. If you need to modify or enhance the validation that
occurs for an ActionForm, the source code must be recompiled. This makes it very difficult to
configure an application.

The Validator framework allows you to move all the validation logic completely outside of the
ActionForm and declaratively configure it for an application through external XML files. No
validation logic is necessary in the ActionForm, which makes your application easier to develop
and maintain. The other great benefit of the Validator is that it's very extensible. It provides many
standard validation routines out of the box, but if you require additional validation rules, the
framework is easy to extend and provides the ability to plug in your own rules (again without needing
to modify your application).

11.2 Installing and Configuring the Validator

The Validator framework is now part of the Jakarta Commons project. It's included with the Struts
main distribution, but you can also get the latest version from the Commons download page at
http://jakarta.apache.org/commons/. Unless you need the source code or the absolute latest version,
you'll find all the necessary files included with the Struts 1.1 distribution.

11.2.1 Required Packages

The Validator depends on several other packages to function properly, and the most important of these
is the Jakarta ORO package. The ORO package contains functionality for regular expressions,
performing substitutions, and text splitting, among other utilities. The libraries were originally
developed by ORO, Inc. and donated to the Apache Software Foundation. Earlier versions of the
Validator framework depended on a different regular expression package, called Regexp, which is
also a Jakarta project. However, ORO was considered the more complete of the two, and the Validator
that is included with Struts 1.1 now depends on the ORO package.

Other packages required by the Validator are Commons BeansUtils, Commons Logging, Commons
Collections, and Digester. All of the dependent packages for the Validator are included in the Struts
1.1 download. The commons-validator.jar and jakarta-oro.jar files need to be placed into the WEB-
INF/lib directory for your web application. The other dependent JAR files must also be present, but
they should already be there due to Struts framework requirements.

11.2.2 Configuring the Validation Rules

As mentioned earlier, the Validator framework allows the validation rules for an application to be
declaratively configured. This means that they are specified externally to the application source. There
are two important configuration files for the Validator framework: validation-
rules.xmlandvalidation.xml.

11.2.2.1 The validation-rules.xml file

The validation-rules.xml configuration file contains a global set of validation rules that can be used
out of the box by your application. This file is application-neutral and can be used by any Struts
application. You should need to modify this file only if you plan to modify or extend the default set of
rules.

If you do need to extend the default rules, you might be better off putting your
custom rules in a different XML file, so as to keep them separate from the
default ones. This will help when it comes time to upgrade to a newer version
of the Validator framework.

The validator-rules_1_1.dtd describes the syntax of the validation-rules.xml file. The root element is
the form-validation element, which requires one or more global elements:

<!ELEMENT form-validation (global+)>
<!ELEMENT global (validator+)>

Each validator element describes one unique validation rule. The following fragment from the
validation-rules.xml file is the definition for the required validation rule:

<validator
 name="required"
 classname="org.apache.struts.util.StrutsValidator"
 method="validateRequired"
 methodParams="java.lang.Object,
 org.apache.commons.validator.ValidatorAction,
 org.apache.commons.validator.Field,
 org.apache.struts.action.ActionErrors,
 javax.servlet.http.HttpServletRequest"
 msg="errors.required">
</validator>

The validator element also allows a javascript subelement, but for
the sake of brevity it is not shown here. The JavaScript support in the
Validator framework is discussed later in the chapter.

The validator element supports seven attributes, as shown here:

<!ATTLIST validator name CDATA #REQUIRED
 classname CDATA #REQUIRED
 method CDATA #REQUIRED
 methodParams CDATA #REQUIRED
 msg CDATA #REQUIRED
 depends CDATA #IMPLIED
 jsFunctionName CDATA #IMPLIED>

The name attribute assigns a logical name to the validation rule. It is used to reference the rule from
other rules within this file and from the application-specific validation file discussed in the next
section. The name must be unique.

The classname and method attributes define the class and method that contain the logic for the
validation rule. For example, as shown in the earlier code fragment, the validateRequired()
method in the StrutsValidator class will be invoked for the required validation rule. The
methodParams attribute is a comma-delimited list of parameters for the method defined in the
method attribute.

The msg attribute is a key from the resource bundle. The Validator framework uses this value to look
up a message from the Struts resource bundle when a validation error occurs. By default, the Validator
framework uses the following values:

 errors.required={0} is required.
 errors.minlength={0} cannot be less than {1} characters.
 errors.maxlength={0} cannot be greater than {1} characters.
 errors.invalid={0} is invalid.
 errors.byte={0} must be a byte.
 errors.short={0} must be a short.
 errors.integer={0} must be an integer.
 errors.long={0} must be a long.
 errors.float={0} must be a float.
 errors.double={0} must be a double.
 errors.date={0} is not a date.
 errors.range={0} is not in the range {1} through {2}.
 errors.creditcard={0} is not a valid credit card number.
 errors.email={0} is an invalid email address

You should add these to your application's resource bundle, or change the key values in the validation-
rules.xml file if you plan to use alternate messages.

The depends attribute is used to specify other validation rules that should be called before the rule
specifying it. The depends attribute is illustrated in the minLength validation rule here:

<validator
 name="minLength"
 classname="org.apache.struts.util.StrutsValidator"
 method="validateMinLength"
 methodParams="java.lang.Object,
 org.apache.commons.validator.ValidatorAction,
 org.apache.commons.validator.Field,
 org.apache.struts.action.ActionErrors,
 javax.servlet.http.HttpServletRequest"
 depends="required"
 msg="errors.minlength">
</validator>

Before the minLength validation rule is called, the required rule will be invoked. You can
also set up a rule to depend on multiple rules by separating the rules in the depends attribute with a
comma:

depends="required,integer"

If a rule that is specified in the depends attribute fails validation, the next rule will not be called.
For example, in the minLength validation rule shown previously, the
validateMinLength() method will not be invoked if the required validation rule fails.
This should stand to reason, because there's no sense in checking the length of a value if no value is
present.

The final attribute supported by the validator element is the jsFunctionName attribute.
This optional attribute allows you to specify the name of the JavaScript function. By default, the
Validator action name is used.

The Validator framework is fairly generic. It contains very basic, atomic rules that can be used by any
application. As you'll see later in this chapter, it's this generic quality that allows it to be used with
non-Struts applications as well. The
org.apache.commons.Validator.GenericValidator class implements the
generic rules as a set of public static methods. Table 11-1 lists the set of validation rules available in
the GenericValidator class.

Table 11-1. Validation rules in the GenericValidator class
Method name Description

isBlankOrNull Checks if the field isn't null and the length of the field is greater than zero, not
including whitespace.

isByte Checks if the value can safely be converted to a byte primitive.
isCreditCard Checks if the field is a valid credit card number.
isDate Checks if the field is a valid date.
isDouble Checks if the value can safely be converted to a double primitive.
isEmail Checks if the field is a valid email address.
isFloat Checks if the value can safely be converted to a float primitive.
isInRange Checks if the value is within a minimum and maximum range.
isInt Checks if the value can safely be converted to an int primitive.
isLong Checks if the value can safely be converted to a long primitive.
isShort Checks if the value can safely be converted to a short primitive.
matchRegexp Checks if the value matches the regular expression.
maxLength Checks if the value's length is less than or equal to the maximum.
minLength Checks if the value's length is greater than or equal to the minimum.

Because the validation rules in the GenericValidator are so fine-grained, the Struts
developers added a utility class to the Struts framework called
org.apache.struts.util.StrutsValidator , which defines a set of higher-level
methods that are coupled to the Struts framework but make it easier to use the Validator with Struts.

They are listed here without descriptions because the names are similar enough to the ones from Table
11-1 to indicate their functionality.

• validateByte
• validateCreditCard
• validateDate
• validateDouble
• validateEmail
• validateFloat
• validateInteger
• validateLong
• validateMask
• validateMinLength
• validateMaxLength
• validateRange
• validateRequired
• validateShort

The StrutsValidator class contains the concrete validation logic used by Struts. This class and
the methods listed above are declaratively configured in the validation-rules.xml file. When one of
these methods is invoked and the validation fails, an ActionError is automatically created and
added to the ActionErrors object. These errors are stored in the request and made available to
the view components.

11.2.2.2 The validation.xml file

The second configuration file that is required by the Validator framework is the validation.xml file.
This file is application-specific; it describes which validation rules from the validation-rules.xml file
are used by a particular ActionForm. This is what is meant by declaratively configured—you don't
have to put code inside of the ActionForm class. The validation logic is associated with one or
more ActionForm classes through this external file.

The validation.xml file is governed by the validation_1_1.dtd. The outermost element is the form-
validation element, which can contain two child elements, global and formset. The
global element can be present zero or more times, while the formset element can be present
one or more times:

<!ELEMENT form-validation (global*, formset+)>

The global element allows you to configure constant elements that can be used throughout the
rest of the file:

<!ELEMENT global (constant*)>

This is analogous to how you might define a constant in a Java file and then use it throughout the class.
The following fragment shows a global fragment that defines two constants:

<global>
 <constant>

 <constant-name>phone</constant-name>
 <constant-value>^\(?(\d{3})\)?[-|]?(\d{3})[-
|]?(\d{4})$</constant-value>
 </constant>
 <constant>
 <constant-name>zip</constant-name>
 <constant-value>^\d{5}(-\d{4})?$</constant-value>
 </constant>
</global>

This fragment includes two constants, phone and zip, although you can include as many as you
need. These constants are available to the elements within the formset section. You can reuse them
many times within the formset simply by referring to them by name.

This is best illustrated with an example. Example 11-1 shows a simple validation.xml file.

Example 11-1. A simple validation.xml file
<form-validation>
 <global>
 <constant>
 <constant-name>phone</constant-name>
 <constant-value>^\(?(\d{3})\)?[-|]?(\d{3})[-
|]?(\d{4})$</constant-value>
 </constant>
 </global>
 <formset>
 <form name="checkoutForm">
 <field
 property="phone"
 depends="required,mask">
 <arg0 key="registrationForm.firstname.displayname"/>
 <var>
 <var-name>mask</var-name>
 <var-value>${phone}</var-value>
 </var>
 </field>
 </form>
 </formset>
</form-validation>

In Example 11-1, the phone constant that's declared in the global section is used in the var
element to help validate the phone property.

The formset element can contain two child elements, constant and form. The constant
element has the same format as the one in the global section. It can be present zero or more times.
The form element can be present one or more times within the formset element:

<!ELEMENT formset (constant*, form+)>

The formset element supports two attributes that deal with I18N, language and country:

<!ATTLIST formset language CDATA #IMPLIED
 country CDATA #IMPLIED>

If you don't have any I18N requirements for your validation routines and want to use the default locale,
you can leave out these attributes. The section Section 11.6" later in this chapter discusses this topic in
more detail.

The form element defines a set of fields to be validated. The name corresponds to the identifier the
application assigns to the form. In the case of the Struts framework, this is the name attribute from
the form-beans section.

The form element defines a set of fields that are to be validated. It contains a single attribute name,
which should match one of the name attributes from the form-beans section of the Struts
configuration file.

The form element can contain one or more field elements:

<!ELEMENT form (field+)>

The field element corresponds to a specific property of a JavaBean that needs to be validated. In a
Struts application, this JavaBean is an ActionForm. In Example 11-1, the sole field element
for the checkoutForm corresponds to the phone property in an ActionForm called
checkoutForm in the form-beans section of the Struts configuration file. The field
element supports several attributes, which are listed in Table 11-2.

Table 11-2. The attributes of the field element
Attribute Description

property The property name of the JavaBean (or ActionForm) to be
validated.

depends The comma-delimited list of validation rules to apply against this
field. For the field to succeed, all the validators must succeed.

page

The JavaBean corresponding to this form may include a page
property. Only fields with a page attribute value that is equal to or
less than the value of the page property on the form JavaBean are
processed. This is useful when using a "wizard" approach to
completing a large form, to ensure that a page is not skipped.

indexedListProperty
The method name that will return an array or a Collection used
to retrieve the list and then loop through the list, performing the
validations for this field.

Both the ValidatorActionForm and
DynaValidatorActionForm match on the action mapping rather than
the form name. That is, instead of matching on the form name in the name
attribute of the form element, you can use the path attribute of the
action element. This allows the same form to be used for different action

mappings, where each action mapping may depend on only certain form fields
to be validated and the others to be left alone.

The field element contains several child elements:

<!ELEMENT field (msg?, arg0?, arg1?, arg2?, arg3?, var*)>

The msg child element allows you to specify an alternate message for a field element. The
validation rule can use this value instead of the default message declared with the rule. The value for
the msg element must be a key from the application resource bundle. For example:

<field property="phone" depends="required,mask">
 <msg name="mask" key="phone.invalidformat"/>
 <arg0 key="registrationForm.firstname.displayname"/>
 <var>
 <var-name>mask</var-name>
 <var-value>${phone}</var-value>
 </var>
</field>

The msg element supports three attributes:

<!ATTLIST msg name CDATA #IMPLIED
 key CDATA #IMPLIED
 resource CDATA #IMPLIED >

The name attribute specifies the rule with which the msg should be used. The value should be one of
the rules specified in the validation-rules.xml file or in the global section.

The key attribute specifies a key from the resource bundle that should be added to the
ActionError if validation fails. If you want to specify a literal message, rather than using the
resource bundle, you can set the resource attribute to false. In this case, the key attribute is
taken as a literal string.

The field element allows up to four additional elements to be included. These elements, named
arg0, arg1, arg2, and arg3, are used to pass additional values to the message, either from the
resource bundle or from the var or constant elements. The arg0 element defines the first
replacement value, arg1 defines the second replacement value, and so on. Each arg element
supports three attributes, name, key, and resource, which are the same as the attributes of the
msg element described earlier.

Example 11-1 included elements for arg0 and arg1 like this:

<field property="phone" depends="required,mask,minLength">
 <arg0 key="registrationForm.firstname.displayname"/>
 <arg1 name="minlength" key="${var:minLength}"
resource="false"/>
 <var>

 <var-name>mask</var-name>
 <var-value>${phone}</var-value>
 </var>
 <var>
 <var-name>minLength</var-name>
 <var-value>5</var-value>
 </var>
</field>

The last of the field child elements is the var element, as seen in Example 11-1 and in the
previous fragment. The var element can set parameters that a field element may need to pass to
one of its validation rules, such as the minimum and maximum values in a range validation. These
parameters may also be referenced by one of the arg elements using a shell syntax: ${var:var-
name}.

In Example 11-1, the substituted value for the phone constant is passed into the mask validation rule
so that it can be used to check whether the property value conforms to the proper phone mask. The
field element can have zero or more var elements.

Once you have the two XML resource files configured for your application, you need to place them in
the WEB-INF directory. They will be referenced within the Struts configuration file, as described in
the next section.

11.2.3 Plugging In the Validator

Each Struts application needs to know that the Validator framework is being employed. As discussed
in Chapter 9, you can use the PlugIn mechanism to hook the Validator framework into a Struts
application.

Earlier versions of the Validator used an extra servlet to inform the Struts
application that the Validator components were present. The
ValidatorServlet has been deprecated and should not be used.

The following fragment illustrates how to set up the Validator as a plug-in:

<plug-in
className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-
INF/validator.xml"/>
</plug-in>

There was some confusion in one of the earlier beta releases for the Validator
that used multiple set-property elements. That is no longer supported—
you should use a single set-property element that specifies multiple
Validator resource files, separated by commas. Also notice that the property
value is the plural pathnames.

The Struts framework will call the init() method in the ValidatorPlugIn class when the
application starts up. During this method, the Validator resources from the XML files are loaded into
memory so that they will be available to the application. Before calling the init() method,
however, the pathnames property value is passed to the ValidatorPlugIn instance. This is
how the ValidatorPlugIn finds out which Validator resources to load. For more information
on how the PlugIn mechanism works, see Section 9.2.1.

11.3 Using an ActionForm with the Validator

You can't use the standard Struts ActionForm class with the Validator. Instead, you need to use a
subclass of the ActionForm class that is specifically designed to work with the Validator
framework. There are two root subclasses to select from, depending on whether you are planning to
use dynamic ActionForms. Figure 11-1 shows the ActionForm and its descendants, to help
you visualize the hierarchy.

Figure 11-1. The ActionForm class hierarchy

If you are using dynamic ActionForms, you should use the DynaValidatorForm branch of
the hierarchy. If you are using standard ActionForms, you can use the ValidatorForm or
one of its descendants instead.

Whether you use dynamic or regular ActionForms, the manner in which
you configure the Validator is the same. Just be sure that whichever
ActionForm subclass you choose, you configure the form-bean
section of the Struts configuration file using the fully qualified class name. See
Section 4.7.2.2 for more details.

Dynamic or standard is only the first decision that you have to make when choosing the proper
ActionForm subclass. Notice that in both the dynamic and standard branch of the ActionForm

hierarchy in Figure 11-1, there are two versions of ValidatorForm. The parent class is called
ValidatorForm, or DynaValidatorForm for the dynamic branch.

Each of these has a subclass that contains the name Action in its title. The subclass of the
ValidatorForm is called ValidatorActionForm , and the subclass of the
DynaValidatorForm is called DynaValidatorActionForm . The purpose of the two
different versions is to allow you to associate the validation with the form-bean definition or the action
definition. The ValidatorActionForm and DynaValidatorActionForm classes pass
the path attribute from the action element into the Validator, and the Validator uses the action's
name to look up the validation rules. If you use the ValidatorForm or
DynaValidatorForm, the name of the ActionForm is used to look up the set of validation
rules to use. The only reason for using one or the other is to have more fine-grained control over
which validation rules are executed.

For example, suppose that an ActionForm contains three different validation rules, but only two of
them should get executed for a particular action. You could configure the rules to perform only the
subset of validation rules when that action gets invoked. Otherwise, all of the rules would be invoked.
In general, using ValidatorForm or DynaValidatorForm should be sufficient for your
needs.

Let's look at a more complete example of using the Validator framework. As in previous chapters,
we'll employ the Storefront application to help us understand the Validator better. In particular, we'll
look at the HTML form used to capture the shipping information during checkout of the Storefront
application. This is shown in Figure 11-2.

Figure 11-2. Capturing the shipping address information

For this example, we are going to use a dynamic form. Therefore, we'll use the
DynaValidatorForm class to capture the shipping address details. Because the checkout
process will span multiple pages and we want to capture this information across pages, we will need to
configure the form bean to have session scope. We will also capture all of the checkout properties in a
single ActionForm class. Instead of having a ShippingForm and a CreditCardForm,
we will have a single form called CheckoutForm that captures all of the information.

In our Struts configuration file, we set up the checkoutForm as shown here:

<form-bean
 name="checkoutForm"
 type="org.apache.struts.validator.DynaValidatorForm">
 <form-property name="firstName" type="java.lang.String"/>
 <form-property name="lastName" type="java.lang.String"/>
 <form-property name="address" type="java.lang.String"/>
 <form-property name="city" type="java.lang.String"/>
 <form-property name="state" type="java.lang.String"/>
 <form-property name="postalCode" type="java.lang.String"/>
 <form-property name="country" type="java.lang.String"/>
 <form-property name="phone" type="java.lang.String"/>
</form-bean>

The type attribute specifies the exact ActionForm subclass.

In early beta releases of Struts 1.1, the form-bean section required that you
set the dynamic attribute to true when using dynamic ActionForms.
This is no longer necessary, as the framework will determine whether the class
specified in the type attribute is a descendant of the DynaActionForm
class.

The next step is to edit the application-specific validation logic, which is done in the validation.xml
file. You must declare a validation rule for each property in the form that you need to validate. In
some cases, you might need to specify multiple rules. In Figure 11-2, for example, the phone field is
required, and it must fit a specific format. These are two separate rules that both must evaluate to
true, or the validation for the form will fail. The entire validation.xml file is not shown because it's
too large and most of it is redundant. The section shown in Example 11-2 will help you understand
how things are connected.

Example 11-2. A sample validation.xml file for the checkout form
<formset>
 <constant>
 <constant-name>phone</constant-name>
 <constant-value>^\(?(\d{3})\)?[-|]?(\d{3})[-
|]?(\d{4})$</constant-value>
 </constant>
 <constant>
 <constant-name>zip</constant-name>
 <constant-value>^\d{5}(-\d{4})?$</constant-value>
 </constant>
 <form name="checkoutForm">
 <field
 property="firstName"
 depends="required,mask">
 <arg0 key="label.firstName"/>
 <var>
 <var-name>mask</var-name>
 <var-value>^[a-zA-Z]*$</var-value>
 </var>
 </field>
 <field
 property="postalCode"
 depends="required,mask">
 <arg0 key="registrationForm.zip"/>
 <var>
 <var-name>mask</var-name>
 <var-value>${zip}</var-value>
 </var>
 </field>
 <field
 property="phone"

 depends="required,mask">
 <arg0 key="registrationForm.phone"/>
 <var>
 <var-name>mask</var-name>
 <var-value>${phone}</var-value>
 </var>
 </field>
 </form>
 </formset>
</form-validation>

Now that we have everything configured for the Storefront, it's time to run the example. The nice
thing about using a declarative approach versus a programmatic one is that once you have everything
configured, you're ready to go. The absence of programming makes the declarative approach much
simpler. This is especially true for the Validator framework. There's nothing to code, as long as the
default validation rules satisfy your requirements.

When we submit the shipping address page with no information in the fields, the validation rules kick
in. The result is shown in Figure 11-3.

Figure 11-3. The shipping address page using the Validator framework

11.4 Creating Your Own Validation Rules

The Validator framework is preconfigured with many of the most common rules that you're likely to
need for your Struts applications. If your application has validation requirements that are not met by
the default rules, you have complete freedom to create your own. There are several steps that you must
follow, however, to create your own customized rules:

1. Create a Java class that contains the validation methods.
2. Edit the validation-rules.xml file or create your own version. If you do create a new validation

resource file, be sure to add it to the list of resource files in the Validator plug-in.
3. Use the new validation rules in the validation.xml file for your application.

Each validation method you create must have the following signature:

public static boolean validateXXX(java.lang.Object,

org.apache.commons.validator.ValidatorAction,

org.apache.commons.validator.Field,

org.apache.struts.action.ActionErrors,

javax.servlet.http.HttpServletRequest,

javax.servlet.ServletContext);

where validateXXX can be whatever you want it to be, as long as it's not a duplicate rule name.
Table 11-3 explains the arguments to the validateXXX() method.

Table 11-3. The validateXXX() method arguments
Parameter Description

Object The JavaBean on which validation is being performed
ValidatorAction The current ValidatorAction being performed
Field The field object being validated
ActionErrors The errors objects to add an ActionError to if the validation fails
HttpServletRequest The current request object
ServletContext The application's ServletContext

In most cases, the method should be static. However, you can define instance-level methods as well.
Regardless of whether your methods are static, you must ensure that they are thread-safe. Example 11-
3 illustrates a new validation rule that validates whether a String value is a valid boolean.

Example 11-3. A validation rule that validates a boolean value
import java.io.Serializable;
import java.util.Locale;
import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;
import org.apache.commons.validator.Field;
import org.apache.commons.validator.GenericTypeValidator;
import org.apache.commons.validator.GenericValidator;
import org.apache.commons.validator.ValidatorAction;
import org.apache.commons.validator.ValidatorUtil;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.util.StrutsValidatorUtil;

public class NewValidator implements Serializable {
 /**
 * A validate routine that ensures the value is either true
or false.
 */
 public static boolean validateBoolean(Object bean,
ValidatorAction va,
 Field field, ActionErrors errors, HttpServletRequest
request) {

 String value = null;
 // The boolean value is stored as a String

 if (field.getProperty() != null &&
field.getProperty().length() > 0){
 value = ValidatorUtil.getValueAsString(bean,
field.getProperty());
 }

 Boolean result = Boolean.valueOf(value);
 if (result == null){
 errors.add(field.getKey(),
 StrutsValidatorUtil.getActionError(request,
va, field));
 }

 // Return true if the value was successfully converted,
false otherwise
 return (errors.empty());
 }
}

The next step is to add this new rule to the validation-rules.xml file, or to a new file to keep your
customized rules separate. The validator element for the validateBoolean rule should
look something like:

<validator name="boolean"
 classname="NewValidator"
 method="validateBoolean"

 methodParams="java.lang.Object,
 org.apache.commons.validator.ValidatorAction,
 org.apache.commons.validator.Field,
 org.apache.struts.action.ActionErrors,
 javax.servlet.http.HttpServletRequest"
 msg="errors.boolean">

The final step is to use the new validation rule in the validation.xml file. This involves creating a
field element that matches a boolean property on an ActionForm:

<field property="sendEmailConfirmation" depends="boolean">
 <arg0 key="label.emailconfirmation"/>
</field>

11.5 The Validator and JSP Custom Tags

Several JSP custom tags included within the Struts tag libraries can be used with the Validator
framework. One of the tags is used to generate dynamic JavaScript based on the validation rules. The
other tags are part of the core Struts framework and are used both with and without the Validator.

The tags listed in Table 11-4 are generic and can be used with or without the Validator framework, but
they all come in handy when using it.

Table 11-4. JSP custom tags that can be used with the Validator
Tag name Description

Errors Displays any validation errors found during processing
ErrorsExist Determines if there were any validation errors
Messages Displays any messages found during processing
MessagesExist Determines if there were any messages during processing

The tags in Table 11-4 allow JSP pages to detect and obtain access to messages or errors that were
detected in the Struts application. These tags were discussed in more detail in Chapter 8.

11.5.1 Using JavaScript with the Validator

The Validator framework is also capable of generating JavaScript for your Struts application using the
same framework as for server-side validation. This is accomplished by using a set of JSP custom tags
designed specifically for this purpose.

11.5.1.1 Configuring the validation-rules.xml file for JavaScript

The Validator custom tag called JavascriptValidator is used to generate client-side
validation based on a javascript attribute being present within the validator element.
Before the JSP custom tag can be used, there must be a javascript element for the validation
rule. The following code fragment illustrates the required validation rule that includes a
javascript element:

<validator
 name="required"
 classname="org.apache.struts.util.StrutsValidator"
 method="validateRequired"
 methodParams="java.lang.Object,
 org.apache.commons.validator.ValidatorAction,
 org.apache.commons.validator.Field,
 org.apache.struts.action.ActionErrors,
 javax.servlet.http.HttpServletRequest"
 msg="errors.required">
 <javascript><![CDATA[
 function validateRequired(form) {
 var bValid = true;
 var focusField = null;
 var i = 0;
 var fields = new Array();
 oRequired = new required();

 for (x in oRequired) {
 if ((form[oRequired[x][0]].type == 'text' ||
 form[oRequired[x][0]].type == 'textarea' ||
 form[oRequired[x][0]].type == 'select-one' ||
 form[oRequired[x][0]].type == 'radio' ||
 form[oRequired[x][0]].type == 'password') &&
 form[oRequired[x][0]].value == '') {
 if (i == 0)
 focusField = form[oRequired[x][0]];
 fields[i++] = oRequired[x][1];
 bValid = false;
 }
 }

 if (fields.length > 0) {
 focusField.focus();
 alert(fields.join('\n'));
 }
 return bValid;
 }]]>
 </javascript>
</validator>

When the JavascriptValidator tag is included in the JSP page, the text from the
javascript element is written to the JSP page to provide client-side validation. When the user
submits the form, the client-side validation is executed, and any validation rules that fail present
messages to the user.

You will need to include the javascript tag with the name of the ActionForm that it's going
to validate against:

<html:javascript formName="checkoutForm"/>

The formName attribute is used to look up the set of validation rules to include as JavaScript in the
page. You will have to add an onsubmit event handler for the form manually:

<html:form action="getPaymentInfo" onsubmit="return
validateCheckoutForm(this);">

When the form is submitted, the validateCheckoutForm() JavaScript function will be
invoked. The validation rules will be executed, and if one or more rules fail, the form will not be
submitted. The javascript tag generates a function with the name validateXXX(), where
XXX is the name of the ActionForm. Thus, if your ActionForm is called checkoutForm,
the javascript tag will create a JavaScript function called validateCheckoutForm()
that executes the validation logic. This is why the onsubmit() event handler called the
validateCheckoutForm() function.

By default, the JavascriptValidator tag generates both static and
dynamic JavaScript functions. If you would like to include a separate file that
contains static JavaScript functions to take advantage of browser caching or to
better organize your application, you can use the dynamicJavascript
and staticJavascript attributes. By default, both of these are set to
true. You can set the staticJavascript attribute to false in your
form and include a separate JavaScript page with the
dynamicJavascript attribute set to false and the
staticJavascript attribute set to true. See the documentation for
the JavascriptValidator tag for more information.

11.6 Internationalizing the Validation

The Validator framework uses the application resource bundles to generate error messages for both
client-side and server-side validation. Thus, from an I18N perspective, much of the work for
displaying language-specific messages to the user is included within the framework.

It was mentioned earlier that the formset element in the validation.xml file supports attributes
related to internationalization. Those attributes are language, country, and variant. As you
know, these attributes correspond to the java.util.Locale class. If you don't specify these
attributes, the default Locale is used.

If your application has I18N validation requirements, you will need to create separate formset
elements, one for each Locale that you need to support for each form that you need to validate. For
example, if your application has to support validation for a form called registrationForm for
both the default locale and the French locale, the validation.xml file should contain two formset
elements—one for the default locale and the other for the French locale. This is shown in the
following fragment:

<formset>
 <form name="registrationForm">
 <field

 property="firstName"
 depends="required,mask,minLength">
 <arg0 key="registrationForm.firstname.displayname"/>
 <var>
 <var-name>mask</var-name>
 <var-value>^\w+$</var-value>
 </var>
 <var>
 <var-name>minLength</var-name>
 <var-value>5</var-value>
 </var>
 </field>
 </form>
</formset>
<formset language="fr">
 <form name="registrationForm">
 <field
 property="firstName"
 depends="required,mask,minLength">
 <arg0 key="registrationForm.firstname.displayname"/>
 <var>
 <var-name>mask</var-name>
 <var-value>^\w+$</var-value>
 </var>
 </field>
 </form>
</formset>

11.7 Using the Validator Outside of Struts

Although the Validator was originally designed to work with the Struts framework, it can be used to
perform generic validation on any JavaBean. There are several steps that must be performed before
the framework can be used outside of Struts.

Although the Validator is not dependent on the Struts framework, a considerable amount of work has
been done inside of Struts to make it easier to use the Validator. This behavior will need to be
replicated for your application if you plan to use the Validator without Struts.

The package dependencies are exactly the same for Struts and non-Struts
applications. The ORO, Commons Logging, Commons BeanUtils, Commons
Collections, and Digester packages are all required. You will also need an
XML parser that conforms to the SAX 2.0 specification. You will not need to
include the Struts framework, however.

Functions for loading and initializing the XML Validator resources are the first behaviors to replicate.
These are the two XML files that are used to configure the rules for the Validator. When the Validator
framework is used in conjunction with Struts, the
org.apache.struts.Validator.ValidatorPlugIn class performs this duty.
However, because the ValidatorPlugIn is dependent on Struts, you will need to create an

alternate approach for initializing the appropriate Validator resources. To do this, you can create a
simple Java class that performs the same behavior as the ValidatorPlugIn but doesn't have a
dependency on the Struts framework. A simple example is provided in Example 11-4.

Example 11-4. Using the Validator outside of Struts
import java.util.*;
import java.io.*;
import org.apache.commons.validator.ValidatorResources;
import
org.apache.commons.validator.ValidatorResourcesInitializer;

public class ValidatorLoader{

 private final static String RESOURCE_DELIM = ",";
 protected ValidatorResources resources = null;
 private String pathnames = null;

 public ValidatorLoader() throws IOException {
 loadPathnames();
 initResources();
 }

 public ValidatorResources getResources(){
 return resources;
 }

 public String getPathnames() {
 return pathnames;
 }

 public void setPathnames(String pathnames) {
 this.pathnames = pathnames;
 }

 protected void loadPathnames(){
 // Set a default just in case
 String paths = "validation-rules.xml,validation.xml";
 InputStream stream = null;

 try{
 // Load some properties file
 stream =
this.getClass().getResourceAsStream("validator.properties"
);
 if (stream != null){
 Properties props = new Properties();
 props.load(stream);
 // Get the pathnames string from the properties file
 paths = props.getProperty("validator-pathnames");

 }
 }catch(IOException ex){
 ex.printStackTrace();
 }
 setPathnames(paths);
 }

 protected void initResources() throws IOException {
 resources = new ValidatorResources();

 if (getPathnames() != null && getPathnames().length() >
0) {
 StringTokenizer st = new
StringTokenizer(getPathnames(), RESOURCE_DELIM);
 while (st.hasMoreTokens()) {
 String validatorRules = st.nextToken();
 validatorRules = validatorRules.trim();

 InputStream input = null;
 BufferedInputStream bis = null;
 input =
getClass().getResourceAsStream(validatorRules);

 if (input != null){
 bis = new BufferedInputStream(input);

 try {
 // pass in false so resources aren't processed
 // until last file is loaded
 ValidatorResourcesInitializer.initialize(resources,
bis, false);
 }catch (Exception ex){
 ex.printStackTrace();
 }
 }
 }
 // process resources
 resources.process();
 }
 }
}

The work being done in the ValidatorLoader from Example 11-4 is very similar to what the
ValidatorPlugIn does—it loads and initializes an instance of the ValidatorResources
class. The object is an in-memory representation of the validation rules for an application. This
example uses the getResourceAsStream() method to find and load a properties file that
contains the list of Validator resource files.

Once you create and initialize an instance of the ValidatorResources class, you will need to
cache it somewhere. In a Struts application, it's cached in the ServletContext. Your application
can hang onto this object, or you can wrap the resource inside of a Singleton.

11.7.1 Modifying the validation-rules.xml File

In the earlier section Section 11.4, you saw how to extend the Validator framework with your own
customized rules. You'll have to do this here as well, but the method signatures will be different. The
method signature in Example 11-3 included parameters that are part of the Servlet and Struts APIs.
You will need to use different arguments to keep from being coupled to the Servlet API or the Struts
framework.

First, the methodParams attribute needs to be modified to support the alternate arguments to the
validation method. The following is a fragment for a rule called currency:

<global>
 <validator name="currency"
 classname="com.oreilly.struts.storefront.Validator"

methodParams="java.lang.Object,org.apache.commons.validator.Fi
eld,java.util.List"
 method="isCurrency"
 msg="Value is not a valid Currency Amount."/>
</global>

Once the validation rule itself is set up, you need to use it in the application-specific validation file:

<form-validation>
 <global>
 </global>
 <formset>
 <form name="checkoutForm">
 <field property="paymentAmount"
depends="required,currency">
 <arg0 key="registrationForm.paymentamount.invalid"/>
 </field>
 </formset>
</form-validation>

Somewhere in the application, you must obtain access to the ValidatorResources object
instance that was initialized in Example 11-4 and use it to validate the JavaBean:

ValidatorResources resources = // Get instance of the
ValidatorResources
Validator validator = new Validator(resources, "checkoutForm");

validator.addResource(Validator.BEAN_KEY, bean);
validator.addResource("java.util.List", lErrors);

try {
 // Execute the validation rules
 validator.validate();
} catch (ValidatorException ex) {
 // Log the validation exception
 log.warn("A validation exception occured", ex);
}

Although the Validator framework is designed for use with or without Struts, some work is required
before it's ready to use outside of the Struts framework. However, with a little up-front sweat, you can
save yourself plenty of work downstream in the development cycle.

Chapter 12. Internationalization and Struts
Companies can no longer afford to think only about local marketplaces. Since the mid to late 1990s,
the business world has been overrun with ideas about a world economy—all you have to do is look at
what's happening in Europe with the Euro. Businesses and even countries are realizing that they can't
just think about their traditional markets and at the same time continue to grow revenue and be
successful; they must start thinking globally and attempt to bring in global customers for their
products and services.

With the explosion of the World Wide Web in the mid-1990s, companies conducting business on the
Internet began to find out that providing access to their products and services via a web site was an
ideal way of attracting new customers from all over the world. One of the key reasons is 24/7 access.
Regardless of the time zone the business or the customers are in, the Web allows a customer to shop
and purchase goods and services at any time of the day or night. Traditional business hours are
irrelevant on the Web. What unlimited access can mean to companies and their revenue is enormous.
However, for the software developers that have to build and maintain the applications to support
global customers, the task can be daunting.

This chapter focuses on what it takes to make a Struts application available to customers from around
the world, regardless of their language or geographical location. As is often the case in software
development, planning ahead is the most important thing you can do to help ensure success. After
reading this chapter, you should be able to build Struts applications that make it possible to support a
broad range of customers.

12.1 What Is Internationalization?

Traditionally, software developers have focused on building applications that solve an immediate
business problem. While doing so, it's easy and sometimes necessary to make assumptions about the
user's language or country of residence. In many cases, these assumptions are valid and there's never a
question of who the audience will be. However, if you have ever had to re-engineer an application
because these assumptions weren't correct, you know how hard it can be to go back and correct the
application design after the fact.

Internationalization (I18N), simply stated, is the process of designing your software ahead of time to
support multiple languages and regions, so that you don't have to go back and re-engineer your
applications every time a new language or country needs to be supported. An application that is said to
support internationalization has the following characteristics:

• Additional languages can be supported without requiring code changes.
• Text elements, messages, and images are stored externally to the source code.
• Culturally dependent data such as dates and times, decimal values, and currencies are

formatted correctly for the user's language and geographic location.
• Nonstandard character sets are supported.
• The application can quickly be adapted to new languages and/or regions.

When you internationalize an application, you can't afford to pick and choose which options you want
to support. You must implement all of them or the process breaks down. If a user visits your web site
and all of the text, images, and buttons are in the correct language but the numbers and currency are
not formatted correctly, it will make for an unpleasant user experience.

Ensuring that the application can support multiple languages and regions is only the first step. You
still must create localized versions of the application for each specific language and/or region that you
want to support. Fortunately, here's where the benefits of I18N on the Java platform pay off. For
applications that have been properly internationalized, all of the work to support a new language or
country is external to the source code.

A locale is a region (usually geographic, but not necessarily so) that shares customs, culture, and
language. Applications that are written for a single locale are commonly referred to as myopic.
Localization (L10N) is the process of adapting your application, which has been properly
internationalized, to a specific locale. For applications where I18N support hadn't been planned or
built in, this usually means changes to text, images, and messages that are embedded within the source
code. After the changes are applied, the source code may need to be recompiled. Imagine doing this
time and time again for each new locale you have to support!

According to Richard Gillam from the Unicode Technology Group, which designed much of the I18N
support in the Java libraries, "Internationalization is not a feature." Users will expect that the products
they use will work for them in their native languages. Things can go wrong, and users get unhappy
when assumptions that you make are incorrect. Start planning early for I18N support in your
applications. Even if it doesn't look like you're going to need it, if you do you'll be that much further
ahead, and it won't hinder development as long as you do it right from the start.

Not every application needs I18N support, and some developers and
development organizations frown on adding in functionality that isn't part of
the requirements. However, even if your application has no requirements to
support more than a single locale, there are still benefits that you can gain from
including some aspects of I18N. For example, by using resource bundles for
all of your static text, you can save development and, more importantly,
maintenance time. We'll see how this is true later in the chapter.

12.2 Support for I18N in Java

Java provides a rich set of I18N features in the core library. This section briefly discusses a few of
those core features. The I18N support in the Struts framework relies heavily on these components, and
understanding how the Java I18N components cooperate with each other will help you understand
how to internationalize your Struts applications.

The topic of internationalization is too broad to cover in depth in this book. A more complete
discussion of the topic can be found in the book JavaInternationalization by Andy Deitsch and David
Czarnecki (O'Reilly).

12.2.1 The Locale Class

The java.util.Locale class is undeniably the most important I18N class in the Java library.
Almost all of the support for internationalization and localization in or around the Java language relies
on this class.

The Locale class provides Java with instances of the locale concept mentioned earlier. A particular
instance of the Locale represents a unique language and region. When a class in the Java library
modifies its functionality during runtime based on a Locale object, it's said to be locale-sensitive.
For example, the java.text.DateFormat is locale-sensitive because it will format a date
differently depending on a particular Locale object.

The Locale objects don't do any of the I18N formatting or parsing work. They are used as
identifiers by the locale-sensitive classes. When you acquire an instance of the DateFormat class,
you can pass in a Locale object for the United States. The DateFormat class does all of the
locale-sensitive parsing and formatting; it relies on the Locale only to identify the proper format.

Be very careful when using the java.text.Format class or any of its
descendants, including DateFormat, NumberFormat, and
SimpleDateFormat, because they are not thread-safe. The thread-safety
problem exists because an instance of the Calendar class is stored as a
member variable and accessed during the parse() and format()
method invocations. You will need to use a separate instance for each thread
or synchronize access externally. Don't store a single instance in somewhere
like the application scope and allow multiple client threads to access it. You
can, however, store instances in the users' sessions and use different instances
for each user to help ensure thread-safety. The thread-safety problem includes
all versions of Java, including 1.4. The API documentation for the Format
classes has been updated to indicate the known design issue.

When you create a Locale object, you typically specify the language and country code. The
following code fragment illustrates the creation of two Locale objects, one for the U.S. and the
other for Great Britain:

Locale usLocale = new Locale("en", "US");
Locale gbLocale = new Locale("en", "GB");

The first argument in the constructor is the language code. The language code consists of two
lowercase letters and must conform to the ISO-639 specification. You can find a complete listing of
the available language codes at http://www.unicode.org/unicode/onlinedat/languages.html.

The second argument is the country code. It consists of two uppercase letters that must conform to the
ISO-3166 specification. The list of available country codes is available at
http://www.unicode.org/unicode/onlinedat/countries.html.

The Locale class provides several static convenience constants that allow you to acquire an
instance of the most-often-used locales. For example, to get an instance of a Japanese locale, you
could use either of these:

Locale locale1 = Locale.JAPAN;
Locale locale2 = new Locale("ja", "JP");

12.2.1.1 The default locale

The JVM will query the operating system when it's first started and set a default locale for the
environment. You can obtain the information for this default locale by calling the getDefault()
method on the Locale class:

Locale defaultLocale = Locale.getDefault();

The web container will normally use the default locale for its local environment, while using the one
passed from the client in the HttpServletRequest to display locale-sensitive information back
to the end user.

12.2.1.2 Determining the user's locale

In the last section, you saw how to create Locale objects in Java by passing in the language and
country code to the Locale constructor. Within web applications, including those built using the
Struts framework, you rarely have to create your own locale instances because the container does it for
you. The ServletRequest interface contains two methods that can be called to retrieve the
locale preferences of a client:

public java.util.Locale getLocale();
public java.util.Enumeration getLocales();

Both of these methods use the Accept-Language header that is part of each client request sent
to the servlet container.

Because the web server doesn't keep a long-term connection open with a
browser, the client locale preference is sent to the servlet container with each
request. Although the user's locale information may be sent with each request,
Struts will, by default, retrieve the information only once and store it into the
user's session. The Locale object, if stored into the session, is stored with a
key of Action.LOCALE_KEY, which translates to the string
org.apache.struts.action.LOCALE.

You can configure whether Struts stores the user's locale into the session by
setting the locale attribute in the controller element within the Struts
application configuration file. If you don't provide a value for the locale
attribute, it defaults to false. See Chapter 4 for more information on
configuring the locale.

Calling the getLocale() method on the HttpServletRequest object returns the
preferred locale of the client, while the getLocales() method returns an Enumeration of
preferred locales in decreasing order of preference. If a client doesn't have a preferred locale
configured, the servlet container will return its default locale. Example 12-1 illustrates how to
determine this information using a servlet.

Example 12-1. Determining the user's locale information in a servlet
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Enumeration;
import java.util.Locale;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * Prints out information about a user's preferred locales
 */
public class LocaleServlet extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html";

 /**
 * Initialize the servlet
 */
 public void init(ServletConfig config) throws
ServletException {
 super.init(config);
 }

 /**
 * Process the HTTP Get request
 */
 public void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<head><title>The Example Locale
Servlet</title></head>");
 out.println("<body>");

 // Retrieve and print out the user's preferred locale
 Locale preferredLocale = request.getLocale();
 out.println("<p>The user's preffered Locale is " +
preferredLocale + "</p>");

 // Retrieve all of the supported locales of the user
 out.println("<p>A list of preferred Locales in descreasing
order</p>");
 Enumeration allUserSupportedLocales =
request.getLocales();

 out.println("");
 while(allUserSupportedLocales.hasMoreElements()){
 Locale supportedLocale =
(Locale)allUserSupportedLocales.nextElement();
 StringBuffer buf = new StringBuffer();
 buf.append("");
 buf.append("Locale: ");
 buf.append(supportedLocale);
 buf.append(" - ");
 buf.append(supportedLocale.getDisplayName());
 buf.append("");
 // Print out the line for a single Locale
 out.println(buf.toString());
 }
 out.println("");

 // Get the container's default locale
 Locale servletContainerLocale = Locale.getDefault();
 out.println("<p>The container's Locale " +
servletContainerLocale + "</p>");
 out.println("</body></html>");
 }
}

When you execute the servlet in Example 12-1, you should see output similar to the browser output in
Figure 12-1.

Figure 12-1. Browser output from Example 12-1

The output may be different if you have different locales configured for your system. Most web
browsers allow you to configure the locales you prefer to support. With Microsoft Internet Explorer,
for example, you can edit the languages in the Tools Internet Options pulldown menu.

Getting the user's locale within the Struts framework is easy. There are, in fact, several ways of getting
the stored Locale for the user, depending on where you are trying to access it. If you are within an
Action class, for example, you can simply call the getLocale() method defined in the Struts
base Action class. The following fragment shows the getLocale() method:

protected Locale getLocale(HttpServletRequest request) {
 HttpSession session = request.getSession();
 Locale locale = (Locale) session.getAttribute(LOCALE_KEY);
 if (locale == null)
 locale = defaultLocale;
 return (locale);
}

You will need to pass the request object to this method because it will need to use the
HttpSession to obtain the locale.

The getLocale() method will always return an instance of the Locale, even if one isn't
stored in the session for the user. The method will return the defaultLocale if necessary. The
defaultLocale property is stored as a static member variable that every Action subclass has
access to:

protected static Locale defaultLocale = Locale.getDefault();

Obtaining the user's locale from anywhere else is also straightforward. You can simply get it directly
from the session as the getLocale() method does, using the Action.LOCALE_KEY:

Locale userLocale =
(Locale)session.getAttribute(Action.LOCALE_KEY);

// With this approach, always check the Locale to see if it's
null
if (userLocale != null){
 // Access the Locale
}

Because it's possible that no Locale is stored in the user's session, you should compare the returned
Locale to null before attempting to use it.

If your application allows a user to change locales on the fly, you may have to call the
getLocale() method on each new request to see if the user has changed locales. An example of
doing this was shown in the CustomRequestProcessor class in Example 5-4.

12.2.2 Java Resource Bundles

The java.util.ResourceBundle class provides the ability to group together a set of
resources for a given locale. The resources are usually textual elements such as field and button labels
and status messages, but they can also be items such as image names, error messages, and page titles.

The Struts framework does not use the ResourceBundle class provided by the core language.
Instead, it provides similar functionality with the classes within its framework. The
org.apache.struts.util.MessageResources class and its only concrete subclass,
org.apache.struts.util.PropertyMessageResources , are used to perform
parallel functionality to that of the ResourceBundle hierarchy. If you understand the
fundamentals of the ResourceBundle in the code library, you basically understand how the
version within the Struts framework operates.

In retrospect, the MessageResources class should at least have been a
subclass of the Java ResourceBundle.

You'll see an example of creating a resource bundle for a Struts application later in this chapter in
Section 12.3.1.

12.2.3 The MessageFormat Class

The Java ResourceBundle and the Struts MessageResources class allow for both static
and dynamic text. Static text is used for elements such as field and button labels where the localized
strings are used exactly as they are in the bundle—in other words, when the text for the message is
known ahead of time. With dynamic text, part of the message may not be known until runtime. To
help make the difference clearer, let's look at an example.

Suppose you need to display a message to the user informing him that the name and phone input fields
are required in order to save. One approach would be to add entries like these to the resource bundle:

error.requiredfield.name=The Name field is required to save.
error.requiredfield.phone=The Phone field is required to save.

// other resource messages

This approach works fine, but what if there were hundreds of required fields? You would need a
resource message for each required field, and the resource bundle would become very large and
difficult to maintain. Note, however, that the only difference between the two messages is the name of
the field that is required.

A much easier and more maintainable approach is to use the functionality of the
java.text.MessageFormat class. This allows you to do something like this:

error.requiredfield=The {0} field is required to save.
label.phone=Phone
label.name=Name

The values that are not known until runtime are substituted in the message by a set of braces and an
integer value. The integer inside the braces is used as an index into an Object[] that is passed in
with the format() message of the MessageFormat class. Example 12-2 provides an
example of this.

Example 12-2. Using the MessageFormat class to format messages with variable text

import java.util.ResourceBundle;
import java.util.Locale;
import java.text.MessageFormat;

public class FormatExample {

 public static void main(String[] args) {
 // Load the resource bundle
 ResourceBundle bundle =
ResourceBundle.getBundle("ApplicationResources");

 // Get the message template
 String requiredFieldMessage =
bundle.getString("error.requiredfield");

 // Create a String array of size one to hold the arguments
 String[] messageArgs = new String[1];

 // Get the "Name" field from the bundle and load it in as
an argument
 messageArgs[0] = bundle.getString("label.name");

 // Format the message using the message and the arguments
 String formattedNameMessage =
 MessageFormat.format(requiredFieldMessage,
messageArgs);

 System.out.println(formattedNameMessage);

 // Get the "Phone" field from the bundle and load it in as
an argument
 messageArgs[0] = bundle.getString("label.phone");

 // Format the message using the message and the arguments
 String formattedPhoneMessage =
 MessageFormat.format(requiredFieldMessage,
messageArgs);

 System.out.println(formattedPhoneMessage);
 }
}

Messages that contain variable data are known as compound messages. Using compound messages
allows you to substitute application-specific data into messages from the resource bundle at runtime. It
can also reduce the number of messages that your application requires in the resource bundle, which
can decrease the amount of time that it takes to translate to other locales.

Using compound messages in your resource bundles can make translation a
little harder because the text contains substitution values that are not known
until runtime. Also, human translators must take into account where the
variable text goes in the localized message, because the substitution values
may need to be in different positions in the message for different languages.

The Struts framework includes the capabilities of the MessageFormat class but encapsulates the
functionality behind the components within the framework.

12.2.4 Multilingual Support

Most of us cringe at the thought of supporting user groups that are in one of several possible locales.
In many cases, however, once an application has been installed and localized, it's like any other single-
locale application. The users that access the application are either all from the same locale or are from
locales similar enough that the language and cultural differences are insignificant.

Multilingual applications, on the other hand, take internationalization to the next level by allowing
users from different locales to access the same application. This means that the application has to be
flexible enough to detect the user's locale and format everything based on that locale. This is much
harder to do than just localizing an application.

The discussion of building multilingual applications is so large that it can't be covered satisfactorily in
this book. For the remainder of this chapter, we'll stick with just the everyday internationalization
problems that you'll face, and not focus on multilingual support.

12.3 Internationalizing Your Struts Applications

The internationalization support provided by the Struts framework focuses almost exclusively on the
presentation of text and images for the application. Functionality such as accepting input from
nontraditional languages is not covered within the Struts framework.

As you've already seen, depending on your Struts configuration settings, the framework can determine
the preferred locale for a user and store it into the user's session. Once the user's locale has been
determined, Struts can use this locale to look up text and other resources from the resource bundles.
The resource bundles are essential components in the Struts framework.

12.3.1 The Struts Resource Bundle

As you saw in Chapter 4, each of your application modules can be configured with one or more
resource bundles. The information within each bundle is available to actions, action forms, JSP pages,
and custom tags alike.

12.3.1.1 Creating a Struts resource bundle

Resource bundles that you create must follow the conventions of the
PropertyResourceBundle class from the Java core library. That is, you need to create a text
file for your resource bundle that has a .properties extension and that adheres to the guidelines
discussed in the JavaDoc for the java.util.Properties class. The most important of these
guidelines is that the format of the messages within this file is:

key=value

Example 12-3 displays a properties file called StorefrontMessageResources.properties that can be
loaded by the Struts framework.

Example 12-3. A simple Struts resource bundle
global.title=Virtual Shopping with Struts
global.error.invalidlogin=The login was unsuccessful! Please
try again.
global.required={0} is a required value.

label.featuredproducts=This Weeks Featured Products
label.email=Email Address
label.password=Password
label.returning
label.firstName=First Name
label.lastName=Last Name
label.address=Address
label.city=City
label.state=State
label.postalCode=Postal Code
label.zip=Zip
label.country=Country
label.phone=Phone

button.add=Add Me
button.delete=Delete
button.checkout=Checkout
button.saveorder=Save Order

errors.required={0} is required.
errors.minlength={0} can not be less than {1} characters.
errors.maxlength={0} can not be greater than {1} characters.
errors.invalid={0} is invalid.
errors.byte={0} must be a byte.
errors.short={0} must be a short.
errors.integer={0} must be an integer.
errors.long={0} must be a long.
errors.float={0} must be a float.
errors.double={0} must be a double.
errors.date={0} is not a date.
errors.range={0} is not in the range {1} through {2}.
errors.creditcard={0} is not a valid credit card number.
errors.email={0} is not a valid e-mail address.

You must be sure to name the message resource file with the extension .properties, or the Struts
framework will not be able to load it.

Notice that the keys used in Example 12-3 are separated by a period (.). We
could have used other characters in the keys, or we could have used a single-
word key like labelPhone=Phone. Using namespacing in your keys is a
great way to organize the localized text to make maintenance easier and to
prevent name collisions. This is similar to how Java classes use package
names.

You have to be careful, however, when using characters other than the period
as a separator. The colon (:), for example, can be used instead of the equals
sign (=) to separate the key and the value, and it will cause problems if you use
it within your keys. If you don't want to use the period character in your keys,
you can safely use the underscore or the hyphen character. Spaces are not a
good choice, as they will also cause problems.

12.3.1.2 Resource bundle naming guidelines

The naming of the resource bundle is critical to it working properly. All resource bundles have a base
name that you select. In Example 12-3, the name StorefrontMessageResources was used
as a base name. If you needed to provide an additional localized resource bundle for the French
language and the country Canada, you would create a properties file called
StorefrontResouces_fr_CA.properties with the appropriate localized resources.

When the Struts framework searches for a message from one of the bundles, it looks for a bundle that
is the closest match, based on the base name and the locale. If no locale is provided, it will use the
default locale. Only when it fails to find a resource bundle with a specific language and country code
as part of the name will it default to the base resource bundle. The base resource bundle is the one
without any language or country code in its name.

You should always provide a base resource bundle. If a user with a locale that
you don't support visits your site, the application will select the base bundle for
that user.

12.3.1.3 The resource bundle and the classpath

The resource bundle needs to be placed in a location where it can be found and loaded. This means
that the same class loader that loads the web application must also be able to locate and load the
resource bundle. For web applications, the appropriate location is the WEB-INF/classes directory.

If you provide a package name for the resource bundle, it must reside in the correct package as well.
For example, if you name your resource bundle com.oreilly.struts.StorefrontResources.properties, you
must place it into the WEB-INF/classes/com/oreilly/struts directory.

12.3.2 Accessing the Resource Bundle

The resource bundles for a Struts application are loaded at startup, and each bundle is represented in
memory by an instance of the org.apache.struts.util.MessageResources class
(actually by its concrete subclass, PropertyMessageResources).

Each MessageResources instance is stored in the ServletContext when the application
is initialized and can be accessed from just about any component within the servlet container.
However, you'll more typically use a combination of the custom tags and the ActionMessage or
ActionError classes to access the resources, rather than calling methods on the
MessageResources class directly. In fact, if you use a combination of the declarative exception
handling discussed in Chapter 10 and the Validator framework from Chapter 11, it's possible that you
won't have to create ActionMessage or ActionError instances at all; the framework will do
it for you automatically.

If you need to create an ActionMessage or ActionError manually, however, you can. From
the validate() method of an ActionForm, it would look something like this:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request){

 ActionErrors errors = new ActionErrors();

 if(getEmail() == null || getEmail().length() < 1) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new
ActionError("security.error.email.required"));
 }

 if(getPassword() == null || getPassword().length() < 1) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new
ActionError("security.error.password.required"));
 }
 return errors;
}

The String argument passed into the constructor of the ActionError class must be a key in
the resource bundle. The ActionMessage and ActionError classes have several
constructors, most of which allow you to pass in substitution arguments, for when your messages are
compound messages, as explained earlier in this chapter. You can also create ActionMessages
and ActionErrors from an Action class. The following is a small fragment from the Storefront
LoginAction class:

// Log in through the security service
IStorefrontService serviceImpl = getStorefrontService();

String errorMsg = null;
UserView userView = null;
try{
 // Attempt to authenticate the user
 userView = serviceImpl.authenticate(email, password);
}catch(InvalidLoginException ex){
 ActionErrors errors = new ActionErrors();

 ActionError newError = new
ActionError("error.security.invalidlogin");
 errors.add(ActionErrors.GLOBAL_ERROR, newError);
 saveErrors(request, errors);
 return mapping.findForward(IConstants.FAILURE_KEY);
}catch(ExpiredPasswordException ex){
 ActionErrors errors = new ActionErrors();
 ActionError newError = new
ActionError("error.security.passwordexpired");
 errors.add(ActionErrors.GLOBAL_ERROR, newError);
 saveErrors(request, errors);
 return mapping.findForward(IConstants.FAILURE_KEY);
}catch (AccountLockedException ex){
 ActionErrors errors = new ActionErrors();
 ActionError newError = new
ActionError("error.security.accountlocked");
 errors.add(ActionErrors.GLOBAL_ERROR, newError);
 saveErrors(request, errors);
 return mapping.findForward(IConstants.FAILURE_KEY);
}

This fragment is another reason why the declarative exception-handling feature of Struts is so
attractive. Look at the amount of work that we did here. With declarative exception handling, all of
this would be defined within the Struts configuration file.

12.3.2.1 The Bean tag library's MessageTag class

The Struts framework contains several custom tags that can be used in conjunction with the
MessageResources for an application. One of the most important, however, is the Message
tag that is part of the Bean tag library.

This custom tag retrieves a message string from one of the bundles for an application. It supports
optional parametric replacement if the JSP page requires it. All you need to do is provide the key from
the bundle and specify which application bundle to use, and the tag will write out the information to
the JSP page. For example, the following JSP fragment uses the MessageTag to write out the title
of the HTML page:

<head>
 <title><bean:message key="global.title"/></title>
</head>

This is one tag that you will find yourself using quite often within your Struts applications.

12.3.3 Setting the Character Set

Supporting character sets other than the typical U.S. default ISO-8859-1 is a little tricky. There are
several steps that you must perform before your environment will be prepared to support them. First,
you need to configure the application server and/or servlet container to support the character-encoding
scheme that you want to use. For example, for Unicode you would tell the container to interpret input

as UTF-8. Check with the vendor's documentation, as each one will be configured differently. You
can also set up a servlet filter to do this, but this requires a container that supports the 2.3 Servlet API.

Next, the contentType property within the controller element in the Struts configuration
file needs to be set correctly. Set it to text/html;charset=UTF-8 for HTML Unicode
support. You can also specify this in the JSP pages by putting the following line at the top of each
page:

<%@ page contentType="text/html; charset=utf-8" %>

and this line in the HTML head section:

<head>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset=UTF-8">
</head>

Another option is to set the content type and encoding scheme in the response object, like this:

response.setContentType("text/html; charset=UTF-8");

However, you might have to do this in several different places, making maintenance and
customization more difficult.

You may also have to tell the browser to always send URLs as UTF-8. There's usually a checkbox or
option to do this—in IE 5.5, it's in the advanced options section.

There are two final steps to ensure that your application can fully support Unicode. The first is to
make sure your database is configured for Unicode. This is usually the default, but you should verify
that this is the case. Second, if you're using the JRE rather than the SDK, use the I18N version and not
the U.S. version.

12.4 Exception Handling and Internationalization

Exception handling was covered in detail in Chapter 10, and as you saw, there are I18N issues that
need to be considered when building an exception-handling framework for your application.

Unless you plan to localize the exception messages that are thrown, you need to isolate the exception
messages and be sure that they are never shown to the end user. The one thing that is more frustrating
for an end user than getting an exception message or stack trace printed out on the screen is getting
one that is not in that user's native language.

As Chapter 10 pointed out, exceptions should be caught and localized messages should be displayed
to the user. This can be accomplished by using the Struts message resource bundle and the
ActionError class. You should never display a Java exception to the end user. Even when there's
a system failure that can't be recovered from, you should still have a system error page that is localized
for the user.

Chapter 13. Struts and Enterprise JavaBeans

As you've seen so far, you can use Struts to build both the controller and the view components of an
MVC-based application. Struts isn't a framework for business logic or data access, so it doesn't play a
role in the model component. This means that business logic (other than presentation validation)
would be out of place in an action or form class. It also means that choosing to use Struts in an
application shouldn't place any constraints on the design of the model. The separation of
responsibilities in a layered architecture means that your Struts classes shouldn't care about how your
model is implemented. Likewise, the model shouldn't care (or even know) that the controller and view
are built using Struts.

Up to this point, the example applications presented in this book have used the web tier to provide
everything needed from the middle tier, including the business logic and database access. With this
approach, the application model has consisted simply of regular Java classes deployed in the web
container. These classes have had complete responsibility for servicing requests from the action
classes that depend on the application model. This architecture is common among web applications,
and it works well as long as the requirements in areas such as security, scalability, and transaction
complexity stay within the limits of what a web container can do. Trying to do everything within the
web tier can prove to be a challenge when these requirements, which aren't necessarily as high a
priority in the design of a web container as they are in other container types, become too stringent.

The alternative to building the model into the web tier is to use a true application tier, such as a J2EE
application server. With this approach, the web tier provides the controller and view, and the
application tier supplies the business data and its associated rules. Such a design is appropriate when
the scalability, security, and transactional needs of an enterprise application require a more robust
container. This situation is what we want to consider in this chapter. While it's true that the
development of your Struts classes can be independent of the model implementation, this does require
some effort on your part. This chapter covers some of the issues you need to consider when
developing an interface between your Struts actions and an application tier. In particular, the focus
here is on interfacing to a model built using Enterprise JavaBeans (EJB).

To EJB or Not to EJB?
As the J2EE architecture grew in significance for enterprise application development, it was
often assumed that an application that didn't include EJB wasn't a J2EE application at all.
The rush was on to build enterprise-strength systems backed by EJB containers and all they
had to offer. For carefully designed applications that required the type of infrastructure
inherent with EJB, the technology provided a standards-based approach that led to many
successful deployments. However, the focus on the EJB portion of J2EE also led to its use
in applications that could have been better served by more lightweight approaches. This,
along with some developers' disappointment with the pace of EJB's evolution, has led to a
backlash against using EJB at all. Developers fall on both sides of this issue, with some in
the Struts community being quite vocal in their criticism of EJB. The more moderate
opinion is that EJB offers value where its strengths are truly needed, but can be costly both
in performance and complexity otherwise.

This chapter won't attempt to argue the pros and cons of EJB. That topic falls outside the
scope of this book. Instead, we'll simply presume that you've been asked to build a Struts-
based web tier that needs to interface with an EJB application tier. With that as a starting
point, the main concerns will be to identify the key issues and come up with an effective
approach for addressing them.

13.1 Implementing the Storefront Service Using EJB

Even though this chapter is specific to EJB, the intent is still to keep the focus on Struts. With that in
mind, the discussion of EJB implementation details will be kept to a minimum. EJB is a complex topic,
but the nature of several design patterns geared toward the interaction between EJBs and their clients
makes this an easier task than you might first think. After all, an overriding goal of this chapter is to
demonstrate how to design an application so that your Struts classes aren't impacted by the choice to
use an EJB implementation of the model. You already have a head start on some of the central issues
here, having seen how the model component of a web application can be hidden behind a service
interface. In particular, you've seen through the Storefront example how easy it is to swap a debug
model with a full implementation that accesses a database when this design approach is followed.

Throughout this chapter, the Storefront example will be used to illustrate how an EJB application tier
can be used with a Struts application. If it weren't for the remote nature of accessing an EJB from a
client application, this implementation choice wouldn't make any difference to you. However, the
distributed aspects of EJB must be taken into account when your web-tier classes access this type of
model. What you'll see in the remainder of this chapter are some recommendations on how best to
implement the code needed to interface with the application tier. Key to this discussion is an approach
for isolating the code that handles what's unique about EJB so that your action classes aren't affected.

13.1.1 A Quick EJB Overview

The EJB specification defines three types of beans: entity, session, and message-driven. Each type of
bean has a different purpose within an EJB application.

Entity beans provide transactional access to persistent data and are most often used to represent rows
stored in one or more related tables in a database. For example, you might implement
CustomerBean, ItemBean, and OrderBean entity classes, among others, to support the
Storefront application. These entity beans would incorporate the functionality provided by the
corresponding business object classes in the example application. When entity beans are used, they
take on the primary role of supplying the application model. They are expected to provide both the
required data persistence operations and the business logic that governs the data they represent.
Because the model should be reusable across applications in an enterprise, entity beans need to be
independent of the types of clients that ultimately access the application tier.

Session beans are often described as extensions of the client applications they serve. They can
implement business logic themselves, but more often their role is to coordinate the work of other
classes (entity beans, in particular). They are more closely tied to their clients, so the precaution of
keeping entity beans reusable doesn't apply to session beans to the same extent. The application tier is
primarily considered to be the application model, but session beans are also referred to as "controllers"
because of the coordination they do. This is especially true when session-bean methods are used to
implement transactions that touch multiple business objects.

Session beans can be implemented as either stateless or stateful. A stateless
session bean maintains no state specific to its client, so a single instance can
efficiently be shared among many clients by the EJB container. A stateful bean
instance, on the other hand, is assigned to a specific client so that state can be
maintained across multiple calls. Holding state in the application tier can
simplify the client application logic, but it makes it more difficult to scale to a
large number of clients. Typical web applications maintain their client state in

the user session, and possibly the database, instead of making use of stateful
session beans. For this reason, we'll focus on stateless beans for our examples
here.

The EJB 2.0 specification added message-driven beans as the third bean type so that EJB could be
integrated with the Java Message Service (JMS). Message-driven beans differ from the other two
types in that they respond asynchronously to requests instead of being called directly by a client
application. The container invokes a message-driven bean whenever a JMS message that meets the
selection criteria of the bean is received. For example, in a more complex version of the Storefront
application, a message-driven bean could be used to respond to a notification that an item is being
backordered. The bean could be responsible for emailing any customers that had orders already in
place for the item. Message-driven beans have no direct interaction with client applications, so they
are even less dependent on the client than entity beans are.

13.1.2 The Session Façade

The first step in designing an interface to the application tier is to identify the entry points exposed to
a client application. Message-driven beans aren't called directly, so they don't come into play here.
However, a typical EJB application can include a number of session and entity beans. As already
pointed out, standard practice is to insulate entity beans from the details of the client so that they can
be reused in other applications. If your Struts actions were to interact with entity beans directly, the
web tier would quickly become coupled to the object model implemented by the application tier. This
tight coupling, combined with the distributed nature of EJB, would lead to a number of issues:

• Changes in the EJB object model would require corresponding changes in the web tier.
• Action classes often would be required to execute multiple remote calls to the application

server to satisfy the business logic needs of a request.
• The business logic and transaction-management code needed to orchestrate multiple calls

would have to exist in the web tier.

To avoid these issues, the interface exposed to the clients of the application tier is almost always
limited to session beans. This approach is commonly referred to as either "session wraps entity" or a "
session façade." There are quite a few advantages to this design. When a client application makes a
single call to a session-bean method to perform a required operation, the session bean can easily
execute the request as a single transaction, and the implementation details can be hidden. This session-
bean method might need to access a number of entity beans, or even other session beans, to satisfy the
request. No matter what the flow of control is on the application server, the complexity is hidden from
the client. Because session beans become the only clients of the entity beans when using a session
façade, there's little chance of the entities becoming tied to any particular type of external client.

Even though the discussion here assumes that the business objects are
implemented as entity beans, this doesn't have to be the case in an EJB
application. The same concerns and advantages that support using a session
façade apply when other implementations are used. Just as some Java
developers don't like EJB, not all EJB developers like entity beans. Because
the session façade hides the object model from the client, entity beans can be
replaced with another approach, such as Java data objects (JDOs) or regular
data access objects (DAOs), without impacting the interface exposed to the
client.

13.1.3 The Business Interface

When using a session façade, you must first define the details of the interface between the web and
application tiers. You might have some questions about which side should be the primary driver of
this contract between the two tiers. Early in the development of the Storefront example, the
IStoreFrontService interface was introduced to define the application-tier functionality
required to support the presentation needs of the application. In particular, the presentation layer relies
on the supporting service to authenticate users and to provide product descriptions needed to build the
online catalog. Taking a user-centered view of the application, it's easy to see how the service-layer
requirements can be driven by the web tier. After all, if a certain view is to be built, the model
functionality to support it has to exist. However, one of the main reasons to implement an enterprise's
business logic within EJBs is to allow those business rules and the supporting data to be used to across
multiple applications. This includes providing support for clients other than those associated with web
applications. This isn't a problem, because the division of responsibility between session and entity
beans helps to protect the reusability of business logic.

Because session beans are treated as extensions of the clients they serve, there's nothing wrong with
defining a session façade that's specific to a particular client application. As long as your entity and
message-driven beans remain independent of the client, it's reasonable to implement a session-bean
interface in response to the requirements set forth by a specific client. If multiple client views of the
model are required, multiple façades can be implemented to support them.

The façade presented by a session bean can support either local or remote clients. Local clients of a
session or entity bean can only be other EJBs deployed within the same container. These clients are
tightly coupled to the beans they access, but they offer performance advantages when calls need to be
made between EJBs. This is because these method calls use pass-by-reference semantics instead of
being treated as remote calls between distributed components. Session beans are often local clients of
entity beans, but it's less common for them to have local clients of their own to support. Our web-tier
components obviously aren't EJBs running within the application tier, so we care only about remote
clients for our purposes here. What we need to do, then, is define the remote interface for our session
façade.

Every session bean that supports remote clients must have a corresponding remote interface that
extends the javax.ejb.EJBObject interface. This interface determines the business methods
that are exposed by the session bean. It might seem strange, but you'll almost never see a method
explicitly declared in a remote interface. This is because of an EJB design pattern known as the
business interface.

Besides its remote interface, a session bean supporting remote clients must
have a home interface that extends javax.ejb.EJBHome, an
implementation class, and one or more XML deployment descriptors. Unlike
the remote interface, which declares the bean's business methods, the home
interface defines factory-like methods for creating session-bean references. By
definition, the bean's methods are implemented by the implementation class.
The deployment descriptors identify and configure a bean for use within a
particular EJB container. We'll define each piece for our example as we go
along.

When you think of a class and an interface with which it's associated, you would normally expect that
the class would explicitly implement that interface. This isn't true with remote (or local) interfaces in
EJB. Instead, the container creates an intermediate object (often referred to as an EJBObject) to

implement the remote interface. This object intercepts calls made by clients of the bean, then delegates
them to the implementation class after performing any operations (such as security or transaction
management) that might be required. Instead of the Java compiler verifying that the bean class
implements each of the business methods declared by the remote interface, that responsibility falls to
the deployment tools provided by the container. Even a bean class that compiles without any errors
will fail at deployment if there's a mismatch between it and its remote interface.

If you declared a session bean to implement its remote interface, you'd be guaranteed that the compiler
would catch any problems with its business-method declarations. The problem is that you'd also have
to provide dummy implementations of the non-business methods declared by
javax.ejb.EJBObject. These methods would never be called (they're called only on the
intermediate object created by the container), but they would have to be there to satisfy the compiler.
Instead of taking this approach, most EJB developers create a second interface, known as the business
interface, that declares the business methods that need to be exposed. Declaring the remote interface to
extend this interface and the bean class to implement it exposes the required methods, so the compiler
can verify that the bean implements them. This pattern provides a convenient starting point for
defining our client access mechanism.

The use of a business interface also prevents programmers from accidentally
passing or returning a this reference to an instance of a bean class that has been
declared to implement its remote interface. This topic is beyond the scope of
this book, but the short explanation is that the EJB container can manage bean
instances properly only when they're referred to using only their remote (or
local) interfaces. A bean reference can't be returned in place of its remote
interface if the bean class implements only its business interface.

Returning to the IStorefrontService interface that eventually must be satisfied by our
implementation, recall that it contains methods related to both user authentication and the product
catalog. Even when using a session façade, you would likely separate these responsibilities into
separate session beans. This would reduce the complexity of the session beans involved and simplify
their maintenance. However, given that EJB design isn't our focus here, our first simplification will be
to assume that our façade will consist of a single Storefront session bean. You probably
wouldn't do this in a real application, but once you know how to interface with a single session bean,
applying the same technique to multiple session beans is straightforward. A suitable business interface
for the Storefront session bean is shown in Example 13-1.

Example 13-1. The business interface for the Storefront session bean
package com.oreilly.struts.storefront.service;

import java.rmi.RemoteException;
import java.util.List;
import
com.oreilly.struts.storefront.catalog.view.ItemDetailView;
import com.oreilly.struts.storefront.customer.view.UserView;
import com.oreilly.struts.storefront.framework.exceptions.*;

/**
 * The business interface for the Storefront session bean
 */
public interface IStorefront {

 public UserView authenticate(String email, String password)
 throws InvalidLoginException, ExpiredPasswordException,
 AccountLockedException, DatastoreException,
RemoteException;

 public List getFeaturedItems() throws DatastoreException,
RemoteException;

 public ItemDetailView getItemDetailView(String itemId)
 throws DatastoreException, RemoteException;
}

The first thing to notice about the IStorefront interface is that its methods don't exactly match
those declared by IStorefrontService. First of all, our business interface doesn't include the
logout() and destroy() methods found in the service interface. The reason for this is that
those methods represent web-tier functionality, not true business logic that needs to move to the
application tier. Also, every method in IStorefront is declared to throw
RemoteException, which is not part of the declarations in IStorefrontService. All
business methods exposed to a remote client of an EJB must be declared to throw
RemoteException, which is used to report communication failures specific to remote method
execution. This is the one aspect of a remote interface that can't be hidden by the business interface.
Without this restriction, this interface could be made to look very much like our service interface.
Once we cover how our example session bean will be implemented, we'll discuss how these
mismatches between the interfaces can be handled.

It's also important to notice that our business interface is referencing the view classes already created
to support the service interface. The same Data Transfer Object (DTO) pattern introduced in Chapter 7
applies to an EJB-based model. Instead of exposing the actual business object implementation classes
or many fine-grained methods to access their properties, you can use simple JavaBean classes to
communicate the state of the model to the client. We declared our BaseView superclass to be
Serializable so that the view classes could be referenced in a remote interface. DTO classes
tend to consist of simple data types, so this constraint should be a minor one.

With our business interface defined, Example 13-2 shows the trivial remote interface declaration we'll
need to eventually deploy our session bean.

Example 13-2. The remote interface for the Storefront session bean
package com.oreilly.struts.storefront.service;

import javax.ejb.EJBObject;

public interface Storefront extends EJBObject, IStorefront {
 /**
 * The remote interface for the Storefront session bean. All
methods are
 * declared in the IStorefront business interface.
 */
}

13.1.4 Stateless Session Bean Implementation

Without getting into anything too elaborate, we next want to come up with an implementation of our
session façade. We'll make a few decisions here to simplify things, but the result will be all we need to
illustrate how to interface the web and application tiers. It will also be good enough for you to deploy
in an EJB container and use to test your Struts interface.

If you were given the task of implementing the application tier of the Storefront application using EJB,
you probably would produce a design consisting of both session and entity beans. You could represent
the model components using entity beans, and you'd likely have a number of session beans to provide
the functionality for security, catalog, and order operations. The session beans would provide the
workflow functionality required from process business objects, and the entity beans would serve as the
corresponding entity business objects.

We've already made the decision to use only a single session bean for the example. The session façade
makes our next simplification easy as well. Because we've isolated the interface between our two tiers
into a façade, any division of responsibilities between session and entity beans is of no concern to us
as Struts developers. The web tier sees only session-bean methods and DTO classes, so nothing else
about the implementation will affect the web components. Given that, we'll implement our façade
using a single stateless session bean that does not require any other EJBs.

If you're starting with an EJB implementation that includes entity beans, you
might want to use XDoclet (available from
http://www.sourceforge.net/projects/xdoclet/) to automatically generate Struts
ActionForms from these beans. For more complex EJB implementations
than what we're looking at here, XDoclet also provides an automated means of
generating the various interfaces and deployment descriptors required for a
bean. This code generation is performed based on special JavaDoc tags that
you include in your EJB implementation classes.

Because we're not using entity beans, we can make use of the same ORM approach and entity
business object classes already used by the StorefrontServiceImpl class. In fact, our
implementation will look very much like that class, with the exception of the callback methods
required by the javax.ejb.SessionBean interface. This is shown in Example 13-3.

Example 13-3. The Storefront session bean
package com.oreilly.struts.storefront.service;

import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import org.odmg.*;
import ojb.odmg.*;

import
com.oreilly.struts.storefront.businessobjects.CustomerBO;
import com.oreilly.struts.storefront.businessobjects.ItemBO;
import
com.oreilly.struts.storefront.catalog.view.ItemDetailView;
import
com.oreilly.struts.storefront.catalog.view.ItemSummaryView;
import com.oreilly.struts.storefront.customer.view.UserView;
import
com.oreilly.struts.storefront.framework.exceptions.AccountLock
edException;
import
com.oreilly.struts.storefront.framework.exceptions.DatastoreEx
ception;
import
com.oreilly.struts.storefront.framework.exceptions.ExpiredPass
wordException;
import
com.oreilly.struts.storefront.framework.exceptions.InvalidLogi
nException;

/**
 * This is a simple Session Bean implementation of the
Storefront service
 */
public class StorefrontBean implements SessionBean,
IStorefront {
 private SessionContext ctx;
 private Implementation odmg = null;
 private Database db = null;

 public UserView authenticate(String email, String password)
 throws InvalidLoginException, ExpiredPasswordException,
 AccountLockedException, DatastoreException {

 // Query the database for a user that matches the
credentials
 List results = null;
 try{
 OQLQuery query = odmg.newOQLQuery();
 // Set the OQL select statement
 String queryStr = "select customer from " +
CustomerBO.class.getName();
 queryStr += " where email = $1 and password = $2";
 query.create(queryStr);

 // Bind the input parameters
 query.bind(email);
 query.bind(password);

 // Retrieve the results
 results = (List)query.execute();
 }catch(Exception ex){
 ex.printStackTrace();
 throw DatastoreException.datastoreError(ex);
 }

 // If no results were found, must be an invalid login
attempt
 if (results.isEmpty()){
 throw new InvalidLoginException();
 }

 // Should only be a single customer that matches the
parameters
 CustomerBO customer = (CustomerBO)results.get(0);

 // Make sure the account is not locked
 String accountStatusCode = customer.getAccountStatus();
 if (accountStatusCode != null &&
accountStatusCode.equals("L")){
 throw new AccountLockedException();
 }

 // Populate the value object from the Customer business
object
 UserView userView = new UserView();
 userView.setId(customer.getId().toString());
 userView.setFirstName(customer.getFirstName());
 userView.setLastName(customer.getLastName());
 userView.setEmailAddress(customer.getEmail());
 userView.setCreditStatus(customer.getCreditStatus());

 return userView;
 }

 public List getFeaturedItems() throws DatastoreException {
 List results = null;
 try{
 OQLQuery query = odmg.newOQLQuery();
 // Set the OQL select statement
 query.create("select featuredItems from " +
ItemBO.class.getName());
 results = (List)query.execute();
 }catch(Exception ex){
 ex.printStackTrace();
 throw DatastoreException.datastoreError(ex);
 }

 List items = new ArrayList();
 Iterator iter = results.iterator();
 while (iter.hasNext()){
 ItemBO itemBO = (ItemBO)iter.next();
 ItemSummaryView newView = new ItemSummaryView();
 newView.setId(itemBO.getId().toString());
 newView.setName(itemBO.getDisplayLabel());
 newView.setUnitPrice(itemBO.getBasePrice());
 newView.setSmallImageURL(itemBO.getSmallImageURL());
 newView.setProductFeature(itemBO.getFeature1());
 items.add(newView);
 }
 return items;
 }

 public ItemDetailView getItemDetailView(String itemId)
 throws DatastoreException {
 List results = null;
 try{
 OQLQuery query = odmg.newOQLQuery();

 // Set the OQL select statement
 String queryStr = "select item from " +
ItemBO.class.getName();
 queryStr += " where id = $1";
 query.create(queryStr);
 query.bind(itemId);

 // Execute the query
 results = (List)query.execute();
 }catch(Exception ex){
 ex.printStackTrace();
 throw DatastoreException.datastoreError(ex);
 }

 //
 if (results.isEmpty()){
 throw DatastoreException.objectNotFound();
 }

 ItemBO itemBO = (ItemBO)results.get(0);

 // Build a ValueObject for the Item
 ItemDetailView view = new ItemDetailView();
 view.setId(itemBO.getId().toString());
 view.setDescription(itemBO.getDescription());
 view.setLargeImageURL(itemBO.getLargeImageURL());
 view.setName(itemBO.getDisplayLabel());
 view.setProductFeature(itemBO.getFeature1());

 view.setUnitPrice(itemBO.getBasePrice());
 view.setTimeCreated(new
Timestamp(System.currentTimeMillis()));
 view.setModelNumber(itemBO.getModelNumber());
 return view;
 }

 /**
 * Opens the database and prepares it for transactions.
 */
 private void init() throws DatastoreException {
 // Get odmg facade instance
 odmg = OJB.getInstance();
 db = odmg.newDatabase();
 // Open database
 try{
 db.open("repository.xml", Database.OPEN_READ_WRITE);
 }catch(ODMGException ex){
 throw DatastoreException.datastoreError(ex);
 }
 }

 public void ejbCreate() throws CreateException {
 try {
 init();
 }catch (DatastoreException e) {
 throw new CreateException(e.getMessage());
 }
 }

 public void ejbRemove() {
 try {
 if (db != null) {
 db.close();
 }
 }catch (ODMGException e) {}
 }

 public void setSessionContext(SessionContext
assignedContext) {
 ctx = assignedContext;
 }

 public void ejbActivate() {
 // Nothing to do for a stateless bean
 }

 public void ejbPassivate() {
 // Nothing to do for a stateless bean

 }

}

In our StorefrontBean class, the business method implementations are unchanged from the
StorefrontServiceImpl versions. Only the management of the database connection needed
to be modified. Whenever the EJB container creates a new instance of this bean, the ejbCreate()
callback method is invoked and a database connection is established. This connection is closed in the
corresponding ejbRemove() method that is called prior to the instance being destroyed. The
container never passivates stateless session beans, so do-nothing implementations are supplied for the
ejbPassivate() and ejbActivate() methods of the SessionBean interface. If we
needed more than one session bean in our example, we'd move these two methods into an adapter
class and extend all our concrete implementation classes from it.

A more correct EJB approach would be to open the database connection using
a javax.sql.DataSource connection factory obtained from a JNDI
lookup. This allows the container to manage connection pooling and
transaction enlistment for you automatically. Again, this doesn't affect our
interface, so we can continue to use this simple implementation.

Our session bean now has a remote interface and an implementation class. That leaves the home
interface, which is always simple in the case of a stateless session bean. All we need is a single
create() method, as shown in Example 13-4.

Example 13-4. The home interface for the Storefront session bean
package com.oreilly.struts.storefront.service;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

/**
 * The home interface for the Storefront session bean.
 */
public interface StorefrontHome extends EJBHome {
 public Storefront create() throws CreateException,
RemoteException;
}

13.1.5 JBoss Deployment

We need to select an EJB container and create the required XML deployment descriptors before we
can deploy and use our session bean. The open source JBoss application server fits our requirements
perfectly. This full-featured J2EE implementation, complete with EJB 2.0 support, is a favorite among
open source developers. You can download the software for free from http://www.jboss.org.

With our minimal implementation, we don't need anything complicated as far as deployment
information for our session bean. Example 13-5 shows the standard ejb-jar.xml descriptor for our bean.
For the most part, this file simply identifies the home and remote interfaces and the implementation
class. It also declares that all of the business methods are nontransactional (because they're read-only
methods).

Example 13-5. The ejb-jar.xml deployment descriptor for the Storefront session bean
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar >

 <description>
 Generic deployment information for the Storefront
session bean
 </description>
 <display-name>Storefront Session Bean</display-name>

 <enterprise-beans>
 <session >
 <ejb-name>Storefront</ejb-name>

<home>com.oreilly.struts.storefront.service.StorefrontHome</ho
me>

<remote>com.oreilly.struts.storefront.service.Storefront</remo
te>
 <ejb-
class>com.oreilly.struts.storefront.service.StorefrontBean</ej
b-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

 <assembly-descriptor >
 <container-transaction >
 <method >
 <ejb-name>Storefront</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

</ejb-jar>

In addition to the ejb-jar.xml file, most containers require one or more vendor-specific descriptors as
part of a bean's deployment information. In this case, all we need to do is associate a JNDI name with
our bean. Example 13-6 shows how this is done with JBoss. The fully qualified name of the bean's
remote interface was chosen as the JNDI name. It's also common to use the home interface name.

Example 13-6. The J Boss deployment descriptor for the Storefront session bean
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss PUBLIC "-//JBoss//DTD JBOSS//EN"
 "http://www.jboss.org/j2ee/dtd/jboss.dtd">

<jboss>

 <enterprise-beans>
 <session>
 <ejb-name>Storefront</ejb-name>
 <jndi-
name>com.oreilly.struts.storefront.service.Storefront</jndi-
name>
 </session>
 </enterprise-beans>

</jboss>

Deployment of an EJB requires packaging it into a Java archive (JAR) file. The deployment JAR file
for our session bean needs to include the following files:

• The home and remote interface class files
• The bean implementation class file
• The two deployment descriptors (these files must be placed in a META-INF directory)
• The OJB.properties file and the various repository XML files used by the ORM framework
• The business object and DTO class files referenced by the Storefront bean

Once you've created this JAR file, you can deploy the bean by copying the file to the
server/default/deploy directory underneath your JBoss installation. You can place the JAR files for
your JDBC driver and the OJB classes in the server/default/lib directory. At this point, you can start
JBoss and verify that you have everything in place to execute the application tier.

13.2 Interfacing Struts to EJB

It's now time to turn our attention back to the client side of our session façade. In this section, we'll
first cover how to satisfy the requirements of our service interface with our session-bean
implementation. We'll then look at how to better manage the JNDI lookups and home and remote
interface management inherent in being a remote client to an EJB.

13.2.1 Using a Business Delegate

As you saw when we defined the business interface for the Storefront session bean, we still
have some work to do to match it up to the Storefront service interface. Our business interface doesn't
include all the methods of IStorefrontService, and the methods that are declared include

RemoteException in their throws clauses. We'll address these differences by going back to the
Business Delegate pattern introduced in Chapter 6. Recall that the purpose of this pattern is to hide the
business-service implementation from the client application.

We'll start out with a fairly straightforward Business Delegate implementation and then cover some
specific ways to improve it. An initial implementation is shown in Example 13-7.

Example 13-7. A business delegate for the Storefront session bean
package com.oreilly.struts.storefront.service;

import java.rmi.RemoteException;
import java.util.Hashtable;
import java.util.List;
import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import
com.oreilly.struts.storefront.catalog.view.ItemDetailView;
import com.oreilly.struts.storefront.customer.view.UserView;
import com.oreilly.struts.storefront.framework.exceptions.*;

/**
 * This class is a business delegate that supports the
implementation of the
 * IStorefrontService interface using the Storefront session
bean.
 */
public class StorefrontEJBDelegate implements
IStorefrontService {

 private IStorefront storefront;

 public StorefrontEJBDelegate() {
 init();
 }

 private void init() {
 try {
 Hashtable props = new Hashtable();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
 props.put(Context.PROVIDER_URL, "localhost");

 InitialContext ic = new InitialContext(props);
 Object home =
ic.lookup("com.oreilly.struts.storefront.service.Storefront");

 StorefrontHome sfHome = (StorefrontHome)
 PortableRemoteObject.narrow(home,
StorefrontHome.class);
 storefront = sfHome.create();
 }
 catch (NamingException e) {
 throw new RuntimeException(e.getMessage());
 }
 catch (CreateException e) {
 throw new RuntimeException(e.getMessage());
 }
 catch (RemoteException e) {
 throw new RuntimeException(e.getMessage());
 }
 }

 public UserView authenticate(String email, String password)
 throws InvalidLoginException, ExpiredPasswordException,
 AccountLockedException, DatastoreException {
 try {
 return storefront.authenticate(email, password);
 }
 catch (RemoteException e) {
 throw DatastoreException.datastoreError(e);
 }
 }

 public List getFeaturedItems() throws DatastoreException {
 try {
 return storefront.getFeaturedItems();
 }
 catch (RemoteException e) {
 throw DatastoreException.datastoreError(e);
 }
 }

 public ItemDetailView getItemDetailView(String itemId)
 throws DatastoreException {
 try {
 return storefront.getItemDetailView(itemId);
 }
 catch (RemoteException e) {
 throw DatastoreException.datastoreError(e);
 }
 }

 public void logout(String email) {
 // Do nothing for this example
 }

 public void destroy() {
 // Do nothing for this example
 }
}

When an instance of the StorefrontEJBDelegate class is created, its init() method is
called to obtain a remote reference to the Storefront session bean. This method performs the
required JNDI lookup using the naming service implementation provided by JBoss. As written, the
delegate assumes that the naming service is running on the local machine. Later, we'll look at how to
externalize the details of the JNDI lookup that must be performed by a delegate. Once a remote
reference is obtained, the delegate holds it as part of its state. This field is declared to be of the
business interface type because we need it only for accessing business methods. Even though the
storefront field isn't declared to be of the session bean's remote interface type, the required
handling of RemoteException makes it clear that our delegate is accessing a remote object.

Other than what is required to obtain a remote reference, most of the code in our delegate does nothing
more than relay business method calls to the session-bean implementation. The logout() and
destroy() methods have no counterparts in the application tier, so those implementations don't
include session-bean calls. If we needed to do something in these methods, that code could either be
implemented directly in the StorefrontEJBDelegate methods or in another web-tier
component that could be called by the delegate.

13.2.1.1 Exception handling

The exception handling found in this implementation of the StorefrontEJBDelegate class is
worth noting. In addition to hiding the details of JNDI lookups, a business delegate used with a
session bean should also hide the EJB-specific exceptions that come with being a remote client. In the
business methods of the delegate, any RemoteException that gets thrown from a session-bean
call is caught and reported to the client using a DatastoreException. Hiding the remote
nature of the model implementation addresses the mismatch in declared exceptions between our
business interface and the IStorefrontService declarations.

If the inclusion of RemoteException in our business interface had been
the only difference between this and the service interface, it might have been
tempting to simply add this exception to IStorefrontService and
continue forward. However, this would have unnecessarily cluttered the
contract for whatever service implementation might be used with
implementation details.

The only reason our delegate uses a DatastoreException to respond to a
RemoteException is to leave the service interface unaffected by the implementation approach.
If this self-imposed constraint were relaxed so that changes to IStorefrontService were
acceptable, a better approach would be to declare an exception class whose sole purpose is to report
exceptions from a delegate in a generic fashion. For example, if we were to declare an application
exception named ServiceDelegateException, we could throw that when a
RemoteException occurred. Instead of throwing a RuntimeException to report a failure
in obtaining a remote reference, the init() method could also be updated to make use of
ServiceDelegateException. This new exception would be a more accurate indication of

the type of error that occurred than using a DatastoreException. Furthermore, adding this
new exception to our IStorefrontService declarations still wouldn't expose the fact that the
implementation is based on EJB.

13.2.1.2 Swapping the implementation

All that's left to do is to swap the current Storefront service implementation with the delegate we have
created. The framework put into place with the StorefrontServiceFactory in Chapter 6
makes this easy to do. We simply need to change the class specified for our service implementation in
the web.xml file to the following:

<init-param>
 <param-name>storefront-service-class</param-name>
 <param-value>

com.oreilly.struts.storefront.service.StorefrontEJBDelegate
 </param-value>
</init-param>

With this change made, an action will be creating a delegate instance whenever it calls the
getStorefrontService() method implemented in the StorefrontBaseAction.
This method should be called only once during a request, to avoid the unnecessary overhead of
creating additional remote references. However, even taking care to use the same delegate throughout
a request leaves us with an implementation that isn't very efficient. The next section covers some ways
to improve our use of JNDI and home interfaces.

Don't forget that you'll need to copy the JBoss client JARs to the lib directory
for your web application before using your delegate. You'll also need the home
and remote interface class files for the Storefront session bean in the
classes directory.

13.2.2 Managing EJB Home and Remote References

Implementing a business delegate clearly isolates and minimizes the dependencies between the web
and application tiers. We were able to implement our Storefront session bean using a business
interface that isn't tied to any particular client type. We also were able to leave our Struts action
classes untouched when switching to this implementation of our model. We do have a couple of
problems to address, though, to turn this into a solution you would want to use in a real application.
Most importantly, we need to improve how we're obtaining our home interface references. We also
should get rid of the hardcoded parameters used by our JNDI lookup.

Performing a JNDI lookup to obtain a home interface reference is an expensive (slow) operation. We
couldn't do much about this overhead if we actually needed a new home reference for each request,
but that's not the case. An EJB home is a factory object that is valid throughout the lifetime of the
client application. There is no state in this object that prevents it from being used across requests or
client threads. Our delegate would be significantly improved if the home reference it needed were
cached within the web tier after being requested the first time.

As with any design problem, there is more than one technique we should consider for caching our
home reference. We're basically talking about application-scope data in the web tier, so modifying the

delegate to store the reference in the ServletContext after doing the required JNDI lookup is a
potential solution. This would prevent any additional lookups, but it would require us to make the
ServletContext available to our delegate through its constructor. This one change would ripple
out to our service factory, because it currently instantiates an IStorefrontService
implementation using its no-argument constructor. It would be preferable to choose a solution without
such a strong tie to HTTP constructs. A more flexible approach is to apply the EJBHomeFactory
pattern as a way to cache the references we need.

13.2.2.1 Implementing an EJBHomeFactory

The EJBHomeFactory pattern is defined in EJBDesignPatterns by Floyd Marinescu (Wiley &
Sons). Implementing this pattern allows you to create and cache any EJB home reference needed by
your application. Because it's not dependent on the ServletContext, you can reuse this
technique in non-web applications. Example 13-8 shows the implementation of this pattern that we'll
use for the Storefront application.

Example 13-8. An EJBHomeFactory implementation
package com.oreilly.struts.storefront.framework.ejb;

import java.io.InputStream;
import java.io.IOException;
import java.util.*;
import javax.ejb.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;

/**
 * This class implements the EJBHomeFactory pattern. It
performs JNDI
 * lookups to locate EJB homes and caches the results for
subsequent calls.
 */
public class EJBHomeFactory {
 private Map homes;
 private static EJBHomeFactory singleton;
 private Context ctx;

 private EJBHomeFactory() throws NamingException {
 homes = Collections.synchronizedMap(new HashMap());
 try {
 // Load the properties file from the classpath root
 InputStream inputStream =
getClass().getResourceAsStream(
 "/jndi.properties");
 if (inputStream != null) {
 Properties jndiParams = new Properties();
 jndiParams.load(inputStream);

 Hashtable props = new Hashtable();

 props.put(Context.INITIAL_CONTEXT_FACTORY,
 jndiParams.get(Context.INITIAL_CONTEXT_FACTORY));
 props.put(Context.PROVIDER_URL,
jndiParams.get(Context.PROVIDER_URL));
 ctx = new InitialContext(props);
 }
 else {
 // Use default provider
 ctx = new InitialContext();
 }
 } catch(IOException ex){
 // Use default provider
 ctx = new InitialContext();
 }
 }

 /**
 * Get the Singleton instance of the class.
 */
 public static EJBHomeFactory getInstance() throws
NamingException {
 if (singleton == null) {
 singleton = new EJBHomeFactory();
 }
 return singleton;
 }

 /**
 * Specify the JNDI name and class for the desired home
interface.
 */
 public EJBHome lookupHome(String jndiName, Class homeClass)
 throws NamingException {
 EJBHome home = (EJBHome)homes.get(homeClass);
 if (home == null) {
 home = (EJBHome)PortableRemoteObject.narrow(ctx.lookup(
 jndiName), homeClass);
 // Cache the home for repeated use
 homes.put(homeClass, home);
 }
 return home;
 }
}

The getInstance method of EJBHomeFactory differs from most
Singleton implementations in that it isn't declared to be synchronized. As
discussed in EJBDesignPatterns, using a synchronized method here would
degrade performance without providing any significant benefit in return. If
multiple instances of EJBHomeFactory are instantiated due to
simultaneous calls to getInstance during initialization, some redundant

home references will likely be created, but no harm will be done.

Notice that our EJBHomeFactory class accepts the JNDI name and class for the home interface it
is requested to locate. If we needed to access more than one session bean in the application tier, we
would simply implement a delegate class for each session bean and use our factory to locate the
corresponding home interface. Besides the performance improvements the caching of homes gives us,
all the ugly narrowing and exception handling that goes along with looking up these references is kept
in one place.

The EJBHomeFactory constructor also takes care of externalizing the provider and factory
parameters we need to access the naming service. A standard approach for doing this is to use a
jndi.properties file that includes entries like the following:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFa
ctory
java.naming.provider.url=localhost

If you call the no-argument constructor for the InitialContext class, the classpath is searched
for a jndi.properties file. If this file is found, its entries are used to initialize the naming context. In our
example, the factory class explicitly loads this file from the classpath. Otherwise, classloader priorities
within the web server could prevent these settings from being picked up before the default values
defined for the server.

The JNDIConnectorPlugin example in Chapter 9 demonstrated how
the naming service parameters could be read from the web.xml file and stored
in the ServletContext. We're not using that approach here because we
want to keep our factory independent of the web tier.

13.2.2.2 Using an EJBHomeFactory in a business delegate

Our business delegate can be simplified now that we have a standard approach for locating the home
interface. We can change the implementation of the init() method to the following:

private void init() {
 try {
 StorefrontHome sfHome =
(StorefrontHome)EJBHomeFactory.getInstance().

lookupHome("com.oreilly.struts.storefront.service.Storefront",
 StorefrontHome.class);
 storefront = sfHome.create();
 }
 catch (NamingException e) {
 throw new RuntimeException(e.getMessage());
 }
 catch (CreateException e) {
 throw new RuntimeException(e.getMessage());
 }

 catch (RemoteException e) {
 throw new RuntimeException(e.getMessage());
 }
}

13.2.2.3 What about the remote references?

In our implementation, a remote reference to the session bean is created for each request. This isn't a
problem from a performance standpoint, because the overhead attached to creating a remote reference
pales in comparison with that associated with the home. However, this doesn't mean that you can't
cache remote references if you want. In fact, if you're interfacing with a stateful session bean, you
can't keep creating new remote references across requests, because you won't be calling the same bean
instance each time.

You can avoid creating a new remote reference for each request by caching a business delegate
instance in the session. Unlike with homes, you can't cache a remote reference as application-scope
data. Even for stateless session beans, a remote reference holds information tied to the client thread
that created it, so you can't share it across user sessions. If you cache the business delegate, there are
some important changes to make—the user session could be serialized and restored by the web
container, and a remote reference isn't required to be serializable. For a stateless session bean, you
need to be able to create a new remote reference in the event of an error or a restart of the EJB
container being accessed. For a stateful session bean, you need to hold an EJB handle in your delegate
instead of a remote reference, so that you can always maintain a way to access the same bean.

In addition to the coverage in EJBDesignPatterns, you can find more
information on the patterns discussed in this chapter in CoreJ2EEPatterns by
Deepak Alur, John Crupi, and Dan Malks (Prentice Hall).

13.2.3 Using Dynamic Proxies

In this section, we'll look at one last example of something you might want to implement within your
business delegate. Our current implementation works well for the Storefront application, but delegates
tend to become cluttered with redundant-looking methods if they have to support an interface with
more than a few methods. We declared only three methods for our overly simple Storefront model, but
even they follow a somewhat monotonous pattern. With the exception of the logout() and
destroy() methods, each business method in the delegate is implemented by calling the method
with the same name on the session bean and catching a RemoteException to replace it with a
DatastoreException. A dynamic proxy offers a way to get rid of this redundancy.

If you ever find yourself performing the same additional steps as part of delegating a set of method
calls to another object, you should consider introducing a dynamic proxy. This concept is a little
difficult to grasp if you've never worked with one before, but its use can do away with a lot of
repetitive code. Basically, a dynamic proxy is an object created at runtime using reflection that
implements one or more interfaces you specify. The implementation of the interface methods consists
of calling the invoke() method of an object you also specify. This invoke() method is
declared by the java.lang.reflect.InvocationHandler interface, which must be
explicitly implemented by the object used to construct the proxy. The proxy passes parameters to the
invoke() method that identify the interface method that was called and the arguments that were
passed to it. This idea is always easiest to explain by example, so Example 13-9 shows a replacement
for our business delegate that can be used with a dynamic proxy.

Example 13-9. Dynamic proxy implementation of the Storefront service
package com.oreilly.struts.storefront.service;

import java.lang.reflect.*;
import java.rmi.RemoteException;
import java.util.*;
import javax.ejb.CreateException;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import
com.oreilly.struts.storefront.catalog.view.ItemDetailView;
import com.oreilly.struts.storefront.customer.view.UserView;
import
com.oreilly.struts.storefront.framework.ejb.EJBHomeFactory;
import com.oreilly.struts.storefront.framework.exceptions.*;

/**
 * This class is a dynamic proxy implementation of the
IStorefrontService
 * interface. It implements two of the IStorefrontService
methods itself and
 * delegates the others to the methods declared by the
IStorefront business
 * interface with the same name.
 */
public class DynamicStorefrontEJBDelegate implements
InvocationHandler {

 private IStorefront storefront;
 private Map storefrontMethodMap;

 public DynamicStorefrontEJBDelegate() {
 init();
 }

 private void init() {
 try {
 // Get the remote reference to the session bean
 StorefrontHome sfHome =
(StorefrontHome)EJBHomeFactory.getInstance().

lookupHome("com.oreilly.struts.storefront.service.Storefront",
 StorefrontHome.class);
 storefront = sfHome.create();

 // Store the business interface methods for later
lookups
 storefrontMethodMap = new HashMap();

 Method[] storefrontMethods =
IStorefront.class.getMethods();
 for (int i=0; i<storefrontMethods.length; i++) {

storefrontMethodMap.put(storefrontMethods[i].getName(),
 storefrontMethods[i]);
 }
 }
 catch (NamingException e) {
 throw new RuntimeException(e.getMessage());
 }
 catch (CreateException e) {
 throw new RuntimeException(e.getMessage());
 }
 catch (RemoteException e) {
 throw new RuntimeException(e.getMessage());
 }
 }

 public void logout(String email) {
 // Do nothing for this example
 }

 public void destroy() {
 // Do nothing for this example
 }

 public Object invoke(Object proxy, Method method, Object[]
args)
 throws Throwable{
 try {
 // Check for the two methods implemented by this class
 if (method.getName().equals("logout")) {
 logout((String)args[0]);
 return null;
 }
 else if (method.getName().equals("destroy")) {
 destroy();
 return null;
 }
 else {
 // This method should match a method implemented by
the
 // session bean that has the same name and argument
list
 Method storefrontMethod =
(Method)storefrontMethodMap.get(
 method.getName());
 if (storefrontMethod != null) {

 // Call the method on the remote interface
 return storefrontMethod.invoke(storefront, args);
 }
 else {
 throw new NoSuchMethodException("The Storefront does
not implement "
 + method.getName());
 }
 }
 } catch(InvocationTargetException ex) {
 if (ex.getTargetException() instanceof RemoteException)
{
 // RemoteException isn't declared by the IStorefront
method that was
 // called, so we have to catch it and throw something
that is
 throw
DatastoreException.datastoreError(ex.getTargetException());
 }
 else {
 throw ex.getTargetException();
 }
 }
 }
}

The intent behind DynamicStorefrontEJBDelegate is for a dynamic proxy that is created
as an implementation of the IStorefrontService interface to delegate all those calls to the
invoke() method declared here. Notice that this delegate class is not declared to implement
IStorefrontService. In fact, the only business methods from IStorefrontService
that appear in this class are the logout() and destroy() methods that aren't implemented
by our session bean.

To use the dynamic proxy-based delegate, we need to modify our approach for obtaining an
implementation of the service interface from the factory. Rather than devising something elegant for a
small part of this example, we'll just hardcode the new approach we need. This is shown in the
following version of the createService() method of StorefrontServiceFactory:

public IStorefrontService createService(){
 Class[] serviceInterface = new Class[]
{ IStorefrontService.class };
 IStorefrontService proxy =
(IStorefrontService)Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
serviceInterface,
 new DynamicStorefrontEJBDelegate());
 return proxy;
}

When an action class asks for an implementation of the service interface, the factory now creates a
dynamic proxy that implements this interface using an instance of
DynamicStorefrontEJBDelegate. When the action makes a call on the service interface,
the call goes to the proxy and is transformed into a call on the delegate's invoke() method. The
invoke() method checks the name of the method that was called and either calls the
logout() or destroy() method implemented in the class or delegates it to the session-bean
method with the same name. This sequence of calls is illustrated in Figure 13-1. The trapping and
replacement of RemoteException when our business delegate calls a session-bean method are
now handled in a single place. This single invoke() method can handle all of the methods
exposed by the session-bean business interface without modification.

Figure 13-1. S equence diagram for retrieving item detail through a dynamic proxy

A dynamic proxy is an appealing technique for minimizing method clutter in a business delegate, but
there's a price to pay. When considering an approach such as this that relies heavily on reflection, you
need to weigh the slower runtime performance that will result against the improved maintainability of
your code.

13.3 Conclusion

Not all web applications require the sophistication and complexity of an EJB container. The well-
documented benefits of using an EJB server must be evaluated seriously against the added
development and management complications for each project. Don't just assume that you have to use
EJB for the model portion of a Struts application. However, if you do decide that EJB is appropriate, it
doesn't have to impact the rest of the code. There are approaches that you can take to limit the
coupling of your application to EJB and make it much easier to use.

Chapter 14. Using Tiles
Up to this point, not much has been said about how to organize and assemble the content and layout of
JSP pages for a Struts application. In many ways, that is outside the scope of the topic of Struts. Many
excellent books are available that provide strategies for organizing web content and the layout of
pages.

In the Storefront application, we have used two different approaches to assembling web pages. The
first approach, sometimes referred to as a straight JSP-based approach, is probably the most familiar to
web designers. The JSP pages contain presentation logic along with HTML layout tags; there's no
separation of the two. This approach is typically used for smaller, less complicated web applications.

The second approach uses the JSP include directive. It's used by developers for larger web
applications, or after they realize how repetitive the first approach can be. If you have spent much time
maintaining web applications, you know how frustrating it can be to update a site's look and feel.
Using the JSP include directive allows for more reuse, which reduces the total development and
maintenance costs.

A third approach, which is introduced in this chapter, describes a far better way to reduce the amount
of redundant code a web application contains and, at the same time, allows you to separate the content
from the layout better than the first two approaches.

14.1 Understanding Templates

Traditional GUI toolkits such as VisualWorks Smalltalk or Java Swing all provide some type of layout
manager that dictates how content should be displayed within the frame or window. With typical web
sites, the layout can undergo many changes, both small and large, over its lifetime. Using layouts and
layout managers can help to encapsulate the physical areas of the pages within an application so that
they can be altered with minimal impact to the rest of the application. Unfortunately, the JSP
technology does not natively provide any direct support for layouts or layout managers. This is why
the template-based approach was invented. The concept of templates is not a new one—it has been
around for many years, in one form or another.

To understand how templates can actually simplify a web site's layout, let's compare it with an
approach that uses the JSP include mechanism. The current index.jsp page of the Storefront
application is shown in Example 14-1.

Example 14-1. The index.jsp page for the Storefront application
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<html:html>
 <head>
 <title><bean:message key="global.title"/></title>
 <html:base/>
 <script language=javascript
src="include/scripts.js"></script>
 <link rel="stylesheet"
href="stylesheets/format_win_nav_main.css" type="text/css">
 </head>

 <body topmargin="0" leftmargin="0" bgcolor="#FFFFFF">

 <!-- Header information -->
 <%@ include file="include/head.inc"%>

 <!-- Menu bar -->
 <%@ include file="include/menubar.inc"%>

 <!--- Include the special offer -->
 <%@ include file="include/mainoffer.inc"%>

 <!-- Featured items header row -->
 <table width="645" cellpadding="0" cellspacing="0"
border="0">
 <tr>
 <td width="21">
 <html:img height="1" alt="" page="/images/spacer.gif"
width="1" border="0"/>
 </td>
 <td width="534">
 <html:img page="/images/week_picks.gif"
altKey="label.featuredproducts"/>
 </td>
 <td width="1" bgcolor="#9E9EFF">
 <html:img height="1" alt="" page="/images/spacer.gif"
width="1" border="0"/>
 </td>
 <td width="1" bgcolor="#9E9EFF">
 <html:img height="1" alt="" page="/images/spacer.gif"
width="1" border="0"/>
 </td>
 <td width="90" bgcolor="#9E9EFF" align="right">
 <html:img height="1" alt="" page="/images/spacer.gif"
width="90" border="0"/>
 </td>
 </tr>
 <tr>
 <td>
 <html:img height="1" alt="" page="/images/spacer.gif"
width="21" border="0"/>
 </td>
 <td colspan="4" bgcolor="#9E9EFF">
 <html:img height="1" alt="" page="/images/spacer.gif"
width="1" border="0"/>
 </td>
 </tr>
 </table>

 <html:img height="10" alt="" page="/images/spacer.gif"
width="1" border="0"/>

 <!--- Include the featured items -->
 <%@ include file="include/featureditems.inc"%>

 <!--- Include the copyright statement -->
 <%@ include file="include/copyright.inc"%>
 </body>
</html:html>

Although the main page uses the JSP include directive, the layout is mixed with content in the
page. For example, notice that the page specifies explicitly that the head.inc include file comes first,
then the menubar.inc file, the mainoffer.inc file, and so on, right down to the copyright.inc include at
the bottom of the page. For every page that we want to have this particular layout, we need to add the
same statements in the same order. If a customer wants the menu along the left side instead of across
the top, every page will have to be changed.

The Storefront application uses the JSP include mechanism rather than a straight JSP approach.
Although the include mechanism is a step in the right direction because it does reduce redundancy
(imagine if we included the copyright content in every page!), it's still less efficient than a template-
based approach.

Static Versus Dynamic Content
With JSP, there are two different kinds of content to include: static and dynamic. The
include directive shown here:

<%@ include file="include/copyright.inc" %>

includes the source of the target page at translation/compile time. Therefore, it's not possible
to include runtime content using the include directive. The JSP include directive
treats a resource as a static object, and the context of the resource is included literally in the
page.

In direct contrast, the include action shown here:

<jsp:include page="include/copyright.inc"/>

handles the resource as a dynamic object. The request is sent to the resource, and the result
of the processing is included. Templates use a dynamic approach so that runtime
expressions can be evaluated and included.

14.1.1 What Is a Template?

A template is a JSP page that uses a JSP custom tag library to describe the layout of a page. The
template acts as a definition for what the pages of an application will look like, without specifying the
content. The content is inserted into the template page at runtime. One or more pages may use the
same template.

The purpose of a template is to get a consistent look and feel within an
application without having to hardcode it for every page. It makes sense that
most of the pages will use the same template; however, it's not uncommon to
have a different look and feel for a few pages within an application and
therefore to require more than one template.

Example 14-2 illustrates a template for the Storefront application.

Example 14-2. A basic template for the Storefront application

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<%@ taglib uri="/WEB-INF/tiles.tld" prefix="tiles"%>

<html:html>
 <head>
 <title><bean:message key="global.title"/></title>
 <html:base/>
 </head>
 <body topmargin="0" leftmargin="0" bgcolor="#FFFFFF">

 <!-- Header page information -->
 <tiles:insert attribute="header"/>

 <!-- Menu bar -->
 <tiles:insert attribute="menubar"/>

 <!-- Main body information -->
 <tiles:insert attribute="body-content"/>

 <!-- Copyright information -->
 <tiles:insert attribute="copyright"/>
 </body>
</html:html>

Not many new concepts are introduced in the template file in Example 14-2. The first thing that you
should notice is that we are using Struts custom tag libraries. The fact that we are using the Tiles tag
library as well as the HTML and Bean libraries shouldn't be too shocking; the Tiles tag library is just
like any other. We'll talk in detail about the Tiles tag library later in this chapter.

The rest of the page is a mixture of HTML layout tags. You should notice that there's no content
included, only insert tags where content will be inserted at runtime. You should already be
familiar with the Struts tags shown here, so we won't say anything about them. The insert tag
performs a role similar to that of the JSP include directive. It's basically saying that somewhere
there's a variable called header, for instance, and that the attribute value of "header" should be
passed to the insert tag, and the content that is produced should be inserted right here. The same
thing goes for the menubar, body-content, and copyright inserts. We'll explain shortly
how the "real" content is substituted for these attributes at runtime.

Notice that this layout is very similar to the one shown in Example 14-1. The only difference is that
instead of explicitly including the mainoffer and featureditem includes, as Example 14-1
does, the template file includes a body-content section. This allows us to reuse the template for
any page that has this generic format. Once we figure out how to supply the page-specific body
content, we can reuse this template over and over again. This one file can then control the layout of
multiple pages. If we need to modify the layout of the site, this is the only file we need to change—
that's the real power of using a template-based approach.

The last piece of the puzzle is how the header, menubar, body-content, and copyright
sections are put together to form the rendered output. The important point to remember is that the JSP
page shown in Example 14-2 is the template. You still need JSP pages that supply page-specific

content used by the template. For example, if we rewrite the index.jsp page from Example 14-1 using
the template from Example 14-2, it will look like the one in Example 14-3.

Example 14-3. The index.jsp page for the Storefront application using a template
<%@ taglib uri="/WEB-INF/tiles.tld" prefix="tiles" %>

<tiles:insert page="/layouts/storefrontDefaultLayout.jsp"
flush="true">
 <tiles:put name="header" value="/common/header.jsp" />
 <tiles:put name="menubar" value="/common/menubar.jsp" />
 <tiles:put name="body-content" value="/index-body.jsp" />
 <tiles:put name="copyright" value="/common/copyright.jsp" />
</tiles:insert>

The first thing to notice in Example 14-3 is that the Tiles tag library is included at the top. Every page
(or tile) that needs to use the Tiles tag library must include it with this line:

<%@ taglib uri="/WEB-INF/tiles.tld" prefix="tiles" %>

Two tags from the Tiles library are used in Example 14-3: insert and put. (The complete set of
Tiles tags and their associated attributes are discussed later in this chapter.) You already saw the
insert tag in Example 14-2, but it's performing a slightly different function in Example 14-3. Two
attributes are being supplied to the insert tag: page and flush. The page attribute informs
the tag that this JSP page is using a particular template (or layout, in the Tiles world—layouts also are
discussed later in this chapter). We are calling the template from Example 14-2
storefrontDefaultLayout.jsp. The flush attribute informs the controller to flush the page output
stream before inserting content into the result page.

The put tag in Example 14-3 answers a question that we asked in the previous section: how does the
page-specific content get supplied to the template? As you can see, the attributes for the put tag in
this example are name and value. If you compare the values of the different name attributes,
you'll see that they match up to the ones that the template file in Example 14-2 expects. When the
index.jsp page from Example 14-3 is executed, the template file is processed and dynamically passed
the header.jsp, menubar.jsp, index-tile.jsp, and copyright.jsp files from the put tags:

<tiles:insert page="/layouts/storefrontDefaultLayout.jsp"
flush="true">
 <tiles:put name="header" value="/common/header.jsp" />
 <tiles:put name="menubar" value="/common/menubar.jsp" />
 <tiles:put name="body-content" value="/index-body.jsp" />
 <tiles:put name="copyright" value="/common/copyright.jsp" />
</tiles:insert>

At runtime, the values of the put tags are dynamically substituted into the template file and
processed. The resulting output is what gets displayed to the client.

To wrap up the discussion of templates, here is another page that uses the same template from
Example 14-2 but supplies a different body-content. Example 14-4 shows the itemdetail.jsp
page.

Example 14-4. The itemdetail.jsp page for the Storefront application
<%@ taglib uri="/WEB-INF/tiles.tld" prefix="tiles" %>

<tiles:insert page="../layouts/storefrontDefaultLayout.jsp"
flush="true">
 <tiles:put name="header" value="../common/header.jsp"/>
 <tiles:put name="menubar" value="../common/menubar.jsp"/>
 <tiles:put name="body-content" value="../catalog/itemdetail-
body.jsp"/>
 <tiles:put name="copyright"
value="../common/copyright.jsp"/>
</tiles:insert>

The only difference between the index.jsp page in Example 14-3 and the itemdetail.jsp page in
Example 14-4 is the content supplied by the body-content attribute.

If you are still not convinced of the value of using templates, notice that the
index.jsp and itemdetail.jsp pages in Example 14-3 and Example 14-4 do not
specify anything about how the content should be laid out. They both reference
the storefrontDefaultLayout.jsp file, which has sole responsibility for
displaying the content in a prescribed format. If we want to change the layout
of the site, we have to modify only the storefrontDefaultLayout.jsp file.

14.2 Installing and Configuring Tiles

Before you can use the Tiles framework, you must ensure that it's installed and properly configured
within your web container. The Tiles framework is not dependent on any specific container. You will
need to obtain the required files and ensure that they are placed into their proper directories within the
web application.

14.2.1 Downloading Tiles

The Tiles framework is included with the Struts distribution. It previously was included in the contrib
folder, but it is now part of the core distribution. You also can find the latest source and binary
distribution, as well as other useful information, at http://www.lifl.fr/~dumoulin/tiles/index.html.

14.2.2 Installing the Required JARs and Misc Files

The first step is to install the required files. For Tiles, the following files must be located in the WEB-
INF/lib directory:

• tiles.jar
• commons-digester.jar
• commons-beanutils.jar
• commons-collections.jar
• commons-logging.jar

All of these binaries should already be present if you are using Struts. You will also need to install the
Tiles TLD file, tiles.tld, in the WEB-INF directory for the application.

Don't add the tiles.jar file to the classpath of your servlet container in an
attempt to avoid placing it in the WEB-INF/lib directory of each individual
web application. Doing so will cause ClassNotFoundExceptions to
be thrown.

You should put the tiles-config.dtd file in the WEB-INF directory, too. This DTD is used to validate
Tiles definition files, which we'll discuss later in this chapter.

14.2.3 Adding the Tiles Tag Library

As with any other JSP tag library, you must add the Tiles library to the web application deployment
descriptor before you can use it. Add the following taglib element to the web.xml file:

<taglib>
 <taglib-uri>/WEB-INF/tiles.tld</taglib-uri>
 <taglib-location>/WEB-INF/tiles.tld</taglib-location>
</taglib>

There should already be taglib elements present if you are using any of the standard Struts tag
libraries. Each page that needs to use the Tiles tag library must include the following line at the top:

<%@ taglib uri="/WEB-INF/tiles.tld" prefix="tiles" %>

14.2.4 Configuring Tiles to Work with Struts

The Tiles framework can be used with or without Struts. Depending on how you use it, there are
several options for configuring it for a web application. Because this book is about Struts, we'll focus
on how to bind it to a Struts application.

With earlier versions of the Tiles framework, you had to configure a special
ActionServlet called ActionComponentServlet in the
web.xml file. It was also necessary to configure a special
RequestProcessor in the Struts controller element. This is no
longer true—a Tiles plug-in is now available that will take care of all the
initialization.

The Tiles plug-in is really necessary only if you are planning on using Tiles definitions. It is possible
to use the Tiles libraries with Struts without configuring the plug-in. However, it doesn't hurt to
configure it, and it may save you time later if you decide to use definitions.

To add the Tiles plug-in to a Struts application, add the following plug-in element to the Struts
configuration file:

<plug-in className="org.apache.struts.tiles.TilesPlugin" >
 <set-property property="definitions-config" value="/WEB-
INF/tiles-defs.xml" />
 <set-property property="definitions-debug" value="2" />

 <set-property property="definitions-parser-details"
value="2" />
 <set-property property="definitions-parser-validate"
value="true" />
</plug-in>

Within the plug-in element, you can specify one or more set-property elements to pass
additional parameters to the Plugin class. The definitions-config initialization
parameter specifies the XML file or files containing Tile definitions. If multiple filenames are used,
they must be comma-separated.

The definitions-debug parameter specifies the debug level. The allowed values are:

0

No debug information is written out.

1

Partial debug information is provided.

2

Full debug information is provided.

The default value is 0.

The definitions-parser-details parameter indicates the required level of debugging
information while the definition files are being parsed. This value is passed to the Commons Digester.
The allowed values are the same as those for the definitions-debug parameter. The default
value is 0.

The definitions-parser-validate parameter specifies whether the parser should
validate the Tiles configuration file. The allowed values are true and false. The default is true.

There is an additional parameter, not shown, called definitions-factory-class. You can
create a custom definitions factory and supply the class name here. The default is
org.apache.struts.tiles.xmlDefinition.I18NfactorySet.

14.3 Overview of Tiles

The Tiles framework provides a templating mechanism that allows you to separate the responsibilities
of layout from those of content. As with the templates described earlier in this chapter, you have the
ability to establish a layout and dynamically insert the contents of your pages into that layout at
runtime. This is a powerful mechanism if you need to customize your site based on such things as
internationalization, user preferences, or just the look-and-feel changes that occur in every web
application sooner or later. The Tiles framework provides the following features:

• Template capabilities

• Dynamic page construction and loading
• Screen definitions
• Support for tile and layout reuse
• Support for internationalization
• Support for multiple channels

There has been a Template tag library within the Struts framework for quite some time. These tags
allow you to use a very basic templating approach to assemble your JSP pages in a web application.
Although these tags are helpful in separating the content for a web application from its prescribed
layout, the Tiles framework goes much further and actually provides a superset of the Template tag
library's behavior, as well as many other features.

The Tiles framework was previously called Components, but the name was
changed because that term is so overused. The Tiles documentation and source
code still make reference to the old name in some places.

Cedric Dumoulin created the Tiles framework to extend the concept of templates and provide
developers with more flexibility and freedom when creating web applications built with JSP
technology. The content for the web applications is still driven by JSP pages and JavaBeans. However,
the layout is specified within a separate JSP page or, as we'll see later, in an XML file.

14.3.1 What Is a Tile?

A tile is an area or region within a web page. A page can consist of just one region or be broken up
into several regions. Figure 14-1 illustrates an example from the Storefront application.

Figure 14-1. The regions of the Storefront application

A JSP page is typically made of several regions, or tiles. There's nothing too special about the page,
other than the fact that it's designed to be used with the Tiles framework and makes use of the Tiles
tag library.

The most important aspect of a tile is that it is reusable. This is true for layouts as well as body content.
Unlike most JSP pages, tile components are reused within an application and possibly across different
applications. Other than that, there's nothing that complicated about a tile. In fact, most of the
examples we've seen so far can be classified as tiles, including Example 14-2 through Example 14-4.

14.3.2 Using a Layout Tile

In the Tiles world, a layout is what we have been referring to as a template. A layout serves the exact
same purpose as a template—that is, to assemble a group of tiles to specify the format of a page.
Example 14-2 is, in fact, a Tiles layout. The syntax between Tiles and a template library like the one
included with Struts is almost identical.

The Tiles framework provides a superset of the functionality included with the
standard Struts template tags defined by David Geary, but it takes the concept
of templates even further by providing additional functionality.

Layouts also are considered tiles. JSP pages and even entire applications can reuse layouts, and it's
common to build a library of layouts that are used in many different projects. The Tiles framework
comes with several prebuilt layout tiles that you can reuse or modify as needed. The included layouts
are:

Classic layout

Renders a header, left menu, body, and footer

Columns layout

Renders a list of tiles in multiple columns, each of which renders its tiles vertically stacked

Center layout

Renders a header, left tile, right tile, body, and footer

Menu layout

Renders a menu with links

Tabs layout

Renders several tiles in a tabs-like fashion

Vertical box layout

Renders a list of tiles in a vertical column

Because one of the main goals of Tiles is reusability, you can reuse these layouts within your
application with little or no modifications. You also have the freedom to customize the layouts in any
way you need.

14.3.3 Planning Your Layout

It's very important that you plan your layout requirements ahead of time. Trying to decide how your
site is going to look after it's already built is definitely not the right approach. This decision is
typically made by a human factors team, product management, or possibly the web developers

themselves. In any case, you need to develop the layout (or layouts) well ahead of any actual
development.

The default layout for the Storefront application was presented in Example 14-2. This layout will be
used as an example throughout this chapter.

14.3.4 Passing Parameters to the Layout

The layout tile shown in Example 14-2 is generic. It doesn't know anything about the itemdetail.jsp
content or any of the other pages, for that matter. This is intentional, as it allows us to reuse this layout
for many pages. Instead of being hardcoded within the layout page, the content is supplied or "passed"
as parameters to the layout page at runtime. Let's look at the signin.jsp tile for the Storefront
application, shown in Example 14-5.

Example 14-5. The signin.jsp tile for the Storefront application
<%@ taglib uri="/WEB-INF/tiles.tld" prefix="tiles" %>

<tiles:insert page="../layouts/storefrontDefaultLayout.jsp"
flush="true">
 <tiles:put name="header" value="../common/header.jsp"/>
 <tiles:put name="menubar" value="../common/menubar.jsp"/>
 <tiles:put name="body-content" value="../security/signin-
body.jsp"/>
 <tiles:put name="copyright"
value="../common/copyright.jsp"/>
</tiles:insert>

The purpose of the put tags in Example 14-5 is to supply the layout tile, which is specified in the
enclosing insert tag, with content. The values of the name attributes in Example 14-5 (as in the
other tiles shown in Examples Example 14-3 and Example 14-4) must match the ones that the layout
tile is expecting.

The insert tag optionally can include an ignore attribute that will cause
the tag to not write out anything when it can't find a value for an expected
attribute. By default, a runtime exception is thrown when an attribute has not
been supplied.

14.4 The Tiles Tag Library

This section introduces the JSP custom tags used by the Tiles framework. Table 14-1 lists the tags
available to the framework. The tags are very similar to the ones provided in any template-based
framework, but Tiles contains more functionality.

Table 14-1. Tags within the Tiles tag library
Tag name Description

add Add an element to the surrounding list.
definition Create a tile component definition.

get Get the content from request scope that was put there by a
put tag.

getAsString Render the value of the specified tile/component/template
attribute to the current JspWriter.

importAttribute Import a tile's attribute into the specified context.
initComponentDefinitions Initialize a tile definitions factory.
insert Insert a tiles component.
put Put an attribute into a tile context.
putList Declare a list that will be passed as an attribute.
useAttribute Use an attribute value inside a page.

14.4.1 The insert Tag

The insert tag is responsible for inserting content into a page. In a layout tile, the insert tag
prescribes where the content will go using attribute values. In a regular, non-layout tile, the insert
tag is used to retrieve a layout and allow content to be passed to the layout using put tags. Table 14-2
lists the attributes for the insert tag.

Table 14-2. Attributes for the insert tag
Attribute name Description

attribute The name of an attribute in the current tile/component context. The value of
this attribute is passed to the name attribute.

beanName

The name of the bean used as a value. The bean is retrieved from the
specified context, if any. Otherwise, the
pageContext.findAttribute() method is used. If the
beanProperty attribute is also specified, retrieve the value from the
corresponding bean property.

If the bean (or bean property value) is an instance of one of the
Attribute classes (Direct, Instance, etc.), the insertion is done
according to the class type. Otherwise, the toString() method is
called on the bean, and the returned String is passed to the name
attribute.

beanProperty The name of the bean property. If specified, the value is retrieved from this
property.

beanScope

The context scope the bean can be found within. If not specified, the
pageContext.findAttribute()method is used. The scope can
be any JSP scope, component, or template. In the two latter cases, the bean
is searched in the tile/component/template context.

component A string representing the URI of a tile or template. The template,
page, and component attributes have exactly the same behavior.

controllerUrl

The URL of a controller called immediately before the page is inserted. The
URL usually denotes a Struts action. The controller (action) is used to
prepare data to be rendered by the inserted tile.

Only one of controllerUrl or controllerClass should be
used.

controllerClass

The class type of a controller called immediately before the page is inserted.
The controller is used to prepare data to be rendered by the inserted tile.

Only one of controllerUrl or controllerClass should be
used. The class must implement or extend one of the following:
org.apache.struts.tiles.Controller,
org.apache.struts.tiles.ControllerSupport, or
org.apache.struts.action.Action.

definition

The name of the definition to insert. Definitions are defined in a centralized
file. For now, only definitions from a factory can be inserted with this
attribute. To insert a definition defined with the definition tag, use
beanName="".

flush true or false. If true, the current page output stream is flushed
before tile insertion.

ignore
If this attribute is set to true and the attribute specified by the name does
not exist, simply return without writing anything. The default value is
false, which will cause a runtime exception to be thrown.

name The name of an entity to insert. The search is done in this order:
definition, attribute, then page.

page A string representing the URI of a tile or template. The template,
page, and component attributes have exactly the same behavior.

role If the user is in the specified role, the tag is taken into account; otherwise,
the tag is skipped and the content is not written out.

template A string representing the URI of a tile or template. The template,
page, and component attributes have exactly the same behavior.

Several examples of the insert tag were shown earlier in this chapter.

14.4.2 The definition Tag

The definition tag is used to create a tile (template) definition as a bean. The newly created
bean will be saved under the specified id, in the requested scope. The definition tag has the
same syntax as the insert tag. The new definition can extend a definition described in the
definition factory (XML file) and may overload any previously defined parameters. Table 14-3 lists
the attributes supported by the definition tag.

Table 14-3. Attributes for the definition tag
Attribute

name Description

extends The name of a parent definition that is used to initialize this new definition.The parent
definition is searched in the definitions factory.

id The name under which the newly created definition bean will be saved. This attribute
is required.

page URL of the template/component to insert. Same as template.

role
The role to check before inserting this definition. If the role is not defined for the
current user, the definition is not inserted. Checking is done at insertion time, not
during the definition process.

scope The variable scope in which the newly defined bean will be created. If not specified,
the bean will be created in page scope.

template A string representing the URL of a tile/component/template (a JSP page).

The following fragment illustrates how to use the definition tag in a JSP page:

<tiles:definition
 id="storefront.default"
 page="/layouts/storefrontDefaultLayout.jsp"
 scope="request">
 <tiles:put name="header" value="/common/header.jsp" />
 <tiles:put name="menubar" value="/common/menubar.jsp" />
 <tiles:put name="copyright" value="/common/copyright.jsp"
/>
</tiles:definition>

A complete example is shown later, in Section 14.5.1 of this chapter.

14.4.3 The put Tag

The put tag is used to pass attributes to a tile component. This tag can be used only inside the
insert or definition tags. The value (or content) of the put tag is specified using the
value attribute or the tag body. It is also possible to specify the type of the value:

string

Content is literally translated.

page or template

Content is included from specified URL. Name is used as URL.

definition

Content comes from specified definition (from factory). Name is used as definition name.

If the type attribute is used, it is taken into account by the get or insert tags inside the inserted
tile. If the type attribute is not specified, the content is untyped, unless it comes from a typed bean.

Setting direct="true" is equivalent to setting type="string".

Table 14-4 lists the attributes for the put tag.

Table 14-4. Attributes for the put tag
Attribute name Description

beanName

The name of the bean used to retrieve the value. The bean is retrieved from the
specified context, if any. Otherwise, the
pageContext.findAttribute()method is used. If
beanProperty is specified, retrieve the value from the corresponding bean
property.

beanProperty The property name in the bean. If specified, the value is retrieved from this
property.

beanScope

The scope used to search for the bean. If not specified, the
pageContext.findAttribute() method is used. The scope can be
any JSP scope, "tile", "component", or "template". In the three later cases, the
bean is searched in the tile/component/template context.

content Content that's put into tile scope. This attribute is equivalent to the value
attribute and was added for compatibility with the JSP template tags.

direct

How the content is handled: true means content is printed directly; false
means content is included. false is the default. This is another way to specify
content type. If direct="true", content is "string"; if
direct="false", content is "page". This attribute was added for
compatibility with the JSP template tags.

name The name of the attribute.

role If the user is in the specified role, the tag is taken into account. Otherwise, the tag
is skipped and the content is not written out.

type The content type. Valid values are "string", "page", "template", or "definition".

value
The attribute value—can be a String or an Object. The value can come
from a direct assignment (value="aValue") or from a bean. One of
value, content, or beanName must be present.

14.4.4 The putList Tag

The putList tag creates a list that will be passed as an attribute to a tile. The list elements are
added using the add tag. This tag can be used only inside the insert or definition tag. Table
14-5 lists the attribute for the putList tag.

Table 14-5. Attribute for the putList tag
Attribute name Description

name The name of the List. This attribute is required.

14.4.5 The add Tag

The add tag adds an element to the surrounding list. This tag can be used only inside the putList
tag. The value can come from a direct assignment (value="aValue") or from a bean. One of
value or beanName must be specified. Table 14-6 lists the attributes for the add tag.

Table 14-6. Attributes for the add tag
Attribute name Description

beanName

The name of the bean used to retrieve the value. The bean is retrieved from the
specified context, if any. Otherwise, the
pageContext.findAttribute() method is used. If
beanProperty is specified, retrieve the value from the corresponding bean
property.

beanProperty The bean property name. If specified, the value is retrieved from this property.

beanScope

The scope used to search for the bean. If not specified, the
pageContext.findAttribute() method is used. The scope can be
any JSP scope, "component", or "template". In the two latter cases, the bean is
searched in the tile/component/template context.

content The value is the same as the value attribute. This attribute was added for
compatibility with the JSP template tags.

direct How the content is handled: true means content is printed directly; false
means content is included. false is the default.

role
If the user is in the specified role, the tag is taken into account; otherwise, the tag
is ignored (skipped). The role isn't taken into account if the add tag is used in a
definition.

type The content type: "string", "page", "template", or "definition". If the type
attribute is not specified, content is untyped, unless it comes from a typed bean.

value The value to be added. Can be a String or Object.

14.4.6 The get Tag

The get tag retrieves content from the tile context and includes it in the page. Table 14-7 lists the
attributes for the get tag.

Table 14-7. Attributes for the get tag
Attribute

name Description

flush true or false. If true, the current page output stream is flushed before tile
insertion.

ignore
If this attribute is set to true and the attribute specified by the name does not exist,
simply return without writing anything. The default value is false, which will cause a
runtime exception to be thrown.

name The name of the content to get from the tile scope. This attribute is required.
role If the user is in the specified role, the tag is taken into account; otherwise, the tag is

ignored.

14.4.7 The getAsString Tag

The getAsString tag retrieves the value of the specified tile attribute property and renders it to
the current JspWriter as a String. The usual toString() conversion is applied to the value. If
the named value is not found, a JSPException will be thrown. Table 14-8 lists the attributes for
the getAsString tag.

Table 14-8. Attributes for the getAsString tag
Attribute

name Description

ignore
If this attribute is set to true and the attribute specified by the name does not exist,
simply return without writing anything. The default value is false, which will cause a
runtime exception to be thrown.

name The attribute name. This attribute is required.

role If the user is in the specified role, the tag is taken into account; otherwise, the tag is
ignored.

14.4.8 The useAttribute Tag

The useAttribute tag declares a Java variable and an attribute in the specified scope, using the
tile's attribute value. The variable and attribute will have the name specified by id, or the original
name if not specified. Table 14-9 lists the attributes for the useAttribute tag.

Table 14-9. Attributes for the useAttribute tag
Attribute

name Description

classname The class of the declared variable.
id The declared attribute and variable name.

ignore
If this attribute is set to true and the attribute specified by the name does not exist,
simply return without error. The default value is false, which will cause a runtime
exception to be thrown.

name The tile's attribute name. This attribute is required.
scope The scope of the declared attribute. Defaults to "page".

14.4.9 The importAttribute Tag

The importAttribute tag imports the attribute from the tile to the requested scope. The name
and scope attributes are optional. If not specified, all tile attributes are imported in page scope. Once
imported, an attribute can be used like any other bean from the JSP context. Table 14-10 lists the
attributes for the importAttribute tag.

Table 14-10. Attributes for the importAttribute tag
Attribute

name Description

ignore
If this attribute is set to true and the attribute specified by the name does not exist,
simply return without error. The default value is false, which will cause a runtime
exception to be thrown.

name The tile's attribute name. If not specified, all attributes are imported.
scope The scope into which the attribute is imported. Defaults to "page".

14.4.10 The initComponentDefinitions Tag

The initComponentDefinitions tag initializes the definitions factory. Table 14-11 lists the
attributes for the tag.

Table 14-11. Attributes for the initComponentDefinitions tag
Attribute name Description
classname If specified, the classname attribute of the factory to create and initialize.
file The definition file's name. This attribute is required .

14.5 Using Definitions

The tiles shown so far add value to an application because they organize the layout of a page in a
single resource, the layout JSP page. This can save development time and, more importantly, the time
it takes to change the layout for an application. However, there is a problem with the approach used in
the Storefront application shown earlier. In each of the non-layout tiles, there is redundant code that
specifies what content to use for the header, menubar, and copyright content—the same
attributes are being passed in every page. This may not always be the case, but in general, these values
will be constant throughout an application. For instance, the same copyright is typically shown on
every page.

It's redundant to have to specify these in every tile. Ideally, we could declare these attributes in one
place, and the tiles could include just the page-specific attributes where needed. Tiles definitions
provide just such functionality. A definition allows you to statically specify the attributes that are used
by a template, which in turn allows you to specify only the page-specific attributes in your tiles.
Definitions enable you to:

• Screen definitions
• Centralize declaration of page description
• Avoid repetitive declaration of nearly identical pages (by using definition inheritance)
• Avoid creation of intermediate components used to pass parameters
• Specify the name of a definition as a forward in the Struts configuration file
• Specify the name of a definition as component parameters
• Overload definition attributes
• Use a different copy of a component, depending on the locale (I18N)
• Use a different copy of a component, depending on a key (this might be used to show

different layouts depending on the client type)

Definitions can be declared in a JSP page or an XML file. Either way, you should strive to keep the
definitions in a central place. If you are planning on using a JSP page to specify your definitions, put
all the definitions for your application in a single page. Don't spread your definitions throughout your
site, as that will only make maintenance more difficult.

14.5.1 Declaring Definitions in a JSP Page

As was previously mentioned, there are two locations in which you can specify definitions: a JSP page
or an XML file. We'll discuss the JSP page approach first.

To use the JSP approach, create a JSP page and declare all of your definitions in that file. For the
Storefront application, we've created a file called storefront-defs.jsp and put the default definition in it,
as Example 14-6 shows.

Example 14-6. Declaring tiles definitions in a JSP page
<%@ taglib uri="/WEB-INF/tiles.tld" prefix="tiles" %>

<tiles:definition
 id="storefront.default"
 page="/layouts/storefrontDefaultLayout.jsp"
 scope="request">
 <tiles:put name="header" value="/common/header.jsp" />
 <tiles:put name="menubar" value="/common/menubar.jsp" />
 <tiles:put name="copyright" value="/common/copyright.jsp"
/>
</tiles:definition>

The definition in Example 14-6 uses the same layout tile used earlier. The common files that were
spread through the various tiles are now located in the definition file. This makes changing their
values much easier. For instance, if we wanted to specify a different copyright page, the only place to
change it would be in the definition file; we would not have to modify every JSP page.

The definition tag syntax looks very similar to the syntax for the insert tags shown earlier.
We just need to provide an id attribute and switch the path attribute to the page attribute. Also,
the default scope for the definition tag is page. It was set to request scope here to give it a
little broader scope.

To take advantage of the definition, the tile components need to be able to access it. Because we have
given the definition request scope and it will exist only for the lifetime of a request, we need a way to
include the definition in the various JSP pages. Fortunately, we already know how to include a JSP
page in another page using the JSP include directive. Example 14-7 shows what the signin.jsp
page looks like using the JSP definition file.

Example 14-7. The signin.jsp page using a tile definition
<%@ taglib uri="/WEB-INF/tiles.tld" prefix="tiles" %>

<%@include file="../common/storefront-defs.jsp" %>

<tiles:insert beanName="storefront.default"
beanScope="request">
 <tiles:put name="body-content" value="../security/signin-
body.jsp"/>
</tiles:insert>

With this approach, the tile components have to insert only the page-specific content. Compare
Example 14-7 to Example 14-5. Notice that the signin.jsp file using the definition needs to provide
only the page-specific content, the sign-body.jsp file.

14.5.2 Declaring Definitions in a Configuration File

You also have the option of declaring definitions in a centralized XML file. Whether you use the JSP
or the XML alternative really depends on your requirements. With the XML approach, you won't need
to use the include directive shown earlier.

14.5.2.1 Creating a definition configuration file

To use the XML approach, create an XML file that follows the syntax of the tiles-config.dtd file. The
definition XML file should be placed in the WEB-INF directory, as with the other application meta-
information. The DTD should also be placed in the WEB-INF directory. Example 14-8 shows an
example of a definition XML file.

Example 14-8. The Storefront definition XML file
<!DOCTYPE tiles-definitions PUBLIC
 "-//Apache Software Foundation//DTD Tiles Configuration//EN"
 "http://jakarta.apache.org/struts/dtds/tiles-config.dtd">

<tiles-definitions>
 <definition name="storefront.default"
path="/layouts/storefrontDefaultLayout.jsp">
 <put name="header" value="/common/header.jsp" />
 <put name="menubar" value="/common/menubar.jsp" />
 <put name="copyright" value="/common/copyright.jsp" />
 </definition>
</tiles-definitions>

There's not much difference between the definition format specified in the JSP file in Example 14-6
and the XML file in Example 14-8. The XML file uses a slightly different syntax, but it's still very
similar.

The two formats are just similar enough to cause problems. Notice that in the
JSP definition, you use the put tag:

<tiles:put
 name="body-content"
 value="../security/signin-body.jsp"/>

but in the XML definition, you use the put element:

<put
 name="header"
 value="/common/header.jsp" />

Make sure that you don't get these two confused, as this can be a difficult bug
to track down.

Each definition should have a unique name. JSP tags and pages use the name to retrieve the definition.
It can't be used as a URL, however; it's only a logical name for the definition.

14.5.3 Extending Tile Definitions

One of the most powerful features of tile definitions is the ability to create new definitions by
extending existing ones. All attributes and properties of the parent definition are inherited, and you
can override any attribute or property. To extend a definition, add the extends attribute. Example
14-9 shows an example of a definition named storefront.custom extending the
storefront.default definition.

Example 14-9. Definitions can extend other definitions
<tiles-definitions>
 <definition name="storefront.default"
path="/layouts/storefrontDefaultLayout.jsp">
 <put name="header" value="/common/header.jsp" />
 <put name="menubar" value="/common/menubar.jsp" />
 <put name="copyright" value="/common/copyright.jsp" />
 </definition>
</tiles-definitions>

<tiles-definitions>
 <definition name="storefront.custom"
extends="storefront.default">
 <put name="copyright" value="/common/new-copyright.jsp" />
 </definition>
</tiles-definitions>

In Example 14-9, all of the attributes in the storefront.default definition are inherited.
However, the storefront.customer definition overrides the value for the copyright
attribute with an alternate copyright page. This is a very powerful feature. If you have multiple child
definitions all extending a root definition, changing a value in the root definition changes it for all the
children. Thus, you can change the layout in the root definition and have it changed for all child
definitions.

14.5.4 Using Definitions as Forwards in Struts

Tiles definitions can also be used as Struts forwards, instead of actual URLs. To use definitions in this
manner, you first create the definitions:

<tiles-definitions>
 <definition name="storefront.default"
path="/layouts/storefrontDefaultLayout.jsp">
 <put name="header" value="/common/header.jsp" />
 <put name="menubar" value="/common/menubar.jsp" />
 <put name="copyright" value="/common/copyright.jsp" />
 </definition>

 <definition name="storefront.superuser.main"
extends="storefront.default">
 <put name="header" value="/common/super_header.jsp" />
 <put name="menubar" value="/common/super_menubar.jsp" />
 <put name="copyright" value="/common/copyright.jsp" />
 </definition>
</tiles-definitions>

This fragment shows two definitions, the standard default definition and a second one that defines the
layout for a "superuser." A superuser might be someone that frequents the site and places many orders,
and such a user might be given more options on the menu bar to facilitate faster ordering.

In the Struts configuration file, we need to define the forwards that use these definitions:

<global-forwards>
 <forward name="Super_Success"
path="storefront.superuser.main" />
</global-forwards>

You can then use the Super_Success forward to send the user to the
storefront.superuser.main definition just as you would for any other forward.

14.6 Internationalization Support with Tiles

Although the Struts framework provides certain I18N capabilities that can be used with Tiles, Tiles
also provides the ability to select a particular tile based on the user's locale. To support this feature in
your application, you need to create a different Tiles definition file for each locale that you need to
support. For example, if you need to support a set of definitions for the U.S. locale and a separate set
for the German locale, you must create two separate definition files:

• tiles-tutorial-defs_en.xml
• tiles-tutorial-defs_de.xml

The suffix naming conventions follow the ones set by the java.util.ResourceBundle,
which is also used by the resource bundles for Struts. When a request for a definition is made, the
correct definition is determined by the included locale.

As with regular Java resource bundles, you should always provide a base
definition that is used when no locale is provided or when an unsupported
locale is used. No language or country suffix is appended to the name of the
Tiles base definition file.

Once you have created the locale-specific definition files and placed them in the WEB-INF directory,
the only other necessary step is to ensure that a Locale is stored in the user's HttpSession. The
Tiles framework depends on the same Locale instance that Struts uses to determine which
definition file to use. You will need to ensure that the Struts framework is storing the user's Locale
in the session. This is accomplished by setting the locale attribute to true in the controller
element. See Section 4.7.2 for more information on the controller element.

That's all there is to it. Note that you should still rely on the Struts resource bundle for locale-sensitive
resources such as text, messages, and images. The I18N support in Tiles should be used for
differences in layout based on the locale. Struts and Tiles work very well together to provide complete
I18N support.

Chapter 15. Logging in a Struts Application
As dedicated and knowledgeable Java programmers, we always want to believe that the software we
create will stand up to the utmost scrutiny. However, as human beings, we'll all fallible, so it's never a
good practice to believe that our software contains no defects. The important thing is to use every
means available to try to eliminate the defects, or at least reduce them to an acceptable amount.

Generating log messages that tell you what the application is doing can help you locate any defects
that are present in your software. However, logging is important for other reasons as well. For
example, security and auditing might depend on logging to provide information to the system
administrators about what the authorized and, more importantly, unauthorized users of the application
are doing. By providing real-time information about potential security attacks on the application,
logging can give a much-needed edge to the system administrators and allow for quicker reactions to
attacks.

This chapter takes a close look at how the use of logging in your Struts application can help you
identify defects before the application gets into production, or, if your software is already being used
in production, how logging can help you to quickly identify problems with the software and arrive at
solutions.

15.1 Logging in a Web Application

The importance of logging has been evident to experienced developers for many years. Arguably,
logging can be as important a part of your framework as exception handling or even security, both of
which may rely on logging functionality to help carry out their responsibilities. Without logging in an
application, maintenance can become a nightmare for the developers. We all know that all "real"
applications periodically go through maintenance cycles.

Still, you may wonder whether logging in web applications is as necessary and important as logging in
other types of applications. Because web applications can sometimes be smaller and less complex than
their enterprise counterparts, you might think that logging is less important in these applications.

However, with nontrivial web applications, this is not the case—logging is just as critical there as it is
in an enterprise application.

System Versus Application Logging
Log messages can be arbitrarily broken down into two categories: system messages and
application messages. System messages have to do with the internal operation of the
application, rather than something specific to a user or data—for example, a system
message might indicate that the application is unable to send an email because the SMTP
host is not responding. On the other hand, an application message might indicate that the
user "Jane Doe" tried to submit a purchase order that was above her company's credit limit.

The system message in the first case might be logged with a priority of "error," whereas the
application message might only get a priority of "info." We can then set up the logging
environment so that "error" messages generate an email or a pager message to the system
administrators for immediate attention, while "info" messages go into a file for later
auditing.

The different types and categories of log messages are typically used for different purposes
across organizations. Although many applications may log messages with the priority of
"error," what's an error to one organization may just be a warning to another. There's not a
great deal of consistency across organizations, and there may never be—organizations have
different priorities, and what's critical to one may not necessarily be critical to another.

In this chapter, we will generalize the discussion of system versus application messages.
Because views of what's considered an error differ, there's no general way to specify what's
an error, a warning, or just general information for your particular application. That's a
decision that you, your development team, and your product-management group will have
to make. We'll keep our discussion at a higher level and not focus on these issues.

15.2 Using the Servlet Container for Logging

The Servlet specification requires that every servlet container allow developers to log events to the
container log file. Although the name and location of the log file are container-dependent, the manner
in which these events are logged is dictated by the specification and is portable across web containers.

The javax.servlet.ServletContext class contains two methods that can be used for
logging messages to the container's log:

public void log(String msg);
public void log(String msg, Throwable throwable);

You can use either of these methods by obtaining the ServletContext and passing the
appropriate arguments. Example 15-1 illustrates how this can be done using a Struts Action.

Example 15-1. The LoginAction using the ServletContext to log messages
public class LoginAction extends StorefrontBaseAction {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception{

 // Get the user's login name and password. They should
have already been
 // validated by the ActionForm.
 String email = ((LoginForm)form).getEmail();
 String password = ((LoginForm)form).getPassword();

 // Obtain the ServletContext
 ServletContext context =
getServlet().getServletContext();

 // Log which user is trying to enter the site
 context.log("Login email: " + email);

 // Log in through the security service
 IStorefrontService serviceImpl = getStorefrontService();
 UserView userView = serviceImpl.authenticate(email,
password);

 // Log the UserView for auditing purposes
 context.log(userView.toString());

 UserContainer existingContainer = null;
 HttpSession session = request.getSession(false);
 if (session != null){
 existingContainer = getUserContainer(request);
 session.invalidate();
 }else{
 existingContainer = new UserContainer();
 }

 // Create a new session for the user
 session = request.getSession(true);
 existingContainer.setUserView(userView);
 session.setAttribute(IConstants.USER_CONTAINER_KEY,
existingContainer);

 return mapping.findForward(IConstants.SUCCESS_KEY);
 }
}

The LoginAction in Example 15-1 shows a very simple example of sending log messages to the
container's log file. It calls the log() method and passes a literal string message that will be
written to the log. As was mentioned earlier, the name and location of the log are dependent on which
web container is being used.

Some web containers may assign a separate log file for each web application, while others may use
just a single log file. If only one log file is used, messages from different web applications will end up
in the same log file and generally will be prefixed with the web application name.

15.2.1 Using Filters

Filters are a new feature of the 2.3 Java Servlet specification. Servlet filters allow you to inspect
and/or transform the content of the HTTP request and response objects. Because of the manner in
which filters are invoked by the servlet container, they can operate on dynamic as well as static
content.

Struts 1.1 supports both the 2.2 and 2.3 Servlet specifications. If you are not
using a 2.3-compliant container, you will not be able to take advantage of
servlet filters.

Using filters, servlet developers can perform the following tasks:

• Access a web resource before a request to it is invoked.
• Process a request for a resource before it is invoked.
• Modify the request headers and data by wrapping the request with a customized version of the

request object.
• Modify the response headers and data by wrapping the response with a customized version of

the response object.
• Intercept a method call on a resource after it has been performed.
• Perform actions on a servlet, or group of servlets, by one or more filters in a specified order.

Based on the tasks required by servlet developers, the Servlet specification describes several possible
types of filters:

• Authentication filters
• Logging and auditing filters
• Image conversion filters
• Data compression filters
• Encryption filters
• Tokenizing filters
• Filters that trigger resource-access events
• XSLT filters that transform XML content
• MIME-type chain filters
• Filters that cache URLs and other information

All of these types of filters are interesting, but in this chapter we are interested in using filters for
logging and auditing. With filters, it's possible to log messages using any data that is contained in the
request and response objects. Because the filter is coupled tightly to the servlet container, you'll
probably still need logging functionality elsewhere in your application. Using filters for logging is
generally not sufficient for the entire application. However, filters are perfect for auditing or tracking a
user's actions through the system.

If you need to get an idea of which parts of your site your users are frequenting or where certain user
groups are going most often, filters may be an ideal solution. They might even be able to give you
information about the specific data that the users are viewing most often. For example, say that you

have an online catalog application and you are interested in knowing which catalogs the users are
browsing most often. Because the request and response objects contain this information, you can
easily track this information and store it into a database for further analysis.

15.2.2 Creating a Filter

There are three basic steps for creating a filter:

1. Create a Java class that implements the javax.servlet.Filter interface and that
contains a no-argument constructor.

2. Declare the filter in the web application deployment descriptor using the filter element.
3. Package the filter class along with the rest of the web application resources.

15.2.2.1 Creating the filter class

The first step in creating a servlet filter is to create a new Java class (or use an existing one) and have
it implement the javax.servlet.Filter interface. Java classes can implement multiple
interfaces, so you don't necessarily have to create a new class. However, the class will eventually need
to be loaded by the web container, so it shouldn't be one that is installed only on a backend system,
like an EJB container.

The Filter interface has three methods that must be implemented by your class:

public void init(FilterConfig filterConfig) throws
ServletException;

public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException;

public void destroy();

The web container calls the init() method when it's ready to put the filter into service. You can
initialize any needed resources in this method. The destroy() method is the opposite of the
init() method. The web container calls this method when it takes the filter out of service. At this
point, you should clean up any open resources that the filter may be using, such as database
connections.

Finally, the web container calls the doFilter() method every time a request is received and the
container determines that the filter instance should be notified. This is where you should place
whatever functionality the filter is designed to perform.

Example 15-2 shows an example filter class that could be used to log to the servlet log file or to
initialize a third-party logging service.

Example 15-2. A servlet filter class example
import java.io.IOException;
import javax.servlet.Filter;

import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletRequest;
import javax.servlet.ServletContext;
import javax.servlet.ServletResponse;
import javax.servlet.ServletException;
/**
 * An example servlet filter class.
 */
public class LoggingFilter implements Filter{

 public final static String LOG_FILE_PARAM = "log_file_name";
 private FilterConfig filterConfig = null;
 private ServletContext servletContext = null;

 public void init(FilterConfig config) throws
ServletException {
 // Initialize any neccessary resources here
 this.filterConfig = config;
 this.servletContext = config.getServletContext();

 // You can get access to initialization parameters from
web.xml
 // although this example doesn't really use it
 String logFileName =
config.getInitParameter(LOG_FILE_PARAM);

 // You can log messages to the servlet log like this
 log("Logging to file " + logFileName);

 // Maybe initialize a third-party logging framework
like log4j
 }

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain filterChain)
 throws IOException, ServletException {

 // Log a message here using the request data
 log("doFilter called on LoggingFilter");

 // All request and response headers are available to the
filter
 log("Request received from " +
request.getRemoteHost());

 // Call the next filter in the chain
 filterChain.doFilter(request, response);

 }

 public void destroy(){
 // Remove any resources to the logging framework here
 log("LoggingFilter destroyed");
 }

 protected void log(String message) {
 getServletContext().log("LoggingFilter: " + message);
 }

 protected ServletContext getServletContext(){
 return this.servletContext;
 }
}

Just as you must be careful with multiple threads in Java servlets, you must be
careful not to violate any thread-safety practices with filters. The servlet
container may send concurrent threads to a single instance of a filter class, and
you must ensure that you don't do anything to cause problems between the
threads. In other words, no client-specific data should be stored in instance
variables. Local variables are fine, just as they are in Java servlets, because
they are stored on the stack rather than the heap.

15.2.2.2 Declaring the filter in the deployment descriptor

The second step in creating a servlet filter is to configure the proper elements in the deployment
descriptor for the web application. As you learned in Chapter 4, the name of the deployment
descriptor file for a web application is web.xml.

The first step in setting up the filter declaration in the web application's deployment descriptor is to
create the actual filter elements. Chapter 4 describes the filter element in detail. The
following deployment descriptor fragment illustrates how it looks using the LoggingFilter
class from the previous section:

<filter>
 <filter-name>MyLoggingFilter</filter-name>
 <filter-class>LoggingFilter</filter-class>
 <init-param>
 <param-name>log_file_name</param-name>
 <param-value>log.out</param-value>
 </init-param>
</filter>

You can also optionally specify initialization parameters, icons, a description, and a display label. See
Chapter 4 for more details on the attributes of the filter element.

Once the filter element is added, you need to add a filter-mapping element that will
associate or link the specified filter to a servlet or static resource in the web application. Filters can be
applied to a single servlet or to groups of servlets and static content, using two distinct mapping

approaches. The following deployment descriptor fragment illustrates a filter mapping to a single
servlet called MyExampleServlet:

<filter-mapping>
 <filter-name>MyLoggingFilter</filter-name>
 <servlet-name>MyExampleServlet</servlet-name>
</filter-mapping>

Every time the web container receives a request for the MyExampleServlet resource, the
doFilter() method in the LoggingFilter class will be invoked. The following XML
fragment illustrates how the example filter can be mapped to all requests sent to the web application:

<filter-mapping>
 <filter-name>MyLoggingFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

The filter mapping in this case will map all requests to the MyLoggingFilter because every
request URI will match the "/*" URL pattern.

15.2.2.3 Packaging the filter

The final step is to package the filter class with the rest of the resources of the web application. As
with any other Java resource that is part of a web application, the filter class must be bundled with the
WAR file and able to be loaded by the web application's class loader. In most cases, the filter class
should be placed under the WEB-INF/classes directory for the web application. Filter classes may also
be inserted into a JAR file and placed in the WEB-INF/lib directory.

15.2.3 Using Event Listeners

Web application event listeners are Java classes that implement one or more of the servlet event-
listener interfaces. Event listeners support event notifications for changes in state in the
ServletContext and HttpSession objects. Event listeners that are bound to the
ServletContext support changes at the application level, while those that are bound to the
HttpSession objects are notified for state changes at the session level.

Multiple listeners can be set up for each event type, and the servlet developer may offer a preference
regarding the notification order for the listeners based on event type.

Tables Table 15-1 and Table 15-2 list the event types and event-listener interfaces available to the
servlet developer.

Table 15-1. ServletContext application events and listener interfaces
Event
type Description Listener interface

Lifecycle
The ServletContext is about
to service the first request or is about
to be shut down by the servlet

ServletContextListener

container.

Attributes
Attributes on the
ServletContext have been
added, removed, or replaced.

ServletContextAttributesListener

Table 15-2. HttpSession application events and listener interfaces
Event
type Description Listener interface

Lifecycle An HttpSession object has been
created, invalidated, or timed out.

HttpSessionListener

Attributes Attributes on an HttpSession object
have been added, removed, or replaced.

HttpSessionAttributesListener

15.2.4 Creating an Event Listener

The steps for creating an event listener are similar to those of creating filters. There are three primary
steps to perform:

1. Create a Java class that implements the event-listener interface for which you are interested in
receiving events. This class must contain a no-argument constructor.

2. Declare the event listener in the web application deployment descriptor using the
listener element.

3. Package the event listener class along with the rest of the web application resources.

15.2.4.1 Creating the event listener class

As when you create filters, the first step is to create a Java class that implements the appropriate
listener interface. As an example, we'll create a Java class that implements the
javax.servlet.ServletContextListener interface and is responsible for initializing
the logging service when the web application is started. This class is illustrated in Example 15-3.

Example 15-3. ServletContextListener interface
import javax.servlet.ServletContext;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;
/**
 * An
example event listener class that
 * initializes a logging service.
 */
public class
LoggingListener implements ServletContextListener{
 private ServletContext context = null;

 /**
 * Called by the container before the first request is
 * processed. This is a good time to initialize
 * the logging service.

 */
 public void contextInitialized(ServletContextEvent event){
 this.context = event.getServletContext();

 // Initialize the logging service here

 // Log a message that the listener has started
 log("LoggingListener initialized");
 }

 /**
 * Called by the container when the ServletContext is about
 * ready to be removed. This is a good time to clean up
 * any open resources.
 */
 public void contextDestroyed(ServletContextEvent event){
 // Clean up the logging service here

 // Log a message that the LoggingListener has been stopped
 log("LoggingListener destroyed");
 }

 /**
 * Log a message to the servlet context application log or
 * system out if the ServletContext is unavailable.
 */
 protected void log(String message) {
 if (context != null){
 context.log("LoggingListener: " + message);
 }else{
 System.out.println("LoggingListener: " + message);
 }
 }
}

The event-listener class in Example 15-3 contains two methods that are invoked by the web container:

public void contextInitialized(ServletContextEvent event);
public void contextDestroyed(ServletContextEvent event);

The web container calls the contextInitialized() method before the first request is
processed. You should initialize any needed resources in this method. For example, this is an ideal
location to initialize a logging service. The contextDestroyed() method is called when the
web application is taken out of service. This is where any open resources that the listener class is using
should be closed.

Because there can be multiple event-listener classes for the same event, let's use another
ServletContext event-listener class to make our example more realistic. Example 15-4 shows
the DBConnectionPoolListener class. Both the LoggingListener and the

DBConnectionPoolListener will receive event notifications when the
ServletContext is initialized and destroyed.

Example 15-4. The DBConnectionPoolListener class
import javax.servlet.ServletContextListener;
import javax.servlet.ServletContextEvent;
/**
 * An example event listener class that
 * initializes the database connection pooling.
 */
public class DBConnectionPoolListener implements
ServletContextListener{

 /**
 * Called by the container before the first request is
 * processed. This is a good time to initialize
 * the connection pooling service.
 */
 public void contextInitialized(ServletContextEvent event){
 // Initialize the connection pooling here
 }

 /**
 * Called by the container when the ServletContext is about
 * ready to be removed. This is a good time to clean up
 * any open resources.
 */
 public void contextDestroyed(ServletContextEvent event){
 // Shut down the connection pooling and open database
connections
 }
}

Because both the LoggingListener and DBConnectionPoolListener are listening
for the same type of application events, the servlet container will notify them in the order in which
they are listed in the descriptor, based on the event type.

15.2.4.2 Declaring the event listener in the deployment descriptor

The following web application deployment descriptor fragment shows you how to set up the event
listeners:

<web-app>
 <listener>
 <listener-class>LoggingListener</listener-class>
 </listener>

 <listener>
 <listener-class>DBConnectionPoolListener</listener-class>

 </listener>

 <servlet>
 <servlet-name>ExampleServlet</servlet-name>
 <servlet-class>ExampleServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>ExampleServlet</servlet-name>
 <url-pattern>/example</url-pattern>
 </servlet-mapping>
</web-app>

The LoggingListener will be notified first, followed by the
DBConnectionPoolListener instance. When the web application shuts down, the listeners
are notified in reverse order. The HttpSession event listeners are notified prior to listeners for
the application context.

15.2.4.3 Packaging the event listener

The packaging of the event-listener classes follows the guidelines described in the previous section for
filters. That is, the classes must either be in the WEB-INF/classes directory or be installed in a JAR
file located in the WEB-INF/lib directory for the web application.

15.3 Jakarta Commons Logging

The Commons Logging package is an open source Logging library that allows developers to use a
common logging API, while maintaining the freedom to use many different third-party logging
implementations. The Commons Logging API insulates the application and protects it from becoming
coupled to a specific logging implementation. The API provides a small set of Java classes and
interfaces that an application imports and relies upon but that has no implicit dependencies on any one
logging product.

The Logging library allows developers to declaratively configure the logging implementation; the
library will dynamically discover which implementation is being used. An application that uses the
Commons Logging API does not have to be modified when the logging implementation is changed.
This is the greatest benefit of such a package.

The Commons Logging package supports several logging implementations out of the box:

• log4j (http://jakarta.apache.org/log4j)
• JDK 1.4 Logging
• LogKit (http://jakarta.apache.org/avalon/logkit)
• SimpleLog (writes log messages to stdout and stderr)
• NoOpLog (log messages are ignored)

The Commons Logging package includes only the SimpleLog and
NoOpLog implementations; it does not contain the other third-party logging
implementations. You will need to download those separately.

Another powerful feature of the Commons Logging package is that it is completely extensible. If you
are using a logging package that is not yet supported, you can create an adapter to that implementation
by extending the appropriate components, and your application can use the Commons Logging API.

15.3.1 Installing the Commons Logging Package

You can download the latest source and binary code for the Commons Logging package at
http://jakarta.apache.org/commons/logging.html. Struts 1.1 already includes commons-logging.jar,
which is the only required binary file. Unless you want the absolute latest from the nightly build, the
version included with the Struts framework should suit your needs. You should place the commons-
logging.jar file into the WEB-INF/lib directory for the web application.

You will also need to decide on a logging implementation. The Commons Logging package includes
an implementation called SimpleLog that writes log messages to stdout and stderr. If you
don't want to worry about getting log4j working and are not using Java 1.4, the SimpleLog
implementation is a good choice to get things started.

Once you decide on an implementation, you must configure the implementation class so that the
Commons Logging factory component can discover it at application startup. There are many ways to
do this, but the easiest is to create a properties file called commons-logging.properties that contains
the class name of the logging implementation. The most important property key in this file is the
org.apache.commons.logging.Log key, which is used to set the implementation class.

The following illustrates how to set up the Commons Logging package to use the SimpleLog
implementation:

org.apache.commons.logging.Log=org.apache.commons.logging.impl
.SimpleLog

At runtime, the logging component will search for the commons-logging.properties file and attempt to
instantiate the fully qualified class name found there. The class name specified must be available to
the web application class loader. The properties file should be placed in the WEB-INF/classesdirectory.
To switch to log4j, all you need to do is switch the class name in the commons-logging.properties file,
like this:

org.apache.commons.logging.Log=org.apache.commons.logging.impl
.Log4JCategoryLog

Note that you still need to configure log4j for your environment, including creating a log4j.properties
file. Each logging implementation may have different configuration requirements that must be
satisfied.

15.3.2 Using the Commons Logging API

Once the configuration steps are completed, your application is ready to use the Commons Logging
API. You must include the following import statements in each class or component in which you
wish to use the logging API:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

To get an instance of a log component to which you can send log messages, you need to use either of
the getLog() factory methods on the
org.apache.commons.logging.LogFactory class:

public static Log getLog(Class class);
public static Log getLog(String name)

Both getLog() methods return an object that implements the
org.apache.commons.logging.Log interface. To create a Log instance to be used
within the LoginAction class, for example, you could pass the class name to the getLog()
method:

Log log = LogFactory.getLog(LoginAction.class);

The Log instance would then be available for use within the LoginAction class:

if (log.isInfoEnabled()){
 // Log which user is trying to enter the site
 log.info("Login email: " + email);
}

The Log interface implements the logging methods that you can use to send log messages to the
intended destination. The most important of these are:

• debug()
• error()
• fatal()
• info()
• trace()
• warn()

Each of these log methods has an overloaded version that takes a Throwable. There are also
methods that allow you to determine whether debug is enabled, whether error is enabled, and so on.
Checking to see if a particular logging level is enabled before attempting to log a message can
improve the performance of your application. For example, if you have this code fragment:

StringBuffer buf = new StringBuffer();
buf.append("Login Successful - ");
buf.append("Name: ");
buf.append(userView.getFirstName());
buf.append(" ");
buf.append(userView.getLastName());
buf.append(" - ");
buf.append("Email: ");
buf.append(userView.getEmailAddress());

// Log the information for auditing purposes
log.debug(buf.toString());

it would improve the performance of the application if the append statements were not all executed
when the logging threshold was set to not log debug statements. You can use the
isDebugEnabled() method for this:

if (log.isDebugEnabled()){
 StringBuffer buf = new StringBuffer();
 buf.append("Login Successful - ");
 buf.append("Name: ");
 buf.append(userView.getFirstName());
 buf.append(" ");
 buf.append(userView.getLastName());
 buf.append(" - ");
 buf.append("Email: ");
 buf.append(userView.getEmailAddress());

 // Log the UserView for auditing purposes
 log.debug(buf.toString());
}

In this case, the application is not wasting time creating the StringBuffer only to have it not be
used.

15.3.3 Struts Framework and the Commons Logging Package

The Struts framework does perform some limited internal logging, and also uses the Commons
Logging API. Thus, the Struts framework will use whichever logging implementation you configure
for your application.

The Struts logs are a great way for you to see what's going on inside Struts as it processes requests,
but other than for debugging purposes, there's no need for you to worry about them. In most
production environments, the messages generated by the Struts framework should be disabled. The
manner in which you disable the framework-specific log messages depends on which logging
implementation you choose.

The rest of this chapter is devoted to one of the most popular logging implementations used by
developers, log4j. Because it's also supported by the Commons Logging package, it's an excellent
choice for your Struts application's logging needs.

15.4 Using the log4j Package

You may have heard or read about the log4j library from other sources, but in case you haven't, let's
briefly discuss the library's history here. Like Struts, log4j is an open source project that is part of the
Jakarta set of projects. It's essentially a set of Java classes and interfaces that provides logging
functionality to multiple types of output destinations. It has been around for several years and is
constantly being refined and tuned for all types of Java development. In fact, log4j has been so
successful that it has been ported to several other very popular languages, including C, C++, Python,
and even .NET.

At the time of this writing, log4j has released Version 1.2.5, which is its 22nd
release. The next major version, 1.3, is in the works, but it won't be released
for a while. Version 1.2 is backward compatible with earlier versions, so if you
are using 1.1.3, this material will still be relevant for you.

According to the creators of log4j, it was built with two central concepts in mind: speed and flexibility.
One of the distinctive features of the logging framework is its notion of inheritance in categories, or
loggers as they are now called. log4j supports a parent/child relationship between the configured
loggers in the environment. For example, if we configured a logger for all the classes in the
com.oreilly.struts package and another logger for all the classes in the
com.oreilly.struts.storefront package, the first logger would be the parent of the
second. This hierarchical structure gives us the flexibility to control what log messages are written out
based on such things as the package structure.

You don't need to go this far if your requirements don't call for it. If you want, you can configure a
single root logger for your entire environment. You can configure log4j for your specific needs, and
you can change its behavior whenever you like by simply editing an external configuration file—you
don't have to change the application's source code.

A discussion of log4j could fill a small book. I'll assume that you are familiar with the basic concepts
and will cover only the essentials of how to integrate log4j with the Struts framework here. If you
haven't yet become familiar with log4j, this is a good time to do so. For a more detailed discussion,
you can download or view the documentation at the Jakarta log4j web site at
http://jakarta.apache.org/log4j.

15.4.1 Integrating log4j with Struts

To ensure that the log4j libraries are available to your Struts applications, you should place the log4j
JAR file in the WEB-INF/lib directory for each web application that you deploy. Resist the temptation
to put it inside the container-wide lib directory, even if you're deploying multiple web applications
with log4j. If you do attempt to install it at the container level, you probably will encounter one or
more ClassNotFoundException problems.

Based on the requirements set forth in the 2.3 Servlet specification, the web container should
automatically load all JAR files in the WEB-INF/lib directory, including the log4j library. After this
initial step is complete, you are free to use log4j as the logging implementation for the Commons
Logging package.

Keep in mind that the configuration of log4j is totally independent of the
configuration of the logging implementation for the Commons Logging
package. You still need to understand how to configure log4j (if that's the
implementation you choose) and perform the necessary steps required by the
log4j package.

15.4.2 What Are Loggers?

The org.apache.log4j.Logger is the central class in the log4j toolkit. Other than
configuration, most of the functionality is performed through this class. In earlier versions of the log4j
project, the org.apache.log4j.Category class implemented this functionality. To promote

backward compatibility, the Logger class extends the Category class. Although the methods in
the Category class have not yet been deprecated, you should always go through the Logger
class itself. Eventually, the Category class will be removed from the library.

When used with Struts, most of the log4j classes and interfaces (other than the configuration aspects
of log4j) are encapsulated within the Commons Logging API.

15.4.3 Configuring log4j Appenders

With log4j, you can send log messages to multiple destinations. log4j refers to a message destination
as an appender. The log4j framework provides the following appenders for you to use out of the box:

• Console Appender
• File Appender
• Socket Appender
• Java Message Service (JMS) Appender
• NT Event Logger Appender
• Unix Syslog Appender
• Null Appender
• SMTP Appender
• Telnet Appender
• Asynchronous Appender

The log4j framework allows one or more appenders to be established for a logging environment. You
can even send log messages to particular appenders, based on various conditions. The other nice
feature of the appender architecture is that if none of these default appenders meets your application's
requirements, you can create your own by extending the
org.apache.log4j.AppenderSkeleton class.

15.4.4 Understanding the log4j Log Levels

A log message in log4j can be assigned one of five different levels or priorities. The levels allow you
to set a threshold for a particular logger and filter out any log messages that don't reach the threshold
for which the Logger is configured. The five logging levels are:

• DEBUG
• INFO
• WARN
• ERROR
• FATAL

An earlier version of log4j also defined the levels OFF and ALL; however,
these seem to have been deprecated and probably should be avoided. If you set
the threshold to DEBUG, you'll get the same results as using ALL, and OFF
isn't really necessary because you can simply choose not to configure an
appender for the environment, which will stop all logging from occurring.

There is a cascading effect that causes only levels equal to the threshold and higher to be logged. For
example, if a threshold of WARN is configured, only messages with a level of WARN, ERROR, or
FATAL will make it to an output destination.

15.4.5 Initializing log4j

There are many properties that can be configured for the log4j toolkit. In fact, log4j is so flexible that
all the configuration options can't be covered here. The best source of information is the log4j manual
itself. You can find the manual online at http://jakarta.apache.org/log4j/docs/documentation.html, and
it's also available locally when you download log4j.

Because log4j doesn't make any assumptions about the environment in which it is running, you need
to configure the environment for your particular needs. In other words, no default appenders are
configured out of the box.

There are various ways in which you can initialize the configuration properties for the log4j
environment. We will focus on two related, but distinct, approaches here.

15.4.5.1 Initializing using the log4j.properties file

The first approach is to create a file called log4j.properties that contains the necessary configuration
elements for your logging needs. This file must follow the guidelines of the
java.util.Properties format. One of these guidelines is that each property is in the format
key=value.

Example 15-5 illustrates a very simple log4j configuration file that logs messages with a logging
threshold of INFO to the console using an org.apache.log4j.ConsoleAppender.

Example 15-5. An example log4j.properties file
A basic log4j configuration file that creates a single
console appender

Create a single console appender that logs INFO and higher
log4j.rootLogger=INFO, stdout

Configure the stdout appender to go to the console
log4j.appender.stdout=org.apache.log4j.ConsoleAppender

Configure the stdout appender to use the PatternLayout
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

Pattern to output the caller's filename and line number.
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L)
- %m%n

The configuration file shown in Example 15-5 is a very simple example of setting up a single
appender—in this case, the ConsoleAppender, which directs log messages to System.out.

This log4j.properties file must be installed in the WEB-INF/classes directory so that the log4j
environment will be able to locate it and use it to configure the logging environment for the web
application. If you have multiple web applications, you can have a separate log4j.properties file for
each.

The log4j configuration file shown in Example 15-5 sends log messages to only a single destination,
the console. However, you can configure the log messages to go to multiple locations and also have
certain messages go to certain locations based on the level of the message and other parameters.
Example 15-6 shows a simple example using two appenders.

Example 15-6. A log4j configuration file using two appenders
A sample log4j configuration file

Create two appenders, one called stdout and the other called
rolling
log4j.rootLogger=DEBUG, stdout, rolling

Configure the stdout appender to go to the console
log4j.appender.stdout=org.apache.log4j.ConsoleAppender

Configure the stdout appender to use the PatternLayout
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

Pattern to output the caller's filename and line number
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L)
- %m%n

Configure the rolling appender to be a RollingFileAppender
log4j.appender.rolling=org.apache.log4j.RollingFileAppender

Configure the name of the logout for the rolling appender
log4j.appender.rolling.File=output.log

Set up the maximum size of the rolling log file
log4j.appender.rolling.MaxFileSize=100KB

Keep one backup file of the rolling appender
log4j.appender.rolling.MaxBackupIndex=1

Configure the layout pattern and conversion pattern for the
rolling appender
log4j.appender.rolling.layout=org.apache.log4j.PatternLayout
log4j.appender.rolling.layout.ConversionPattern=%d{ABSOLUTE} -
%p %c - %m%n

The log4j configuration file in Example 15-6 creates one appender that logs messages to the console,
just as in Example 15-5, and another appender that logs messages to a log file called output.log. Again,
we won't try to cover all of the configuration settings for log4j; you can learn more from the log4j web
site.

15.4.5.2 Initializing using an XML file

The second approach to initializing the configuration properties for the log4j environment is to use an
XML file. Example 15-7 illustrates an XML file that configures the same information as in Example
15-5.

Example 15-7. A log4j configuration file using an XML format
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration
xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="stdout"
class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%5p [%t] (%F:%L)
- %m%n"/>
 </layout>
 </appender>

 <root>
 <priority value ="INFO" />
 <appender-ref ref="stdout" />
 </root>
</log4j:configuration>

You normally place this XML file in the WEB-INF/classes directory, just as with the log4j.properties
file. However, you must set the log4j.configuration system property equal to the name of
the file, so that the log4j environment knows which file to load. There's no default filename when
using the XML format. (We didn't have to do this with the properties file because the name
log4j.properties is part of the log4j default initialization. If it locates this file anywhere in the
classpath, it will use it to initialize the log4j environment.)

There are various ways to set the log4j.configuration property, and the various containers
may provide alternative methods. In Tomcat Version 4.0, for example, you can set a variable called
CATALINA_OPTS in the catalina.bat file to provide this information to the logging environment.
For example:

set CATALINA_OPTS=-Dlog4j.configuration=log4j.xml

When you start up Tomcat, the log4j environment will then be able to locate the XML configuration
file. Other containers may provide alternate methods for setting the value, but you can always set the
value on the Java command line as a system property. You will probably need to modify the
container's startup script using this approach, however:

java -Dlog4j.configuration=log4j.xml

If the log4j environment is unable to find a valid configuration file, either properties-based or XML-
based, you will see something similar to the following message when you first attempt to initialize the
logging environment:

log4j:WARN No appenders could be found for logger XXX.
log4j:WARN Please initialize the log4j system properly.

The XXX in the first message will actually show the name of the logger for which no appenders were
configured.

15.4.5.3 Specifying a relative versus an absolute path

When you use a system property to configure the log4j configuration file within a web application, the
file is relative to the web application by default. The following example tells log4j to search for a file
called log4j.xml in the WEB-INF/classes directory for the web application:

java -Dlog4j.configuration=log4j.xml

Most containers use a separate class loader for each web application, and some containers may not
allow the web applications to know about classes or JARs loaded by the container itself. However, if
you need to use an absolute path, you can specify one like this:

java -Dlog4j.configuration=file:/c:/dev/env/log4j.xml

Be careful when using an absolute path—because the configuration file is not relative to a web
application, all web applications will share the same one.

Generally speaking, specifying a relative path is much more flexible than using an absolute path
because you can't always guarantee the directory structure of all your target environments.

15.4.5.4 Synchronization issues

There's one more issue that you should be aware of when logging to resources such as filesystems.
Even though log4j is able to handle multiple client threads using the same appender (because all
threads are synchronized), if you have multiple appenders writing to the same resource or file, you
will have unpredictable results. In other words, there is no synchronization between appenders, even
within the same JVM.

This really has nothing to do with a deficiency in the log4j design; it's just a case of not being able to
easily synchronize multiple writers to a resource. The easiest way to solve this problem is to ensure
that if you have multiple appenders or web applications logging to the filesystem, you don't allow
them to log to the same file. If you do, you will probably experience synchronization-related issues.

15.4.6 Log File Rollover

In a normal production environment, log files can grow quite large if not managed properly. If the
logging threshold is set to DEBUG or INFO or if the files are not purged from time to time, the files
can grow without bounds.

It's a good idea to periodically back up the log files and start again with an empty log file. For some
production environments, this "rollover" period may be nightly; others may only need to perform this
routine weekly. Unless you can shut down the application while you back up the log files, it's very
cumbersome to back them up manually.

Fortunately, log4j provides a type of appender that automatically swaps the log file out with a new one
while at the same time maintaining a backup of the old log file. The
org.apache.log4j.DailyRollingFileAppender class provides the ability to log to

a file and roll over or back up the log file while the application is still running. You can also specify
the rollover frequency and the date pattern that will be used for the backup names. Having this
functionality available out of the box makes log4j invaluable to any application that needs to roll over
log files at user-defined intervals.

15.5 Using Commons Logging in JSP Pages

We've covered how to use the Commons Logging API within Java components, but we haven't yet
discussed how to use them in JSP pages. There are a number of ways to use the library within JSP
pages, but we'll just cover the two easiest approaches here.

The first approach is to use the same three steps defined earlier, this time performing them in the JSP
page itself:

1. Import the Commons Log and LogFactory classes.
2. Define and initialize a logger variable for the page.
3. Start logging.

Example 15-8 illustrates this approach in a basic JSP page.

Example 15-8. Using Commons Logging in a JSP page
<%@ page import="org.apache.commons.logging.Log" %>
<%@ page import="org.apache.commons.logging.LogFactory" %>

<%-- Get a reference to the logger for this class --%>
<% Log logger = LogFactory.getLog(this.getClass()); %>

<% logger.debug("This is a debug message from a jsp"); %>

<html>
<head>
 <title>Using Commons Logging in a JSP page</title>
</head>

<body>
 <% logger.info("This is another log message in the jsp");
%>

 There should be two log messages in the log file.
</body>
</html>

You must have the Commons Logging environment configured properly for this to work, just as when
using it in the Java classes. Any JSP page that is part of the web application will be able to use the
logging utilities. Because most containers use a different class loader for each web application, any
JSP page that is not part of the log4j-configured web application may not be able to use the logging
utilities.

Although Example 15-8 shows just how easy it can be to use the Commons Logging API in your JSP
pages, there are a few issues with this approach. The most obvious one is that your JSP pages will

contain Java code. As mentioned several times in this book, many developers see this as something
that should be avoided. Fortunately, there is another way.

The Jakarta Taglibs project contains a custom JSP tag library designed for log4j called the Log tag
library. You can view information and download the tag library from the Jakarta Taglibs web site at
http://jakarta.apache.org/taglibs/doc/log-doc/intro.html.

Just like any other custom tag library, you must properly configure it for your web application. This
means putting the log.tld file into the WEB-INF directory and installing the Log tag JAR file into the
WEB-INF/lib directory. You will also need to add the appropriate taglib element to your web
application's deployment descriptor, similar to how you added the Struts tag libraries:

<taglib>
 <taglib-uri>/WEB-INF/log.tld</taglib-uri>
 <taglib-location>/WEB-INF/log.tld</taglib-location>
</taglib>

Once the Log custom tag is installed and configured for your web application, you can use it in your
JSP pages as shown in Example 15-9.

Example 15-9. An example JSP page using the Log tag
<%@ taglib uri="/WEB-INF/log.tld" prefix="logger" %>

<logger:debug message="This is a debug message from a jsp
using the Log tag" />

<html>
<head>
 <title>Using the Log Tag in a JSP page</title>
</head>

<body>

 <logger:info message="This is another message using the
log4j tag" />

 There should be two log messages in the log4j log file.

</body>
</html>

Notice that the JSP page in Example 15-9 contains no Java code. Although it doesn't look too different
from Example 15-8, this approach is much cleaner with a larger and more complex JSP page.

Another nice feature of the Log tag is that it gives you the ability to perform a dump of objects stored
at the page, request, session, or application scope. This is very useful when you are in the middle of
debugging your web application. Example 15-10 illustrates how easy this is to do.

Example 15-10. Using the Log tag library to dump information

<%@ taglib uri="/WEB-INF/log.tld" prefix="logger" %>

<html>
<head>
 <title>Using the Log Tag in a JSP page</title>
</head>

<body>

 <logger:dump scope="page"/>
 <logger:dump scope="request"/>
 <logger:dump scope="session"/>
 <logger:dump scope="application"/>

 The page, request, session, and application dumps should be
in the log file.

</body>
</html>

Unfortunately, the Log tag doesn't yet work with the Commons Logging
package. It depends on the log4j implementation. Still, it's a valuable tag if you
need to provide additional debugging in your JSP pages.

15.6 The Performance Impact of log4j

The potential performance impact of logging in an application is significant. For a typical production
application, thousands of log messages can be logged every day, depending on the logging threshold
that's configured. The consequences might be even worse if exception stack traces are logged due to
errors in the application.

The log4j documentation states that much attention has been given to minimizing the performance
impact of logging using log4j. Nothing is free, however, and there is an additional cost associated with
generating log messages. The question is, does that cost outweigh the benefits gained from the
additional logging information?

The time cost of creating a log message using log4j depends on several factors:

• The type of appender being used
• The log4j layout being used to format the messages
• The parameter construction time to create the log message
• The depth of the logger hierarchy and where the log threshold is assigned

The type of appender has much to do with how long it will take to create a log message. Logging a
message using an SMTP appender will take a different amount of time than logging to the filesystem.
On a typical machine using Java 1.3, logging a message to the filesystem will take anywhere from 20
microseconds to upwards of 300 microseconds, depending on which layout you use. While this is a
very small number, over time it can add up.

Probably the most significant impact on logging is what information you attempt to log and how you
format that information. log4j uses a subclass of org.apache.log4j.Layout to determine
how the message should be formatted in the output destination. Using the SimpleLayout class is
the fastest, as it logs only the log level and the message. On the other hand, the PatternLayout
class allows for a great amount of flexibility in the format of the message; you can log all sorts of
information, including the class creating the message, the line number, and even the Java thread that is
generating the message. However, all of this additional information comes at a severe price in terms of
performance. The log4j documentation contains several warning messages in the JavaDocs for the
PatternLayout class stating that performance may suffer greatly if certain information is written
out with the log message.

You must be very particular about what information you need in the log message. You should be able
to get by with the class, the level, and the message. The other information is nice to have, but in most
cases it's superfluous.

Creating the message that goes into the log statement can also impact the time and performance.
Creating a message using values such as:

logger.debug("Session id is: " + sessId + " for user " +
user.getFullName());

can add significant time to logging. This isn't related to log4j, but rather to the cost associated with
making Java method calls and concatenating the strings together before the actual log statement can be
generated.

Finally, as mentioned earlier, loggers can be connected together in a parent/child relationship. Because
the logging threshold can be assigned at any level, the log4j environment may have to search up the
hierarchy to determine whether the log message should be written. If this hierarchy is very deep, this
traversal can add significant time to the log statement creation.

Generally, in the development stages of your application, logging costs are less important. The
performance of logging shouldn't matter that much while you're still developing and debugging the
application; in fact, this is typically where you want as much logging as the application can generate.
When it's time to go to QA or production, turn down the logging levels.

With other languages, the logging code might not ever make it into the compiled binaries.
Preprocessors might remove the logging code to keep the binary size smaller and prevent the log
messages from showing up. However, this is not necessary using log4j—you have the flexibility of
controlling how much logging is done just by changing the configuration file. (Of course, the log
statements are still present in the binary code once it's compiled.)

15.7 Third-Party log4j Extensions

Several helpful third-party tools and utilities are available for log4j. Most of them are free and/or open
source. For example, there are several Swing-based GUI applications that allow you to view and filter
log messages dynamically, which is ideal for administrators in a production environment.

There are also several other types of appenders that other developers have created that might be
helpful to you. You can find these third-party extensions in the log4j download area at
http://jakarta.apache.org/log4j/docs/download.html. It's definitely worth the time to take a look and
see what's there. The list of available extensions is constantly growing.

15.8 Java 1.4 Logging API

Even if you aren't using Java 1.4, you've probably heard of it and the new features that it includes. One
of the new features is the logging API now included with the core library. You may be wondering
what the difference is between log4j and this new library, and whether you should be using that
instead.

There are several similarities between log4j and the 1.4 logging implementation. However, there are
also a few major differences. Let's look at the similarities first. Both log4j and the Java 1.4 logging
implementation use a hierarchical namespace for the loggers. This allows you to configure loggers
that basically align along your application's package structure, although this is not the only way to
structure the loggers.They also both support multiple levels or priorities. The 1.4 logging
implementation actually contains a few more levels than log4j, though you might not ever use the
extra ones because they are so fine-grained.

The differences between the two implementations are generally not big enough to cause you to miss
out on important functionality. However, it does appear that log4j offers more functionality for those
that really need it. More importantly, log4j works with Java Versions 1.1 and above, while the 1.4
logging implementation works only with Version 1.4. There was talk about making it backward
compatible, but that hasn't happened yet and may never happen. Also, there are currently many more
appender types available for log4j than for Java 1.4, but this is not a major issue because the most
important ones are present in Java 1.4.

Regardless of whether you use log4j or Java 1.4 as your logging implementation, you should leverage
the Commons Logging API to protect your application from inevitable change. Coupling your
application to any single third-party implementation is not recommended, in terms of logging or
anything else.

Chapter 16. Packaging Your Struts Application
Contrary to what many developers might assume, designing and building an application is only half
the battle. When the application is finished, it must then be packaged and deployed into the target
environment. Many applications are built and packaged with the intent of being installed into a
customer's production environment. For others, the target deployment environment is in-house. For
web applications, fortunately, the work that has to be accomplished in either case is very similar.

Internal deployments may be less formal and less nerve-wracking. However, they still should be taken
seriously and conducted in an efficient and professional manner. Whether the customer is a "real"
customer or another department within the organization, an unprofessional deployment can leave a
bad impression. Formalizing the packaging and deployment process allows developers to focus on
building a quality application and spend less time worrying whether the application will install and run
correctly when it's finished.

This chapter discusses the best practices for packaging and deploying a Struts application, including
coverage of what it takes to automate the build process for your environment. Special attention is
given to Ant, the Java-based build tool available from Jakarta.

16.1 To Package or Not to Package

Applications need to be deployed to be useful. There's really no point in developing an application that
never gets deployed, although this occurs more often than you might think. The need for deployment
is obvious, but what about packaging? Does every Struts application have to be packaged before it
gets deployed? The short answer is yes. In this chapter, though, we'll examine the long answer.

Before we get into the details of packaging and deploying Struts applications, let's define exactly what
these two concepts mean in the context of web applications that are built using the Struts framework.
Although the two concepts are closely related, they are not the same thing.

16.1.1 What Is Packaging?

Packaging a Struts application involves gathering all the files and resources that are part of the
application and bundling them together in a logical structure. Many different types of resources are
usually included in a Struts application, and all of these need to be bundled with the application. Some
of the more common types of resources that can be packaged with a Struts application are:

• HTML and/or XML files
• Images, audio, and video files
• Stylesheets
• JavaServer Pages
• Properties files
• Java utility classes
• Configuration files
• Action and ActionForm classes
• Third-party JARs

During the design stage, time and effort should be spent on deciding how you are going to structure
the application. Not every detail needs to be figured out and resolved before construction begins, but
you should understand the target environment's requirements and how these requirements will affect
your packaging and deployment strategy. Ideally, you should decide on the principal package and
directory structure for the application before construction gets underway. This will help to alleviate
the normal miscommunication between developers and reduce the number of redundant resource files.

16.1.2 What Is Deployment?

As the previous section mentioned, packaging and deployment are closely related, but involve
different tasks. While packaging determines where the resource files will reside in the package
structure and how those resources will be bundled, deployment deals with how the bundled
application will be installed and configured inside a target web container.

There are two approaches that you can use when deploying a web application into a container. The
first approach is to deploy the web application in a web archive (WAR) file. Most web containers
install a WAR file and make it available for users, often without even requiring a restart of the
container. This approach is convenient because once the WAR file is properly built, the rest of the
work is handled by the container. One of the downsides of this approach, however, is that if a change
is made to any file or resource within the web application, a new WAR file must be created and
redeployed into the container. The details of how to deploy your Struts application as a WAR file are
discussed later in the chapter.

The second approach to deploying a Struts application puts more work on the developer. It still
involves packaging your application as a WAR file, but includes manually unpackaging the WAR file
into a directory of the container. The exact location of the directory is container-dependent. In Tomcat
and Resin, for example, the default web applications directory is webapps. In the WebLogic
application server, you have to unpack the WAR file underneath the applications directory. (All three
of these containers also allow you to specify alternate installation directories.)

When expanding the WAR file, you need to create a directory into which to unpack the files. The
name of the directory is usually the name of the web application. So for example, if the web
application was called Storefront and you wanted to install it into Tomcat, you could create a directory
called storefront under the webapps directory and unpack the WAR file there.

The WAR file should not contain the storefront directory as part of its
structure.

This deployment approach is referred to as an exploded directory format, because the WAR file is
exploded back into its original structure within the container. The benefit of this approach over
deploying the WAR file itself is that when there are changes, only the changed files need to be
redeployed into the container. This is much easier when you're still developing or debugging the
application, but you may not want to leave it like this for production.

When deploying a web application into production, it's a better approach to
leave the WAR file packed because there's less chance of one or more files
getting contaminated. Leaving it as a single WAR file forces you to replace the
entire WAR file if changes need to be made, so there's no chance of a version
of a file getting out of sync with the rest of the application.

16.2 Deciding How to Package Your Application

Because Struts applications are web applications, most of the questions about how to package them
are answered in the Servlet and JavaServer Pages specifications. A web application must follow a very
strict set of completely specified guidelines and conventions that make the web application portable
across other compatible web containers.

Fortunately, packaging your Struts application in the WAR format solves much of the hassle regarding
packaging. However, there are many questions that you will have to resolve. For example, you'll have
to decide where all the JSP pages go and whether you should store your Struts Action and
ActionForm classes together or in separate action and form packages. Although there are
definitely best practices, there are no hard-and-fast rules for resolving issues such as these. Some of
the solutions will depend on your organization's requirements and policies.

16.2.1 Namespace Management

A namespace is simply a set of names that may or may not be associated. A namespace is normally
used to prevent conflicts or collisions between similar entities and to allow clients to reference these
entities by some logical name.

In software development, a namespace is a way to package classes, interfaces, and other types of
information into a hierarchical structure. There are many examples of namespaces throughout the

computer industry. The manner in which the Internet Domain Name System (DNS) works is a type of
namespace. Within the oreilly.com domain, for instance, other IP addresses are linked together in a
hierarchal fashion. All of this referencing helps prevent IP addresses from colliding. Another example,
which is more closely related to software development, is the namespace that is used within JNDI. But
by far the most familiar use of a namespace in Java development is for creating classes and interfaces
that reside in a package.

As you know, Java applications are organized as sets of packages. Even when you don't specify a
package explicitly, it's still part of a package.[1] The purpose of the package is to prevent name
collisions and to help identify entities (in this case, Java classes) easily. When extending the Struts
framework with your own classes and interfaces, you need to decide how best to package these
components for your application. Not every application will contain the same classes and interfaces.

[1] Any Java class that doesn't have a package statement declared in the source file is considered to be part
of the default package.

16.2.2 JSP File Placement

For many developers, where you place the JSP pages may seem like an easy question to answer.
Although you may have to decide which directory a particular JSP page belongs in, that's normally all
that has to be decided. However, there are situations where more control may need to be placed on
who and what has access to the JSP pages. One suggestion is to put the JSPs in a directory underneath
the WEB-INF directory.

The purpose of this approach is threefold:

• It forces all requests to go through the ActionServlet class.
• It prevents users from bookmarking a page.
• It protects the WEB-INF directory and helps protect JSP pages from being called directly.

This alternate approach has gained some popularity, although not all of the containers currently
support it. Although the 2.3 Servlet specification seems to indicate that something to this effect may
be possible, different vendors may not agree in their interpretation of the specification—for example,
in the past, the WebLogic developers have stated that they interpret section SRV.6.5 of the Servlet
specification differently. WebLogic will return a 404 or 500 error code when you attempt to access a
JSP page underneath the WEB-INF directory (although there has been some indication that WebLogic
will make this option available in future versions of their container).

Even though some containers do support the above approach, you may not need to put the JSP pages
underneath the WEB-INF directory. If you call Struts actions only from your web application and don't
link to JSP pages directly (which is a requirement for Struts 1.1), this approach will not have much
benefit for your applications. There are portable alternatives—for example, you can use the
security-constraint element in the web.xml file. Just create the required directories for the
JSP pages that you want to protect. In the Storefront example, suppose that users shouldn't be able to
access the JSP pages underneath the order directory. A security-constraint element like
this could then be added:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>SecureOrderJSP</web-resource-name>
 <description>Protect the Order JSP Pages </description>

 <url-pattern>/order/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name></role-name>
 </auth-constraint>
</security-constraint>

Figure 16-1 shows what happens when a client attempts to access a JSP page directly within the order
directory.

Figure 16-1. A 500 error will occur when accessing a protected JSP

When the security-constraint element is added to the web.xml file for the Storefront
application, it says that no user without the proper authentication can access the order JSP pages.
However, in this example, the role-name element was intentionally left blank and therefore will
never match an actual role. You could also have specified that only users with an admin role could
access the pages, and then never given that role to an actual user. The container would still be able to
access these pages through forwards and includes.

You must be careful what you put in the url-pattern element, however. If you have resources
such as images in subdirectories, they will not be available when the browser attempts to download
them. Using the /order/* pattern means that nothing under the order directory can be requested
directly by the client; this includes images in subdirectories, and the browser will have difficulty
receiving the images for a returned HTTP response message.

16.2.3 Precompiling JavaServer Pages

If you are using JavaServer Pages as your Struts presentation technology, you are probably very
familiar with the compilation process that the JSP container performs on the application's behalf.
When the web container receives a request for a resource with an extension of .jsp, the JSP container

is selected to process the request. If this is the first request for the JSP page or if the timestamp for the
JSP page is newer than the existing servlet class, the page will normally be compiled.[2]

[2] Most containers have an option that disables detection so that pages that have changed will not be
recompiled. This option is usually selected in a production environment because incremental changes
should not be introduced in production. Also, allowing this to occur would amount to a security risk.

The JSP container uses a two-step process. First, the JSP page is translated from the JSP code into a
Java source file. Each container may have its own implementation to translate the JSP page. The
second step takes the Java source file and compiles it into a servlet class file using whichever Java
compiler is installed for the JSP container.

Although just-in-time compilation is a nice feature while you are developing or debugging an
application, you may not want to make the JSP source available in a deployment package. This is an
issue of both security and licensing—although the JSP pages should contain only presentation logic,
that's still intellectual property. If this is the case, you can precompile the JSP pages and not provide
the JSP source code to customers. You'll have to distribute only the compiled bytecode, making it
harder for the source code to be seen. Once the JSP pages are compiled into Java class files, you can
even run them through an obfuscator to make it harder for them to be viewed through decompilation
tools. Precompiling the JSP pages gives you more options for dealing with issues like these.

As always, though, there are some downsides to precompiling JSP pages. For one thing, you lose the
ability to update or fix a problem quickly. Instead of just placing a new JSP file onto the server and
letting the JSP container compile it when it's accessed, you must do the recompilation by hand and
deploy the servlet class. Another downside is that when some containers detect a problem with a
single JSP, they will stop processing the rest of the application's JSP pages. When this occurs, you
must make sure that every JSP page compiles successfully before the container will deploy the web
application. Developers may actually consider this a benefit rather than a disadvantage, but it can be
problematic in production environments if you are trying to make a quick fix to a bug.

Unfortunately, there's no standard way to precompile the JSP pages. Each container has a different
way of doing it. This section briefly discusses how to precompile pages using three of the available
containers on the market: Tomcat 4.0, Resin 2.0, and WebLogic 7.0.

16.2.3.1 Precompiling JSP pages with Tomcat

The JSP implementation in Tomcat, which is called Jasper, provides a reference implementation for
the latest specification. It's packaged along with Catalina, the reference implementation of the latest
Servlet specification, inside of Tomcat. The JSP-to-Java compiler is available as a separate program
that can be executed from the command line. Its job is to convert a JSP page into a Java source file.
From there, a standard Java compiler can convert the source code into bytecode.

The program is called jspc.bat (or jspc.sh, depending on which platform you're using) and is located in
the bin directory of the Tomcat installation directory. Many options can be set to configure everything
from the output directory to the package name of the Java source. There's even an option that will
cause the compiler to create XML that can be added to the web.xml file for each JSP page that gets
precompiled. You can do one page at a time or specify an entire web application.

16.2.3.2 Precompiling JSP pages with Resin

To precompile JSP pages using Resin, you can use the httpd.exe command from the Resin bin
directory, like this:

resin/bin/httpd -conf conf/resin.conf -compile <URL>

Here, the URL is a JSP resource within a web application installed in Resin.

You can also use the command-line version, like this:

resin/bin/httpd -e <URL>

With this approach, you can compile only a single JSP page at a time, although you could easily create
a script that went through your entire web application. An easier way to configure this is to use Ant, as
discussed later in this chapter.

16.2.3.3 Precompiling JSP pages with WebLogic

With WebLogic 6.0, you have to include a context-param element in the deployment descriptor
for each web application. This will instruct WebLogic to compile every JSP page that is part of the
web application when the application server starts up. The following context-param element
must be added to the web.xml file:

<context-param>
 <param-name>weblogic.jsp.precompile</param-name>
 <param-value>true</param-value>
</context-param>

WebLogic 6.0 will not deploy the web application if any one of the JSP pages fails to compile. Once it
detects an error compiling a page, all compilation stops and the web application will not be deployed.
You have to fix whatever is causing the problem and then restart WebLogic to start the process all
over again.

16.2.4 Packaging EJB Resources with Struts

If you're communicating with EJBs in the middle tier, it might be necessary to package some of the
EJB resources along with your web application package. Because the web tier acts as a client to the
EJB server, certain resources are required to connect and communicate with the beans.

The beans' home and remote interfaces, for example, need to be packaged either in the classes
directory or as a JAR file in the lib directory of the web application. Also, some of the JNDI classes
need to be included so that clients can acquire home and remote objects. The actual client-side EJB
stub classes are not required, however. This wasn't always the case, but the latest specification now
describes a mechanism that allows these to be automatically downloaded when a request is made
using an EJB remote interface.

In many cases, it's enough to put the EJB container JAR file in the WEB-INF/lib directory. For
example, if you are using WebLogic 6.0 or higher, you can put the weblogic.jar file in the web tier, as
it contains all of the necessary client-side resources.

16.3 Packaging the Application as a WAR File

Packaging your web applications using the WAR format is very convenient. The structure is precise,
and because it is specified so carefully, porting your applications across the various web containers is

much easier. The next section describes the steps that you must perform to package your web
application as a WAR file.

16.3.1 Creating the WAR File

The first step in packaging your application as a WAR file is to create a root directory. In most cases,
this directory will have the same name as your web application. For our example, we will create a
directory called storefront.

After deciding how your JSP and HTML pages will be placed within your application, place them
underneath the root directory in their appropriate subdirectories. For the Storefront example, our
directory structure so far would look like Figure 16-2.

Figure 16-2. The Storefront application directory structure

Figure 16-2 shows 11 subdirectories, 8 of which contain JSP pages for the application. The images
directory contains images that are used globally throughout the application, the stylesheets directory
stores cascading stylesheets for the application, and the include directory contains files that are
included using either a static or dynamic include.

The next step in setting up the WAR file is to ensure that you have a WEB-INF directory underneath
your root web application directory. The WEB-INF directory contains all of the resources that are used
internally by the application. For example, the TLD files for your custom tag libraries reside in this
directory, as does the web deployment descriptor. This is also where the Struts configuration files
belong. No resource within this directory can be made public outside of the application.

Underneath the WEB-INF directory, create two subdirectories: one called classes and the other called
lib. The classes directory should contain all of your utility and servlet classes. The lib directory should
contain the JAR files that the application depends on.

Once all of the resources for the web application are accounted for and are inside the appropriate
directories, you need to use Java's archiving tool jar to package the directories and files. From a
command line, change to the root directory of your web application and use the jar utility. You need
to give the file a .war extension, like this:

jar cvf storefront.war .

Because you changed to the root directory, the storefront directory will not be included in the WAR
file. This is fine, because you may want to call the root directory something else when it's installed.
When you install the web application, if you plan to explode the WAR file, all you need to do is create
a directory and un-jar the files, like this:

C:\tomcat\webapps>mkdir storefront
C:\tomcat\webapps>cp storefront.war storefront
C:\tomcat\webapps>cd storefront
C:\tomcat\webapps\storefront>jar xf storefront.war

The location where the WAR file gets expanded is container-dependent. If you plan to distribute the
WAR file without exploding it, all you have to do is place it in the appropriate place for the container.
You don't have to recreate the storefront directory, although you might want to delete the existing
directory when deploying a newer version. Some containers are not good at removing old files before
deploying an updated WAR file.

Although Section 9.8 of the 2.3 Servlet specification is a little ambiguous
about replacing a web application without restarting the server, most
containers allow you to drop in a new WAR file or replace certain files without
restarting. There's always a danger with leaving this feature on in a production
environment; however, while developing the application or debugging a
problem, you'll quickly learn to appreciate this functionality. In containers that
do support this feature, there's usually a way to disable it when you deploy a
web application into production.

16.4 Building Your Struts Applications with Ant

Although there are several different mechanisms to compile and deploy your Struts application, by far
the most popular and most flexible is the Ant build tool.[3] This section discusses how to use Ant to
perform the necessary tasks for compiling and packaging your application.

[3] Ant is an acronym for "Another Neat Tool."

16.4.1 What Is Ant?

Ant is a platform-independent build tool that can be configured to compile your Java source code files,
build your deployment JAR and WAR files, unit-test your code, and create your project's JavaDoc
documentation. It also has many other uses and can be expanded to perform new tasks of your own
creation.

Ant is similar to the Unix make utility (also known as gmake in Linux and nmake in DOS/Windows).
make utilities have been used for generations to manage projects for languages such as C and C++, but
these utilities are platform-dependent because the rules they use are typically shell commands
executed by the host operating system. Unlike make, Ant's rules (or tasks, in Ant terminology) are
Java classes and can be run on any platform with a supported JVM.

A Brief History of Ant
Ant is a Jakarta project created in early 1998 by James Duncan Davidson, who also wrote
the original Tomcat servlet container. Initially, Ant was written as a utility to build Tomcat.
Others quickly saw the benefits of Ant over make, and it was moved to its own CVS project
and officially became a separate Jakarta project in 2000.

16.4.2 Installing and Configuring Ant

You can download Ant from the Jakarta web site at http://jakarta.apache.org/ant/. The examples
provided in this chapter were tested with Ant 1.4, but they should be compatible with at least Ant 1.3.
Download the binary zip file (for Windows) or the .tar.gz file (for Unix) and uncompress the archive
into your desired installation directory. You should also download the 1.4.1 optional.jar file and
install it in the ANT_HOME/lib directory. While it's not used in this project, the optional.jar file has
many extra tasks that you may find useful in the future.

Ensure that the ANT_HOME/bin directory is added to your system PATH. Your installation may also
require you to add the ANT_HOME environment variable, which should be set to the Ant installation
directory. The Ant binary typically can determine what ANT_HOME should be, but if you get an error
when trying to run Ant, set this environment variable. There is also a caveat when running Ant under
Windows 95/98—do not install it in a directory with a long pathname, because the batch file used to
run the installation script may not be able to handle the pathname. See the Ant installation
documentation for more information.

16.4.3 Getting Started

Ant reads its build commands from an XML file. By default, it looks for a file called build.xml, but
you can give the file any name by using the -buildfile <file> option when running Ant. From
a command prompt, change directories to the base project directory, which in our example is called
storefront. In here, you should see the build.xml file.

The Ant build file consists of a project that has zero or more targets, each of which consists of zero or
more tasks. The project element is defined at the top of the build file:

<project name="storefront" default="war" basedir=".">

The project is named storefront and the default target to execute is the war target. The default
target is what gets executed if you type ant at the command line without specifying a target. Because
the project root directory is the same directory that the build.xml file is located in, "." is used to
indicate the base directory property.

The build directory structure for the Storefront application is shown in Figure 16-3.

Figure 16-3. The build structure for the Storefront application

A target takes the form:

<target name="dostuff">
 <task1 param1="value1" param2="value2"/>
 <task2 param="value"/>
 ...
</target>

A target must have a name and may have several additional attributes that determine when and if the
target actually gets executed. The target should contain zero or more tasks.

A task is an atomic unit of work in the Ant world. Each task is bound to a Java class file that Ant
executes, passing to it any arguments or subelements defined with that task. The Ant tool is extensible
and allows you to create your own tasks. For this book and the Storefront example, the built-in tasks
included with the Ant distribution are all you will need. If, however, you needed to create a new task,
you could do so by defining the task in the build.xml file, using the taskdef task to bind the task
name to a Java class file. The Java class file must extend org.apache.tools.ant.Task and
be located in the Ant classpath. There are several other requirements that are beyond the scope of this
book, but details can be found in the Ant documentation.

Before you run Ant, you may have to change a few properties in the Storefront build.xml file to suit
your development environment:

<property name="webserver.home"
 value="c:/tomcat"/>
<property name="webserver.deploy"
 value="${webserver.home}/webapps"/>
<property name="servlet.jar"
 value="${webserver.home}/common/lib/servlet.jar"/>

These three properties define where the servlet container is located, where its deployment directory is
located, and where it keeps the servlet API classes. First, the webserver.home property is set to
the root directory of the servlet container. In this case, the Tomcat 4.0 web server and servlet container
are being used. The Storefront build.xml file supports several other containers, but they are

commented out; you just need to uncomment the one that you want to use. Tomcat's deployment
directory is the webapps directory found just under the Tomcat root directory. Tomcat keeps the
servlet API classes in the common/lib/servlet.jar relative to the Tomcat root directory.

Lastly, we need to define the classpath that will be used during compilation of our project. Ant allows
us to associate a set of files with a property name. In the following build.xml fragment, the list of all
the JAR files necessary to compile the Storefront example is bound to the build.classpath
property:

<path id="build.classpath">
 <pathelement location="${servlet.jar}"/>
 <pathelement location="${lib.dir}/commons-beanutils.jar"/>
 <pathelement location="${lib.dir}/commons-collections.jar"/>
 <pathelement location="${lib.dir}/commons-dbcp.jar"/>
 <pathelement location="${lib.dir}/commons-digester.jar"/>
 <pathelement location="${lib.dir}/commons-logging.jar"/>
 <pathelement location="${lib.dir}/commons-pool.jar"/>
 <pathelement location="${lib.dir}/commons-services.jar"/>
 <pathelement location="${lib.dir}/commons-validator.jar"/>
 <pathelement location="${lib.dir}/jdbc2_0-stdext.jar"/>
 <pathelement location="${lib.dir}/log4j.jar"/>
 <pathelement location="${lib.dir}/poolman.jar"/>
 <pathelement location="${lib.dir}/struts.jar"/>
 <pathelement location="${lib.dir}/tiles.jar"/>
 <pathelement path="${build.dir}"/>
</path>

We could have used include elements to define the build.classpath property in far fewer
lines; however, it's much clearer to explicitly list each JAR file used during the build process so that
nothing that might prevent a successful build is added or omitted.

Dereferencing the property name using the Ant syntax ${property} allows the tasks to use the
build.classpath property.

16.4.4 Compiling Java Source Files

The Java source files for the Storefront application are compiled using the Ant javac task. The
compiling target, compile, depends on the prepare target:

<target name="compile" depends="prepare">
 <javac destdir="${build.dir}" deprecation="on">
 <classpath refid="build.classpath"/>
 <src path="${src.dir}"/>
 </javac>
</target>

A target may depend on zero or more other targets, using the following syntax:

<target name="final-jar" depends="jars, wars">

Specifying the depends attribute allows you to control the order in which Ant targets are executed.
In this case, the compile target is not executed until the prepare target has been executed:

<target name="prepare">
 <tstamp/>
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${dist.dir}/lib"/>
</target>

The prepare target generates timestamp values that can be turned into properties and attached to
compilation products such as JAR and WAR files. For this small project, however, timestamps are not
used. The prepare target also creates the necessary output subdirectories for our Java classes and
WAR file.

The compile target instructs Ant to run the javac compiler on all the files within the source
directory and send all the class files to the build directory. The deprecation option is on, so
you'll get a detailed message if you accidentally include a deprecated method in one of the source files:

<target name="compile" depends="prepare">
 <javac destdir="${build.dir}" deprecation="on">
 <classpath refid="build.classpath"/>
 <src path="${src.dir}"/>
 </javac>
</target>

The javac task uses the build.classpath property shown in the previous section.

16.4.5 Using Ant to Build the WAR File

The Ant war task builds the web archive. The war target used to build the web archive is shown
here:

<target name="war" depends="compile">
 <echo>building war...</echo>
 <war warfile="${dist.dir}/lib/storefront.war"
 webxml="${web.dir}/WEB-INF/web.xml">
 <fileset dir="${web.dir}"/>
 <classes dir="${build.dir}"/>
 <classes dir="${lib.dir}">
 <include name="*.properties"/>
 <include name="poolman.xml"/>
 </classes>
 <lib dir="${lib.dir}">
 <include name="*.jar"/>
 </lib>
 </war>
</target>

As mentioned previously, the war target is the default target for the project. This means that when
Ant is run from the command line without a target argument, the war target is executed. The
war target runs only if the compile target has been run first. The war task requires you to define
the name of the WAR file and the location of the web.xml file. All the other attributes are optional; if
you are interested in seeing them, they are listed in the online Ant documentation
(http://jakarta.apache.org/ant/manual/CoreTasks/war.html). Another great reference on Ant is
Ant:TheDefinitiveGuide by Jesse Tilly and Eric Burke (O'Reilly).

The nested elements tell the war task where the contents of the WAR file are located. The
fileset element defines the base web content of the WAR file. This element is used to declare
where the HTML files, JSP pages, images, and so on are located. The classes element points to
the Java class files that should be included in the WEB-INF/classes directory in the WAR file, and the
lib element declares which files should be included in the WEB-INF/lib folder.

In the Storefront example, everything in the web subdirectory is included. The various subdirectories
contain all of the necessary resources (HTML, JSP pages, images, etc.). All of the compiled classes in
the build subdirectory are copied into the WAR file's WEB-INF/classes directory along with the
properties files. All of the third-party JARs in the lib subdirectory are copied into the WAR's WEB-
INF/lib directory. If the lib subdirectory contains any JARs that you don't want to be included, you
can use the following snippet:

<lib dir="${lib.dir}">
 <include name="*.jar"/>
 <exclude name="dont_need.jar"/>
</lib>

Here, all the JARs in the lib directory except dont_need.jar will be copied into the WAR file's WEB-
INF/lib directory.

The last and often the clearest option is to explicitly include each desired JAR file. While slightly
more verbose, this method is immune to changes to the lib folder if other developers in the project
start adding JARs indiscriminately. It is also much easier to see exactly what is going to be included in
the WAR file.

16.4.6 Cleaning Up

The final two targets are trivial but important. The clean target deletes the build directory, thus
removing all of the Java class files:

<target name="clean">
 <delete dir="${build.dir}"/>
</target>

<target name="distclean">
 <antcall target="clean"/>
 <delete dir="${dist.dir}"/>
</target>

The distclean target reverts the project back to its pristine "distribution" state. That is, all build
products—class files and the WAR file—are removed, so the project directory looks the same as it did
when the project directory tree was first installed.

Note that the distclean target calls the clean target. While this isn't really necessary for this
small project, it demonstrates more of the power of Ant by invoking another target via the antcall
task. The antcall task can even call a target with arguments, but that is beyond the scope of this
book.

There are various plug-ins that you can download that allow you to use Ant
inside of your specific IDE. For example, the AntRunner plug-in allows Ant to
be used within the JBuilder IDE. For this and other plug-ins, see the external
tools section of the Ant site at http://jakarta.apache.org/ant/external.html.

16.5 Creating an Automated Build Environment

Once you have put together a satisfactory build environment, you should go the extra step to automate
it. This means that no human interaction is needed to execute new builds. It's very common for build
frequencies to increase the closer you get to the end of a construction phase. You can, of course, just
manually kick off builds when you need them, but a better and much more efficient approach is to use
a scheduling mechanism to invoke your Ant build environment.

There are at least two scheduling mechanisms that you can employ, depending on your environment.
In Unix, you can use the cron daemon, and on the Windows platform, you can take advantage of the
Task Scheduler.

16.5.1 Using cron to Invoke Ant

cron is a program that allows you to automate tasks by running user-defined programs at regular
intervals. cron allows you to define both the program that is to be run and the exact time at which to
run it. The cron program is a daemon program, which means that it runs in the background until it's
needed. It wakes up every minute, checks to see if there are any scheduled tasks that need to be
performed, and, after it runs the tasks, goes back to waiting.

The list of tasks for cron to execute comes from a file called a cron table, which is commonly referred
to as crontabs. The crontabs is a schedule that lists the tasks to run and the date and time to run them.

Some system administrators may disable cron from running on a server in
order to save processing power. In this case, you'll need to get permission to
run cronprograms. You can verify that cron is running and that you have
permission to access it by typing crontab-l at the command prompt.

All you need to do is edit crontabs and add an entry that calls your ant program, which in turn will
kick off the build. Check the Unix manpages for more information on using cron.

16.5.2 Using Microsoft Task Scheduler

The Windows platform contains an application called Task Scheduler (or Scheduled Tasks in newer
versions of the platform). This program performs the same function as cron, but for the Windows
platform. It has a wizard that walks you through setting up a task that gets fired off at regular intervals.
Figure 16-4 shows the main screen of the Scheduled Tasks application. A task has been created that
will invoke a batch file that can in turn call Ant to perform a build for your environment.

Figure 16-4. The Scheduled Tasks application on the Windows platform

The amount of control that you have over the time intervals is not as granular as it is on the Unix
platform. However, it is sufficient enough to kick off daily builds at a certain time. See the Windows
documentation for your specific version for more details.

Part of automating your build environment is pulling the source files from the
source code repository and compiling them. Most source control systems, such
as Clear Case, CVS, and PVCS, have a command-line API to pull source files
in a read-only mode in order to compile them. Using Java and Ant, this part of
the automation process is pretty straightforward.

16.6 Restarting Your Server Remotely

If your deployment server is located on a different server from the build environment (and it really
should be), you will need to move the deployment files over and possibly restart the server. The
easiest way to do this is with the Ant ftp and telnet tasks. You can even have Ant email you
reports on the result of the latest build using the email task. See the Ant documentation for more
information on these and other helpful tasks.

Chapter 17. Addressing Performance
Achieving good performance with an application is absolutely critical to its acceptance by the user
community. Not many users are willing to appreciate a great design and excellent programming

standards if the application is sluggish. Even the most useful and desired application will quickly be
rejected by the user community if it's slow to respond to users' requests.

For web-based applications, organizations must test and measure how fast the various web
components are, how many simultaneous hits the web site can handle, and how scalable the software
and hardware resources are. They must also understand how the performance of the application will
be affected during peak loads.

This chapter explores the performance implications of using the Struts framework and its associated
technologies to build web applications, and how certain design and programming decisions will affect
the overall performance of the application. A distinction is made between performance, load, and
stress testing and the steps necessary to carry out each.

17.1 What Is Good Performance?

Most developers have had the unfortunate experience of building a slow application. Obviously,
developers don't set out to create slow applications, and there probably isn't a user group asking,
"Could you please make the application run very slowly for us?" Too often, bad performance isn't
discovered until the application is finished and installed into a production environment. But why does
this happen?

The simple truth is that it happens because not enough attention is given to performance matters
during design and construction. This is not to say that performance should be the primary focus at all
times—if you focus on performance too exclusively or too soon, it may negatively affect the design
and code. On the other hand, if you wait too long, you may find yourself with upset users complaining
about poor performance, and you'll be left wondering what went wrong.

You may have heard the axiom "Test soon, test often." This is a good principle to follow to help
ensure that you are not surprised at the end of construction with a poorly performing application. The
sooner you can detect a performance problem, the more likely it is that you'll get a chance to fix it
before the application goes into production. Another apt saying is "Don't leave any broken windows."
This means that when you detect a problem, you should fix it and not let it linger. Picture a building
with a broken window that's not immediately fixed. If people are led to believe that having one broken
window in the building is acceptable, they will eventually decide that it's all right to have many
broken windows. Before long, the building will be in shambles, and all the tenants will have moved
out. If you find obvious performance problems during early tests, fix them.

So how do you measure the performance of a web application? What's considered acceptable or too
slow? The answers to these questions are strictly related to the nonfunctional requirements of the
application.[1] There are tangible and quantitative measurements that can be taken to help determine
whether the application is able to meet the minimum requirements set out in the nonfunctional
requirements.

[1] The nonfunctional requirements are part of the analysis work that should be done for any nontrivial
application. These requirements describe the broader issues of the application, such as availability, disaster
recovery, package dependencies, hardware configuration, and, almost always, performance criteria.

The problem is that each application is different and therefore has different nonfunctional
requirements. One application might need to have an average response time of 3.0 seconds and
support 50 concurrent users, while another might have to support 500 simultaneous users.
Performance testing is a little more nebulous than functional testing, where it's easy to see when the
application fails to meet the design specifications.

According to Alberto Savoia, the Director of Software Research at Sun Microsystems's Laboratories,
there are four behavioral laws that make web page performance critical to an organization's success:

The Law of Stickiness

This law states that web users are sticky, but not loyal. If they find a web site that serves their
needs, they tend to continue to use that site. If the web site begins to respond slowly and
cause the users to wait, they will move to another site that fulfills their same needs. The point
is to strive to keep the performance of the application strong in order to keep the users coming
back.

The Law of User Perspective

This law states that you should always measure the performance of your application from the
user's point of view, not from your own. The point here is that, for example, while your
environment may have a 100-MB network with an otherwise light load on it, the user may be
using a modem with a much smaller bandwidth capability. Always keep in mind what the
user's environment and network capabilities will be and test accordingly.

The Law of Responsibility

This law states that the users don't care what or who is at fault for poor web site performance;
they will always blame the application. The problem might be their ISP or another
nonapplication issue, but most users will not be able to isolate the problem to that level and
instead will blame the application or site. You must be aware of all the factors that may
impact the performance of your application.

The Law of Expectations

This law states that users' satisfaction is based on their expectations, which are set by their
personal experiences with other, similar web sites. When measuring the performance of your
application, don't rely just on arbitrary numbers to indicate what's slow or fast; compare your
results with those of your competitors.

These simple, common-sense laws explain the human-behavior aspects of web site performance. In
general, however, slow is slow and fast is fast, and generalizations can be made across applications
and business domains. But before we discuss how to detect whether performance problems exist in an
application, a distinction must be made between the types of performance testing that should be
conducted.

17.2 Performance Versus Load Testing

There are many different types of software testing: functional, unit, integration, white box, black box,
regression, and so on. Performance and load testing are among the most important types of testing, but
they usually get the least amount of attention. There are two general reasons for this neglect. The first
reason is that developers typically wait until the very end of the development cycle to start testing the
performance of the application, and the end of the cycle is when you have the least amount of time for
testing. It is true, however, that it's not always practical to conduct performance testing during every
phase of development. Early phases tend to focus on the architecturally significant pieces, and there
may not be enough of the application built to test its performance. You should, however, gather some
preliminary performance measurements as early as possible.

Another reason that performance and load testing don't get much attention is that they're honestly hard
to do. While there are many tools on the market, both free and commercial, it's not always easy to use
these tools to detect problems. The tools must be able to simulate many simultaneous users of a
system, but that involves understanding what virtual users are,[2] what the different threading models
are, and how they affect performance and load. Also, you must be able to look at the results and
determine whether or not they are acceptable. All of this can be overwhelming to the average
developer. This is part of what keeps developers from conducting the tests; they just don't understand
the necessary steps, or how and where to get started. Many organizations house a separate team that is
solely responsible for performance testing.

[2] Virtual users are simulated users that testing applications use to simulate the impact of multiple users on a
system without requiring "real" users to sit around testing the application. A user session is recorded for
each virtual user and can be played back as if a real user were using the application.

Although performance, load, and stress testing are related, they are not the same thing and are not
carried out in exactly the same manner. Performance testing involves executing the functional
behavior of the application and essentially timing how long it takes for each result to complete. The
amount of time that a single task takes to finish is known as its response time. If you execute the
method many times and then take the average, this is its average response time.

The average response time for the signin action in the Storefront application, for example, is roughly
250 milliseconds.[3] This result is for a single user. You should always conduct the initial performance
testing using a single user to get a baseline. If there are performance bottlenecks for a single user of
the system, you can bet that these problems will have an impact when multiple users start logging in.
In general, the faster the response time is, the faster the application is. This end-to-end time can also
be thought of as the transaction time for the function being tested.

[3] The tests were conducted on a Pentium III 750 MHz machine with 1 GB of memory and all tiers collocated
on the same box.

Based on the response time, you can come up with a rough throughput time. Throughput defines the
number of transactions that can occur in a set amount of time. The theoretical throughput that is
calculated based on a single user will probably differ with real loads. Due to multiprocessing and other
hardware and software features, applications can achieve a higher throughput by adding more
hardware and software resources. This enables the application to process more transactions per time
period, which increases the throughput numbers.

Load testing is analogous to volume testing. This type of testing is performed to see how the
application will react to a higher user load on the system. During this type of testing, you can adjust
the hardware and software configurations to determine which configuration gives the best throughput
for a given user load. Load testing is usually hard to conduct because you are constantly going back
and forth, adjusting configuration systems to see what gives you a higher throughput. No application
can sustain an infinite user load. The idea is to try to maximize the number of concurrent users with an
acceptable average response time.

Throughput is usually measured in transactions per second (tps), but it can also be measured per
minute, per hour, and so on. Armed with response times and throughput numbers, you can make
intelligent decisions about how the application should be configured to ensure the best performance
and scalability for the users. You should share these numbers with the network engineers, so they'll
understand how much network bandwidth the application might require.

Stress testing is the next logical extension. Stress testing is essentially load testing using peak loads.
When conducting stress tests, you really are trying to stress the application to its limits to see how it
reacts, how efficiently the memory is used, and what other types of problems will surface.

Stressing your application under a heavy simulated load offers many benefits. In particular, stress
testing allows you to:

• Identify bottlenecks in the application under a large user load before they occur in the
production environment.

• Control risks and costs by predicting scalability and performance limits.
• Increase uptime and availability of the application through proper resource planning.
• Avoid missing go-live dates due to unexpected performance and scalability problems.

Performance, load, and stress testing should be performed on an application to get the complete
picture. They can point to parts of the application that might become bottlenecks, both under normal
loads and as the number of users climbs.

17.3 Performance- and Stress-Testing Tools

There is an abundant supply of performance- and stress-testing tools available on the market today.
Some are quite inexpensive, while others are astronomically expensive. Commercial testing products
tend to offer more plentiful features, but there's really no correlation between cost and quality when it
comes to these types of tools. For most applications, you don't need to spend an arm and a leg on a
testing tool when there are free or cheaper ones that will do the job. The best advice is to start out with
one of the free or inexpensive tools and see if it meets the project's needs. If not, take a look at one of
the more expensive commercial products to see what it has to offer. Table 17-1 lists several
performance- and stress-testing tools.

Table 17-1. Available performance- and stress-testing tools
Company Product URL

Apache Group JMeter http://jakarta.apache.org/jmeter/
Mercury Interactive LoadRunner http://www-svca.mercuryinteractive.com
Rational SiteLoad http://www.rational.com
RadView WebLoad http://www.radview.com
Empirix e-Test Suite http://www.empirix.com
Segue Software, Inc. SilkPerformer http://www.segue.com
Microsoft WAS http://webtool.rte.microsoft.com
Apache Group Flood http://httpd.apache.org/test/flood/
SourceForge The Grinder http://grinder.sourceforge.net

17.4 Testing the Storefront Application

The Storefront application represents a typical shopping-cart application that you might encounter on
the Internet or may even have built before. A normal application of this type would connect to a
database with tens of thousands or even hundreds of thousands of records.

By default, the Storefront application uses a debug implementation and doesn't
connect to a database. This was done so you didn't have to have a database
installed just to run the example application.

There's no real point in going through the entire exercise of testing the Storefront application; the
numbers wouldn't mean anything anyway. It would, however, be helpful to show how to get started
and what steps must usually be taken to get performance numbers out of an application. The following
are the general steps:

1. Understand the performance goals.
2. Establish the performance baselines for the application.
3. Run tests to collect performance data.
4. Analyze the data to detect where the problems are.
5. Make the necessary software and hardware changes to increase performance.
6. Repeat Steps 3 through 5 as necessary to reach the performance goals.

This section works through each of these steps. For this exercise, we are going to use a scaled-down
version of the Mercury Interactive LoadRunner product, called Astra LoadTest. This is a feature-rich
commercial product. A demo version that will support up to 10 virtual users is available for download
at http://www-svca.mercuryinteractive.com/products/downloads.html.

17.4.1 Understand the Performance Goals

Before you begin testing, it's important to understand the performance goals of the application. The
performance goals are normally specified in the nonfunctional requirements for an application, using
the following units:

• Average transaction response time
• Transactions per second (tps)
• Hits per second

It's not absolutely critical that you know what the performance numbers need to be before starting to
test the application, but it can help to have a set of expectations. Sooner or later, someone is going to
ask you how the application performs. To be able to say "it's good" or "it stinks," you'll need to
evaluate its performance relative to some set of goals.

17.4.2 Establish a Performance Baseline

Once you're ready to start testing, the first thing you should do is establish a baseline. A baseline is a
snapshot of your application's performance before anything has been done to it. It's always a good idea
to get a performance baseline before you start changing code to improve the performance. Otherwise,
how do you know whether you've made it better or worse?

17.4.2.1 Taking a baseline

Most performance-testing tools allow you to record the interaction sequence between a browser and
the web application. Although most tools also allow you to manually create the testing scripts, using
the tools' automatic recording aspects is very convenient. Figure 17-1 illustrates the recording screen
of the Astra LoadTest software.

Figure 17-1. The recording screen of the Astra LoadTest application

With Astra, as with most other web testing tools, each interaction with the web application can be
recorded as a separate transaction. In Figure 17-1, each element in the tree view on the left-hand side
of the screen represents a separate transaction that can be played back and have its performance
metrics recorded.

Once you start recording, all interaction between the client and the server is recorded, including
request parameters and headers. You can then play back this recording and modify different
parameters, such as the number of users executing the recording.

Once you have the necessary test scripts, you can establish the baseline. The baseline measurement is
normally taken with a single user using the application. Depending on whether you are conducting
performance tests or are concentrating on load testing, the number of virtual users can vary. It's
typically a good idea to start with one user and scale upward. If the application is slow with a single
user, it's likely to be slow with multiple users. Figure 17-2 shows the testing script from Figure 17-1
running against the Storefront application with a single user.

Figure 17-2. Testing the Storefront application with a single user

Once the testing scenario is complete, the software gives you a summary report of the performance of
your application. The baseline report for the Storefront application with a single user is shown in
Figure 17-3.

Figure 17-3. The summary report for the Storefront application

Once you have the baseline numbers, if you determine that the performance needs to improve, you can
start to modify the application. Unfortunately, this is never easy. You have to know where the
problems are in order to determine where to focus. There's not much point in speeding up the

application in the places that it's already fast. You need to use the tools to help you determine where
the bottlenecks are.

17.4.3 Find the Trouble Areas

Sometimes you get lucky and find the performance problems quickly. Other times, you need to use
different tools to locate and isolate the areas that are causing the problems. This is where profiling
tools can help.

Profiling your application is somewhat different from conducting the performance tests that we've
been discussing. Although performance tools might be able to tell you which web request took the
longest to complete, they can't tell you which Java method took up the most time. This is the purpose
of profilers.

Table 17-2 lists several profiling tools that can be useful in locating trouble areas of the application.

Table 17-2. Commercially available profiling tools
Company Product URL

Rational Quantify http://www.rational.com
Inprise OptimizeIt http://www.borland.com/optimizeit/
Sitraka Software JProbe http://www.sitraka.com

Profiling an application is similar to debugging. You see where the application spends most of its time,
how many calls are made to a specific function, how many objects are created, how much memory is
used, and so on. You start from a high level and work your way down to the methods that are causing
the performance or scalability problems. Once you fix the problem areas, you run the tests again. This
is repeated until all of the problems are resolved, or until you have to ship the product.

The performance tools can also help you determine where the problem areas are. In Figure 17-4, for
instance, we see that the average transaction response time for one action seems much higher than
those for the others.

Figure 17-4. Higher average response times may indicate a problem

The numbers shown here are extraordinarily good. The worst response time for
the Storefront application is 0.25 seconds. Most developers would kill to have
a problem like that! That's because we aren't doing anything "real" in the
application. It's an example application that doesn't really connect to a backend
system with thousands of records to sift through. This brings up a good point,
however. Just because one transaction is slower than the rest doesn't mean that
it's slow. It might just be slow relative to other really fast transactions. Don't
spend time speeding up something from very fast to super fast. Concentrate on
the parts of the application that are truly slow. 0.25 seconds is very fast, and if
this were a "real" application, we would ship it immediately.

The operation that shows the worst response time in Figure 17-4 is the "view item detail" action. With
Astra, we can break the transaction down even further to see what's going on. Figure 17-5 breaks
down the view item detail page into its constituent parts.

Figure 17-5. The item detail page broken down into its parts

Next, we might try looking at the download times of the various pages to see how the item detail page
stacks up. The download times are shown in Figure 17-6.

Figure 17-6. Page download times of the Storefront application

As you can see, tracking down performance problems involves some detective work. You have to look
behind every corner and leave no stone unturned.

17.4.4 Make the Necessary Changes to Software and Hardware

Once you think you've found the problem and made the necessary changes, go back to the testing
scripts once again. Keep doing this over and over until all of the performance issues are solved or it's
time to ship the product. Because time is limited, it's vital that you plan your testing activities to cover
the largest areas of the application and to focus on specific components that are known to cause
performance or scalability problems.

There's usually not just one problem to fix—it's a constant back-and-forth process that could go on
forever, except for the fact that you eventually have to ship the product. It's imperative that you
concentrate on the biggest performance areas first.

17.5 Performance and Scalability Gotchas

This section presents several well-known issues that may affect performance and scalability for your
Struts applications. This section is not meant to be exhaustive, but rather to single out a few of the
more serious concerns.

17.5.1 Request Scope Versus Session

Memory is limited. You can purchase more memory for a machine, but at some point you'll stop
receiving the same return on your investment. It's very common to store objects and data in the user's

HttpSession. In some cases, this might be the only way to achieve a particular requirement.
However, you must consider the effect that storing objects and data in the session has on an
application.

The more information and objects that are stored in the session, the more you need to worry about
scalability. Say that you store 0.5 MB worth of data for a single user. If the application were loaded
with 1000 concurrent users, that would equal 500 MB (0.5 GB) worth of memory.

Don't forget that there are other resources taking up memory, not just user
sessions. There's application-scope data, the rest of the Struts framework, your
application components, the container itself, the JVM, and so on. You must
consider all of these factors.

As you can see, using the session to store data can quickly eat up memory. A better alternative is to
use the HttpServletRequest to temporarily store data that can be used by other components
and then reclaimed by the garbage collector when the request is completed. With request-scoped data,
the responsibility of cleaning up the data is between the container and the JVM, not the application.

17.5.2 Using the synchronized Keyword

Synchronization is used to control the access of multiple threads to a shared resource. There are many
situations where synchronization makes sense and is absolutely necessary to keep multiple threads
from interfering with one another, which can lead to significant application errors. Struts applications
are inherently multithreaded, and you might think that certain parts of the web application should be
synchronized. However, using the synchronized keyword inside of your Struts applications can
cause some significant performance problems and reduce the overall scalability of the applications.

We've all heard at one time or another that servlets should not contain any instance variables. This is
because there may be only a single instance of a servlet running, with multiple client threads executing
the same instance concurrently. If you store the state of one client thread in an instance variable and a
different client thread comes along at the same time, it may overwrite the previous thread's state
information. This is true for Struts Action classes and session-scoped ActionForms, too. You
must be sure to code in a thread-safe manner throughout your application. In other words, you must
design and code your application to allow for multiple client threads to run concurrently throughout
the application without interfering with one another. If you need to control access to a shared resource,
try to use a pool of resources instead of synchronizing on a single object. Also, keep in mind that the
HttpSession is not synchronized. If you have multiple threads reading and writing to objects in
the user's session, you may experience severe problems that are very difficult to track down. It's up to
the programmer to protect shared resources stored in the user's session.

17.5.2.1 Using java.util.Vector and java.util.Hashtable

You must also be careful which Java classes you use throughout your Struts applications, especially
when it comes to selecting a collection class. The java.util.Vector and
java.util.Hashtable classes, for example, are synchronized internally. If you are using
Vector or Hashtable within your Struts applications, this may have the same effect as using the
synchronized keyword explicitly.

You should avoid using these classes unless you are absolutely sure that you need to. Instead of using
Vector, for example, you can use java.util.ArrayList. Instead of Hashtable, use

the java.util.HashMap class. Both of these classes provide similar functionality without the
synchronization overhead.

17.5.3 Using Too Many Custom Tags

JSP custom tags are great at what they do. Using them instead of coding Java directly in your JSP
pages is recommended by almost everyone who has used both approaches. You have to be careful,
however, when using too many custom tags in a single JSP page. Some containers are not very
efficient at pooling tag handlers, and some may generate poorly written Java code.

If your JSP pages are performing slowly, one possible solution is to move some of the code to another
JSP page and use the JSP include mechanism. A second approach is to simply reduce the number
of tags in the page, although this is less practical. If these solutions don't work, try a different
container. Each container may deal with tags differently—while one may be slow with your
application, another may be fast.

17.5.4 Improperly Tuning the JVM

The JVM supports many different options for tuning and configuring its runtime parameters.
Sometimes it's necessary to adjust these options to achieve better performance from your application.

The two most important options when trying to increase performance or scalability for your
application are the -Xms(size) and -Xmx(size) options. The -Xms option allows you to set
the initial size of the application heap. The -Xmx option allows you to set the maximum size for the
heap.

The heap is the memory storage area for the application. The larger the storage area, the more memory
the application can use. You might ask, "Why not just set it to the maximum size allowed by the
physical memory?" The problem with that approach is that it becomes an area that the garbage
collector has to clean up. The garbage collector in the JVM runs periodically and attempts to reclaim
any unused memory.

The garbage collector has to search through all of the memory assigned to an application. Each time
the garbage collector runs, the application will pause. The longer it takes for the garbage collector to
do its job, the longer the users will have to wait during a collection cycle. It's very important to set the
heap size correctly. Unfortunately, there's no general way to determine the correct heap size for an
application. Each application is different, and each one creates and destroys objects at a different rate.
The best that you can do is to set the values to standard starting points and make changes
incrementally. You will eventually reach a point where performance or scalability gets worse as the
values get higher. Lower the values again and leave them alone. In general, you should start with these
values:

-Xms 256M
-Xmx 256M

Many sources recommended setting the initial and maximum heap sizes to the
same value, so that the JVM doesn't have to pause the application when it
needs to acquire more memory. This, in turn, should help to improve
performance.

The default minimum value is 2 MB, and the default maximum value is 64 MB. The letter after the
number in the option can be:

• k or K for kilobytes
• m or M for megabytes

To see a list of other supported JVM options, type java -X on the command line. Assuming that your
path is set up correctly for the Java executable, you should see something similar to Figure 17-7.

Figure 17-7. Typing java -X displays the options available for the JVM

17.5.5 Using Too Many Remote Calls

When accessing remote components such as EJBs from your application, you may find that the
overhead of network communication starts to cause performance problems. One thing to look at is the
"granularity" of your remote calls. If you find that you are making many calls that retrieve a small
amount of information on each page, try bundling a related set of calls into fewer remote invocations.
For example, if you are displaying a product list, querying the products, and then requesting the details
of each product as separate remote calls, this would be a good candidate for one aggregated call that
returns all the product information and details at once. You can also improve the performance of an
application that uses remote references by caching the remote reference. See Chapter 13 for more
information.

17.5.6 Using Too Many Graphics

When a web page contains graphics, they are downloaded separately from the HTML content. Each
image may also require and use separate connections. Even when the performance problems are
related to images, a user may have the impression that the entire application is slow. Don't use too
many images, and especially stay away from large images. This is one sure way to improve the
performance of your application.

Appendix A. Changes Since Struts 1.0
There have been many changes to the Struts framework between Versions 1.0 and 1.1. Although the
changes were discussed throughout this book, this appendix consolidates the changes and highlights
the most important of the new features.

A.1 ActionServlet and RequestProcessor

A new class called RequestProcessor was added to the framework in Struts 1.1. This class
takes over much of the work that the ActionServlet class performed in previous versions. With
1.1, you can still configure the class name of the ActionServlet that you want to use for an
application in the web.xml file, but the RequestProcessor now carries out much of the real
request-processing work.

By default, applications use the org.apache.struts.action.RequestProcessor
class to handle all incoming requests. You are not required to do anything if the default behavior suits
your requirements. You can, however, choose to override the default implementation with one of your
own. You can switch implementations by configuring the controller element in the Struts
configuration file. See Chapter 4 for more details on configuring the controller element.

A.2 Modifications to the Struts Action Class

The Struts base Action class has been modified with a new method called execute(). This
new method should be called instead of the perform() method. The main difference between the
two is that the execute() method declares that it throws java.lang.Exception,
whereas the earlier perform() method declared IOException and
ServletException. This change was necessary to facilitate the new declarative exception-
handling feature that was added to Struts 1.1.

The perform() method has been deprecated and should not be used.

A.3 Changes to web.xml and struts-config.xml

There have been many changes to the two configuration files required by Struts applications. The
web.xml file has had several initialization parameters removed; they are now supported by elements
within the struts-config.xml file. The web.xml file also supports a few new parameters. The elements
of both files are covered in Chapter 4 and will not be repeated here. You can check the Struts DTD to
see exactly which elements are supported in a Struts configuration file.

You will need to update your Struts configuration file to use the latest DTD, which is called struts-
config_1_1.dtd. You will get many parsing errors if you forget to do this.

A.4 New Features of Struts 1.1

The new features in Version 1.1 of the Struts framework are covered in detail throughout this book.
Descriptions of the most important ones are provided here.

A.4.1 Declarative Exception Handling

Prior to 1.1, exception handling was completely left up to the application. There was no support for it
in the core framework, and developers were left to their own devices to figure out how to handle
exceptions within an application.

Starting with 1.1, exception handling is now part of the core framework. You can declaratively
configure which exceptions that actions can throw and what should happen when they occur. Chapter
10 covers exception handling.

A.4.2 Dynamic ActionForms

A new type of ActionForm class was added in 1.1, and broader support for it has been added
throughout the entire framework. The DynaActionForm and its subclasses allow you to
configure form-bean instances in the Struts configuration file. This has the effect of saving
development time because you are no longer required to create ActionForm classes.

It's a little too general to say that you'll never need to create another
ActionForm class—however, the number of them that you need to create
should be drastically reduced.

See Chapter 7 for more information on this new feature.

A.4.3 Plug-ins

The PlugIn feature was added to the Struts framework to provide a mechanism to notify and
initialize services when the Struts application starts up and shuts down. There is a wide range of
possibilities for this feature, and in fact, the Struts Validator and the Tiles library both take advantage
the PlugIn mechanism. See Chapter 9 for more information on using plug-ins in your applications.

A.4.4 Multiple Application Modules

The addition of application modules to the framework allows a single Struts application to support
more than one Struts configuration file. This facilitates a project being divided into subprojects, each
with its own configuration file. While this might sound more complicated, it allows better support for
parallel development.

The support for multiple application modules is still undergoing some changes and modifications. At
the time of this writing, you can use extension mapping only for the controller servlet, and it may be a
while before the rest of the components have full support for this new feature.

A.4.5 Nested Tags

Nested tags are a set of JSP custom tags that were added to the Struts framework to give developers
better control over accessing properties from a JavaBeans object graph. Many JavaBeans objects
contain nested JavaBeans objects that can be referenced by the parent bean. For example, a Customer
object may hold a reference to an Address object. To better support the nested nature of these
JavaBeans in the Struts views, the nested tags were created. The tags within the Nested tag library are
discussed in Chapter 7.

A.5 The Struts Validator

The Struts Validator is a validation framework that supports both Struts and non-Struts applications. It
was designed with Struts in mind, though, and it has many nice features that are desirable for the types
of applications typically built using Struts. Chapter 11 covers the Struts Validator in detail.

A.5.1 Change to the ORO Package

One thing is worth mentioning as far as upgrading goes. Earlier versions of the Validator framework
relied on the RegExp package from Jakarta. This has been switched to Jakarta's ORO package. See
Chapter 11 for more details on why this change was made and how it affects the configuration of the
Validator.

A.6 Change to Commons Logging

The entire Struts framework now relies on the Commons Logging library, which is an open source
logging API from Jakarta. It provides a simple, consistent logging API that can be used within all
applications and that allows different implementations to be plugged in dynamically. You will need
the Commons Logging JARs, but these should already be included with the Struts framework. This
change also required some configuration settings to be added. Chapter 15 covers the Commons
Logging library as well as general logging in a Struts application.

A.7 Removal of Admin Actions

Several "administrative" actions were included with previous versions of the Struts framework. These
actions could be used for such things as reloading a Struts application (including the configuration
settings) without shutting down the application. The ability to add new action mappings dynamically
was also supported. These actions have been removed from the framework and are no longer available.
If your application requires this functionality, you will have to provide it programmatically.

A.8 Deprecation of the GenericDataSource

The org.apache.struts.util.GenericDataSource class has been deprecated. This
class was never designed to be a full-scale data source implementation for large, high-availability
applications. It was meant for smaller applications, and never had the advanced features found in the
more mature data source products.

If you need a data source implementation, it's recommended that you use either one that is available
with your container, or the one available in the Commons DBCP project at
http://cvs.apache.org/viewcvs/jakarta-commons/dbcp/.

A.9 Dependency on Commons Projects

The Struts framework now has the following dependencies on packages from the Jakarta Commons
project:

• Commons BeanUtils
• Commons Digester
• Commons Collections

• Commons Logging

Appendix B. Downloading and Installing Struts
This appendix provides instructions and helpful tips on installing the Struts framework. All attempts
have been made to ensure that these instructions work with the latest available versions of the
containers. If you encounter any problems, check the STRUTS-USER mailing list.

B.1 The Binary Versus Source Distributions

There are two distribution methods for the Struts framework, source and binary. The source
distribution gives you more control over the build package environment. However, this method is not
for beginners. Unless you have a specific need (e.g., you need to insert a modified class file into the
build), you should stick with the binary distribution. This section presents both methods.

B.1.1 Building Struts from the Source Distribution

You can obtain the source packages of Struts and the rest of the Jakarta projects from
http://jakarta.apache.org/site/sourceindex.html. Several different versions are usually available, so be
sure to get the one that's appropriate for your needs. There is always a nightly build of Struts that
includes the latest changes and fixes. In most situations, you'll want to go with the nightly build, but
be aware that it may also include new bugs.

When choosing a download, you have the option of selecting a ZIP file or a
compressed TAR file. Choose the one that is appropriate for your
environment.

Once you have downloaded the appropriate version, extract the contents into a directory. The
directory doesn't have to be empty, but it's easier if it is. The Struts source distribution file unpacks
everything into a subdirectory called jakarta-struts.

Before you can build the source files, you will also need to download several prerequisite software
packages (if they're not already installed in your environment). The following list describes the
required software:

Java SDK

Version 1.2 or later. You can download the latest version from http://java.sun.com/j2se/.

Servlet container

One that supports the 2.2 Servlet specification or later and the 1.1 JavaServer Pages
specification or later.

Ant build tool

Version 1.3 or later. You can download the latest version from http://jakarta.apache.org/ant/.

Servlet API classes

All servlet containers should contain the necessary files; just make sure the necessary JARs
are in the classpath for the build tool.

XML parser

One that supports JAXP Version 1.0 or later. The Xerces parser is compatible and can be
obtained from http://xml.apache.org/xerces-j/.

Xalan XSLT Processor

Version 1.2 or later. Note that some problems have been reported with Version 2.0. The
processor is used to convert the XML documentation files into HTML documentation files.
The processor also includes the Xerces parser. You can download Xalan from
http://xml.apache.org/xalan-j/index.html.

JDBC 2.0 Optional package classes

The Struts framework supports an implementation of javax.sql.DataSource and
therefore requires the JDBC 2.0 Optional classes to be present. You can obtain the JDBC 2.0
classes from http://java.sun.com/products/jdbc/download.html.

You will also need to download the third-party packages listed in Table B-1 and extract the JAR files
included with the packages. Each package has both a source and binary distribution available. Unless
you are a true masochist, you should download the binary distributions of these packages.

Table B-1. Third-party packages required for Struts compilation
Package name URL

Commons BeanUtils http://jakarta.apache.org/commons/beanutils.html
Commons Collections http://jakarta.apache.org/commons/collections.html
Commons Digester http://jakarta.apache.org/commons/digester.html
Commons Logging http://jakarta.apache.org/commons/logging.html
Commons Pool http://jakarta.apache.org/commons/pool/index.html
Commons Services http://jakarta.apache.org/builds/jakarta-commons/nightly/
Commons DBCP http://cvs.apache.org/viewcvs/jakarta-commons/dbcp/
Commons Validator http://cvs.apache.org/viewcvs/jakarta-commons/validator/
Jakarta ORO http://jakarta.apache.org/oro/

The URL http://jakarta.apache.org/commons/components.html provides a nice
summary of the different release schedules of the Commons components.

Extract the binary distributions of each of these packages and put the JAR files somewhere that you
can easily reference them, as will need to in the next step. Each package is extracted into its own
subdirectory. You can leave the JAR files there for easier reference.

The next step is to create a build.properties file that specifies environmental dependencies such as the
location of the third-party JARs extracted in the previous step. The Struts source distribution provides
a build.properties.sample file in the top-level source distribution directory. Open this file and rename
it build.properties. You need to customize this file for your particular environment. The file paths are
relative to the location of the properties file. For example, to reference the CommonsBeanUtils JAR
file that is located in a directory called lib one level up, you would need to change the properties file to
look like this:

The JAR file containing version 1.0 (or later) of the
Beanutils package
from the Jakarta Commons project.
commons-beanutils.jar=../lib/commons-beanutils-1.3/commons-
beanutils.jar

Once you have all of the file paths set in the build.properties file, you are ready to turn the Struts
source files into Struts binary files. Make sure Ant is installed and configured correctly, and make sure
you downloaded the xalan.jar file and placed it in the <ANT_HOME>/lib directory (this is needed so
that an Ant task can process the XML documentation files). You will need to be able to execute Ant
from the command line in the top-level source directory.

Once you've completed these steps, go to the directory where the build.properties file is located and
type:

ant dist

Messages will be spewed out in the console. When they finally stop, they should show that the build
was successful, as in Figure B-1.

Figure B-1. A success message is printed when complete

If the build is unsuccessful, you will get a failed message, usually with enough information to
determine the cause. For example, if you forget to put the xalan.jar in the <ANT_HOME>/lib
directory, the output will look similar to that in Figure B-2.

Figure B-2. A stack trace is usually included in failed builds

Assuming that the build was successful, the Struts binaries and dependent files are copied to the dist
directory underneath the top-level source distribution directory.

B.1.2 Installing the Binary Distribution

Download the binary distribution and unpack it into a directory. The files are in a subdirectory called
jakarta-struts within the distribution. As with the source distribution, you can download either a ZIP
file or a compressed TAR file. You can obtain the binary distribution from
http://jakarta.apache.org/site/binindex.html.

If you built Struts from the source distribution, the binary files will already be
unpacked into the dist/lib directory of the top-level source distribution
directory.

The following steps need to be performed for a Struts application to work properly. Any necessary
container-dependent modifications to these steps are discussed in the sections for the individual
containers later in this appendix.

1. Copy all of the JAR files from the distribution's lib directory to the web application's WEB-
INF/lib directory.

2. Copy all of the .tld files to the web application's WEB-INF directory.
3. If you plan to use the Validator framework, copy the validation-rules.xml file to the WEB-INF

directory. See Chapter 11 for more information on the configuration files required by the
Struts Validator.

4. Create a web application deployment descriptor (web.xml) and copy it to the WEB-INF
directory. See Chapter 4 for details on how to configure the web.xml file.

5. Create a struts-config.xml file and copy it to the WEB-INF directory. See Chapter 4 for details
on how to configure the configuration file for Struts.

6. Create a properties file called commons-logging.properties and copy it to the WEB-
INF/classes directory. Put the following line in the file:

org.apache.commons.logging.Log=org.apache.commons.logging
.impl.SimpleLog

7. Create a Struts resource bundle and copy it to the WEB-INF/classes directory. See Chapter 12
for how to format this bundle and Chapter 4 for how to configure the Struts configuration file
to use this bundle.

That's really all there is to installing the Struts framework. You still have to build the necessary JSP
pages and other framework components, such as Action and ActionForm classes, but this is
what is required to get the environment running. It's highly recommended that you play around with
the example applications that are distributed with Struts. They are complete web applications,
packaged as WAR files that you can copy to the container's webapps directory.

You have the option of using one of many different containers to run the Struts framework. In many
cases, the steps just described should be followed exactly. However, not all containers are created
equal, and some require modifications to the steps listed. The necessary modifications, if any, are
described below.

B.2 Tips on Installing Struts in Tomcat

Depending on which version of Tomcat you use, you may have to perform a few additional steps.
Because Struts 1.1 requires a container to support the 2.2 Servlet specification and the 1.1 JavaServer
Pages specification, the minimum version of Tomcat that will work is Tomcat 3.2. However, if
possible, you should attempt to use the latest version of Tomcat (4.X), as it has many improvements
that allow the Struts applications to perform better.

B.3 Tips on Installing Struts in WebLogic

With earlier versions of WebLogic such as 5.1, you had to perform several non-intuitive steps in order
to get Struts to work correctly. Some of these problems had to do with WebLogic unpacking only
*.class files and not other files like JARs. However, with WebLogic 6.0, 6.1, and now 7.0, there
shouldn't be any extra steps to perform.

B.4 Tips on Installing Struts in WebSphere

If you have the latest patches applied, no extra steps should be required. However, developers have
reported major headaches with installing Struts on Version 3.5.

B.5 Tips on Installing Struts in JRun

The latest version of JRun should require no extra steps.

Appendix C. Resources
This appendix provides a list of resources that you can use to further your knowledge of Struts.

C.1 The Struts Mailing Lists

By far the two best places to learn and ask questions about the Struts framework are the two mailing
lists, STRUTS-USER and STRUTS-DEV. The user list currently has around 1,750 subscribers and
has been growing at a rate of 50 to 100 new users a month for the past year or so.

The STRUTS-USER list is designed for Struts developers, both new and experienced alike. You
definitely should consult the FAQ (http://www.tuxedo.org/~esr/faqs/smart-questions.html) before
posting any questions. There's not much flaming on the list, but you will get pummeled if you don't
think about the question you're asking before posting it.

The STRUTS-DEV mailing list is devoted to those working on the framework itself. Anyone can post
on it, but you should not ask questions here about your application, or questions that can be better
answered on the user list. In almost all cases, unless you are contributing to the development of the
framework or bug fixes, or would like to get involved in this manner, you should be posting to the
user list.

You can subscribe to either or both lists from http://jakarta.apache.org/struts/index.html#Involved.
There are also several ways to search the lists (you can search through many Jakarta mailing lists, not
just the ones for Struts). One option for searching the Struts mailing lists is to go to http://www.mail-
archive.com/lists.html and select whether you want to search through the DEV or the USER list.

Another way to search is to use the eyebrowse feature from the Apache Software Foundation
(http://nagoya.apache.org/eyebrowse/). You can search through all of the Apache mailing lists here as
well.

Yet another method is to use the excellent search capabilities of the jApache site at
http://www.japache.org/index.jsp.

C.2 The Struts Resource Web Page

There are many interesting and informative links on the main Struts site. One of the best is the Struts
Resource Page (http://jakarta.apache.org/struts/resources/index.html). The list is divided by category
(tutorials, articles, books, etc.). You could easily spend a solid month following all of these links.

C.3 Validator Site

The creator of the Validator, David Winterfeldt, still maintains his own site at
http://home.earthlink.net/~dwinterfeldt/. You can find tutorials, advanced user guides, and general
information on the Validator framework, and you can also download the latest version of the
framework.

C.4 Tiles Site

The creator of the Tiles library, Cedric Dumoulin, also maintains his own site at
http://www.lifl.fr/~dumoulin/tiles/. You can find tutorials and general information on Tiles at this site,
and you can also download the latest version of the library.

C.5 Nested Tags Site

The Nested tag libraries were released in November 2001 and added to the core Struts framework
several months later. The creator of the libraries, Arron Bates, maintains a site where you can find
great tutorials and tons of information on the nested tags. The URL for his site is
http://www.keyboardmonkey.com/next/index.jsp.

C.6 The Struts Console

There are several Struts GUI tools available and more are created every day, but one of the best and
most widely used is the Struts Console. The Console application was briefly discussed in Chapter 4
and is available for download at http://www.jamesholmes.com/struts/. The creator of the Console,
James Holmes, recently became a committer to the Struts framework.

C.7 Easy Struts Project

The Easy Struts Project, hosted on SourceForge, provides tools and plug-ins for various IDEs in order
to increase productivity when building Struts applications. There are plug-ins for JBuilder, Eclipse,
and other popular IDEs. You can find more information on the Easy Struts Project at
http://easystruts.sourceforge.net.

