,]m-‘a"l Ne

Programming

Preface

Java™'s growth over the last five years has been nothing short of phenomenal. Given
Java's rapid rise to prominence and the general interest in networking, it'salittle
surprising that network programming in Javais still so mysteriousto so many. This
doesn't have to be. In fact, writing network programsin Javais quite smple, asthis
book will show. Readers with previous experience in network programming in a Unix,
Windows, or Macintosh environment should be pleasantly surprised at how much
easier it isto write equivalent programsin Java. That's because the Java core API
includes well-designed interfaces to most network features. Indeed, thereis very little
application layer network software you can write in C or C++ that you can't write
more easily in Java. Java Network Programming endeavors to show you how to take
advantage of Java's network class library to quickly and easily write programs that
accomplish many common networking tasks. These include:

Browsing pages on the Web

Parsing and rendering HTML

Sending email with SMTP

Receiving email with POP and IMAP

Writing multithreaded servers

Installing new protocol and content handlers into browsers

Encrypting communications for confidentiality, authentication, and guaranteed
message integrity

Designing GUI clients for network services

Posting datato CGI programs

Looking up hostsusing DNS

Downloading files with anonymous FTP

Connecting sockets for low-level network communication

Distributing applications across multiple systems with Remote M ethod
Invocation

Javaisthefirst language to provide such a powerful cross-platform network library
that handles al these diverse tasks. Java Network Programming exposes the power
and sophistication of thislibrary. Thisbook's goal is to enable you to start using Java
as aplatform for serious network programming. To do so, this book provides a
general background in network fundamentals as well as detailed discussions of Java's
facilities for writing network programs. Y ou'll learn how to write Java applets and

applications that share data across the Internet for games, collaboration, software
updates, file transfer and more. Y ou'll also get a behind-the-sceneslook at HTTP, CGl,
TCP/IP, and the other protocols that support the Internet and the Web. When you
finish this book, you'll have the knowledge and the tools to create the next generation
of software that takes full advantage of the Internet.

About the Second Edition

In thefirst chapter of the first edition of this book, | wrote extensively about the sort
of dynamic, distributed network applications | thought Java would make possible.
One of the most exciting parts of writing this second edition was seeing that virtually
all of the applications | had postulated have indeed come to pass. Programmers are
using Javato query database servers, monitor web pages, control tel escopes, manage
multiplayer games, and more, all by using Java's ability to access the Internet. Javain
general, and network programming in Javain particular, has moved well beyond the
hype stage and into the realm of real, working applications. Not all network software
iswritten in Java yet, but it's not for alack of trying. Efforts are well under way to
subvert the existing infrastructure of C-based network clients and servers with pure
Java replacements. It's unlikely that Java will replace C for all network programming
in the near future. However, the mere fact that many people are willing to use web
browsers, web servers, and more written in Java shows just how far we've come since
1996.

This book has come along way too. The second edition has been rewritten almost
from scratch. There are five completely new chapters, some of which reflect new
APIs and abilities of Java introduced since the first edition was published (Chapter 8,
Chapter 12, and Chapter 19), and some of which reflect my greater experiencein
teaching this material and noticing exactly where students' trouble spots are (Chapter
4, and Chapter 5). In addition, one chapter on the Java Servlet API has been removed,
since the topic really deserves abook of its own; and indeed Jason Hunter has written
that book, Java Serviet Programming (O'Reilly & Associates, Inc., 1998).

However, much more important than the added and del eted chapters are the changes
inside the chapters that we kept. The most obvious change to the first edition is that all
of the examples have been rewritten with the Java 1.1 1/0 API. The deprecation
messages that tormented readers who compiled the first edition's examples using Java
1.1 or later are now athing of the past. Less obviously, but far more importantly, all
the examples have been rewritten from the ground up to use clean, object-oriented
design that follows Java's naming conventions and design principles. Like almost
everyone (Sun not excepted), | was still struggling to figure out alot of the details of
just what one did with Java and how one did it when | wrote the first edition in 1996.
The old examples got the network code correct, but in most other respects they now
look embarrassingly amateurish. I've learned alot about both Java and object-oriented
programming since then, and | think my increased experience shows in this edition.
For just one example, | no longer use standal one applets where a simple frame-based
application would suffice. | hope that the new examples will serve as models not just
of how to write network programs, but also of how to write Java code in general.

And of course the text has been cleaned up too. In fact, | took aslong to write this
second, revised edition as | did to write the original edition. As previously mentioned,

there are 5 completely new chapters, but the 14 revised chapters have been
extensively rewritten and expanded to bring them up-to-date with new devel opments,
aswell asto make them clearer and more engaging. This edition is, to put it frankly, a
much better written book than the first edition, even leaving aside all the changes to
the examples. | hope you'll find this edition an even stronger, longer lived, more
accurate, and more enjoyable tutorial and reference to network programming in Java
than the first edition.

Organization of the Book

This book begins with three chapters that outline how networks and network
programs work. Chapter 1, is a gentle introduction to network programming in Java
and the applications that it makes possible. All readers should find something of
interest in this chapter. It explores some of the unique programs that become feasible
when networking is combined with Java. Chapter 2, and Chapter 3, explain in detail
what a programmer needs to know about how the Internet and the Web work. Chapter
2 describes the protocols that underlie the Internet, such as TCP/IP and UDP/IP.
Chapter 3 describes the standards that underlie the Web such, asHTTP, HTML, and
CGil. If you've done alot of network programming in other languages on other
platforms, you may be able to skip these two chapters.

The next two chapters throw some light on two parts of Javathat are critical to almost
all network programs but are often misunderstood and misused: 1/0 and threading.
Chapter 4 explores Javas unique way of handling input and output. Understanding
how Java handles I/O in the general caseis a prerequisite for understanding the
special case of how Java handles network 1/0. Chapter 5 explores multithreading and
synchronization, with a special emphasis on how they can be used for asynchronous
I/0 and network servers. Experienced Java programmers may be able to skim or skip
these two chapters. However, Chapter 6, is essential reading for everyone. It shows
how Java programs interact with the Domain Name System through the InetAddress
class, the one class that's needed by essentially all network programs. Once you've
finished this chapter, it's possible to jump around in the book as your interests and
needs dictate. There are, however, some interdependencies between specific chapters.
Figure P.1 should allow you to map out possible paths through the book.

Figure P.1. Chapter prerequisites

Chapter 1
WAy Alataair ko
hiva®
Chagpter 2
Basic Matveork
Cowrcayars
Chapter 3
Bask: Wails
e s
Chapter 4.
AFeE L0
Chapter 5
Threants
Chapter &
LOmNAIR
Trabarreet Adresses
L
Chapler 7 Chapter 9 Chapler 10 Chapler 13 Chapter 18 Chapber 10
Rarriewiog Dats Tine Aetvenk Sackar for LA DArGeams Hevrmare Merfad ThE S
vt LIHLE fdarhmds of Pl and Sockels Trrvacatian T o]
fEva. apaiel. Appler
Chapler 15 Chapler B Chapber 11 Chapler 14
e FITRAL & Swniva SocRE nor Adealicasd
LR Coriestion Sreis Sockels
CiAss
Chapter 16 Chapter 12
Proroce’ Secers Sockers
HATRIETS
Chapier 17
Covafaval Haneiars

Chapter 7, explores Java's URL class, a powerful abstraction for downloading
information and files from network servers of many kinds. The URL class enables you
to connect to and download files and documents from a network server without
concerning yourself with the details of the protocol that the server speaks. It lets you
connect to an FTP server using the same code you use to talk to an HTTP server or to
read afile on the local hard disk.

Once you'veretrieved an HTML file from a server, you're going to want to do
something with it. Parsing and rendering HTML is one of the most difficult
challenges network programmers face. Indeed, the Mozilla project has been struggling
with that exact problem for more than two years. Chapter 8, introduces some little-
known classes for parsing and rendering HTML documents that take this burden off
your shoulders and put it on Sun's.

Chapter 9, investigates the network methods of one the first classes every Java
programmer learns about, Applet. You'll see how to load images and audio files from
network servers and track their progress. Without using undocumented classes, thisis
the only way to handle audio in Java 1.2 and earlier.

Chapter 10 through Chapter 14 discuss Java's low-level socket classes for network
access. Chapter 10, introduces the Java sockets APl and the Socket classin particular.
It shows you how to write network clients that interact with TCP servers of all kinds,
including whoais, finger, and HTTP. Chapter 11, shows you how to use the
ServerSocket class to write servers for these and other protocolsin Java. Chapter 12,
shows you how to protect your client/server communications using the Secure Sockets
Layer (SSL) and the Java Secure Sockets Extension (JSSE). Chapter 13, introduces

the User Datagram Protocol (UDP) and the associated classes DatagramPacket and
DatagramSocket for fast, reliable communication. Finally, Chapter 14, shows you
how to use UDP to communicate with multiple hosts at the same time. All the other
classes that access the network from Javarely on the classes described in these five
chapters.

Chapter 15 through Chapter 17 look more deeply at the infrastructure supporting the
URL class. These chapters introduce protocol and content handlers, concepts unique to
Javathat make it possible to write dynamically-extensible software that automatically
understands new protocols and media types. Chapter 15, describes the
URLConnection class that serves as the engine for the URL class of Chapter 7. It shows
you how to take advantage of this class through its public API. Chapter 16, also
focuses on the URLConnection class but from a different direction; it shows you how
to subclass this class to create handlers for new protocols and URLSs. Finally, Chapter
17 explores Java's somewhat moribund mechanism for supporting new media types.

Chapter 18 and Chapter 19 introduce two unique higher-level APIsfor network
programs, Remote Method Invocation (RM1) and the JavaMail API. Chapter 18,
introduces this powerful mechanism for writing distributed Java applications that run
across multiple heterogeneous systems at the same time while communicating with
straightforward method calls just like a nondistributed program. Chapter 19, acquaints
you with this standard extension to Java that offers an alternative to low-level sockets
for talking to SMTP, POP, IMAP, and other email servers. Both of these APIs provide
distributed applications with less cumbersome alternatives to lower-level protocols.

Who You Are

This book assumes you have a basic familiarity with the Javalanguage and
programming environment, in addition to object-oriented programming in general.
This book does not attempt to be a basic language tutorial. Y ou should be thoroughly
familiar with the syntax of the language. Y ou should have written simple applications
and applets. Y ou should also be comfortable with the AWT. When you encounter a
topic that requires a deeper understanding for network programming than is
customary—for instance, threads and streams—I'll cover that topic as well, at least
briefly.

Y ou should also be an accomplished user of the Internet. | will assume you know how
to ftp filesand visit web sites. Y ou should know what a URL is and how you locate
one. Y ou should know how to write simple HTML and be able to publish a home
page that includes Java applets, though you do not need to be a super web designer.

However, this book doesn't assume that you have prior experience with network
programming. Y ou should find it a complete introduction to networking concepts and
network application development. | don't assume that you have a few thousand
networking acronyms (TCP, UDP, SMTP. . .) at thetip of your tongue. You'll learn
what you need to know about these here. It's certainly possible that you could use this
book as a general introduction to network programming with a socket-like interface,
then go on to learn the Windows Socket Architecture (WSA), and figure out how to
write network applicationsin C++. But it's not clear why you would want to: Javalets
you write very sophisticated applications with ease.

Java Versions

Java's network classes have changed much more slowly since Java 1.0 than other parts
of the core API. In comparison to the AWT or |/O, there have been amost no changes
and only afew additions. Of course, all network programs make extensive use of the
I/O classes, and many make heavy use of GUIs. This book iswritten with the
assumption that you and your customers are using at least Java 1.1 (an assumption
that may finally become safe in 2001). In general, | use Java 1.1 features such as
readers and writers and the new event model freely without further explanation.

Java 2 isabit more of a stretch. Although | wrote amost all of this book using Java 2,
and although Java 2 has been available on Windows and Solaris for more than a year,
no Java 2 runtime or development environment is yet available for the Mac. While
Java 2 has gradually made its way onto most Unix platforms, including Linux, it is
almost certain that neither Apple nor Sun will ever port any version of Java 2 to
MacOS 9.x or earlier, thus effectively locking out 100% of the current Mac installed
base from future developments. (Java 2 will probably appear on MacOS X sometime
in 2001.) Thisis not agood thing for alanguage that claims to be "write once, run
anywhere". Furthermore, Microsoft's Java virtual machine supports only Java 1.1 and
does not seem likely to improve in this respect the foreseeable future (the settlement
of various lawsuits perhaps withstanding). Finally, ailmost all currently installed
browsers, including Internet Explorer 5.5 and earlier and Netscape Navigator 4.7 and
earlier, support only Java 1.1. Applet developers are pretty much limited to Java 1.1
by the capabilities of their customers. Consequently, Java 2 seems likely to be
restricted to standal one applications on Windows and Unix for at least the near term.
Thus, while | have not shied away from using Java 2-specific features where they
seemed useful or convenient—for instance, the ASCII encoding for the
InputStreamReader and the keytool program—I have been careful to point out my
use of such features. Where 1.1-safe alternatives exist, they are noted. When a
particular method or classis new in Java 1.2 or later, it is noted by a comment
following its declaration like this:

public void setTimeToLive(int ttl) throws 10Exception // Java 1.2

To further muddy the waters, there are multiple versions of Java 2. At the time this
book was completed, the current release was the Java™ 2 SDK, Standard Edition,
v1.2.2. At least that's what it was called then. Sun seems to change names at the drop
of amarketing consultant. In previous incarnations, thisis what was simply known as
the JDK. Sun also makes available the Java™ 2 Platform, Enterprise Edition (2EE™)
and Java™ 2 Platform, Micro Edition (J2ME™). The Enterprise Edition is a superset
of the Standard Edition that adds features such as the Java Naming and Directory
Interface and the JavaMail API that provide high-level APIsfor distributed
applications. Some of these additional APIs are also available as extensions to the
Standard Edition, and will be so treated here. The Micro Edition is a subset of the
Standard Edition targeted at cell phones, set-top boxes and other memory, CPU, and
display-challenged devices. It removes alot of the GUI APIsthat programmers have
learned to associate with Java, though surprisingly it retains ailmost all of the basic
networking and 1/O classes discussed in this book. Finally, when this book was about
half complete, Sun released a beta of the Java™ 2 SDK, Standard Edition, v1.3. This
added afew pieces to the networking API, but left most of the existing APl untouched.

Over the next few months, Sun released several more betas of JDK 1.3. The finishing
touches were placed in this book, and all the code was tested with the final release of
JDK 1.3.

To be honest, the most annoying problem with all these different versions and editions
was not the rewriting they necessitated. It was figuring out how to identify them in the
text. | simply refuse to write Java™ 2 SDK, Sandard Edition, v1.3, or even Java 2
1.3 every time | want to point out a new feature in the latest release of Java.
Consequently, I've adopted the following convention:

o Java l.0refersto all versions of Javathat more or lessimplement the Java
APl asdefined in Sun's Java Development Kit 1.0.2.

o Javal.lreferstoall versions of Javathat more or lessimplement the Java
APl asdefined in any version of Sun's Java Development Kit 1.1.x. This
includes third-party efforts such as Macintosh Runtime for Java (MRJ) 2.0, 2.1,
and 2.2.

o Javal.2referstoall versions of Javathat more or lessimplement the Java
APl as defined in the Standard Edition of Sun's Java Development Kit 1.2.x.
This does not include the Enterprise Edition additions, which will be treated as
extensions to the standard. These normally come in the javax package rather
than the java packages.

o Java l.3refersto all versions of Javathat more or lessimplement the Java
APl as defined in the Standard Edition of Sun's Java Development Kit 1.3.

In short, this book covers the state-of-the-art for network programming in Java 2,
which isn't really all that different from network programming in Java 1.1. I'll post
updates and corrections on my web site at http://metalab.unc.edu/javafag/books/jnp2e/
as more information becomes available. However, the networking APl seemsfairly
stable.

Security

I don't know if there was one most frequently asked question about the first edition of
Java Network Programming, but there was definitely one most frequent answer, and it
appliesto this edition too. My mistake in the first edition was hiding that answer in
the back of a chapter that most people didn't read. Since that very same answer should
answer an equal number of questions from readers of this book, | want to get it out of
the way right up front (and then repeat it several times throughout the book for readers
who habitually skip prefaces):Java's security constraints prevent almost all the
examples and methods discussed in this book fromworking in an applet.

This book focuses very much on applications. Untrusted Java appl ets are prohibited
from communicating over the Internet with any host other than the one they came
from. Thisincludes the host they're running on. The problem may not always be
obvious—not all web browsers properly report security exceptions—but it isthere. In
Java 1.2 and later, there are ways to relax the restrictions on applets so that they get
less limited access to the network. However, these are exceptions, not therule. If you
can make an applet work when run as a standalone application and you cannot get it
to work inside aweb browser, the problem is almost certainly a conflict with the
browser's security manager.

About the Examples

Most methods and classes described in this book areillustrated with at least one
complete working program, simple though it may be. In my experience, a complete
working program is essential to showing the proper use of a method. Without a
program, it istoo easy to drop into jargon or to gloss over points about which the
author may be unclear in hisown mind. The Java APl documentation itself often
suffers from excessively terse descriptions of the method calls. In this book, | have
tried to err on the side of providing too much explication rather than too little. If a
point is obvious to you, feel free to skip over it. You do not need to type in and run
every examplein thisbook, but if a particular method does give you trouble, you are
guaranteed to have at |east one working example.

Each chapter includes at |east one (and often several) more complex program that
demonstrates the classes and methods of that chapter in a more realistic setting. These
often rely on Javafeatures not discussed in this book. Indeed, in many of the
programs, the networking components are only a small fraction of the source code and
often the least difficult parts. Nonetheless, none of these programs could be written as
easily in languages that didn't give networking the central position it occupiesin Java.
The apparent simplicity of the networked sections of the code reflects the extent to
which networking has been made a core feature of Javaand not any triviality of the
program itself. All example programs presented in this book are available online,
often with corrections and additions. Y ou can download the source code from
http://metal ab.unc.edu/javaf ag/books/jnp2e and

http://www.oreilly.com/catal og/javanp?/.

This book assumes you are using Sun's Java Development Kit. | have tested all the
examples on Windows and many on Solaris and the Macintosh. Almost all the
examples given here should work on other platforms and with other compilers and
virtual machines that support Java 1.2 (and many on Java 1.1). The few that require
Java 1.3 are clearly noted. In reality, every implementation of Javathat | have tested
has had nontrivial bugsin networking, so actual performance is not guaranteed. | have
tried to note any places where a method behaves other than as advertised by Sun.

Conventions Used in This Book
Body text is Times Roman, normal, like you're reading now.
A Constant width font isused for:
o Code examples and fragments
o Keywords, operators, data types, variable names, class names, and interface
names that might appear in a Java program
e Program output
e Tagsthat might appear in an HTML document

A bold constant width isused for:

« Command lines and options that should be typed verbatim on the screen

Anitalicized constant width fontisused for:
o Replaceable or variable code fragments
Anitalicized font is used for:

o New termswhere they are defined

o Pathnames, filenames, and program names. (However, if the program nameis
also the name of a Java class, it is given in a monospaced font, like other class
names.)

e Host and domain names (java.oreilly.com)

o Titlesof other books (Java I/O)

Significant code fragments and complete programs are generally placed in a separate
paragraph like this:

Socket s = new Socket("java.oreilly._com™, 80);
if (Is.getTcpNoDelay()) s.setTcpNoDelay(true);

When code is presented as fragments rather than compl ete programs, the existence of
the appropriate import statements should be inferred. For example, in the previous
code fragment you may assume that java.net.Socket was imported.

Some examples intermix user input with program output. In these cases, the user input
will be displayed in bold, asin this example from Chapter 10:

% telnet localhost 7
Trying 127.0.0.1...
Connected to localhost.
Escape character is ""]".
This is a test

This is a test

This is another test
This i1s another test
9876543210

9876543210

N\

telnet> close
Connection closed.

The Java programming language is case-sensitive. Java.net.socket is not the same
thing as java.net.Socket. Case-sensitive programming languages do not always
allow authorsto adhere to standard English grammar. Most of the time, it's possible to
rewrite the sentence in such away that the two do not conflict, and when possible, |
have endeavored to do so. However, on those rare occasions when there is simply no
way around the problem, | have let standard English come up the loser. In keeping
with this principle, when | want to refer to aclass or an instance of a classin body text,
| use the capitalization that you'd see in source code, generally an initial capital with
internal capitalization—for example, ServerSocket.

Throughout this book, | use the British convention of placing punctuation inside
quotation marks only when punctuation is part of the material quoted. Although |

learned grammar under the American rules, the British system has always seemed far
more logical to me, even more so than usual when one must quote source code where
amissing or added comma, period, or semicolon can make the difference between
code that compiles and code that doesn't.

Finally, although many of the examples used here are toy examples unlikely to be
reused, afew of the classes | develop have real value. Please feel free to reuse them or
any parts of them in your own code. No special permission isrequired. Asfar as| am
concerned, they are in the public domain (though the same is most definitely not true
of the explanatory text!). Such classes are placed somewhere in the com.macfaq
package, generally mirroring the java package hierarchy. For instance, Chapter 4's
SafePrintWriter classisin the com.macfaq. io package. When working with these
classes, don't forget that the compiled .class files must reside in directories matching
their package structure inside your class path and that you'll have to import themin
your own classes before you can use them. The book's web page at

http://metal ab.unc.edu/javaf ag/books/jnp2e/ includes ajar file containing all these
classes that can be installed in your class path.

Request for Comments

| enjoy hearing from readers, whether with general comments about how this could be
a better book, specific corrections, other topics you would like to see covered, or just
war stories about your own network programming travails. Y ou can reach me by
sending email to elharo@metalab.unc.edu. Please realize, however, that | receive
hundreds of email messages a day and cannot personally respond to each one. For the
best chance of getting a personal response, please identify yourself as areader of this
book. If you have a question about a particular program that isn't working as you
expect, try to reduce it to the simplest case that reproduces the bug, preferably asingle
class, and paste the text of the entire program into the body of your email. Unsolicited
attachments will be deleted unopened. And please, please send the message from the
account you want me to reply to and make sure that your Reply-to address is properly
set! There's nothing quite so frustrating as spending an hour or more carefully
researching the answer to an interesting question and composing a detailed response,
only to have it bounce because my correspondent was sending from a public terminal
and neglected to set the browser preferences to include an actual email address.

| also adhere to the old saying, "If you like this book, tell your friends. If you don't
likeit, tell me." I'm especially interested in hearing about mistakes. Thisis my eighth
book. I've yet to publish a perfect one, but | keep trying. As hard as the editors at
O'Reilly and | worked on this book, I'm sure that there are mistakes and typographical
errors that we missed here somewhere. And I'm sure that at |east one of themisa
really embarrassing whopper of a problem. If you find a mistake or atypo, please let
me know so that | can correct it. I'll post it on the web page for this book at
http://metal ab.unc.edu/javafag/books/jnp2e/ and on the O'Reilly web site at
http://www.oreilly.com/catal og/javanp2/erratal. Before reporting errors, please check
one of those pagesto seeif | already know about it and have posted afix. Any errors
that are reported will be fixed in future printings.

Y ou can aso send any errors you find, as well as suggestions for future editions, to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookguestions@oreilly.com

For more information about O'Rellly books, conferences, software, Resource Centers,
and the O'Reilly Network, see our web site at:

http://www.oreilly.com

L et me also preempt a couple of nonerrors that are often mistakenly reported. First,
not all the method signatures given in this book exactly match the signatures given in
Sun's javadoc API documentation. In particular, | often change argument names to
make them clearer. For instance, Sun documents the parse() method in the
HTMLEditorKit.Parser classlikethis:

public abstract void parse(Reader r, HTMLEditorKit.ParserCallback cb,
boolean ignoreCharSet) throws I0Exception

I've rewritten that in this more intelligible form:

public abstract void parse(Reader input, HTMLEditorKit.ParserCallback
callback, boolean ignoreCharSet) throws I0Exception

These are exactly equivalent, however. Method argument names are purely formal
and have no effect on client programmers' code that invokes these methods. | could
have rewritten them in Latin or Tuvan without really changing anything. The only
differenceisin their intelligibility to the reader.

Furthermore, I've occasionally added throws clauses to some methods that, while
legal, are not required. For instance, when a method is declared to throw only an
10Exception but may actually throw ConnectException, UnknownHostException,
and SSLException, all subclasses of 10Exception, | sometimes declare all four
possible exceptions. Furthermore, when a method seems likely to throw a particul ar
runtime exception such as Nul IPointerException, SecurityException, Of

1 11egal ArgumentException under particular circumstances, | document that in the
method signature as well. For instance, here's Sun's declaration of one of the Socket
constructors:

public Socket(lnetAddress address, int port) throws 10Exception
And here's mine for the same constructor:

public Socket(lnetAddress address, int port)
throws ConnectException, I0Exception, SecurityException

These aren't quite the same—mine's a little more complete—but they do produce
identical compiled byte code.

Acknowledgments

Many people were involved in the production of this book. My editor, Mike L oukides,
got this book rolling and provided many helpful comments along the way that
substantially improved the book. Dr. Peter " Peppar” Parnes helped out immensely
with the multicast chapter. The technical editors all provided invaluable assistance in
hunting down errors and omissions. Simon St. Laurent provided invaluable advice on
which topics deserved more coverage. Scott Oaks lent his thread expertise to Chapter
5, proving once again by the many subtle bugs he hunted down that multithreading
still requires the attention of an expert. Jim Farley provided many helpful comments
on RMI (Chapter 18). Timothy F. Rohaly was unswerving in his commitment to
making sure that | closed all my sockets and caught all possible exceptions and, in
general, wrote the cleanest, safest, most exemplary code possible. John Zukowski
found numerous errors of omission, al now filled thanks to him. And the eagle-eyed
Avner Gelb displayed an astonishing ability to spot mistakes that had somehow
managed to go unnoticed by me, all the other editors, and the tens of thousands of
readers of the first edition.

It isn't customary to thank the publisher, but the publisher does set the tone for the rest
of the company, authors, editors, and production staff alike; and | think Tim O'Reilly
deserves special credit for making O'Reilly & Associates, Inc. absolutely one of the
best houses an author can write for. If there's one person without whom this book
would never have been written, it's him. If you, the reader, find O'Reilly books to be
consistently better than most of the dreck on the market, the reason really can be
traced straight back to Tim.

My agent, David Rogelberg, convinced me that it was possible to make aliving
writing books like this rather than working in an office. The entire crew at
metalab.unc.edu over the last several years have realy helped me to communicate
better with my readersin avariety of ways. Every reader who sent in bouquets and
brickbats about the first edition has been instrumental in helping me write this much
improved edition. All these people deserve much thanks and credit. Finally, as always,
I'd like to offer my largest thanks to my wife, Beth, without whose love and support
this book would never have happened.

—Elliotte Rusty Harold
elharo@metalab.unc.edu
April 20, 2000

Chapter 1. Why Networked Java?

Javaisthefirst programming language designed from the ground up with networking
in mind. Asthe global Internet continues to grow, Javais uniquely suited to build the
next generation of network applications. Java provides solutions to a number of
problems—platform independence, security, and international character sets being the
most important—that are crucial to Internet applications, yet difficult to addressin

other languages. Together, these and other Java features allow web surfersto quickly
download and execute untrusted programs from a web site without worrying that the
program may spread avirus, steal their data, or crash their systems. Indeed, the
intrinsic safety of a Java applet isfar greater than that of shrink-wrapped software.

One of the biggest secrets about Javais that it makes writing network programs easy.
Infact, it isfar easier to write network programs in Javathan in almost any other
language. This book shows you dozens of complete programs that take advantage of
the Internet. Some are simple textbook examples, while others are completely
functional applications. One thing you'll note in the fully functional applicationsis
just how little code is devoted to networking. Even in network-intensive programs like
web servers and clients, amost all the code handles data manipulation or the user
interface. The part of the program that deals with the network is almost always the
shortest and simplest.

In short, it is easy for Java applications to send and receive data across the Internet. It
is also possible for applets to communicate across the Internet, though they are limited
by security restrictions. In this chapter, you'll learn about a few of the network-centric
applets and applications that can be written in Java. In later chapters, you'll develop
the tools you need to write these programs.

1.1 What Can a Network Program Do?

Networking adds a ot of power to simple programs. With networks, a single program
can retrieve information stored in millions of computers located anywhere in the
world. A single program can communicate with tens of millions of people. A single
program can harness the power of many computers to work on one problem.

But that sounds like a Microsoft advertisement, not the start of atechnical book. Let's
talk more precisely about what network programs do. Network applications generally
take one of severa forms. The distinction you hear about most is between clients and
servers. In the ssimplest case, clients retrieve datafrom a server and display it. More
complex clientsfilter and reorganize data, repeatedly retrieve changing data, send data
to other people and computers, and interact with peersin real time for chat,
multiplayer games, or collaboration. Servers respond to requests for data. Simple
servers merely look up some file and return it to the client, but more complex servers
often do alot of processing before answering an involved question. Beyond clients
and servers, the next generation of Internet applications almost certainly includes
mobile agents, which move from server to server, searching the Web for information
and dragging their findings home. And that's only the beginning. Let'slook alittle
more closely at the possibilities that open up when you add networking to your
programs.

1.1.1 Retrieve Data and Display It

At the most basic level, a network client retrieves data from a server and showsit to a
user. Of course, many programs did just this long before Java came along; after al,
that's exactly what a web browser does. However, web browsers are limited. They can
talk to only certain kinds of servers (generally web, FTP, gopher, and perhaps mail
and news servers). They can understand and display certain kinds of data (generally

text, HTML, and afew standard image formats). If you want to go further, you'rein
trouble: aweb browser cannot send SQL commands to a database to ask for al books
in print by Elliotte Rusty Harold published by O'Reilly & Associates, Inc. A web
browser cannot check the time to within a hundredth of a second with the U.S. Naval
Observatory's® super-accurate hydrogen maser clocks using the network time protocol.
A web browser can't speak the custom protocol needed to remotely control the High
Resolution Airborne Wideband Camera (HAWC) on the Stratospheric Observatory

for Infrared Astronomy (SOFIA).2

¥ http://tycho.usno.navy.mil/

(2 SOFIA will be a 2.5-meter reflecting telescope mounted on aBoeing 747. When launched in 2001, it will be
the largest airborne telescope in the world. Airborne tel escopes have a number of advantages compared to ground-
based telescopes—one is the ability to observe phenomena obscured by Earth's atmosphere. Furthermore, rather
than being fixed at one latitude and longitude, they can fly anywhere to observe phenomenon. For information
about Java-based remote control of telescopes, see http://pioneer.gsfc.nasa.gov/public/irc/. For information about
SOFIA, see http://www.sofia.usra.edu/.

A Java program, however, can do all thisand more. A Java program can send SQL
queries to a database. Figure 1.1 shows part of a program that communicates with a
remote database server to submit queries against the Books in Print database. While
something similar could be done with HTML forms and CGl, a Java client is more
flexible because it's not limited to single pages. When something changes, only the
actual data needs to be sent across the network. A web server would have to send all
the data as well as al the layout information. Furthermore, user requests that change
only the appearance of data rather than which datais displayed (for example, hiding
or showing a column of results) don't even require a connection back to the database
server because presentation logic isincorporated in the client. HTML-based database
interfaces tend to place fairly heavy loads on both web and database servers. Java
clients move all the user interface processing to the client side, and let the database
focus on the data.

Figure 1.1. Access to Bowker Books in Print via a Java program at
http://jclient.ovid.com/

. Divid Hi=E

Bowker Books in Print <1994 to February 19992 . L | Mt
Display Documenis Anchor Help
= | D & . (XN Fo Saved
ST Emm el oma W B minete
SearchHistory: [Set 4 O'Reilyph. 513 documentis) =
Citation; |74 a|r [T Select <llse Spacehars>
Arcession Murmber -
0RI958E7
Tille
Javal- 0. [Mustrated]
Authars
Harald, Ellinite,

FublisherDistributor
OReilly & Assocs.
Sialus
Active
Diate of Fublicalion
169901
Binding/Price
Trade Paper ($32.95 (Ingram Price), $32.95 (Relzil Price))
IEBM
1-56592-485-1
Language bty
English

" of

=} Titlaz - Selact £ Mzin Seamh &
! B piply | SE Figes | SA Searoh Soren | G| 4

[FF [Onsigred Java Applet window

A Java program can connect to a network time-server to synchronize itself with an
atomic clock. Figure 1.2 shows an applet doing exactly this. A Java program can
speak any custom protocols it needs to speak, including the one to control the HAWC.
Figure 1.3 shows an early prototype of the HAWC controller. Even better: a Java

program embedded into an HTML page (an applet) can give a Java-enabled web
browser capabilities the browser didn't have to begin with.

Figure 1.2. The Atomic Web Clock applet at http://www.time.gov/

B The « LS. lime - clock - Nelzcape

Edt View Go Communicabr Help

Right now, the official U.8. time is:

08:11:49

Sunday, April 9, 2000

Accurate within 004 seconds

Tou have chosen the Meuntain imezone
% Coordinated Universal Time -7 hours; Mot Daylinht Saving

Tirme

THE UE TIME IF * T & UBHS

Figure 1.3. The HAWC controller prototype

L Bookmarks 4 Matste: [http: /s time. oo mezone. cgiMountain/s/-7 ava =] ﬂ

File Commands File Commands

. @ . = I =2l

| HA
0000 I |9:40:38.71

I =1
T

S—— 1 DEC
. HouseKeeping | zaseie

=] | Evoch |

Furthermore, aweb browser is limited to displaying a single complete HTML page. A
Java program can display more or less content as appropriate. It can extract and
display the exact piece of information the user wants. For example, an indexing
program might extract only the actual text of a page while filtering out the HTML tags
and navigation links. Or a summary program can combine data from multiple sites
and pages. For instance, a Java servlet can ask the user for the title of abook using an
HTML form, then connect to 10 different online stores to check the prices for that
book, then finally send the client an HTML page showing which stores haveit in
stock sorted by price. Figure 1.4 shows the Amazon.com (née Junglee) WebMarket
site showing the results of exactly such a search for the lowest price for an Anne Rice
novel. In both examples, what's shown to the user looks nothing like the original web
page or pages would look in a browser. Java programs can act as filters that convert
what the server sends into what the user wants to see.

Figure 1.4. The WebMarket site at http://www.webmarket.com/ is written in Java using
the servlet API

el

- WebMarket | Books and 5tatione:
Fie Edt View Go Communicalor Help

. 3 o o s o i}
Back Reload Home Search Metscaps Frint Seouity Shop T
1: " Bookmarks P | rn.ntr.rrIlnm--'hr.ﬂ-'ﬂrm|H.h.hn|-.¢urw=~ﬂr.ﬁx A=Ak othontbp=pricel ad0052 44 TTESA j
j o
Vo have selected: J’I.I.I‘IL‘JL‘ l
Authior Anne Rice Titte: Wittowdo the Vamploe *
Result of your Search:

Click an underlined eolumn title to sort resalts by that colurom, and a prodoct name to see

more details,
Rice, Anne Fi000 5250 aned Heardeoawe:
uwp
Riea, Anwe o 31260 $395and Aundio 1 day
Cummung, Alan up
Rice, Anne F139F 5395 and Herdeaver 1 day
up
Ries, Anig $14.40 EULHY Lin etk Hi
=
v Rl 1EK neard (8t 167 bytessac] S) A

Finally, a Java program can use the full power of a modern graphical user interface to
show this data to the user and get a response to it. Although web browsers can create
very fancy displays, they are till limited to HTML forms for user input and
interaction.

Java programs are flexible because Javais afully general programming language,
unlike HTML. Java programs see network connections as streams of data, which can
be interpreted and responded to in any way that's necessary. Web browsers see only
certain kinds of data streams and can interpret them only in certain ways. If a browser
sees a data stream that it's not familiar with (for example, aresponse to an SQL query),

its behavior is unpredictable. Web sites can use CGI programs to provide some of
these capabilities, but they're still limited to HTML for the user interface.

Writing Java programs that talk to Internet serversis easy. Javas core library includes
classes for communicating with Internet hosts using the TCP and UDP protocol s of
the TCP/IP family. You just tell Javawhat |P address and port you want, and Java
handles the low-level details. Java does not support NetWare IPX, Windows NetBEUI,
AppleTalk, or other non-1P-based network protocols; but thisis rapidly becoming a
nonissue as TCP/IP becomes the lingua franca of networked applications. Slightly
more of an issue isthat Java does not provide direct access to the IP layer below TCP
and UDP, so it can't be used to write programs such as ping or traceroute. However,
these are fairly uncommon needs. Java certainly fillswell over 90% of most network
programmers’ needs.

Once a program has connected to a server, the local program must understand the
protocol that the remote server speaks and properly interpret the data the server sends
back. In amost all cases, packaging data to send to a server and unpacking the data
received is harder than simply making the connection. Java includes classes that help
your programs communicate with certain types of servers, most notably web servers.
It also includes classes to process some kinds of data, such as text, GIF images, and
JPEG images. However, not all servers are web servers, and not all dataistext, GIF,
or JPEG. Therefore, Javalets you write protocol handlers to communicate with
different kinds of servers and content handers that understand and display different
kinds of data. A Java-enabled web browser can automatically download and install the
software needed by aweb site it visits. Java applets can perform tasks similar to those
performed by Netscape plug-ins. However, applets are more secure and much more
convenient than plug-ins. They don't require user intervention to download or install
the software, and they don't waste memory or disk space when they're not in use.

1.1.2 Repeatedly Retrieve Data

Web browsers retrieve data on demand; the user asks for a page at a URL and the
browser getsit. Thismodel isfine aslong as the user needs the information only once,
and the information doesn't change often. However, continuous access to information
that's changing constantly is a problem. There have been afew attempts to solve this
problem with extensionsto HTML and HTTP. For example, server push and client
pull arefairly awkward ways of keeping aclient up to date. There are even services
that send email to alert you that a page you're interested in has changed.®

¥ See, for example, the URL-minder at http://www.netmind.con.

A Javaclient, however, can repeatedly connect to a server to keep an updated picture
of the data. If the data changes very frequently—for example, a stock price—a Java
application can keep a connection to the server open at al times, and display a
running graph of the stock price on the desktop. Figure 1.5 shows only one of many
such applets. A Java program can even respond in real time to changesin the data: a
stock ticker applet might ring abell if IBM's stock price goes over $100 so you know
to call your broker and sell. A more complex program could even perform the sale
without human intervention. It is easy to imagine considerably more complicated
combinations of datathat a client can monitor, data you'd be unlikely to find on any

single web site. For example, you could get the stock price of a company from one
server, the poll standings of candidates they've contributed to from another, and
correlate that data to decide whether to buy or sell the company's stock. A stock
broker would certainly not implement this scheme for the average small investor.

Figure 1.5. An applet-based stock ticker and information service

AT Dwste.com - Neticape
Fle Ed Ve Bo Comimrscaiol Help
- 4 i 2 La| 2 S 8 4
Foowasd Pl Hiatmsz Seach Metotapss Pl Seiasly
§ Bookmabs) Msizie |Hp--'-'mwule-m"n;|b-|w-lum j

b

u kd S
L'Iutl_ Tap IIJIGD-II S
T T

< DULEEE - c C CEE
il
R : ﬂ

Aslong as the datais available via the Internet, a Java program can track it. Data
available on the Internet ranges from weather conditions in Tuvato the temperature of
soft drink machines in Pittsburgh to the stock price of Sun Microsystemsto the sales
status of thisvery book at amazon.com. Any or al of thisinformation can be
integrated into your programsin real time.

1.1.3 Send Data

Web browsers are optimized for retrieving data. They send only limited amounts of
data back to the server, mostly viaforms. Java programs have no such limitations.
Once a connection between two machines is established, Java programs can send data
across that connection just as easily as they can receive from it. This opens up many
possibilities.

1.1.3.1 File storage

Applets often need to save data between runs; for example, to store the level a player
has reached in a game. Untrusted applets aren't allowed to write files on local disks,
but they can store data on a cooperating server. The applet just opens a network
connection to the host it came from and sends the data to it. The host may accept the
data through a CGl interface, ftp, SOAP, a custom server or servlet, or some other
means.

1.1.3.2 Massively parallel computing

Since Java applets are secure, individual users can safely offer the use of their spare
CPU cyclesto scientific projects that require massively paralel machines. When part
of the calculation is complete, the program makes a network connection to the
originating host and adds its results to the collected data.

So far, efforts such as SETI@home's® search for intelligent life in the universe and
distributed.net's® RC5/DES cracker have relied on native code programs written in C
that have to be downloaded and installed separately, mostly because slow Java virtual
machines have been at a significant competitive disadvantage on these CPU-intensive
problems. However, Java applets performing the same work do make it more
convenient for individuals to participate. With a Java applet version, all auser would
have to do is point the browser at the page containing the applet that solvesthe
problem.

I http://setiathome.ssl .berkel ey.edu/

B http://www.distributed.net/

The Charlotte project from New Y ork University and Arizona State is currently
developing a general architecture for using Java applets for supporting parallel
calculations using Java applets running on many different clients all connected over
the Internet. Figure 1.6 shows a Charlotte demo appl et that cal culates the Mandel brot
set relatively quickly by harnessing many different CPUSs.

Figure 1.6. A multibrowser parallel computation of the Mandelbrot set

HY Charlotte’s home page - Netscape
Fie Edi “iew Go Commurcstor Help

i v A3 4 a2 pooof @ m
Back Reload Huame Search Matscape Sacurily
¥ " Bookmaks & Metite: [hitp: /v c. rypu edudmilan/ charlchteindas bl =]
[T .Y J%F?EI i'-l-i'l-.l.-';"- -]
; E, b fg'; YA DLV
- ,EI"'. Ay T R
M etacompH M Y CHarlotte
charlott:
o W
weastifest
#M
= For a nice demo, [0in he sams cormputation using m =]

G == Document: Dang R A e,

1.1.3.3 Smart forms

Java's AWT has all the user interface components availablein HTML forms,
including text fields, checkboxes, radio buttons, pop-up lists, buttons, and afew more
besides. Thus with Javayou can create forms with all the power of aregular HTML
form. These forms can use network connections to send the data back to the server
exactly as aweb browser does.

However, because Java applets are real programs instead of mere displayed data,
these forms can be truly interactive and respond immediately to user input. For
instance, an order form can keep arunning total including sales tax and shipping
charges. Every time the user checks off another item to buy, the applet can update the
total price. A regular HTML form would need to send the data back to the server,
which would calculate the total price and send an updated version of the form—a
process that's both slower and more work for the server.

Furthermore, a Java applet can validate input. For example, an applet can warn users
that they can't order 1.5 cases of jelly beans, that only whole cases are sent. When the
user has filled out the form, the applet sends the data to the server over a new network
connection. This can talk to the same CGI program that would process input from an
HTML form, or it can talk to a more efficient custom server. Either way, it uses the
Internet to communicate.

1.1.4 Peer-to-Peer Interaction

The previous examples all follow a client/server model. However, Java applications
can also talk to each other across the Internet, opening up many new possibilities for
group applications. Java applets can also talk to each other, though for security
reasons they have to do it via an intermediary proxy program running on the server
they were downloaded from. (Again, Java makes writing this proxy program

relatively easy.)

1.1.4.1 Games

Combine the ability to easily include networking in your programs with Javas
powerful graphics and you have the recipe for truly awesome multiplayer games.
Some that have already been written are Backgammon, Battleship, Othello, Go,
Mahjongg, Pong, Charades, Bridge, and even strip poker. Figure 1.7 shows a four-
player game of Heartsin progress on Y ahoo! Plays are made using the applet
interface. Network sockets send the plays back to the central Y ahoo! Y ahoo! server,
which copies them out to all the participants.

Figure 1.7. A networked game of hearts using a Java applet from
http://games.yahoo.com/games/

1 Heasts table 1 hosted by japeisondd _ O] =]
CAMES [®]_HEARTS iy et
i | weviews! -
GAMES L T S
O mijfredT3 Fls 26
Last Trick
Last Hand
Score | prgis2 Plz: 44
| “* jso50289 ' > japersondd
| THD Tigs Se— ‘
b Tricks: 9
Boot |
Dptar
-10JD
PlayTo: 75 —[LEFT
- (The RestAre Mine)
5 wildeats2oaFis 18
[Kibit z
[fadn Al 1
™ on rvtum || ernz-ru:u_}:lgll provigi. 4
= japerzon3d has joined the tabla. - J:g ::]5.2?9 ::mz:
== 050266 has joined the fable JI'I'IJI'rEI:i'.'J ——
Help | @uit | ™ mifred?3 has joined the table b e
4 = wildcals 38455 has joined the lable. i
E‘ |Uns:;r1¢d Java Applet Window

1.1.4.2 Chat

Javalets you set up private or public chat rooms. Text that istyped in one applet can
be echoed to other applets around the world. Figure 1.8 shows a basic chat applet like
thison Yahoo! More interestingly, if you add a canvas with basic drawing ability to
the applet, you can share a whiteboard between multiple locations. And as soon as
browsers support Version 2.0 of the Java Media Framework API, writing a network
phone application or adding one to an existing applet will become trivial. Other
applications of thistype include custom clients for Multi-User Dungeons (MUDs) and
Object-Oriented (MOOs), which could easily use Java's graphic capabilities to
incorporate the pictures people have been imagining for years.

Figure 1.8. Networked chat using a Java applet

B Yahoo! Chat Comp: Programming - Nelscape M= E
Fle Edt Wiew Go Communicabr Helo

& ol - ~T k3
"] " ”‘ it -] Hul ¥) i i
Back Feload Home Search Metscape Punt Secunky
¢ Bookmatks 4 Localion Ihltp Hehat pshoo comfroom=CompR 3P rogramming ﬂ
o BT iPickyour fanguage: C++ Java, Visual
KAFOOILEAL pasio
=4 Chatlers
(Pick vour language: C++, Java, mjfantis: -
Ulsua' EESIL'J !_':ilgl HEEA i ||i|| 45
fjiiidam2a2 mrect‘,{gameg nrglegru psaudobn
HoJester Uy armoie here have there own fitp site? uidam?4?
RAATM ; HAa i
ewil oller - Hah, The Tux capacilor is jusl a dream. Do Bross will rogueartists
never realize its rue potential sketch2002
JAKE PEPPER ; iwauld like o call microsofl, but that's a joke Wakkos?
broken_HN real i1ve just stare kirv it L Lre b HbJesleriy
T 1T E YooHooDews T
mifanusa : What version of YB?
JAKE_ PEPPER :v4 »] FM| lgnore | More "
B 7 U |g.a.3k ~| Preferances | Friends | Emotions | Status
Chat: | send ||[imavaitavle ~]
¥ Y s LR PRy
WHO'S CHATTING B it g et adben = g Mlacintosh (5) 2
CHANGE ROOM 13 Computers and Sciene b + Comp: Frogramming 727)
- . - Py Tt 25)
CREATE ROGM |] Lt Cha - - - (?}
T i i LRI i
SURF THE WEB » | Fan p: Susfiang The Web (1)
HELF & EXIT | LES R 418 I il {j'.i_] =
! ﬂ ; . p (1)]
G = Applet chat sunning e Mg 2P R A

1.1.4.3 Whiteboards

Java programs aren't limited to sending text and data across the network. Graphics can
be sent too. A number of programmers have devel oped whiteboard software that
allows usersin diverse locations to draw on their computers. For the most part, the
user interfaces of these programs look like any simple drawing program with a canvas
areaand a variety of pencil, text, eraser, paintbrush, and other tools. However, when
networking is added to a simple drawing program, many different people can
collaborate on the same drawing at the same time. The final drawing may not be as
polished or as artistic as the Warhol/Basquiat collaborations, but it doesn't require all
the participants to be in the same New Y ork loft either. Figure 1.9 shows several
windows from a session of the IBM aphaWorks WebCollab program. WebCollab
allows usersin diverse locations to display and annotate slides during tel econferences.
One participant runs the central WebCollab server that all the peers connect to while
conferees participate using a Java applet loaded into their web browsers.

¥ http://www.al phaworks.ibm.com/tech/webcollab

Figure 1.9. WebCollab

Enter bie #loname for the imags

Hevnl . pre

Ok Cancel

I‘--'ur\r\g Aot Wndow

R Blide | hamtEnce JUEST R

-
E
H
b

S Remesh LISt

a

EI

apter 17|

Farfilpaits

Wiz i this & ¢

00 [0 |~£[7
=108 [=l

|| elharo Iocalhest Hiue

| Stop i Ratresh | | Wike, iz iz & good plebsre for Chapier 19

Eianed and connected foraning: Bpptet Window

1.1.5 Servers

Java applications can listen for network connections and respond to them. This makes
it possible to implement servers in Java. Both Sun and the W3C have written web
serversin Javadesigned to be as fully functional and fast as servers writtenin C.
Many other kinds of servers have been written in Java as well, including IRC servers,
NFS servers, file servers, print servers, email servers, directory servers, domain name
servers, FTP servers, TFTP servers, and more. In fact, pretty much any standard TCP
or UDP server you can think of has probably been ported to Java.

More interestingly, you can write custom servers that fill your specific needs. For
example, you might write a server that stored state for your game applet and had
exactly the functionality needed to let the players save and restore their games, and no
more. Or, since applets can normally communicate only with the host from which
they were downloaded, a custom server could mediate between two or more applets
that need to communicate for a networked game. Such a server could be very simple,
perhaps just echoing what one applet sent to all other connected applets. The
Charlotte project mentioned earlier uses a custom server written in Javato collect and
distribute the computation performed by individual clients. WebCollab uses a custom
server written in Java to collect annotations, notes, and slides from participants in the
teleconference and distribute them to all other participants. It also stores the notes on
the central server. It uses a combination of the normal HTTP and FTP protocols as
well asits custom WebCollab protocol.

Aswell as classical serversthat listen for and accept socket connections, Java
provides several higher-level abstractions for client/server communication. Remote
Method Invocation (RMI) allows objects located on a server to have their methods
called by clients. Serversthat support the Java Servlet API can load extensions written
in Java called servlets that give them new capabilities. The easiest way to build your
multiplayer game server might be to write a servlet, rather than writing an entire
server.

1.1.6 Searching the Web

Java programs can wander through the Web, looking for crucial information. Search
programs that run on a single client system are called spiders. A spider downloads a
page at a particular URL, extracts the URLs from the links on that page, downloads
the pages referred to by the URLSs, and then repeats the process for each pageit's
downloaded. Generally, a spider does something with each page it sees, ranging from
indexing it in a database to performing linguistic analysis to hunting for specific
information. Thisis more or less how services like AltaVista build their indices.
Building your own spider to search the Internet is a bad idea, because AltaVista and
similar services have already done the work, and afew million private spiders would
soon bring the Net to its knees. However, this doesn't mean that you shouldn't write
spidersto index your own local intranet. In a company that uses the Web to store and
access internal information, building alocal index service might be very useful. Y ou
can use Javato build a program that indexes all your local servers and interacts with
another server program (or acts asits own server) to let users query the index.

Agents have purposes similar to those of spiders (researching a stock, soliciting
quotations for a purchase, bidding on similar items at multiple auctions, finding the
lowest price for aCD, finding all linksto a site, etc.). But whereas spidersrun on a
single host system to which they download pages from remote sites, agents actually
move themselves from host to host and execute their code on each system they move
to. When they find what they're looking for, they return to the originating system with
the information, possibly even a completed contract for goods or services. People
have been talking about mobile agents for years, but until now, practical agent
technology has been rather boring. It hasn't come close to achieving the possibilities
envisioned in various science fiction novels, like John Brunner's Shockwave Rider and
William Gibson's Neuromancer. The primary reason for thisis that agents have been
restricted to running on a single system—and that's neither useful nor exciting. In fact
until 2000, there's been only one widely successful (to use the term very loosely) true
agent that ran on multiple systems, the Morris Internet worm of 1988.

The Internet worm demonstrates one reason devel opers haven't been willing to let
agents go beyond a single host. It was destructive; after breaking into a system
through one of several known bugs, it proceeded to overload the system, rendering it
useless. Letting agents run on your system introduces the possibility that hostile or
buggy agents may damage that system—and that's a risk most network managers
haven't been willing to take. Java mitigates the security problem by providing a
controlled environment for the execution of agents. This environment has a security
manager that can ensure that, unlike the Morris worm, the agents won't do anything
nasty. This allows systems to open their doors to these agents.

The second problem with agents has been portability. Agents aren't very interesting if
they can run on only one kind of computer. That's like having a credit card for

Nieman Marcus; it's somewhat useful and has a certain snob appeal, but it won't help
asmuch asaVisacard if you want to buy something at Sears. Java provides a
platform-independent environment in which agents can run; the agent doesn't care if
it'svisiting a Linux server, a Sun workstation, a Macintosh desktop, or a Windows PC.

An indexing program could be implemented in Java as a mobile agent: instead of
downloading pages from serversto the client and building the index there, the agent
could travel to each server and build the index locally, sending much less data across
the network. Another kind of agent could move through alocal network to inventory
hardware, check software versions, update software, perform backups, and take care
of other necessary tasks. Commercially oriented agents might let you check different
record stores to find the best price for a CD, see whether operatickets are available on
agiven evening, or more. A massively parallel computer could be implemented as a
system that assigned small pieces of a problem to individual agents, which then
searched out idle machines on the network to carry out parts of the computation. The
same security features that allow clients to run untrusted programs downloaded from a
server let servers run untrusted programs uploaded from a client.

1.1.7 Electronic Commerce

Shopping sites have proven to be one of the few real ways to make money from
consumers on the Web. Although many sites accept credit cards through HTML forms,
the mechanism is clunky. Shopping carts (pages that keep track of where users have
been and what they have chosen) are at the outer limits of what's possible with HTML
and forms. Building a server-based shopping cart is difficult, requires lots of CGI and
database work, and puts a huge CPU load on the server. And it still limits the interface
options. For instance, the user can't drag a picture of an item across the screen and
drop it into a shopping cart. Java can move al this work to the client and offer richer
user interfaces as well.

Applets can store state as the user moves from page to page, making shopping carts
much easier to build. When the user finishes shopping, the applet sends the data back
to the server across the network. Figure 1.10 shows one such shopping cart used on a
Beanie Babies web site. To buy adoll, the user drags and dropsiits picture into the
grocery bag.

Figure 1.10. A shopping cart applet

;- beanie babies beanseandme. com-yowr NO.1 online source for beanie babies - Netscape

ie Edit Wew Ga Ceeruricaloe Help

. 4 4 =2 3 & 3 ﬂ
Back Relead Horrea Search Metscapa Frnt Secuy
¢ Bookmaiks A Locstan Ih!lp { Awnave beanieandme, comdshoppng. himl j
VALENTINA ;
Falewting the bear Birtiaday - February 14, 1595
Tlern: 2331 1980
Total: $1390
HALO
FHialo the anpe! bear Sirfhday - August 11, 1995 ;
Ttem: 283-m 51659 Clafigoried
- specials
Y | newiRELEABE |
= SIGNATURE BEAR
ﬁ Sipneture Baar
o S Hesn: 9265 §10.50
" EGGHERT
Fgghert tha Baby ciick Buthdap-derd 10 1998 1
Ttem: P87-2 1389 -

Be the flrst one oat yoier Block with the new releases!

hd|

v M e 2 (R [YN e

Even thisistoo inconvenient and too costly for small payments of a couple of dollars
or less. Nobody wantsto fill out aform with name, address, billing address, credit
card number, and expiration date every day just to pay $0.50 to read today's Daily
Planet. Imagine how easy it would be to implement this kind of transaction in Java.
The user clicks on alink to some information. The server downloads a small applet
that pops up adialog box saying, "Access to the information at

http: //mwww.greedy.conv costs $2. Do you wish to pay this?' The user can then click
buttonsthat say "Yes" or "No". If the user clicks the No button, then he doesn't get
into the site. Now let's imagine what happens if the user clicks"Yes'.

The applet contains a small amount of information: the price, the URL, and the seller.
If the client agrees to the transaction, then the applet adds the buyer's data to the
transaction, perhaps a name and an account number, and signs the order with the
buyer's private key. Then the applet sends the data back to the server over the network.
The server grants the user access to the requested information using the standard
HTTP security model. Then it signs the transaction with its private key and forwards
the order to a central clearinghouse. Sellers can offer money-back guarantees or
delayed purchase plans (No money down! Pay nothing until July!) by agreeing not to
forward the transaction to the clearinghouse until a certain amount of time has el apsed.

The clearinghouse verifies each transaction with the buyer's and seller's public keys
and enters the transaction in its database. The clearinghouse can use credit cards,
checks, or electronic fund transfers to move money from the buyer to the seller. Most
likely, the clearinghouse won't move the money until the accumulated total for a

buyer or seller reaches a certain minimum threshold, keeping the transaction costs low.

Every part of this can be written in Java. An applet requests the user's permission. The
Java Cryptography Extension authenticates and encrypts the transaction. The data

moves from the client to the seller using sockets, URLs, CGI programs, servlets,
and/or RMI. These can also be used for the host to talk to the central clearinghouse.
The web server itself can be written in Java, as can the database and billing systems at
the central clearinghouse; or JDBC can be used to talk to atraditional database such
as Informix or Oracle.

The hard part of thisis setting up a clearinghouse and getting users and sites to
subscribe. The major credit card companies have a head start, though none of them
yet use the scheme described here. In an ideal world you'd like the buyer and the
seller to be able to use different banks or clearinghouses. However, thisis a social
problem, not atechnological one; and it is solvable. Y ou can deposit a check from any
American bank at any other American bank where you have an account. The two
parties to a transaction do not need to bank in the same place. Sun is currently
developing a system somewhat like this as part of Java Wallet.

1.1.8 Applications of the Future

Javamakesit possible to write many kinds of applications that have been imagined
for years but haven't been practical until now. Many of these applications would
require too much processing power if they were entirely server-based; Java moves the
processing to the client, where it belongs. Other application types (for example,
mobile agents) require extreme portability and some guarantees that the application
can't do anything hostile to its host. While Java's security model has been criticized
(and yes, some bugs have been found), it's a quantum leap beyond anything that has
been attempted in the past and an absol ute necessity for the mobile software we will
want to write in the future.

1.1.8.1 Ubiquitous computing

Networked devices don't have to betied to particular physical locations, subnets, or IP
addresses. Jini isaframework that sits on top of Javafor easily and instantly
connecting all sorts of devicesto a network. For example, when a group of coworkers
gather for ameeting, they generally bring with them a random assortment of personal
digital assistants, laptops, cell phones, pagers, and other electronic devices. The
conference room where they meet may have one or two PCs, perhaps a Mac, adigital
projector, a printer, a coffee machine, a speaker phone, an Ethernet router, and
assorted other useful tools. If these devices include a Java virtual machine and Jini,
they form an impromptu network as soon as they're turned on and plugged in. (With
wireless connections, they may not even need to be plugged in.) Devices can join or
leave the local network at any time without explicit reconfiguration. They can use one
of the cell phones, the speaker phone, or the router to connect to hosts outside the
room.

Participants can easily share files and trade data. Their computers and other devices
can be configured to recognize and trust each other regardless of where in the network
one happensto be at any given time. Trust can be restricted, though, so that, for
example, al the laptops of company employees in the room are trusted, but those of
outside vendors at the meeting aren't. Some devices, such as the printer and the digital
projector, may be configured to trust anyone in the room to use their services but to
not allow more than one person to use them at once. Most importantly of all, the

coffee machine may not trust anyone, but it can notice that it's running out of coffee
and email the supply room that it needs to be restocked.

1.1.8.2 Interactive television

Before the Web took the world by storm, Java was intended for the cable TV set-top
box market. Five years after Java made its public debut, Sun's finally got back to its
original plans, but this time those plans are even more network-centric. Personal Java
Is a stripped-down version of the rather large Java API that's useful for set-top boxes
and other devices with restricted memory, CPU power, and user interfaces, such as
Palm Pilots. The Java TV API adds some television-specific features such as channel
changing, and audio and video streaming and synchronization. Although Personal Java
iIsmissing alot of things you may be accustomed to in the full JDK, it doesinclude a
complete complement of networking classes. TV stations can send applets down the
data stream that allow channel surfersto interact with the shows. An infomercial for
spray-on hair could include an applet that lets the viewer pick acolor, enter his credit
card number, and send the order through the cable modem, back over the Internet
using his remote control. A news magazine could conduct aviewer poll in real time
and report the responses after the commercia break. Ratings could be collected from
every household with a cable modem instead of merely the 5,000 Nielsen families.

1.1.8.3 Collaboration

Peer-to-peer networked Java programs can allow multiple people to collaborate on a
document at one time. Imagine a Java word processor that two people, perhapsin
different countries, can pull up and edit simultaneously. Imagine the interaction that's
possible when you attach an Internet phone. For example, two astronomers could
work on a paper while one'sin New Mexico and the other'sin Moscow. The Russian
could say, "I think you dropped the superscript in Equation 3.9", and then type the
corrected equation so that it appears on both people's displays simultaneously. Then
the astronomer in New Mexico might say, "I see, but doesn't that mean we have to
revise Figure 3.2 like this?" and then use a drawing tool to make the change
immediately. This sort of interaction isn't particularly hard to implement in Java (a
word processor with a decent user interface for equations is probably the hardest part
of the problem), but it does need to be built into the word processor from the start. It
cannot be retrofitted onto a word processor that was not originally designed with
networking in mind.

1.2 But Wait!—There's More!

Most of thisbook describes the fairly low-level APIs needed to write the kinds of
programs discussed earlier. Some of these programs have already been written. Others
are still only possibilities. Maybe you'll be the first to write them! This chapter has
just scratched the surface of what you can do when you make your Java programs
network-aware. The real advantage of a Java-powered web site is that anything you
can imagine is now possible. Y ou're going to come up with ideas others would never
think of. For the first time you're not limited by the capabilities that other companies
build into their browsers. Y ou can give your users both the data you want them to see
and the code they need to see that data at the same time. If you can imagine it, you can
codeit.

Chapter 2. Basic Network Concepts

This chapter covers the fundamental networking concepts you need to understand
before writing networked programs in Java (or, for that matter, in any language).
Moving from the most general to the most specific, it explains what you need to know
about networksin general, IP- and TCP/IP-based networks in particular, and the
Internet. This chapter doesn't try to teach you how to wire a network or configure a
router, but you will learn what you need to know to write applications that
communicate across the Internet. Topics covered in this chapter include the definition
of anetwork; the TCP/IP layer model; the IP, TCP, and UDP protocaols; firewalls and
proxy servers, the Internet; and the Internet standardization process. Experienced
network gurus may safely skip this chapter.

2.1 Networks

A network is a collection of computers and other devices that can send data to and
receive data from each other, more or lessin real time. A network is normally
connected by wires, and the bits of data are turned into el ectromagnetic waves that
move through the wires. However, wireless networks that transmit data through
infrared light or microwaves are beginning to appear; and many long-distance
transmissions are now carried over fiber-optic cables that send visible light through
glass filaments. There's nothing sacred about any particular physical medium for the
transmission of data. Theoretically, data could be transmitted by coal-powered
computers that sent smoke signals to each other. The response time (and
environmental impact) of such a network, however, would be rather poor.

Each machine on a network is called a node. Most nodes are computers, but printers,
routers, bridges, gateways, dumb terminals, and Coca-Cola machines can also be
nodes. Y ou might use Javato interface with a Coke machine (in the future, one major
application for Javaislikely to be embedded systems), but otherwise you'll mostly
talk to other computers. Nodes that are fully functional computers are also called
hosts. We will use the word node to refer to any device on the network, and the word
host to refer to anode that is a general-purpose computer.

Every network node has an address: a series of bytes that uniquely identify it. You
can think of this group of bytes as a number, but in general it is not guaranteed that
the number of bytesin an address or the ordering of those bytes (big-endian or little-
endian) matches any primitive numeric data type in Java. The more bytesthere arein
each address, the more addresses there are avail able and the more devices that can be
connected to the network simultaneously.

Addresses are assigned differently on different kinds of networks. AppleTak
addresses are chosen randomly at startup by each host. The host then checks to see
whether any other machine on the network is using that address. If another machineis
using that address, then the host randomly chooses another, checks to see whether that
addressis already in use, and so on until it gets one that isn't being used. Ethernet
addresses are attached to the physical Ethernet hardware. Manufacturers of Ethernet
hardware use pre-assigned manufacturer codes to make sure there are no conflicts
between the addresses in their hardware and the addresses of other manufacturers

hardware. Each manufacturer is responsible for making sure it doesn't ship two
Ethernet cards with the same address. Internet addresses are normally assigned to a
computer by the organization that is responsible for it. However, the addresses that an
organization is allowed to choose for its computers are assigned to it by the
organization's Internet Service Provider (1SP). |SPs get their Internet Protocol (IP)
addresses from one of three regional Internet Registries (the registry for the Americas
and Africais ARIN, the American Registry for Internet Numbers,
http://www.arin.net/), which arein turn assigned | P addresses by the Internet
Assigned Numbers Authority (IANA, http://www.iana.org/).

On some kinds of networks, nodes also have names that help human beings identify
them. At a set moment in time, a particular name normally refers to exactly one
address. However, names are not locked to addresses. Names can change while
addresses stay the same, or addresses can change while the names stay the same. It is
not uncommon for one address to have several names; and it is possible, though
somewhat less common, for one name to refer to several different addresses.

All modern computer networks are packet-switched networks. This means that data
traveling on the network is broken into chunks called packets, and each packet is
handled separately. Each packet contains information about who sent it and where it's
going. The most important advantage of breaking data into individually addressed
packets is that packets from many ongoing exchanges can travel on one wire, which
makes it much cheaper to build a network: many computers can share the same wire
without interfering. (In contrast, when you make alocal telephone call within the
same exchange, you have essentially reserved awire from your phone to the phone of
the person you're calling. When all the wires are in use, as sometimes happens during
amajor emergency or holiday, not everyone who picks up a phone will get adia tone.
If you stay on the line, you'll eventually get adial tone when aline becomesfree. In
some countries with worse tel ephone service than the United States, it's not
uncommon to have to wait half an hour or more for adial tone.) Another advantage of
packets is that checksums can be used to detect whether a packet was damaged in
trangit.

We're still missing one important piece: some notion of what computers need to say to
pass data back and forth. A protocol is a precise set of rules defining how computers
communicate: the format of addresses, how datais split into packets, etc. There are
many different protocols defining different aspects of network communication. For
example, the Hypertext Transfer Protocol (HTTP) defines how web browsers and
servers communicate; at the other end of the spectrum, the |EEE 802.3 standard
defines a protocol for how bits are encoded as electrical signals on a particular type of
wire (among other protocols). Open, published protocol standards allow software and
equipment from different vendors to communicate with each other: your web browser
doesn't care whether any given server is a Unix workstation, a Windows box, or a

M acintosh because the server and the browser both speak the same HT TP protocol
regardless of platform.

2.2 The Layers of a Network

Sending data across a network is a complex operation that must be carefully tuned to
the physical characteristics of the network as well asthe logical character of the data

being sent. Software that sends data across a network must understand how to avoid
collisions between packets, how to convert digital data to analog signals, how to
detect and correct errors, how to route packets from one host to another, and more.
The process becomes even more complicated when the requirement to support
multiple operating systems and heterogeneous network cabling is added.

To make this complexity manageable and to hide most of it from the application
developer and end user, the different aspects of network communication are separated
into multiple layers. Each layer represents a different level of abstraction between the
physical hardware (e.g., wires and electricity) and the information being transmitted.
Each layer has a strictly limited function. For instance, one layer may be responsible
for routing packets, while the layer aboveit isresponsible for detecting and requesting
retransmission of corrupted packets. In theory, each layer talks only to the layers
immediately above and immediately below it. Separating the network into layers lets
you modify or even replace one layer without affecting the others as long as the
interfaces between the layers stay the same.

There are several different layer models, each organized to fit the needs of a particular
kind of network. Thisbook uses the standard TCP/IP four-layer model appropriate for
the Internet, shown in Figure 2.1. In this model, applications such as Netscape
Navigator and Eudora run in the application layer and talk only to the transport layer.
The transport layer talks only to the application layer and the internet layer. The
internet layer in turn talks only to the host-to-network layer and the transport layer,
never directly to the application layer. The host-to-network layer moves the data
across the wires, fiber-optic cables, or other medium to the host-to-network layer on
the remote system, which then moves the data up the layers to the application on the
remote system.

Figure 2.1. The layers of a network

Application Layer A fogical parh » A Application Layer
Transport Layer (T0F U0P) Transport Layer (1CF UDP}
Internet Layer (IF) Internet Layer (iF)

| owysicarpan |

For example, when aweb browser sends a request to a web server to retrieve a page,
it's actually talking only to the transport layer on the local client machine. The
transport layer breaks up the request into TCP segments, adds some sequence
numbers and checksums to the data, and then passes the request to the local internet
layer. The internet layer fragments the segments into IP datagrams of the necessary
size for the local network and passes them to the host-to-network layer for actual
transmission onto the wire. The host-to-network layer encodes the digital data as
analog signals appropriate for the particular physical medium and sends the request
out the wire, where it will be read by the host-to-network layer of the remote system
to which it's addressed.

The host-to-network layer on the remote system decodes the analog signals into
digital data, then passes the resulting | P datagrams to the server'sinternet layer. The
internet layer does some simple checks to see that the | P datagrams aren't corrupt,
reassembles them if they've been fragmented, and passes them to the server's transport
layer. The server's transport layer checks to see that all the data has arrived and
requests retransmission of any missing or corrupt pieces. (This request actually goes
back down through the server'sinternet layer, through the server's host-to-network
layer, and back to the client system, where it bubbles up to the client's transport layer,
which retransmits the missing data back down through the layers. Thisisal
transparent to the application layer.) Once the datagrams composing all or part of the
request have been received by the server's transport layer, it reassembles them into a
stream and passes that stream up to the web server running in the server application
layer. The server responds to the request and sends its response back down through
the layers on the server system for transmission back across the Internet and delivery
to the web client.

Asyou can guess, the real details are much more elaborate. The host-to-network layer
is by far the most complex, and much has been deliberately hidden. For example, it's
entirely possible that data sent across the Internet will actually be passed through
various routers and their layers before reaching its final destination. However, 90% of
the time your Java code will work in the application layer and will need to talk only to
the transport layer. The other 10% of the time you'll be in the transport layer and
talking to the application layer or the internet layer. The complexity of the host-to-
network layer is hidden from you; that's the point of the layer model.

- If you read the network literature, you're also likely to encounter
o] an alternative seven-layer model called the Open Systems
" 4& Interconnection (OSI) Reference Model. For network programs

in Java, the OSI model is overkill. The biggest difference
between the OSI model and the TCP/IP model used in this book
isthat the OSI model splits the host-to-network layer into data
link and physical layers and inserts presentation and session
layers in between the application and transport layers. The OSI
model is more general and better suited for non-TCP/IP
networks, though most of the timeit's still overly complex. In
any case, Java's network classes work on only TCPF/IP networks
and always in the application or transport layers, so for purposes
of this book, nothing is gained by using the more complicated
OSI model.

To the application layer, it scems asif it is talking directly to the application layer on
the other system; the network creates alogica path between the two application layers.
It's easy to understand the logical path if you think about an IRC chat session. Most
participants in an IRC chat would say that they're talking to another person. If you
really push them, they might say that they're talking to the computer, (really the
application layer), which is talking to the other person's computer which istalking to
the other person. Everything more than one layer deep is effectively invisible, and that
is exactly the way it should be. Let's consider each layer in more detail.

2.2.1 The Host-to-Network Layer

As a Java programmer, you're fairly high up in the network food chain. A lot happens
below your radar. In the standard reference model for |P-based Internets (the only
kind of network Javareally understands), the hidden parts of the network belong to
the host-to-network layer (also known asthe link layer, data link layer, or network-
interface layer). The host-to-network layer defines how a particular network interface,
such as an Ethernet card or a PPP connection, sends I P datagrams over its physical
connection to the local network and the world.

The part of the host-to-network layer made up of the hardware used to connect
different computers (wires, fiber-optic cables, microwave relays, or smoke signals) is
sometimes called the physical layer of the network. As a Java programmer you don't
need to worry about this layer unless something goes wrong with it—the plug falls out
of the back of your computer, or someone drops a backhoe through the T-1 line
between you and the rest of the world. In other words, Java never sees the physical

layer.

For computers to communicate with each other, it isn't sufficient to run wires between
them and send electrical signals back and forth. The computers have to agree on
certain standards for how those signals are interpreted. The first step isto determine
how the packets of electricity or light or smoke map into bits and bytes of data. Since
the physical layer is analog, and bits and bytes are digital, thisinvolves a digital-to-
analog conversion on the sending end and an anal og-to-digital conversion on the
receiving end.

Since all real analog systems have noise, error correction and redundancy need to be
built into the way dataistrandated into electricity. Thisis donein the datalink layer.
The most common data link layer is Ethernet. Other popular data link layers include
TokenRing and Local Talk. A specific datalink layer requires specialized hardware.
Ethernet cards won't communicate on a TokenRing network, for example. Special
devices called gateways convert information from one type of datalink layer such as
Ethernet to another such as Local Talk. The data link layer does not affect you directly
as aJava programmer. However, you can sometimes optimize the data you send in the
application layer to match the native packet size of a particular data link layer, which
can have some affect on performance. Thisis similar to matching disk reads and
writes to the native block size of the disk. Whatever size you choose, the program will
still run, but some sizes let the program run more efficiently than others, and which
sizes these are can vary from one computer to the next.

2.2.2 The Internet Layer

The next layer of the network, and the first that you need to concern yourself with, is
the internet layer. In the OSI model, the internet layer goes by the more generic name
network layer. A network layer protocol defines how bits and bytes of data are
organized into larger groups called packets, and the addressing scheme by which
different machines find each other. The Internet Protocol is the most widely used
network layer protocol in the world and the only network layer protocol Java
understands. IP is almost exclusively the focus of this book. IPX is the second most
popular protocol in the world and is used mostly by machines on NetWare networks.

AppleTak isaprotocol used mostly by Macintoshes. NetBEUI is a Microsoft
protocol used by Windows for Workgroups and Windows NT. Each network layer
protocol isindependent of the lower layers. AppleTalk, 1P, IPX, and NetBEUI can
each be used on Ethernet, TokenRing, and other data link layer protocol networks,
each of which can themselves run across different kinds of physical layers.

Datais sent across the internet layer in packets called datagrams. Each | P datagram
contains a header from 20 to 60 bytes long and a payload that contains up to 65,515
bytes of data. (In practice most | P datagrams are much smaller, ranging from a few

dozen bytes to alittle more than eight kilobytes.) The header of each IP datagram
contains these 13 items in this order:

4-bit version number

Always 0100 (decimal 4) for current I1P; will be changed to 0110 (decimal 6)
for IPv6, but the entire header format will also change in IPv6.

4-bit header length
An unsigned integer between and 15 specifying the number of 4-byte wordsin
the header; since the maximum value of the header length field is 1111
(decimal 15), an IP header can be at most 60 bytes long.

1-byte type of service
A 3-hit precedence field that is no longer used, 4 type-of-service bits
(minimize delay, maximize throughput, maximize reliability, minimize
monetary cost), and abit. Not all service types are compatible. Many
computers and routers simply ignore these bits.

2-byte datagram length

An unsigned integer specifying the length of the entire datagram, including
both header and payload.

2-byte identification number

A unique identifier for each datagram sent by a host; allows duplicate
datagrams to be detected and thrown away.

3-bit flags
The first bit is 0; second bit isif this datagram may be fragmented, 1 if it may
not be; third bit isif thisis the last fragment of the datagram, 1 if there are
more fragments.

13-bit fragment offset

In the event that the original I1P datagram is fragmented into multiple pieces, it
identifies the position of this fragment in the original datagram.

1-byte time-to-live (TTL)

Number of nodes through which the datagram can pass before being discarded,;
used to avoid infinite loops.

1-byte protocol

Six for TCP, 17 for UDP, or a different number between and 255 for each of
more than one hundred different protocols (some quite obscure); see
http://www.iana.org/assignments/protocol-numbers for the compl ete current
list.

2-byte header checksum

A checksum of the header only (not the entire datagram) calculated using a 16-
bit one's complement sum.

4-byte source address

The IP address of the sending node.
4-byte destination address

The |P address of the destination node.

In addition, an I P datagram header may contain from to 40 bytes of optional
information used for security options, routing records, timestamps, and other features
Java does not support. Consequently, we will not discuss these here. The interested
reader isreferred to TCP/IP Illustrated, Volume 1, by W. Richard Stevens for more
details on these fields. Figure 2.2 shows how these different quantities are arranged in
an |P datagram. All bits and bytes are big-endian, from most significant to least
significant from left to right.

Figure 2.2. The structure of an IPv4 datagram

] 4 E 12 16 20 24 28 B
Version rl':ﬁgfnr type of service datagran length
identification flags fragpment oiiset
tirme-to-live(TTL) protocad header checksum

S0UrCE aldress

destinaton address

__

2.2.3 The Transport Layer

Raw datagrams have some drawbacks. Most notably, there's no guarantee that they
will be delivered. Furthermore, even if they are delivered, they may have been
corrupted in transit. The header checksum can detect corruption only in the header,
not in the data portion of a datagram. Finally, even if the datagrams arrive
uncorrupted, they do not necessarily arrive in the order in which they were sent.
Individual datagrams may follow different routes from source to destination. Just
because datagram A is sent before datagram B does not mean that datagram A will
arrive before datagram B.

The transport layer is responsible for ensuring that packets are received in the order
they were sent and making sure that no datais lost or corrupted. If a packet islost,
then the transport layer can ask the sender to retransmit the packet. 1P networks
implement this by adding an additional header to each datagram that contains more
information. There are two primary protocols at this level. Thefirst, the Transmission
Control Protocol (TCP), is ahigh-overhead protocol that allows for retransmission of
lost or corrupted data and delivery of bytesin the order they were sent. The second
protocol, the User Datagram Protocol (UDP), allows the receiver to detect corrupted
packets but does not guarantee that packets are delivered in the correct order (or at all).
However, UDP is often much faster than TCP. TCP is called areliable protocol; UDP
isan unreliable protocol. Later we'll see that unreliable protocols are much more
useful than they sound.

2.2.4 The Application Layer

The layer that delivers data to the user is called the application layer. The three lower
layers all work together to define how datais transferred from one computer to
another. The application layer decides what to do with that data after it's transferred.
For example, an application protocol such asHTTP (for the World Wide Web) makes
sure that your web browser knows to display a graphic image as a picture, not along
stream of numbers. The application layer is where most of the network parts of your
programs spend their time. There is an entire al phabet soup of application layer
protocols; in addition to HTTP for the Web, there are SMTP, POP, and IMAP for
email; FTP, FSP, and TFTP for file transfer; NFSfor file access; NNTP for news
transfer; and many, many more. In addition, your programs can define their own
application layer protocols as necessary.

2.3 1P, TCP, and UDP

IP, the Internet Protocol, has a number of advantages over other competing protocols
such as AppleTalk and IPX, most stemming from its history. It was developed with
military sponsorship during the Cold War, and ended up with alot of features that the
military was interested in. First, it had to be robust. The entire network couldn't stop
functioning if the Soviets nuked arouter in Cleveland; all messages still had to get
through to their intended destinations (except those going to Cleveland, of course).
Therefore, IP was designed to allow multiple routes between any two points and to
route packets of data around damaged routers.

Second, the military had many different kinds of computers, and they needed all of
them to be able to talk to each other. Therefore, the protocol had to be open and
platform independent. It wasn't good enough to have one protocol for IBM

mainframes and another for PDP-11s. The IBM mainframes needed to talk to the
PDP-11s and any other strange computers that might be around.

Since there are multiple routes between two points and since the quickest path
between two points may change over time as a function of network traffic and other
factors (for example, the existence of Cleveland), the packets that make up a
particular data stream may not all take the same route. Furthermore, they may not
arrive in the order they were sent, if they even arrive at all. To improve on the basic
scheme, the TCP was layered on top of IP to give each end of a connection the ability
to acknowledge receipt of | P packets and request retransmission of lost or corrupted
packets. Furthermore, TCP allows the packets to be put back together at the receiving
end in the same order they were sent at the sending end.

TCP, however, carries afair amount of overhead. Therefore, if the order of the data
isn't particularly important and if the loss of individual packets won't completely
corrupt the data stream, packets are sometimes sent without the guarantees that TCP
provides. Thisis accomplished through the use of the UDP protocol. UDPis an
unreliable protocol that does not guarantee that packets will arrive at their destination
or that they will arrive in the same order they were sent. Although thiswould be a
problem for some uses, such asfile transfer, it is perfectly acceptable for applications
where the loss of some data would go unnoticed by the end user. For example, losing
afew bitsfrom avideo or audio signal won't cause much degradation; it would be a
bigger problem if you had to wait for a protocol such as TCP to request a
retransmission of missing data. Furthermore, error-correcting codes can be built into
UDP data streams at the application level to account for missing data.

Besides TCP and UDP, there are a number of other protocols that can run on top of IP.
The one most commonly asked for is ICMP, the Internet Control Message Protocol,
which uses raw | P datagrams to relay error messages between hosts. The best known
use of this protocol isin the ping program. Java does not support ICMP nor does it
allow the sending of raw I P datagrams (as opposed to TCP segments or UDP
datagrams). The only protocols Java supports are TCP and UDP and application layer
protocols built on top of these. All other transport layer, internet layer, and lower-
layer protocols such as ICMP, IGMP, ARP, RARP, RSVP, and others can be
implemented in Java programs only by using native code.

2.3.1 IP Addresses and Domain Names

As aJava programmer, you don't need to worry about the inner workings of P, but
you do need to know about addressing. Every computer on an |P network is identified
by a4-byte number. Thisis normally written in aformat like 199.1.32.90, where each
of the four numbersis one unsigned byte ranging in value from to 255. Every
computer attached to an IP network has a unique 4-byte address. When dataiis
transmitted across the network in packets, each packet's header includes the address of
the machine for which the packet is intended (the destination address) and the address
of the machine that sent the packet (the source address). Routers along the way choose
the best route to send the packet along by inspecting the destination address. The
source address is included so that the recipient will know who to reply to.

Although computers are comfortable with numbers, human beings aren't good at
remembering them. Therefore, the Domain Name System (DNS) was developed to
translate hostnames that humans can remember (like http://www.oreilly.com) into
numeric Internet addresses (like 198.112.208.23). When Java programs access the
network, they need to process both these numeric addresses and their corresponding
hostnames. There are a series of methods for doing thisin the

java.net. InetAddress class, which is discussed in Chapter 6.

2.3.2 Ports

Addresses would be all you needed if each computer did no more than one thing at a
time. However, modern computers do many different things at once. Email needs to
be separated from FTP requests, which need to be separated from web traffic. Thisis
accomplished through ports. Each computer with an 1P address has several thousand
logical ports (65,535 per transport layer protocol, to be precise). These are purely
abstractions in the computer's memory and do not represent anything physical like a
serial or parallel port. Each port isidentified by a number from 1 to 65,535. Each port
can be alocated to a particular service.

For example, the HTTP service, which is used by the Web, generally runs on port 80:
we say that aweb server listens on port 80 for incoming connections. SMTP or emall
serversrun on port 25. When datais sent to aweb server on a particular machine at a
particular |P address, it is also sent to a particular port (usually port 80) on that
machine. The receiver checks each packet it sees for the port and sends the data to any
programs that are listening to the specified port. Thisis how different types of traffic
are sorted out.

Port numbers from 1 to 1023 are reserved for well-known services such as finger, FTP,
HTTP, and email. On Unix systems, only programs running as root can receive data
from these ports, but all programs may send data to them. On Windows and the Mac,
including Windows NT, any program may use these ports without special privileges.
Table 2.1 shows the well-known ports for the protocols that are discussed in this book.
These assignments are not absolutely guaranteed; in particular, web servers often run
on ports other than 80, either because multiple servers need to run on the same
machine, or because the person who installed the server doesn't have the root
privileges needed to run it on port 80. On Unix systems, afairly complete listing of
assigned portsis stored in the file /etc/services.

Table 2.1. Well-known Port Assignments
Protocol |Port| Protocol Purpose

Echo is atest protocol used to verify that two machines are able to connect
by having one echo back the other's input.

Discard is aless useful test protocol in which all data received by the
server isignored.

daytime |13 |TCP/UDP|Providesan ASCII representation of the current time on the server.
ftp-data |20 |TCP FTP uses two well-known ports. This port is used to transfer files.

FTP 21 |TCP This port is used to send FTP commands like put and get.

Telnet 23 |TCP Telnet isaprotocol used for interactive, remote command-line sessions.

The Simple Mail Transfer Protocol is used to send email between
machines.

echo 7 |TCP/UDP

discard 9 TCP/UDP

SMTP 25 |TCP

A time server returns the number of seconds that have elapsed on the

time 37 |TCP/UDP|server since midnight, January 1, 1900, as a 4-byte, signed, big-endian
integer.

whois 43 |TCP Whois is asimple directory service for Internet network administrators.

finger 79 TCP Finger is a service that returns information about a user or users on the
local system.

HTTP 80 |tcp \Ijvye%ertext Transfer Protocol isthe underlying protocol of the World Wide

Post Office Protocol Version 3 isa protocol for the transfer of

POP3 110 TCP accumulated email from the host to sporadically connected clients.

Usenet news transfer is more formally known as the Network News

NNTP 119 |TCP Transfer Protocol.

RMI Thisisthe registry service for Java remote objects. Thiswill be discussed
: 1099|TCP .
Registry in Chapter 18.

2.4 The Internet

The Internet is the world's largest | P-based network. It is an amorphous group of
computers in many different countries on al seven continents (Antarctica included)
that talk to each other using the I P protocol. Each computer on the Internet has at |east
one unique I P address by which it can be identified. Most of them also have at |east
one name that maps to that 1P address. The Internet is not owned by anyone, though
pieces of it are. It is not governed by anyone, which is not to say that some
governments don't try. It issimply avery large collection of computers that have
agreed to talk to each other in a standard way.

The Internet is not the only |P-based network, but it is the largest one. Other IP
networks are called internets with alittle i: for example, a corporate | P network that is
not connected to the Internet. Intranet is a current buzzword that loosely describes
corporate practices of putting lots of data on internal web servers. Since web browsers
use IP, most intranets do too (though afew tunnel it through existing AppleTak or
IPX installations).

Almost certainly the internet that you'll be using is the Internet. To make sure that
hosts on different networks on the Internet can communicate with each other, afew
rules need to be followed that don't apply to purely internal internets. The most
important rules deal with the assignment of addresses to different organizations,
companies, and individuals. If everyone picked the Internet addresses she wanted at
random, conflicts would arise amost immediately when different computers showed
up on the Internet with the same address.

2.4.1 Internet Address Classes

To avoid this problem, Internet addresses are assigned to different organizations by
the Internet Assigned Numbers Authority (IANA), generally acting through
intermediaries called | SPs. When a company or an organization wants to set up an | P-
based network connected to the Internet, its ISP givesit ablock of addresses.
Currently, these blocks are available in two sizes called Class B and Class C. A Class
C address block specifiesthefirst 3 bytes of the address, for example, 199.1.32. This
allows room for 254 individual addresses from 199.1.32.1 t0 199.1.32.254.2 A Class
B address block specifies only thefirst 2 bytes of the addresses an organization may

use, for instance, 167.1. Thus a Class B address has room for 65,024 different hosts
(256 Class C-sized blocks times 254 hosts per Class C block).

1 1n the near future, this function will be assumed by the Internet Corporation for Assigned Names and Numbers
(ICANN).

12 Addresses with the last byte either .0 or .255 are reserved and should never actually be assigned to hosts.

Numeric addressing becomes important when you want to restrict access to your site.
For instance, you may want to prevent a competing company from having accessto
your web site. In this case, you would find out your competitor's address block and
throw away all requests that come from that block of addresses. More commonly, you
might want to make sure that only people within your organization can access your
internal web server. In this case, you would deny access to al requests except those
that come from within your own address block.

There's no block with a size between a Class B and a Class C. This has become a
problem because there are many organizations with more than 254 computers
connected to the Internet but fewer than 65,024 of them. If each of these organizations
getsafull Class B block, alot of IP addresses are wasted. Thisis a problem since
there's alimited number of addresses, about 4.2 billion to be precise. That sounds like
alot, but it gets crowded quickly when you can easily waste 50,000 or 60,000
addresses at a shot.

What About Class A Addresses?

When the Internet was originally designed, there was also room for 126 Class
A addresses that specified only the first byte and allowed more than 16
million different hosts within one organization. However, almost no single
organization needs this many addresses, and alarge part of any Class A
address tends to go unused. Since Internet addresses are a finite quantity, the
IANA stopped giving out Class A addresses along time ago, though a few
more than three dozen are still in use.

There are also Class D and E addresses. Class D addresses are used for IP
multicast group and will be discussed at length in Chapter 14. Class D
addresses al begin with the four bits 1110. Class E addresses begin with the
five bits 11110 and are reserved for future extensions to the Internet.

There are also many networks, such as the author's own personal basement area
network, that have afew to afew dozen computers but not 255 of them. To more
efficiently allocate the limited address space, Classless Inter-Domain Routing (CIDR)
was invented. CIDR mostly (though not completely) replaces the whole A, B, C
addressing scheme with one based on a specified numbers of prefix bits. These are
generally written as /24 or /19. The number after the / indicates the number of fixed
prefix bits. Thus a/24 fixes the first 24 bits in the address, |eaving 8 bits available to
distinguish individual nodes. This allows 256 nodes and is equivalent to an old-style
Class C. A /19 fixes 19 hits, leaving 13 for individual nodes within the network. It's
equivalent to 32 separate Class C networks or an eighth of aClass B. A /28, generally
the smallest you're likely to encounter in practice, leaves only four bits for identifying

local nodes. It can handle networks with up to 16 nodes. CIDR also carefully specifies
which address blocks are associated with which 1SPs. This helps keep the Internet
routing tables smaller and more manageable than they would be under the old system.

Several address blocks and patterns are special. All Internet addresses beginning with
10., 172.16. through 172.31., and 192.168. are deliberately unassigned. They can be
used on internal networks, but no host using addresses in these blocks is allowed onto
the global Internet. These nonroutable addresses are useful for building private
networks that can't be seen from the rest of the Internet or for building a large network
when you've been assigned only a Class C address block. Addresses beginning with
127 (most commonly 127.0.0.1) always mean the local loopback address. That is,
these addresses always point to the local computer, no matter which computer you're
running on. The hostname for this addressis generally localhost. The address 0.0.0.0
always refers to the originating host but may be used only as a source address, not a
destination. Similarly, any address that begins with 0.0 is assumed to refer to a host on
the same local network.

2.4.2 Firewalls

There are some naughty people on the Internet. To keep them out, it's often helpful to
set up one point of accessto alocal network and check all traffic into or out of that
access point. The hardware and software that sits between the Internet and the local
network, checking all the data that comesin or out to make sure it's kosher, is called a
firewall.

The most basic firewall is a packet filter that inspects each packet coming into or out
of anetwork and uses a set of rules to determine whether that traffic is alowed.
Filtering is usually based on network addresses and ports. For example, all traffic
coming from the Class C network 193.28.25 may be rejected because you had bad
experiences with hackers from that net in the past. Outgoing Telnet connections may
be allowed, but incoming Telnet connections may not be. Incoming connections on
port 80 (Web) may be allowed but only to the corporate web server. The exact
configuration of afirewall—which packets of data are and are not allowed to pass
through—depends on the security needs of an individual site. Java doesn't have much
to do with firewalls except insofar as they often get in your way.

2.4.3 Proxy Servers

Proxy servers are related to firewalls. If afirewall prevents hosts on a network from
making direct connections to the outside world, a proxy server can act as a go-
between. Thus a machine that is prevented from connecting to the external network by
afirewall would make arequest for aweb page from the local proxy server instead of
requesting the web page directly from the remote web server. The proxy server would
then request the page from the web server and forward the response to the original
requester. Proxies can also be used for FTP services and other connections. One of the
security advantages of using a proxy server isthat external hosts find out only about
the proxy server. They do not learn the names and | P addresses of the internal
machines, making it more difficult to hack into internal systems.

While firewalls generally operate at the level of the transport or internet layer, proxy
servers operate at the application layer. A proxy server has detailed understanding of
some application level protocols, like HTTP and FTP. Packets that pass through the
proxy server can be examined to ensure that they contain data appropriate for their
type. For instance, FTP packets that seem to contain Telnet data can be rejected.
Figure 2.3 shows how proxy serversfit into the layer model.

Figure 2.3. Layered connections through a proxy server

Logical Patit
Cliont Sarver
Application I.m!ﬂ-r‘I Application Layer ‘.ﬁpplicntinn Layer
Transport Layer Transport Layer Transport Layer
{TCR UDP) (TCR UDF) (TCE LOF)
Internet Layer|/”) Internet Layer/” Internet Layer(/’

b— 1 physical Pt e

Aslong as al access to the Internet is forwarded through the proxy server, access can
be tightly controlled. For instance, a company might choose to block access to

http: //mamww.playboy.com but allow access to http: //mwww.microsoft.com. Some
companies allow incoming FTP but disallow outgoing FTP so that confidential data
cannot be as easily smuggled out of the company. Some companies have begun using
proxy serversto track their employees web usage so that they can see who's using the
Internet to get tech support and who's using it to check out the Playmate of the Month.
Such monitoring of employee behavior is controversial and not exactly an indicator of
enlightened management techniques.

Proxy servers can also be used to implement local caching. When afileis requested
from aweb server, the proxy server will first check to see whether thefileisinits
cache. If thefileisin the cache, then the proxy will serve the file from the cache
rather than from the Internet. If the file is not in the cache, then the proxy server will
retrieve the file, forward it to the requester, and store it in the cache for the next time
it isrequested. This scheme can significantly reduce load on an Internet connection
and greatly improve response time. America Online (AOL) runs one of the largest
farms of proxy serversin the world to speed the transfer of datato its users. If you
look at aweb server log file, you'll probably find some hits from clients with names
like http://www-d1.proxy.aol.com, but not as many as you'd expect given the more
than 20 million AOL subscribers. That's because AOL requests only pages they don't
already have in their cache. Many other large ISPs do similarly.

The biggest problem with proxy serversistheir inability to cope with all but afew
protocols. Generally established protocolslike HTTP, FTP, and SMTP are allowed to
pass through, while newer protocols like Napster are not. (Some network
administrators would consider that afeature.) In the rapidly changing world of the
Internet, thisis a significant disadvantage. It's a particular disadvantage for Java
programmers because it limits the effectiveness of custom protocols. In Java, it's easy

and often useful to create a new protocol that is optimized for your application.
However, no proxy server will ever understand these one-of-a-kind protocols.

Applets that run in web browsers will generally use the proxy server settings of the
web browser itself. Thisis generally set in adialog box (possibly hidden several

levels deep in the preferences) like the one shown in Figure 2.4. Standalone Java
applications can indicate the proxy server to use by setting the socksProxyHost and
socksProxyPort properties (if you're using a SOCKS proxy server), or
http.proxySet, http.proxyHost, http.proxyPort, https.proxySet,
https.proxyHost, https.proxyPort, ftpProxySet, ftpProxyHost, ftpProxyPort,
gopherProxySet, gopherProxyHost, and gopherProxyPort system properties (if
you're using protocol-specific proxies). Y ou can set system properties from the
command-line using the -D flag like this:

jJava -DsocksProxyHost=socks.cloud9.net -DsocksProxyPort=1080 MyClass

These can also be set by any other convenient means to set system properties, such as
including them in the appletviewer.propertiesfile like this:

ftpProxySet=true
ftpProxyHost=ftp.proxy.cloud9.net
ftpProxyPort=1000
gopherProxySet=true
gopherProxyHost=gopher .proxy.cloud9.net
gopherProxyPort=9800
http.proxySet=true
http.proxyHost=web.proxy.cloud9.net
http.proxyPort=8000
https.proxySet=true
https.proxyHost=web.proxy.cloud9.net
https.proxyPort=8001

Figure 2.4. Netscape Navigator proxy server settings

Lateqoey

= Bppesiance
Forts
Colars
- Havigalor
Larguages
Applicabans
Smart Brawsng
Mal & Hewsgroups
Foaming Access
Composger
Ofbre
Advanced
Cache
Paoies
SmartUpdate

o+ -+

% |x

Servers
Tupe Bddress of prowy 2erer lo use Pait
HTTE et poosy cloudd met : {6000
Secuity: | o
ETP: it proogs houd net {1000
Soghs: [socks cloudd ret :[10e0
Gopher |aopher prosye cloud? net - {9800
WAIS [waspon clouddnet - [eom

Excepliong

Do ryok wse prosy servers for domars beginning withc

| B

Lz commas [.] bo separate anbries

[o] Cancel |
ok | Cowel | Heb |

.5 The Client/Server Model

Most modern network programming is based on a client/server model. A client/server
application typically stores large quantities of data on an expensive, high-powered
server, while most of the program logic and the user interface is handled by client
software running on relatively cheap personal computers. In most cases, a server
primarily sends data, while a client primarily receivesit, but it israre for one program
to send or receive exclusively. A more reliable distinction isthat aclient initiates a
conversation, while a server waits for clients to start conversations with it. Figure 2.5
illustrates both possibilities. In some cases, the same program may be both a client

and a server.
Figure 2.5. A client/server connection

Server Client
Fort B0 e == Port 41 232

Tha clignt initiales the conraction fo @

kg paed o e Senver fram

vachavar povt is availaig o tha cliant,

Por 80 - »mm Porl 41 232
{Input Siream) y {lnput Stream)
Porl 80 = AN - Port 41232
(Outui Stream) The server acoepss the connechion, {Outgait Stream)

Tyt Angl QDL Straaes A8 fonectad
18 the sackats o0 the spacifiad parks,

Some servers process and analyze the data before sending the results to the client.
Such servers are often referred to as "application servers' to distinguish them from the
more common file servers and database servers. A file or database server will retrieve
information and send it to a client, but it won't process that information. In contrast,
an application server might look at an order entry database and give the clients reports
about monthly sales trends. An application server isnot a server that serves files that
happen to be applications.

Y ou are already familiar with many examples of client/server systems. In 2000, the
most popular client/server system on the Internet is the Web. Web servers such as
Apache respond to requests from web clients such as Netscape. Data is stored on the
web server and is sent out to the clients that request it. Aside from the initial request
for apage, amost al dataistransferred from the server to the client, not from the
client to the server. Web serversthat use CGI programs double as application and file
servers. An older service that fits the client/server model is FTP. FTP uses different
application protocols and different software but is still split into FTP servers, which
send files, and FTP clients, which receive files. People often use FTP to upload files
from the client to the server, so it's harder to say that the data transfer is primarily in
onedirection, but it is still true that an FTP client initiates the connection and the FTP
server responds to it.

Javais apowerful environment in which to write GUI programs that access many
different kinds of servers. The preeminent example of a client program written in Java
is HotJava, the web browser from Sun, which is a general-purpose web client. Java
makes it easy to write clients of all sorts, but it really shines when you start writing
servers. Java does have some performance bottlenecks, mostly centered around GUIs
and disk 1/0. However, neither of these isalimiting factor for server programs where
network bandwidth and robustness are far more important.

Not al applications fit easily into a client/server model. For instance, in networked
games it seems likely that both players will send data back and forth roughly equally
(at least in afair game). These sorts of connections are called "peer-to-peer”. The
telephone system is the classic example of a peer-to-peer network. Each phone can
either call another phone or be called by another phone. Y ou don't have to buy one
phone to send calls and another to receive them.

Java does not have explicit peer-to-peer communication in its networking API.
However, applications can easily implement peer-to-peer communications in several
ways, most commonly by acting as both a server and a client. Alternatively, the peers
can communicate with each other through an intermediate server program that
forwards data from one peer to the other peers. Thisis especialy useful for applets
whose security manager restricts them from talking directly to each other.

2.6 Internet Standards

This book discusses several application layer Internet protocols, most notably HTTP.
However, thisis not a book about those protocols, and it tries not to say more than the
minimum you need to know. If you need detailed information about any protocol, the
definitive source is the standards document for the protocol.

While there are many standards organizations in the world, the two that produce most
of the standards relevant to network programming and protocols are the Internet
Engineering Task Force (IETF) and the World Wide Web Consortium (W3C). The
IETF isarelatively informal, democratic body open to participation by any interested
party. Its standards are based on "rough consensus and running code" and tend to
follow rather than lead implementations. |ETF standards include TCP/IP, MIME, and
SMTP. The W3C, by contrast, isavendor organization, controlled by its dues-paying
member corporations, that explicitly excludes participation by individuals. For the
most part, the W3C tries to define standards in advance of implementation. W3C
standards include HTTP, HTML, and XML.

2.6.1 IETF RFCs

|ETF standards and near standards are published as Internet drafts and requests for
comments (RFCs). RFCs and Internet drafts range from informational documents of
general interest to detailed specifications of standard Internet protocols such as FTP.
RFCs that document a standard or a proposed standard are published only with the
approval of the Internet Engineering Steering Group (IESG) of the Internet
Engineering Taskforce (IETF). All IETF-approved standards are RFCs, but not all
RFCs are |IETF standards. RFCs are available from many locations on the Internet,
including http://www.fags.org/rfc/ and http://www.ietf.org/rfc.html.

For the most part, RFCs, particularly standards-oriented RFCs, are very technical,
turgid, and nearly incomprehensible. Nonetheless, they are often the only complete
and reliable source of information about a particular protocol.

Most proposals for a standard begin when a person or group gets an idea and builds a
prototype. The prototype isincredibly important. Before something can become an
|ETF standard, it must actually exist and work. This requirement ensures that IETF
standards are at least feasible, unlike the standards promulgated by some other
standards bodies.

If the prototype becomes popular outside its original developers and if other
organizations begin implementing their own versions of the protocol, then aworking
group may be formed under the auspices of the IETF. Thisworking group attempts to
document the protocol in an Internet-Draft. Internet-Drafts are working documents
and change frequently to reflect experience with the protocol. The experimental
implementations and the Internet-Draft evolve in rough synchronization, until
eventually the working group agrees that the protocol is ready to become aformal
standard. At this point, the proposed specification is submitted to the IESG.

At every step of the standardization track, the proposal isin one of six states or
maturity levels:

Experimental
Proposed standard
Draft standard
Standard
Informational
Historic

For some time after the proposal is submitted, it is considered experimental. Being in
an experimental stage does not imply that the protocol is not solid or that it is not
widely used; unfortunately, the standards process usually lags behind de facto
acceptance of the standard. If the IESG likes the experimental standard or itisin
widespread use, the IESG will assign it an RFC number and publish it as an
experimental RFC, generally after various changes.

If the experimental standard holds up well in further real-world testing, the IESG may
advance it to the status of proposed standard. A proposed standard is fairly loose and
is based on the experimental work of possibly as little as one organization. Changes
may still be made to a protocol in this stage.

Once the bugs appear to have been worked out of a proposed standard and there are at
least two independent implementations, the IESG may recommend that a proposed
standard be promoted to adraft standard. A draft standard will probably not change
too much before eventual standardization unless major flaws are found. The primary
purpose of a draft standard is to clean up the RFC that documents the protocol and
make sure the documentation conforms to actual practice, rather than to change the
standard itself.

When a protocol completes this process, it has become an official Internet standard. It
isassigned an STD number and is published as an STD in addition to an RFC. The
absolute minimum time for a standard to be approved as such is 10 months, but in
practice, the process almost always takes much longer. The commercial success of the
Internet hasn't hel ped, since standards must now be worked out in the presence of
marketers, vulture capitalists, lawyers, NSA spooks, and others with vested interests
in seeing particular technologies succeed or fail. Therefore, many of the "standards’
that this book references are in either the experimental, proposed, or draft stage. As of
publication, there are ailmost 3,000 RFCs. Fewer than 100 of these have become STDs,
and some of those that have are now obsolete. RFCs relevant to this book are detailed
inTable 2.2.

Some RFCs that do not become standards are considered informational. These include
RFCs that specify protocols that are widely used but weren't developed within the
normal Internet standards track and haven't been through the formal standardization
process. For example, NFS, originally developed by Sun, is described in the
informational RFC 1813. Other informational RFCs provide useful information (such
as users guides) but don't document a protocol. For example, RFC 1635, How to Use
Anonymous FTP, is an informational RFC.

Finally, changing technology and increasing experience renders some protocols and
their associated RFCs obsolete. These are classified as historic. Historic protocols
include IMAP3 (replaced by IMAP4), POP2 (replaced by POP3), and Remote
Procedure Call Version 1 (replaced by Remote Procedure Call Version 2).

In addition to a protocol's maturity level, a protocol has arequirement level. The
possible requirement levels are:

Required

Must be implemented by all Internet hosts. There are very few required
protocols. IP itself isone (RFC 791), but even protocols as important as TCP
or UDP are only recommended. A standard isonly required if it is absolutely
essential to the proper functioning of a host on the Internet.

Recommended
Should be implemented by Internet hosts that don't have a specific reason not
to implement it. Most protocols that you are familiar with (for example, TCP
and UDP, SMTP for email, Telnet for remote login, etc.) are recommended.

Elective
Can be implemented by anyone who wants to use the protocol. For example,
RFC 2045, Multipurpose Internet Mail Extensions, is a Draft Elective
Standard. Given the importance of MIME these days, this protocol should
probably be promoted to Recommended.

Limited Use

May have to be implemented in certain unusual situations but won't be needed
by most hosts. Mainly these are experimental protocols.

Not Recommended
Should not be implemented by anyone.

Table 2.2 liststhe RFCs and STDs that provide formal documentation for the
protocols discussed in this book.

Table 2.2. Selected Internet RFCs

. Maturity |Requirement
RFC Title Leve Leve
RFC 2600 Internet Official
Protocol Standard Required
STD1 Standards

Describes the standardization process and the current
status of the different Internet protocols.

RFC 1700
Assigned

NUmbers Standard Required

STD 2

This megalith of adocument contains all of the
information maintained by the Internet Assigned
Numbers Authority, including MIME types and
subtypes, port numbers for different services, the
meanings of various numbersin IP headers, and more.
AsRFCs go, this one is rather unusual but absolutely
essential.

RFC 1122

Host

RFC 1123 :
Requirements

Standard Required

STD 3

Documents which protocols must be supported by all
Internet hosts at different layers (datalink layer, IP
layer, transport layer, and application layer).

RFC 791

RFC 919RFC 922
Internet Protocol |Standard Required
RFC 950

STD 5

The IP internet layer protocol.

RFC 768 User Dat
Pr?)etrocol a0'aM | srandard Recommended
STD 6
An unreliable, connectionless transport layer protocol.
RFC 792 Internet Control
Message Standard Required
STD5 Protocol (ICMF)
An internet layer protocol that uses raw | P datagrams
but is not supported by Java. Its most familiar useis
the ping program.
RFC 793 - .
C:)?”nrlzl“?:gtgcol Standard Recommended
STD 7
A reliable, connection-oriented, streaming transport
layer protocol.
RFC 821 Simple Mail
Transfer Standard Recommended
STD 10 Protocol
The application layer protocol by which one host
transfers email to another host. This standard doesn't
say anything about email user interfaces; it coversthe
mechanism for passing email from one computer to
another.
RFC 822 Format of
Electronic Mail |Standard Recommended
STD 11 Messages

The basic syntax for ASCII text email messages.
MIME is designed to extend this to support binary
data while ensuring that the messages transferred till
conform to this standard.

RFC 854

RFC 855

STD 8

An application-layer remote login service for
command-line environments based around an abstract
network virtual terminal (NVT) and TCP.

Telnet Protocol

Standard

Recommended

RFC 862

STD 20

An application-layer protocol that echoes back all data
it receives over both TCP and UDP; useful asa
debugging tool.

Echo Protocol

Standard

Recommended

RFC 863

STD 21

An application layer protocol that receives packets of
data over both TCP and UDP and sends no response to
the client; useful as a debugging tool.

Discard Protocol

Standard

Elective

RFC 864

STD 22

An application layer protocol that sends an indefinite
sequence of ASCII characters to any client that
connects over either TCP or UDP; also useful asa
debugging tool.

Character
Generator
Protocol

Standard

Elective

RFC 865

STD 23

An application layer protocol that returns a quotation
to any user who connects over either TCP or UDP and
then closes the connection.

Quote of the Day

Standard

Elective

RFC 867

STD 25

An application layer protocol that sends a human-
readable ASCII string indicating the current date and
time at the server to any client that connects over TCP

or UDP. This contrasts with the various NTP and Time

Server protocols that do not return data that can be
easily read by humans.

Daytime
Protocol

Standard

Elective

RFC 868

STD 26

An application layer protocol that sendsthe timein
seconds since midnight, January 1, 1900 to a client

Time Protocol

Standard

Elective

connecting over TCP or UDP. Thetimeissent asa
machine-readable, 32-bit signed integer. The standard
isincompletein that it does not specify how the
integer is encoded in 32 bits, but in practice atwo's
complement, big-endian integer is used.

RFC 959 File Transf
P:(iog;n o Standard Recommended
STD 9
An optionally authenticated, two-socket application
layer protocol for file transfer that uses TCP.
Network News
RFC 977 Transfer Proposed ko vive
Standard
Protocol
The application layer protocol by which Usenet news
istransferred from machine to machine over TCP,
used by both news clients talking to news servers and
news servers talking to each other.
RFC 1034
RFC 1035 Domain Name | gy angiard Recommended
System
STD 13
The collection of distributed software by which
hostnames that human beings can remember, like
www.oreilly.com, are translated into numbers that
computers can understand, like 198.112.208.11. This
STD defines how domain name servers on different
hosts communicate with each other using UDP.
Host Extensions
RFC 1112 for IP Standard Recommended
Multicasting
The Internet layer methods by which conforming
systems can direct a single packet of datato multiple
hosts. Thisis called multicasting; Java's support for
multicasting is discussed in Chapter 14.
Digest Message . _
RFC 1153 Format for Mail Experimental |Limited use
A format for combining multiple postings to amailing
list into a single message.
, Draft ;
RFC 1288 Finger Protocol Standard Elective
An application layer protocol for requesting
information about a user at aremote site. It can be a
security risk.
Network Time Draft
RFC 1303 Protocol Elective
) Standard
(Version 3)

A more precise application layer protocol for
synchronizing clocks between systems that attempts to
account for network latency.

RFC 1350 Trivial File
Transfer Standard Elective
STD 33 Protocol
An unauthenticated application layer protocol for file
transfer that uses UDP; typically used by diskless
workstationsto retrieve files necessary for booting
from a server.
Uniform
RFC 1738 Resource Proposed gy ocvive
Standard
Locators
Full URLSs like http://www.amnesty.org/ and
ftp://ftp.dnai.com/users/c/cityjavaljavai o.htm.
Relative
Uniform Proposed .
RFC 1808 Resource Standard Elective
Locators
Partial URLs like /javafag/books/
and ../examples/O7/index.html used as values of the
HREF attribute of an HTML A element.
RFC 1939 Post Office
Protocal, Standard Elective
STD 53 Version 3
An application layer protocol used by sporadically
connected email clients such as Eudorato retrieve mail
from a server over TCP.
Hypertext
Transfer .
RFC 1945 Protocol (HTTP Informational IN/A
1.0)
Version 1.0 of the application layer protocol used by
web browsers talking to web servers over TCP,
developed by the W3C rather than the IETF.
RFC 2045
Multipurpose Draft
RFC 2046 Internet Mail Elective
i Standard
Extensions
RFC 2047
A means of encoding binary data and non-ASCI| text
for transmission through Internet email and other
ASClI-oriented protocols.
Hypertext
Transfer Proposed .
RFC 2068 Protocol (HTTP |Standard Elective

1.1)

Version 1.1 of the application layer protocol used by
web browsers talking to web servers over TCP.

Uniform Pronosed

RFC 2141 Resource Names Stalﬁ’ rd |Elective
(URN) Syntax

Similar to URLs but intended to refer to actual

resources in a persistent fashion rather than the

transient location of those resources.
Uniform
Resource

REC 2396 I dentifiers ggﬁgjfg Elective
(URI): Generic
Syntax

Similar to URLs but cut a broader path. For instance,
ISBN numbers may be URIs even if the book cannot
be retrieved over the Internet.

The IETF has traditionally worked behind the scenes, codifying and standardizing
existing practice. Although its activities are completely open to the public, it's
traditionally been very low profile. There simply aren't that many people who get
excited about the details of network arcana like the Internet Gateway Message
Protocol (IGMP). The participants in the process have mostly been engineers and
computer scientists, including many from academia as well as the profit-driven
corporate world. Consequently, despite often vociferous debates about ideal
implementations, most serious |ETF efforts have produced reasonable standards.

Unfortunately, that can't be said of the IETF's efforts to produce Web (as opposed to
Internet) standards. In particular, the IETF's early effort to standardize HTML was a
colossal failure. The refusal of Netscape and other key vendors to participate in or
even acknowledge the process was a crucial problem. That HTML was simple enough
and high-profile enough to attract the attention of assorted market-droids and random
flamers didn't help matters either. Thus in October 1994, the World Wide Web
Consortium was formed as a vendor-controlled body that might be able to avoid the
pitfalls that plagued the IETF's efforts to standardize HTML.

2.6.2 W3C Recommendations

Although the W3C standardization process is similar to the IETF process (a series of
working drafts hashed out on mailing lists resulting in an eventual specification), the
Wa3C is afundamentally different organization from the IETF. Whereasthe IETF is
open to participation by anyone, only corporations and other organizations may
become members of the W3C. Individuals are specifically excluded. Furthermore,
although nonprofit organizations such as the World Wide Web Artists Consortium
(WWWAC) may join the W3C, only the employees of these organizations may
participate in W3C activities. Their volunteer members are not welcome. Specific
individual experts are occasionally invited to participate in a particular working group
even though they are not employees of a W3C member company. However, the
number of such individualsis quite small relative to the number of interested experts
in the broader community. Membership in the W3C costs $50,000 a year ($5,000 a

year for nonprofits) with a minimum three-year commitment. Membership in the
IETF costs nothing a year with no commitment beyond a willingness to participate.
And although many people participate in developing W3C standards, each standard is
ultimately approved or vetoed by one individual, W3C director Tim Berners-Lee.
|ETF standards are approved by a consensus of the people who worked on the
standard. Clearly the IETF is a much more democratic (some would say anarchic) and
open organization than the W3C.

Despite the W3C's strong bias toward the corporate members that pay its bills, it has
so far managed to do a better job of navigating the politically tricky waters of Web
standardization than the IETF. It has produced several HTML standards as well asa
variety of others, suchasHTTP, PICS, XML, CSS, MathML, and more. The W3C
has had considerably less success in convincing vendors such as Netscape and
Microsoft to fully and consistently implement its standards.

The W3C has five basic levels of standards:
Recommendation

A Recommendation is the highest level of W3C standard. However, the W3C
isvery careful not to actually call thisa"standard" for fear of running afoul of
antitrust statutes. The W3C describes a Recommendation as a"work that
represents consensus within W3C and has the Director's stamp of approval.
W3C considers that the ideas or technology specified by a Recommendation
are appropriate for widespread deployment and promote W3C's mission.”

Proposed Recommendation

A Proposed Recommendation is mostly complete and unlikely to undergo
more than minor changes. The main purpose of a Proposed Recommendation
isto work out bugs in the specification document rather than in the underlying
technology being documented.

Candidate Recommendation

A Candidate Recommendation indicates that the working group has reached
consensus on al major issues and is ready for third-party comment and
implementations. If the implementations do not uncover any obstructions, the
spec can be promoted to a Proposed Recommendation.

Working Drafts
A Working Draft is areflection of the current thinking of some (not
necessarily all) members of aworking group. It should eventually lead to a
Proposed Recommendation, but by the time it does so it may have changed
substantially.

Note

A Note is generally one of two things, either an unsolicited submission by a
W3C member (similar to an IETF Internet-Draft) or random musings by W3C
staff or related parties that do not actually describe afull proposal (similar to
an IETF informational RFC). Notes will not necessarily lead to the formation
of aworking group or a W3C Recommendation.

The W3C has not been around long enough to develop aneed for a historical or
informational standard status. Another differenceisthat the W3C processrarely fails
to elevate a standard to full Recommendation status once work has actively
commenced; that is, once aworking group has been formed. This contrasts markedly
with the IETF, which has more than a thousand proposed and draft standards but only
afew dozen actua standards.

PR Standards

In recent years, both the W3C and |ETF standards processes have been
abused by companies seeking alittle free press or perhaps atemporary boost
to their stock price. The IETF will accept a submission from anyone, and the
W3C will accept a submission from any W3C member. The IETF calls these
Internet- Drafts and will publish them for six months before deleting them.
The W3C refers to these as "acknowledged submissions" and will publish
them indefinitely. However, neither organization actually promisesto do
more than acknowledge receipt of these documents. In particular, they do not
promise to form aworking group or begin the standardization process.
Nonetheless, press releases invariably misrepresent the submission of such a
document as afar more significant event than it actually is. PR reps can
generally count on suckering at least afew clueless reporters who aren't up-
to-speed on the intimate details of the standardization process. However, at
least now you should be able to recognize these ploys for what they are.

Chapter 3. Basic Web Concepts

By the time you finish this book, | hope you will realize that Java can do alot more
than create flashy web pages. Nonethel ess, many of your programs will be applets on
web pages or will need to talk to web serversto retrieve files or post data. Therefore,
it'simportant to have a solid understanding of the interaction between web servers and
web browsers.

The Hypertext Transfer Protocol (HTTP) is a standard that defines how a web client
talksto a server and how datais transferred from the server back to the client. HTTP
relies heavily on two other standards: the Multipurpose Internet Mail Extensions
(MIME) and the Hypertext Markup Language (HTML). MIME is away to encode
different kinds of data, such as sound and text, to be transmitted over a 7-bit ASCII
connection; it also lets the recipient know what kind of data has been sent, so that it
can be displayed properly. Asits name implies, MIME was originally designed to
facilitate multimedia email and to provide an encoding that could get binary data past
the most brain-damaged mail transfer programs. However, it is now used much more
broadly. HTML is asimple standard for describing the semantic value of textual data.
This meansthat you can say "thisis aheader”, "thisisalist item", "this deserves

emphasis’, and so on, but you can't specify how headers, lists, and other items are
formatted: formatting is up to the browser. HTML is a"hypertext markup language”
because it includes away to specify links to other documents identified by URLs. A
URL isaway to unambiguously identify the location of aresource on the Internet. To
understand network programming, you'll need to understand URLs, HTML, MIME,
and HTTP in somewhat more detail than the average web page designer.

3.1 URIs

A Uniform Resource Identifier (URI) isastring of charactersin a particular syntax
that identifies aresource. The resource identified may be afile on a server, but it may
also be an email address, a news message, a book, a person's name, an Internet host,
the current stock price of Sun Microsystems, or something else. An absolute URI is
made up of a scheme for the URI and a scheme-specific part, separated by a colon like
this:

scheme:scheme-specific-part

The syntax of the scheme-specific part depends on the scheme being used. Many
different schemes will eventually be defined, but current ones include:

data
Base64-encoded data included directly in alink; see RFC 2397
file
A fileon alocal disk
FTP
An FTP server
HTTP
A World Wide Web server using the Hypertext Transfer Protocol
gopher
A Gopher server
mailto
An email address
news
A Usenet newsgroup

Telnet

A connection to a Telnet-based service
urn
A Uniform Resource Name

In addition, Java makes heavy use of nonstandard, custom schemes such as rmi, jndi,
and doc for various purposes. We'll ook at the mechanism behind thisin Chapter 15,
when we discuss protocol handlers.

There is no specific syntax that applies to the scheme-specific parts of all URIs.
However, many follow this form:

//authority/path?query

The authority part of the URI names the authority responsible for resolving the rest of
the URI. For instance, the URI http://mww.ietf.org/rfc/rfc2396.txt has the scheme http
and the authority www.ietf.org. This means that the server at www.ietf.orgis
responsible for mapping the path /rfc/rfc2396.txt to an actual resource. This URI does
not have aquery part. The URI

http: //mmww.fatbr ain.convasp/bookinfo/bookinfo.asp?thei sbn= 1565924851 has the
scheme http, the authority www1.fatbrain.com, the path /asp/bookinfo/bookinfo.asp,
and the query theisbn=1565924851. The URI urn:isbn: 1565924851 has the scheme
urn but doesn't follow the //authority/path?query form for scheme-specific parts.

Although current examples of URIs use an Internet host as an authority, this may not
be true of all future schemes. However, if the authority is an Internet host, then
optional usernames and ports may also be provided to make the authority more
specific. For example, the URI ftp://mp3: mp3@ci43198-

a.ashvil1.nc.home.com: 33/VanHal en-Jump.mp3 has the authority

mp3: mp3@ci43198-a.ashvil 1.nc.home.com: 33. This authority has the username mp3,
the password mp3, the host ¢i43198-a.ashvil 1.nc.home.com, and the port 33. It has the
scheme ftp and the path /VanHalen-Jump.mp3. (In most cases, including the password
in the URI isahig security hole unless, as here, you really do want everyonein the
universe to know the password.)

The path (which includesitsinitial /) is astring that the authority can use to determine
which resource isidentified. Different authorities may interpret the same path to refer
to different resources. For instance, the path /index.html means one thing when the
authority is www.georgewbush.com and something very different when the authority
IS www.gore2000.com. The path may be hierarchical, in which case the individual
parts are separated by forward slashes, and the . and .. operators are used to navigate
the hierarchy. These are derived from the pathname syntax on the Unix operating
systems where the Web and URL s were invented. They conveniently map to a
filesystem stored on a Unix web server. However, there is no guarantee that the
components of any particular path actually correspond to files or directories on any
particular filesystem. For example, in the URI

http: //mmw.amazon.com/exec/obidos/I SBN%3D 1565924851/ cafeaul aitA/002-
3777605-3043449 all the pieces of the hierarchy are just used to pull information out
of adatabase that's never stored in afilesystem. |SBN%3D 1565924851 selects the

particular book from the database by its ISBN number. cafeaulaitA specifies who gets
thereferral fee if a purchase is made from thislink. And 002-3777605-3043449 isa
session key used to track this visitor's path through the site.

Of course, some URIsaren't at al hierarchical, at least in the filesystem sense. For
example, snews://secnews.netscape.convnetscape.devs-java has a path of
Inetscape.devs-java. Although there's some hierarchy to the newsgroup names
indicated by the . between netscape and netscape.devs-java, it's not visible as part of
the URI.

The scheme part is composed of lowercase letters, digits, and the plus sign, period,
and hyphen. It must begin with alowercase letter. The other three parts of atypical
URI (authority, path, and query) should each be composed of the ASCII aphanumeric
characters; that is, the letters A-Z, a-z, and the digits 0-9. In addition, the punctuation
characters- _.!~* " (and,) may also be used. All other characters including non-
ASCII aphanumerics such as & and should be escaped by a percent sign (%) followed
by the hexadecimal code for the character. For instance, & would be encoded as %E1
and would be encoded %3CO0. The latter assumes the underlying character set is 2-
byte Unicode. The current draft of the URI specification does not yet provide a means
of specifying the character set to be used. Thisis adeficiency that will be corrected in
afuture draft. A URL so transformed is said to have been "x-www-form-url-encoded".

Punctuation characters such as/ and @ must also be encoded using percent escapes if
they're used in any role other than what's specified for them in the scheme-specific
part of a particular URL. For example, the forward slashes in the URI

http://metal ab.unc.edu/javafag/books/javaio/ do not need to be encoded as %2F
because they serve to delimit the hierarchy as specified for the http URI scheme.
However, if afilenameincluded a/ character—for instance, if the last directory were
named Java /O instead of javaio to more closely match the name of the book—then
the URI would have to be written as

http://metal ab.unc.edu/javafag/books/Java%201%2FO/. Thisis not as farfetched as it
might sound to Unix or Windows users. Mac filenames often include a forward slash.
File names on many platforms often contain other characters that need to be encoded
including @, $, +, =, and many more.

3.1.1 URNSs

There are two types of URIs: Uniform Resource Locators (URLS) and Uniform
Resource Names (URNS). A URL is apointer to a particular resource on the Internet
at aparticular location. For example, http://www.oreilly.convcatal og/javanp?/ is one
of several URLsfor the book Java Network Programming, 2nd edition. A URN isa
name for a particular resource but without reference to a particular location. For
instance, urn:isbn: 1565928709 is a URN referring to the same book. As this example
shows, URNS, unlike URLS, are not limited to Internet resources.

The goal of URNSs s to handle resources that are mirrored in many different locations
or that have moved from one site to another; they identify the resource itself, not the
place where the resource lives. For instance, when given a URN for a particular piece
of software, an FTP program should get the file from the nearest mirror site. Given a

URN for abook, a browser might reserve the book for you at the local library or order
a copy from a bookstore.

A URN has the general form:

urn:namespace:resource_name

The namespace is the name of a collection of certain kinds of resources maintained by
some authority. The resource_name is the name of aresource within that collection.
For instance, the URN urn:isbn: 1565924851 identifies aresource in the isbn
namespace with the identifier 1565924851. Of all the books published, this one
selects the first edition of Java I/O.

The exact syntax of resource names depends on the namespace. The ISBN namespace
expects to see strings composed of 10 characters, all of which are digits with the
single exception that the last character may be a capital letter X instead. Other
namespaces will use very different syntaxes for resource names. The IANA is
responsible for handing out namespaces to different organizations, but the procedure
isn't really in place yet. URNs are still an area of active research and are not much
used by current software. ISBN numbers are pretty much the only example
established so far, and even those haven't been officially standardized as URNS.
Consequently, the rest of this book will use URLs exclusively.

3.1.2 URLs

A URL identifies the location of aresource on the Internet. It specifies the protocol
used to access aserver (e.g., FTP, HTTP), the name of the server, and the location of
afileon that server. A typical URL looks like

http://metal ab.unc.edu/javafag/javatutorial .html. This specifiesthat thereis afile
called javatutorial .html in adirectory called javafaq on the server metalab.unc.edu,
and that this file can be accessed viathe HTTP protocol. The syntax of aURL is:

protocol ://username@hostname:port/path/filename#fragment?query

Here the protocol is another word for what was called the scheme of the URI.
(Scheme is the word used in the URI RFC. Protocol isthe word used in the Java
documentation.) In aURL, the protocol part can befile, ftp, http, https, gopher, news,
Telnet, wais, or various other strings (though not urn).

The hostname part of a URL is the name of the server that provides the resource you
want, like www.oreilly.com or utopia.poly.edu. It can also be the server's I P address,
like 204.148.40.9 or 128.238.3.21. The username is an optional username for the
server. The port number is also optional. It's not necessary if the serviceis running on
its default port (port 80 for HTTP servers).

The path points to a particular directory on the specified server. The path isrelative to
the document root of the server, not necessarily to the root of the filesystem on the
server. Asarule, serversthat are open to the public do not show their entire
filesystem to clients. Rather, they show only the contents of a specified directory. This
directory is called the document root, and all paths and filenames are relative to it.

Thus on aUnix workstation all files that are available to the public may bein
Ivar/public/ntml, but to somebody connecting from a remote machine this directory
looks like the root of the filesystem.

The filename points to a particular file in the directory specified by the path. It is often
omitted, in which caseit isleft to the server's discretion what file, if any, to send.
Many servers send an index file for that directory, often called index.html or
Welcome.html. Others send alist of the files and foldersin the directory as shown in
Figure 3.1. Others may send a 403 forbidden error message as shown in Figure 3.2.

Figure 3.1. A web server configured to send a directory list when no index file exists

B Index of Maml/books - Melscape (O] =]
Eile Edk New Go Lommumcator Help
. L - E o o
4 % a ni + & & m
Aeload Hame Semch Mebsespe Porg Securily
: -f " Boakmarks RN T hilp: Y metalab unc. edudfsnlboaks, ﬂ

Index of /xml/books

a Pat COrT 05-Hay-19959 13:0:2 -
Ij ik J0-Mar-1999 11:38 -
D iy 03-Jan—1999 12:39 -
o il 11 Document: Done e S S L B

Figure 3.2. A web server configured to send a 403 error when no index file exists

¥ 403 Fosbidden - Metzcape H=E
Eile Edit Yiew Go Communcaior Help

I - L - £ -t

4 5 14 ar & 3 = #i = ::
Back Aeload Hame Semch Metscape Port Securily

T § Bookmaks 4 Location [hitp:/fieva sun com Bl festues/1539/05/ =]
Forbidden
Ton don't have permission to access features/ 195905 on thas server

i [racumeant: Done R i = S Lo - Y

The fragment is used to reference a named anchor in an HTML document. Some
documents refer to the fragment part of the URL as a"section™; Java documents rather
unaccountably refer to the section asa"Ref ". A named anchor is created inan HTML
document with atag like this:

Comments

This tag identifies a particular point in adocument. To refer to this point, a URL
includes not only the document's filename, but also the named anchor separated from
the rest of the URL by a#:

http://metalab.unc.edu/javafag/javafaq.html#xtocid1902914

Finally, the query string provides additional arguments for the server. It's commonly
used only in http URLSs, where it contains form data for input to CGI programs. This
will be discussed further later on.

3.1.3 Relative URLs

A URL tellsthe web browser alot about a document: the protocol used to retrieve the
document, the name of the host where the document lives, and the path to that
document on the host. Most of thisinformation islikely to be the same for other
URLsthat are referenced in the document. Therefore, rather than requiring each URL
to be specified in its entirety, a URL may inherit the protocol, hostname, and path of
its parent document (i.e., the document in which it appears). URLs that aren't
complete but inherit pieces from their parent are called relative URLS. In contrast, a
completely specified URL iscalled an absolute URL. In arelative URL, any pieces
that are missing are assumed to be the same as the corresponding pieces from the
URL of the document in which the URL isfound. For example, suppose that while
browsing http://metal ab.unc.edu/javafag/javatutorial .html you click on this hyperlink:

Y our browser cuts javatutorial.html off the end of

http://metal ab.unc.edu/javafag/javatutorial .html to get
http://metalab.unc.edu/javafag/. Then it attaches javafag.html onto the end of
http://metal ab.unc.edu/javafag/ to get http://metal ab.unc.edu/javafag/javafag.html.
Finally, it loads that document.

If the relative link beginswith a7, then it is relative to the document root instead of
relative to the current file. Thus, if you click on the following link while browsing
http://metal ab.unc.edu/javafag/javatutorial .ntml :

your browser would throw away /javafag/javatutorial .html and attach
/boutell/fag/www _ fag.html to the end of http://metalab.unc.edu to get
http://metal ab.unc.edu/boutel | /fagiwww_ fag.html.

Relative URL s have a number of advantages. First and least, they save alittle typing.
More importantly, relative URLs alow a single document tree to be served by
multiple protocols; for instance, both FTP and HTTP. The HTTP might be used for
direct surfing while the FTP could be used for mirroring the site. Most importantly of
all, relative URLs allow entire trees of HTML documents to be moved or copied from
one site to another without breaking all the internal links.

3.2 HTML, SGML, and XML
HTML isthe primary format used for Web documents. As| said earlier, HTML isa

simple standard for describing the semantic content of textual data. The idea of
describing atext's semantics rather than its appearance comes from an older standard

called the Standard Generalized Markup Language (SGML). Standard HTML isan
instance of SGML. SGML was invented beginning in the mid-1970s by Charles
Goldfarb at IBM. SGML is now an International Standards Organization (1SO)
standard, specifically 1SO 8879:1986.

SGML and, by inheritance, HTML are based on the notion of design by meaning
rather than design by appearance. Y ou don't say that you want some text printed in
18-point type; you say that it is atop-level heading (<H1> in HTML). Likewise, you
don't say that aword should be placed in italics. Rather you say it should be
emphasized (<eEM> in HTML). It isleft to the browser to determine how to best display
headings or emphasized text.

The tags used to mark up the text are case insensitive. Thus is the same as
 isthe same as is the same as . Some tags have a
matching closing tag to define aregion of text. A closing tag is the same asthe
opening tag except that the opening angle bracket is followed by a /. For example:
this text is strong; this text is emphasized
The entire text from the beginning of the start tag to the end of the end tag is called an
element. Thus this text is strong iSaSTRONG element.

HTML elements may nest but they should not overlap. Thefirst line following is
standard conforming. The second line is not, though many browsers accept it
nonethel ess:

Jack and Jill went up the hill
to fetch a pail of water

Some elements have additional attributes that are encoded as name-value pairs on the
start tag. The <H1> tag and most other paragraph-level tags may have an ALIGN
attribute that says whether the header should be centered, left aligned, or right aligned.

For example:

<H1 ALIGN=CENTER> This is a centered Hl heading </H1>

The value of an attribute may be enclosed in double or single quotes like this:

<H1 ALIGN="CENTER"> This is a centered H1l heading </H1>
<H2 ALIGN="LEFT"> This is a left-aligned H2 heading </H2>

Quotes are required only if the value contains embedded spaces. When processing
HTML, you need to be prepared for attribute values that do and don't have quotes.

There have been several versions of HTML over the years. The current standard is
HTML 4.0, most of which is supported by current web browsers with occasional
exceptions. Furthermore, several companies, notably Netscape, Microsoft, and Sun,
have added nonstandard extensionsto HTML. These include blinking text, inline
movies, frames, and, most importantly for this book, applets. Some of these
extensions—for example, the <APPLET> tag—are allowed but deprecated in HTML
4.0. Others, such as Netscape's notorious <BL INK>, come out of |eft field and have no
place in a semantically oriented language like HTML.

HTML 4.0 may be the end of the line, aside from minor fixes. The W3C has decreed
that HTML is getting too bulky to layer more features on top of. Instead, new
development will focus on XML, a semantic language that allows page authors to
create the elements they need rather than relying on afew fixed elements such as P
and L1. For example, if you're writing a web page with a price list, you would likely
have an SkU element, a PRICE element, a MANUFACTURER element, a PRODUCT element,
and so forth. That might look something like this:

<PRODUCT MANUFACTURER="'LOTUS">
<NAME>1-2-3</NAME>
<VERSION>5_0</VERSION>
<PLATFORM>Windows</PLATFORM>
<PRICE CURRENCY="'US'"'>299.95</PRICE>
<SKU>DO5WGML</SKU>

</PRODUCT>

Thislooksalot like HTML, in much the same way that Javalookslike C. There are
elements and attributes. Tags are set off by < and >. Attributes are enclosed in
quotation marks, and so forth. However, instead of being limited to afinite set of tags,
you can create all the new and different tags you need. Since no browser can know in
advance all the different elements that may appear, a stylesheet is used to describe
how each of the items should be displayed.

XML has another advantage over HTML that may not be obvious from this ssmple
example. HTML can be quite sloppy. Elements are opened but not closed. Attribute
values may or may not be enclosed in quotes. The quotes may or may not be closed.
XML tightens all this up. It lays out very strict requirements for the syntax of awell-
formed XML document, and it requires that browsers reject al malformed documents.
Browsers may not attempt to fix the problem and make a best-faith effort to display
what they think the author meant. They must simply report the error. Furthermore, an
XML document may have a Document Type Definition (DTD) which can impose
additional constraints on valid documents. For example, aDTD may require that
every PRODUCT element contain exactly one NAME element. This has a number of
advantages, but the key one here isthat XML documents are far easier to parse than
HTML documents. As a programmer, you will find it much easier to work with XML
than HTML.

XML can be used both for pure XML pages and for embedding new kinds of content
in HTML. For example, the Mathematical Markup Language, MathML, isan XML
application for including mathematical equations in web pages. SMIL, the
Synchronized Multimedia Integration Language, is an XML application for including
timed multimedia such as slide shows and subtitled videos on web pages. For alot
more information about XML, see my own The XML Bible, IDG Books, 1999.

3.3HTTP

HTTP, the Hypertext Transfer Protocol, isthe standard protocol for communication
between web browsers and web servers. HTTP specifies how aclient and server
establish a connection, how the client requests data from the server, how the server
responds to that request, and finally how the connection is closed. HT TP connections
use the TCP/IP protocol for datatransfer.

HTTP 1.0 isthe currently accepted version of the protocol. It uses MIME to encode
data. The basic protocol defines a sequence of four steps for each request from a client
to the server:

1

2.

Making the connection. The client establishes a TCP connection to the server,
on port 80 by default; other ports may be specified in the URL.

Making arequest. The client sends a message to the server requesting the
page at a specified URL. The format of this request is typically something like:

GET /index.html HTTP 1.0

GET isakeyword. Zindex.html isarelative URL to afile on the server. The
fileis assumed to be on the machine that receives the request, so thereis no
need to prefix it with http://www. thismachine.com/. HTTP 1.0 isthe
version of the protocol that the client understands. The request is terminated
with two carriage return/linefeed pairs (\r\n\r\n in Java parlance) regardless
of how lines are terminated on the client or server platform.

Although the GET lineis all that is required, a client request can include other
information as well. This takes the following form:

Keyword: Value

The most common such keyword is Accept, which tells the server what kinds
of datathe client can handle (though servers often ignore this). For example,
the following line says that the client can handle four MIME types,
corresponding to HTML documents, plain text, and JPEG and GIF images:

Accept: text/html, text/plain, image/gif, image/jpeg

User-Agent is another common keyword that |ets the server know what
browser is being used. This allows the server to send files optimized for the
particular browser type. The line below says that the request comes from
Version 2.4 of the Lynx browser:

User-Agent: Lynx/2.4 libwww/2.1.4

Finally, the request is terminated with a blank line; that is, two carriage
return/linefeed pairs, \r\An\r\n. A complete request might look like:

GET /Zindex.html HTTP 1.0

Accept: text/html

Accept: text/plain

User-Agent: Lynx/2.4 libwww/2.1.4

In addition to GET, there are several other request types. HEAD retrieves only
the header for the file, not the actual data. Thisis commonly used to check the
modification date of afile, to see whether a copy stored in the local cacheis
still valid. POST sends form data to the server, and PUT uploads afile to the
server.

19.

Theresponse. The server sends a response to the client. The response begins
with aresponse code, followed by MIME header information, then a blank
line, then the requested document or an error message. Assuming the

requested fileis found, atypical response looks like this:
HTTP 1.0 200 OK

. Server: NCSA/1.4.2

MIME-version: 1.0

. Content-type: text/html
. Content-length: 107

<html>
<Head>
<Title>
A Sample HTML file
</Title>
</Head>
<body>
The rest of the document goes here
</body>
</html>

The first line indicates the protocol the server isusing (HTTP 1.0), followed
by aresponse code. 200 0K isthe most common response code, indicating that
the request was successful. Table 3.1 isacomplete list of the response codes
used by HTTP 1.0; HTTP 1.1 adds many more to thislist. The other header
lines identify the server software (the NCSA server, Version 1.4.2), the
version of MIME in use, the MIME content type, and the length of the
document delivered (not counting this header)—in this case, 107 bytes.

Closing the connection. Either the client or the server or both close the
connection. Thus, a separate network connection is used for each request. If
the client reconnects, the server retains no memory of the previous connection
or itsresults. A protocol that retains no memory of past requestsis called
stateless ; in contrast, a stateful protocol such as FTP can process many
requests before the connection is closed. The lack of state is both a strength
and aweakness of HTTP.

Table 3.1. HTTP 1.0 Response Codes

Response
Code

M eaning

2xx Successful

Response codes between 200 and 299 indicate that the request was received,
understood, and accepted.

200 OK

This isthe most common response code. If the request used GET or POST, then the
reguested data is contained in the response, along with the usual headers. If the request
used HEAD, then only the header information is included.

The server has created a data file at a URL specified in the body of the response. The

201 Created |web browser should now attempt to load that URL. Thisis sent only in response to

POST requests.

This rather uncommon response indicates that arequest (generally from POST) is
being processed, but the processing is not yet complete so no response can be returned.

202 Accepted |The server should return an HTML page that explains the situation to the user,

provides an estimate of when the request is likely to be completed, and, ideally, has a
link to a status monitor of some kind.

204 No

The server has successfully processed the request but has no information to send back

Content tothe client. Thisisusually the result of a poorly written form-processing CGlI
program that accepts data but does not return a response to the user indicating that it
has finished.

3xX Response codes from 300 to 399 indicate that the web browser needstogoto a

Redirection different page.

The page requested is available from one or more locations. The body of the response

300 Multiple includes alist of locations from which the user or web browser can pick the most

Choi cgs 'p appropriate one. If the server prefers one of these choices, the URL of this choiceis
included in aLocation header, which web browsers can use to load the preferred
page.

301 Moved The page has moved to a new URL. The web browser should automatically load the

Permanently |page at this URL and update any bookmarks that point to the old URL.

302 Moved This unusual response code indicates that a page is temporarily at anew URL but that

Temporaril the document's location will change again in the foreseeable future, so bookmarks

POTaLY " |should not be updated.
The client has performed a GET request but used the I F-Mod i Fied-Since header

304 Not to indicate that it wants the document only if it has been recently updated. This status

Modified code is returned because the document has not been updated. The web browser will
now |load the page from a cache.

Response codes from 400 to 499 indicate that the client has erred in some fashion,

xx Client though this may as easily be the result of an unreliable network connection asitis of a
buggy or nonconforming web browser. The browser should stop sending data to the

Error . ; o .
server as soon as it receives a 4xx response. Unlessit is responding to a HEAD request,
the server should explain the error statusin the body of its response.

400 Bad The client request to the server used improper syntax. Thisis rather unusual, though it

Request islikely to happen if you're writing and debugging a client.

201 Authorization, generally username and password controlled, is required to access this

. page. Either the username and password have not yet been presented or the username

Unauthorized , .
and password are invalid.

The server understood the request but is deliberately refusing to processit.

403 Forbidden |Authorization will not help. One reason this occursis that the client asks for a
directory listing but the server is not configured to provide it, as shown in Figure 3.1.
This most common error response indicates that the server cannot find the requested

404 Not Found |page. It may indicate a bad link, a page that has moved with no forwarding address, a
mistyped URL, or something similar.

Bxx Server Response codes from 500 to 599 indicate that something has gone wrong with the

Error server, and the server cannot fix the problem.

500 Internal .

An unexpected condition occurred that the server does not know how to handle.

Server Error
The server does not have the feature that is needed to fulfill thisrequest. A server that

501 Not . . . i
cannot handle POST requests might send this response to a client that tried to POST

Implemented ;
form datato it.

This response is applicable only to serversthat act as proxies or gateways. It indicates

502 Bad ! S) 4 .

Gateway that the proxy received an invalid response from a server it was connecting to in an
effort to fulfill the request.

503 Service | The server istemporarily unable to handle the request, perhaps because overloading or

Unavailable |maintenance.

HTTP 1.1 more than doubles the number of responses. However, aresponse code
from 200 to 299 always indicates success; a response code from 300 to 399 always
indicates redirection; one from 400 to 499 always indicates a client error; and one
from 500 to 599 indicates a server error.

HTTP 1.0 is documented in the informational RFC 1945; it is not an official Internet
standard because it was primarily developed outside the IETF by early browser and
server vendors. HTTP 1.1 is a proposed standard being developed by the W3C and the
HTTP working group of the IETF. It provides for much more flexible and powerful
communication between the client and the server. It's also alot more scalable.

The primary improvement in HTTP 1.1 is state. HTTP 1.0 opens a new connection for
every request. In practice, the time taken to open and close al the connections opened
in atypical web session can outweigh the time taken to transmit the data, especially
for sessions with many small documents. HTTP 1.1 alows a browser to send many
different requests over a single connection; the connection remains open until it is
explicitly closed. The requests and responses are all asynchronous. A browser doesn't
need to wait for aresponse to its first request before sending a second or athird.
However, it remainstied to the basic pattern of a client request, followed by a server
response that consists of a series of headers, followed by a blank line, followed by
MIM E-encoded data.

There are alot of other smaller improvementsin HTTP 1.1. Requests include aHost
MIME header so that one web server can easily serve different sites at different URLS.
Servers and browsers can exchange compressed files and particular byte ranges of a
document, both of which can decrease network traffic. And HTTP 1.1 isdesigned to
work much better with proxy servers. Although HTTP 1.1 isn't quite finished, it is
relatively stable, and most major web servers implement at least some parts of it. Web
clients (that is, browsers) are alittle further behind, but the more recent browsers
implement partsaswell. HTTP 1.1 isastrict superset of HTTP 1.0, o HTTP 1.1 web
servers have no trouble interacting with older browsers that speak only HTTP 1.0.

3.4 MIME

MIME is an open standard for sending multipart, multimedia data through Internet
email. The data may be binary, or it may use multiple ASCII and non-ASCI|
character sets. Although MIME was originally intended for email, it has become a
widely used technique to describe afile's contents so that client software can tell the
difference between different kinds of data. For example, aweb browser uses MIME to
tell whether afileisa GIF image or a printable PostScript file.

1 Officially, MIME stands for Multipurpose Internet Mail Extensions, which is the expansion of the acronym
used in RFC 2045. However, you will hear other versions—most frequently, Multipart Internet Mail Extensions
and Multimedia Internet Mail Extensions.

MIME supports almost a hundred predefined types of content. Content types are
classified at two levels: atype and a subtype. The type shows very generally what
kind of datais contained: isit apicture, isit text, isit amovie? The subtype identifies
the specific type of data: GIF image, JPEG image, TIFF image. For example, HTML's
content type is text/html; the type is text, and the subtype is html. The content type
for aGIF imageis image/gif; thetypeis image, and the subtypeisgif. Table 3.2
lists the more common defined content types. On most systems, asimple text file
maintains a mapping between MIME types and the application used to process that
type of data; on Unix, thisfileis called mime.types. The most current list of registered
MIME typesis available from ftp://ftp.isi.edu/in-notes/iana/assignments/media-
types/media-types.2

12 For more details on MIME, see Jerry Sweet, Ed Vielmetti, and Tim Goodwin, The comp.mail.mime FAQ,
http://www.cs.ruu.nl/wais/html/na-dir/mail/mime-fag/.html; N. Borenstein, Bellcore, "Multimedia Mail From the

Bottom Up or Teaching Dumb Mailersto Sing", ConneXions, pp. 10-16, Nov. 91; G. Vaudreuil, CNRI, "MIME:
Multi-Media, Multi-Lingual Extensions for RFC 822 Based Electronic Mail", ConneXions, pp. 36-39, Sep. 92.

The datareturned by an HTTP 1.0 or 1.1 web server is sent in MIME format. Most
web servers and clients understand at least two MIME text content types, text/html
and text/plain, and two image formats, image/gif and image/jpeg. The Web also
uses MIME for posting forms to web servers, acommon way for an applet to
communicate with aserver. Finally, Javarelies on MIME types to pick the
appropriate content handler for a particular stream of data.

Table 3.2. Predefined MIME Content Types

Type Subtype Description
text The document represents printable text.
Calendaring and scheduling information in the iCalendar format; see RFC
calendar 2445
css A Cascading Style Sheet used for HTML and XML.
directo Address book information such as name, phone number, and email address;
"Y' lused by Netscape vCards; defined in RFCs 2425 and 2426.
A very simple HTML-like language for adding basic font and paragraph-level
enriched formatting such as bold and italic to email; used by Eudora; defined in RFC
1896.
html Hypertext Markup Language as used by web browsers.
Thisis supposed to imply raw ASCII text. However, some web servers use
lain text/plain asthe default MIME type for any file they can't recognize.
P Therefore, anything and everything, most notably .class byte code files, can
get identified asa text/plain file
richtext Thisisan HTML-like markup for encoding formatting into pure ASCI| text.
It's never really caught on, in large part because of the popularity of HTML.
rtf An incompletely defined Microsoft format for word processing files.
sgml The Standard Generalized Markup Language; 1SO standard 8879:1986.
tab—ar ated- Theinterchange format used by many spreadsheets and databases; records are
\Sglpu% separated by line breaks, and fields by tabs.
xml The W3C standard Extensible Markup Language.
multipart Multipart MIME messages encode severa different filesinto one message.
mixed Several message parts intended for sequential viewing.
alternative The same messagein multiple formats so a client may choose the most
convenient one.
dicest A popular format for merging many email messages into a single digest; used
9 by many mailing lists and some FAQ lists.
paralel Several parts intended for simultaneous viewing.
byteranges |Several separately contiguous byte ranges; used in HTTP 1.1.
One part for the body of the message and one part for the information
encrypted
necessary to decode the message.
signed One part for the body of the message and one part for the digital signature.
related Compound documents formed by aggregating several smaller parts.
form-data |Form responses.
message An email message.
external- Just the headers of the email message; the message's body is not included but
body exists at some other location and is referenced, perhaps by a URL.

http

An HTTP 1.1 request from aweb client to aweb server.

news A news article.
. Part of alonger email message that has been split into multiple partsto allow
partial - ;
transmission through email gateways.
rfc822 A standard email message including headers.
image Two-dimensional pictures.
cam A Computer Graphics Metafile format image. CGM is SO standard
9 8632:1992 for device-independent vector graphics and bitmap images.
g3fax The standard for bitmapped fax images.
A Graphics Interchange format image. The format was originally developed
oif by CompuServe. It uses certain compression algorithms on which Unisys
holds a patent.
. The Joint Photographic Experts Group file format for bitmapped images with
1Peg |lossy compression.
A Portable Network Graphics Format image. The format was developed at the
png W3C as amore modern replacement for GIF that supported 24-bit color and
was not encumbered by patents.
tiff The Tagged Image File format from Adobe.
audio Sound.
8-bit ISDN -law encoded audio with a single channel and a sample rate of
basic eight kilohertz. Thisisthe format used by .au and .snd files and supported by
the Jjava.applet._AudioClip class.
video Video.
m The Motion Picture Experts Group format for video data with lossy
Peg compression.
Licktime Appl€e's proprietary QuickTime movie format. Before being included in a
q MIME message, QuickTime files must be "flattened".
model 3-D images.
A Virtual Reality Modeling Language file, an evolving standard for 3-D data
vrml
on the Web.
ies The Initial Graphics Exchange Specification for interchanging documents
9 between different CAD programs.
mesh The mesh structures used in finite element and finite difference methods.
application Binary data specific to some application.
octet-stream Unspecified binary data, which is usually saved into afile for the user. This
MIME type is sometimes used to serve .class byte codefiles.
java A not-yet-standard subtype sometimes used to serve .class byte code files.
postscript |Adobe PostScript.
dcarrft IBM's Document Content Architecture-Richly Formatted Text.
mac- A means of encoding the two forks of a Macintosh document into asingle
BinHex40 |ASCII file.
pdf An Adobe Acrobat file.
Zip A zip compressed file.
macwriteii |A MacWrite Il word processing document.
msword A Microsoft Word document.
xml An Extensible Markup Language document.

A MIME-compliant program is not required to understand all these different types of
data; it just needs to recognize what it can and cannot handle. Many programs—
Netscape Navigator, for example—use various hel per programsto display types of
content they themselves don't understand.

MIME allows you to define additional nonstandard subtypes by using the prefix x-.
For example, the content type application/x-tex hasthe MIME type application
and the nonstandard subtype x-tex for a TeX document. These x-types are not
guaranteed to be understood by any program other than the one that created them.
Indeed, two programs may use the same x-type to mean two completely different
things; or different programs may use different x-types to mean the same thing.
However, many nonstandard types have come into common use; some of the more
common ones are listed in Table 3.3.

Table 3.3. X-types

Type X-subtype Description
_— Subtypes of an application; the name of the subtype isusually afile
application -
format name or an application name.
x-aiff SGI's AIFF audio data format.
X-bitmap An X Windows bitmap image.
X-gzip Data compressed in the GNU gzip format.
X-dvi A TeX DVI document.
x-framemaker |A FrameMaker document.
X-latex A LaTeX document.
-macBinHex40 Identlpal to appl ication/mac-BinHex40, but older software may
use this x-type instead.
x-mif A FrameMaker MIF document.
w-sd A session directory protocol announcement, used to announce MBONE
events.
A shell archive; the Unix equivalent of a Windows or Macintosh self-
w-shar extracting archive. Software shouldn't be configured to unpack shell
archives automatically, because a shell archive can call any program the
user who runsit has the rightsto call.
X-tar A tar archive.
x-gtar A GNU tar archive.
A tool command language (TCL) program. Y ou should never configure
x-tcl your web browser or email program to automatically run programs you
download from the web or receive in email messages.
X-tex A TeX document.
x-texinfo A GNU texinfo document.
x-troff A troff document.
x-troff-man A troff document written with the man macros.
x-troff-me A troff document that should be processed using the me macros.
x-troff-ms A troff document that should be processed using the ms macros.
x-wais-source |A WAIS source.
A CGI query string that has been encoded like a URL, with + replacing
X-www-form- : i '
spaces and % escapes replacing non-a phanumeric characters that aren't
urlencoded
separators.
audio
x-aiff The sameasapplication/x-aiff: an AIFF audiofile.
X-mpeg The MP3 sound format.
X-mpeg.mp3 The MP3 sound format.
X-wav The Windows WAV sound format.
image
x-fits The FITS image format used primarily by astronomers.

X-macpict A Macintosh PICT image.

X-pict A Macintosh PICT image.
X-macpaint A MacPaint image.
X-pbm A portable bitmap image.
X-portable- . .
bitmap A portable bitmap image.
X-pgm A PGM image.
video
X-msvideo A Microsoft AVI Video for Windows.
X-sgi-movie A Silicon Graphics movie.
3.5 CGl

CGil, the common gateway interface, is used to generate web pages dynamically;
essentially, the browser invokes a program on the server that creates a new page on
the fly. This web page may be based purely on server data, or it may process the
results of a client form submission, the URL the client chose, or various environment
variables. CGI programs can be written in almost any language, including Java,
though currently most CGI programming is donein Perl, C, or AppleScript.

CGlI programs run as independent processes, initiated by the HTTP server each time a
request for servicesisreceived. This has three important consequences. First, CGI
programs are relatively safe to run. A CGI program can crash without damaging the
server, at least on preemptively multitasking memory-protected operating systems
such as Unix and NT. Second, the CGI program has strictly limited access to the
server. Third, CGI programs exact a performance penalty relative to serving a static
file, because of the overhead of spawning a separate process for each request.

The simplest CGI programs run without any input from the user. From the viewpoint
of the client, these are accessed like any other web page and aren't of much concern to
this book. The difference between aweb page produced by a CGI program that takes
no input and aweb page written in static HTML is all on the server side. What
happens on the server side has been adequately covered in several other books. For
more information about writing server programs that process CGI input and create
dynamic web pages, see Shisir Gundavaram's CGI Programming with Perl (O'Reilly
& Associates, Inc., 1999, ISBN 1-56592-419-3).

This book approaches CGI from an unusual direction: how to write a client that sends
datato a CGI program. The most common use of CGlI isto process user input from
HTML forms. In this capacity, CGI provides a standard, well understood and well
supported means for Java applets and applications to talk to remote systems; therefore,
I will cover how to use Javato talk to a CGI program on the server. There are other
ways for Java programs to talk to servers, including Remote Method Invocation (RMI)
and servlets. However, RMI is slow and servlets are not supported by all web servers.
By way of contrast, CGI is mature, robust, better supported across multiple platforms
and web servers, and better understood in the web development community.
Furthermore, the client-side interface to servlets is amost exactly like the client-side
interface to CGI programs, so what we say about talking to CGI programs will apply
equally to talking to servlets.

Example 3.1 and Figure 3.3 show a simple form with two fields that collects a name
and an email address. The values the user entersin the form are sent back to the server
when the user presses the " Submit Query” button. The CGI program to run when the
form datais received is/cgi-bin/register.pl; the program is specified in the ACTION
attribute of the FORM element. The URL in this parameter is usually arelative URL, as
itisinthis example.

Example 3.1. A Simple Form with Input Fields for a Name and an Email Address

<HTML>
<HEAD>
<TITLE>Sample Form</TITLE>
</HEAD>
<BODY>

<FORM METHOD=GET ACTION="/cgi/register.pl*>

<PRE>

Please enter your name: <INPUT NAME="username" SI1ZE=40>
Please enter your email address: <INPUT NAME="email" SI1ZE=40>
</PRE>

<INPUT TYPE=""SUBMIT"">

</FORM>
</BODY>
</HTML>
Figure 3.3. A simple form
HL Sample Form - Netscape _ O] =]
Fi= Edi View Go Commuricator Help
. 3 B 2 G 3 & @ :
Back Aeload Heome Search Metscape Fint Secunly
¢ Bockmaks) Locabion [fle:/ /D1 ava NP ewamples U303 himl =]
Please enter your name: [Eriiotce Ruscy Harold

Flease enter your emall addreas: |'31|15|-":'ET""5’='-"-1'-"3'-'-"-'1-'3-'5'-"-'4

Submit Cuery

o =lE Documert: Dions B e o B

The web browser reads the data the user enters and encodes it in asimple fashion. The
name of each field is separated from its value by the equals sign (=). Different fields
are separated from each other by an ampersand, & . Each field name and value is x-
www-form-url-encoded; that is, any non-ASCII or nonal phanumeric characters are
replaced by a percent sign followed by hexadecimal digits giving the value for that
character in some character set. Spaces are a special case because they're so common.
Instead of being encoded as %20, they become the + sign. The plus signitself is
encoded as %2b. For example, the data from the form in Figure 3.1 is encoded as:

username=El l iotte+Rusty+Harold&emai l=elharo%40metalab%2eunc%2eedu
Thisis called the query string.

There are two methods by which the query string can be sent to the server: GET and
POST. If the form specifies the GET method, the browser attaches the query string to

the URL it sends to the server. CGI programs that use POST send the query string on
an output stream. The form in Example 3.1 uses GET to communicate with the server,
So it connects to the server and sends the following command:

GET
/cqgi7/register.pl?username=El liotte+Rusty+Harold&emai l=elharo%40metal
ab.unc.edu HTTP 1.0

The server isresponsible for recognizing that the URL contains the name of the CGI
program plus input for the program,; it passes the query string to the program, usually
as an environment variable. Because of limitationsin the lengths of environment
variables on some platforms, the GET method is unreliable for sending more than
about 200 characters of text. In these cases you're better off using POST.

With the POST method, the web browser sends the usual headers and follows them
with ablank line (two successive carriage return/linefeed pairs) and then sends the
query string. The query string is passed to the CGI program on standard input. If the
form in Figure 3.1 used POST, it would send this to the server:

POST /cgi-bin/register.pl HTTP 1.0
Content-type: application/x-www-form-urlencoded
Content-length: 65

username=El liotte+Rusty+Harold&emai l=elharo%40metalab.unc.edu

There are many different form tagsin HTML that produce pop-up menus, radio
buttons, and more. However, although these input widgets appear different to the user,
the format of datathey send to the server is the same. Each form element provides a
name and an encoded string value.

3.6 Applets and Security

Now that you understand how files are transferred across the Web, you're ready to
explore how applets are transferred. On one hand, applets are just more filesthat are
transferred like any other. On the other hand, what an applet can do is closely related
to where it came from. Thisisn't true of other datatypes such asHTML and GIF.

3.6.1 Where Do Applets and Classes Come from?

When aweb browser sees an applet tag and decides to download and play the applet,
it starts along chain of events. Let's say your browser sees the following applet tag:

<applet codebase="http://metalab.unc.edu/javafag/classes"
code=""Animation.class"™ width="200" height=""100"">

1. Theweb browser sets aside arectangular area on the page 200 pixels wide and
100 pixels high. In most web browsers, this area has a fixed size and cannot be
modified once created. The appletviewer in the JDK is a notable exception.

2. The browser opens a connection to the server specified in the codebase
parameter, using port 80 unless another port is specified in the codebase URL.

If there's no codebase parameter, then the browser connects to the same
server that served the HTML page.

3. The browser requests the .class file from the web server asit requests any
other file. If acodebase is present, it is prefixed to the requested filename.
Otherwise, the document base (the directory that contains the HTML page) is
used. For example:

GET /javafag/classes/Animation.class HTTP 1.0

4. The server responds by sending aMIME header followed by ablank line
(\r\n) followed by the binary datain the .classfile. A properly configured
server sends .class fileswith MIME type application/octet-stream. For
example:

HTTP 1.0 200 OK

Date: Mon, 10 Jun 1999 17:11:43 GMT

Server: Apache/1.2.8

. Content-type: application/octet-stream

. Content-length: 2782
Last-modified: Fri, 08 Sep 1998 21:53:55 GMT

© 0o~NO O

Not all web servers are configured to send .class files correctly. Some send
them as text/plain, which, though technically incorrect, works in most
Cases.

10. The web browser receives the data and storesit in a byte array.

11. The byte code verifier goes over the byte codes that have been received to
make sure they don't do anything forbidden, such as converting an integer into
apointer.

12. If the byte code verifier is satisfied with the bytes that were downloaded, then
the raw datais converted into a Java class using the defineClass() and
loadClass() methods of the current ClassLoader object.

13. The web browser instantiates the Animation class using its noargs constructor.

14. The web browser invokes the init() method of Animation.

15. The web browser invokes the start() method of Animation.

If the Animation class references another class, the Java interpreter first searches for
the new class in the user's CLASSPATH. If the classis found in the user's CLASSPATH,
then it is created from the .class file on the user's hard drive. Otherwise the web
browser goes back to the site from which this class came and downloads the .classfile
for the new class. The same procedureis followed for the new class and any other
class that is downloaded from the Net. If the new class cannot be found, a
ClassNotFoundException isthrown.

3.6.2 Security: Who Can an Applet Talk to and What Can It Say?
There is much FUD (fear, uncertainty, and doubt) in the press about what Java applets
can and cannot do. Thisis not abook about Java security, but | will mention afew

things that applets |loaded from the network are usually prohibited from doing.

o Applets cannot access arbitrary addresses in memory. Unlike the other
restrictions in the list, which are enforced by the browser's SecurityManager

instance, thisrestriction is a property of the Javalanguage itself and the byte
code verifier.

Applets cannot access the local filesystem in any way. They cannot read from
or write to the local filesystem nor can they find out any information about
files. Therefore, they cannot find out whether afile exists or what its
modification date may be.

Applets cannot launch other programs on the client. In other words, they
cannot call System.exec() or Runtime.exec().

Applets cannot load native libraries or define native method calls.

Applets are not allowed to use System.getProperty() inaway that reveas
information about the user or the user's machine, such as a username or home
directory. They may use System.getProperty() to find out what version of
Javaisin use.

Applets may not define any system properties.

Figure 3.4. Applet network security preferences in HotJava 1.1.4

55 Hotlavaltm]: Advanced Secusity Prelerence:
Fie Edit View Faces Hsip

(D O (83 (23 (13 () () (@ AP

p|m,:,:| docAibmatiavaiareferenc es-advsacurity himi

___4@? Advanced Security Settings |

Select a group, a site, or a certificate name frem the screlling list
Then chooss from these three options to give the selaction

¢ System Permissions v orilty. com
" AccesstoFiles

@ Metwork Access

Details fdd Site Add Groug I Remave

You may apply these settings to this salection.
SeMings you choose for 3 aroud will Appky 1o a9 e ilems in hat group, i adoifion o te indkidua
settings for gach item in fhat group

wiwrworeilly.com

Allowe salechion to listen on Bese pors
[20, 27,25
[warn hefore allowing listen on other ports

Al connectng bo Shese sites: Arcegl connectons ko these Sloes
ftp_areilly.com EI fava.nredlly.com il
wieg ol .com wieh orailly.corm

[+ Warm hefore connecting to other sites [+ Wam before accepting connection from other sites.

Apphy I Resat I Help | =« Basic | ﬂ

e InJaval.l and later, applets may not create or manipulate any Thread or
ThreadGroup that is not in the applet's own ThreadGroup. They may do this
inJava 1.0.

o Applets cannot define or use a new instance of ClassLoader,
SecurityManager, ContentHandlerFactory, SocketImplFactory, Or
URLStreamHandlerFactory. They must use the ones already in place.

Finally, and most importantly for this book:

« An applet can only open network connections to the host from which the
applet itself was downloaded.

o An applet cannot listen on ports below 1,024. (Internet Explorer 5.0 doesn't
allow appletsto listen on any ports.)

« Evenif an applet can listen on a port, it can accept incoming connections only
from the host from which the applet itself was downloaded.

Of these 11, only the second and ninth are serious inconveniences for a significant
number of applets. These restrictions can be relaxed for digitally signed applets.
Figure 3.4 shows the HotJava advanced applet security preferences window that
allows the user to choose exactly which privileges she does and does not want to grant
to which applets. Navigator and Internet Explorer 4.0 and later have similar options.
Unfortunately, all three browsers have different procedures for alowing applets to ask
the user for additional permissions.

However, even if you sign your applet, you should not expect that the user will choose
to allow you to open connections to arbitrary hosts. If your program cannot live with
these restrictions, it should be an application instead of an applet. Java applications
arejust like any other sort of application: they aren't restricted as to what they can do.
If you are writing an application that will download and execute classes, you should
consider carefully what restrictions you should put in place and design an appropriate
security policy to implement those restrictions.

Chapter 4. Java I/O

A large part of what network programs do is simple input and output, moving bytes
from one system to another. Bytes are bytes,; and to alarge extent, reading dataa
server sendsyou is not all that different from reading afile. Sending text to aclient is
not all that different from writing afile. However, input and output (1/0O) in Javais
organized differently than it isin most other languages, such as C, Pascal, and C++.
Consequently, I'd like to take one chapter to summarize Java's unique approach to |/O.

[/0O in Javais built on streams. Input streams read data. Output streams write data.
Different fundamental stream classes such as java.io.FilelnputStream and
sun.net.TelnetOutputStream read and write particular sources of data. However,
all fundamental output streams have the same basic methods to write data and all
fundamental input streams use the same basic methods to read data. After astreamis
created, you can often ignore the details of exactly what it isyou're reading or writing.

Filter streams can be chained to either an input stream or an output stream. Filters can
modify the data as it's read or written—for instance, by encrypting or compressing
it—or they can ssmply provide additional methods for converting the data that's read
or written into other formats. For instance, the java. io.DataOutputStream class
provides a method that converts an int to four bytes and writes those bytes onto its
underlying output stream.

Finally, readers and writers can be chained to input and output streamsto allow
programs to read and write text (that is, characters) rather than bytes. Used properly,

readers and writers can handle awide variety of character encodings, including
multibyte character sets such as SJIS and UTF-8.

4.1 Output Streams

Javas basic output classis java. io.OutputStream :

public abstract class OutputStream

This class provides the fundamental methods needed to write data. These are:

public abstract void write(int b) throws I0Exception
public void write(byte[] data) throws I0Exception
public void write(byte[] data, int offset, int length)
throws 10Exception

public void Flush() throws 10Exception

public void close() throws 10Exception

Subclasses of outputStream use these methods to write data onto particular media.
For instance, a Fi leOutputStream uses these methods to write datainto afile. A
TelnetOutputStream uses these methods to write data onto a network connection. A
ByteArrayOutputStream uses these methods to write data into an expandable byte
array. But whichever medium you're writing to, you mostly use only these same five
methods. Sometimes you may not even know exactly what kind of stream you're
writing onto. For instance, you won't find TelnetOutputStream in the Java class
library documentation. It's deliberately hidden inside the sun packages. It's returned
by various methods in various classes in java.net, like the getOutputStream()
method of java.net.Socket. However, these methods are declared to return only
OutputStream, not the more specific subclass TelnetOutputStream. That's the
power of polymorphism. If you know how to use the superclass, you know how to use
all the subclasses too.

OutputStream's fundamental method iswrite(int b). This method takes as an
argument an integer from to 255 and writes the corresponding byte to the output
stream. This method is declared abstract because subclasses will need to change it to
handle their particular medium. For instance, a ByteArrayOutputStream can
implement this method with pure Java code that copies the byte into its array.
However, aFileOutputStream will need to use native code that understands how to
write datain files on the host platform.

Take special care to note that although this method takes an int as an argument, it
actually writes an unsigned byte. Java doesn't have an unsigned byte data type, so an
int hasto be used hereinstead. The only real difference between an unsigned byte
and a signed byte is the interpretation. They're both made up of eight bits, and when
you write an int onto a network connection using write(int b), only eight bits are
placed on the wire. If an int outside the range 0-255 is passed to write(int b), the
least significant byte of the number iswritten, and the remaining three bytes are
ignored. (Thisisthe effect of casting an int to abyte.) On rare occasion, however,
you may find a buggy third-party class that does something different, such as
throwing an 111egal ArgumentException or always writing 255, so it's best not to
rely on this behavior if possible.

For example, the character generator protocol defines a server that sends out ASCII
text. The most popular variation of this protocol sends 72-character lines containing
printable ASCII characters. (The printable ASCII characters are those from 33 to 126
that exclude the various whitespace and control characters.) The first line contains
characters 33 through 104 sorted. The second line contains characters 34 through 105.
The third line contains characters 35 through 106. This continues through line 29,
which contains characters 55 through 126. At that point, the characters wrap around
so that line 30 contains characters 56 through 126 followed by character 33 again.

Lines are terminated with a carriage return (ASCII 13) and alinefeed (ASCII 10). The
output looks like this:

TU#3%&" (.)*+, -

./0123456789: ; <=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]”_"abcdefgh
ll#$%&l()*+,_

./0123456789: ; <=>?@ABCDEFGH 1 JKLMNOPQRSTUVWXYZ[\]"_"abcdefghi
HSU&™ (), -

./0123456789: ; <=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]~_~abcdefghi j
$N&"(C)*+, -

./0123456789: ; <=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]”_~abcdefghi jk
w&"()*+,-

./0123456789: ; <=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]~_~abcdefghi jkI
& (.)*+,-

./0123456789: ; <=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]”_"abcdefghi jkim
.()*+1_

./0123456789: ; <=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]~_~abcdefghi jkimn

Since ASCII isa7-bit character set, each character is sent as asingle byte.
Consequently, this protocol is straightforward to implement using the basicwrite()
methods as the next code fragment demonstrates:

public static void generateCharacters(OutputStream out)
throws 10Exception {

int firstPrintableCharacter = 33;
int numberOfPrintableCharacters = 94;
int numberOfCharactersPerLine = 72;

int start = firstPrintableCharacter;
while (true) { /* infinite loop */
for (int i = start; i < start+numberOfCharactersPerLine; i++) {
out.write((
(i-firstPrintableCharacter) % numberOfPrintableCharacters)
+ FirstPrintableCharacter);

}

out.write("\r"); // carriage return
out.write("\n"); // linefeed
start = ((start+l) - firstPrintableCharacter)
% numberOfPrintableCharacters + firstPrintableCharacter;
e

The character generator server class (the exact details of which will have to wait until
we discuss server socketsin Chapter 11) passes an OutputStream named out to the
generateCharacters() method. Bytes are written onto out one a atime. These
bytes are given as integers in a rotating sequence from 33 to 126. Most of the
arithmetic here is to make the loop rotate in that range. After each 72 characters are
written, a carriage return and a linefeed are written onto the output stream. The next
start character is calculated and the loop repeats. The entire method is declared to
throw 10Exception. That's important because the character generator server will
terminate only when the client closes the connection. The Java code will seethisasan
I0Exception.

Writing asingle byte at atime is often inefficient. For example, every TCP segment
that goes out your Ethernet card contains at |east 40 bytes of overhead for routing and
error correction. If each byteis sent by itself, then you may be filling the wire with 41

times more data than you think you are! Consequently, most TCP/IP implementations
buffer data to some extent. That is, they accumulate bytes in memory and send them
to their eventual destination only when a certain number have accumulated or a
certain amount of time has passed. However, if you have more than one byte ready to
go, it's not abad idea to send them all at once. Using write(byte[] data) or
write(byte[] data, intoffset, int length) isnormally much faster than
writing al the components of the data array one at atime. For instance, here's an
implementation of the generateCharacters() method that sendsaline at atime by
stuffing a complete line into a byte array:

public static void generateCharacters(OutputStream out)
throws 10Exception {

int firstPrintableCharacter = 33;

int numberOfPrintableCharacters = 94;

int numberOfCharactersPerLine = 72;

int start = firstPrintableCharacter;

byte[] line = new byte[numberOfCharactersPerLine+2];
// the +2 is for the carriage return and linefeed

while (true) { /* infinite loop */
for (int i = start; i < start+numberOfCharactersPerLine; i++) {
line[i-start] = (byte) ((i-firstPrintableCharacter)
% numberOfPrintableCharacters + firstPrintableCharacter);

by

line[72] = (byte) "\r~"; // carriage return

line[73] = (byte) "\n"; // line feed

out.write(line);

start = ((start+l)-firstPrintableCharacter)

% numberOfPrintableCharacters + firstPrintableCharacter;
b

}

The algorithm for calculating which bytes to write when is the same as for the
previous implementation. The crucia difference isthat the bytes are all stuffed into a
byte array before being written onto the network. Also notice that the int result of the
calculation must be cast to abyte before being stored in the array. This wasn't
necessary in the previous implementation because the single bytewrite() method is
declared to take an int as an argument.

Streams can a'so be buffered in software, directly in the Java code aswell asin the
network hardware. Typically, thisis accomplished by chaining a
BufferedOutputStream Or aBufferedwriter to the underlying stream, atechnique
well explore shortly. Consequently, if you are done writing data, it's important to
flush the output stream. For example, suppose you've written a 300-byte request to an
HTTP 1.1 server that uses HTTP Keep-Alive. You generally want to wait for a
response before sending any more data. However, if the output stream has a 1,024-
byte buffer, then the stream may be waiting for more data to arrive before it sends the
data out of its buffer. No more data will be written onto the stream until after the
server response arrives, but that's never going to arrive because the request hasn't yet
been sent! The buffered stream won't send the data to the server until it gets more data
from the underlying stream, but the underlying stream won't send more data until it
gets data from the server, which won't send data until it gets the data that's stuck in the

buffer! Figure 4.1 illustrates this Catch-22. The flush() method rescues you from
this deadlock by forcing the buffered stream to send its data even if the buffer isn't yet
full.

Figure 4.1. Data can get lost if you don't flush your streams

I've senl the message lo
the cwant. Mow I'if walt for
it o rasnong.

Twondar whera tha rast of
that message i5?

This massage lsn't iy anaugh
to bothar sending. VI wail for
Iha garvar o sand soing mare
bafare | pass this along.

Buliered DulpulStream

WEE SERVER WEB CLIENT

It's important to flush whether you think you need to or not. Depending on how you
got hold of areference to the stream, you may or may not know whether it's buffered.
(For instance, System.out is buffered whether you want it to be or not.) If flushing
isn't necessary for a particular stream, it's avery low cost operation. However, if it is
necessary, it's very necessary. Failing to flush when you need to can lead to
unpredictable, unrepeatable program hangs that are extremely hard to diagnose if you
don't have agood idea of what the problem isin the first place. Asacorollary to al
this, you should flush all streams immediately before you close them. Otherwise, data
left in the buffer when the stream is closed may get lost.

Finally, when you're done with a stream, you should close it by invoking its close()
method. This releases any resources associated with the stream, such asfile handles or
ports. Once an output stream has been closed, further writes to it will throw
10Exceptions. However, some kinds of streams may still allow you to do things with
the object. For instance, a closed ByteArrayOutputStream can still be converted to
an actual byte array and a closed DigestOutputStream can still return its digest.

4.2 Input Streams
Java's basic input classis java. io. InputStream:
public abstract class InputStream

This class provides the fundamental methods needed to read data as raw bytes. These
are:

public abstract int read() throws 10Exception
public int read(byte[] input) throws I0Exception

public int read(byte[] input, int offset, int length) throws
I0Exception

public long skip(long n) throws I0Exception

public int available() throws I0Exception

public void close() throws 10Exception

Concrete subclasses of InputStream use these methods to read data from particul ar
media. For instance, aFilelnputStream reads datafrom afile. A
TelnetlnputStream reads data from a network connection. A

ByteArray InputStream reads datafrom an array of bytes. But whichever source
you're reading, you mostly use only these same six methods. Sometimes you may not
even know exactly what kind of stream you're reading from. For instance,
TelnetlnputStream isan undocumented class hidden inside the sun.net package.
Instances of it are returned by various methods in the java.net package; for example,
the openstream() method of java.net.URL. However, these methods are declared
to return only InputStream, not the more specific subclass TelnetlInputStream.
That's polymorphism at work once again. The instance of the subclass can be used
transparently as an instance of its superclass. No specific knowledge of the subclassis
required.

The basic method of InputStream isthe noargs read() method. This method reads
asingle byte of data from the input stream's source and returns it as a number from to
255. End of stream is signified by returning -1. Since Java doesn't have an unsigned
byte data type, this number isreturned as an int. The read() method waits and
blocks execution of any code that followsiit until a byte of datais available and ready
to be read. Input and output can be slow, so if your program is doing anything else of
importance you should try to put I/O inits own thread.

The read() method is declared abstract because subclasses need to changeit to
handle their particular medium. For instance, a ByteArray InputStream can
implement this method with pure Java code that copies the byte from its array.
However, a TelnetInputStream will need to use anative library that understands
how to read data from the network interface on the host platform.

The following code fragment reads 10 bytes from the InputStream in and stores
them in the byte array input. However, if end of stream is detected, theloop is
terminated early:

byte[] input = new byte[10];

for (int i = 0; 1 < input.length; i++) {
int b = in.read();
if (b == -1) break;
input[i] = (byte) b;

}

Although read() readsonly abyte, it returnsan int. Thus, acast is necessary
before storing the result in the byte array. Of course, this produces a signed byte from
-128 to 127 instead of the unsigned byte from to 255 returned by the read() method.
However, aslong as you keep clear which one you're working with, thisis not a major
problem. Y ou can convert a signed byte to an unsigned byte like this:

int i =b>0?Db : 256 + b;

Reading a byte at atime is asinefficient as writing data one byte at atime.
Consequently, there are also two overloaded read() methods that fill a specified
array with multiple bytes of data read from the stream, read(byte[] input) and
read(byte[] input, int offset, int length). Thefirst attemptsto fill the
specified array input. The second attempts to fill the specified subarray of input
starting at offset and continuing for 1ength bytes.

Notice that | said these methods attempt to fill the array, not necessarily that they
succeed. An attempt may fail in several ways. For instance, it's not unheard of that
while your program is reading data from a remote web server over a PPP dialup link,
abug in aswitch in a phone company central office will disconnect you and several
thousand of your neighbors from the rest of the world. This would throw an
10Exception. More commonly, however, aread attempt won't completely fail but
won't completely succeed either. Some of the requested bytes may be read but not all
of them. For example, you may try to read 1,024 bytes from a network connection,
when only 512 have actualy arrived from the server. The rest are still in transit.
They'll arrive eventualy, but they aren't available now. To account for this, the
multibyte read methods return the number of bytes actually read. For example,
consider this code fragment:

byte[] input
int bytesRead

new byte[1024];
in.read(input);

It attempts to read 1,024 bytes from the InputStream in into the array input.
However, if only 512 bytes are available, then that's all that will be read, and
bytesRead will be set to 512. To guarantee that all the bytes you want are actually
read, you must place the read in aloop that reads repeatedly until the array isfilled.
For example:

int bytesRead 0;

int bytesToRead 1024;
byte[] input new byte[bytesToRead];
while (bytesRead < bytesToRead) {
bytesRead += in.read(input, bytesRead, bytesToRead - bytesRead);

}

Thistechniqueis especially crucial for network streams. Chances are that if afileis
available at al, then al the bytes of afile are also available. However, since networks
move much more slowly than CPUs, it is very easy for a program to empty a network
buffer before al the data has arrived. In fact, if one of these two methodstries to read
from atemporarily empty but open network buffer, it will generally return 0O,
indicating that no data is available but the stream is not yet closed. Thisis often
preferable to the behavior of the single-byte read() method, which in the same
circumstances will block execution of the running program.

All three read() methods return -1 to signal the end of the stream. If the stream ends
while there's still datathat hasn't been read, then the multibyte read methods will
return that data until the buffer has been emptied. The next call to any of the read
methods will return -1. The -1 is never placed in the array. The array contains only
actual data. The previous code fragment had a bug because it didn't consider the
possibility that all 1,024 bytes might never arrive (as opposed to not being

immediately available). Fixing that bug requires testing the return value of read()
before adding it to bytesRead. For example:

int bytesRead=0;

int bytesToRead=1024;

byte[] input = new byte[bytesToRead];

while (bytesRead < bytesToRead) {
int result = in.read(input, bytesRead, bytesToRead - bytesRead);
if (result == -1) break;
bytesRead += result;

}

If for some reason, you do not want to read until all the bytes you want are
immediately available, you can use the avai lable() method to determine how
many bytes can be read without blocking. Thisis the minimum number of bytes you
can read. You may in fact be able to read more, but you will be able to read at least as
many bytes as available() suggests. For example:

int bytesAvailable = in.available();

byte[] input = new byte[bytesAvailable];

int bytesRead = in.read(input, 0, bytesAvailable);
// continue with rest of program immediately. ..

In this case, you can assert that bytesRead is exactly equal to bytesAvailable. You
cannot, however, assert that bytesRead is greater than zero. It is possible that no
bytes were available. On end of stream, available() returns 0. Generaly,
read(byte[] input, int offset, int length) returns-1onend of stream; but
if 1ength is 0, then it will not notice the end of stream and will return instead.

On rare occasions, you may want to skip over datawithout reading it. The skip()
method accomplishesthis. It's less useful on network connections than when reading
from files. Network connections are sequential and overall quite slow so it's not
significantly more time-consuming to read data than to skip over it. Files are random
access so that skipping can be implemented simply by repositioning afile pointer
rather than processing each byte to be skipped.

Aswith output streams, once your program has finished with an input stream, it
should close it by invoking its close() method. This releases any resources
associated with the stream, such as file handles or ports. Once an input stream has
been closed, further reads from it will throw 10Exceptions. However, some kinds of
streams may still allow you to do things with the object. For instance, you generally
won't want to get the message digest from a java.security.DigestInputStream
until all the data has been read and the stream closed.

4.2.1 Marking and Resetting

The InputStream class aso has three less commonly used methods that allow
programs to back up and reread data they've already read. These are:

public void mark(int readAheadLimit)
public void reset() throws 10Exception
public boolean markSupported()

To do this, you mark the current position in the stream with the mark() method. At a
later point, you can reset the stream back to the marked position using the reset()
method. Subsequent reads then return data starting from the marked position.
However, you may not be able to reset back as far as you like. The number of bytes
you can read from the mark and still reset is determined by the readAheadLimit
argument to mark(). If you try to reset back too far, an 10Exception will be thrown.
Furthermore, there can be only one mark in a stream at any given time. Marking a
second location erases the first mark.

Marking and resetting are usually implemented by storing every byte read from the
marked position in an internal buffer. However, not all input streams support this.
Thus, before trying to use marking and setting, you should check to see whether the
markSupported() method returnstrue. If it does, the stream supports marking and
resetting. Otherwise, mark() will do nothing and reset() will throw an
I10Exception.

o In my opinion, this demonstrates very poor design. In practice,
2 | morestreams don't support marking and resetting than do.
" 4t Attaching functionality to an abstract superclass that is not

available to many, probably most, subclassesis avery poor idea.
It would be better to place these three methods in a separate
interface that could be implemented by those classes that
provided this functionality. The disadvantage of this approachis
that you couldn't then invoke these methods on an arbitrary input
stream of unknown type, but in practice you can't do that anyway
because not all streams support marking and resetting. Providing
amethod such as markSupported() to check for functionality
at runtime is a more traditional, non-object-oriented solution to
the problem. An object-oriented approach would embed thisin
the type system through interfaces and classes so that it could all
be checked at compile time.

The only two input stream classesin java. io that always support marking are
BufferedInputStream and ByteArray InputStream. However, other input streams
such as TelnetInputStream may support marking if they're chained to a buffered
input stream first.

4.3 Filter Streams

InputStream and OutputStream are fairly raw classes. They alow you to read and
write bytes, either singly or in groups, but that's all. Deciding what those bytes
mean—whether they're integers or |EEE 754 floating point numbers or Unicode
text—is completely up to the programmer and the code. However, there are certain
data formats that are extremely common and can benefit from a solid implementation
in the classlibrary. For example, many integers passed as parts of network protocols
are 32-bit big-endian integers. Much text sent over the Web is either 7-bit ASCI|I or 8-
bit Latin-1. Many files transferred by ftp are stored in the zip format. Java provides a

number of filter classes you can attach to raw streamsto translate the raw bytesto and
from these and other formats.

The filters come in two versions: the filter streams and the readers and writers. The
filter streams still work primarily with raw data as bytes, for instance, by compressing
the data or interpreting it as binary numbers. The readers and writers handle the
specia case of text in avariety of encodings such as UTF-8 and 1SO 8859-1. Filter
streams are placed on top of raw streams such asaTelnetInputStream Or a
FileOutputStream or other filter streams. Readers and writers can be layered on top
of raw streams, filter streams, or other readers and writers. However, filter streams
cannot be placed on top of areader or awriter, so well start here with filter streams
and address readers and writers in the next section.

Filters are organized in achain as shown in Figure 4.2. Each link in the chain receives
data from the previousfilter or stream and passes the data along to the next link in the
chain. In this example, a compressed, encrypted text file arrives from the local
network interface, where native code presentsit to the undocumented
TelnetlnputStream. A BufferedInputStream buffers the datato speed up the
entire process. A CipherlnputStream decryptsthe data. A GZIPInputStream
decompresses the deciphered data. An InputStreamReader converts the
decompressed data to Unicode text. Finally, the text is read into the application and
processed.

Figure 4.2. The flow of data through a chain of filters

APPLICATION

tupffered texl

--

CipherinputStream
L r

tuffere. compragsad, ancrynied faa

BufferedinputSiream

(i COMVEssa, acydied dari

T COTVERFET, STy (R0

| | |

Every filter output stream has the samewrite(), close(), and flush() methods
as java.io.OutputStream. Every filter input stream has the same read(),
close(), and available() methodsas java. io. InputStream. In some cases,
such as BufferedInputStream and BufferedOutputStream, these may be the only
methods they have. Thefiltering is purely internal and does not expose any new
public interface. However, in most cases, the filter stream adds public methods with
additional purposes. Sometimes these are intended to be used in addition to the usual
read() and write() methods as with the unread() method of

Pushback InputStream. At other times, they almost completely replace the original
interface. For example, it'srelatively rare to use thewrite() method of
PrintStream instead of one of itsprint() and printin() methods.

4.3.1 Chaining Filters Together

Filters are connected to streams by their constructor. For example, the following code
fragment buffersinput from the file data.txt. First aFileInputStream object finis
created by passing the name of the file as an argument to the Fi le InputStream
constructor. Then aBufferedInputStream object bin is created by passing fin as an
argument to the BufferedInputStream constructor:

FilelnputStream fin = new FilelnputStream(''data.txt'™);

BufferedlnputStream bin = new BufferedlnputStream(fin);

From this point forward, it's possible to use the read() methods of both fin and bin
to read data from the file data.txt. However, intermixing calls to different streams
connected to the same source may violate several implicit contracts of the filter
streams. Consequently, most of the time you should use only the last filter in the chain
to do the actual reading or writing. One way to write your code so that it's at |east
harder to introduce this sort of bug is to deliberately lose the reference to the
underlying input stream. For example:

InputStream in = new FilelnputStream(''data.txt");
in = new BufferedlnputStream(in);

After these two lines execute, there's no longer any way to access the underlying file
input stream, so you can't accidentally read from it and corrupt the buffer. This
example works because it's not necessary to distinguish between the methods of
InputStream and those of BufferedInputStream. BufferedInputStream iSsimply
used polymorphically as an instance of InputStream in the first place. In those cases
where it is necessary to use the additional methods of the filter stream not declared in
the superclass, you may be able to construct one stream directly inside another. For
example:

DataOutputStream dout = new DataOutputStream(new
BufferedOutputStream(
new FileOutputStream(“'data.txt™)));

Although these statements can get alittle long, it's easy to split the statement across
severd lineslike this:

DataOutputStream dout = new DataOutputStream(
new BufferedOutputStream(
new FileOutputStream(''data.txt'™)

)
);

There are times when you may need to use the methods of multiple filtersin achain.
For instance, if you're reading a Unicode text file, you may want to read the byte order
mark in the first three bytes to determine whether the file is encoded as big-endian
UCS-2, little-endian UCS-2, or UTF-8 and then select the matching Reader filter for
the encoding. Or if you're connecting to a web server, you may want to read the
MIME header the server sends to find the Content-encoding and then use that
content encoding to pick the right Reader filter to read the body of the response. Or
perhaps you want to send floating point numbers across a network connection using a
DataOutputStream and then retrieve aMessageDigest from the
DigestOutputStream that the DataOutputStream is chained to. In all these cases,
you do need to save and use references to each of the underlying streams. However,
under no circumstances should you ever read from or write to anything other than the
last filter in the chain.

4.3.2 Buffered Streams

The BufferedOutputStream class stores written datain a buffer (a protected byte
array field named buf) until the buffer isfull or the stream is flushed. Then it writes
the data onto the underlying output stream all at once. A single write of many bytesis
almost aways much faster than many small writes that add up to the same thing. This
Is especialy true of network connections because each TCP segment or UDP packet
carries afinite amount of overhead, generally about 40 bytes worth. This means that
sending 1 kilobyte of data 1 byte at atime actually requires sending 40 kilobytes over
the wire whereas sending it al at once only requires sending a little more than 1K of
data. Most network cards and TCP implementations provide some level of buffering
themselves, so the real numbers aren't quite this dramatic. Nonethel ess, buffering
network output is generally a huge performance win.

The BufferedInputStream class also has a protected byte array named buf that
servers as a buffer. When one of the stream's read() methodsiscalled, it first tries
to get the requested data from the buffer. Only when the buffer runs out of data does
the stream read from the underlying source. At this point, it reads as much data as it
can from the source into the buffer whether it needs al the dataimmediately or not.
Data that isn't used immediately will be available for later invocations of read().
When reading files from alocal disk, it'samost as fast to read severa hundred bytes
of data from the underlying stream as it is to read one byte of data. Therefore,
buffering can substantially improve performance. The gain is less obvious on network
connections where the bottleneck is often the speed at which the network can deliver
data rather than either the speed at which the network interface delivers data to the
program or the speed at which the program runs. Nonetheless, buffering input rarely
hurts and will become more important over time as network speeds increase.

BufferedInputStream has two constructors, as does BufferedOutputStream :

public BufferedlnputStream(InputStream in)

public BufferedInputStream(InputStream in, int bufferSize)
public BufferedOutputStream(OutputStream out)

public BufferedOutputStream(OutputStream out, int bufferSize)

The first argument is the underlying stream from which unbuffered data will be read
or to which buffered data will be written. The second argument, if present, specifies
the number of bytesin the buffer. Otherwise, the buffer size is set to 2,048 bytes for
an input stream and 512 bytes for an output stream. The ideal size for a buffer
depends on what sort of stream you're buffering. For network connections, you want
something alittle larger than the typical packet size. However, this can be hard to
predict and varies depending on local network connections and protocols. Faster,
higher bandwidth networks tend to use larger packets, though eight kilobytesisan
effective maximum packet size for UDP on most networks today, and TCP segments
are often no larger than a kilobyte.

BufferedInputStream does not declare any new methods of its own. It only
overrides methods from InputStream. It does support marking and resetting. For
example:

public synchronized int read() throws I0Exception
public synchronized int read(byte[] input, int offset, int length)
throws 10Exception

public synchronized long skip(long n) throws I0Exception
public synchronized int available() throws I0Exception
public synchronized void mark(int readLimit)

public synchronized void reset() throws I10Exception
public boolean markSupported()

Starting in Java 1.2, the two multibyte read() methods attempt to completely fill the
specified array or subarray of data by reading from the underlying input stream as
many times as necessary. They return only when the array or subarray has been
completely filled, the end of stream is reached, or the underlying stream would block
on further reads. Most input streams (including buffered input streamsin Java 1.1.x
and earlier) do not behave like this. They read from the underlying stream or data
source only once before returning.

BufferedOutputStream aso does not declare any new methods of its own. It
overrides three methods from OutputStream:

public synchronized void write(int b) throws I0Exception

public synchronized void write(byte[] data, int offset, int length)
throws 10Exception

public synchronized void flush() throws I10Exception

Y ou call these methods exactly as you would for any output stream. The differenceis
that each write places datain the buffer rather than directly on the underlying output
stream. Consequently, it is essential to flush the stream when you reach a point at
which the data needs to be sent.

4.3.3 PrintStream

The PrintStream classisthefirst filter output stream most programmers encounter
because System.out isaPrintStream. However, other output streams can also be
chained to print streams, using these two constructors:

public PrintStream(OutputStream out)
public PrintStream(OutputStream out, boolean autoFlush)

By default, print streams should be explicitly flushed. However, if the autoFlush
argument istrue, then the stream will be flushed every time abyte array or linefeed is
written or aprintin() method isinvoked.

Asweéll asthe usual write(), flush(), and close() methods, PrintStream has
9 overloaded print() methods and 10 overloaded printin() methods:

public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long I)
public void print(float f)
public void print(double d)
public void print(char[] text)
public void print(String s)
public void print(Object o)
public void printin()

public void printIn(boolean b)

public void printiIn(char c)
public void printiIn(int 1)
public void printin(long I)
public void printin(float T)
public void printin(double d)
public void printin(char[] text)
public void printIn(String s)
public void printIn(Object o)

Each print() method convertsits argument to a string in a semipredictable fashion
and writes the string onto the underlying output stream using the default encoding.
The printiIn() methods do the same thing, but they also append a platform-
dependent line separator character to the end of the line they write. Thisisalinefeed
(\n) on Unix, acarriage return (\r) on the Mac, and a carriage return/linefeed pair
(\r\n) on Windows.

4.3.3.1 PrintStream is evil and network programmers shouldavoid it like the plague

The first problem is that the output from printin() is platform-dependent.
Depending on what system runs your code, your lines may sometimes be broken with
alinefeed, a carriage return, or a carriage return/linefeed pair. This doesn't cause
problems when writing to the console, but it's a disaster for writing network clients
and servers that must follow a precise protocol. Most network protocols such as
HTTP specify that lines should be terminated with a carriage return/linefeed pair.
Using printin() makesit easy to write a program that works on Windows but fails
on Unix and the Mac. While many servers and clients are liberal in what they accept
and can handle incorrect line terminators, there are occasional exceptions. In
particular, in conjunction with the bug in readLine() discussed shortly, aclient
running on a Mac that uses printin() may hang both the server and the client. To
some extent, this could be fixed by using only print() andignoring printin().
However, PrintStream has other problems.

The second problem with PrintStream isthat it assumes the default encoding of the
platform on which it's running. However, this encoding may not be what the server or
client expects. For example, aweb browser receiving XML fileswill expect them to
be encoded in UTF-8 or raw Unicode unless the server tellsit otherwise. However, a
web server that uses PrintStream may well send them encoded in CP1252 from a
U.S.-localized Windows system or SJIS from a Japanese-localized system, whether
the client expects or understands those encodings or not. PrintStream doesn't
provide any mechanism to change the default encoding. This problem can be patched
over by using therelated Printwriter classinstead. But the problems continue.

The third problem isthat PrintStream eats all exceptions. This makes PrintStream
suitable for simple textbook programs such as HelloWorld, since simple console
output can be taught without burdening students with first learning about exception
handling and all that implies. However, network connections are much lessreliable
than the console. Connections routinely fail because of network congestion, phone
company misfeasance, remote systems crashing, and many more reasons. Network
programs must be prepared to deal with unexpected interruptions in the flow of data.
The way to do thisis by handling exceptions. However, PrintStream catches any
exceptions thrown by the underlying output stream. Notice that the declaration of the

standard five OutputStream methods in PrintStream does not have the usual
throws 10Exception declaration:

public abstract void write(int b)

public void write(byte[] data)

public void write(byte[] data, int offset, int length)
public void flush()

public void close()

Instead, PrintStream relies on an outdated and inadequate error flag. If the
underlying stream throws an exception, thisinternal error flag is set. The programmer
isrelied upon to check the value of the flag using the checkError() method:

public boolean checkError()

If programmers are to do any error checking at al on aPrintStream, they must
explicitly check every call. Furthermore, once an error has occurred, there is no way
to unset the flag so further errors can be detected. Nor is any additional information
available about what the error was. In short, the error notification provided by
PrintStream iswholly inadequate for unreliable network connections. At the end of
this chapter, we'll introduce a class that fixes al these shortcomings.

4.3.4 PushbackInputStream

PushbackInputStream isasubclass of FilterInputStream that provides a
pushback stack so that a program can "unread" bytes onto the input stream. The HTTP
protocol handler in Java 1.2 uses Pushback InputStream. Y ou might also use it when
you need to check something alittle way into the stream, then back up. For instance,

if you were reading an XML document, you might want to read just far enough into
the header to locate the encoding declaration that tells you what character set the
document uses, then push all the read data back onto the input stream and start over
with areader configured for that character set.

The read() and available() methods of PushbackInputStream are invoked
exactly as with normal input streams. However, they first attempt to read from the
pushback buffer before reading from the underlying input stream. What this class adds
iIsunread() methods that push bytes into the buffer:

public void unread(int b) throws I0Exception

This method pushes an unsigned byte given as an int between and 255 onto the
stream. Integers outside this range are truncated to this range as by a cast to byte.
Assuming nothing else is pushed back onto this stream, the next read from the stream
will return that byte. As multiple bytes are pushed onto the stream by repeated
invocations of unread(), they are stored in a stack and returned in alast-in, first-out
order. In essence, the buffer is astack sitting on top of an input stream. Only when the
stack is empty will the underlying stream be read.

There are two more unread() methods that push a specified array or subarray onto
the stream:

public void unread(byte[] input) throws I0Exception
public void unread(byte[] input, int offset, int length) throws
I0Exception

The arrays are stacked in last-in, first-out order. However, bytes pushed from the
same array will be returned in the order they appeared in the array. That is, the zeroth
component of the array will be read before the first component of the array.

By default, the buffer is only one byte long, and trying to unread more than one byte
throws an 10Exception. However, the buffer size can be changed with the second
constructor as follows:

public PushbacklInputStream(InputStream in)
public PushbacklnputStream(InputStream in, int size)

Although Pushback InputStream and Buffered InputStream both use buffers,
BufferedInputStream uses them for data read from the underlying input stream,
while PushbackInputStream uses them for arbitrary data, which may or may not,
have been read from the stream originally. Furthermore, Pushback InputStream does
not allow marking and resetting. The markSupported() method of

Pushback InputStream returns false.

4.3.5 Data Streams

The DatalnputStream and DataOutputStream classes provide methods for reading
and writing Java's primitive data types and strings in a binary format. The binary
formats used are primarily intended for exchanging data between two different Java
programs whether through a network connection, a datafile, a pipe, or some other
intermediary. What a data output stream writes, a data input stream can read.
However, it happens that the formats used are the same ones used for most Internet
protocols that exchange binary numbers. For instance, the time protocol uses 32-bit
big-endian integers, just like Javas int data type. The controlled-load network
element service uses 32-bit |EEE 754 floating point numbers, just like Javas float
datatype. (Thisis probably correlation rather than causation. Both Java and most
network protocols were designed by Unix developers, and consequently both tend to
use the formats common to most Unix systems.) However, thisisn't true for all
network protocols, so you should check details for any protocol you use. For instance,
the Network Time Protocol (NTP) represents times as 64-bit unsigned fixed point
numbers with the integer part in the first 32 bits and the fraction part in the last 32 bits.
This doesn't match any primitive data type in any common programming language,
though it isfairly straightforward to work with, at least asfar asis necessary for NTP.

The bataOutputStrean class offers these 11 methods for writing particular Java data
types:

public final void writeBoolean(boolean b) throws I0Exception
public final void writeByte(int b) throws 10Exception

public final void writeShort(int s) throws I0Exception
public final void writeChar(int c) throws I0Exception

public final void writelnt(int i) throws I0Exception

public final void writeLong(long 1) throws I0Exception
public final void writeFloat(float f) throws I0Exception

public final void writeDouble(double d) throws I10Exception
public final void writeChars(String s) throws I0Exception
public final void writeBytes(String s) throws I0Exception
public final void writeUTF(String s) throws 10Exception

All dataiswritten in big-endian format. Integers are written in two's complement in
the minimum number of bytes possible. Thus abyte iswritten as one two's-
complement byte, ashort as two two's-complement bytes, an int asfour two's-
complement bytes, and a long as eight two's-complement bytes. Floats and doubles
arewritten in IEEE 754 form in 4 and 8 bytes, respectively. Booleans are written as a
single byte with the value for false and 1 for true. Chars are written as two unsigned
bytes.

The last three methods are allittle trickier. ThewriteChars() method simply iterates
through the string argument, writing each character in turn as a 2-byte, big-endian
Unicode character. ThewriteBytes() method iterates through the String argument
but writes only the least significant byte of each character. Thus information will be
lost for any string with characters from outside the Latin-1 character set. This method
may be useful on some network protocols that specify the ASCII encoding, but it
should be avoided most of the time.

Neither writeChars() nor writeBytes() encodes the length of the string in the
output stream. Consequently, you can't really distinguish between raw characters and
characters that make up part of astring. ThewriteUTF() method does include the
length of the string. It encodes the string itself in avariant of UTF-8 rather than raw
Unicode. SincewriteUTF() usesavariant of UTF-8 that's subtly incompatible with
most non-Java software, it should be used only for exchanging data with other Java
programs that use a DatalnputStream to read strings. For exchanging UTF-8 text
with all other software, you should use an InputStreamReader with the appropriate
encoding. (There wouldn't be any confusion if Sun had just called this method and its
partner writeString() and readString() rather than writeUTF() and
readUTF().)

Aswell as these methods to write binary numbers, DataOutputStream aso overrides
three of the customary OoutputStream methods:

public void write(int b)
public void write(byte[] data, int offset, int length)
public void flush()

These are invoked in the usual fashion with the usual semantics.

DatalnputStream isthe complementary class to DataOutputStream. Every format
that DataOutputStream writes, DatalnputStream can read. |n addition,
DatalnputStream hasthe usua read(), available(), skip(), and close()
methods as well as methods for reading complete arrays of bytes and lines of text.

There are 9 methods to read binary data that match the 11 methods in
DataOutputStream (there's no exact complement for writeBytes() and
writeChars(); these are handled by reading the bytes and chars one at atime):

public final boolean readBoolean() throws I10Exception
public final byte readByte() throws I0Exception
public final char readChar() throws I0Exception
public final short readShort() throws I0Exception
public final int readlnt() throws I10Exception

public final long readLong() throws I0Exception
public final float readFloat() throws I0Exception
public final double readDouble() throws I10Exception
public final String readUTF() throws 10Exception

In addition, batalnputStream provides two methods to read unsigned bytes and
unsigned shorts and return the equivalent int. Java doesn't have either of these data
types, but you may encounter them when reading binary data written by a C program:

public final int readUnsignedByte() throws I0Exception
public final int readUnsignedShort() throws I0Exception

DatalnputStream has the usual two multibyte read() methods that read data into

an array or subarray and return the number of bytes read. It also has two readFul ly()
methods that repeatedly read data from the underlying input stream into an array until
the requested number of bytes have been read. If enough data cannot be read, then an
10Exception isthrown. These methods are especialy useful when you know in
advance exactly how many bytes you have to read. This might be the case when

you've read the Content-length field out of an HTTP MIME header and thus know
how many bytes of data there are:

public final int read(byte[] input) throws I0Exception

public final int read(byte[] input, int offset, int length)
throws 10Exception

public final void readFully(byte[] input) throws I0Exception
public final void readFully(byte[] input, int offset, int length)
throws 10Exception

Finally, DatalnputStream provides the popular readLine() method that reads a
line of text as delimited by aline terminator and returns a string:

public final String readLine() throws I10Exception

However, this method should not be used under any circumstances, both becauseit is
deprecated and because it is buggy. It's deprecated because it doesn't properly convert
non-ASCII charactersto bytesin most circumstances. That task is now handled by the
readLine() method of the BufferedReader class. However, both that method and
this one share the same insidious bug: they do not always recognize a single carriage
return as ending aline. Rather, readLine() recognizes only alinefeed or a carriage
return/linefeed pair. When a carriage return is detected in the stream, readLine()
walits to see whether the next character is alinefeed before continuing. If itisa
linefeed, then both the carriage return and the linefeed are thrown away, and the line
isreturned asaString. If it isn't alinefeed, then the carriage return is thrown away,
thelineisreturned as a String, and the extra character that was read becomes part of
the next line. However, if the carriage return is the last character in the stream (avery
likely occurrence if the stream originates from a Macintosh or afile created on a
Macintosh), then readLine() hangs, waiting for the last character that isn't
forthcoming.

This problem isn't so obvious when reading files because there will almost certainly
be a next character, -1 for end of stream if nothing else. However, on persistent
network connections such as those used for FTP and late-model HTTP, a server or
client may simply stop sending data after the last character and wait for aresponse
without actually closing the connection. If you're lucky, the connection may
eventually time out on one end or the other and you'll get an 10Exception, though
thiswill probably take at least a couple of minutes. If you're not lucky, the program
will hang indefinitely.

Note that it is not enough for your program to merely be running on Windows or Unix
to avoid this bug. It must also ensure that it does not send or receive text files created
on a Macintosh and that it never talks to Macintosh clients or servers. These are very
strong conditions in the heterogeneous world of the Internet. It is obviously much
simpler to avoid readLine() completely.

4.3.6 Compressing Streams

The java.util.zip package contains filter streams that compress and decompress
streams in zip, gzip, and deflate formats. Besides its better-known uses with respect to
files, this allows your Java applications to easily exchange compressed data across the
network. HTTP 1.1 explicitly includes support for compressed file transfer in which
the server compresses and the browser decompresses files, in effect trading
increasingly cheap CPU power for still-expensive network bandwidth. Thisis done
completely transparently to the user. Of course, it's not at all transparent to the
programmer who has to write the compression and decompression code. However, the
Java.util.zip filter streams make it alot more transparent than it otherwise would
be.

There are six stream classes that perform compression and decompression. The input
streams decompress data and the output streams compressit. These are:

public class

DeflaterOutputStream extends FilterOutputStream

public class InflaterlnputStream extends FilterlnputStream
public class

GZI1POutputStream extends FilterOutputStream

public class GZIPInputStream extends FilterlInputStream
public class ZipOutputStream extends FilterOutputStream
public class ZiplnputStream extends FilterlnputStream

All of these use essentially the same compression algorithm. They differ only in
various constants and meta-information included with the compressed data. In
addition, a zip stream may contain more than one compressed file.

Compressing and decompressing data with these classesis almost trivially easy. You
simply chain the filter to the underlying stream and read or write it like normal. For
example, suppose you want to read the compressed file allnames.gz. Y ou simply open
aFilelnputStream to the file and chain aGZIPInputStreanm to that like this:

FilelnputStream fin = new FilelnputStream('allnames.gz™);

GZIPInputStream gzin = new GZIPInputStream(fin);

From that point forward, you can read uncompressed data from gzin using merely the
usua read(), skip(), and available() methods. For instance, this code
fragment reads and decompresses a file named allnames.gz in the current working
directory:

FilelnputStream fin
GZIPInputStream gzin
FileOutputStream fout
int b = 0;

while ((b = gzin.read()) != -1) fout.write(b);
gzin.close();

out.flush();

out.close();

new FilelnputStream('allnames.gz™);
new GZIPInputStream(fin);
new FileOutputStream("allnames™);

Infact, it isn't even necessary to know that gzin isaGzIPInputStreanm for thisto
work. A simple InputStream type would work equally well. For example:

InputStream in = new GZIPInputStream(new
FilelnputStream(*'allnames.gz'));

DeflaterOutputStream and Inflater InputStream are equally straightforward.
ZiplnputStream and ZipOutputStream are alittle more complicated because a zip
fileisactually an archive that may contain multiple entries, each of which must be
read separately. Each filein azip archive is represented as a zipEntry object whose
getName() method returns the original name of the file. For example, this code
fragment decompresses the archive shareware.zip in the current working directory:

FilelnputStream fin = new FilelnputStream(*'shareware.zip'™);
ZiplnputStream zin = new ZiplnputStream(fin);
ZipEntry ze = null;
int b = 0;
while ((ze = zin._.getNextEntry()) != null) {
FileOutputStream fout = new FileOutputStream(ze.getName());
while ((b = zin.read()) != -1) fout.write(b);
zin.closeEntry();
fout.flush();
fout.close();

zin.close();
4.3.7 Digest Streams

The java.util .security package contains two filter streams that can calculate a
message digest for a stream. They are DigestInputStream and
DigestOutputStream. A message digest, represented in Java by the
java.util.security.MessageDigest class, isastrong hash code for the stream;
that is, it isalarge integer (typically 20 byteslong in binary format) that can easily be
calculated from a stream of any length in such afashion that no information about the
stream is available from the message digest. Message digests can be used for digital
signatures and for detecting data that has been corrupted in transit across the network.

In practice, the use of message digestsin digital signaturesis more important. Mere
data corruption can be detected with much simpler, less computationally expensive
algorithms. However, the digest filter streams are so easy to use that at timesit may
be worth paying the computational price for the corresponding increasein
programmer productivity. To calculate a digest for an output stream, you first
construct aMessageDigest object that uses a particular algorithm, such as the Secure
Hash Algorithm (SHA). Y ou pass both the MessageDigest object and the stream you
want to digest to the DigestOutputStream constructor. This chains the digest stream
to the underlying output stream. Then you write data onto the stream as normal, flush
it, closeit, and invoke the getMessageDigest() method to retrieve the
MessageDigest object. Finally you invoke the digest() method on the
MessageDigest object to finish calculating the actual digest. For example:

MessageDigest sha = MessageDigest.getlnstance("'SHA™);
DigestOutputStream dout = new DigestOutputStream(out, sha);
byte[] buffer = new byte[128];
while (true) {

int bytesRead = in.read(buffer);

if (bytesRead < 0) break;

dout.write(buffer, 0, bytesRead);

by
dout.flush();

dout.close();
byte[] result = dout.getMessageDigest() .digest();

Calculating the digest of an input stream you read is equally simple. It still isn't quite
as transparent as some of the other filter streams because you do need to be at least
marginally conversant with the methods of the MessageDigest class. Nonetheless, it's
still far easier than writing your own secure hash function and manually feeding it
each byte you write.

Of course, you also need away of associating a particular message digest with a
particular stream. In some circumstances, the digest may be sent over the same
channel used to send the digested data. The sender can calculate the digest as it sends
data, while the receiver calculates the digest as it receives the data. When the sender is
done, it sends some signal that the receiver recognizes as indicating end of stream and
then sends the digest. The receiver receives the digest, checks that the digest received
is the same as the one calculated locally, and closes the connection. If the digests don't
match, the receiver may instead ask the sender to send the message again.
Alternatively, both the digest and the files it digests may be stored in the same zip
archive. And there are many other possibilities. Situations like this generally call for
the design of arelatively formal custom protocol. However, while the protocol may be
complicated, the calculation of the digest is straightforward, thanks to the
DigestlInputStream and DigestOutputStrean filter classes.

4.3.8 Encrypting Streams

Not al filter streams are part of the core Java API. For legal reasons, the filters for
encrypting and decrypting data, Cipher InputStream and CipherOutputStream, are
part of a standard extension to Java called the Java Cryptography Extension, JCE for
short. Thisisinthe javax.crypto package. Sun provides an implementation of this
APl inthe U.S. and Canada available from http://java.sun.convproducts/jce/, and

various third parties have written independent implementations that are available
worldwide. Of particular note is the more or less Open Source Cryptix package, which
can be retrieved from http://www.cryptix.org/.

The CipherlInputStream and CipherOutputStream classes are both powered by a
Cipher engine object that encapsulates the algorithm used to perform encryption and
decryption. By changing the Cipher engine object, you change the algorithm that the
streams use to encrypt and decrypt. Most ciphers also require akey that's used to
encrypt and decrypt the data. Symmetric or secret key ciphers use the same key for
both encryption and decryption. Asymmetric or public key ciphers use the different
keys for encryption and decryption. The encryption key can be distributed aslong as
the decryption key is kept secret. Keys are specific to the algorithm in use, and are
represented in Java by instances of the java.security.Key interface. The Cipher
object is set in the constructor. Like all filter stream constructors, these constructors
also take another input stream as an argument:

public CipherlnputStream(InputStream in, Cipher c¢)
public CipherOutputStream(lnputStream in, Cipher c)

To get aproperly initialized Cipher object, you use the static

Cipher.getinstance() factory method. This Cipher object must be initialized for
either encryption or decryption with init() before being passed into one of the
previous constructors. For example, this code fragment prepares a
CipherInputStream for decryption using the password "two and not afnord" and the
Data Encryption Standard (DES) algorithm:

byte[] desKeyData = "two and not a fnord".getBytes();

DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
SecretKeyFactory keyFactory = SecretKeyFactory.getlnstance("'DES™);
SecretKey deskKey = keyFactory.generateSecret(desKeySpec);

Cipher des = Cipher.getlnstance(''DES");
des.init(Cipher.DECRYPT_MODE, desKey);

CipherlnputStream cin = new CipherlnputStream(fin, des);

This fragment uses classes from the java.security, java.security.spec,
Javax.crypto, and javax.crypto.spec packages. Different implementations of the
JCE support different groups of encryption algorithms. Common algorithmsinclude
DES, RSA, and Blowfish. The construction of akey is generally algorithm specific.
Consult the documentation for your JCE implementation for more details.

CipherlInputStream overrides most of the normal InputStream methods like

read() and available(). CipherOutputStream overrides most of the usual
OutputStream methods likewrite() and flush(). These methods are al invoked
much as they would be for any other stream. However, as the datais read or written,
the stream's Cipher object either decrypts or encrypts the data. (Assuming your
program wants to work with unencrypted data as is most commonly the case, a cipher
input stream will decrypt the data, and a cipher output stream will encrypt the data.)
For example, this code fragment encrypts the file secrets.txt using the password
"Mary had alittle spider”:

String infile = "secrets.txt";
String outfile = "secrets.des";

String password = "Mary had a little spider";

try {

FilelnputStream fin = new FilelnputStream(infile);
FileOutputStream fout = new FileOutputStream(outfile);

// register the provider that implements the algorithm
Provider sunJce = new com.sun.crypto.provider.SunJCE();
Security.addProvider(sunJce);

// create a key

char[] pbeKeyData = password.toCharArray();

PBEKeySpec pbeKeySpec = new PBEKeySpec(pbeKeyData);
SecretKeyFactory keyFactory =
SecretKeyFactory.getlnstance("'PBEWi thMD5ANdDES") ;
SecretKey pbeKey = keyFactory.generateSecret(pbeKeySpec);

// use Data Encryption Standard

Cipher pbe = Cipher.getlnstance("'PBEWithMD5ANdDES™);
pbe.init(Cipher . ENCRYPT_MODE, pbeKey);

CipherQOutputStream cout = new CipherOutputStream(fout, pbe);

byte[] input = new byte[64];

while (true) {
int bytesRead = fin.read(input);
if (bytesRead == -1) break;
cout.write(input, O, bytesRead);

}

cout.flush();
cout.close();
fin.close();

}
catch (Exception e) {

System.err.printin(e);
e.printStackTrace();

}

| admit that thisis more complicated than it needs to be. There's alot of setup work
involved in creating the Cipher object that actually performs the encryption. Partly
that's aresult of key generation involving quite a bit more than a simple password.
However, alarge part of it is also due to inane U.S. export laws that prevent Sun from
fully integrating the JCE with the JDK and JRE. To alarge extent, the complex
architecture used hereis driven by a need to separate the actual encrypting and
decrypting code from the cipher stream classes.

4.4 Readers and Writers

Most programmers have a bad habit of writing code asiif all text were ASCII or, at the
least, in the native encoding of the platform. While some older, simpler network
protocols, such as daytime, quote of the day, and chargen, do specify ASCII encoding
for text, thisis not true of HTTP and many other more modern protocols, which allow
awide variety of localized encodings, such as KOI8-R Cyrillic, Big-5 Chinese, and
SO 8859-2, for most Central European languages. When the encoding is no longer
ASCII, the assumption that bytes and chars are essentially the same things also breaks

down. Java's native character set isthe 2-byte Unicode character set. Consequently,
Java provides an almost complete mirror of the input and output stream class
hierarchy that's designed for working with characters instead of bytes.

In this mirror image hierarchy, two abstract superclasses define the basic API for
reading and writing characters. The java. io.Reader class specifies the API by
which characters areread. The java. io.Writer class specifies the API by which
characters are written. Wherever input and output streams use bytes, readers and
writers use Unicode characters. Concrete subclasses of Reader and Writer allow
particular sources to be read and targets to be written. Filter readers and writers can be
attached to other readers and writers to provide additional services or interfaces.

The most important concrete subclasses of Reader and Writer arethe
InputStreamReader and the OutputStreamWriter classes. An InputStreamReader
contains an underlying input stream from which it reads raw bytes. It translates these
bytes into Unicode characters according to a specified encoding. An
OutputStreamWriter receives Unicode characters from arunning program. It then
tranglates those characters into bytes using a specified encoding and writes the bytes
onto an underlying output stream.

In addition to these two classes, the java. io package also includes several raw reader
and writer classes that read characters without directly requiring an underlying input
stream. These include:

FileReader
FileWriter
StringReader
StringWriter
CharArrayReader
CharArrayWriter

The first two work with files and the last four work internally to Java, so they won't be
of great use for network programming. However, aside from different constructors,
they do have pretty much the same public interface as all the other reader and writer
classes.

4.4.1 Writers

TheWriter class mirrorsthe java. io.OutputStream class. It's abstract and has two
protected constructors. Like OutputStream, theWriter classis never used directly,

only polymorphically through one of its subclasses. It has five write() methods as

well asaflush() and aclose() method:

protected Writer()

protected Writer(Object lock)

public abstract void write(char[] text, int offset, int length)
throws 10Exception

public void write(int c) throws I0Exception

public void write(char[] text) throws I0Exception

public void write(String s) throws I0Exception

public void write(String s, int offset, int length) throws
I0Exception

public abstract void flush() throws I0Exception
public abstract void close() throws I0Exception

Thewrite(char[] text, int offset, int length) method isthe base method
in terms of which the other four write() methods are implemented. A subclass must
override at least this method as well as flush() and close(), though most will
override some of the other write() methods aswell to provide more efficient
implementations. For example, given awriter object w, you can write the string
"Network" like this:

char[] network = {*N*, "e", "t", "w", 0", "r", "K"};
w.write(network, O, network.length);

The same task can be accomplished with these other methods as well:

w.write(network);

for (int i = 0; i < network.length; i++) w.write(network[i]);
w.write("'Network™™);

w.write(""Network™, 0, 7);

Assuming that they use the same Writer object w, all of these are different ways of
expressing the same thing. Which you use in any given situation is mostly a matter of
convenience and taste. However, how many and which bytes are written by these lines
depends on the encoding w uses. If it's using big-endian Unicode, then it will write
these 14 bytes (shown here in hexadecimal) in this order:

00 4E 00 65 00 74 00 77 00 6F OO 72 00 6B

On the other hand, if w uses little-endian Unicode, this sequence of 14 bytesis written:

4E 00 65 00 74 00 77 00 6F OO0 72 00 6B 00

If wuses Latin-1, UTF-8, or MacRoman, this sequence of seven bytesis written:

4E 65 74 77 6F 72 6B

Other encodings may write still different sequences of bytes. The exact output
depends on the encoding.

Writers may be buffered, either directly by being chained to aBufferedwriter or
indirectly because their underlying output stream is buffered. To force awrite to be
committed to the output medium, invoke the fFlush() method:

w.Fflush();

The close() method behaves similarly to the close() method of outputStream.
This flushes the writer, then closes the underlying output stream and releases any
resources associated with it:

public abstract void close() throws I0Exception

Once awriter has been closed, further writes will throw 10Exceptions.

4.4.2 OutputStreamWriter

OutputStreamWriter iSthe most important concrete subclass of Writer. An
OutputStreamWriter receives Unicode characters from a Java program. It converts
these into bytes according to a specified encoding and writes them onto an underlying
output stream. Its constructor specifies the output stream to write to and the encoding
to use:

public OutputStreamWriter(OutputStream out, String encoding)
throws UnsupportedEncodingException
public OutputStreamWriter(OutputStream out)

Valid encodings are listed in the documentation for Sun's native2ascii tool included
with the JDK and available from
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/native2ascii.html. If no
encoding is specified, the default encoding for the platform is used. (In the United
States, the default encoding is 1SO Latin-1 on Solaris and Windows, MacRoman on
the Mac.) For example, this code fragment writes the string

Auog &' nprysveia gavn pobobaxTulog Hugin the Cp1253 Windows Greek
encoding:

OutputStreamWriter w = new OutputStreamWriter(
new FileOutputStream(''0OdysseyB.txt"), "Cpl253');
W. erte(
Aueg &' Npiyiveia gavn pobodaxTuhog Heg

);

Other than the constructors, OutputStreamWriter has only the usua Writer
methods (which are used exactly asthey are for any Writer class) and one method to
return the encoding of the object:

public String getEncoding()
4.4.3 Readers

The Reader class mirrorsthe java. io. InputStream class. It's abstract with two
protected constructors. Like InputStream and Writer, the Reader classis never used
directly, only polymorphically through one of its subclasses. It has three read()
methods aswell asskip(), close(), ready(), mark(), reset(), and
markSupported() methods:

protected Reader()

protected Reader(Object lock)

public abstract int read(char[] text, int offset, int length)
throws 10Exception

public int read() throws I0Exception

public int read(char[] text) throws 10Exception

public long skip(long n) throws I0Exception

public boolean ready()

public boolean markSupported()

public void mark(int readAheadLimit) throws I10Exception
public void reset() throws 10Exception

public abstract void close() throws I0Exception

The read(char[] text, int offset, int length) method isthe fundamental
method through which the other two read() methods are implemented. A subclass
must override at least this method as well as close(), though most will override
some of the other read() methods as well in order to provide more efficient
implementations.

Most of these methods are easily understood by analogy with their InputStream
counterparts. The read() method returns a single Unicode character as an int with
avaue fromto 65,535 or -1 on end of stream. The read(char[] text) method tries
to fill the array text with characters and returns the actual number of characters read
or -1 on end of stream. The read(char[] text, intoffset, int length)
method attempts to read Iength charactersinto the subarray of text beginning at
offset and continuing for Iength characters. It also returns the actual number of
charactersread or -1 on end of stream. The skip(long n) method skips n characters.
Themark() and reset() methods allow some readers to reset back to a marked
position in the character sequence. The markSupported() method tells you whether
this reader supports marking and resetting. The close() method closes the reader
and any underlying input stream so that further attempts to read from it will throw
I0Exceptions.

The exception to the rule of similarity is ready(), which has the same general
purpose as avai lable() but not quite the same semantics, even modulo the byte-to-
char conversion. Whereas available() returns an int specifying a minimum
number of bytes that may be read without blocking, ready() returnsonly aboolean
indicating whether the reader may be read without blocking. The problem is that some
character encodings such as UTF-8 use different numbers of bytes for different
characters. Thusit's hard to tell how many characters are waiting in the network or
filesystem buffer without actually reading them out of the buffer.

InputStreamReader iSthe most important concrete subclass of Reader. An
InputStreamReader reads bytes from an underlying input stream such as a
FilelnputStream or TelnetlInputStream. It converts these into characters
according to a specified encoding and returns them. The constructor specifies the
input stream to read from and the encoding to use:

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)
throws UnsupportedEncodingException

If no encoding is specified, the default encoding for the platform is used. If an
unknown encoding is specified, then an UnsupportedEncodingException iSthrown.

For example, this method reads an input stream and convertsit all to one Unicode
string using the MacCyrillic encoding:

public static String getMacCyrillicString(InputStream in)
throws 10Exception {

InputStreamReader r = new InputStreamReader(in, "MacCyrillic™);
StringBuffer sb = new StringBuffer();
int c;

while ((c = r.read()) != -1) sb.append((char) c);
r.close();
return sb.toString();

}

4.4 4 Filter Readers and Writers

The InputStreamReader and OutputStreamWriter classes act as decorators on top
of input and output streams that change the interface from a byte-oriented interface to
a character-oriented interface. Once thisis done, additional character-oriented filters
can be layered on top of the reader or writer using the java. io.FilterReader and
jJava.io.FilterWriter classes. Aswith filter streams, there are avariety of
subclasses that perform specific filtering, including:

BufferedReader
BufferedWriter
LineNumberReader
PushbackReader
PrintWriter

4.4.4.1 Buffered readers and writers

The BufferedReader and BufferedWriter classes are the character-based
equivalents of the byte-oriented BufferedInputStream and BufferedOutputStream
classes. Where BufferedInputStream and BufferedOutputStream use an interna
array of bytes as a buffer, BufferedReader and Bufferedwriter use aninterna
array of chars.

When a program reads from aBufferedReader, text is taken from the buffer rather
than directly from the underlying input stream or other text source. When the buffer
empties, it isfilled again with as much text as possible, even if not all of itis
immediately needed. This will make future reads much faster.

When a program writesto aBufferedWriter, the text is placed in the buffer. The text
ismoved to the underlying output stream or other target only when the buffer fills up
or when the writer is explicitly flushed. This can make writes much faster than would
otherwise be the case.

Both BufferedReader and BufferedWriter have the usual methods associated with
readers and writers, like read(), ready(), write(), and close(). They each
have two constructors used to chain the BufferedReader or BufferedWriter to an
underlying reader or writer and to set the size of the buffer. If the sizeis not set, then
the default size of 8,192 charactersis used:

public BufferedReader(Reader in, int bufferSize)
public BufferedReader(Reader in)
public BufferedWriter(Writer out)
public BufferedWriter(Writer out, int bufferSize)

For example, the earlier getMacCyrillicString() example was|ess than efficient
because it read characters one at atime. Since MacCyrillic is a 1-byte character set,

this also meant it read bytes one at atime. However, it's straightforward to make it run
faster by chaining a BufferedReader to the InputStreamReader likethis:

public static String getMacCyrillicString(InputStream in)
throws 10Exception {

Reader r = new InputStreamReader(in, "MacCyrillic™);
r = new BufferedReader(r, 1024);

StringBuffer sb = new StringBuffer();

int c;

while ((c = r.read()) != -1) sb.append((char) c);
r.close();

return sb.toString();

}

All that was needed to buffer this method was one additional line of code. None of the
rest of the algorithm had to change, since the only InputStreamReader methods used
werethe read() and close() methods declared in the Reader superclass and
shared by all Reader subclasses, including BufferedReader.

The BufferedReader class also hasareadLine() method that reads a single line of
text and returnsit as a string:

public String readLine() throws I10Exception

This method is supposed to replace the deprecated readLine() method in
DatalnputStream, and it has mostly the same behavior as that method. The big
difference isthat by chaining a BufferedReader to an InputStreamReader, you can
correctly read linesin character sets other than the default encoding for the platform.
Unfortunately, this method shares the same bugs as the readLine() method in
DatalnputStream, discussed before. That is, it will tend to hang its thread when
reading streams where lines end in carriage returns, such asis commonly the case
when the streams derive from a Macintosh or a Macintosh text file. Consequently, you
should scrupulously avoid this method in network programs.

It'snot all that difficult, however, to write a safe version of this class that cor- rectly
implements the readLine() method. Example 4.1 is such a SafeBufferedReader
class. It has exactly the same public interface as BufferedReader. It just hasa
dlightly different private implementation. I'll use this class in future chaptersin
situations where it's extremely convenient to have a readLine() method.

Example 4.1. The SafeBufferedReader Class

package com.macfaq.io;

import java.io.*;

public class SafeBufferedReader extends BufferedReader {
public SafeBufferedReader(Reader in) {

this(in, 1024);
3

public SafeBufferedReader(Reader in, int bufferSize) {
super(in, bufferSize);

}

private boolean lookingForLineFeed = false;

public String readLine() throws I0Exception {
StringBuffer sb = new StringBuffer(™");
while (true) {
int ¢ = this.read();
if (c == -1) { // end of stream
return null;

}
else if (c == "\n") {
it (lookingForLineFeed) {
lookingForLineFeed = false;
continue;

}

else {
return sb.toString();

}

¥

else if (c == "\r") {
lookingForLineFeed = true;
return sb.toString();

else {
lookingForLineFeed = false;
sb.append((char) c);

}

The Bufferedwriter() class aso adds one new method not included in its
superclass, and this method is also geared toward writing lines. That method is
newLine():

public void newLine() throws I10Exception

This method inserts a platform-dependent line-separator string into the output. The
line.separator System property determines exactly what this string is. It will
probably be alinefeed on Unix, a carriage return on the Macintosh, and a carriage
return/linefeed pair on Windows. Since network protocols generally specify the
required line terminator, you should not use this method for network programming.
Instead, you should explicitly write the line terminator the protocol requires.

4.4.4.2 LineNumberReader

The LineNumberReader class replaces the deprecated LineNumber InputStream class
from Java 1.0. It's a subclass of BufferedReader that keeps track of the current line
number being read. This can beretrieved at any time with the getLineNumber()
method:

public int getLineNumber()

By default, the first line number is 0. However, the number of the current line and all
subsequent lines can be changed with the setLineNumber() method:

public void setLineNumber(int lineNumber)

This method adjusts only the line numbers that getLineNumber() reports. It does
not change the point at which the stream is read.

The LineNumberReader's readLine() method shares the same bug as
BufferedReader's and DatalnputStream's, and thusis not suitable for network
programming. However, the line numbers are also tracked if you use only the regular
read() methods, and these do not share that bug. Besides these methods and the
usual Reader methods, LineNumberReader has only these two constructors:

public LineNumberReader(Reader in)
public LineNumberReader(Reader in, int bufferSize)

Since LineNumberReader is a subclass of BufferedReader, it does have an interna
character buffer whose size can be set with the second constructor. The default sizeis
8,192 characters.

4.4.4.3 PushbackReader

The PushbackReader classisthe mirror image of the Pushback InputStream class.
Asusual, the main difference is that it pushes back chars rather than bytes. It provides
three unread() methods that push characters onto the reader's input buffer:

public void unread(int c) throws I0Exception

public void unread(char[] cbuf) throws I10Exception
public void unread(char[] cbuf, int offset, int length)
throws 10Exception

The first unread() method pushes a single character onto the reader. The second
pushes an array of characters. The third pushes the specified subarray of characters
starting with cbuf[offset] and continuing through cbuf [offset+length-1].

By default, the size of the pushback buffer is only one character. However, this can be
adjusted in the second constructor:

public PushbackReader(Reader in)
public PushbackReader(Reader in, int bufferSize)

Trying to unread more characters than the buffer will hold throws an 10Exception.

4.4.4.4 PrintWriter

ThePrintwWriter classisareplacement for Java 1.0's PrintStream class that
properly handles multibyte character sets and international text. Sun originally
planned to deprecate PrintStream in favor of PrintWriter but backed off when it
realized this would invalidate too much existing code, especially code that depended

on System.out. Nonetheless, new code should use PrintWriter instead of
PrintStream.

Aside from the constructors, the PrintWriter class has an amost identical collection
of methods to PrintStream. These include:

public PrintWriter(Writer out)

public PrintWriter(Writer out, boolean autoFlush)
public PrintWriter(OutputStream out)

public PrintWriter(OutputStream out, boolean autoFlush)
public void flush()

public void close()

public boolean checkError()

protected void setError()

public void write(int c¢)

public void write(char[] text, int offset, int length)
public void write(char[] text)

public void write(String s, int offset, int length)
public void write(String s)

public void print(boolean b)

public void print(char c)

public void print(int i)

public void print(long 1)

public void print(float f)

public void print(double d)

public void print(char[] text)

public void print(String s)

public void print(Object o)

public void printIn(C)

public void printin(boolean b)

public void printIn(char c)

public void printIn(int 1)

public void printin(long I)

public void printIn(float f)

public void printin(double d)

public void printin(char[] text)

public void printIn(String s)

public void printIn(Object o)

Most of these methods behave the same for PrintWriter asthey do for PrintStrean.
The exceptions are that the four write() methods write characters rather than bytes
and that if the underlying writer properly handles character set conversion, then so do
all the methods of the PrintWriter. Thisisan improvement over the
noninternationalizable PrintStream class, but it's still not good enough for network
programming. PrintWriter still has the problems of platform dependency and
minimal error reporting that plague PrintStream.

It isn't hard to write aPrintWriter classthat does work for network programming.
Y ou simply have to require the programmer to specify aline separator and let the
10Exceptionsfall where they may. Example 4.2 demonstrates. Notice that all the
constructors require an explicit line-separator string to be provided.

Example 4.2. SafePrintWriter

/*
* @(#)SafePrintWriter.java 1.0 99/07/10

Written 1999 by Elliotte Rusty Harold,
Placed in the public domain
No rights reserved.

* ook % %

*/
package com.macfaq.io;
import java.io.*;

/**
* @version 1.0, 99/07/10
* @author Elliotte Rusty Harold
* @since Java Network Programming, 2nd edition
*/

public class SafePrintWriter extends Writer {
protected Writer out;

private boolean autoFlush = false;
private String lineSeparator;
private boolean closed = false;

public SafePrintWriter(Writer out, String lineSeparator) {
this(out, false, lineSeparator);

}

public SafePrintWriter(Writer out, char lineSeparator) {
this(out, false, String.valueOf(lineSeparator));

}

public SafePrintWriter(Writer out, boolean autoFlush, String
lineSeparator) {
super(out);
this.out = out;
this.autoFlush = autoFlush;
this.lineSeparator = lineSeparator;

}

public SafePrintWriter(OutputStream out, boolean autoFlush,
String encoding, String lineSeparator)
throws UnsupportedEncodingException {
this(new OutputStreamWriter(out, encoding), autoFlush,
lineSeparator);

public void Fflush() throws 10Exception {
synchronized (lock) {

if (closed) throw new 10Exception(''Stream closed");
out.flush();

}
}

public void close() throws 10Exception {

try {
this.flush();
}

catch (10Exception e) {
}

synchronized (lock) {
out.close();
this.closed = true;

}
}

public void write(int c) throws I0Exception {
synchronized (lock) {
if (closed) throw new 10Exception(*'Stream closed™);
out.write(c);
}
}

public void write(char[] text, int offset, int length) throws
I0Exception {
synchronized (lock) {
if (closed) throw new 10Exception(''Stream closed");
out.write(text, offset, length);

}
}

public void write(char[] text) throws I10Exception {
synchronized (lock) {
if (closed) throw new 10Exception('Stream closed™);
out.write(text, 0, text.length);

}
}

public void write(String s, int offset, int length) throws
I0Exception {

synchronized (lock) {
if (closed) throw new 10Exception("'Stream closed");
out.write(s, offset, length);

}
}

public void print(boolean b) throws I10Exception {
if (b) this.write('true™);
else this.write("false™);

}

public void printin(boolean b) throws I0Exception {
if (b) this.write("true™);
else this.write("false™);
this.write(lineSeparator);
if (autoFlush) out.flush();

}

public void print(char c) throws I0Exception {
this.write(String.valueOf(c));

}

public void println(char c) throws I0Exception {
this.write(String.valueOf(c));
this.write(lineSeparator);

if (autoFlush) out.flush();
}

public void print(int 1) throws I0Exception {
this.write(String.valueOf(i));
}

public void printIn(int i) throws 10Exception {
this.write(String.valueOf(i));
this.write(lineSeparator);
if (autoFlush) out.flush();

}

public void print(long 1) throws I10Exception {
this.write(String.valueOf(l));
}

public void printin(long 1) throws I0Exception {
this.write(String.valueOf(l));
this.write(lineSeparator);
if (autoFlush) out.flush();

}

public void print(float f) throws 10Exception {
this.write(String.valueOf(f));
}

public void printIn(float f) throws I0Exception {
this.write(String.valueOf(f));
this.write(lineSeparator);
if (autoFlush) out.flush();

}

public void print(double d) throws I0Exception {
this.write(String.valueOf(d));
}

public void printin(double d) throws I0Exception {
this.write(String.valueOf(d));
this.write(lineSeparator);
if (autoFlush) out.flush();

}

public void print(char[] text) throws I0Exception {
this.write(text);

}

public void printIn(char[] text) throws I0Exception {
this.write(text);
this.write(lineSeparator);
if (autoFlush) out.flush();

}

public void print(String s) throws I0Exception {
it (s == null) this.write("null'™);
else this.write(s);

}

public void printIn(String s) throws I0Exception {
it (s == null) this.write("null');
else this.write(s);

this.write(lineSeparator);
if (autoFlush) out.flush();

}

public void print(Object 0) throws I0Exception {
if (0 == null) this.write("null™);
else this.write(o.toString());

}

public void printIn(Object 0) throws I0Exception {
if (0 == null) this.write("null™);
else this.write(o.toString());
this.write(lineSeparator);
if (autoFlush) out.flush();

}

public void printin() throws 10Exception {
this.write(lineSeparator);
if (autoFlush) out.flush();

}
}

This class actually extends Writer rather than FilterWriter, asdoesPrintWriter.
It could extend FilterWriter instead. However, this would save only onefield and
one line of code, since this class needs to override every single method in
FilterWriter (close(), flush(), and al threewrite() methods). The reason
for thisistwofold. First, the Printwriter class has to be much more careful about
synchronization than the Fi lterWriter classis. Second, some of the classes that may
be used as an underlying Writer for this class, notably CharArrayWriter, do not
implement the proper semantics for close() and alow further writes to take place
even after the writer is closed. Consequently, we have to handle the checks for
whether the stream is closed in this class rather than relying on the underlying writer
out todo it for us.

- This chapter has been awhirlwind tour of the java. io package,
«» | covering the bare minimum you need to know to write network,
% programs. For amore detailed and comprehensive look, with

many more examples, you should check out my previous bOokK,
Java /O (O'Reilly & Associates, Inc., 1999).

Chapter 5. Threads

Back in the good old days of the Net, circathe early 1990s, we didn't have the Web
and HTTP and graphical browsers. Instead, we had Usenet news and FTP and
command-line interfaces, and we liked it that way! But as good as the good old days
were, there were some problems. For instance, when we were downloading kilobytes
of free software from a popular FTP site over our 2400bps modems using Kermit, we
would often encounter error messages like this one:

% ftp eunl.java.sun.com
Connected to eunl.javasoft.com.

220 softwarenl FTP server (wu-2.4.2-academ[BETA-16]+opie-2.32(1)
981105) ready.
Name (eunl.java.sun.com:elharo): anonymous

530-

530- Server is busy. Please try again later or try one of our
other

530- ftp servers at ftp.java.sun.com. Thank you.

530-

530 User anonymous access denied.
Login failed.
ftp>

In fact, in the days when the Internet had only afew million usersinstead of afew
hundred million, we were far more likely to come across an overloaded and congested
site than we are today. The problem was that both the FTP servers bundled with most
Unixes and the third-party FTP servers, such as wu-ftpd, forked a new process for
each connection. One hundred simultaneous users meant 100 additional processes to
handle. Since processes are fairly heavyweight items, too many of them could rapidly
bring a server to its knees. The problem wasn't that the machines weren't powerful
enough or the network fast enough; it was that the FTP servers were (and many still
are) poorly implemented. Many more simultaneous users could be served if anew
process wasn't needed for each connection.

Early web servers suffered from this problem as well, though the problem was
masked alittle by the transitory nature of HTTP connections. Since web pages and
their embedded images tend to be small (at least compared to the software archives
commonly retrieved by FTP) and since web browsers "hang up" the connection after
each fileisretrieved instead of staying connected for minutes or hours at atime, web
users don't put nearly as much load on a server as FTP users do. Nonetheless, if the
pages are large or are dynamically generated through CGI (which spawns a process
for each new connection), then web server performance can also degrade rapidly as
usage grows. The fundamental problem isthat whileit's easy to write code that
handles each incoming connection and each new task as a separate process (at least on
Unix), this solution doesn't scale. By the time a server is attempting to handle a
thousand or more simultaneous connections, performance slowsto a crawl.

There are at least two solutions to this problem. The first isto reuse processes rather
than spawning new ones. When the server starts up, a fixed number of processes (say,
300) are spawned to handle requests. Incoming requests are placed in a queue. Each
process removes one request from the queue, services the request, then returnsto the
gueue to get the next request. There are still 300 separate processes running, but
because all the overhead of building up and tearing down the processes is avoided,
these 300 processes can now do the work of athousand.x

1 These numbers are rough estimates. Y our exact mileage may vary, especially if your server hasn't yet reached
the hit volume where scal ability issues comeinto play. Still, whatever mileage you get out of spawning new
processes, you should be able to do much better by reusing old processes.

The second solution to this problem isto use lightweight threads to handle
connections instead of using heavyweight processes. Whereas each separate process
has its own block of memory, threads are easier on resources because they share
memory. Using threads instead of processes can buy you another factor of threein
server performance. By combining this with a pool of reusable threads (as opposed to

apool of reusable processes), your server can run nine times faster, all on the same
hardware and network connection! While it's still the case that most Java virtual
machines keel over somewhere between 700 and 2,000 simultaneous threads, the
impact of running many different threads on the server hardware is relatively minimal
since they all run within one process. Furthermore, by using athread pool instead of
spawning new threads for each connection, your server can use fewer than a hundred
threads to handle thousands of connections per minute.

Unfortunately, this increased performance doesn't come for free. There'sacost in
terms of program complexity. In particular, multithreaded servers (and other
multithreaded programs) require programmers to address concerns that aren't issues
for single-threaded programs, particularly issues of safety and liveness. Because
different threads share the same memory, it's entirely possible for one thread to stomp
all over the variables and data structures used by another thread. Thisis much the
same as how one program running on a non-memory-protected operating system such
as the Mac or Windows 95 can crash the entire system. Consequently, different
threads have to be extremely careful about which resources they use when. Generally,
each thread must agree to use certain resources only when it's sure either that those
resources can't change or that it has exclusive access to them. However, it's also
possible for two threads to be too careful, each waiting for exclusive access to
resources it will never get. This can lead to deadlock, where two threads are each
waiting for resources the other possesses. Neither thread can proceed without the
resources that the other thread has reserved, but neither iswilling to give up the
resources it has already.

5.1 Running Threads

A thread with alittle t is a separate independent path of execution in the virtual
machine. A Thread with acapital T is an instance of the java. lang.Thread class.
There is a one-to-one relationship between threads executing in the virtual machine
and Thread objects constructed by the virtual machine. Most of the time it's obvious
from the context which is meant if the difference is really important. To start a new
thread running in the virtual machine, you construct an instance of the Thread class
and invoke its start() method, like this:

Thread t = new Thread();
t.start();

Of course, thisthread isn't very interesting because it doesn't have anything to do. To
give athread something to do, you either subclass the Thread class and override its
run() method, or implement the Runnable interface and pass the Runnable object
to the Thread constructor. | generally prefer the second option since it more cleanly
separates the task that the thread performs from the thread itself, but you will see both
technigues used in this book and elsewhere. In both cases, the key isthe run()
method, which has this signature:

public void run()

You're going to put al the work the thread does in this one method. This method may
invoke other methods; it may construct other objects; it may even spawn other threads.

However, the thread starts here and it stops here. When the run() method completes,
the thread dies. In essence, the run() method isto athread what the main()

method is to atraditional nonthreaded program. A single-threaded program exits
when the main() method returns. A multithreaded program exits when both the
main() method and the run() methods of all nondaemon threads return. (Daemon
threads perform background tasks such as garbage collection and don't prevent the
virtual machine from exiting.)

5.1.1 Subclassing Thread

For example, suppose you want to write a program that cal culates the Secure Hash
Algorithm (SHA) digest for many files. To alarge extent, this program is 1/O-bound;
that is, its speed is limited by the amount of time it takes to read the files from the disk.
If you write it as a standard program that processes the filesin series, the program's
going to spend alot of time waiting for the hard drive to return the data. Thisis
characteristic of alot of network programs; they have atendency to execute faster
than the network can supply input. Consequently, they spend alot of time blocked.
Thisistime that other threads can use, either to process other input sources or to do
something that doesn't rely on slow input. (Not all threaded programs will share this
characteristic. Sometimes even if none of the threads have alot of spare timeto allot
to other threads, it's simply easier to design a program by breaking it into multiple
threads that perform independent operations.) Example 5.1 is a subclass of Thread
whose run() method calculates an SHA message digest for a specified file.

Example 5.1. FileDigestThread

import java.io.*;
import java.security.™;

public class DigestThread extends Thread {
private File input;

public DigestThread(File input) {
this.input = input;
}

public void run() {
try {
FilelnputStream in = new FilelnputStream(input);
MessageDigest sha = MessageDigest.getlnstance("'SHA™);
DigestilnputStream din = new DigestlnputStream(in, sha);
int b;
while ((b = din.read()) !'= -1) ;
din.close();
byte[] digest = sha.digest();
StringBuffer result = new StringBuffer(input.toString());
result.append(*': ");
for (int i = 0; 1 < digest.length; i++) {
result._append(digest[i] + " ');

b
System.out.printin(result);

catch (10Exception e) {

System.err.printin(e);

catch (NoSuchAlgorithmException e) {
System_err._printin(e);

}
}

public static void main(String[] args) {

for (int i = 0; 1 < args.length; i++) {
File ¥ = new File(args[i]);
Thread t = new DigestThread(f);
t.start();

}

}

Themain() method reads filenames from the command-line and starts a new
DigestThread for each one. The work of the thread is actually performed in the

run() method. Here aDigestinputStream reads the file. Then the resulting digest
is printed on System.out. Notice that the entire output from this thread isfirst built in
alocal stringBuffer variable result. Thisisthen printed on the console with one
method invocation. The more obvious path of printing the pieces one at atime using
System.out.print() isnot taken. There's areason for that, which we'll discuss
soon.

Since the signature of the run() method is fixed, you can't pass argumentsto it or
return values from it. Consequently, you need different ways to pass information into
the thread and get information out of it. The simplest way to passinformation inisto
pass arguments to the constructor, which set fieldsin the Thread subclass, as done
here.

Getting information out of athread back into the original calling thread istrickier
because of the asynchronous nature of threads. Example 5.1 sidesteps that problem by
never passing any information back to the calling thread and simply printing the
results on System.out. Most of the time, however, you'll want to pass the information
to other parts of the program. Y ou can store the result of the calculation in afield and
provide a getter method to return the value of that field. However, how do you know
when the calculation of that value is complete? What do you return if somebody calls
the getter method before the value has been calculated? Thisis quite tricky, and we'll
discuss it more later in this chapter.

If you subclass Thread, you should override run() and nothing else! The various
other methods of the Thread class, start(), stop(), interrupt(), join(),
sleep(), €tc., al have very specific semantics and interactions with the virtual
machine that are difficult to reproduce in your own code. Y ou should override run(),
and you should provide additional constructors and other methods as necessary, but
you should not replace any of the other standard Thread methods.

5.1.2 Implementing the Runnable Interface

One way to avoid overriding the standard Thread methods is not to subclass Thread.
Instead, you can write the task you want the thread to perform as an instance of the
Runnable interface. Thisinterface declares the run() method, exactly the same as
the Thread class:

public void run()

Other than this method, which any class implementing this interface must provide,
you are completely free to create any other methods with any other names you choose,
all without any possibility of unintentionally interfering with the behavior of the
thread. This also alows you to place the thread's task in a subclass of some other class
such as Applet or HTTPServlet. To start athread that performs the Runnable's task,
you pass the Runnable object to the Thread constructor. For example:

Thread t = new Thread(myRunnableObject);
t.start();

It's easy to recast most problems that subclass Thread into Runnable forms. Example
5.2 demonstrates by rewriting Example 5.1 to use the Runnabl e interface rather than
subclassing Thread. Aside from the name change, the only modifications that were
necessary were changing extends Thread to implements Runnable and passing a
DigestRunnable object to the Thread constructor in the main() method. The
essential logic of the program is unchanged.

Example 5.2. DigestRunnable

import java.io.*;
import java.security.*;

public class DigestRunnable implements Runnable {
private File input;

public DigestRunnable(File input) {
this.input = input;
e

public void run() {
try {

FilelnputStream in = new FilelnputStream(input);

MessageDigest sha = MessageDigest.getlnstance("'SHA™);

DigestlnputStream din = new DigestlnputStream(in, sha);

int b;

while ((b = din.read()) !'= -1) ;

din.close();

byte[] digest = sha.digest();

StringBuffer result = new StringBuffer(input.toString());

result.append(’': ™);

for (int i = 0; 1 < digest.length; i++) {
result.append(digest[i] + " ");

}
System.out.printin(result);

by
catch (10Exception e) {
System.err.printin(e);

}
catch (NoSuchAlgorithmException e) {

System_err._printin(e);

}
}

public static void main(String[] args) {

for (int 1 = 0; 1 < args.length; 1++) {
File ¥ = new File(args[i]);
DigestRunnable dr = new DigestRunnable(f);
Thread t = new Thread(dr);
t.start();

}

}

There's no strong reason to prefer implementing Runnable to extending Thread or
viceversain the general case. In afew special cases such as Example 5.14 later in this
chapter, it may be useful to invoke some methods of the Thread class for the specific
thread from within the constructor. Thiswould require using a subclass. Subclassing
Thread does alow hostile applets some attacks they might not otherwise have
available. In some specific cases, it may be necessary to place the run() method in a
class that extends some other class such as Applet, so the Runnable interfaceis
essential. Finally, some object-oriented purists argue that the task that a thread
undertakesis not really akind of Thread, and therefore should be placed in a separate
class or interface such as Runnable rather than in a subclass of Thread. | half agree
with them, though | don't think the argument's as strong as it's sometimes made out to
be. Consequently, I'll mostly use the Runnable interface in this book, but you should
feel free to do whatever seems most convenient to you.

5.2 Returning Information from a Thread

One of the hardest things for programmers accustomed to traditional, single-threaded
procedural models to grasp when moving to a multithreaded environment is how to
return information from athread. Getting information out of afinished thread is one
of the most commonly misunderstood aspects of multithreaded programming. The
run() method and the start() method don't return any values. For example,
suppose that instead of simply printing out the SHA digest asin Example 5.1 and
Example 5.2, the digest thread needs to return the digest to the main thread of
execution. Most people'sfirst reaction isto store the result in afield, then provide a
getter method, as shown in Example 5.3 and Example 5.4. Example 5.3 isaThread
subclass that calculates adigest for a specified file. Example 5.4 isasimple
command-line user interface that receives filenames and spawns threads to calculate
digests for them.

Example 5.3. A Thread That Uses an Accessor Method to Return the Result

import java.io.*;
import java.security.*;

public class ReturnDigest extends Thread {

private File input;
private byte[] digest;

public ReturnDigest(File input) {
this.input = input;
}

public void run() {

try {
FilelnputStream in = new FilelnputStream(input);

MessageDigest sha = MessageDigest.getlnstance("'SHA™);
DigestilnputStream din = new DigestlnputStream(in, sha);
int b;

while ((b = din.read()) !'= -1) ;

din.close();

digest = sha.digest();

}
catch (10Exception e) {
System.err.printin(e);

}
catch (NoSuchAlgorithmException e) {
System._err._printin(e);

}

}

public byte[] getDigest() {
return digest;

}
}

Example 5.4. A Main Program That Uses the Accessor Method to Get the Output of the
Thread

import java.io.*;

public class ReturnDigestUserinterface {
public static void main(String[] args) {
for (int 1 = 0; 1 < args.length; 1++) {

// Calculate the digest

File ¥ = new File(args[i]);
ReturnDigest dr = new ReturnDigest(f);
dr_start();

// Now print the result

StringBuffer result = new StringBuffer(f.toString());

result._append(': ');

byte[] dlgest dr_getDigest();

for (int j = 0; jJ < digest.length; j++) {
result.append(digest[j] + " ');

}

System.out.printin(result);

}

The ReturnDigest class stores the result of the calculation in the private field digest,
which is accessed via the accessor method getDigest(). Themain() method in
ReturnDigestUserInterface loops through alist of files from the command line. It
starts a new ReturnDigest thread for each file, then tries to retrieve the result using
getDigest(). However, when you run this program, the result is not what you
expect:

D:\JAVA\JINP2\examples\05>java ReturnDigestUseriInterface *.java
Exception in thread "main" java.lang.NullPointerException
at

ReturnDigestUserinterface.main(ReturnDigestUserinterface. java,
Compiled Code)

The problem is that the main program gets the digest and uses it before the thread has
had a chanceto initialize it. Although this flow of control would work in asingle-
threaded program in which dr.start() ssmply invoked the run() method in the
same thread, that's not what happens here. The calculations that dr.start() kicks
off may or may not finish before the main() method reachesthe call to
dr.getDigest(). If they haven't finished, then dr.getDigest() returnsnull, and
the first attempt to access digest throws aNul IPointerException.

5.2.1 Race Conditions

One possibility isto move the call to dr.getDigest() later inthemain() method
like this:

public static void main(String[] args) {
ReturnDigest[] digests = new ReturnDigest[args.length];
for (int i = 0; 1 < args.length; i++) {

// Calculate the digest

File ¥ = new File(args[i]);
digests[i] = new ReturnDigest(f);
digests[i]-start();

}
for (int i = 0; 1 < args.length; i++) {

// Now print the result

StringBuffer result = new StringBuffer(args[i]);

result.append(': ");

byte[] digest = digests[i].getDigest();

for (int j = 0; jJ < digest.length; j++) {
result._append(digest[j] + " ");

}

System.out.printin(result);

by
If you're lucky, this may work, and you'll get the expected output like this:

D:\JAVA\JINP2\examples\0O5>java ReturnDigest2 *_java
BadDigestRunnable.java: 73 -77 -74 111 -75 -14 70 13 -27 -28 32 68 -
126

43 -27 55 -119 26 -77 6

BadDigestThread. java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82
39

-4 8 -38 119 96 -37 -99

DigestRunnable.java: 61 116 -102 -120 97 90 53 37 -14 111 -60 -86 -
112

124 -54 111 114 -42 -36 -111

DigestThread.java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82 39
-4 8 -38 119 96 -37 -99

But let me emphasize that point about being lucky. Y ou may not get this output. In
fact, you may still get aNul IPointerException. Whether this code worksis
completely dependent on whether every one of the ReturnDigest threads finishes
beforeits getDigest() method iscalled. If thefirst for loop istoo fast, and the
second for loop is entered before the threads spawned by the first loop start finishing,
then you're back where we started:

D:\JAVA\JINP2\examples\05>java ReturnDigest2 ReturnDigest. java
Exception in thread "main" java.lang.NullPointerException
at ReturnDigest2.main(ReturnDigest2. java, Compiled Code)

Whether you get the correct results, or this exception, depends on many factors,
including how many threads you're spawning, the relative speeds of the CPU and disk
on the system where thisis run, and the algorithm the Java virtual machine uses to
alot timeto different threads. Thisis called a race condition. Getting the correct
result depends on the relative speeds of different threads, and you can't control those!
Y ou need a better way to guarantee that the getDigest() method isn't called until
the digest is ready.

5.2.2 Polling

The solution most novices adopt is to have the getter method return a flag value (or
perhaps throw an exception) until the result field is set. Then the main thread
periodically polls the getter method to see whether it's returning something other than
the flag value. In this example, that would mean repeatedly testing whether the digest
isnull and using it only if it isn't. For example:

public static void main(String[] args) {
ReturnDigest[] digests = new ReturnDigest[args.length];
for (int i = 0; 1 < args.length; i++) {
// Calculate the digest

File ¥ = new File(args[i]);
digests[i] = new ReturnDigest(f);

digests[i].start();

}

for (int 1 = 0; i1 < args.length; 1++) {
while (true) {
// Now print the result
byte[] digest = digests[i].-getDigest();
if (digest !'= null) {
StringBuffer result = new StringBuffer(args[i]);
result.append(’': ");
for (int j = 0; jJ < digest.length; j++) {
result._append(digest[j] + " ");
b

System.out.printin(result);
break;

}

This solution works. It gives the correct answersin the correct order, and it works
irrespective of how fast the individual threads run relative to each other. However, it's
doing alot more work than it needs to.

5.2.3 Callbacks

In fact, there'samuch simpler, more efficient way to handle the problem. The infinite
loop that repeatedly polls each ReturnDigest object to see whether it's finished can
be eliminated. The trick isthat rather than having the main program repeatedly ask
each ReturnDigest thread whether it's finished (like afive-year-old repeatedly
asking, "Are wethere yet?' on along car trip, and amost as annoying), we let the
thread tell the main program when it's finished. It does this by invoking a method in
the main classthat started it. Thisis called a callback because the thread calls back its
creator when it's done. This way, the main program can go to sleep while waiting for
the threads to finish and not steal time from the running threads.

When the thread's run() method is nearly done, the last thing it doesisinvoke a
known method in the main program with the result. Rather than the main program
asking each thread for the answer, each thread tells the main program the answer. For
instance, Example 5.5 shows aCal IbackDigest class that is much the same as before.
However, at the end of the run() method, it passes off the digest to the static

Cal lbackDigestUserlInterface.receiveDigest() method in the class that
originally started the thread.

Example 5.5. CallbackDigest

import java.io.*;
import java.security.*;

public class CallbackDigest implements Runnable {

private File input;

public CallbackDigest(File input) {
this.input = input;
by

public void run() {

try {
FilelnputStream in = new FilelnputStream(input);

MessageDigest sha = MessageDigest.getlnstance("'SHA™);

DigestilnputStream din = new DigestlnputStream(in, sha);
int b;

while ((b = din.read()) !'= -1) ;

din.close();

byte[] digest = sha.digest();

CallbackDigestUseriInterface.receiveDigest(digest,
input.getName());

catch (10Exception e) {
System_err._printin(e);

}
catch (NoSuchAlgorithmException e) {
System.err.printin(e);

}

}

The Cal IbackDigestUserInterface class shown in Example 5.6 provides the

main() method. However, unlike the main() methods in the other variations of this
program in this chapter, this one only starts the threads for the files named on the
command line. It does not attempt to actually read, print out, or in any other way work
with the results of the calculation. That is handled by a separate method,
receiveDigest(). Thismethod is not invoked by the main() method or by any
method that can be reached by following the flow of control from the main()
method. Instead, it isinvoked by each thread separately. In effect, it runsinside the
digesting threads rather than inside the main thread of execution.

Example 5.6. CallbackDigestUserInterface

import java.io.*;

public class CallbackDigestUserlinterface {
public static void receiveDigest(byte[] digest, String name) {

StringBuffer result = new StringBuffer(name);

result.append(’': ");

for (int j = 0; jJ < digest.length; j++) {
result._append(digest[j] + ™ *);

b
System.out.printin(result);

}

public static void main(String[] args) {

for (int i = 0; 1 < args.length; i++) {
// Calculate the digest
File ¥ = new File(args[i]);
CallbackDigest cb = new CallbackDigest(f);
Thread t = new Thread(cb);
t.start();

}

Example 5.5 and Example 5.6 use static methods for the callback so that
CallbackDigest needsto know only the name of the method in
CallbackDigestUserInterface to cal. However, it's not much harder (and
considerably more common) to call back to an instance method. In this case, the class
making the callback must have areference to the object it's calling back. Generally,
this reference is provided as an argument to the thread's constructor. When the run()
method is nearly done, the last thing it does is invoke the instance method on the
callback object to pass along the result. For instance, Example 5.7 shows a

Cal lbackDigest class that is much the same as before. However, it now has one
additional field, aCal IbackDigestUser Interface object called cal Iback. At the
end of the run() method, the digest is passed to callback's receiveDigest()
method. The Cal IbackDigestUser Interface object itself is set in the constructor.

Example 5.7. InstanceCallbackDigest

import java.io.*;
import java.security.™;

public class InstanceCallbackDigest implements Runnable {

private File input;
private InstanceCallbackDigestUserlnterface callback;

public InstanceCallbackDigest(File input,
InstanceCal lbackDigestUseriInterface callback) {
this.input = input;
this.callback = callback;

}

public void run() {
try {

FilelnputStream in = new FilelnputStream(input);
MessageDigest sha = MessageDigest.getlnstance("'SHA™);
DigestilnputStream din = new DigestlnputStream(in, sha);
int b;
while ((b = din.read()) !'= -1) ;
din.close();
byte[] digest = sha.digest();
callback.receiveDigest(digest);

catch (10Exception e) {
System.err.printin(e);

}
catch (NoSuchAlgorithmException e) {
System.err.printin(e);

}

The Ccal IbackDigestUserInterface class shown in Example 5.8 holds themain()
method as well asthe receiveDigest() method used to handle an incoming digest.
Example 5.8 just prints out the digest, but a more expansive class could do other
things as well, such as storing the digest in afield, using it to start another thread, or
performing further calculations on it.

Example 5.8. InstanceCallbackDigestUserInterface

import java.io.*;

public class InstanceCallbackDigestUserinterface {

private File input;
private byte[] digest;

public InstanceCallbackDigestUserinterface(File input) {
this.input = input;

}

public void calculateDigest() {
InstanceCal lbackDigest cb = new InstanceCallbackDigest(input,
this);
Thread t = new Thread(cb);
t.start();

}

void receiveDigest(byte[] digest) {
this.digest = digest;
System.out.printin(this);

}

public String toString() {
String result = input.getName() + ": ';
if (digest !'= null) {
for (int i = 0; 1 < digest.length; i++) {
result += digest[i] + " ";
}
}
else {
result += "digest not available";
}

return result;

}
public static void main(String[] args) {

for (int i = 0; 1 < args.length; i++) {
// Calculate the digest
File T = new File(args[i]);
InstanceCal lbackDigestUserInterface d
= new InstanceCallbackDigestUserlInterface(T);
d.calculateDigest();

}

Using instance methods instead of static methods for callbacksis alittle more
complicated but has a number of advantages. First, each instance of the main class,
InstanceCal IbackDigestUserInterface in this example, maps to exactly onefile
and can keep track of information about that file in a natural way without needing
extra data structures. Furthermore, the instance can easily recalculate the digest for a
particular fileif necessary. In practice, this scheme proves alot more flexible.
However, thereis one caveat. Notice the addition of astart() method. Y ou might
logically think that this belongsin a constructor. However, starting threadsin a
constructor is dangerous, especially threads that will call back to the originating object.
There's arace condition here that may allow the new thread to call back before the
constructor is finished and the object isfully initialized. It'sunlikely in this case,
because starting the new thread is the last thing this constructor does. Nonetheless, it's
at least theoretically possible. Therefore, it's good form to avoid launching threads
from constructors.

The first advantage of the callback scheme over the polling schemeisthat it doesn't
waste so many CPU cycles on polling. But a much more important advantage is that
callbacks are more flexible and can handle more complicated situations involving
many more threads, objects, and classes. For instance, if more than one object is
interested in the result of the thread's calculation, the thread can keep alist of objects
to call back. Particular objects can register their interest by invoking a method in the
Thread or Runnable classto add themselves to the list. If instances of more than one
class are interested in the result, then anew interface can be defined that all these
classes implement. The interface would declare the callback methods. If you're
experiencing déavu right now, that's probably because you have seen this scheme
before. Thisis exactly how events are handled in the AWT and JavaBeans™. The
AWT runsin aseparate thread from the rest of your program. Components and beans
inform you of events by calling back to methods declared in particular interfaces, such
asActionListener and PropertyChangeListener. Your listener objects register
their interests in events fired by particular components using methods in the
Component class, such as addActionListener() and addPropertyChange-
Listener(). Inside the component, the registered listeners are stored in alinked list
built out of java.awt.AWTEventMul ticaster objects. It's easy to duplicate this
pattern in your own classes. Example 5.9 shows one very simple possible interface
class called DigestListener that declaresthe digestCalculated() method.

Example 5.9. DigestListener Interface

public interface DigestListener {

public void digestCalculated(byte[] digest);

}

Example 5.10 shows the Runnable class that calculates the digest. Severa new
methods and fields are added for registering and deregistering listeners. For

convenience and simplicity, a java.util .Vector managesthelist. The run()
method no longer directly calls back the object that created it. Instead, it
communicates with the private sendDigest() method, which sends the digest to all
registered listeners. The run() method neither knows nor cares who's listening to it.
This class no longer knows anything about the user interface class. It has been
completely decoupled from the classes that may invoke it. Thisis one of the strengths
of this approach.

Example 5.10. The ListCallbackDigest Class

import java.io.*;
import java.security.™;
import java.util_*;

public class ListCallbackDigest implements Runnable {

private File input;
List listenerList = new Vector();

public ListCallbackDigest(File input) {
this.input = input;
}

public synchronized void addDigestListener(DigestListener 1) {
listenerList.add(l);
}

public synchronized void removeDigestListener(DigestListener 1) {
listenerList.remove(l);
>

private void synchronized sendDigest(byte[] digest) {

Listlterator iterator = listenerList.listlterator();
while (iterator.hasNext()) {
DigestListener dl = (DigestListener) iterator.next();
dl.digestCalculated(digest);

}

¥
public void run() {

try {
FilelnputStream in = new FilelnputStream(input);

MessageDigest sha = MessageDigest.getlnstance("'SHA™);
DigestlnputStream din = new DigestlnputStream(in, sha);
int b;

while ((b = din.read()) !'= -1) ;

din.close();

byte[] digest = sha.digest();
this.sendDigest(digest);

}
catch (10Exception e) {
System.err.printin(e);

catch (NoSuchAlgorithmException e) {
System._err._printin(e);

}

Finally, Example 5.11 is amain program that implements the DigestListener
interface and exercisesthe ListCal IbackDigest class by calculating digests for al
the files named on the command line. However, thisis no longer the only possible
main program. There are now many more possible ways the digest thread could be
used.

Example 5.11. ListCallbackDigestUserInterface Interface

import java.io.*;

public class ListCallbackDigestUseriInterface implements
DigestListener {

private File input;
private byte[] digest;

public ListCallbackDigestUserinterface(File input) {
this.input = input;
}

public void calculateDigest() {
ListCallbackDigest cb = new ListCallbackDigest(input);
cb.addDigestListener(this);
Thread t = new Thread(cb);
t.start();

}

public void digestCalculated(byte[] digest) {
this.digest = digest;
System.out.printin(this);

}

public String toString() {
String result = input.getName() + ": ';
if (digest = null) {
for (int i = 0; 1 < digest.length; i++) {
result += digest[i] + " ";
}

}

else {
result += "digest not available™;
}

return result;

}

public static void main(String[] args) {

for (int 1 = 0; 1 < args.length; 1++) {
// Calculate the digest
File ¥ = new File(args[i]);
ListCal lbackDigestUseriInterface d
= new ListCallbackDigestUserlInterface(f);

d.calculateDigest();
}

}
5.3 Synchronization

My shelves are overflowing with books, including many duplicate books, out-of-date
books, and books | haven't looked at for ten years and probably never will again. Over
the years, these books have cost me tens of thousands of dollars, maybe more, to
acquire. By contrast, two blocks down the street from my apartment, you'll find the
Central Brooklyn Public Library. Its shelves are also overflowing with books, and
over its 150 years, it's spent millions on its collection. But the difference is that its
books are shared among all the residents of Brooklyn, and consequently the books
have very high turnover. Most books in the collection are used several times ayear.
Although the public library spends alot more on buying and storing books than | do,
the cost per page read is much lower at the library than for my personal shelves.
That's the advantage of a shared resource.

Of course, there are disadvantages to shared resources too. If | need a book from the
library, | have to walk over there. | have to find the book I'm looking for on the
shelves. | have to stand in line to check the book out, or else | have to useit right there
in the library rather than bringing it home with me. Sometimes, somebody €else has
checked the book out, and | have to fill out areservation slip requesting that the book
be saved for me when it's returned. And | can't write notes in the margins, highlight
paragraphs, or tear pages out to paste on my bulletin board. (Well, | can, but if I do, it
significantly reduces the usefulness of the book for future borrowers, and if the library
catches me, | may lose my borrowing privileges.) There's asignificant time and
convenience penalty associated with borrowing a book from the library rather than
purchasing my own copy, but it does save me money and storage space.

A thread islike a borrower at alibrary. It's borrowing from a central pool of resources.
Threads make programs more efficient by sharing memory, file handles, sockets, and
other resources. As long as two threads don't want to use the same resource at the
same time, a multithreaded program is much more efficient than the multiprocess
aternative in which each process would have to keep its own copy of every resource.
The downside of thisisthat if two threads do want the same resource at the same time,
one of them will have to wait for the other one to finish. If one of them doesn't wait,
then the resource may get corrupted. Let'slook at a specific example. Consider the
run() method of Example 5.1 and Example 5.2. As previously mentioned, the
method builds the result as a String, and then prints the String on the console using
one call to System.out.printIn(). The output looks like this:

DigestThread. java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82 39
-4 8 -38 119 96 -37 -99

DigestRunnable.java: 61 116 -102 -120 97 90 53 37 -14 111 -60 -86 -
112

124 -54 111 114 -42 -36 -111

DigestThread.class: -62 -99 -39 -19 109 10 -91 25 -54 -128 -101 17 13
-66 119 25 -114 62 -21 121

DigestRunnable.class: 73 15 7 -122 96 66 -107 -45 69 -36 86 -43 103
-104 25 -128 -97 60 14 -76

Four threads run in parallel to produce this output. Each writes one line to the console.
The order in which the lines are written is unpredictabl e because thread scheduling is
unpredictable. But each line is written as a unified whole. Suppose, however, we used
this variation of the run() method, which, rather than storing intermediate parts of
the result in the String variable result, ssimply prints them on the console as they
become available:

public void run() {

try {
FilelnputStream in = new FilelnputStream(input);

MessageDigest sha = MessageDigest.getlnstance("'SHA™);
DigestlnputStream din = new DigestlnputStream(in, sha);
int b;

while ((b = din.read()) != -1) ;

din.close();

byte[] digest = sha.digest();
System._out._print(input + ": ');

for (int 1 = 0; 1 < digest.length; i++) {
System-out.print(dlgest[l] + " ");

}

System.out.printin();

}
catch (10Exception e) {
System._err._printin(e);

catch (NoSuchAlgorithmException e) {
System_err_printin(e);
}

}

When you run the program on the same input, you get output that |ooks something
likethis:

DigestRunnable.class: 73 15 7 -122 96 66 -107 -45 69 -36 86 -43 103 -
104 25

-128 DigestRunnable.java: DigestThread.class: DigestThread. java:

61 -62 69 116 -99 101 -102 -39 80 -120 -19 -94 97 109 -98 90 -97 10 -
113 53 60

-91 29 37 14 25 -52 -14 -76 -54 -124 111

-128 -121 -60 -101 -38 -86 17 -82 -112 13 39 124 -66 -4 -54 119 8 111
25 -38 114

-114 119 -42 62 96 -36 -21 -37 -111 121 -99

The digests of the different files are all mixed up! There's no telling which number
belongs to which digest. Clearly, thisis a problem.

The reason this occurs is that System.out is shared between the four different threads.
When one thread starts writing to the console through several System.out.print()
statements, it may not finish all its writes before another thread breaks in and starts
writing its output. The exact order in which one thread preempts the other threadsis

indeterminate. You'll probably see slightly different output every time you run this
program.

What's needed is away to assign exclusive access to a shared resource to one thread
for a specific series of statements. In this example, that shared resource is System.out,
and the statements that need exclusive access are:

System.out.print(input + : ");
for (int i = 0; i < digest.length; i++) {
System.out.print(digest[i] + " ");

}
System.out.printin();

5.3.1 Synchronized Blocks

Java's means of assigning exclusive access to an object is the synchronized keyword.
To indicate that these five lines of code should be executed together, wrap themin a
synchronized block that synchronizes on the System.out object, like this:

synchronized (System.out) {
System._out._print(input + ": ');
for (int i = 0; 1 < digest.length; i++) {
System.out._print(digest[i] + " ');

}
System.out.printin();

}

This means that once one thread starts printing out the values, all other threads will
have to stop and wait for it to finish before they can print out their values.
Synchronization is only apartial lock on an object. Other methods can use the
synchronized object if they do so blindly, without attempting to synchronize on the
object. For instance, in this case, there's nothing to prevent an unrelated thread from
printing on System_out if it doesn't also try to synchronize on System.out.? Java
provides no means to stop all other threads from using a shared resource. It can only
prevent other threads that synchronize on the same object from using the shared
resource.

12 1n fact, the PrintStream class internally synchronizes most methods on the PrintStream object, System.out in
this example. This means that every other thread that calls System.out.printin() will be synchronized on
System.out and will have to wait for this code to finish. PrintStream is unique in this respect. Most other
OutputStream subclasses do not synchronize themselves.

Synchronization must be considered any time multiple threads share resources. These
threads may be instances of the same Thread subclass or use the same Runnable class,
or they may be instances of completely different classes. The key iswhat resources
they share, not what classes they are. In Java, all resources are represented by objects
that are instances of particular classes. Synchronization becomes an issue only when
two threads both possess references to the same object. In the previous example, the
problem was that several threads had access to the same PrintStream object
System.out. In thiscase, it was a static class variable that led to the conflict.
However, instance variables can also have problems.

For example, suppose your web server keeps alog file. The log file may be
represented by a class something like the one shown in Example 5.12. This classitself
doesn't use multiple threads. However, if the web server uses multiple threadsto
handle incoming connections, then each of those threads will need access to the same
log file and consequently to the same LogFi le object.

Example 5.12. LogFile

import java.io.*;
import java.util.*;

public class LogFile {
private Writer out;

public LogFile(File) throws I0Exception {
FileWriter fw = new FileWriter(f);
this.out = new BufferedWriter(fw);

}

public void writeEntry(String message) throws I0Exception {
Date d = new Date();
out.write(d.toString());
out.write("\t");
out.write(message);
out.write("\r\n");

}

public void close() throws 10Exception {
out.flush();
out.close();

}

protected void finalize() {

try {
this.close();

catch (10Exception e) {

}
}

}

In thisclass, thewriteEntry() method finds the current date and time, then writes
into the underlying file using four separate invocations of out.write(). A problem
occurs if two or more threads each have a reference to the same LogFi le object, and
one of those threads interrupts another one while it's in the process of writing the data.
One thread may write the date and a tab, then the next thread might write three
complete entries, then the first thread could write the message, a carriage return, and a
linefeed. The solution, once again, is synchronization. However, here there are two
good choices for which object to synchronize on. Thefirst choice isto synchronize on
the Writer object out.

For example:

public void writeEntry(String message) throws I0Exception {

synchronized (out) {
Date d = new Date();
out.write(d.toString());
out.write("\t");
out.write(message);
out.write("\r\n");

}

This works because all the threads that use this LogFi le object are also using the
same out object that's part of that LogFi le. It doesn't matter that out is private.
Although it is used by the other threads and objects, it's referenced only within the
LogFi le class. Furthermore, although we're synchronizing here on the out object, it's
thewriteEntry() method that needs to be protected from interruption. The writer
classes all have their own internal synchronization that protects one thread from
interfering with awrite() method in another thread. (Thisis not true of input and
output streams, with the exception of PrintStream. It is possible for awrite to an
output stream to be interrupted by another thread.) Each Writer classhasa lock field
that specifies the object on which writes to that writer synchronize.

The second possibility isto synchronize on the LogFi le object itself. Thisissimple
enough to arrange with the this keyword. For example:

public void writeEntry(String message) throws I0Exception {

synchronized (this) {
Date d = new Date();
out.write(d.toString());
out.write("\t");
out.write(message);
out.write("\r\n");

}

5.3.2 Synchronized Methods

However, since synchronizing the entire method body on the object itself is such a
common thing to do, Java provides a shortcut for this. Y ou can synchronize an entire
method on the current object (the this reference) by adding the synchronized
modifier to the method declaration. This synchronizes on the Class object for the
classif astatic method is being synchronized. For example:

public synchronized void writeEntry(String message)
throws 10Exception {

Date d = new Date();
out.write(d.toString());
out.write("\t");
out.write(message);
out.write("\r\n");

Simply adding the synchronized modifier to all methods is not a catchall solution for
synchronization problems. For one thing, it exacts a severe performance penalty in
many VMs (though HotSpot is much better in this respect than most), potentially
slowing down your code by afactor of three or more. Second, it dramatically
increases the chances of deadlock. Third, and most importantly, it's not always the
object itself you need to protect from simultaneous modification or access, and
synchronizing on the instance of the method's class may not protect the object you
really need to protect. For instance, in this example, what we're really trying to
prevent is two threads simultaneously writing onto out. If some other class had a
reference to out completely unrelated to the LogFi le, then this attempt would have
failed. However, in this example, synchronizing on the LogFi le object is sufficient
because out is a private instance variable. Since we never expose a reference to this
object, there's no way for any other object to invoke its methods except through the
LogFi le class. Therefore, synchronizing on the LogFi le object has the same effect as
synchronizing on out.

5.3.3 Alternatives to Synchronization

Synchronization is not always the best possible solution to the problem of inconsistent
behavior as aresult of thread scheduling. There are a number of techniques you can
use to avoid the need for synchronization. Thefirst isto use local variables instead of
fields wherever possible. Local variables do not have synchronization problems.
Every time amethod is entered, the virtual machine creates a completely new set of
local variables for the method. These variables are destroyed when the method exits.
This meansthere is no possibility for one local variable to be used in two different
threads. Every thread has its own separate set of local variables.

Method arguments of primitive types are aso safe from modification in separate
threads because Java passes arguments by value rather than by reference. A corollary
of thisisthat methods such asMath.sqrt() that smply take zero or more primitive
data type arguments, perform some calculation, and return a value without ever
interacting with the fields of any class are inherently thread safe. These methods often
either are or should be declared static.

Method arguments of object types are alittle trickier because the actual argument
passed by valueis areference to the object. Suppose, for example, you pass a
reference to an array into asort() method. While the method is sorting the array,
there's nothing to stop some other thread that also has a reference to the array from
changing the valuesin the array.

String arguments are safe because they're immutable ; that is, once a String object
has been created, it cannot be changed by any thread. An immutable object never
changes state. The values of itsfields are set once when the constructor runs and then
never altered. StringBuffer arguments are not safe because they're not immutable ;
they can be changed after they're created.

A constructor normally does not have to worry about issues of thread safety because
until the constructor returns, no thread has a reference to the object, and so it's
impossible for two threads to have areference to the object. (The most likely issueis
if a constructor depends on another object in another thread that may change while the

constructor runs, but that's uncommon. There's also a potential problem if a
constructor somehow passes a reference to the object into a different thread, but thisis
also uncommon.)

Y ou can take advantage of immutability in your own classes. Thisis often the easiest
way to make a class thread safe, often much easier than determining exactly which
methods or code blocks to synchronize. To make an object immutable, you simply
declare dl itsfields private, and don't write any methods that can change them. A lot
of classesin the core Java library are immutable, for instance, java. lang.String,
java.lang. Integer, java.lang.Double, and many more. This makes these classes
less useful for some purposes, but it does make them alot more thread-safe.

A third technique is to use a thread unsafe class but only as a private field of a class
that is thread-safe. Aslong as the containing class accesses the unsafe classonly in a
thread-safe fashion, and as long as it never lets areference to the private field leak out
into another object, the class is safe. An example of this might be aweb server that
used an unsynchronized LogFi le class but gave each separate thread its own separate
log so that no resources were shared between the individual threads.

5.4 Deadlock

Synchronization can lead to another possible problem with your code: deadlock.
Deadlock occurs when two threads each need exclusive access to the same set of
resources, but each thread possesses a different subset of those resources. If neither
thread iswilling to give up the resources it has, both threads will come to an indefinite
halt. This can bring your program to a halt. Thisisn't quite a hang in the classical
sense, because the program is till active and behaving normally from the perspective
of the OS, but to a user the difference isinsignificant.

To return to the library example, deadlock iswhat occurs when Jack and Jill are each
writing aterm paper on Thomas Jefferson and each needs the two books Thomas
Jefferson and Sally Hemings. An American Controversy and Sally Hemings and
Thomas Jefferson: History, Memory and Civic Culture. If Jill has checked out the first
book, while Jack has checked out the second, then neither can finish the paper.
Eventually the deadline expires, and they both get an F. That's the problem of
deadlock.

Worse yet, deadlock can be a sporadic and hard-to-detect bug. Deadlock closely
depends on unpredictable issues of timing. Most of the time, either Jack or Jill will get
to the library first and get both books. In this case, the one who gets the books writes
his paper and returns the books; then the other one gets the books and writes her paper.
Only rarely will they arrive at the same time and each get one of the two books.
Ninety-nine times out of 100 or 999 times out of 1,000, a program may run to
completion perfectly normally. Only rarely will it hang for no apparent reason. Of
course, if amultithreaded server is handling hundreds or thousands of connections a
minute, then even a problem that occurs only once every million requests can hang the
server in short order.

The most important technique to prevent deadlock is to avoid unnecessary
synchronization. If there's an alternative approach for ensuring thread safety, such as

using immutable objects or alocal copy of an object, then use that. Synchronization
should be alast resort for ensuring thread safety. If you do need to synchronize, keep
your synchronized blocks small and try not to synchronize on more than one object at
atime. This can be tricky though because many of the methods from the Java class
library that your code may invoke synchronize on objects you aren't aware of.
Conseguently, you may in fact be synchronizing on many more objects than you
expect.

The best you can do in the general caseis carefully consider whether deadlock is
likely to be a problem and architect your code around it. If multiple objects need the
same set of shared resources to operate, then make sure they request them in the same
order. For instance, if Class A and Class B both need exclusive access to Object X
and Object Y, then make sure that both classes request X first and Y second. If neither
requests Y unlessit already possesses X, then deadlock is not a problem.

5.5 Thread Scheduling

When multiple threads are running at the same time (more properly, when multiple
threads are available to be run at the same time), you have to consider issues of thread
scheduling. Y ou need to make sure that all important threads get at |east some time to
run and that the more important threads get more time. Furthermore, you want to
ensure that the threads execute in areasonable order. If your web server has 10
queued requests, each of which requires 5 seconds to process, you don't want to
process them in series. If you do that, the first request will be finished in 5 seconds,
but the second will take 10, the third 15, and so on until the last request, which will
have to wait almost a minute to be serviced. By that point, the user has likely goneto
another page. By running threads in parallel, you might be able to process all 10
requestsin only 10 secondstotal. The reason is that there'salot of dead timein
servicing atypical web request, time in which the thread is simply waiting for the
network to catch up with the CPU, and thisistime that the VM's thread scheduler can
be put to good use by other threads. However, CPU bound threads (as opposed to the
I/O-bound threads more common in network programs) may never reach a point
where they have to wait for more input. It is possible for such athread to starve all
other threads by taking all the available CPU resources. But with alittle thought, it's
generally straightforward to avoid this problem. In fact, starvation is a considerably
easier problem to avoid than either mis-synchronization or deadlock.

5.5.1 Priorities

Not al threads are created equal. Each thread has a priority that's specified as an
integer from 1 to 10. When multiple threads are able to run, generally the VM will run
only the highest-priority thread, though that's not a hard-and-fast rule. In Java, 10 is
the highest priority and 1 isthe lowest. The default priority is 5, and thisis the priority
that your threads will have unless you deliberately set them otherwise.

- Thisis exactly opposite to the normal Unix way of prioritizing
= processes, where the higher the priority number of a process, the
less CPU time the process gets.

These three priorities are often specified as the three named constants
Thread .MIN_PRIORITY, Thread.NORM_PRIORITY, and Thread .MAX_PRIORITY:

public static final int MIN_PRIORITY = 1;
public static final int NORM_PRIORITY = 5;
public static final int MAX PRIORITY = 10;

Sometimes you want to give one thread more time than another. Threads that interact
with the user should get very high priorities so that perceived responsiveness will be
very quick. On the other hand, threads that calculate in the background should get low
priorities. Tasks that will complete quickly should have high priorities. Tasks that take
along time should have low priorities so that they won't get in the way of other tasks.
The priority of athread can be changed using the setPriority() method:

public final void setPriority(int newPriority)

Attempting to exceed the maximum priority or set a nonpositive priority throws an
111egalArgumentException.

The getPriority() method returns the current priority of the thread:

public final int getPriority()

For instance, in Example 5.11, you might want to give higher priorities to the threads
that do the calculating than the main program that spawns the threads. Thisis easily
achieved by changing the calculateDigest() method to set the priority of each
spawned thread to 8:

public void calculateDigest() {

ListCallbackDigest cb = new ListCallbackDigest(input);
cb.addDigestListener(this);

Thread t = new Thread(cb);

t.setPriority(8);

t.start();

}

In general, though, try to avoid using too high a priority for threads, since you run the
risk of starving other, lower-priority threads.

5.5.2 Preemption

Every virtual machine has a thread scheduler that determines which thread to run at
any given time. There are two kinds of thread scheduling, preemptive and cooperative.
A preemptive thread scheduler determines when athread has had its fair share of CPU
time, pauses that thread, and then hands off control of the CPU to a different thread. A
cooperative thread scheduler waits for the running thread to pause itself before
handing off control of the CPU to a different thread. A virtual machine that uses
cooperative thread scheduling is much more susceptible to thread starvation than a
virtual machine that uses preemptive thread scheduling, since one high-priority,
uncooperative thread can hog an entire CPU.

All Javavirtual machines are guaranteed to use preemptive thread scheduling between
priorities. That is, if alower-priority thread is running when a higher-priority thread
becomes able to run, the virtual machine will sooner or later (and probably sooner)
pause the lower-priority thread to allow the higher-priority thread to run. The higher-
priority thread preempts the lower-priority thread.

The situation when multiple threads of the same priority are ableto run istrickier. A
preemptive thread scheduler will occasionally pause one of the threads to allow the
next onein line to get some CPU time. However, a cooperative thread scheduler will
not. It will wait for the running thread to explicitly give up control or cometo a
stopping point. If the running thread never gives up control and never comesto a
stopping point and if no higher-priority threads preempt the running thread, then all
other threads will starve. Thisis abad thing. Consequently, it'simportant to make
sure that all your threads periodically pause themselves so that other threads have an
opportunity to run.

- A starvation problem can be hard to spot if you're developing on

= aVM that uses preemptive thread scheduling. Just because the
problem doesn't arise on your machine doesn't mean it won't
arise on your customers machinesif their VMs use cooperative
thread scheduling. Most Windows virtual machines use
preemptive thread scheduling. Most Mac virtual machines use
cooperative thread scheduling. Unix virtual machines are a mix
of preemptively and cooperatively scheduled VMsand, in afew
cases, don't precisely fit into either category. Any Unix virtual
machine that uses the green threads model (on Solaris, thisis
Sun's reference implementation of the VM) is cooperatively
scheduled. Any Unix virtual machine that uses native threads (on
Solaris, thisis Sun's production implementation of the VM) is
more or less preemptively scheduled.

There are 10 ways athread can pause in favor of other threads or indicate that it is
ready to pause. These are:

It can block on I/0.

It can block on a synchronized object.

It canyield.

It can go to Sleep.

It can join another thread.

It can wait on an object.

It can finish.

It can be preempted by a higher-priority thread.
It can be suspended.

It can stop.

Y ou should inspect every run() method you write to make sure that one of these
conditions will occur with reasonable frequency. The last two possibilities are
deprecated because they have the potential to leave objects in inconsistent states, so

let'slook at the other eight ways athread can be a cooperative citizen of the virtual
machine.

5.5.2.1 Blocking

Blocking occurs any time athread has to stop and wait for aresource it doesn't have.
The most common way athread in a network program will voluntarily give up control
of the CPU is by blocking on 1/0. Since CPUs are much faster than networks and
disks, anetwork program will often block while waiting for datato arrive from the
network or be sent out to the network. Even though it may block for only afew
milliseconds, thisis enough time for other threads to do significant work.

Threads can also block when they enter a synchronized method or block. If the thread
does not already possess the lock for the object being synchronized on and some other
thread does possess that lock, then the thread will pause until the lock is released. If
the lock is never released, then the thread is permanently stopped.

Neither blocking on 1/0 nor blocking on alock will release any locks the thread
already possesses. For 1/0 blocks, thisis not such a big deal since eventually the 1/0
will either unblock and the thread will continue or an 10Exception will be thrown
and the thread will thereby exit the synchronized block or method and release its locks.
However, athread blocking on alock that it doesn't possess will never give up its own
locks. If one thread is waiting for alock that a second thread owns and the second
thread iswaiting for alock that the first thread owns, then deadlock results.

5.5.2.2 Yielding

The second way for athread to give up control isto explicitly yield. A thread does
this by invoking the static Thread.yield() method:

public static void yield()

This signals the virtual machine that it can run another thread if another one is ready
to run. Some virtual machines, particularly on real-time operating Systems, may
ignore this hint.

Before yielding, athread should make sure that it or its associated Runnable object is
in a consistent state that can be used by other objects. Yielding does not release any
locks the thread holds. Therefore, ideally, athread should not be synchronized on
anything when it yields. If the only other threads waiting to run when athread yields
are blocked because they need the synchronized resources that the yielding thread
possesses, then the other threads won't be able to run. Instead, control will return to
the only thread that can run, the one that just yielded, which pretty much defeats the
purpose of yielding.

Making athread yield is quite simplein practice. If the thread's run() method
simply consists of an infinite loop, just put acall to Thread.yield() at the end of
the loop. For example:

public void run() {

while (true) {
// Do the thread"s work. ..
Thread.yield();

}
}

Aslong as the run() method isn't synchronized (normally, avery bad idea anyway),
this should give other threads of the same priority the opportunity to run.

If each iteration of the loop takes a significant amount of time, you may want to
intersperse more callsto Thread.yield() intherest of the code. This should have
minimal effect in the event that yielding isn't necessary.

5.5.2.3 Sleeping

Sleeping is amore powerful form of yielding. Whereas yielding indicates only that a
thread iswilling to pause and let other equal-priority threads have aturn, athread that
goes to sleep will pause whether any other thread is ready to run or not. This can give
not only other threads of the same priority but also threads of lower priorities an
opportunity to run. However, athread that goes to sleep does hold onto all the locks
it's grabbed. Consequently, other threads that need the same locks will be blocked
even if the CPU is available. Therefore, you should try to avoid threads sleeping
inside a synchronized method or block.

Sometimes sleeping is useful even if you don't need to yield to other threads. Putting a
thread to sleep for a specified period of time lets you write code that executes once
every second, every minute, every ten minutes, and so forth. For instance, if you were
to write a network monitor program that retrieved a page from aweb server every five
minutes and emailed the webmaster if the server had crashed, then you would
implement it as a thread that slept for five minutes between retrievals.

A thread goesto sleep by invoking one of two overloaded static Thread.sleep()
methods. The first takes the number of milliseconds to sleep as an argument. The
second takes both the number of milliseconds and the number of nanoseconds:

public static void sleep(long milliseconds) throws
InterruptedException

public static void sleep(long milliseconds, int nanoseconds)
throws InterruptedException

While most modern computer clocks have at least close-to-millisecond accuracy,
nanosecond accuracy israrer. There's no guarantee on any particular virtual machine
that you can actually time the sleep to within a nanosecond or even within a
millisecond. If the local hardware can't support that level of accuracy, the Sleeptimeis
simply rounded to the nearest value that can be measured. For example:

public void run() {

while (true) {
if (JgetPage("http://metalab.unc.edu/javafaq/')) {
mailError("elharo@metalab.unc.edu™);

}

try {
Thread.sleep(300000); // 300,000 milliseconds == 5 minutes

}
catch (InterruptedException e) {

break;

}
}

}

It is not absolutely guaranteed that a thread will sleep for aslong asit wantsto. On
occasion, the thread may not be woken up until some time after its requested wake-up
call, ssimply because the VM is busy doing other things. It is also possible that some
other thread will do something to wake up the sleeping thread before its time.
Generaly, thisis accomplished by invoking the sleeping thread's interrupt()
method.

public void interrupt()

Thisis one of those cases where the distinction between the thread and the Thread
object isimportant. Just because the thread is sleeping doesn't mean that other awake
threads can't be working with the corresponding Thread object through its methods
and fields. In particular, another thread can invoke the sleeping Thread object's
interrupt() method, which the sleeping thread experiences as an
InterruptedException. From that point forward, it's awake and executes as normal,
at least until it goesto sleep again. In the previous example, an
InterruptedException is used to terminate a thread that would otherwise run
forever. When the InterruptedException isthrown, theinfinite loop is broken, the
run() method finishes, and the thread dies. The user interface thread can invoke this
thread's interrupt() method when the user selects Exit from a menu or otherwise
indicates that he wants the program to quit.

5.5.2.4 Joining threads

It's not uncommon for one thread to need the result of another thread. For example, a
web browser loading an HTML page in one thread might spawn a separate thread to
retrieve every image embedded in the page. If the IMG elements don't have HEIGHT
and WIDTH attributes, then the main thread might have to wait for all the imagesto
load before it can finish by displaying the page. Java provides three join() methods
to allow one thread to wait for another thread to finish before continuing. These are:

public final void join() throws InterruptedException

public final void join(long milliseconds) throws InterruptedException
public final void join(long milliseconds, int nanoseconds)

throws InterruptedException

Thefirst variant waits indefinitely for the joined thread to finish. The second two
variants wait for the specified amount of time, after which they continue even if the
joined thread has not finished. Aswith the sleep() method, nanosecond accuracy is
not guaranteed.

The joining thread—that is, the one that invokes the join() method—waits for the
joined thread—that is, the one whose join() method isinvoked—to finish. For
instance, consider this code fragment. We want to find the minimum, maximum, and
median of arandom array of doubles. It's quicker to do this with a sorted array. We
spawn a new thread to sort the array, then join to that thread to await its results. Only
when it's done do we read out the desired values.

double[] array = new double[10000]; /7 1
for (int i = 0; i < array.length; i++) { /7 2
array[i] = Math.random(); // 3
b // 4
SortThread t = new SortThread(array); // 5
t.start(); // 6
try { /7 7
t_join(C); // 8
System.out.printIn(C*Minimum: * + array[0]); // 9

System._out._printIn(’’'Median: " + array[array.length/2]); // 10
System.out.printIn("Maximum: " + array[array.length-1]); // 11

} // 12
catch (InterruptedException e) { // 13
} // 14

First lines 1 through 4 execute, filling the array with random numbers. Then line 5
creates anew SortThread. Line 6 starts the thread that will sort the array. Before we
can find the minimum, median, and maximum of the array, we need to wait for the
sorting thread to finish. Therefore, line 8 joins the current thread to the sorting thread.
At this point, the thread executing these lines of code stopsin its tracks. It waits for
the sorting thread to finish running. The minimum, median, and maximum are not
retrieved in lines 9 through 10 until the sorting thread has finished running and died.
Notice that at no point is there areference to the thread that pauses. It's not the Thread
object on which the join() method isinvoked. It's not passed as an argument to that
method. It existsimplicitly only as the current thread. If thisis within the normal flow
of control of themain() method of the program, there may well not be any Thread
variable anywhere that points to this thread.

A thread that's joined to another thread can be interrupted just like a sleeping thread if
some other thread invokesiits interrupt() method. The thread experiences this
invocation as an InterruptedException. From that point forward, it executes as
normal, starting from the catch block that caught the exception. In the preceding
example, if the thread is interrupted, it skips over the calculation of the minimum,
median, and maximum because they won't be available if the sorting thread was
interrupted before it could finish.

We can use join() to fix up Example 5.4. That example's problem was that the
main() method tended to outrace the threads whose results the main() method was
using. It's straightforward to fix this by joining to each thread before trying to useits
result. Example 5.13 demonstrates.

Example 5.13. Avoiding a Race Condition by Joining to the Thread Whose Result You
Need

import java.io.*;

public class JoinDigestUserinterface {
public static void main(String[] args) {
ReturnDigest[] digestThreads = new ReturnDigest[args.length];
for (int i = 0; 1 < args.length; i++) {

// Calculate the digest

File ¥ = new File(args[i]);
digestThreads[i] = new ReturnDigest(f);
digestThreads[i]-.start();

}

for (int i = 0; 1 < args.length; i++) {

try {
digestThreads[i]-join();
// Now print the result
StringBuffer result = new StringBuffer(args[i]);
result._append(': ');
byte[] digest = digestThreads[i].getDigest();
for (int j = 0; jJ < digest.length; j++) {

result.append(digest[j] + " ');

3}
System.out.printin(result);

catch (InterruptedException e) {
System.err.printIn("'Thread Interrupted before completion™);
}

}

Since Example 5.13 joins to threads in the same order as the threads are started, this
also has the side effect of printing the output in the same order as the arguments used
to construct the threads, rather than in the order the threads finish. This doesn't make
the program any slower, but it may occasionally be an issue if you want to get the
output of athread as soon asit's done, without waiting for other unrelated threads to
finish first.

5.5.2.5 Waiting on an object

A thread can wait on an object it has locked. While waiting, it releases the lock on the
object and pauses until it is notified by some other thread. Another thread changes the
object in some way, notifies the thread waiting on that object, and then continues.
This differsfrom joining in that neither the waiting nor the notifying thread hasto
finish before the other thread can continue. Waiting is used to pause execution until an
object or resource reaches a certain state. Joining is used to pause execution until a
thread finishes.

Waiting on an object is one of the lesser-known ways a thread can pause. That's
because it doesn't involve any methods in the Thread class. Instead, to wait on a
particular object, the thread that wants to pause must first obtain the lock on the object
using synchronized and then invoke one of the object's three overloaded wait()
methods:

public final void wait() throws InterruptedException

public final void wait(long milliseconds) throws InterruptedException
public final void wait(long milliseconds, int nanoseconds)

throws InterruptedException

These methods are not in the Thread class. Rather, they arein the java. lang.Object
class. Consequently, they can be invoked on any object of any class. When one of
these methods is invoked, the thread that invoked it releases its lock on the object it's
waiting on (though not any locks it may possess on other objects) and goes to sleep. It
remains asleep until one of three things happens:

o Thetimeout expires.
e Thethread isinterrupted.
e Theobject isnotified.

The timeout isthe same as for the sleep() and join() methods; that is, the thread
wakes up after the specified amount of time has passed (within the limits of the local
hardware clock accuracy). When the timeout expires, execution of the thread resumes
with the statement immediately following the invocation of wait(). However, if the
thread can't immediately regain the lock on the object it was waiting on, it may still be
blocked for some time.

Interruption is also the same as for sleep() and join(); that is, some other thread
invokes thisthread's interrupt() method. This causes an InterruptedException,
and execution resumes in the catch block that catches the exception. The thread
regains the lock on the object it was waiting on before the exception is thrown,
however, so the thread may still be blocked for some time after the interrupt()
method is invoked.

The third possibility, notification, is new. Notification occurs when some other thread
invokes the notify() or notifyAll1() method on the object on which the thread is
waiting. Both of these methods are in the java. lang.Object class:

public final void notify()
public final void notifyAll()

These must be invoked on the object the thread was waiting on, not generally on the
Thread itself. Before notifying an object, athread must first obtain the lock on the
object using a synchronized method or block. The notify() method selects one
thread more or less at random from the list of threads waiting on the object and wakes
it up. The notifyAll() method wakes up every thread waiting on the given object.

Once awaiting thread is notified, it attempts to regain the lock of the object it was
waiting on. If it succeeds, its execution resumes with the statement immediately
following the invocation of wait(). If it fails, it blocks on the object until itslock

becomes available, and then execution resumes with the statement immediately
following the invocation of wait().

For example, suppose one thread is reading a JAR archive from a network connection.
The first entry in the archive is the manifest file. Another thread might be interested in
the contents of the manifest file even before the rest of the archive was available. The
interested thread could create a custom ManifestFi le object. It could then pass a
reference to thisMani festFi le object to the thread that would read the JAR archive.
Then it would wait on the Mani festFi le object. The thread reading the archive
would first fill the ManifestFile with entries from the stream, then notify the
ManifestFile, then continue reading the rest of the JAR archive. When the reader
thread notified the Mani festFile, the original thread would wake up and do whatever
it planned to do with the now fully prepared Mani festFi le object. Thefirst thread
would work something like this:

ManifestFile m = new ManifestFile();
JarThread t = new JarThread(m, in);

synchronized (m) {
t.start();
try {
m.wait(C);

// work with the manifest file...

catch (InterruptedException e) {
// handle exception...

}
}

The JarThread class would work like this:

ManifestFile theManifest;
InputStream in;

public JarThread(Manifest m, InputStream in) {
theManifest = m;
this.in= in;

¥
public void run() {

synchronized (theManifest) {
// read the manifest from the stream in...
theManifest.notify();

3

// read the rest of the stream...
}

Waiting and notification are more commonly used when multiple threads want to wait
on the same object. For example, one thread may be reading aweb server log file in
which each line contains one entry to be processed. Each lineisplaced in a
java.util.Vector asit'sread. Several threads wait on the Vector to process entries
asthey're added. Every time an entry is added, the waiting threads are notified using
the notifyAl1() method. If more than one thread is waiting on an object, then
notifyAll() ispreferred since there's no way to select which thread to notify.

When all threads waiting on one object are notified, all will wake up and try to get the
lock on the object. However, only one can succeed immediately. That one continues.
Therest are blocked until the first one releases the lock. If several threads are all
waiting on the same object, a significant amount of time may pass before the last one
getsitsturn at the lock on the object and continues. It's entirely possible that in this
time the object on which the thread was waiting will once again have been placed in
an unacceptable state. Thus you'll generally put the call towait() in aloop that
checks the current state of the object. Do not assume that just because the thread was
notified, the object is now in the correct state. Check it explicitly if you can't
guarantee that once the object reaches a correct state it will never again reach an
incorrect state. For example, thisis how the client threads waiting on the log file
entries might look:

private Vector entries;
public void processentry() {

synchronized (entries) { // must synchronize on the object we wait
on
while (entries.size() == 0) {
try {
entries.wait();
// We stopped waiting because entries.size() became non-
zero
// However we don"t know that it"s still non-zero so we
// pass through the loop again to test its state now.
}
catch (InterruptedException e) {
// 1T interrupted, the last entry has been processed so
return;
by
b

String entry = (String) entries.remove(entries.size()-1);
// process this entry...

}
}

The code reading the log file and adding entries to the vector might ook something
likethis:

public void readLogFile() {
String entry;

while (true) {

entry = log.getNextEntry();

it (entry == null) {
// There are no more entries to add to the vector so
// we have to interrupt all threads that are still waiting.
// Otherwise, they"ll wait forever.
for (int i = 0; 1 < threads.length; i++)

threads[i]-interrupt();

break;

}

synchronized (entries) {
entries.add(0, entry);

entries.notifyAll();

}
}

}

5.5.2.6 Priority-based preemption

Since threads are preemptive between priorities, you do not need to worry about
giving up time to higher-priority threads. A high-priority thread will preempt lower-
priority threads when it's ready to run. However, when the high-priority thread
finishes running or blocks, it generally won't be the same low-priority thread that runs
next. Instead, most non-real-time VMs use a round-robin scheduler so that the lower-
priority thread that hasn't run for the longest time will be run next.

For example, suppose there are three threads with priority 5 named A, B, and C
running in a cooperatively scheduled virtual machine. None of them will yield or
block. Thread A starts running first. It runs for awhile, and is then preempted by
thread D, which has priority 6, so A stops running. Eventually, thread D blocks, and
the thread scheduler looks for the next highest-priority thread to run. It finds three: A,
B, and C. Thread A has already had some time to run, so it picks B (or perhaps C; this
doesn't have to go in aphabetical order). B runs for awhile when thread D suddenly
unblocks. Thread D still has higher priority so the virtual machine pauses thread B
and lets D run for awhile. Eventually, D blocks again, and the thread scheduler looks
for another thread to run. Again, it finds A, B, and C, but at this point, A has had some
time and B has had some time, but C hasn't had any. So the thread scheduler picks
thread C to run. Thread C runs until it is once again preempted by thread D. When
thread D blocks again, the thread scheduler finds three threads ready to run. Of the
three, however, A ran the longest ago, so the scheduler picksthread A. From this
point forward, every time D preempts and blocks and the scheduler needs a new
thread to run, it will run the threads A, B, and C in that order, circling back around to
A after C.

If you'd rather avoid explicit yielding, you can use a higher-priority thread to force the
lower-priority threads to give up time to each other. In essence, you can use a high-
priority thread scheduler of your own devising to make all threading preemptive. The
trick isto run a high-priority thread that does nothing but sleep and wake up
periodically, say every 100 milliseconds. Thiswill split the lower-priority threads into
100-millisecond time dlices. It isn't necessary for the thread that's doing the splitting to
know anything about the threadsit's preempting. It's smply enough that it exists and
isrunning. Example 5.14 demonstrates with a TimeSlicer classthat allows you to
guarantee preemption of threads with priorities |ess than afixed value every
timeslice milliseconds.

Example 5.14. A Thread That Forces Preemptive Scheduling for Lower-Priority Threads

public class TimeSlicer extends Thread {
private long timeslice;

public TimeSlicer(long milliseconds, int priority) {

this.timeslice = milliseconds;
this.setPriority(priority);

// 1T this is the last thread left, it should not
// stop the VM from exiting

this.setDaemon(true);

}

// Use maximum priority

public TimeSlicer(long milliseconds) {
this(milliseconds, 10);

3

// Use maximum priority and 100ms timeslices
public TimeSlicer() {

this(100, 10);
}

public void run() {

while (true) {

try {
Thread.sleep(timeslice);

catch (InterruptedException e) {

}
}

}

5.5.2.7 Finish

The final way athread can give up control of the CPU in an orderly fashion is by
finishing. When the run() method returns, the thread dies and other threads can take
over. In network applications, this tends to occur with threads that wrap asingle
blocking operation, like downloading afile from a server, so that the rest of the
application won't be blocked.

Otherwise, if your run() method isreally so simple that it always finishes quickly
enough without blocking, then there's a very real question of whether you should
spawn athread at al. There'sanontrivial amount of overhead for the virtual machine
in setting up and tearing down threads. If athread isfinishing in asmall fraction of a
second anyway, chances are it would finish even faster if you used a simple method
call rather than a separate thread.

5.6 Thread Pools

Adding multiple threads to a program dramatically improves performance, especially
for 1/0-bound programs such as most network programs. However, threads are not
without overhead of their own. Starting a thread and cleaning up after athread that
has died takes a noticeable amount of work from the virtual machine, especialy if a
program spawns thousands of threads, not an unusual occurrence for even alow- to
medium-volume network server. Even if the threads finish quickly, this can overload
the garbage collector or other parts of the VM, and hurt performance, just like

allocating thousands of any other kind of object every minute. Even more importantly,
switching between running threads carries overhead. If the threads are blocking
naturally—for instance, by waiting for data from the network—then there's no real
penalty to this, but if the threads are CPU bound then the total task may finish more
quickly if you can avoid alot of switching between threads. Finally, and most
importantly, although threads help make more efficient use of a computer's limited
CPU resources, there's still only afinite amount of resources to go around. Once
you've spawned enough threads to use all the computer's available idle time, spawning
more threads just wastes M1PS and memory on thread management.

Fortunately, you can get the best of both worlds by reusing threads. Y ou cannot restart
athread onceit's died, but you can engineer your threads so that they don't die as soon
as they've finished one task. Instead, you put all the tasks you need to accomplishin a
gueue or other data structure and have each thread retrieve a new task from the queue
when it's completed its previous task. Thisis called thread pooling, and the data
structure in which the tasks are kept is called the pool.

The simplest way to implement a thread pool is by using afixed number of threads set
when the pool isfirst created. When the pool is empty, each thread waits on the pool.
When atask is added to the pool, all waiting threads are notified. When athread
finishes its assigned task, it goes back to the pool for anew task. If it doesn't get one,
it waits until anew task is added to the pool.

An alternative isto put the threads themselves in the pool and have the main program
pull threads out of the pool and assign them tasks. If no thread isin the pool when a
task becomes necessary, the main program can spawn a new thread. As each thread
finishes atask, it returnsto the pool. (Imagine this scheme as a union hall in which
new workers join the union only when full employment of current membersis
achieved.)

There are many data structures you can use for a pool, though a queue is probably the
most reasonabl e so that tasks are performed in afirst-in, first-out order. Whichever
data structure you use to implement the pool, however, you have to be extremely
careful about synchronization, since many threads will be interacting with it very
close together in time. The simplest way to avoid problemsisto use either a
java.util _Vector (whichisfully synchronized) or a synchronized Col lection
from the Java Collections API.

Let'slook at an example. Suppose you want to gzip every file in the current directory
using a java.util.zip.GZIPOutputStream. On the one hand, thisis an 1/0O-heavy
operation because al the files have to be read and written. On the other hand, data
compression is avery CPU-intensive operation, so you don't want too many threads
running at once. Thisis agood opportunity to use athread pool. Each client thread
will compress files while the main program will determine which filesto compress. In
this example, the main program is likely to significantly outpace the compressing
threads since all it hasto doislist thefilesin adirectory. Therefore, it's not out of the
question to fill the pool first, then start the threads that compress the files in the pool.
However, to make this example as general as possible, well allow the main program
to runin parallel with the zipping threads.

Example 5.15 showsthe GzipThread class. It contains a private field called pool
containing areference to the pool. Here that field is declared to have List type, but
it's always accessed in a strictly queue-like first-in, first-out order. The run()
method removes Fi le objects from the pool and gzips each one. If the pool is empty
when the thread is ready to get something new from the pool, then the thread waits on
the pool object.

Example 5.15. The GZipThread Class

import java.io.*;
import java.util.*;
import java.util_zip.*;

public class GZipThread extends Thread {

private List pool;
private static int filesCompressed = O;

public GZipThread(List pool) {
this.pool = pool;
by

private static synchronized void incrementFilesCompressed() {
filesCompressed++;

}
public void run() {

while (FfilesCompressed
1= GZipAllFiles.getNumberOfFilesToBeCompressed()) {

File input = null;

synchronized (pool) {
while (pool.isEmpty()) {
if (filesCompressed
== GZipAllFiles.getNumberOfFilesToBeCompressed()) return;

try {
pool .wait();

catch (InterruptedException e) {

}
}

input = (File) pool.remove(pool.size()-1);
}

// don"t compress an already compressed file
if (Ninput.getName().endsWith(.gz™)) {

try {
InputStream in = new FilelnputStream(input);
in = new BufferedlnputStream(in);

File output = new File(input.getParent(), input.getName()
+ ll-gzll);

if (Joutput.exists()) { // Don"t overwrite an existing

file

OutputStream out = new FileOutputStream(output);

out = new GZIPOutputStream(out);

out = new BufferedOutputStream(out);

int b;

while ((b = in.read()) !'= -1) out.write(b);

out.flush();

out.close();

incrementFilesCompressed();

in.close();

}

catch (10Exception e) {
System._err._printin(e);
}

} /7 end if
} 7/ end while
} // end run

} // end ZipThread

Example 5.16 is the main program. It constructs the pool as a Vector object, passes
thisto four newly constructed GZipThread objects, starts all four threads, and then
iterates through all the files and directories listed on the command line. Those files
and filesin those directories are added to the pool for eventual processing by the four
threads.

Example 5.16. The GZipThread User Interface Class

import java.io.*;
import java.util._*;

public class GZipAllFiles {

public final static int THREAD_COUNT

:4;
private static int filesToBeCompressed =

_1;
public static void main(String[] args) {

Vector pool = new Vector();
GZipThread[] threads = new GZipThread[THREAD COUNT];

for (int i = 0; 1 < threads.length; i++) {

threads[1] = new GZipThread(pool);
threads[i].start();

}

int totalFiles = O;
for (int i = 0; 1 < args.length; i++) {

File ¥ = new File(args[i]);
if (F.exists()) {
if (f.isDirectory()) {
File[] files = f_listFiles();

for (int j = 0; J < files.length; j++) {
it (Ifiles[]j]-isDirectory()) { // don"t recurse
directories
totalFiles++;
synchronized (pool) {
pool .add(Files[j]);
pool .notifyAll();

}
+
}

else {
totalFiles++;
synchronized (pool) {
pool _.add(0, F);
pool .notifyAll();

}
}

} // end if
} // end for
filesToBeCompressed = totalFiles;

// make sure that any waiting thread knows that no

// more files will be added to the pool

for (int i = 0; 1 < threads.length; i++) {
threads[i]-interrupt();

}

}

public static int getNumberOfFilesToBeCompressed() {
return filesToBeCompressed;

}

The big question here is how to tell the program that it's done and should exit. You
can't smply exit when al files have been added to the pool, because at that point most
of the fileswon't have been processed yet. Neither can you exit when the pool is
empty, because that may occur both at the start of the program (before any files have
been placed in the pool) and at various intermediate times when not all files have yet
been put in the pool but all files that have been put there are processed. The latter
possibility also prevents the use of a simple counter scheme.

The solution adopted hereisto separately track the number of files that need to be
processed (GzipAlIFiles. filesToBeCompressed) and the number of files actually
processed (GZipThread. filesCompressed). When these two values match, all
threads run() methods return. Checks are made at the start of each of thewhile
loopsin the run() method to see whether it's necessary to continue. This schemeis
preferred to the deprecated stop() method, because it won't suddenly stop the
thread while it's halfway through compressing afile. This gives us much more fine-
grained control over exactly when and where the thread stops.

Initially, GZipAlIFiles. filesToBeCompressed is Set to the impossible value -1.
Only when the final number isknown isit set to its real value. This prevents early
coincidental matches between the number of files processed and the number of filesto
be processed. It's possible that when the final point of the main() method is reached,
one or more of the threads is waiting. Thus we interrupt each of the threads (which
has no effect if the thread is merely processing and not waiting or sleeping) to make
sure it checks one last time.

The final note about this program is the private

GZipThread. incrementFilesCompressed() method. Thisis synchronized to
ensure that if two threads try to update the filesCompressed field at the same time,
one will wait. Otherwise, the GzipThread. filesCompressed field could end up one
short of the true value and the program would never exit. Since the method is static,
all threads synchronize on the same Class object. A synchronized instance method
wouldn't be sufficient here.

The complexity of determining when to stop this program is mostly atypical of the
more heavily threaded programs you'll write because it does have such a definite
ending point, the point at which all files are processed. Most network servers will
continue indefinitely until such time as some part of the user interface shuts them
down. Thus the real solution hereisto provide some sort of simple user interface such
astyping aperiod on aline by itself that ends the program.

- This chapter has been awhirlwind tour of threading in Java,
a5 | covering the bare minimum you need to know to write
"4 multithreaded network programs. For a more detailed and

comprehensive look with many more examples, you should
check out Java Threads, by Scott Oaks and Henry Wong
(O'Reilly & Associates, Inc., 1999). Once you've mastered that
book, Doug L ea's Concurrent Programming in Java (Addison
Wesley, 1999) provides a comprehensive look at the traps and
pitfalls of concurrent programming from a design patterns
perspective.

6.1 DNS, IP Addresses, and All That

Devices connected to the Internet are called nodes. Nodes that are computers are
called hosts. Each node or host isidentified by at least one unique 32-bit number
called an Internet address, an IP address, or a host address, depending on who you talk
to. This takes up exactly four bytes of memory. An IP addressis normally written as
four unsigned bytes, each ranging from to 255, with the most significant byte first.
Bytes are separated by periods for the convenience of human eyes. For example, the
address for hermes.oit.unc.edu is 152.2.21.1. Thisis called the dotted quad format.

I P addresses are great for computers, but they are a problem for humans, who have a
hard time remembering long numbers. In the 1950s, it was discovered that most
people could remember about seven digits per number; some can remember as many
as nine, while others remember as few asfive. Thisiswhy phone numbers are broken
into three- and four-digit pieces with three-digit area codes.» Obviously an IP address,

which can have as many as 12 decimal digits, is beyond the capacity of most humans
to remember. | can remember about two | P addresses, and then only if | use both daily
and the second is a simple permutation of thefirst.

W G.A. Miller, "The Magic Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information", Psychological Review, vol. 63, pp. 81-97.

To avoid the need to carry around Rolodexes full of IP addresses, the designers of the
Internet invented the Domain Name System (DNS). DNS associates hostnames that
humans can remember (like hermes.oit.unc.edu) with IP addresses that computers can
remember (such as 152.2.21.1).2 Most hosts have at |east one hostname. An exception
is made for computers that don't have a permanent IP address (like many PCs); since
these computers don't have a permanent address, they can't be used as servers and
therefore don't need a name, since nobody will need to refer to them.

2 Colloquially, people often use "Internet address” to mean a hostname (or even an email address). In a book
about network programming, it is crucial to be precise about addresses and hostnames. In this book, an addressis
always anumeric | P address, never a human-readable hostname.

Some machines have multiple names. For instance, www.oreilly.com and
helio.ora.com are really the same SPARCstation in California. The name
www.oreilly.comreally refersto aweb site rather than a particular machine. In the
past, when this web site has moved from one machine to another, the name has been
reassigned to the new machine so that it always points to the site's current server. This
way, URL s around the Web don't need to be updated just because the site has moved
to a new host. Some common names like www and news are often aliases for the
machines providing those services. For example, news.cloud9.net is an alias for my
ISP's news server. Since the server may change over time, the alias can move with the
service.

On occasion, one name maps to multiple | P addresses. It is then the responsibility of
the DNS server to randomly choose machines to respond to each request. This feature
Is most frequently used for very high traffic web sites, where it splits the load across
multiple systems.

Every computer connected to the Internet should have access to a machine called a
domain name server, generally a Unix box running special DNS software that knows
the mappings between different hostnames and | P addresses. Most domain name
servers know the addresses of only the hosts on their local network, plus the addresses
of afew domain name servers at other sites. If aclient asks for the address of a
machine outside the local domain, then the local domain name server asks a domain
name server at the remote location and relays the answer to the requester.=

B For more information about DNS, see Albitz, Paul and Cricket Liu, DNSand BIND, 3rd edition (O'Reilly &
Associates, Inc., 1998).

Most of the time, you can use hostnames and let DNS handle the translation to IP
addresses. Aslong as you can connect to a domain name server, you don't need to
worry about the details of how names and addresses are passed between your machine,
the local domain name server, and the rest of the Internet. However, you will need to
have access to at |east one domain name server to use the examplesin this chapter and
most of the rest of this book. These programs will not work on a standalone Mac or
PC. Y our machine must be connected to the Internet.

IPv6 and 128-hit Addresses

The current IP address standard uses 32 bits, which is enough to address
more than four billion computers, almost one for every person on Earth.

Y ou'd think it would be enough to handle even the explosive growth of the
Internet for some time. However, we're currently in the middle of an address
shortage. The cause of the address shortage is that the available addressees
aren't allocated very efficiently. Because of the way addresses are parcel ed
out, many organizations possess at least 256 numbers even though they need
only afew dozen. Other organizations have blocks of 65,536 even if they
need only afew thousand. And afew dozen organizations have blocks of
more than 16 million, even though they don't use anywhere near that many.
Consequently, there's alot of waste, and the addresses are beginning to run
out.

Don't worry too much, though. A series of stopgap measures have been put in
place to allocate addresses more efficiently; this should get the Internet
through the next couple of years. After that, a new standard called IPv6 will
begin using 16-byte, 128-bit addresses. This expands the available address
space to 2% or 1.6043703E32 different addresses. It's not enough to address
every molecule in the universe, but it should be enough to get us well into the
21st century. |Pv6 has been designed to be backward compatible with 32-bit

| P addresses to ease the transition.

Java 1.3 and earlier versions don't yet support 128-bit | P addresses, nor are
these addresses in common use. However, Java's networking classes have
been designed with 128-bit addresses in mind. When |Pv6 does begin
moving out of the labs and into the real world, it will be easy for Sun to
modify the java.net classes to support the new address format, and almost
everything in this book will continue to work.

6.2 The InetAddress Class

The java.net. InetAddress classis Java's encapsulation of an IP address. It is used
by most of the other networking classes, including Socket, ServerSocket, URL,
DatagramSocket, DatagramPacket, and more.

public final class InetAddress extends Object implements Serializable

This class represents an Internet address as two fields: hostName (a String) and
address (an int). hostName contains the name of the host; for example,
www.oreilly.com. address contains the 32-bit | P address. These fields are not public,
S0 you can't access them directly. It will probably be necessary to change this
representation to a byte array when 16-byte |Pv6 addresses come into use. However,
if you always use the InetAddress class to represent addresses, the changeover
should not affect you; the class shields you from the details of how addresses are
implemented.

6.2.1 Creating New InetAddress Objects

There are no public constructors in the InetAddress class. However, InetAddress
has three static methods that return suitably initialized InetAddress objects, given a
little information. They are:

public static InetAddress InetAddress.getByName(String hostName)
throws UnknownHostException

public static InetAddress[] InetAddress.getAllByName(String hostName)
throws UnknownHostException

public static InetAddress InetAddress.getLocalHost()

throws UnknownHostException

All three of these may make a connection to the local DNS server to fill out the
information in the InetAddress object. This has a number of possibly unexpected
implications, among them that these methods may throw security exceptionsif the
connection to the DNS server is prohibited. Furthermore, invoking one of these
methods may cause a host that uses a dialup PPP or SLIP connection to dial into its
provider if it isn't already connected. The key thing to remember is that these are not
constructors; they do not simply use their arguments to set the internal fields. They
actually make network connectionsto retrieve all the information they need. The other
methods in this class such as getAddress() and getHostName() mostly work with
the information provided by one of these three methods. They do not make network
connections; and on the rare occasions they do, they do not throw any exceptions.
Only these three methods have to go outside Java and the local system to get their
work done.

6.2.1.1 public static InetAddress InetAddress.getByName(String hostName) throws
UnknownHostException

The method you'll use most frequently is InetAddress.getByName(). Thisisa
static method that takes the hostname you're looking for as its argument. 1t looks up
the host's IP address using DNS. Call getByName() likethis:

jJava.net. InetAddress address =
jJava.net. InetAddress.getByName("www.oreilly._com™);

If you have already imported the java.net. InetAddress class, which will almost
always be the case, you can call getByName() likethis:

InetAddress address = InetAddress.getByName("'www.oreilly._com™);

In the rest of this book, | will assume that thereisan import java.net.*; statement
at the top of the program containing each code fragment, as well as any other
necessary import statements.

The InetAddress.getByName() method throws an UnknownHostException if the
host can't be found, so you need to declare that the method making the call throws
UnknownHostException (Or its superclass, 10Exception) or wrap it in atry block
likethis:

try {
InetAddress address = InetAddress.getByName("'www.oreilly._com™);

System._out.printIn(address);

catch (UnknownHostException e) {
System.out._printIn("’Could not find www.oreilly._.com™);
}

Example 6.1 is a complete program that creates an InetAddress object for
www.oreilly.com and prints it out.

Example 6.1. A Program That Prints the Address of www.oreilly.com
import java.net.*;
public class OReillyByName {

public static void main (String[] args) {

try {
InetAddress address = InetAddress.getByName("'www.oreilly._com™);

System.out.printin(address);

catch (UnknownHostException e) {
System.out._printIn("'Could not find www.oreilly._.com™);

}

}
Here'sthe result:

% java OReillyByName
www.oreilly.com/204.148.40.9

On rare occasions, you will need to connect to a machine that does not have a
hostname. In this case, you can pass a String containing the dotted quad form of the
IP address to InetAddress.getByName():

InetAddress address = InetAddress.getByName(''204.148.40.9");

Example 6.2 uses the IP address for www.oreilly.cominstead of the name.
Example 6.2. A Program That Prints the Address of 204.148.40.9

import java.net.*;

public class OReillyByAddress {

public static void main (String[] args) {

try {
InetAddress address = InetAddress.getByName(''204.148.40.9");

System.out.printin(address);

catch (UnknownHostException e) {
System.out.printIn("’Could not find 204.148.40.9");

}

}
Here's the result:

% java OReillyByAddress
helio.ora.com/204.148.40.9

In Java 1.1 and later, when you call getByName() with an IP address as an argument,
it creates an InetAddress object for the requested |P address without checking with
DNS. Thismeansit's possible to create InetAddress objects for hosts that don't
really exist and that you can't connect to. The hostname of an InetAddress object
created from a dotted quad string isinitially set to that dotted quad string. A DNS
lookup for the actual hostname is performed only when the hostname is requested,
either explicitly viagetAddress() or implicitly through toString(). That's how
helio.ora.comis determined from the dotted quad address 204.148.40.9. If at the time
the hostname is requested and a DNS lookup is finally performed, the host with the
specified | P address can't be found, then the hostname remains the original dotted
quad string. However, no UnknownHostException isthrown.

Hostnames are much more stable than | P addresses. Some services such asthe MIT
FAQ archives have lived at the same hostname (rtfm.mit.edu) for years but switched

I P addresses several times. If you have a choice between using a hostname like
www.oreilly.comor an IP address like 204.148.40.9, aways choose the hostname. Use
an P address only when a hostname is not available.

6.2.1.2 public static InetAddress][] InetAddress.getAlIByName (String hostName)
throws UnknownHostException

Some computers have more than one Internet address. Given a hostname,
InetAddress.getAl 1ByName() returnsan array that contains all the addresses
corresponding to that name. Its useis straightforward:

InetAddress[] addresses = InetAddress.getAllByName("www.apple.com™);

Like InetAddress.getByName(), InetAddress.getAlI1ByName() can throw an
UnknownHostException, SO you need to enclose it in a try block or declare that your
method throws UnknownHostException. Example 6.3 demonstrates by returning a
complete list of the IP addresses for www.microsoft.com.

Example 6.3. A Program That Prints All the Addresses of www.microsoft.com
import java.net.*;
public class AllAddressesOfMicrosoft {

public static void main (String[] args) {

try {
InetAddress[] addresses =

InetAddress.getAlIByName(""'www._microsoft.com™);
for (int i = 0; 1 < addresses.length; i++) {

System.out.printin(addresses[i]);
}

catch (UnknownHostException e) {
System.out._printIn("'Could not find www.microsoft.com™);

}

}
Here's the result:

% java AllAddressesOfMicrosoft
www.microsoft.com/207.46.131.15
www.microsoft.com/207.46.131.137
www.microsoft.com/207.46.130.14
www .microsoft.com/207.46.130.149
www .microsoft.com/207.46.130.150
www.microsoft.com/207.46.131.13

It appears that www.microsoft.com has six | P addresses. Hosts with more than one
address are the exception rather than the rule. Most hosts with multiple IP addresses
are, like www.microsoft.com, very high volume web servers. Even in those cases, you
rarely need to know more than one address.

6.2.1.3 public static InetAddress InetAddress.getLocalHost() throws
UnknownHostException

The InetAddress class contains one final means of getting an InetAddress object.
The static method InetAddress.getLocalHost() returnsthe InetAddress of the
machine on which it'srunning. Like InetAddress.getByName() and
InetAddress.getAl IByName(), it throws an UnknownHostException when it can't
find the address of the local machine. Its useis straightforward:

InetAddress thisComputer = InetAddress.getLocalHost();

Example 6.4 prints the address of the machineit's run on.
Example 6.4. Find the Address of the Local Machine
import java.net.*;

public class MyAddress {

public static void main (String[] args) {

try {
InetAddress address = InetAddress.getLocalHost();

System.out.printIn(address);

catch (UnknownHostException e) {
System.out.printIn("'Could not find this computer®s address.');

}

}
Here's the output; | ran the program on titan.oit.unc.edu:

% java MyAddress
titan.oit.unc.edu/152.2.22.14

Whether you see afully qualified name like titan.oit.unc.edu or a partial name like
titan depends on what the local DNS server returns for hosts in the local domain.

6.2.1.4 Security issues

Creating anew InetAddress object from a hostname is considered a potentially
insecure operation because it requires a DNS lookup. An untrusted applet under the
control of the default security manager will be allowed to get only the IP address of
the host it came from (its codebase) and possibly the local host. (Netscape 4.6 alows
untrusted applets to get the name and |1P address of the local host, while IE5 allows
appletsto get only the loopback address and name localhost/127.0.0.1 for the local
host.) An untrusted applet is not alowed to create an InetAddress object from any
other hostname. Thisis true whether it uses the InetAddress.getByName() method,
the InetAddress.getAl IByName() method, the InetAddress.getLocalHost()
method, or something else. Netscape 4.6 does allow untrusted applets to construct
InetAddress objects from arbitrary dotted quad strings, though it will not perform a
DNS lookup for such an address. |E5 does not allow even this.

An untrusted applet is not allowed to perform arbitrary DNS lookups for third-party
hosts because of the prohibition against making network connections to hosts other
than the codebase. Arbitrary DNS lookups would open a covert channel by which an
applet could talk to third-party hosts. For instance, suppose an applet downloaded
from www.bigisp.com wants to send the message "macfag.dialup.cloud9.net is
vulnerable" to crackersinc.com. All it hasto do is request DNS information for
macfaq.dialup.cloud9.net.is.vulnerable.crackersinc.com. To resolve that hostname,
the applet would contact the local DNS server. The local DNS server would contact
the DNS server at crackersinc.com. Even though these hosts don't exist, the cracker
can inspect the DNS error log for crackersinc.comto retrieve the message. This
scheme could be considerably more sophisticated with compression, error correction,
encryption, custom DNS servers that email the messages to afourth site, and more,
but thisis good enough for a proof of concept. Arbitrary DNS lookups are prohibited
because arbitrary DNS lookups leak information.

An untrusted applet isallowed to call InetAddress.getLocalHost(). However,
this should always return a hostname of localhost and an IP address of 127.0.0.1. This
isaspecia hosthame and | P address called the loopback address. No matter which
machine you use this hostname or IP address on, it always refers to the current
machine. No specific DNS resolution is necessary. The reason for prohibiting the
applet from finding out the true hostname and address is that the computer on which
the applet is running may be deliberately hidden behind a firewall and a proxy server.
In this case, an applet should not be a channel for information the web server doesn't
already have. (Netscape 4.6 does allow alittle more information about the local host

to leak out, including its |P address, but only if no DNS lookup is required to get this
information.)

Like all security checks, prohibitions against DNS resolutions can be relaxed for
trusted applets. The specific SecurityManager method used to test whether a host
can be resolved is checkConnect():

public void checkConnect(String host, int port)

When the port argument is -1, this method checks whether DNS may be invoked to
resolve the specified host. (If the port argument is greater than -1, this method
checks whether a connection to the named host on the specified port is allowed.) The
host argument may be either a hostname like www.oreilly.com or a dotted quad IP
address like 204.148.40.9.

In Java 1.2 and later, you can grant an applet permission to resolve a host by using the
Policy Tool to add a java.net.SocketPermission with the action connect and the
target being the name of the host you want to allow the applet to resolve. Y ou can use
the asterisk wildcard (*) to allow all hosts in particular domains to be resolved. For
example, setting the target to *.oreilly.com allows the applet to resolve the hosts
www.oreilly.com, java.oreilly.com, perl.oreilly.com, and all othersin the oreilly.com
domain. Although you'll generally use a hostname to set permissions, Java checks
against the actual IP addresses. In this example, that also alows hosts in the ora.com
domain to be resolved because thisis simply an dias for oreilly.com with the same
range of |P addresses. To allow all hostsin all domainsto be resolved, just set the
target to *. Figure 6.1 demonstrates.

Figure 6.1. Using the Policy Tool to grant DNS resolution permission to all applets

Edil Parmission:
BackElPErmiSsinn j ||a-.-a nat SocketPermiszion
Target Harme :J | = grailby.com|
Actions j | regoine
Signad By |
Uk Cance

6.2.1.5 Other sources of InetAddress objects

Several other methods in the java.net package also return InetAddress objects.
These include the getAddress() method of DatagramPacket, the
getLocalAddress() method of batagramPacket, the getlnetAddress() method
of Socket, the getLocalAddress() method of Socket, the getlnetAddress()
method of SocketlImpl, the getInetAddress() method of ServerSocket, and the
getinterface() method of MulticastSocket. Each of these will be discussed,
along with its respective class, in later chapters.

6.2.2 Getter Methods

The InetAddress class contains three getter methods that return the hostname as a
string and the | P address as both a string and a byte array. These are:

public String getHostName()
public byte[] getAddress()
public String getHostAddress()

There are no corresponding setHostName() and setAddress() methods, which
means that packages outside of java.net can't change an InetAddress object'sfields
behind its back. Therefore, Java can guarantee that the hostname and the | P address
match each other.

6.2.2.1 public String getHostName()

The getHostName() method returns a String that contains the name of the host
with the | P address represented by this InetAddress object. If the machinein
question doesn't have a hostname or if applet security prevents the name from being
determined, then a dotted quad format of the numeric IP addressiis returned. For
example:

InetAddress machine = InetAddress.getLocalHost();
String localhost = machine.getHostName();

In some cases, you may only see a partially qualified name like titan instead of the
full name like titan.oit.unc.edu. The details depend on how the local DNS behaves
when resolving local hostnames.

The getHostName() method is particularly useful when you're starting with a dotted
quad 1P address rather than the hostname. Example 6.5 converts the dotted quad
address 152.2.22.3 into a hostname by using InetAddress.getByName() and then
applying getHostName() on the resulting object.

Example 6.5. Given the Address, Find the Hostname

import java.net.*;

public class ReverseTest {

public static void main (String[] args) {

try {
InetAddress ia = InetAddress.getByName(''152.2.22.3");

System.out.printin(ia.getHostName());

catch (Exception e) {
System._err._printin(e);

}

}

Here's the result:

% java ReverseTest
helios.oit.unc.edu

6.2.2.2 public String getHostAddress()

The getHostAddress() method returns a string containing the dotted quad format
of the IP address. Example 6.6 uses this method to print the IP address of the local
machine in the customary format.

Example 6.6. Find the IP Address of the Local Machine

import java.net.*;

public class MyDottedQuadAddress {
public static void main (String[] args) {

try {
InetAddress me = InetAddress.getLocalHost();

String dottedQuad = me.getHostAddress();
System.out.printIn("’'My address is " + dottedQuad);

catch (UnknownHostException e) {
System.out.printIn(’'1"m sorry. I don"t know my own address."');

}

T
Here's the result:

% java MyDottedQuadAddress
My address is 152.2.22.14.

Of course, the exact output depends on where the program is run.

6.2.2.3 public byte[] getAddress()

If you want to know the IP address of a machine (and you rarely do), getAddress()
Isreturns an | P address as an array of bytesin network byte order. The most
significant byte (i.e., thefirst byte in the address's dotted quad form) isthe first bytein
the array, or element zero—remember, Java array indices start with zero. To be ready
for 128-bit |P addresses, try not to assume anything about the length of this array.
While currently this array has alength of 4 bytes, future implementations are likely to
return arrays with 16 bytes. If you need to know the length of the array, use the array's
length field:

InetAddress me
byte[] address

InetAddress.getLocalHost();
me.getAddress());

The bytes returned are unsigned, which poses a problem. Unlike C, Java doesn't have
an unsigned byte primitive data type. Bytes with values higher than 127 are treated as
negative numbers. Therefore, if you want to do anything with the bytes returned by

getAddress(), you heed to promote the bytes to ints and make appropriate
adjustments. Here's one way to do it:

int unsignedByte = signedByte < 0 ? signedByte + 256 : signedByte;

Here signedByte may be either positive or negative. The conditional operator ? tests
whether unsignedByte isnegative. If itis, 256 is added to signedByte to make it
positive. Otherwise, it's left alone. signedByte isautomatically promoted to an int
before the addition is performed so wraparound is not a problem.

One reason to look at the raw bytes of an IP address is to determine the type of the
address. As mentioned in Chapter 2, Class A addresses always begin with a bit. Class
B addresses begin with the two bits 10. Class C addresses begin with the three bits
110. Class D addresses begin with the four bits 1110, and Class E addresses begin
with the five bits 11110. Figure 6.2 summarizes.

Figure 6.2. The five address classes as divided into class ID, network ID, and host ID

Byt) Byt | Byt 2 By 3

@OR0O

Class D addresses are multicast addresses, used to refer not to a particular host but
rather to a group of hosts that have chosen to join a particular multicast group. This
will be discussed further in Chapter 14. The InetAddress class contains a method
that tells you whether a particular address is a multicast address:

public boolean isMulticastAddress()

It operates merely by using the bitwise operators to compare the first 4 bits of the
address to 1110 and returning true if they match, false otherwise. To retrieve the other
information that's implicit in the address, you'll have to do your own comparisons. For
example, you can test the first byte of the address to determine the address class. You
can test the number of bytesin the array returned by getAddress() to determine
whether you're dealing with an IPv4 or |Pv6 address. Example 6.7 demonstrates.

Example 6.7. Print the IP Address of the Local Machine

import java.net.*;

public class AddressTests {
public static int getVersion(lnetAddress ia) {

byte[] address = i1a.getAddress();

if (address.length == 4) return 4;

else if (address.length == 16) return 6;
else return -1;

}

public static char getClass(lnetAddress i1a) {

byte[] address = ia.getAddress();
if (address.length 1= 4) {
throw new 1l1legalArgumentException("'No IPv6 addresses!');

}

int firstByte = address[0];

if ((FirstByte & 0x80) == 0) return "A";

else if ((firstByte & OxCO) == 0x80) return "B~;
else if ((firstByte & OxXEQ) == OxCO) return "C-;
else if ((firstByte & OxFO) == OXEO) return "D";
else if ((firstByte & OxF8) == OxFO) return "E";
else return "F";

}

6.2.3 Object Methods

Like every other class, java.net. InetAddress inheritsfrom java. lang.Object.
Thus it has access to all the methods of that class. It overrides three methods to
provide more specialized behavior:

public boolean equals(Object o)
public int hashCode()
public String toString()

6.2.3.1 public boolean equals(Object 0)

An object isequal to an InetAddress object only if it isitself an instance of the
InetAddress class and it has the same |P address. It does not need to have the same
hostname. Thus an InetAddress object for www.orellly.comis equal to an
InetAddress object for helio.ora.com since both names refer to the same | P address.
Example 6.8 creates InetAddress objects for www.oreilly.com and helio.ora.com and
then tells you whether they're the same machine.

Example 6.8. Are www.oreilly.com and helio.ora.com the Same?
import java.net.*;
public class OReillyAliases {

public static void main (String args[]) {

try {
InetAddress oreilly = InetAddress.getByName("www.oreilly._com™);
InetAddress helio = InetAddress.getByName("*helio.ora.com');

if (oreilly.equals(helio)) {
System.out.printin
('www.oreilly.com is the same as helio.ora.com™);
by

else {

System.out.printin
("'www.oreilly.com is not the same as helio.ora.com™);
}

catch (UnknownHostException e) {
System.out.printIn("'Host lookup failed.');

}

}

When you run this program, you discover:

% java OReillyAliases
www._oreilly_com is the same as helio.ora.com

6.2.3.2 public int hashCode()

The hashCode() method returns an int that is needed when InetAddress objects
are used as keys in hash tables. Thisis called by the various methods of

java.util .Hashtable. You will almost certainly not need to call this method
directly.

Currently, the int that hashCode() returnsis simply the four bytes of the IP address
converted to an int. Thisisdifferent for every two unequal InetAddress objects
(where unequal has the meaning provided by the equals() method). If two
InetAddress objects have the same address, then they have the same hash code, even
if their hostnames are different. Therefore, if you try to store two objectsin a
Hashtable using equivalent InetAddress objects as akey (for example, the
InetAddress objects for www.oreilly.com and helio.ora.com), the second will
overwrite thefirst. If thisis a problem, use the String returned by getHostName()
asthe key instead of the InetAddress itself.

The hashCode() method is the single method in the InetAddress class that can't be
easily modified to work with 16-byte addresses. The algorithm to cal culate hash codes
may become considerably more complex when 16-byte addresses are supported. Do
not write code that depends on the hashCode() method returning the | P address.

6.2.3.3 public String toString()

Like all good classes, java.net. InetAddress hasatoString() method that
returns a short text representation of the object. Example 6.1 through Example 6.4 all
implicitly called this method when passing InetAddress objects to
System.out.printIn(). Asyou saw, the string produced by toString() hasthe
form:

host name/dotted quad address

Not al InetAddress objects have hostnames. If one doesn't, then the dotted quad
format of the IP address will be substituted. This format isn't particularly useful, so
you'll probably never call toString() explicitly. If you do, the syntax is simple:

InetAddress thisComputer = InetAddress.getLocalHost();
String address = thisComputer.toString();

6.3 Some Useful Programs

Y ou now know everything thereis to know about the java.net. InetAddress class.
Thetoolsin this class aone let you write some genuinely useful programs. Here we'll
look at two: one that queries your domain name server interactively and another that
can improve the performance of your web server by processing log files offline.

6.3.1 HostLookup

nslookup isa Unix utility that converts hostnames to I P addresses and | P addresses to
hostnames. It has two modes: interactive and command line. If you enter a hostname
on the command line, nslookup prints the 1P address of that host. If you enter an |P
address on the command line, nslookup prints the hostname. If no hostname or IP
address is entered on the command line, nslookup enters interactive mode, in which it
reads hostnames and | P addresses from standard input and echoes back the
corresponding | P addresses and hostnames until you type "exit". Example 6.9 isa
simple character mode application called HostLookup, which emulates nslookup. It
doesn't implement any of nslookup's more complex features, but it does enough to be
useful.

Example 6.9. An nslookup Clone

import java.net.*;
import java.io.*;

public class HostLookup {
public static void main (String[] args) {

if (args.length > 0) { // use command line
for (int i = 0; 1 < args.length; i++) {
System.out.printIn(lookup(args[i]));
}

else {
BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));
System.out._printin(
"Enter names and IP addresses. Enter \"exit\" to quit.');
try {
while (true) {
String host = in.readLine();
if (host.equals(exit'™)) break;
System.out.printin(lookup(host));

}

3

catch (10Exception e) {
System._err._printin(e);

}

}

} /7* end main */

private static String lookup(String host) {

InetAddress thisComputer;
byte[] address;

// get the bytes of the IP address

try {
thisComputer = InetAddress.getByName(host);
address = thisComputer.getAddress();

catch (UnknownHostException e) {
return "Cannot find host " + host;
}

if (isHostName(host)) {

// Print the IP address

String dottedQuad = ''";

for (int i = 0; 1 < address.length; i++) {
int unsignedByte = address[i] < O ? address[i] + 256 :

address[i];

dottedQuad += unsignedByte;
if (i '= address.length-1) dottedQuad += *_"

}
return dottedQuad;

else { // this is an IP address
return thisComputer.getHostName();
}

} /7 end lookup
private static boolean isHostName(String host) {

char[] ca = host.toCharArray();
// it we see a character that is neither a digit nor a period
// then host is probably a host name
for (int i = 0; 1 < ca.length; i++) {
if (ICharacter.isDigit(cali])) {
if (ca[i] '= ".") return true;

}

// Everything was either a digit or a period
// so host looks like an IP address in dotted quad format

return false;
} /7 end isHostName

} // end HostLookup

Here's some sample output; input typed by the user isin bold:

% java HostLookup utopia.poly.edu

128.238.3.21

% java HostLookup 128.238.3.21

utopia.poly.edu

% java HostLookup

Enter names and IP addresses. Enter "exit" to quit.

CS.nyu.edu
128.122.80.78
199.1.32.90
star.blackstar.com
localhost
127.0.0.1
cs.cmu.edu
128.2.222.173
refm.mit.edu
18.181.0.29
star.blackstar.com
199.1.32.90
cs.med.edu

Cannot find host cs.med.edu
exit

The HostLookup program is built using three methods. main(), lookup(), and
isHostName(). Themain() method determines whether there are command-line
arguments. If there are command-line arguments, main() calls lookup() to process
each one. If there are no command-line arguments, it chains a BufferedReader to an
InputStreamReader chained to System. in and reads input from the user with the
readLine() method. (The warning in Chapter 4, about this method doesn't apply
here because we're reading from the console, not a network connection.) If thelineis
"exit", then the program exits. Otherwise, the line is assumed to be a hostname or 1P
address, and is passed to the 1ookup() method.

The lookup() method uses InetAddress.getByName() to find the requested host,
regardless of the input's format; remember that getByName() doesn't careif its
argument is a name or adotted quad address. If getByName() fails, then lookup()
returns afailure message. Otherwise, it gets the address of the requested system. Then
lookup() calls isHostName() to determine whether the input string host isa
hostname like cs.nyu.edu or a dotted quad format | P address like 128.122.153.70.
isHostName() looks at each character of the string; if all the characters are digits or
periods, isHostName() guessesthat the string isanumeric |P address and returns
false. Otherwise, isHostName() guesses that the string is a hostname and returns
true. What if the string is neither? That is very unlikely, sinceif the string is neither a
hostname nor an address, getByName() won't be able to do alookup and will throw
an exception. However, it would not be difficult to add a test making sure that the
string looks valid; thisis |eft as an exercise for the reader. If the user types a hostname,
lookup() returns the corresponding dotted quad address; we have already saved the
addressin the byte array address[], and the only complication is making sure that
we don't treat byte values from 128 to 255 as negative numbers. If the user typesan IP
address, then we use the getHostName () method to look up the hostname
corresponding to the address, and return it.

6.3.2 Processing Web Server Log Files

Web server logs track the hosts that access aweb site. By default, the log reports the
I P addresses of the sites that connect to the server. However, you can often get more
information from the names of those sites than from their 1P addresses. Most web
servers have an option to store hostnames instead of |P addresses, but this can hurt
performance because the server needs to make a DNS request for each hit. It is much

more efficient to log the IP addresses and convert them to hostnames at alater time.
This task can be done when the server isn't busy or even on another machine
completely. Example 6.10 is a program called Weblog that reads aweb server log file
and prints each line with 1P addresses converted to hostnames.

Most web servers have standardized on the common log file format, although there
are exceptions; if your web server isone of those exceptions, you'll have to modify
this program. A typical linein the common log file format looks like this:

205.160.186.76 unknown - [17/Jun/1999:22:53:58 -0500] "'GET
/bgs/greenbg.gif HTTP 1.0" 200 50

This means that aweb browser at P address 205.160.186.76 requested the file
/bgs/greenbg.gif from this web server at 11:53 P.M. (and 58 seconds) on June 17,
1999. The file was found (response code 200), and 50 bytes of data were successfully
transferred to the browser.

Thefirst field isthe IP address or, if DNS resolution is turned on, the hostname from
which the connection was made. Thisisfollowed by a space. Therefore, for our
purposes, parsing the log file is easy: everything before the first space isthe IP
address, and everything after it does not need to be changed.

The Common Log File Format

If you want to expand Weblog into a more general web server log processor,
you need alittle more information about the common log file format. A line
in the file has the format:

remotehost rfc931 authuser [date] ''request' status bytes
remotehost

remotehost is either the hostname or |P address from which the
browser connected.

rfco931

rfc931 isthe username of the user on the remote system, as specified
by Internet protocol RFC 931. Very few browsers send this
information, so it's almost always either unknown or adash. Thisis
followed by a space.

authuser

authuser isthe authenticated username as specified by RFC 931.
Once again, thisis not supported by most popular browsers or client
systems; thisfield usually isfilled in with a dash, followed by a
Space.

[date]

The date and time of the request are given in brackets. Thisisthe
local system time when the request was made. Days are a two-digit
number ranging from 01 to 31. The month is Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec. The year is given by four
digits. Thisisfollowed by a colon, then the hour (from 00 to 23),
another colon, then two digits signifying the minute (00 to 59), then a
colon, then two digits signifying the seconds (00 to 59). Then comes
the closing bracket and another space.

"request”
Thisisthe request line exactly asit came from the client. It is
enclosed in quotation marks because it may contain embedded spaces.
It is not guaranteed to be avalid HTTP request since client software
may misbehave.

status
Thisisanumeric HTTP status code returned to the client. A list of
HTTP 1.0 status codes is given in Chapter 3. The most common
response is 200, which means the request was successfully processed.

bytes

Thisisthe number of bytes of data that was sent to the client asa
result of this request.

The dotted quad format I P address is converted into a hostname using the usual
methods of java.net. InetAddress. Example 6.10 shows the code.

Example 6.10. Process Web Server Log Files

import java.net.*;

import java.io.*;

import java.util.*;

import com.macfaqg.io.SafeBufferedReader;

public class Weblog {
public static void main(String[] args) {

Date start = new Date();

try {
FilelnputStream fin = new FilelnputStream(args[0]);
Reader in = new InputStreamReader(fin);
SafeBufferedReader bin = new SafeBufferedReader(in);

String entry = null;
while ((entry = bin.readLine()) != null) {

// separate out the IP address
int index = entry.indexOf(* *, 0);

String ip = entry.substring(0, index);
String theRest = entry.substring(index, entry.length());

// find the host name and print it out

try {
InetAddress address = InetAddress.getByName(ip);

System.out.printIn(address.getHostName() + theRest);

catch (UnknownHostException e) {
System.out._printin(entry);
}

} 7/ end while

}
catch (10Exception e) {
System.out.printIn("'Exception: " + e);

}

Date end = new Date();
long elapsedTime = (end.getTime()-start.getTime())/1000;
System.out.printIn("Elapsed time: " + elapsedTime + " seconds');

} // end main

}

The name of the file to be processed is passed to Weblog as the first argument on the
command line. A FilelnputStream fin isopened from thisfile, and an
InputStreamReader ischained to fin. This InputStreamReader is buffered by
chaining it to an instance of the SafeBufferedReader class developed in Chapter 4.
Thefileis processed line by linein awhi le loop.

Each pass through the loop places onelinein the String variable entry. entry is
then split into two substrings:. ip, which contains everything before the first space,
and theRest, which is everything after the first space. The position of the first space
is determined by entry. indexOf(** ", 0). ip isconverted to an InetAddress object
using getByName(). The hostname is then looked up by getHostName(). Finaly,
the hosthame, a space, and everything else on the line (theRest) are printed on
System.out. Output can be sent to a new file through the standard means for
redirecting output.

Weblog is more efficient than you might expect. Most web browsers generate multiple
log file entries per page served, since there's an entry in the log not just for the page
itself but for each graphic on the page. And many web browsers request multiple
pages while visiting a site. DNS lookups are expensive, and it smply doesn't make
sense to look up each of those sites every timeit appearsin the log file. The
InetAddress class caches requested addresses. If the same addressis requested again,
it can be retrieved from the cache much more quickly than from DNS.

Nonetheless, this program could certainly be faster. In my initial tests, it took more
than a second per log entry. (Exact numbers depend on the speed of your network
connection, the speed of both local and remote DNS servers you access, and network
congestion when the program is run.) It spends a huge amount of time just sitting and
waiting for DNS requests to return. Of course, thisis exactly the problem

multithreading is designed to solve. One main thread can read the log file and pass of f
individual entries to other threads for processing.

A thread pool is absolutely necessary here. Over the space of afew days, even low
volume web servers can easily generate alog file with hundreds of thousands of lines.
Trying to process such alog file by spawning a new thread for each entry would
rapidly bring even the strongest virtual machine to its knees, especially since the main
thread can read log file entries much faster than individual threads can resolve domain
names and die. Consequently, reusing threads is essential here. The number of threads
is stored in atunable parameter, numberOfThreads, SO that it can be adjusted to fit the
VM and network stack. (Launching too many simultaneous DNS requests can also
cause problems.)

This program is now divided into two classes. Thefirst class, PooledwWeblog, shown
in Example 6.11, contains the main() method and the processLogFile() method.
It also holds the resources that need to be shared among the threads. These are the
pool, implemented as a synchronized LinkedList from the Java Collections API, and
the output log, implemented as a BufferedWriter named out. Individual threads will
have direct access to the pool but will have to pass through PooledwWeblog's 1og()
method to write output.

The key method is processLogFile(). As before, this method reads from the
underlying log file. However, each entry is placed in the entries pool rather than
being immediately processed. Because this method is likely to run much more quickly
than the threads that have to access DNS, it yields after reading each entry.
Furthermore, it goesto sleep if there are more entriesin the pool than threads
available to process them. The amount of time it sleeps depends on the number of
threads. Thiswill avoid using excessive amounts of memory for very large log files.
When the last entry isread, the Finished flag is set to true to tell the threads that
they can die once they've completed their work.

Example 6.11. PooledWebLog

import java.io.*;
import java.util_*;
import com.macfaqg.io.SafeBufferedReader;

public class PooledWeblog {

private BufferedReader in;

private BufferedWriter out;

private int numberOfThreads;

private List entries = Collections.synchronizedList(new
LinkedList());

private boolean finished = false;

private int test = O;

public PooledWeblog(InputStream in, OutputStream out,
int numberOfThreads) {
this.in = new BufferedReader(new InputStreamReader(in));
this.out = new BufferedWriter(new OutputStreamWriter(out));
this.numberOfThreads = numberOfThreads;

}

public boolean isFinished() {
return this.finished;

}

public int getNumberOfThreads() {
return numberOfThreads;

}

public void processLogFile() {

for (int i = 0; 1 < numberOfThreads; 1++) {
Thread t = new LookupThread(entries, this);
t.start();

try {

String entry = null;
while ((entry = in.readLine()) !'= null) {

if (entries.size() > numberOfThreads) {

try {
Thread.sleep((long) (1000.0/numberOfThreads));

catch (InterruptedException e) {}
continue;

}

synchronized (entries) {
entries.add(0, entry);
entries.notifyAll();

3
Thread.yield();

} 7/ end while

by
catch (10Exception e) {
System.out.printIn("'Exception: " + e);

}

this.finished = true;

// finish any threads that are still waiting
synchronized (entries) {

entries_.notifyAll();
}

¥
public void log(String entry) throws I0Exception {

out.write(entry + System.getProperty("'line.separator™, "\r\n'));
out.flush();

}

public static void main(String[] args) {

try {

PooledWeblog tw = new PooledWeblog(new FilelnputStream(args[0]),
System.out, 100);
tw.processLogFile();

}
catch (FileNotFoundException e) {
System.err.printIn("'Usage: java PooledWeblog logfile name');

catch (ArraylndexOutOfBoundsException e) {
System_err._printIn("'Usage: java PooledWeblog logfile_name'™);

catch (Exception e) {
System.err.printin(e);
e.printStackTrace();

}
} /7 end main

}

The detailed work of converting IP addresses to hostnamesin the log entriesis
handled by the LookupThread class, shown in Example 6.12. The constructor
provides each thread with areference to the entries pool it will retrieve work from
and areference to the PooledWeblog object it's working for. The latter reference
allows callbacks to the PooledwWeblog so that the thread can log converted entries and
check to see when the last entry has been processed. It does so by calling the
isFinished() method in Pooledweblog when the entries pool isempty (has size
0). Neither an empty pool nor isFinished() returning true is sufficient by itself.
isFinished() returnstrue after the last entry is placed in the pool, which is, at least
for asmall amount of time, before the last entry is removed from the pool. And
entries may be empty while there are still many entries remaining to be read, if the
lookup threads outrun the main thread reading the log file.

Example 6.12. LookupThread

import java.net.*;
import java.io.*;
import java.util_*;

public class LookupThread extends Thread {

private List entries;
PooledWeblog log; // used for callbacks

public LookupThread(List entries, PooledWeblog log) {
this.entries = entries;
this.log = log;

}

public void run() {
String entry;
while (true) {
synchronized (entries) {

while (entries.size() == 0) {
if (log.isFinished()) return;

try {
entries.wait();

catch (InterruptedException e) {

}
}

entry = (String) entries.remove(entries.size()-1);

}

int index = entry.indexOf(* *, 0);
String remoteHost = entry.substring(0, index);
String theRest = entry.substring(index, entry.length());

try {
remoteHost =

InetAddress.getByName(remoteHost) .getHostName();

catch (Exception e) {
// remoteHost remains in dotted quad format

}

try {
log.log(remoteHost + theRest);

catch (10Exception e) {

3
this.yield();

}

Using threads like this lets the same log files be processed in parallel. Thisis a huge
time savings. In my unscientific tests, the threaded version is 10 to 50 times faster
than the sequential version.

The biggest disadvantage to the multithreaded approach isthat it reorders the log file.
The output statistics aren't necessarily in the same order as the input statistics. For
simple hit counting, this doesn't matter. However, there are some log analysis tools
that can mine alog file to determine paths users followed through a site. These could
well get confused if the log is out of sequence. If that's an issue, you'd need to attach a
sequence number to each log entry. Asthe individual threads returned log entries to
the main program, the 1og() method in the main program would store any that
arrived out of order until their predecessors appeared. Thisisin some ways
reminiscent of how network software reorders TCP packets that arrive out of order.

Chapter 7. Retrieving Data with URLSs

The simplest way for a Java program to locate and retrieve data from the network isto
use the URL class. Y ou do not need to worry about the details of the protocol being
used, the format of the data being retrieved, or how to communicate with the server;
you simply tell Javathe URL, and it gets the data for you. Although Java can handle
only afew protocols and content types out of the box, in later chapters you'll learn

how to write and install new content and protocol handlers that extend Java's
capabilities to include new protocols and new kinds of data. You'll aso learn how to
open sockets and communicate directly with different kinds of servers. But that's later;
for now, let's see how much you can do with a minimum of work.

7.1 The URL Class

The java.net.URL classis an abstraction of a Uniform Resource Locator like
http://www.hamsterdance.com/ or ftp:/ftp.redhat.com/pub/. It extends
java.lang.Object, and it isafina classthat cannot be subclassed. Rather than
relying on inheritance to configure instances for different kinds of URLS, it usesthe
strategy design pattern. Protocol handlers are the strategies, and the URL class itself
forms the context through which the different strategies are selected:

public final class URL extends Object implements Serializable

Although storing a URL as a string would be trivial, it is helpful to think of URLs as
objects with fields that include the protocol, hostname, port, path, query string, and ref,
each of which may be set independently. Indeed, thisis almost exactly how the
Java.net.URL classis organized, though the details vary alittle between different
versions of Java

Thefields of java.net.URL arevisible only to other members of the java.net
package; classes that aren't in java.net can't access a URL's fields directly. However,
you can set these fields using the URL constructors, and retrieve their values using the
various getter methods (getHost(), getPort(), €tc.). The URL class hasasingle
method for setting the fields of a URL after it has been created, but this method is
protected, and you won't need it unless you're implementing a new protocol handler.
URLs are effectively immutable. After aURL object has been constructed, itsfields do
not change.

7.1.1 Creating New URLs

Unlike the InetAddress objects of Chapter 6, you can construct instances of
jJava.net.URL. There are six constructors, differing in the information they require.
Which constructor you use depends on what information you have and the formit'sin.
All these constructors throw aMalformedURLException if you try to create a URL
for an unsupported protocol.

Exactly which protocols are supported is implementation dependent. The only
protocols that have been available in all major virtual machines are http and file, and
the latter isn't very useful for applets. Sun's Java Development Kit 1.1 and Apple's
Macintosh Runtime for Java 2.1 support HTTP, file, FTP, mailto, and gopher as well
as some custom protocols like doc, netdoc, systemresource, and verbatim used
internally by HotJava for special purposes like help files. JDK 1.2 adds the jar
protocol to thislist. Netscape Navigator 4.x supportsthe HTTP, file, FTP, mailto,
Telnet, idap, and gopher protocols. Internet Explorer 5 supports HTTP, file, FTP,
HTTPS, mailto, gopher, doc, and systemresource, but not Telnet, netdoc, jar, or
verbatim. HotJava 3.0 supports al the JDK protocols plus NFS. Of course, support for
all these protocolsis limited in applets by the security policy. For example, just

because an untrusted applet can construct afile URL object does not mean that the
applet can actually read the file the URL refers to. Just because an untrusted appl et
can construct aURL object from an HTTP URL that pointsto athird-party web site
does not mean that the applet can connect to that site.

If the protocol you want to use isn't supported by a particular VM, you may be able to
install a protocol handler for that scheme. Thisis subject to a number of security
checksin applets and isreally practical only for applications. Other than verifying that
it recognizes the protocol part of the URL, Java does not make any checks about the
correctness of the URLs it constructs. The programmer is responsible for making sure
that URLSs created are valid. For instance, Java does not check that the hostname in an
HTTP URL does not contain spaces or that the query string is x-www-form-URL-
encoded. It does not check that amailto URL actually contains an email address. Java
does not check the URL to make sure that it points at an existing host or that it meets
any other requirements for URLS. Y ou can create URL s for hosts that don't exist and
for hosts that do exist but that you won't be allowed to connect to.

7.1.1.1 Constructing a URL from a string

The simplest URL constructor just takes an absolute URL in string form asits single
argument:

public URL(String url) throws MalformedURLException

Like al constructors, this may only be called after the new operator; and, like all URL
constructors, it can throw aMal formedURLException. The foloowing code constructs
aURL object from a String, catching the exception that might be thrown:

try {
URL u = new URL(C'http://www.macfaq.com/personal_html');

catch (MalformedURLException e) {
System_err_printin(e);
}

Example 7.1 is asimple program for determining which protocols a virtual machine
does and does not support. It attempts to construct a URL object for each of 14
protocols (8 standard ones, 3 custom protocols for various Java APIs, and 4
undocumented protocols used internally by HotJava). If the constructor succeeds, you
know the protocol is supported. Otherwise, aMal formedURLException isthrown, and
you know the protocol is not supported.

Example 7.1. ProtocolTester

/* Which protocols does a virtual machine support? */
import java.net.*;
public class ProtocolTester {

public static void main(String[] args) {

// hypertext transfer protocol

testProtocol ("http://www.adc.org"™);

// secure http
testProtocol (""https://www.amazon.com/exec/obidos/order2/™);

// file transfer protocol
testProtocol (""ftp://metalab.unc.edu/pub/languages/java/javafaq/™);

// Simple Mail Transfer Protocol
testProtocol (""'mailto:elharo@metalab.unc.edu™);

// telnet
testProtocol (""telnet://dibner.poly.edu/™);

// local file access
testProtocol (""file:///etc/passwd™);

// gopher
testProtocol (*"'gopher://gopher.anc.org.za/'");

// Lightweight Directory Access Protocol
testProtocol(

"ldap://1dap.itd.umich_edu/o=University%200f%20Michigan,c=US?postalAd
dress'™);

// Jar
testProtocol(

"jar:http://metalab.unc.edu/javas/books/javaio/ioexamples/javaio.jar!"

}

// NFS, Network File System
testProtocol ("'nfs://utopia.poly.edu/usr/tmp/'");

// a custom protocol for JDBC
testProtocol (""jdbc:mysql://luna.metalab.unc.edu:3306/NEWS™) ;

// rmi, a custom protocol for remote method invocation
testProtocol (""'rmi ://metalab_unc.edu/RenderEngine’™);

// custom protocols for HotJava

testProtocol (*"doc:/UsersGuide/release.html™);

testProtocol (""'netdoc:/UsersGuide/release._html™);
testProtocol ('systemresource://www.adc.org/+/index.html™);
testProtocol ("'verbatim:http://www.adc.org/™);

private static void testProtocol(String url) {

try {
URL u = new URL(Curl);

System._out._printIn(u.getProtocol() +

is supported™);

}

catch (MalformedURLException e) {
String protocol = url.substring(0, url.indexOf(":"));
System.out.printin(protocol + "™ iIs not supported™);

}

}

The results of this program depend on which virtual machine runsit. Here are the
results from Sun's JDK 1.2.2 on Windows NT, which turns out to support al the
protocols except Telnet, HTTPS, LDAP, RMI, NFS, and JDBC:

D:\JAVA\JINP2\examples\O7>java ProtocolTester
http is supported

https is not supported

ftp is supported

mailto is supported

telnet is not supported
file is supported

gopher is supported

ldap is not supported

jar is supported

nfs Is not supported

jdbc is not supported

rmi is not supported

doc is supported

netdoc i1s supported
systemresource is supported
verbatim is supported

The nonsupport of RMI and JDBC is actually alittle deceptive since in fact the JDK
does support these protocols. However, that support is through various parts of the
Java.rmi and java.sql packages, respectively. These protocols are not accessible
through the URL class like the other supported protocols (although | have no idea why
Sun chose to wrap up RMI and JDBC parametersin URL clothing if it wasn't
intending to interface with these via Java's quite sophisticated mechanism for
handling URL).

7.1.1.2 Constructing a URL from its component parts

The second constructor builds a URL from three strings specifying the protocol, the
hostname, and thefile:

public URL(String protocol, String hostname, String file)
throws MalformedURLException

This constructor sets the port to -1 so the default port for the protocol will be used.
The file argument should begin with a slash, and include a path, a filename, and
optionally areference to a named anchor. Forgetting the initial slash isacommon
mistake, and one that is not easy to spot. Like all URL constructors, it can throw a
Mal formedURLException. For example

try {
URL u = new URL(C"http™, "www.eff.org"™, "/blueribbon.html#intro™);

by
catch (MalformedURLException e) {
// All VMs should recognize http

}

This creates a URL object that points to http: //mww.eff.or g/blueribbon.html#intro,
using the default port for the HTTP protocol (port 80). The file specification includes

areference to a named anchor. The code catches the exception that would be thrown
if the virtual machine did not support the HTTP protocol. However, this shouldn't
happen in practice.

For those rare occasions when the default port isn't correct, the next constructor lets
you specify the port explicitly, asan int:

public URL(String protocol, String host, int port, String file)
throws MalformedURLException

The other arguments are the same as for the URL(String protocol, String host,
string file) constructor and carry the same caveats. For example:

try {
URL u = new URL("http™, "lcsaxp.lcs.psu.edu™, 1212, "/%3b&db=psu™);

}
catch (MalformedURLException e) {
System.err.printin(e);

}

This code creates a URL object that points to
http: //Icsaxp.| cs.psu.edu: 1212/%3b& db=psu, specifying port 1,212 explicitly.

Example 7.2 is an alternative protocol tester that can run as an applet, making it useful
for testing support of browser virtual machines. It uses the three-argument constructor
rather than the one-argument constructor of Example 7.1. It also stores the schemesto
be tested in an array and uses the same host and file for each scheme. This produces
seriously malformed URLSs like mailto: //www.peacefire.or g/bypass/ SurfWatch/, once
again demonstrating that al Java checks for at object construction is whether it
recognizes the scheme, not whether the URL is appropriate.

Example 7.2. A Protocol Tester Applet

import java.net.*;
import java.applet.*;
import java.awt.*;

public class ProtocolTesterApplet extends Applet {
TextArea results = new TextArea();
public void init() {

this.setLayout(new BorderLayout());
this.add("'Center", results);

}

public void start() {

String host
String file

"www.peacefire.org";
"/bypass/SurfWatch/";

String[] schemes = {"http", "https", “ftp'', "mailto”,
"telnet", "file", "Idap'', "‘gopher™,
"jdbc", rmi*, “"jndi’, “jar",

"doc", "netdoc', '"'nfs", "verbatim",

"finger", "daytime', ''systemresource'};

for (int i = 0; 1 < schemes.length; i++) {

try {
URL u = new URL(schemes[i], host, file);
results.append(schemes[i] + " is supported\r\n');

catch (MalformedURLException e) {
results_append(schemes[i] + " is not supported\r\n);

}
}

}

Figure 7.1 shows the results in HotJava 3.0. This browser supports HTTP, FTP,

mailto, file, gopher, doc, netdoc, verbatim, systemresource, jar, finger, and daytime

but not HTTPS, Idap, Telnet, jdbc, rmi, or jndi. In fact, the last two protocols
supported by HotJavain thislist are provided by custom protocol handlers I'll

introduce in Chapter 16. They are not part of the default installation of HotJava 3.0.

Figure 7.1. The ProtocolTesterApplet running in HotJava 3.0

£ Which schemes does this biowser support?: Hollava Browses
Fie Edt “iew Go Bookmarks Help

= ? X Q & S
Back Reload Stop Search Primt

Addrass: |ﬁle:D'.Ua'.'al'JNF‘zfexsrnl:lleal'tl'.fJPmtucane ster himl

Which schemes does this browser support?

hilp is supporied =
hitps is not supported

ftp is supported
maitto 13 suppored
telnelis not suppored
e = cuppoted

Idap 15 nat supported
gopher ig supporied
jdbe is motl suppoted
frvii is nol supporied
jndiis nol supported
jaris supparted

docis supporied
netdoc is supported
nfs is supported
verbatim s suppoted
finger s supported

daytime |5 suppoted s
Ef| _l_‘

7.1.1.3 Constructing relative URLs

This constructor builds an absolute URL from arelative URL and a base URL:

public URL(URL base, String relative) throws MalformedURLException

For instance, you may be parsing an HTML document at

http://metal ab.unc.edu/javafag/index.html and encounter alink to afile called
mailinglists.ntml with no further qualifying information. In this case, you use the URL
to the document that contains the link to provide the missing information. The
constructor computes the new URL as http://metal ab.unc.edu/javafag/mailinglists.html.
For example:

try {
URL ul new URL("http://metalab.unc.edu/javafag/index.html™);

URL u2 = new URL (ul, "mailinglists.html'™);

}

catch (MalformedURLException e) {
System.err.printin(e);

}

The filename is removed from the path of u1, and the new filename mailinglists.html
is appended to make u2. This constructor is particularly useful when you want to loop
through alist of filesthat are all in the same directory. Y ou can create a URL for the
first file and then use thisinitial URL to create URL objects for the other files by
substituting their filenames. Y ou also use this constructor when you want to create a
URL relative to the applet's document base or codebase, which you retrieve using the
getDocumentBase() Or getCodeBase() methods of the java.applet.Applet
class. Example 7.3 isavery simple applet that uses get DocumentBase() to create a
new URL object:

Example 7.3. A URL Relative to the Web Page

import java.net.*;
import java.applet.*;
import java.awt.*;

public class RelativeURLTest extends Applet {
public void init () {

try {
URL base = this.getDocumentBase();

URL relative = new URL(base, "mailinglists.html');
this.setLayout(new GridLayout(2,1));

this.add(new Label(base.toString())):;
this.add(nhew Label(relative.toString()));

}
catch (MalformedURLException e) {
this.add(new Label("'This shouldn"t happen!'));

}

}

Of course, the output from this applet depends on the document base. In the run
shown in Figure 7.2, the original URL (the document base) refersto the file
RelativeURL.html; the constructor creates a new URL that pointsto thefile
mailinglists.html in the same directory.

Figure 7.2. A base and a relative URL

fen Applet Viewer: RelativellRLT est H=E
Arpie

itz ienetalab unc. edudjsvatagiRelative R L kil

hito:fmetalab unc edulfjzvafagimailinglists htrml

Applet started

When using this constructor with getbDocumentBase(), you frequently put the call to
getDocumentBase() inside the constructor, like this:

URL relative = new URL(this.getDocumentBase(), "mailinglists_html™);

7.1.1.4 Specifying a URLStreamHandler

Java 1.2 adds two URL constructors that allow you to specify the protocol handler used
for the URL. Thefirst constructor builds arelative URL from a base URL and arelative
part, then uses the specified handler to do the work for the URL. The second builds the
URL from its component pieces, then uses the specified handler to do the work for the
URL:

public URL(URL base, String relative, URLStreamHandler handler) //
1.2

throws MalformedURLException

public URL(String protocol, String host, int port, String file, //
1.2

URLStreamHandler handler) throws MalformedURLException

All URL objects have URLStreamHandler objects to do their work for them. These two
constructors allow you to change from the default URLStreamHandler subclassfor a
particular protocol to one of your own choosing. Thisis useful for working with
URL s whose schemes aren't supported in a particular virtual machine aswell as for
adding functionality that the default stream handler doesn't provide, like asking the
user for a username and password. For example:

URL u = new URL("Ffinger"™, "utopia.poly.edu", 79, "/marcus",
new com.macfaqg.net.www.protocol.finger.Handler());

The com.macfaq.net.www.protocol . finger.Handler class used here will be
developed in Chapter 16.

While the other four constructors raise no security issues in and of themselves, these
two do because class |oader security is closely tied to the various URLStreamHandler
classes. Consequently, untrusted applets are not allowed to specify a
URLSreamHandler. Trusted applets can do so if they have the NetPermission
specifyStreamHandler. However, for reasons that will become apparent in Chapter
16, thisis a security hole big enough to drive atruck through. Consequently, you
should not request this permission or expect it to be granted if you do request it.

7.1.1.5 Other sources of URL objects

Besides the constructors discussed here, a number of other methods in the Java class
library return URL objects. You've aready seen getDocumentBase() from
java.applet._Applet. The other common sourceis getCodeBase(), aso from
java.applet.Applet. Thisworksjust like getDocumentBase(), except it returns
the URL of the applet itself instead of the URL of the page that contains the applet.
Both getDocumentBase() and getCodeBase() come from the
java.applet.AppletStub interface, which java.applet.Applet implements.
You're unlikely to implement this interface yourself unless you're building aweb
browser or applet viewer.

In Java 1.2 and later, the java.io.File class has atoURL() method that returns a
file URL matching the given file. The exact format of the URL returned by this
method is platform dependent. For example, on Windows it may return something
like file:/D:/JAVAIINP2/07/ToOURL Test.java.

From Java 1.1 on, class loaders are used not only to load classes but also to load
resources such as images and audio files. The static
ClassLoader.getSystemResource(String name) method returns a URL from which
asingle resource can be read. The ClassLoader . getSystemResources(String
name) method returns an Enumeration containing alist of URLs from which the
named resource can be read. In Java 1.1, these two methods use the virtual machine's
default classloader. In Java 1.2 and later, they use the system class loader. Finally, the
instance method getResource(String name) will search the path used by the
referenced class |oader for a URL to the named resource. The URLSs returned by these
methods may be file URLs, HTTP URLSs, or some other scheme. The name of the
resource is a slash-separated list of Javaidentifiers like /comymacfag/sounds/swale.au
or com/macfag/images/headshot.jpg. The Javaimplementation will attempt to find the
requested resource in the class path, potentially including parts of the class path on the
web server that an applet was loaded from, or inside a JAR archive.

There are afew other methods that return URL objects here and there throughout the
classlibrary, but most of these are simple getter methods that return only a URL you
probably already know because you used it to construct the object in the first place;
for instance, the getPage() method of java.swing.JEditorPane, and the
getURL() method of java.net.URLConnection.

7.1.2 Splitting a URL into Pieces
URLSs can be thought of as composed of five pieces:

The scheme, also known as the protocol

The authority

The path

Theref, also known as the section or named anchor
The query string

For example, given the URL
http://metal ab.unc.edu/javafag/books/jnp/index.html ?i sbn= 1565922069#toc, the

schemeis http; the authority is metalab.unc.edu; the path is
/javafag/books/jnp/index.html; the ref istoc; and the query string is isbn=1565922069.
However, not all URL s have all these pieces. For instance, the URL
http://mvww.fags.org/rfcs/rfc2396.html has a scheme, an authority, and a path but no

ref or query string.

The authority may further be divided into the user info, the host, and the port. For
example, in the URL http://admin@www.blackstar.com: 8080/, the authority is
admin@www.blackstar.com: 8080. This has the user info admin, the host
www.blackstar.com, and the port 8080.

Read-only access to these parts of a URL is provided by five public methods:
getFile(), getHost(), getPort(), getProtocol(), and getRef(). Javal.3
adds four more methods. getQuery(), getPath(), getUseriInfo(), and
getAuthority().

7.1.2.1 public String getProtocol()

The getProtocol () method returns a String containing the scheme of the URL :
for example, "http", "https’, or "file". For example:

URL page = this.getCodeBase();
System.out.printIn("'This applet was downloaded via "
+ page.getProtocol());

7.1.2.2 public String getHost()

The getHost() method returns a String containing the hostname of the URL. For
example:

URL page = this.getCodeBase();
System.out.printIn("'This applet was downloaded from " +
page.getHost());

The host string is not necessarily a valid hostname or address. In particular, URLSs that
incorporate usernames, like ftp://anonymous. anonymous@wuar chive.wustl.edu/,
include the user info in the host. For example, consider this code fragment:

try {
URL u = new URL("ftp://anonymous:anonymous@wuarchive.wustl.edu/');

String host = u.getHost();

¥
catch (MalformedURLException e) {

// should never happen

}

This sets host to anonymous :anonymous@wuarchive .wustl . edu, not Simply
wuarchive .wustl .edu. Java 1.3 provides a method to get the user info,
anonymous :anonymous in this example. However, for reasons of backward
compatibility, Java 1.3 did not change the semantics of the getHost() method to
return only the host rather than the host plus the user info.

7.1.2.3 public int getPort()

The getPort() method returns the port number specified in the URL asan int. If
no port was specified in the URL, then getPort() returns -1 to signify that the URL
does not specify the port explicitly, and will use the default port for the protocol. For
example, if the URL is http://mww.userfriendly.org/, getPort() returns-1; if the
URL is http://mww.userfriendly.org: 80/, getPort() returns 80. The following code
prints -1 for the port number, because it isn't specified in the URL:

try {
URL u = new URL("http://www.ncsa.uiuc.edu/demoweb/html-primer.html);

System.out._printIn("'The port part of ™ + u + "™ is " +
u.getPort());
}

catch (MalformedURLException e) {
System.err.printin(e);

}

7.1.2.4 public String getFile()

The getFile() method returns a String that contains the path and file portion of a
URL; remember that Java does not break a URL into separate path and file parts.
Everything from the first / after the hostname until the character preceding the # sign
that begins a section is considered to be part of the file. For example:

URL page = this.getDocumentBase();
System._out._printIn("'This page"s path is " + page.getFile());

If the URL does not have afile part, Java 1.0, 1.1, and 1.2 append a slash (/) to the
URL and return the slash as the filename. For example, if the URL is
http://wvww.slashdot.org (rather than something like
http://mww.slashdot.org/index.html), getFile() returns /. Java 1.3 smply setsthe
file to the empty string.

7.1.2.5 public String getPath() // Java 1.3

The getPath() method, available only in JDK 1.3 and later, is a synonym for
getFile();thatis, it returns aString containing the path and file portion of a URL
and has exactly the same semantics as getFile(). Thereason for this duplicate
method is to sync up Java's terminology with the URI specification in RFC 2396.

RFC 2396 calls what we and Java have been calling the "file" the "path" instead. The
getFile() method isn't yet deprecated as of Java 1.3, but it may become so in future
releases. Note especially that the getPath() method does not return only the
directory path and getFile() does not return only the filename as you might naively
expect. Both getPath() and getFile() return exactly the same thing, the full path
and filename.

7.1.2.6 public string getRef()

The getRef() method returns the named anchor part of the URL. If the URL doesn't
have a named anchor, the method returns nul 1. In the following code, getRef()
returns the string xtocid1902914:

try {
URL u = new URL(

"http://metalab.unc.edu/javafaq/javafaq.-html#xtocid1902914');
System.out._printIn("'The ref of ™ + u + " is " + u.getRef());

}
catch (MalformedURLException e) {
System.err.printin(e);

}

7.1.2.7 public string getQuery() // Java 1.3

The getQuery() method returns the query string of the URL. If the URL doesn't
have a query string, the method returns nul 1. In the following code, getQuery()
returns the string category=Piano:

try {
URL u = new URL(

"http://metalab._unc.edu/nywc/compositions.phtml?category=Piano™);
System.out.printIn("'The query string of " + u + " is " +
u.getQuery());
}

catch (MalformedURLException e) {
System_err_printin(e);

}

7.1.2.8 public string getUserInfo() // Java 1.3

Some URL s include usernames and occasionally even password information. This
comes after the scheme and before the host. An @ symbol delimitsit. For instance, in
the URL http://elharo@java.oreilly.conV, the user info is elharo. Some URLs also
include passwords in the user info. For instance, in the URL

ftp://mp3: mp3@138.247.121.61: 21000/c%3a/stuff/mp3/mp3s/Organized _kinda/Quart
erflash/Quarterflash%20-%20Har den%20My%20Heart.mp3, the user info is

mp3: mp3. However, most of the time including a password in aURL is a security risk.
If the URL doesn't have any user info, getUserInfo() returnsnull. Mailto URLs
may not behave like you expect. In aURL like mailto: elharo@metal ab.unc.edu,
elharo@metalab.unc.edu is the path, not the user info and the host. That's because the
URL specifies the remote recipient of the message rather than the username and host
that's sending the message.

7.1.2.9 public string getAuthority() // Java 1.3

Between the scheme and the path of a URL, you'll find the authority. The term
authority is taken from the Uniform Resource Identifier specification (RFC 2396),
where this part of the URI indicates the authority that's resolving the resource. In the
most general case, thisincludes the user info, the host, and the port. For example, in
the URL ftp://mp3:mp3@138.247.121.61:21000/c%3a/, the authority is
mp3:mMp3@138.247.121.61:21000. However, not all URLs have al parts. For instance,
in the URL http://conferences.oreilly.convjava/speakers/, the authority is simply the
hostname conferences.oreilly.com. The getAuthority() method returns the
authority asit exists in the URL, with or without the user info and port.

Example 7.4 uses all eight methods to split URLs entered on the command-line into
their component parts. This program requires Java 1.3, though it's easy to port to Java
1.2

Example 7.4. The Parts of a URL
import java.net.*;
public class URLSplitter {

public static void main(String args[]) {

for (int i = 0; 1 < args.length; i++) {
try {
URL u = new URL(args[i]):
System.out._printIn("'The URL is " + u);
System.out.printIn(''The scheme is " + u.getProtocol());
System.out.printIn("'The user info is " + u.getUseriInfo());

String host = u.getHost();
it (host = null) {
int atSign = host.indexOf("@");
if (atSign !'= -1) host = host.substring(atSign+1);
System._out._printIn("'The host is "™ + host);
}
else {
System.out.printIn("The host is null.™);

}

System.out._printIn("'The port is " + u.getPort());
System.out.printIn(''The path is " + u.getPath());
System.out.printIn("'The ref is " + u.getRef());
System.out.printIn("'The query string is " + u.getQuery());
} // end try
catch (MalformedURLException e) {
System.err.printin(args[i] + " is not a URL | understand.');
}

System.out.printin();
} 7/ end for

} /7 end main
} 7/ end URLSplitter
Here's the result of running this against several of the URL examplesin this chapter:

% java URLSplitter \

http://www.ncsa.uiuc.edu/demoweb/html-primer_html#A1.3.3.3 \
ftp://mp3:mp3@138.247.121.61:21000/c%3a/ \
http://www.oreilly.com \
http://metalab.unc.edu/nywc/compositions.phtml?category=Piano \
http://admin@www.blackstar.com:8080/ \

The URL is http://www.ncsa.uiuc.edu/demoweb/html-primer.html#A1.3.3.3
The scheme is http

The user info is null

The host is www.ncsa.uiuc.edu

The port is -1

The path is /demoweb/html-primer.html

The ref is A1.3.3.3

The query string is null

The URL is ftp://mp3:mp3@138.247.121.61:21000/c%3a/
The scheme is ftp

The user info is mp3:mp3

The host is 138.247.121.61

The port is 21000

The path is /c%3a/

The ref is null

The query string is null

The URL is http://www.oreilly.com
The scheme is http

The user info is null

The host is www.oreilly.com

The port is -1

The path is

The ref is null

The query string is null

The URL 1is
http://metalab.unc.edu/nywc/compositions.phtml?category=Piano
The scheme is http

The user info is null

The host is metalab.unc.edu

The port is -1

The path is /nywc/compositions.phtml

The ref is null

The query string is category=Piano

The URL is http://admin@www.blackstar.com:8080/
The scheme is http

The user info is admin

The host is www.blackstar.com

The port is 8080

The path is /

The ref is null

The query string is null

7.1.3 Retrieving Data from a URL

Naked URLs aren't very exciting. What's exciting is the data contained in the
documents they point to. The URL class has three methods (four in Java 1.3) to retrieve
datafrom aURL; they are:

public final InputStream openStream() throws I10Exception
public URLConnection openConnection() throws 10Exception
public final Object getContent() throws I10Exception

public final Object getContent(Class[] classes) // 1.3
throws 10Exception

These methods differ in that they return the data at the URL as an instance of different
classes.

7.1.3.1 public final InputStream openStream() throws IOException

The openstream() method connects to the resource referenced by the URL, performs
any necessary handshaking between the client and the server, and then returns an

InputStream from which data can be read. The datayou get from this InputStream
istheraw (i.e., uninterpreted) contents of the file the URL references: ASCII if you're
reading an ASCI| text file, raw HTML if you're reading an HTML file, binary image
dataif you're reading an image file, and so forth. It does not include any of the HTTP
headers or any other protocol-related information. Y ou can read from this
InputStream as you would read from any other InputStream. For example:

try {
URL u = new URL(’http://www.hamsterdance.com™);
InputStream in = u.openStream();
int c;
while ((c = in.read()) !'= -1) System.out.write(c);

catch (10Exception e) {
System._err._printin(e);
}

This code fragment catches an 10Exception, which also catches the
MalformedURLException that the URL constructor can throw, since
MalformedURLException subclasses 10Exception.

Example 7.5 reads a URL from the command line, opens an InputStream from that
URL, chainsthe resulting InputStream to an InputStreamReader using the default
encoding, and then uses InputStreamReader's read() method to read successive
characters from the file, each of which is printed on System.out. That is, it printsthe
raw data located at the URL.: if the URL references an HTML file, the program's
output israw HTML.

Example 7.5. Download a Web Page

import java.net.*;
import java.io.*;

public class SourceViewer {
public static void main (String[] args) {

if (args.length > 0) {
try {
//0pen the URL for reading
URL u = new URL(args[0]);
InputStream in = u.openStream();
// buffer the input to increase performance
in = new BufferedlnputStream(in);
// chain the InputStream to a Reader
Reader r = new InputStreamReader(in);
int c;
while ((c = r.read()) = -1) {
System.out.print((char) c);
}

}
catch (MalformedURLException e) {
System.err.printIn(args[0] + " is not a parseable URL™);

catch (10Exception e) {
System._err._printin(e);

}
Y // end if

} // end main

} // end SourceViewer

Here are the first few lines of output when SourceViewer downloads
http: //mwww.oreilly.com:

% java SourceViewer http://www.oreilly.com

<HTML>

<HEAD>

<TITLE>www.oreilly.com -- Welcome to O"Reilly & Associates! --
computer

books, software, online publishing</TITLE>

<META name="'keywords" content="‘computer books, technical books, UNIX,
unix,

Perl, Java, Linux, Internet, Web, C, C++, Windows, Windows NT,
Security,

Sys Admin, System Administration, Oracle, design, graphics, online
books,

online courses, Perl Conference, Web-based training, Software, open
source,

free software'>

<META name="'description”™ content="0"Reilly is a leader in technical
and

computer book documentation for UNIX, Perl, Java, Linux, Internet,
Web, C, C++, Windows, Windows NT, Security, Sys Admin, System
Administration, Oracle, Design & Graphics, Online Books, Online
Courses,

Perl Conference, Web-based training, and Software''>

</HEAD>

There are quite afew more lines in that web page; if you want to see them, you can
fire up your web browser.

The shakiest part of this program isthat it blithely assumes that the remote URL isin
fact text data, and that its encoding is the same as the default encoding of the client
system. That's not necessarily true. The remote URL could be binary data; and even if
it's not, the remote host and local client may not have the same default character set.
Asagenera rule, for web pages that use a character set radically different from
ASCII, the HTML page will include a META tag in the header that specifies the
character set in use. For instance, this META tag specifies the Big-5 encoding for
Chinese:

<meta http-equiv=""Content-Type" content="text/html; charset=big5">

In practice, there's no easy way to get at this information other than by parsing the file
and looking for a header like this one, and even that's limited. Many HTML files
hand-coded in Latin aphabets don't have such aMETA tag. Since Windows, the Mac,
and most Unixes have somewhat different interpretations of the characters from 128
to 255, the extended characters in these documents are messed up on platforms other
than the one on which they were created.

7.1.3.2 public URLConnection openConnection() throws IOException

The openConnection() method opens a socket to the specified URL and returns a
URLConnection object. A URLConnection represents an open connection to a
network resource. If the call fails, openConnection() throws an 10Exception. For
example:

try {
URL u = new URL('http://www.jennicam.org/™);

try {
URLConnection uc = u.openConnection();

InputStream in = uc.getlnputStream();
// read from the connection...

} // end try

catch (10Exception e) {
System.err.printin(e);

bs
} // end try

catch (MalformedURLException e) {
System.err.printin(e);

}

This method is used when you want to communicate directly with the server. The
URLConnection gives you access to everything sent by the server: in addition to the
document itself, initsraw form (i.e., HTML, plain text, binary image data), you can
access al the headers used by the protocol in use. For example, if you are retrieving
an HTML document, the URLConnection will let you accessthe HTTP headers as
well asthe raw HTML. The URLConnection class aso lets you write data to as well
as read from a URL—for instance, to send email to amailto URL or post form data
for aCGI. The URLConnection classwill be the primary subject of Chapter 15.

7.1.3.3 public final Object getContent() throws IOException

The getContent() method isthe third and final way to download data referenced by
aURL. The getContent() method retrieves the data referenced by the URL and
triesto make it into some type of object. If the URL refers to some kind of text object,
such asan ASCII or HTML file, the object returned is usually some sort of
InputStream. If the URL refers to an image, such as a GIF or a JPEG file, then
getContent() usualy returns a java.awt. ImageProducer (more specifically, an
instance of a class that implements the ImageProducer interface). What unifies these
two disparate classesis that they are not the thing itself but a means by which a
program can construct the thing:

try {
URL u = new URL("http://mesola.obspm.fr/™);

Object o = u.getContent();
// cast the Object to the appropriate type
// work with the Object...

catch (Exception e) {
System._err._printin(e);

}

getContent() operates by looking at the Content-type field in the MIME header
of datait gets from the server. If the server does not use MIME headers or sends an
unfamiliar Content-type, then getContent() returns some sort of InputStream
with which the data can be read. An 10Exception isthrown if the object can't be
retrieved. Example 7.6 demonstrates this.

Example 7.6. Download an Object

import java.net.*;
import java.io.*;

public class ContentGetter {
public static void main (String[] args) {
if (args.length > 0) {

//0pen the URL for reading

try {
URL u = new URL(args[0]);

try {
Object o = u.getContent();

System.out.printIn(’'l got a " + o.getClass().getName());
} 7/ end try
catch (10Exception e) {

System_err._printin(e);
ks

} // end try
catch (MalformedURLException e) {
System.err.printIn(args[0] + " is not a parseable URL™);
bs
Yy // end if
} // end main

} 7/ end ContentGetter

Here's the result of trying to get the content of http://www.oreilly.conv:

% java ContentGetter http://www.oreilly.com/
I got a java.io.PushbacklInputStream

On the other hand, here's what you get when you try to load a header image from that
page:
% java ContentGetter

http://www.oreilly.com/graphics_new/animation.gif
I got a sun.awt. image.URLImageSource

Here's what happens when you try to load a Java applet using getContent():

% java ContentGetter
http://metalab.unc.edu/java/RelativeURLTest.class
I got a sun.net.www.MeteredStream

Here's what happens when you try to load an audio file using getContent():

% java ContentGetter
http://metalab.unc.edu/javafag/course/week9/spacemusic.au
I got a sun.applet.AppletAudioClip

The last result is the most unusual because it is as close as the Java core APl getsto a
class that represents a sound file. It's not just an interface through which you can load
the sound data.

This example demonstrates the biggest problems with using getContent(): it's hard
to predict what kind of object you'll get. You get either some kind of InputStream or
an ImageProducer or perhaps an AudioClip; it's easy to check what you get by using
the instanceof operator. This should be enough knowledge to let you read atext file
or display an image.

7.1.3.4 public final Object getContent(Class|] classes) throws IOException // Java 1.3

Starting with JDK 1.3, it is possible for a content handler to provide different views of
an object. This overloaded variant of the getContent() method lets you choose
what class you'd like the content returned as. The method will attempt to return the
URL's content in the order used in the array. For instance, if you'd prefer an HTML
fileto be returned as a String, but your second choice is aReader and your third
choiceisan InputStream, you would write:

URL u = new URL("http://www.nwu.org'™);
Class[] types = new Class[3];

types[0] = String.class;
types[1l] = Reader.class;
types[2] = InputStream.class;
Object o = u.getContent(types);

Y ou would then have to test for the type of the returned object using instanceof. For
example:

if (o instanceof String) {
System.out._printin(o);

else if (o instanceof Reader) {

int c;

Reader r = (Reader) o;

while ((c = r.read()) != -1) System.out.print((char) c);
else if (o instanceof InputStream) {

int c;

InputStream in = (InputStream) o;

while ((c = In.read()) != -1) System.out.write(c);
}
else {

System.out.printIn("Error: unexpected type " + o.getClass());
}

7.1.4 Utility Methods

The URL class contains a couple of utility methods that perform common operations
on URLs. The sameFile() method determines whether two URL s point to the same

document. The toExternalForm() method converts aURL object to a string that can
be used inan HTML link or aweb browser's Open URL dialog.

7.1.4.1 public boolean sameFile(URL other)

The sameFile() method tests whether two URL objects point to the samefile. If they
do, sameFile() returns true; otherwise, it returns false. The test that sameFile()
performsis quite shallow; al it does is compare the corresponding fields for equality.

It will detect whether the two hostnames are really just aliases for each other. For
instance, it can tell that http://helio.oreilly.conv and http://mvw.oreilly.conv are the
same file. However, it cannot tell that http://mww.oreilly.com:80/ and
http://mvww.oreilly.conv are the same file or that http://www.oreilly.conv and
http://mmww.oreilly.convindex.html are the samefile. sameFile() issmart enough to
ignore the ref part of a URL, however. Here's afragment of code that uses

sameFile() to comparetwo URLS:

try {
URL ul = new URL('http://www._ncsa.uiuc.edu/HTMLPrimer_html#GS™);

URL u2 = new URL("http://www.ncsa.uiuc.edu/HTMLPrimer_html#HD™);
if (ul.sameFile(u2)) {
System.out.println(ul + " is the same file as \n" + u2);

}

else {
System.out._printIn(ul + " is not the same file as \n" + u2);

}

catch (MalformedURLException e) {
System_err_printin(e);
}

The output is:

http://www._ncsa.uiuc.edu/HTMLPrimer_html#GS is the same file as
http://www.ncsa.uiuc.edu/HTMLPrimer.html#HD

The sameFile() method issimilar to the equals() method of the URL class. The
main difference between sameFile() and equals() isthat equals() considers
the ref (if any), whereas sameFile() does not. The two URLS shown here do not
compare equal athough they are the samefile. Also, any object may be passed to
equals(); only URL objects can be passed to sameFile().

7.1.4.2 public String toExternalForm()

The toExternalForm() method returns a human-readable String representing the
URL. It isidentical to the toString() method. In fact, all the toString() method
doesisreturn toExternalForm(). Therefore, this method is currently redundant and
rarely used.

7.1.5 The Object Methods
URL inherits from java. lang.Object, S0 it has access to all the methods of the

Object class. It overrides three to provide more specialized behavior: equals(),
hashCode(), and toString().

7.1.5.1 public String toString()

Like all good classes, java.net.URL hasatoString() method. Example 7.1
through Example 7.5 all implicitly called this method when URLS were passed to
System.out.printIn(). Asthose examples demonstrated, the String produced by
toString() isan absolute URL, like

http: //metal ab.unc.edu/javafag/javatutorial .html.

It's uncommon to call toString() explicitly; in print statements, you can just print
the URL, which calls tostring() implicitly. Outside of print statements, it's usually
more convenient to retrieve the individual pieces of the URL using the get methods.
If you do call toString(), the syntax issimple:

URL codeBase = this.getCodeBase();
String appletURL = codeBase.toString();

7.1.5.2 public boolean equals(Object o)

An object isequal to aURL only if it isaso aURL, both URLS point to the samefile as
determined by the sameFile() method, and both URLS have the same ref (or both
URLS have null refs). Since equals() depends on sameFile(), equals() hasthe
same limitations as sameFile(). For example, http://www.oreilly.conv is not equal
to http://mwww.orellly.comvindex.html; and http://mww.oreilly.com:80/ is not equal to
http://www.oreilly.conV. Whether this makes sense depends on whether you think of a
URL asastring or as areference to a particular Internet resource.

Example 7.7 creates URL objects for http://www.oreilly.conv and http://mwmw.ora.com/
and then tells you whether or not they're the same by using the equals() method.

Example 7.7. Are http://www.oreilly.com/ and http://www.ora.com/ the same?
import java.net.*;
public class URLEquality {

public static void main (String[] args) {

try {
URL oreilly = new URL ("http://www.oreilly.com/");

URL ora = new URL("http://www.ora.com/');
if (oreilly.equals(ora)) {
System._out._printIn(oreilly + " is the same as ' + ora);
}
else {
System.out.printin(oreilly + " is not the same as " + ora);

}

he
catch (MalformedURLException e) {
System.err.printin(e);

}

When you run this program, you discover:

% java URLEquality
http://www.oreilly.com/ is the same as http://www.ora.com/

7.1.5.3 public int hashCode()

The hashCode() method returns an int that is used when URL objects are used as
keysin hash tables. Thus, it is called by the various methods of

java.util _Hashtable; you rarely need to call this method directly, if ever. Hash
codes for two different URL objects are unlikely to be the same, but it is certainly
possible; there are far more conceivable URL s than there are 4-byte integers.

7.1.6 Methods for Protocol Handlers

The last two methods in the URL class I'll just mention briefly here for the sake of
completeness. These are setURLStreamHandlerFactory() and set(). They're
primarily used by protocol handlers that are responsible for new schemes, not by
programmers who just want to retrieve data from a URL. We'll discuss them both in
more detail in Chapter 16.

7.1.6.1 public static synchronized void setURLStreamHandlerFactory
(URLStreamHandlerFactory factory)

This method sets the URLStreamHandlerFactory for the application and throws a
generic Error if the factory has already been set. A URLStreamHandler isresponsible
for parsing the URL, and then constructing the appropriate URLConnection object to
handle the connection to the server. Most of the time this happens behind the scenes.

7.1.6.2 protected void set(String protocol, String host, int port, String file, String ref)

The set() method is used by subclasses of URL that need to parse a string into its
component parts differently than the default. This method allows those subclasses to
do their custom parsing, then set the standard fields in the superclass.

This method is deprecated in JDK 1.3 because it doesn't fill in the new properties of
the URL. Instead, JDK 1.3 provides this overloaded variant:

protected void set(String protocol, String host, int port,
String authority, String userinfo, String path, String query,
String ref)

7.2 The URLEncoder and URLDecoder Classes

One of the problems that the designers of the Web faced was differences between
local operating systems. These differences can cause problems with URLSs: for
example, some operating systems allow spaces in filenames; some don't. Most
operating systems won't complain about a# signin afilename; inaURL, a# sign
means that the filename has ended, and a named anchor follows. Similar problems are
presented by other specia characters, nonal phanumeric characters, etc., al of which
may have a special meaning inside a URL or on another operating system. To solve

these problems, characters used in URLs must come from a fixed subset of ASCII, in
particular:

e Thecapital letters A-Z
e Thelowercase lettersa-z

e Thedigits0-9

e Thepunctuation characters- _.!~* " (and,)

Thecharacters: / & ? @ #; $+ =% and , may also be used, but only for their
specified purposes. If these characters occur as part of afilename, then they and al
other characters should be encoded.

The encoding used is very simple. Any characters that are not ASCII numerals, letters,
or the punctuation marks specified earlier are represented by a percent sign followed
by two hexadecimal digits giving the value for that character. Spaces are a specia

case because they're so common. Besides being encoded as %20, they can be encoded
asaplussign (+). The plussignitself isencoded as %2B. The/#=& and ?
characters should be encoded when they are used as part of a hame, and not as a
separator between parts of the URL.

o This scheme doesn't work well (or really at al) for multibyte
a2 character sets. Thisisadistinct shortcoming of the current URI
" 4 specification that should be addressed in the future.

Java 1.0 and later provides a URLEncoder class to encode stringsin this format. Java
1.2 adds a URLDecoder class that can decode strings in this format. Neither of these
classes will be instantiated. Both provide a single static method to do their work:

public class URLDecoder extends Object
public class URLEncoder extends Object

7.2.1 URLEncoder

The java.net.URLEncoder class contains a single static method called encode()
that encodes a String according to these rules:

public static String encode(String s)

URLEncoder .encode() changes any nonal phanumeric characters except the space,
underscore, hyphen, period, and asterisk characters into % sequences. The spaceis
converted into aplus sign. This method is alittle overly aggressivein that it also
converts tildes, single quotes, exclamation points, and parentheses to percent escapes
even though they don't absolutely have to be. (In Java 1.0, URLEncoder was even
more aggressive and al so encoded asterisks and periods.) However, thisisn't
forbidden by the URL specification, so web browserswill deal reasonably with these
excessively encoded URLS. There's no reason encode() couldn't have been included
in the URL class, but it wasn't. The signature of encode() is.

public static String encode(String s)

It returns a new String suitably encoded. Example 7.8 uses this method to print
various encoded strings.

Example 7.8. x-www-form-urlencoded Strings

import java.net.*;

public class EncodeTest {
public static void main(String[] args) {
System.out.printIn(URLEncoder.encode("'This string has spaces'));

System.out.printIn(URLEncoder.encode(""This*string*has*asterisks'™));
System.out.printIn(URLEncoder .encode(
"This%string®has®%percent%signs'));
System.out.printIn(URLEncoder.encode("'This+string+has+pluses'™));

System._out.printIn(URLEncoder.encode("'This/string/has/slashes™™));
System.out.printIn(URLEncoder .encode(
"This\string\"has\"quote\"marks'));
System.out.printIn(URLEncoder.encode(This:string:has:colons'));
System._out.printIn(URLEncoder.encode("'This~string~has~tildes™));
System.out.printIn(URLEncoder .encode(
"This(string)has(parentheses)'));

System.out.printIn(URLEncoder.encode(""This.string.has.periods'™));
System.out.printIn(URLEncoder .encode(
"This=string=has=equals=signs™));

System.out.printIn(URLEncoder.encode("'Thisé&string&has&ersands'));

}
}

Hereis the outpult:

% java EncodeTest
This+string+has+spaces
This*string*has*asterisks
This%25string%25has%25percent%25signs
This%2Bstring%2Bhas%2Bpluses
This%2Fstring%2Fhas%2Fslashes
This%22string%22has%22quote%22marks
This%3Astring%3Ahas%3Acolons
This%7Estring%7Ehas®%7Eti ldes
This%28string%29has%28parentheses%29
This.string.has.periods
This%3Dstring%3Dhas%3Dequals%3Dsigns
This%26string%26has%26ampersands

Noticein particular that this method does encode the forward slash, the ampersand,
the equals sign, and the colon. It does not attempt to determine how these characters
are being used in a URL. Consequently, you have to encode your URL s piece by

piece, rather than encoding an entire URL in one method call. Thisis an important
point, because the primary use of URLEncoder iSin preparing query strings for
communicating with CGI programs that use GET . For example, suppose you want to
encode this query string used for an AltaVista search:

pg=q&kl=XX&stype=stext&g=+""Java+1/0"&search.x=38&search.y=3

This code fragment encodesiit:

String query = URLEncoder.encode(
"pg=q&kI=XX&stype=stext&qg=+\""Java+1/0\"&search.x=38&search.y=3");
System.out.printin(query);

Unfortunately, the output is:

pg%3Dg%26k 1%3DXX%26stype%3Dstexth26q%3D%2B%22Java%2B 1%2F0%22%26search
-X%3D38%26search.y%3D3

The problem is that URLEncoder .encode() encodes blindly. It can't distinguish
between special characters used as part of the URL or query string, like & and = in the
previous string, and characters that need to be encoded. Consequently, URL s need to
be encoded a piece at atimelike this:

String query = URLEncoder.encode("'pg™);
query += "'="";

query += URLEncoder.encode(*'q™);

query += "&";

query += URLEncoder.encode(’'kl');

query += "=";

query += URLEncoder.encode(""'XX™);

query += "&";

query += URLEncoder.encode(*'stype™);
query += "=";

query += URLEncoder.encode(''stext™);
query += "&'";

query += URLEncoder.encode(*'q™);

query += "=";

query += URLEncoder.encode(*"\"'Java 1/0\"""");
query += "&";

query += URLEncoder.encode(''search.x");
query += "=";

query += URLEncoder.encode(*'38™");

query += "&";

query += URLEncoder.encode("'search.y™);
query += "'="";

query += URLEncoder.encode(''3");
System.out.printin(query);

The output of thisiswhat you actually want:

pg=q&klI=XX&stype=stext&q=%2B%22Java+1%2F0%22&search .x=38&search.y=3

Example 7.9 isaQueryString class that uses the URLEncoder to encode successive
name and value pairs in a Java object, which will be used for sending data to CGI
programs. When you create a QueryString, you can supply the first name-value pair

to the constructor; the arguments are a pair of objects, which are converted to strings
using their toString() methods and then encoded. To add further pairs, call the
add() method, which also takes two objects as arguments, converts them to Strings,
and encodes them. The QueryString class suppliesits own toString() method,
which simply returns the accumulated list of name-value pairs. toString() iscalled
implicitly whenever you add aQueryString to another string or print it on an output
stream.

Example 7.9. The QueryString Class

package com.macfaq.net;

import java.net.URLEncoder;

public class QueryString {
private String query;

public QueryString(Object name, Object value) {
query = URLEncoder.encode(name.toString()) + "=" +
URLEncoder .encode(value.toString());

}

public QueryString() {
query = "
3

public synchronized void add(Object name, Object value) {

if (Jquery.trim().equals(')) query += "&" ;
query += URLEncoder.encode(hame.toString()) + "=" +
URLEncoder .encode(value.toString());

}

public String toString() {
return query;
3

}
Using this class, we can now encode the previous example like this:

QueryString gs = new QueryString('pg"”, "q'");

gs.add('kl™, "XX'");

gs.add(*'stype', "'stext'™);

gs.add("g", "+\"Java 1/0\'"");

gs-add(*'search.x", "'38"™);

gs.add(''search.y", "3'");

String url = "http://www.altavista.com/cgi-bin/query?" + gs;
System.out.printin(url);

7.2.2 URLDecoder

Java 1.2 adds a corresponding URLDecoder class. This has a single static method that
decodes any string encoded in x-www-form-url-encoded format. That is, it converts

al plus signsto spaces and all percent escapes to their corresponding character. Its
signatureis:

public static String decode(String s) throws Exception

An 111egalArgumentException isthrown if the string contains a percent sign that
isn't followed by two hexadecimal digits. Since this method passes all non-escaped
charactersalong asis, you can pass an entire URL to it, rather than splitting it into
piecesfirst. For example:

String input = "http://www.altavista.com/cgi-bin/" +
"query?pg=q&kl1=XX&stype=stext&q=%2B%22Java+1%2F0%22&search.x=38&searc
h.y=3";

try {

String output = URLDecoder.decode(input);

System.out.printin(output);
}

7.3 Communicating with CGls and Servlets Through GET

The URL class makes it easy for Java applets and applications to communicate with
server-side CGI programs and servlets that use the GET method. (CGI programs and
servlets that use the POST method require the URLConnection class and will be
discussed in Chapter 15.) All you need to do is determine what combination of names
and values the program expects to receive, then cook up a URL with a query string
that provides the requisite names and values. All names and values must be x-www-
form-url-encoded as by the URLEncoder .encode() method discussed in the last
section.

There are anumber of ways to determine the exact syntax for a query string that talks
to aparticular CGI or servlet. If you've written the server-side program yourself, you
already know what name-value pairs it expects. If you've installed a third-party
program on your own server, the documentation for that program should tell you what
it expects.

On the other hand, if you're talking to a program on athird-party server, mattersare a
little trickier. Y ou can always ask people at the remote server to provide you with the
specifications for talking to their CGI programs. However, even if they don't mind
you doing this, there's probably no one person whose job description includes "telling
third-party hackers with whom we have no business relationship exactly how to
access our servers'. Thus, unless you happen upon a particularly friendly or bored
individual who has nothing better to do with her time except write long emails
detailing exactly how to access her server, you're going to have to do alittle reverse
engineering.

Many CGI programs are designed to process form input. If thisisthe case, it's
straightforward to figure out what input the CGI program expects. The method the
form uses should be the value of the METHOD attribute of the FORM element. This value
should be either GET, in which case you use the process described here for talking to

CGils, or POST, in which case you use the process described in Chapter 15. The part
of the URL that precedes the query string is given by the value of the ACTION attribute
of the FORM element. Note that this may be arelative URL, in which case you'll need
to determine the corresponding absolute URL. Finally, the name-value pairs are
simply the NAME attributes of the INPUT elements, except for any INPUT elements
whose TYPE attribute has the value submit.

For example, consider thisHTML form for the local search engine on my Cafe con
Leche site. Y ou can see that it uses the GET method. The CGI program that processes
the form isfound at the URL http://search.metalab.unc.edu: 8765/query.html. It has
20 separate name-value pairs, most of which have default values:

<FORM NAME="'seek' METHOD="'GET"
ACTION=""http://search_metalab.unc.edu:8765/query._html">
<INPUT TYPE="hidden"™ NAME="col" VALUE="metalab'"></INPUT>
<INPUT TYPE="hidden" NAME="op0O" VALUE="+"></INPUT>
<INPUT TYPE="hidden" NAME="fI10" VALUE="url:"></INPUT>
<INPUT TYPE="hidden" NAME="ty0" VALUE="w"></INPUT>
<INPUT TYPE="hidden"™ NAME="tx0" size="50" VALUE="xml/"></INPUT>
<INPUT TYPE="hidden"™ NAME="opl" VALUE="+"></INPUT>
<INPUT TYPE="hidden"™ NAME="fI1" VALUE="""></INPUT>
<INPUT TYPE="hidden" NAME="tyl" VALUE="w"></INPUT>
<INPUT TYPE="text" NAME="tx1" size="20" VALUE=""

max length=""2047"><INPUT>
INPUT TYPE="hidden' NAME="gp" VALUE="""></INPUT>
<INPUT TYPE="hidden" NAME="qgs" VALUE="""></INPUT>
<INPUT TYPE="hidden" NAME="qc" VALUE="""></INPUT>
<INPUT TYPE="hidden" NAME="ws" VALUE="0"></INPUT>
<INPUT TYPE="hidden" NAME="gm" VALUE="0"></INPUT>
<INPUT TYPE="hidden"™ NAME="st" VALUE="1"></INPUT>
<INPUT TYPE="hidden" NAME="nh" VALUE="10"></INPUT>
<INPUT TYPE="hidden"™ NAME="1k" VALUE="1"></INPUT>
<INPUT TYPE="hidden" NAME="rf" VALUE="0"></INPUT>
<INPUT TYPE="hidden" NAME="oq" VALUE=""'></INPUT>
<INPUT TYPE="hidden"™ NAME="rqg" VALUE="0"></INPUT>

<INPUT TYPE="submit" VALUE="Search"></input>
</FORM>

The type of the INPUT field doesn't matter—for instance, whether it's a set of
checkboxes or a pop-up list or atext field—only the name of each INPUT field and the
value you give it. The single exception is a submit input that tells the web browser
only when to send the data but does not give the server any extrainformation. In some
cases, you may find hidden INPUT fields that must have particular required default
values. Thisformisamost nothing but hidden INPUT fields.

In some cases, the CGI may not be able to handle arbitrary text strings for values of
particular inputs. However, since the form is meant to be read and filled in by human
beings, it should provide sufficient clues to figure out what input is expected; for
instance, that a particular field is supposed to be atwo-letter state abbreviation or a
phone number.

A CGil that doesn't respond to aform is much harder to reverse engineer. For example,
at http://metal ab.unc.edu/nywc/bios.phtml, you'll find alot of links to a CGI that talks

to adatabase to retrieve alist of musical works by a particular named composer.
However, there's no form anywhere that corresponds to this CGl. It's al done by
hardcoded URLSs. In this case, the best you can do islook at as many of those URLS
as possible and see whether you can guess what the server expects. If the designer
hasn't tried to be too devious, this generally isn't all that hard. For example, these
URLsare al found on that page:

http://metalab.unc.edu/nywc/compositionsbycomposer.phtml?last=Anderso
n
&First=Beth&middle=
http://metalab.unc.edu/nywc/compositionsbycomposer.phtml?last=Austin
&First=Dorothea&middle=
http://metalab.unc.edu/nywc/compositionsbycomposer.phtml?last=Bliss
&First=Marilyn&middle=
http://metalab.unc.edu/nywc/compositionsbycomposer.phtml?last=Hart
&First=Jane&middle=Smith

Looking at these, you can probably guess that this particular CGI programs expects
three inputs named first, middle, and last whose values are the first, middle, and last
names of a composer, respectively. Sometimes the inputs may not have such obvious
names. In this case, you'l just have to do some experimenting, first copying some
existing values and then tweaking them to see what values are and aren't accepted.

Y ou don't need to do thisin a Java program. Y ou can do it smply by editing the URL
in the Address or Location bar of your web browser window.

o The likelihood that other hackers may experiment with your own
a2 | CGls and servletsin such afashion is a good reason to make
4 them extremely robust against unexpected input.

Regardless of how you determine the set of name-value pairs the CGI or servlet
expects, actually communicating with the program once you know them issimple. All
you haveto do is create a query string that includes the necessary name-value pairs,
then form a URL that includes that query string. Y ou send the query string to the
server and read its response using the same methods you use to connect to a server
and retrieve astatic HTML page. There's no special protocol to follow once the URL
is constructed. (There is a special protocol to follow for the POST method, which is
why discussion of that method will have to wait until Chapter 15.)

L et's demonstrate this procedure by writing a very simple command-line program to
look up topicsin the Netscape Open Directory (http://dmoz.org/). Thisisshownin
Figure 7.3 and has the advantage of being really simple.

Figure 7.3. The basic user interface for the Open Directory

¥ Open Ditectory Pioject - Metzcape
Fle Edt Yew Go Communcstar Help
ot A . =, A ¥ v I
MR Dt S e P e | -
Back FReload Haome: Seaich Melzcaps Frirtt Sacutiy
: i " Bookmaiks A Lacation |h|lp:.-'."|1ﬂ:|: oigd j
about dmoz | add TTRL | feedback | knk | sditor logn
Saarch | advanced
Arts Home SClence
Bfovies, Telewizion, Musie... Fids, Houses, Consumers. . Btodogy, Peyehology, Fhysice..
Business Mews Shopping
lobs, [ndustnes, [nvesting.., pline, Medin, Hewspapess., datos, Clothing, Gifts.
Computers Hecreation Society
nismel, Soflwrare, Hardwars, Travel, Food, Dutdoors, Humor,, saple, Relbgon, [ssuss
Crames Reference Sports
Yideo Gates, BPGe Gembling.. [Mapa, Education, Libearies. Bagehall Soccer, Baskethadl
Health Regional Warld
Etness, Medicime, Allernatres., US Canada, UK Eusope... Rewtsch, Espadiol Indonesig..
%,
@ == Document: Dore e M A & AE

The basic Open Directory interface is asimple form with one input field named
search; input typed in thisfield is sent to a CGI program at

http: //search.dmoz.or g/cgi-bin/search, which does the actual search. The HTML for
the form looks like this:

<form method=get action="http://search.dmoz.org/cgi-bin/search">
 <input size=30 name=search>
<input type=submit value="Search">
<a href="http://search.dmoz.org/cgi-
bin/search?a.x=0"><smal I><i>advanced</i>

</small>
</form>

Thus, to submit a search request to the Open Directory, you just need to collect the
search string, encode that in a query string, and send it to http://search.dmoz.org/cgi-
bin/search. For example, to search for "java’', you would open a connection to the
URL http://search.dmoz.org/cgi-bin/search?search=java and read the resulting input
stream. Example 7.10 does exactly this.

Example 7.10. Do an Open Directory Search
import com.macfaqg.net.*;

import java.net.*;
import java.io.*;

public class DMoz {

public static void main(String[] args) {

String target = "

for (int i = 0; 1 < args.length; i++) {
target += args[i] + " ';
}
target = target.trim();
QueryString query = new QueryString(''search', target);
try {
URL u = new URL('http://search.dmoz.org/cgi-bin/search?" +
query);
InputStream in = new BufferedlnputStream(u.openStream());
InputStreamReader theHTML = new InputStreamReader(in);

int c;

while ((c = theHTML.read()) != -1) {
System.out.print((char) c);

}

}
catch (MalformedURLException e) {
System._err._printin(e);

catch (10Exception e) {
System_err._printin(e);

}

}

Of course, alot more effort could be expended if you actually want to parse or display
the results. But notice how simple the code wasto talk to this CGI. Aside from the
funky-looking URL, and the dlightly greater likelihood that some pieces of it need to
be x-www-form-url-encoded, talking to a CGI that uses GET is no harder than
retrieving any other HTML page.

7.4 Accessing Password-Protected Sites

Many popular sites, such as The Wall Street Journal, require a username and
password for access. Some sites, such as Oracle TechNet, implement this through
HTTP authentication. Others, such as the Java Developer Connection, implement it
through cookies and HTML forms. Javas URL class can access sites that use HTTP
authentication, though you'll of course need to tell it what username and password to
use. Java does not provide support for sites that use nonstandard, cookie-based
authentication, partially because Java doesn't really support cookies and partially
because this requires parsing and submitting HTML forms. Y ou can provide this
support yourself using the URLConnection class to read and write the HTTP headers
where cookies are set and returned. However, doing so is decidedly nontrivial, and
often requires custom code for each site you want to connect to. It's really hard to do
short of implementing a complete web browser with full HTML forms and cookie
support. Accessing sites protected by standard, HT TP authentication is much easier.

7.4.1 The Authenticator Class

Starting in Java 1.2 (but not available in Java 1.1), the java.net package includes an
Authenticator classyou can use to provide a username and password for sites that
protect themselves using HT TP authentication:

public abstract class Authenticator extends Object

Since Authenticator isan abstract class, you must subclassit. Different subclasses
may retrieve the information in different ways. For example, a character mode
program might just ask the user to type the username and password on System. in. A
GUI program would likely put up adialog box like the one shown in Figure 7.4. An
automated robot might read it out of an encrypted file.

Figure 7.4. An authentication dialog

larnbdany

0K [@ Cancel

To make the URL class use your subclass, you install it as the default authenticator by
passing it to the static Authenticator.setDefault() method:

public static void setDefault(Authenticator a)

For example, if you've written an Authenticator subclass named
DialogAuthenticator, you'dinstal it like this;

Authenticator.setDefault(new DialogAuthenticator());

Y ou only need to do this once. From this point forward, when the URL class needs a
username and password, it will ask the DialogAuthenticator for it using the static
Authenticator.requestPasswordAuthentication() method:

public static PasswordAuthentication
requestPasswordAuthentication(lnetAddress

address, int port, String protocol, String prompt, String scheme)
throws

SecurityException

The address argument is the host for which authentication is required. The port
argument is the port on that host, and the protocol argument is the application layer
protocol by which the site is being accessed. The prompt is provided by the HTTP
server. It'stypically the name of the realm for which authentication is required. (Some
large web servers such as metalab.unc.edu have multiple realms, each of which
requires different usernames and passwords.) The scheme is the authentication
scheme being used. (Here the word scheme is not being used as a synonym for
protocol. Rather it isan HT TP authentication scheme, typically basic.)

Untrusted applets may not be allowed to ask the user for a name and password.
Trusted applets can do so, but only if they possess the
requestPasswordAuthentication NetPermission. Otherwise,
Authenticator.requestPassword Authentication() throwsa
SecurityException.

Y our Authenticator subclass must override the getPasswordAuthentication()
method. Inside this method, you collect the username and password from the user or
some other source and return it as an instance of the
java.net._PasswordAuthentication class.

protected PasswordAuthentication getPasswordAuthentication()

If you don't want to authenticate this request, return null, and Java will tell the server
it doesn't know how to authenticate the connection. If you submit an incorrect
username or password, then Javawill call getPasswordAuthentication() againto
give you another chance to provide the right data. Y ou normally have five tries to get
the username and password correct; after that, openStream() will throw a
ProtocolException.

Usernames and passwords are cached within the same virtual machine session. Once
you set the correct password for arealm, you shouldn't be asked for it again unless
you've explicitly deleted the password by zeroing out the char array that containsiit.

Y ou can get more details about the request by invoking any of these methods
inherited from the Authenticator superclass.

protected final InetAddress getRequestingSite()
protected final int getRequestingPort()
protected final String getRequestingProtocol()
protected final String getRequestingPrompt()
protected final String getRequestingScheme()

These methods either return the information as given in the last call to
requestPasswordAuthentication() or return null if that information is not
available. (getRequestingPort() returns-1 if the port isn't available.)

7.4.2 The PasswordAuthentication Class

PasswordAuthentication isavery simplefinal class that supports two read-only
properties: username and password. The username isaString. The password isa
char array so that the password can be erased when no longer needed. A String
would have to wait to be garbage collected before it could be erased, and even then it
might still exist somewhere in memory on the local system, possibly even on disk if
the block of memory that contained it had been swapped out to virtual memory at one
point. Both username and password are set in the constructor:

public PasswordAuthentication(String userName, char[] password)

Each is accessed via a get method:

public String getUserName()
public char[] getPassword()

7.4.3 The JPasswordField Class

One useful tool for asking users for their passwords in amore or less secure fashion is
the JPasswordField component from Swing:

public class JPasswordField extends JTextField

This lightweight component behaves almost exactly like atext field. However,
anything the user typesinto it is echoed as an asterisk. This way, the password is safe
from anyone looking over the user's shoulder at what he's typing on the screen.

JPasswordField also stores the passwords as a char array so that when you're done
with the password you can overwrite it with zeroes. It provides the getPassword()
method to return this:

public char[] getPassword()

Otherwise, you mostly use the methods it inherits from the JTextField superclass.
Example 7.11 demonstrates a Swing-based Authenticator subclass that bringsup a
dialog to ask the user for his username and password. Most of this code handles the
GUI. A JprasswordField collects the password, and asimple JTextField retrieves
the username. Figure 7.4 showed the rather simple dialog box this produces.

Example 7.11. A GUI Authenticator

package com.macfaq.net;

import java.net.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DialogAuthenticator extends Authenticator {

private JDialog passwordDialog;

private JLabel mainLabel

= new JLabel (""Please enter username and password: ');

private JLabel userLabel = new JLabel("'Username: ");

private JLabel passwordLabel = new JLabel ("'Password: ');
private JTextField usernameField = new JTextField(20);

private JPasswordField passwordField = new JPasswordField(20);
private JButton okButton = new JButton(''OK");

private JButton cancelButton = new JButton(''Cancel™);

public DialogAuthenticator() {
this('""", new JFrame());
}

public DialogAuthenticator(String username) {
this(username, new JFrame());
}

public DialogAuthenticator(JFrame parent) {
this('""", parent);
he

public DialogAuthenticator(String username, JFrame parent) {

this.passwordDialog = new JDialog(parent, true);
Container pane = passwordDialog.getContentPane();
pane.setLayout(new GridLayout(4, 1));
pane.add(mainLabel);

JPanel p2 = new JPanel();

p2.add(userLabel);

p2.add(usernameField);
usernameField.setText(username);

pane.add(p2);

JPanel p3 = new JPanel();
p3.add(passwordLabel);

p3.add(passwordField);

pane.add(p3);

JPanel p4 = new JPanel();

p4.add(okButton);

p4.add(cancelButton);

pane.add(p4);

passwordDialog.pack();

ActionListener al = new OKResponse();
okButton.addActionListener(al);
usernameField.addActionListener(al);
passwordField.addActionListener(al);
cancelButton.addActionListener(new CancelResponse());

}

private void show() {

String prompt = this.getRequestingPrompt();
if (prompt == null) {
String site = this.getRequestingSite() .getHostName(
String protocol = this.getRequestingProtocol();
int port = this.getRequestingPort();
if (site '= null & protocol !'= null) {
prompt = protocol + "://" + site;
if (port > 0) prompt += "":" + port;
by
else {
prompt = "";
}

}

mainLabel .setText("'Please enter username and password for
+ prompt + I ");

passwordDialog.pack();

passwordDialog.show();

}

PasswordAuthentication response = null;

class OKResponse implements ActionListener {

public void actionPerformed(ActionEvent e) {

passwordDialog.hide();

// The password is returned as an array of

// chars for security reasons.

char[] password = passwordField.getPassword();

String username = usernameField.getText();

// Erase the password in case this is used again.
passwordField.setText(""");

response = new PasswordAuthentication(username, password);

}
class CancelResponse implements ActionListener {
public void actionPerformed(ActionEvent e) {
passwordDialog.hide();
// Erase the password in case this is used again.

passwordField.setText("""");
response = null;

}

public PasswordAuthentication getPasswordAuthentication() {

this.show();
return this.response;

}

Example 7.12 isarevised SourceViewer program that can ask the user for a name
and password by using the DialogAuthenticator class.

Example 7.12. A Program to Download Password-Protected Web Pages

import java.net.*;
import java.io.*;
import com.macfag.net.DialogAuthenticator;

public class SecureSourceViewer {
public static void main (String args[]) {
Authenticator.setDefault(new DialogAuthenticator());
for (int 1 = 0; 1 < args.length; 1++) {

try {
//0pen the URL for reading

URL u = new URL(args[i]);
InputStream in = u.openStream();
// buffer the input to increase performance

in = new BufferedlnputStream(in);
// chain the InputStream to a Reader
Reader r = new InputStreamReader(in);

int c;

while ((c = r.read()) = -1) {
System.out.print((char) c);

}

}
catch (MalformedURLException e) {
System._err._printIn(args[0] + " is not a parseable URL™);

}

catch (10Exception e) {
System_err_printin(e);

3

// print a blank line to separate pages
System.out.printin();

} 7/ end for

// Since we used the AWT, we have to explicitly exit.
System.exit(0);

} // end main

} /7 end SecureSourceViewer

Chapter 8. HTML in Swing

As anyone who has ever tried to write code to read HTML can tell you, it's a painful
experience. The problem isthat although thereisan HTML specification, no web
designer or browser vendor actually follows it. And the specification itself is
extremely loose. Element names may be uppercase, lowercase, or mixed case.
Attribute values may or may not be quoted. If they are quoted, either single or double
quotes may be used. The < sign may be escaped as &1t; or it may just be left raw in
thefile. The <P> tag may be used to begin or end a paragraph. Closing </P>, </L1>,
and </TD> tags may or may not be used. Tags may or may not overlap. There are just
too many different ways of doing the same thing to make parsing HTML an easy task.
In fact, the difficulties encountered in parsing real-world HTML were one of the
prime motivators for inventing the much more strict XML, in which what isand is not
allowed is precisely specified and all browsers are strictly prohibited from accepting
documents that don't measure up to the standard (as opposed to HTML, where most
browserstry to fix up bad HTML, thereby leading to the proliferation of
nonconformant HTML on the Web, which all browsers must then try to parse).

Fortunately, as of JFC 1.1.1 (included in Java 1.2.2), Sun provides classes for basic
HTML parsing and display that shield Java programmers from most of the tribulations
of working with raw HTML. The javax.swing.text._html .parser package can be
used to read HTML documents, in more or less their full nonstandard atrocity, while
the javax.swing. text.html package allows you to display basic HTML in your
JFC-based applications.

8.1 HTML on Components

Starting with JFC 1.1.1, most text-based Swing components, such as labels, buttons,
menu items, tabbed panes, and Tool Tips, can have their text specified asHTML. The
component will display it appropriately. If you want the label on your JButton to
include bold, italic, and plain text, the simplest way isto add HTML:

JButton jb = new JButton(“'<html><i>Hello World!</i></html>"");

- For reasons I've never quite understood, Sun seemsto have a

— grudge against uppercase HTML tags going back to the earliest
alphas of HotJava. Thistechnique failsif you use completely
legal uppercase HTML tagslikethis:

JButton jb = new JButton('<HTML><I>Hello
World!</I1>
</HTML>");

On the other hand, Sun has no qualms about malformed HTML
that omits the end tags like this:

JButton jb = new JButton(“'<html><i>Hello
World!</i>
");

The same technique works for JFC-based |abels, menu items, tabbed panes, and Tool
Tips. Future releases may add HTML support to checkboxes and radio buttons as well.
Example 8.1 and Figure 8.1 show an applet with a multiline JLabel that usesHTML.
Thisisrunning in the applet viewer because HTML on components is available out of
the box only in the latest release of the JDK. It does work in Internet Explorer 5.0,
though not particularly well, if the javax.swing classes are included in the applet's
codebase so that they can be downloaded by the browser. No version of Netscape
Navigator | tested could run this applet at all, though perhaps the Java Plug-In would
help.

Example 8.1. Including HTML in a JLabel

import javax.swing.*;

public class HTMLLabelApplet extends JApplet {
public void init() {

JLabel theText = new JLabel(
"<html>Hello! This is a multiline label with bold "
"and <i>italic</i> text. <P> "
"1t can use paragraphs, horizontal lines, <hr> "
"colors "
"and most of the other basic features of HTML 3.2</html>");

+ + + +

this.getContentPane().add(theText);

Figure 8.1. An HTML label

=4 Applet Viewer: HTMLLabelApplet [S[=] E3

Aeplet

Hello! This is a multiline label with bold
and ifaie text.
It can use paragraphs, horizontal lines,

and most of the other basic
features of HTML 3.2

Applet started

Y ou can actually go pretty far with this. AlImost all tags are supported, at least
partially, including IMG and the various table tags. The only completely unsupported
HTML 3.2 tags are <APPLET>, <PARAM>, <MAP>, <AREA>, <L INK>, <SCRIPT>, and
<STYLE>. The various frame tags (technically not part of HTML 3.2 though widely
used and implemented) are also unsupported. In addition, the various new tags
introduced in HTML 4.0 such as BDO, BUTTON, LEGEND, and TFOOT, are unsupported.
If you try to use unrecognized or unsupported tags on your components, Java will
throw aClassCastException.

Furthermore, there are some limitations on other common tags. First of al, relative
URLsin attribute values are not resolved because there's no page for them to be
relative to. This most commonly affects the SRC attribute of the IMG element. The
simplest way around thisisto store the images in the same JAR archive as the applet
or application and load them from an absolute jar URL. Links will appear as blue
underlined text as most users are accustomed to, but nothing happens when you click
on one. Forms are rendered, but users can't type in them or submit them. Some CSS
Level 1 properties such as font-size are supported through the sty le attribute, but
STYLE tags and external stylesheets are not. In brief, the HTML support is limited to
static text and images. After al, we're only talking about labels, menu items, and other
simple components.

8.2 JEditorPane

If you need a more interactive, complete implementation of HTML 3.2, you can use a
Javax.swing.JEditorPane. This class provides an even more complete HTML 3.2
renderer that can handle frames, forms, hyperlinks, and parts of CSS Level 1. The
JEditorPane class also supports plain text and basic RTF, though the emphasisin
this book will be on using it to display HTML.

JEditorPane supports HTML in afairly intuitive way. You ssimply feed its
constructor aURL or alarge string containing HTML, then display it like any other
component. There are four constructorsin this class:

public JEditorPane()

public JEditorPane(URL initialPage) throws I0Exception
public JEditorPane(String url) throws I10Exception
public JEditorPane(String mimeType, String text)

The noargs constructor simply creates a JEdi torPane with no initial data. Y ou can
change this later with the setPage() or setText() methods:

public void setPage(URL page) throws I0Exception
public void setPage(String url) throws I10Exception
public void setText(String html)

Example 8.2 shows how to use this constructor to display a web page. JEditorPane
is placed inside a JScrol 1Pane to add scrollbars; JFrame provides a home for the
Jscrol IPane. Figure 8.2 shows this program displaying the O'Reilly home page.

Example 8.2. Using a JEditorPane to Display a Web Page

import javax.swing.text.*;
import javax.swing.*;
import java.io.*;

import java.awt.*;

public class OReillyHomePage {
public static void main(String[] args) {

JEditorPane jep = new JEditorPane();
jep.setEditable(false);

try {
jep.setPage('http://www.oreilly._com™);

}
catch (10Exception e) {
jep.setContentType('"text/html'™);
jep.setText("'<html>Could not load http://www.oreilly.com
</html>");

}

JScrollPane scrollPane = new JScrollPane(jep);

JFrame f = new JFrame(""0"Reilly & Associates™);
T._setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
f.setContentPane(scrollPane);

f.setSize(512, 342);

f.show();

Figure 8.2. The O'Reilly home page shown in a JEditorPane

E2 0'Aeilly & Associotes M= B3
-
www.arailly.com , R E I I I Y ™
E;::- — compiter boske * weftware * anioe publahing
Resownce <
Conters Hot off the Press! News
= [Upcoming Tithes | | Mees Archive |
N ~
L 1Y
il |
. = 7l
s l
| "i_
m — | Mastering Alporibamns ARG & sneak
il Pegl well teach you howee o carry ot presviswe of the book that causad Tim
“ traciliona’ prograrmeming lagks ina Crfteilty 1o Sit up and say Wawt*? Clickon
hegh-poweara, effcient, easvio-maintain gwer o he Falest Ask Tan colurmn and read
manner wilh Perl, Toples range In witry ha thinks Practical lntesnet
complasity from sorting and searching 10 Groupware, @ book that 1zcklzs the fople of
sialishcal a'gorthms, nurmerncal imermet-anabled collaboration, is such a
1atsis, and encryplion. DonTmiss book And than check out our online
m Chapter 10, on Geometric Maorithms, secialization of ts titke, Chapters | and i
[t's anrailaiile onlite novs are available now -

Figure 8.2 shows just how good Swing really is at displaying HTML. It correctly
renders this page containing tables, images, animated GIFs, links, colors, fonts, and
more with almost no effort from the programmer. There's very little noticeable
difference between the page as displayed by Swing and by Netscape Navigator or
Internet Explorer. Although not used on this particular page, framesand CSS Level 1
are also supported.

What is missing, though, is precisely what's not obvious from this static image: the
activity. The links are blue and underlined, but clicking on one won't change the page
that's displayed. JavaScript and applets will not run. Shockwave animations and
QuickTime movies won't play. Password-protected web pages will be off limits
because there's no way to provide a username and password. Y ou can add all this
yourself, but it will require extra code to recognize the relevant parts of the HTML
and behave accordingly. Different active content requires different levels of support.
Supporting hypertext linking, for example, isfairly straightforward, as we'll explore
later. Applets aren't that hard to add either, mostly requiring you to simply parse the
HTML to find the tags and parameters and provide an instance of the AppletContext
interface. We'll discuss thisin the next chapter. Adding JavaScript isonly alittle
harder, provided that someone has already written a JavaScript interpreter you can use.
Fortunately, the Mozilla Project has written the Open Source Rhino
(http://www.mozilla.org/rhino/) JavaScript interpreter, which you can use in your own
work. Apple's QuickTime for Java
(http://www.apple.com/quicktime/gtjava/index.html) makes QuickTime support
almost a no-brainer on Mac and Windows. (A Unix version is sorely lacking though.)
Macromedia has likewise written a Shockwave Flash player entirely in Java
(http://www.macromedia.com/). I'm not going to discuss all (or even most) of thesein
this chapter or this book. Nonethel ess, you should be aware that they're available if
you need them.

The second constructor accepts a URL object as an argument. It connects to the
specified URL, downloads the page it finds, and attempts to display it. If this attempt
fails, an 10Exception isthrown. For example:

JFrame ¥ = new JFrame("'O"Reilly & Associates");
T._setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

try {
URL u = new URL("http://www.oreilly.com');

JEditorPane jep = new JEditorPane(u);
jep.setEditable(false);

JScrollPane scrollPane = new JScrollPane(jJep);
f.setContentPane(scrollPane);

catch (10Exception e) {
f.getContentPane().add(
new Label('Could not load http://www.oreilly._com™));

}
f.setSize(512, 342);
f.show();

The third constructor is almost identical to the second except that it takesaString
form of the URL rather than a URL object as an argument. One of the 10Exceptionsit
can throw is aMalformedURLException if it doesn't recognize the protocol.
Otherwise, its behavior is the same as the second constructor. For example:

try {
JEditorPane jep = new JEditorPane("http://www.oreilly._com™);

jep.setEditable(false);
JScrollPane scrollPane = new JScrollPane(jep);
f.setContentPane(scrollPane);

catch (10Exception e) {
f.getContentPane().add(
new Label('Could not load http://www.oreilly.com'™));
}

Neither of these constructors requires you to call setText() or setPage() since
that information is provided in the constructor. However, you can still call these
methods to change the page or text that's displayed.

8.2.1 Constructing HTML User Interfaces on the Fly

The fourth JEditorPane constructor does not connect to a URL. Rather, it getsits
data directly from the second argument. The MIME type of the datais determined by
the first argument. For example:

JEditorPane jep = new JEditorPane('text/html™,
"<html><hl>Hello World!</h1l> <h2>Goodbye World!</h2></html>");

This may be useful when you want to display HTML created programmatically or
read from somewhere other than a URL. Example 8.3 shows a program that cal culates
thefirst 50 Fibonacci numbers and then displays theminan HTML ordered list.
Figure 8.3 shows the output.

Example 8.3. Fibonacci Sequence Displayed in HTML

import javax.swing.text.*;
import javax.swing.*;
import java.net.*;

import java.io.*;

import java.awt.*;

public class Fibonacci {
public static void main(String[] args) {

StringBuffer result =
new StringBuffer('<html><body><hl>Fibonacci Sequence</hl>");

long 1
long 2

0;
1;

for (int 1 = 0; 1 < 50; 1++) {
result._append(’");
result._append(fl);
long temp = f2;
f2 = f1 + f2;
Tl temp;

}
result.append(*'</body></html>");

JEditorPane jep = new JEditorPane('text/html™,
result._toString());
jep.setEditable(false);

JScrollPane scrollPane = new JScrollPane(jep):

JFrame f = new JFrame('Fibonacci Sequence™);
T.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
f.setContentPane(scrollPane);

f.setSize(512, 342);

f.show();

Figure 8.3. The Fibonacci sequence displayed as HTML using a JEditorPane

gy Fibonacci Sequence 10 x]

Fibonacci Sequence

— DWW m - ML R —
EI‘\.‘-'—'D:'UIWIJ——':
-

-
.
* BB Gh
A

The significance of this should be apparent. Y our programs now have access to avery
powerful styled text engine. That the format used on the back end isHTML isanice
fringe benefit. It means that you can use a familiar, easy-to-write format to create a
user interface that uses styled text. Y ou don't have quite all the power of QuarkXPress
here (nor should you, since HTML doesn't have it), but thisis more than adequate for
99% of your text display needs, whether those needs are simple program output, help
files, database reports, or something more complex.

8.2.2 Handling Hyperlinks

When the user clickson alink in anoneditable JEditorPane, the panefiresa
HyperlinkEvent. Asyou might guess, thisis responded to by any registered
HyperlinkListener objects. Thisfollows the same callback pattern used for AWT
events and JavaBeans. The javax.swing.event.HyperlinkListener interface
defines a single method, hyperlinkUpdate():

public void hyperlinkUpdate(HyperlinkEvent e)

Inside this method, you'll place the code that responds to the HyperlinkEvent. The
HyperlinkEvent object passed to this method contains the URL of the event, which
isreturned by its getURL() method:

public URL getURL()

HyperlinkEvents are fired not just when the user clicks the link, but also when the
mouse enters or exitsthe link area. Thus, you'll want to check the type of the event
before changing the page with the getEventType() method:

public HyperlinkEvent.EventType getEventType()

Thiswill return one of the three mnemonic constants
HyperlinkEvent.EventType.EXITED, HyperlinkEvent.EventTypeENTERED, Or
HyperlinkEvent.EventType.ACTIVATED. Notice that these are not numbers but

static instances of the EventType inner classin the HyperlinkEvent class. Using
these instead of integer constants allows more careful compile-time type checking.

Example 8.4 is an implementation of the HyperLinkListener interface that checks
the event fired and, if it's an activated event, switches to the page in the link. A
reference to the JEdi torPane is stored in aprivate field in the class so that a callback
to make the switch can be made.

Example 8.4. A Basic HyperlinkListener Class

import javax.swing.*;
import javax.swing.event.*;

public class LinkFollower implements HyperlinkListener {
private JEditorPane pane;

public LinkFollower(JEditorPane pane) {
this.pane = pane;

}
public void hyperlinkUpdate(HyperlinkEvent evt) {

it (evt.getEventType() == HyperlinkEvent_EventType.ACTIVATED) {
try {
pane.setPage(evt.getURL());

catch (Exception e) {

}
}

}

Example 8.5 isavery simple web browser. It registers an instance of the

LinkFol lower class of Example 8.4 to handle any HyperlinkEvents. It doesn't have
aBack button, a Location bar, bookmarks, or any frillsat al. But it does let you surf
the Web by following links. The remaining aspects of the user interface you'd want in
areal browser are mostly just exercises in GUI programming, so I'll omit them. But it
really is amazing just how easy Swing makes it to write aweb browser.

Example 8.5. SimpleWebBrowser

import javax.swing.text._*;
import javax.swing.*;
import java.net.*;

import java.io.*;

import java.awt.*;

public class SimpleWebBrowser {
public static void main(String[] args) {

// get the first URL
String initialPage = "http://metalab.unc.edu/javafaqg/";

if (args.length > 0) initialPage = args[O0];

// set up the editor pane

JEditorPane jep = new JEditorPane();
jep.setEditable(false);
jep.addHyperlinkListener(new LinkFollower(jep));

try {
jep.setPage(initialPage);

by

catch (10Exception e) {
System.err.printIn("'Usage: java SimpleWebBrowser url™);
System_err_printin(e);
System._exit(-1);

}

// set up the window

JScrollPane scrollPane = new JScrollPane(jJep);

JFrame f = new JFrame('Simple Web Browser™);
T.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
f.setContentPane(scrollPane);

f.setSize(512, 342);

f.show();

}

The one thing this browser doesn't do is follow links to named anchors inside the
body of a particular HTML page. There is a protected scrol 1IToReference()
method in JEdi torPane that can find the specified named anchor in the currently
displayed HTML document and reposition the pane at that point that you can useto
add this functionality if you so desire:

protected void scrollToReference(String reference)

8.2.3 Reading HTML Directly

The JEditorPane class mostly assumes that you're going to provide either a URL or
the string form of aURL and let it handle all the details of retrieving the data from the
network. However, it contains one method that allows you to read HTML directly
from an input stream. That method is read():

public void read(InputStream in, Object document) throws I10Exception

This may be useful if you need to read HTML from achain of filter streams; for
instance, unzipping it before you read it. It could also be used when you need to
perform some custom handshaking with the server, such as providing a username and
password, rather than simply letting the default connection take place.

Thefirst argument is the stream from which the HTML will be read. The second
argument should be an instance of javax.swing. text.html .HTMLDocument. (You
can use another type, but if you do, the JEditorPane will treat the stream as plain text
rather than HTML.) Although you could use the HTMLDocument() hoargs

constructor to create the HTMLDocument object, the document it createsismissing alot
of style details. You're better off letting a javax.swing. text.html .HTMLEditorKit
create the document for you. Y ou get an HTMLEditorKit by passing the MIME type
you want to edit (text/html in this case) to the JEditorPane
getEditorKitForContentType() method like this:

EditorKit htmlKit = jep.getEditorKitForContentType("text/html™);

Finally, before reading from the stream, you have to use the JEditorPane's
setEditorKit() method to install a javax.swing.text.html .HTMLEditorKit.
For example:

jep.seteditorKit(htmlKit);

This code fragment uses these techniques to load the web page at
http://www.macfag.com. Here the stream comes from a URL anyway, so thisisreally
more trouble than it's worth compared to the alternative. However, this approach
would also allow you to read from a gzipped file, afile on the local drive, datawritten
by another thread, a byte array, or anything else you can hook a stream to:

JEditorPane jep = new JEditorPane();

jep.setEditable(false);

EditorKit htmlKit = jep.getEditorKitForContentType('"text/html'");
HTMLDocument doc = (HTMLDocument) htmlKit.createDefaultDocument();
jep.seteditorKit(htmlKit);

try {
URL u = new URL("http://www.macfaq.com™);

InputStream in = u.openStream();
jep.read(in, doc);

}
catch (10Exception e) {
System._err._printin(e);

}

JScrollPane scrollPane = new JScrollPane(jJep);

JFrame f = new JFrame(**Macfaq™);
T.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
f.setContentPane(scrollPane);

f.setSize(512, 342);

f.show();

Thiswould also be useful if you need to interpose yourself in the stream to perform
some sort of filtering. For example, you might want to remove IMG tags from the file
before displaying it. The methods of the next section would help you do this.

8.3 Parsing HTML

Sometimes you want to read HTML, looking for information without actually
displaying it on the screen. For instance, more than one author | know has written a
"book ticker" program to track the hour-by-hour progress of her book in the
Amazon.com bestseller list. The hardest part of this program isn't retrieving the raw
HTML. It's reading through the raw HTML to find the one line that contains the
book's ranking. As another example, consider a Web Whacker-style program that

downloads aweb site or part thereof to alocal PC with al links intact. Downloading
the files once you have the URL s is easy. But reading through the document to find
the URL s of the linked pages is considerably more complex.

Both of these examples are parsing problems. While parsing a clearly defined
language that doesn't allow syntax errors, such as Javaor XML, isrelatively
straightforward, parsing a flexible language that attempts to recover from errors, like
HTML, isextremely difficult. It's easier to writein HTML than it isto writein astrict
language like XML, but it's much harder to read such alanguage. Ease of use for the
page author has been favored at the cost of ease of development for the programmer.

Fortunately, the javax.swing.text.html and javax.swing.text.html.parser
packages include classes that do most of the hard work for you. They're primarily
intended for the internal use of HotJava and the JEdi torPane class discussed in the
last section. Consequently, they can be alittle tricky to get at. The constructors are
often not public or hidden inside inner classes, and the classes themselves aren't very
well documented. But once you've seen afew examples, they aren't very hard to use.

8.3.1 HTMLEditorKit.Parser

The main HTML parsing classisthe inner class
jJavax.swing.html _HTMLEditorKit.Parser:

public abstract static class HTMLEditorKit.Parser extends Object

Sincethisis an abstract class, the actual parsing work is performed by an instance of
its concrete subclass javax.swing.text.html .parser.ParserDelegator

public class ParserDelegator extends HTMLEditorKit.Parser

An instance of this class reads an HTML document from aReader. It looks for five
things in the document: start tags, end tags, empty tags, text, and comments. That
covers al the important parts of acommon HTML file. (Document type declarations
and processing instructions are omitted, but they're rare and not very important in
most HTML files, even when they are included.) Every time the parser sees one of
these five items, it invokes the corresponding callback method in a particular instance
of the javax.swing.text.html .HTMLEditorKit.ParserCal lback class. To parse
an HTML file, you write a subclass of HTMLEdi torKit.ParserCal Iback that
responds to text and tags as you desire. Then you pass an instance of your subclass to
the HTMLEditorKit.Parser's parse() method, along with the Reader from which
the HTML will be read:

public void parse(Reader in, HTMLEditorKit.ParserCallback callback,
boolean ignoreCharacterSet) throws I0Exception

The third argument indicates whether you want to be notified of the character set of
the document, assuming one is found in aMETA tag in the HTML header. This will
normally betrue. If it's false, then the parser will throw a

Javax.swing. text.ChangedCharSetException when aMETA taginthe HTML
header is used to change the character set. Thiswould give you an opportunity to

switch to adifferent Reader that understands that character set and reparse the
document (thistime, setting ignoreCharSet to true since you already know the
character set).

parse() isthe only public method in the HTMLEdi torKit.Parser class. All the
work is handled inside the callback methods in the HTMLEdi torKit.ParserCal lback
subclass. The parse() method simply reads from the Reader in until it'sread the
entire document. Every time it sees atag, comment, or block of text, it invokes the
corresponding callback method in the HTMLEdi torKit.ParserCal Iback instance. If
the Reader throws an 10Exception, that excep tion is passed along. Since neither the
HTMLEditorKit.Parser nor the HTMLEdi torKit.ParserCal Iback instanceis
specific to one reader, it can be used to parse multiple files, ssmply by invoking
parse() multiple times. If you do this, your HTMLEdi torKit.ParserCal Iback
class must be fully thread-safe, because parsing takes place in a separate thread and
the parse() method normally returns before parsing is complete.

Before you can do any of this, however, you have to get your hands on an instance of
the HTMLEdi torKit.Parser class, and that's harder than it should be.
HTMLEditorKit.Parser isan abstract class, so it can't be instantiated directly. Its
subclass, javax.swing.text.html .parser.ParserDelegator, iSconcrete.
However, before you can use it, you have to configure it with aDTD, using the
protected, static methods ParserDelegator.setDefaultDTD() and Parser
Delegator.createDTD():

protected static void setDefaultDTD()
protected static DTD createDTD(DTD dtd, String name)

S0 to create a ParserDelegator, you first need to have an instance of
Javax.swing.text._html _parser.DTD. This class represents a Standardized General
Markup Language (SGML) Document Type Definition. The DTD class has a protected
constructor and many protected methods that subclasses can useto build aDTD from
scratch, but thisisan API that only an SGML expert could be expected to use. The
normal way DTDs are created is by reading the text form of a standard DTD
published by someone like the W3C. Y ou should be ableto get aDTD for HTML by
using the DTDParser classto parse the W3C's published HTML DTD. Unfortunately,
the DTDParser class didn't make the cut for JFC 1.1.1, so you can't. Thus, we're going
to need to go through the back door to create an HTMLEdi torKit.Parser instance.
What well do isusethe HTMLEditorKit.Parser.getParser() method instead,
which ultimately returns a ParserDelegator after properly initializing the DTD for
HTML 3.2

protected HTMLEditorKit.Parser getParser()

Since this method is protected, we'll smply subclass HTMLEdi torKit and override it
with apublic version, as Example 8.6 demonstrates:

Example 8.6. This Subclass Just Makes the getParser() Method Public

import javax.swing.text.html._.*;

public class ParserGetter extends HTMLEditorKit {

// purely to make this method public

public HTMLEditorKit.Parser getParser(){
return super.getParser();

}

}

Now that we've got away to get a parser, we're ready to parse some documents. This
is accomplished through the parse() method of HTMLEditorKit.Parser:

public abstract void parse(Reader input, HTMLEditorKit.ParserCallback
callback, boolean ignoreCharSet) throws I0Exception

The Reader is straightforward. We simply chain an InputStreamReader to the
stream reading the HTML document, probably one returned by the openStream()
method of java.net.URL. For the third argument, you can pass true to ignore
encoding issues (this generally works only if you're pretty sure you're dealing with
ASCII text) or false if you want to recelve a ChangedCharSetException when the
document has aMETA tag indicating the character set. The second argument is where
the actionis. You're going to write a subclass of HTMLEdi torKit.ParserCal lback
that is notified of every start tag, end tag, empty tag, text, comment, and error that the
parser encounters.

8.3.2 HTMLEditorKit.ParserCallback

The ParsercCal Iback classisapublic inner classinside
Jjavax.swing.text_html .HTMLEditorKit:

public static class HTMLEditorKit.ParserCallback extends Object

It has a single, public noargs constructor:

public HTMLEditorKit.ParserCallback()

However, you probably won't use this directly because the standard implementation of
this class does nothing. It exists to be subclassed. It has six callback methods that do
nothing. Y ou will override these methods to respond to specific items seen in the
input stream as the document is parsed:

public void handleText(char[] text, int position)

public void handleComment(char[] text, int position)
public void handleStartTag(HTML.Tag tag,
MutableAttributeSet attributes, int position)

public void handleEndTag(HTML.Tag tag, int position)
public void handleSimpleTag(HTML.Tag tag,
MutableAttributeSet attributes, int position)

public void handleError(String errorMessage, int position)

There'salso aflush() method you use to perform any final cleanup. The parser
invokes this method once after it's finished parsing the document:

public void flush() throws BadLocationException

More accurately, the parser is supposed to invoke this method
= after it's finished parsing the document. In practice, it doesn't do
that, at least in JFC 1.1.1. This should probably be classified asa
bug.

Let's begin with a simple example. Suppose you want to write a program that strips
out al the tags and comments from an HTML document and leaves only the text. You
would write a subclass of HTMLEdi torKit.ParserCal Iback that overrides the
handleText() method to write the text on awriter. You would leave the other
methods alone. Example 8.7 demonstrates.

Example 8.7. TagStripper

import javax.swing.text.html.*;
import java.io.*;

public class TagStripper extends HTMLEditorKit.ParserCallback {
private Writer out;

public TagStripper(Writer out) {
this.out = out;
}

public void handleText(char[] text, int position) {

try {
out.write(text);

out.flush();

catch (10Exception e) {
System_err._printin(e);

}
}

}

Now let's suppose you want to use this class to actualy strip the tags from a URL.
Y ou begin by retrieving a parser using Example 8.5's ParserGetter class:

ParserGetter kit = new ParserGetter();
HTMLEditorKit.Parser parser = kit.getParser();

Next, you construct an instance of your callback classlike this:

HTMLEditorKit._ParserCallback callback
= new TagStripper(new OutputStreamWriter(System.out));

Then you get a stream you can read the HTML document from. For example:

try {
URL u = new URL("http://www.oreilly.com™);

InputStream in = new BufferedInputStream(u.openStream());
InputStreamReader r = new InputStreamReader(in);

Finally, you pass the Reader and the HTMLEditorKit.ParserCal Iback to the
HTMLEditorKit.Parser'sparse() method, like this;

parser.parse(r, callback, false);

}

catch (10Exception e) {
System.err.printin(e);

by

There are a couple of details about the parsing process that are not obvious. First, the
parser parses in a separate thread. Therefore, you should not assume that the
document has been parsed when the parse() method returns. If you're using the
same HTMLEd i torKit.ParserCal Iback object for two separate parses, you need to
make all your callback methods thread-safe.

Second, the parser actually skips some of the datain theinput. In particular, it
normalizes and strips whitespace. If the input document contains seven spacesin a
row, the parser will convert that to a single space. Carriage returns, linefeeds, and tabs
are all converted to asingle space, so you lose line breaks. Furthermore, most text
elements are stripped of all leading and trailing whitespace. Elements that contain
nothing but space are eliminated completely. Thus, suppose the input document
contains this content:

<H1> Here"s the Title </H1>

<P> Here"s the text </P>

What actually comes out of the tag stripper is:

Here"s the TitleHere"s the text

The single exception is the PRE element, which maintains all whitespacein its
contents unedited. Short of implementing your own parser, | don't know of any way to
retain all the stripped space. But you can include the minimum necessary line breaks
and whitespace by looking at the tags as well as the text. Generally, you expect a
single break in HTML when you see one of these tags:

<TR>

Y ou expect a double break (paragraph break) when you see one of these tags:

<pP>

</H1> </H2> </H3> </H4> </H5> </H6>
<HR>

<DIV>

 </0L> </DL>

To include line breaks in the output, you have to ook at each tag as it's processed and
determine whether it fallsin one of these sets. Thisis straightforward because the first
argument passed to each of the tag callback methodsis an HTML . Tag object.

8.3.3 HTML.Tag

Tag isapublic inner classin the javax.swing.text.html _HTML class.

public static class HTML.Tag extends Object

It has these four methods:

public boolean isBlock()

public boolean breaksFlow()
public boolean isPreformatted()
public String toString()

The breaksFlow() method returnstrueif the tag should cause a single line break.
The isBlock() method returnstrue if the tag should cause adouble line break. The
isPreformatted() method returnstrueif the tag indicates that whitespace should
be preserved. This makes it easy to provide the necessary breaks in the output.

Chances are you'll see more tags than you'd expect when you parse afile. The parser
inserts missing closing tags. In other words, if a document contains only a <P> tag,
then the parser will report both the <P> tag and the implied </P> tag at the appropriate
points in the document. Example 8.8 is a program that does the best job yet of
converting HTML to pure text. It looks for the empty and end tags, explicit or implied,
and, if the tag indicates that line breaks are called for, inserts the necessary number of
line breaks.

Example 8.8. LineBreakingTagStripper

import javax.swing.text.*;

import javax.swing.text.html.*;

import javax.swing.text_html_parser.*;
import java.io.*;

import java.net.*;

public class LineBreakingTagStripper
extends HTMLEditorKit.ParserCallback {

private Writer out;
private String lineSeparator;

public LineBreakingTagStripper(Writer out) {
this(out, System.getProperty("'line.separator™, "\r\n"));
}

public LineBreakingTagStripper(Writer out, String lineSeparator) {
this.out = out;
this.lineSeparator = lineSeparator;

}

public void handleText(char[] text, int position) {

try {
out.write(text);

out.flush();

}
catch (10Exception e) {

System.err.printin(e);

}
}

public void handleEndTag(HTML.Tag tag, int position) {

try {
if (tag.isBlock()) {

out.write(lineSeparator);
out.write(lineSeparator);

}

else if (tag.breaksFlow()) {
out.write(lineSeparator);

}

}
catch (10Exception e) {
System.err.printin(e);

}

public void handleSimpleTag(HTML.Tag tag,
MutableAttributeSet attributes, int position) {

try {
if (tag.isBlock()) {

out.write(lineSeparator);
out.write(lineSeparator);

}
else if (tag.breaksFlow()) {

out.write(lineSeparator);
}

else {
out.write(™ 7);
}

}
catch (10Exception e) {
System.err.printin(e);

}

}

Most of the time, of course, you want to know considerably more than whether atag
breaks aline. Y ou want to know what tag it is, and behave accordingly. For instance,
if you were writing afull-blown HTML-to-TeX or HTML-to-RTF converter, you'd
want to handle each tag differently. Y ou test the type of tag by comparing it against
these 73 mnemonic constants from the HTML . Tag class:

HTML.Tag-A HTML . Tag.FRAMESET HTML . Tag - PARAM
HTML . Tag.ADDRESS HTML.Tag.H1 HTML.Tag.PRE
HTML.Tag.APPLET HTML.Tag-H2 HTML . Tag . SAMP
HTML .Tag-AREA HTML.Tag-H3 HTML.Tag.SCRIPT
HTML.Tag-B HTML.Tag-H4 HTML.Tag.SELECT
HTML . Tag.BASE HTML.Tag-HS HTML .Tag.SMALL
HTML.Tag.BASEFONT HTML.Tag.H6 HTML.Tag.STRIKE
HTML.Tag-BIG HTML . Tag-HEAD HTML.Tag-S

HTML . Tag.BLOCKQUOTE HTML.Tag-HR HTML . Tag.-STRONG
HTML.Tag.BODY HTML.Tag.HTML HTML.Tag.STYLE
HTML.Tag-BR HTML.Tag.- 1 HTML.Tag.SUB
HTML .Tag.CAPTION HTML.Tag.- IMG HTML .Tag.SUP
HTML.Tag.CENTER HTML.Tag. INPUT HTML.Tag.TABLE
HTML.Tag.CITE HTML . Tag . ISINDEX HTML.Tag.TD

HTML . Tag.CODE HTML .Tag.KBD HTML . Tag.TEXTAREA
HTML.Tag.DD HTML.Tag-L1 HTML.Tag.TH
HTML.Tag.DFN HTML.Tag.LINK HTML.Tag.TR
HTML.Tag-DIR HTML . Tag -MAP HTML.Tag-TT
HTML.Tag.-DIV HTML . Tag-MENU HTML.Tag-U
HTML.Tag.DL HTML.Tag.META HTML.Tag.UL
HTML.Tag.DT HTML . Tag - NOFRAMES HTML.Tag-VAR
HTML.Tag.EM HTML.Tag.OBJECT HTML.Tag. IMPLI1ED
HTML.Tag.FONT HTML.Tag.OL HTML .Tag.COMMENT
HTML . Tag.FORM HTML.Tag.OPTION

HTML . Tag - FRAME HTML.Tag-P

These are not int constants. They are object constants to allow compile-time type
checking. Y ou saw thistrick once before in the
Javax.swing.event.HyperlinkEvent class. All HTML . Tag elements passed to your
callback methods by the HTMLEdi torKit.Parser will be one of these 73 constants.
They are not just the same as these 73 objects; they are these 73 objects. There are
exactly 73 objectsin this class; no more, no less. Y ou can test against them with ==
rather than equals().

For example, let's suppose you need a program that outlines HTML pages by
extracting their H1 through H6 headings while ignoring the rest of the document. It
organizes the outline as nested lists in which each H1 heading is at the top level, each
H2 heading is one level deep, and so on. Y ou would write an
HTMLEditorKit.ParserCal Iback subclass that extracted the contents of all H1, H2,
H3, H4, H5, and H6 elements while ignoring all others, as Example 8.9 demonstrates.

Example 8.9. Outliner

import javax.swing.text.*;

import javax.swing.text._html._.*;

import javax.swing.text_html_parser.*;
import java.io.*;

import java.net.*;

import java.util.*;

public class Outliner extends HTMLEditorKit.ParserCallback {

Writer out;

int level = O;

private boolean inHeader=false;

private static String lineSeparator

= System.getProperty("line.separator', "\r\n");

private
private

public Outliner(Writer out) {
this.out = out;

}

public void handleStartTag(HTML.Tag tag,
MutableAttributeSet attributes, int position) {

int newLevel = 0;

if (tag == HTML.Tag-H1) newLevel = 1;
else if (tag == HTML.Tag-H2) newLevel
else if (tag == HTML.Tag-H3) newLevel
else if (tag == HTML.Tag-H4) newLevel
else if (tag == HTML.Tag.H5) newLevel
else if (tag == HTML.Tag.H6) newLevel
else return;

[T TR |
OO WN

this. inHeader = true;

try {
if (newLevel > this.level) {

for (int i =0; 1 < newLevel-this_level; i++) {
out.write("" + lineSeparator + "");

}

else if (newLevel < this.level) {
for (int i =0; i1 < this.level-newLevel; i++) {
out.write(lineSeparator + "" + lineSeparator);

}

out.write(lineSeparator +