

Preface
Java™'s growth over the last five years has been nothing short of phenomenal. Given
Java's rapid rise to prominence and the general interest in networking, it's a little
surprising that network programming in Java is still so mysterious to so many. This
doesn't have to be. In fact, writing network programs in Java is quite simple, as this
book will show. Readers with previous experience in network programming in a Unix,
Windows, or Macintosh environment should be pleasantly surprised at how much
easier it is to write equivalent programs in Java. That's because the Java core API
includes well-designed interfaces to most network features. Indeed, there is very little
application layer network software you can write in C or C++ that you can't write
more easily in Java. Java Network Programming endeavors to show you how to take
advantage of Java's network class library to quickly and easily write programs that
accomplish many common networking tasks. These include:

• Browsing pages on the Web
• Parsing and rendering HTML
• Sending email with SMTP
• Receiving email with POP and IMAP
• Writing multithreaded servers
• Installing new protocol and content handlers into browsers
• Encrypting communications for confidentiality, authentication, and guaranteed

message integrity
• Designing GUI clients for network services
• Posting data to CGI programs
• Looking up hosts using DNS
• Downloading files with anonymous FTP
• Connecting sockets for low-level network communication
• Distributing applications across multiple systems with Remote Method

Invocation

Java is the first language to provide such a powerful cross-platform network library
that handles all these diverse tasks. Java Network Programming exposes the power
and sophistication of this library. This book's goal is to enable you to start using Java
as a platform for serious network programming. To do so, this book provides a
general background in network fundamentals as well as detailed discussions of Java's
facilities for writing network programs. You'll learn how to write Java applets and

applications that share data across the Internet for games, collaboration, software
updates, file transfer and more. You'll also get a behind-the-scenes look at HTTP, CGI,
TCP/IP, and the other protocols that support the Internet and the Web. When you
finish this book, you'll have the knowledge and the tools to create the next generation
of software that takes full advantage of the Internet.

About the Second Edition

In the first chapter of the first edition of this book, I wrote extensively about the sort
of dynamic, distributed network applications I thought Java would make possible.
One of the most exciting parts of writing this second edition was seeing that virtually
all of the applications I had postulated have indeed come to pass. Programmers are
using Java to query database servers, monitor web pages, control telescopes, manage
multiplayer games, and more, all by using Java's ability to access the Internet. Java in
general, and network programming in Java in particular, has moved well beyond the
hype stage and into the realm of real, working applications. Not all network software
is written in Java yet, but it's not for a lack of trying. Efforts are well under way to
subvert the existing infrastructure of C-based network clients and servers with pure
Java replacements. It's unlikely that Java will replace C for all network programming
in the near future. However, the mere fact that many people are willing to use web
browsers, web servers, and more written in Java shows just how far we've come since
1996.

This book has come a long way too. The second edition has been rewritten almost
from scratch. There are five completely new chapters, some of which reflect new
APIs and abilities of Java introduced since the first edition was published (Chapter 8,
Chapter 12, and Chapter 19), and some of which reflect my greater experience in
teaching this material and noticing exactly where students' trouble spots are (Chapter
4, and Chapter 5). In addition, one chapter on the Java Servlet API has been removed,
since the topic really deserves a book of its own; and indeed Jason Hunter has written
that book, Java Servlet Programming (O'Reilly & Associates, Inc., 1998).

However, much more important than the added and deleted chapters are the changes
inside the chapters that we kept. The most obvious change to the first edition is that all
of the examples have been rewritten with the Java 1.1 I/O API. The deprecation
messages that tormented readers who compiled the first edition's examples using Java
1.1 or later are now a thing of the past. Less obviously, but far more importantly, all
the examples have been rewritten from the ground up to use clean, object-oriented
design that follows Java's naming conventions and design principles. Like almost
everyone (Sun not excepted), I was still struggling to figure out a lot of the details of
just what one did with Java and how one did it when I wrote the first edition in 1996.
The old examples got the network code correct, but in most other respects they now
look embarrassingly amateurish. I've learned a lot about both Java and object-oriented
programming since then, and I think my increased experience shows in this edition.
For just one example, I no longer use standalone applets where a simple frame-based
application would suffice. I hope that the new examples will serve as models not just
of how to write network programs, but also of how to write Java code in general.

And of course the text has been cleaned up too. In fact, I took as long to write this
second, revised edition as I did to write the original edition. As previously mentioned,

there are 5 completely new chapters, but the 14 revised chapters have been
extensively rewritten and expanded to bring them up-to-date with new developments,
as well as to make them clearer and more engaging. This edition is, to put it frankly, a
much better written book than the first edition, even leaving aside all the changes to
the examples. I hope you'll find this edition an even stronger, longer lived, more
accurate, and more enjoyable tutorial and reference to network programming in Java
than the first edition.

Organization of the Book

This book begins with three chapters that outline how networks and network
programs work. Chapter 1, is a gentle introduction to network programming in Java
and the applications that it makes possible. All readers should find something of
interest in this chapter. It explores some of the unique programs that become feasible
when networking is combined with Java. Chapter 2, and Chapter 3, explain in detail
what a programmer needs to know about how the Internet and the Web work. Chapter
2 describes the protocols that underlie the Internet, such as TCP/IP and UDP/IP.
Chapter 3 describes the standards that underlie the Web such, as HTTP, HTML, and
CGI. If you've done a lot of network programming in other languages on other
platforms, you may be able to skip these two chapters.

The next two chapters throw some light on two parts of Java that are critical to almost
all network programs but are often misunderstood and misused: I/O and threading.
Chapter 4 explores Java's unique way of handling input and output. Understanding
how Java handles I/O in the general case is a prerequisite for understanding the
special case of how Java handles network I/O. Chapter 5 explores multithreading and
synchronization, with a special emphasis on how they can be used for asynchronous
I/O and network servers. Experienced Java programmers may be able to skim or skip
these two chapters. However, Chapter 6, is essential reading for everyone. It shows
how Java programs interact with the Domain Name System through the InetAddress
class, the one class that's needed by essentially all network programs. Once you've
finished this chapter, it's possible to jump around in the book as your interests and
needs dictate. There are, however, some interdependencies between specific chapters.
Figure P.1 should allow you to map out possible paths through the book.

Figure P.1. Chapter prerequisites

Chapter 7, explores Java's URL class, a powerful abstraction for downloading
information and files from network servers of many kinds. The URL class enables you
to connect to and download files and documents from a network server without
concerning yourself with the details of the protocol that the server speaks. It lets you
connect to an FTP server using the same code you use to talk to an HTTP server or to
read a file on the local hard disk.

Once you've retrieved an HTML file from a server, you're going to want to do
something with it. Parsing and rendering HTML is one of the most difficult
challenges network programmers face. Indeed, the Mozilla project has been struggling
with that exact problem for more than two years. Chapter 8, introduces some little-
known classes for parsing and rendering HTML documents that take this burden off
your shoulders and put it on Sun's.

Chapter 9, investigates the network methods of one the first classes every Java
programmer learns about, Applet. You'll see how to load images and audio files from
network servers and track their progress. Without using undocumented classes, this is
the only way to handle audio in Java 1.2 and earlier.

Chapter 10 through Chapter 14 discuss Java's low-level socket classes for network
access. Chapter 10, introduces the Java sockets API and the Socket class in particular.
It shows you how to write network clients that interact with TCP servers of all kinds,
including whois, finger, and HTTP. Chapter 11, shows you how to use the
ServerSocket class to write servers for these and other protocols in Java. Chapter 12,
shows you how to protect your client/server communications using the Secure Sockets
Layer (SSL) and the Java Secure Sockets Extension (JSSE). Chapter 13, introduces

the User Datagram Protocol (UDP) and the associated classes DatagramPacket and
DatagramSocket for fast, reliable communication. Finally, Chapter 14, shows you
how to use UDP to communicate with multiple hosts at the same time. All the other
classes that access the network from Java rely on the classes described in these five
chapters.

Chapter 15 through Chapter 17 look more deeply at the infrastructure supporting the
URL class. These chapters introduce protocol and content handlers, concepts unique to
Java that make it possible to write dynamically-extensible software that automatically
understands new protocols and media types. Chapter 15, describes the
URLConnection class that serves as the engine for the URL class of Chapter 7. It shows
you how to take advantage of this class through its public API. Chapter 16, also
focuses on the URLConnection class but from a different direction; it shows you how
to subclass this class to create handlers for new protocols and URLs. Finally, Chapter
17 explores Java's somewhat moribund mechanism for supporting new media types.

Chapter 18 and Chapter 19 introduce two unique higher-level APIs for network
programs, Remote Method Invocation (RMI) and the JavaMail API. Chapter 18,
introduces this powerful mechanism for writing distributed Java applications that run
across multiple heterogeneous systems at the same time while communicating with
straightforward method calls just like a nondistributed program. Chapter 19, acquaints
you with this standard extension to Java that offers an alternative to low-level sockets
for talking to SMTP, POP, IMAP, and other email servers. Both of these APIs provide
distributed applications with less cumbersome alternatives to lower-level protocols.

Who You Are

This book assumes you have a basic familiarity with the Java language and
programming environment, in addition to object-oriented programming in general.
This book does not attempt to be a basic language tutorial. You should be thoroughly
familiar with the syntax of the language. You should have written simple applications
and applets. You should also be comfortable with the AWT. When you encounter a
topic that requires a deeper understanding for network programming than is
customary—for instance, threads and streams—I'll cover that topic as well, at least
briefly.

You should also be an accomplished user of the Internet. I will assume you know how
to ftp files and visit web sites. You should know what a URL is and how you locate
one. You should know how to write simple HTML and be able to publish a home
page that includes Java applets, though you do not need to be a super web designer.

However, this book doesn't assume that you have prior experience with network
programming. You should find it a complete introduction to networking concepts and
network application development. I don't assume that you have a few thousand
networking acronyms (TCP, UDP, SMTP . . .) at the tip of your tongue. You'll learn
what you need to know about these here. It's certainly possible that you could use this
book as a general introduction to network programming with a socket-like interface,
then go on to learn the Windows Socket Architecture (WSA), and figure out how to
write network applications in C++. But it's not clear why you would want to: Java lets
you write very sophisticated applications with ease.

Java Versions

Java's network classes have changed much more slowly since Java 1.0 than other parts
of the core API. In comparison to the AWT or I/O, there have been almost no changes
and only a few additions. Of course, all network programs make extensive use of the
I/O classes, and many make heavy use of GUIs. This book is written with the
assumption that you and your customers are using at least Java 1.1 (an assumption
that may finally become safe in 2001). In general, I use Java 1.1 features such as
readers and writers and the new event model freely without further explanation.

Java 2 is a bit more of a stretch. Although I wrote almost all of this book using Java 2,
and although Java 2 has been available on Windows and Solaris for more than a year,
no Java 2 runtime or development environment is yet available for the Mac. While
Java 2 has gradually made its way onto most Unix platforms, including Linux, it is
almost certain that neither Apple nor Sun will ever port any version of Java 2 to
MacOS 9.x or earlier, thus effectively locking out 100% of the current Mac installed
base from future developments. (Java 2 will probably appear on MacOS X sometime
in 2001.) This is not a good thing for a language that claims to be "write once, run
anywhere". Furthermore, Microsoft's Java virtual machine supports only Java 1.1 and
does not seem likely to improve in this respect the foreseeable future (the settlement
of various lawsuits perhaps withstanding). Finally, almost all currently installed
browsers, including Internet Explorer 5.5 and earlier and Netscape Navigator 4.7 and
earlier, support only Java 1.1. Applet developers are pretty much limited to Java 1.1
by the capabilities of their customers. Consequently, Java 2 seems likely to be
restricted to standalone applications on Windows and Unix for at least the near term.
Thus, while I have not shied away from using Java 2-specific features where they
seemed useful or convenient—for instance, the ASCII encoding for the
InputStreamReader and the keytool program—I have been careful to point out my
use of such features. Where 1.1-safe alternatives exist, they are noted. When a
particular method or class is new in Java 1.2 or later, it is noted by a comment
following its declaration like this:

public void setTimeToLive(int ttl) throws IOException // Java 1.2

To further muddy the waters, there are multiple versions of Java 2. At the time this
book was completed, the current release was the Java™ 2 SDK, Standard Edition,
v1.2.2. At least that's what it was called then. Sun seems to change names at the drop
of a marketing consultant. In previous incarnations, this is what was simply known as
the JDK. Sun also makes available the Java™ 2 Platform, Enterprise Edition (J2EE™)
and Java™ 2 Platform, Micro Edition (J2ME™). The Enterprise Edition is a superset
of the Standard Edition that adds features such as the Java Naming and Directory
Interface and the JavaMail API that provide high-level APIs for distributed
applications. Some of these additional APIs are also available as extensions to the
Standard Edition, and will be so treated here. The Micro Edition is a subset of the
Standard Edition targeted at cell phones, set-top boxes and other memory, CPU, and
display-challenged devices. It removes a lot of the GUI APIs that programmers have
learned to associate with Java, though surprisingly it retains almost all of the basic
networking and I/O classes discussed in this book. Finally, when this book was about
half complete, Sun released a beta of the Java™ 2 SDK, Standard Edition, v1.3. This
added a few pieces to the networking API, but left most of the existing API untouched.

Over the next few months, Sun released several more betas of JDK 1.3. The finishing
touches were placed in this book, and all the code was tested with the final release of
JDK 1.3.

To be honest, the most annoying problem with all these different versions and editions
was not the rewriting they necessitated. It was figuring out how to identify them in the
text. I simply refuse to write Java™ 2 SDK, Standard Edition, v1.3, or even Java 2
1.3 every time I want to point out a new feature in the latest release of Java.
Consequently, I've adopted the following convention:

• Java 1.0 refers to all versions of Java that more or less implement the Java
API as defined in Sun's Java Development Kit 1.0.2.

• Java 1.1 refers to all versions of Java that more or less implement the Java
API as defined in any version of Sun's Java Development Kit 1.1.x. This
includes third-party efforts such as Macintosh Runtime for Java (MRJ) 2.0, 2.1,
and 2.2.

• Java 1.2 refers to all versions of Java that more or less implement the Java
API as defined in the Standard Edition of Sun's Java Development Kit 1.2.x.
This does not include the Enterprise Edition additions, which will be treated as
extensions to the standard. These normally come in the javax package rather
than the java packages.

• Java 1.3 refers to all versions of Java that more or less implement the Java
API as defined in the Standard Edition of Sun's Java Development Kit 1.3.

In short, this book covers the state-of-the-art for network programming in Java 2,
which isn't really all that different from network programming in Java 1.1. I'll post
updates and corrections on my web site at http://metalab.unc.edu/javafaq/books/jnp2e/
as more information becomes available. However, the networking API seems fairly
stable.

Security

I don't know if there was one most frequently asked question about the first edition of
Java Network Programming, but there was definitely one most frequent answer, and it
applies to this edition too. My mistake in the first edition was hiding that answer in
the back of a chapter that most people didn't read. Since that very same answer should
answer an equal number of questions from readers of this book, I want to get it out of
the way right up front (and then repeat it several times throughout the book for readers
who habitually skip prefaces):Java's security constraints prevent almost all the
examples and methods discussed in this book from working in an applet.

This book focuses very much on applications. Untrusted Java applets are prohibited
from communicating over the Internet with any host other than the one they came
from. This includes the host they're running on. The problem may not always be
obvious—not all web browsers properly report security exceptions—but it is there. In
Java 1.2 and later, there are ways to relax the restrictions on applets so that they get
less limited access to the network. However, these are exceptions, not the rule. If you
can make an applet work when run as a standalone application and you cannot get it
to work inside a web browser, the problem is almost certainly a conflict with the
browser's security manager.

About the Examples

Most methods and classes described in this book are illustrated with at least one
complete working program, simple though it may be. In my experience, a complete
working program is essential to showing the proper use of a method. Without a
program, it is too easy to drop into jargon or to gloss over points about which the
author may be unclear in his own mind. The Java API documentation itself often
suffers from excessively terse descriptions of the method calls. In this book, I have
tried to err on the side of providing too much explication rather than too little. If a
point is obvious to you, feel free to skip over it. You do not need to type in and run
every example in this book, but if a particular method does give you trouble, you are
guaranteed to have at least one working example.

Each chapter includes at least one (and often several) more complex program that
demonstrates the classes and methods of that chapter in a more realistic setting. These
often rely on Java features not discussed in this book. Indeed, in many of the
programs, the networking components are only a small fraction of the source code and
often the least difficult parts. Nonetheless, none of these programs could be written as
easily in languages that didn't give networking the central position it occupies in Java.
The apparent simplicity of the networked sections of the code reflects the extent to
which networking has been made a core feature of Java and not any triviality of the
program itself. All example programs presented in this book are available online,
often with corrections and additions. You can download the source code from
http://metalab.unc.edu/javafaq/books/jnp2e and
http://www.oreilly.com/catalog/javanp2/.

This book assumes you are using Sun's Java Development Kit. I have tested all the
examples on Windows and many on Solaris and the Macintosh. Almost all the
examples given here should work on other platforms and with other compilers and
virtual machines that support Java 1.2 (and many on Java 1.1). The few that require
Java 1.3 are clearly noted. In reality, every implementation of Java that I have tested
has had nontrivial bugs in networking, so actual performance is not guaranteed. I have
tried to note any places where a method behaves other than as advertised by Sun.

Conventions Used in This Book

Body text is Times Roman, normal, like you're reading now.

A Constant width font is used for:

• Code examples and fragments
• Keywords, operators, data types, variable names, class names, and interface

names that might appear in a Java program
• Program output
• Tags that might appear in an HTML document

A bold constant width is used for:

• Command lines and options that should be typed verbatim on the screen

An italicized constant width font is used for:

• Replaceable or variable code fragments

An italicized font is used for:

• New terms where they are defined
• Pathnames, filenames, and program names. (However, if the program name is

also the name of a Java class, it is given in a monospaced font, like other class
names.)

• Host and domain names (java.oreilly.com)
• Titles of other books (Java I/O)

Significant code fragments and complete programs are generally placed in a separate
paragraph like this:

Socket s = new Socket("java.oreilly.com", 80);
if (!s.getTcpNoDelay()) s.setTcpNoDelay(true);

When code is presented as fragments rather than complete programs, the existence of
the appropriate import statements should be inferred. For example, in the previous
code fragment you may assume that java.net.Socket was imported.

Some examples intermix user input with program output. In these cases, the user input
will be displayed in bold, as in this example from Chapter 10:

% telnet localhost 7
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
This is a test
This is a test
This is another test
This is another test
9876543210
9876543210
^]
telnet> close
Connection closed.

The Java programming language is case-sensitive. Java.net.socket is not the same
thing as java.net.Socket. Case-sensitive programming languages do not always
allow authors to adhere to standard English grammar. Most of the time, it's possible to
rewrite the sentence in such a way that the two do not conflict, and when possible, I
have endeavored to do so. However, on those rare occasions when there is simply no
way around the problem, I have let standard English come up the loser. In keeping
with this principle, when I want to refer to a class or an instance of a class in body text,
I use the capitalization that you'd see in source code, generally an initial capital with
internal capitalization—for example, ServerSocket.

Throughout this book, I use the British convention of placing punctuation inside
quotation marks only when punctuation is part of the material quoted. Although I

learned grammar under the American rules, the British system has always seemed far
more logical to me, even more so than usual when one must quote source code where
a missing or added comma, period, or semicolon can make the difference between
code that compiles and code that doesn't.

Finally, although many of the examples used here are toy examples unlikely to be
reused, a few of the classes I develop have real value. Please feel free to reuse them or
any parts of them in your own code. No special permission is required. As far as I am
concerned, they are in the public domain (though the same is most definitely not true
of the explanatory text!). Such classes are placed somewhere in the com.macfaq
package, generally mirroring the java package hierarchy. For instance, Chapter 4's
SafePrintWriter class is in the com.macfaq.io package. When working with these
classes, don't forget that the compiled .class files must reside in directories matching
their package structure inside your class path and that you'll have to import them in
your own classes before you can use them. The book's web page at
http://metalab.unc.edu/javafaq/books/jnp2e/ includes a jar file containing all these
classes that can be installed in your class path.

Request for Comments

I enjoy hearing from readers, whether with general comments about how this could be
a better book, specific corrections, other topics you would like to see covered, or just
war stories about your own network programming travails. You can reach me by
sending email to elharo@metalab.unc.edu. Please realize, however, that I receive
hundreds of email messages a day and cannot personally respond to each one. For the
best chance of getting a personal response, please identify yourself as a reader of this
book. If you have a question about a particular program that isn't working as you
expect, try to reduce it to the simplest case that reproduces the bug, preferably a single
class, and paste the text of the entire program into the body of your email. Unsolicited
attachments will be deleted unopened. And please, please send the message from the
account you want me to reply to and make sure that your Reply-to address is properly
set! There's nothing quite so frustrating as spending an hour or more carefully
researching the answer to an interesting question and composing a detailed response,
only to have it bounce because my correspondent was sending from a public terminal
and neglected to set the browser preferences to include an actual email address.

I also adhere to the old saying, "If you like this book, tell your friends. If you don't
like it, tell me." I'm especially interested in hearing about mistakes. This is my eighth
book. I've yet to publish a perfect one, but I keep trying. As hard as the editors at
O'Reilly and I worked on this book, I'm sure that there are mistakes and typographical
errors that we missed here somewhere. And I'm sure that at least one of them is a
really embarrassing whopper of a problem. If you find a mistake or a typo, please let
me know so that I can correct it. I'll post it on the web page for this book at
http://metalab.unc.edu/javafaq/books/jnp2e/ and on the O'Reilly web site at
http://www.oreilly.com/catalog/javanp2/errata/. Before reporting errors, please check
one of those pages to see if I already know about it and have posted a fix. Any errors
that are reported will be fixed in future printings.

You can also send any errors you find, as well as suggestions for future editions, to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about O'Reilly books, conferences, software, Resource Centers,
and the O'Reilly Network, see our web site at:

http://www.oreilly.com

Let me also preempt a couple of nonerrors that are often mistakenly reported. First,
not all the method signatures given in this book exactly match the signatures given in
Sun's javadoc API documentation. In particular, I often change argument names to
make them clearer. For instance, Sun documents the parse() method in the
HTMLEditorKit.Parser class like this:

public abstract void parse(Reader r, HTMLEditorKit.ParserCallback cb,
 boolean ignoreCharSet) throws IOException

I've rewritten that in this more intelligible form:

public abstract void parse(Reader input, HTMLEditorKit.ParserCallback
 callback, boolean ignoreCharSet) throws IOException

These are exactly equivalent, however. Method argument names are purely formal
and have no effect on client programmers' code that invokes these methods. I could
have rewritten them in Latin or Tuvan without really changing anything. The only
difference is in their intelligibility to the reader.

Furthermore, I've occasionally added throws clauses to some methods that, while
legal, are not required. For instance, when a method is declared to throw only an
IOException but may actually throw ConnectException, UnknownHostException,
and SSLException, all subclasses of IOException, I sometimes declare all four
possible exceptions. Furthermore, when a method seems likely to throw a particular
runtime exception such as NullPointerException, SecurityException, or
IllegalArgumentException under particular circumstances, I document that in the
method signature as well. For instance, here's Sun's declaration of one of the Socket
constructors:

public Socket(InetAddress address, int port) throws IOException

And here's mine for the same constructor:

public Socket(InetAddress address, int port)
 throws ConnectException, IOException, SecurityException

These aren't quite the same—mine's a little more complete—but they do produce
identical compiled byte code.

Acknowledgments

Many people were involved in the production of this book. My editor, Mike Loukides,
got this book rolling and provided many helpful comments along the way that
substantially improved the book. Dr. Peter "Peppar" Parnes helped out immensely
with the multicast chapter. The technical editors all provided invaluable assistance in
hunting down errors and omissions. Simon St. Laurent provided invaluable advice on
which topics deserved more coverage. Scott Oaks lent his thread expertise to Chapter
5, proving once again by the many subtle bugs he hunted down that multithreading
still requires the attention of an expert. Jim Farley provided many helpful comments
on RMI (Chapter 18). Timothy F. Rohaly was unswerving in his commitment to
making sure that I closed all my sockets and caught all possible exceptions and, in
general, wrote the cleanest, safest, most exemplary code possible. John Zukowski
found numerous errors of omission, all now filled thanks to him. And the eagle-eyed
Avner Gelb displayed an astonishing ability to spot mistakes that had somehow
managed to go unnoticed by me, all the other editors, and the tens of thousands of
readers of the first edition.

It isn't customary to thank the publisher, but the publisher does set the tone for the rest
of the company, authors, editors, and production staff alike; and I think Tim O'Reilly
deserves special credit for making O'Reilly & Associates, Inc. absolutely one of the
best houses an author can write for. If there's one person without whom this book
would never have been written, it's him. If you, the reader, find O'Reilly books to be
consistently better than most of the dreck on the market, the reason really can be
traced straight back to Tim.

My agent, David Rogelberg, convinced me that it was possible to make a living
writing books like this rather than working in an office. The entire crew at
metalab.unc.edu over the last several years have really helped me to communicate
better with my readers in a variety of ways. Every reader who sent in bouquets and
brickbats about the first edition has been instrumental in helping me write this much
improved edition. All these people deserve much thanks and credit. Finally, as always,
I'd like to offer my largest thanks to my wife, Beth, without whose love and support
this book would never have happened.

—Elliotte Rusty Harold
elharo@metalab.unc.edu
April 20, 2000

Chapter 1. Why Networked Java?
Java is the first programming language designed from the ground up with networking
in mind. As the global Internet continues to grow, Java is uniquely suited to build the
next generation of network applications. Java provides solutions to a number of
problems—platform independence, security, and international character sets being the
most important—that are crucial to Internet applications, yet difficult to address in

other languages. Together, these and other Java features allow web surfers to quickly
download and execute untrusted programs from a web site without worrying that the
program may spread a virus, steal their data, or crash their systems. Indeed, the
intrinsic safety of a Java applet is far greater than that of shrink-wrapped software.

One of the biggest secrets about Java is that it makes writing network programs easy.
In fact, it is far easier to write network programs in Java than in almost any other
language. This book shows you dozens of complete programs that take advantage of
the Internet. Some are simple textbook examples, while others are completely
functional applications. One thing you'll note in the fully functional applications is
just how little code is devoted to networking. Even in network-intensive programs like
web servers and clients, almost all the code handles data manipulation or the user
interface. The part of the program that deals with the network is almost always the
shortest and simplest.

In short, it is easy for Java applications to send and receive data across the Internet. It
is also possible for applets to communicate across the Internet, though they are limited
by security restrictions. In this chapter, you'll learn about a few of the network-centric
applets and applications that can be written in Java. In later chapters, you'll develop
the tools you need to write these programs.

1.1 What Can a Network Program Do?

Networking adds a lot of power to simple programs. With networks, a single program
can retrieve information stored in millions of computers located anywhere in the
world. A single program can communicate with tens of millions of people. A single
program can harness the power of many computers to work on one problem.

But that sounds like a Microsoft advertisement, not the start of a technical book. Let's
talk more precisely about what network programs do. Network applications generally
take one of several forms. The distinction you hear about most is between clients and
servers. In the simplest case, clients retrieve data from a server and display it. More
complex clients filter and reorganize data, repeatedly retrieve changing data, send data
to other people and computers, and interact with peers in real time for chat,
multiplayer games, or collaboration. Servers respond to requests for data. Simple
servers merely look up some file and return it to the client, but more complex servers
often do a lot of processing before answering an involved question. Beyond clients
and servers, the next generation of Internet applications almost certainly includes
mobile agents, which move from server to server, searching the Web for information
and dragging their findings home. And that's only the beginning. Let's look a little
more closely at the possibilities that open up when you add networking to your
programs.

1.1.1 Retrieve Data and Display It

At the most basic level, a network client retrieves data from a server and shows it to a
user. Of course, many programs did just this long before Java came along; after all,
that's exactly what a web browser does. However, web browsers are limited. They can
talk to only certain kinds of servers (generally web, FTP, gopher, and perhaps mail
and news servers). They can understand and display certain kinds of data (generally

text, HTML, and a few standard image formats). If you want to go further, you're in
trouble: a web browser cannot send SQL commands to a database to ask for all books
in print by Elliotte Rusty Harold published by O'Reilly & Associates, Inc. A web
browser cannot check the time to within a hundredth of a second with the U.S. Naval
Observatory's[1] super-accurate hydrogen maser clocks using the network time protocol.
A web browser can't speak the custom protocol needed to remotely control the High
Resolution Airborne Wideband Camera (HAWC) on the Stratospheric Observatory
for Infrared Astronomy (SOFIA).[2]

[1] http://tycho.usno.navy.mil/

[2] SOFIA will be a 2.5-meter reflecting telescope mounted on a Boeing 747. When launched in 2001, it will be
the largest airborne telescope in the world. Airborne telescopes have a number of advantages compared to ground-
based telescopes—one is the ability to observe phenomena obscured by Earth's atmosphere. Furthermore, rather
than being fixed at one latitude and longitude, they can fly anywhere to observe phenomenon. For information
about Java-based remote control of telescopes, see http://pioneer.gsfc.nasa.gov/public/irc/. For information about
SOFIA, see http://www.sofia.usra.edu/.

A Java program, however, can do all this and more. A Java program can send SQL
queries to a database. Figure 1.1 shows part of a program that communicates with a
remote database server to submit queries against the Books in Print database. While
something similar could be done with HTML forms and CGI, a Java client is more
flexible because it's not limited to single pages. When something changes, only the
actual data needs to be sent across the network. A web server would have to send all
the data as well as all the layout information. Furthermore, user requests that change
only the appearance of data rather than which data is displayed (for example, hiding
or showing a column of results) don't even require a connection back to the database
server because presentation logic is incorporated in the client. HTML-based database
interfaces tend to place fairly heavy loads on both web and database servers. Java
clients move all the user interface processing to the client side, and let the database
focus on the data.

Figure 1.1. Access to Bowker Books in Print via a Java program at
http://jclient.ovid.com/

A Java program can connect to a network time-server to synchronize itself with an
atomic clock. Figure 1.2 shows an applet doing exactly this. A Java program can
speak any custom protocols it needs to speak, including the one to control the HAWC.
Figure 1.3 shows an early prototype of the HAWC controller. Even better: a Java
program embedded into an HTML page (an applet) can give a Java-enabled web
browser capabilities the browser didn't have to begin with.

Figure 1.2. The Atomic Web Clock applet at http://www.time.gov/

Figure 1.3. The HAWC controller prototype

Furthermore, a web browser is limited to displaying a single complete HTML page. A
Java program can display more or less content as appropriate. It can extract and
display the exact piece of information the user wants. For example, an indexing
program might extract only the actual text of a page while filtering out the HTML tags
and navigation links. Or a summary program can combine data from multiple sites
and pages. For instance, a Java servlet can ask the user for the title of a book using an
HTML form, then connect to 10 different online stores to check the prices for that
book, then finally send the client an HTML page showing which stores have it in
stock sorted by price. Figure 1.4 shows the Amazon.com (née Junglee) WebMarket
site showing the results of exactly such a search for the lowest price for an Anne Rice
novel. In both examples, what's shown to the user looks nothing like the original web
page or pages would look in a browser. Java programs can act as filters that convert
what the server sends into what the user wants to see.

Figure 1.4. The WebMarket site at http://www.webmarket.com/ is written in Java using
the servlet API

Finally, a Java program can use the full power of a modern graphical user interface to
show this data to the user and get a response to it. Although web browsers can create
very fancy displays, they are still limited to HTML forms for user input and
interaction.

Java programs are flexible because Java is a fully general programming language,
unlike HTML. Java programs see network connections as streams of data, which can
be interpreted and responded to in any way that's necessary. Web browsers see only
certain kinds of data streams and can interpret them only in certain ways. If a browser
sees a data stream that it's not familiar with (for example, a response to an SQL query),

its behavior is unpredictable. Web sites can use CGI programs to provide some of
these capabilities, but they're still limited to HTML for the user interface.

Writing Java programs that talk to Internet servers is easy. Java's core library includes
classes for communicating with Internet hosts using the TCP and UDP protocols of
the TCP/IP family. You just tell Java what IP address and port you want, and Java
handles the low-level details. Java does not support NetWare IPX, Windows NetBEUI,
AppleTalk, or other non-IP-based network protocols; but this is rapidly becoming a
nonissue as TCP/IP becomes the lingua franca of networked applications. Slightly
more of an issue is that Java does not provide direct access to the IP layer below TCP
and UDP, so it can't be used to write programs such as ping or traceroute. However,
these are fairly uncommon needs. Java certainly fills well over 90% of most network
programmers' needs.

Once a program has connected to a server, the local program must understand the
protocol that the remote server speaks and properly interpret the data the server sends
back. In almost all cases, packaging data to send to a server and unpacking the data
received is harder than simply making the connection. Java includes classes that help
your programs communicate with certain types of servers, most notably web servers.
It also includes classes to process some kinds of data, such as text, GIF images, and
JPEG images. However, not all servers are web servers, and not all data is text, GIF,
or JPEG. Therefore, Java lets you write protocol handlers to communicate with
different kinds of servers and content handers that understand and display different
kinds of data. A Java-enabled web browser can automatically download and install the
software needed by a web site it visits. Java applets can perform tasks similar to those
performed by Netscape plug-ins. However, applets are more secure and much more
convenient than plug-ins. They don't require user intervention to download or install
the software, and they don't waste memory or disk space when they're not in use.

1.1.2 Repeatedly Retrieve Data

Web browsers retrieve data on demand; the user asks for a page at a URL and the
browser gets it. This model is fine as long as the user needs the information only once,
and the information doesn't change often. However, continuous access to information
that's changing constantly is a problem. There have been a few attempts to solve this
problem with extensions to HTML and HTTP. For example, server push and client
pull are fairly awkward ways of keeping a client up to date. There are even services
that send email to alert you that a page you're interested in has changed.[3]

[3] See, for example, the URL-minder at http://www.netmind.com/.

A Java client, however, can repeatedly connect to a server to keep an updated picture
of the data. If the data changes very frequently—for example, a stock price—a Java
application can keep a connection to the server open at all times, and display a
running graph of the stock price on the desktop. Figure 1.5 shows only one of many
such applets. A Java program can even respond in real time to changes in the data: a
stock ticker applet might ring a bell if IBM's stock price goes over $100 so you know
to call your broker and sell. A more complex program could even perform the sale
without human intervention. It is easy to imagine considerably more complicated
combinations of data that a client can monitor, data you'd be unlikely to find on any

single web site. For example, you could get the stock price of a company from one
server, the poll standings of candidates they've contributed to from another, and
correlate that data to decide whether to buy or sell the company's stock. A stock
broker would certainly not implement this scheme for the average small investor.

Figure 1.5. An applet-based stock ticker and information service

As long as the data is available via the Internet, a Java program can track it. Data
available on the Internet ranges from weather conditions in Tuva to the temperature of
soft drink machines in Pittsburgh to the stock price of Sun Microsystems to the sales
status of this very book at amazon.com. Any or all of this information can be
integrated into your programs in real time.

1.1.3 Send Data

Web browsers are optimized for retrieving data. They send only limited amounts of
data back to the server, mostly via forms. Java programs have no such limitations.
Once a connection between two machines is established, Java programs can send data
across that connection just as easily as they can receive from it. This opens up many
possibilities.

1.1.3.1 File storage

Applets often need to save data between runs; for example, to store the level a player
has reached in a game. Untrusted applets aren't allowed to write files on local disks,
but they can store data on a cooperating server. The applet just opens a network
connection to the host it came from and sends the data to it. The host may accept the
data through a CGI interface, ftp, SOAP, a custom server or servlet, or some other
means.

1.1.3.2 Massively parallel computing

Since Java applets are secure, individual users can safely offer the use of their spare
CPU cycles to scientific projects that require massively parallel machines. When part
of the calculation is complete, the program makes a network connection to the
originating host and adds its results to the collected data.

So far, efforts such as SETI@home's[4] search for intelligent life in the universe and
distributed.net's[5] RC5/DES cracker have relied on native code programs written in C
that have to be downloaded and installed separately, mostly because slow Java virtual
machines have been at a significant competitive disadvantage on these CPU-intensive
problems. However, Java applets performing the same work do make it more
convenient for individuals to participate. With a Java applet version, all a user would
have to do is point the browser at the page containing the applet that solves the
problem.

[4] http://setiathome.ssl.berkeley.edu/

[5] http://www.distributed.net/

The Charlotte project from New York University and Arizona State is currently
developing a general architecture for using Java applets for supporting parallel
calculations using Java applets running on many different clients all connected over
the Internet. Figure 1.6 shows a Charlotte demo applet that calculates the Mandelbrot
set relatively quickly by harnessing many different CPUs.

Figure 1.6. A multibrowser parallel computation of the Mandelbrot set

1.1.3.3 Smart forms

Java's AWT has all the user interface components available in HTML forms,
including text fields, checkboxes, radio buttons, pop-up lists, buttons, and a few more
besides. Thus with Java you can create forms with all the power of a regular HTML
form. These forms can use network connections to send the data back to the server
exactly as a web browser does.

However, because Java applets are real programs instead of mere displayed data,
these forms can be truly interactive and respond immediately to user input. For
instance, an order form can keep a running total including sales tax and shipping
charges. Every time the user checks off another item to buy, the applet can update the
total price. A regular HTML form would need to send the data back to the server,
which would calculate the total price and send an updated version of the form—a
process that's both slower and more work for the server.

Furthermore, a Java applet can validate input. For example, an applet can warn users
that they can't order 1.5 cases of jelly beans, that only whole cases are sent. When the
user has filled out the form, the applet sends the data to the server over a new network
connection. This can talk to the same CGI program that would process input from an
HTML form, or it can talk to a more efficient custom server. Either way, it uses the
Internet to communicate.

1.1.4 Peer-to-Peer Interaction

The previous examples all follow a client/server model. However, Java applications
can also talk to each other across the Internet, opening up many new possibilities for
group applications. Java applets can also talk to each other, though for security
reasons they have to do it via an intermediary proxy program running on the server
they were downloaded from. (Again, Java makes writing this proxy program
relatively easy.)

1.1.4.1 Games

Combine the ability to easily include networking in your programs with Java's
powerful graphics and you have the recipe for truly awesome multiplayer games.
Some that have already been written are Backgammon, Battleship, Othello, Go,
Mahjongg, Pong, Charades, Bridge, and even strip poker. Figure 1.7 shows a four-
player game of Hearts in progress on Yahoo! Plays are made using the applet
interface. Network sockets send the plays back to the central Yahoo!Yahoo! server,
which copies them out to all the participants.

Figure 1.7. A networked game of hearts using a Java applet from
http://games.yahoo.com/games/

1.1.4.2 Chat

Java lets you set up private or public chat rooms. Text that is typed in one applet can
be echoed to other applets around the world. Figure 1.8 shows a basic chat applet like
this on Yahoo! More interestingly, if you add a canvas with basic drawing ability to
the applet, you can share a whiteboard between multiple locations. And as soon as
browsers support Version 2.0 of the Java Media Framework API, writing a network
phone application or adding one to an existing applet will become trivial. Other
applications of this type include custom clients for Multi-User Dungeons (MUDs) and
Object-Oriented (MOOs), which could easily use Java's graphic capabilities to
incorporate the pictures people have been imagining for years.

Figure 1.8. Networked chat using a Java applet

1.1.4.3 Whiteboards

Java programs aren't limited to sending text and data across the network. Graphics can
be sent too. A number of programmers have developed whiteboard software that
allows users in diverse locations to draw on their computers. For the most part, the
user interfaces of these programs look like any simple drawing program with a canvas
area and a variety of pencil, text, eraser, paintbrush, and other tools. However, when
networking is added to a simple drawing program, many different people can
collaborate on the same drawing at the same time. The final drawing may not be as
polished or as artistic as the Warhol/Basquiat collaborations, but it doesn't require all
the participants to be in the same New York loft either. Figure 1.9 shows several
windows from a session of the IBM alphaWorks' WebCollab program.[6] WebCollab
allows users in diverse locations to display and annotate slides during teleconferences.
One participant runs the central WebCollab server that all the peers connect to while
conferees participate using a Java applet loaded into their web browsers.

[6] http://www.alphaWorks.ibm.com/tech/webcollab

Figure 1.9. WebCollab

1.1.5 Servers

Java applications can listen for network connections and respond to them. This makes
it possible to implement servers in Java. Both Sun and the W3C have written web
servers in Java designed to be as fully functional and fast as servers written in C.
Many other kinds of servers have been written in Java as well, including IRC servers,
NFS servers, file servers, print servers, email servers, directory servers, domain name
servers, FTP servers, TFTP servers, and more. In fact, pretty much any standard TCP
or UDP server you can think of has probably been ported to Java.

More interestingly, you can write custom servers that fill your specific needs. For
example, you might write a server that stored state for your game applet and had
exactly the functionality needed to let the players save and restore their games, and no
more. Or, since applets can normally communicate only with the host from which
they were downloaded, a custom server could mediate between two or more applets
that need to communicate for a networked game. Such a server could be very simple,
perhaps just echoing what one applet sent to all other connected applets. The
Charlotte project mentioned earlier uses a custom server written in Java to collect and
distribute the computation performed by individual clients. WebCollab uses a custom
server written in Java to collect annotations, notes, and slides from participants in the
teleconference and distribute them to all other participants. It also stores the notes on
the central server. It uses a combination of the normal HTTP and FTP protocols as
well as its custom WebCollab protocol.

As well as classical servers that listen for and accept socket connections, Java
provides several higher-level abstractions for client/server communication. Remote
Method Invocation (RMI) allows objects located on a server to have their methods
called by clients. Servers that support the Java Servlet API can load extensions written
in Java called servlets that give them new capabilities. The easiest way to build your
multiplayer game server might be to write a servlet, rather than writing an entire
server.

1.1.6 Searching the Web

Java programs can wander through the Web, looking for crucial information. Search
programs that run on a single client system are called spiders. A spider downloads a
page at a particular URL, extracts the URLs from the links on that page, downloads
the pages referred to by the URLs, and then repeats the process for each page it's
downloaded. Generally, a spider does something with each page it sees, ranging from
indexing it in a database to performing linguistic analysis to hunting for specific
information. This is more or less how services like AltaVista build their indices.
Building your own spider to search the Internet is a bad idea, because AltaVista and
similar services have already done the work, and a few million private spiders would
soon bring the Net to its knees. However, this doesn't mean that you shouldn't write
spiders to index your own local intranet. In a company that uses the Web to store and
access internal information, building a local index service might be very useful. You
can use Java to build a program that indexes all your local servers and interacts with
another server program (or acts as its own server) to let users query the index.

Agents have purposes similar to those of spiders (researching a stock, soliciting
quotations for a purchase, bidding on similar items at multiple auctions, finding the
lowest price for a CD, finding all links to a site, etc.). But whereas spiders run on a
single host system to which they download pages from remote sites, agents actually
move themselves from host to host and execute their code on each system they move
to. When they find what they're looking for, they return to the originating system with
the information, possibly even a completed contract for goods or services. People
have been talking about mobile agents for years, but until now, practical agent
technology has been rather boring. It hasn't come close to achieving the possibilities
envisioned in various science fiction novels, like John Brunner's Shockwave Rider and
William Gibson's Neuromancer. The primary reason for this is that agents have been
restricted to running on a single system—and that's neither useful nor exciting. In fact
until 2000, there's been only one widely successful (to use the term very loosely) true
agent that ran on multiple systems, the Morris Internet worm of 1988.

The Internet worm demonstrates one reason developers haven't been willing to let
agents go beyond a single host. It was destructive; after breaking into a system
through one of several known bugs, it proceeded to overload the system, rendering it
useless. Letting agents run on your system introduces the possibility that hostile or
buggy agents may damage that system—and that's a risk most network managers
haven't been willing to take. Java mitigates the security problem by providing a
controlled environment for the execution of agents. This environment has a security
manager that can ensure that, unlike the Morris worm, the agents won't do anything
nasty. This allows systems to open their doors to these agents.

The second problem with agents has been portability. Agents aren't very interesting if
they can run on only one kind of computer. That's like having a credit card for
Nieman Marcus; it's somewhat useful and has a certain snob appeal, but it won't help
as much as a Visa card if you want to buy something at Sears. Java provides a
platform-independent environment in which agents can run; the agent doesn't care if
it's visiting a Linux server, a Sun workstation, a Macintosh desktop, or a Windows PC.

An indexing program could be implemented in Java as a mobile agent: instead of
downloading pages from servers to the client and building the index there, the agent
could travel to each server and build the index locally, sending much less data across
the network. Another kind of agent could move through a local network to inventory
hardware, check software versions, update software, perform backups, and take care
of other necessary tasks. Commercially oriented agents might let you check different
record stores to find the best price for a CD, see whether opera tickets are available on
a given evening, or more. A massively parallel computer could be implemented as a
system that assigned small pieces of a problem to individual agents, which then
searched out idle machines on the network to carry out parts of the computation. The
same security features that allow clients to run untrusted programs downloaded from a
server let servers run untrusted programs uploaded from a client.

1.1.7 Electronic Commerce

Shopping sites have proven to be one of the few real ways to make money from
consumers on the Web. Although many sites accept credit cards through HTML forms,
the mechanism is clunky. Shopping carts (pages that keep track of where users have
been and what they have chosen) are at the outer limits of what's possible with HTML
and forms. Building a server-based shopping cart is difficult, requires lots of CGI and
database work, and puts a huge CPU load on the server. And it still limits the interface
options. For instance, the user can't drag a picture of an item across the screen and
drop it into a shopping cart. Java can move all this work to the client and offer richer
user interfaces as well.

Applets can store state as the user moves from page to page, making shopping carts
much easier to build. When the user finishes shopping, the applet sends the data back
to the server across the network. Figure 1.10 shows one such shopping cart used on a
Beanie Babies web site. To buy a doll, the user drags and drops its picture into the
grocery bag.

Figure 1.10. A shopping cart applet

Even this is too inconvenient and too costly for small payments of a couple of dollars
or less. Nobody wants to fill out a form with name, address, billing address, credit
card number, and expiration date every day just to pay $0.50 to read today's Daily
Planet. Imagine how easy it would be to implement this kind of transaction in Java.
The user clicks on a link to some information. The server downloads a small applet
that pops up a dialog box saying, "Access to the information at
http://www.greedy.com/ costs $2. Do you wish to pay this?" The user can then click
buttons that say "Yes" or "No". If the user clicks the No button, then he doesn't get
into the site. Now let's imagine what happens if the user clicks "Yes".

The applet contains a small amount of information: the price, the URL, and the seller.
If the client agrees to the transaction, then the applet adds the buyer's data to the
transaction, perhaps a name and an account number, and signs the order with the
buyer's private key. Then the applet sends the data back to the server over the network.
The server grants the user access to the requested information using the standard
HTTP security model. Then it signs the transaction with its private key and forwards
the order to a central clearinghouse. Sellers can offer money-back guarantees or
delayed purchase plans (No money down! Pay nothing until July!) by agreeing not to
forward the transaction to the clearinghouse until a certain amount of time has elapsed.

The clearinghouse verifies each transaction with the buyer's and seller's public keys
and enters the transaction in its database. The clearinghouse can use credit cards,
checks, or electronic fund transfers to move money from the buyer to the seller. Most
likely, the clearinghouse won't move the money until the accumulated total for a
buyer or seller reaches a certain minimum threshold, keeping the transaction costs low.

Every part of this can be written in Java. An applet requests the user's permission. The
Java Cryptography Extension authenticates and encrypts the transaction. The data

moves from the client to the seller using sockets, URLs, CGI programs, servlets,
and/or RMI. These can also be used for the host to talk to the central clearinghouse.
The web server itself can be written in Java, as can the database and billing systems at
the central clearinghouse; or JDBC can be used to talk to a traditional database such
as Informix or Oracle.

The hard part of this is setting up a clearinghouse and getting users and sites to
subscribe. The major credit card companies have a head start, though none of them
yet use the scheme described here. In an ideal world you'd like the buyer and the
seller to be able to use different banks or clearinghouses. However, this is a social
problem, not a technological one; and it is solvable. You can deposit a check from any
American bank at any other American bank where you have an account. The two
parties to a transaction do not need to bank in the same place. Sun is currently
developing a system somewhat like this as part of Java Wallet.

1.1.8 Applications of the Future

Java makes it possible to write many kinds of applications that have been imagined
for years but haven't been practical until now. Many of these applications would
require too much processing power if they were entirely server-based; Java moves the
processing to the client, where it belongs. Other application types (for example,
mobile agents) require extreme portability and some guarantees that the application
can't do anything hostile to its host. While Java's security model has been criticized
(and yes, some bugs have been found), it's a quantum leap beyond anything that has
been attempted in the past and an absolute necessity for the mobile software we will
want to write in the future.

1.1.8.1 Ubiquitous computing

Networked devices don't have to be tied to particular physical locations, subnets, or IP
addresses. Jini is a framework that sits on top of Java for easily and instantly
connecting all sorts of devices to a network. For example, when a group of coworkers
gather for a meeting, they generally bring with them a random assortment of personal
digital assistants, laptops, cell phones, pagers, and other electronic devices. The
conference room where they meet may have one or two PCs, perhaps a Mac, a digital
projector, a printer, a coffee machine, a speaker phone, an Ethernet router, and
assorted other useful tools. If these devices include a Java virtual machine and Jini,
they form an impromptu network as soon as they're turned on and plugged in. (With
wireless connections, they may not even need to be plugged in.) Devices can join or
leave the local network at any time without explicit reconfiguration. They can use one
of the cell phones, the speaker phone, or the router to connect to hosts outside the
room.

Participants can easily share files and trade data. Their computers and other devices
can be configured to recognize and trust each other regardless of where in the network
one happens to be at any given time. Trust can be restricted, though, so that, for
example, all the laptops of company employees in the room are trusted, but those of
outside vendors at the meeting aren't. Some devices, such as the printer and the digital
projector, may be configured to trust anyone in the room to use their services but to
not allow more than one person to use them at once. Most importantly of all, the

coffee machine may not trust anyone, but it can notice that it's running out of coffee
and email the supply room that it needs to be restocked.

1.1.8.2 Interactive television

Before the Web took the world by storm, Java was intended for the cable TV set-top
box market. Five years after Java made its public debut, Sun's finally got back to its
original plans, but this time those plans are even more network-centric. PersonalJava
is a stripped-down version of the rather large Java API that's useful for set-top boxes
and other devices with restricted memory, CPU power, and user interfaces, such as
Palm Pilots. The Java TV API adds some television-specific features such as channel
changing, and audio and video streaming and synchronization. Although PersonalJava
is missing a lot of things you may be accustomed to in the full JDK, it does include a
complete complement of networking classes. TV stations can send applets down the
data stream that allow channel surfers to interact with the shows. An infomercial for
spray-on hair could include an applet that lets the viewer pick a color, enter his credit
card number, and send the order through the cable modem, back over the Internet
using his remote control. A news magazine could conduct a viewer poll in real time
and report the responses after the commercial break. Ratings could be collected from
every household with a cable modem instead of merely the 5,000 Nielsen families.

1.1.8.3 Collaboration

Peer-to-peer networked Java programs can allow multiple people to collaborate on a
document at one time. Imagine a Java word processor that two people, perhaps in
different countries, can pull up and edit simultaneously. Imagine the interaction that's
possible when you attach an Internet phone. For example, two astronomers could
work on a paper while one's in New Mexico and the other's in Moscow. The Russian
could say, "I think you dropped the superscript in Equation 3.9", and then type the
corrected equation so that it appears on both people's displays simultaneously. Then
the astronomer in New Mexico might say, "I see, but doesn't that mean we have to
revise Figure 3.2 like this?" and then use a drawing tool to make the change
immediately. This sort of interaction isn't particularly hard to implement in Java (a
word processor with a decent user interface for equations is probably the hardest part
of the problem), but it does need to be built into the word processor from the start. It
cannot be retrofitted onto a word processor that was not originally designed with
networking in mind.

1.2 But Wait!—There's More!

Most of this book describes the fairly low-level APIs needed to write the kinds of
programs discussed earlier. Some of these programs have already been written. Others
are still only possibilities. Maybe you'll be the first to write them! This chapter has
just scratched the surface of what you can do when you make your Java programs
network-aware. The real advantage of a Java-powered web site is that anything you
can imagine is now possible. You're going to come up with ideas others would never
think of. For the first time you're not limited by the capabilities that other companies
build into their browsers. You can give your users both the data you want them to see
and the code they need to see that data at the same time. If you can imagine it, you can
code it.

Chapter 2. Basic Network Concepts
This chapter covers the fundamental networking concepts you need to understand
before writing networked programs in Java (or, for that matter, in any language).
Moving from the most general to the most specific, it explains what you need to know
about networks in general, IP- and TCP/IP-based networks in particular, and the
Internet. This chapter doesn't try to teach you how to wire a network or configure a
router, but you will learn what you need to know to write applications that
communicate across the Internet. Topics covered in this chapter include the definition
of a network; the TCP/IP layer model; the IP, TCP, and UDP protocols; firewalls and
proxy servers; the Internet; and the Internet standardization process. Experienced
network gurus may safely skip this chapter.

2.1 Networks

A network is a collection of computers and other devices that can send data to and
receive data from each other, more or less in real time. A network is normally
connected by wires, and the bits of data are turned into electromagnetic waves that
move through the wires. However, wireless networks that transmit data through
infrared light or microwaves are beginning to appear; and many long-distance
transmissions are now carried over fiber-optic cables that send visible light through
glass filaments. There's nothing sacred about any particular physical medium for the
transmission of data. Theoretically, data could be transmitted by coal-powered
computers that sent smoke signals to each other. The response time (and
environmental impact) of such a network, however, would be rather poor.

Each machine on a network is called a node. Most nodes are computers, but printers,
routers, bridges, gateways, dumb terminals, and Coca-Cola machines can also be
nodes. You might use Java to interface with a Coke machine (in the future, one major
application for Java is likely to be embedded systems), but otherwise you'll mostly
talk to other computers. Nodes that are fully functional computers are also called
hosts. We will use the word node to refer to any device on the network, and the word
host to refer to a node that is a general-purpose computer.

Every network node has an address: a series of bytes that uniquely identify it. You
can think of this group of bytes as a number, but in general it is not guaranteed that
the number of bytes in an address or the ordering of those bytes (big-endian or little-
endian) matches any primitive numeric data type in Java. The more bytes there are in
each address, the more addresses there are available and the more devices that can be
connected to the network simultaneously.

Addresses are assigned differently on different kinds of networks. AppleTalk
addresses are chosen randomly at startup by each host. The host then checks to see
whether any other machine on the network is using that address. If another machine is
using that address, then the host randomly chooses another, checks to see whether that
address is already in use, and so on until it gets one that isn't being used. Ethernet
addresses are attached to the physical Ethernet hardware. Manufacturers of Ethernet
hardware use pre-assigned manufacturer codes to make sure there are no conflicts
between the addresses in their hardware and the addresses of other manufacturers'

hardware. Each manufacturer is responsible for making sure it doesn't ship two
Ethernet cards with the same address. Internet addresses are normally assigned to a
computer by the organization that is responsible for it. However, the addresses that an
organization is allowed to choose for its computers are assigned to it by the
organization's Internet Service Provider (ISP). ISPs get their Internet Protocol (IP)
addresses from one of three regional Internet Registries (the registry for the Americas
and Africa is ARIN, the American Registry for Internet Numbers,
http://www.arin.net/), which are in turn assigned IP addresses by the Internet
Assigned Numbers Authority (IANA, http://www.iana.org/).

On some kinds of networks, nodes also have names that help human beings identify
them. At a set moment in time, a particular name normally refers to exactly one
address. However, names are not locked to addresses. Names can change while
addresses stay the same, or addresses can change while the names stay the same. It is
not uncommon for one address to have several names; and it is possible, though
somewhat less common, for one name to refer to several different addresses.

All modern computer networks are packet-switched networks. This means that data
traveling on the network is broken into chunks called packets, and each packet is
handled separately. Each packet contains information about who sent it and where it's
going. The most important advantage of breaking data into individually addressed
packets is that packets from many ongoing exchanges can travel on one wire, which
makes it much cheaper to build a network: many computers can share the same wire
without interfering. (In contrast, when you make a local telephone call within the
same exchange, you have essentially reserved a wire from your phone to the phone of
the person you're calling. When all the wires are in use, as sometimes happens during
a major emergency or holiday, not everyone who picks up a phone will get a dial tone.
If you stay on the line, you'll eventually get a dial tone when a line becomes free. In
some countries with worse telephone service than the United States, it's not
uncommon to have to wait half an hour or more for a dial tone.) Another advantage of
packets is that checksums can be used to detect whether a packet was damaged in
transit.

We're still missing one important piece: some notion of what computers need to say to
pass data back and forth. A protocol is a precise set of rules defining how computers
communicate: the format of addresses, how data is split into packets, etc. There are
many different protocols defining different aspects of network communication. For
example, the Hypertext Transfer Protocol (HTTP) defines how web browsers and
servers communicate; at the other end of the spectrum, the IEEE 802.3 standard
defines a protocol for how bits are encoded as electrical signals on a particular type of
wire (among other protocols). Open, published protocol standards allow software and
equipment from different vendors to communicate with each other: your web browser
doesn't care whether any given server is a Unix workstation, a Windows box, or a
Macintosh because the server and the browser both speak the same HTTP protocol
regardless of platform.

2.2 The Layers of a Network

Sending data across a network is a complex operation that must be carefully tuned to
the physical characteristics of the network as well as the logical character of the data

being sent. Software that sends data across a network must understand how to avoid
collisions between packets, how to convert digital data to analog signals, how to
detect and correct errors, how to route packets from one host to another, and more.
The process becomes even more complicated when the requirement to support
multiple operating systems and heterogeneous network cabling is added.

To make this complexity manageable and to hide most of it from the application
developer and end user, the different aspects of network communication are separated
into multiple layers. Each layer represents a different level of abstraction between the
physical hardware (e.g., wires and electricity) and the information being transmitted.
Each layer has a strictly limited function. For instance, one layer may be responsible
for routing packets, while the layer above it is responsible for detecting and requesting
retransmission of corrupted packets. In theory, each layer talks only to the layers
immediately above and immediately below it. Separating the network into layers lets
you modify or even replace one layer without affecting the others as long as the
interfaces between the layers stay the same.

There are several different layer models, each organized to fit the needs of a particular
kind of network. This book uses the standard TCP/IP four-layer model appropriate for
the Internet, shown in Figure 2.1. In this model, applications such as Netscape
Navigator and Eudora run in the application layer and talk only to the transport layer.
The transport layer talks only to the application layer and the internet layer. The
internet layer in turn talks only to the host-to-network layer and the transport layer,
never directly to the application layer. The host-to-network layer moves the data
across the wires, fiber-optic cables, or other medium to the host-to-network layer on
the remote system, which then moves the data up the layers to the application on the
remote system.

Figure 2.1. The layers of a network

For example, when a web browser sends a request to a web server to retrieve a page,
it's actually talking only to the transport layer on the local client machine. The
transport layer breaks up the request into TCP segments, adds some sequence
numbers and checksums to the data, and then passes the request to the local internet
layer. The internet layer fragments the segments into IP datagrams of the necessary
size for the local network and passes them to the host-to-network layer for actual
transmission onto the wire. The host-to-network layer encodes the digital data as
analog signals appropriate for the particular physical medium and sends the request
out the wire, where it will be read by the host-to-network layer of the remote system
to which it's addressed.

The host-to-network layer on the remote system decodes the analog signals into
digital data, then passes the resulting IP datagrams to the server's internet layer. The
internet layer does some simple checks to see that the IP datagrams aren't corrupt,
reassembles them if they've been fragmented, and passes them to the server's transport
layer. The server's transport layer checks to see that all the data has arrived and
requests retransmission of any missing or corrupt pieces. (This request actually goes
back down through the server's internet layer, through the server's host-to-network
layer, and back to the client system, where it bubbles up to the client's transport layer,
which retransmits the missing data back down through the layers. This is all
transparent to the application layer.) Once the datagrams composing all or part of the
request have been received by the server's transport layer, it reassembles them into a
stream and passes that stream up to the web server running in the server application
layer. The server responds to the request and sends its response back down through
the layers on the server system for transmission back across the Internet and delivery
to the web client.

As you can guess, the real details are much more elaborate. The host-to-network layer
is by far the most complex, and much has been deliberately hidden. For example, it's
entirely possible that data sent across the Internet will actually be passed through
various routers and their layers before reaching its final destination. However, 90% of
the time your Java code will work in the application layer and will need to talk only to
the transport layer. The other 10% of the time you'll be in the transport layer and
talking to the application layer or the internet layer. The complexity of the host-to-
network layer is hidden from you; that's the point of the layer model.

If you read the network literature, you're also likely to encounter
an alternative seven-layer model called the Open Systems
Interconnection (OSI) Reference Model. For network programs
in Java, the OSI model is overkill. The biggest difference
between the OSI model and the TCP/IP model used in this book
is that the OSI model splits the host-to-network layer into data
link and physical layers and inserts presentation and session
layers in between the application and transport layers. The OSI
model is more general and better suited for non-TCP/IP
networks, though most of the time it's still overly complex. In
any case, Java's network classes work on only TCP/IP networks
and always in the application or transport layers, so for purposes
of this book, nothing is gained by using the more complicated
OSI model.

To the application layer, it seems as if it is talking directly to the application layer on
the other system; the network creates a logical path between the two application layers.
It's easy to understand the logical path if you think about an IRC chat session. Most
participants in an IRC chat would say that they're talking to another person. If you
really push them, they might say that they're talking to the computer, (really the
application layer), which is talking to the other person's computer which is talking to
the other person. Everything more than one layer deep is effectively invisible, and that
is exactly the way it should be. Let's consider each layer in more detail.

2.2.1 The Host-to-Network Layer

As a Java programmer, you're fairly high up in the network food chain. A lot happens
below your radar. In the standard reference model for IP-based Internets (the only
kind of network Java really understands), the hidden parts of the network belong to
the host-to-network layer (also known as the link layer, data link layer, or network-
interface layer). The host-to-network layer defines how a particular network interface,
such as an Ethernet card or a PPP connection, sends IP datagrams over its physical
connection to the local network and the world.

The part of the host-to-network layer made up of the hardware used to connect
different computers (wires, fiber-optic cables, microwave relays, or smoke signals) is
sometimes called the physical layer of the network. As a Java programmer you don't
need to worry about this layer unless something goes wrong with it—the plug falls out
of the back of your computer, or someone drops a backhoe through the T-1 line
between you and the rest of the world. In other words, Java never sees the physical
layer.

For computers to communicate with each other, it isn't sufficient to run wires between
them and send electrical signals back and forth. The computers have to agree on
certain standards for how those signals are interpreted. The first step is to determine
how the packets of electricity or light or smoke map into bits and bytes of data. Since
the physical layer is analog, and bits and bytes are digital, this involves a digital-to-
analog conversion on the sending end and an analog-to-digital conversion on the
receiving end.

Since all real analog systems have noise, error correction and redundancy need to be
built into the way data is translated into electricity. This is done in the data link layer.
The most common data link layer is Ethernet. Other popular data link layers include
TokenRing and LocalTalk. A specific data link layer requires specialized hardware.
Ethernet cards won't communicate on a TokenRing network, for example. Special
devices called gateways convert information from one type of data link layer such as
Ethernet to another such as LocalTalk. The data link layer does not affect you directly
as a Java programmer. However, you can sometimes optimize the data you send in the
application layer to match the native packet size of a particular data link layer, which
can have some affect on performance. This is similar to matching disk reads and
writes to the native block size of the disk. Whatever size you choose, the program will
still run, but some sizes let the program run more efficiently than others, and which
sizes these are can vary from one computer to the next.

2.2.2 The Internet Layer

The next layer of the network, and the first that you need to concern yourself with, is
the internet layer. In the OSI model, the internet layer goes by the more generic name
network layer. A network layer protocol defines how bits and bytes of data are
organized into larger groups called packets, and the addressing scheme by which
different machines find each other. The Internet Protocol is the most widely used
network layer protocol in the world and the only network layer protocol Java
understands. IP is almost exclusively the focus of this book. IPX is the second most
popular protocol in the world and is used mostly by machines on NetWare networks.

AppleTalk is a protocol used mostly by Macintoshes. NetBEUI is a Microsoft
protocol used by Windows for Workgroups and Windows NT. Each network layer
protocol is independent of the lower layers. AppleTalk, IP, IPX, and NetBEUI can
each be used on Ethernet, TokenRing, and other data link layer protocol networks,
each of which can themselves run across different kinds of physical layers.

Data is sent across the internet layer in packets called datagrams. Each IP datagram
contains a header from 20 to 60 bytes long and a payload that contains up to 65,515
bytes of data. (In practice most IP datagrams are much smaller, ranging from a few
dozen bytes to a little more than eight kilobytes.) The header of each IP datagram
contains these 13 items in this order:

4-bit version number

Always 0100 (decimal 4) for current IP; will be changed to 0110 (decimal 6)
for IPv6, but the entire header format will also change in IPv6.

4-bit header length

An unsigned integer between and 15 specifying the number of 4-byte words in
the header; since the maximum value of the header length field is 1111
(decimal 15), an IP header can be at most 60 bytes long.

1-byte type of service

A 3-bit precedence field that is no longer used, 4 type-of-service bits
(minimize delay, maximize throughput, maximize reliability, minimize
monetary cost), and a bit. Not all service types are compatible. Many
computers and routers simply ignore these bits.

2-byte datagram length

An unsigned integer specifying the length of the entire datagram, including
both header and payload.

2-byte identification number

A unique identifier for each datagram sent by a host; allows duplicate
datagrams to be detected and thrown away.

3-bit flags

The first bit is 0; second bit is if this datagram may be fragmented, 1 if it may
not be; third bit is if this is the last fragment of the datagram, 1 if there are
more fragments.

13-bit fragment offset

In the event that the original IP datagram is fragmented into multiple pieces, it
identifies the position of this fragment in the original datagram.

1-byte time-to-live (TTL)

Number of nodes through which the datagram can pass before being discarded;
used to avoid infinite loops.

1-byte protocol

Six for TCP, 17 for UDP, or a different number between and 255 for each of
more than one hundred different protocols (some quite obscure); see
http://www.iana.org/assignments/protocol-numbers for the complete current
list.

2-byte header checksum

A checksum of the header only (not the entire datagram) calculated using a 16-
bit one's complement sum.

4-byte source address

The IP address of the sending node.

4-byte destination address

The IP address of the destination node.

In addition, an IP datagram header may contain from to 40 bytes of optional
information used for security options, routing records, timestamps, and other features
Java does not support. Consequently, we will not discuss these here. The interested
reader is referred to TCP/IP Illustrated, Volume 1, by W. Richard Stevens for more
details on these fields. Figure 2.2 shows how these different quantities are arranged in
an IP datagram. All bits and bytes are big-endian, from most significant to least
significant from left to right.

Figure 2.2. The structure of an IPv4 datagram

2.2.3 The Transport Layer

Raw datagrams have some drawbacks. Most notably, there's no guarantee that they
will be delivered. Furthermore, even if they are delivered, they may have been
corrupted in transit. The header checksum can detect corruption only in the header,
not in the data portion of a datagram. Finally, even if the datagrams arrive
uncorrupted, they do not necessarily arrive in the order in which they were sent.
Individual datagrams may follow different routes from source to destination. Just
because datagram A is sent before datagram B does not mean that datagram A will
arrive before datagram B.

The transport layer is responsible for ensuring that packets are received in the order
they were sent and making sure that no data is lost or corrupted. If a packet is lost,
then the transport layer can ask the sender to retransmit the packet. IP networks
implement this by adding an additional header to each datagram that contains more
information. There are two primary protocols at this level. The first, the Transmission
Control Protocol (TCP), is a high-overhead protocol that allows for retransmission of
lost or corrupted data and delivery of bytes in the order they were sent. The second
protocol, the User Datagram Protocol (UDP), allows the receiver to detect corrupted
packets but does not guarantee that packets are delivered in the correct order (or at all).
However, UDP is often much faster than TCP. TCP is called a reliable protocol; UDP
is an unreliable protocol. Later we'll see that unreliable protocols are much more
useful than they sound.

2.2.4 The Application Layer

The layer that delivers data to the user is called the application layer. The three lower
layers all work together to define how data is transferred from one computer to
another. The application layer decides what to do with that data after it's transferred.
For example, an application protocol such as HTTP (for the World Wide Web) makes
sure that your web browser knows to display a graphic image as a picture, not a long
stream of numbers. The application layer is where most of the network parts of your
programs spend their time. There is an entire alphabet soup of application layer
protocols; in addition to HTTP for the Web, there are SMTP, POP, and IMAP for
email; FTP, FSP, and TFTP for file transfer; NFS for file access; NNTP for news
transfer; and many, many more. In addition, your programs can define their own
application layer protocols as necessary.

2.3 IP, TCP, and UDP

IP, the Internet Protocol, has a number of advantages over other competing protocols
such as AppleTalk and IPX, most stemming from its history. It was developed with
military sponsorship during the Cold War, and ended up with a lot of features that the
military was interested in. First, it had to be robust. The entire network couldn't stop
functioning if the Soviets nuked a router in Cleveland; all messages still had to get
through to their intended destinations (except those going to Cleveland, of course).
Therefore, IP was designed to allow multiple routes between any two points and to
route packets of data around damaged routers.

Second, the military had many different kinds of computers, and they needed all of
them to be able to talk to each other. Therefore, the protocol had to be open and
platform independent. It wasn't good enough to have one protocol for IBM

mainframes and another for PDP-11s. The IBM mainframes needed to talk to the
PDP-11s and any other strange computers that might be around.

Since there are multiple routes between two points and since the quickest path
between two points may change over time as a function of network traffic and other
factors (for example, the existence of Cleveland), the packets that make up a
particular data stream may not all take the same route. Furthermore, they may not
arrive in the order they were sent, if they even arrive at all. To improve on the basic
scheme, the TCP was layered on top of IP to give each end of a connection the ability
to acknowledge receipt of IP packets and request retransmission of lost or corrupted
packets. Furthermore, TCP allows the packets to be put back together at the receiving
end in the same order they were sent at the sending end.

TCP, however, carries a fair amount of overhead. Therefore, if the order of the data
isn't particularly important and if the loss of individual packets won't completely
corrupt the data stream, packets are sometimes sent without the guarantees that TCP
provides. This is accomplished through the use of the UDP protocol. UDP is an
unreliable protocol that does not guarantee that packets will arrive at their destination
or that they will arrive in the same order they were sent. Although this would be a
problem for some uses, such as file transfer, it is perfectly acceptable for applications
where the loss of some data would go unnoticed by the end user. For example, losing
a few bits from a video or audio signal won't cause much degradation; it would be a
bigger problem if you had to wait for a protocol such as TCP to request a
retransmission of missing data. Furthermore, error-correcting codes can be built into
UDP data streams at the application level to account for missing data.

Besides TCP and UDP, there are a number of other protocols that can run on top of IP.
The one most commonly asked for is ICMP, the Internet Control Message Protocol,
which uses raw IP datagrams to relay error messages between hosts. The best known
use of this protocol is in the ping program. Java does not support ICMP nor does it
allow the sending of raw IP datagrams (as opposed to TCP segments or UDP
datagrams). The only protocols Java supports are TCP and UDP and application layer
protocols built on top of these. All other transport layer, internet layer, and lower-
layer protocols such as ICMP, IGMP, ARP, RARP, RSVP, and others can be
implemented in Java programs only by using native code.

2.3.1 IP Addresses and Domain Names

As a Java programmer, you don't need to worry about the inner workings of IP, but
you do need to know about addressing. Every computer on an IP network is identified
by a 4-byte number. This is normally written in a format like 199.1.32.90, where each
of the four numbers is one unsigned byte ranging in value from to 255. Every
computer attached to an IP network has a unique 4-byte address. When data is
transmitted across the network in packets, each packet's header includes the address of
the machine for which the packet is intended (the destination address) and the address
of the machine that sent the packet (the source address). Routers along the way choose
the best route to send the packet along by inspecting the destination address. The
source address is included so that the recipient will know who to reply to.

Although computers are comfortable with numbers, human beings aren't good at
remembering them. Therefore, the Domain Name System (DNS) was developed to
translate hostnames that humans can remember (like http://www.oreilly.com) into
numeric Internet addresses (like 198.112.208.23). When Java programs access the
network, they need to process both these numeric addresses and their corresponding
hostnames. There are a series of methods for doing this in the
java.net.InetAddress class, which is discussed in Chapter 6.

2.3.2 Ports

Addresses would be all you needed if each computer did no more than one thing at a
time. However, modern computers do many different things at once. Email needs to
be separated from FTP requests, which need to be separated from web traffic. This is
accomplished through ports. Each computer with an IP address has several thousand
logical ports (65,535 per transport layer protocol, to be precise). These are purely
abstractions in the computer's memory and do not represent anything physical like a
serial or parallel port. Each port is identified by a number from 1 to 65,535. Each port
can be allocated to a particular service.

For example, the HTTP service, which is used by the Web, generally runs on port 80:
we say that a web server listens on port 80 for incoming connections. SMTP or email
servers run on port 25. When data is sent to a web server on a particular machine at a
particular IP address, it is also sent to a particular port (usually port 80) on that
machine. The receiver checks each packet it sees for the port and sends the data to any
programs that are listening to the specified port. This is how different types of traffic
are sorted out.

Port numbers from 1 to 1023 are reserved for well-known services such as finger, FTP,
HTTP, and email. On Unix systems, only programs running as root can receive data
from these ports, but all programs may send data to them. On Windows and the Mac,
including Windows NT, any program may use these ports without special privileges.
Table 2.1 shows the well-known ports for the protocols that are discussed in this book.
These assignments are not absolutely guaranteed; in particular, web servers often run
on ports other than 80, either because multiple servers need to run on the same
machine, or because the person who installed the server doesn't have the root
privileges needed to run it on port 80. On Unix systems, a fairly complete listing of
assigned ports is stored in the file /etc/services.

Table 2.1. Well-known Port Assignments
Protocol Port Protocol Purpose

echo 7 TCP/UDP Echo is a test protocol used to verify that two machines are able to connect
by having one echo back the other's input.

discard 9 TCP/UDP Discard is a less useful test protocol in which all data received by the
server is ignored.

daytime 13 TCP/UDP Provides an ASCII representation of the current time on the server.
ftp-data 20 TCP FTP uses two well-known ports. This port is used to transfer files.
FTP 21 TCP This port is used to send FTP commands like put and get.
Telnet 23 TCP Telnet is a protocol used for interactive, remote command-line sessions.

SMTP 25 TCP The Simple Mail Transfer Protocol is used to send email between
machines.

time 37 TCP/UDP
A time server returns the number of seconds that have elapsed on the
server since midnight, January 1, 1900, as a 4-byte, signed, big-endian
integer.

whois 43 TCP Whois is a simple directory service for Internet network administrators.

finger 79 TCP Finger is a service that returns information about a user or users on the
local system.

HTTP 80 TCP Hypertext Transfer Protocol is the underlying protocol of the World Wide
Web.

POP3 110 TCP Post Office Protocol Version 3 is a protocol for the transfer of
accumulated email from the host to sporadically connected clients.

NNTP 119 TCP Usenet news transfer is more formally known as the Network News
Transfer Protocol.

RMI
Registry 1099 TCP This is the registry service for Java remote objects. This will be discussed

in Chapter 18.

2.4 The Internet

The Internet is the world's largest IP-based network. It is an amorphous group of
computers in many different countries on all seven continents (Antarctica included)
that talk to each other using the IP protocol. Each computer on the Internet has at least
one unique IP address by which it can be identified. Most of them also have at least
one name that maps to that IP address. The Internet is not owned by anyone, though
pieces of it are. It is not governed by anyone, which is not to say that some
governments don't try. It is simply a very large collection of computers that have
agreed to talk to each other in a standard way.

The Internet is not the only IP-based network, but it is the largest one. Other IP
networks are called internets with a little i: for example, a corporate IP network that is
not connected to the Internet. Intranet is a current buzzword that loosely describes
corporate practices of putting lots of data on internal web servers. Since web browsers
use IP, most intranets do too (though a few tunnel it through existing AppleTalk or
IPX installations).

Almost certainly the internet that you'll be using is the Internet. To make sure that
hosts on different networks on the Internet can communicate with each other, a few
rules need to be followed that don't apply to purely internal internets. The most
important rules deal with the assignment of addresses to different organizations,
companies, and individuals. If everyone picked the Internet addresses she wanted at
random, conflicts would arise almost immediately when different computers showed
up on the Internet with the same address.

2.4.1 Internet Address Classes

To avoid this problem, Internet addresses are assigned to different organizations by
the Internet Assigned Numbers Authority (IANA),[1] generally acting through
intermediaries called ISPs. When a company or an organization wants to set up an IP-
based network connected to the Internet, its ISP gives it a block of addresses.
Currently, these blocks are available in two sizes called Class B and Class C. A Class
C address block specifies the first 3 bytes of the address, for example, 199.1.32. This
allows room for 254 individual addresses from 199.1.32.1 to 199.1.32.254.[2] A Class
B address block specifies only the first 2 bytes of the addresses an organization may

use, for instance, 167.1. Thus a Class B address has room for 65,024 different hosts
(256 Class C-sized blocks times 254 hosts per Class C block).

[1] In the near future, this function will be assumed by the Internet Corporation for Assigned Names and Numbers
(ICANN).

[2] Addresses with the last byte either .0 or .255 are reserved and should never actually be assigned to hosts.

Numeric addressing becomes important when you want to restrict access to your site.
For instance, you may want to prevent a competing company from having access to
your web site. In this case, you would find out your competitor's address block and
throw away all requests that come from that block of addresses. More commonly, you
might want to make sure that only people within your organization can access your
internal web server. In this case, you would deny access to all requests except those
that come from within your own address block.

There's no block with a size between a Class B and a Class C. This has become a
problem because there are many organizations with more than 254 computers
connected to the Internet but fewer than 65,024 of them. If each of these organizations
gets a full Class B block, a lot of IP addresses are wasted. This is a problem since
there's a limited number of addresses, about 4.2 billion to be precise. That sounds like
a lot, but it gets crowded quickly when you can easily waste 50,000 or 60,000
addresses at a shot.

What About Class A Addresses?
When the Internet was originally designed, there was also room for 126 Class
A addresses that specified only the first byte and allowed more than 16
million different hosts within one organization. However, almost no single
organization needs this many addresses, and a large part of any Class A
address tends to go unused. Since Internet addresses are a finite quantity, the
IANA stopped giving out Class A addresses a long time ago, though a few
more than three dozen are still in use.

There are also Class D and E addresses. Class D addresses are used for IP
multicast group and will be discussed at length in Chapter 14. Class D
addresses all begin with the four bits 1110. Class E addresses begin with the
five bits 11110 and are reserved for future extensions to the Internet.

There are also many networks, such as the author's own personal basement area
network, that have a few to a few dozen computers but not 255 of them. To more
efficiently allocate the limited address space, Classless Inter-Domain Routing (CIDR)
was invented. CIDR mostly (though not completely) replaces the whole A, B, C
addressing scheme with one based on a specified numbers of prefix bits. These are
generally written as /24 or /19. The number after the / indicates the number of fixed
prefix bits. Thus a /24 fixes the first 24 bits in the address, leaving 8 bits available to
distinguish individual nodes. This allows 256 nodes and is equivalent to an old-style
Class C. A /19 fixes 19 bits, leaving 13 for individual nodes within the network. It's
equivalent to 32 separate Class C networks or an eighth of a Class B. A /28, generally
the smallest you're likely to encounter in practice, leaves only four bits for identifying

local nodes. It can handle networks with up to 16 nodes. CIDR also carefully specifies
which address blocks are associated with which ISPs. This helps keep the Internet
routing tables smaller and more manageable than they would be under the old system.

Several address blocks and patterns are special. All Internet addresses beginning with
10., 172.16. through 172.31., and 192.168. are deliberately unassigned. They can be
used on internal networks, but no host using addresses in these blocks is allowed onto
the global Internet. These nonroutable addresses are useful for building private
networks that can't be seen from the rest of the Internet or for building a large network
when you've been assigned only a Class C address block. Addresses beginning with
127 (most commonly 127.0.0.1) always mean the local loopback address. That is,
these addresses always point to the local computer, no matter which computer you're
running on. The hostname for this address is generally localhost. The address 0.0.0.0
always refers to the originating host but may be used only as a source address, not a
destination. Similarly, any address that begins with 0.0 is assumed to refer to a host on
the same local network.

2.4.2 Firewalls

There are some naughty people on the Internet. To keep them out, it's often helpful to
set up one point of access to a local network and check all traffic into or out of that
access point. The hardware and software that sits between the Internet and the local
network, checking all the data that comes in or out to make sure it's kosher, is called a
firewall.

The most basic firewall is a packet filter that inspects each packet coming into or out
of a network and uses a set of rules to determine whether that traffic is allowed.
Filtering is usually based on network addresses and ports. For example, all traffic
coming from the Class C network 193.28.25 may be rejected because you had bad
experiences with hackers from that net in the past. Outgoing Telnet connections may
be allowed, but incoming Telnet connections may not be. Incoming connections on
port 80 (Web) may be allowed but only to the corporate web server. The exact
configuration of a firewall—which packets of data are and are not allowed to pass
through—depends on the security needs of an individual site. Java doesn't have much
to do with firewalls except insofar as they often get in your way.

2.4.3 Proxy Servers

Proxy servers are related to firewalls. If a firewall prevents hosts on a network from
making direct connections to the outside world, a proxy server can act as a go-
between. Thus a machine that is prevented from connecting to the external network by
a firewall would make a request for a web page from the local proxy server instead of
requesting the web page directly from the remote web server. The proxy server would
then request the page from the web server and forward the response to the original
requester. Proxies can also be used for FTP services and other connections. One of the
security advantages of using a proxy server is that external hosts find out only about
the proxy server. They do not learn the names and IP addresses of the internal
machines, making it more difficult to hack into internal systems.

While firewalls generally operate at the level of the transport or internet layer, proxy
servers operate at the application layer. A proxy server has detailed understanding of
some application level protocols, like HTTP and FTP. Packets that pass through the
proxy server can be examined to ensure that they contain data appropriate for their
type. For instance, FTP packets that seem to contain Telnet data can be rejected.
Figure 2.3 shows how proxy servers fit into the layer model.

Figure 2.3. Layered connections through a proxy server

As long as all access to the Internet is forwarded through the proxy server, access can
be tightly controlled. For instance, a company might choose to block access to
http://www.playboy.com but allow access to http://www.microsoft.com. Some
companies allow incoming FTP but disallow outgoing FTP so that confidential data
cannot be as easily smuggled out of the company. Some companies have begun using
proxy servers to track their employees' web usage so that they can see who's using the
Internet to get tech support and who's using it to check out the Playmate of the Month.
Such monitoring of employee behavior is controversial and not exactly an indicator of
enlightened management techniques.

Proxy servers can also be used to implement local caching. When a file is requested
from a web server, the proxy server will first check to see whether the file is in its
cache. If the file is in the cache, then the proxy will serve the file from the cache
rather than from the Internet. If the file is not in the cache, then the proxy server will
retrieve the file, forward it to the requester, and store it in the cache for the next time
it is requested. This scheme can significantly reduce load on an Internet connection
and greatly improve response time. America Online (AOL) runs one of the largest
farms of proxy servers in the world to speed the transfer of data to its users. If you
look at a web server log file, you'll probably find some hits from clients with names
like http://www-d1.proxy.aol.com, but not as many as you'd expect given the more
than 20 million AOL subscribers. That's because AOL requests only pages they don't
already have in their cache. Many other large ISPs do similarly.

The biggest problem with proxy servers is their inability to cope with all but a few
protocols. Generally established protocols like HTTP, FTP, and SMTP are allowed to
pass through, while newer protocols like Napster are not. (Some network
administrators would consider that a feature.) In the rapidly changing world of the
Internet, this is a significant disadvantage. It's a particular disadvantage for Java
programmers because it limits the effectiveness of custom protocols. In Java, it's easy

and often useful to create a new protocol that is optimized for your application.
However, no proxy server will ever understand these one-of-a-kind protocols.

Applets that run in web browsers will generally use the proxy server settings of the
web browser itself. This is generally set in a dialog box (possibly hidden several
levels deep in the preferences) like the one shown in Figure 2.4. Standalone Java
applications can indicate the proxy server to use by setting the socksProxyHost and
socksProxyPort properties (if you're using a SOCKS proxy server), or
http.proxySet, http.proxyHost, http.proxyPort, https.proxySet,
https.proxyHost, https.proxyPort, ftpProxySet, ftpProxyHost, ftpProxyPort,
gopherProxySet, gopherProxyHost, and gopherProxyPort system properties (if
you're using protocol-specific proxies). You can set system properties from the
command-line using the -D flag like this:

java -DsocksProxyHost=socks.cloud9.net -DsocksProxyPort=1080 MyClass

These can also be set by any other convenient means to set system properties, such as
including them in the appletviewer.properties file like this:

ftpProxySet=true
ftpProxyHost=ftp.proxy.cloud9.net
ftpProxyPort=1000
gopherProxySet=true
gopherProxyHost=gopher.proxy.cloud9.net
gopherProxyPort=9800
http.proxySet=true
http.proxyHost=web.proxy.cloud9.net
http.proxyPort=8000
https.proxySet=true
https.proxyHost=web.proxy.cloud9.net
https.proxyPort=8001

Figure 2.4. Netscape Navigator proxy server settings

.5 The Client/Server Model

Most modern network programming is based on a client/server model. A client/server
application typically stores large quantities of data on an expensive, high-powered
server, while most of the program logic and the user interface is handled by client
software running on relatively cheap personal computers. In most cases, a server
primarily sends data, while a client primarily receives it, but it is rare for one program
to send or receive exclusively. A more reliable distinction is that a client initiates a
conversation, while a server waits for clients to start conversations with it. Figure 2.5
illustrates both possibilities. In some cases, the same program may be both a client
and a server.

Figure 2.5. A client/server connection

Some servers process and analyze the data before sending the results to the client.
Such servers are often referred to as "application servers" to distinguish them from the
more common file servers and database servers. A file or database server will retrieve
information and send it to a client, but it won't process that information. In contrast,
an application server might look at an order entry database and give the clients reports
about monthly sales trends. An application server is not a server that serves files that
happen to be applications.

You are already familiar with many examples of client/server systems. In 2000, the
most popular client/server system on the Internet is the Web. Web servers such as
Apache respond to requests from web clients such as Netscape. Data is stored on the
web server and is sent out to the clients that request it. Aside from the initial request
for a page, almost all data is transferred from the server to the client, not from the
client to the server. Web servers that use CGI programs double as application and file
servers. An older service that fits the client/server model is FTP. FTP uses different
application protocols and different software but is still split into FTP servers, which
send files, and FTP clients, which receive files. People often use FTP to upload files
from the client to the server, so it's harder to say that the data transfer is primarily in
one direction, but it is still true that an FTP client initiates the connection and the FTP
server responds to it.

Java is a powerful environment in which to write GUI programs that access many
different kinds of servers. The preeminent example of a client program written in Java
is HotJava, the web browser from Sun, which is a general-purpose web client. Java
makes it easy to write clients of all sorts, but it really shines when you start writing
servers. Java does have some performance bottlenecks, mostly centered around GUIs
and disk I/O. However, neither of these is a limiting factor for server programs where
network bandwidth and robustness are far more important.

Not all applications fit easily into a client/server model. For instance, in networked
games it seems likely that both players will send data back and forth roughly equally
(at least in a fair game). These sorts of connections are called "peer-to-peer". The
telephone system is the classic example of a peer-to-peer network. Each phone can
either call another phone or be called by another phone. You don't have to buy one
phone to send calls and another to receive them.

Java does not have explicit peer-to-peer communication in its networking API.
However, applications can easily implement peer-to-peer communications in several
ways, most commonly by acting as both a server and a client. Alternatively, the peers
can communicate with each other through an intermediate server program that
forwards data from one peer to the other peers. This is especially useful for applets
whose security manager restricts them from talking directly to each other.

2.6 Internet Standards

This book discusses several application layer Internet protocols, most notably HTTP.
However, this is not a book about those protocols, and it tries not to say more than the
minimum you need to know. If you need detailed information about any protocol, the
definitive source is the standards document for the protocol.

While there are many standards organizations in the world, the two that produce most
of the standards relevant to network programming and protocols are the Internet
Engineering Task Force (IETF) and the World Wide Web Consortium (W3C). The
IETF is a relatively informal, democratic body open to participation by any interested
party. Its standards are based on "rough consensus and running code" and tend to
follow rather than lead implementations. IETF standards include TCP/IP, MIME, and
SMTP. The W3C, by contrast, is a vendor organization, controlled by its dues-paying
member corporations, that explicitly excludes participation by individuals. For the
most part, the W3C tries to define standards in advance of implementation. W3C
standards include HTTP, HTML, and XML.

2.6.1 IETF RFCs

IETF standards and near standards are published as Internet drafts and requests for
comments (RFCs). RFCs and Internet drafts range from informational documents of
general interest to detailed specifications of standard Internet protocols such as FTP.
RFCs that document a standard or a proposed standard are published only with the
approval of the Internet Engineering Steering Group (IESG) of the Internet
Engineering Taskforce (IETF). All IETF-approved standards are RFCs, but not all
RFCs are IETF standards. RFCs are available from many locations on the Internet,
including http://www.faqs.org/rfc/ and http://www.ietf.org/rfc.html.

For the most part, RFCs, particularly standards-oriented RFCs, are very technical,
turgid, and nearly incomprehensible. Nonetheless, they are often the only complete
and reliable source of information about a particular protocol.

Most proposals for a standard begin when a person or group gets an idea and builds a
prototype. The prototype is incredibly important. Before something can become an
IETF standard, it must actually exist and work. This requirement ensures that IETF
standards are at least feasible, unlike the standards promulgated by some other
standards bodies.

If the prototype becomes popular outside its original developers and if other
organizations begin implementing their own versions of the protocol, then a working
group may be formed under the auspices of the IETF. This working group attempts to
document the protocol in an Internet-Draft. Internet-Drafts are working documents
and change frequently to reflect experience with the protocol. The experimental
implementations and the Internet-Draft evolve in rough synchronization, until
eventually the working group agrees that the protocol is ready to become a formal
standard. At this point, the proposed specification is submitted to the IESG.

At every step of the standardization track, the proposal is in one of six states or
maturity levels:

• Experimental
• Proposed standard
• Draft standard
• Standard
• Informational
• Historic

For some time after the proposal is submitted, it is considered experimental. Being in
an experimental stage does not imply that the protocol is not solid or that it is not
widely used; unfortunately, the standards process usually lags behind de facto
acceptance of the standard. If the IESG likes the experimental standard or it is in
widespread use, the IESG will assign it an RFC number and publish it as an
experimental RFC, generally after various changes.

If the experimental standard holds up well in further real-world testing, the IESG may
advance it to the status of proposed standard. A proposed standard is fairly loose and
is based on the experimental work of possibly as little as one organization. Changes
may still be made to a protocol in this stage.

Once the bugs appear to have been worked out of a proposed standard and there are at
least two independent implementations, the IESG may recommend that a proposed
standard be promoted to a draft standard. A draft standard will probably not change
too much before eventual standardization unless major flaws are found. The primary
purpose of a draft standard is to clean up the RFC that documents the protocol and
make sure the documentation conforms to actual practice, rather than to change the
standard itself.

When a protocol completes this process, it has become an official Internet standard. It
is assigned an STD number and is published as an STD in addition to an RFC. The
absolute minimum time for a standard to be approved as such is 10 months, but in
practice, the process almost always takes much longer. The commercial success of the
Internet hasn't helped, since standards must now be worked out in the presence of
marketers, vulture capitalists, lawyers, NSA spooks, and others with vested interests
in seeing particular technologies succeed or fail. Therefore, many of the "standards"
that this book references are in either the experimental, proposed, or draft stage. As of
publication, there are almost 3,000 RFCs. Fewer than 100 of these have become STDs,
and some of those that have are now obsolete. RFCs relevant to this book are detailed
in Table 2.2.

Some RFCs that do not become standards are considered informational. These include
RFCs that specify protocols that are widely used but weren't developed within the
normal Internet standards track and haven't been through the formal standardization
process. For example, NFS, originally developed by Sun, is described in the
informational RFC 1813. Other informational RFCs provide useful information (such
as users' guides) but don't document a protocol. For example, RFC 1635, How to Use
Anonymous FTP, is an informational RFC.

Finally, changing technology and increasing experience renders some protocols and
their associated RFCs obsolete. These are classified as historic. Historic protocols
include IMAP3 (replaced by IMAP4), POP2 (replaced by POP3), and Remote
Procedure Call Version 1 (replaced by Remote Procedure Call Version 2).

In addition to a protocol's maturity level, a protocol has a requirement level. The
possible requirement levels are:

Required

Must be implemented by all Internet hosts. There are very few required
protocols. IP itself is one (RFC 791), but even protocols as important as TCP
or UDP are only recommended. A standard is only required if it is absolutely
essential to the proper functioning of a host on the Internet.

Recommended

Should be implemented by Internet hosts that don't have a specific reason not
to implement it. Most protocols that you are familiar with (for example, TCP
and UDP, SMTP for email, Telnet for remote login, etc.) are recommended.

Elective

Can be implemented by anyone who wants to use the protocol. For example,
RFC 2045, Multipurpose Internet Mail Extensions, is a Draft Elective
Standard. Given the importance of MIME these days, this protocol should
probably be promoted to Recommended.

Limited Use

May have to be implemented in certain unusual situations but won't be needed
by most hosts. Mainly these are experimental protocols.

Not Recommended

Should not be implemented by anyone.

Table 2.2 lists the RFCs and STDs that provide formal documentation for the
protocols discussed in this book.

Table 2.2. Selected Internet RFCs

RFC Title Maturity
Level

Requirement
Level

RFC 2600

STD 1

Internet Official
Protocol
Standards

Standard Required

Describes the standardization process and the current
status of the different Internet protocols.

RFC 1700

STD 2

Assigned
Numbers Standard Required

This megalith of a document contains all of the
information maintained by the Internet Assigned
Numbers Authority, including MIME types and
subtypes, port numbers for different services, the
meanings of various numbers in IP headers, and more.
As RFCs go, this one is rather unusual but absolutely
essential.

RFC 1122

RFC 1123

STD 3

Host
Requirements Standard Required

Documents which protocols must be supported by all
Internet hosts at different layers (data link layer, IP
layer, transport layer, and application layer).

RFC 791

RFC 919RFC 922

RFC 950

STD 5

Internet Protocol Standard Required

The IP internet layer protocol.

RFC 768

STD 6

User Datagram
Protocol Standard Recommended

An unreliable, connectionless transport layer protocol.

RFC 792

STD 5

Internet Control
Message
Protocol(ICMF)

Standard Required

An internet layer protocol that uses raw IP datagrams
but is not supported by Java. Its most familiar use is
the ping program.

RFC 793

STD 7

Transmission
Control Protocol Standard Recommended

A reliable, connection-oriented, streaming transport
layer protocol.

RFC 821

STD 10

Simple Mail
Transfer
Protocol

Standard Recommended

The application layer protocol by which one host
transfers email to another host. This standard doesn't
say anything about email user interfaces; it covers the
mechanism for passing email from one computer to
another.

RFC 822

STD 11

Format of
Electronic Mail
Messages

Standard Recommended

The basic syntax for ASCII text email messages.
MIME is designed to extend this to support binary
data while ensuring that the messages transferred still
conform to this standard.

RFC 854

RFC 855

STD 8

Telnet Protocol Standard Recommended

An application-layer remote login service for
command-line environments based around an abstract
network virtual terminal (NVT) and TCP.

RFC 862

STD 20
Echo Protocol Standard Recommended

An application-layer protocol that echoes back all data
it receives over both TCP and UDP; useful as a
debugging tool.

RFC 863

STD 21
Discard Protocol Standard Elective

An application layer protocol that receives packets of
data over both TCP and UDP and sends no response to
the client; useful as a debugging tool.

RFC 864

STD 22

Character
Generator
Protocol

Standard Elective

An application layer protocol that sends an indefinite
sequence of ASCII characters to any client that
connects over either TCP or UDP; also useful as a
debugging tool.

RFC 865

STD 23
Quote of the Day Standard Elective

An application layer protocol that returns a quotation
to any user who connects over either TCP or UDP and
then closes the connection.

RFC 867

STD 25

Daytime
Protocol Standard Elective

An application layer protocol that sends a human-
readable ASCII string indicating the current date and
time at the server to any client that connects over TCP
or UDP. This contrasts with the various NTP and Time
Server protocols that do not return data that can be
easily read by humans.

RFC 868

STD 26
Time Protocol Standard Elective

An application layer protocol that sends the time in
seconds since midnight, January 1, 1900 to a client

connecting over TCP or UDP. The time is sent as a
machine-readable, 32-bit signed integer. The standard
is incomplete in that it does not specify how the
integer is encoded in 32 bits, but in practice a two's
complement, big-endian integer is used.

RFC 959

STD 9

File Transfer
Protocol Standard Recommended

An optionally authenticated, two-socket application
layer protocol for file transfer that uses TCP.

RFC 977
Network News
Transfer
Protocol

Proposed
Standard Elective

The application layer protocol by which Usenet news
is transferred from machine to machine over TCP;
used by both news clients talking to news servers and
news servers talking to each other.

RFC 1034

RFC 1035

STD 13

Domain Name
System Standard Recommended

The collection of distributed software by which
hostnames that human beings can remember, like
www.oreilly.com, are translated into numbers that
computers can understand, like 198.112.208.11. This
STD defines how domain name servers on different
hosts communicate with each other using UDP.

RFC 1112
Host Extensions
for IP
Multicasting

Standard Recommended

The Internet layer methods by which conforming
systems can direct a single packet of data to multiple
hosts. This is called multicasting; Java's support for
multicasting is discussed in Chapter 14.

RFC 1153 Digest Message

Format for Mail Experimental Limited use

A format for combining multiple postings to a mailing
list into a single message.

RFC 1288 Finger Protocol Draft

Standard Elective

An application layer protocol for requesting
information about a user at a remote site. It can be a
security risk.

RFC 1303
Network Time
Protocol
(Version 3)

Draft
Standard Elective

A more precise application layer protocol for
synchronizing clocks between systems that attempts to
account for network latency.

RFC 1350

STD 33

Trivial File
Transfer
Protocol

Standard Elective

An unauthenticated application layer protocol for file
transfer that uses UDP; typically used by diskless
workstations to retrieve files necessary for booting
from a server.

RFC 1738
Uniform
Resource
Locators

Proposed
Standard Elective

Full URLs like http://www.amnesty.org/ and
ftp://ftp.dnai.com/users/c/cityjava/javaio.htm.

RFC 1808

Relative
Uniform
Resource
Locators

Proposed
Standard Elective

Partial URLs like /javafaq/books/
and ../examples/07/index.html used as values of the
HREF attribute of an HTML A element.

RFC 1939

STD 53

Post Office
Protocol,
Version 3

Standard Elective

An application layer protocol used by sporadically
connected email clients such as Eudora to retrieve mail
from a server over TCP.

RFC 1945

Hypertext
Transfer
Protocol (HTTP
1.0)

Informational N/A

Version 1.0 of the application layer protocol used by
web browsers talking to web servers over TCP;
developed by the W3C rather than the IETF.

RFC 2045

RFC 2046

RFC 2047

Multipurpose
Internet Mail
Extensions

Draft
Standard Elective

A means of encoding binary data and non-ASCII text
for transmission through Internet email and other
ASCII-oriented protocols.

RFC 2068

Hypertext
Transfer
Protocol (HTTP
1.1)

Proposed
Standard Elective

Version 1.1 of the application layer protocol used by
web browsers talking to web servers over TCP.

RFC 2141
Uniform
Resource Names
(URN) Syntax

Proposed
Standard Elective

Similar to URLs but intended to refer to actual
resources in a persistent fashion rather than the
transient location of those resources.

RFC 2396

Uniform
Resource
Identifiers
(URI): Generic
Syntax

Proposed
Standard Elective

Similar to URLs but cut a broader path. For instance,
ISBN numbers may be URIs even if the book cannot
be retrieved over the Internet.

The IETF has traditionally worked behind the scenes, codifying and standardizing
existing practice. Although its activities are completely open to the public, it's
traditionally been very low profile. There simply aren't that many people who get
excited about the details of network arcana like the Internet Gateway Message
Protocol (IGMP). The participants in the process have mostly been engineers and
computer scientists, including many from academia as well as the profit-driven
corporate world. Consequently, despite often vociferous debates about ideal
implementations, most serious IETF efforts have produced reasonable standards.

Unfortunately, that can't be said of the IETF's efforts to produce Web (as opposed to
Internet) standards. In particular, the IETF's early effort to standardize HTML was a
colossal failure. The refusal of Netscape and other key vendors to participate in or
even acknowledge the process was a crucial problem. That HTML was simple enough
and high-profile enough to attract the attention of assorted market-droids and random
flamers didn't help matters either. Thus in October 1994, the World Wide Web
Consortium was formed as a vendor-controlled body that might be able to avoid the
pitfalls that plagued the IETF's efforts to standardize HTML.

2.6.2 W3C Recommendations

Although the W3C standardization process is similar to the IETF process (a series of
working drafts hashed out on mailing lists resulting in an eventual specification), the
W3C is a fundamentally different organization from the IETF. Whereas the IETF is
open to participation by anyone, only corporations and other organizations may
become members of the W3C. Individuals are specifically excluded. Furthermore,
although nonprofit organizations such as the World Wide Web Artists Consortium
(WWWAC) may join the W3C, only the employees of these organizations may
participate in W3C activities. Their volunteer members are not welcome. Specific
individual experts are occasionally invited to participate in a particular working group
even though they are not employees of a W3C member company. However, the
number of such individuals is quite small relative to the number of interested experts
in the broader community. Membership in the W3C costs $50,000 a year ($5,000 a

year for nonprofits) with a minimum three-year commitment. Membership in the
IETF costs nothing a year with no commitment beyond a willingness to participate.
And although many people participate in developing W3C standards, each standard is
ultimately approved or vetoed by one individual, W3C director Tim Berners-Lee.
IETF standards are approved by a consensus of the people who worked on the
standard. Clearly the IETF is a much more democratic (some would say anarchic) and
open organization than the W3C.

Despite the W3C's strong bias toward the corporate members that pay its bills, it has
so far managed to do a better job of navigating the politically tricky waters of Web
standardization than the IETF. It has produced several HTML standards as well as a
variety of others, such as HTTP, PICS, XML, CSS, MathML, and more. The W3C
has had considerably less success in convincing vendors such as Netscape and
Microsoft to fully and consistently implement its standards.

The W3C has five basic levels of standards:

Recommendation

A Recommendation is the highest level of W3C standard. However, the W3C
is very careful not to actually call this a "standard" for fear of running afoul of
antitrust statutes. The W3C describes a Recommendation as a "work that
represents consensus within W3C and has the Director's stamp of approval.
W3C considers that the ideas or technology specified by a Recommendation
are appropriate for widespread deployment and promote W3C's mission."

Proposed Recommendation

A Proposed Recommendation is mostly complete and unlikely to undergo
more than minor changes. The main purpose of a Proposed Recommendation
is to work out bugs in the specification document rather than in the underlying
technology being documented.

Candidate Recommendation

A Candidate Recommendation indicates that the working group has reached
consensus on all major issues and is ready for third-party comment and
implementations. If the implementations do not uncover any obstructions, the
spec can be promoted to a Proposed Recommendation.

Working Drafts

A Working Draft is a reflection of the current thinking of some (not
necessarily all) members of a working group. It should eventually lead to a
Proposed Recommendation, but by the time it does so it may have changed
substantially.

Note

A Note is generally one of two things, either an unsolicited submission by a
W3C member (similar to an IETF Internet-Draft) or random musings by W3C
staff or related parties that do not actually describe a full proposal (similar to
an IETF informational RFC). Notes will not necessarily lead to the formation
of a working group or a W3C Recommendation.

The W3C has not been around long enough to develop a need for a historical or
informational standard status. Another difference is that the W3C process rarely fails
to elevate a standard to full Recommendation status once work has actively
commenced; that is, once a working group has been formed. This contrasts markedly
with the IETF, which has more than a thousand proposed and draft standards but only
a few dozen actual standards.

PR Standards
In recent years, both the W3C and IETF standards processes have been
abused by companies seeking a little free press or perhaps a temporary boost
to their stock price. The IETF will accept a submission from anyone, and the
W3C will accept a submission from any W3C member. The IETF calls these
Internet- Drafts and will publish them for six months before deleting them.
The W3C refers to these as "acknowledged submissions" and will publish
them indefinitely. However, neither organization actually promises to do
more than acknowledge receipt of these documents. In particular, they do not
promise to form a working group or begin the standardization process.
Nonetheless, press releases invariably misrepresent the submission of such a
document as a far more significant event than it actually is. PR reps can
generally count on suckering at least a few clueless reporters who aren't up-
to-speed on the intimate details of the standardization process. However, at
least now you should be able to recognize these ploys for what they are.

Chapter 3. Basic Web Concepts
By the time you finish this book, I hope you will realize that Java can do a lot more
than create flashy web pages. Nonetheless, many of your programs will be applets on
web pages or will need to talk to web servers to retrieve files or post data. Therefore,
it's important to have a solid understanding of the interaction between web servers and
web browsers.

The Hypertext Transfer Protocol (HTTP) is a standard that defines how a web client
talks to a server and how data is transferred from the server back to the client. HTTP
relies heavily on two other standards: the Multipurpose Internet Mail Extensions
(MIME) and the Hypertext Markup Language (HTML). MIME is a way to encode
different kinds of data, such as sound and text, to be transmitted over a 7-bit ASCII
connection; it also lets the recipient know what kind of data has been sent, so that it
can be displayed properly. As its name implies, MIME was originally designed to
facilitate multimedia email and to provide an encoding that could get binary data past
the most brain-damaged mail transfer programs. However, it is now used much more
broadly. HTML is a simple standard for describing the semantic value of textual data.
This means that you can say "this is a header", "this is a list item", "this deserves

emphasis", and so on, but you can't specify how headers, lists, and other items are
formatted: formatting is up to the browser. HTML is a "hypertext markup language"
because it includes a way to specify links to other documents identified by URLs. A
URL is a way to unambiguously identify the location of a resource on the Internet. To
understand network programming, you'll need to understand URLs, HTML, MIME,
and HTTP in somewhat more detail than the average web page designer.

3.1 URIs

A Uniform Resource Identifier (URI) is a string of characters in a particular syntax
that identifies a resource. The resource identified may be a file on a server, but it may
also be an email address, a news message, a book, a person's name, an Internet host,
the current stock price of Sun Microsystems, or something else. An absolute URI is
made up of a scheme for the URI and a scheme-specific part, separated by a colon like
this:

scheme:scheme-specific-part

The syntax of the scheme-specific part depends on the scheme being used. Many
different schemes will eventually be defined, but current ones include:

data

Base64-encoded data included directly in a link; see RFC 2397

file

A file on a local disk

FTP

An FTP server

HTTP

A World Wide Web server using the Hypertext Transfer Protocol

gopher

A Gopher server

mailto

An email address

news

A Usenet newsgroup

Telnet

A connection to a Telnet-based service

urn

A Uniform Resource Name

In addition, Java makes heavy use of nonstandard, custom schemes such as rmi, jndi,
and doc for various purposes. We'll look at the mechanism behind this in Chapter 15,
when we discuss protocol handlers.

There is no specific syntax that applies to the scheme-specific parts of all URIs.
However, many follow this form:

//authority/path?query

The authority part of the URI names the authority responsible for resolving the rest of
the URI. For instance, the URI http://www.ietf.org/rfc/rfc2396.txt has the scheme http
and the authority www.ietf.org. This means that the server at www.ietf.org is
responsible for mapping the path /rfc/rfc2396.txt to an actual resource. This URI does
not have a query part. The URI
http://www1.fatbrain.com/asp/bookinfo/bookinfo.asp?theisbn=1565924851 has the
scheme http, the authority www1.fatbrain.com, the path /asp/bookinfo/bookinfo.asp,
and the query theisbn=1565924851. The URI urn:isbn:1565924851 has the scheme
urn but doesn't follow the //authority/path?query form for scheme-specific parts.

Although current examples of URIs use an Internet host as an authority, this may not
be true of all future schemes. However, if the authority is an Internet host, then
optional usernames and ports may also be provided to make the authority more
specific. For example, the URI ftp://mp3:mp3@ci43198-
a.ashvil1.nc.home.com:33/VanHalen-Jump.mp3 has the authority
mp3:mp3@ci43198-a.ashvil1.nc.home.com:33. This authority has the username mp3,
the password mp3, the host ci43198-a.ashvil1.nc.home.com, and the port 33. It has the
scheme ftp and the path /VanHalen-Jump.mp3. (In most cases, including the password
in the URI is a big security hole unless, as here, you really do want everyone in the
universe to know the password.)

The path (which includes its initial /) is a string that the authority can use to determine
which resource is identified. Different authorities may interpret the same path to refer
to different resources. For instance, the path /index.html means one thing when the
authority is www.georgewbush.com and something very different when the authority
is www.gore2000.com. The path may be hierarchical, in which case the individual
parts are separated by forward slashes, and the . and .. operators are used to navigate
the hierarchy. These are derived from the pathname syntax on the Unix operating
systems where the Web and URLs were invented. They conveniently map to a
filesystem stored on a Unix web server. However, there is no guarantee that the
components of any particular path actually correspond to files or directories on any
particular filesystem. For example, in the URI
http://www.amazon.com/exec/obidos/ISBN%3D1565924851/cafeaulaitA/002-
3777605-3043449 all the pieces of the hierarchy are just used to pull information out
of a database that's never stored in a filesystem. ISBN%3D1565924851 selects the

particular book from the database by its ISBN number. cafeaulaitA specifies who gets
the referral fee if a purchase is made from this link. And 002-3777605-3043449 is a
session key used to track this visitor's path through the site.

Of course, some URIs aren't at all hierarchical, at least in the filesystem sense. For
example, snews://secnews.netscape.com/netscape.devs-java has a path of
/netscape.devs-java. Although there's some hierarchy to the newsgroup names
indicated by the . between netscape and netscape.devs-java, it's not visible as part of
the URI.

The scheme part is composed of lowercase letters, digits, and the plus sign, period,
and hyphen. It must begin with a lowercase letter. The other three parts of a typical
URI (authority, path, and query) should each be composed of the ASCII alphanumeric
characters; that is, the letters A-Z, a-z, and the digits 0-9. In addition, the punctuation
characters - _ . ! ~ * ` (and ,) may also be used. All other characters including non-
ASCII alphanumerics such as á and should be escaped by a percent sign (%) followed
by the hexadecimal code for the character. For instance, á would be encoded as %E1
and would be encoded %3C0. The latter assumes the underlying character set is 2-
byte Unicode. The current draft of the URI specification does not yet provide a means
of specifying the character set to be used. This is a deficiency that will be corrected in
a future draft. A URL so transformed is said to have been "x-www-form-url-encoded".

Punctuation characters such as / and @ must also be encoded using percent escapes if
they're used in any role other than what's specified for them in the scheme-specific
part of a particular URL. For example, the forward slashes in the URI
http://metalab.unc.edu/javafaq/books/javaio/ do not need to be encoded as %2F
because they serve to delimit the hierarchy as specified for the http URI scheme.
However, if a filename included a / character—for instance, if the last directory were
named Java I/O instead of javaio to more closely match the name of the book—then
the URI would have to be written as
http://metalab.unc.edu/javafaq/books/Java%20I%2FO/. This is not as farfetched as it
might sound to Unix or Windows users. Mac filenames often include a forward slash.
File names on many platforms often contain other characters that need to be encoded
including @, $, +, =, and many more.

3.1.1 URNs

There are two types of URIs: Uniform Resource Locators (URLs) and Uniform
Resource Names (URNs). A URL is a pointer to a particular resource on the Internet
at a particular location. For example, http://www.oreilly.com/catalog/javanp2/ is one
of several URLs for the book Java Network Programming, 2nd edition. A URN is a
name for a particular resource but without reference to a particular location. For
instance, urn:isbn:1565928709 is a URN referring to the same book. As this example
shows, URNs, unlike URLs, are not limited to Internet resources.

The goal of URNs is to handle resources that are mirrored in many different locations
or that have moved from one site to another; they identify the resource itself, not the
place where the resource lives. For instance, when given a URN for a particular piece
of software, an FTP program should get the file from the nearest mirror site. Given a

URN for a book, a browser might reserve the book for you at the local library or order
a copy from a bookstore.

A URN has the general form:

urn:namespace:resource_name

The namespace is the name of a collection of certain kinds of resources maintained by
some authority. The resource_name is the name of a resource within that collection.
For instance, the URN urn:isbn:1565924851 identifies a resource in the isbn
namespace with the identifier 1565924851. Of all the books published, this one
selects the first edition of Java I/O.

The exact syntax of resource names depends on the namespace. The ISBN namespace
expects to see strings composed of 10 characters, all of which are digits with the
single exception that the last character may be a capital letter X instead. Other
namespaces will use very different syntaxes for resource names. The IANA is
responsible for handing out namespaces to different organizations, but the procedure
isn't really in place yet. URNs are still an area of active research and are not much
used by current software. ISBN numbers are pretty much the only example
established so far, and even those haven't been officially standardized as URNs.
Consequently, the rest of this book will use URLs exclusively.

3.1.2 URLs

A URL identifies the location of a resource on the Internet. It specifies the protocol
used to access a server (e.g., FTP, HTTP), the name of the server, and the location of
a file on that server. A typical URL looks like
http://metalab.unc.edu/javafaq/javatutorial.html. This specifies that there is a file
called javatutorial.html in a directory called javafaq on the server metalab.unc.edu,
and that this file can be accessed via the HTTP protocol. The syntax of a URL is:

protocol://username@hostname:port/path/filename#fragment?query

Here the protocol is another word for what was called the scheme of the URI.
(Scheme is the word used in the URI RFC. Protocol is the word used in the Java
documentation.) In a URL, the protocol part can be file, ftp, http, https, gopher, news,
Telnet, wais, or various other strings (though not urn).

The hostname part of a URL is the name of the server that provides the resource you
want, like www.oreilly.com or utopia.poly.edu. It can also be the server's IP address,
like 204.148.40.9 or 128.238.3.21. The username is an optional username for the
server. The port number is also optional. It's not necessary if the service is running on
its default port (port 80 for HTTP servers).

The path points to a particular directory on the specified server. The path is relative to
the document root of the server, not necessarily to the root of the filesystem on the
server. As a rule, servers that are open to the public do not show their entire
filesystem to clients. Rather, they show only the contents of a specified directory. This
directory is called the document root, and all paths and filenames are relative to it.

Thus on a Unix workstation all files that are available to the public may be in
/var/public/html, but to somebody connecting from a remote machine this directory
looks like the root of the filesystem.

The filename points to a particular file in the directory specified by the path. It is often
omitted, in which case it is left to the server's discretion what file, if any, to send.
Many servers send an index file for that directory, often called index.html or
Welcome.html. Others send a list of the files and folders in the directory as shown in
Figure 3.1. Others may send a 403 forbidden error message as shown in Figure 3.2.

Figure 3.1. A web server configured to send a directory list when no index file exists

Figure 3.2. A web server configured to send a 403 error when no index file exists

The fragment is used to reference a named anchor in an HTML document. Some
documents refer to the fragment part of the URL as a "section"; Java documents rather
unaccountably refer to the section as a "Ref ". A named anchor is created in an HTML
document with a tag like this:

Comments

This tag identifies a particular point in a document. To refer to this point, a URL
includes not only the document's filename, but also the named anchor separated from
the rest of the URL by a #:

http://metalab.unc.edu/javafaq/javafaq.html#xtocid1902914

Finally, the query string provides additional arguments for the server. It's commonly
used only in http URLs, where it contains form data for input to CGI programs. This
will be discussed further later on.

3.1.3 Relative URLs

A URL tells the web browser a lot about a document: the protocol used to retrieve the
document, the name of the host where the document lives, and the path to that
document on the host. Most of this information is likely to be the same for other
URLs that are referenced in the document. Therefore, rather than requiring each URL
to be specified in its entirety, a URL may inherit the protocol, hostname, and path of
its parent document (i.e., the document in which it appears). URLs that aren't
complete but inherit pieces from their parent are called relative URLs. In contrast, a
completely specified URL is called an absolute URL. In a relative URL, any pieces
that are missing are assumed to be the same as the corresponding pieces from the
URL of the document in which the URL is found. For example, suppose that while
browsing http://metalab.unc.edu/javafaq/javatutorial.html you click on this hyperlink:

Your browser cuts javatutorial.html off the end of
http://metalab.unc.edu/javafaq/javatutorial.html to get
http://metalab.unc.edu/javafaq/. Then it attaches javafaq.html onto the end of
http://metalab.unc.edu/javafaq/ to get http://metalab.unc.edu/javafaq/javafaq.html.
Finally, it loads that document.

If the relative link begins with a /, then it is relative to the document root instead of
relative to the current file. Thus, if you click on the following link while browsing
http://metalab.unc.edu/javafaq/javatutorial.html :

your browser would throw away /javafaq/javatutorial.html and attach
/boutell/faq/www_ faq.html to the end of http://metalab.unc.edu to get
http://metalab.unc.edu/boutell/faq/www_ faq.html.

Relative URLs have a number of advantages. First and least, they save a little typing.
More importantly, relative URLs allow a single document tree to be served by
multiple protocols; for instance, both FTP and HTTP. The HTTP might be used for
direct surfing while the FTP could be used for mirroring the site. Most importantly of
all, relative URLs allow entire trees of HTML documents to be moved or copied from
one site to another without breaking all the internal links.

3.2 HTML, SGML, and XML

HTML is the primary format used for Web documents. As I said earlier, HTML is a
simple standard for describing the semantic content of textual data. The idea of
describing a text's semantics rather than its appearance comes from an older standard

called the Standard Generalized Markup Language (SGML). Standard HTML is an
instance of SGML. SGML was invented beginning in the mid-1970s by Charles
Goldfarb at IBM. SGML is now an International Standards Organization (ISO)
standard, specifically ISO 8879:1986.

SGML and, by inheritance, HTML are based on the notion of design by meaning
rather than design by appearance. You don't say that you want some text printed in
18-point type; you say that it is a top-level heading (<H1> in HTML). Likewise, you
don't say that a word should be placed in italics. Rather you say it should be
emphasized (in HTML). It is left to the browser to determine how to best display
headings or emphasized text.

The tags used to mark up the text are case insensitive. Thus is the same as
 is the same as is the same as . Some tags have a
matching closing tag to define a region of text. A closing tag is the same as the
opening tag except that the opening angle bracket is followed by a /. For example:
this text is strong; this text is emphasized.
The entire text from the beginning of the start tag to the end of the end tag is called an
element. Thus this text is strong is a STRONG element.

HTML elements may nest but they should not overlap. The first line following is
standard conforming. The second line is not, though many browsers accept it
nonetheless:

Jack and Jill went up the hill
to fetch a pail of water

Some elements have additional attributes that are encoded as name-value pairs on the
start tag. The <H1> tag and most other paragraph-level tags may have an ALIGN
attribute that says whether the header should be centered, left aligned, or right aligned.

For example:

<H1 ALIGN=CENTER> This is a centered H1 heading </H1>

The value of an attribute may be enclosed in double or single quotes like this:

<H1 ALIGN="CENTER"> This is a centered H1 heading </H1>
<H2 ALIGN='LEFT'> This is a left-aligned H2 heading </H2>

Quotes are required only if the value contains embedded spaces. When processing
HTML, you need to be prepared for attribute values that do and don't have quotes.

There have been several versions of HTML over the years. The current standard is
HTML 4.0, most of which is supported by current web browsers with occasional
exceptions. Furthermore, several companies, notably Netscape, Microsoft, and Sun,
have added nonstandard extensions to HTML. These include blinking text, inline
movies, frames, and, most importantly for this book, applets. Some of these
extensions—for example, the <APPLET> tag—are allowed but deprecated in HTML
4.0. Others, such as Netscape's notorious <BLINK>, come out of left field and have no
place in a semantically oriented language like HTML.

HTML 4.0 may be the end of the line, aside from minor fixes. The W3C has decreed
that HTML is getting too bulky to layer more features on top of. Instead, new
development will focus on XML, a semantic language that allows page authors to
create the elements they need rather than relying on a few fixed elements such as P
and LI. For example, if you're writing a web page with a price list, you would likely
have an SKU element, a PRICE element, a MANUFACTURER element, a PRODUCT element,
and so forth. That might look something like this:

<PRODUCT MANUFACTURER="LOTUS">
 <NAME>1-2-3</NAME>
 <VERSION>5.0</VERSION>
 <PLATFORM>Windows</PLATFORM>
 <PRICE CURRENCY="US">299.95</PRICE>
 <SKU>D05WGML</SKU>
</PRODUCT>

This looks a lot like HTML, in much the same way that Java looks like C. There are
elements and attributes. Tags are set off by < and >. Attributes are enclosed in
quotation marks, and so forth. However, instead of being limited to a finite set of tags,
you can create all the new and different tags you need. Since no browser can know in
advance all the different elements that may appear, a stylesheet is used to describe
how each of the items should be displayed.

XML has another advantage over HTML that may not be obvious from this simple
example. HTML can be quite sloppy. Elements are opened but not closed. Attribute
values may or may not be enclosed in quotes. The quotes may or may not be closed.
XML tightens all this up. It lays out very strict requirements for the syntax of a well-
formed XML document, and it requires that browsers reject all malformed documents.
Browsers may not attempt to fix the problem and make a best-faith effort to display
what they think the author meant. They must simply report the error. Furthermore, an
XML document may have a Document Type Definition (DTD) which can impose
additional constraints on valid documents. For example, a DTD may require that
every PRODUCT element contain exactly one NAME element. This has a number of
advantages, but the key one here is that XML documents are far easier to parse than
HTML documents. As a programmer, you will find it much easier to work with XML
than HTML.

XML can be used both for pure XML pages and for embedding new kinds of content
in HTML. For example, the Mathematical Markup Language, MathML, is an XML
application for including mathematical equations in web pages. SMIL, the
Synchronized Multimedia Integration Language, is an XML application for including
timed multimedia such as slide shows and subtitled videos on web pages. For a lot
more information about XML, see my own The XML Bible, IDG Books, 1999.

3.3 HTTP

HTTP, the Hypertext Transfer Protocol, is the standard protocol for communication
between web browsers and web servers. HTTP specifies how a client and server
establish a connection, how the client requests data from the server, how the server
responds to that request, and finally how the connection is closed. HTTP connections
use the TCP/IP protocol for data transfer.

HTTP 1.0 is the currently accepted version of the protocol. It uses MIME to encode
data. The basic protocol defines a sequence of four steps for each request from a client
to the server:

1. Making the connection. The client establishes a TCP connection to the server,
on port 80 by default; other ports may be specified in the URL.

2. Making a request. The client sends a message to the server requesting the
page at a specified URL. The format of this request is typically something like:

GET /index.html HTTP 1.0

GET is a keyword. /index.html is a relative URL to a file on the server. The
file is assumed to be on the machine that receives the request, so there is no
need to prefix it with http://www.thismachine.com/. HTTP 1.0 is the
version of the protocol that the client understands. The request is terminated
with two carriage return/linefeed pairs (\r\n\r\n in Java parlance) regardless
of how lines are terminated on the client or server platform.

Although the GET line is all that is required, a client request can include other
information as well. This takes the following form:

Keyword: Value

The most common such keyword is Accept, which tells the server what kinds
of data the client can handle (though servers often ignore this). For example,
the following line says that the client can handle four MIME types,
corresponding to HTML documents, plain text, and JPEG and GIF images:

Accept: text/html, text/plain, image/gif, image/jpeg

User-Agent is another common keyword that lets the server know what
browser is being used. This allows the server to send files optimized for the
particular browser type. The line below says that the request comes from
Version 2.4 of the Lynx browser:

User-Agent: Lynx/2.4 libwww/2.1.4

Finally, the request is terminated with a blank line; that is, two carriage
return/linefeed pairs, \r\n\r\n. A complete request might look like:

GET /index.html HTTP 1.0
Accept: text/html
Accept: text/plain
User-Agent: Lynx/2.4 libwww/2.1.4

In addition to GET, there are several other request types. HEAD retrieves only
the header for the file, not the actual data. This is commonly used to check the
modification date of a file, to see whether a copy stored in the local cache is
still valid. POST sends form data to the server, and PUT uploads a file to the
server.

3. The response. The server sends a response to the client. The response begins
with a response code, followed by MIME header information, then a blank
line, then the requested document or an error message. Assuming the
requested file is found, a typical response looks like this:

4. HTTP 1.0 200 OK
5. Server: NCSA/1.4.2
6. MIME-version: 1.0
7. Content-type: text/html
8. Content-length: 107
9.
10. <html>
11. <Head>
12. <Title>
13. A Sample HTML file
14. </Title>
15. </Head>
16. <body>
17. The rest of the document goes here
18. </body>

</html>

The first line indicates the protocol the server is using (HTTP 1.0), followed
by a response code. 200 OK is the most common response code, indicating that
the request was successful. Table 3.1 is a complete list of the response codes
used by HTTP 1.0; HTTP 1.1 adds many more to this list. The other header
lines identify the server software (the NCSA server, Version 1.4.2), the
version of MIME in use, the MIME content type, and the length of the
document delivered (not counting this header)—in this case, 107 bytes.

19. Closing the connection. Either the client or the server or both close the
connection. Thus, a separate network connection is used for each request. If
the client reconnects, the server retains no memory of the previous connection
or its results. A protocol that retains no memory of past requests is called
stateless ; in contrast, a stateful protocol such as FTP can process many
requests before the connection is closed. The lack of state is both a strength
and a weakness of HTTP.

Table 3.1. HTTP 1.0 Response Codes
Response

Code Meaning

2xx Successful Response codes between 200 and 299 indicate that the request was received,
understood, and accepted.

200 OK
This is the most common response code. If the request used GET or POST, then the
requested data is contained in the response, along with the usual headers. If the request
used HEAD, then only the header information is included.

201 Created
The server has created a data file at a URL specified in the body of the response. The
web browser should now attempt to load that URL. This is sent only in response to
POST requests.

202 Accepted

This rather uncommon response indicates that a request (generally from POST) is
being processed, but the processing is not yet complete so no response can be returned.
The server should return an HTML page that explains the situation to the user,
provides an estimate of when the request is likely to be completed, and, ideally, has a
link to a status monitor of some kind.

204 No The server has successfully processed the request but has no information to send back

Content to the client. This is usually the result of a poorly written form-processing CGI
program that accepts data but does not return a response to the user indicating that it
has finished.

3xx
Redirection

Response codes from 300 to 399 indicate that the web browser needs to go to a
different page.

300 Multiple
Choices

The page requested is available from one or more locations. The body of the response
includes a list of locations from which the user or web browser can pick the most
appropriate one. If the server prefers one of these choices, the URL of this choice is
included in a Location header, which web browsers can use to load the preferred
page.

301 Moved
Permanently

The page has moved to a new URL. The web browser should automatically load the
page at this URL and update any bookmarks that point to the old URL.

302 Moved
Temporarily

This unusual response code indicates that a page is temporarily at a new URL but that
the document's location will change again in the foreseeable future, so bookmarks
should not be updated.

304 Not
Modified

The client has performed a GET request but used the If-Modified-Since header
to indicate that it wants the document only if it has been recently updated. This status
code is returned because the document has not been updated. The web browser will
now load the page from a cache.

4xx Client
Error

Response codes from 400 to 499 indicate that the client has erred in some fashion,
though this may as easily be the result of an unreliable network connection as it is of a
buggy or nonconforming web browser. The browser should stop sending data to the
server as soon as it receives a 4xx response. Unless it is responding to a HEAD request,
the server should explain the error status in the body of its response.

400 Bad
Request

The client request to the server used improper syntax. This is rather unusual, though it
is likely to happen if you're writing and debugging a client.

401
Unauthorized

Authorization, generally username and password controlled, is required to access this
page. Either the username and password have not yet been presented or the username
and password are invalid.

403 Forbidden
The server understood the request but is deliberately refusing to process it.
Authorization will not help. One reason this occurs is that the client asks for a
directory listing but the server is not configured to provide it, as shown in Figure 3.1.

404 Not Found
This most common error response indicates that the server cannot find the requested
page. It may indicate a bad link, a page that has moved with no forwarding address, a
mistyped URL, or something similar.

5xx Server
Error

Response codes from 500 to 599 indicate that something has gone wrong with the
server, and the server cannot fix the problem.

500 Internal
Server Error An unexpected condition occurred that the server does not know how to handle.

501 Not
Implemented

The server does not have the feature that is needed to fulfill this request. A server that
cannot handle POST requests might send this response to a client that tried to POST
form data to it.

502 Bad
Gateway

This response is applicable only to servers that act as proxies or gateways. It indicates
that the proxy received an invalid response from a server it was connecting to in an
effort to fulfill the request.

503 Service
Unavailable

The server is temporarily unable to handle the request, perhaps because overloading or
maintenance.

HTTP 1.1 more than doubles the number of responses. However, a response code
from 200 to 299 always indicates success; a response code from 300 to 399 always
indicates redirection; one from 400 to 499 always indicates a client error; and one
from 500 to 599 indicates a server error.

HTTP 1.0 is documented in the informational RFC 1945; it is not an official Internet
standard because it was primarily developed outside the IETF by early browser and
server vendors. HTTP 1.1 is a proposed standard being developed by the W3C and the
HTTP working group of the IETF. It provides for much more flexible and powerful
communication between the client and the server. It's also a lot more scalable.

The primary improvement in HTTP 1.1 is state. HTTP 1.0 opens a new connection for
every request. In practice, the time taken to open and close all the connections opened
in a typical web session can outweigh the time taken to transmit the data, especially
for sessions with many small documents. HTTP 1.1 allows a browser to send many
different requests over a single connection; the connection remains open until it is
explicitly closed. The requests and responses are all asynchronous. A browser doesn't
need to wait for a response to its first request before sending a second or a third.
However, it remains tied to the basic pattern of a client request, followed by a server
response that consists of a series of headers, followed by a blank line, followed by
MIME-encoded data.

There are a lot of other smaller improvements in HTTP 1.1. Requests include a Host
MIME header so that one web server can easily serve different sites at different URLs.
Servers and browsers can exchange compressed files and particular byte ranges of a
document, both of which can decrease network traffic. And HTTP 1.1 is designed to
work much better with proxy servers. Although HTTP 1.1 isn't quite finished, it is
relatively stable, and most major web servers implement at least some parts of it. Web
clients (that is, browsers) are a little further behind, but the more recent browsers
implement parts as well. HTTP 1.1 is a strict superset of HTTP 1.0, so HTTP 1.1 web
servers have no trouble interacting with older browsers that speak only HTTP 1.0.

3.4 MIME

MIME is an open standard for sending multipart, multimedia data through Internet
email.[1] The data may be binary, or it may use multiple ASCII and non-ASCII
character sets. Although MIME was originally intended for email, it has become a
widely used technique to describe a file's contents so that client software can tell the
difference between different kinds of data. For example, a web browser uses MIME to
tell whether a file is a GIF image or a printable PostScript file.

[1] Officially, MIME stands for Multipurpose Internet Mail Extensions, which is the expansion of the acronym
used in RFC 2045. However, you will hear other versions—most frequently, Multipart Internet Mail Extensions
and Multimedia Internet Mail Extensions.

MIME supports almost a hundred predefined types of content. Content types are
classified at two levels: a type and a subtype. The type shows very generally what
kind of data is contained: is it a picture, is it text, is it a movie? The subtype identifies
the specific type of data: GIF image, JPEG image, TIFF image. For example, HTML's
content type is text/html; the type is text, and the subtype is html. The content type
for a GIF image is image/gif; the type is image, and the subtype is gif. Table 3.2
lists the more common defined content types. On most systems, a simple text file
maintains a mapping between MIME types and the application used to process that
type of data; on Unix, this file is called mime.types. The most current list of registered
MIME types is available from ftp://ftp.isi.edu/in-notes/iana/assignments/media-
types/media-types.[2]

[2] For more details on MIME, see Jerry Sweet, Ed Vielmetti, and Tim Goodwin, The comp.mail.mime FAQ,
http://www.cs.ruu.nl/wais/html/na-dir/mail/mime-faq/.html; N. Borenstein, Bellcore, "Multimedia Mail From the
Bottom Up or Teaching Dumb Mailers to Sing", ConneXions, pp. 10-16, Nov. 91; G. Vaudreuil, CNRI, "MIME:
Multi-Media, Multi-Lingual Extensions for RFC 822 Based Electronic Mail", ConneXions, pp. 36-39, Sep. 92.

The data returned by an HTTP 1.0 or 1.1 web server is sent in MIME format. Most
web servers and clients understand at least two MIME text content types, text/html
and text/plain, and two image formats, image/gif and image/jpeg. The Web also
uses MIME for posting forms to web servers, a common way for an applet to
communicate with a server. Finally, Java relies on MIME types to pick the
appropriate content handler for a particular stream of data.

Table 3.2. Predefined MIME Content Types
Type Subtype Description

text The document represents printable text.

 calendar Calendaring and scheduling information in the iCalendar format; see RFC
2445.

 css A Cascading Style Sheet used for HTML and XML.

 directory Address book information such as name, phone number, and email address;
used by Netscape vCards; defined in RFCs 2425 and 2426.

 enriched
A very simple HTML-like language for adding basic font and paragraph-level
formatting such as bold and italic to email; used by Eudora; defined in RFC
1896.

 html Hypertext Markup Language as used by web browsers.

 plain

This is supposed to imply raw ASCII text. However, some web servers use
text/plain as the default MIME type for any file they can't recognize.
Therefore, anything and everything, most notably .class byte code files, can
get identified as a text/plain file.

 richtext This is an HTML-like markup for encoding formatting into pure ASCII text.
It's never really caught on, in large part because of the popularity of HTML.

 rtf An incompletely defined Microsoft format for word processing files.
 sgml The Standard Generalized Markup Language; ISO standard 8879:1986.

tab-
separated-
values

The interchange format used by many spreadsheets and databases; records are
separated by line breaks, and fields by tabs.

 xml The W3C standard Extensible Markup Language.
multipart Multipart MIME messages encode several different files into one message.
 mixed Several message parts intended for sequential viewing.

 alternative The same message in multiple formats so a client may choose the most
convenient one.

 digest A popular format for merging many email messages into a single digest; used
by many mailing lists and some FAQ lists.

 parallel Several parts intended for simultaneous viewing.
 byteranges Several separately contiguous byte ranges; used in HTTP 1.1.

 encrypted One part for the body of the message and one part for the information
necessary to decode the message.

 signed One part for the body of the message and one part for the digital signature.
 related Compound documents formed by aggregating several smaller parts.
 form-data Form responses.
message An email message.

 external-
body

Just the headers of the email message; the message's body is not included but
exists at some other location and is referenced, perhaps by a URL.

 http An HTTP 1.1 request from a web client to a web server.
 news A news article.

 partial Part of a longer email message that has been split into multiple parts to allow
transmission through email gateways.

 rfc822 A standard email message including headers.
image Two-dimensional pictures.

 cgm A Computer Graphics Metafile format image. CGM is ISO standard
8632:1992 for device-independent vector graphics and bitmap images.

 g3fax The standard for bitmapped fax images.

 gif
A Graphics Interchange format image. The format was originally developed
by CompuServe. It uses certain compression algorithms on which Unisys
holds a patent.

 jpeg The Joint Photographic Experts Group file format for bitmapped images with
lossy compression.

 png
A Portable Network Graphics Format image. The format was developed at the
W3C as a more modern replacement for GIF that supported 24-bit color and
was not encumbered by patents.

 tiff The Tagged Image File format from Adobe.
audio Sound.

 basic
8-bit ISDN -law encoded audio with a single channel and a sample rate of
eight kilohertz. This is the format used by .au and .snd files and supported by
the java.applet.AudioClip class.

video Video.

 mpeg The Motion Picture Experts Group format for video data with lossy
compression.

 quicktime Apple's proprietary QuickTime movie format. Before being included in a
MIME message, QuickTime files must be "flattened".

model 3-D images.

 vrml A Virtual Reality Modeling Language file, an evolving standard for 3-D data
on the Web.

 iges The Initial Graphics Exchange Specification for interchanging documents
between different CAD programs.

 mesh The mesh structures used in finite element and finite difference methods.
application Binary data specific to some application.

 octet-stream Unspecified binary data, which is usually saved into a file for the user. This
MIME type is sometimes used to serve .class byte code files.

 java A not-yet-standard subtype sometimes used to serve .class byte code files.
 postscript Adobe PostScript.
 dca-rft IBM's Document Content Architecture-Richly Formatted Text.

 mac-
BinHex40

A means of encoding the two forks of a Macintosh document into a single
ASCII file.

 pdf An Adobe Acrobat file.
 zip A zip compressed file.
 macwriteii A MacWrite II word processing document.
 msword A Microsoft Word document.
 xml An Extensible Markup Language document.

A MIME-compliant program is not required to understand all these different types of
data; it just needs to recognize what it can and cannot handle. Many programs—
Netscape Navigator, for example—use various helper programs to display types of
content they themselves don't understand.

MIME allows you to define additional nonstandard subtypes by using the prefix x-.
For example, the content type application/x-tex has the MIME type application
and the nonstandard subtype x-tex for a TeX document. These x-types are not
guaranteed to be understood by any program other than the one that created them.
Indeed, two programs may use the same x-type to mean two completely different
things; or different programs may use different x-types to mean the same thing.
However, many nonstandard types have come into common use; some of the more
common ones are listed in Table 3.3.

Table 3.3. X-types
Type X-subtype Description

application Subtypes of an application; the name of the subtype is usually a file
format name or an application name.

 x-aiff SGI's AIFF audio data format.
 x-bitmap An X Windows bitmap image.
 x-gzip Data compressed in the GNU gzip format.
 x-dvi A TeX DVI document.
 x-framemaker A FrameMaker document.
 x-latex A LaTeX document.

 x-macBinHex40 Identical to application/mac-BinHex40, but older software may
use this x-type instead.

 x-mif A FrameMaker MIF document.

 x-sd A session directory protocol announcement, used to announce MBONE
events.

 x-shar

A shell archive; the Unix equivalent of a Windows or Macintosh self-
extracting archive. Software shouldn't be configured to unpack shell
archives automatically, because a shell archive can call any program the
user who runs it has the rights to call.

 x-tar A tar archive.
 x-gtar A GNU tar archive.

 x-tcl
A tool command language (TCL) program. You should never configure
your web browser or email program to automatically run programs you
download from the web or receive in email messages.

 x-tex A TeX document.
 x-texinfo A GNU texinfo document.
 x-troff A troff document.
 x-troff-man A troff document written with the man macros.
 x-troff-me A troff document that should be processed using the me macros.
 x-troff-ms A troff document that should be processed using the ms macros.
 x-wais-source A WAIS source.

 x-www-form-
urlencoded

A CGI query string that has been encoded like a URL, with + replacing
spaces and % escapes replacing non-alphanumeric characters that aren't
separators.

audio
 x-aiff The same as application/x-aiff: an AIFF audio file.
 x-mpeg The MP3 sound format.
 x-mpeg.mp3 The MP3 sound format.
 x-wav The Windows WAV sound format.
image
 x-fits The FITS image format used primarily by astronomers.

 x-macpict A Macintosh PICT image.
 x-pict A Macintosh PICT image.
 x-macpaint A MacPaint image.
 x-pbm A portable bitmap image.

 x-portable-
bitmap A portable bitmap image.

 x-pgm A PGM image.
video
 x-msvideo A Microsoft AVI Video for Windows.
 x-sgi-movie A Silicon Graphics movie.

3.5 CGI

CGI, the common gateway interface, is used to generate web pages dynamically;
essentially, the browser invokes a program on the server that creates a new page on
the fly. This web page may be based purely on server data, or it may process the
results of a client form submission, the URL the client chose, or various environment
variables. CGI programs can be written in almost any language, including Java,
though currently most CGI programming is done in Perl, C, or AppleScript.

CGI programs run as independent processes, initiated by the HTTP server each time a
request for services is received. This has three important consequences. First, CGI
programs are relatively safe to run. A CGI program can crash without damaging the
server, at least on preemptively multitasking memory-protected operating systems
such as Unix and NT. Second, the CGI program has strictly limited access to the
server. Third, CGI programs exact a performance penalty relative to serving a static
file, because of the overhead of spawning a separate process for each request.

The simplest CGI programs run without any input from the user. From the viewpoint
of the client, these are accessed like any other web page and aren't of much concern to
this book. The difference between a web page produced by a CGI program that takes
no input and a web page written in static HTML is all on the server side. What
happens on the server side has been adequately covered in several other books. For
more information about writing server programs that process CGI input and create
dynamic web pages, see Shisir Gundavaram's CGI Programming with Perl (O'Reilly
& Associates, Inc., 1999, ISBN 1-56592-419-3).

This book approaches CGI from an unusual direction: how to write a client that sends
data to a CGI program. The most common use of CGI is to process user input from
HTML forms. In this capacity, CGI provides a standard, well understood and well
supported means for Java applets and applications to talk to remote systems; therefore,
I will cover how to use Java to talk to a CGI program on the server. There are other
ways for Java programs to talk to servers, including Remote Method Invocation (RMI)
and servlets. However, RMI is slow and servlets are not supported by all web servers.
By way of contrast, CGI is mature, robust, better supported across multiple platforms
and web servers, and better understood in the web development community.
Furthermore, the client-side interface to servlets is almost exactly like the client-side
interface to CGI programs, so what we say about talking to CGI programs will apply
equally to talking to servlets.

Example 3.1 and Figure 3.3 show a simple form with two fields that collects a name
and an email address. The values the user enters in the form are sent back to the server
when the user presses the "Submit Query" button. The CGI program to run when the
form data is received is /cgi-bin/register.pl; the program is specified in the ACTION
attribute of the FORM element. The URL in this parameter is usually a relative URL, as
it is in this example.

Example 3.1. A Simple Form with Input Fields for a Name and an Email Address

<HTML>
<HEAD>
<TITLE>Sample Form</TITLE>
</HEAD>
<BODY>

<FORM METHOD=GET ACTION="/cgi/register.pl">
<PRE>
Please enter your name: <INPUT NAME="username" SIZE=40>
Please enter your email address: <INPUT NAME="email" SIZE=40>
</PRE>
<INPUT TYPE="SUBMIT">
</FORM>
</BODY>
</HTML>

Figure 3.3. A simple form

The web browser reads the data the user enters and encodes it in a simple fashion. The
name of each field is separated from its value by the equals sign (=). Different fields
are separated from each other by an ampersand, &. Each field name and value is x-
www-form-url-encoded; that is, any non-ASCII or nonalphanumeric characters are
replaced by a percent sign followed by hexadecimal digits giving the value for that
character in some character set. Spaces are a special case because they're so common.
Instead of being encoded as %20, they become the + sign. The plus sign itself is
encoded as %2b. For example, the data from the form in Figure 3.1 is encoded as:

username=Elliotte+Rusty+Harold&email=elharo%40metalab%2eunc%2eedu

This is called the query string.

There are two methods by which the query string can be sent to the server: GET and
POST. If the form specifies the GET method, the browser attaches the query string to

the URL it sends to the server. CGI programs that use POST send the query string on
an output stream. The form in Example 3.1 uses GET to communicate with the server,
so it connects to the server and sends the following command:

GET
/cgi7/register.pl?username=Elliotte+Rusty+Harold&email=elharo%40metal
ab.unc.edu HTTP 1.0

The server is responsible for recognizing that the URL contains the name of the CGI
program plus input for the program; it passes the query string to the program, usually
as an environment variable. Because of limitations in the lengths of environment
variables on some platforms, the GET method is unreliable for sending more than
about 200 characters of text. In these cases you're better off using POST.

With the POST method, the web browser sends the usual headers and follows them
with a blank line (two successive carriage return/linefeed pairs) and then sends the
query string. The query string is passed to the CGI program on standard input. If the
form in Figure 3.1 used POST, it would send this to the server:

POST /cgi-bin/register.pl HTTP 1.0
Content-type: application/x-www-form-urlencoded
Content-length: 65

username=Elliotte+Rusty+Harold&email=elharo%40metalab.unc.edu

There are many different form tags in HTML that produce pop-up menus, radio
buttons, and more. However, although these input widgets appear different to the user,
the format of data they send to the server is the same. Each form element provides a
name and an encoded string value.

3.6 Applets and Security

Now that you understand how files are transferred across the Web, you're ready to
explore how applets are transferred. On one hand, applets are just more files that are
transferred like any other. On the other hand, what an applet can do is closely related
to where it came from. This isn't true of other data types such as HTML and GIF.

3.6.1 Where Do Applets and Classes Come from?

When a web browser sees an applet tag and decides to download and play the applet,
it starts a long chain of events. Let's say your browser sees the following applet tag:

<applet codebase="http://metalab.unc.edu/javafaq/classes"
 code="Animation.class" width="200" height="100">

1. The web browser sets aside a rectangular area on the page 200 pixels wide and
100 pixels high. In most web browsers, this area has a fixed size and cannot be
modified once created. The appletviewer in the JDK is a notable exception.

2. The browser opens a connection to the server specified in the codebase
parameter, using port 80 unless another port is specified in the codebase URL.

If there's no codebase parameter, then the browser connects to the same
server that served the HTML page.

3. The browser requests the .class file from the web server as it requests any
other file. If a codebase is present, it is prefixed to the requested filename.
Otherwise, the document base (the directory that contains the HTML page) is
used. For example:

GET /javafaq/classes/Animation.class HTTP 1.0

4. The server responds by sending a MIME header followed by a blank line
(\r\n) followed by the binary data in the .class file. A properly configured
server sends .class files with MIME type application/octet-stream. For
example:

5. HTTP 1.0 200 OK
6. Date: Mon, 10 Jun 1999 17:11:43 GMT
7. Server: Apache/1.2.8
8. Content-type: application/octet-stream
9. Content-length: 2782

Last-modified: Fri, 08 Sep 1998 21:53:55 GMT

Not all web servers are configured to send .class files correctly. Some send
them as text/plain, which, though technically incorrect, works in most
cases.

10. The web browser receives the data and stores it in a byte array.
11. The byte code verifier goes over the byte codes that have been received to

make sure they don't do anything forbidden, such as converting an integer into
a pointer.

12. If the byte code verifier is satisfied with the bytes that were downloaded, then
the raw data is converted into a Java class using the defineClass() and
loadClass() methods of the current ClassLoader object.

13. The web browser instantiates the Animation class using its noargs constructor.
14. The web browser invokes the init() method of Animation.
15. The web browser invokes the start() method of Animation.

If the Animation class references another class, the Java interpreter first searches for
the new class in the user's CLASSPATH. If the class is found in the user's CLASSPATH,
then it is created from the .class file on the user's hard drive. Otherwise the web
browser goes back to the site from which this class came and downloads the .class file
for the new class. The same procedure is followed for the new class and any other
class that is downloaded from the Net. If the new class cannot be found, a
ClassNotFoundException is thrown.

3.6.2 Security: Who Can an Applet Talk to and What Can It Say?

There is much FUD (fear, uncertainty, and doubt) in the press about what Java applets
can and cannot do. This is not a book about Java security, but I will mention a few
things that applets loaded from the network are usually prohibited from doing.

• Applets cannot access arbitrary addresses in memory. Unlike the other
restrictions in the list, which are enforced by the browser's SecurityManager

instance, this restriction is a property of the Java language itself and the byte
code verifier.

• Applets cannot access the local filesystem in any way. They cannot read from
or write to the local filesystem nor can they find out any information about
files. Therefore, they cannot find out whether a file exists or what its
modification date may be.

• Applets cannot launch other programs on the client. In other words, they
cannot call System.exec() or Runtime.exec().

• Applets cannot load native libraries or define native method calls.
• Applets are not allowed to use System.getProperty() in a way that reveals

information about the user or the user's machine, such as a username or home
directory. They may use System.getProperty() to find out what version of
Java is in use.

• Applets may not define any system properties.

Figure 3.4. Applet network security preferences in HotJava 1.1.4

• In Java 1.1 and later, applets may not create or manipulate any Thread or
ThreadGroup that is not in the applet's own ThreadGroup. They may do this
in Java 1.0.

• Applets cannot define or use a new instance of ClassLoader,
SecurityManager, ContentHandlerFactory, SocketImplFactory, or
URLStreamHandlerFactory. They must use the ones already in place.

Finally, and most importantly for this book:

• An applet can only open network connections to the host from which the
applet itself was downloaded.

• An applet cannot listen on ports below 1,024. (Internet Explorer 5.0 doesn't
allow applets to listen on any ports.)

• Even if an applet can listen on a port, it can accept incoming connections only
from the host from which the applet itself was downloaded.

Of these 11, only the second and ninth are serious inconveniences for a significant
number of applets. These restrictions can be relaxed for digitally signed applets.
Figure 3.4 shows the HotJava advanced applet security preferences window that
allows the user to choose exactly which privileges she does and does not want to grant
to which applets. Navigator and Internet Explorer 4.0 and later have similar options.
Unfortunately, all three browsers have different procedures for allowing applets to ask
the user for additional permissions.

However, even if you sign your applet, you should not expect that the user will choose
to allow you to open connections to arbitrary hosts. If your program cannot live with
these restrictions, it should be an application instead of an applet. Java applications
are just like any other sort of application: they aren't restricted as to what they can do.
If you are writing an application that will download and execute classes, you should
consider carefully what restrictions you should put in place and design an appropriate
security policy to implement those restrictions.

Chapter 4. Java I/O
A large part of what network programs do is simple input and output, moving bytes
from one system to another. Bytes are bytes; and to a large extent, reading data a
server sends you is not all that different from reading a file. Sending text to a client is
not all that different from writing a file. However, input and output (I/O) in Java is
organized differently than it is in most other languages, such as C, Pascal, and C++.
Consequently, I'd like to take one chapter to summarize Java's unique approach to I/O.

I/O in Java is built on streams. Input streams read data. Output streams write data.
Different fundamental stream classes such as java.io.FileInputStream and
sun.net.TelnetOutputStream read and write particular sources of data. However,
all fundamental output streams have the same basic methods to write data and all
fundamental input streams use the same basic methods to read data. After a stream is
created, you can often ignore the details of exactly what it is you're reading or writing.

Filter streams can be chained to either an input stream or an output stream. Filters can
modify the data as it's read or written—for instance, by encrypting or compressing
it—or they can simply provide additional methods for converting the data that's read
or written into other formats. For instance, the java.io.DataOutputStream class
provides a method that converts an int to four bytes and writes those bytes onto its
underlying output stream.

Finally, readers and writers can be chained to input and output streams to allow
programs to read and write text (that is, characters) rather than bytes. Used properly,
readers and writers can handle a wide variety of character encodings, including
multibyte character sets such as SJIS and UTF-8.

4.1 Output Streams

Java's basic output class is java.io.OutputStream :

public abstract class OutputStream

This class provides the fundamental methods needed to write data. These are:

public abstract void write(int b) throws IOException
public void write(byte[] data) throws IOException
public void write(byte[] data, int offset, int length)
 throws IOException
public void flush() throws IOException
public void close() throws IOException

Subclasses of OutputStream use these methods to write data onto particular media.
For instance, a FileOutputStream uses these methods to write data into a file. A
TelnetOutputStream uses these methods to write data onto a network connection. A
ByteArrayOutputStream uses these methods to write data into an expandable byte
array. But whichever medium you're writing to, you mostly use only these same five
methods. Sometimes you may not even know exactly what kind of stream you're
writing onto. For instance, you won't find TelnetOutputStream in the Java class
library documentation. It's deliberately hidden inside the sun packages. It's returned
by various methods in various classes in java.net, like the getOutputStream()
method of java.net.Socket. However, these methods are declared to return only
OutputStream, not the more specific subclass TelnetOutputStream. That's the
power of polymorphism. If you know how to use the superclass, you know how to use
all the subclasses too.

OutputStream's fundamental method is write(int b). This method takes as an
argument an integer from to 255 and writes the corresponding byte to the output
stream. This method is declared abstract because subclasses will need to change it to
handle their particular medium. For instance, a ByteArrayOutputStream can
implement this method with pure Java code that copies the byte into its array.
However, a FileOutputStream will need to use native code that understands how to
write data in files on the host platform.

Take special care to note that although this method takes an int as an argument, it
actually writes an unsigned byte. Java doesn't have an unsigned byte data type, so an
int has to be used here instead. The only real difference between an unsigned byte
and a signed byte is the interpretation. They're both made up of eight bits, and when
you write an int onto a network connection using write(int b), only eight bits are
placed on the wire. If an int outside the range 0-255 is passed to write(int b), the
least significant byte of the number is written, and the remaining three bytes are
ignored. (This is the effect of casting an int to a byte.) On rare occasion, however,
you may find a buggy third-party class that does something different, such as
throwing an IllegalArgumentException or always writing 255, so it's best not to
rely on this behavior if possible.

For example, the character generator protocol defines a server that sends out ASCII
text. The most popular variation of this protocol sends 72-character lines containing
printable ASCII characters. (The printable ASCII characters are those from 33 to 126
that exclude the various whitespace and control characters.) The first line contains
characters 33 through 104 sorted. The second line contains characters 34 through 105.
The third line contains characters 35 through 106. This continues through line 29,
which contains characters 55 through 126. At that point, the characters wrap around
so that line 30 contains characters 56 through 126 followed by character 33 again.

Lines are terminated with a carriage return (ASCII 13) and a linefeed (ASCII 10). The
output looks like this:

!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij
$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk
%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm
'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmn

Since ASCII is a 7-bit character set, each character is sent as a single byte.
Consequently, this protocol is straightforward to implement using the basic write()
methods as the next code fragment demonstrates:

public static void generateCharacters(OutputStream out)
 throws IOException {

 int firstPrintableCharacter = 33;
 int numberOfPrintableCharacters = 94;
 int numberOfCharactersPerLine = 72;

 int start = firstPrintableCharacter;
 while (true) { /* infinite loop */
 for (int i = start; i < start+numberOfCharactersPerLine; i++) {
 out.write((
 (i-firstPrintableCharacter) % numberOfPrintableCharacters)
 + firstPrintableCharacter);
 }
 out.write('\r'); // carriage return
 out.write('\n'); // linefeed
 start = ((start+1) - firstPrintableCharacter)
 % numberOfPrintableCharacters + firstPrintableCharacter;
 }

The character generator server class (the exact details of which will have to wait until
we discuss server sockets in Chapter 11) passes an OutputStream named out to the
generateCharacters() method. Bytes are written onto out one at a time. These
bytes are given as integers in a rotating sequence from 33 to 126. Most of the
arithmetic here is to make the loop rotate in that range. After each 72 characters are
written, a carriage return and a linefeed are written onto the output stream. The next
start character is calculated and the loop repeats. The entire method is declared to
throw IOException. That's important because the character generator server will
terminate only when the client closes the connection. The Java code will see this as an
IOException.

Writing a single byte at a time is often inefficient. For example, every TCP segment
that goes out your Ethernet card contains at least 40 bytes of overhead for routing and
error correction. If each byte is sent by itself, then you may be filling the wire with 41

times more data than you think you are! Consequently, most TCP/IP implementations
buffer data to some extent. That is, they accumulate bytes in memory and send them
to their eventual destination only when a certain number have accumulated or a
certain amount of time has passed. However, if you have more than one byte ready to
go, it's not a bad idea to send them all at once. Using write(byte[] data) or
write(byte[] data, int offset, int length) is normally much faster than
writing all the components of the data array one at a time. For instance, here's an
implementation of the generateCharacters() method that sends a line at a time by
stuffing a complete line into a byte array:

public static void generateCharacters(OutputStream out)
 throws IOException {

 int firstPrintableCharacter = 33;
 int numberOfPrintableCharacters = 94;
 int numberOfCharactersPerLine = 72;
 int start = firstPrintableCharacter;
 byte[] line = new byte[numberOfCharactersPerLine+2];
 // the +2 is for the carriage return and linefeed

 while (true) { /* infinite loop */
 for (int i = start; i < start+numberOfCharactersPerLine; i++) {
 line[i-start] = (byte) ((i-firstPrintableCharacter)
 % numberOfPrintableCharacters + firstPrintableCharacter);
 }
 line[72] = (byte) '\r'; // carriage return
 line[73] = (byte) '\n'; // line feed
 out.write(line);
 start = ((start+1)-firstPrintableCharacter)
 % numberOfPrintableCharacters + firstPrintableCharacter;
 }

 }

The algorithm for calculating which bytes to write when is the same as for the
previous implementation. The crucial difference is that the bytes are all stuffed into a
byte array before being written onto the network. Also notice that the int result of the
calculation must be cast to a byte before being stored in the array. This wasn't
necessary in the previous implementation because the single byte write() method is
declared to take an int as an argument.

Streams can also be buffered in software, directly in the Java code as well as in the
network hardware. Typically, this is accomplished by chaining a
BufferedOutputStream or a BufferedWriter to the underlying stream, a technique
we'll explore shortly. Consequently, if you are done writing data, it's important to
flush the output stream. For example, suppose you've written a 300-byte request to an
HTTP 1.1 server that uses HTTP Keep-Alive. You generally want to wait for a
response before sending any more data. However, if the output stream has a 1,024-
byte buffer, then the stream may be waiting for more data to arrive before it sends the
data out of its buffer. No more data will be written onto the stream until after the
server response arrives, but that's never going to arrive because the request hasn't yet
been sent! The buffered stream won't send the data to the server until it gets more data
from the underlying stream, but the underlying stream won't send more data until it
gets data from the server, which won't send data until it gets the data that's stuck in the

buffer! Figure 4.1 illustrates this Catch-22. The flush() method rescues you from
this deadlock by forcing the buffered stream to send its data even if the buffer isn't yet
full.

Figure 4.1. Data can get lost if you don't flush your streams

It's important to flush whether you think you need to or not. Depending on how you
got hold of a reference to the stream, you may or may not know whether it's buffered.
(For instance, System.out is buffered whether you want it to be or not.) If flushing
isn't necessary for a particular stream, it's a very low cost operation. However, if it is
necessary, it's very necessary. Failing to flush when you need to can lead to
unpredictable, unrepeatable program hangs that are extremely hard to diagnose if you
don't have a good idea of what the problem is in the first place. As a corollary to all
this, you should flush all streams immediately before you close them. Otherwise, data
left in the buffer when the stream is closed may get lost.

Finally, when you're done with a stream, you should close it by invoking its close()
method. This releases any resources associated with the stream, such as file handles or
ports. Once an output stream has been closed, further writes to it will throw
IOExceptions. However, some kinds of streams may still allow you to do things with
the object. For instance, a closed ByteArrayOutputStream can still be converted to
an actual byte array and a closed DigestOutputStream can still return its digest.

4.2 Input Streams

Java's basic input class is java.io.InputStream:

public abstract class InputStream

This class provides the fundamental methods needed to read data as raw bytes. These
are:

public abstract int read() throws IOException
public int read(byte[] input) throws IOException

public int read(byte[] input, int offset, int length) throws
IOException
public long skip(long n) throws IOException
public int available() throws IOException
public void close() throws IOException

Concrete subclasses of InputStream use these methods to read data from particular
media. For instance, a FileInputStream reads data from a file. A
TelnetInputStream reads data from a network connection. A
ByteArrayInputStream reads data from an array of bytes. But whichever source
you're reading, you mostly use only these same six methods. Sometimes you may not
even know exactly what kind of stream you're reading from. For instance,
TelnetInputStream is an undocumented class hidden inside the sun.net package.
Instances of it are returned by various methods in the java.net package; for example,
the openStream() method of java.net.URL. However, these methods are declared
to return only InputStream, not the more specific subclass TelnetInputStream.
That's polymorphism at work once again. The instance of the subclass can be used
transparently as an instance of its superclass. No specific knowledge of the subclass is
required.

The basic method of InputStream is the noargs read() method. This method reads
a single byte of data from the input stream's source and returns it as a number from to
255. End of stream is signified by returning -1. Since Java doesn't have an unsigned
byte data type, this number is returned as an int. The read() method waits and
blocks execution of any code that follows it until a byte of data is available and ready
to be read. Input and output can be slow, so if your program is doing anything else of
importance you should try to put I/O in its own thread.

The read() method is declared abstract because subclasses need to change it to
handle their particular medium. For instance, a ByteArrayInputStream can
implement this method with pure Java code that copies the byte from its array.
However, a TelnetInputStream will need to use a native library that understands
how to read data from the network interface on the host platform.

The following code fragment reads 10 bytes from the InputStream in and stores
them in the byte array input. However, if end of stream is detected, the loop is
terminated early:

byte[] input = new byte[10];
for (int i = 0; i < input.length; i++) {
 int b = in.read();
 if (b == -1) break;
 input[i] = (byte) b;
}

Although read() reads only a byte, it returns an int. Thus, a cast is necessary
before storing the result in the byte array. Of course, this produces a signed byte from
-128 to 127 instead of the unsigned byte from to 255 returned by the read() method.
However, as long as you keep clear which one you're working with, this is not a major
problem. You can convert a signed byte to an unsigned byte like this:

int i = b >= 0 ? b : 256 + b;

Reading a byte at a time is as inefficient as writing data one byte at a time.
Consequently, there are also two overloaded read() methods that fill a specified
array with multiple bytes of data read from the stream, read(byte[] input) and
read(byte[] input, int offset, int length). The first attempts to fill the
specified array input. The second attempts to fill the specified subarray of input
starting at offset and continuing for length bytes.

Notice that I said these methods attempt to fill the array, not necessarily that they
succeed. An attempt may fail in several ways. For instance, it's not unheard of that
while your program is reading data from a remote web server over a PPP dialup link,
a bug in a switch in a phone company central office will disconnect you and several
thousand of your neighbors from the rest of the world. This would throw an
IOException. More commonly, however, a read attempt won't completely fail but
won't completely succeed either. Some of the requested bytes may be read but not all
of them. For example, you may try to read 1,024 bytes from a network connection,
when only 512 have actually arrived from the server. The rest are still in transit.
They'll arrive eventually, but they aren't available now. To account for this, the
multibyte read methods return the number of bytes actually read. For example,
consider this code fragment:

byte[] input = new byte[1024];
int bytesRead = in.read(input);

It attempts to read 1,024 bytes from the InputStream in into the array input.
However, if only 512 bytes are available, then that's all that will be read, and
bytesRead will be set to 512. To guarantee that all the bytes you want are actually
read, you must place the read in a loop that reads repeatedly until the array is filled.
For example:

int bytesRead = 0;
int bytesToRead = 1024;
byte[] input = new byte[bytesToRead];
while (bytesRead < bytesToRead) {
 bytesRead += in.read(input, bytesRead, bytesToRead - bytesRead);
}

This technique is especially crucial for network streams. Chances are that if a file is
available at all, then all the bytes of a file are also available. However, since networks
move much more slowly than CPUs, it is very easy for a program to empty a network
buffer before all the data has arrived. In fact, if one of these two methods tries to read
from a temporarily empty but open network buffer, it will generally return 0,
indicating that no data is available but the stream is not yet closed. This is often
preferable to the behavior of the single-byte read() method, which in the same
circumstances will block execution of the running program.

All three read() methods return -1 to signal the end of the stream. If the stream ends
while there's still data that hasn't been read, then the multibyte read methods will
return that data until the buffer has been emptied. The next call to any of the read
methods will return -1. The -1 is never placed in the array. The array contains only
actual data. The previous code fragment had a bug because it didn't consider the
possibility that all 1,024 bytes might never arrive (as opposed to not being

immediately available). Fixing that bug requires testing the return value of read()
before adding it to bytesRead. For example:

int bytesRead=0;
int bytesToRead=1024;
byte[] input = new byte[bytesToRead];
while (bytesRead < bytesToRead) {
 int result = in.read(input, bytesRead, bytesToRead - bytesRead);
 if (result == -1) break;
 bytesRead += result;
}

If for some reason, you do not want to read until all the bytes you want are
immediately available, you can use the available() method to determine how
many bytes can be read without blocking. This is the minimum number of bytes you
can read. You may in fact be able to read more, but you will be able to read at least as
many bytes as available() suggests. For example:

int bytesAvailable = in.available();
byte[] input = new byte[bytesAvailable];
int bytesRead = in.read(input, 0, bytesAvailable);
// continue with rest of program immediately...

In this case, you can assert that bytesRead is exactly equal to bytesAvailable. You
cannot, however, assert that bytesRead is greater than zero. It is possible that no
bytes were available. On end of stream, available() returns 0. Generally,
read(byte[] input, int offset, int length) returns -1 on end of stream; but
if length is 0, then it will not notice the end of stream and will return instead.

On rare occasions, you may want to skip over data without reading it. The skip()
method accomplishes this. It's less useful on network connections than when reading
from files. Network connections are sequential and overall quite slow so it's not
significantly more time-consuming to read data than to skip over it. Files are random
access so that skipping can be implemented simply by repositioning a file pointer
rather than processing each byte to be skipped.

As with output streams, once your program has finished with an input stream, it
should close it by invoking its close() method. This releases any resources
associated with the stream, such as file handles or ports. Once an input stream has
been closed, further reads from it will throw IOExceptions. However, some kinds of
streams may still allow you to do things with the object. For instance, you generally
won't want to get the message digest from a java.security.DigestInputStream
until all the data has been read and the stream closed.

4.2.1 Marking and Resetting

The InputStream class also has three less commonly used methods that allow
programs to back up and reread data they've already read. These are:

public void mark(int readAheadLimit)
public void reset() throws IOException
public boolean markSupported()

To do this, you mark the current position in the stream with the mark() method. At a
later point, you can reset the stream back to the marked position using the reset()
method. Subsequent reads then return data starting from the marked position.
However, you may not be able to reset back as far as you like. The number of bytes
you can read from the mark and still reset is determined by the readAheadLimit
argument to mark(). If you try to reset back too far, an IOException will be thrown.
Furthermore, there can be only one mark in a stream at any given time. Marking a
second location erases the first mark.

Marking and resetting are usually implemented by storing every byte read from the
marked position in an internal buffer. However, not all input streams support this.
Thus, before trying to use marking and setting, you should check to see whether the
markSupported() method returns true. If it does, the stream supports marking and
resetting. Otherwise, mark() will do nothing and reset() will throw an
IOException.

In my opinion, this demonstrates very poor design. In practice,
more streams don't support marking and resetting than do.
Attaching functionality to an abstract superclass that is not
available to many, probably most, subclasses is a very poor idea.
It would be better to place these three methods in a separate
interface that could be implemented by those classes that
provided this functionality. The disadvantage of this approach is
that you couldn't then invoke these methods on an arbitrary input
stream of unknown type, but in practice you can't do that anyway
because not all streams support marking and resetting. Providing
a method such as markSupported() to check for functionality
at runtime is a more traditional, non-object-oriented solution to
the problem. An object-oriented approach would embed this in
the type system through interfaces and classes so that it could all
be checked at compile time.

The only two input stream classes in java.io that always support marking are
BufferedInputStream and ByteArrayInputStream. However, other input streams
such as TelnetInputStream may support marking if they're chained to a buffered
input stream first.

4.3 Filter Streams

InputStream and OutputStream are fairly raw classes. They allow you to read and
write bytes, either singly or in groups, but that's all. Deciding what those bytes
mean—whether they're integers or IEEE 754 floating point numbers or Unicode
text—is completely up to the programmer and the code. However, there are certain
data formats that are extremely common and can benefit from a solid implementation
in the class library. For example, many integers passed as parts of network protocols
are 32-bit big-endian integers. Much text sent over the Web is either 7-bit ASCII or 8-
bit Latin-1. Many files transferred by ftp are stored in the zip format. Java provides a

number of filter classes you can attach to raw streams to translate the raw bytes to and
from these and other formats.

The filters come in two versions: the filter streams and the readers and writers. The
filter streams still work primarily with raw data as bytes, for instance, by compressing
the data or interpreting it as binary numbers. The readers and writers handle the
special case of text in a variety of encodings such as UTF-8 and ISO 8859-1. Filter
streams are placed on top of raw streams such as a TelnetInputStream or a
FileOutputStream or other filter streams. Readers and writers can be layered on top
of raw streams, filter streams, or other readers and writers. However, filter streams
cannot be placed on top of a reader or a writer, so we'll start here with filter streams
and address readers and writers in the next section.

Filters are organized in a chain as shown in Figure 4.2. Each link in the chain receives
data from the previous filter or stream and passes the data along to the next link in the
chain. In this example, a compressed, encrypted text file arrives from the local
network interface, where native code presents it to the undocumented
TelnetInputStream. A BufferedInputStream buffers the data to speed up the
entire process. A CipherInputStream decrypts the data. A GZIPInputStream
decompresses the deciphered data. An InputStreamReader converts the
decompressed data to Unicode text. Finally, the text is read into the application and
processed.

Figure 4.2. The flow of data through a chain of filters

Every filter output stream has the same write(), close(), and flush() methods
as java.io.OutputStream. Every filter input stream has the same read(),
close(), and available() methods as java.io.InputStream. In some cases,
such as BufferedInputStream and BufferedOutputStream, these may be the only
methods they have. The filtering is purely internal and does not expose any new
public interface. However, in most cases, the filter stream adds public methods with
additional purposes. Sometimes these are intended to be used in addition to the usual
read() and write() methods as with the unread() method of
PushbackInputStream. At other times, they almost completely replace the original
interface. For example, it's relatively rare to use the write() method of
PrintStream instead of one of its print() and println() methods.

4.3.1 Chaining Filters Together

Filters are connected to streams by their constructor. For example, the following code
fragment buffers input from the file data.txt. First a FileInputStream object fin is
created by passing the name of the file as an argument to the FileInputStream
constructor. Then a BufferedInputStream object bin is created by passing fin as an
argument to the BufferedInputStream constructor:

FileInputStream fin = new FileInputStream("data.txt");

BufferedInputStream bin = new BufferedInputStream(fin);

From this point forward, it's possible to use the read() methods of both fin and bin
to read data from the file data.txt. However, intermixing calls to different streams
connected to the same source may violate several implicit contracts of the filter
streams. Consequently, most of the time you should use only the last filter in the chain
to do the actual reading or writing. One way to write your code so that it's at least
harder to introduce this sort of bug is to deliberately lose the reference to the
underlying input stream. For example:

InputStream in = new FileInputStream("data.txt");
in = new BufferedInputStream(in);

After these two lines execute, there's no longer any way to access the underlying file
input stream, so you can't accidentally read from it and corrupt the buffer. This
example works because it's not necessary to distinguish between the methods of
InputStream and those of BufferedInputStream. BufferedInputStream is simply
used polymorphically as an instance of InputStream in the first place. In those cases
where it is necessary to use the additional methods of the filter stream not declared in
the superclass, you may be able to construct one stream directly inside another. For
example:

DataOutputStream dout = new DataOutputStream(new
BufferedOutputStream(
 new FileOutputStream("data.txt")));

Although these statements can get a little long, it's easy to split the statement across
several lines like this:

DataOutputStream dout = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream("data.txt")
)
);

There are times when you may need to use the methods of multiple filters in a chain.
For instance, if you're reading a Unicode text file, you may want to read the byte order
mark in the first three bytes to determine whether the file is encoded as big-endian
UCS-2, little-endian UCS-2, or UTF-8 and then select the matching Reader filter for
the encoding. Or if you're connecting to a web server, you may want to read the
MIME header the server sends to find the Content-encoding and then use that
content encoding to pick the right Reader filter to read the body of the response. Or
perhaps you want to send floating point numbers across a network connection using a
DataOutputStream and then retrieve a MessageDigest from the
DigestOutputStream that the DataOutputStream is chained to. In all these cases,
you do need to save and use references to each of the underlying streams. However,
under no circumstances should you ever read from or write to anything other than the
last filter in the chain.

4.3.2 Buffered Streams

The BufferedOutputStream class stores written data in a buffer (a protected byte
array field named buf) until the buffer is full or the stream is flushed. Then it writes
the data onto the underlying output stream all at once. A single write of many bytes is
almost always much faster than many small writes that add up to the same thing. This
is especially true of network connections because each TCP segment or UDP packet
carries a finite amount of overhead, generally about 40 bytes' worth. This means that
sending 1 kilobyte of data 1 byte at a time actually requires sending 40 kilobytes over
the wire whereas sending it all at once only requires sending a little more than 1K of
data. Most network cards and TCP implementations provide some level of buffering
themselves, so the real numbers aren't quite this dramatic. Nonetheless, buffering
network output is generally a huge performance win.

The BufferedInputStream class also has a protected byte array named buf that
servers as a buffer. When one of the stream's read() methods is called, it first tries
to get the requested data from the buffer. Only when the buffer runs out of data does
the stream read from the underlying source. At this point, it reads as much data as it
can from the source into the buffer whether it needs all the data immediately or not.
Data that isn't used immediately will be available for later invocations of read().
When reading files from a local disk, it's almost as fast to read several hundred bytes
of data from the underlying stream as it is to read one byte of data. Therefore,
buffering can substantially improve performance. The gain is less obvious on network
connections where the bottleneck is often the speed at which the network can deliver
data rather than either the speed at which the network interface delivers data to the
program or the speed at which the program runs. Nonetheless, buffering input rarely
hurts and will become more important over time as network speeds increase.

BufferedInputStream has two constructors, as does BufferedOutputStream :

public BufferedInputStream(InputStream in)
public BufferedInputStream(InputStream in, int bufferSize)
public BufferedOutputStream(OutputStream out)
public BufferedOutputStream(OutputStream out, int bufferSize)

The first argument is the underlying stream from which unbuffered data will be read
or to which buffered data will be written. The second argument, if present, specifies
the number of bytes in the buffer. Otherwise, the buffer size is set to 2,048 bytes for
an input stream and 512 bytes for an output stream. The ideal size for a buffer
depends on what sort of stream you're buffering. For network connections, you want
something a little larger than the typical packet size. However, this can be hard to
predict and varies depending on local network connections and protocols. Faster,
higher bandwidth networks tend to use larger packets, though eight kilobytes is an
effective maximum packet size for UDP on most networks today, and TCP segments
are often no larger than a kilobyte.

BufferedInputStream does not declare any new methods of its own. It only
overrides methods from InputStream. It does support marking and resetting. For
example:

public synchronized int read() throws IOException
public synchronized int read(byte[] input, int offset, int length)
 throws IOException

public synchronized long skip(long n) throws IOException
public synchronized int available() throws IOException
public synchronized void mark(int readLimit)
public synchronized void reset() throws IOException
public boolean markSupported()

Starting in Java 1.2, the two multibyte read() methods attempt to completely fill the
specified array or subarray of data by reading from the underlying input stream as
many times as necessary. They return only when the array or subarray has been
completely filled, the end of stream is reached, or the underlying stream would block
on further reads. Most input streams (including buffered input streams in Java 1.1.x
and earlier) do not behave like this. They read from the underlying stream or data
source only once before returning.

BufferedOutputStream also does not declare any new methods of its own. It
overrides three methods from OutputStream:

public synchronized void write(int b) throws IOException
public synchronized void write(byte[] data, int offset, int length)
 throws IOException
public synchronized void flush() throws IOException

You call these methods exactly as you would for any output stream. The difference is
that each write places data in the buffer rather than directly on the underlying output
stream. Consequently, it is essential to flush the stream when you reach a point at
which the data needs to be sent.

4.3.3 PrintStream

The PrintStream class is the first filter output stream most programmers encounter
because System.out is a PrintStream. However, other output streams can also be
chained to print streams, using these two constructors:

public PrintStream(OutputStream out)
public PrintStream(OutputStream out, boolean autoFlush)

By default, print streams should be explicitly flushed. However, if the autoFlush
argument is true, then the stream will be flushed every time a byte array or linefeed is
written or a println() method is invoked.

As well as the usual write(), flush(), and close() methods, PrintStream has
9 overloaded print() methods and 10 overloaded println() methods:

public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(char[] text)
public void print(String s)
public void print(Object o)
public void println()
public void println(boolean b)

public void println(char c)
public void println(int i)
public void println(long l)
public void println(float f)
public void println(double d)
public void println(char[] text)
public void println(String s)
public void println(Object o)

Each print() method converts its argument to a string in a semipredictable fashion
and writes the string onto the underlying output stream using the default encoding.
The println() methods do the same thing, but they also append a platform-
dependent line separator character to the end of the line they write. This is a linefeed
(\n) on Unix, a carriage return (\r) on the Mac, and a carriage return/linefeed pair
(\r\n) on Windows.

4.3.3.1 PrintStream is evil and network programmers shouldavoid it like the plague

The first problem is that the output from println() is platform-dependent.
Depending on what system runs your code, your lines may sometimes be broken with
a linefeed, a carriage return, or a carriage return/linefeed pair. This doesn't cause
problems when writing to the console, but it's a disaster for writing network clients
and servers that must follow a precise protocol. Most network protocols such as
HTTP specify that lines should be terminated with a carriage return/linefeed pair.
Using println() makes it easy to write a program that works on Windows but fails
on Unix and the Mac. While many servers and clients are liberal in what they accept
and can handle incorrect line terminators, there are occasional exceptions. In
particular, in conjunction with the bug in readLine() discussed shortly, a client
running on a Mac that uses println() may hang both the server and the client. To
some extent, this could be fixed by using only print() and ignoring println().
However, PrintStream has other problems.

The second problem with PrintStream is that it assumes the default encoding of the
platform on which it's running. However, this encoding may not be what the server or
client expects. For example, a web browser receiving XML files will expect them to
be encoded in UTF-8 or raw Unicode unless the server tells it otherwise. However, a
web server that uses PrintStream may well send them encoded in CP1252 from a
U.S.-localized Windows system or SJIS from a Japanese-localized system, whether
the client expects or understands those encodings or not. PrintStream doesn't
provide any mechanism to change the default encoding. This problem can be patched
over by using the related PrintWriter class instead. But the problems continue.

The third problem is that PrintStream eats all exceptions. This makes PrintStream
suitable for simple textbook programs such as HelloWorld, since simple console
output can be taught without burdening students with first learning about exception
handling and all that implies. However, network connections are much less reliable
than the console. Connections routinely fail because of network congestion, phone
company misfeasance, remote systems crashing, and many more reasons. Network
programs must be prepared to deal with unexpected interruptions in the flow of data.
The way to do this is by handling exceptions. However, PrintStream catches any
exceptions thrown by the underlying output stream. Notice that the declaration of the

standard five OutputStream methods in PrintStream does not have the usual
throws IOException declaration:

public abstract void write(int b)
public void write(byte[] data)
public void write(byte[] data, int offset, int length)
public void flush()
public void close()

Instead, PrintStream relies on an outdated and inadequate error flag. If the
underlying stream throws an exception, this internal error flag is set. The programmer
is relied upon to check the value of the flag using the checkError() method:

public boolean checkError()

If programmers are to do any error checking at all on a PrintStream, they must
explicitly check every call. Furthermore, once an error has occurred, there is no way
to unset the flag so further errors can be detected. Nor is any additional information
available about what the error was. In short, the error notification provided by
PrintStream is wholly inadequate for unreliable network connections. At the end of
this chapter, we'll introduce a class that fixes all these shortcomings.

4.3.4 PushbackInputStream

PushbackInputStream is a subclass of FilterInputStream that provides a
pushback stack so that a program can "unread" bytes onto the input stream. The HTTP
protocol handler in Java 1.2 uses PushbackInputStream. You might also use it when
you need to check something a little way into the stream, then back up. For instance,
if you were reading an XML document, you might want to read just far enough into
the header to locate the encoding declaration that tells you what character set the
document uses, then push all the read data back onto the input stream and start over
with a reader configured for that character set.

The read() and available() methods of PushbackInputStream are invoked
exactly as with normal input streams. However, they first attempt to read from the
pushback buffer before reading from the underlying input stream. What this class adds
is unread() methods that push bytes into the buffer:

public void unread(int b) throws IOException

This method pushes an unsigned byte given as an int between and 255 onto the
stream. Integers outside this range are truncated to this range as by a cast to byte.
Assuming nothing else is pushed back onto this stream, the next read from the stream
will return that byte. As multiple bytes are pushed onto the stream by repeated
invocations of unread(), they are stored in a stack and returned in a last-in, first-out
order. In essence, the buffer is a stack sitting on top of an input stream. Only when the
stack is empty will the underlying stream be read.

There are two more unread() methods that push a specified array or subarray onto
the stream:

public void unread(byte[] input) throws IOException
public void unread(byte[] input, int offset, int length) throws
IOException

The arrays are stacked in last-in, first-out order. However, bytes pushed from the
same array will be returned in the order they appeared in the array. That is, the zeroth
component of the array will be read before the first component of the array.

By default, the buffer is only one byte long, and trying to unread more than one byte
throws an IOException. However, the buffer size can be changed with the second
constructor as follows:

public PushbackInputStream(InputStream in)
public PushbackInputStream(InputStream in, int size)

Although PushbackInputStream and BufferedInputStream both use buffers,
BufferedInputStream uses them for data read from the underlying input stream,
while PushbackInputStream uses them for arbitrary data, which may or may not,
have been read from the stream originally. Furthermore, PushbackInputStream does
not allow marking and resetting. The markSupported() method of
PushbackInputStream returns false.

4.3.5 Data Streams

The DataInputStream and DataOutputStream classes provide methods for reading
and writing Java's primitive data types and strings in a binary format. The binary
formats used are primarily intended for exchanging data between two different Java
programs whether through a network connection, a data file, a pipe, or some other
intermediary. What a data output stream writes, a data input stream can read.
However, it happens that the formats used are the same ones used for most Internet
protocols that exchange binary numbers. For instance, the time protocol uses 32-bit
big-endian integers, just like Java's int data type. The controlled-load network
element service uses 32-bit IEEE 754 floating point numbers, just like Java's float
data type. (This is probably correlation rather than causation. Both Java and most
network protocols were designed by Unix developers, and consequently both tend to
use the formats common to most Unix systems.) However, this isn't true for all
network protocols, so you should check details for any protocol you use. For instance,
the Network Time Protocol (NTP) represents times as 64-bit unsigned fixed point
numbers with the integer part in the first 32 bits and the fraction part in the last 32 bits.
This doesn't match any primitive data type in any common programming language,
though it is fairly straightforward to work with, at least as far as is necessary for NTP.

The DataOutputStream class offers these 11 methods for writing particular Java data
types:

public final void writeBoolean(boolean b) throws IOException
public final void writeByte(int b) throws IOException
public final void writeShort(int s) throws IOException
public final void writeChar(int c) throws IOException
public final void writeInt(int i) throws IOException
public final void writeLong(long l) throws IOException
public final void writeFloat(float f) throws IOException

public final void writeDouble(double d) throws IOException
public final void writeChars(String s) throws IOException
public final void writeBytes(String s) throws IOException
public final void writeUTF(String s) throws IOException

All data is written in big-endian format. Integers are written in two's complement in
the minimum number of bytes possible. Thus a byte is written as one two's-
complement byte, a short as two two's-complement bytes, an int as four two's-
complement bytes, and a long as eight two's-complement bytes. Floats and doubles
are written in IEEE 754 form in 4 and 8 bytes, respectively. Booleans are written as a
single byte with the value for false and 1 for true. Chars are written as two unsigned
bytes.

The last three methods are a little trickier. The writeChars() method simply iterates
through the String argument, writing each character in turn as a 2-byte, big-endian
Unicode character. The writeBytes() method iterates through the String argument
but writes only the least significant byte of each character. Thus information will be
lost for any string with characters from outside the Latin-1 character set. This method
may be useful on some network protocols that specify the ASCII encoding, but it
should be avoided most of the time.

Neither writeChars() nor writeBytes() encodes the length of the string in the
output stream. Consequently, you can't really distinguish between raw characters and
characters that make up part of a string. The writeUTF() method does include the
length of the string. It encodes the string itself in a variant of UTF-8 rather than raw
Unicode. Since writeUTF() uses a variant of UTF-8 that's subtly incompatible with
most non-Java software, it should be used only for exchanging data with other Java
programs that use a DataInputStream to read strings. For exchanging UTF-8 text
with all other software, you should use an InputStreamReader with the appropriate
encoding. (There wouldn't be any confusion if Sun had just called this method and its
partner writeString() and readString() rather than writeUTF() and
readUTF().)

As well as these methods to write binary numbers, DataOutputStream also overrides
three of the customary OutputStream methods:

public void write(int b)
public void write(byte[] data, int offset, int length)
public void flush()

These are invoked in the usual fashion with the usual semantics.

DataInputStream is the complementary class to DataOutputStream. Every format
that DataOutputStream writes, DataInputStream can read. In addition,
DataInputStream has the usual read(), available(), skip(), and close()
methods as well as methods for reading complete arrays of bytes and lines of text.

There are 9 methods to read binary data that match the 11 methods in
DataOutputStream (there's no exact complement for writeBytes() and
writeChars(); these are handled by reading the bytes and chars one at a time):

public final boolean readBoolean() throws IOException
public final byte readByte() throws IOException
public final char readChar() throws IOException
public final short readShort() throws IOException
public final int readInt() throws IOException
public final long readLong() throws IOException
public final float readFloat() throws IOException
public final double readDouble() throws IOException
public final String readUTF() throws IOException

In addition, DataInputStream provides two methods to read unsigned bytes and
unsigned shorts and return the equivalent int. Java doesn't have either of these data
types, but you may encounter them when reading binary data written by a C program:

public final int readUnsignedByte() throws IOException
public final int readUnsignedShort() throws IOException

DataInputStream has the usual two multibyte read() methods that read data into
an array or subarray and return the number of bytes read. It also has two readFully()
methods that repeatedly read data from the underlying input stream into an array until
the requested number of bytes have been read. If enough data cannot be read, then an
IOException is thrown. These methods are especially useful when you know in
advance exactly how many bytes you have to read. This might be the case when
you've read the Content-length field out of an HTTP MIME header and thus know
how many bytes of data there are:

public final int read(byte[] input) throws IOException
public final int read(byte[] input, int offset, int length)
 throws IOException
public final void readFully(byte[] input) throws IOException
public final void readFully(byte[] input, int offset, int length)
 throws IOException

Finally, DataInputStream provides the popular readLine() method that reads a
line of text as delimited by a line terminator and returns a string:

public final String readLine() throws IOException

However, this method should not be used under any circumstances, both because it is
deprecated and because it is buggy. It's deprecated because it doesn't properly convert
non-ASCII characters to bytes in most circumstances. That task is now handled by the
readLine() method of the BufferedReader class. However, both that method and
this one share the same insidious bug: they do not always recognize a single carriage
return as ending a line. Rather, readLine() recognizes only a linefeed or a carriage
return/linefeed pair. When a carriage return is detected in the stream, readLine()
waits to see whether the next character is a linefeed before continuing. If it is a
linefeed, then both the carriage return and the linefeed are thrown away, and the line
is returned as a String. If it isn't a linefeed, then the carriage return is thrown away,
the line is returned as a String, and the extra character that was read becomes part of
the next line. However, if the carriage return is the last character in the stream (a very
likely occurrence if the stream originates from a Macintosh or a file created on a
Macintosh), then readLine() hangs, waiting for the last character that isn't
forthcoming.

This problem isn't so obvious when reading files because there will almost certainly
be a next character, -1 for end of stream if nothing else. However, on persistent
network connections such as those used for FTP and late-model HTTP, a server or
client may simply stop sending data after the last character and wait for a response
without actually closing the connection. If you're lucky, the connection may
eventually time out on one end or the other and you'll get an IOException, though
this will probably take at least a couple of minutes. If you're not lucky, the program
will hang indefinitely.

Note that it is not enough for your program to merely be running on Windows or Unix
to avoid this bug. It must also ensure that it does not send or receive text files created
on a Macintosh and that it never talks to Macintosh clients or servers. These are very
strong conditions in the heterogeneous world of the Internet. It is obviously much
simpler to avoid readLine() completely.

4.3.6 Compressing Streams

The java.util.zip package contains filter streams that compress and decompress
streams in zip, gzip, and deflate formats. Besides its better-known uses with respect to
files, this allows your Java applications to easily exchange compressed data across the
network. HTTP 1.1 explicitly includes support for compressed file transfer in which
the server compresses and the browser decompresses files, in effect trading
increasingly cheap CPU power for still-expensive network bandwidth. This is done
completely transparently to the user. Of course, it's not at all transparent to the
programmer who has to write the compression and decompression code. However, the
java.util.zip filter streams make it a lot more transparent than it otherwise would
be.

There are six stream classes that perform compression and decompression. The input
streams decompress data and the output streams compress it. These are:

public class
DeflaterOutputStream extends FilterOutputStream
public class InflaterInputStream extends FilterInputStream
public class

GZIPOutputStream extends FilterOutputStream
public class GZIPInputStream extends FilterInputStream
public class ZipOutputStream extends FilterOutputStream
public class ZipInputStream extends FilterInputStream

All of these use essentially the same compression algorithm. They differ only in
various constants and meta-information included with the compressed data. In
addition, a zip stream may contain more than one compressed file.

Compressing and decompressing data with these classes is almost trivially easy. You
simply chain the filter to the underlying stream and read or write it like normal. For
example, suppose you want to read the compressed file allnames.gz. You simply open
a FileInputStream to the file and chain a GZIPInputStream to that like this:

FileInputStream fin = new FileInputStream("allnames.gz");

GZIPInputStream gzin = new GZIPInputStream(fin);

From that point forward, you can read uncompressed data from gzin using merely the
usual read(), skip(), and available() methods. For instance, this code
fragment reads and decompresses a file named allnames.gz in the current working
directory:

FileInputStream fin = new FileInputStream("allnames.gz");
GZIPInputStream gzin = new GZIPInputStream(fin);
FileOutputStream fout = new FileOutputStream("allnames");
int b = 0;
while ((b = gzin.read()) != -1) fout.write(b);
gzin.close();
out.flush();
out.close();

In fact, it isn't even necessary to know that gzin is a GZIPInputStream for this to
work. A simple InputStream type would work equally well. For example:

InputStream in = new GZIPInputStream(new
FileInputStream("allnames.gz"));

DeflaterOutputStream and InflaterInputStream are equally straightforward.
ZipInputStream and ZipOutputStream are a little more complicated because a zip
file is actually an archive that may contain multiple entries, each of which must be
read separately. Each file in a zip archive is represented as a ZipEntry object whose
getName() method returns the original name of the file. For example, this code
fragment decompresses the archive shareware.zip in the current working directory:

FileInputStream fin = new FileInputStream("shareware.zip");
ZipInputStream zin = new ZipInputStream(fin);
ZipEntry ze = null;
int b = 0;
while ((ze = zin.getNextEntry()) != null) {
 FileOutputStream fout = new FileOutputStream(ze.getName());
 while ((b = zin.read()) != -1) fout.write(b);
 zin.closeEntry();
 fout.flush();
 fout.close();
}
zin.close();

4.3.7 Digest Streams

The java.util.security package contains two filter streams that can calculate a
message digest for a stream. They are DigestInputStream and
DigestOutputStream. A message digest, represented in Java by the
java.util.security.MessageDigest class, is a strong hash code for the stream;
that is, it is a large integer (typically 20 bytes long in binary format) that can easily be
calculated from a stream of any length in such a fashion that no information about the
stream is available from the message digest. Message digests can be used for digital
signatures and for detecting data that has been corrupted in transit across the network.

In practice, the use of message digests in digital signatures is more important. Mere
data corruption can be detected with much simpler, less computationally expensive
algorithms. However, the digest filter streams are so easy to use that at times it may
be worth paying the computational price for the corresponding increase in
programmer productivity. To calculate a digest for an output stream, you first
construct a MessageDigest object that uses a particular algorithm, such as the Secure
Hash Algorithm (SHA). You pass both the MessageDigest object and the stream you
want to digest to the DigestOutputStream constructor. This chains the digest stream
to the underlying output stream. Then you write data onto the stream as normal, flush
it, close it, and invoke the getMessageDigest() method to retrieve the
MessageDigest object. Finally you invoke the digest() method on the
MessageDigest object to finish calculating the actual digest. For example:

MessageDigest sha = MessageDigest.getInstance("SHA");
DigestOutputStream dout = new DigestOutputStream(out, sha);
byte[] buffer = new byte[128];
while (true) {
 int bytesRead = in.read(buffer);
 if (bytesRead < 0) break;
 dout.write(buffer, 0, bytesRead);
}
dout.flush();
dout.close();
byte[] result = dout.getMessageDigest().digest();

Calculating the digest of an input stream you read is equally simple. It still isn't quite
as transparent as some of the other filter streams because you do need to be at least
marginally conversant with the methods of the MessageDigest class. Nonetheless, it's
still far easier than writing your own secure hash function and manually feeding it
each byte you write.

Of course, you also need a way of associating a particular message digest with a
particular stream. In some circumstances, the digest may be sent over the same
channel used to send the digested data. The sender can calculate the digest as it sends
data, while the receiver calculates the digest as it receives the data. When the sender is
done, it sends some signal that the receiver recognizes as indicating end of stream and
then sends the digest. The receiver receives the digest, checks that the digest received
is the same as the one calculated locally, and closes the connection. If the digests don't
match, the receiver may instead ask the sender to send the message again.
Alternatively, both the digest and the files it digests may be stored in the same zip
archive. And there are many other possibilities. Situations like this generally call for
the design of a relatively formal custom protocol. However, while the protocol may be
complicated, the calculation of the digest is straightforward, thanks to the
DigestInputStream and DigestOutputStream filter classes.

4.3.8 Encrypting Streams

Not all filter streams are part of the core Java API. For legal reasons, the filters for
encrypting and decrypting data, CipherInputStream and CipherOutputStream, are
part of a standard extension to Java called the Java Cryptography Extension, JCE for
short. This is in the javax.crypto package. Sun provides an implementation of this
API in the U.S. and Canada available from http://java.sun.com/products/jce/, and

various third parties have written independent implementations that are available
worldwide. Of particular note is the more or less Open Source Cryptix package, which
can be retrieved from http://www.cryptix.org/.

The CipherInputStream and CipherOutputStream classes are both powered by a
Cipher engine object that encapsulates the algorithm used to perform encryption and
decryption. By changing the Cipher engine object, you change the algorithm that the
streams use to encrypt and decrypt. Most ciphers also require a key that's used to
encrypt and decrypt the data. Symmetric or secret key ciphers use the same key for
both encryption and decryption. Asymmetric or public key ciphers use the different
keys for encryption and decryption. The encryption key can be distributed as long as
the decryption key is kept secret. Keys are specific to the algorithm in use, and are
represented in Java by instances of the java.security.Key interface. The Cipher
object is set in the constructor. Like all filter stream constructors, these constructors
also take another input stream as an argument:

public CipherInputStream(InputStream in, Cipher c)
public CipherOutputStream(InputStream in, Cipher c)

To get a properly initialized Cipher object, you use the static
Cipher.getInstance() factory method. This Cipher object must be initialized for
either encryption or decryption with init() before being passed into one of the
previous constructors. For example, this code fragment prepares a
CipherInputStream for decryption using the password "two and not a fnord" and the
Data Encryption Standard (DES) algorithm:

byte[] desKeyData = "two and not a fnord".getBytes();
DESKeySpec desKeySpec = new DESKeySpec(desKeyData);
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
SecretKey desKey = keyFactory.generateSecret(desKeySpec);
Cipher des = Cipher.getInstance("DES");
des.init(Cipher.DECRYPT_MODE, desKey);
CipherInputStream cin = new CipherInputStream(fin, des);

This fragment uses classes from the java.security, java.security.spec,
javax.crypto, and javax.crypto.spec packages. Different implementations of the
JCE support different groups of encryption algorithms. Common algorithms include
DES, RSA, and Blowfish. The construction of a key is generally algorithm specific.
Consult the documentation for your JCE implementation for more details.

CipherInputStream overrides most of the normal InputStream methods like
read() and available(). CipherOutputStream overrides most of the usual
OutputStream methods like write() and flush(). These methods are all invoked
much as they would be for any other stream. However, as the data is read or written,
the stream's Cipher object either decrypts or encrypts the data. (Assuming your
program wants to work with unencrypted data as is most commonly the case, a cipher
input stream will decrypt the data, and a cipher output stream will encrypt the data.)
For example, this code fragment encrypts the file secrets.txt using the password
"Mary had a little spider":

String infile = "secrets.txt";
String outfile = "secrets.des";

String password = "Mary had a little spider";

 try {

 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);

 // register the provider that implements the algorithm
 Provider sunJce = new com.sun.crypto.provider.SunJCE();
 Security.addProvider(sunJce);

 // create a key
 char[] pbeKeyData = password.toCharArray();
 PBEKeySpec pbeKeySpec = new PBEKeySpec(pbeKeyData);
 SecretKeyFactory keyFactory =
 SecretKeyFactory.getInstance("PBEWithMD5AndDES");
 SecretKey pbeKey = keyFactory.generateSecret(pbeKeySpec);

 // use Data Encryption Standard
 Cipher pbe = Cipher.getInstance("PBEWithMD5AndDES");
 pbe.init(Cipher.ENCRYPT_MODE, pbeKey);
 CipherOutputStream cout = new CipherOutputStream(fout, pbe);

 byte[] input = new byte[64];
 while (true) {
 int bytesRead = fin.read(input);
 if (bytesRead == -1) break;
 cout.write(input, 0, bytesRead);
 }

 cout.flush();
 cout.close();
 fin.close();

 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }

I admit that this is more complicated than it needs to be. There's a lot of setup work
involved in creating the Cipher object that actually performs the encryption. Partly
that's a result of key generation involving quite a bit more than a simple password.
However, a large part of it is also due to inane U.S. export laws that prevent Sun from
fully integrating the JCE with the JDK and JRE. To a large extent, the complex
architecture used here is driven by a need to separate the actual encrypting and
decrypting code from the cipher stream classes.

4.4 Readers and Writers

Most programmers have a bad habit of writing code as if all text were ASCII or, at the
least, in the native encoding of the platform. While some older, simpler network
protocols, such as daytime, quote of the day, and chargen, do specify ASCII encoding
for text, this is not true of HTTP and many other more modern protocols, which allow
a wide variety of localized encodings, such as K0I8-R Cyrillic, Big-5 Chinese, and
ISO 8859-2, for most Central European languages. When the encoding is no longer
ASCII, the assumption that bytes and chars are essentially the same things also breaks

down. Java's native character set is the 2-byte Unicode character set. Consequently,
Java provides an almost complete mirror of the input and output stream class
hierarchy that's designed for working with characters instead of bytes.

In this mirror image hierarchy, two abstract superclasses define the basic API for
reading and writing characters. The java.io.Reader class specifies the API by
which characters are read. The java.io.Writer class specifies the API by which
characters are written. Wherever input and output streams use bytes, readers and
writers use Unicode characters. Concrete subclasses of Reader and Writer allow
particular sources to be read and targets to be written. Filter readers and writers can be
attached to other readers and writers to provide additional services or interfaces.

The most important concrete subclasses of Reader and Writer are the
InputStreamReader and the OutputStreamWriter classes. An InputStreamReader
contains an underlying input stream from which it reads raw bytes. It translates these
bytes into Unicode characters according to a specified encoding. An
OutputStreamWriter receives Unicode characters from a running program. It then
translates those characters into bytes using a specified encoding and writes the bytes
onto an underlying output stream.

In addition to these two classes, the java.io package also includes several raw reader
and writer classes that read characters without directly requiring an underlying input
stream. These include:

• FileReader
• FileWriter
• StringReader
• StringWriter
• CharArrayReader
• CharArrayWriter

The first two work with files and the last four work internally to Java, so they won't be
of great use for network programming. However, aside from different constructors,
they do have pretty much the same public interface as all the other reader and writer
classes.

4.4.1 Writers

The Writer class mirrors the java.io.OutputStream class. It's abstract and has two
protected constructors. Like OutputStream, the Writer class is never used directly,
only polymorphically through one of its subclasses. It has five write() methods as
well as a flush() and a close() method:

protected Writer()
protected Writer(Object lock)
public abstract void write(char[] text, int offset, int length)
 throws IOException
public void write(int c) throws IOException
public void write(char[] text) throws IOException
public void write(String s) throws IOException
public void write(String s, int offset, int length) throws
IOException

public abstract void flush() throws IOException
public abstract void close() throws IOException

The write(char[] text, int offset, int length) method is the base method
in terms of which the other four write() methods are implemented. A subclass must
override at least this method as well as flush() and close(), though most will
override some of the other write() methods as well to provide more efficient
implementations. For example, given a Writer object w, you can write the string
"Network" like this:

char[] network = {'N', 'e', 't', 'w', 'o', 'r', 'k'};
w.write(network, 0, network.length);

The same task can be accomplished with these other methods as well:

w.write(network);
for (int i = 0; i < network.length; i++) w.write(network[i]);
w.write("Network");
w.write("Network", 0, 7);

Assuming that they use the same Writer object w, all of these are different ways of
expressing the same thing. Which you use in any given situation is mostly a matter of
convenience and taste. However, how many and which bytes are written by these lines
depends on the encoding w uses. If it's using big-endian Unicode, then it will write
these 14 bytes (shown here in hexadecimal) in this order:

00 4E 00 65 00 74 00 77 00 6F 00 72 00 6B

On the other hand, if w uses little-endian Unicode, this sequence of 14 bytes is written:

4E 00 65 00 74 00 77 00 6F 00 72 00 6B 00

If w uses Latin-1, UTF-8, or MacRoman, this sequence of seven bytes is written:

4E 65 74 77 6F 72 6B

Other encodings may write still different sequences of bytes. The exact output
depends on the encoding.

Writers may be buffered, either directly by being chained to a BufferedWriter or
indirectly because their underlying output stream is buffered. To force a write to be
committed to the output medium, invoke the flush() method:

w.flush();

The close() method behaves similarly to the close() method of OutputStream.
This flushes the writer, then closes the underlying output stream and releases any
resources associated with it:

public abstract void close() throws IOException

Once a writer has been closed, further writes will throw IOExceptions.

4.4.2 OutputStreamWriter

OutputStreamWriter is the most important concrete subclass of Writer. An
OutputStreamWriter receives Unicode characters from a Java program. It converts
these into bytes according to a specified encoding and writes them onto an underlying
output stream. Its constructor specifies the output stream to write to and the encoding
to use:

public OutputStreamWriter(OutputStream out, String encoding)
 throws UnsupportedEncodingException
public OutputStreamWriter(OutputStream out)

Valid encodings are listed in the documentation for Sun's native2ascii tool included
with the JDK and available from
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/native2ascii.html. If no
encoding is specified, the default encoding for the platform is used. (In the United
States, the default encoding is ISO Latin-1 on Solaris and Windows, MacRoman on
the Mac.) For example, this code fragment writes the string

in the Cp1253 Windows Greek
encoding:

OutputStreamWriter w = new OutputStreamWriter(
 new FileOutputStream("OdysseyB.txt"), "Cp1253");
w.write("

);

Other than the constructors, OutputStreamWriter has only the usual Writer
methods (which are used exactly as they are for any Writer class) and one method to
return the encoding of the object:

public String getEncoding()

4.4.3 Readers

The Reader class mirrors the java.io.InputStream class. It's abstract with two
protected constructors. Like InputStream and Writer, the Reader class is never used
directly, only polymorphically through one of its subclasses. It has three read()
methods as well as skip(), close(), ready(), mark(), reset(), and
markSupported() methods:

protected Reader()
protected Reader(Object lock)
public abstract int read(char[] text, int offset, int length)
 throws IOException
public int read() throws IOException
public int read(char[] text) throws IOException
public long skip(long n) throws IOException
public boolean ready()
public boolean markSupported()
public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException
public abstract void close() throws IOException

The read(char[] text, int offset, int length) method is the fundamental
method through which the other two read() methods are implemented. A subclass
must override at least this method as well as close(), though most will override
some of the other read() methods as well in order to provide more efficient
implementations.

Most of these methods are easily understood by analogy with their InputStream
counterparts. The read() method returns a single Unicode character as an int with
a value from to 65,535 or -1 on end of stream. The read(char[] text) method tries
to fill the array text with characters and returns the actual number of characters read
or -1 on end of stream. The read(char[] text, int offset, int length)
method attempts to read length characters into the subarray of text beginning at
offset and continuing for length characters. It also returns the actual number of
characters read or -1 on end of stream. The skip(long n) method skips n characters.
The mark() and reset() methods allow some readers to reset back to a marked
position in the character sequence. The markSupported() method tells you whether
this reader supports marking and resetting. The close() method closes the reader
and any underlying input stream so that further attempts to read from it will throw
IOExceptions.

The exception to the rule of similarity is ready(), which has the same general
purpose as available() but not quite the same semantics, even modulo the byte-to-
char conversion. Whereas available() returns an int specifying a minimum
number of bytes that may be read without blocking, ready() returns only a boolean
indicating whether the reader may be read without blocking. The problem is that some
character encodings such as UTF-8 use different numbers of bytes for different
characters. Thus it's hard to tell how many characters are waiting in the network or
filesystem buffer without actually reading them out of the buffer.

InputStreamReader is the most important concrete subclass of Reader. An
InputStreamReader reads bytes from an underlying input stream such as a
FileInputStream or TelnetInputStream. It converts these into characters
according to a specified encoding and returns them. The constructor specifies the
input stream to read from and the encoding to use:

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)
 throws UnsupportedEncodingException

If no encoding is specified, the default encoding for the platform is used. If an
unknown encoding is specified, then an UnsupportedEncodingException is thrown.

For example, this method reads an input stream and converts it all to one Unicode
string using the MacCyrillic encoding:

public static String getMacCyrillicString(InputStream in)
 throws IOException {

 InputStreamReader r = new InputStreamReader(in, "MacCyrillic");
 StringBuffer sb = new StringBuffer();
 int c;

 while ((c = r.read()) != -1) sb.append((char) c);
 r.close();
 return sb.toString();

}

4.4.4 Filter Readers and Writers

The InputStreamReader and OutputStreamWriter classes act as decorators on top
of input and output streams that change the interface from a byte-oriented interface to
a character-oriented interface. Once this is done, additional character-oriented filters
can be layered on top of the reader or writer using the java.io.FilterReader and
java.io.FilterWriter classes. As with filter streams, there are a variety of
subclasses that perform specific filtering, including:

• BufferedReader
• BufferedWriter
• LineNumberReader
• PushbackReader
• PrintWriter

4.4.4.1 Buffered readers and writers

The BufferedReader and BufferedWriter classes are the character-based
equivalents of the byte-oriented BufferedInputStream and BufferedOutputStream
classes. Where BufferedInputStream and BufferedOutputStream use an internal
array of bytes as a buffer, BufferedReader and BufferedWriter use an internal
array of chars.

When a program reads from a BufferedReader, text is taken from the buffer rather
than directly from the underlying input stream or other text source. When the buffer
empties, it is filled again with as much text as possible, even if not all of it is
immediately needed. This will make future reads much faster.

When a program writes to a BufferedWriter, the text is placed in the buffer. The text
is moved to the underlying output stream or other target only when the buffer fills up
or when the writer is explicitly flushed. This can make writes much faster than would
otherwise be the case.

Both BufferedReader and BufferedWriter have the usual methods associated with
readers and writers, like read(), ready(), write(), and close(). They each
have two constructors used to chain the BufferedReader or BufferedWriter to an
underlying reader or writer and to set the size of the buffer. If the size is not set, then
the default size of 8,192 characters is used:

public BufferedReader(Reader in, int bufferSize)
public BufferedReader(Reader in)
public BufferedWriter(Writer out)
public BufferedWriter(Writer out, int bufferSize)

For example, the earlier getMacCyrillicString() example was less than efficient
because it read characters one at a time. Since MacCyrillic is a 1-byte character set,

this also meant it read bytes one at a time. However, it's straightforward to make it run
faster by chaining a BufferedReader to the InputStreamReader like this:

public static String getMacCyrillicString(InputStream in)
 throws IOException {

 Reader r = new InputStreamReader(in, "MacCyrillic");
 r = new BufferedReader(r, 1024);
 StringBuffer sb = new StringBuffer();
 int c;
 while ((c = r.read()) != -1) sb.append((char) c);
 r.close();
 return sb.toString();

}

All that was needed to buffer this method was one additional line of code. None of the
rest of the algorithm had to change, since the only InputStreamReader methods used
were the read() and close() methods declared in the Reader superclass and
shared by all Reader subclasses, including BufferedReader.

The BufferedReader class also has a readLine() method that reads a single line of
text and returns it as a string:

public String readLine() throws IOException

This method is supposed to replace the deprecated readLine() method in
DataInputStream, and it has mostly the same behavior as that method. The big
difference is that by chaining a BufferedReader to an InputStreamReader, you can
correctly read lines in character sets other than the default encoding for the platform.
Unfortunately, this method shares the same bugs as the readLine() method in
DataInputStream, discussed before. That is, it will tend to hang its thread when
reading streams where lines end in carriage returns, such as is commonly the case
when the streams derive from a Macintosh or a Macintosh text file. Consequently, you
should scrupulously avoid this method in network programs.

It's not all that difficult, however, to write a safe version of this class that cor- rectly
implements the readLine() method. Example 4.1 is such a SafeBufferedReader
class. It has exactly the same public interface as BufferedReader. It just has a
slightly different private implementation. I'll use this class in future chapters in
situations where it's extremely convenient to have a readLine() method.

Example 4.1. The SafeBufferedReader Class

package com.macfaq.io;

import java.io.*;

public class SafeBufferedReader extends BufferedReader {

 public SafeBufferedReader(Reader in) {
 this(in, 1024);
 }

 public SafeBufferedReader(Reader in, int bufferSize) {
 super(in, bufferSize);
 }

 private boolean lookingForLineFeed = false;

 public String readLine() throws IOException {
 StringBuffer sb = new StringBuffer("");
 while (true) {
 int c = this.read();
 if (c == -1) { // end of stream
 return null;
 }
 else if (c == '\n') {
 if (lookingForLineFeed) {
 lookingForLineFeed = false;
 continue;
 }
 else {
 return sb.toString();
 }
 }
 else if (c == '\r') {
 lookingForLineFeed = true;
 return sb.toString();
 }
 else {
 lookingForLineFeed = false;
 sb.append((char) c);
 }
 }
 }

}

The BufferedWriter() class also adds one new method not included in its
superclass, and this method is also geared toward writing lines. That method is
newLine():

public void newLine() throws IOException

This method inserts a platform-dependent line-separator string into the output. The
line.separator system property determines exactly what this string is. It will
probably be a linefeed on Unix, a carriage return on the Macintosh, and a carriage
return/linefeed pair on Windows. Since network protocols generally specify the
required line terminator, you should not use this method for network programming.
Instead, you should explicitly write the line terminator the protocol requires.

4.4.4.2 LineNumberReader

The LineNumberReader class replaces the deprecated LineNumberInputStream class
from Java 1.0. It's a subclass of BufferedReader that keeps track of the current line
number being read. This can be retrieved at any time with the getLineNumber()
method:

public int getLineNumber()

By default, the first line number is 0. However, the number of the current line and all
subsequent lines can be changed with the setLineNumber() method:

public void setLineNumber(int lineNumber)

This method adjusts only the line numbers that getLineNumber() reports. It does
not change the point at which the stream is read.

The LineNumberReader's readLine() method shares the same bug as
BufferedReader's and DataInputStream's, and thus is not suitable for network
programming. However, the line numbers are also tracked if you use only the regular
read() methods, and these do not share that bug. Besides these methods and the
usual Reader methods, LineNumberReader has only these two constructors:

public LineNumberReader(Reader in)
public LineNumberReader(Reader in, int bufferSize)

Since LineNumberReader is a subclass of BufferedReader, it does have an internal
character buffer whose size can be set with the second constructor. The default size is
8,192 characters.

4.4.4.3 PushbackReader

The PushbackReader class is the mirror image of the PushbackInputStream class.
As usual, the main difference is that it pushes back chars rather than bytes. It provides
three unread() methods that push characters onto the reader's input buffer:

public void unread(int c) throws IOException
public void unread(char[] cbuf) throws IOException
public void unread(char[] cbuf, int offset, int length)
 throws IOException

The first unread() method pushes a single character onto the reader. The second
pushes an array of characters. The third pushes the specified subarray of characters
starting with cbuf[offset] and continuing through cbuf [offset+length-1].

By default, the size of the pushback buffer is only one character. However, this can be
adjusted in the second constructor:

public PushbackReader(Reader in)
public PushbackReader(Reader in, int bufferSize)

Trying to unread more characters than the buffer will hold throws an IOException.

4.4.4.4 PrintWriter

The PrintWriter class is a replacement for Java 1.0's PrintStream class that
properly handles multibyte character sets and international text. Sun originally
planned to deprecate PrintStream in favor of PrintWriter but backed off when it
realized this would invalidate too much existing code, especially code that depended

on System.out. Nonetheless, new code should use PrintWriter instead of
PrintStream.

Aside from the constructors, the PrintWriter class has an almost identical collection
of methods to PrintStream. These include:

public PrintWriter(Writer out)
public PrintWriter(Writer out, boolean autoFlush)
public PrintWriter(OutputStream out)
public PrintWriter(OutputStream out, boolean autoFlush)
public void flush()
public void close()
public boolean checkError()
protected void setError()
public void write(int c)
public void write(char[] text, int offset, int length)
public void write(char[] text)
public void write(String s, int offset, int length)
public void write(String s)
public void print(boolean b)
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(char[] text)
public void print(String s)
public void print(Object o)
public void println()
public void println(boolean b)
public void println(char c)
public void println(int i)
public void println(long l)
public void println(float f)
public void println(double d)
public void println(char[] text)
public void println(String s)
public void println(Object o)

Most of these methods behave the same for PrintWriter as they do for PrintStream.
The exceptions are that the four write() methods write characters rather than bytes
and that if the underlying writer properly handles character set conversion, then so do
all the methods of the PrintWriter. This is an improvement over the
noninternationalizable PrintStream class, but it's still not good enough for network
programming. PrintWriter still has the problems of platform dependency and
minimal error reporting that plague PrintStream.

It isn't hard to write a PrintWriter class that does work for network programming.
You simply have to require the programmer to specify a line separator and let the
IOExceptions fall where they may. Example 4.2 demonstrates. Notice that all the
constructors require an explicit line-separator string to be provided.

Example 4.2. SafePrintWriter

/*
 * @(#)SafePrintWriter.java 1.0 99/07/10

 *
 * Written 1999 by Elliotte Rusty Harold,
 * Placed in the public domain
 * No rights reserved.
 */

package com.macfaq.io;

import java.io.*;

/**
 * @version 1.0, 99/07/10
 * @author Elliotte Rusty Harold
 * @since Java Network Programming, 2nd edition
 */

public class SafePrintWriter extends Writer {

 protected Writer out;

 private boolean autoFlush = false;
 private String lineSeparator;
 private boolean closed = false;

 public SafePrintWriter(Writer out, String lineSeparator) {
 this(out, false, lineSeparator);
 }

 public SafePrintWriter(Writer out, char lineSeparator) {
 this(out, false, String.valueOf(lineSeparator));
 }

 public SafePrintWriter(Writer out, boolean autoFlush, String
lineSeparator) {
 super(out);
 this.out = out;
 this.autoFlush = autoFlush;
 this.lineSeparator = lineSeparator;
 }

 public SafePrintWriter(OutputStream out, boolean autoFlush,
 String encoding, String lineSeparator)
 throws UnsupportedEncodingException {
 this(new OutputStreamWriter(out, encoding), autoFlush,
lineSeparator);
 }

 public void flush() throws IOException {

 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.flush();
 }

 }

 public void close() throws IOException {

 try {
 this.flush();
 }

 catch (IOException e) {
 }

 synchronized (lock) {
 out.close();
 this.closed = true;
 }

 }

 public void write(int c) throws IOException {
 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.write(c);
 }
 }

 public void write(char[] text, int offset, int length) throws
IOException {
 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.write(text, offset, length);
 }
 }

 public void write(char[] text) throws IOException {
 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.write(text, 0, text.length);
 }
 }

 public void write(String s, int offset, int length) throws
IOException {

 synchronized (lock) {
 if (closed) throw new IOException("Stream closed");
 out.write(s, offset, length);
 }

 }

 public void print(boolean b) throws IOException {
 if (b) this.write("true");
 else this.write("false");
 }

 public void println(boolean b) throws IOException {
 if (b) this.write("true");
 else this.write("false");
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(char c) throws IOException {
 this.write(String.valueOf(c));
 }

 public void println(char c) throws IOException {
 this.write(String.valueOf(c));
 this.write(lineSeparator);

 if (autoFlush) out.flush();
 }

 public void print(int i) throws IOException {
 this.write(String.valueOf(i));
 }

 public void println(int i) throws IOException {
 this.write(String.valueOf(i));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(long l) throws IOException {
 this.write(String.valueOf(l));
 }

 public void println(long l) throws IOException {
 this.write(String.valueOf(l));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(float f) throws IOException {
 this.write(String.valueOf(f));
 }

 public void println(float f) throws IOException {
 this.write(String.valueOf(f));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(double d) throws IOException {
 this.write(String.valueOf(d));
 }

 public void println(double d) throws IOException {
 this.write(String.valueOf(d));
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(char[] text) throws IOException {
 this.write(text);
 }

 public void println(char[] text) throws IOException {
 this.write(text);
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(String s) throws IOException {
 if (s == null) this.write("null");
 else this.write(s);
 }

 public void println(String s) throws IOException {
 if (s == null) this.write("null");
 else this.write(s);

 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void print(Object o) throws IOException {
 if (o == null) this.write("null");
 else this.write(o.toString());
 }

 public void println(Object o) throws IOException {
 if (o == null) this.write("null");
 else this.write(o.toString());
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

 public void println() throws IOException {
 this.write(lineSeparator);
 if (autoFlush) out.flush();
 }

}

This class actually extends Writer rather than FilterWriter, as does PrintWriter.
It could extend FilterWriter instead. However, this would save only one field and
one line of code, since this class needs to override every single method in
FilterWriter (close(), flush(), and all three write() methods). The reason
for this is twofold. First, the PrintWriter class has to be much more careful about
synchronization than the FilterWriter class is. Second, some of the classes that may
be used as an underlying Writer for this class, notably CharArrayWriter, do not
implement the proper semantics for close() and allow further writes to take place
even after the writer is closed. Consequently, we have to handle the checks for
whether the stream is closed in this class rather than relying on the underlying Writer
out to do it for us.

This chapter has been a whirlwind tour of the java.io package,
covering the bare minimum you need to know to write network,
programs. For a more detailed and comprehensive look, with
many more examples, you should check out my previous bOok,
Java I/O (O'Reilly & Associates, Inc., 1999).

Chapter 5. Threads
Back in the good old days of the Net, circa the early 1990s, we didn't have the Web
and HTTP and graphical browsers. Instead, we had Usenet news and FTP and
command-line interfaces, and we liked it that way! But as good as the good old days
were, there were some problems. For instance, when we were downloading kilobytes
of free software from a popular FTP site over our 2400bps modems using Kermit, we
would often encounter error messages like this one:

% ftp eunl.java.sun.com
Connected to eunl.javasoft.com.

220 softwarenl FTP server (wu-2.4.2-academ[BETA-16]+opie-2.32(1)
981105) ready.
Name (eunl.java.sun.com:elharo): anonymous
530-
530- Server is busy. Please try again later or try one of our
other
530- ftp servers at ftp.java.sun.com. Thank you.
530-
530 User anonymous access denied.
Login failed.
ftp>

In fact, in the days when the Internet had only a few million users instead of a few
hundred million, we were far more likely to come across an overloaded and congested
site than we are today. The problem was that both the FTP servers bundled with most
Unixes and the third-party FTP servers, such as wu-ftpd, forked a new process for
each connection. One hundred simultaneous users meant 100 additional processes to
handle. Since processes are fairly heavyweight items, too many of them could rapidly
bring a server to its knees. The problem wasn't that the machines weren't powerful
enough or the network fast enough; it was that the FTP servers were (and many still
are) poorly implemented. Many more simultaneous users could be served if a new
process wasn't needed for each connection.

Early web servers suffered from this problem as well, though the problem was
masked a little by the transitory nature of HTTP connections. Since web pages and
their embedded images tend to be small (at least compared to the software archives
commonly retrieved by FTP) and since web browsers "hang up" the connection after
each file is retrieved instead of staying connected for minutes or hours at a time, web
users don't put nearly as much load on a server as FTP users do. Nonetheless, if the
pages are large or are dynamically generated through CGI (which spawns a process
for each new connection), then web server performance can also degrade rapidly as
usage grows. The fundamental problem is that while it's easy to write code that
handles each incoming connection and each new task as a separate process (at least on
Unix), this solution doesn't scale. By the time a server is attempting to handle a
thousand or more simultaneous connections, performance slows to a crawl.

There are at least two solutions to this problem. The first is to reuse processes rather
than spawning new ones. When the server starts up, a fixed number of processes (say,
300) are spawned to handle requests. Incoming requests are placed in a queue. Each
process removes one request from the queue, services the request, then returns to the
queue to get the next request. There are still 300 separate processes running, but
because all the overhead of building up and tearing down the processes is avoided,
these 300 processes can now do the work of a thousand.[1]

[1] These numbers are rough estimates. Your exact mileage may vary, especially if your server hasn't yet reached
the hit volume where scalability issues come into play. Still, whatever mileage you get out of spawning new
processes, you should be able to do much better by reusing old processes.

The second solution to this problem is to use lightweight threads to handle
connections instead of using heavyweight processes. Whereas each separate process
has its own block of memory, threads are easier on resources because they share
memory. Using threads instead of processes can buy you another factor of three in
server performance. By combining this with a pool of reusable threads (as opposed to

a pool of reusable processes), your server can run nine times faster, all on the same
hardware and network connection! While it's still the case that most Java virtual
machines keel over somewhere between 700 and 2,000 simultaneous threads, the
impact of running many different threads on the server hardware is relatively minimal
since they all run within one process. Furthermore, by using a thread pool instead of
spawning new threads for each connection, your server can use fewer than a hundred
threads to handle thousands of connections per minute.

Unfortunately, this increased performance doesn't come for free. There's a cost in
terms of program complexity. In particular, multithreaded servers (and other
multithreaded programs) require programmers to address concerns that aren't issues
for single-threaded programs, particularly issues of safety and liveness. Because
different threads share the same memory, it's entirely possible for one thread to stomp
all over the variables and data structures used by another thread. This is much the
same as how one program running on a non-memory-protected operating system such
as the Mac or Windows 95 can crash the entire system. Consequently, different
threads have to be extremely careful about which resources they use when. Generally,
each thread must agree to use certain resources only when it's sure either that those
resources can't change or that it has exclusive access to them. However, it's also
possible for two threads to be too careful, each waiting for exclusive access to
resources it will never get. This can lead to deadlock, where two threads are each
waiting for resources the other possesses. Neither thread can proceed without the
resources that the other thread has reserved, but neither is willing to give up the
resources it has already.

5.1 Running Threads

A thread with a little t is a separate independent path of execution in the virtual
machine. A Thread with a capital T is an instance of the java.lang.Thread class.
There is a one-to-one relationship between threads executing in the virtual machine
and Thread objects constructed by the virtual machine. Most of the time it's obvious
from the context which is meant if the difference is really important. To start a new
thread running in the virtual machine, you construct an instance of the Thread class
and invoke its start() method, like this:

Thread t = new Thread();
t.start();

Of course, this thread isn't very interesting because it doesn't have anything to do. To
give a thread something to do, you either subclass the Thread class and override its
run() method, or implement the Runnable interface and pass the Runnable object
to the Thread constructor. I generally prefer the second option since it more cleanly
separates the task that the thread performs from the thread itself, but you will see both
techniques used in this book and elsewhere. In both cases, the key is the run()
method, which has this signature:

public void run()

You're going to put all the work the thread does in this one method. This method may
invoke other methods; it may construct other objects; it may even spawn other threads.

However, the thread starts here and it stops here. When the run() method completes,
the thread dies. In essence, the run() method is to a thread what the main()
method is to a traditional nonthreaded program. A single-threaded program exits
when the main() method returns. A multithreaded program exits when both the
main() method and the run() methods of all nondaemon threads return. (Daemon
threads perform background tasks such as garbage collection and don't prevent the
virtual machine from exiting.)

5.1.1 Subclassing Thread

For example, suppose you want to write a program that calculates the Secure Hash
Algorithm (SHA) digest for many files. To a large extent, this program is I/O-bound;
that is, its speed is limited by the amount of time it takes to read the files from the disk.
If you write it as a standard program that processes the files in series, the program's
going to spend a lot of time waiting for the hard drive to return the data. This is
characteristic of a lot of network programs; they have a tendency to execute faster
than the network can supply input. Consequently, they spend a lot of time blocked.
This is time that other threads can use, either to process other input sources or to do
something that doesn't rely on slow input. (Not all threaded programs will share this
characteristic. Sometimes even if none of the threads have a lot of spare time to allot
to other threads, it's simply easier to design a program by breaking it into multiple
threads that perform independent operations.) Example 5.1 is a subclass of Thread
whose run() method calculates an SHA message digest for a specified file.

Example 5.1. FileDigestThread

import java.io.*;
import java.security.*;

public class DigestThread extends Thread {

 private File input;

 public DigestThread(File input) {
 this.input = input;
 }

 public void run() {
 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 StringBuffer result = new StringBuffer(input.toString());
 result.append(": ");
 for (int i = 0; i < digest.length; i++) {
 result.append(digest[i] + " ");
 }
 System.out.println(result);
 }
 catch (IOException e) {

 System.err.println(e);
 }
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 }

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 File f = new File(args[i]);
 Thread t = new DigestThread(f);
 t.start();
 }

 }

}

The main() method reads filenames from the command-line and starts a new
DigestThread for each one. The work of the thread is actually performed in the
run() method. Here a DigestInputStream reads the file. Then the resulting digest
is printed on System.out. Notice that the entire output from this thread is first built in
a local StringBuffer variable result. This is then printed on the console with one
method invocation. The more obvious path of printing the pieces one at a time using
System.out.print() is not taken. There's a reason for that, which we'll discuss
soon.

Since the signature of the run() method is fixed, you can't pass arguments to it or
return values from it. Consequently, you need different ways to pass information into
the thread and get information out of it. The simplest way to pass information in is to
pass arguments to the constructor, which set fields in the Thread subclass, as done
here.

Getting information out of a thread back into the original calling thread is trickier
because of the asynchronous nature of threads. Example 5.1 sidesteps that problem by
never passing any information back to the calling thread and simply printing the
results on System.out. Most of the time, however, you'll want to pass the information
to other parts of the program. You can store the result of the calculation in a field and
provide a getter method to return the value of that field. However, how do you know
when the calculation of that value is complete? What do you return if somebody calls
the getter method before the value has been calculated? This is quite tricky, and we'll
discuss it more later in this chapter.

If you subclass Thread, you should override run() and nothing else! The various
other methods of the Thread class, start(), stop(), interrupt(), join(),
sleep(), etc., all have very specific semantics and interactions with the virtual
machine that are difficult to reproduce in your own code. You should override run(),
and you should provide additional constructors and other methods as necessary, but
you should not replace any of the other standard Thread methods.

5.1.2 Implementing the Runnable Interface

One way to avoid overriding the standard Thread methods is not to subclass Thread.
Instead, you can write the task you want the thread to perform as an instance of the
Runnable interface. This interface declares the run() method, exactly the same as
the Thread class:

public void run()

Other than this method, which any class implementing this interface must provide,
you are completely free to create any other methods with any other names you choose,
all without any possibility of unintentionally interfering with the behavior of the
thread. This also allows you to place the thread's task in a subclass of some other class
such as Applet or HTTPServlet. To start a thread that performs the Runnable's task,
you pass the Runnable object to the Thread constructor. For example:

Thread t = new Thread(myRunnableObject);
t.start();

It's easy to recast most problems that subclass Thread into Runnable forms. Example
5.2 demonstrates by rewriting Example 5.1 to use the Runnable interface rather than
subclassing Thread. Aside from the name change, the only modifications that were
necessary were changing extends Thread to implements Runnable and passing a
DigestRunnable object to the Thread constructor in the main() method. The
essential logic of the program is unchanged.

Example 5.2. DigestRunnable

import java.io.*;
import java.security.*;

public class DigestRunnable implements Runnable {

 private File input;

 public DigestRunnable(File input) {
 this.input = input;
 }

 public void run() {
 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 StringBuffer result = new StringBuffer(input.toString());
 result.append(": ");
 for (int i = 0; i < digest.length; i++) {
 result.append(digest[i] + " ");
 }
 System.out.println(result);
 }
 catch (IOException e) {
 System.err.println(e);

 }
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 }

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 File f = new File(args[i]);
 DigestRunnable dr = new DigestRunnable(f);
 Thread t = new Thread(dr);
 t.start();
 }

 }

}

There's no strong reason to prefer implementing Runnable to extending Thread or
vice versa in the general case. In a few special cases such as Example 5.14 later in this
chapter, it may be useful to invoke some methods of the Thread class for the specific
thread from within the constructor. This would require using a subclass. Subclassing
Thread does allow hostile applets some attacks they might not otherwise have
available. In some specific cases, it may be necessary to place the run() method in a
class that extends some other class such as Applet, so the Runnable interface is
essential. Finally, some object-oriented purists argue that the task that a thread
undertakes is not really a kind of Thread, and therefore should be placed in a separate
class or interface such as Runnable rather than in a subclass of Thread. I half agree
with them, though I don't think the argument's as strong as it's sometimes made out to
be. Consequently, I'll mostly use the Runnable interface in this book, but you should
feel free to do whatever seems most convenient to you.

5.2 Returning Information from a Thread

One of the hardest things for programmers accustomed to traditional, single-threaded
procedural models to grasp when moving to a multithreaded environment is how to
return information from a thread. Getting information out of a finished thread is one
of the most commonly misunderstood aspects of multithreaded programming. The
run() method and the start() method don't return any values. For example,
suppose that instead of simply printing out the SHA digest as in Example 5.1 and
Example 5.2, the digest thread needs to return the digest to the main thread of
execution. Most people's first reaction is to store the result in a field, then provide a
getter method, as shown in Example 5.3 and Example 5.4. Example 5.3 is a Thread
subclass that calculates a digest for a specified file. Example 5.4 is a simple
command-line user interface that receives filenames and spawns threads to calculate
digests for them.

Example 5.3. A Thread That Uses an Accessor Method to Return the Result

import java.io.*;
import java.security.*;

public class ReturnDigest extends Thread {

 private File input;
 private byte[] digest;

 public ReturnDigest(File input) {
 this.input = input;
 }

 public void run() {
 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 digest = sha.digest();
 }
 catch (IOException e) {
 System.err.println(e);
 }
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 }

 }

 public byte[] getDigest() {
 return digest;
 }

}

Example 5.4. A Main Program That Uses the Accessor Method to Get the Output of the
Thread

import java.io.*;

public class ReturnDigestUserInterface {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 // Calculate the digest
 File f = new File(args[i]);
 ReturnDigest dr = new ReturnDigest(f);
 dr.start();

 // Now print the result
 StringBuffer result = new StringBuffer(f.toString());
 result.append(": ");
 byte[] digest = dr.getDigest();
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);

 }

 }

}

The ReturnDigest class stores the result of the calculation in the private field digest,
which is accessed via the accessor method getDigest(). The main() method in
ReturnDigestUserInterface loops through a list of files from the command line. It
starts a new ReturnDigest thread for each file, then tries to retrieve the result using
getDigest(). However, when you run this program, the result is not what you
expect:

D:\JAVA\JNP2\examples\05>java ReturnDigestUserInterface *.java
Exception in thread "main" java.lang.NullPointerException
 at
ReturnDigestUserInterface.main(ReturnDigestUserInterface.java,
 Compiled Code)

The problem is that the main program gets the digest and uses it before the thread has
had a chance to initialize it. Although this flow of control would work in a single-
threaded program in which dr.start() simply invoked the run() method in the
same thread, that's not what happens here. The calculations that dr.start() kicks
off may or may not finish before the main() method reaches the call to
dr.getDigest(). If they haven't finished, then dr.getDigest() returns null, and
the first attempt to access digest throws a NullPointerException.

5.2.1 Race Conditions

One possibility is to move the call to dr.getDigest() later in the main() method
like this:

public static void main(String[] args) {

 ReturnDigest[] digests = new ReturnDigest[args.length];

 for (int i = 0; i < args.length; i++) {

 // Calculate the digest
 File f = new File(args[i]);
 digests[i] = new ReturnDigest(f);
 digests[i].start();

 }

 for (int i = 0; i < args.length; i++) {

 // Now print the result
 StringBuffer result = new StringBuffer(args[i]);
 result.append(": ");
 byte[] digest = digests[i].getDigest();
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);

 }

}

If you're lucky, this may work, and you'll get the expected output like this:

D:\JAVA\JNP2\examples\05>java ReturnDigest2 *.java
BadDigestRunnable.java: 73 -77 -74 111 -75 -14 70 13 -27 -28 32 68 -
126
43 -27 55 -119 26 -77 6
BadDigestThread.java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82
39
-4 8 -38 119 96 -37 -99
DigestRunnable.java: 61 116 -102 -120 97 90 53 37 -14 111 -60 -86 -
112
124 -54 111 114 -42 -36 -111
DigestThread.java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82 39
-4 8 -38 119 96 -37 -99

But let me emphasize that point about being lucky. You may not get this output. In
fact, you may still get a NullPointerException. Whether this code works is
completely dependent on whether every one of the ReturnDigest threads finishes
before its getDigest() method is called. If the first for loop is too fast, and the
second for loop is entered before the threads spawned by the first loop start finishing,
then you're back where we started:

D:\JAVA\JNP2\examples\05>java ReturnDigest2 ReturnDigest.java
Exception in thread "main" java.lang.NullPointerException
 at ReturnDigest2.main(ReturnDigest2.java, Compiled Code)

Whether you get the correct results, or this exception, depends on many factors,
including how many threads you're spawning, the relative speeds of the CPU and disk
on the system where this is run, and the algorithm the Java virtual machine uses to
allot time to different threads. This is called a race condition. Getting the correct
result depends on the relative speeds of different threads, and you can't control those!
You need a better way to guarantee that the getDigest() method isn't called until
the digest is ready.

5.2.2 Polling

The solution most novices adopt is to have the getter method return a flag value (or
perhaps throw an exception) until the result field is set. Then the main thread
periodically polls the getter method to see whether it's returning something other than
the flag value. In this example, that would mean repeatedly testing whether the digest
is null and using it only if it isn't. For example:

public static void main(String[] args) {

 ReturnDigest[] digests = new ReturnDigest[args.length];

 for (int i = 0; i < args.length; i++) {

 // Calculate the digest
 File f = new File(args[i]);
 digests[i] = new ReturnDigest(f);

 digests[i].start();

 }

 for (int i = 0; i < args.length; i++) {
 while (true) {
 // Now print the result
 byte[] digest = digests[i].getDigest();
 if (digest != null) {
 StringBuffer result = new StringBuffer(args[i]);
 result.append(": ");
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);
 break;
 }
 }
 }

}

This solution works. It gives the correct answers in the correct order, and it works
irrespective of how fast the individual threads run relative to each other. However, it's
doing a lot more work than it needs to.

5.2.3 Callbacks

In fact, there's a much simpler, more efficient way to handle the problem. The infinite
loop that repeatedly polls each ReturnDigest object to see whether it's finished can
be eliminated. The trick is that rather than having the main program repeatedly ask
each ReturnDigest thread whether it's finished (like a five-year-old repeatedly
asking, "Are we there yet?" on a long car trip, and almost as annoying), we let the
thread tell the main program when it's finished. It does this by invoking a method in
the main class that started it. This is called a callback because the thread calls back its
creator when it's done. This way, the main program can go to sleep while waiting for
the threads to finish and not steal time from the running threads.

When the thread's run() method is nearly done, the last thing it does is invoke a
known method in the main program with the result. Rather than the main program
asking each thread for the answer, each thread tells the main program the answer. For
instance, Example 5.5 shows a CallbackDigest class that is much the same as before.
However, at the end of the run() method, it passes off the digest to the static
CallbackDigestUserInterface.receiveDigest() method in the class that
originally started the thread.

Example 5.5. CallbackDigest

import java.io.*;
import java.security.*;

public class CallbackDigest implements Runnable {

 private File input;

 public CallbackDigest(File input) {
 this.input = input;
 }

 public void run() {
 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 CallbackDigestUserInterface.receiveDigest(digest,
 input.getName());
 }
 catch (IOException e) {
 System.err.println(e);
 }
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 }

 }

}

The CallbackDigestUserInterface class shown in Example 5.6 provides the
main() method. However, unlike the main() methods in the other variations of this
program in this chapter, this one only starts the threads for the files named on the
command line. It does not attempt to actually read, print out, or in any other way work
with the results of the calculation. That is handled by a separate method,
receiveDigest(). This method is not invoked by the main() method or by any
method that can be reached by following the flow of control from the main()
method. Instead, it is invoked by each thread separately. In effect, it runs inside the
digesting threads rather than inside the main thread of execution.

Example 5.6. CallbackDigestUserInterface

import java.io.*;

public class CallbackDigestUserInterface {

 public static void receiveDigest(byte[] digest, String name) {

 StringBuffer result = new StringBuffer(name);
 result.append(": ");
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 // Calculate the digest
 File f = new File(args[i]);
 CallbackDigest cb = new CallbackDigest(f);
 Thread t = new Thread(cb);
 t.start();
 }

 }

}

Example 5.5 and Example 5.6 use static methods for the callback so that
CallbackDigest needs to know only the name of the method in
CallbackDigestUserInterface to call. However, it's not much harder (and
considerably more common) to call back to an instance method. In this case, the class
making the callback must have a reference to the object it's calling back. Generally,
this reference is provided as an argument to the thread's constructor. When the run()
method is nearly done, the last thing it does is invoke the instance method on the
callback object to pass along the result. For instance, Example 5.7 shows a
CallbackDigest class that is much the same as before. However, it now has one
additional field, a CallbackDigestUserInterface object called callback. At the
end of the run() method, the digest is passed to callback's receiveDigest()
method. The CallbackDigestUserInterface object itself is set in the constructor.

Example 5.7. InstanceCallbackDigest

import java.io.*;
import java.security.*;

public class InstanceCallbackDigest implements Runnable {

 private File input;
 private InstanceCallbackDigestUserInterface callback;

 public InstanceCallbackDigest(File input,
 InstanceCallbackDigestUserInterface callback) {
 this.input = input;
 this.callback = callback;
 }

 public void run() {
 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 callback.receiveDigest(digest);
 }
 catch (IOException e) {
 System.err.println(e);
 }
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);

 }

 }

}

The CallbackDigestUserInterface class shown in Example 5.8 holds the main()
method as well as the receiveDigest() method used to handle an incoming digest.
Example 5.8 just prints out the digest, but a more expansive class could do other
things as well, such as storing the digest in a field, using it to start another thread, or
performing further calculations on it.

Example 5.8. InstanceCallbackDigestUserInterface

import java.io.*;

public class InstanceCallbackDigestUserInterface {

 private File input;
 private byte[] digest;

 public InstanceCallbackDigestUserInterface(File input) {
 this.input = input;
 }

 public void calculateDigest() {
 InstanceCallbackDigest cb = new InstanceCallbackDigest(input,
this);
 Thread t = new Thread(cb);
 t.start();
 }

 void receiveDigest(byte[] digest) {
 this.digest = digest;
 System.out.println(this);
 }

 public String toString() {
 String result = input.getName() + ": ";
 if (digest != null) {
 for (int i = 0; i < digest.length; i++) {
 result += digest[i] + " ";
 }
 }
 else {
 result += "digest not available";
 }
 return result;
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 // Calculate the digest
 File f = new File(args[i]);
 InstanceCallbackDigestUserInterface d
 = new InstanceCallbackDigestUserInterface(f);
 d.calculateDigest();

 }

 }

}

Using instance methods instead of static methods for callbacks is a little more
complicated but has a number of advantages. First, each instance of the main class,
InstanceCallbackDigestUserInterface in this example, maps to exactly one file
and can keep track of information about that file in a natural way without needing
extra data structures. Furthermore, the instance can easily recalculate the digest for a
particular file if necessary. In practice, this scheme proves a lot more flexible.
However, there is one caveat. Notice the addition of a start() method. You might
logically think that this belongs in a constructor. However, starting threads in a
constructor is dangerous, especially threads that will call back to the originating object.
There's a race condition here that may allow the new thread to call back before the
constructor is finished and the object is fully initialized. It's unlikely in this case,
because starting the new thread is the last thing this constructor does. Nonetheless, it's
at least theoretically possible. Therefore, it's good form to avoid launching threads
from constructors.

The first advantage of the callback scheme over the polling scheme is that it doesn't
waste so many CPU cycles on polling. But a much more important advantage is that
callbacks are more flexible and can handle more complicated situations involving
many more threads, objects, and classes. For instance, if more than one object is
interested in the result of the thread's calculation, the thread can keep a list of objects
to call back. Particular objects can register their interest by invoking a method in the
Thread or Runnable class to add themselves to the list. If instances of more than one
class are interested in the result, then a new interface can be defined that all these
classes implement. The interface would declare the callback methods. If you're
experiencing déjà vu right now, that's probably because you have seen this scheme
before. This is exactly how events are handled in the AWT and JavaBeans™. The
AWT runs in a separate thread from the rest of your program. Components and beans
inform you of events by calling back to methods declared in particular interfaces, such
as ActionListener and PropertyChangeListener. Your listener objects register
their interests in events fired by particular components using methods in the
Component class, such as addActionListener() and addPropertyChange-
Listener(). Inside the component, the registered listeners are stored in a linked list
built out of java.awt.AWTEventMulticaster objects. It's easy to duplicate this
pattern in your own classes. Example 5.9 shows one very simple possible interface
class called DigestListener that declares the digestCalculated() method.

Example 5.9. DigestListener Interface

public interface DigestListener {

 public void digestCalculated(byte[] digest);

}

Example 5.10 shows the Runnable class that calculates the digest. Several new
methods and fields are added for registering and deregistering listeners. For

convenience and simplicity, a java.util.Vector manages the list. The run()
method no longer directly calls back the object that created it. Instead, it
communicates with the private sendDigest() method, which sends the digest to all
registered listeners. The run() method neither knows nor cares who's listening to it.
This class no longer knows anything about the user interface class. It has been
completely decoupled from the classes that may invoke it. This is one of the strengths
of this approach.

Example 5.10. The ListCallbackDigest Class

import java.io.*;
import java.security.*;
import java.util.*;

public class ListCallbackDigest implements Runnable {

 private File input;
 List listenerList = new Vector();

 public ListCallbackDigest(File input) {
 this.input = input;
 }

 public synchronized void addDigestListener(DigestListener l) {
 listenerList.add(l);
 }

 public synchronized void removeDigestListener(DigestListener l) {
 listenerList.remove(l);
 }

 private void synchronized sendDigest(byte[] digest) {

 ListIterator iterator = listenerList.listIterator();
 while (iterator.hasNext()) {
 DigestListener dl = (DigestListener) iterator.next();
 dl.digestCalculated(digest);
 }

 }

 public void run() {

 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 this.sendDigest(digest);
 }
 catch (IOException e) {
 System.err.println(e);
 }
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);

 }

 }

}

Finally, Example 5.11 is a main program that implements the DigestListener
interface and exercises the ListCallbackDigest class by calculating digests for all
the files named on the command line. However, this is no longer the only possible
main program. There are now many more possible ways the digest thread could be
used.

Example 5.11. ListCallbackDigestUserInterface Interface

import java.io.*;

public class ListCallbackDigestUserInterface implements
DigestListener {

 private File input;
 private byte[] digest;

 public ListCallbackDigestUserInterface(File input) {
 this.input = input;
 }

 public void calculateDigest() {
 ListCallbackDigest cb = new ListCallbackDigest(input);
 cb.addDigestListener(this);
 Thread t = new Thread(cb);
 t.start();
 }

 public void digestCalculated(byte[] digest) {
 this.digest = digest;
 System.out.println(this);
 }

 public String toString() {
 String result = input.getName() + ": ";
 if (digest != null) {
 for (int i = 0; i < digest.length; i++) {
 result += digest[i] + " ";
 }
 }
 else {
 result += "digest not available";
 }
 return result;
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 // Calculate the digest
 File f = new File(args[i]);
 ListCallbackDigestUserInterface d
 = new ListCallbackDigestUserInterface(f);

 d.calculateDigest();
 }

 }

}

5.3 Synchronization

My shelves are overflowing with books, including many duplicate books, out-of-date
books, and books I haven't looked at for ten years and probably never will again. Over
the years, these books have cost me tens of thousands of dollars, maybe more, to
acquire. By contrast, two blocks down the street from my apartment, you'll find the
Central Brooklyn Public Library. Its shelves are also overflowing with books, and
over its 150 years, it's spent millions on its collection. But the difference is that its
books are shared among all the residents of Brooklyn, and consequently the books
have very high turnover. Most books in the collection are used several times a year.
Although the public library spends a lot more on buying and storing books than I do,
the cost per page read is much lower at the library than for my personal shelves.
That's the advantage of a shared resource.

Of course, there are disadvantages to shared resources too. If I need a book from the
library, I have to walk over there. I have to find the book I'm looking for on the
shelves. I have to stand in line to check the book out, or else I have to use it right there
in the library rather than bringing it home with me. Sometimes, somebody else has
checked the book out, and I have to fill out a reservation slip requesting that the book
be saved for me when it's returned. And I can't write notes in the margins, highlight
paragraphs, or tear pages out to paste on my bulletin board. (Well, I can, but if I do, it
significantly reduces the usefulness of the book for future borrowers, and if the library
catches me, I may lose my borrowing privileges.) There's a significant time and
convenience penalty associated with borrowing a book from the library rather than
purchasing my own copy, but it does save me money and storage space.

A thread is like a borrower at a library. It's borrowing from a central pool of resources.
Threads make programs more efficient by sharing memory, file handles, sockets, and
other resources. As long as two threads don't want to use the same resource at the
same time, a multithreaded program is much more efficient than the multiprocess
alternative in which each process would have to keep its own copy of every resource.
The downside of this is that if two threads do want the same resource at the same time,
one of them will have to wait for the other one to finish. If one of them doesn't wait,
then the resource may get corrupted. Let's look at a specific example. Consider the
run() method of Example 5.1 and Example 5.2. As previously mentioned, the
method builds the result as a String, and then prints the String on the console using
one call to System.out.println(). The output looks like this:

DigestThread.java: 69 101 80 -94 -98 -113 29 -52 -124 -121 -38 -82 39
-4 8 -38 119 96 -37 -99
DigestRunnable.java: 61 116 -102 -120 97 90 53 37 -14 111 -60 -86 -
112
124 -54 111 114 -42 -36 -111
DigestThread.class: -62 -99 -39 -19 109 10 -91 25 -54 -128 -101 17 13
-66 119 25 -114 62 -21 121

DigestRunnable.class: 73 15 7 -122 96 66 -107 -45 69 -36 86 -43 103
-104 25 -128 -97 60 14 -76

Four threads run in parallel to produce this output. Each writes one line to the console.
The order in which the lines are written is unpredictable because thread scheduling is
unpredictable. But each line is written as a unified whole. Suppose, however, we used
this variation of the run() method, which, rather than storing intermediate parts of
the result in the String variable result, simply prints them on the console as they
become available:

public void run() {

 try {
 FileInputStream in = new FileInputStream(input);
 MessageDigest sha = MessageDigest.getInstance("SHA");
 DigestInputStream din = new DigestInputStream(in, sha);
 int b;
 while ((b = din.read()) != -1) ;
 din.close();
 byte[] digest = sha.digest();
 System.out.print(input + ": ");
 for (int i = 0; i < digest.length; i++) {
 System.out.print(digest[i] + " ");
 }
 System.out.println();
 }
 catch (IOException e) {
 System.err.println(e);
 }
 catch (NoSuchAlgorithmException e) {
 System.err.println(e);
 }

}

When you run the program on the same input, you get output that looks something
like this:

DigestRunnable.class: 73 15 7 -122 96 66 -107 -45 69 -36 86 -43 103 -
104 25
-128 DigestRunnable.java: DigestThread.class: DigestThread.java:
61 -62 69 116 -99 101 -102 -39 80 -120 -19 -94 97 109 -98 90 -97 10 -
113 53 60
-91 29 37 14 25 -52 -14 -76 -54 -124 111
-128 -121 -60 -101 -38 -86 17 -82 -112 13 39 124 -66 -4 -54 119 8 111
25 -38 114
-114 119 -42 62 96 -36 -21 -37 -111 121 -99

The digests of the different files are all mixed up! There's no telling which number
belongs to which digest. Clearly, this is a problem.

The reason this occurs is that System.out is shared between the four different threads.
When one thread starts writing to the console through several System.out.print()
statements, it may not finish all its writes before another thread breaks in and starts
writing its output. The exact order in which one thread preempts the other threads is

indeterminate. You'll probably see slightly different output every time you run this
program.

What's needed is a way to assign exclusive access to a shared resource to one thread
for a specific series of statements. In this example, that shared resource is System.out,
and the statements that need exclusive access are:

System.out.print(input + ": ");
for (int i = 0; i < digest.length; i++) {
 System.out.print(digest[i] + " ");
}
System.out.println();

5.3.1 Synchronized Blocks

Java's means of assigning exclusive access to an object is the synchronized keyword.
To indicate that these five lines of code should be executed together, wrap them in a
synchronized block that synchronizes on the System.out object, like this:

synchronized (System.out) {
 System.out.print(input + ": ");
 for (int i = 0; i < digest.length; i++) {
 System.out.print(digest[i] + " ");
 }
 System.out.println();
}

This means that once one thread starts printing out the values, all other threads will
have to stop and wait for it to finish before they can print out their values.
Synchronization is only a partial lock on an object. Other methods can use the
synchronized object if they do so blindly, without attempting to synchronize on the
object. For instance, in this case, there's nothing to prevent an unrelated thread from
printing on System.out if it doesn't also try to synchronize on System.out.[2] Java
provides no means to stop all other threads from using a shared resource. It can only
prevent other threads that synchronize on the same object from using the shared
resource.

[2] In fact, the PrintStream class internally synchronizes most methods on the PrintStream object, System.out in
this example. This means that every other thread that calls System.out.println() will be synchronized on
System.out and will have to wait for this code to finish. PrintStream is unique in this respect. Most other
OutputStream subclasses do not synchronize themselves.

Synchronization must be considered any time multiple threads share resources. These
threads may be instances of the same Thread subclass or use the same Runnable class,
or they may be instances of completely different classes. The key is what resources
they share, not what classes they are. In Java, all resources are represented by objects
that are instances of particular classes. Synchronization becomes an issue only when
two threads both possess references to the same object. In the previous example, the
problem was that several threads had access to the same PrintStream object
System.out. In this case, it was a static class variable that led to the conflict.
However, instance variables can also have problems.

For example, suppose your web server keeps a log file. The log file may be
represented by a class something like the one shown in Example 5.12. This class itself
doesn't use multiple threads. However, if the web server uses multiple threads to
handle incoming connections, then each of those threads will need access to the same
log file and consequently to the same LogFile object.

Example 5.12. LogFile

import java.io.*;
import java.util.*;

public class LogFile {

 private Writer out;

 public LogFile(File f) throws IOException {
 FileWriter fw = new FileWriter(f);
 this.out = new BufferedWriter(fw);
 }

 public void writeEntry(String message) throws IOException {
 Date d = new Date();
 out.write(d.toString());
 out.write('\t');
 out.write(message);
 out.write("\r\n");
 }

 public void close() throws IOException {
 out.flush();
 out.close();
 }

 protected void finalize() {
 try {
 this.close();
 }
 catch (IOException e) {
 }
 }

}

In this class, the writeEntry() method finds the current date and time, then writes
into the underlying file using four separate invocations of out.write(). A problem
occurs if two or more threads each have a reference to the same LogFile object, and
one of those threads interrupts another one while it's in the process of writing the data.
One thread may write the date and a tab, then the next thread might write three
complete entries, then the first thread could write the message, a carriage return, and a
linefeed. The solution, once again, is synchronization. However, here there are two
good choices for which object to synchronize on. The first choice is to synchronize on
the Writer object out.

For example:

public void writeEntry(String message) throws IOException {

 synchronized (out) {
 Date d = new Date();
 out.write(d.toString());
 out.write('\t');
 out.write(message);
 out.write("\r\n");
 }

 }

This works because all the threads that use this LogFile object are also using the
same out object that's part of that LogFile. It doesn't matter that out is private.
Although it is used by the other threads and objects, it's referenced only within the
LogFile class. Furthermore, although we're synchronizing here on the out object, it's
the writeEntry() method that needs to be protected from interruption. The Writer
classes all have their own internal synchronization that protects one thread from
interfering with a write() method in another thread. (This is not true of input and
output streams, with the exception of PrintStream. It is possible for a write to an
output stream to be interrupted by another thread.) Each Writer class has a lock field
that specifies the object on which writes to that writer synchronize.

The second possibility is to synchronize on the LogFile object itself. This is simple
enough to arrange with the this keyword. For example:

public void writeEntry(String message) throws IOException {

 synchronized (this) {
 Date d = new Date();
 out.write(d.toString());
 out.write('\t');
 out.write(message);
 out.write("\r\n");
 }

 }

5.3.2 Synchronized Methods

However, since synchronizing the entire method body on the object itself is such a
common thing to do, Java provides a shortcut for this. You can synchronize an entire
method on the current object (the this reference) by adding the synchronized
modifier to the method declaration. This synchronizes on the Class object for the
class if a static method is being synchronized. For example:

public synchronized void writeEntry(String message)
 throws IOException {

 Date d = new Date();
 out.write(d.toString());
 out.write('\t');
 out.write(message);
 out.write("\r\n");

 }

Simply adding the synchronized modifier to all methods is not a catchall solution for
synchronization problems. For one thing, it exacts a severe performance penalty in
many VMs (though HotSpot is much better in this respect than most), potentially
slowing down your code by a factor of three or more. Second, it dramatically
increases the chances of deadlock. Third, and most importantly, it's not always the
object itself you need to protect from simultaneous modification or access, and
synchronizing on the instance of the method's class may not protect the object you
really need to protect. For instance, in this example, what we're really trying to
prevent is two threads simultaneously writing onto out. If some other class had a
reference to out completely unrelated to the LogFile, then this attempt would have
failed. However, in this example, synchronizing on the LogFile object is sufficient
because out is a private instance variable. Since we never expose a reference to this
object, there's no way for any other object to invoke its methods except through the
LogFile class. Therefore, synchronizing on the LogFile object has the same effect as
synchronizing on out.

5.3.3 Alternatives to Synchronization

Synchronization is not always the best possible solution to the problem of inconsistent
behavior as a result of thread scheduling. There are a number of techniques you can
use to avoid the need for synchronization. The first is to use local variables instead of
fields wherever possible. Local variables do not have synchronization problems.
Every time a method is entered, the virtual machine creates a completely new set of
local variables for the method. These variables are destroyed when the method exits.
This means there is no possibility for one local variable to be used in two different
threads. Every thread has its own separate set of local variables.

Method arguments of primitive types are also safe from modification in separate
threads because Java passes arguments by value rather than by reference. A corollary
of this is that methods such as Math.sqrt() that simply take zero or more primitive
data type arguments, perform some calculation, and return a value without ever
interacting with the fields of any class are inherently thread safe. These methods often
either are or should be declared static.

Method arguments of object types are a little trickier because the actual argument
passed by value is a reference to the object. Suppose, for example, you pass a
reference to an array into a sort() method. While the method is sorting the array,
there's nothing to stop some other thread that also has a reference to the array from
changing the values in the array.

String arguments are safe because they're immutable ; that is, once a String object
has been created, it cannot be changed by any thread. An immutable object never
changes state. The values of its fields are set once when the constructor runs and then
never altered. StringBuffer arguments are not safe because they're not immutable ;
they can be changed after they're created.

A constructor normally does not have to worry about issues of thread safety because
until the constructor returns, no thread has a reference to the object, and so it's
impossible for two threads to have a reference to the object. (The most likely issue is
if a constructor depends on another object in another thread that may change while the

constructor runs, but that's uncommon. There's also a potential problem if a
constructor somehow passes a reference to the object into a different thread, but this is
also uncommon.)

You can take advantage of immutability in your own classes. This is often the easiest
way to make a class thread safe, often much easier than determining exactly which
methods or code blocks to synchronize. To make an object immutable, you simply
declare all its fields private, and don't write any methods that can change them. A lot
of classes in the core Java library are immutable, for instance, java.lang.String,
java.lang.Integer, java.lang.Double, and many more. This makes these classes
less useful for some purposes, but it does make them a lot more thread-safe.

A third technique is to use a thread unsafe class but only as a private field of a class
that is thread-safe. As long as the containing class accesses the unsafe class only in a
thread-safe fashion, and as long as it never lets a reference to the private field leak out
into another object, the class is safe. An example of this might be a web server that
used an unsynchronized LogFile class but gave each separate thread its own separate
log so that no resources were shared between the individual threads.

5.4 Deadlock

Synchronization can lead to another possible problem with your code: deadlock.
Deadlock occurs when two threads each need exclusive access to the same set of
resources, but each thread possesses a different subset of those resources. If neither
thread is willing to give up the resources it has, both threads will come to an indefinite
halt. This can bring your program to a halt. This isn't quite a hang in the classical
sense, because the program is still active and behaving normally from the perspective
of the OS, but to a user the difference is insignificant.

To return to the library example, deadlock is what occurs when Jack and Jill are each
writing a term paper on Thomas Jefferson and each needs the two books Thomas
Jefferson and Sally Hemings: An American Controversy and Sally Hemings and
Thomas Jefferson: History, Memory and Civic Culture. If Jill has checked out the first
book, while Jack has checked out the second, then neither can finish the paper.
Eventually the deadline expires, and they both get an F. That's the problem of
deadlock.

Worse yet, deadlock can be a sporadic and hard-to-detect bug. Deadlock closely
depends on unpredictable issues of timing. Most of the time, either Jack or Jill will get
to the library first and get both books. In this case, the one who gets the books writes
his paper and returns the books; then the other one gets the books and writes her paper.
Only rarely will they arrive at the same time and each get one of the two books.
Ninety-nine times out of 100 or 999 times out of 1,000, a program may run to
completion perfectly normally. Only rarely will it hang for no apparent reason. Of
course, if a multithreaded server is handling hundreds or thousands of connections a
minute, then even a problem that occurs only once every million requests can hang the
server in short order.

The most important technique to prevent deadlock is to avoid unnecessary
synchronization. If there's an alternative approach for ensuring thread safety, such as

using immutable objects or a local copy of an object, then use that. Synchronization
should be a last resort for ensuring thread safety. If you do need to synchronize, keep
your synchronized blocks small and try not to synchronize on more than one object at
a time. This can be tricky though because many of the methods from the Java class
library that your code may invoke synchronize on objects you aren't aware of.
Consequently, you may in fact be synchronizing on many more objects than you
expect.

The best you can do in the general case is carefully consider whether deadlock is
likely to be a problem and architect your code around it. If multiple objects need the
same set of shared resources to operate, then make sure they request them in the same
order. For instance, if Class A and Class B both need exclusive access to Object X
and Object Y, then make sure that both classes request X first and Y second. If neither
requests Y unless it already possesses X, then deadlock is not a problem.

5.5 Thread Scheduling

When multiple threads are running at the same time (more properly, when multiple
threads are available to be run at the same time), you have to consider issues of thread
scheduling. You need to make sure that all important threads get at least some time to
run and that the more important threads get more time. Furthermore, you want to
ensure that the threads execute in a reasonable order. If your web server has 10
queued requests, each of which requires 5 seconds to process, you don't want to
process them in series. If you do that, the first request will be finished in 5 seconds,
but the second will take 10, the third 15, and so on until the last request, which will
have to wait almost a minute to be serviced. By that point, the user has likely gone to
another page. By running threads in parallel, you might be able to process all 10
requests in only 10 seconds total. The reason is that there's a lot of dead time in
servicing a typical web request, time in which the thread is simply waiting for the
network to catch up with the CPU, and this is time that the VM's thread scheduler can
be put to good use by other threads. However, CPU bound threads (as opposed to the
I/O-bound threads more common in network programs) may never reach a point
where they have to wait for more input. It is possible for such a thread to starve all
other threads by taking all the available CPU resources. But with a little thought, it's
generally straightforward to avoid this problem. In fact, starvation is a considerably
easier problem to avoid than either mis-synchronization or deadlock.

5.5.1 Priorities

Not all threads are created equal. Each thread has a priority that's specified as an
integer from 1 to 10. When multiple threads are able to run, generally the VM will run
only the highest-priority thread, though that's not a hard-and-fast rule. In Java, 10 is
the highest priority and 1 is the lowest. The default priority is 5, and this is the priority
that your threads will have unless you deliberately set them otherwise.

This is exactly opposite to the normal Unix way of prioritizing
processes, where the higher the priority number of a process, the
less CPU time the process gets.

These three priorities are often specified as the three named constants
Thread.MIN_PRIORITY, Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY:

public static final int MIN_PRIORITY = 1;
public static final int NORM_PRIORITY = 5;
public static final int MAX_PRIORITY = 10;

Sometimes you want to give one thread more time than another. Threads that interact
with the user should get very high priorities so that perceived responsiveness will be
very quick. On the other hand, threads that calculate in the background should get low
priorities. Tasks that will complete quickly should have high priorities. Tasks that take
a long time should have low priorities so that they won't get in the way of other tasks.
The priority of a thread can be changed using the setPriority() method:

public final void setPriority(int newPriority)

Attempting to exceed the maximum priority or set a nonpositive priority throws an
IllegalArgumentException.

The getPriority() method returns the current priority of the thread:

public final int getPriority()

For instance, in Example 5.11, you might want to give higher priorities to the threads
that do the calculating than the main program that spawns the threads. This is easily
achieved by changing the calculateDigest() method to set the priority of each
spawned thread to 8:

public void calculateDigest() {

 ListCallbackDigest cb = new ListCallbackDigest(input);
 cb.addDigestListener(this);
 Thread t = new Thread(cb);
 t.setPriority(8);
 t.start();

 }

In general, though, try to avoid using too high a priority for threads, since you run the
risk of starving other, lower-priority threads.

5.5.2 Preemption

Every virtual machine has a thread scheduler that determines which thread to run at
any given time. There are two kinds of thread scheduling, preemptive and cooperative.
A preemptive thread scheduler determines when a thread has had its fair share of CPU
time, pauses that thread, and then hands off control of the CPU to a different thread. A
cooperative thread scheduler waits for the running thread to pause itself before
handing off control of the CPU to a different thread. A virtual machine that uses
cooperative thread scheduling is much more susceptible to thread starvation than a
virtual machine that uses preemptive thread scheduling, since one high-priority,
uncooperative thread can hog an entire CPU.

All Java virtual machines are guaranteed to use preemptive thread scheduling between
priorities. That is, if a lower-priority thread is running when a higher-priority thread
becomes able to run, the virtual machine will sooner or later (and probably sooner)
pause the lower-priority thread to allow the higher-priority thread to run. The higher-
priority thread preempts the lower-priority thread.

The situation when multiple threads of the same priority are able to run is trickier. A
preemptive thread scheduler will occasionally pause one of the threads to allow the
next one in line to get some CPU time. However, a cooperative thread scheduler will
not. It will wait for the running thread to explicitly give up control or come to a
stopping point. If the running thread never gives up control and never comes to a
stopping point and if no higher-priority threads preempt the running thread, then all
other threads will starve. This is a bad thing. Consequently, it's important to make
sure that all your threads periodically pause themselves so that other threads have an
opportunity to run.

A starvation problem can be hard to spot if you're developing on
a VM that uses preemptive thread scheduling. Just because the
problem doesn't arise on your machine doesn't mean it won't
arise on your customers' machines if their VMs use cooperative
thread scheduling. Most Windows virtual machines use
preemptive thread scheduling. Most Mac virtual machines use
cooperative thread scheduling. Unix virtual machines are a mix
of preemptively and cooperatively scheduled VMs and, in a few
cases, don't precisely fit into either category. Any Unix virtual
machine that uses the green threads model (on Solaris, this is
Sun's reference implementation of the VM) is cooperatively
scheduled. Any Unix virtual machine that uses native threads (on
Solaris, this is Sun's production implementation of the VM) is
more or less preemptively scheduled.

There are 10 ways a thread can pause in favor of other threads or indicate that it is
ready to pause. These are:

• It can block on I/O.
• It can block on a synchronized object.
• It can yield.
• It can go to sleep.
• It can join another thread.
• It can wait on an object.
• It can finish.
• It can be preempted by a higher-priority thread.
• It can be suspended.
• It can stop.

You should inspect every run() method you write to make sure that one of these
conditions will occur with reasonable frequency. The last two possibilities are
deprecated because they have the potential to leave objects in inconsistent states, so

let's look at the other eight ways a thread can be a cooperative citizen of the virtual
machine.

5.5.2.1 Blocking

Blocking occurs any time a thread has to stop and wait for a resource it doesn't have.
The most common way a thread in a network program will voluntarily give up control
of the CPU is by blocking on I/O. Since CPUs are much faster than networks and
disks, a network program will often block while waiting for data to arrive from the
network or be sent out to the network. Even though it may block for only a few
milliseconds, this is enough time for other threads to do significant work.

Threads can also block when they enter a synchronized method or block. If the thread
does not already possess the lock for the object being synchronized on and some other
thread does possess that lock, then the thread will pause until the lock is released. If
the lock is never released, then the thread is permanently stopped.

Neither blocking on I/O nor blocking on a lock will release any locks the thread
already possesses. For I/O blocks, this is not such a big deal since eventually the I/O
will either unblock and the thread will continue or an IOException will be thrown
and the thread will thereby exit the synchronized block or method and release its locks.
However, a thread blocking on a lock that it doesn't possess will never give up its own
locks. If one thread is waiting for a lock that a second thread owns and the second
thread is waiting for a lock that the first thread owns, then deadlock results.

5.5.2.2 Yielding

The second way for a thread to give up control is to explicitly yield. A thread does
this by invoking the static Thread.yield() method:

public static void yield()

This signals the virtual machine that it can run another thread if another one is ready
to run. Some virtual machines, particularly on real-time operating systems, may
ignore this hint.

Before yielding, a thread should make sure that it or its associated Runnable object is
in a consistent state that can be used by other objects. Yielding does not release any
locks the thread holds. Therefore, ideally, a thread should not be synchronized on
anything when it yields. If the only other threads waiting to run when a thread yields
are blocked because they need the synchronized resources that the yielding thread
possesses, then the other threads won't be able to run. Instead, control will return to
the only thread that can run, the one that just yielded, which pretty much defeats the
purpose of yielding.

Making a thread yield is quite simple in practice. If the thread's run() method
simply consists of an infinite loop, just put a call to Thread.yield() at the end of
the loop. For example:

public void run() {

 while (true) {
 // Do the thread's work...
 Thread.yield();
 }

}

As long as the run() method isn't synchronized (normally, a very bad idea anyway),
this should give other threads of the same priority the opportunity to run.

If each iteration of the loop takes a significant amount of time, you may want to
intersperse more calls to Thread.yield() in the rest of the code. This should have
minimal effect in the event that yielding isn't necessary.

5.5.2.3 Sleeping

Sleeping is a more powerful form of yielding. Whereas yielding indicates only that a
thread is willing to pause and let other equal-priority threads have a turn, a thread that
goes to sleep will pause whether any other thread is ready to run or not. This can give
not only other threads of the same priority but also threads of lower priorities an
opportunity to run. However, a thread that goes to sleep does hold onto all the locks
it's grabbed. Consequently, other threads that need the same locks will be blocked
even if the CPU is available. Therefore, you should try to avoid threads sleeping
inside a synchronized method or block.

Sometimes sleeping is useful even if you don't need to yield to other threads. Putting a
thread to sleep for a specified period of time lets you write code that executes once
every second, every minute, every ten minutes, and so forth. For instance, if you were
to write a network monitor program that retrieved a page from a web server every five
minutes and emailed the webmaster if the server had crashed, then you would
implement it as a thread that slept for five minutes between retrievals.

A thread goes to sleep by invoking one of two overloaded static Thread.sleep()
methods. The first takes the number of milliseconds to sleep as an argument. The
second takes both the number of milliseconds and the number of nanoseconds:

public static void sleep(long milliseconds) throws
InterruptedException
public static void sleep(long milliseconds, int nanoseconds)
 throws InterruptedException

While most modern computer clocks have at least close-to-millisecond accuracy,
nanosecond accuracy is rarer. There's no guarantee on any particular virtual machine
that you can actually time the sleep to within a nanosecond or even within a
millisecond. If the local hardware can't support that level of accuracy, the sleep time is
simply rounded to the nearest value that can be measured. For example:

public void run() {

 while (true) {
 if (!getPage("http://metalab.unc.edu/javafaq/")) {
 mailError("elharo@metalab.unc.edu");
 }

 try {
 Thread.sleep(300000); // 300,000 milliseconds == 5 minutes
 }
 catch (InterruptedException e) {
 break;
 }
 }

}

It is not absolutely guaranteed that a thread will sleep for as long as it wants to. On
occasion, the thread may not be woken up until some time after its requested wake-up
call, simply because the VM is busy doing other things. It is also possible that some
other thread will do something to wake up the sleeping thread before its time.
Generally, this is accomplished by invoking the sleeping thread's interrupt()
method.

public void interrupt()

This is one of those cases where the distinction between the thread and the Thread
object is important. Just because the thread is sleeping doesn't mean that other awake
threads can't be working with the corresponding Thread object through its methods
and fields. In particular, another thread can invoke the sleeping Thread object's
interrupt() method, which the sleeping thread experiences as an
InterruptedException. From that point forward, it's awake and executes as normal,
at least until it goes to sleep again. In the previous example, an
InterruptedException is used to terminate a thread that would otherwise run
forever. When the InterruptedException is thrown, the infinite loop is broken, the
run() method finishes, and the thread dies. The user interface thread can invoke this
thread's interrupt() method when the user selects Exit from a menu or otherwise
indicates that he wants the program to quit.

5.5.2.4 Joining threads

It's not uncommon for one thread to need the result of another thread. For example, a
web browser loading an HTML page in one thread might spawn a separate thread to
retrieve every image embedded in the page. If the IMG elements don't have HEIGHT
and WIDTH attributes, then the main thread might have to wait for all the images to
load before it can finish by displaying the page. Java provides three join() methods
to allow one thread to wait for another thread to finish before continuing. These are:

public final void join() throws InterruptedException
public final void join(long milliseconds) throws InterruptedException
public final void join(long milliseconds, int nanoseconds)
 throws InterruptedException

The first variant waits indefinitely for the joined thread to finish. The second two
variants wait for the specified amount of time, after which they continue even if the
joined thread has not finished. As with the sleep() method, nanosecond accuracy is
not guaranteed.

The joining thread—that is, the one that invokes the join() method—waits for the
joined thread—that is, the one whose join() method is invoked—to finish. For
instance, consider this code fragment. We want to find the minimum, maximum, and
median of a random array of doubles. It's quicker to do this with a sorted array. We
spawn a new thread to sort the array, then join to that thread to await its results. Only
when it's done do we read out the desired values.

double[] array = new double[10000]; // 1
for (int i = 0; i < array.length; i++) { // 2
 array[i] = Math.random(); // 3
} // 4
SortThread t = new SortThread(array); // 5
t.start(); // 6
try { // 7
 t.join(); // 8
 System.out.println("Minimum: " + array[0]); // 9
 System.out.println("Median: " + array[array.length/2]); // 10
 System.out.println("Maximum: " + array[array.length-1]); // 11
} // 12
catch (InterruptedException e) { // 13
} // 14

First lines 1 through 4 execute, filling the array with random numbers. Then line 5
creates a new SortThread. Line 6 starts the thread that will sort the array. Before we
can find the minimum, median, and maximum of the array, we need to wait for the
sorting thread to finish. Therefore, line 8 joins the current thread to the sorting thread.
At this point, the thread executing these lines of code stops in its tracks. It waits for
the sorting thread to finish running. The minimum, median, and maximum are not
retrieved in lines 9 through 10 until the sorting thread has finished running and died.
Notice that at no point is there a reference to the thread that pauses. It's not the Thread
object on which the join() method is invoked. It's not passed as an argument to that
method. It exists implicitly only as the current thread. If this is within the normal flow
of control of the main() method of the program, there may well not be any Thread
variable anywhere that points to this thread.

A thread that's joined to another thread can be interrupted just like a sleeping thread if
some other thread invokes its interrupt() method. The thread experiences this
invocation as an InterruptedException. From that point forward, it executes as
normal, starting from the catch block that caught the exception. In the preceding
example, if the thread is interrupted, it skips over the calculation of the minimum,
median, and maximum because they won't be available if the sorting thread was
interrupted before it could finish.

We can use join() to fix up Example 5.4. That example's problem was that the
main() method tended to outrace the threads whose results the main() method was
using. It's straightforward to fix this by joining to each thread before trying to use its
result. Example 5.13 demonstrates.

Example 5.13. Avoiding a Race Condition by Joining to the Thread Whose Result You
Need

import java.io.*;

public class JoinDigestUserInterface {

 public static void main(String[] args) {

 ReturnDigest[] digestThreads = new ReturnDigest[args.length];

 for (int i = 0; i < args.length; i++) {

 // Calculate the digest
 File f = new File(args[i]);
 digestThreads[i] = new ReturnDigest(f);
 digestThreads[i].start();

 }

 for (int i = 0; i < args.length; i++) {

 try {
 digestThreads[i].join();
 // Now print the result
 StringBuffer result = new StringBuffer(args[i]);
 result.append(": ");
 byte[] digest = digestThreads[i].getDigest();
 for (int j = 0; j < digest.length; j++) {
 result.append(digest[j] + " ");
 }
 System.out.println(result);
 }
 catch (InterruptedException e) {
 System.err.println("Thread Interrupted before completion");
 }

 }

 }

}

Since Example 5.13 joins to threads in the same order as the threads are started, this
also has the side effect of printing the output in the same order as the arguments used
to construct the threads, rather than in the order the threads finish. This doesn't make
the program any slower, but it may occasionally be an issue if you want to get the
output of a thread as soon as it's done, without waiting for other unrelated threads to
finish first.

5.5.2.5 Waiting on an object

A thread can wait on an object it has locked. While waiting, it releases the lock on the
object and pauses until it is notified by some other thread. Another thread changes the
object in some way, notifies the thread waiting on that object, and then continues.
This differs from joining in that neither the waiting nor the notifying thread has to
finish before the other thread can continue. Waiting is used to pause execution until an
object or resource reaches a certain state. Joining is used to pause execution until a
thread finishes.

Waiting on an object is one of the lesser-known ways a thread can pause. That's
because it doesn't involve any methods in the Thread class. Instead, to wait on a
particular object, the thread that wants to pause must first obtain the lock on the object
using synchronized and then invoke one of the object's three overloaded wait()
methods:

public final void wait() throws InterruptedException
public final void wait(long milliseconds) throws InterruptedException
public final void wait(long milliseconds, int nanoseconds)
 throws InterruptedException

These methods are not in the Thread class. Rather, they are in the java.lang.Object
class. Consequently, they can be invoked on any object of any class. When one of
these methods is invoked, the thread that invoked it releases its lock on the object it's
waiting on (though not any locks it may possess on other objects) and goes to sleep. It
remains asleep until one of three things happens:

• The timeout expires.
• The thread is interrupted.
• The object is notified.

The timeout is the same as for the sleep() and join() methods; that is, the thread
wakes up after the specified amount of time has passed (within the limits of the local
hardware clock accuracy). When the timeout expires, execution of the thread resumes
with the statement immediately following the invocation of wait(). However, if the
thread can't immediately regain the lock on the object it was waiting on, it may still be
blocked for some time.

Interruption is also the same as for sleep() and join(); that is, some other thread
invokes this thread's interrupt() method. This causes an InterruptedException,
and execution resumes in the catch block that catches the exception. The thread
regains the lock on the object it was waiting on before the exception is thrown,
however, so the thread may still be blocked for some time after the interrupt()
method is invoked.

The third possibility, notification, is new. Notification occurs when some other thread
invokes the notify() or notifyAll() method on the object on which the thread is
waiting. Both of these methods are in the java.lang.Object class:

public final void notify()
public final void notifyAll()

These must be invoked on the object the thread was waiting on, not generally on the
Thread itself. Before notifying an object, a thread must first obtain the lock on the
object using a synchronized method or block. The notify() method selects one
thread more or less at random from the list of threads waiting on the object and wakes
it up. The notifyAll() method wakes up every thread waiting on the given object.

Once a waiting thread is notified, it attempts to regain the lock of the object it was
waiting on. If it succeeds, its execution resumes with the statement immediately
following the invocation of wait(). If it fails, it blocks on the object until its lock

becomes available, and then execution resumes with the statement immediately
following the invocation of wait().

For example, suppose one thread is reading a JAR archive from a network connection.
The first entry in the archive is the manifest file. Another thread might be interested in
the contents of the manifest file even before the rest of the archive was available. The
interested thread could create a custom ManifestFile object. It could then pass a
reference to this ManifestFile object to the thread that would read the JAR archive.
Then it would wait on the ManifestFile object. The thread reading the archive
would first fill the ManifestFile with entries from the stream, then notify the
ManifestFile, then continue reading the rest of the JAR archive. When the reader
thread notified the ManifestFile, the original thread would wake up and do whatever
it planned to do with the now fully prepared ManifestFile object. The first thread
would work something like this:

ManifestFile m = new ManifestFile();
JarThread t = new JarThread(m, in);
synchronized (m) {
 t.start();
 try {
 m.wait();
 // work with the manifest file...
 }
 catch (InterruptedException e) {
 // handle exception...
 }
}

The JarThread class would work like this:

ManifestFile theManifest;
InputStream in;

public JarThread(Manifest m, InputStream in) {
 theManifest = m;
 this.in= in;
}

public void run() {

 synchronized (theManifest) {
 // read the manifest from the stream in...
 theManifest.notify();
 }
 // read the rest of the stream...

}

Waiting and notification are more commonly used when multiple threads want to wait
on the same object. For example, one thread may be reading a web server log file in
which each line contains one entry to be processed. Each line is placed in a
java.util.Vector as it's read. Several threads wait on the Vector to process entries
as they're added. Every time an entry is added, the waiting threads are notified using
the notifyAll() method. If more than one thread is waiting on an object, then
notifyAll() is preferred since there's no way to select which thread to notify.

When all threads waiting on one object are notified, all will wake up and try to get the
lock on the object. However, only one can succeed immediately. That one continues.
The rest are blocked until the first one releases the lock. If several threads are all
waiting on the same object, a significant amount of time may pass before the last one
gets its turn at the lock on the object and continues. It's entirely possible that in this
time the object on which the thread was waiting will once again have been placed in
an unacceptable state. Thus you'll generally put the call to wait() in a loop that
checks the current state of the object. Do not assume that just because the thread was
notified, the object is now in the correct state. Check it explicitly if you can't
guarantee that once the object reaches a correct state it will never again reach an
incorrect state. For example, this is how the client threads waiting on the log file
entries might look:

private Vector entries;

public void processEntry() {

 synchronized (entries) { // must synchronize on the object we wait
on
 while (entries.size() == 0) {
 try {
 entries.wait();
 // We stopped waiting because entries.size() became non-
zero
 // However we don't know that it's still non-zero so we
 // pass through the loop again to test its state now.
 }
 catch (InterruptedException e) {
 // If interrupted, the last entry has been processed so
 return;
 }
 }
 String entry = (String) entries.remove(entries.size()-1);
 // process this entry...
 }

}

The code reading the log file and adding entries to the vector might look something
like this:

public void readLogFile() {

 String entry;

 while (true) {
 entry = log.getNextEntry();
 if (entry == null) {
 // There are no more entries to add to the vector so
 // we have to interrupt all threads that are still waiting.
 // Otherwise, they'll wait forever.
 for (int i = 0; i < threads.length; i++)
threads[i].interrupt();
 break;
 }
 synchronized (entries) {
 entries.add(0, entry);

 entries.notifyAll();
 }
 }

}

5.5.2.6 Priority-based preemption

Since threads are preemptive between priorities, you do not need to worry about
giving up time to higher-priority threads. A high-priority thread will preempt lower-
priority threads when it's ready to run. However, when the high-priority thread
finishes running or blocks, it generally won't be the same low-priority thread that runs
next. Instead, most non-real-time VMs use a round-robin scheduler so that the lower-
priority thread that hasn't run for the longest time will be run next.

For example, suppose there are three threads with priority 5 named A, B, and C
running in a cooperatively scheduled virtual machine. None of them will yield or
block. Thread A starts running first. It runs for a while, and is then preempted by
thread D, which has priority 6, so A stops running. Eventually, thread D blocks, and
the thread scheduler looks for the next highest-priority thread to run. It finds three: A,
B, and C. Thread A has already had some time to run, so it picks B (or perhaps C; this
doesn't have to go in alphabetical order). B runs for a while when thread D suddenly
unblocks. Thread D still has higher priority so the virtual machine pauses thread B
and lets D run for a while. Eventually, D blocks again, and the thread scheduler looks
for another thread to run. Again, it finds A, B, and C, but at this point, A has had some
time and B has had some time, but C hasn't had any. So the thread scheduler picks
thread C to run. Thread C runs until it is once again preempted by thread D. When
thread D blocks again, the thread scheduler finds three threads ready to run. Of the
three, however, A ran the longest ago, so the scheduler picks thread A. From this
point forward, every time D preempts and blocks and the scheduler needs a new
thread to run, it will run the threads A, B, and C in that order, circling back around to
A after C.

If you'd rather avoid explicit yielding, you can use a higher-priority thread to force the
lower-priority threads to give up time to each other. In essence, you can use a high-
priority thread scheduler of your own devising to make all threading preemptive. The
trick is to run a high-priority thread that does nothing but sleep and wake up
periodically, say every 100 milliseconds. This will split the lower-priority threads into
100-millisecond time slices. It isn't necessary for the thread that's doing the splitting to
know anything about the threads it's preempting. It's simply enough that it exists and
is running. Example 5.14 demonstrates with a TimeSlicer class that allows you to
guarantee preemption of threads with priorities less than a fixed value every
timeslice milliseconds.

Example 5.14. A Thread That Forces Preemptive Scheduling for Lower-Priority Threads

public class TimeSlicer extends Thread {

 private long timeslice;

 public TimeSlicer(long milliseconds, int priority) {

 this.timeslice = milliseconds;
 this.setPriority(priority);
 // If this is the last thread left, it should not
 // stop the VM from exiting
 this.setDaemon(true);

 }

 // Use maximum priority
 public TimeSlicer(long milliseconds) {
 this(milliseconds, 10);
 }

 // Use maximum priority and 100ms timeslices
 public TimeSlicer() {
 this(100, 10);
 }

 public void run() {

 while (true) {
 try {
 Thread.sleep(timeslice);
 }
 catch (InterruptedException e) {
 }
 }

 }

}

5.5.2.7 Finish

The final way a thread can give up control of the CPU in an orderly fashion is by
finishing. When the run() method returns, the thread dies and other threads can take
over. In network applications, this tends to occur with threads that wrap a single
blocking operation, like downloading a file from a server, so that the rest of the
application won't be blocked.

Otherwise, if your run() method is really so simple that it always finishes quickly
enough without blocking, then there's a very real question of whether you should
spawn a thread at all. There's a nontrivial amount of overhead for the virtual machine
in setting up and tearing down threads. If a thread is finishing in a small fraction of a
second anyway, chances are it would finish even faster if you used a simple method
call rather than a separate thread.

5.6 Thread Pools

Adding multiple threads to a program dramatically improves performance, especially
for I/O-bound programs such as most network programs. However, threads are not
without overhead of their own. Starting a thread and cleaning up after a thread that
has died takes a noticeable amount of work from the virtual machine, especially if a
program spawns thousands of threads, not an unusual occurrence for even a low- to
medium-volume network server. Even if the threads finish quickly, this can overload
the garbage collector or other parts of the VM, and hurt performance, just like

allocating thousands of any other kind of object every minute. Even more importantly,
switching between running threads carries overhead. If the threads are blocking
naturally—for instance, by waiting for data from the network—then there's no real
penalty to this, but if the threads are CPU bound then the total task may finish more
quickly if you can avoid a lot of switching between threads. Finally, and most
importantly, although threads help make more efficient use of a computer's limited
CPU resources, there's still only a finite amount of resources to go around. Once
you've spawned enough threads to use all the computer's available idle time, spawning
more threads just wastes MIPS and memory on thread management.

Fortunately, you can get the best of both worlds by reusing threads. You cannot restart
a thread once it's died, but you can engineer your threads so that they don't die as soon
as they've finished one task. Instead, you put all the tasks you need to accomplish in a
queue or other data structure and have each thread retrieve a new task from the queue
when it's completed its previous task. This is called thread pooling, and the data
structure in which the tasks are kept is called the pool.

The simplest way to implement a thread pool is by using a fixed number of threads set
when the pool is first created. When the pool is empty, each thread waits on the pool.
When a task is added to the pool, all waiting threads are notified. When a thread
finishes its assigned task, it goes back to the pool for a new task. If it doesn't get one,
it waits until a new task is added to the pool.

An alternative is to put the threads themselves in the pool and have the main program
pull threads out of the pool and assign them tasks. If no thread is in the pool when a
task becomes necessary, the main program can spawn a new thread. As each thread
finishes a task, it returns to the pool. (Imagine this scheme as a union hall in which
new workers join the union only when full employment of current members is
achieved.)

There are many data structures you can use for a pool, though a queue is probably the
most reasonable so that tasks are performed in a first-in, first-out order. Whichever
data structure you use to implement the pool, however, you have to be extremely
careful about synchronization, since many threads will be interacting with it very
close together in time. The simplest way to avoid problems is to use either a
java.util.Vector (which is fully synchronized) or a synchronized Collection
from the Java Collections API.

Let's look at an example. Suppose you want to gzip every file in the current directory
using a java.util.zip.GZIPOutputStream. On the one hand, this is an I/O-heavy
operation because all the files have to be read and written. On the other hand, data
compression is a very CPU-intensive operation, so you don't want too many threads
running at once. This is a good opportunity to use a thread pool. Each client thread
will compress files while the main program will determine which files to compress. In
this example, the main program is likely to significantly outpace the compressing
threads since all it has to do is list the files in a directory. Therefore, it's not out of the
question to fill the pool first, then start the threads that compress the files in the pool.
However, to make this example as general as possible, we'll allow the main program
to run in parallel with the zipping threads.

Example 5.15 shows the GZipThread class. It contains a private field called pool
containing a reference to the pool. Here that field is declared to have List type, but
it's always accessed in a strictly queue-like first-in, first-out order. The run()
method removes File objects from the pool and gzips each one. If the pool is empty
when the thread is ready to get something new from the pool, then the thread waits on
the pool object.

Example 5.15. The GZipThread Class

import java.io.*;
import java.util.*;
import java.util.zip.*;

public class GZipThread extends Thread {

 private List pool;
 private static int filesCompressed = 0;

 public GZipThread(List pool) {
 this.pool = pool;
 }

 private static synchronized void incrementFilesCompressed() {
 filesCompressed++;
 }

 public void run() {

 while (filesCompressed
 != GZipAllFiles.getNumberOfFilesToBeCompressed()) {

 File input = null;

 synchronized (pool) {
 while (pool.isEmpty()) {
 if (filesCompressed
 == GZipAllFiles.getNumberOfFilesToBeCompressed()) return;
 try {
 pool.wait();
 }
 catch (InterruptedException e) {
 }
 }

 input = (File) pool.remove(pool.size()-1);

 }

 // don't compress an already compressed file
 if (!input.getName().endsWith(".gz")) {

 try {
 InputStream in = new FileInputStream(input);
 in = new BufferedInputStream(in);

 File output = new File(input.getParent(), input.getName()
+ ".gz");

 if (!output.exists()) { // Don't overwrite an existing
file
 OutputStream out = new FileOutputStream(output);
 out = new GZIPOutputStream(out);
 out = new BufferedOutputStream(out);
 int b;
 while ((b = in.read()) != -1) out.write(b);
 out.flush();
 out.close();
 incrementFilesCompressed();
 in.close();
 }
 }
 catch (IOException e) {
 System.err.println(e);
 }

 } // end if

 } // end while

 } // end run

} // end ZipThread

Example 5.16 is the main program. It constructs the pool as a Vector object, passes
this to four newly constructed GZipThread objects, starts all four threads, and then
iterates through all the files and directories listed on the command line. Those files
and files in those directories are added to the pool for eventual processing by the four
threads.

Example 5.16. The GZipThread User Interface Class

import java.io.*;
import java.util.*;

public class GZipAllFiles {

 public final static int THREAD_COUNT = 4;
 private static int filesToBeCompressed = -1;

 public static void main(String[] args) {

 Vector pool = new Vector();
 GZipThread[] threads = new GZipThread[THREAD_COUNT];

 for (int i = 0; i < threads.length; i++) {
 threads[i] = new GZipThread(pool);
 threads[i].start();
 }

 int totalFiles = 0;
 for (int i = 0; i < args.length; i++) {

 File f = new File(args[i]);
 if (f.exists()) {
 if (f.isDirectory()) {
 File[] files = f.listFiles();

 for (int j = 0; j < files.length; j++) {
 if (!files[j].isDirectory()) { // don't recurse
directories
 totalFiles++;
 synchronized (pool) {
 pool.add(files[j]);
 pool.notifyAll();
 }
 }
 }
 }
 else {
 totalFiles++;
 synchronized (pool) {
 pool.add(0, f);
 pool.notifyAll();
 }
 }

 } // end if

 } // end for

 filesToBeCompressed = totalFiles;

 // make sure that any waiting thread knows that no
 // more files will be added to the pool
 for (int i = 0; i < threads.length; i++) {
 threads[i].interrupt();
 }

 }

 public static int getNumberOfFilesToBeCompressed() {
 return filesToBeCompressed;
 }

}

The big question here is how to tell the program that it's done and should exit. You
can't simply exit when all files have been added to the pool, because at that point most
of the files won't have been processed yet. Neither can you exit when the pool is
empty, because that may occur both at the start of the program (before any files have
been placed in the pool) and at various intermediate times when not all files have yet
been put in the pool but all files that have been put there are processed. The latter
possibility also prevents the use of a simple counter scheme.

The solution adopted here is to separately track the number of files that need to be
processed (GZipAllFiles.filesToBeCompressed) and the number of files actually
processed (GZipThread.filesCompressed). When these two values match, all
threads' run() methods return. Checks are made at the start of each of the while
loops in the run() method to see whether it's necessary to continue. This scheme is
preferred to the deprecated stop() method, because it won't suddenly stop the
thread while it's halfway through compressing a file. This gives us much more fine-
grained control over exactly when and where the thread stops.

Initially, GZipAllFiles.filesToBeCompressed is set to the impossible value -1.
Only when the final number is known is it set to its real value. This prevents early
coincidental matches between the number of files processed and the number of files to
be processed. It's possible that when the final point of the main() method is reached,
one or more of the threads is waiting. Thus we interrupt each of the threads (which
has no effect if the thread is merely processing and not waiting or sleeping) to make
sure it checks one last time.

The final note about this program is the private
GZipThread.incrementFilesCompressed() method. This is synchronized to
ensure that if two threads try to update the filesCompressed field at the same time,
one will wait. Otherwise, the GZipThread.filesCompressed field could end up one
short of the true value and the program would never exit. Since the method is static,
all threads synchronize on the same Class object. A synchronized instance method
wouldn't be sufficient here.

The complexity of determining when to stop this program is mostly atypical of the
more heavily threaded programs you'll write because it does have such a definite
ending point, the point at which all files are processed. Most network servers will
continue indefinitely until such time as some part of the user interface shuts them
down. Thus the real solution here is to provide some sort of simple user interface such
as typing a period on a line by itself that ends the program.

This chapter has been a whirlwind tour of threading in Java,
covering the bare minimum you need to know to write
multithreaded network programs. For a more detailed and
comprehensive look with many more examples, you should
check out Java Threads, by Scott Oaks and Henry Wong
(O'Reilly & Associates, Inc., 1999). Once you've mastered that
book, Doug Lea's Concurrent Programming in Java (Addison
Wesley, 1999) provides a comprehensive look at the traps and
pitfalls of concurrent programming from a design patterns
perspective.

6.1 DNS, IP Addresses, and All That

Devices connected to the Internet are called nodes. Nodes that are computers are
called hosts. Each node or host is identified by at least one unique 32-bit number
called an Internet address, an IP address, or a host address, depending on who you talk
to. This takes up exactly four bytes of memory. An IP address is normally written as
four unsigned bytes, each ranging from to 255, with the most significant byte first.
Bytes are separated by periods for the convenience of human eyes. For example, the
address for hermes.oit.unc.edu is 152.2.21.1. This is called the dotted quad format.

IP addresses are great for computers, but they are a problem for humans, who have a
hard time remembering long numbers. In the 1950s, it was discovered that most
people could remember about seven digits per number; some can remember as many
as nine, while others remember as few as five. This is why phone numbers are broken
into three- and four-digit pieces with three-digit area codes.[1] Obviously an IP address,

which can have as many as 12 decimal digits, is beyond the capacity of most humans
to remember. I can remember about two IP addresses, and then only if I use both daily
and the second is a simple permutation of the first.

[1] G.A. Miller, "The Magic Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information", Psychological Review, vol. 63, pp. 81-97.

To avoid the need to carry around Rolodexes full of IP addresses, the designers of the
Internet invented the Domain Name System (DNS). DNS associates hostnames that
humans can remember (like hermes.oit.unc.edu) with IP addresses that computers can
remember (such as 152.2.21.1).[2] Most hosts have at least one hostname. An exception
is made for computers that don't have a permanent IP address (like many PCs); since
these computers don't have a permanent address, they can't be used as servers and
therefore don't need a name, since nobody will need to refer to them.

[2] Colloquially, people often use "Internet address" to mean a hostname (or even an email address). In a book
about network programming, it is crucial to be precise about addresses and hostnames. In this book, an address is
always a numeric IP address, never a human-readable hostname.

Some machines have multiple names. For instance, www.oreilly.com and
helio.ora.com are really the same SPARCstation in California. The name
www.oreilly.com really refers to a web site rather than a particular machine. In the
past, when this web site has moved from one machine to another, the name has been
reassigned to the new machine so that it always points to the site's current server. This
way, URLs around the Web don't need to be updated just because the site has moved
to a new host. Some common names like www and news are often aliases for the
machines providing those services. For example, news.cloud9.net is an alias for my
ISP's news server. Since the server may change over time, the alias can move with the
service.

On occasion, one name maps to multiple IP addresses. It is then the responsibility of
the DNS server to randomly choose machines to respond to each request. This feature
is most frequently used for very high traffic web sites, where it splits the load across
multiple systems.

Every computer connected to the Internet should have access to a machine called a
domain name server, generally a Unix box running special DNS software that knows
the mappings between different hostnames and IP addresses. Most domain name
servers know the addresses of only the hosts on their local network, plus the addresses
of a few domain name servers at other sites. If a client asks for the address of a
machine outside the local domain, then the local domain name server asks a domain
name server at the remote location and relays the answer to the requester.[3]

[3] For more information about DNS, see Albitz, Paul and Cricket Liu, DNS and BIND, 3rd edition (O'Reilly &
Associates, Inc., 1998).

Most of the time, you can use hostnames and let DNS handle the translation to IP
addresses. As long as you can connect to a domain name server, you don't need to
worry about the details of how names and addresses are passed between your machine,
the local domain name server, and the rest of the Internet. However, you will need to
have access to at least one domain name server to use the examples in this chapter and
most of the rest of this book. These programs will not work on a standalone Mac or
PC. Your machine must be connected to the Internet.

IPv6 and 128-bit Addresses
The current IP address standard uses 32 bits, which is enough to address
more than four billion computers, almost one for every person on Earth.
You'd think it would be enough to handle even the explosive growth of the
Internet for some time. However, we're currently in the middle of an address
shortage. The cause of the address shortage is that the available addressees
aren't allocated very efficiently. Because of the way addresses are parceled
out, many organizations possess at least 256 numbers even though they need
only a few dozen. Other organizations have blocks of 65,536 even if they
need only a few thousand. And a few dozen organizations have blocks of
more than 16 million, even though they don't use anywhere near that many.
Consequently, there's a lot of waste, and the addresses are beginning to run
out.

Don't worry too much, though. A series of stopgap measures have been put in
place to allocate addresses more efficiently; this should get the Internet
through the next couple of years. After that, a new standard called IPv6 will
begin using 16-byte, 128-bit addresses. This expands the available address
space to 2128 or 1.6043703E32 different addresses. It's not enough to address
every molecule in the universe, but it should be enough to get us well into the
21st century. IPv6 has been designed to be backward compatible with 32-bit
IP addresses to ease the transition.

Java 1.3 and earlier versions don't yet support 128-bit IP addresses, nor are
these addresses in common use. However, Java's networking classes have
been designed with 128-bit addresses in mind. When IPv6 does begin
moving out of the labs and into the real world, it will be easy for Sun to
modify the java.net classes to support the new address format, and almost
everything in this book will continue to work.

6.2 The InetAddress Class

The java.net.InetAddress class is Java's encapsulation of an IP address. It is used
by most of the other networking classes, including Socket, ServerSocket, URL,
DatagramSocket, DatagramPacket, and more.

public final class InetAddress extends Object implements Serializable

This class represents an Internet address as two fields: hostName (a String) and
address (an int). hostName contains the name of the host; for example,
www.oreilly.com. address contains the 32-bit IP address. These fields are not public,
so you can't access them directly. It will probably be necessary to change this
representation to a byte array when 16-byte IPv6 addresses come into use. However,
if you always use the InetAddress class to represent addresses, the changeover
should not affect you; the class shields you from the details of how addresses are
implemented.

6.2.1 Creating New InetAddress Objects

There are no public constructors in the InetAddress class. However, InetAddress
has three static methods that return suitably initialized InetAddress objects, given a
little information. They are:

public static InetAddress InetAddress.getByName(String hostName)
 throws UnknownHostException
public static InetAddress[] InetAddress.getAllByName(String hostName)
 throws UnknownHostException
public static InetAddress InetAddress.getLocalHost()
 throws UnknownHostException

All three of these may make a connection to the local DNS server to fill out the
information in the InetAddress object. This has a number of possibly unexpected
implications, among them that these methods may throw security exceptions if the
connection to the DNS server is prohibited. Furthermore, invoking one of these
methods may cause a host that uses a dialup PPP or SLIP connection to dial into its
provider if it isn't already connected. The key thing to remember is that these are not
constructors; they do not simply use their arguments to set the internal fields. They
actually make network connections to retrieve all the information they need. The other
methods in this class such as getAddress() and getHostName() mostly work with
the information provided by one of these three methods. They do not make network
connections; and on the rare occasions they do, they do not throw any exceptions.
Only these three methods have to go outside Java and the local system to get their
work done.

6.2.1.1 public static InetAddress InetAddress.getByName(String hostName) throws
UnknownHostException

The method you'll use most frequently is InetAddress.getByName(). This is a
static method that takes the hostname you're looking for as its argument. It looks up
the host's IP address using DNS. Call getByName() like this:

java.net.InetAddress address =
 java.net.InetAddress.getByName("www.oreilly.com");

If you have already imported the java.net.InetAddress class, which will almost
always be the case, you can call getByName() like this:

InetAddress address = InetAddress.getByName("www.oreilly.com");

In the rest of this book, I will assume that there is an import java.net.*; statement
at the top of the program containing each code fragment, as well as any other
necessary import statements.

The InetAddress.getByName() method throws an UnknownHostException if the
host can't be found, so you need to declare that the method making the call throws
UnknownHostException (or its superclass, IOException) or wrap it in a try block
like this:

try {
 InetAddress address = InetAddress.getByName("www.oreilly.com");
 System.out.println(address);

}
catch (UnknownHostException e) {
 System.out.println("Could not find www.oreilly.com");
}

Example 6.1 is a complete program that creates an InetAddress object for
www.oreilly.com and prints it out.

Example 6.1. A Program That Prints the Address of www.oreilly.com

import java.net.*;

public class OReillyByName {

 public static void main (String[] args) {

 try {
 InetAddress address = InetAddress.getByName("www.oreilly.com");
 System.out.println(address);
 }
 catch (UnknownHostException e) {
 System.out.println("Could not find www.oreilly.com");
 }

 }

}

Here's the result:

% java OReillyByName
www.oreilly.com/204.148.40.9

On rare occasions, you will need to connect to a machine that does not have a
hostname. In this case, you can pass a String containing the dotted quad form of the
IP address to InetAddress.getByName():

InetAddress address = InetAddress.getByName("204.148.40.9");

Example 6.2 uses the IP address for www.oreilly.com instead of the name.

Example 6.2. A Program That Prints the Address of 204.148.40.9

import java.net.*;

public class OReillyByAddress {

 public static void main (String[] args) {

 try {
 InetAddress address = InetAddress.getByName("204.148.40.9");
 System.out.println(address);
 }
 catch (UnknownHostException e) {
 System.out.println("Could not find 204.148.40.9");
 }

 }

}

Here's the result:

% java OReillyByAddress
helio.ora.com/204.148.40.9

In Java 1.1 and later, when you call getByName() with an IP address as an argument,
it creates an InetAddress object for the requested IP address without checking with
DNS. This means it's possible to create InetAddress objects for hosts that don't
really exist and that you can't connect to. The hostname of an InetAddress object
created from a dotted quad string is initially set to that dotted quad string. A DNS
lookup for the actual hostname is performed only when the hostname is requested,
either explicitly via getAddress() or implicitly through toString(). That's how
helio.ora.com is determined from the dotted quad address 204.148.40.9. If at the time
the hostname is requested and a DNS lookup is finally performed, the host with the
specified IP address can't be found, then the hostname remains the original dotted
quad string. However, no UnknownHostException is thrown.

Hostnames are much more stable than IP addresses. Some services such as the MIT
FAQ archives have lived at the same hostname (rtfm.mit.edu) for years but switched
IP addresses several times. If you have a choice between using a hostname like
www.oreilly.com or an IP address like 204.148.40.9, always choose the hostname. Use
an IP address only when a hostname is not available.

6.2.1.2 public static InetAddress[] InetAddress.getAllByName (String hostName)
throws UnknownHostException

Some computers have more than one Internet address. Given a hostname,
InetAddress.getAllByName() returns an array that contains all the addresses
corresponding to that name. Its use is straightforward:

InetAddress[] addresses = InetAddress.getAllByName("www.apple.com");

Like InetAddress.getByName(), InetAddress.getAllByName() can throw an
UnknownHostException, so you need to enclose it in a try block or declare that your
method throws UnknownHostException. Example 6.3 demonstrates by returning a
complete list of the IP addresses for www.microsoft.com.

Example 6.3. A Program That Prints All the Addresses of www.microsoft.com

import java.net.*;

public class AllAddressesOfMicrosoft {

 public static void main (String[] args) {

 try {
 InetAddress[] addresses =
 InetAddress.getAllByName("www.microsoft.com");
 for (int i = 0; i < addresses.length; i++) {

 System.out.println(addresses[i]);
 }
 }
 catch (UnknownHostException e) {
 System.out.println("Could not find www.microsoft.com");
 }

 }

}

Here's the result:

% java AllAddressesOfMicrosoft
www.microsoft.com/207.46.131.15
www.microsoft.com/207.46.131.137
www.microsoft.com/207.46.130.14
www.microsoft.com/207.46.130.149
www.microsoft.com/207.46.130.150
www.microsoft.com/207.46.131.13

It appears that www.microsoft.com has six IP addresses. Hosts with more than one
address are the exception rather than the rule. Most hosts with multiple IP addresses
are, like www.microsoft.com, very high volume web servers. Even in those cases, you
rarely need to know more than one address.

6.2.1.3 public static InetAddress InetAddress.getLocalHost() throws
UnknownHostException

The InetAddress class contains one final means of getting an InetAddress object.
The static method InetAddress.getLocalHost() returns the InetAddress of the
machine on which it's running. Like InetAddress.getByName() and
InetAddress.getAllByName(), it throws an UnknownHostException when it can't
find the address of the local machine. Its use is straightforward:

InetAddress thisComputer = InetAddress.getLocalHost();

Example 6.4 prints the address of the machine it's run on.

Example 6.4. Find the Address of the Local Machine

import java.net.*;

public class MyAddress {

 public static void main (String[] args) {

 try {
 InetAddress address = InetAddress.getLocalHost();
 System.out.println(address);
 }
 catch (UnknownHostException e) {
 System.out.println("Could not find this computer's address.");
 }

 }

}

Here's the output; I ran the program on titan.oit.unc.edu:

% java MyAddress
titan.oit.unc.edu/152.2.22.14

Whether you see a fully qualified name like titan.oit.unc.edu or a partial name like
titan depends on what the local DNS server returns for hosts in the local domain.

6.2.1.4 Security issues

Creating a new InetAddress object from a hostname is considered a potentially
insecure operation because it requires a DNS lookup. An untrusted applet under the
control of the default security manager will be allowed to get only the IP address of
the host it came from (its codebase) and possibly the local host. (Netscape 4.6 allows
untrusted applets to get the name and IP address of the local host, while IE5 allows
applets to get only the loopback address and name localhost/127.0.0.1 for the local
host.) An untrusted applet is not allowed to create an InetAddress object from any
other hostname. This is true whether it uses the InetAddress.getByName() method,
the InetAddress.getAllByName() method, the InetAddress.getLocalHost()
method, or something else. Netscape 4.6 does allow untrusted applets to construct
InetAddress objects from arbitrary dotted quad strings, though it will not perform a
DNS lookup for such an address. IE5 does not allow even this.

An untrusted applet is not allowed to perform arbitrary DNS lookups for third-party
hosts because of the prohibition against making network connections to hosts other
than the codebase. Arbitrary DNS lookups would open a covert channel by which an
applet could talk to third-party hosts. For instance, suppose an applet downloaded
from www.bigisp.com wants to send the message "macfaq.dialup.cloud9.net is
vulnerable" to crackersinc.com. All it has to do is request DNS information for
macfaq.dialup.cloud9.net.is.vulnerable.crackersinc.com. To resolve that hostname,
the applet would contact the local DNS server. The local DNS server would contact
the DNS server at crackersinc.com. Even though these hosts don't exist, the cracker
can inspect the DNS error log for crackersinc.com to retrieve the message. This
scheme could be considerably more sophisticated with compression, error correction,
encryption, custom DNS servers that email the messages to a fourth site, and more,
but this is good enough for a proof of concept. Arbitrary DNS lookups are prohibited
because arbitrary DNS lookups leak information.

An untrusted applet is allowed to call InetAddress.getLocalHost(). However,
this should always return a hostname of localhost and an IP address of 127.0.0.1. This
is a special hostname and IP address called the loopback address. No matter which
machine you use this hostname or IP address on, it always refers to the current
machine. No specific DNS resolution is necessary. The reason for prohibiting the
applet from finding out the true hostname and address is that the computer on which
the applet is running may be deliberately hidden behind a firewall and a proxy server.
In this case, an applet should not be a channel for information the web server doesn't
already have. (Netscape 4.6 does allow a little more information about the local host

to leak out, including its IP address, but only if no DNS lookup is required to get this
information.)

Like all security checks, prohibitions against DNS resolutions can be relaxed for
trusted applets. The specific SecurityManager method used to test whether a host
can be resolved is checkConnect():

public void checkConnect(String host, int port)

When the port argument is -1, this method checks whether DNS may be invoked to
resolve the specified host. (If the port argument is greater than -1, this method
checks whether a connection to the named host on the specified port is allowed.) The
host argument may be either a hostname like www.oreilly.com or a dotted quad IP
address like 204.148.40.9.

In Java 1.2 and later, you can grant an applet permission to resolve a host by using the
Policy Tool to add a java.net.SocketPermission with the action connect and the
target being the name of the host you want to allow the applet to resolve. You can use
the asterisk wildcard (*) to allow all hosts in particular domains to be resolved. For
example, setting the target to *.oreilly.com allows the applet to resolve the hosts
www.oreilly.com, java.oreilly.com, perl.oreilly.com, and all others in the oreilly.com
domain. Although you'll generally use a hostname to set permissions, Java checks
against the actual IP addresses. In this example, that also allows hosts in the ora.com
domain to be resolved because this is simply an alias for oreilly.com with the same
range of IP addresses. To allow all hosts in all domains to be resolved, just set the
target to *. Figure 6.1 demonstrates.

Figure 6.1. Using the Policy Tool to grant DNS resolution permission to all applets

6.2.1.5 Other sources of InetAddress objects

Several other methods in the java.net package also return InetAddress objects.
These include the getAddress() method of DatagramPacket, the
getLocalAddress() method of DatagramPacket, the getInetAddress() method
of Socket, the getLocalAddress() method of Socket, the getInetAddress()
method of SocketImpl, the getInetAddress() method of ServerSocket, and the
getInterface() method of MulticastSocket. Each of these will be discussed,
along with its respective class, in later chapters.

6.2.2 Getter Methods

The InetAddress class contains three getter methods that return the hostname as a
string and the IP address as both a string and a byte array. These are:

public String getHostName()
public byte[] getAddress()
public String getHostAddress()

There are no corresponding setHostName() and setAddress() methods, which
means that packages outside of java.net can't change an InetAddress object's fields
behind its back. Therefore, Java can guarantee that the hostname and the IP address
match each other.

6.2.2.1 public String getHostName()

The getHostName() method returns a String that contains the name of the host
with the IP address represented by this InetAddress object. If the machine in
question doesn't have a hostname or if applet security prevents the name from being
determined, then a dotted quad format of the numeric IP address is returned. For
example:

InetAddress machine = InetAddress.getLocalHost();
String localhost = machine.getHostName();

In some cases, you may only see a partially qualified name like titan instead of the
full name like titan.oit.unc.edu. The details depend on how the local DNS behaves
when resolving local hostnames.

The getHostName() method is particularly useful when you're starting with a dotted
quad IP address rather than the hostname. Example 6.5 converts the dotted quad
address 152.2.22.3 into a hostname by using InetAddress.getByName() and then
applying getHostName() on the resulting object.

Example 6.5. Given the Address, Find the Hostname

import java.net.*;

public class ReverseTest {

 public static void main (String[] args) {

 try {
 InetAddress ia = InetAddress.getByName("152.2.22.3");
 System.out.println(ia.getHostName());
 }
 catch (Exception e) {
 System.err.println(e);
 }

 }

}

Here's the result:

% java ReverseTest
helios.oit.unc.edu

6.2.2.2 public String getHostAddress()

The getHostAddress() method returns a string containing the dotted quad format
of the IP address. Example 6.6 uses this method to print the IP address of the local
machine in the customary format.

Example 6.6. Find the IP Address of the Local Machine

import java.net.*;

public class MyDottedQuadAddress {

 public static void main (String[] args) {

 try {
 InetAddress me = InetAddress.getLocalHost();
 String dottedQuad = me.getHostAddress();
 System.out.println("My address is " + dottedQuad);
 }
 catch (UnknownHostException e) {
 System.out.println("I'm sorry. I don't know my own address.");
 }

 }

}

Here's the result:

% java MyDottedQuadAddress
My address is 152.2.22.14.

Of course, the exact output depends on where the program is run.

6.2.2.3 public byte[] getAddress()

If you want to know the IP address of a machine (and you rarely do), getAddress()
lsreturns an IP address as an array of bytes in network byte order. The most
significant byte (i.e., the first byte in the address's dotted quad form) is the first byte in
the array, or element zero—remember, Java array indices start with zero. To be ready
for 128-bit IP addresses, try not to assume anything about the length of this array.
While currently this array has a length of 4 bytes, future implementations are likely to
return arrays with 16 bytes. If you need to know the length of the array, use the array's
length field:

InetAddress me = InetAddress.getLocalHost();
byte[] address = me.getAddress());

The bytes returned are unsigned, which poses a problem. Unlike C, Java doesn't have
an unsigned byte primitive data type. Bytes with values higher than 127 are treated as
negative numbers. Therefore, if you want to do anything with the bytes returned by

getAddress(), you need to promote the bytes to ints and make appropriate
adjustments. Here's one way to do it:

int unsignedByte = signedByte < 0 ? signedByte + 256 : signedByte;

Here signedByte may be either positive or negative. The conditional operator ? tests
whether unsignedByte is negative. If it is, 256 is added to signedByte to make it
positive. Otherwise, it's left alone. signedByte is automatically promoted to an int
before the addition is performed so wraparound is not a problem.

One reason to look at the raw bytes of an IP address is to determine the type of the
address. As mentioned in Chapter 2, Class A addresses always begin with a bit. Class
B addresses begin with the two bits 10. Class C addresses begin with the three bits
110. Class D addresses begin with the four bits 1110, and Class E addresses begin
with the five bits 11110. Figure 6.2 summarizes.

Figure 6.2. The five address classes as divided into class ID, network ID, and host ID

Class D addresses are multicast addresses, used to refer not to a particular host but
rather to a group of hosts that have chosen to join a particular multicast group. This
will be discussed further in Chapter 14. The InetAddress class contains a method
that tells you whether a particular address is a multicast address:

public boolean isMulticastAddress()

It operates merely by using the bitwise operators to compare the first 4 bits of the
address to 1110 and returning true if they match, false otherwise. To retrieve the other
information that's implicit in the address, you'll have to do your own comparisons. For
example, you can test the first byte of the address to determine the address class. You
can test the number of bytes in the array returned by getAddress() to determine
whether you're dealing with an IPv4 or IPv6 address. Example 6.7 demonstrates.

Example 6.7. Print the IP Address of the Local Machine

import java.net.*;

public class AddressTests {

 public static int getVersion(InetAddress ia) {

 byte[] address = ia.getAddress();
 if (address.length == 4) return 4;
 else if (address.length == 16) return 6;
 else return -1;

 }

 public static char getClass(InetAddress ia) {

 byte[] address = ia.getAddress();
 if (address.length != 4) {
 throw new IllegalArgumentException("No IPv6 addresses!");
 }

 int firstByte = address[0];
 if ((firstByte & 0x80) == 0) return 'A';
 else if ((firstByte & 0xC0) == 0x80) return 'B';
 else if ((firstByte & 0xE0) == 0xC0) return 'C';
 else if ((firstByte & 0xF0) == 0xE0) return 'D';
 else if ((firstByte & 0xF8) == 0xF0) return 'E';
 else return 'F';

 }

}

6.2.3 Object Methods

Like every other class, java.net.InetAddress inherits from java.lang.Object.
Thus it has access to all the methods of that class. It overrides three methods to
provide more specialized behavior:

public boolean equals(Object o)
public int hashCode()
public String toString()

6.2.3.1 public boolean equals(Object o)

An object is equal to an InetAddress object only if it is itself an instance of the
InetAddress class and it has the same IP address. It does not need to have the same
hostname. Thus an InetAddress object for www.oreilly.com is equal to an
InetAddress object for helio.ora.com since both names refer to the same IP address.
Example 6.8 creates InetAddress objects for www.oreilly.com and helio.ora.com and
then tells you whether they're the same machine.

Example 6.8. Are www.oreilly.com and helio.ora.com the Same?

import java.net.*;

public class OReillyAliases {

 public static void main (String args[]) {

 try {
 InetAddress oreilly = InetAddress.getByName("www.oreilly.com");
 InetAddress helio = InetAddress.getByName("helio.ora.com");
 if (oreilly.equals(helio)) {
 System.out.println
 ("www.oreilly.com is the same as helio.ora.com");
 }
 else {

 System.out.println
 ("www.oreilly.com is not the same as helio.ora.com");
 }
 }
 catch (UnknownHostException e) {
 System.out.println("Host lookup failed.");
 }

 }

}

When you run this program, you discover:

% java OReillyAliases
www.oreilly.com is the same as helio.ora.com

6.2.3.2 public int hashCode()

The hashCode() method returns an int that is needed when InetAddress objects
are used as keys in hash tables. This is called by the various methods of
java.util.Hashtable. You will almost certainly not need to call this method
directly.

Currently, the int that hashCode() returns is simply the four bytes of the IP address
converted to an int. This is different for every two unequal InetAddress objects
(where unequal has the meaning provided by the equals() method). If two
InetAddress objects have the same address, then they have the same hash code, even
if their hostnames are different. Therefore, if you try to store two objects in a
Hashtable using equivalent InetAddress objects as a key (for example, the
InetAddress objects for www.oreilly.com and helio.ora.com), the second will
overwrite the first. If this is a problem, use the String returned by getHostName()
as the key instead of the InetAddress itself.

The hashCode() method is the single method in the InetAddress class that can't be
easily modified to work with 16-byte addresses. The algorithm to calculate hash codes
may become considerably more complex when 16-byte addresses are supported. Do
not write code that depends on the hashCode() method returning the IP address.

6.2.3.3 public String toString()

Like all good classes, java.net.InetAddress has a toString() method that
returns a short text representation of the object. Example 6.1 through Example 6.4 all
implicitly called this method when passing InetAddress objects to
System.out.println(). As you saw, the string produced by toString() has the
form:

host name/dotted quad address

Not all InetAddress objects have hostnames. If one doesn't, then the dotted quad
format of the IP address will be substituted. This format isn't particularly useful, so
you'll probably never call toString() explicitly. If you do, the syntax is simple:

InetAddress thisComputer = InetAddress.getLocalHost();
String address = thisComputer.toString();

6.3 Some Useful Programs

You now know everything there is to know about the java.net.InetAddress class.
The tools in this class alone let you write some genuinely useful programs. Here we'll
look at two: one that queries your domain name server interactively and another that
can improve the performance of your web server by processing log files offline.

6.3.1 HostLookup

nslookup is a Unix utility that converts hostnames to IP addresses and IP addresses to
hostnames. It has two modes: interactive and command line. If you enter a hostname
on the command line, nslookup prints the IP address of that host. If you enter an IP
address on the command line, nslookup prints the hostname. If no hostname or IP
address is entered on the command line, nslookup enters interactive mode, in which it
reads hostnames and IP addresses from standard input and echoes back the
corresponding IP addresses and hostnames until you type "exit". Example 6.9 is a
simple character mode application called HostLookup, which emulates nslookup. It
doesn't implement any of nslookup's more complex features, but it does enough to be
useful.

Example 6.9. An nslookup Clone

import java.net.*;
import java.io.*;

public class HostLookup {

 public static void main (String[] args) {

 if (args.length > 0) { // use command line
 for (int i = 0; i < args.length; i++) {
 System.out.println(lookup(args[i]));
 }
 }
 else {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.println(
 "Enter names and IP addresses. Enter \"exit\" to quit.");
 try {
 while (true) {
 String host = in.readLine();
 if (host.equals("exit")) break;
 System.out.println(lookup(host));
 }
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

 } /* end main */

 private static String lookup(String host) {

 InetAddress thisComputer;
 byte[] address;

 // get the bytes of the IP address
 try {
 thisComputer = InetAddress.getByName(host);
 address = thisComputer.getAddress();
 }
 catch (UnknownHostException e) {
 return "Cannot find host " + host;
 }

 if (isHostName(host)) {
 // Print the IP address
 String dottedQuad = "";
 for (int i = 0; i < address.length; i++) {
 int unsignedByte = address[i] < 0 ? address[i] + 256 :
address[i];
 dottedQuad += unsignedByte;
 if (i != address.length-1) dottedQuad += ".";
 }
 return dottedQuad;
 }
 else { // this is an IP address
 return thisComputer.getHostName();
 }

 } // end lookup

 private static boolean isHostName(String host) {

 char[] ca = host.toCharArray();
 // if we see a character that is neither a digit nor a period
 // then host is probably a host name
 for (int i = 0; i < ca.length; i++) {
 if (!Character.isDigit(ca[i])) {
 if (ca[i] != '.') return true;
 }
 }

 // Everything was either a digit or a period
 // so host looks like an IP address in dotted quad format
 return false;

 } // end isHostName

 } // end HostLookup

Here's some sample output; input typed by the user is in bold:

% java HostLookup utopia.poly.edu
128.238.3.21
% java HostLookup 128.238.3.21
utopia.poly.edu
% java HostLookup
Enter names and IP addresses. Enter "exit" to quit.

cs.nyu.edu
128.122.80.78
199.1.32.90
star.blackstar.com
localhost
127.0.0.1
cs.cmu.edu
128.2.222.173
rtfm.mit.edu
18.181.0.29
star.blackstar.com
199.1.32.90
cs.med.edu
Cannot find host cs.med.edu
exit

The HostLookup program is built using three methods: main(), lookup(), and
isHostName(). The main() method determines whether there are command-line
arguments. If there are command-line arguments, main() calls lookup() to process
each one. If there are no command-line arguments, it chains a BufferedReader to an
InputStreamReader chained to System.in and reads input from the user with the
readLine() method. (The warning in Chapter 4, about this method doesn't apply
here because we're reading from the console, not a network connection.) If the line is
"exit", then the program exits. Otherwise, the line is assumed to be a hostname or IP
address, and is passed to the lookup() method.

The lookup() method uses InetAddress.getByName() to find the requested host,
regardless of the input's format; remember that getByName() doesn't care if its
argument is a name or a dotted quad address. If getByName() fails, then lookup()
returns a failure message. Otherwise, it gets the address of the requested system. Then
lookup() calls isHostName() to determine whether the input string host is a
hostname like cs.nyu.edu or a dotted quad format IP address like 128.122.153.70.
isHostName() looks at each character of the string; if all the characters are digits or
periods, isHostName() guesses that the string is a numeric IP address and returns
false. Otherwise, isHostName() guesses that the string is a hostname and returns
true. What if the string is neither? That is very unlikely, since if the string is neither a
hostname nor an address, getByName() won't be able to do a lookup and will throw
an exception. However, it would not be difficult to add a test making sure that the
string looks valid; this is left as an exercise for the reader. If the user types a hostname,
lookup() returns the corresponding dotted quad address; we have already saved the
address in the byte array address[], and the only complication is making sure that
we don't treat byte values from 128 to 255 as negative numbers. If the user types an IP
address, then we use the getHostName() method to look up the hostname
corresponding to the address, and return it.

6.3.2 Processing Web Server Log Files

Web server logs track the hosts that access a web site. By default, the log reports the
IP addresses of the sites that connect to the server. However, you can often get more
information from the names of those sites than from their IP addresses. Most web
servers have an option to store hostnames instead of IP addresses, but this can hurt
performance because the server needs to make a DNS request for each hit. It is much

more efficient to log the IP addresses and convert them to hostnames at a later time.
This task can be done when the server isn't busy or even on another machine
completely. Example 6.10 is a program called Weblog that reads a web server log file
and prints each line with IP addresses converted to hostnames.

Most web servers have standardized on the common log file format, although there
are exceptions; if your web server is one of those exceptions, you'll have to modify
this program. A typical line in the common log file format looks like this:

205.160.186.76 unknown - [17/Jun/1999:22:53:58 -0500] "GET
/bgs/greenbg.gif HTTP 1.0" 200 50

This means that a web browser at IP address 205.160.186.76 requested the file
/bgs/greenbg.gif from this web server at 11:53 P.M. (and 58 seconds) on June 17,
1999. The file was found (response code 200), and 50 bytes of data were successfully
transferred to the browser.

The first field is the IP address or, if DNS resolution is turned on, the hostname from
which the connection was made. This is followed by a space. Therefore, for our
purposes, parsing the log file is easy: everything before the first space is the IP
address, and everything after it does not need to be changed.

The Common Log File Format
If you want to expand Weblog into a more general web server log processor,
you need a little more information about the common log file format. A line
in the file has the format:

remotehost rfc931 authuser [date] "request" status bytes
remotehost

remotehost is either the hostname or IP address from which the
browser connected.

rfc931

rfc931 is the username of the user on the remote system, as specified
by Internet protocol RFC 931. Very few browsers send this
information, so it's almost always either unknown or a dash. This is
followed by a space.

authuser

authuser is the authenticated username as specified by RFC 931.
Once again, this is not supported by most popular browsers or client
systems; this field usually is filled in with a dash, followed by a
space.

[date]

The date and time of the request are given in brackets. This is the
local system time when the request was made. Days are a two-digit
number ranging from 01 to 31. The month is Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec. The year is given by four
digits. This is followed by a colon, then the hour (from 00 to 23),
another colon, then two digits signifying the minute (00 to 59), then a
colon, then two digits signifying the seconds (00 to 59). Then comes
the closing bracket and another space.

"request"

This is the request line exactly as it came from the client. It is
enclosed in quotation marks because it may contain embedded spaces.
It is not guaranteed to be a valid HTTP request since client software
may misbehave.

status

This is a numeric HTTP status code returned to the client. A list of
HTTP 1.0 status codes is given in Chapter 3. The most common
response is 200, which means the request was successfully processed.

bytes

This is the number of bytes of data that was sent to the client as a
result of this request.

The dotted quad format IP address is converted into a hostname using the usual
methods of java.net.InetAddress. Example 6.10 shows the code.

Example 6.10. Process Web Server Log Files

import java.net.*;
import java.io.*;
import java.util.*;
import com.macfaq.io.SafeBufferedReader;

public class Weblog {

 public static void main(String[] args) {

 Date start = new Date();
 try {
 FileInputStream fin = new FileInputStream(args[0]);
 Reader in = new InputStreamReader(fin);
 SafeBufferedReader bin = new SafeBufferedReader(in);

 String entry = null;
 while ((entry = bin.readLine()) != null) {

 // separate out the IP address
 int index = entry.indexOf(' ', 0);

 String ip = entry.substring(0, index);
 String theRest = entry.substring(index, entry.length());

 // find the host name and print it out
 try {
 InetAddress address = InetAddress.getByName(ip);
 System.out.println(address.getHostName() + theRest);
 }
 catch (UnknownHostException e) {
 System.out.println(entry);
 }

 } // end while
 }
 catch (IOException e) {
 System.out.println("Exception: " + e);
 }

 Date end = new Date();
 long elapsedTime = (end.getTime()-start.getTime())/1000;
 System.out.println("Elapsed time: " + elapsedTime + " seconds");

 } // end main

}

The name of the file to be processed is passed to Weblog as the first argument on the
command line. A FileInputStream fin is opened from this file, and an
InputStreamReader is chained to fin. This InputStreamReader is buffered by
chaining it to an instance of the SafeBufferedReader class developed in Chapter 4.
The file is processed line by line in a while loop.

Each pass through the loop places one line in the String variable entry. entry is
then split into two substrings: ip, which contains everything before the first space,
and theRest, which is everything after the first space. The position of the first space
is determined by entry.indexOf(" ", 0). ip is converted to an InetAddress object
using getByName(). The hostname is then looked up by getHostName(). Finally,
the hostname, a space, and everything else on the line (theRest) are printed on
System.out. Output can be sent to a new file through the standard means for
redirecting output.

Weblog is more efficient than you might expect. Most web browsers generate multiple
log file entries per page served, since there's an entry in the log not just for the page
itself but for each graphic on the page. And many web browsers request multiple
pages while visiting a site. DNS lookups are expensive, and it simply doesn't make
sense to look up each of those sites every time it appears in the log file. The
InetAddress class caches requested addresses. If the same address is requested again,
it can be retrieved from the cache much more quickly than from DNS.

Nonetheless, this program could certainly be faster. In my initial tests, it took more
than a second per log entry. (Exact numbers depend on the speed of your network
connection, the speed of both local and remote DNS servers you access, and network
congestion when the program is run.) It spends a huge amount of time just sitting and
waiting for DNS requests to return. Of course, this is exactly the problem

multithreading is designed to solve. One main thread can read the log file and pass off
individual entries to other threads for processing.

A thread pool is absolutely necessary here. Over the space of a few days, even low
volume web servers can easily generate a log file with hundreds of thousands of lines.
Trying to process such a log file by spawning a new thread for each entry would
rapidly bring even the strongest virtual machine to its knees, especially since the main
thread can read log file entries much faster than individual threads can resolve domain
names and die. Consequently, reusing threads is essential here. The number of threads
is stored in a tunable parameter, numberOfThreads, so that it can be adjusted to fit the
VM and network stack. (Launching too many simultaneous DNS requests can also
cause problems.)

This program is now divided into two classes. The first class, PooledWeblog, shown
in Example 6.11, contains the main() method and the processLogFile() method.
It also holds the resources that need to be shared among the threads. These are the
pool, implemented as a synchronized LinkedList from the Java Collections API, and
the output log, implemented as a BufferedWriter named out. Individual threads will
have direct access to the pool but will have to pass through PooledWeblog's log()
method to write output.

The key method is processLogFile(). As before, this method reads from the
underlying log file. However, each entry is placed in the entries pool rather than
being immediately processed. Because this method is likely to run much more quickly
than the threads that have to access DNS, it yields after reading each entry.
Furthermore, it goes to sleep if there are more entries in the pool than threads
available to process them. The amount of time it sleeps depends on the number of
threads. This will avoid using excessive amounts of memory for very large log files.
When the last entry is read, the finished flag is set to true to tell the threads that
they can die once they've completed their work.

Example 6.11. PooledWebLog

import java.io.*;
import java.util.*;
import com.macfaq.io.SafeBufferedReader;

public class PooledWeblog {

 private BufferedReader in;
 private BufferedWriter out;
 private int numberOfThreads;
 private List entries = Collections.synchronizedList(new
LinkedList());
 private boolean finished = false;
 private int test = 0;

 public PooledWeblog(InputStream in, OutputStream out,
 int numberOfThreads) {
 this.in = new BufferedReader(new InputStreamReader(in));
 this.out = new BufferedWriter(new OutputStreamWriter(out));
 this.numberOfThreads = numberOfThreads;

 }

 public boolean isFinished() {
 return this.finished;
 }

 public int getNumberOfThreads() {
 return numberOfThreads;
 }

 public void processLogFile() {

 for (int i = 0; i < numberOfThreads; i++) {
 Thread t = new LookupThread(entries, this);
 t.start();
 }

 try {

 String entry = null;
 while ((entry = in.readLine()) != null) {

 if (entries.size() > numberOfThreads) {
 try {
 Thread.sleep((long) (1000.0/numberOfThreads));
 }
 catch (InterruptedException e) {}
 continue;
 }

 synchronized (entries) {
 entries.add(0, entry);
 entries.notifyAll();
 }

 Thread.yield();

 } // end while

 }
 catch (IOException e) {
 System.out.println("Exception: " + e);
 }

 this.finished = true;

 // finish any threads that are still waiting
 synchronized (entries) {
 entries.notifyAll();
 }

 }

 public void log(String entry) throws IOException {
 out.write(entry + System.getProperty("line.separator", "\r\n"));
 out.flush();
 }

 public static void main(String[] args) {

 try {

 PooledWeblog tw = new PooledWeblog(new FileInputStream(args[0]),
 System.out, 100);
 tw.processLogFile();
 }
 catch (FileNotFoundException e) {
 System.err.println("Usage: java PooledWeblog logfile_name");
 }
 catch (ArrayIndexOutOfBoundsException e) {
 System.err.println("Usage: java PooledWeblog logfile_name");
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }

 } // end main

}

The detailed work of converting IP addresses to hostnames in the log entries is
handled by the LookupThread class, shown in Example 6.12. The constructor
provides each thread with a reference to the entries pool it will retrieve work from
and a reference to the PooledWeblog object it's working for. The latter reference
allows callbacks to the PooledWeblog so that the thread can log converted entries and
check to see when the last entry has been processed. It does so by calling the
isFinished() method in PooledWeblog when the entries pool is empty (has size
0). Neither an empty pool nor isFinished() returning true is sufficient by itself.
isFinished() returns true after the last entry is placed in the pool, which is, at least
for a small amount of time, before the last entry is removed from the pool. And
entries may be empty while there are still many entries remaining to be read, if the
lookup threads outrun the main thread reading the log file.

Example 6.12. LookupThread

import java.net.*;
import java.io.*;
import java.util.*;

public class LookupThread extends Thread {

 private List entries;
 PooledWeblog log; // used for callbacks

 public LookupThread(List entries, PooledWeblog log) {
 this.entries = entries;
 this.log = log;
 }

 public void run() {

 String entry;

 while (true) {

 synchronized (entries) {
 while (entries.size() == 0) {
 if (log.isFinished()) return;

 try {
 entries.wait();
 }
 catch (InterruptedException e) {
 }
 }
 entry = (String) entries.remove(entries.size()-1);
 }

 int index = entry.indexOf(' ', 0);
 String remoteHost = entry.substring(0, index);
 String theRest = entry.substring(index, entry.length());

 try {
 remoteHost =
InetAddress.getByName(remoteHost).getHostName();
 }
 catch (Exception e) {
 // remoteHost remains in dotted quad format
 }

 try {
 log.log(remoteHost + theRest);
 }
 catch (IOException e) {
 }
 this.yield();

 }

 }

}

Using threads like this lets the same log files be processed in parallel. This is a huge
time savings. In my unscientific tests, the threaded version is 10 to 50 times faster
than the sequential version.

The biggest disadvantage to the multithreaded approach is that it reorders the log file.
The output statistics aren't necessarily in the same order as the input statistics. For
simple hit counting, this doesn't matter. However, there are some log analysis tools
that can mine a log file to determine paths users followed through a site. These could
well get confused if the log is out of sequence. If that's an issue, you'd need to attach a
sequence number to each log entry. As the individual threads returned log entries to
the main program, the log() method in the main program would store any that
arrived out of order until their predecessors appeared. This is in some ways
reminiscent of how network software reorders TCP packets that arrive out of order.

Chapter 7. Retrieving Data with URLs
The simplest way for a Java program to locate and retrieve data from the network is to
use the URL class. You do not need to worry about the details of the protocol being
used, the format of the data being retrieved, or how to communicate with the server;
you simply tell Java the URL, and it gets the data for you. Although Java can handle
only a few protocols and content types out of the box, in later chapters you'll learn

how to write and install new content and protocol handlers that extend Java's
capabilities to include new protocols and new kinds of data. You'll also learn how to
open sockets and communicate directly with different kinds of servers. But that's later;
for now, let's see how much you can do with a minimum of work.

7.1 The URL Class

The java.net.URL class is an abstraction of a Uniform Resource Locator like
http://www.hamsterdance.com/ or ftp://ftp.redhat.com/pub/. It extends
java.lang.Object, and it is a final class that cannot be subclassed. Rather than
relying on inheritance to configure instances for different kinds of URLs, it uses the
strategy design pattern. Protocol handlers are the strategies, and the URL class itself
forms the context through which the different strategies are selected:

public final class URL extends Object implements Serializable

Although storing a URL as a string would be trivial, it is helpful to think of URLs as
objects with fields that include the protocol, hostname, port, path, query string, and ref,
each of which may be set independently. Indeed, this is almost exactly how the
java.net.URL class is organized, though the details vary a little between different
versions of Java.

The fields of java.net.URL are visible only to other members of the java.net
package; classes that aren't in java.net can't access a URL's fields directly. However,
you can set these fields using the URL constructors, and retrieve their values using the
various getter methods (getHost(), getPort(), etc.). The URL class has a single
method for setting the fields of a URL after it has been created, but this method is
protected, and you won't need it unless you're implementing a new protocol handler.
URLs are effectively immutable. After a URL object has been constructed, its fields do
not change.

7.1.1 Creating New URLs

Unlike the InetAddress objects of Chapter 6, you can construct instances of
java.net.URL. There are six constructors, differing in the information they require.
Which constructor you use depends on what information you have and the form it's in.
All these constructors throw a MalformedURLException if you try to create a URL
for an unsupported protocol.

Exactly which protocols are supported is implementation dependent. The only
protocols that have been available in all major virtual machines are http and file, and
the latter isn't very useful for applets. Sun's Java Development Kit 1.1 and Apple's
Macintosh Runtime for Java 2.1 support HTTP, file, FTP, mailto, and gopher as well
as some custom protocols like doc, netdoc, systemresource, and verbatim used
internally by HotJava for special purposes like help files. JDK 1.2 adds the jar
protocol to this list. Netscape Navigator 4.x supports the HTTP, file, FTP, mailto,
Telnet, idap, and gopher protocols. Internet Explorer 5 supports HTTP, file, FTP,
HTTPS, mailto, gopher, doc, and systemresource, but not Telnet, netdoc, jar, or
verbatim. HotJava 3.0 supports all the JDK protocols plus NFS. Of course, support for
all these protocols is limited in applets by the security policy. For example, just

because an untrusted applet can construct a file URL object does not mean that the
applet can actually read the file the URL refers to. Just because an untrusted applet
can construct a URL object from an HTTP URL that points to a third-party web site
does not mean that the applet can connect to that site.

If the protocol you want to use isn't supported by a particular VM, you may be able to
install a protocol handler for that scheme. This is subject to a number of security
checks in applets and is really practical only for applications. Other than verifying that
it recognizes the protocol part of the URL, Java does not make any checks about the
correctness of the URLs it constructs. The programmer is responsible for making sure
that URLs created are valid. For instance, Java does not check that the hostname in an
HTTP URL does not contain spaces or that the query string is x-www-form-URL-
encoded. It does not check that a mailto URL actually contains an email address. Java
does not check the URL to make sure that it points at an existing host or that it meets
any other requirements for URLs. You can create URLs for hosts that don't exist and
for hosts that do exist but that you won't be allowed to connect to.

7.1.1.1 Constructing a URL from a string

The simplest URL constructor just takes an absolute URL in string form as its single
argument:

public URL(String url) throws MalformedURLException

Like all constructors, this may only be called after the new operator; and, like all URL
constructors, it can throw a MalformedURLException. The foloowing code constructs
a URL object from a String, catching the exception that might be thrown:

try {
 URL u = new URL("http://www.macfaq.com/personal.html");
}
catch (MalformedURLException e) {
 System.err.println(e);
}

Example 7.1 is a simple program for determining which protocols a virtual machine
does and does not support. It attempts to construct a URL object for each of 14
protocols (8 standard ones, 3 custom protocols for various Java APIs, and 4
undocumented protocols used internally by HotJava). If the constructor succeeds, you
know the protocol is supported. Otherwise, a MalformedURLException is thrown, and
you know the protocol is not supported.

Example 7.1. ProtocolTester

/* Which protocols does a virtual machine support? */
import java.net.*;

public class ProtocolTester {

 public static void main(String[] args) {

 // hypertext transfer protocol

 testProtocol("http://www.adc.org");

 // secure http
 testProtocol("https://www.amazon.com/exec/obidos/order2/");

 // file transfer protocol
 testProtocol("ftp://metalab.unc.edu/pub/languages/java/javafaq/");

 // Simple Mail Transfer Protocol
 testProtocol("mailto:elharo@metalab.unc.edu");

 // telnet
 testProtocol("telnet://dibner.poly.edu/");

 // local file access
 testProtocol("file:///etc/passwd");

 // gopher
 testProtocol("gopher://gopher.anc.org.za/");

 // Lightweight Directory Access Protocol
 testProtocol(

"ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US?postalAd
dress");

 // Jar
 testProtocol(

"jar:http://metalab.unc.edu/java/books/javaio/ioexamples/javaio.jar!"

 // NFS, Network File System
 testProtocol("nfs://utopia.poly.edu/usr/tmp/");

 // a custom protocol for JDBC
 testProtocol("jdbc:mysql://luna.metalab.unc.edu:3306/NEWS");

 // rmi, a custom protocol for remote method invocation
 testProtocol("rmi://metalab.unc.edu/RenderEngine");

 // custom protocols for HotJava
 testProtocol("doc:/UsersGuide/release.html");
 testProtocol("netdoc:/UsersGuide/release.html");
 testProtocol("systemresource://www.adc.org/+/index.html");
 testProtocol("verbatim:http://www.adc.org/");

 }

 private static void testProtocol(String url) {

 try {
 URL u = new URL(url);
 System.out.println(u.getProtocol() + " is supported");
 }
 catch (MalformedURLException e) {
 String protocol = url.substring(0, url.indexOf(':'));
 System.out.println(protocol + " is not supported");
 }

 }

}

The results of this program depend on which virtual machine runs it. Here are the
results from Sun's JDK 1.2.2 on Windows NT, which turns out to support all the
protocols except Telnet, HTTPS, LDAP, RMI, NFS, and JDBC:

D:\JAVA\JNP2\examples\07>java ProtocolTester
http is supported
https is not supported
ftp is supported
mailto is supported
telnet is not supported
file is supported
gopher is supported
ldap is not supported
jar is supported
nfs is not supported
jdbc is not supported
rmi is not supported
doc is supported
netdoc is supported
systemresource is supported
verbatim is supported

The nonsupport of RMI and JDBC is actually a little deceptive since in fact the JDK
does support these protocols. However, that support is through various parts of the
java.rmi and java.sql packages, respectively. These protocols are not accessible
through the URL class like the other supported protocols (although I have no idea why
Sun chose to wrap up RMI and JDBC parameters in URL clothing if it wasn't
intending to interface with these via Java's quite sophisticated mechanism for
handling URLs).

7.1.1.2 Constructing a URL from its component parts

The second constructor builds a URL from three strings specifying the protocol, the
hostname, and the file:

public URL(String protocol, String hostname, String file)
 throws MalformedURLException

This constructor sets the port to -1 so the default port for the protocol will be used.
The file argument should begin with a slash, and include a path, a filename, and
optionally a reference to a named anchor. Forgetting the initial slash is a common
mistake, and one that is not easy to spot. Like all URL constructors, it can throw a
MalformedURLException. For example:

try {
 URL u = new URL("http", "www.eff.org", "/blueribbon.html#intro");
}
catch (MalformedURLException e) {
 // All VMs should recognize http
}

This creates a URL object that points to http://www.eff.org/blueribbon.html#intro,
using the default port for the HTTP protocol (port 80). The file specification includes

a reference to a named anchor. The code catches the exception that would be thrown
if the virtual machine did not support the HTTP protocol. However, this shouldn't
happen in practice.

For those rare occasions when the default port isn't correct, the next constructor lets
you specify the port explicitly, as an int:

public URL(String protocol, String host, int port, String file)
 throws MalformedURLException

The other arguments are the same as for the URL(String protocol, String host,
String file) constructor and carry the same caveats. For example:

try {
 URL u = new URL("http", "lcsaxp.lcs.psu.edu", 1212, "/%3b&db=psu");
}
catch (MalformedURLException e) {
 System.err.println(e);
}

This code creates a URL object that points to
http://lcsaxp.lcs.psu.edu:1212/%3b&db=psu, specifying port 1,212 explicitly.

Example 7.2 is an alternative protocol tester that can run as an applet, making it useful
for testing support of browser virtual machines. It uses the three-argument constructor
rather than the one-argument constructor of Example 7.1. It also stores the schemes to
be tested in an array and uses the same host and file for each scheme. This produces
seriously malformed URLs like mailto://www.peacefire.org/bypass/SurfWatch/, once
again demonstrating that all Java checks for at object construction is whether it
recognizes the scheme, not whether the URL is appropriate.

Example 7.2. A Protocol Tester Applet

import java.net.*;
import java.applet.*;
import java.awt.*;

public class ProtocolTesterApplet extends Applet {

 TextArea results = new TextArea();

 public void init() {
 this.setLayout(new BorderLayout());
 this.add("Center", results);
 }

 public void start() {

 String host = "www.peacefire.org";
 String file = "/bypass/SurfWatch/";

 String[] schemes = {"http", "https", "ftp", "mailto",
 "telnet", "file", "ldap", "gopher",
 "jdbc", "rmi", "jndi", "jar",
 "doc", "netdoc", "nfs", "verbatim",

 "finger", "daytime", "systemresource"};

 for (int i = 0; i < schemes.length; i++) {
 try {
 URL u = new URL(schemes[i], host, file);
 results.append(schemes[i] + " is supported\r\n");
 }
 catch (MalformedURLException e) {
 results.append(schemes[i] + " is not supported\r\n");
 }
 }

 }

}

Figure 7.1 shows the results in HotJava 3.0. This browser supports HTTP, FTP,
mailto, file, gopher, doc, netdoc, verbatim, systemresource, jar, finger, and daytime
but not HTTPS, ldap, Telnet, jdbc, rmi, or jndi. In fact, the last two protocols
supported by HotJava in this list are provided by custom protocol handlers I'll
introduce in Chapter 16. They are not part of the default installation of HotJava 3.0.

Figure 7.1. The ProtocolTesterApplet running in HotJava 3.0

7.1.1.3 Constructing relative URLs

This constructor builds an absolute URL from a relative URL and a base URL:

public URL(URL base, String relative) throws MalformedURLException

For instance, you may be parsing an HTML document at
http://metalab.unc.edu/javafaq/index.html and encounter a link to a file called
mailinglists.html with no further qualifying information. In this case, you use the URL
to the document that contains the link to provide the missing information. The
constructor computes the new URL as http://metalab.unc.edu/javafaq/mailinglists.html.
For example:

try {
 URL u1 = new URL("http://metalab.unc.edu/javafaq/index.html");
 URL u2 = new URL (u1, "mailinglists.html");
}
catch (MalformedURLException e) {
 System.err.println(e);
}

The filename is removed from the path of u1, and the new filename mailinglists.html
is appended to make u2. This constructor is particularly useful when you want to loop
through a list of files that are all in the same directory. You can create a URL for the
first file and then use this initial URL to create URL objects for the other files by
substituting their filenames. You also use this constructor when you want to create a
URL relative to the applet's document base or codebase, which you retrieve using the
getDocumentBase() or getCodeBase() methods of the java.applet.Applet
class. Example 7.3 is a very simple applet that uses get DocumentBase() to create a
new URL object:

Example 7.3. A URL Relative to the Web Page

import java.net.*;
import java.applet.*;
import java.awt.*;

public class RelativeURLTest extends Applet {

 public void init () {

 try {
 URL base = this.getDocumentBase();
 URL relative = new URL(base, "mailinglists.html");
 this.setLayout(new GridLayout(2,1));
 this.add(new Label(base.toString()));
 this.add(new Label(relative.toString()));
 }
 catch (MalformedURLException e) {
 this.add(new Label("This shouldn't happen!"));
 }

 }

}

Of course, the output from this applet depends on the document base. In the run
shown in Figure 7.2, the original URL (the document base) refers to the file
RelativeURL.html; the constructor creates a new URL that points to the file
mailinglists.html in the same directory.

Figure 7.2. A base and a relative URL

When using this constructor with getDocumentBase(), you frequently put the call to
getDocumentBase() inside the constructor, like this:

URL relative = new URL(this.getDocumentBase(), "mailinglists.html");

7.1.1.4 Specifying a URLStreamHandler

Java 1.2 adds two URL constructors that allow you to specify the protocol handler used
for the URL. The first constructor builds a relative URL from a base URL and a relative
part, then uses the specified handler to do the work for the URL. The second builds the
URL from its component pieces, then uses the specified handler to do the work for the
URL:

public URL(URL base, String relative, URLStreamHandler handler) //
1.2
 throws MalformedURLException
public URL(String protocol, String host, int port, String file, //
1.2
 URLStreamHandler handler) throws MalformedURLException

All URL objects have URLStreamHandler objects to do their work for them. These two
constructors allow you to change from the default URLStreamHandler subclass for a
particular protocol to one of your own choosing. This is useful for working with
URLs whose schemes aren't supported in a particular virtual machine as well as for
adding functionality that the default stream handler doesn't provide, like asking the
user for a username and password. For example:

URL u = new URL("finger", "utopia.poly.edu", 79, "/marcus",
 new com.macfaq.net.www.protocol.finger.Handler());

The com.macfaq.net.www.protocol.finger.Handler class used here will be
developed in Chapter 16.

While the other four constructors raise no security issues in and of themselves, these
two do because class loader security is closely tied to the various URLStreamHandler
classes. Consequently, untrusted applets are not allowed to specify a
URLSreamHandler. Trusted applets can do so if they have the NetPermission
specifyStreamHandler. However, for reasons that will become apparent in Chapter
16, this is a security hole big enough to drive a truck through. Consequently, you
should not request this permission or expect it to be granted if you do request it.

7.1.1.5 Other sources of URL objects

Besides the constructors discussed here, a number of other methods in the Java class
library return URL objects. You've already seen getDocumentBase() from
java.applet.Applet. The other common source is getCodeBase(), also from
java.applet.Applet. This works just like getDocumentBase(), except it returns
the URL of the applet itself instead of the URL of the page that contains the applet.
Both getDocumentBase() and getCodeBase() come from the
java.applet.AppletStub interface, which java.applet.Applet implements.
You're unlikely to implement this interface yourself unless you're building a web
browser or applet viewer.

In Java 1.2 and later, the java.io.File class has a toURL() method that returns a
file URL matching the given file. The exact format of the URL returned by this
method is platform dependent. For example, on Windows it may return something
like file:/D:/JAVA/JNP2/07/ToURLTest.java.

From Java 1.1 on, class loaders are used not only to load classes but also to load
resources such as images and audio files. The static
ClassLoader.getSystemResource(String name) method returns a URL from which
a single resource can be read. The ClassLoader.getSystemResources(String
name) method returns an Enumeration containing a list of URLs from which the
named resource can be read. In Java 1.1, these two methods use the virtual machine's
default class loader. In Java 1.2 and later, they use the system class loader. Finally, the
instance method getResource(String name) will search the path used by the
referenced class loader for a URL to the named resource. The URLs returned by these
methods may be file URLs, HTTP URLs, or some other scheme. The name of the
resource is a slash-separated list of Java identifiers like /com/macfaq/sounds/swale.au
or com/macfaq/images/headshot.jpg. The Java implementation will attempt to find the
requested resource in the class path, potentially including parts of the class path on the
web server that an applet was loaded from, or inside a JAR archive.

There are a few other methods that return URL objects here and there throughout the
class library, but most of these are simple getter methods that return only a URL you
probably already know because you used it to construct the object in the first place;
for instance, the getPage() method of java.swing.JEditorPane, and the
getURL() method of java.net.URLConnection.

7.1.2 Splitting a URL into Pieces

URLs can be thought of as composed of five pieces:

• The scheme, also known as the protocol
• The authority
• The path
• The ref, also known as the section or named anchor
• The query string

For example, given the URL
http://metalab.unc.edu/javafaq/books/jnp/index.html?isbn=1565922069#toc, the

scheme is http; the authority is metalab.unc.edu; the path is
/javafaq/books/jnp/index.html; the ref is toc; and the query string is isbn=1565922069.
However, not all URLs have all these pieces. For instance, the URL
http://www.faqs.org/rfcs/rfc2396.html has a scheme, an authority, and a path but no
ref or query string.

The authority may further be divided into the user info, the host, and the port. For
example, in the URL http://admin@www.blackstar.com:8080/, the authority is
admin@www.blackstar.com:8080. This has the user info admin, the host
www.blackstar.com, and the port 8080.

Read-only access to these parts of a URL is provided by five public methods:
getFile(), getHost(), getPort(), getProtocol(), and getRef(). Java 1.3
adds four more methods: getQuery(), getPath(), getUserInfo(), and
getAuthority().

7.1.2.1 public String getProtocol()

The getProtocol() method returns a String containing the scheme of the URL:
for example, "http", "https", or "file". For example:

URL page = this.getCodeBase();
System.out.println("This applet was downloaded via "
 + page.getProtocol());

7.1.2.2 public String getHost()

The getHost() method returns a String containing the hostname of the URL. For
example:

URL page = this.getCodeBase();
System.out.println("This applet was downloaded from " +
page.getHost());

The host string is not necessarily a valid hostname or address. In particular, URLs that
incorporate usernames, like ftp://anonymous:anonymous@wuarchive.wustl.edu/,
include the user info in the host. For example, consider this code fragment:

try {
 URL u = new URL("ftp://anonymous:anonymous@wuarchive.wustl.edu/");
 String host = u.getHost();
}
catch (MalformedURLException e) {
 // should never happen
}

This sets host to anonymous:anonymous@wuarchive.wustl.edu, not simply
wuarchive.wustl.edu. Java 1.3 provides a method to get the user info,
anonymous:anonymous in this example. However, for reasons of backward
compatibility, Java 1.3 did not change the semantics of the getHost() method to
return only the host rather than the host plus the user info.

7.1.2.3 public int getPort()

The getPort() method returns the port number specified in the URL as an int. If
no port was specified in the URL, then getPort() returns -1 to signify that the URL
does not specify the port explicitly, and will use the default port for the protocol. For
example, if the URL is http://www.userfriendly.org/, getPort() returns -1; if the
URL is http://www.userfriendly.org:80/, getPort() returns 80. The following code
prints -1 for the port number, because it isn't specified in the URL:

try {
 URL u = new URL("http://www.ncsa.uiuc.edu/demoweb/html-primer.html);
 System.out.println("The port part of " + u + " is " +
u.getPort());
}
catch (MalformedURLException e) {
 System.err.println(e);
}

7.1.2.4 public String getFile()

The getFile() method returns a String that contains the path and file portion of a
URL; remember that Java does not break a URL into separate path and file parts.
Everything from the first / after the hostname until the character preceding the # sign
that begins a section is considered to be part of the file. For example:

URL page = this.getDocumentBase();
System.out.println("This page's path is " + page.getFile());

If the URL does not have a file part, Java 1.0, 1.1, and 1.2 append a slash (/) to the
URL and return the slash as the filename. For example, if the URL is
http://www.slashdot.org (rather than something like
http://www.slashdot.org/index.html), getFile() returns /. Java 1.3 simply sets the
file to the empty string.

7.1.2.5 public String getPath() // Java 1.3

The getPath() method, available only in JDK 1.3 and later, is a synonym for
getFile(); that is, it returns a String containing the path and file portion of a URL
and has exactly the same semantics as getFile(). The reason for this duplicate
method is to sync up Java's terminology with the URI specification in RFC 2396.
RFC 2396 calls what we and Java have been calling the "file" the "path" instead. The
getFile() method isn't yet deprecated as of Java 1.3, but it may become so in future
releases. Note especially that the getPath() method does not return only the
directory path and getFile() does not return only the filename as you might naively
expect. Both getPath() and getFile() return exactly the same thing, the full path
and filename.

7.1.2.6 public string getRef()

The getRef() method returns the named anchor part of the URL. If the URL doesn't
have a named anchor, the method returns null. In the following code, getRef()
returns the string xtocid1902914:

try {
 URL u = new URL(
 "http://metalab.unc.edu/javafaq/javafaq.html#xtocid1902914");
 System.out.println("The ref of " + u + " is " + u.getRef());
}
catch (MalformedURLException e) {
 System.err.println(e);
}

7.1.2.7 public string getQuery() // Java 1.3

The getQuery() method returns the query string of the URL. If the URL doesn't
have a query string, the method returns null. In the following code, getQuery()
returns the string category=Piano:

try {
 URL u = new URL(
 "http://metalab.unc.edu/nywc/compositions.phtml?category=Piano");
 System.out.println("The query string of " + u + " is " +
u.getQuery());
}
catch (MalformedURLException e) {
 System.err.println(e);
}

7.1.2.8 public string getUserInfo() // Java 1.3

Some URLs include usernames and occasionally even password information. This
comes after the scheme and before the host. An @ symbol delimits it. For instance, in
the URL http://elharo@java.oreilly.com/, the user info is elharo. Some URLs also
include passwords in the user info. For instance, in the URL
ftp://mp3:mp3@138.247.121.61:21000/c%3a/stuff/mp3/mp3s/Organized_kinda/Quart
erflash/Quarterflash%20-%20Harden%20My%20Heart.mp3, the user info is
mp3:mp3. However, most of the time including a password in a URL is a security risk.
If the URL doesn't have any user info, getUserInfo() returns null. Mailto URLs
may not behave like you expect. In a URL like mailto:elharo@metalab.unc.edu,
elharo@metalab.unc.edu is the path, not the user info and the host. That's because the
URL specifies the remote recipient of the message rather than the username and host
that's sending the message.

7.1.2.9 public string getAuthority() // Java 1.3

Between the scheme and the path of a URL, you'll find the authority. The term
authority is taken from the Uniform Resource Identifier specification (RFC 2396),
where this part of the URI indicates the authority that's resolving the resource. In the
most general case, this includes the user info, the host, and the port. For example, in
the URL ftp://mp3:mp3@138.247.121.61:21000/c%3a/, the authority is
mp3:mp3@138.247.121.61:21000. However, not all URLs have all parts. For instance,
in the URL http://conferences.oreilly.com/java/speakers/, the authority is simply the
hostname conferences.oreilly.com. The getAuthority() method returns the
authority as it exists in the URL, with or without the user info and port.

Example 7.4 uses all eight methods to split URLs entered on the command-line into
their component parts. This program requires Java 1.3, though it's easy to port to Java
1.2.

Example 7.4. The Parts of a URL

import java.net.*;

public class URLSplitter {

 public static void main(String args[]) {

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 System.out.println("The URL is " + u);
 System.out.println("The scheme is " + u.getProtocol());
 System.out.println("The user info is " + u.getUserInfo());

 String host = u.getHost();
 if (host != null) {
 int atSign = host.indexOf('@');
 if (atSign != -1) host = host.substring(atSign+1);
 System.out.println("The host is " + host);
 }
 else {
 System.out.println("The host is null.");
 }

 System.out.println("The port is " + u.getPort());
 System.out.println("The path is " + u.getPath());
 System.out.println("The ref is " + u.getRef());
 System.out.println("The query string is " + u.getQuery());
 } // end try
 catch (MalformedURLException e) {
 System.err.println(args[i] + " is not a URL I understand.");
 }
 System.out.println();
 } // end for

 } // end main

} // end URLSplitter

Here's the result of running this against several of the URL examples in this chapter:

% java URLSplitter \
 http://www.ncsa.uiuc.edu/demoweb/html-primer.html#A1.3.3.3 \
 ftp://mp3:mp3@138.247.121.61:21000/c%3a/ \
 http://www.oreilly.com \
 http://metalab.unc.edu/nywc/compositions.phtml?category=Piano \
 http://admin@www.blackstar.com:8080/ \
The URL is http://www.ncsa.uiuc.edu/demoweb/html-primer.html#A1.3.3.3
The scheme is http
The user info is null
The host is www.ncsa.uiuc.edu
The port is -1
The path is /demoweb/html-primer.html
The ref is A1.3.3.3

The query string is null

The URL is ftp://mp3:mp3@138.247.121.61:21000/c%3a/
The scheme is ftp
The user info is mp3:mp3
The host is 138.247.121.61
The port is 21000
The path is /c%3a/
The ref is null
The query string is null

The URL is http://www.oreilly.com
The scheme is http
The user info is null
The host is www.oreilly.com
The port is -1
The path is
The ref is null
The query string is null

The URL is
http://metalab.unc.edu/nywc/compositions.phtml?category=Piano
The scheme is http
The user info is null
The host is metalab.unc.edu
The port is -1
The path is /nywc/compositions.phtml
The ref is null
The query string is category=Piano

The URL is http://admin@www.blackstar.com:8080/
The scheme is http
The user info is admin
The host is www.blackstar.com
The port is 8080
The path is /
The ref is null
The query string is null

7.1.3 Retrieving Data from a URL

Naked URLs aren't very exciting. What's exciting is the data contained in the
documents they point to. The URL class has three methods (four in Java 1.3) to retrieve
data from a URL; they are:

public final InputStream openStream() throws IOException
public URLConnection openConnection() throws IOException
public final Object getContent() throws IOException
public final Object getContent(Class[] classes) // 1.3
 throws IOException

These methods differ in that they return the data at the URL as an instance of different
classes.

7.1.3.1 public final InputStream openStream() throws IOException

The openStream() method connects to the resource referenced by the URL, performs
any necessary handshaking between the client and the server, and then returns an

InputStream from which data can be read. The data you get from this InputStream
is the raw (i.e., uninterpreted) contents of the file the URL references: ASCII if you're
reading an ASCII text file, raw HTML if you're reading an HTML file, binary image
data if you're reading an image file, and so forth. It does not include any of the HTTP
headers or any other protocol-related information. You can read from this
InputStream as you would read from any other InputStream. For example:

try {
 URL u = new URL("http://www.hamsterdance.com");
 InputStream in = u.openStream();
 int c;
 while ((c = in.read()) != -1) System.out.write(c);
}
catch (IOException e) {
 System.err.println(e);
}

This code fragment catches an IOException, which also catches the
MalformedURLException that the URL constructor can throw, since
MalformedURLException subclasses IOException.

Example 7.5 reads a URL from the command line, opens an InputStream from that
URL, chains the resulting InputStream to an InputStreamReader using the default
encoding, and then uses InputStreamReader's read() method to read successive
characters from the file, each of which is printed on System.out. That is, it prints the
raw data located at the URL: if the URL references an HTML file, the program's
output is raw HTML.

Example 7.5. Download a Web Page

import java.net.*;
import java.io.*;

public class SourceViewer {

 public static void main (String[] args) {

 if (args.length > 0) {
 try {
 //Open the URL for reading
 URL u = new URL(args[0]);
 InputStream in = u.openStream();
 // buffer the input to increase performance
 in = new BufferedInputStream(in);
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException e) {
 System.err.println(e);

 }

 } // end if

 } // end main

} // end SourceViewer

Here are the first few lines of output when SourceViewer downloads
http://www.oreilly.com:

% java SourceViewer http://www.oreilly.com
<HTML>
<HEAD>
<TITLE>www.oreilly.com -- Welcome to O'Reilly & Associates! --
computer
books, software, online publishing</TITLE>
<META name="keywords" content="computer books, technical books, UNIX,
unix,
Perl, Java, Linux, Internet, Web, C, C++, Windows, Windows NT,
Security,
Sys Admin, System Administration, Oracle, design, graphics, online
books,
online courses, Perl Conference, Web-based training, Software, open
source,
free software">
<META name="description" content="O'Reilly is a leader in technical
and
computer book documentation for UNIX, Perl, Java, Linux, Internet,
Web, C, C++, Windows, Windows NT, Security, Sys Admin, System
Administration, Oracle, Design & Graphics, Online Books, Online
Courses,
Perl Conference, Web-based training, and Software">
</HEAD>

There are quite a few more lines in that web page; if you want to see them, you can
fire up your web browser.

The shakiest part of this program is that it blithely assumes that the remote URL is in
fact text data, and that its encoding is the same as the default encoding of the client
system. That's not necessarily true. The remote URL could be binary data; and even if
it's not, the remote host and local client may not have the same default character set.
As a general rule, for web pages that use a character set radically different from
ASCII, the HTML page will include a META tag in the header that specifies the
character set in use. For instance, this META tag specifies the Big-5 encoding for
Chinese:

<meta http-equiv="Content-Type" content="text/html; charset=big5">

In practice, there's no easy way to get at this information other than by parsing the file
and looking for a header like this one, and even that's limited. Many HTML files
hand-coded in Latin alphabets don't have such a META tag. Since Windows, the Mac,
and most Unixes have somewhat different interpretations of the characters from 128
to 255, the extended characters in these documents are messed up on platforms other
than the one on which they were created.

7.1.3.2 public URLConnection openConnection() throws IOException

The openConnection() method opens a socket to the specified URL and returns a
URLConnection object. A URLConnection represents an open connection to a
network resource. If the call fails, openConnection() throws an IOException. For
example:

try {
 URL u = new URL("http://www.jennicam.org/");
 try {
 URLConnection uc = u.openConnection();
 InputStream in = uc.getInputStream();
 // read from the connection...
 } // end try
 catch (IOException e) {
 System.err.println(e);
 }
} // end try
catch (MalformedURLException e) {
 System.err.println(e);
}

This method is used when you want to communicate directly with the server. The
URLConnection gives you access to everything sent by the server: in addition to the
document itself, in its raw form (i.e., HTML, plain text, binary image data), you can
access all the headers used by the protocol in use. For example, if you are retrieving
an HTML document, the URLConnection will let you access the HTTP headers as
well as the raw HTML. The URLConnection class also lets you write data to as well
as read from a URL—for instance, to send email to a mailto URL or post form data
for a CGI. The URLConnection class will be the primary subject of Chapter 15.

7.1.3.3 public final Object getContent() throws IOException

The getContent() method is the third and final way to download data referenced by
a URL. The getContent() method retrieves the data referenced by the URL and
tries to make it into some type of object. If the URL refers to some kind of text object,
such as an ASCII or HTML file, the object returned is usually some sort of
InputStream. If the URL refers to an image, such as a GIF or a JPEG file, then
getContent() usually returns a java.awt.ImageProducer (more specifically, an
instance of a class that implements the ImageProducer interface). What unifies these
two disparate classes is that they are not the thing itself but a means by which a
program can construct the thing:

try {
 URL u = new URL("http://mesola.obspm.fr/");
 Object o = u.getContent();
 // cast the Object to the appropriate type
 // work with the Object...
}
catch (Exception e) {
 System.err.println(e);
}

getContent() operates by looking at the Content-type field in the MIME header
of data it gets from the server. If the server does not use MIME headers or sends an
unfamiliar Content-type, then getContent() returns some sort of InputStream
with which the data can be read. An IOException is thrown if the object can't be
retrieved. Example 7.6 demonstrates this.

Example 7.6. Download an Object

import java.net.*;
import java.io.*;

public class ContentGetter {

 public static void main (String[] args) {

 if (args.length > 0) {

 //Open the URL for reading
 try {
 URL u = new URL(args[0]);
 try {
 Object o = u.getContent();
 System.out.println("I got a " + o.getClass().getName());
 } // end try
 catch (IOException e) {
 System.err.println(e);
 }
 } // end try
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 } // end if

 } // end main

} // end ContentGetter

Here's the result of trying to get the content of http://www.oreilly.com/:

% java ContentGetter http://www.oreilly.com/
I got a java.io.PushbackInputStream

On the other hand, here's what you get when you try to load a header image from that
page:

% java ContentGetter
http://www.oreilly.com/graphics_new/animation.gif
I got a sun.awt.image.URLImageSource

Here's what happens when you try to load a Java applet using getContent():

% java ContentGetter
http://metalab.unc.edu/java/RelativeURLTest.class
I got a sun.net.www.MeteredStream

Here's what happens when you try to load an audio file using getContent():

% java ContentGetter
http://metalab.unc.edu/javafaq/course/week9/spacemusic.au
I got a sun.applet.AppletAudioClip

The last result is the most unusual because it is as close as the Java core API gets to a
class that represents a sound file. It's not just an interface through which you can load
the sound data.

This example demonstrates the biggest problems with using getContent(): it's hard
to predict what kind of object you'll get. You get either some kind of InputStream or
an ImageProducer or perhaps an AudioClip; it's easy to check what you get by using
the instanceof operator. This should be enough knowledge to let you read a text file
or display an image.

7.1.3.4 public final Object getContent(Class[] classes) throws IOException // Java 1.3

Starting with JDK 1.3, it is possible for a content handler to provide different views of
an object. This overloaded variant of the getContent() method lets you choose
what class you'd like the content returned as. The method will attempt to return the
URL's content in the order used in the array. For instance, if you'd prefer an HTML
file to be returned as a String, but your second choice is a Reader and your third
choice is an InputStream, you would write:

URL u = new URL("http://www.nwu.org");
Class[] types = new Class[3];
types[0] = String.class;
types[1] = Reader.class;
types[2] = InputStream.class;
Object o = u.getContent(types);

You would then have to test for the type of the returned object using instanceof. For
example:

if (o instanceof String) {
 System.out.println(o);
}
else if (o instanceof Reader) {
 int c;
 Reader r = (Reader) o;
 while ((c = r.read()) != -1) System.out.print((char) c);
}
else if (o instanceof InputStream) {
 int c;
 InputStream in = (InputStream) o;
 while ((c = in.read()) != -1) System.out.write(c);
}
else {
 System.out.println("Error: unexpected type " + o.getClass());
}

7.1.4 Utility Methods

The URL class contains a couple of utility methods that perform common operations
on URLs. The sameFile() method determines whether two URLs point to the same

document. The toExternalForm() method converts a URL object to a string that can
be used in an HTML link or a web browser's Open URL dialog.

7.1.4.1 public boolean sameFile(URL other)

The sameFile() method tests whether two URL objects point to the same file. If they
do, sameFile() returns true; otherwise, it returns false. The test that sameFile()
performs is quite shallow; all it does is compare the corresponding fields for equality.
It will detect whether the two hostnames are really just aliases for each other. For
instance, it can tell that http://helio.oreilly.com/ and http://www.oreilly.com/ are the
same file. However, it cannot tell that http://www.oreilly.com:80/ and
http://www.oreilly.com/ are the same file or that http://www.oreilly.com/ and
http://www.oreilly.com/index.html are the same file. sameFile() is smart enough to
ignore the ref part of a URL, however. Here's a fragment of code that uses
sameFile() to compare two URLs:

try {
 URL u1 = new URL("http://www.ncsa.uiuc.edu/HTMLPrimer.html#GS");
 URL u2 = new URL("http://www.ncsa.uiuc.edu/HTMLPrimer.html#HD");
 if (u1.sameFile(u2)) {
 System.out.println(u1 + " is the same file as \n" + u2);
 }
 else {
 System.out.println(u1 + " is not the same file as \n" + u2);
 }
}
catch (MalformedURLException e) {
 System.err.println(e);
}

The output is:

http://www.ncsa.uiuc.edu/HTMLPrimer.html#GS is the same file as
http://www.ncsa.uiuc.edu/HTMLPrimer.html#HD

The sameFile() method is similar to the equals() method of the URL class. The
main difference between sameFile() and equals() is that equals() considers
the ref (if any), whereas sameFile() does not. The two URLs shown here do not
compare equal although they are the same file. Also, any object may be passed to
equals(); only URL objects can be passed to sameFile().

7.1.4.2 public String toExternalForm()

The toExternalForm() method returns a human-readable String representing the
URL. It is identical to the toString() method. In fact, all the toString() method
does is return toExternalForm(). Therefore, this method is currently redundant and
rarely used.

7.1.5 The Object Methods

URL inherits from java.lang.Object, so it has access to all the methods of the
Object class. It overrides three to provide more specialized behavior: equals(),
hashCode(), and toString().

7.1.5.1 public String toString()

Like all good classes, java.net.URL has a toString() method. Example 7.1
through Example 7.5 all implicitly called this method when URLs were passed to
System.out.println(). As those examples demonstrated, the String produced by
toString() is an absolute URL, like
http://metalab.unc.edu/javafaq/javatutorial.html.

It's uncommon to call toString() explicitly; in print statements, you can just print
the URL, which calls toString() implicitly. Outside of print statements, it's usually
more convenient to retrieve the individual pieces of the URL using the get methods.
If you do call toString(), the syntax is simple:

URL codeBase = this.getCodeBase();
String appletURL = codeBase.toString();

7.1.5.2 public boolean equals(Object o)

An object is equal to a URL only if it is also a URL, both URLs point to the same file as
determined by the sameFile() method, and both URLs have the same ref (or both
URLs have null refs). Since equals() depends on sameFile(), equals() has the
same limitations as sameFile(). For example, http://www.oreilly.com/ is not equal
to http://www.oreilly.com/index.html; and http://www.oreilly.com:80/ is not equal to
http://www.oreilly.com/. Whether this makes sense depends on whether you think of a
URL as a string or as a reference to a particular Internet resource.

Example 7.7 creates URL objects for http://www.oreilly.com/ and http://www.ora.com/
and then tells you whether or not they're the same by using the equals() method.

Example 7.7. Are http://www.oreilly.com/ and http://www.ora.com/ the same?

import java.net.*;

public class URLEquality {

 public static void main (String[] args) {

 try {
 URL oreilly = new URL ("http://www.oreilly.com/");
 URL ora = new URL("http://www.ora.com/");
 if (oreilly.equals(ora)) {
 System.out.println(oreilly + " is the same as " + ora);
 }
 else {
 System.out.println(oreilly + " is not the same as " + ora);
 }
 }
 catch (MalformedURLException e) {
 System.err.println(e);
 }

 }

}

When you run this program, you discover:

% java URLEquality
http://www.oreilly.com/ is the same as http://www.ora.com/

7.1.5.3 public int hashCode()

The hashCode() method returns an int that is used when URL objects are used as
keys in hash tables. Thus, it is called by the various methods of
java.util.Hashtable; you rarely need to call this method directly, if ever. Hash
codes for two different URL objects are unlikely to be the same, but it is certainly
possible; there are far more conceivable URLs than there are 4-byte integers.

7.1.6 Methods for Protocol Handlers

The last two methods in the URL class I'll just mention briefly here for the sake of
completeness. These are setURLStreamHandlerFactory() and set(). They're
primarily used by protocol handlers that are responsible for new schemes, not by
programmers who just want to retrieve data from a URL. We'll discuss them both in
more detail in Chapter 16.

7.1.6.1 public static synchronized void setURLStreamHandlerFactory
(URLStreamHandlerFactory factory)

This method sets the URLStreamHandlerFactory for the application and throws a
generic Error if the factory has already been set. A URLStreamHandler is responsible
for parsing the URL, and then constructing the appropriate URLConnection object to
handle the connection to the server. Most of the time this happens behind the scenes.

7.1.6.2 protected void set(String protocol, String host, int port, String file, String ref)

The set() method is used by subclasses of URL that need to parse a string into its
component parts differently than the default. This method allows those subclasses to
do their custom parsing, then set the standard fields in the superclass.

This method is deprecated in JDK 1.3 because it doesn't fill in the new properties of
the URL. Instead, JDK 1.3 provides this overloaded variant:

protected void set(String protocol, String host, int port,
 String authority, String userInfo, String path, String query,
 String ref)

7.2 The URLEncoder and URLDecoder Classes

One of the problems that the designers of the Web faced was differences between
local operating systems. These differences can cause problems with URLs: for
example, some operating systems allow spaces in filenames; some don't. Most
operating systems won't complain about a # sign in a filename; in a URL, a # sign
means that the filename has ended, and a named anchor follows. Similar problems are
presented by other special characters, nonalphanumeric characters, etc., all of which
may have a special meaning inside a URL or on another operating system. To solve

these problems, characters used in URLs must come from a fixed subset of ASCII, in
particular:

• The capital letters A-Z
• The lowercase letters a-z
• The digits 0-9
• The punctuation characters - _ . ! ~ * ` (and ,)

The characters : / & ? @ # ; $ + = % and , may also be used, but only for their
specified purposes. If these characters occur as part of a filename, then they and all
other characters should be encoded.

The encoding used is very simple. Any characters that are not ASCII numerals, letters,
or the punctuation marks specified earlier are represented by a percent sign followed
by two hexadecimal digits giving the value for that character. Spaces are a special
case because they're so common. Besides being encoded as %20, they can be encoded
as a plus sign (+). The plus sign itself is encoded as %2B. The / # = & and ?
characters should be encoded when they are used as part of a name, and not as a
separator between parts of the URL.

This scheme doesn't work well (or really at all) for multibyte
character sets. This is a distinct shortcoming of the current URI
specification that should be addressed in the future.

Java 1.0 and later provides a URLEncoder class to encode strings in this format. Java
1.2 adds a URLDecoder class that can decode strings in this format. Neither of these
classes will be instantiated. Both provide a single static method to do their work:

public class URLDecoder extends Object
public class URLEncoder extends Object

7.2.1 URLEncoder

The java.net.URLEncoder class contains a single static method called encode()
that encodes a String according to these rules:

public static String encode(String s)

URLEncoder.encode() changes any nonalphanumeric characters except the space,
underscore, hyphen, period, and asterisk characters into % sequences. The space is
converted into a plus sign. This method is a little overly aggressive in that it also
converts tildes, single quotes, exclamation points, and parentheses to percent escapes
even though they don't absolutely have to be. (In Java 1.0, URLEncoder was even
more aggressive and also encoded asterisks and periods.) However, this isn't
forbidden by the URL specification, so web browsers will deal reasonably with these
excessively encoded URLs. There's no reason encode() couldn't have been included
in the URL class, but it wasn't. The signature of encode() is:

public static String encode(String s)

It returns a new String suitably encoded. Example 7.8 uses this method to print
various encoded strings.

Example 7.8. x-www-form-urlencoded Strings

import java.net.*;

public class EncodeTest {

 public static void main(String[] args) {

 System.out.println(URLEncoder.encode("This string has spaces"));

System.out.println(URLEncoder.encode("This*string*has*asterisks"));
 System.out.println(URLEncoder.encode(
 "This%string%has%percent%signs"));
 System.out.println(URLEncoder.encode("This+string+has+pluses"));

System.out.println(URLEncoder.encode("This/string/has/slashes"));
 System.out.println(URLEncoder.encode(
 "This\string\"has\"quote\"marks"));
 System.out.println(URLEncoder.encode(This:string:has:colons"));
 System.out.println(URLEncoder.encode("This~string~has~tildes"));
 System.out.println(URLEncoder.encode(
 "This(string)has(parentheses)"));

System.out.println(URLEncoder.encode("This.string.has.periods"));
 System.out.println(URLEncoder.encode(
 "This=string=has=equals=signs"));

System.out.println(URLEncoder.encode("This&string&has&ersands"));

 }

}

Here is the output:

% java EncodeTest
This+string+has+spaces
This*string*has*asterisks
This%25string%25has%25percent%25signs
This%2Bstring%2Bhas%2Bpluses
This%2Fstring%2Fhas%2Fslashes
This%22string%22has%22quote%22marks
This%3Astring%3Ahas%3Acolons
This%7Estring%7Ehas%7Etildes
This%28string%29has%28parentheses%29
This.string.has.periods
This%3Dstring%3Dhas%3Dequals%3Dsigns
This%26string%26has%26ampersands

Notice in particular that this method does encode the forward slash, the ampersand,
the equals sign, and the colon. It does not attempt to determine how these characters
are being used in a URL. Consequently, you have to encode your URLs piece by

piece, rather than encoding an entire URL in one method call. This is an important
point, because the primary use of URLEncoder is in preparing query strings for
communicating with CGI programs that use GET . For example, suppose you want to
encode this query string used for an AltaVista search:

pg=q&kl=XX&stype=stext&q=+"Java+I/O"&search.x=38&search.y=3

This code fragment encodes it:

String query = URLEncoder.encode(
 "pg=q&kl=XX&stype=stext&q=+\"Java+I/O\"&search.x=38&search.y=3");
System.out.println(query);

Unfortunately, the output is:

pg%3Dq%26kl%3DXX%26stype%3Dstext%26q%3D%2B%22Java%2BI%2FO%22%26search
.x%3D38%26search.y%3D3

The problem is that URLEncoder.encode() encodes blindly. It can't distinguish
between special characters used as part of the URL or query string, like & and = in the
previous string, and characters that need to be encoded. Consequently, URLs need to
be encoded a piece at a time like this:

String query = URLEncoder.encode("pg");
query += "=";
query += URLEncoder.encode("q");
query += "&";
query += URLEncoder.encode("kl");
query += "=";
query += URLEncoder.encode("XX");
query += "&";
query += URLEncoder.encode("stype");
query += "=";
query += URLEncoder.encode("stext");
query += "&";
query += URLEncoder.encode("q");
query += "=";
query += URLEncoder.encode("\"Java I/O\"");
query += "&";
query += URLEncoder.encode("search.x");
query += "=";
query += URLEncoder.encode("38");
query += "&";
query += URLEncoder.encode("search.y");
query += "=";
query += URLEncoder.encode("3");
System.out.println(query);

The output of this is what you actually want:

pg=q&kl=XX&stype=stext&q=%2B%22Java+I%2FO%22&search.x=38&search.y=3

Example 7.9 is a QueryString class that uses the URLEncoder to encode successive
name and value pairs in a Java object, which will be used for sending data to CGI
programs. When you create a QueryString, you can supply the first name-value pair

to the constructor; the arguments are a pair of objects, which are converted to strings
using their toString() methods and then encoded. To add further pairs, call the
add() method, which also takes two objects as arguments, converts them to Strings,
and encodes them. The QueryString class supplies its own toString() method,
which simply returns the accumulated list of name-value pairs. toString() is called
implicitly whenever you add a QueryString to another string or print it on an output
stream.

Example 7.9. The QueryString Class

package com.macfaq.net;

import java.net.URLEncoder;

public class QueryString {

 private String query;

 public QueryString(Object name, Object value) {
 query = URLEncoder.encode(name.toString()) + "=" +
 URLEncoder.encode(value.toString());
 }

 public QueryString() {
 query = "";
 }

 public synchronized void add(Object name, Object value) {

 if (!query.trim().equals("")) query += "&" ;
 query += URLEncoder.encode(name.toString()) + "=" +
 URLEncoder.encode(value.toString());

 }

 public String toString() {
 return query;
 }

}

Using this class, we can now encode the previous example like this:

QueryString qs = new QueryString("pg", "q");
qs.add("kl", "XX");
qs.add("stype", "stext");
qs.add("q", "+\"Java I/O\"");
qs.add("search.x", "38");
qs.add("search.y", "3");
String url = "http://www.altavista.com/cgi-bin/query?" + qs;
System.out.println(url);

7.2.2 URLDecoder

Java 1.2 adds a corresponding URLDecoder class. This has a single static method that
decodes any string encoded in x-www-form-url-encoded format. That is, it converts

all plus signs to spaces and all percent escapes to their corresponding character. Its
signature is:

public static String decode(String s) throws Exception

An IllegalArgumentException is thrown if the string contains a percent sign that
isn't followed by two hexadecimal digits. Since this method passes all non-escaped
characters along as is, you can pass an entire URL to it, rather than splitting it into
pieces first. For example:

String input = "http://www.altavista.com/cgi-bin/" +
"query?pg=q&kl=XX&stype=stext&q=%2B%22Java+I%2FO%22&search.x=38&searc
h.y=3";
 try {
 String output = URLDecoder.decode(input);
 System.out.println(output);
 }

7.3 Communicating with CGIs and Servlets Through GET

The URL class makes it easy for Java applets and applications to communicate with
server-side CGI programs and servlets that use the GET method. (CGI programs and
servlets that use the POST method require the URLConnection class and will be
discussed in Chapter 15.) All you need to do is determine what combination of names
and values the program expects to receive, then cook up a URL with a query string
that provides the requisite names and values. All names and values must be x-www-
form-url-encoded as by the URLEncoder.encode() method discussed in the last
section.

There are a number of ways to determine the exact syntax for a query string that talks
to a particular CGI or servlet. If you've written the server-side program yourself, you
already know what name-value pairs it expects. If you've installed a third-party
program on your own server, the documentation for that program should tell you what
it expects.

On the other hand, if you're talking to a program on a third-party server, matters are a
little trickier. You can always ask people at the remote server to provide you with the
specifications for talking to their CGI programs. However, even if they don't mind
you doing this, there's probably no one person whose job description includes "telling
third-party hackers with whom we have no business relationship exactly how to
access our servers". Thus, unless you happen upon a particularly friendly or bored
individual who has nothing better to do with her time except write long emails
detailing exactly how to access her server, you're going to have to do a little reverse
engineering.

Many CGI programs are designed to process form input. If this is the case, it's
straightforward to figure out what input the CGI program expects. The method the
form uses should be the value of the METHOD attribute of the FORM element. This value
should be either GET, in which case you use the process described here for talking to

CGIs, or POST, in which case you use the process described in Chapter 15. The part
of the URL that precedes the query string is given by the value of the ACTION attribute
of the FORM element. Note that this may be a relative URL, in which case you'll need
to determine the corresponding absolute URL. Finally, the name-value pairs are
simply the NAME attributes of the INPUT elements, except for any INPUT elements
whose TYPE attribute has the value submit.

For example, consider this HTML form for the local search engine on my Cafe con
Leche site. You can see that it uses the GET method. The CGI program that processes
the form is found at the URL http://search.metalab.unc.edu:8765/query.html. It has
20 separate name-value pairs, most of which have default values:

<FORM NAME="seek" METHOD="GET"
 ACTION="http://search.metalab.unc.edu:8765/query.html">
<INPUT TYPE="hidden" NAME="col" VALUE="metalab"></INPUT>
<INPUT TYPE="hidden" NAME="op0" VALUE="+"></INPUT>
<INPUT TYPE="hidden" NAME="fl0" VALUE="url:"></INPUT>
<INPUT TYPE="hidden" NAME="ty0" VALUE="w"></INPUT>
<INPUT TYPE="hidden" NAME="tx0" size="50" VALUE="xml/"></INPUT>
<INPUT TYPE="hidden" NAME="op1" VALUE="+"></INPUT>
<INPUT TYPE="hidden" NAME="fl1" VALUE=""></INPUT>
<INPUT TYPE="hidden" NAME="ty1" VALUE="w"></INPUT>
<INPUT TYPE="text" NAME="tx1" size="20" VALUE=""
 max length="2047"><INPUT>
INPUT TYPE="hidden" NAME="qp" VALUE=""></INPUT>
<INPUT TYPE="hidden" NAME="qs" VALUE=""></INPUT>
<INPUT TYPE="hidden" NAME="qc" VALUE=""></INPUT>
<INPUT TYPE="hidden" NAME="ws" VALUE="0"></INPUT>
<INPUT TYPE="hidden" NAME="qm" VALUE="0"></INPUT>
<INPUT TYPE="hidden" NAME="st" VALUE="1"></INPUT>
<INPUT TYPE="hidden" NAME="nh" VALUE="10"></INPUT>
<INPUT TYPE="hidden" NAME="lk" VALUE="1"></INPUT>
<INPUT TYPE="hidden" NAME="rf" VALUE="0"></INPUT>
<INPUT TYPE="hidden" NAME="oq" VALUE=""></INPUT>
<INPUT TYPE="hidden" NAME="rq" VALUE="0"></INPUT>

<INPUT TYPE="submit" VALUE="Search"></input>
</FORM>

The type of the INPUT field doesn't matter—for instance, whether it's a set of
checkboxes or a pop-up list or a text field—only the name of each INPUT field and the
value you give it. The single exception is a submit input that tells the web browser
only when to send the data but does not give the server any extra information. In some
cases, you may find hidden INPUT fields that must have particular required default
values. This form is almost nothing but hidden INPUT fields.

In some cases, the CGI may not be able to handle arbitrary text strings for values of
particular inputs. However, since the form is meant to be read and filled in by human
beings, it should provide sufficient clues to figure out what input is expected; for
instance, that a particular field is supposed to be a two-letter state abbreviation or a
phone number.

A CGI that doesn't respond to a form is much harder to reverse engineer. For example,
at http://metalab.unc.edu/nywc/bios.phtml, you'll find a lot of links to a CGI that talks

to a database to retrieve a list of musical works by a particular named composer.
However, there's no form anywhere that corresponds to this CGI. It's all done by
hardcoded URLs. In this case, the best you can do is look at as many of those URLs
as possible and see whether you can guess what the server expects. If the designer
hasn't tried to be too devious, this generally isn't all that hard. For example, these
URLs are all found on that page:

http://metalab.unc.edu/nywc/compositionsbycomposer.phtml?last=Anderso
n
 &first=Beth&middle=
http://metalab.unc.edu/nywc/compositionsbycomposer.phtml?last=Austin
 &first=Dorothea&middle=
http://metalab.unc.edu/nywc/compositionsbycomposer.phtml?last=Bliss
 &first=Marilyn&middle=
http://metalab.unc.edu/nywc/compositionsbycomposer.phtml?last=Hart
 &first=Jane&middle=Smith

Looking at these, you can probably guess that this particular CGI programs expects
three inputs named first, middle, and last whose values are the first, middle, and last
names of a composer, respectively. Sometimes the inputs may not have such obvious
names. In this case, you'll just have to do some experimenting, first copying some
existing values and then tweaking them to see what values are and aren't accepted.
You don't need to do this in a Java program. You can do it simply by editing the URL
in the Address or Location bar of your web browser window.

The likelihood that other hackers may experiment with your own
CGIs and servlets in such a fashion is a good reason to make
them extremely robust against unexpected input.

Regardless of how you determine the set of name-value pairs the CGI or servlet
expects, actually communicating with the program once you know them is simple. All
you have to do is create a query string that includes the necessary name-value pairs,
then form a URL that includes that query string. You send the query string to the
server and read its response using the same methods you use to connect to a server
and retrieve a static HTML page. There's no special protocol to follow once the URL
is constructed. (There is a special protocol to follow for the POST method, which is
why discussion of that method will have to wait until Chapter 15.)

Let's demonstrate this procedure by writing a very simple command-line program to
look up topics in the Netscape Open Directory (http://dmoz.org/). This is shown in
Figure 7.3 and has the advantage of being really simple.

Figure 7.3. The basic user interface for the Open Directory

The basic Open Directory interface is a simple form with one input field named
search; input typed in this field is sent to a CGI program at
http://search.dmoz.org/cgi-bin/search, which does the actual search. The HTML for
the form looks like this:

<form method=get action="http://search.dmoz.org/cgi-bin/search">
 <input size=30 name=search>
<input type=submit value="Search">
<a href="http://search.dmoz.org/cgi-
bin/search?a.x=0"><small><i>advanced</i>
 </small>
</form>

Thus, to submit a search request to the Open Directory, you just need to collect the
search string, encode that in a query string, and send it to http://search.dmoz.org/cgi-
bin/search. For example, to search for "java", you would open a connection to the
URL http://search.dmoz.org/cgi-bin/search?search=java and read the resulting input
stream. Example 7.10 does exactly this.

Example 7.10. Do an Open Directory Search

import com.macfaq.net.*;
import java.net.*;
import java.io.*;

public class DMoz {

 public static void main(String[] args) {

 String target = "";

 for (int i = 0; i < args.length; i++) {
 target += args[i] + " ";
 }
 target = target.trim();
 QueryString query = new QueryString("search", target);
 try {
 URL u = new URL("http://search.dmoz.org/cgi-bin/search?" +
query);
 InputStream in = new BufferedInputStream(u.openStream());
 InputStreamReader theHTML = new InputStreamReader(in);
 int c;
 while ((c = theHTML.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException e) {
 System.err.println(e);
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

}

Of course, a lot more effort could be expended if you actually want to parse or display
the results. But notice how simple the code was to talk to this CGI. Aside from the
funky-looking URL, and the slightly greater likelihood that some pieces of it need to
be x-www-form-url-encoded, talking to a CGI that uses GET is no harder than
retrieving any other HTML page.

7.4 Accessing Password-Protected Sites

Many popular sites, such as The Wall Street Journal, require a username and
password for access. Some sites, such as Oracle TechNet, implement this through
HTTP authentication. Others, such as the Java Developer Connection, implement it
through cookies and HTML forms. Java's URL class can access sites that use HTTP
authentication, though you'll of course need to tell it what username and password to
use. Java does not provide support for sites that use nonstandard, cookie-based
authentication, partially because Java doesn't really support cookies and partially
because this requires parsing and submitting HTML forms. You can provide this
support yourself using the URLConnection class to read and write the HTTP headers
where cookies are set and returned. However, doing so is decidedly nontrivial, and
often requires custom code for each site you want to connect to. It's really hard to do
short of implementing a complete web browser with full HTML forms and cookie
support. Accessing sites protected by standard, HTTP authentication is much easier.

7.4.1 The Authenticator Class

Starting in Java 1.2 (but not available in Java 1.1), the java.net package includes an
Authenticator class you can use to provide a username and password for sites that
protect themselves using HTTP authentication:

public abstract class Authenticator extends Object

Since Authenticator is an abstract class, you must subclass it. Different subclasses
may retrieve the information in different ways. For example, a character mode
program might just ask the user to type the username and password on System.in. A
GUI program would likely put up a dialog box like the one shown in Figure 7.4. An
automated robot might read it out of an encrypted file.

Figure 7.4. An authentication dialog

To make the URL class use your subclass, you install it as the default authenticator by
passing it to the static Authenticator.setDefault() method:

public static void setDefault(Authenticator a)

For example, if you've written an Authenticator subclass named
DialogAuthenticator, you'd install it like this:

Authenticator.setDefault(new DialogAuthenticator());

You only need to do this once. From this point forward, when the URL class needs a
username and password, it will ask the DialogAuthenticator for it using the static
Authenticator.requestPasswordAuthentication() method:

public static PasswordAuthentication
requestPasswordAuthentication(InetAddress
address, int port, String protocol, String prompt, String scheme)
throws
SecurityException

The address argument is the host for which authentication is required. The port
argument is the port on that host, and the protocol argument is the application layer
protocol by which the site is being accessed. The prompt is provided by the HTTP
server. It's typically the name of the realm for which authentication is required. (Some
large web servers such as metalab.unc.edu have multiple realms, each of which
requires different usernames and passwords.) The scheme is the authentication
scheme being used. (Here the word scheme is not being used as a synonym for
protocol. Rather it is an HTTP authentication scheme, typically basic.)

Untrusted applets may not be allowed to ask the user for a name and password.
Trusted applets can do so, but only if they possess the
requestPasswordAuthentication NetPermission. Otherwise,
Authenticator.requestPassword Authentication() throws a
SecurityException.

Your Authenticator subclass must override the getPasswordAuthentication()
method. Inside this method, you collect the username and password from the user or
some other source and return it as an instance of the
java.net.PasswordAuthentication class.

protected PasswordAuthentication getPasswordAuthentication()

If you don't want to authenticate this request, return null, and Java will tell the server
it doesn't know how to authenticate the connection. If you submit an incorrect
username or password, then Java will call getPasswordAuthentication() again to
give you another chance to provide the right data. You normally have five tries to get
the username and password correct; after that, openStream() will throw a
ProtocolException.

Usernames and passwords are cached within the same virtual machine session. Once
you set the correct password for a realm, you shouldn't be asked for it again unless
you've explicitly deleted the password by zeroing out the char array that contains it.

You can get more details about the request by invoking any of these methods
inherited from the Authenticator superclass:

protected final InetAddress getRequestingSite()
protected final int getRequestingPort()
protected final String getRequestingProtocol()
protected final String getRequestingPrompt()
protected final String getRequestingScheme()

These methods either return the information as given in the last call to
requestPasswordAuthentication() or return null if that information is not
available. (getRequestingPort() returns -1 if the port isn't available.)

7.4.2 The PasswordAuthentication Class

PasswordAuthentication is a very simple final class that supports two read-only
properties: username and password. The username is a String. The password is a
char array so that the password can be erased when no longer needed. A String
would have to wait to be garbage collected before it could be erased, and even then it
might still exist somewhere in memory on the local system, possibly even on disk if
the block of memory that contained it had been swapped out to virtual memory at one
point. Both username and password are set in the constructor:

public PasswordAuthentication(String userName, char[] password)

Each is accessed via a get method:

public String getUserName()
public char[] getPassword()

7.4.3 The JPasswordField Class

One useful tool for asking users for their passwords in a more or less secure fashion is
the JPasswordField component from Swing:

public class JPasswordField extends JTextField

This lightweight component behaves almost exactly like a text field. However,
anything the user types into it is echoed as an asterisk. This way, the password is safe
from anyone looking over the user's shoulder at what he's typing on the screen.

JPasswordField also stores the passwords as a char array so that when you're done
with the password you can overwrite it with zeroes. It provides the getPassword()
method to return this:

public char[] getPassword()

Otherwise, you mostly use the methods it inherits from the JTextField superclass.
Example 7.11 demonstrates a Swing-based Authenticator subclass that brings up a
dialog to ask the user for his username and password. Most of this code handles the
GUI. A JPasswordField collects the password, and a simple JTextField retrieves
the username. Figure 7.4 showed the rather simple dialog box this produces.

Example 7.11. A GUI Authenticator

package com.macfaq.net;

import java.net.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DialogAuthenticator extends Authenticator {

 private JDialog passwordDialog;
 private JLabel mainLabel
 = new JLabel("Please enter username and password: ");
 private JLabel userLabel = new JLabel("Username: ");
 private JLabel passwordLabel = new JLabel("Password: ");
 private JTextField usernameField = new JTextField(20);
 private JPasswordField passwordField = new JPasswordField(20);
 private JButton okButton = new JButton("OK");
 private JButton cancelButton = new JButton("Cancel");

 public DialogAuthenticator() {
 this("", new JFrame());
 }

 public DialogAuthenticator(String username) {
 this(username, new JFrame());
 }

 public DialogAuthenticator(JFrame parent) {
 this("", parent);
 }

 public DialogAuthenticator(String username, JFrame parent) {

 this.passwordDialog = new JDialog(parent, true);
 Container pane = passwordDialog.getContentPane();
 pane.setLayout(new GridLayout(4, 1));
 pane.add(mainLabel);
 JPanel p2 = new JPanel();
 p2.add(userLabel);
 p2.add(usernameField);
 usernameField.setText(username);
 pane.add(p2);
 JPanel p3 = new JPanel();
 p3.add(passwordLabel);
 p3.add(passwordField);
 pane.add(p3);
 JPanel p4 = new JPanel();
 p4.add(okButton);
 p4.add(cancelButton);
 pane.add(p4);
 passwordDialog.pack();

 ActionListener al = new OKResponse();
 okButton.addActionListener(al);
 usernameField.addActionListener(al);
 passwordField.addActionListener(al);
 cancelButton.addActionListener(new CancelResponse());

 }

 private void show() {

 String prompt = this.getRequestingPrompt();
 if (prompt == null) {
 String site = this.getRequestingSite().getHostName();
 String protocol = this.getRequestingProtocol();
 int port = this.getRequestingPort();
 if (site != null & protocol != null) {
 prompt = protocol + "://" + site;
 if (port > 0) prompt += ":" + port;
 }
 else {
 prompt = "";
 }

 }

 mainLabel.setText("Please enter username and password for "
 + prompt + ": ");
 passwordDialog.pack();
 passwordDialog.show();

 }

 PasswordAuthentication response = null;

 class OKResponse implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 passwordDialog.hide();
 // The password is returned as an array of
 // chars for security reasons.
 char[] password = passwordField.getPassword();
 String username = usernameField.getText();
 // Erase the password in case this is used again.
 passwordField.setText("");
 response = new PasswordAuthentication(username, password);

 }

 }

 class CancelResponse implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 passwordDialog.hide();
 // Erase the password in case this is used again.
 passwordField.setText("");
 response = null;

 }

 }

 public PasswordAuthentication getPasswordAuthentication() {

 this.show();
 return this.response;

 }

}

Example 7.12 is a revised SourceViewer program that can ask the user for a name
and password by using the DialogAuthenticator class.

Example 7.12. A Program to Download Password-Protected Web Pages

import java.net.*;
import java.io.*;
import com.macfaq.net.DialogAuthenticator;

public class SecureSourceViewer {

 public static void main (String args[]) {

 Authenticator.setDefault(new DialogAuthenticator());

 for (int i = 0; i < args.length; i++) {

 try {
 //Open the URL for reading
 URL u = new URL(args[i]);
 InputStream in = u.openStream();
 // buffer the input to increase performance

 in = new BufferedInputStream(in);
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException e) {
 System.err.println(e);
 }

 // print a blank line to separate pages
 System.out.println();

 } // end for

 // Since we used the AWT, we have to explicitly exit.
 System.exit(0);

 } // end main

} // end SecureSourceViewer

Chapter 8. HTML in Swing
As anyone who has ever tried to write code to read HTML can tell you, it's a painful
experience. The problem is that although there is an HTML specification, no web
designer or browser vendor actually follows it. And the specification itself is
extremely loose. Element names may be uppercase, lowercase, or mixed case.
Attribute values may or may not be quoted. If they are quoted, either single or double
quotes may be used. The < sign may be escaped as < or it may just be left raw in
the file. The <P> tag may be used to begin or end a paragraph. Closing </P>, ,
and </TD> tags may or may not be used. Tags may or may not overlap. There are just
too many different ways of doing the same thing to make parsing HTML an easy task.
In fact, the difficulties encountered in parsing real-world HTML were one of the
prime motivators for inventing the much more strict XML, in which what is and is not
allowed is precisely specified and all browsers are strictly prohibited from accepting
documents that don't measure up to the standard (as opposed to HTML, where most
browsers try to fix up bad HTML, thereby leading to the proliferation of
nonconformant HTML on the Web, which all browsers must then try to parse).

Fortunately, as of JFC 1.1.1 (included in Java 1.2.2), Sun provides classes for basic
HTML parsing and display that shield Java programmers from most of the tribulations
of working with raw HTML. The javax.swing.text.html.parser package can be
used to read HTML documents, in more or less their full nonstandard atrocity, while
the javax.swing.text.html package allows you to display basic HTML in your
JFC-based applications.

8.1 HTML on Components

Starting with JFC 1.1.1, most text-based Swing components, such as labels, buttons,
menu items, tabbed panes, and ToolTips, can have their text specified as HTML. The
component will display it appropriately. If you want the label on your JButton to
include bold, italic, and plain text, the simplest way is to add HTML:

JButton jb = new JButton("<html><i>Hello World!</i></html>");

For reasons I've never quite understood, Sun seems to have a
grudge against uppercase HTML tags going back to the earliest
alphas of HotJava. This technique fails if you use completely
legal uppercase HTML tags like this:

JButton jb = new JButton("<HTML><I>Hello
World!</I>
 </HTML>");

On the other hand, Sun has no qualms about malformed HTML
that omits the end tags like this:

JButton jb = new JButton("<html><i>Hello
World!</i>
 ");

The same technique works for JFC-based labels, menu items, tabbed panes, and Tool
Tips. Future releases may add HTML support to checkboxes and radio buttons as well.
Example 8.1 and Figure 8.1 show an applet with a multiline JLabel that uses HTML.
This is running in the applet viewer because HTML on components is available out of
the box only in the latest release of the JDK. It does work in Internet Explorer 5.0,
though not particularly well, if the javax.swing classes are included in the applet's
codebase so that they can be downloaded by the browser. No version of Netscape
Navigator I tested could run this applet at all, though perhaps the Java Plug-In would
help.

Example 8.1. Including HTML in a JLabel

import javax.swing.*;

public class HTMLLabelApplet extends JApplet {

 public void init() {

 JLabel theText = new JLabel(
 "<html>Hello! This is a multiline label with bold "
 + "and <i>italic</i> text. <P> "
 + "It can use paragraphs, horizontal lines, <hr> "
 + "colors "
 + "and most of the other basic features of HTML 3.2</html>");

 this.getContentPane().add(theText);

 }

}

Figure 8.1. An HTML label

You can actually go pretty far with this. Almost all tags are supported, at least
partially, including IMG and the various table tags. The only completely unsupported
HTML 3.2 tags are <APPLET>, <PARAM>, <MAP>, <AREA>, <LINK>, <SCRIPT>, and
<STYLE>. The various frame tags (technically not part of HTML 3.2 though widely
used and implemented) are also unsupported. In addition, the various new tags
introduced in HTML 4.0 such as BDO, BUTTON, LEGEND, and TFOOT, are unsupported.
If you try to use unrecognized or unsupported tags on your components, Java will
throw a ClassCastException.

Furthermore, there are some limitations on other common tags. First of all, relative
URLs in attribute values are not resolved because there's no page for them to be
relative to. This most commonly affects the SRC attribute of the IMG element. The
simplest way around this is to store the images in the same JAR archive as the applet
or application and load them from an absolute jar URL. Links will appear as blue
underlined text as most users are accustomed to, but nothing happens when you click
on one. Forms are rendered, but users can't type in them or submit them. Some CSS
Level 1 properties such as font-size are supported through the style attribute, but
STYLE tags and external stylesheets are not. In brief, the HTML support is limited to
static text and images. After all, we're only talking about labels, menu items, and other
simple components.

8.2 JEditorPane

If you need a more interactive, complete implementation of HTML 3.2, you can use a
javax.swing.JEditorPane. This class provides an even more complete HTML 3.2
renderer that can handle frames, forms, hyperlinks, and parts of CSS Level 1. The
JEditorPane class also supports plain text and basic RTF, though the emphasis in
this book will be on using it to display HTML.

JEditorPane supports HTML in a fairly intuitive way. You simply feed its
constructor a URL or a large string containing HTML, then display it like any other
component. There are four constructors in this class:

public JEditorPane()
public JEditorPane(URL initialPage) throws IOException
public JEditorPane(String url) throws IOException
public JEditorPane(String mimeType, String text)

The noargs constructor simply creates a JEditorPane with no initial data. You can
change this later with the setPage() or setText() methods:

public void setPage(URL page) throws IOException
public void setPage(String url) throws IOException
public void setText(String html)

Example 8.2 shows how to use this constructor to display a web page. JEditorPane
is placed inside a JScrollPane to add scrollbars; JFrame provides a home for the
JScrollPane. Figure 8.2 shows this program displaying the O'Reilly home page.

Example 8.2. Using a JEditorPane to Display a Web Page

import javax.swing.text.*;
import javax.swing.*;
import java.io.*;
import java.awt.*;

public class OReillyHomePage {

 public static void main(String[] args) {

 JEditorPane jep = new JEditorPane();
 jep.setEditable(false);

 try {
 jep.setPage("http://www.oreilly.com");
 }
 catch (IOException e) {
 jep.setContentType("text/html");
 jep.setText("<html>Could not load http://www.oreilly.com
</html>");
 }

 JScrollPane scrollPane = new JScrollPane(jep);
 JFrame f = new JFrame("O'Reilly & Associates");
 f.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 f.setContentPane(scrollPane);
 f.setSize(512, 342);
 f.show();

 }

}

Figure 8.2. The O'Reilly home page shown in a JEditorPane

Figure 8.2 shows just how good Swing really is at displaying HTML. It correctly
renders this page containing tables, images, animated GIFs, links, colors, fonts, and
more with almost no effort from the programmer. There's very little noticeable
difference between the page as displayed by Swing and by Netscape Navigator or
Internet Explorer. Although not used on this particular page, frames and CSS Level 1
are also supported.

What is missing, though, is precisely what's not obvious from this static image: the
activity. The links are blue and underlined, but clicking on one won't change the page
that's displayed. JavaScript and applets will not run. Shockwave animations and
QuickTime movies won't play. Password-protected web pages will be off limits
because there's no way to provide a username and password. You can add all this
yourself, but it will require extra code to recognize the relevant parts of the HTML
and behave accordingly. Different active content requires different levels of support.
Supporting hypertext linking, for example, is fairly straightforward, as we'll explore
later. Applets aren't that hard to add either, mostly requiring you to simply parse the
HTML to find the tags and parameters and provide an instance of the AppletContext
interface. We'll discuss this in the next chapter. Adding JavaScript is only a little
harder, provided that someone has already written a JavaScript interpreter you can use.
Fortunately, the Mozilla Project has written the Open Source Rhino
(http://www.mozilla.org/rhino/) JavaScript interpreter, which you can use in your own
work. Apple's QuickTime for Java
(http://www.apple.com/quicktime/qtjava/index.html) makes QuickTime support
almost a no-brainer on Mac and Windows. (A Unix version is sorely lacking though.)
Macromedia has likewise written a Shockwave Flash player entirely in Java
(http://www.macromedia.com/). I'm not going to discuss all (or even most) of these in
this chapter or this book. Nonetheless, you should be aware that they're available if
you need them.

The second constructor accepts a URL object as an argument. It connects to the
specified URL, downloads the page it finds, and attempts to display it. If this attempt
fails, an IOException is thrown. For example:

JFrame f = new JFrame("O'Reilly & Associates");
f.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

try {
 URL u = new URL("http://www.oreilly.com");
 JEditorPane jep = new JEditorPane(u);
 jep.setEditable(false);
 JScrollPane scrollPane = new JScrollPane(jep);
 f.setContentPane(scrollPane);
}
catch (IOException e) {
 f.getContentPane().add(
 new Label("Could not load http://www.oreilly.com"));
}

f.setSize(512, 342);
f.show();

The third constructor is almost identical to the second except that it takes a String
form of the URL rather than a URL object as an argument. One of the IOExceptions it
can throw is a MalformedURLException if it doesn't recognize the protocol.
Otherwise, its behavior is the same as the second constructor. For example:

try {
 JEditorPane jep = new JEditorPane("http://www.oreilly.com");
 jep.setEditable(false);
 JScrollPane scrollPane = new JScrollPane(jep);
 f.setContentPane(scrollPane);
}
catch (IOException e) {
 f.getContentPane().add(
 new Label("Could not load http://www.oreilly.com"));
}

Neither of these constructors requires you to call setText() or setPage() since
that information is provided in the constructor. However, you can still call these
methods to change the page or text that's displayed.

8.2.1 Constructing HTML User Interfaces on the Fly

The fourth JEditorPane constructor does not connect to a URL. Rather, it gets its
data directly from the second argument. The MIME type of the data is determined by
the first argument. For example:

JEditorPane jep = new JEditorPane("text/html",
 "<html><h1>Hello World!</h1> <h2>Goodbye World!</h2></html>");

This may be useful when you want to display HTML created programmatically or
read from somewhere other than a URL. Example 8.3 shows a program that calculates
the first 50 Fibonacci numbers and then displays them in an HTML ordered list.
Figure 8.3 shows the output.

Example 8.3. Fibonacci Sequence Displayed in HTML

import javax.swing.text.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.awt.*;

public class Fibonacci {

 public static void main(String[] args) {

 StringBuffer result =
 new StringBuffer("<html><body><h1>Fibonacci Sequence</h1>");

 long f1 = 0;
 long f2 = 1;

 for (int i = 0; i < 50; i++) {
 result.append("");
 result.append(f1);
 long temp = f2;
 f2 = f1 + f2;
 f1 = temp;
 }

 result.append("</body></html>");

 JEditorPane jep = new JEditorPane("text/html",
result.toString());
 jep.setEditable(false);

 JScrollPane scrollPane = new JScrollPane(jep);
 JFrame f = new JFrame("Fibonacci Sequence");
 f.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 f.setContentPane(scrollPane);
 f.setSize(512, 342);
 f.show();

 }

}

Figure 8.3. The Fibonacci sequence displayed as HTML using a JEditorPane

The significance of this should be apparent. Your programs now have access to a very
powerful styled text engine. That the format used on the back end is HTML is a nice
fringe benefit. It means that you can use a familiar, easy-to-write format to create a
user interface that uses styled text. You don't have quite all the power of QuarkXPress
here (nor should you, since HTML doesn't have it), but this is more than adequate for
99% of your text display needs, whether those needs are simple program output, help
files, database reports, or something more complex.

8.2.2 Handling Hyperlinks

When the user clicks on a link in a noneditable JEditorPane, the pane fires a
HyperlinkEvent. As you might guess, this is responded to by any registered
HyperlinkListener objects. This follows the same callback pattern used for AWT
events and JavaBeans. The javax.swing.event.HyperlinkListener interface
defines a single method, hyperlinkUpdate():

public void hyperlinkUpdate(HyperlinkEvent e)

Inside this method, you'll place the code that responds to the HyperlinkEvent. The
HyperlinkEvent object passed to this method contains the URL of the event, which
is returned by its getURL() method:

public URL getURL()

HyperlinkEvents are fired not just when the user clicks the link, but also when the
mouse enters or exits the link area. Thus, you'll want to check the type of the event
before changing the page with the getEventType() method:

public HyperlinkEvent.EventType getEventType()

This will return one of the three mnemonic constants
HyperlinkEvent.EventType.EXITED, HyperlinkEvent.EventTypeENTERED, or
HyperlinkEvent.EventType.ACTIVATED. Notice that these are not numbers but

static instances of the EventType inner class in the HyperlinkEvent class. Using
these instead of integer constants allows more careful compile-time type checking.

Example 8.4 is an implementation of the HyperLinkListener interface that checks
the event fired and, if it's an activated event, switches to the page in the link. A
reference to the JEditorPane is stored in a private field in the class so that a callback
to make the switch can be made.

Example 8.4. A Basic HyperlinkListener Class

import javax.swing.*;
import javax.swing.event.*;

public class LinkFollower implements HyperlinkListener {

 private JEditorPane pane;

 public LinkFollower(JEditorPane pane) {
 this.pane = pane;
 }

 public void hyperlinkUpdate(HyperlinkEvent evt) {

 if (evt.getEventType() == HyperlinkEvent.EventType.ACTIVATED) {
 try {
 pane.setPage(evt.getURL());
 }
 catch (Exception e) {
 }
 }

 }

}

Example 8.5 is a very simple web browser. It registers an instance of the
LinkFollower class of Example 8.4 to handle any HyperlinkEvents. It doesn't have
a Back button, a Location bar, bookmarks, or any frills at all. But it does let you surf
the Web by following links. The remaining aspects of the user interface you'd want in
a real browser are mostly just exercises in GUI programming, so I'll omit them. But it
really is amazing just how easy Swing makes it to write a web browser.

Example 8.5. SimpleWebBrowser

import javax.swing.text.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.awt.*;

public class SimpleWebBrowser {

 public static void main(String[] args) {

 // get the first URL
 String initialPage = "http://metalab.unc.edu/javafaq/";

 if (args.length > 0) initialPage = args[0];

 // set up the editor pane
 JEditorPane jep = new JEditorPane();
 jep.setEditable(false);
 jep.addHyperlinkListener(new LinkFollower(jep));

 try {
 jep.setPage(initialPage);
 }
 catch (IOException e) {
 System.err.println("Usage: java SimpleWebBrowser url");
 System.err.println(e);
 System.exit(-1);
 }

 // set up the window
 JScrollPane scrollPane = new JScrollPane(jep);
 JFrame f = new JFrame("Simple Web Browser");
 f.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
 f.setContentPane(scrollPane);
 f.setSize(512, 342);
 f.show();

 }

}

The one thing this browser doesn't do is follow links to named anchors inside the
body of a particular HTML page. There is a protected scrollToReference()
method in JEditorPane that can find the specified named anchor in the currently
displayed HTML document and reposition the pane at that point that you can use to
add this functionality if you so desire:

protected void scrollToReference(String reference)

8.2.3 Reading HTML Directly

The JEditorPane class mostly assumes that you're going to provide either a URL or
the string form of a URL and let it handle all the details of retrieving the data from the
network. However, it contains one method that allows you to read HTML directly
from an input stream. That method is read():

public void read(InputStream in, Object document) throws IOException

This may be useful if you need to read HTML from a chain of filter streams; for
instance, unzipping it before you read it. It could also be used when you need to
perform some custom handshaking with the server, such as providing a username and
password, rather than simply letting the default connection take place.

The first argument is the stream from which the HTML will be read. The second
argument should be an instance of javax.swing.text.html.HTMLDocument. (You
can use another type, but if you do, the JEditorPane will treat the stream as plain text
rather than HTML.) Although you could use the HTMLDocument() noargs

constructor to create the HTMLDocument object, the document it creates is missing a lot
of style details. You're better off letting a javax.swing.text.html.HTMLEditorKit
create the document for you. You get an HTMLEditorKit by passing the MIME type
you want to edit (text/html in this case) to the JEditorPane
getEditorKitForContentType() method like this:

EditorKit htmlKit = jep.getEditorKitForContentType("text/html");

Finally, before reading from the stream, you have to use the JEditorPane's
setEditorKit() method to install a javax.swing.text.html.HTMLEditorKit.
For example:

jep.setEditorKit(htmlKit);

This code fragment uses these techniques to load the web page at
http://www.macfaq.com. Here the stream comes from a URL anyway, so this is really
more trouble than it's worth compared to the alternative. However, this approach
would also allow you to read from a gzipped file, a file on the local drive, data written
by another thread, a byte array, or anything else you can hook a stream to:

JEditorPane jep = new JEditorPane();
jep.setEditable(false);
EditorKit htmlKit = jep.getEditorKitForContentType("text/html");
HTMLDocument doc = (HTMLDocument) htmlKit.createDefaultDocument();
jep.setEditorKit(htmlKit);

try {
 URL u = new URL("http://www.macfaq.com");
 InputStream in = u.openStream();
 jep.read(in, doc);
}
catch (IOException e) {
 System.err.println(e);
}

JScrollPane scrollPane = new JScrollPane(jep);
JFrame f = new JFrame("Macfaq");
f.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
f.setContentPane(scrollPane);
f.setSize(512, 342);
f.show();

This would also be useful if you need to interpose yourself in the stream to perform
some sort of filtering. For example, you might want to remove IMG tags from the file
before displaying it. The methods of the next section would help you do this.

 8.3 Parsing HTML

Sometimes you want to read HTML, looking for information without actually
displaying it on the screen. For instance, more than one author I know has written a
"book ticker" program to track the hour-by-hour progress of her book in the
Amazon.com bestseller list. The hardest part of this program isn't retrieving the raw
HTML. It's reading through the raw HTML to find the one line that contains the
book's ranking. As another example, consider a Web Whacker-style program that

downloads a web site or part thereof to a local PC with all links intact. Downloading
the files once you have the URLs is easy. But reading through the document to find
the URLs of the linked pages is considerably more complex.

Both of these examples are parsing problems. While parsing a clearly defined
language that doesn't allow syntax errors, such as Java or XML, is relatively
straightforward, parsing a flexible language that attempts to recover from errors, like
HTML, is extremely difficult. It's easier to write in HTML than it is to write in a strict
language like XML, but it's much harder to read such a language. Ease of use for the
page author has been favored at the cost of ease of development for the programmer.

Fortunately, the javax.swing.text.html and javax.swing.text.html.parser
packages include classes that do most of the hard work for you. They're primarily
intended for the internal use of HotJava and the JEditorPane class discussed in the
last section. Consequently, they can be a little tricky to get at. The constructors are
often not public or hidden inside inner classes, and the classes themselves aren't very
well documented. But once you've seen a few examples, they aren't very hard to use.

8.3.1 HTMLEditorKit.Parser

The main HTML parsing class is the inner class
javax.swing.html.HTMLEditorKit.Parser:

public abstract static class HTMLEditorKit.Parser extends Object

Since this is an abstract class, the actual parsing work is performed by an instance of
its concrete subclass javax.swing.text.html.parser.ParserDelegator:

public class ParserDelegator extends HTMLEditorKit.Parser

An instance of this class reads an HTML document from a Reader. It looks for five
things in the document: start tags, end tags, empty tags, text, and comments. That
covers all the important parts of a common HTML file. (Document type declarations
and processing instructions are omitted, but they're rare and not very important in
most HTML files, even when they are included.) Every time the parser sees one of
these five items, it invokes the corresponding callback method in a particular instance
of the javax.swing.text.html.HTMLEditorKit.ParserCallback class. To parse
an HTML file, you write a subclass of HTMLEditorKit.ParserCallback that
responds to text and tags as you desire. Then you pass an instance of your subclass to
the HTMLEditorKit.Parser's parse() method, along with the Reader from which
the HTML will be read:

public void parse(Reader in, HTMLEditorKit.ParserCallback callback,
 boolean ignoreCharacterSet) throws IOException

The third argument indicates whether you want to be notified of the character set of
the document, assuming one is found in a META tag in the HTML header. This will
normally be true. If it's false, then the parser will throw a
javax.swing.text.ChangedCharSetException when a META tag in the HTML
header is used to change the character set. This would give you an opportunity to

switch to a different Reader that understands that character set and reparse the
document (this time, setting ignoreCharSet to true since you already know the
character set).

parse() is the only public method in the HTMLEditorKit.Parser class. All the
work is handled inside the callback methods in the HTMLEditorKit.ParserCallback
subclass. The parse() method simply reads from the Reader in until it's read the
entire document. Every time it sees a tag, comment, or block of text, it invokes the
corresponding callback method in the HTMLEditorKit.ParserCallback instance. If
the Reader throws an IOException, that excep tion is passed along. Since neither the
HTMLEditorKit.Parser nor the HTMLEditorKit.ParserCallback instance is
specific to one reader, it can be used to parse multiple files, simply by invoking
parse() multiple times. If you do this, your HTMLEditorKit.ParserCallback
class must be fully thread-safe, because parsing takes place in a separate thread and
the parse() method normally returns before parsing is complete.

Before you can do any of this, however, you have to get your hands on an instance of
the HTMLEditorKit.Parser class, and that's harder than it should be.
HTMLEditorKit.Parser is an abstract class, so it can't be instantiated directly. Its
subclass, javax.swing.text.html.parser.ParserDelegator, is concrete.
However, before you can use it, you have to configure it with a DTD, using the
protected, static methods ParserDelegator.setDefaultDTD() and Parser
Delegator.createDTD():

protected static void setDefaultDTD()
protected static DTD createDTD(DTD dtd, String name)

So to create a ParserDelegator, you first need to have an instance of
javax.swing.text.html.parser.DTD. This class represents a Standardized General
Markup Language (SGML) Document Type Definition. The DTD class has a protected
constructor and many protected methods that subclasses can use to build a DTD from
scratch, but this is an API that only an SGML expert could be expected to use. The
normal way DTDs are created is by reading the text form of a standard DTD
published by someone like the W3C. You should be able to get a DTD for HTML by
using the DTDParser class to parse the W3C's published HTML DTD. Unfortunately,
the DTDParser class didn't make the cut for JFC 1.1.1, so you can't. Thus, we're going
to need to go through the back door to create an HTMLEditorKit.Parser instance.
What we'll do is use the HTMLEditorKit.Parser.getParser() method instead,
which ultimately returns a ParserDelegator after properly initializing the DTD for
HTML 3.2:

protected HTMLEditorKit.Parser getParser()

Since this method is protected, we'll simply subclass HTMLEditorKit and override it
with a public version, as Example 8.6 demonstrates:

Example 8.6. This Subclass Just Makes the getParser() Method Public

import javax.swing.text.html.*;

public class ParserGetter extends HTMLEditorKit {

 // purely to make this method public
 public HTMLEditorKit.Parser getParser(){
 return super.getParser();
 }

}

Now that we've got a way to get a parser, we're ready to parse some documents. This
is accomplished through the parse() method of HTMLEditorKit.Parser:

public abstract void parse(Reader input, HTMLEditorKit.ParserCallback
 callback, boolean ignoreCharSet) throws IOException

The Reader is straightforward. We simply chain an InputStreamReader to the
stream reading the HTML document, probably one returned by the openStream()
method of java.net.URL. For the third argument, you can pass true to ignore
encoding issues (this generally works only if you're pretty sure you're dealing with
ASCII text) or false if you want to receive a ChangedCharSetException when the
document has a META tag indicating the character set. The second argument is where
the action is. You're going to write a subclass of HTMLEditorKit.ParserCallback
that is notified of every start tag, end tag, empty tag, text, comment, and error that the
parser encounters.

8.3.2 HTMLEditorKit.ParserCallback

The ParserCallback class is a public inner class inside
javax.swing.text.html.HTMLEditorKit:

public static class HTMLEditorKit.ParserCallback extends Object

It has a single, public noargs constructor:

public HTMLEditorKit.ParserCallback()

However, you probably won't use this directly because the standard implementation of
this class does nothing. It exists to be subclassed. It has six callback methods that do
nothing. You will override these methods to respond to specific items seen in the
input stream as the document is parsed:

public void handleText(char[] text, int position)
public void handleComment(char[] text, int position)
public void handleStartTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position)
public void handleEndTag(HTML.Tag tag, int position)
public void handleSimpleTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position)
public void handleError(String errorMessage, int position)

There's also a flush() method you use to perform any final cleanup. The parser
invokes this method once after it's finished parsing the document:

public void flush() throws BadLocationException

More accurately, the parser is supposed to invoke this method
after it's finished parsing the document. In practice, it doesn't do
that, at least in JFC 1.1.1. This should probably be classified as a
bug.

Let's begin with a simple example. Suppose you want to write a program that strips
out all the tags and comments from an HTML document and leaves only the text. You
would write a subclass of HTMLEditorKit.ParserCallback that overrides the
handleText() method to write the text on a Writer. You would leave the other
methods alone. Example 8.7 demonstrates.

Example 8.7. TagStripper

import javax.swing.text.html.*;
import java.io.*;

public class TagStripper extends HTMLEditorKit.ParserCallback {

 private Writer out;

 public TagStripper(Writer out) {
 this.out = out;
 }

 public void handleText(char[] text, int position) {
 try {
 out.write(text);
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 }
 }

}

Now let's suppose you want to use this class to actually strip the tags from a URL.
You begin by retrieving a parser using Example 8.5's ParserGetter class:

ParserGetter kit = new ParserGetter();
HTMLEditorKit.Parser parser = kit.getParser();

Next, you construct an instance of your callback class like this:

HTMLEditorKit.ParserCallback callback
 = new TagStripper(new OutputStreamWriter(System.out));

Then you get a stream you can read the HTML document from. For example:

try {
 URL u = new URL("http://www.oreilly.com");
 InputStream in = new BufferedInputStream(u.openStream());
 InputStreamReader r = new InputStreamReader(in);

Finally, you pass the Reader and the HTMLEditorKit.ParserCallback to the
HTMLEditorKit.Parser's parse() method, like this:

parser.parse(r, callback, false);
}
catch (IOException e) {
 System.err.println(e);
}

There are a couple of details about the parsing process that are not obvious. First, the
parser parses in a separate thread. Therefore, you should not assume that the
document has been parsed when the parse() method returns. If you're using the
same HTMLEditorKit.ParserCallback object for two separate parses, you need to
make all your callback methods thread-safe.

Second, the parser actually skips some of the data in the input. In particular, it
normalizes and strips whitespace. If the input document contains seven spaces in a
row, the parser will convert that to a single space. Carriage returns, linefeeds, and tabs
are all converted to a single space, so you lose line breaks. Furthermore, most text
elements are stripped of all leading and trailing whitespace. Elements that contain
nothing but space are eliminated completely. Thus, suppose the input document
contains this content:

<H1> Here's the Title </H1>

<P> Here's the text </P>

What actually comes out of the tag stripper is:

Here's the TitleHere's the text

The single exception is the PRE element, which maintains all whitespace in its
contents unedited. Short of implementing your own parser, I don't know of any way to
retain all the stripped space. But you can include the minimum necessary line breaks
and whitespace by looking at the tags as well as the text. Generally, you expect a
single break in HTML when you see one of these tags:

<TR>

You expect a double break (paragraph break) when you see one of these tags:

<P>
</H1> </H2> </H3> </H4> </H5> </H6>
<HR>
<DIV>
 </DL>

To include line breaks in the output, you have to look at each tag as it's processed and
determine whether it falls in one of these sets. This is straightforward because the first
argument passed to each of the tag callback methods is an HTML.Tag object.

8.3.3 HTML.Tag

Tag is a public inner class in the javax.swing.text.html.HTML class.

public static class HTML.Tag extends Object

It has these four methods:

public boolean isBlock()
public boolean breaksFlow()
public boolean isPreformatted()
public String toString()

The breaksFlow() method returns true if the tag should cause a single line break.
The isBlock() method returns true if the tag should cause a double line break. The
isPreformatted() method returns true if the tag indicates that whitespace should
be preserved. This makes it easy to provide the necessary breaks in the output.

Chances are you'll see more tags than you'd expect when you parse a file. The parser
inserts missing closing tags. In other words, if a document contains only a <P> tag,
then the parser will report both the <P> tag and the implied </P> tag at the appropriate
points in the document. Example 8.8 is a program that does the best job yet of
converting HTML to pure text. It looks for the empty and end tags, explicit or implied,
and, if the tag indicates that line breaks are called for, inserts the necessary number of
line breaks.

Example 8.8. LineBreakingTagStripper

import javax.swing.text.*;
import javax.swing.text.html.*;
import javax.swing.text.html.parser.*;
import java.io.*;
import java.net.*;

public class LineBreakingTagStripper
 extends HTMLEditorKit.ParserCallback {

 private Writer out;
 private String lineSeparator;

 public LineBreakingTagStripper(Writer out) {
 this(out, System.getProperty("line.separator", "\r\n"));
 }

 public LineBreakingTagStripper(Writer out, String lineSeparator) {
 this.out = out;
 this.lineSeparator = lineSeparator;
 }

 public void handleText(char[] text, int position) {
 try {
 out.write(text);
 out.flush();
 }
 catch (IOException e) {

 System.err.println(e);
 }
 }

 public void handleEndTag(HTML.Tag tag, int position) {

 try {
 if (tag.isBlock()) {
 out.write(lineSeparator);
 out.write(lineSeparator);
 }
 else if (tag.breaksFlow()) {
 out.write(lineSeparator);
 }
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }
 public void handleSimpleTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {

 try {
 if (tag.isBlock()) {
 out.write(lineSeparator);
 out.write(lineSeparator);
 }
 else if (tag.breaksFlow()) {
 out.write(lineSeparator);
 }
 else {
 out.write(' ');
 }
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

}

Most of the time, of course, you want to know considerably more than whether a tag
breaks a line. You want to know what tag it is, and behave accordingly. For instance,
if you were writing a full-blown HTML-to-TeX or HTML-to-RTF converter, you'd
want to handle each tag differently. You test the type of tag by comparing it against
these 73 mnemonic constants from the HTML.Tag class:

HTML.Tag.A HTML.Tag.FRAMESET HTML.Tag.PARAM
HTML.Tag.ADDRESS HTML.Tag.H1 HTML.Tag.PRE
HTML.Tag.APPLET HTML.Tag.H2 HTML.Tag.SAMP
HTML.Tag.AREA HTML.Tag.H3 HTML.Tag.SCRIPT
HTML.Tag.B HTML.Tag.H4 HTML.Tag.SELECT
HTML.Tag.BASE HTML.Tag.H5 HTML.Tag.SMALL
HTML.Tag.BASEFONT HTML.Tag.H6 HTML.Tag.STRIKE
HTML.Tag.BIG HTML.Tag.HEAD HTML.Tag.S

HTML.Tag.BLOCKQUOTE HTML.Tag.HR HTML.Tag.STRONG
HTML.Tag.BODY HTML.Tag.HTML HTML.Tag.STYLE
HTML.Tag.BR HTML.Tag.I HTML.Tag.SUB
HTML.Tag.CAPTION HTML.Tag.IMG HTML.Tag.SUP
HTML.Tag.CENTER HTML.Tag.INPUT HTML.Tag.TABLE
HTML.Tag.CITE HTML.Tag.ISINDEX HTML.Tag.TD
HTML.Tag.CODE HTML.Tag.KBD HTML.Tag.TEXTAREA
HTML.Tag.DD HTML.Tag.LI HTML.Tag.TH
HTML.Tag.DFN HTML.Tag.LINK HTML.Tag.TR
HTML.Tag.DIR HTML.Tag.MAP HTML.Tag.TT
HTML.Tag.DIV HTML.Tag.MENU HTML.Tag.U
HTML.Tag.DL HTML.Tag.META HTML.Tag.UL
HTML.Tag.DT HTML.Tag.NOFRAMES HTML.Tag.VAR
HTML.Tag.EM HTML.Tag.OBJECT HTML.Tag.IMPLIED
HTML.Tag.FONT HTML.Tag.OL HTML.Tag.COMMENT
HTML.Tag.FORM HTML.Tag.OPTION
HTML.Tag.FRAME HTML.Tag.P

These are not int constants. They are object constants to allow compile-time type
checking. You saw this trick once before in the
javax.swing.event.HyperlinkEvent class. All HTML.Tag elements passed to your
callback methods by the HTMLEditorKit.Parser will be one of these 73 constants.
They are not just the same as these 73 objects; they are these 73 objects. There are
exactly 73 objects in this class; no more, no less. You can test against them with ==
rather than equals().

For example, let's suppose you need a program that outlines HTML pages by
extracting their H1 through H6 headings while ignoring the rest of the document. It
organizes the outline as nested lists in which each H1 heading is at the top level, each
H2 heading is one level deep, and so on. You would write an
HTMLEditorKit.ParserCallback subclass that extracted the contents of all H1, H2,
H3, H4, H5, and H6 elements while ignoring all others, as Example 8.9 demonstrates.

Example 8.9. Outliner

import javax.swing.text.*;
import javax.swing.text.html.*;
import javax.swing.text.html.parser.*;
import java.io.*;
import java.net.*;
import java.util.*;

public class Outliner extends HTMLEditorKit.ParserCallback {

 private Writer out;
 private int level = 0;
 private boolean inHeader=false;
 private static String lineSeparator
 = System.getProperty("line.separator", "\r\n");

 public Outliner(Writer out) {
 this.out = out;

 }

 public void handleStartTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {

 int newLevel = 0;
 if (tag == HTML.Tag.H1) newLevel = 1;
 else if (tag == HTML.Tag.H2) newLevel = 2;
 else if (tag == HTML.Tag.H3) newLevel = 3;
 else if (tag == HTML.Tag.H4) newLevel = 4;
 else if (tag == HTML.Tag.H5) newLevel = 5;
 else if (tag == HTML.Tag.H6) newLevel = 6;
 else return;

 this.inHeader = true;
 try {
 if (newLevel > this.level) {
 for (int i =0; i < newLevel-this.level; i++) {
 out.write("" + lineSeparator + "");
 }
 }
 else if (newLevel < this.level) {
 for (int i =0; i < this.level-newLevel; i++) {
 out.write(lineSeparator + "" + lineSeparator);
 }
 out.write(lineSeparator + "");
 }
 else {
 out.write(lineSeparator + "");
 }
 this.level = newLevel;
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

 public void handleEndTag(HTML.Tag tag, int position) {

 if (tag == HTML.Tag.H1 || tag == HTML.Tag.H2
 || tag == HTML.Tag.H3 || tag == HTML.Tag.H4
 || tag == HTML.Tag.H5 || tag == HTML.Tag.H6) {
 inHeader = false;
 }

 // work around bug in the parser that fails to call flush
 if (tag == HTML.Tag.HTML) this.flush();

 }

 public void handleText(char[] text, int position) {

 if (inHeader) {
 try {
 out.write(text);
 out.flush();
 }
 catch (IOException e) {

 System.err.println(e);
 }
 }

 }

 public void flush() {
 try {
 while (this.level-- > 0) {
 out.write(lineSeparator + "");
 }
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 }
 }

 public static void main(String[] args) {

 ParserGetter kit = new ParserGetter();
 HTMLEditorKit.Parser parser = kit.getParser();

 try {
 URL u = new URL(args[0]);
 InputStream in = u.openStream();
 InputStreamReader r = new InputStreamReader(in);
 HTMLEditorKit.ParserCallback callback = new Outliner
 (new OutputStreamWriter(System.out));
 parser.parse(r, callback, false);
 }
 catch (IOException e) {
 System.err.println(e);
 }
 catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("Usage: java Outliner url");
 }

 }

}

When a heading start tag is encountered by the handleStartTag() method, the
necessary number of , , and tags is emitted. Furthermore, the
inHeading flag is set to true so that the handleText() method will know to output
the contents of the heading. All start tags except the six levels of headers are simply
ignored. The handleEndTag() method likewise considers heading tags only by
comparing the tag it receives with the seven tags it's interested in. If it sees a heading
tag, it sets the inHeading flag to false again so that body text won't be emitted by the
handleText() method. If it sees the end of the document via an </html> tag, it
flushes out the document. Otherwise, it does nothing. The end result is a nicely
formatted group of nested, unordered lists that outlines the document. For example,
here's the output of running it against http://metalab.unc.edu/xml/ :

D:\JAVA\JNP2\examples\08>java Outliner http://metalab.unc.edu/xml/

 Cafe con Leche XML News and Resources

XML Overview
Random Notes
Specifications
Books
XML Resources
Development Tools
Validating Parsers
Non-validating Parsers
Online Validators and Syntax Checkers
Formatting Engines
Browsers
Class Libraries
Editors
XLL
XML Applications
External Sites

Quote of the Day
Today's News
Recommended Reading
Recent News

8.3.4 Attributes

When processing an HTML file, you often need to look at the attributes as well as the
tags. The second argument to the handleStartTag() and handleSimpleTag()
callback methods is an instance of the javax.swing.text.MutableAttributeSet
class. This object allows you to see what attributes are attached to a particular tag.
MutableAttributeSet is a subinterface of the javax.swing.text.AttributeSet
interface:

public abstract interface MutableAttributeSet extends AttributeSet

Both AttributeSet and MutableAttributeSet represent a collection of attributes
on an HTML tag. The difference is that the MutableAttributeSet interface declares
methods to add attributes to and remove attributes from, as well as inspect, the
attributes in the set. The attributes themselves are represented as pairs of
java.lang.Object objects, one for the name of the attribute and one for the value.
The AttributeSet interface declares these methods:

public int getAttributeCount()
public boolean isDefined(Object name)
public boolean containsAttribute(Object name, Object value)
public boolean containsAttributes(AttributeSet attributes)
public boolean isEqual(AttributeSet attributes)
public AttributeSet copyAttributes()
public Enumeration getAttributeNames()
public Object getAttribute(Object name)
public AttributeSet getResolveParent()

Most of these methods are self-explanatory. The getAttributeCount() method
returns the number of attributes in the set. The isDefined() method returns true if

an attribute with the specified name is in the set, false otherwise. The
containsAttribute(Object name, Object value) method returns true if an
attribute with the given name and value is in the set. The
containsAttributes(AttributeSet attributes) method returns true if all the
attributes in the specified set are in this set with the same values; in other words, if the
argument is a subset of the set on which this method is invoked. The isEqual()
method returns true if the invoking AttributeSet is the same as the argument. The
copyAttributes() method returns a clone of the current AttributeSet. The
getAttributeNames() method returns a java.util.Enumeration of all the names
of the attributes in the set. Once you know the name of one of the elements of the set,
the getAttribute() method returns its value. Finally, the getResolveParent()
method returns the parent AttributeSet, which will be searched for attributes that
are not found in the current set. For example, given an AttributeSet, this method
prints the attributes in name-value format:

private void listAttributes(AttributeSet attributes) {
 Enumeration e = attributes.getAttributeNames();
 while (e.hasMoreElements()) {
 Object name = e.nextElement();
 Object value = attributes.getAttribute(name);
 System.out.println(name + "=" + value);
 }
}

Although the argument and return types of these methods are mostly declared in terms
of java.lang.Object, in practice, all values are instances of java.lang.String,
while all names are instances of the public inner class
javax.swing.text.html.HTML.Attribute. Just as the HTML.Tag class predefines
73 HTML tags and uses a private constructor to prevent the creation of others, so too
does the HTML.Attribute class predefine 80 standard HTML attributes
(HTML.Attribute.ACTION, HTML.Attribute.ALIGN, HTML.Attribute.ALINK,
HTML.Attribute.ALT, etc.) and prohibits the construction of others via a nonpublic
constructor. Generally, this isn't an issue, since you mostly use getAttribute(),
containsAttribute(), and so forth only with names returned by
getAttributeNames(). The 80 predefined attributes are:

HTML.Attribute.ACTION HTML.Attribute.DUMMY HTML.Attribute.PROMPT
HTML.Attribute.ALIGN HTML.Attribute.ENCTYPE HTML.Attribute.REL
HTML.Attribute.ALINK HTML.Attribute.ENDTAG HTML.Attribute.REV
HTML.Attribute.ALT HTML.Attribute.FACE HTML.Attribute.ROWS
HTML.Attribute.ARCHIVE HTML.Attribute.FRAMEBORDER HTML.Attribute.ROWSPAN
HTML.Attribute.BACKGROUND HTML.Attribute.HALIGN HTML.Attribute.SCROLLING
HTML.Attribute.BGCOLOR HTML.Attribute.HEIGHT HTML.Attribute.SELECTED
HTML.Attribute.BORDER HTML.Attribute.HREF HTML.Attribute.SHAPE
HTML.Attribute.CELLPADDING HTML.Attribute.HSPACE HTML.Attribute.SHAPES
HTML.Attribute.CELLSPACING HTML.Attribute.HTTPEQUIV HTML.Attribute.SIZE
HTML.Attribute.CHECKED HTML.Attribute.ID HTML.Attribute.SRC
HTML.Attribute.CLASS HTML.Attribute.ISMAP HTML.Attribute.STANDBY
HTML.Attribute.CLASSID HTML.Attribute.LANG HTML.Attribute.START
HTML.Attribute.CLEAR HTML.Attribute.LANGUAGE HTML.Attribute.STYLE

HTML.Attribute.CODE HTML.Attribute.LINK HTML.Attribute.TARGET
HTML.Attribute.CODEBASE HTML.Attribute.LOWSRC HTML.Attribute.TEXT
HTML.Attribute.CODETYPE HTML.Attribute.MARGINHEIGHT HTML.Attribute.TITLE
HTML.Attribute.COLOR HTML.Attribute.MARGINWIDTH HTML.Attribute.TYPE
HTML.Attribute.COLS HTML.Attribute.MAXLENGTH HTML.Attribute.USEMAP
HTML.Attribute.COLSPAN HTML.Attribute.METHOD HTML.Attribute.VALIGN
HTML.Attribute.COMMENT HTML.Attribute.MULTIPLE HTML.Attribute.VALUE
HTML.Attribute.COMPACT HTML.Attribute.N HTML.Attribute.VALUETYPE
HTML.Attribute.CONTENT HTML.Attribute.NAME HTML.Attribute.VERSION
HTML.Attribute.COORDS HTML.Attribute.NHREF HTML.Attribute.VLINK
HTML.Attribute.DATA HTML.Attribute.NORESIZE HTML.Attribute.VSPACE
HTML.Attribute.DECLARE HTML.Attribute.NOSHADE HTML.Attribute.WIDTH
HTML.Attribute.DIR HTML.Attribute.NOWRAP

The MutableAttributeSet interface adds six methods to add attributes to and
remove attributes from the set:

public void addAttribute(Object name, Object value)
public void addAttributes(AttributeSet attributes)
public void removeAttribute(Object name)
public void removeAttributes(Enumeration names)
public void removeAttributes(AttributeSet attributes)
public void setResolveParent(AttributeSet parent)

Again, the values are strings and the names are HTML.Attribute objects.

One possible use for all these methods is to modify documents before saving or
displaying them. For example, most web browsers let you save a page on your hard
drive as either HTML or text. However, both these formats lose track of images and
relative links. The problem is that most pages are full of relative URLs, and these all
break when you move the page to your local machine. Example 8.10 is an application
called PageSaver that downloads a web page to a local hard drive while keeping all
links intact by rewriting all relative URLs as absolute URLs.

The PageSaver class reads a series of URLs from the command line. It opens each
one in turn and parses it. Every tag, text block, comment, and attribute is copied into a
local file. However, all link attributes, such as SRC, LOWSRC, CODEBASE, and HREF, are
remapped to an absolute URL. Note particularly the extensive use to which the URL
and javax.swing.text classes were put; PageSaver could be rewritten with string
replacements, but that would be considerably more complicated.

Example 8.10. PageSaver

import javax.swing.text.*;
import javax.swing.text.html.*;
import javax.swing.text.html.parser.*;
import java.io.*;
import java.net.*;
import java.util.*;

public class PageSaver extends HTMLEditorKit.ParserCallback {

 private Writer out;
 private URL base;

 public PageSaver(Writer out, URL base) {
 this.out = out;
 this.base = base;
 }

 public void handleStartTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {
 try {
 out.write("<" + tag);
 this.writeAttributes(attributes);
 // for the <APPLET> tag we may have to add a codebase attribute
 if (tag == HTML.Tag.APPLET
 && attributes.getAttribute(HTML.Attribute.CODEBASE) == null) {
 String codebase = base.toString();
 if (codebase.endsWith(".htm") || codebase.endsWith(".html"))
{
 codebase = codebase.substring(0, codebase.lastIndexOf('/'));
 }
 out.write(" codebase=\"" + codebase + "\"");
 }
 out.write(">");
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }

 public void handleEndTag(HTML.Tag tag, int position) {
 try {
 out.write("</" + tag + ">");
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 }
 }

 private void writeAttributes(AttributeSet attributes)
 throws IOException {

 Enumeration e = attributes.getAttributeNames();
 while (e.hasMoreElements()) {
 Object name = e.nextElement();
 String value = (String) attributes.getAttribute(name);
 try {
 if (name == HTML.Attribute.HREF || name == HTML.Attribute.SRC
 || name == HTML.Attribute.LOWSRC
 || name == HTML.Attribute.CODEBASE) {
 URL u = new URL(base, value);
 out.write(" " + name + "=\"" + u + "\"");
 }
 else {
 out.write(" " + name + "=\"" + value + "\"");
 }
 }
 catch (MalformedURLException ex) {

 System.err.println(ex);
 System.err.println(base);
 System.err.println(value);
 ex.printStackTrace();
 }
 }
 }

 public void handleComment(char[] text, int position) {

 try {
 out.write("<!-- ");
 out.write(text);
 out.write(" -->");
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

 public void handleText(char[] text, int position) {

 try {
 out.write(text);
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }

 }

 public void handleSimpleTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {
 try {
 out.write("<" + tag);
 this.writeAttributes(attributes);
 out.write(">");
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 ParserGetter kit = new ParserGetter();
 HTMLEditorKit.Parser parser = kit.getParser();

 try {
 URL u = new URL(args[i]);
 InputStream in = u.openStream();
 InputStreamReader r = new InputStreamReader(in);
 String remoteFileName = u.getFile();
 if (remoteFileName.endsWith("/")) {

 remoteFileName += "index.html";
 }
 if (remoteFileName.startsWith("/")) {
 remoteFileName = remoteFileName.substring(1);
 }
 File localDirectory = new File(u.getHost());
 while (remoteFileName.indexOf('/') > -1) {
 String part = remoteFileName.substring(0,
remoteFileName.indexOf('/'));
 remoteFileName =

remoteFileName.substring(remoteFileName.indexOf('/')+1);
 localDirectory = new File(localDirectory, part);
 }
 if (localDirectory.mkdirs()) {
 File output = new File(localDirectory, remoteFileName);
 FileWriter out = new FileWriter(output);
 HTMLEditorKit.ParserCallback callback = new PageSaver(out,
u);
 parser.parse(r, callback, false);
 }
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }

 }

 }

}

The handleEndTag(), handleText(), and handleComment() methods simply
copy their content from the input into the output. The handleStartTag() and
handleSimpleTag() methods write their respective tags onto the output but also
invoke the private writeAttributes() method. This method loops through the
attributes in the set and mostly just copies them onto the output. However, for a few
select attributes, such as SRC and HREF, that typically have URL values, it rewrites the
values as absolute URLs. Finally, the main() method reads URLs from the
command line, calculates reasonable names and directories for corresponding local
files, and starts a new PageSaver for each URL.

In the first edition of this book, I included a similar program that downloaded the raw
HTML using the URL class and parsed it manually. That program was about a third
longer than this one and much less robust. For instance, it did not support frames or
the LOWSRC attributes of IMG tags. It went to great effort to handle both quoted and
unquoted attribute values and still didn't recognize attribute values enclosed in single
quotes. By contrast, this program needs only one extra line of code to support each
additional attribute. It is much more robust, much easier to understand since there's
not a lot of detailed string manipulation, and much easier to extend.

This is just one example of the various HTML filters that the
javax.swing.text.html package makes easy to write. You could, for example,
write a filter that pretty prints the HTML by indenting the different levels of tags. You

could write a program to convert HTML to TeX, XML, RTF, or many other formats.
You could write a program that spidered a web site, downloading all linked pages—
and this is just the beginning. All of these programs are much easier to write because
Swing provides a simple-to-use HTML parser. All you have to do is respond to the
individual elements and attributes that the parser discovers in the HTML document.
The much harder problem of parsing the document is removed.

Chapter 9. The Network Methods of
java.applet.Applet
Undoubtedly you're familiar with applets, Java programs that can be embedded on a
web page and run in a secure environment within a browser. All applets extend the
java.applet.Applet class, which includes a number of methods that perform
network-related operations. These methods allow an applet to find out where it came
from, download images and sounds from a web server, and track the progress of the
download. This chapter discusses the interaction between applets and the network. It
doesn't provide an introduction to the Applet class as a whole; for that, see an
introductory book such as Niemeyer and Peck's Learning Java (O'Reilly & Associates,
Inc., 2000).

9.1 Using java.applet.Applet to Download Data

The methods of the Applet class discussed in this section are really just thin veneers
over equivalent methods in the java.applet.AppletStub and
java.applet.AppletContext interfaces. These interfaces describe services that the
web browser or applet viewer provides to applets. The exact classes that implement
these interfaces are undocumented and vary from implementation to implementation.
Applets that you instantiate yourself (for example, an applet that also runs as an
application by supplying a main() method that calls the applet's init() and
start() methods) will generally have null AppletStub and AppletContext
members. Therefore, if you try to use these methods in such an applet, a
NullPointerException will be thrown.

9.1.1 Figuring Out Where the Applet Came from

Most often, applets retrieve image files or other data from one of two directories: the
directory the applet came from, or the directory the HTML page in which the applet
was embedded came from. These directories are called the codebase and the
document base, respectively. To make it easy to find other files, the Applet class has
methods that return URL objects referring to the current page and the current applet.
These methods are called getDocumentBase() and getCodeBase() respectively.

9.1.1.1 public URL getDocumentBase()

The getDocumentBase() method returns the URL of the page containing the applet.
Example 9.1 is a simple applet that displays the URL of the document in which it is
embedded.

Example 9.1. An Applet That Shows Its Document Base

import java.applet.*;
import java.awt.*;

public class WhereAmI extends Applet {

 public void paint (Graphics g) {
 g.drawString(this.getDocumentBase().toString(), 25, 50);
 }

}

9.1.1.2 public URL getCodeBase()

The getCodeBase() method returns the URL of the directory where the applet is
located. If the applet is in a JAR archive, then the codebase is the URL of the
directory where the JAR archive is. If the applet is in a package (e.g.,
com.macfaq.applets.MyApplet instead of just MyApplet), then the codebase is the
directory or JAR archive containing the outermost package such as com. Security
restrictions in applets are calculated relative to the codebase, not the document base.
Example 9.2 is an applet that displays its document base and its codebase.

Example 9.2. An Applet That Displays Its Document Base and Its Codebase

import java.applet.*;
import java.awt.*;

public class AppletBases extends Applet {

 public void paint(Graphics g) {

 g.drawString("Codebase: "
 + this.getCodeBase().toString(), 10, 40);
 g.drawString("Document base: "
 + this.getDocumentBase().toString(), 10, 65);

 }

}

Figure 9.1 shows what happens when the applet runs; the result depends on the URLs
of the applet and the document. It's worth noting that getCodeBase() always returns
the URL of a directory, not the URL of the applet itself, while getDocumentBase()
always returns the URL of a file.

Figure 9.1. An applet that shows its document base and its codebase

9.1.2 Downloading Images

In Chapter 7, you learned how to download data from an HTTP URL by using the
getContent() and openStream() methods of the URL class. These methods are
useful for text data such as an HTML file, but they don't work as well for binary data,
which usually requires some knowledge of the data's structure. The Applet class
includes several methods that understand more about what they're downloading. The
getImage() methods download image files and convert them into java.awt.Image
objects:

public Image getImage(URL url)
public Image getImage(URL url, String name)

Like the other methods in this chapter, the two getImage() methods in the Applet
class rely on an AppletContext field that is null for applets you instantiate yourself
rather than being instantiated by a web browser or an applet viewer. However, the
java.awt.Toolkit class includes identical getImage() methods that do not rely on
an AppletContext. You can always get a Toolkit object by calling the static
java.awt.Toolkit.getDefaultToolkit() method or the getToolkit() instance
method of any subclass of java.awt.Component. Then you can use its getImage()
methods just as you use the getImage() methods described here. The one difference
is that you'll need to prefix the calls to getImage() with a variable that refers to the
Toolkit object. For example:

Toolkit t = java.awt.Toolkit.getDefaultToolkit();
URL u = new URL("http://metalab.unc.edu/javafaq/cup.gif")
Image theImage = t.getImage(u);

9.1.2.1 public Image getImage(URL u)

This method retrieves the image data at the specified URL and puts it in a
java.awt.Image object. For example:

Image myLogo = getImage(new
URL("http://metalab.unc.edu/java/cup.gif"));

The getImage() method relies on the AppletContext (provided by the web
browser or applet viewer) to retrieve and interpret the image. Thus this method can
get images only in formats understood by the AppletContext in which the applet is
running. Currently, all contexts that run in a graphical environment understand the
GIF format. (IBM's Java environment for some of its mainframes and minicomputers
is completely nongraphical because those platforms don't support graphics.) Most
contexts also understand JPEG though JPEG support was omitted from some vendors'
early alpha and beta releases. Finally, Java implementations derived from Sun's
source code often understand XBM. JDK 1.3 adds support for PNG. Example 9.3 is a
complete applet that loads and displays the image referenced by the IMAGE parameter,
which comes from a <PARAM> tag in the HTML file.

Example 9.3. Display an Image via a URL

import java.applet.*;
import java.awt.*;
import java.net.*;

public class ImageView extends Applet {

 Image picture;

 public void init() {

 try {
 URL u = new URL(this.getCodeBase(),
this.getParameter("IMAGE"));
 this.picture = this.getImage(u);
 System.err.println(u);
 }
 catch (MalformedURLException e) {
 // shouldn't happen, the codebase is never malformed
 }

 }

 public void paint (Graphics g) {
 g.drawImage(this.picture, 0, 0, this);
 }

}

The getImage() method returns immediately, even before it knows whether the
image actually exists. The image isn't loaded until some other part of the program
actually tries to draw it, or you explicitly force the image to start loading—you'll see
how to do that shortly. At that point, the virtual machine starts a separate thread to
download and process the image file.

9.1.2.2 public Image getImage(URL path, String filename)

This is similar to the previous method, except that it uses the path argument (a URL)
to find the image's directory and the filename argument (a String) to get the name
of the image file. For example:

Image logo = this.getImage(new URL("http://metalab.unc.edu/java/"),
 "cup.gif");

This version of getImage() is frequently used with getCodeBase() or
getDocumentBase(). You would use getCodeBase() in an applet that might be
used on many different web servers but whose images would always be in the same
directory as the applet. For example:

Image logo = this.getImage(this.getCodeBase(), "logo.gif"));

If the applet exists on only one web server but is embedded on many different pages,
each of which loads different images, you would use getDocumentBase() to locate
the images:

Image logo = this.getImage(this.getDocumentBase(), "logo.gif"));

This technique would be useful in an animator applet; the applet would probably read
the names of some image files from parameters included in the HTML. You can use
the filename argument to add to the path you get from the URL component. For

example, if the pictures are in a directory called images, which is in the same
directory as the HTML page, you would load the file logo.gif like this:

Image logo = this.getImage(this.getDocumentBase(),
"images/logo.gif"));

9.1.3 Downloading Sounds

The Applet class has five methods that download sounds from the web. The two
play() methods download a sound file and play it immediately. The two
getAudioClip() methods and the static Applet.newAudioClip() method save a
sound for later playing. The AppletContext, which is provided by the web browser
or applet viewer, does the actual work of downloading and playing the sound file.
Most Java 1.1 and earlier virtual machines support only Sun's .au format and a very
restricted form at that (8-bit sampling, 8 kilohertz, mono, -law encoded). Java 1.2
adds many more formats, including AIFF, WAV, MIDI Type 0, MIDI Type 1, and
Rich Music Format (RMF). Furthermore, it supports 8- and 16-bit sampling, in both
mono and stereo, with sampling rates from 8 kHz to 48 kHz in linear, a-law, or -law
encoding. For pre-1.2 VMs, there are a number of freeware, shareware, and payware
tools that convert sounds to the .au format, including SoX on Linux and Unix systems
(http://home.sprynet.com/~cbagwell/sox.html); SoundHack
(http://shoko.calarts.edu/~tre/SndHckDoc/), Ulaw (http://www.kagi.com/rod/), and
SoundEdit 16 (http://www.macromedia.com/software/sound/) on the Mac; and
GoldWave on Windows (http://www.goldwave.com/).

9.1.3.1 public void play(URL u)

The play() method looks for a sound file at the URL u. If the sound file is found,
then it is downloaded and played. Otherwise, nothing happens. For example:

try {
 URL soundLocation = new URL(
 "http://metalab.unc.edu/java/course/week9/spacemusic.au");
 play(soundLocation);
}
catch (MalformedURLException e) {
 System.err.println(e);
}

Example 9.4 is a simple applet that plays a sound file. The name of the file is taken
from the parameter sound, which is supplied by a <PARAM> tag in the HTML file. The
sound file should be in the same directory as the applet.

Example 9.4. Play a Sound

import java.applet.*;
import java.awt.*;
import java.net.*;

public class PlaySound extends Applet {

 public void init() {

 try {
 URL u = new URL(this.getCodeBase(),
this.getParameter("sound"));
 this.play(u);
 }
 catch (MalformedURLException e) {
 }

 }

}

9.1.3.2 public void play(URL url, String filename)

This is similar to the presious method, except that it uses the url argument to find the
sound file's directory and the filename argument to get the actual filename. For
example:

play(new URL("http://www.macfaq.com/", "gong.au"));

The URL argument is frequently a call to getCodeBase() or getDocumentBase().
You use getCodeBase() if you know that the sound files will always be in the same
directory as the applet, even if you don't know in advance where the applet will be
located. For example:

this.play(this.getCodeBase(), "gong.au"));

If the sound files are always located in the same directory as the HTML file that loads
the applet, you would use getDocumentBase(). In this scenario, one applet, residing
in one directory, might be used by several web pages located in different directories
on that server; each page might use a <PARAM> tag to specify its own sound file. Such
an applet might call play() like this:

this.play(this.getDocumentBase(), this.getParameter("sound")));

You can use the filename argument to add to the path you get from the URL argument.
For example, if the sounds are in a directory called sounds, which is a subdirectory of
the directory containing the HTML page, you would call play():

this.play(this.getDocumentBase(), "sounds/gong.au"));

9.1.3.3 public AudioClip getAudioClip(URL u)

The java.applet.AudioClip interface represents a sound. You can download a
sound from a web site with the getAudioClip() method. Once you have an
AudioClip object, play it at your leisure by calling the clip's play() and loop()
methods; play() plays the file once, and loop() plays it repeatedly. Both of these
methods let you keep the audio clip around for future use—unlike the play()
method of the last section, which discarded the audio data after it had finished.

Using the AudioClip interface is simple. Make sure you've imported
java.applet.AudioClip (many programmers, out of habit, import only

java.applet.Applet); declare an AudioClip variable, and call getAudioClip()to
retrieve the sound file. As usual, the URL constructor needs to be wrapped in a try
block because of a potential MalformedURLException. For example:

AudioClip theGong;

try {
 URL u = new URL(http://metalab.unc.edu/javafaq/gong.au);
 theGong = this.getAudioClip(u);
}
catch (MalformedURLException e) {
 System.err.println(e);
}

9.1.3.4 public AudioClip getAudioClip(URL url, String filename)

This is similar to the previous method, except that it uses url to find the directory in
which the sound file is located and filename to supply the name of the audio file. For
example:

AudioClip ac = getAudioClip(new URL("http://www.macfaq.com/",
"gong.au"));

This version of getAudioClip() is frequently used with getCodeBase() or
getDocumentBase(). For example, if you are writing an applet that will be stored on
many different servers but whose sound files will always be in the same directory as
the applet, you would call getAudioClip() like this:

AudioClip ac = this.getAudioClip(this.getCodeBase(), "gong.au"));

Or, if you're writing an applet that will reside on one server but be used by many web
pages with different sound files, you might call getAudioClip() like this:

String filename = this.getParameter("sound");
if (filename != null) { // HTML included necessary PARAM tag
 AudioClip ac = this.getAudioClip(this.getDocumentBase(),
filename);
}

In this case, getDocumentBase() returns the location of the HTML file, and
getParameter() retrieves the name of an audio file from a <PARAM> tag in the
HTML. You can use the filename argument to getAudioClip() to add to the path
supplied by the URL. For example, in the following code, the sound file is located in
the directory sounds, which is a subdirectory of the document's directory:

this.getAudioClip(this.getDocumentBase(), "sounds/gong.au"));

Example 9.5 is a complete applet that downloads a sound file called gong.au, which is
located in the same directory as the applet, and then spawns a Thread to play the
sound every five seconds.

Example 9.5. Download a Sound via a Relative URL and Play It at Five-Second Intervals

import java.applet.*;
import java.awt.*;

public class RelativeBeep extends Applet implements Runnable {

 private AudioClip beep;
 private boolean stopped = false;

 public void init() {

 beep = this.getAudioClip(this.getDocumentBase(),
"sounds/beep.au");
 if (beep != null) {
 Thread t = new Thread(this);
 t.start();
 }

 }

 public void start() {
 this.stopped = false;
 }

 public void stop() {
 this.stopped = true;
 }

 public void run() {

 Thread.currentThread().setPriority(Thread.MIN_PRIORITY);
 while (true) {
 if (!stopped) beep.play();
 try {
 Thread.sleep(5000);
 }
 catch (InterruptedException e) {
 }
 }

 }

}

9.1.3.5 public static final AudioClip newAudioClip(URL url) // Java 1.2

Java 1.2 adds the static Applet.newAudioClip() method so that applications can
download audio clips too. Why, you may ask, if this method is intended for the use of
standalone applications, is it in the Applet class? The only answer I can suggest is
that it was a quick hack designed to answer a long-standing request and that nobody
gave a lot of thought to exactly what a sensible API for this would look like. Perhaps
the underlying, undocumented infrastructure on which the play() and
getAudioClip() methods depend was easily accessible only from inside the Applet
class. Regardless of the reason, the Applet class is where the newAudioClip()
method resides, and you'll need to use that class even in non-applets that want to load
audio clips.

The Applet.newAudioClip() method returns an AudioClip, just like
getAudioClip(). Therefore, you can invoke the same loop() and play()

methods on it. For example, this code fragment loads the sound file at
http://metalab.unc.edu/java/course/week9/spacemusic.au and plays it continuously. It
can do this from an applet or an application. It does not need a web browser or
AppletContext:

try {
 URL sound
 = new
URL("http://metalab.unc.edu/java/course/week9/spacemusic.au");
 AudioClip ac = new AudioClip(sound);
 ac.loop();
}
catch (MalformedURLException e) {
 // shouldn't happen
}

9.2 The ImageObserver Interface

It is sometimes said, only half in jest, that WWW stands for "World Wide Wait",
primarily because of the amount of time it takes for graphics-heavy pages to load.
Although reading large files off a hard drive can be time-consuming, most users have
trained themselves not to notice the time it takes; file loading seems to happen
instantaneously. However, this is not the case when files are loaded from a network,
particularly when that network is the Internet. It is not uncommon for even small
images to take several minutes to load. Since Java loads images in a different thread
than the main execution of a program, a program can do something while the pictures
are downloaded. However, programs don't get impatient; users do. It is a good idea to
keeps users informed about how much of an image has been loaded and how much
longer they can expect to wait. The java.awt.image.ImageObserver interface
allows you to monitor the loading process so that you can keep the user informed and
use the image as quickly as possible once it does load.

When discussing getImage(), I said that the method returned immediately, before
downloading the image. Downloading begins when you try to display the image or do
something else that forces loading to start (for example, passing the Image object to
the prepareImage() method of java.awt.Component). Because loading takes place
in a separate thread, programs don't have to spin their wheels while lots of pictures are
downloaded; they can continue doing something useful, even if that's limited to
keeping the user informed. However, loading an image asynchronously creates a new
problem: how do you know when it's ready? An Image object exists as soon as
getImage() returns, long before anything is known about the image it represents.
You can call an Image's methods before it has finished loading, but the results are
rarely what you want or expect. For example, the getWidth() and getHeight()
methods return -1 until enough data has been loaded for these values to be known.

The ImageObserver interface allows an object to monitor the progress of loading and
to take action (such as drawing the Image) when the Image is ready for use. You can
also use ImageObserver objects to track the progress of an image that is being
created from scratch, using java.awt.image.MemoryImageSource or some other
instance of the java.awt.image.ImageProducer interface. This interface consists of
a group of constants and a single method, imageUpdate():

public boolean imageUpdate(Image image, int infoflags, int x, int y,
 int width, int height)

java.awt.Component implements ImageObserver, so all its subclasses (including
java.applet.Applet, java.awt.Canvas, java.awt.Panel, javax.swing.JButton,
and many more) do as well.

If you've done much programming in Java, you've probably used the ImageObserver
class without thinking about it: the this that you stick at the end of a call to
drawImage() says to use the current component as an ImageObserver:

g.drawImage(theImage, 0, 0, this);

If the image is complete, then it's drawn and that's that. On the other hand, if the
image is not ready, then the component's imageUpdate() method will be called
periodically, giving it the chance to check the status of the image and respond
accordingly. Other methods that take ImageObserver objects as arguments include
the getWidth() , getHeight(), and getProperty() methods of
java.awt.Image; the checkImage() and prepareImage() methods of
java.awt.Component; and the setImageObserver() method of
javax.swing.ImageIcon. Passing an ImageObserver to any of these methods
signals that the object is interested in the image and should be notified through the
imageUpdate() method when the image's status changes. Variables that are set
using a method such as getWidth() or getHeight(), and pictures that are drawn
on the screen using drawImage(), are not updated automatically when
imageUpdate() is called. It's your job to update them when the image changes.

If you want to create your own ImageObserver, you first create a subclass of any
Component or create your own class that implements the ImageObserver interface.
Be sure to import java.awt.image.ImageObserver or java.awt.image.*
Importing java.awt.* does not automatically import
java.awt.image.ImageObserver. Your new class, or your Component subclass,
must include an imageUpdate() method. As you'll see in the next section, there are
a series of tests that imageUpdate() can perform to determine the current status of
the image.

Example 9.6 is an applet that loads an image from the Net. It supplies its own
imageUpdate() method (overriding the imageUpdate() method Applet inherits
from Component) to see whether the image has loaded. Until the image has finished
loading, the applet displays the words "Loading Picture. Please hang on". Once the
image has fully loaded, the applet displays it.

Example 9.6. Load an Image

import java.awt.*;
import java.applet.*;
import java.awt.image.*;

public class DelayedImageView extends Applet {

 private Image picture;

 public void init() {
 this.picture = this.getImage(this.getDocumentBase(), "cup.gif");
 }

 public void paint(Graphics g) {

 if(!g.drawImage(this.picture, 0, 0, this)) {
 g.drawString("Loading Picture. Please hang on", 25, 50);
 }

 }

 public boolean imageUpdate(Image image, int infoflags, int x, int y,
 int width, int height) {

 if ((infoflags & ImageObserver.ALLBITS) == ImageObserver.ALLBITS)
{
 this.repaint();
 return false;
 }
 else {
 return true;
 }

 }

}

There are a couple of things to note about this example. First, the drawImage()
method returns a boolean. Many programmers don't realize this, since the return
value of drawImage() is often ignored. However, that boolean tells you whether the
image was drawn successfully. If it was, drawImage() returns true. Otherwise,
drawImage() returns false.

Second, the imageUpdate() method is called by the ImageObserver when
necessary; you do not call it explicitly. It returns false if the image is complete and
no longer needs to be updated. It returns true if the image still needs to be updated.

Let's repeat that point, since it's easy to get backwards. The
imageUpdate() method should return false if the image is
complete and true if the image is not complete. The
imageUpdate() method answers the question "Does this image
need to be updated?" It does not answer the question "Is this
image complete?"

Now, let's look at what imageUpdate() does. The Image being loaded is passed into
imageUpdate() through the image argument. Various mnemonic constants are
combined to form the infoflags argument, which indicates what information about
the image is now available. For instance, ImageObserver.ALLBITS is 32, and means
that the Image is complete. You test whether the ALLBITS flag is set in infoflags by
logically and ing it with the mnemonic constant ImageObserver.ALLBITS and then
seeing if the result is equal to ImageObserver.ALLBITS. This chunk of Boolean
algebra looks complicated but is more efficient than the alternatives.

The precise meaning of the x, y, width, and height arguments depends on the
contents of the infoflags argument. The flags used in this argument are described in
the next section.

The imageUpdate() method needs to do three things:

1. Check to see what has changed in this Image, using infoflags.
2. Perform any action needed to update the state of the running program.
3. Return true if further updates are needed and false if all necessary

information is available.

9.2.1 The ImageObserver Constants

The ImageObserver interface defines eight mnemonic constants, which are used as
flags to report the image's status in calls to imageUpdate(). Table 9.1 lists the
constants and their meanings.

Table 9.1. ImageObserver Constants
Flag Meaning If the Flag Is Set

ImageObserver.WIDTH
The width of the image is available in the width argument to
imageUpdate(). Until this flag is set, getWidth()
returns -1.

ImageObserver.HEIGHT
The height of the image is available in the height argument to
imageUpdate(). Until this flag is set, calls to
getHeight() return -1.

ImageObserver.PROPERTIES The properties of the image are now available and can be accessed
with the getProperty() method of the Image object.

ImageObserver.SOMEBITS

Some portion of the data needed to draw the image has been
delivered. The bounding box of the available pixels is given by the
x, y, width, and height arguments to the imageUpdate()
method.

ImageObserver.FRAMEBITS
Another complete frame of a multiframe image is now available.
The x, y, width, and height arguments to
imageUpdate() have no meaning.

ImageObserver.ALLBITS

The image is now complete. The x, y, width, and height
arguments to imageUpdate() have no meaning. At this point,
the imageUpdate() method should return false, to indicate
that the image requires no further monitoring.

ImageObserver.ERROR

The image encountered an error while loading. No further
information will be forthcoming, and attempts to draw the image
will fail. The ImageObserver.ABORT flag is set at the same
time to indicate that image loading was aborted.

ImageObserver.ABORT

Loading aborted before the image was complete. No more
information will become available without further action to reload
the Image. If the ImageObserver.ERROR bit is not also set in
infoflags, then attempting to access any of the data in the
image restarts the loading process.

For example, to test whether the width and the height of the image are known, you
would put the following code in the imageUpdate() method:

if ((infoflags & ImageObserver.WIDTH) == ImageObserver.WIDTH &&

 (infoflags & ImageObserver.HEIGHT) == ImageObserver.HEIGHT) {...}

The difference between the ImageObserver.ERROR and ImageObserver.ABORT flags
can be confusing. You would get an ImageObserver.ERROR if the image data was
incorrect—for example, you tried to download a mangled file. If you try to load the
image again, you'll get the same bad data. ImageObserver.ABORT usually indicates
some kind of network error, such as a timeout; if you try to load the image again, you
might succeed.

9.3 The MediaTracker Class

The ImageObserver interface is useful for monitoring a single image, but it starts to
fall apart when faced with multiple images. The java.awt.MediaTracker class can
track the loading status of many different images and organize them into logical
groups. In future versions of Java, it may even be able to monitor the loading of audio
clips and other kinds of multimedia content. However, Sun's been promising this since
Java 1.0 and still hasn't delivered, so I'm not holding my breath.

To use java.awt.MediaTracker, simply create an instance of MediaTracker and
then use the MediaTracker's addImage() method to place each Image you care
about under the MediaTracker's control. When you add an Image to a MediaTracker,
you give it a numeric ID. This ID does not have to be unique; it is really a group ID
that is used to organize different images into groups. Before using the image, you call
a method such as checkID() to see whether the image is ready. Other methods let
you force loading to start, discover which images in a group have failed to load
successfully, wait for images to finish loading, and so on.

One difference between a MediaTracker and an ImageObserver
is that the MediaTracker is called before the Image is used,
while an ImageObserver is called after the Image is used.

Example 9.7 is an applet that loads an image from the Net. As usual, the image is
loaded from the document base, and the name of the image file is read from a
<PARAM> tag; the name of the parameter is imagefile. The applet uses a
MediaTracker to see whether the image has loaded. The applet displays the words
"Loading Picture. Please hang on" until the image has finished loading.

Example 9.7. Load an Image

import java.awt.*;
import java.applet.*;

public class TrackedImage extends Applet implements Runnable {

 private Image picture;
 private MediaTracker tracker;

 public void init() {

 this.picture = this.getImage(this.getCodeBase(),

 this.getParameter("imagefile"));
 this.tracker = new MediaTracker(this);
 this.tracker.addImage(this.picture, 1);

 Thread play = new Thread(this);
 play.start();

 }

 public void run() {

 try {
 this.tracker.waitForID(1);
 this.repaint();
 }
 catch (InterruptedException ie) {
 }

 }

 public void paint(Graphics g) {

 if (this.tracker.checkID(1, true)) {
 g.drawImage(this.picture, 0, 0, this);
 }
 else {
 g.drawString("Loading Picture. Please hang on", 25, 50);
 }

 }

}

The init() method reads the name of the image to be loaded; prepares an Image
object, picture, to hold it by calling getImage(); constructs a new MediaTracker
called tracker; and then adds picture to tracker with an ID of 1. Next it constructs
a new Thread and starts it.

The Thread that's spawned just makes sure that the applet is repainted as soon as the
image has finished loading. It calls tracker.waitForID(1), which blocks until all
media with ID number 1 have finished loading. When that's true, the method returns
and repaint() is called. I used a separate thread so the call to waitForID() won't
block the rest of the applet.

The paint() method calls tracker.checkID(1, true) to see whether the media
with ID 1 is available. If this method returns true, the image is available, and the
applet calls drawImage() to render the image on the screen. Otherwise, the picture is
not available, so the applet displays the string "Loading Picture. Please hang on". A
more sophisticated applet could put up a progress bar that showed the percentage of
the Image that had been loaded and the approximate time remaining.

9.3.1 The Constructor

The MediaTracker class has one constructor:

public MediaTracker(Component comp)

This constructor creates a MediaTracker object that tracks images for a specified
Component. It's usually invoked like this:

MediaTracker tracker = new MediaTracker(this);

The constructor's argument is the component on which the images you want to track
will be displayed, generally a Panel or an Applet or a Canvas. You often call the
constructor within the subclass defining the component that will be rendering the
images; therefore, the argument to MediaTracker() is often this.

9.3.2 Adding Images to MediaTrackers

The two overloaded addImage() methods each add one Image to the list of images
being tracked by this MediaTracker object. When an image is added, it is assigned an
ID number by which it can later be referred to. Images are loaded in order of their IDs;
that is, image 1 is loaded before image 2, and so on. If multiple images have the same
ID, there's no guarantee which will be loaded first. Adding an Image to a
MediaTracker does not start loading the image data. You have to call checkID(ID,
true), checkAll(true), or one of the four wait methods first.

9.3.2.1 public void addImage(Image image, int id)

This addImage() method adds image to the list of images being tracked by this
MediaTracker object and assigns it the ID number id. The image will eventually be
displayed at its normal (unscaled) size. For example, the following code fragment
from an applet sets up a tracker for an image called logo.gif that's in the same
directory as the web page—it's given the ID number 1:

Image picture = this.getImage(this.getDocumentBase(), "logo.gif");
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(picture, 1);

If you are going to scale the image, you must use the next version of addImage().

9.3.2.2 public void addImage(Image image, int id, int width, int height)

This version of addImage() adds image to the list of Image objects being tracked by
this MediaTracker with the ID number id. The image will eventually be displayed
scaled to the width width and the height height. The following code fragment sets up
a tracker for an image called logo.gif that's in the same directory as the web page. This
image will be scaled into a 30-pixel × 30-pixel square when it's displayed:

Image picture = this.getImage(this.getDocumentBase(), "logo.gif");
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(picture, 1, 30, 30);

9.3.3 Checking Whether Media Has Loaded

There are four check methods that tell you whether particular images tracked by a
MediaTracker have loaded. These are:

public boolean checkID(int id)
public boolean checkID(int id, boolean load)
public boolean checkAll()
public boolean checkAll(boolean load)

9.3.3.1 public boolean checkID(int id)

This method checks whether all the images with the indicated ID that are tracked by
this MediaTracker have finished loading. If they have, it returns true; otherwise, it
returns false. Multiple Image objects may have the same ID. Merely checking the
status of an image with this method will not make it start loading if it is not already
loading. For example, the following paint() method draws thePicture only if all
the Image objects with ID 1 have finished loading:

public void paint(Graphics g) {

 if (theTracker.checkID(1)) {
 g.drawImage(thePicture, 0, 0, this);
 }
 else {
 g.drawString("Loading Picture. Please hang on", 25, 50);
 }

 }

There's something a little funny about how this operates. The
Image with ID 1 is not necessarily the same Image as
thePicture. There may be zero or more Image objects with ID
1, and none of them are necessarily thePicture. It's up to the
programmer to make sure the ID you check is the ID of the
Image you want to load. Although there are occasions when you
want to check one picture and display another, this is rare. There
probably should be a MediaTracker method with the signature
check(Image img), but there isn't.

9.3.3.2 public boolean checkID(int id, boolean load)

This method checks whether all the Image objects with the indicated ID that are
tracked by this MediaTracker have finished loading. If they have, it returns true;
otherwise, it returns false. Multiple Image objects may have the same ID. If the
boolean argument load is true, all images with that ID that are not yet being loaded
will begin loading.

The following paint() method checks whether the Image objects with ID 1 have
finished loading. If they have, then thePicture is drawn. Otherwise, the Image
objects with ID 1 start loading (if they aren't already), and the message "Loading
Picture. Please hang on" is displayed:

public void paint(Graphics g) {

 if (theTracker.checkID(1, true)) {
 g.drawImage(thePicture, 0, 0, this);
 }

 else {
 g.drawString("Loading Picture. Please hang on", 25, 50);
 }

 }

9.3.3.3 public boolean checkAll()

This method checks whether all the Image objects that are tracked by this object have
finished loading. ID numbers are not considered. If all images are loaded, it returns
true; otherwise, it returns false. It does not start loading images that are not already
loading.

9.3.3.4 public boolean checkAll(boolean load)

This version of checkAll() checks whether all the Image objects that are tracked by
this MediaTracker have finished loading. If they have, it returns true; otherwise, it
returns false. If the boolean argument load is true, then it also starts loading any
Image objects that are not already being loaded.

9.3.4 Waiting for Media to Load

MediaTracker is often used in conjunction with the getImage() methods of Applet
or java.awt.Toolkit. The getImage() method is called as many times as
necessary to load images. Then the MediaTracker makes sure the images have
finished loading before the program continues. You could do this yourself by loading
images in separate threads, then waiting on the threads loading the images. However,
the MediaTracker class shields you from the details and is substantially easier to use
correctly.

The next four methods start loading images tracked by the MediaTracker and then
block while waiting for the images to load. For performance reasons, each method
loads four images at a time in four separate threads. If more than four images need to
be loaded, then some of them will have to wait for others to finish first. After
invoking one of these methods, the calling thread will not continue until all the
requested images have finished loading. If you don't want your program to block
while you wait for images to download, you can call these methods inside a separate
thread.

9.3.4.1 public void waitForID(int id) throws InterruptedException

This method forces the images with the ID number id that are tracked by this
MediaTracker to start loading and then waits until each one has either finished
loading, aborted, or received an error. An InterruptedException is thrown if
another thread interrupts this thread. For example, to begin loading Image objects
with ID 1 and then wait for them to finish loading, you would write:

try {
 tracker.waitForID(1);
}
catch (InterruptedException e) {
}

Let's look at a longer example. Netscape may be infamous for foisting the <BLINK>
tag on the world, but it made some solid contributions to HTML as well. Two of the
best are the HEIGHT and WIDTH attributes of the tag. To the user, it seems much
faster to load a page that includes HEIGHT and WIDTH attributes for all its images than
one that doesn't. Actually, the time it takes to load the page is the same either way; but
browsers can start displaying text and partial images as soon as they know how much
space to reserve for each image. Consequently, if the width and height of each image
is specified in the HTML, the browser can lay out the page and display the text
immediately, without forcing the user to wait for everything to load. However, it takes
a lot of time to measure every image on a page manually and rewrite the HTML,
especially for pages that include many different size images.

Example 9.8 is a program that gets a URL from the user, reads the requested page
using an HTMLEditorKit.Parser, and outputs the HTML with HEIGHT and WIDTH
attributes added to all the tags that didn't have them. It uses the default
Toolkit object's getImage() method to retrieve the Image objects, the Image's
getWidth() and getHeight() methods to measure them, and a MediaTracker to
make sure that the height and width are available. Before the height and the width of a
particular image are read, the MediaTracker's waitForID() method is invoked to
let the image finish loading first.

Example 9.8. A Program That Adds Height and Width Tags to the IMGs on a Web Page

import javax.swing.text.*;
import javax.swing.text.html.*;
import javax.swing.text.html.parser.*;
import java.io.*;
import java.net.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;

public class ImageSizer extends HTMLEditorKit.ParserCallback {

 private Writer out;
 private URL base;

 public ImageSizer(Writer out, URL base) {
 this.out = out;
 this.base = base;
 }

 public void handleStartTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {
 try {
 out.write("<" + tag);
 this.writeAttributes(tag, attributes);
 out.write(">");
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }

 }

 public void handleEndTag(HTML.Tag tag, int position) {
 try {
 out.write("</" + tag + ">");
 if (tag.breaksFlow()) out.write("\r\n");
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 }
 }

 private void writeAttributes(HTML.Tag tag, AttributeSet attributes)
 throws IOException {

 Enumeration e = attributes.getAttributeNames();
 while (e.hasMoreElements()) {
 Object name = e.nextElement();
 String value = (String) attributes.getAttribute(name);
 out.write(" " + name + "=\"" + value + "\"");
 }
 // for the IMG tag we may have to add HEIGHT and WIDTH attributes
 if (tag == HTML.Tag.IMG) {
 try {
 if (attributes.getAttribute(HTML.Attribute.HEIGHT) == null
 || attributes.getAttribute(HTML.Attribute.WIDTH) == null) {
 URL u = new URL(base,
 (String) attributes.getAttribute(HTML.Attribute.SRC));
 Image img = Toolkit.getDefaultToolkit().getImage(u);
 Component temp = new Label();
 MediaTracker tracker = new MediaTracker(temp);
 tracker.addImage(img, 1);
 try {
 tracker.waitForID(1);
 if (attributes.getAttribute(HTML.Attribute.WIDTH) ==
null) {
 out.write(" WIDTH=\"" + img.getWidth(temp) + "\"");
 }
 if (attributes.getAttribute(HTML.Attribute.HEIGHT) ==
null) {
 out.write(" HEIGHT=\"" + img.getHeight(temp) + "\"");
 }
 }
 catch (InterruptedException ex) {
 }
 }
 }
 catch (MalformedURLException ex) {
 // SRC attribute is malformed
 }
 }

 }

 public void handleComment(char[] text, int position) {

 try {
 out.write("<!-- ");
 out.write(text);
 out.write(" -->");

 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

 public void handleText(char[] text, int position) {

 try {
 out.write(text);
 out.flush();
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }

 }

 public void handleSimpleTag(HTML.Tag tag,
 MutableAttributeSet attributes, int position) {
 try {
 out.write("<" + tag);
 this.writeAttributes(tag, attributes);
 out.write(">");
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 // The ParserGetter class is from Chapter 8
 ParserGetter kit = new ParserGetter();
 HTMLEditorKit.Parser parser = kit.getParser();

 try {
 URL u = new URL(args[0]);
 InputStream in = u.openStream();
 InputStreamReader r = new InputStreamReader(in);
 HTMLEditorKit.ParserCallback callback
 = new ImageSizer(new OutputStreamWriter(System.out), u);
 parser.parse(r, callback, false);
 }
 catch (IOException e) {
 System.err.println(e);
 e.printStackTrace();
 }

 }

 }

}

This is a standalone application that extends HTMLEditorKit.ParserCallback. It's
very similar to Example 8.10, PageSaver, in the last chapter. The only real difference
is that it adds HEIGHT and WIDTH attributes to the IMG tags rather than rewriting
attribute values. Consequently, the only significantly different part of this example is
the writeAttributes() method. If this method sees that it's dealing with an IMG tag,
it checks to see whether that tag has both HEIGHT and WIDTH attributes. If it does, then
the tag is simply copied from the input onto the output. However, if either is missing,
the method then constructs the full URL for the image and retrieves it with
Toolkit.getDefaultToolkit().getImage(). Next, a MediaTracker is created.
The MediaTracker() constructor requires an ImageObserver as an argument, so a
blank java.awt.Label is constructed to fill that role. This will also be used later as
the ImageObserver for the getWidth() and getHeight() methods. The image is
added to the tracker, and the tracker's waitForID() method is used to pause
execution until the image has actually finished loading. At this point, the image's
getWidth() and getHeight() methods are invoked, and their results are written in
the output as the value of the HEIGHT and WIDTH attributes.

9.3.4.2 public boolean waitForID(int id, long milliseconds) throws InterruptedException

This version of waitForID() begins loading all the images that are tracked by this
MediaTracker with the ID number id and then waits until each one has either
finished loading, aborted, or received an error or until the specified number of
milliseconds has passed. An InterruptedException is thrown if another thread
interrupts this thread. For example, to begin loading all Image objects with ID 1 and
wait no longer than 2 minutes (120,000 milliseconds) for them to finish loading, you
would write:

try {
 tracker.waitForID(1, 120000);
}
catch (InterruptedException e) {
}

9.3.4.3 public boolean waitForAll() throws InterruptedException

The waitForAll() method starts loading all the images that are tracked by this
MediaTracker in up to four separate threads while pausing the thread that invoked it
until each tracked image has either finished loading, aborted, or received an error. An
InterruptedException is thrown if another thread interrupts the waiting thread.

This method might be used by an animation applet that wants to load all frames before
it begins playing. The applet would add each frame to the MediaTracker and then call
waitForAll() before starting the animation. Example 9.9 is a simple applet that
does exactly this. To play an animation, an applet must download a series of images,
each of which will be one cell of the animation. Downloading the images is easy
using the URL class: just create URL objects that point to each image, and call
getImage() with each URL. Use a MediaTracker to force the images to load; then
use waitForAll() to make sure all frames have loaded. Finally, call drawImage()
to display the images in sequence.

Example 9.9 reads a list of filenames from <PARAM> tags in the applet; the parameter
names are Cell1, Cell2, Cell3, and so on. The value of the parameter Celln should
be the name of the nth file in the animation sequence. This makes it easy to retrieve an
indefinite number of images; the init() method continues reading parameters until
it finds a parameter name that doesn't exist. The applet builds URLs from the
filenames and the document base and uses getImage() to retrieve each image. The
Image objects are stored in a Vector since it's not known in advance how many there
will be. The applet assumes that the files reside in the same directory as the HTML
page; therefore, one applet on a site can play many different animations just by
changing the <PARAM> tags and the image files. When an image is retrieved, it's added
to the MediaTracker tracker, and tracker's checkID() method starts loading the
image. Then the start() method spawns a new thread to display the images in
sequence. tracker's waitForAll() method pauses the animation thread until the
images have finished loading.

Example 9.9. A Very Simple Animator Applet

import java.awt.*;
import java.awt.image.*;
import java.awt.event.*;
import java.applet.*;
import java.util.*;

public class Animator extends Applet
 implements Runnable, MouseListener {

 private boolean running = false;
 private int currentCell = 0;
 private Vector cells = new Vector();
 private MediaTracker tracker;

 public void init() {

 this.addMouseListener(this);

 String nextCell;
 this.tracker = new MediaTracker(this);
 for (int i = 0; (nextCell = this.getParameter("Cell" + i)) !=
null; i++) {
 Image img = this.getImage(this.getDocumentBase(), nextCell);
 cells.addElement(img);
 tracker.addImage(img, i);
 // start loading the image in a separate thread
 tracker.checkID(i, true);
 }

 }

 public void run() {

 // wait for all images to finish loading
 try {
 this.tracker.waitForAll();
 }
 catch (InterruptedException e) {
 }

 for (currentCell=0; currentCell < cells.size(); currentCell++)
{
 if (!running) return;
 // paint the cell
 this.repaint();
 // sleep for a tenth of a second
 // i.e. play ten frames a second
 try {
 Thread.sleep(100);
 }
 catch (InterruptedException ie) {
 }
 }

 }

 public void stop() {
 this.running = false;
 }

 public void start() {
 this.running = true;
 Thread play = new Thread(this);
 play.start();
 }

 public void paint(Graphics g) {
 g.drawImage((Image) cells.elementAt(currentCell), 0, 0, this);
 }

 // The convention is that a mouseClick starts
 // a stopped applet and stops a running applet.
 public void mouseClicked(MouseEvent e) {

 if (running) {
 this.stop();
 }
 else {
 this.start();
 }

 }

// do-nothing methods required to implement the MouseListener
interface
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}

}

It's easy to imagine ways to enhance this applet. One possibility would be sprites that
follow a path across a constant background. But whatever extensions you add, they
won't require any changes to the applet's networking code.

9.3.4.4 public boolean waitForAll(long milliseconds) throws InterruptedException

This method is similar to the previous waitForAll() method. It too starts loading
all the images that are tracked by this MediaTracker and waits until each one has
either finished loading, aborted, or received an error. However, this method times out
if the specified number of milliseconds has passed before all images are complete. It
throws an InterruptedException if another thread interrupts this thread. The
following code fragment begins loading all Image objects tracked by the
MediaTracker tracker and waits not more than 2 minutes (120,000 milliseconds)
for them to finish loading:

try {
 tracker.waitForAll(120000);
}
catch (InterruptedException e) {
}

As with any time-consuming operation, you should display some sort of progress bar
so that the user has an idea how long the operation is likely to take and give the user
an option to cancel the download.

9.3.5 Error Checking

If there is an error as an Image is loaded or scaled, then that Image is considered
"complete"; no further loading of that image's data takes place. The following
methods let you check whether an error has occurred and find out which image is at
fault. However, there are no methods that tell you what sort of error has occurred.

9.3.5.1 public boolean isErrorAny()

This method checks whether an error occurred while loading any image tracked by
this object:

if (tracker.isErrorAny()) {
 System.err.println("There was an error while loading media");
}

This method does not tell you which image failed or why. If there was an error, you
can use getErrorsAny() to find out which objects returned errors. Do not assume
that a single Image caused the error; it is common for an entire group of images to fail
to load as a result of a single error, such as a broken network connection.
Consequently, if one image failed to load, chances are others did too.

9.3.5.2 public Object[] getErrorsAny()

This method returns an array containing all the objects tracked by this MediaTracker
that encountered an error while loading. If there were no errors, it returns null:

if (tracker.isErrorAny()) {
 System.err.println("The following media failed to load:");
 Object[] failedMedia = tracker.getErrorsAny();
 for (int i = 0; i < failedMedia.length; i++) {
 System.err.println(failedMedia[i]);
 }
}

9.3.5.3 public boolean isErrorID(int id)

This method returns true if any of the media with the specified ID encountered an
error while loading; otherwise, it returns false. If there was an error, use
getErrorsID() to find out which objects returned errors. Remember, a single ID
may refer to several Image objects, any of which may have encountered errors:

if (tracker.isErrorID(2)) {
 System.err.println("An error occurred loading media with ID 2");
}

9.3.5.4 public Object[] getErrorsID(int id)

This method returns an array containing all the objects with this ID that encountered
an error while loading. If there were no errors, it returns null:

if (tracker.isErrorID(2)) {
 System.err.println("The following media failed to load:");
 Object[] failedMedia = tracker.getErrorsID(2);
 for (int i = 0; i < failedMedia.length; i++) {
 System.err.println(failedMedia[i]);
 }
}

9.3.6 Checking the Status of Media

MediaTracker has a number of methods that report the status of image groups.
Unfortunately, MediaTracker only lets you check the status of image groups, not
individual images—which is a good argument for keeping image groups small. To
report the status, the MediaTracker class defines four flag constants that are
combined to tell you whether the images in question are loading, aborted, errored out,
or completed. These constants are shown in Table 9.2.

Table 9.2. Media Status Constants
Constant Value Meaning

MediaTracker.LOADING 1 At least one image in the group is still being downloaded.
MediaTracker.ABORTED 2 The loading process aborted for at least one image in the group.

MediaTracker.ERRORED 4 An error occurred during loading for at least one image in the
group.

MediaTracker.COMPLETE 8 At least one image in the group was downloaded successfully.

These constants are compared to the values returned by the status methods to
determine whether particular conditions or combinations of conditions are true. Since
each constant is an integral power of two, each has exactly one set bit, and thus the
different constants can be easily combined with the bitwise operators to test
combinations of conditions.

9.3.6.1 public int statusAll(boolean load)

This method returns the status of all the media tracked by this MediaTracker object.
Thus to test whether any of the media tracked by MediaTracker m have finished
loading, you would write:

if ((m.statusAll(false) & MediaTracker.COMPLETED)
 == MediaTracker.COMPLETED) {

If the argument load is true, any media that have not yet begun loading will start
loading. If it is false, they will not.

9.3.6.2 public int statusID(int id, boolean load)

This method returns the status of the media sharing the ID id that are tracked by this
MediaTracker. If the load argument is true, the media with the given id will begin
loading if they haven't already started. If load is false, they won't. Thus, to test
whether any of the media tracked by MediaTracker m with ID 2 have finished loading,
you would write:

if ((m.statusAll(2, false) & MediaTracker.COMPLETED)
 == MediaTracker.COMPLETED) {...}

Because of the nature of the flags, if any of the images with ID 2 have finished
loading, this will be true. Similarly, if any of the images with ID 2 have errored out,
then the following expression will also be true:

(m.statusAll(2, false) & MediaTracker.ABORTED)
 == MediaTracker.ABORTED)

The same is true for the MediaTracker.LOADING and MediaTracker.ERRORED flags.
Because there isn't any way to check a single image (other than putting the image into
a group by itself), statusID() and statusAll() can return apparently
contradictory results. For example, if there are four images in the group, it's entirely
possible that statusID() will return the value:

MediaTracker.LOADING | MediaTracker.ABORTED | MediaTracker.ERRORED
| MediaTracker.COMPLETE

This means that, of the four images, one is still loading, one aborted, an error occurred
in another, and one loaded successfully. A single group of images can appear to
simultaneously have completed loading, still be loading, have aborted, and have
encountered an error. There is no way to test the status of a single Image if it shares an
ID with another Image. For this reason, it's probably not a good idea to let too many
images share the same ID.

9.3.7 Removing Images from MediaTrackers

Starting in Java 1.1, it is possible to remove an image from a MediaTracker using one
of the three overloaded removeImage() methods:

public void removeImage(Image image)
public void removeImage(Image image, int id)
public void removeImage(Image image, int id, int width, int height)

The first method removes all instances of the Image argument from the
MediaTracker. Most of the time, there'll be only one of these. The second variant

removes the specified image if it has the given ID. The third removes the specified
image if it has the given ID and width and height.

9.4 Network Methods of java.applet.AppletContext

AppletContext is an interface that lets an applet manipulate the environment in
which it is running. Every applet has an AppletContext field, which is a reference to
an object implementing AppletContext. In some sense, this object represents the web
browser or applet viewer that is running the applet. (In rare cases, mostly applets
started from the command line and instantiated in the main() method, the
AppletContext may be null.) To access the applet's context, call the applet's
getAppletContext() method:

public AppletContext getAppletContext()

The AppletContext must provide several methods for the use of the applet, including
getAudioClip() and getImage() methods; the getAudioClip() and
getImage() methods of java.applet.Applet merely call the corresponding
method in the applet's AppletContext. However, there are two overloaded
showDocument() methods in java.applet.AppletContext that are relevant to
network programming and are not mirrored in java.applet.Applet. The first takes
as an argument a single URL:

public void showDocument(URL url)

This method shows the document at URL url in the AppletContext's window. It is
not supported by all web browsers and applet viewers, but it is supported by Netscape,
HotJava, and Internet Explorer. This method is most useful in fancy image map
applets, where it is used to send the user to a new page after clicking on a hot button.
For example, to send the user to the O'Reilly home page, you would write:

AppletContext ac = this.getAppletContext();
try {
 URL oreillyHomePage = new URL("http://www.oreilly.com/");
 ac.showDocument(oraHomePage);
}
catch (MalformedURLException e) {
}

Most web servers allow you to redirect requests from one URL to another; this feature
can save you a lot of work when a site moves. For example, "The Well Connected
Mac" began its life at http://rever.nmsu.edu/~elharo/faq/ but eventually went
commercial at http://www.macfaq.com/. When this happened, a redirector was set up
to redirect requests for files in http://rever.nmsu.edu/~elharo/faq/ to
http://www.macfaq.com/. That way, I didn't have to update thousands of links and
references to the old site overnight. Fortunately, the old site had an exceedingly
friendly system administrator, who was willing to modify his server configuration
files to perform the necessary redirection. However, some administrators aren't so
friendly or willing to help you leave their site. In these cases, if you don't have the
privileges to modify the server configuration, you can use showDocument() to write
a simple redirector in Java that will send people along their merry way.

Example 9.10 is an applet that reads the new URL from the newhost parameter in the
HTML and sends the browser from the old site to the new site. For maximum effect,
place any text that should appear on the page between the opening and closing
<APPLET> tags. This way, people with Java-capable browsers will be redirected
without realizing they took a roundabout route.

Example 9.10. Redirector

import java.applet.*;
import java.net.*;

public class Redirector extends Applet {

 public void init() {

 AppletContext ac = getAppletContext();
 URL oldURL = this.getDocumentBase();
 try {
 URL newURL = new URL(this.getParameter("newhost")
 + oldURL.getFile());
 ac.showDocument(newURL);
 }
 catch (MalformedURLException e) {
 }

 }

}

The Redirector class is extremely simple. It reads the newhost parameter from a
<PARAM> tag in the HTML file, adds the name of the file being requested, and
constructs a new URL. It then calls showDocument() to jump to the new URL.

The second overloaded variant of the showDocument() method lets you pick where
you want the document to be shown:

public void showDocument(URL url, String frameName)

This method displays the document at the URL url in the HTML frame with the
specified name. If no such frame exists, then Java looks for another browser window
with that name. If no such window exists, then a new window is created with the
specified name. The name given as an argument here is not the title of the browser
window but the name given to it by Java when it created the window the first time.
This method is not supported by all web browsers and applet viewers. However, it is
supported by Netscape, HotJava, and Internet Explorer. Here's a typical use:

AppletContext ac = this.getAppletContext();
ac.showDocument(new URL("http://www.oreilly.com/"), "main");

There are four special strings you can use for the frameName argument. These define
where the document is shown rather than the title of the window. Table 9.3 lists the
different possible target strings.

Table 9.3. Targets for showDocument()

String Target
_self Show the document in the current frame (the frame containing the applet).

_
parent

Show the document in the parent of the current frame; that is, the FRAME element whose
SRC attribute points to the document containing this frame's FRAMESET element; this is the
same as _top in a page that doesn't use frames.

_top Show the document in the current window, replacing all existing frames and documents in
that window.

_blank Show the document in a new, unnamed, top-level window.

For example, to send the browser to the O'Reilly home page in a new window, you
might write:

AppletContext ac = getAppletContext();
try {
 URL oreillyHomePage = new URL("http://www.oreilly.com/");
 ac.showDocument(oreillyHomePage, "_blank");
}
catch (Exception e) {
}

There are many uses for the showDocument() methods. Programmers have written
fancy image map applets that respond to cursor position by showing ToolTips,
highlighting the current selection, or displaying menus of sub-pages. When an actual
selection is made, the applet uses showDocument() to send the browser to the
requested page. Applet-based slide shows move from page to page automatically
under the control of a timing thread. One of the more notorious uses of these applets is
to pop up multiple windows on porn sites even after the user has closed the original
window. Some of the more basic uses of redirection can now be handled with
JavaScript, but Java applets do allow much more sophisticated user interfaces for
these programs and do make it much easier to store state in the applet as the browser
moves from page to page.

Chapter 10. Sockets for Clients
Data is transmitted across the Internet in packets of finite size called datagrams. Each
datagram contains a header and a payload. The header contains the address and port
to which the packet is going, the address and port from which the packet came, and
various other housekeeping information used to ensure reliable transmission. The
payload contains the data itself. However, since datagrams have finite length, it's
often necessary to split the payload across multiple packets and reassemble it at the
destination. It's also possible that one or more packets may be lost or corrupted in
transit and need to be retransmitted or that packets will arrive out of order. Keeping
track of this—splitting the payload into packets, generating headers, parsing the
headers of incoming packets, keeping track of what packets have and haven't been
received, etc.—is a lot of work and requires a lot of intricate code.

Fortunately, you don't have to do the work yourself. Sockets are an innovation of
Berkeley Unix that allow the programmer to treat a network connection as just
another stream onto which bytes can be written and from which bytes can be read.
Historically, sockets are an extension of one of Unix's most important ideas: that all
I/O should look like file I/O to the programmer, whether you're working with a

keyboard, a graphics display, a regular file, or a network connection. Sockets shield
the programmer from low-level details of the network, such as media types, packet
sizes, packet retransmission, network addresses, and more. This abstraction has
proved to be immensely useful and has long since traveled from its origins in
Berkeley Unix to all breeds of Unix, plus Windows, the Macintosh, and of course
Java.

10.1 Socket Basics

A socket is a connection between two hosts. It can perform seven basic operations:

• Connect to a remote machine
• Send data
• Receive data
• Close a connection
• Bind to a port
• Listen for incoming data
• Accept connections from remote machines on the bound port

Java's Socket class, which is used by both clients and servers, has methods that
correspond to the first four of these operations. The last three operations are needed
only by servers, which wait for clients to connect to them. They are implemented by
the ServerSocket class, which is discussed in the next chapter. Java programs
normally use client sockets in the following fashion:

1. The program creates a new socket with a Socket() constructor.
2. The socket attempts to connect to the remote host.
3. Once the connection is established, the local and remote hosts get input and

output streams from the socket and use those streams to send data to each
other. This connection is full-duplex; both hosts can send and receive data
simultaneously. What the data means depends on the protocol; different
commands are sent to an FTP server than to an HTTP server. There will
normally be some agreed-upon hand-shaking followed by the transmission of
data from one to the other.

4. When the transmission of data is complete, one or both sides close the
connection. Some protocols, such as HTTP 1.0, require the connection to be
closed after each request is serviced. Others, such as FTP, allow multiple
requests to be processed in a single connection.

10.2 Investigating Protocols with Telnet

In this chapter, you'll see clients that use sockets to communicate with a number of
well-known Internet services such as HTTP, echo, and more. The sockets themselves
are simple enough; however, the protocols to communicate with different servers
make life complex.

To get a feel for how a protocol operates, you can use Telnet to connect to a server,
type different commands to it, and watch its responses. By default, Telnet attempts to
connect to port 23. To connect to servers on different ports, specify the port you want
to connect to like this:[1]

[1] This example and the other examples using Telnet assume that you're using a Unix system. However, Telnet
clients are available for all common operating systems, and they are all pretty similar; for example, on Windows,
you might have to type the hostname and the port into a dialog box rather than on the command-line, but
otherwise, the clients work the same.

% telnet localhost 25

This example requests a connection to port 25, the SMTP port, on the local machine;
SMTP is the protocol used to transfer email between servers or between a mail client
and a server. If you know the commands to interact with an SMTP server, you can
send email without going through a mail program. This trick can be used to forge
email. For example, a few years ago, the summer students at the National Solar
Observatory in Sunspot, New Mexico, made it appear that the party that one of the
scientists was throwing after the annual volleyball match between the staff and the
students was in fact a victory party for the students. (Of course, the author of this
book had absolutely nothing to do with such despicable behavior. ;-)) The interaction
with the SMTP server went something like this; input that you type is shown in bold
(the names have been changed to protect the gullible):

flare% telnet localhost 25
Trying 127.0.0.1 ...
Connected to localhost.sunspot.noao.edu.
Escape character is '^]'.
220 flare.sunspot.noao.edu Sendmail 4.1/SMI-4.1 ready at Fri, 5 Jul
93 13:13:01 MDT
HELO sunspot.noao.edu
250 flare.sunspot.noao.edu Hello localhost [127.0.0.1], pleased to
meet you
MAIL FROM: bart
250 bart... Sender ok
RCPT TO: local@sunspot.noao.edu
250 local@sunspot.noao.edu... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself

In a pitiful attempt to reingratiate myself with the students
after their inevitable defeat of the staff on the volleyball
court at 4:00 P.M., July 24, I will be throwing a victory
party for the students at my house that evening at 7:00.
Everyone is invited.

Beer and Ben-Gay will be provided so the staff may drown
their sorrows and assuage their aching muscles after their
public humiliation.

Sincerely,

Bart
.
250 Mail accepted
QUIT
221 flare.sunspot.noao.edu delivering mail
Connection closed by foreign host.

Several members of the staff asked Bart why he, a staff member, was throwing a
victory party for the students. The moral of this story is that you should never trust
email, especially patently ridiculous email like this, without independent verification.
The other moral of this story is that you can use Telnet to simulate a client, see how

the client and the server interact, and thus learn what your Java program needs to do.
Although this session doesn't demonstrate all the features of the SMTP protocol, it's
sufficient to enable you to deduce how a simple email client talks to a server.

10.3 The Socket Class

The java.net.Socket class is Java's fundamental class for performing client-side
TCP operations. Other client-oriented classes that make TCP network connections,
such as URL, URLConnection, Applet, and JEditorPane, all ultimately end up
invoking the methods of this class. This class itself uses native code to communicate
with the local TCP stack of the host operating system. The methods of the Socket
class set up and tear down connections and set as various socket options. Because
TCP sockets are more or less reliable connections, the interface that the Socket class
provides to the programmer is streams. The actual reading and writing of data over the
socket is accomplished via the familiar stream classes.

10.3.1 The Constructors

The four nondeprecated public Socket constructors are simple. Each lets you specify
the host and the port you want to connect to. Hosts may be specified as an
InetAddress or a String. Ports are always specified as int values from to 65,535.
Two of the constructors also specify the local address and local port from which data
will be sent. You might need to do this when you want to select one particular
network interface from which to send data on a multihomed host.

In Java 1.1 and later, the Socket class also has two protected constructors. Network
clients and servers will probably never need to use these; they become important if
you're creating a subclass of Socket (perhaps to implement a new type of socket that
automatically performs encryption, authentication, or data compression).

10.3.1.1 public Socket(String host, int port) throws UnknownHostException,
IOException

This constructor creates a TCP socket to the specified port on the specified host and
attempts to connect to the remote host. For example:

try {
 Socket toOReilly = new Socket("www.oreilly.com", 80);
 // send and receive data...
}
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

In this constructor, the host argument is just a hostname—expressed as a String,
not a URL such as http://www.oreilly.com—or an InetAddress object. If the domain-
name server cannot resolve the hostname or is not functioning, the constructor throws
an UnknownHostException. If the socket cannot be opened for some other reason, the
constructor throws an IOException. There are many reasons a connection attempt

might fail: the host you're trying to reach may not be accepting connections, a dialup
Internet connection may be down, or routing problems may be preventing your
packets from reaching their destination.

Since this constructor doesn't just create a Socket object but also tries to connect the
socket to the remote host, you can use the object to determine whether connections to
a particular port are allowed, as in Example 10.1:

Example 10.1. Find Out Which of the First 1,024 Ports Seem to Be Hosting TCP Servers
on a Specified Host (the Local Host by Default)

import java.net.*;
import java.io.*;

public class LowPortScanner {

 public static void main(String[] args) {

 String host = "localhost";

 if (args.length > 0) {
 host = args[0];
 }
 for (int i = 1; i < 1024; i++) {
 try {
 Socket s = new Socket(host, i);
 System.out.println("There is a server on port " + i + " of "
 + host);
 }
 catch (UnknownHostException e) {
 System.err.println(e);
 break;
 }
 catch (IOException e) {
 // must not be a server on this port
 }
 } // end for

 } // end main

} // end PortScanner

Here's the output this program produces on my local host. Your results will vary,
depending on which ports are occupied. As a rule, more ports will be occupied on a
Unix workstation than on a PC or a Mac:

% java LowPortScanner
There is a server on port 21 of localhost
There is a server on port 22 of localhost
There is a server on port 23 of localhost
There is a server on port 25 of localhost
There is a server on port 37 of localhost
There is a server on port 111 of localhost
There is a server on port 139 of localhost
There is a server on port 210 of localhost
There is a server on port 515 of localhost
There is a server on port 873 of localhost

If you're curious about what servers are running on these ports, try experimenting with
Telnet. On a Unix system, you may be able to find out which services reside on which
ports by looking in the file /etc/services. If LowPortScanner finds any ports that are
running servers but are not listed in /etc/services, then that's interesting.

Although this program looks simple, it's not without its uses. The first step to securing
a system is understanding it. This program helps you understand what your system is
doing so that you can find (and close) possible entrance points for attackers. You may
also find rogue servers: for example, LowPortScanner might tell you that there's a
server on port 800, which, on further investigation, turns out to be an HTTP server
somebody is running to serve erotic GIFs, and which is saturating your T1. However,
like most security tools, this program can be misused. Don't use LowPortScanner to
probe a machine you do not own; most system administrators would consider that a
hostile act.

10.3.1.2 public Socket(InetAddress host, int port) throws IOException

Like the previous constructor, this constructor creates a TCP socket to the specified
port on the specified host and tries to connect. It differs by using an InetAddress
object (discussed in Chapter 6) to specify the host rather than a hostname. It throws an
IOException if it can't connect, but does not throw an UnknownHostException; if
the host is unknown, you will find out when you create the InetAddress object. For
example:

try {
 InetAddress OReilly = InetAddress.getByName("www.oreilly.com");
 Socket OReillySocket = new Socket(OReilly, 80);
 // send and receive data...
}
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

In the rare case where you open many sockets to the same host, it is more efficient to
convert the hostname to an InetAddress and then repeatedly use that InetAddress
to create sockets. Example 10.2 uses this technique to improve on the efficiency of
Example 10.1.

Example 10.2. Find Out Which of the Ports at or Above 1,024 Seem to Be Hosting TCP
Servers

import java.net.*;
import java.io.*;

public class HighPortScanner {

 public static void main(String[] args) {

 String host = "localhost";

 if (args.length > 0) {
 host = args[0];
 }

 try {
 InetAddress theAddress = InetAddress.getByName(host);
 for (int i = 1024; i < 65536; i++) {
 try {
 Socket theSocket = new Socket(theAddress, i);
 System.out.println("There is a server on port "
 + i + " of " + host);
 }
 catch (IOException e) {
 // must not be a server on this port
 }
 } // end for
 } // end try
 catch (UnknownHostException e) {
 System.err.println(e);
 }

 } // end main

} // end HighPortScanner

The results are much the same as before, except that HighPortScanner checks ports
above 1023.

10.3.1.3 public Socket(String host, int port, InetAddress interface, int localPort) throws
IOException

This constructor creates a socket to the specified port on the specified host and tries to
connect. It connects to the host and port specified in the first two arguments. It
connects from the local network interface and port specified by the last two arguments.
The network interface may be either physical (e.g., a different Ethernet card) or
virtual (a multihomed host). If is passed for the localPort argument, Java chooses a
random available port between 1024 and 65,535. For example, if I were running a
program on metalab.unc.edu and wanted to make sure that my connection went over
its 100 megabit-per-second (Mbps) fiber-optic interface (fddisunsite.oit.unc.edu)
instead of the 10Mbps Ethernet interface (helios.oit.unc.edu), I would open a socket
like this:

try {
 InetAddress fddi = InetAddress.getByName("fddisunsite.oit.unc.edu");
 Socket OReillySocket = new Socket("www.oreilly.com", 80, fddi, 0);
 // work with the sockets...
}
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

By passing 0 for the local port number, I say that I don't care which port is used but I
do want to use the FDDI network interface.

This constructor can throw an IOException for all the usual reasons given in the
previous constructors. Furthermore, an IOException (specifically, an
UnknownHostException, though that's not declared in the throws clause of this
constructor) will also be thrown if the String host cannot be located.

Finally, an IOException (probably a BindException, though again that's just a
subclass of IOException and not specifically declared in the throws clause of this
method) will be thrown if the socket is unable to bind to the requested local network
interface. This tends to limit the portability of applications that use this constructor.
You could take deliberate advantage of this to restrict a compiled program to run on
only a predetermined host. This would require customizing distributions for each
computer and is certainly overkill for cheap products. Furthermore, Java programs are
so easy to disassemble, decompile, and reverse engineer that this scheme is far from
foolproof. Nonetheless, it might be part of a scheme to enforce a software license or to
prevent disgruntled employees from emailing your proprietary software to your
competitors.

10.3.1.4 public Socket(InetAddress host, int port, InetAddress interface, int localPort)
throws IOException

This constructor is identical to the previous one except that the host to connect to is
passed as an InetAddress, not a String. It creates a TCP socket to the specified port
on the specified host from the specified interface and local port, and tries to connect.
If it fails, it throws an IOException. For example:

try {
 InetAddress metalab = InetAddress.getByName("metalab.unc.edu");
 InetAddress oreilly = InetAddress.getByName("www.oreilly.com");
 Socket oreillySocket = new Socket(oreilly, 80, metalab, 0);
}
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

10.3.1.5 protected Socket()

The Socket class also has two protected constructors that initialize the superclass
without connecting the socket. You use these if you're subclassing Socket, perhaps to
implement a special kind of socket that encrypts transactions or understands your
local proxy server. Most of your implementation of a new socket class will be written
in a SocketImpl object.

The noargs Socket() constructor, available only in Java 1.1, installs the default
SocketImpl (from either the factory or a java.net.PlainSocketImpl). It creates a
new Socket without connecting it, and is usually called by subclasses of
java.net.Socket. In Java 1.0, java.net.Socket is declared final so it cannot be
subclassed, and this constructor does not exist.

10.3.1.6 protected Socket(SocketImpl impl)

This constructor, available only in Java 1.1 and later, installs the SocketImpl object
impl when it creates the new Socket object. The Socket object is created but is not
connected. This constructor is usually called by subclasses of java.net.Socket. In
Java 1.0, java.net.Socket is final so it cannot be subclassed, and this constructor
does not exist. You can pass null to this constructor if you don't need a SocketImpl.
However, in this case, you must override all the base class methods that depend on the
underlying SocketImpl.

Java also has two Socket constructors that were deprecated
starting in Java 1.1:

public Socket(String host, int port,
 boolean useStreams) throws IOException
public Socket(InetAddress host, int port,
 boolean useStreams) throws IOException

These constructors allowed the programmer to specify whether
the socket was to be used for reliable, connection-oriented TCP
stream traffic or unreliable UDP datagram traffic. If the
useStreams argument is true, then the TCP datagrams are
combined into a reliable stream of data, just as is done by all the
other Socket constructors. However, if useStreams is false,
then the socket transmits data as UDP datagrams instead.

These constructors have been deprecated starting with Java 1.1,
and their inclusion in Java 1.0 was probably a mistake in the first
place. Sockets are normally thought of as applying to TCP traffic
only, and there are two entire other Java classes to handle UDP
traffic (which will be discussed in Chapter 13). This constructor
was always on the flaky side. The documentation for these
constructors was never very clear. Different versions of the Java
1.0 documentation said different things about how this
constructor was used, and you had to dig into the source code to
figure out what was really happening.

10.3.2 Getting Information About a Socket

To the programmer, Socket objects appear to have several private fields that are
accessible through various getter methods. Actually, sockets have only one field, a
SocketImpl; the fields that appear to belong to the Socket actually reflect native
code in the SocketImpl. This way, socket implementations can be changed without
disturbing the program; for example, to support firewalls and proxy servers. The
actual SocketImpl in use is almost completely transparent to the programmer.

10.3.2.1 public InetAddress getInetAddress()

Given a Socket object, the getInetAddress() method tells you which remote host
the Socket is connected to or, if the connection is now closed, which host the Socket
was connected to when it was connected. For example:

try {
 Socket theSocket = new Socket("java.sun.com", 80);
 InetAddress host = theSocket.getInetAddress();
 System.out.println("Connected to remote host " + host);
} // end try
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

10.3.2.2 public int getPort()

The getPort() method tells you which port the Socket is (or was or will be)
connected to on the remote host. For example:

try {
 Socket theSocket = new Socket("java.sun.com", 80);
 int port = theSocket.getPort();
 System.out.println("Connected on remote port " + port);
} // end try
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

10.3.2.3 public int getLocalPort()

There are two ends to a connection: the remote host and the local host. To find the
port number for the local end of a connection, call getLocalPort(). For example:

try {
 Socket theSocket = new Socket("java.sun.com", 80, true);
 int localPort = theSocket.getLocalPort();
 System.out.println("Connecting from local port " + localPort);
} // end try
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

Unlike the remote port, which (for a client socket) is usually a "well-known port" that
has been preassigned by a standards committee, the local port is usually chosen by the
system at runtime from the available unused ports. This way, many different clients
on a system can access the same service at the same time. The local port is embedded
in outbound IP packets along with the local host's IP address, so the server can send
data back to the right port on the client.

10.3.2.4 public InetAddress getLocalAddress()

The getLocalAddress() method tells you which network interface a socket is
bound to. You normally use this on a multihomed host, or one with multiple network
interfaces. For example:

try {
 Socket theSocket = new Socket(hostname, 80);
 InetAddress localAddress = theSocket.getLocalAddress();
 System.out.println("Connecting from local address " + localAddress);
} // end try
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

Example 10.3 reads a list of hostnames from the command-line, attempts to open a
socket to each one, and then uses these four methods to print the remote host, the
remote port, the local address, and the local port.

Example 10.3. Get a Socket's Information

import java.net.*;
import java.io.*;

public class SocketInfo {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 Socket theSocket = new Socket(args[i], 80);
 System.out.println("Connected to " +
theSocket.getInetAddress()
 + " on port " + theSocket.getPort() + " from port "
 + theSocket.getLocalPort() + " of "
 + theSocket.getLocalAddress());
 } // end try
 catch (UnknownHostException e) {
 System.err.println("I can't find " + args[i]);
 }
 catch (SocketException e) {
 System.err.println("Could not connect to " + args[i]);
 }
 catch (IOException e) {
 System.err.println(e);
 }

 } // end for

 } // end main

} // end SocketInfo

Here's the result. I included www.oreilly.com on the command-line twice to
demonstrate that each connection was assigned a different local port, regardless of the

remote host; the local port assigned to any connection is unpredictable and depends
mostly on what other ports are in use. The connection to shock.njit.edu failed because
that machine does not run any servers on port 80:

% java SocketInfo www.oreilly.com www.oreilly.com www.macfaq.com
shock.njit.edu
Connected to www.oreilly.com/198.112.208.23 on port 80 from port
46770 of calzone.
oit.unc.edu/152.2.22.81
Connected to www.oreilly.com/198.112.208.23 on port 80 from port
46772 of calzone.
oit.unc.edu/152.2.22.81
Connected to www.macfaq.com/204.162.81.201 on port 80 from port 46773
of calzone.
oit.unc.edu/152.2.22.81
Could not connect to shock.njit.edu

10.3.2.5 public InputStream getInputStream() throws IOException

The getInputStream() method returns an input stream that can read data from the
socket into a program. You usually chain this InputStream to a filter stream or reader
that offers more functionality—DataInputStream or InputStreamReader, for
example—before reading input. It's also extremely helpful to buffer the input by
chaining it to a BufferedInputStream or a BufferedReader for performance
reasons.

Now that we can get an input stream, we can read data from a socket and start
experimenting with some actual Internet protocols. One of the simplest protocols is
called "daytime", and is defined in RFC 867. There's almost nothing to it. The client
opens a socket to port 13 on the daytime server. In response, the server sends the time
in a human-readable format and closes the connection. You can test the daytime
server with Telnet like this:

% telnet tock.usno.navy.mil 13
Trying 198.116.61.158...
Connected to tock.usno.navy.mil.
Escape character is '^]'.
Thu Sep 9 16:09:00 1999
Connection closed by foreign host.

The line "Thu Sep 9 16:09:00 1999" is sent by the daytime server; when you read
your Socket's InputStream, this is what you will get. The other lines are produced
either by the Unix shell or by the Telnet program. Example 10.4 uses the
InputStream returned by getInputStream() to read the time sent by the daytime
server.

The daytime protocol doesn't specify the format for the time it
returns. Therefore, it is difficult to convert the character data that
the server returns to a Java Date in a reliable fashion. If you
want to create a Date object based on the time at the server, it's
easier to use the time protocol from RFC 868 instead, which
does specify a format for the time.

Example 10.4. A Daytime Protocol Client

import java.net.*;
import java.io.*;

public class DaytimeClient {

 public static void main(String[] args) {

 String hostname;

 if (args.length > 0) {
 hostname = args[0];
 }
 else {
 hostname = "tock.usno.navy.mil";
 }

 try {
 Socket theSocket = new Socket(hostname, 13);
 InputStream timeStream = theSocket.getInputStream();
 StringBuffer time = new StringBuffer();
 int c;
 while ((c = timeStream.read()) != -1) time.append((char) c);
 String timeString = time.toString().trim();
 System.out.println("It is " + timeString + " at " + hostname);
 } // end try
 catch (UnknownHostException e) {
 System.err.println(e);
 }
 catch (IOException e) {
 System.err.println(e);
 }

 } // end main

} // end DaytimeClient

DaytimeClient reads the hostname of a daytime server from the command-line and
uses it to construct a new Socket that connects to port 13 on the server. If the
hostname is omitted, then the U.S. Naval Observatory's standard time server at
tock.usno.navy.mil is used. The client then calls theSocket.getInputStream() to
get theSocket's input stream, which is stored in the variable timeStream. Since the
daytime protocol specifies ASCII, DaytimeClient doesn't bother chaining a reader to
the stream. Instead, it just reads the bytes into a StringBuffer one at a time, breaking
when the server closes the connection as the protocol requires it to do. Here's what
happens:

% java DaytimeClient
It is Thu Sep 9 17:08:47 1999 at tock.usno.navy.mil
% java DaytimeClient vision.poly.edu
It is Thu Sep 9 13:04:55 1999 at vision.poly.edu

You can see that the clocks on the tock.usno.navy.mil and vision.poly.edu aren't
synchronized, even after accounting for time zone differences. Differences of a few
seconds can also be caused by the time it takes packets to travel across the Internet.
For more details about network timekeeping, see http://tycho.usno.navy.mil/.

When reading data from the network, it's important to keep in mind that not all
protocols use ASCII or even text. For example, the time protocol specified in RFC
868 specifies that the time be sent as the number of seconds since midnight, January 1,
1900 Greenwich Mean Time. However, this is not sent as an ASCII string like
"2,524,521,600" or "-1297728000". Rather, it is sent as a 32-bit, unsigned, big-endian
binary number.[2] Since this isn't text, you can't easily use Telnet to test such a service,
and your program can't read the server response with a Reader or any sort of
readLine() method. A Java program that connects to time servers must read the
raw bytes and interpret them appropriately. In this example that's complicated by
Java's lack of a 32-bit unsigned integer type. Consequently, you have to read the bytes
one at a time and manually convert them into a long using the bitwise operators <<
and |. Example 10.5 demonstrates. When speaking other protocols, you may
encounter data formats even more alien to Java. For instance, a few network protocols
use 64-bit fixed point numbers. There's no shortcut to handle all possible cases. You
simply have to grit your teeth and code the math you need to handle the data in
whatever format the server sends.

[2] The RFC never actually comes out and says that this is the format used. It specifies 32 bits and assumes you
know that all network protocols use big-endian numbers. That the number is unsigned can be determined only by
calculating the wraparound date for signed and unsigned integers and comparing it to the date given in the
specification (2036). To make matters worse, the specification actually gives an example of a negative time that
can't actually be sent by time servers that follow the protocol. Time is a fairly old protocol, standardized in the
early 1980s before the IETF was as careful about such issues as it is today. Nonetheless, if you find yourself
implementing a not particularly well-specified protocol, you may have to do a significant amount of testing
against existing implementations to figure out what you need to do. In the worst case, different existing
implementations may behave differently.

Example 10.5. A Time Protocol Client

import java.net.*;
import java.io.*;
import java.util.*;

public class TimeClient {

 public final static int DEFAULT_PORT = 37;

 public static void main(String[] args) {

 String hostname;
 int port = DEFAULT_PORT;

 if (args.length > 0) {
 hostname = args[0];
 }
 else {
 hostname = "tock.usno.navy.mil";
 }

 if (args.length > 1) {
 try {
 port = Integer.parseInt(args[1]);
 }
 catch (NumberFormatException e) {
 }
 }

 // The time protocol sets the epoch at 1900,
 // the java Date class at 1970. This number

 // converts between them.

 long differenceBetweenEpochs = 2208988800L;

 // If you'd rather not use the magic number uncomment
 // the following section which calculates it directly.

 /*
 TimeZone gmt = TimeZone.getTimeZone("GMT");
 Calendar epoch1900 = Calendar.getInstance(gmt);
 epoch1900.set(1900, 01, 01, 00, 00, 00);
 long epoch1900ms = epoch1900.getTime().getTime();
 Calendar epoch1970 = Calendar.getInstance(gmt);
 epoch1970.set(1970, 01, 01, 00, 00, 00);
 long epoch1970ms = epoch1970.getTime().getTime();

 long differenceInMS = epoch1970ms - epoch1900ms;
 long differenceBetweenEpochs = differenceInMS/1000;
 */

 InputStream raw = null;
 try {
 Socket theSocket = new Socket(hostname, port);
 raw = theSocket.getInputStream();

 long secondsSince1900 = 0;
 for (int i = 0; i < 4; i++) {
 secondsSince1900 = (secondsSince1900 << 8) | raw.read();
 }

 long secondsSince1970
 = secondsSince1900 - differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);

 System.out.println("It is " + time + " at " + hostname);

 } // end try
 catch (UnknownHostException e) {
 System.err.println(e);
 }
 catch (IOException e) {
 System.err.println(e);
 }
 finally {
 try {
 if (raw != null) raw.close();
 }
 catch (IOException e) {}
 }

 } // end main

} // end TimeClient

Here's the output of this program from a couple of sample runs. Since the time
protocol specifies Greenwich Mean Time, the previous differences between time
zones are eliminated. Most of the difference that's left simply reflects the clock drift
between the two machines:

% java TimeClient
It is Thu Sep 09 10:20:47 PDT 1999 at tock.usno.navy.mil
% java TimeClient vision.poly.edu
It is Thu Sep 09 10:16:55 PDT 1999 at vision.poly.edu

Like DaytimeClient, TimeClient reads the hostname of the server and an optional
port from the command-line and uses it to construct a new Socket that connects to
that server. If the user omits the hostname, then TimeClient defaults to
tock.usno.navy.mil. The default port is 37. The client then calls
theSocket.getInputStream() to get theSocket's input stream, which is stored in
the variable raw. Four bytes are read from this stream and used to construct a long that
represents the value of those four bytes interpreted as a 32-bit unsigned integer. This
gives the number of seconds that have elapsed since 12:00 A.M., January 1, 1900
GMT (the time protocol's epoch); 2,208,988,800 seconds are subtracted from this
number to get the number of seconds since 12:00 A.M., January 1, 1970 GMT (the
Java Date class epoch). This number is multiplied by 1,000 to convert it into
milliseconds. Finally, that number of milliseconds is converted into a Date object,
which can be printed to show the current time and date.

10.3.2.6 public OutputStream getOutputStream() throws IOException

The getOutputStream() method returns a raw OutputStream for writing data from
your application to the other end of the socket. You usually chain this stream to a
more convenient class like DataOutputStream or OutputStreamWriter before using
it. For performance reasons, it's a good idea to buffer it as well. For example:

OutputStreamWriter out;
try {
 Socket http = new Socket("www.oreilly.com", 80)
 OutputStream raw = http.getOutputStream();
 OutputStream buffered = new BufferedOutputStream(raw);
 out = new OutputStreamWriter(buffered, "ASCII");
 out.write("GET / HTTP 1.0\r\n\r\n");
 // read the server response...
}
catch (Exception e) {
 System.err.println(e);
}
finally {
 try {
 out.close();
 }
 catch (Exception e) {}
}

The echo protocol, defined in RFC 862, is one of the simplest interactive TCP
services. The client opens a socket to port 7 on the echo server and sends data. The
server sends the data back. This continues until the client closes the connection. The
echo protocol is useful for testing the network to make sure that data is not mangled
by a misbehaving router or firewall. You can test echo with Telnet like this:

% telnet localhost 7
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

This is a test
This is a test
This is another test
This is another test
9876543210
9876543210
^]
telnet> close
Connection closed.
%

Example 10.6 uses getOutputStream() and getInputStream() to implement a
simple echo client. The user types input on the command-line, which is then sent to
the server. The server echoes it back. The program exits when the user types a period
on a line by itself. The echo protocol does not specify a character encoding. Indeed,
what it specifies is that the data sent to the server is exactly the data returned by the
server. The server echoes the raw bytes, not the characters they represent. Thus this
program uses the default character encoding and line separator of the client system for
reading the input from System.in, sending the data to the remote system, and typing
the output on System.out. Since an echo server echoes exactly what is sent, it's as if
the server dynamically adjusts itself to the client system's conventions for character
encoding and line breaks. Consequently, we can use convenient classes and methods
like PrintWriter and readLine() that would normally be too unreliable.

Example 10.6. An Echo Client

import java.net.*;
import java.io.*;

public class EchoClient {

 public static void main(String[] args) {

 String hostname = "localhost";

 if (args.length > 0) {
 hostname = args[0];
 }

 PrintWriter out = null;
 BufferedReader networkIn = null;
 try {
 Socket theSocket = new Socket(hostname, 7);
 networkIn = new BufferedReader(
 new InputStreamReader(theSocket.getInputStream()));
 BufferedReader userIn = new BufferedReader(
 new InputStreamReader(System.in));
 out = new PrintWriter(theSocket.getOutputStream());
 System.out.println("Connected to echo server");

 while (true) {
 String theLine = userIn.readLine();
 if (theLine.equals(".")) break;
 out.println(theLine);
 out.flush();
 System.out.println(networkIn.readLine());
 }

 } // end try
 catch (IOException e) {
 System.err.println(e);
 }
 finally {
 try {
 if (networkIn != null) networkIn.close();
 if (out != null) out.close();
 }
 catch (IOException e) {}
 }

 } // end main

} // end EchoClient

As usual, EchoClient reads the host to connect to from the command line. The
hostname is used to create a new Socket object on port 7, called theSocket. The
socket's InputStream is returned by getInputStream() and chained to an
InputStreamReader, which is chained to a BufferedReader called networkIn. This
reader reads the server responses. Since this client also needs to read input from the
user, it creates a second BufferedReader, this one called userIn, which reads from
System.in. Next, EchoClient calls theSocket.getOutputStream() to get
theSocket's output stream, which is used to construct a new PrintWriter called out.

Now that the three streams have been created, it's simply a matter of reading from
userIn and writing whatever the user types to out. Once data has been sent to the
echo server, networkIn waits for a response. When networkIn receives a response,
it's printed on System.out. In theory, this client could get hung waiting for a response
that never comes. However, this is unlikely if the connection can be made in the first
place, since the TCP protocol checks for bad packets and automatically asks the
server for replacements. When we implement a UDP echo client in Chapter 13, we
will need a different approach because UDP does no error checking. Here's a sample
run:

% java EchoClient photon.poly.edu
Connected to echo server
Hello
Hello
How are you?
How are you?
I'm fine thank you.
I'm fine thank you.
Goodbye
Goodbye
.

Example 10.7 is line-oriented. It reads a line of input from the console, sends it to the
server, then waits to read a line of output it gets back. However, the echo protocol
doesn't require this. It echoes each byte as it receives it. It doesn't really care whether
those bytes represent characters in some encoding or are divided into lines. Java does
not allow you to put the console into "raw" mode, where each character is read as
soon as it's typed instead of waiting for the user to press the Enter key. Consequently,
if you want to explore the more immediate echo responses, you must provide a

nonconsole interface. You also have to separate the network input from user input and
network output. This is because the connection is full duplex but may be subject to
some delay. If the Internet's running slow, the user may be able to type and send
several characters before the server returns the first one. Then the server may return
several bytes all at once. Unlike many protocols, echo does not specify lockstep
behavior where the client sends a request but then waits for the full server response
before sending any more data. The simplest way to handle such a protocol in Java is
to place network input and output in separate threads.

10.3.3 Closing the Socket

That's almost everything you need to know about client-side sockets. When you're
writing a client application, almost all the work goes into handling the streams and
interpreting the data. The sockets themselves are very easy to work with; all the hard
parts are hidden. That is one reason sockets are such a popular paradigm for network
programming. After we cover a couple of remaining methods, you'll know everything
you need to know to write TCP clients.

10.3.3.1 public synchronized void close() throws IOException

Until now, our examples have assumed that sockets close on their own; they haven't
done anything to clean up after themselves. It is true that a socket is closed
automatically when one of its two streams is closed, when the program ends, or when
it's garbage collected. However, it is a bad practice to assume that the system will
close sockets for you, especially for programs that may run for an indefinite period of
time. In a socket-intensive program like a web browser, the system may well hit its
maximum number of open sockets before the garbage collector kicks in. The port
scanner programs of Example 10.1 and Example 10.2 are particularly bad offenders in
this respect, since it may take a long time for the program to run through all the ports.
Shortly, we'll write a new version that doesn't have this problem.

When you're through with a socket, you should call its close() method to
disconnect. Ideally, you put this in a finally block so that the socket is closed
whether or not an exception is thrown. The syntax is straightforward:

Socket connection = null;
try {
 Socket connection = new Socket("www.oreilly.com", 13);
 // interact with the socket
} // end try
catch (UnknownHostException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}
finally {
 if (connection != null) connection.close();
}

Once a Socket has been closed, its InetAddress, port number, local address, and
local port number are still accessible through the getInetAddress(), getPort(),
getLocalAddress(), and getLocalPort() methods. However, although you can

still call getInputStream() or getOutputStream(), attempting to read data from
the InputStream or write data to the OutputStream throws an IOException.

Example 10.7 is a revision of the PortScanner program that closes each socket once
it's through with it. It does not close sockets that fail to connect. Since these are never
opened, they don't need to be closed. In fact, if the constructor failed, connection is
actually null.

Example 10.7. Look for Ports with Socket Closing

import java.net.*;
import java.io.*;

public class PortScanner {

 public static void main(String[] args) {

 String host = "localhost";

 if (args.length > 0) {
 host = args[0];
 }

 Socket connection = null;
 try {
 InetAddress theAddress = InetAddress.getByName(host);
 for (int i = 1; i < 65536; i++) {
 try {
 connection = new Socket(host, i);
 System.out.println("There is a server on port "
 + i + " of " + host);
 }
 catch (IOException e) {
 // must not be a server on this port
 }
 } // end for
 } // end try
 catch (UnknownHostException e) {
 System.err.println(e);
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException e) {}
 }

 } // end main

} // end PortScanner

10.3.3.2 Half-closed sockets // Java 1.3

The close() method shuts down both input and output from the socket. On occasion,
you may want to shut down only half of the connection, either input or output.

Starting in Java 1.3, the shutdownInput() and shutdownOutput() methods let
you close only half of the connection:

public void shutdownInput() throws IOException // Java 1.3
public void shutdownOutput() throws IOException // Java 1.3

This doesn't actually close the socket. However, it does adjust the stream connected to
it so that it thinks it's at the end of the stream. Further reads from the input stream will
return -1. Further writes to the output stream will throw an IOException. In practice,
though, there's not a lot to be gained by this approach.

Many protocols, such as finger, whois, and HTTP, begin with the client sending a
request to the server, then reading the response. It would be possible to shut down the
output after the client has sent the request. For example, this code fragment sends a
request to an HTTP server, then shuts down the output, since it won't need to write
anything else over this socket:

Socket connection = null;
try {
 connection = new Socket("www.oreilly.com", 80);
 Writer out = new OutputStreamWriter(
 connection.getOutputStream(), "8859_1");
 out.write("GET / HTTP 1.0\r\n\r\n");
 out.flush();
 connection.shutdownOutput();
 // read the response...
}
catch (IOException e) {
}
finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException e) {}
}

Notice that even though you shut down half or even both halves of a connection, you
still need to close the socket when you're through with it. The shutdown methods
simply affect the socket's streams. They don't release the resources associated with the
socket such as the port it occupies.

10.3.4 The Object Methods

The Socket class overrides only one of the standard methods from
java.lang.Object, toString(). Since sockets are transitory objects that typically
last only as long as the connection they represent, there's not much need or purpose to
storing them in hash tables or comparing them to each other.

10.3.4.1 public String toString()

The toString() method produces a string that looks like this:

Socket[addr=www.oreilly.com/198.112.208.11,port=80,localport=50055]

This is ugly and useful primarily for debugging. You should not rely on this format; it
may (and probably should) change in the future. All parts of this string are accessible
directly through other methods (specifically getInetAddress(), getPort(), and
getLocalPort()).

10.3.5 Setting Socket Options

Socket options specify how the native sockets on which the Java Socket class relies
send and receive data. You can set four options in Java 1.1, six in Java 1.2, and seven
in Java 1.3:

• TCP_NODELAY
• SO_BINDADDR
• SO_TIMEOUT
• SO_LINGER
• SO_SNDBUF (Java 1.2 and later)
• SO_RCVBUF (Java 1.2 and later)
• SO_KEEPALIVE (Java 1.3 and later)

The funny-looking names for these options are taken from the named constants in the
C header files used in Berkeley Unix where sockets were invented. Thus they follow
classic Unix C naming conventions rather than the more legible Java naming
conventions. For instance, SO_SNDBUF really means "Socket Option Send Buffer
Size".

10.3.5.1 TCP_NODELAY

public void setTcpNoDelay(boolean on) throws SocketException
public boolean getTcpNoDelay() throws SocketException

Setting TCP_NODELAY to true ensures that packets are sent as quickly as possible
regardless of their size. Normally small (1-byte) packets are combined into larger
packets before being sent. Before sending another packet, the local host waits to
receive acknowledgement of the previous packet from the remote system. This is
known as Nagle's algorithm. The problem with Nagle's algorithm is that if the remote
system doesn't send acknowledgements back to the local system fast enough, then
applications that depend on the steady transfer of small bits of information may slow
down. This is especially problematic for GUI programs such as games or network
computer applications where the server needs to track client-side mouse movement in
real time. On a really slow network, even simple typing can be too slow because of
the constant buffering. Setting TCP_NODELAY to true defeats this buffering scheme,
so that all packets are sent as soon as they're ready.

setTcpNoDelay(true) turns off buffering for the socket. setTcpNoDelay(false)
turns it back on. getTcpNoDelay() returns true if buffering is off and false if
buffering is on. For example, the following fragment turns off buffering (that is, it
turns on TCP_NODELAY) for the socket s if it isn't already off:

if (!s.getTcpNoDelay()) s.setTcpNoDelay(true);

These two methods are each declared to throw a SocketException. These will be
thrown only if the underlying socket implementation doesn't support the
TCP_NODELAY option.

10.3.5.2 SO_LINGER

public void setSoLinger(boolean on, int seconds) throws
SocketException
public int getSoLinger() throws SocketException

The SO_LINGER option specifies what to do with datagrams that have not yet been
sent when a socket is closed. By default, the close() method returns immediately,
but the system still tries to send any remaining data. If the linger time is set to zero,
then any unsent packets are thrown away when the socket is closed. If the linger time
is any positive value, then the close() method blocks while waiting the specified
number of seconds for the data to be sent and the acknowledgments to be received.
When that number of seconds has passed, the socket is closed and any remaining data
is not sent, acknowledgment or no.

These two methods each throw a SocketException if the underlying socket
implementation does not support the SO_LINGER option. The setSoLinger()
method can also throw an IllegalArgumentException if you try to set the linger
time to a negative value. However, the getSoLinger() method may return -1 to
indicate that this option is disabled, and as much time as is needed is taken to deliver
the remaining data; for example, to set the linger timeout for the Socket s to four
minutes, if it's not already set to some other value:

if (s.getTcpSoLinger() == -1) s.setSoLinger(true, 240);

The maximum linger time is 65,535 seconds. Times larger than that will be reduced to
65,535 seconds. Frankly, 65,535 seconds is much longer than you actually want to
wait. Generally, the platform default value is more appropriate.

10.3.5.3 SO_TIMEOUT

public synchronized void setSoTimeout(int milliseconds)
 throws SocketException
public synchronized int getSoTimeout() throws SocketException

Normally when you try to read data from a socket, the read() call blocks as long as
necessary to get enough bytes. By setting SO_TIMEOUT, you ensure that the call will
not block for more than a fixed number of milliseconds. When the timeout expires, an
InterruptedException is thrown, and you should be prepared to catch it. However,
the socket is still connected. Although this read() call failed, you can try to read
from the socket again. The next call may succeed.

Timeouts are given in milliseconds. Zero is interpreted as an infinite timeout, and is
the default value. For example, to set the timeout value of the Socket object s to three
minutes if it isn't already set, specify 180,000 milliseconds:

if (s.getSoTimeout() == 0) s.setSoTimeout(180000);

These two methods each throw a SocketException if the underlying socket
implementation does not support the SO_TIMEOUT option. The setSoTimeout()
method also throws an IllegalArgumentException if the specified timeout value is
negative.

10.3.5.4 SO_RCVBUF

Most TCP stacks use buffers to improve network performance. Larger buffers tend to
improve performance for reasonably fast (say, 10Mbps and up) connections while
slower, dialup connections do better with smaller buffers. Generally, transfers of large,
continuous blocks of data, as is common in file transfer protocols such as FTP and
HTTP, benefit from large buffers, while the smaller transfers of interactive sessions,
such as Telnet and many games do not. Relatively old operating systems designed in
the age of small files and slow networks, such as BSD 4.2, use 2-kilobyte buffers.
Somewhat newer systems, such as SunOS 4.1.3, use larger 4-kilobyte buffers by
default. Still newer systems, such as Solaris, use 8- or even 16-kilobyte buffers.
Starting in Java 2 (but not Java 1.1), there are methods to get and set the suggested
receive buffer size used for network input:

public void setReceiveBufferSize(int size) // Java 1.2
 throws SocketException, IllegalArgumentException
public int getReceiveBufferSize() throws SocketException // Java
1.2

The getReceiveBufferSize() method returns the number of bytes in the buffer
that can be used for input from this socket. It throws a SocketException if the
underlying socket implementation does not recognize the SO_RCVBUF option. This
might happen on a non-POSIX operating system.

The setReceiveBufferSize() method suggests a number of bytes to use for
buffering output on this socket. However, the underlying implementation is free to
ignore this suggestion. The setReceiveBufferSize() method throws an
IllegalArgumentException if its argument is less than or equal to zero. Although
it's declared to also throw SocketException, it probably won't in practice since a
SocketException is thrown for the same reason as IllegalArgumentException and
the check for the IllegalArgument Exception is made first.

10.3.5.5 SO_SNDBUF

Starting in Java 1.2 (but not Java 1.1), there are methods to get and set the suggested
send buffer size used for network output:

public void setSendBufferSize(int size) // Java 1.2
 throws SocketException, IllegalArgumentException
public int getSendBufferSize() throws SocketException // Java 1.2

The getSendBufferSize() method returns the number of bytes in the buffer used
for output on this socket. It throws a SocketException if the underlying socket
implementation doesn't understand the SO_SNDBUF option.

The setSendBufferSize() method suggests a number of bytes to use for buffering
output on this socket. However, again the client is free to ignore this suggestion. The
setSendBufferSize() method also throws a SocketException if the underlying
socket implementation doesn't understand the SO_SNDBUF option. However, it throws
an IllegalArgumentException if its argument is less than or equal to zero.

10.3.5.6 SO_KEEPALIVE

If SO_KEEPALIVE is turned on, then the client will occasionally send a data packet
over an idle connection, (most commonly once every two hours) just to make sure the
server hasn't crashed. If the server fails to respond to this packet, the client will keep
trying for a little more than 11 minutes until it receives a response. If it doesn't receive
a response within 12 minutes, then the client will close the socket. Without
SO_KEEPALIVE, an inactive client could live more or less forever without noticing
that the server had crashed.

Java 1.3 adds methods to turn SO_KEEPALIVE on and off and to determine its
current state:

public void setKeepAlive(boolean on) throws SocketException // Java
1.3
public boolean getKeepAlive() throws SocketException // Java 1.3

The default for SO_KEEPALIVE is false. This code fragment turns SO_KEEPALIVE
off, if it's turned on:

if (s.getKeepAlive()) s.setKeepAlive(false);

10.4 Socket Exceptions

In Java 1.0, a problem with a socket method is likely to throw a
java.net.SocketException, which is a subclass of IOException:

public class SocketException extends IOException

Indeed, even in Java 1.1 and later, many methods are declared to throw only
SocketException or even IOException rather than the more specific subclasses.
However, knowing that a problem occurred is often not sufficient to deal with the
problem. Did the remote host refuse the connection because it was busy? Did the
remote host refuse the connection because no service was listening on the port? Did
the connection attempt timeout because of network congestion or because the host
was down? Java 1.1 added three new subclasses of SocketException that provide
more information about what went wrong: BindException, ConnectException, and
NoRouteToHostException:

public class BindException extends SocketException
public class ConnectException extends SocketException
public class NoRouteToHostException extends SocketException

A BindException is thrown if you try to construct a Socket or ServerSocket object
on a local port that is in use or that you do not have sufficient privileges to use. A

ConnectException is thrown when a connection is refused at the remote host, which
usually happens because the host is busy or no process is listening on that port.
Finally, a NoRouteToHostException indicates that the connection has timed out.

Code that you write in Java 1.0 should catch SocketException and IOException.
Since all three of these new exceptions are subclasses of SocketException, that code
should continue to work in Java 1.1. New code that you write in Java 1.1 and later can
take advantage of these three subclasses to provide more informative error messages
or to decide whether retrying the offending operation is likely to be successful.

10.5 Examples

One of the first large-scale Java programs was HotJava, a web browser that was easily
the equal of the early versions of Mosaic. Today's HotJava is easily comparable to
Netscape Navigator, Opera, or Internet Explorer. It is completely possible to write
commercial-quality applications in Java, and it is especially possible to write network-
aware applications, both clients and servers. This section shows two network clients,
finger and whois, to prove this point. I stop short of what could be done, but only in
the user interface. All the necessary networking code is present. Indeed, once again
we find out that network code is easy; it's user interfaces that are hard.

10.5.1 Finger

Finger is a straightforward protocol described in RFC 1288. The client makes a TCP
connection to the server on port 79 and sends a one-line query; the server responds to
the query and closes the connection. The format of the query is precisely defined, the
format of the response somewhat less so. All data transferred should probably be pure
printable ASCII text, though unfortunately the specification contradicts itself
repeatedly on this point. The specification also recommends that clients filter out any
non-ASCII data they do receive, at least by default.[3] All lines must end with a
carriage return/linefeed pair (\r\n in Java parlance).

[3] Failure to filter non-printable characters allows mischievous users to configure their .plan files to reset people's
terminals, switch them into graphics mode, or play other tricks accessible to those with intimate knowledge of
VT-terminal escape sequences. While amusing to experienced users who recognize what's going on and
appreciate the hack value of such .plan files, these tricks do confuse and terrify the uninitiated.

The simplest allowable request from the client is a bare carriage return/linefeed pair,
which is usually interpreted as a request to show a list of the currently logged-in
users.[4] For example:

[4] Vending machines connected to the Internet return a list of items available for purchase instead.

% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.

Login Name TTY Idle When Where
jacola Jane Colaginae *pts/7 Tue 08:01 208.34.37.104
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-
dialup11.poly.e
matewan Sepin Matewan *pts/17 17: Thu 15:32 128.238.10.177
hengpi Heng Pin *pts/10 Tue 10:36 128.238.18.119

nadats Nabeel Datsun pts/12 56 Mon 10:38 128.238.213.227
matewan Sepin Matewan *pts/8 4 Sun 18:39 128.238.10.177
Connection closed by foreign host.

It is also possible to request information about a specific user or username by
including that user or username on the query line:

% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.
marcus
Login Name TTY Idle When Where
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-
dialup11.poly.e

The information that finger servers return typically includes the user's full name,
where he's connected from, how long he has been connected, and any other
information he has chosen to make available in his .plan file.[5] A few servers put
finger to other uses; for example, several sites give you a list of recent earthquake
activity. It is possible to request information about users via their first name, last name,
or login name. You can also request information about more than one user at a time
like this:

[5] The .plan file is a peculiarity of Unix; you won't find this file on other operating systems.

% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.
marcus nadats matewan
Login Name TTY Idle When Where
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-
dialup11.poly.e
nadats Nabeel Datsun pts/12 59 Mon 10:38 128.238.213.227
matewan Sepin Matewan *pts/17 17: Thu 15:32 128.238.10.177
matewan Sepin Matewan *pts/8 8 Sun 18:39 128.238.10.177
Connection closed by foreign host.

In this section, we'll develop a Java finger client that allows users to specify a
hostname on the command-line, followed by zero or more usernames. For example, a
typical command-line will look like:

% java FingerClient hostname user1 user2 ...

FingerClient connects to port 79 on the specified host. The socket's OutputStream
is chained to an OutputStreamWriter using the ISO 8859-1 encoding, which is used
to send a line consisting of all the names on the command-line, followed by a carriage
return and a linefeed. Next, the output from the server (which is input to the program)
is taken from theSocket.getInputStream() and chained first to a
BufferedInputStream for performance and then to an InputStreamReader so that
the server response can be read as text. The server's output is presented to the user on
System.out. Example 10.8 shows the code.

Example 10.8. A Java Command-line Finger Client

import java.net.*;
import java.io.*;

public class FingerClient {

 public final static int DEFAULT_PORT = 79;

 public static void main(String[] args) {

 String hostname = "localhost";

 try {
 hostname = args[0];
 }
 catch (ArrayIndexOutOfBoundsException e) {
 hostname = "localhost";
 }

 Socket connection = null;
 try {
 connection = new Socket(hostname, DEFAULT_PORT);
 Writer out = new OutputStreamWriter(
 connection.getOutputStream(), "8859_1");
 for (int i = 1; i < args.length; i++) out.write(args[i] + " ");
 out.write("\r\n");
 out.flush();
 InputStream raw = connection.getInputStream();
 BufferedInputStream buffer = new BufferedInputStream(raw);
 InputStreamReader in = new InputStreamReader(buffer, "8859_1");
 int c;
 while ((c = in.read()) != -1) {
 // filter non-printable and non-ASCII as recommended by RFC
1288
 if ((c >= 32 && c < 127) || c == '\t' || c == '\r' || c ==
'\n')
 {
 System.out.write(c);
 }
 }
 }
 catch (IOException e) {
 System.err.println(e);
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException e) {}
 }

 }

}

10.5.2 Whois

Whois is a simple directory service protocol defined in RFC 954; it was originally
designed to keep track of administrators responsible for Internet hosts and domains. A
whois client connects to one of several central servers and requests directory
information for a person or persons; it can usually give you a phone number, an email

address, and a U.S. mail address (not necessarily current ones though). With the
explosive growth of the Internet, flaws have become apparent in the whois protocol,
most notably its centralized nature. A more complex replacement called whois++ is
documented in RFCs 1913 and 1914 but is not yet widely implemented.

Let's begin with a simple client to connect to a whois server. The basic structure of the
whois protocol is:

1. The client opens a TCP socket to port 43 on the server whois.internic.net.
When you're using whois, you almost always connect to this server; there are a
few other servers, but these are relatively rare; there's also a separate whois
server for the U.S. Department of Defense. This is actually the protocol's
biggest problem: all the information is concentrated in one place. Not only is it
inefficient and subject to network outages, but when the one company
maintaining the central server decides to unilaterally change the protocol for
its own private benefit, as Network Solutions has indeed done several times,
everybody else's client software breaks instantaneously.

2. The client sends a search string terminated by a carriage return/linefeed pair
(\r\n). The search string can be a name, a list of names, or a special command,
as discussed below. You can also search for domain names, like oreilly.com or
netscape.com, which give you information about a network.

3. The server sends an unspecified amount of human-readable information in
response to the command and closes the connection.

4. The client displays this information to the user.

The search string the client sends has a fairly simple format. At its most basic, it's just
the name of the person you're searching for. Here's a simple whois search for "Harold".
The phone numbers have been changed, and about two-thirds of the hits have been
deleted. If this is what you get with a search for "Harold", imagine a search for "John"
or "Smith":

% telnet whois.internic.net 43
Trying 198.41.0.10-..
Connected to rs.internic.net.
Escape character is '^]'.
Harold
The Data in Network Solutions' WHOIS database is provided by Network
Solutions for information purposes, and to assist persons in
obtaining
information about or related to a domain name registration record.
Network Solutions does not guarantee its accuracy. By submitting a
WHOIS query, you agree that you will use this Data only for lawful
purposes and that, under no circumstances will you use this Data to:
(1) allow, enable, or otherwise support the transmission of mass
unsolicited, commercial advertising or solicitations via e-mail
(spam); or (2) enable high volume, automated, electronic processes
that apply to Network Solutions (or its systems). Network Solutions
reserves the right to modify these terms at any time. By submitting
this query, you agree to abide by this policy.
Aborting search 50 records found
Harold (SAGECAT-DOM)
SAGECAT.COM
Harold (ANYTHING-GETS-DOM)
ANYTHING-GETS.COM

Harold (CAJUNGLORY-DOM)
CAJUNGLORY.COM
Harold (BONITAMENSCLUB-DOM)
BONITAMENSCLUB.ORG
Harold (HA793-ORG) hphoto@DIGITALWEB.NET 780-555-
4032
Harold (HA1305-ORG) moacollect@AOL.COM (408)555-7698
Harold (MYSTICSINTHEWORKPLACE-DOM)
MYSTICSINTHEWORKPLACE.COM
Harold (KOC-COLORADO-DOM) KOC-
COLORADO.ORG
Harold (PSYCHRESOURCES3-DOM)
PSYCHRESOURCES.NET
Harold (PHONESECURE-DOM)
PHONESECURE.COM
Harold Adams (HJADAMS3-DOM)
HJADAMS.NET
Harold E. Fields (LOWSURF-DOM)
LOWSURF.COM
Harold E., Fortner (FH3120) Fortnerh@ATT.COM 828-555-0597

To single out one record, look it up with "!xxx", where xxx is the
handle, shown in parenthesis following the name, which comes first.
Connection closed by foreign host.

Although the previous input has a pretty clear format, that format is regrettably
nonstandard. Different whois servers can and do send decidedly different output. For
example, here are some results from the same search at the main French whois server,
whois.nic.fr :

% telnet whois.nic.fr 43
telnet whois.nic.fr 43
Trying 192.134.4.18...
Connected to winter.nic.fr.
Escape character is '^]'.
Harold

Rights restricted by copyright.
See http://www.ripe.net/db/dbcopyright.html
Tous droits reserves par copyright.
Voir http://www.nic.fr/info/whois/dbcopyright.html

person: Harold Schilmper
address: Toshiba Elec. Europe GmbH
address: Elitinger Str. 61
address: D-W-7250 Leonberg
address: Germany
phone: +49 7152 555530
fax-no: +49 7152 555545
e-mail: hs%asicsan.uucp@Germany.EU.net
nic-hdl: HS6091-RIPE
changed: ar@deins.Informatik.Uni-Dortmund.DE 19920422
changed: ripe-dbm@ripe.net 19920424
changed: ripe-dbm@ripe.net 19990615
source: RIPE

person: Harold Cawood
address: N G Bailey and Co Ltd
address: Heathcote, Kings Road

address: Ilkley
address: West Yorkshire LS29 9AS
address: United Kingdom
phone: +44 943 555234
fax-no: +44 943 555391
nic-hdl: HC744-RIPE
changed: hostmaster@nosc.ja.net 19930913
changed: ripe-dbm@ripe.net 19990615
source: RIPE

Here each complete record is returned rather than just a summary. Other whois
servers may use still other formats. This protocol is not at all designed for machine
processing. You pretty much have to write new code to handle the output of each
different whois server. However, regardless of the output format, each response likely
contains a handle, which in the Internic output is in parentheses, and in the nic.fr
output is in the nic-hdl field. Handles are guaranteed to be unique, and are used to get
more specific information about a person or a network. If you search for a handle, you
will get at most one match. If your search only has one match, either because you're
lucky or you're searching for a handle, then the server returns a more detailed record.
Here's a search for oreilly.com. Because there is only one oreilly.com in the database,
the server returns all the information it has on this domain:

% telnet whois.internic.net 43
Trying 198.41.0.6...
Connected to rs.internic.net.
Escape character is '^]'.
oreilly.com
The Data in Network Solutions' WHOIS database is provided by Network
Solutions for information purposes, and to assist persons in
obtaining
information about or related to a domain name registration record.
Network Solutions does not guarantee its accuracy. By submitting a
WHOIS query, you agree that you will use this Data only for lawful
purposes and that, under no circumstances will you use this Data to:
(1) allow, enable, or otherwise support the transmission of mass
unsolicited, commercial advertising or solicitations via e-mail
(spam); or (2) enable high volume, automated, electronic processes
that apply to Network Solutions (or its systems). Network Solutions
reserves the right to modify these terms at any time. By submitting
this query, you agree to abide by this policy.

Registrant:
O'Reilly & Associates (OREILLY6-DOM)
 101 Morris Street
 Sebastopol, CA 95472

 Domain Name: OREILLY.COM

 Administrative Contact, Technical Contact, Zone Contact:
 Pearce, Eric (EP86) eap@ORA.COM
 707-829-0515 x221
 Billing Contact:
 Johnston, Rick (RJ724) rick@ORA.COM
 707-829-0515 x331

 Record last updated on 05-Jan-99.
 Record created on 27-May-97.
 Database last updated on 30-Aug-99 04:05:23 EDT.

 Domain servers in listed order:

 NS.ORA.COM 207.25.97.8
 NS1.SONIC.NET 208.201.224.11

Connection closed by foreign host.

It's easy to implement a simple whois client that connects to whois.internic.net and
searches for names entered on the command line. Example 10.9 is just such a client. It
would not be hard to expand this client to allow searching other servers. You'd simply
have to provide a command-line flag like -h to allow the user to choose a different
host.

Example 10.9. A Command-line Whois Client

import java.net.*;
import java.io.*;

public class WhoisClient {

 public final static int DEFAULT_PORT = 43;
 public final static String DEFAULT_HOST = "whois.internic.net";

 public static void main(String[] args) {

 InetAddress server;

 try {
 server = InetAddress.getByName(DEFAULT_HOST);
 }
 catch (UnknownHostException e) {
 System.err.println("Error: Could not locate default host "
 + DEFAULT_HOST);
 System.err.println(
 "Check to make sure you're connected to the Internet and that
DNS is "
 System.err.println("Usage: java WhoisClient host port");
 return;
 }

 int port = DEFAULT_PORT;

 try {
 Socket theSocket = new Socket(server, port);
 Writer out = new
OutputStreamWriter(theSocket.getOutputStream(),
 "8859_1");
 for (int i = 0; i < args.length; i++) out.write(args[i] + " ");
 out.write("\r\n");
 out.flush();
 InputStream raw = theSocket.getInputStream();
 InputStream in = new
BufferedInputStream(theSocket.getInputStream());
 int c;
 while ((c = in.read()) != -1) System.out.write(c);
 }
 catch (IOException e) {
 System.err.println(e);

 }

 }

}

The class has two final static fields: the port, 43, and the hostname,
whois.internic.net. This client always connects to this host and port; it doesn't give the
user a choice because there are few situations in which you need to use another server.
The main() method begins by opening a socket to whois.internic.net on port 43. The
Socket's OutputStream is chained to an OutputStreamWriter. Then each argument
on the command-line is written on this stream and thus sent out over the socket to the
whois server. A carriage return/linefeed is written, and the writer is flushed.

Next, the Socket's InputStream is stored in the variable raw and this is buffered
using the BufferedInputStream in. Since whois is known to use ASCII, bytes are
read from this stream with read() and copied onto System.out until read()
returns -1, which signals the end of the server's response. Each character is simply
copied onto System.out.

The whois protocol supports several flags you can use to restrict or expand your
search. For example, if you know you want to search for a person named "Elliott" but
you aren't sure whether he spells his name "Elliot", "Elliott", or perhaps even
something as unlikely as "Elliotte", you would type:

% whois Person Partial Elliot

This tells the whois server that you want only matches for people (not domains,
gateways, groups, or the like) whose name begins with the letters "Elliot".
Unfortunately, you need to do a separate search if you want to find someone who
spells his name "Eliot". The rules for modifying a search are summarized in Table
10.1. Each prefix should be placed before the search string on the command line.

Table 10.1. Whois Prefixes
Prefix Meaning

Domain Find only domain records.
Gateway Find only gateway records.
Group Find only group records.
Host Find only host records.
Network Find only network records.
Organization Find only organization records.
Person Find only person records.
ASN Find only autonomous system number records.
Handle or ! Search only for matching handles.
Mailbox or @ Search only for matching email addresses.
Name or : Search only for matching names.
Expand or * Search only for group records and show all individuals in that group.
Full or = Show complete record for each match.
Partial or suffix Match records that start with the given string.
Summary or $ Show just the summary, even if there's only one match.

SUBdisplay or % Show the users of the specified host, the hosts on the specified network, etc.

These keywords are all useful, and you could use them with the command-line client
of Example 10.10, but they're way too much trouble to remember. In fact, most people
don't even know that they exist. They just type "whois Harold" at the command-line
and sort through the mess that comes back. A good whois client doesn't rely on users
remembering arcane keywords. Rather, it shows them the options they have to choose
from. This requires a graphical user interface for end users and a better API for client
programmers.

Example 10.11 is a more reusable Whois class. The state of each Whois object is
defined by two fields: host, an InetAddress object, and port, an int. Together
these define the server that this particular Whois object will connect to. Five
constructors set these fields from various combinations of arguments. The getPort()
and getHost() accessor methods return the values of these fields. However, there
are no setter methods so that these objects will be immutable and thread safety will
not be a large concern.

The main functionality of the class is in one method, lookUpNames(). The
lookUpNames() method returns a String containing the whois response to a given
query. The arguments specify the string to search for, what kind of record to search
for, which database to search in, and whether an exact match is required. We could
have used strings or int constants to specify the kind of record to search for and the
database to search in, but since there are only a small number of valid values, we
define public inner classes with a fixed number of members instead. This provides
much stricter compile-time type checking and guarantees we won't have to handle an
unexpected value.

Example 10.10. The Whois Class

import java.net.*;
import java.io.*;
import com.macfaq.io.SafeBufferedReader; // see Chapter 4

public class Whois {

 public final static int DEFAULT_PORT = 43;
 public final static String DEFAULT_HOST = "whois.internic.net";

 private int port = DEFAULT_PORT;
 private InetAddress host;

 public Whois(InetAddress host, int port) {
 this.host = host;
 this.port = port;
 }

 public Whois(InetAddress host) {
 this(host, DEFAULT_PORT);
 }

 public Whois(String hostname, int port)throws UnknownHostException

 this(InetAddress.getByName(hostname), port);
 }

 public Whois(String hostname) throws UnknownHostException {
 this(InetAddress.getByName(hostname), DEFAULT_PORT);
 }

 public Whois() throws UnknownHostException {
 this(DEFAULT_HOST, DEFAULT_PORT);
 }

 // Items to search for
 public static class SearchFor {

 public static SearchFor ANY = new SearchFor();
 public static SearchFor NETWORK = new SearchFor();
 public static SearchFor PERSON = new SearchFor();
 public static SearchFor HOST = new SearchFor();
 public static SearchFor DOMAIN = new SearchFor();
 public static SearchFor ORGANIZATION = new SearchFor();
 public static SearchFor GROUP = new SearchFor();
 public static SearchFor GATEWAY = new SearchFor();
 public static SearchFor ASN = new SearchFor();

 private SearchFor() {};

 }

 // Categories to search in
 public static class SearchIn {

 public static SearchIn ALL = new SearchIn();
 public static SearchIn NAME = new SearchIn();
 public static SearchIn MAILBOX = new SearchIn();
 public static SearchIn HANDLE = new SearchIn();

 private SearchIn() {};

 }

 public String lookUpNames(String target, SearchFor category,
 SearchIn group, boolean exactMatch) throws IOException {

 String suffix = "";
 if (!exactMatch) suffix = ".";

 String searchInLabel = "";
 String searchForLabel = "";

 if (group == SearchIn.ALL) searchInLabel = "";
 else if (group == SearchIn.NAME) searchInLabel = "Name ";
 else if (group == SearchIn.MAILBOX) searchInLabel = "Mailbox ";
 else if (group == SearchIn.HANDLE) searchInLabel = "!";

 if (category == SearchFor.NETWORK) searchForLabel = "Network ";
 else if (category == SearchFor.PERSON) searchForLabel = "Person ";
 else if (category == SearchFor.HOST) searchForLabel = "Host ";
 else if (category == SearchFor.DOMAIN) searchForLabel = "Domain ";
 else if (category == SearchFor.ORGANIZATION) {
 searchForLabel = "Organization ";
 }

 else if (category == SearchFor.GROUP) searchForLabel = "Group ";
 else if (category == SearchFor.GATEWAY) {
 searchForLabel = "Gateway ";
 }
 else if (category == SearchFor.ASN) searchForLabel = "ASN ";

 String prefix = searchForLabel + searchInLabel;
 String query = prefix + target + suffix;

 Socket theSocket = new Socket(host, port);
 Writer out
 = new OutputStreamWriter(theSocket.getOutputStream(), "ASCII");
 SafeBufferedReader in = new SafeBufferedReader(new
 InputStreamReader(theSocket.getInputStream(), "ASCII"));
 out.write(query + "\r\n");
 out.flush();
 StringBuffer response = new StringBuffer();
 String theLine = null;
 while ((theLine = in.readLine()) != null) {
 response.append(theLine);
 response.append("\r\n");
 }
 theSocket.close();

 return response.toString();

 }

 public InetAddress getHost() {
 return this.host;
 }

 public int getPort() {
 return this.port;
 }

}

Figure 10.1 shows one possible interface for a graphical whois client that depends on
Example 10.11 for the actual network connections. This interface has a text field to
enter the name to be searched for and a checkbox to determine whether the match
should be exact or partial. A group of radio buttons lets users specify which group of
records they want to search. Another group of radio buttons chooses the fields that
should be searched. By default, this client searches all fields of all records for an exact
match.

Figure 10.1. A graphical whois client

When a user enters a string in the Whois: text field and presses Enter or the Find
button, the program makes a connection to the whois server and retrieves records that
match that string. These are placed in the text area in the bottom of the window.
Initially, the server is set to whois.internic.net, but the user is free to change this.
Example 10.11 is the program that produces this interface.

Example 10.11. A Graphical Whois Client Interface

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

public class WhoisGUI extends JFrame {

 private JTextField searchString = new JTextField(30);
 private JTextArea names = new JTextArea(15, 80);
 private JButton findButton = new JButton("Find");;
 private ButtonGroup searchIn = new ButtonGroup();
 private ButtonGroup searchFor = new ButtonGroup();
 private JCheckBox exactMatch = new JCheckBox("Exact Match", true);
 private JTextField chosenServer = new JTextField();
 private Whois server;

 public WhoisGUI(Whois whois) {

 super("Whois");
 this.server = whois;
 Container pane = this.getContentPane();

 // whois.internic.net assumes a monospaced font, 72 columns
across
 Font f = new Font("Monospaced", Font.PLAIN, 12);

 names.setFont(f);
 names.setEditable(false);

 JPanel centerPanel = new JPanel();
 centerPanel.setLayout(new GridLayout(1, 1, 10, 10));
 JScrollPane jsp = new JScrollPane(names);
 centerPanel.add(jsp);
 pane.add("Center", centerPanel);

 // You don't want the buttons in the south and north
 // to fill the entire sections so add Panels there
 // and use FlowLayouts in the Panel
 JPanel northPanel = new JPanel();
 JPanel northPanelTop = new JPanel();
 northPanelTop.setLayout(new FlowLayout(FlowLayout.LEFT));
 northPanelTop.add(new JLabel("Whois: "));
 northPanelTop.add("North", searchString);
 northPanelTop.add(exactMatch);
 northPanelTop.add(findButton);
 northPanel.setLayout(new BorderLayout(2,1));
 northPanel.add("North", northPanelTop);
 JPanel northPanelBottom = new JPanel();
 northPanelBottom.setLayout(new GridLayout(1,3,5,5));
 northPanelBottom.add(initRecordType());
 northPanelBottom.add(initSearchFields());
 northPanelBottom.add(initServerChoice());
 northPanel.add("Center", northPanelBottom);

 pane.add("North", northPanel);

 ActionListener al = new LookupNames();
 findButton.addActionListener(al);
 searchString.addActionListener(al);

 }

 private JPanel initRecordType() {

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(6, 2, 5, 2));
 p.add(new JLabel("Search for:"));
 p.add(new JLabel(""));

 JRadioButton any = new JRadioButton("Any", true);
 any.setActionCommand("Any");
 searchFor.add(any);
 p.add(any);

 p.add(this.makeRadioButton("Network"));
 p.add(this.makeRadioButton("Person"));
 p.add(this.makeRadioButton("Host"));
 p.add(this.makeRadioButton("Domain"));
 p.add(this.makeRadioButton("Organization"));
 p.add(this.makeRadioButton("Group"));
 p.add(this.makeRadioButton("Gateway"));
 p.add(this.makeRadioButton("ASN"));

 return p;

 }

 private JRadioButton makeRadioButton(String label) {

 JRadioButton button = new JRadioButton(label, false);
 button.setActionCommand(label);
 searchFor.add(button);
 return button;

 }

 private JRadioButton makeSearchInRadioButton(String label) {

 JRadioButton button = new JRadioButton(label, false);
 button.setActionCommand(label);
 searchIn.add(button);
 return button;

 }

 private JPanel initSearchFields() {

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(6, 1, 5, 2));
 p.add(new JLabel("Search In: "));

 JRadioButton all = new JRadioButton("All", true);
 all.setActionCommand("All");
 searchIn.add(all);
 p.add(all);

 p.add(this.makeSearchInRadioButton("Name"));
 p.add(this.makeSearchInRadioButton("Mailbox"));
 p.add(this.makeSearchInRadioButton("Handle"));

 return p;

 }

 private JPanel initServerChoice() {

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(6, 1, 5, 2));
 p.add(new JLabel("Search At: "));

 chosenServer.setText(server.getHost().getHostName());
 p.add(chosenServer);
 chosenServer.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 try {
 InetAddress newHost
 = InetAddress.getByName(chosenServer.getText());
 Whois newServer = new Whois(newHost);
 server = newServer;
 }
 catch (Exception e) {
 // should use an error dialog here, but that
 // doesn't teach much about networking
 chosenServer.setText(server.getHost().getHostName());
 }
 }
 });

 return p;

 }

 class LookupNames implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 Whois.SearchIn group = Whois.SearchIn.ALL;
 Whois.SearchFor category = Whois.SearchFor.ANY;

 String searchForLabel =
searchFor.getSelection().getActionCommand();
 String searchInLabel =
searchIn.getSelection().getActionCommand();
 if (searchInLabel.equals("Name")) group = Whois.SearchIn.NAME;
 else if (searchInLabel.equals("Mailbox")) {
 group = Whois.SearchIn.MAILBOX;
 }
 else if (searchInLabel.equals("Handle")) {
 group = Whois.SearchIn.HANDLE;
 }

 if (searchForLabel.equals("Network")) {
 category = Whois.SearchFor.NETWORK;
 }
 else if (searchForLabel.equals("Person")) {
 category = Whois.SearchFor.PERSON;
 }
 else if (searchForLabel.equals("Host")) {
 category = Whois.SearchFor.HOST;
 }
 else if (searchForLabel.equals("Domain")) {
 category = Whois.SearchFor.DOMAIN;
 }
 else if (searchForLabel.equals("Organization")) {
 category = Whois.SearchFor.ORGANIZATION;
 }
 else if (searchForLabel.equals("Group")) {
 category = Whois.SearchFor.GROUP;
 }
 else if (searchForLabel.equals("Gateway")) {
 category = Whois.SearchFor.GATEWAY;
 }
 else if (searchForLabel.equals("ASN")) {
 category = Whois.SearchFor.ASN;
 }

 try {
 names.setText("");
 String result = server.lookUpNames(searchString.getText(),
 category, group, exactMatch.isSelected());
 names.setText(result);
 }
 catch (IOException e) {
 names.setText("Lookup failed due to " + e);
 }
 }

 }

 public static void main(String[] args) {

 try {
 Whois server = new Whois();
 WhoisGUI a = new WhoisGUI(server);
 a.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 a.pack();
 a.show();
 }
 catch (UnknownHostException e) {
 System.err.println("Error: Could not locate default host "
 + Whois.DEFAULT_HOST);
 System.err.println("Check to make sure you're connected to the"
 + " Internet and that DNS is" funtioning");
 System.err.println("Usage: java WhoisGUI");
 return;
 }

 }

}

The main() method is the usual block of code to start up a standalone application. It
constructs a Whois object, then uses that to construct a WhoisGUI object. Then the
WhoisGUI () constructor sets up the graphical user interface. There's a lot of
redundant code here, so it's broken out into the private methods
initSearchFields(), initServerChoice(), makeSearchInRadioButton(),
and makeSearchForRadioButton(). As usual with LayoutManager-based
interfaces, the setup is fairly involved. Since you'd probably use a visual designer to
build such an application, I won't describe it in detail here.

When the constructor returns, the main() method attaches an anonymous inner class
to the window that will close the application when the window is closed. (This isn't in
the constructor because other programs that use this class may not want to exit the
program when the window closes.) It then packs and shows the window. From that
point on, all activity takes place in the AWT thread.

The first event this program must respond to is the user's typing a name in the Whois:
text field and either pressing the Find button or hitting Enter. In this case, the
LookupNames inner class passes the information in the text field and the various radio
buttons and checkboxes to the server.lookUpNames() method. This method returns
a String, which is placed in the names text area.

The second event this program must respond to is the user typing a new host in the
server text field. In this case, an anonymous inner class tries to construct a new Whois
object and store it in the server field. If it fails (e.g., because the user mistyped the
hostname), then the old server is restored. It would be a good idea to tell the user this
by putting up an alert box, but I omitted that to keep this example a more manageable
size.

This is not a perfect client by any means. The most glaring omission is that it doesn't
provide a way to save the data and quit the program. Less obvious until you run the
program is that responsiveness suffers because the network connection is made inside
the AWT thread. It would be better to place the connections to the server in their own
thread, then use callbacks to place the data in the GUI as the data is received.
However, implementing these would take us too far afield from the topic of network
programming, so I leave them as exercises for the reader.

Chapter 11. Sockets for Servers
The last chapter discussed sockets from the standpoint of clients: programs that open a
socket to a server that's listening for connections. However, client sockets themselves
aren't enough; clients aren't much use unless they can talk to a server, and if you think
about it, the sockets we discussed in the last chapter aren't sufficient for writing
servers. To create a Socket, you need to know the Internet host to which you want to
connect. When you're writing a server, you don't know in advance who will contact
you, and even if you did, you wouldn't know when that host wanted to contact you. In
other words, servers are like receptionists who sit by the phone and wait for incoming
calls. They don't know who will call or when, only that when the phone rings, they
have to pick it up and talk to whoever is there. We can't program that behavior with
the Socket class alone. Granted, there's no reason that clients written in Java have to
talk to Java servers—in fact, a client doesn't care what language the server was
written in or what platform it runs on. However, if Java didn't let us write servers,
there would be a glaring hole in its capabilities.

Fortunately, there's no such hole. Java provides a ServerSocket class to allow
programmers to write servers. Basically, a server socket's job is to sit by the phone
and wait for incoming calls. More technically, a ServerSocket runs on the server and
listens for incoming TCP connections. Each ServerSocket listens on a particular port
on the server machine. When a client Socket on a remote host attempts to connect to
that port, the server wakes up, negotiates the connection between the client and the
server, and opens a regular Socket between the two hosts. In other words, server
sockets wait for connections while client sockets initiate connections. Once the server
socket has set up the connection, the server uses a regular Socket object to send data
to the client. Data always travels over the regular socket.

11.1 The ServerSocket Class

The ServerSocket class contains everything you need to write servers in Java. It has
constructors that create new ServerSocket objects, methods that listen for
connections on a specified port, and methods that return a Socket object when a
connection is made so that you can send and receive data. In addition, it has methods
to set various options and the usual miscellaneous methods such as toString().

The basic life cycle of a server is:

1. A new ServerSocket is created on a particular port using a ServerSocket()
constructor.

2. The ServerSocket listens for incoming connection attempts on that port using
its accept() method. accept() blocks until a client attempts to make a
connection, at which point accept() returns a Socket object connecting the
client and the server.

3. Depending on the type of server, either the Socket's getInputStream()
method, getOutputStream() method, or both are called to get input and
output streams that communicate with the client.

4. The server and the client interact according to an agreed-upon protocol until it
is time to close the connection.

5. The server, the client, or both close the connection.
6. The server returns to step 2 and waits for the next connection.

If step 4 is likely to take a long or indefinite amount of time, traditional Unix servers
such as wu-ftpd create a new process to handle each connection so that multiple
clients can be serviced at the same time. Java programs should spawn a thread to
interact with the client so that the server can be ready to process the next connection
sooner. A thread places a far smaller load on the server than a complete child process.
In fact, the overhead of forking too many processes is why the typical Unix FTP
server can't handle more than roughly 400 connections without slowing to a crawl. On
the other hand, if the protocol is simple and quick and allows the server to close the
connection when it's through, then it will be more efficient for the server to process
the client request immediately without spawning a thread.

The operating system stores incoming connection requests addressed to a particular
port in a first-in, first-out queue. The default length of the queue is normally 50,
though this can vary from operating system to operating system. Some operating
systems (though not Solaris) have a maximum queue length, typically five. On these
systems, the queue length will be the largest possible value less than or equal to 50.
After the queue fills to capacity with unprocessed connections, the host refuses
additional connections on that port until slots in the queue open up. Many (though not
all) clients will try to make a connection multiple times if their initial attempt is
refused. Managing incoming connections and the queue is a service provided by the
operating system; your program does not need to worry about it. Several
ServerSocket constructors allow you to change the length of the queue if its default
length isn't large enough; however, you won't be able to increase the queue beyond
the maximum size that the operating system supports:

11.1.1 The Constructors

There are three public ServerSocket constructors:

public ServerSocket(int port) throws IOException, BindException
public ServerSocket(int port, int queueLength)
 throws IOException, BindException
public ServerSocket(int port, int queueLength, InetAddress
bindAddress)
 throws IOException

These constructors let you specify the port, the length of the queue used to hold
incoming connection requests, and the local network interface to bind to. They pretty

much all do the same thing, though some use default values for the queue length and
the address to bind to. Let's explore these in order.

11.1.1.1 public ServerSocket(int port) throws IOException, BindException

This constructor creates a server socket on the port specified by the argument. If you
pass for the port number, the system selects an available port for you. A port chosen
for you by the system is sometimes called an anonymous port since you don't know its
number. For servers, anonymous ports aren't very useful because clients need to know
in advance which port to connect to; however, there are a few situations (which we
will discuss later) in which an anonymous port might be useful.

For example, to create a server socket that would be used by an HTTP server on port
80, you would write:

try {
 ServerSocket httpd = new ServerSocket(80);
}
catch (IOException e) {
 System.err.println(e);
}

The constructor throws an IOException (specifically, a BindException) if the socket
cannot be created and bound to the requested port. An IOException when creating a
ServerSocket almost always means one of two things. Either another server socket,
possibly from a completely different program, is already using the requested port, or
you're trying to connect to a port from 1 to 1023 on Unix without root (superuser)
privileges.

You can use this constructor to write a variation on the PortScanner programs of the
previous chapter. Example 11.1 checks for ports on the local machine by attempting
to create ServerSocket objects on them and seeing on which ports that fails. If you're
using Unix and are not running as root, this program works only for ports 1,024 and
above.

Example 11.1. Look for Local Ports

import java.net.*;
import java.io.*;

public class LocalPortScanner {

 public static void main(String[] args) {

 for (int port = 1; port <= 65535; port++) {

 try {
 // the next line will fail and drop into the catch block if
 // there is already a server running on the port
 ServerSocket server = new ServerSocket(port);
 }
 catch (IOException e) {
 System.out.println("There is a server on port " + port + ".");
 } // end try

 } // end for

 }

}

Here's the output I got when running LocalPortScanner on my NT workstation:

D:\JAVA\JNP2\examples\11>java LocalPortScanner
There is a server on port 135.
There is a server on port 1025.
There is a server on port 1026.
There is a server on port 1027.
There is a server on port 1028.

11.1.1.2 public ServerSocket(int port, int queueLength) throws IOException,
BindException

This constructor creates a ServerSocket on the specified port with a queue length of
your choosing. If the machine has multiple network interfaces or IP addresses, then it
listens on this port on all those interfaces and IP addresses. The queueLength
argument sets the length of the queue for incoming connection requests—that is, how
many incoming connections can be stored at one time before the host starts refusing
connections. Some operating systems have a maximum queue length, typically five. If
you try to expand the queue past that maximum number, the maximum queue length
is used instead. If you pass for the port number, the system selects an available port.

For example, to create a server socket on port 5,776 that would hold up to 100
incoming connection requests in the queue, you would write:

try {
 ServerSocket httpd = new ServerSocket(5776, 100);
}
catch (IOException e) {
 System.err.println(e);
}

The constructor throws an IOException (specifically, a BindException) if the socket
cannot be created and bound to the requested port. An IOException when creating a
ServerSocket almost always means one of two things. Either the specified port is
already in use, or you do not have root privileges on Unix and you're trying to connect
to a port from 1 to 1,023.

11.1.1.3 public ServerSocket(int port, int queueLength, InetAddress bindAddress)
throws BindException, IOException

This constructor, which is available only in Java 1.1 and later, creates a
ServerSocket on the specified port with the specified queue length. This
ServerSocket binds only to the specified local IP address. This constructor is useful
for servers that run on systems with several IP addresses (a common practice at web
server farms) because it allows you to choose the address to which you'll listen. That
is, this ServerSocket listens only for incoming connections on the specified address;

it won't listen for connections that come in through the host's other addresses. The
other constructors bind to all local IP addresses by default.

For example, metalab.unc.edu is a particular SPARCstation in North Carolina. It's
connected to the Internet with the IP address 152.2.254.81. The same SPARCstation
is also called www.gigabit-ethernet.org, but with a different IP address (152.2.254.82).
To create a server socket that listens on port 5,776 of metalab.unc.edu but not on port
5,776 of www.gigabit-ethernet.org, you would write:

try {
 ServerSocket httpd = new ServerSocket(5776, 10,
 InetAddress.getHostByName("metalab.unc.edu"));
}
catch (IOException e) {
 System.err.println(e);
}

The constructor throws an IOException (again, really a BindException) if the
socket cannot be created and bound to the requested port. A BindException when
creating a ServerSocket almost always means one of two things. Either the specified
port is already in use, or you do not have root privileges on Unix and you're trying to
connect to a port from 1 to 1,023.

11.1.2 Accepting and Closing Connections

A ServerSocket generally operates in a loop that repeatedly accepts connections.
Each pass through the loop invokes the accept() method. This returns a Socket
object representing the connection between the remote client and the local server.
Interaction with the client takes place through this Socket object. When the
transaction is finished, the server should invoke the Socket object's close() method
and get ready to process the next incoming connection. However, when the server
needs to shut down and not process any further incoming connections, you should
invoke the ServerSocket object's close() method.

11.1.2.1 public Socket accept() throws IOException

When server setup is done and you're ready to accept a connection, call the
ServerSocket's accept() method. This method "blocks": it stops the flow of
execution and waits until a client connects. When a client does connect, the accept()
method returns a Socket object. You use the streams returned by this Socket's
getInputStream() and getOutputStream() methods to communicate with the
client. For example:

ServerSocket server = new ServerSocket(5776);
while (true) {
 Socket connection = server.accept();
 OutputStreamWriter out
 = new OutputStreamWriter(connection.getOutputStream());
 out.write("You've connected to this server. Bye-bye now.\r\n");
 connection.close();
}

If you don't want your program to halt while it waits for a connection, put the call to
accept() in a separate thread.

When you add exception handling, the code becomes somewhat more convoluted. It's
important to distinguish between exceptions thrown by the ServerSocket, which
should probably shut down the server and log an error message, and exceptions
thrown by a Socket, which should just close that active connection. Exceptions
thrown by the accept() method are an intermediate case that can go either way. To
do this, you'll need to nest your try blocks. Finally, most servers will want to make
sure that all sockets they accept are closed when they're finished. Even if the protocol
specifies that clients are responsible for closing connections, clients do not always
strictly adhere to the protocol. The call to close() also has to be wrapped in a try
block that catches an IOException. However, if you do catch an IOException when
closing the socket, ignore it. It just means that the client closed the socket before the
server could. Here's a slightly more realistic example:

try {
 ServerSocket server = new ServerSocket(5776);
 while (true) {
 Socket connection = server.accept();
 try {
 OutputStreamWriter out
 = new OutputStreamWriter(connection.getOutputStream());
 out.write("You've connected to this server. Bye-bye now.\r\n");
 connection.close();
 }
 catch (IOException e) {
 // This tends to be a transitory error for this one connection;
 // e.g. the client broke the connection early. Consequently,
 // we don't want to break the loop or print an error message.
 // However, you might choose to log this exception in an error
log.
 }
 finally {
 // Most servers will want to guarantee that sockets are closed
 // when complete.
 try {
 if (connection != null) connection.close();
 }
 catch (IOException e) {}
 }
}
catch (IOException e) {
 System.err.println(e);
}

Example 11.2 implements a simple daytime server, as per RFC 867. Since this server
just sends a single line of text in response to each connection, it processes each
connection immediately. More complex servers should spawn a thread to handle each
request. In this case, the overhead of spawning a thread would be greater than the time
needed to process the request.

If you run this program on a Unix box, you need to run it as root
in order to connect to port 13. If you don't want to or can't run it
as root, change the port number to something above 1024, say
1313.

Example 11.2. A Daytime Server

import java.net.*;
import java.io.*;
import java.util.Date;

public class DaytimeServer {

 public final static int DEFAULT_PORT = 13;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[0]);
 if (port < 0 || port >= 65536) {
 System.out.println("Port must between 0 and 65535");
 return;
 }
 }
 catch (NumberFormatException e) {
 // use default port
 }

 }

 try {

 ServerSocket server = new ServerSocket(port);

 Socket connection = null;
 while (true) {

 try {
 connection = server.accept();
 OutputStreamWriter out
 = new OutputStreamWriter(connection.getOutputStream());
 Date now = new Date();
 out.write(now.toString() +"\r\n");
 out.flush();
 connection.close();
 }
 catch (IOException e) {}
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException e) {}
 }

 } // end while

 } // end try
 catch (IOException e) {
 System.err.println(e);
 } // end catch

 } // end main

} // end DaytimeServer

Example 11.2 is straightforward. The first three lines import the usual packages,
java.io and java.net, as well as java.util.Date so we can get the time. There is
a single public final static int field (i.e., a constant) in the class DEFAULT_PORT,
which is set to the well-known port for a daytime server (port 13). The class has a
single method, main(), which does all the work. If the port is specified on the
command-line, then it's read from args[0]. Otherwise, the default port is used.

The outer try block traps any IOExceptions that may arise while the ServerSocket
server is constructed on the daytime port or when it accepts connections. The inner
try block watches for exceptions thrown while the connections are accepted and
processed. The accept() method is called within an infinite loop to watch for new
connections; like many servers, this program never terminates but continues listening
until an exception is thrown or you stop it manually.[1]

[1] The command for stopping a program manually depends on your system; under Unix, NT, and many other
systems, CTRL-C will do the job. If you are running the server in the background on a Unix system, stop it by
finding the server's process ID and killing it with the kill command (kill pid).

When a client makes a connection, accept() returns a Socket, which is stored in
the local variable connection, and the program continues. We call
getOutputStream() to get the output stream associated with that Socket and then
chain that output stream to a new OutputStreamWriter, out. To get the current date,
we construct a new Date object and send it to the client by writing its string
representation on out with write().

Finally, after the data is sent or an exception has been thrown, we close connection
inside the finally block. Always close a socket when you're finished with it. In the
previous chapter, we said that a client shouldn't rely on the other side of a connection
to close the socket. That goes triple for servers. Clients can time out or crash; users
can cancel transactions; networks can go down in high-traffic periods. For any of
these or a dozen more reasons, you cannot rely on clients to close sockets, even when
the protocol requires them to (which it doesn't in this case).

Sending binary, nontext data is not significantly harder. Example 11.3 demonstrates
with a time server. This follows the time protocol outlined in RFC 868. When a client
connects, the server sends a 4-byte, big-endian, unsigned integer specifying the
number of seconds that have passed since 12:00 A.M., January 1, 1900 GMT (the
epoch). The current time can be retrieved simply by creating a new Date object.
However, since the Date class counts milliseconds since 12:00 A.M., January 1, 1970
GMT rather than seconds since 12:00 A.M., January 1, 1900 GMT, some conversion
is necessary.

Example 11.3. A Time Server

import java.net.*;
import java.io.*;
import java.util.Date;

public class TimeServer {

 public final static int DEFAULT_PORT = 37;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[0]);
 if (port < 0 || port >= 65536) {
 System.out.println("Port must between 0 and 65535");
 return;
 }
 }
 catch (NumberFormatException e) {}
 }

 // The time protocol sets the epoch at 1900,
 // the java Date class at 1970. This number
 // converts between them.

 long differenceBetweenEpochs = 2208988800L;

 try {
 ServerSocket server = new ServerSocket(port);
 while (true) {
 Socket connection = null;
 try {
 connection = server.accept();
 OutputStream out = connection.getOutputStream();
 Date now = new Date();
 long msSince1970 = now.getTime();
 long secondsSince1970 = msSince1970/1000;
 long secondsSince1900 = secondsSince1970
 + differenceBetweenEpochs;
 byte[] time = new byte[4];
 time[0]
 = (byte) ((secondsSince1900 & 0x00000000FF000000L) >> 24);
 time[1]
 = (byte) ((secondsSince1900 & 0x0000000000FF0000L) >> 16);
 time[2]
 = (byte) ((secondsSince1900 & 0x000000000000FF00L) >> 8);
 time[3] = (byte) (secondsSince1900 & 0x00000000000000FFL);
 out.write(time);
 out.flush();
 } // end try
 catch (IOException e) {
 } // end catch
 finally {
 if (connection != null) connection.close();
 }
 } // end while
 } // end try
 catch (IOException e) {

 System.err.println(e);
 } // end catch

 } // end main

} // end TimeServer

As with the TimeClient of the previous chapter, most of the effort here goes into
working with a data format (32-bit unsigned integers) that Java doesn't natively
support.

11.1.2.2 public void close() throws IOException

If you're finished with a server socket, you should close it, especially if your program
is going to continue to run for some time. This frees up the port for other programs
that may wish to use it. Closing a ServerSocket should not be confused with closing
a Socket. Closing a ServerSocket frees a port on the local host, allowing another
server to bind to the port; closing a Socket breaks the connection between the local
and the remote hosts.

Server sockets are closed automatically when a program dies, so it's not absolutely
necessary to close them in programs that terminate shortly after the ServerSocket is
no longer needed. Nonetheless, it doesn't hurt. For example, the main loop of the
LocalPortScanner program might be better written like this so that it doesn't
temporarily occupy most of the ports on the system:

for (int port = 1; port <= 65535; port++) {

 try {
 // the next line will fail and drop into the catch block if
 // there is already a server running on the port
 ServerSocket server = new ServerSocket(port);
 server.close();
 }
 catch (IOException e) {
 System.out.println("There is a server on port " + port + ".");
 } // end try

} // end for

11.1.3 The get Methods

The ServerSocket class provides two getter methods to tell you the local address and
port occupied by the server socket. These are useful if you've opened a server socket
on an anonymous port and/or an unspecified network interface. This would be the
case, for one example, in the data connection of an FTP session.

11.1.3.1 public InetAddress getInetAddress()

This method returns the address being used by the server (the local host). If the local
host has a single IP address (as most do), then this is the address returned by
InetAddress.getLocalHost(). If the local host has more than one IP address, then

the specific address returned is one of the host's IP addresses. You can't predict which
address you will get. For example:

try {
 ServerSocket httpd = new ServerSocket(80);
 InetAddress ia = httpd.getInetAddress();
}
catch (IOException e) {
}

11.1.3.2 public int getLocalPort()

The ServerSocket constructors allow you to listen on an unspecified port by passing
for the port number. This method lets you find out what port you're listening on. You
might use this in a peer-to-peer multisocket program where you already have a means
to inform other peers of your location. Or a server might spawn several smaller
servers to perform particular operations. The well-known server could inform clients
what ports they can find the smaller servers on. Of course, you can also use
getLocalPort() to find a non-anonymous port, but why would you need to?
Example 11.4 demonstrates.

Example 11.4. A Random Port

import java.net.*;
import java.io.*;

public class RandomPort {

 public static void main(String[] args) {

 try {
 ServerSocket server = new ServerSocket(0);
 System.out.println("This server runs on port "
 + server.getLocalPort());
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

}

Here's the output of several runs:

D:\JAVA\JNP2\examples\11>java RandomPort
This server runs on port 1154
D:\JAVA\JNP2\examples\11>java RandomPort
This server runs on port 1155
D:\JAVA\JNP2\examples\11>java RandomPort
This server runs on port 1156

At least on this VM, the ports aren't really random; but they are at least indeterminate
until runtime.

11.1.4 Socket Options

The only socket option supported for server sockets is SO_TIMEOUT.
SO_TIMEOUT is the amount of time, in milliseconds, that accept() waits for an
incoming connection before throwing a java.io.InterruptedIOException. If
SO_TIMEOUT is 0, then accept() will never time out. The default is to never time
out.

Using SO_TIMEOUT is rather rare. You might need it if you were implementing a
complicated and secure protocol that required multiple connections between the client
and the server where some responses needed to occur within a fixed amount of time.
Most servers are designed to run for indefinite periods of time and therefore use the
default timeout value, which is (never time out).

11.1.4.1 public void setSoTimeout(int timeout) throws SocketException

The setSoTimeout() method sets the SO_TIMEOUT field for this server socket
object. The countdown starts when accept() is invoked. When the timeout expires,
accept() throws an InterruptedIOException. You should set this option before
calling accept(); you cannot change the timeout value while accept() is waiting
for a connection. The timeout argument must be greater than or equal to zero; if it
isn't, the method throws an IllegalArgumentException. For example:

try {
 ServerSocket server = new ServerSocket(2048);
 server.setSoTimeout(30000); // block for no more than 30 seconds
 try {
 Socket s = server.accept();
 // handle the connection
 // ...
 }
 catch (InterruptedIOException e) {
 System.err.println("No connection within 30 seconds");
 }
 finally {
 server.close();
 }
catch (IOException e) {
 System.err.println("Unexpected IOException: " + e);
}

11.1.4.2 public int getSoTimeout() throws IOException

The getSoTimeout() method returns this server socket's current SO_TIMEOUT
value. For example:

public void printSoTimeout(ServerSocket server) {

 int timeout = server.getSoTimeOut();
 if (timeout > 0) {
 System.out.println(server + " will time out after "
 + timeout + "milliseconds.");
 }
 else if (timeout == 0) {
 System.out.println(server + " will never time out.");
 }
 else {

 System.out.println("Impossible condition occurred in " + server);
 System.out.println("Timeout cannot be less than zero.");
 }

}

11.1.5 The Object Methods

jServerSocket overrides only one of the standard methods from java.lang.Object,
toString(). Thus, equality comparisons test for strict identity, and server sockets
are problematic in hash tables. Normally, this isn't a large problem.

11.1.5.1 public String toString()

A String returned by ServerSocket's toString() method looks like this:

ServerSocket[addr=0.0.0.0,port=0,localport=5776]

In current implementations, addr is always 0.0.0.0 and port is always 0. Presumably,
these may become something more interesting in the future. The localport is the
local port on which the server is listening for connections.

11.1.6 Implementation

The ServerSocket class provides two methods for changing the default
implementation of server sockets. I'll describe them only briefly here, since they're
primarily intended for implementers of Java virtual machines rather than application
programmers.

11.1.6.1 public static synchronized void setSocketFactory (SocketImpl Factory fac)
throws IOException

This method sets the system's server SocketImplFactory, which is the factory used
to create ServerSocket objects. This is not the same factory that is used to create
client Socket objects, though the syntax is similar; you can have one factory for
Socket objects and a different factory for ServerSocket objects. You can set this
factory only once in a program, however. A second attempt to set the
SocketImplFactory throws a SocketException.

11.1.6.2 Protected final void implAccept(Socket s) throws IOException

Subclasses of ServerSocket use this method to implement accept(). You pass an
unconnected Socket object to implAccept(). (Doing this requires you to subclass
Socket as well since the standard java.net.Socket class doesn't provide a means to
create unconnected sockets.) When the method returns, the Socket argument s is
connected to a client.

11.2 Some Useful Servers

This section shows several servers you can build with server sockets. It starts with a
server you can use to test client responses and requests, much as you use Telnet to test

server behavior. Then we present three different HTTP servers, each with a different
special purpose and each slightly more complex than the previous one.

11.2.1 Client Tester

In the previous chapter, you learned how to use Telnet to experiment with servers.
There's no equivalent program to test clients, so let's create one. Example 11.5 is a
program called ClientTester that runs on a port specified on thecommand-line,
shows all data sent by the client, and allows you to send a response to the client by
typing it on the command line. For example, you can use this program to see the
commands that Netscape Navigator sends to a server.

Clients are rarely as forgiving about unexpected server responses
as servers are about unexpected client responses. If at all
possible, try to run the clients that connect to this program on a
Unix system or some other platform that is moderately crash-
proof. Don't run them on a Mac or Windows 98, which are less
stable.

This program uses two threads: one to handle input from the client and the other to
send output from the server. Using two threads allows the program to handle input
and output simultaneously: it can be sending a response to the client while receiving a
request—or, more to the point, it can send data to the client while waiting for the
client to respond. This is convenient because different clients and servers talk in
unpredictable ways. With some protocols, the server talks first; with others, the client
talks first. Sometimes the server sends a one-line response; often, the response is
much larger. Sometimes the client and the server talk at each other simultaneously.
Other times, one side of the connection waits for the other to finish before it responds.
The program must be flexible enough to handle all these cases. Example 11.5 shows
the code.

Example 11.5. A Client Tester

import java.net.*;
import java.io.*;
import com.macfaq.io.SafeBufferedReader; // from Chapter 4

public class ClientTester {

 public static void main(String[] args) {

 int port;

 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception e) {
 port = 0;
 }

 try {

 ServerSocket server = new ServerSocket(port, 1);
 System.out.println("Listening for connections on port "
 + server.getLocalPort());

 while (true) {
 Socket connection = server.accept();
 try {
 System.out.println("Connection established with "
 + connection);
 Thread input = new
InputThread(connection.getInputStream());
 input.start();
 Thread output
 = new OutputThread(connection.getOutputStream());
 output.start();
 // wait for output and input to finish
 try {
 input.join();
 output.join();
 }
 catch (InterruptedException e) {
 }
 }
 catch (IOException e) {
 System.err.println(e);
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException e) {}
 }
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }

 }

}

class InputThread extends Thread {

 InputStream in;

 public InputThread(InputStream in) {
 this.in = in;
 }

 public void run() {

 try {
 while (true) {
 int i = in.read();
 if (i == -1) break;
 System.out.write(i);
 }
 }
 catch (SocketException e) {
 // output thread closed the socket

 }
 catch (IOException e) {
 System.err.println(e);
 }
 try {
 in.close();
 }
 catch (IOException e) {
 }

 }

}

class OutputThread extends Thread {

 Writer out;

 public OutputThread(OutputStream out) {
 this.out = new OutputStreamWriter(out);
 }

 public void run() {

 String line;
 BufferedReader in
 = new SafeBufferedReader(new InputStreamReader(System.in));
 try {
 while (true) {
 line = in.readLine();
 if (line.equals(".")) break;
 out.write(line +"\r\n");
 out.flush();
 }
 }
 catch (IOException e) {
 }
 try {
 out.close();
 }
 catch (IOException e) {
 }

 }

}

The client tester application is split into three classes: ClientTester, InputThread,
and OutputThread. The ClientTester class reads the port from the command-line,
opens a ServerSocket on that port, and listens for incoming connections. Only one
connection is allowed at a time, because this program is designed for experimentation,
and a slow human being has to provide all responses. Consequently, we set an
unusually short queue length of 1. Further connections will be refused until the first
one has been closed.

An infinite while loop waits for connections with the accept() method. When a
connection is detected, its InputStream is used to construct a new InputThread, and

its OutputStream is used to construct a new OutputThread. After starting these
threads, we wait for them to finish by calling their join() methods.

The InputThread is contained almost entirely in the run() method. It has a single
field, in, which is the InputStream from which data will be read. Data is read from
in one byte at a time. Each byte read is written on System.out. The run() method
ends when the end of stream is encountered or an IOException is thrown. The most
likely exception here is a SocketException thrown because the corresponding
OutputThread closed the connection.

The OutputThread reads input from the local user sitting at the terminal and sends
that data to the client. Its constructor has a single argument, an output stream for
sending data to the client. OutputThread reads input from the user on System.in,
which is chained to an instance of the SafeBufferedReader class developed in
Chapter 4. The OutputStream that was passed to the constructor is chained to an
OutputStreamWriter for convenience. The run() method for OutputThread reads
lines from the SafeBufferedReader, and copies them onto the OutputStreamWriter,
which sends them to the client. A period typed on a line by itself signals the end of
user input. When this occurs, run() exits the loop and out is closed. This has the
effect of also closing the socket, so that a SocketException is thrown in the input
thread, which also exits.

For example, here's the output when Netscape Communicator 4.6 for Windows
connected to this server:

D:\JAVA\JNP2\examples\11>java ClientTester 80
Listening for connections on port 80
Connection established with
Socket[addr=localhost/127.0.0.1,port=1033,localport=80]
GET / HTTP 1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.6 [en] (WinNT; I)
Host: localhost
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

<html><body><h1>Hello Client!</h1></body></html>
.

Even minimal exploration of clients can reveal some surprising things. For instance, I
didn't know until I wrote this example that Netscape Navigator 4.6 can read .gz files
just as easily as it can read HTML files. That may be useful for serving large text files
full of redundant data.

11.2.2 HTTP Servers

HTTP is a large protocol. As you saw in Chapter 3, a full-featured HTTP server must
respond to requests for files, convert URLs into filenames on the local system,
respond to POST and GET requests, handle requests for files that don't exist, interpret

MIME types, launch CGI programs, and much, much more. However, many HTTP
servers don't need all of these features. For example, many sites simply display an
"under construction" message. Clearly, Apache is overkill for a site like this. Such a
site is a candidate for a custom server that does only one thing. Java's network class
library makes writing simple servers like this almost trivial.

Custom servers aren't useful only for small sites. High-traffic sites like Yahoo! are
also candidates for custom servers because a server that does only one thing can often
be much faster than a general purpose server such as Apache or Netscape. It is easy to
optimize a special purpose server for a particular task; the result is often much more
efficient than a general purpose server that needs to respond to many different kinds
of requests. For instance, icons and images that are used repeatedly across many pages
or on high-traffic pages might be better handled by a server that read all the image
files into memory on startup, and then served them straight out of RAM rather than
having to read them off disk for each request. Furthermore, this server could avoid
wasting time on logging if you didn't want to track the image request separately from
the requests for the pages they were included in.

Finally, Java isn't a bad language for feature-full web servers meant to compete with
the likes of Apache or AOLServer. Although CPU-intensive Java programs are
demonstrably slower than CPU-intensive C and C++ programs, even when run under
a JIT, most HTTP servers are limited by bandwidth, not by CPU speed. Consequently,
Java's other advantages, such as its half-compiled/half-interpreted nature, dynamic
class loading, garbage collection, and memory protection, really get a chance to shine.
In particular, sites that make heavy use of dynamic content through CGI scripts, PHP
pages, or other mechanisms can often run much faster when reimplemented on top of
a pure or mostly pure Java web server. Indeed, there are several production web
servers written in Java such as the W3C's testbed server Jigsaw
(http://www.w3.org/Jigsaw/). Many other web servers written in C now include
substantial Java components to support the Java Servlet API and Java Server Pages.
On many sites, these are replacing the traditional CGIs, ASPs, and server-side
includes, mostly because the Java equivalents are faster and less resource-intensive.
I'm not going to explore these technologies here since they easily deserve a book of
their own. I refer interested readers to Jason Hunter's Java Servlet Programming
(O'Reilly & Associates, Inc., 1998). However, it is important to note that servers in
general and web servers in particular are one area where Java really is competitive
with C.

11.2.2.1 A single-file server

Our investigation of HTTP servers begins with a server that always sends out the
same file, no matter who or what the request. This is shown in Example 11.6,
SingleFileHTTPServer. The filename, local port, and content encoding are read
from the command line. If the port is omitted, port 80 is assumed. If the encoding is
omitted, ASCII is assumed.

Example 11.6. An HTTP Server That Chunks Out the Same File

import java.net.*;
import java.io.*;
import java.util.*;

public class SingleFileHTTPServer extends Thread {

 private byte[] content;
 private byte[] header;
 private int port = 80;

 public SingleFileHTTPServer(String data, String encoding,
 String MIMEType, int port) throws UnsupportedEncodingException {
 this(data.getBytes(encoding), encoding, MIMEType, port);
 }

 public SingleFileHTTPServer(byte[] data, String encoding,
 String MIMEType, int port) throws UnsupportedEncodingException {

 this.content = data;
 this.port = port;
 String header = "HTTP 1.0 200 OK\r\n"
 + "Server: OneFile 1.0\r\n"
 + "Content-length: " + this.content.length + "\r\n"
 + "Content-type: " + MIMEType + "\r\n\r\n";
 this.header = header.getBytes("ASCII");

 }

 public void run() {

 try {
 ServerSocket server = new ServerSocket(this.port);
 System.out.println("Accepting connections on port "
 + server.getLocalPort());
 System.out.println("Data to be sent:");
 System.out.write(this.content);
 while (true) {

 Socket connection = null;
 try {
 connection = server.accept();
 OutputStream out = new BufferedOutputStream(
 connection.getOutputStream()
);
 InputStream in = new BufferedInputStream(
 connection.getInputStream()
);
 // read the first line only; that's all we need
 StringBuffer request = new StringBuffer(80);
 while (true) {
 int c = in.read();
 if (c == '\r' || c == '\n' || c == -1) break;
 request.append((char) c);
 // If this is HTTP 1.0 or later send a MIME header

 }
 if (request.toString().indexOf("HTTP/") != -1) {
 out.write(this.header);
 }
 out.write(this.content);
 out.flush();
 } // end try
 catch (IOException e) {

 }
 finally {
 if (connection != null) connection.close();
 }

 } // end while
 } // end try
 catch (IOException e) {
 System.err.println("Could not start server. Port Occupied");
 }

 } // end run

 public static void main(String[] args) {

 try {

 String contentType = "text/plain";
 if (args[0].endsWith(".html") || args[0].endsWith(".htm")) {
 contentType = "text/html";
 }

 InputStream in = new FileInputStream(args[0]);
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 int b;
 while ((b = in.read()) != -1) out.write(b);
 byte[] data = out.toByteArray();

 // set the port to listen on
 int port;
 try {
 port = Integer.parseInt(args[1]);
 if (port < 1 || port > 65535) port = 80;
 }
 catch (Exception e) {
 port = 80;
 }

 String encoding = "ASCII";
 if (args.length >= 2) encoding = args[2];

 Thread t = new SingleFileHTTPServer(data, encoding,
 contentType, port);
 t.start();

 }
 catch (ArrayIndexOutOfBoundsException e) {
 System.out.println(
 "Usage: java SingleFileHTTPServer filename port encoding");
 }
 catch (Exception e) {
 System.err.println(e);
 }

 }

}

The constructors set up the data to be sent along with an HTTP header that includes
information about content length and content encoding. The header and the body of
the response are stored in byte arrays in the desired encoding so that they can be
blasted to clients very quickly.

The SingleFileHTTPServer class itself is a subclass of Thread. Its run() method
processes incoming connections. Chances are this server will serve only small files
and will support only low-volume web sites. Since all the server needs to do for each
connection is check whether the client supports HTTP 1.0 and spew one or two
relatively small byte arrays over the connection, chances are this will be sufficient. On
the other hand, if you find clients are getting refused, you could use multiple threads
instead. A lot depends on the size of the file being served, the peak number of
connections expected per minute, and the thread model of Java on the host machine.
Using multiple threads would be a clear win for a server that was even slightly more
sophisticated than this one.

The run() method creates a ServerSocket on the specified port. Then it enters an
infinite loop that continually accepts connections and processes them. When a socket
is accepted, an InputStream reads the request from the client. It looks at the first line
to see whether it contains the string HTTP. If it sees this, the server assumes that the
client understands HTTP 1.0 or later and therefore sends a MIME header for the file;
then it sends the data. If the client request doesn't contain the string HTTP, the server
omits the header, sending the data by itself. Finally, the server closes the connection
and tries to accept the next connection.

The main() method just reads parameters from the command line. The name of the
file to be served is read from the first command-line argument. If no file is specified
or the file cannot be opened, an error message is printed and the program exits.
Assuming the file can be read, its contents are read into the byte array data. A
reasonable guess is made about the content type of the file, and that guess is stored in
the contentType variable. Next, the port number is read from the second command-
line argument. If no port is specified, or if the second argument is not an integer from
to 65,535, then port 80 is used. The encoding is read from the third command-line
argument if present. Otherwise, ASCII is assumed. (Surprisingly, some VMs don't
support ASCII, so you might want to pick 8859-1 instead.) Then these values are used
to construct a SingleFileHTTPServer object and start it running. This is only one
possible interface. You could easily use this class as part of some other program. If
you added a setter method to change the content, you could easily use it to provide
simple status information about a running server or system. However, that would raise
some additional issues of thread safety that Example 11.5 doesn't have to address
because it's immutable.

Here's what you see when you connect to this server via Telnet; the specifics depend
on the exact server and file:

% telnet macfaq.dialup.cloud9.net 80
Trying 168.100.203.234...
Connected to macfaq.dialup.cloud9.net.
Escape character is '^]'.
GET / HTTP 1.0
HTTP 1.0 200 OK

Server: OneFile 1.0
Content-length: 959
Content-type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<TITLE>Under Construction</TITLE>
</HEAD>

<BODY>
...

11.2.2.2 A redirector

Another simple but useful application for a special-purpose HTTP server is
redirection. In this section, we develop a server that redirects users from one web site
to another—for example, from cnet.com to home.cnet.com. Example 11.7 reads a
URL and a port number from the command-line, opens a server socket on the port,
then redirects all requests that it receives to the site indicated by the new URL, using a
302 FOUND code. Chances are this server is fast enough not to require multiple
threads. Nonetheless, threads might be mildly advantageous, especially on a high-
volume site on a slow network connection. And this server does a lot of string
processing, one of Java's most notorious performance bottlenecks. But really for
purposes of example more than anything, I've made the server multithreaded. In this
example, I chose to use a new thread rather than a thread pool for each connection.
This is perhaps a little simpler to code and understand but somewhat less efficient. In
Example 11.8, we'll look at an HTTP server that uses a thread pool.

Example 11.7. An HTTP Redirector

import java.net.*;
import java.io.*;
import java.util.*;

public class Redirector implements Runnable {

 private int port;
 private String newSite;

 public Redirector(String site, int port) {
 this.port = port;
 this.newSite = site;
 }

 public void run() {

 try {

 ServerSocket server = new ServerSocket(this.port);
 System.out.println("Redirecting connections on port "
 + server.getLocalPort() + " to " + newSite);

 while (true) {

 try {
 Socket s = server.accept();

 Thread t = new RedirectThread(s);
 t.start();
 } // end try
 catch (IOException e) {
 }

 } // end while

 } // end try
 catch (BindException e) {
 System.err.println("Could not start server. Port Occupied");
 }
 catch (IOException e) {
 System.err.println(e);
 }

 } // end run

 class RedirectThread extends Thread {

 private Socket connection;

 RedirectThread(Socket s) {
 this.connection = s;
 }

 public void run() {

 try {

 Writer out = new BufferedWriter(
 new OutputStreamWriter(
 connection.getOutputStream(), "ASCII"
)
);
 Reader in = new InputStreamReader(
 new BufferedInputStream(
 connection.getInputStream()
)
);

 // read the first line only; that's all we need
 StringBuffer request = new StringBuffer(80);
 while (true) {
 int c = in.read();
 if (c == '\r' || c == '\n' || c == -1) break;
 request.append((char) c);
 }
 // If this is HTTP 1.0 or later send a MIME header
 String get = request.toString();
 int firstSpace = get.indexOf(' ');
 int secondSpace = get.indexOf(' ', firstSpace+1);
 String theFile = get.substring(firstSpace+1, secondSpace);
 if (get.indexOf("HTTP") != -1) {
 out.write("HTTP1.0 302 FOUND\r\n");
 Date now = new Date();
 out.write("Date: " + now + "\r\n");
 out.write("Server: Redirector 1.0\r\n");
 out.write("Location: " + newSite + theFile + "\r\n");
 out.write("Content-type: text/html\r\n\r\n");
 out.flush();

 }
 // Not all browsers support redirection so we need to
 // produce HTML that says where the document has moved to.
 out.write("<HTML><HEAD><TITLE>Document
moved</TITLE></HEAD>\r\n");
 out.write("<BODY><H1>Document moved</H1>\r\n");
 out.write("The document " + theFile
 + " has moved to\r\n"
 + newSite + theFile
 + ".\r\n Please update your bookmarks<P>");
 out.write("</BODY></HTML>\r\n");
 out.flush();

 } // end try
 catch (IOException e) {
 }
 finally {
 try {
 if (connection != null) connection.close();
 }
 catch (IOException e) {}
 }

 } // end run

 }

 public static void main(String[] args) {

 int thePort;
 String theSite;

 try {
 theSite = args[0];
 // trim trailing slash
 if (theSite.endsWith("/")) {
 theSite = theSite.substring(0, theSite.length()-1);
 }
 }
 catch (Exception e) {
 System.out.println(
 "Usage: java Redirector http://www.newsite.com/ port");
 return;
 }

 try {
 thePort = Integer.parseInt(args[1]);
 }
 catch (Exception e) {
 thePort = 80;
 }

 Thread t = new Thread(new Redirector(theSite, thePort));
 t.start();

 } // end main

}

To start the redirector on port 80 and redirect incoming requests to
http://metalab.unc.edu/xml, you would type:

D:\JAVA\JNP2\examples\11>java Redirector http://metalab.unc.edu/xml
Redirecting connections on port 80 to http://metalab.unc.edu/xml

If you connect to this server via Telnet, this is what you'll see:

% telnet macfaq.dialup.cloud9.net 80
Trying 168.100.203.234...
Connected to macfaq.dialup.cloud9.net.
Escape character is '^]'.
GET / HTTP 1.0
HTTP 1.0 302 FOUND
Date: Wed Sep 08 11:59:42 PDT 1999
Server: Redirector 1.0
Location: http://metalab.unc.edu/xml/
Content-type: text/html

<HTML><HEAD><TITLE>Document moved</TITLE></HEAD>
<BODY><H1>Document moved</H1>
The document / has moved to
http://metalab.unc.edu/xml/.
 Please update your bookmarks<P></BODY></HTML>
Connection closed by foreign host.

If, however, you connect with a reasonably modern web browser, you should be sent
to http://metalab.unc.edu/xml with only a slight delay. You should never see the
HTML added after the response code; this is provided to support older browsers that
don't do redirection automatically.

The main() method provides a very simple interface that reads the URL of the new
site to redirect connections to and the local port to listen on. It uses this information to
construct a Redirector object. Then it uses the resulting Runnable object
(Redirector implements Runnable) to spawn a new thread and start it. If the port is
not specified, Redirector listens on port 80. If the site is omitted, Redirector prints
an error message and exits.

The run() method of Redirector binds the server socket to the port, prints a brief
status message, and then enters an infinite loop in which it listens for connections.
Every time a connection is accepted, the resulting Socket object is used to construct a
RedirectThread. This RedirectThread is then started. All further interaction with
the client takes place in this new thread. The run() method of Redirector then
simply waits for the next incoming connection.

The run() method of RedirectThread does most of the work. It begins by chaining
a Writer to the Socket's output stream, and a Reader to the Socket's input stream.
Both input and output are buffered. Then the run() method reads the first line the
client sends. Although the client will probably send a whole MIME header, we can
ignore that. The first line contains all the information we need. This line looks
something like this:

GET /directory/filename.html HTTP 1.0

It is possible that the first word will be POST or PUT instead or that there will be no
HTTP version. The second "word" is the file the client wants to retrieve. This must
begin with a slash (/). Browsers are responsible for converting relative URLs to
absolute URLs that begin with a slash; the server does not do this. The third word is
the version of the HTTP protocol the browser understands. Possible values are
nothing at all (pre-HTTP 1.0 browsers), HTTP 1.0 (most current browsers), or HTTP
1.1.

To handle a request like this, Redirector ignores the first word. The second word is
attached to the URL of the target server (stored in the field newSite) to give a full
redirected URL. The third word is used to determine whether to send a MIME header;
MIME headers are not used for old browsers that do not understand HTTP 1.0. If
there is a version, a MIME header is sent; otherwise, it is omitted.

Sending the data is almost trivial. The Writer out is used. Since all the data we send
is pure ASCII, the exact encoding isn't too important. The only trick here is that the
end-of-line character for HTTP requests is \r\n--a carriage return followed by a
linefeed.

The next lines each send one line of text to the client. The first line printed is:

HTTP 1.0 302 FOUND

This is an HTTP 1.0 response code that tells the client to expect to be redirected. The
second line is a Date: header that gives the current time at the server. This line is
optional. The third line is the name and version of the server; this is also optional but
is used by spiders that try to keep statistics about the most popular web servers. (It
would be very surprising to ever see Redirector break into single digits in lists of the
most popular servers.) The next line is the Location: header, which is required for
this server. It tells the client where it is being redirected to. Last is the standard
Content-type: header. We send the content type text/html to indicate that the
client should expect to see HTML. Finally, a blank line is sent to signify the end of
the header data.

Everything after this will be HTML, which is processed by the browser and displayed
to the user. The next several lines print a message for browsers that do not support
redirection, so those users can manually jump to the new site. That message looks like:

<HTML><HEAD><TITLE>Document moved</TITLE></HEAD>
<BODY><H1>Document moved</H1>
The document / has moved to
http://metalab.unc.edu/xml/.
 Please update your bookmarks<P></BODY></HTML>

Finally, the connection is closed and the thread dies.

11.2.2.3 A full-fledged HTTP server

Enough with special-purpose HTTP servers. This section develops a full-blown HTTP
server, called JHTTP, that can serve an entire document tree, including images, applets,
HTML files, text files, and more. It will be very similar to the

SingleFileHTTPServer, except that it pays attention to the GET requests. This
server is still fairly lightweight; after looking at the code, we'll discuss other features
you might want to add.

Since this server may have to read and serve large files from the filesystem over
potentially slow network connections, we'll change its approach. Rather than
processing each request as it arrives in the main thread of execution, we'll place
incoming connections in a pool. Separate instances of a RequestProcessor class will
remove the connections from the pool and process them. Example 11.8 shows the
main JHTTP class. As in the previous two examples, the main() method of JHTTP
handles initialization, but other programs could use this class themselves to run basic
web servers.

Example 11.8. The JHTTP Web Server

import java.net.*;
import java.io.*;
import java.util.*;

public class JHTTP extends Thread {

 private File documentRootDirectory;
 private String indexFileName = "index.html";
 private ServerSocket server;
 private int numThreads = 50;

 public JHTTP(File documentRootDirectory, int port,
 String indexFileName) throws IOException {

 if (!documentRootDirectory.isDirectory()) {
 throw new IOException(documentRootDirectory
 + " does not exist as a directory");
 }
 this.documentRootDirectory = documentRootDirectory;
 this.indexFileName = indexFileName;
 this.server = new ServerSocket(port);
 }

 public JHTTP(File documentRootDirectory, int port)
 throws IOException {
 this(documentRootDirectory, port, "index.html");
 }

 public JHTTP(File documentRootDirectory) throws IOException {
 this(documentRootDirectory, 80, "index.html");
 }

 public void run() {

 for (int i = 0; i < numThreads; i++) {
 Thread t = new Thread(
 new RequestProcessor(documentRootDirectory, indexFileName));
 t.start();
 }
 System.out.println("Accepting connections on port "
 + server.getLocalPort());
 System.out.println("Document Root: " + documentRootDirectory);
 while (true) {

 try {
 Socket request = server.accept();
 RequestProcessor.processRequest(request);
 }
 catch (IOException e) {
 }
 }

 }

 public static void main(String[] args) {

 // get the Document root
 File docroot;
 try {
 docroot = new File(args[0]);
 }
 catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("Usage: java JHTTP docroot port indexfile");
 return;
 }

 // set the port to listen on
 int port;
 try {
 port = Integer.parseInt(args[1]);
 if (port < 0 || port > 65535) port = 80;
 }
 catch (Exception e) {
 port = 80;
 }

 try {
 JHTTP webserver = new JHTTP(docroot, port);
 webserver.start();
 }
 catch (IOException e) {
 System.out.println("Server could not start because of an "
 + e.getClass());
 System.out.println(e);
 }

 }

}

The main() method of the JHTTP class sets the document root directory from
args[0]. The port is read from args[1], or 80 is used for a default. Then a new
JHTTP thread is constructed and started. The JHTTP thread spawns 50
RequestProcessor threads to handle requests, each of which will retrieve incoming
connection requests from the RequestProcessor pool as they become available. The
JHTTP thread repeatedly accepts incoming connections and puts them in the
RequestProcessor pool.

Each connection is handled by the run() method of the RequestProcessor class
shown in Example 11.9. This method waits until it can get a Socket out of the pool.
Once it does that, it gets input and output streams from the socket and chains them to
a reader and a writer. The reader reads the first line of the client request to determine

the version of HTTP that the client supports—we want to send a MIME header only if
this is HTTP 1.0 or later—and what file is requested. Assuming the method is GET, the
file that is requested is converted to a filename on the local filesystem. If the file
requested was a directory (i.e., its name ended with a slash), we add the name of an
index file. We use the canonical path to make sure that the requested file doesn't come
from outside the document root directory. Otherwise, a sneaky client could walk all
over the local filesystem by including .. in URLs to walk up the directory hierarchy.
This is all we'll need from the client, though a more advanced web server, especially
one that logged hits, would read the rest of the MIME header the client sends.

Next the requested file is opened and its contents are read into a byte array. If the
HTTP version is 1.0 or later, we write the appropriate MIME headers on the output
stream. To figure out the content type, we call the guessContentTypeFromName()
method to map file extensions such as .html onto MIME types such as text/html. The
byte array containing the file's contents is written onto the output stream, and the
connection is closed. Exceptions may be thrown at various places if, for example, the
file cannot be found or opened. If an exception occurs, we send an appropriate HTTP
error message to the client instead of the file's contents.

Example 11.9. The Thread Pool That Handles HTTP Requests

import java.net.*;
import java.io.*;
import java.util.*;

public class RequestProcessor implements Runnable {

 private static List pool = new LinkedList();
 private File documentRootDirectory;
 private String indexFileName = "index.html";

 public RequestProcessor(File documentRootDirectory,
 String indexFileName) {

 if (documentRootDirectory.isFile()) {
 throw new IllegalArgumentException(
 "documentRootDirectory must be a directory, not a file");
 }
 this.documentRootDirectory = documentRootDirectory;
 try {
 this.documentRootDirectory
 = documentRootDirectory.getCanonicalFile();
 }
 catch (IOException e) {
 }
 if (indexFileName != null) this.indexFileName = indexFileName;
 }

 public static void processRequest(Socket request) {

 synchronized (pool) {
 pool.add(pool.size(), request);
 pool.notifyAll();
 }

 }

 public void run() {

 // for security checks
 String root = documentRootDirectory.getPath();

 while (true) {
 Socket connection;
 synchronized (pool) {
 while (pool.isEmpty()) {
 try {
 pool.wait();
 }
 catch (InterruptedException e) {
 }
 }
 connection = (Socket) pool.remove(0);
 }

 try {
 String filename;
 String contentType;
 OutputStream raw = new BufferedOutputStream(
 connection.getOutputStream()
);
 Writer out = new OutputStreamWriter(raw);
 Reader in = new InputStreamReader(
 new BufferedInputStream(
 connection.getInputStream()
),"ASCII"
);
 StringBuffer requestLine = new StringBuffer();
 int c;
 while (true) {
 c = in.read();
 if (c == '\r' || c == '\n') break;
 requestLine.append((char) c);
 }

 String get = requestLine.toString();

 // log the request
 System.out.println(get);

 StringTokenizer st = new StringTokenizer(get);
 String method = st.nextToken();
 String version = "";
 if (method.equals("GET")) {
 filename = st.nextToken();
 if (filename.endsWith("/")) filename += indexFileName;
 contentType = guessContentTypeFromName(filename);
 if (st.hasMoreTokens()) {
 version = st.nextToken();
 }

 File theFile = new File(documentRootDirectory,
 filename.substring(1,filename.length()));
 if (theFile.canRead()
 // Don't let clients outside the document root
 && theFile.getCanonicalPath().startsWith(root)) {
 DataInputStream fis = new DataInputStream(
 new BufferedInputStream(

 new FileInputStream(theFile)
)
);
 byte[] theData = new byte[(int) theFile.length()];
 fis.readFully(theData);
 fis.close();
 if (version.startsWith("HTTP ")) { // send a MIME header
 out.write("HTTP 1.0 200 OK\r\n");
 Date now = new Date();
 out.write("Date: " + now + "\r\n");
 out.write("Server: JHTTP 1.0\r\n");
 out.write("Content-length: " + theData.length + "\r\n");
 out.write("Content-type: " + contentType + "\r\n\r\n");
 out.flush();
 } // end try

 // send the file; it may be an image or other binary data
 // so use the underlying output stream
 // instead of the writer
 raw.write(theData);
 raw.flush();
 } // end if
 else { // can't find the file
 if (version.startsWith("HTTP ")) { // send a MIME header
 out.write("HTTP 1.0 404 File Not Found\r\n");
 Date now = new Date();
 out.write("Date: " + now + "\r\n");
 out.write("Server: JHTTP 1.0\r\n");
 out.write("Content-type: text/html\r\n\r\n");
 }
 out.write("<HTML>\r\n");
 out.write("<HEAD><TITLE>File Not Found</TITLE>\r\n");
 out.write("</HEAD>\r\n");
 out.write("<BODY>");
 out.write("<H1>HTTP Error 404: File Not Found</H1>\r\n");
 out.write("</BODY></HTML>\r\n");
 out.flush();
 }
 }
 else { // method does not equal "GET"
 if (version.startsWith("HTTP ")) { // send a MIME header
 out.write("HTTP 1.0 501 Not Implemented\r\n");
 Date now = new Date();
 out.write("Date: " + now + "\r\n");
 out.write("Server: JHTTP 1.0\r\n");
 out.write("Content-type: text/html\r\n\r\n");
 }
 out.write("<HTML>\r\n");
 out.write("<HEAD><TITLE>Not Implemented</TITLE>\r\n");
 out.write("</HEAD>\r\n");
 out.write("<BODY>");
 out.write("<H1>HTTP Error 501: Not Implemented</H1>\r\n");
 out.write("</BODY></HTML>\r\n");
 out.flush();
 }
 }
 catch (IOException e) {
 }
 finally {
 try {
 connection.close();

 }
 catch (IOException e) {}
 }

 } // end while

 } // end run

 public static String guessContentTypeFromName(String name) {
 if (name.endsWith(".html") || name.endsWith(".htm")) {
 return "text/html";
 }
 else if (name.endsWith(".txt") || name.endsWith(".java")) {
 return "text/plain";
 }
 else if (name.endsWith(".gif")) {
 return "image/gif";
 }
 else if (name.endsWith(".class")) {
 return "application/octet-stream";
 }
 else if (name.endsWith(".jpg") || name.endsWith(".jpeg")) {
 return "image/jpeg";
 }
 else return "text/plain";
 }

} // end RequestProcessor

This server is functional but still rather austere. Here are a few features you might
want to think about adding:

• A server administration interface
• Support for CGI programs and/or the Java Servlet API
• Support for other request methods, such as POST, HEAD, and PUT
• A log file in the common web log file format
• Server-side includes and/or Java Server Pages
• Support for multiple document roots, so that individual users can have their

own sites

Finally, you should spend a little time thinking about ways to optimize this server. If
you really want to use JHTTP to run a high-traffic site, there are a couple of things you
can do to speed this server up. The first and most important is to use a Just-in-Time
(JIT) compiler such as HotSpot. JITs can improve program performance by as much
as an order of magnitude or more. The second thing you should do is implement smart
caching. Keep track of the requests you've received, and store the data from the most
frequently requested files in a Hashtable so that they're kept in memory. Use a low-
priority thread to update this cache.

Chapter 12. Secure Sockets
One of the perennial fears of consumers buying goods over the Internet is that some
hacker will steal their credit card number and run up a several-thousand-dollar bill by
calling phone sex lines. In reality, it's far more likely that a clerk at a department store

will steal their credit card number from a store receipt than that some hacker will grab
it in transit across the Internet. In fact, as of early 2000, all the major online thefts of
credit card numbers have been accomplished by stealing the information from poorly
secured databases and text files after the information has been safely transmitted
across the Internet. Nonetheless, to make Internet connections more fundamentally
secure, sockets can be encrypted. This allows transactions to be confidential,
authenticated, and accurate.

However, encryption is a complex subject. Performing it properly requires a detailed
understanding not only of the mathematical algorithms used to encrypt data but also
of the protocols used to exchange keys and encrypted data. Even a small mistake can
open a large hole in your armor and reveal your communications to an eavesdropper.
Consequently, writing encryption software is a task best left to experts. Fortunately,
nonexperts with only a layperson's understanding of the underlying protocols and
algorithms can secure their communications with software designed by experts. Every
time you order something from an online store from within Netscape Navigator,
chances are the transaction is encrypted and authenticated using protocols and
algorithms you need to know next to nothing about. As a programmer who wants to
write network client software that talks to online stores, you need to know a little
more about the protocols and algorithms involved but not a lot more, provided you
can use a class library written by experts who do understand the details. If you want to
write the server software that runs the online store, then you need to know a little bit
more but still not as much as you would if you were designing all this from scratch
without reference to other work.

Unfortunately, such software is still subject to the arms control laws of the United
States and various other countries and consequently cannot be freely imported or
exported. (Details depend on jurisdiction.) Consequently, such capabilities are not
built into the standard java.net classes in the JDK. Instead, they are provided as a
standard extension to the JDK called the Java Secure Sockets Extension (JSSE). This
is an add-on for the JDK that secures network communications using the Secure
Sockets Layer (SSL) Version 3 and Transport Layer Security (TLS) protocols and
their associated algorithms. SSL is a security protocol to allow web browsers to talk to
web servers using various levels of confidentiality and authentication. SSL was
originally developed at and patented by Netscape (building on the work of many
previous cryptographers). Its successor, TLS, is being developed under the auspices of
the IETF.

12.1 Secure Communications

Confidential communication through an open channel such as the public Internet that
nonetheless resists eavesdropping absolutely requires that the data be encrypted. Most
encryption schemes that lend themselves to computer implementation are based
around the notion of a key, a slightly more general kind of password that's not limited
to text. The clear text message is combined with the bits of the key according to a
mathematical algorithm to produce the encrypted cipher text. Using keys with more
bits makes messages exponentially more difficult to decrypt by brute-force guessing
of the keys.

In traditional secret key (or symmetric) encryption, the same key is used both to
encrypt and decrypt the data. Both the sender and the receiver have to possess the
single key. Suppose Angela wants to send Gus a secret message. She first sends Gus
the key they'll use to exchange the secret. But the key can't be encrypted because Gus
doesn't have the key yet, so Angela has to send the key unencrypted. Now suppose
Edgar is eavesdropping on the connection between Angela and Gus. He will get the
key at the same time that Gus does. From that point forward, he can read anything
Angela and Gus say to each other using that key.

In public key (or asymmetric) encryption, different keys are used to encrypt and
decrypt the data. One key, called the public key, is used to encrypt the data. This key
can be given to anyone. A different key, called the private key, is used to decrypt the
data. This must be kept secret but needs to be possessed by only one of the
correspondents. If Angela wants to send a message to Gus, she asks Gus for his public
key. Gus sends it to her over an unencrypted connection. Angela uses Gus's public
key to encrypt her message and sends it to him. If Edgar is eavesdropping when Gus
sends Angela his key, Edgar also gets Gus's public key. However, this doesn't allow
Edgar to decrypt the message Angela sends Gus, since decryption requires Gus's
private key. The message is safe even if the public key is detected in transit.

Asymmetric encryption can also be used for authentication and message integrity
checking. For this use, Angela would encrypt a message with her private key before
sending it. When Gus received it, he'd decrypt it with Angela's public key. If the
decryption succeeded, then Gus would know that the message came from Angela.
After all, no one else could have produced a message that would decrypt properly
with her public key. Gus would also know that the message wasn't changed en route,
either maliciously by Edgar or unintentionally by buggy software or network noise,
since any such change would have screwed up the decryption. With a little more effort,
Angela can double-encrypt the message, once with her private key, once with Gus's
public key, thus getting all three benefits of privacy, authentication, and integrity.

In practice, public key encryption is much more CPU-intensive and much slower than
secret key encryption. Therefore, instead of encrypting the entire transmission with
Gus's public key, Angela encrypts a traditional secret key and sends it to Gus. Gus
decrypts it with his private key. Now Angela and Gus both know the secret key, but
Edgar doesn't. Therefore, Gus and Angela can now use faster secret-key encryption to
communicate privately without Edgar being able to listen in.

Edgar still has one good attack on this protocol, however. (Very important: the attack
is on the protocol used to send and receive messages, not on the encryption algorithms
used. This attack does not require Edgar to break Gus and Angela's encryption and is
completely independent of key length.) Edgar not only can read Gus's public key
when he sends it to Angela, but also can replace it with his own public key! Then
when Angela thinks she's encrypting a message with Gus's public key, she's really
using Edgar's. When she sends a message to Gus, Edgar intercepts it, decrypts it using
his private key, encrypts it using Gus's public key, and sends it on to Gus. This is
called a man-in-the-middle attack . Working alone on an insecure channel, Gus and
Angela have no easy way to protect against this. The solution used in practice is for
both Gus and Angela to store and verify their public keys with a trusted third-party
certification authority. Rather than sending each other their public keys, Gus and

Angela retrieve each other's public key from the certification authority. This scheme
still isn't perfect—Edgar may be able to place himself in between Gus and the
certification authority, Angela and the certification authority, and Gus and Angela—
but it is making life harder for Edgar.

This discussion has been necessarily brief. Many interesting
details have been skimmed over or omitted entirely. If you want
to know more, the Crypt Cabal's Cryptography FAQ at
http://www.faqs.org/faqs/cryptography-faq/ is a good place to
start. For in-depth analysis of protocols and algorithms for
confidentiality, authentication, and message integrity, Bruce
Schneier's Applied Cryptography (John Wiley & Sons, 1996) is
the standard introductory text. Finally, Jonathan Knudsen's Java
Cryptography (O'Reilly & Associates, Inc., 1998) and Scott
Oak's Java Security (O'Reilly & Associates, Inc., 1998) cover the
underlying cryptography and authentication packages on which
the JSSE rests.

As this example should indicate, the theory and practice of encryption and
authentication, both algorithms and protocols, is a challenging field that's fraught with
minefields to surprise the amateur cryptographer. It is much easier to design a bad
encryption algorithm or protocol than a good one. And it's not always obvious which
algorithms and protocols are good and which aren't. Fortunately, you don't have to be
a cryptography expert to use strong cryptography in your Java network programs.
JSSE is the standard extension to Java 1.2 and later that shields you from the low-
level details of how algorithms are negotiated, keys are exchanged, correspondents are
authenticated, and data is encrypted. JSSE allows you to create sockets and server
sockets that transparently handle the negotiations and encryption necessary for secure
communication. All you have to do is send your data over the same streams and
sockets you're familiar with from previous chapters. The Java Secure Socket
Extension is divided into four packages:

javax.net.ssl

The abstract classes that define Java's API for secure network communication.

javax.net

The abstract socket factory classes used instead of constructors to create
secure sockets.

javax.security.cert

A minimal set of classes for handling public key certificates that's needed for
SSL in Java 1.1. (In Java 1.2 and later, the java.security.cert package
should be used instead.)

com.sun.net.ssl

The concrete classes that implement the encryption algorithms and protocols
in Sun's reference implementation of the JSSE. Technically, these are not part
of the JSSE standard. Other implementers may replace this package with one
of their own; for instance, one that uses native code to speed up the CPU-
intensive key generation and encryption process.

None of these are included as a standard part of the JDK. Before you can use any of
these classes, you'll have to download the JSSE (either global or domestic version)
from http://java.sun.com/products/jsse/ (as always, the URL is subject to change). In
the future, third parties may also implement this API, though no such third-party
implementations are available as of July 2000.

Sun's reference implementation is distributed as a zip file, which you can unpack and
place anywhere on your system. In the lib directory of this zip file, you'll find three
JAR archives: jcert.jar, jnet.jar, and jsse.jar. These need to be placed in your class
path. In Java 1.2 and later, you can simply move them to your jre/lib/ext directory. In
Java 1.1, you'll need to include the paths to each archive in the CLASSPATH
environment variable.

Next you need to register the cryptography provider by editing your
jre/lib/ext/security/java.security file. Open this file in a text editor and look for a line
like these:

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider

You may have more or fewer providers than this. However many you have, add one
more line like this:

security.provider.3=com.sun.net.ssl.internal.ssl.Provider

You may have to change the "3" to 2 or 4 or 5 or whatever the next number is in the
security provider sequence. If you install a third-party JSSE implementation, you'll
add another line like this with the class name as specified by your JSSE
implementation's documentation.

If you use multiple copies of the JRE, you'll need to repeat this
procedure for each one you use. For reasons that have never been
completely clear to me, Sun installed separate copies of the JRE
1.3 on my filesystem: one for compiling and one for running. I
had to make these changes to both copies to get JSSE programs
to run.

If you don't get this right, you'll see exceptions like "java.net.SocketException: SSL
implementation not available" when you try to run programs that use the JSSE.
Alternatively, instead of editing the java.policy file, you can add this line to classes
that use Sun's implementation of the JSSE:

java.security.Security.addProvider(

 new com.sun.net.ssl.internal.ssl.Provider());

This may be useful if you're writing software to run on someone else's system and
don't want to ask her to modify her java.policy file.

12.2 Creating Secure Client Sockets

If you don't care very much about the underlying details, using an encrypted SSL
socket to talk to an existing secure server is truly straightforward. Rather than
constructing a java.net.Socket object with a constructor, you get one from a
javax.net.ssl.SSLSocketFactory by using its createSocket() method.
SSLSocketFactory is an abstract class that follows the abstract factory design pattern:

public abstract class SSLSocketFactory extends SocketFactory

Since the SSLFactorySocket class is itself abstract, you get an instance of it by
invoking the static SSLSocketFactory.getDefault() method:

public static SocketFactory getDefault() throws
InstantiationException

This either returns an instance of SSLSocketFactory or throws an
InstantiationException if no concrete subclass can be found. Once you have a
reference to the factory, use one of the five overloaded createSocket() methods to
build an SSLSocket:

public abstract Socket createSocket(String host, int port)
 throws IOException, UnknownHostException
public abstract Socket createSocket(InetAddress host, int port)
 throws IOException
public abstract Socket createSocket(String host, int port,
 InetAddress interface, int localPort)
 throws IOException, UnknownHostException
public abstract Socket createSocket(InetAddress host, int port,
 InetAddress interface, int localPort)
 throws IOException, UnknownHostException
public abstract Socket createSocket(Socket proxy, String host, int
port,
 boolean autoClose) throws IOException

The first two methods create and return a socket that's connected to the specified host
and port or throw an IOException if they can't connect. The third and fourth methods
connect and return a socket that's connected to the specified host and port from the
specified local network interface and port. The last createSocket() method,
however, is a little different. It begins with an existing Socket object that's connected
to a proxy server. It returns a Socket that tunnels through this proxy server to the
specified host and port. The autoClose argument determines whether the underlying
proxy socket should be closed when this socket is closed. If autoClose is true, the
underlying socket will be closed; if false, it won't be.

The Socket that all these methods return will really be a javax.net.ssl.SSLSocket,
a subclass of java.net.Socket. However, you don't need to know that. Once the

secure socket has been created, you use it just like any other socket, through its
getInputStream() , getOutputStream(), and other methods. For example, let's
suppose there's a server running on login.metalab.unc.edu on port 7,000 that accepts
orders. Each order is sent as an ASCII string using a single TCP connection. The
server accepts the order and closes the connection. (I'm leaving out a lot of details that
would be necessary in a real-world system, such as the server sending a response code
telling the client whether the order was accepted.) The orders that clients send look
like this:

Name: John Smith
Product-ID: 67X-89
Address: 1280 Deniston Blvd, NY NY 10003
Card number: 4000-1234-5678-9017
Expires: 08/05

There's enough information in this message to let someone snooping packets figure
out John Smith's credit card number and use it for nefarious purposes. Consequently,
before sending this order, you should encrypt it, and the simplest way to do that,
without burdening either the server or the client with a lot of complicated, error-prone
encryption code, is to use a secure socket. The following code sends the order over a
secure socket:

try {

 // This statement is only needed if you didn't add
 // security.provider.3=com.sun.net.ssl.internal.ssl.Provider
 // to your java.security file.
 Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());

 SSLSocketFactory factory
 = (SSLSocketFactory) SSLSocketFactory.getDefault();
 Socket socket = factory.createSocket("login.metalab.unc.edu", 7000);

 Writer out = new OutputStreamWriter(socket.getOutputStream(),
 "ASCII");
 out.write("Name: John Smith\r\n");
 out.write("Product-ID: 67X-89\r\n");
 out.write("Address: 1280 Deniston Blvd, NY NY 10003\r\n");
 out.write("Card number: 4000-1234-5678-9017\r\n");
 out.write("Expires: 08/05\r\n");
 out.flush();
 out.close();
 socket.close();

}
catch (IOException e) {
 e.printStackTrace();
}

Only the first three statements are noticeably different from what you'd do with an
insecure socket. The rest of the code just uses the normal methods of the Socket,
OutputStream, and Writer classes.

Reading input is no harder. Example 12.1 is a simple program that connects to a
secure HTTP server, sends a simple GET request, and prints out the response.

Example 12.1. HTTPSClient

import java.net.*;
import java.io.*;
import java.security.*;
import javax.net.ssl.*;

public class HTTPSClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.out.println("Usage: java HTTPSClient host");
 return;
 }

 int port = 443; // default https port
 String host = args[0];

 try {

 Security.addProvider(new
com.sun.net.ssl.internal.ssl.Provider());
 SSLSocketFactory factory
 = (SSLSocketFactory) SSLSocketFactory.getDefault();

 SSLSocket socket = (SSLSocket) factory.createSocket(host, port);

 Writer out = new OutputStreamWriter(socket.getOutputStream());
 // https requires the full URL in the GET line
 out.write("GET http://" + host + "/ HTTP 1.1\r\n");
 out.write("\r\n");
 out.flush();

 // read response
 BufferedReader in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 int c;
 while ((c = in.read()) != -1) {
 System.out.write(c);
 }

 out.close();
 in.close();
 socket.close();

 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

}

Here are the first few lines of output you get when you connect to the U.S. Postal
Service's web site:

D:\JAVA\JNP2\examples\19>java HTTPSClient www.usps.gov
HTTP 1.1 200 OK

Server: Netscape-Enterprise/4.0
Date: Mon, 10 Jan 2000 19:35:40 GMT
Content-type: text/html
Etag: "34ad7c5d-1-491-3867bec9"
Last-modified: Mon, 27 Dec 1999 19:32:25 GMT
Content-length: 1169
Accept-ranges: bytes
Connection: keep-alive

<HTML>
<Head>
<META NAME="Description" CONTENT="The United States Postal Service
 (USPS). This Post Office is open 7 days a week, 24 hours a day.
 USPS - for your mailing and shipping needs.">

On the other hand, here's what happens when you try to connect to Verisign's secure
web server:

D:\JAVA\JNP2\examples\19>java HTTPSClient www.verisign.com
javax.net.ssl.SSLException: untrusted server cert chain

This is a little surprising. What's apparently happened is that Java has decided it
doesn't trust that Verisign really is who it says it is. This may be because Verisign is
authenticating itself. In most cases, it would be Verisign that would be authenticating
someone else.

One thing you may notice when you run this program is that it's slower to respond
than you might expect. There's a noticeable amount of both CPU and network
overhead involved in generating and exchanging the public keys. Even over a fast
connection, it can easily take 10 seconds or more for the connection to be established.
Consequently, you probably don't want to serve all your content over HTTPS, only
that which really needs to be private.

12.3 Methods of the SSLSocket Class

Besides the methods we've already discussed and those it inherits from
java.net.Socket, the SSLSocket class has a number of methods for configuring
exactly how much and what kind of authentication and encryption is performed. For
instance, you can choose weaker or stronger algorithms, require clients to prove their
identity, force reauthentication of both sides, and more.

12.3.1 Choosing the Cipher Suites

Different implementations of the JSSE support different combinations of
authentication and encryption algorithms. For instance, although so far I've been
talking about Sun's reference implementation as though it were one thing, it's actually
two: one for domestic use within the U.S. and Canada that allows for encryption with
key lengths up to 128 bits, and one for global use that allows only 40-bit encryption.
The getSupportedCipherSuites() method tells you which combination of
algorithms are available on a given socket:

public abstract String[] getSupportedCipherSuites()

However, not all cipher suites that are understood are necessarily allowed on the
connection. Some may be too weak and consequently disabled. The get
EnabledCipherSuites() method tells you which suites this socket is willing to use:

public abstract String[] getEnabledCipherSuites()

The actual suite used is negotiated between the client and server at connection time.
It's possible that the client and the server won't agree on any suite. It's also possible
that although a suite is enabled on both client and server, one or the other or both
won't have the keys and certificates needed to use the suite. In either case, the
createSocket() method will throw an SSLException, a subclass of IOException.
You can change which suites the client will attempt to use via the
setEnabledCipherSuites() method:

public abstract void setEnabledCipherSuites(String[] suites)

The argument to this method should be a list of the suites you want to use. Each name
must be one of the suites listed by getSupportedCipherSuites(). Otherwise, an
IllegalArgumentException will be thrown. The export version of Sun's reference
implementation of the JSSE supports the cipher suites in the following list:

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

Secure Sockets Layer Version 3; Diffie-Hellman method for key agreement;
no authentication; Data Encryption Standard block encryption with 40-bit keys;
Cipher Block Chaining, and the Secure Hash Algorithm checksum

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Secure Sockets Layer Version 3; Diffie-Hellman method for key agreement;
Digital Signature algorithm authentication; Data Encryption Standard 40-bit
block encryption with Cipher Block Chaining, and the Secure Hash Algorithm
checksum

SSL_RSA_EXPORT_WITH_RC4_40_MD5

Secure Sockets Layer Version 3 with RSA authentication; RC4 stream
encryption with 40-bit keys; and an MD5 checksum

SSL_RSA_WITH_NULL_MD5

Secure Sockets Layer Version 3 with RSA authentication; no encryption; and
an MD5 checksum

SSL_RSA_WITH_NULL_SHA

Secure Sockets Layer Version 3 with RSA authentication; no encryption; and
a Secure Hash Algorithm checksum

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

Secure Sockets Layer Version 3 with Diffie-Hellman key agreement, no
authentication; RC4 stream encryption with 40-bit keys, and an MD5
checksum

By default, the export version enables
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA and
SSL_RSA_EXPORT_WITH_RC4_40_MD5. The domestic version enables these two
as well as the stronger ones that perform authentication. You can change this with the
setEnabledCipherSuites() method. Besides key lengths, there's an important
difference between DES- and RC4-based ciphers. DES is a block cipher; that is, it
encrypts 64 bits at a time. If 64 bits aren't available, then it has to pad the input with
extra bits. This isn't a problem for file transfer applications such as secure HTTP and
FTP where more or less all the data is available at once. However, it's problematic for
user-centered protocols such as chat and Telnet. RC4 is a stream cipher that can
encrypt one byte at a time and is more appropriate for protocols that may need to send
a single byte at a time. For more details on the individual algorithms and their
strengths and weaknesses, see Applied Cryptography by Bruce Schneier (John Wiley
& Sons, 1996).

The domestic version of Sun's reference implementation of the JSSE supports the
cipher suites in the following list (as well as the suites in the previous list):

SSL_DH_anon_WITH_DES_CBC_SHA

Secure Sockets Layer Version 3; Diffie-Hellman method for key agreement;
no authentication; Data Encryption Standard block encryption with 56-bit keys;
Cipher Block Chaining, and the Secure Hash Algorithm checksum

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

Same as previous but with 112-bit strong keys

SSL_DHE_DSS_WITH_DES_CBC_SHA

Secure Sockets Layer Version 3; Diffie-Hellman method for key agreement;
Digital Signature algorithm authentication; Data Encryption Standard block
encryption with 56-bit keys; Cipher Block Chaining, and the Secure Hash
Algorithm checksum

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

Same as previous but with 112-bit strong keys

SSL_RSA_WITH_RC4_128_MD5

Secure Sockets Layer Version 3 with RSA authentication; RC4 stream
encryption with 128-bit keys; and an MD5 checksum

SSL_RSA_WITH_RC4_128_SHA

Secure Sockets Layer Version 3 with RSA authentication; RC4 stream
encryption with 40-bit keys; and a Secure Hash Algorithm checksum

SSL_RSA_WITH_DES_CBC_SHA

Secure Sockets Layer Version 3 with RSA authentication; 56-bit DES block
encryption; and a Secure Hash Algorithm checksum

SSL_RSA_WITH_3DES_EDE_CBC_SHA

Secure Sockets Layer Version 3 with RSA authentication; triple DES (112-bit
strong) block encryption; Cipher Block Chaining, and a Secure Hash
Algorithm checksum

SSL_DH_anon_WITH_RC4_128_MD5

Secure Sockets Layer Version 3 with Diffie-Hellman key agreement, no
authentication; RC4 stream encryption with 128-bit keys, and an MD5
checksum

For example, let's suppose that Edgar has some fairly powerful parallel computers at
his disposal and can quickly break any encryption that's 64 bits or fewer and that Gus
and Angela know this. Furthermore, they suspect that Edgar can blackmail one of
their ISPs or the phone company into letting him tap the line, so they want to avoid
anonymous connections that are vulnerable to man-in-the-middle attacks. To be safe,
Gus and Angela decide they want to use at least 112-bit, authenticated encryption. It
then behooves them to enable only the strongest available algorithms. This code
fragment accomplishes that:

String[] strongSuites = {"SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA",
 "SSL_RSA_WITH_RC4_128_MD5", "SSL_RSA_WITH_RC4_128_SHA",
 "SSL_RSA_WITH_3DES_EDE_CBC_SHA"};
socket.setEnabledCipherSuites(strongSuites);

If the other side of the connection doesn't support strong encryption, the socket will
throw an exception when they try to read from or write to it, thus ensuring that no
confidential information is accidentally transmitted over too weak a channel.

12.3.2 Event Handlers

Network communications are slow compared to the speed of most computers.
Authenticated network communications are even slower. The necessary key
generation and setup for a secure connection can easily take 10 seconds or more.
Consequently, you may want to deal with the connection asynchronously. JSSE uses
the standard event model introduced in Java 1.1 to notify programs when the
handshaking between client and server is complete. The pattern is a familiar one. To
get notifications of handshake-complete events, you simply implement the
HandshakeCompletedListener interface:

public interface HandshakeCompletedListener
 extends java.util.EventListener

This interface declares the handshakeCompleted() method:

public void handshakeCompleted(HandshakeCompletedEvent event)

This method receives as an argument a javax.net.ssl.HandshakeCompletedEvent:

public class HandshakeCompletedEvent extends java.util.EventObject

The HandshakeCompletedEvent class provides four methods for getting information
about the event:

public SSLSession getSession()
public String getCipherSuite()
public X509Certificate[] getPeerCertificateChain()
 throws SSLPeerUnverifiedException
public SSLSocket getSocket()

Particular HandshakeCompletedListener objects register their interest in handshake-
completed events from a particular SSLSocket via its
addHandshakeCompletedListener() and removeHandshakeCompleted-
Listener() methods:

public abstract void addHandshakeCompletedListener(
 HandshakeCompletedListener listener)
public abstract void removeHandshakeCompletedListener(
 HandshakeCompletedListener listener) throws IllegalArgumentException

12.3.3 Session Management

SSL is most commonly used on web servers. Web connections tend to be transitory.
Every page requires a separate socket. For instance, checking out of Amazon.com on
its secure server requires seven separate page loads, more if you have to edit an
address or choose gift wrapping. Imagine if every one of those pages took an extra 10
seconds or more to negotiate a secure connection. Because of the high overhead
involved in handshaking between two hosts for secure communications, SSL allows
sessions to be established that extend over multiple sockets. Different sockets within
the same session use the same set of public and private keys. If the secure connection
to Amazon.com takes seven sockets, all seven will be established within the same
session and use the same keys. Only the first socket within that session will have to
endure the overhead of key generation and exchange.

As a programmer using JSSE, you don't need to do anything extra to take advantage
of sessions. If you open multiple secure sockets to one host on one port within a
reasonably short period of time, JSSE will reuse the session's keys automatically.
However, in high-security applications, you may want to disallow session sharing
between sockets or force reauthentication of a session. In the JSSE, sessions are
represented by instances of the SSLSession interface, and you can use the methods of
this interface to check the times the session was created and last accessed, to
invalidate the session, and to get various information about the session:

public byte[] getId()
public SSLSessionContext getSessionContext()

public long getCreationTime()
public long getLastAccessedTime()
public void invalidate()
public void putValue(String name, Object value)
public Object getValue(String name)
public void removeValue(String name)
public String[] getValueNames()
public X509Certificate[] getPeerCertificateChain()
 throws SSLPeerUnverifiedException
public String getCipherSuite()
public String getPeerHost()

The getSession() method of SSLSocket returns the Session of which this socket
is a part:

public abstract SSLSession getSession()

In some circumstances, however, a session can be a security risk. Consequently, you
can prevent a socket from creating a session by passing false to
setEnableSessionCreation():

public abstract void setEnableSessionCreation(boolean allowSessions)

The getEnableSessionCreation() method returns true if multisocket sessions are
allowed, false if they're not:

public abstract boolean getEnableSessionCreation()

On the rare occasion, you may even want to reauthenticate a connection; that is, throw
away all the certificates and keys that have previously been agreed to and start over
with a new session. The startHandshake() method does this:

public abstract void startHandshake() throws IOException

12.3.4 Client Mode

As a general rule, in a secure communication, the server is required to authenticate
itself using the appropriate certificate. However, the client is not. That is, when I buy
a book from Fatbrain using its secure server, it has to prove to my browser's
satisfaction that it is indeed Fatbrain and not Joe Random Hacker. However, I do not
have to prove to Fatbrain that I am Elliotte Rusty Harold. For the most part, this is as
it should be, since purchasing and installing the trusted certificates necessary for
authentication is a fairly user-hostile experience that readers shouldn't have to go
through just to buy the latest Nutshell handbook. However, this asymmetry leads to a
little credit card fraud. To avoid problems like this, sockets can be required to
authenticate themselves. This wouldn't work for a service open to the general public.
However, it might be reasonable in certain internal, high-security applications.

The setUseClientMode() method determines whether this socket will need to use
authentication in its first handshake. The name of the method is a little misleading. It
can be used for both client- and server-side sockets. However, when true is passed in,

that means the socket is in client mode (whether it's on the client side or not) and will
not offer to authenticate itself. When false is passed, it will try to authenticate itself:

public abstract void setUseClientMode(boolean mode)
 throws IllegalArgumentException

This property can be set only once for any given socket. Attempting to set it a second
time throws an IllegalArgumentException.

The getUseClientMode() method simply tells you whether this socket will use
authentication in its first handshake:

public abstract boolean getUseClientMode()

The setNeedClientAuth() method is used by a secure socket on the server side
(that is, one returned by the accept() method of an SSLServerSocket) to require
that all clients connecting to it authenticate themselves (or not):

public abstract void setNeedClientAuth(boolean needsAuthentication)
 throws IllegalArgumentException

This method throws an IllegalArgumentException if this socket is not on the
server side.

The getNeedClientAuth() returns true if the socket will require authentication
from the client side, false otherwise:

public abstract boolean getNeedClientAuth()

12.4 Creating Secure Server Sockets

Secure client sockets are only half of the equation. The other half is SSL-enabled
server sockets. These are instances of the javax.net.SSLServerSocket class:

public abstract class SSLServerSocket extends ServerSocket

Like SSLSocket, all the constructors in this class are protected. Like SSLSocket,
instances of SSLServerSocket are created by an abstract factory class,
javax.net.SSLServerSocketFactory:

public abstract class SSLServerSocketFactory
 extends ServerSocketFactory

Also like SSLSocketFactory, an instance of SSLServerSocketFactory is returned
by a static SSLServerSocketFactory.getDefault() method:

public static ServerSocketFactory getDefault()

And like SSLSocketFactory, SSLServerSocketFactory has three overloaded
createServerSocket() methods that return instances of SSLServerSocket and are
easily understood by analogy with the java.net.ServerSocket constructors:

public abstract ServerSocket createServerSocket(int port)
 throws IOException
public abstract ServerSocket createServerSocket(int port,
 int queueLength) throws IOException
public abstract ServerSocket createServerSocket(int port,
 int queueLength, InetAddress interface) throws IOException

If that were all there was to creating secure server sockets, then they would be quite
straightforward and simple to use. Unfortunately, that's not all there is to it. The
factory that SSLServerSocketFactory.getDefault() returns generally supports
only server authentication. It does not support encryption. To get encryption as well,
server-side secure sockets require more initialization and setup. Exactly how this is
performed is implementation-dependent. In Sun's reference implementation, a
com.sun.net.ssl.SSLContext object is responsible for creating fully configured
and initialized secure server sockets. The details will vary from JSSE implementation
to JSSE implementation, but to create a secure server socket in the reference
implementation, you have to:

• Generate public keys and certificates using keytool.
• Pay money to have your certificates authenticated by a trusted third party such

as Verisign.
• Create an SSLContext for the algorithm you'll use.
• Create a TrustManagerFactory for the source of certificate material you'll be

using.
• Create a KeyManagerFactory for the type of key material you'll be using.
• Create a KeyStore object for your key and certificate database. (Sun's default

is JKS.)
• Fill the KeyStore object with keys and certificates; for instance, by loading

them from the filesystem using the pass phrase they're encrypted with.
• Initialize the KeyManagerFactory with the KeyStore and its pass phrase.
• Initialize the context with the necessary key managers from the

KeyManagerFactory, trust managers from the TrustManagerFactory, and a
source of randomness. (The last two may be null if you're willing to accept the
defaults.)

Example 12.2 demonstrates this procedure with a complete SecureOrderTaker for
accepting orders and printing them on System.out. Of course, in a real application,
you'd do something more interesting with the orders.

Example 12.2. SecureOrderTaker

import java.net.*;
import java.io.*;
import java.util.*;
import java.security.*;
import javax.net.ssl.*;
import javax.net.*;
import com.sun.net.ssl.*;

public class SecureOrderTaker {

 public final static int DEFAULT_PORT = 7000;
 public final static String algorithm = "SSLv3";

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[0]);
 if (port <= 0 || port >= 65536) {
 System.out.println("Port must between 1 and 65535");
 return;
 }
 }
 catch (NumberFormatException e) {}
 }

 try {

 SSLContext context = SSLContext.getInstance("SSL");

 // The reference implementation only supports X.509 keys
 KeyManagerFactory kmf =
KeyManagerFactory.getInstance("SunX509");

 // Sun's default kind of key store
 KeyStore ks = KeyStore.getInstance("JKS");

 // For security, every key store is encrypted with a
 // pass phrase that must be provided before we can load
 // it from disk. The pass phrase is stored as a char[] array
 // so it can be wiped from memory quickly rather than
 // waiting for a garbage collector. Of course using a string
 // literal here completely defeats that purpose.
 char[] password = "2andnotafnord".toCharArray();
 ks.load(new FileInputStream("jnp2e19.keys"), password);
 kmf.init(ks, password);

 //
 context.init(kmf.getKeyManagers(), null, null);

 SSLServerSocketFactory factory
 = context.getServerSocketFactory();

 SSLServerSocket server
 = (SSLServerSocket) factory.createServerSocket(port);

 // Now all the set up is complete and we can focus
 // on the actual communication.
 try {
 while (true) {
 // This socket will be secure,
 // but there's no indication of that in the code!
 Socket theConnection = server.accept();
 InputStream in = theConnection.getInputStream();
 int c;
 while ((c = in.read()) != -1) {
 System.out.write(c);
 }
 theConnection.close();
 } // end while
 } // end try
 catch (IOException e) {

 System.err.println(e);
 } // end catch

 } // end try
 catch (IOException e) {
 e.printStackTrace();
 } // end catch
 catch (KeyManagementException e) {
 e.printStackTrace();
 } // end catch
 catch (KeyStoreException e) {
 e.printStackTrace();
 } // end catch
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } // end catch
 catch (java.security.cert.CertificateException e) {
 e.printStackTrace();
 } // end catch
 catch (UnrecoverableKeyException e) {
 e.printStackTrace();
 } // end catch

 } // end main

} // end server

This example loads the necessary keys and certificates from a file named jnp2e19.keys
in the current working directory protected with the password "2andnotafnord". What
this example doesn't show you is how that file was created. It was built with the
keytool program that's bundled with the JDK like this:

D:\JAVA>keytool -genkey -alias ourstore -keystore jnp2e19.keys
Enter keystore password: 2andnotafnord
What is your first and last name?
 [Unknown]: Elliotte
What is the name of your organizational unit?
 [Unknown]: Me, Myself, and I
What is the name of your organization?
 [Unknown]: Cafe au Lait
What is the name of your City or Locality?
 [Unknown]: Brooklyn
What is the name of your State or Province?
 [Unknown]: New York
What is the two-letter country code for this unit?
 [Unknown]: NY
Is <CN=Elliotte, OU="Me, Myself, and I", O=Cafe au Lait, L=Brooklyn,
ST=New York, C=NY> correct?
 [no]: y

Enter key password for <ourstore>
 (RETURN if same as keystore password):

When this is finished, you'll have the file jnp2e19.keys, which contains your public
keys. However, no one will believe that these are your public keys unless you have
them certified by a trusted third party such as Verisign (http://www.verisign.com/).
Unfortunately, this certification costs money. The cheapest option is $14.95 per year
for a Class 1 Digital ID. Verisign hides the sign-up form for this kind of ID deep

within its web site, apparently to get you to sign up for much more expensive options
that are much more prominently featured on its home page. At the time of this writing,
the sign-up form was at https://www.verisign.com/products/class1/index.html.
Verisign has changed this URL several times in the past, making it much harder to
find than its more expensive options. In the more expensive options, Verisign goes to
greater lengths to guarantee that you are who you say you are. Before signing up for
any kind of digital ID, you should be aware that purchasing one has potentially severe
legal consequences. In many jurisdictions, poorly thought-out laws make digital ID
owners liable for all purchases made and contracts signed using their digital ID,
regardless of whether the ID was stolen or forged. If you just want to explore the
JSSE before deciding whether you want to go through the hassle, expense, and
liability of purchasing a verified certificate, Sun includes a verified keystore file
called testkeys protected with the password "passphrase", with some JSSE samples at
http://java.sun.com/products/jsse/. However, this isn't good enough for real work.

For more information about exactly what's going on here, and what the various
options are as well as other ways to create key and certificate files, you can consult
the online documentation for the keytool utility that came with your JDK, the Java
Cryptography Architecture guide at
http://java.sun.com/products/jdk/1.2/docs/guide/security/CryptoSpec.html, or the
previously mentioned books Java Cryptography, by Jonathan Knudsen, or Java
Security, by Scott Oaks (both from O'Reilly & Associates, Inc., 1998).

Another approach is to use cipher suites that don't require authentication. There are
two of these in Sun's export reference implementation:
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA and
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5; and three more in the domestic
implementation: SSL_DH_anon_WITH_DES_CBC_SHA,
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA, and
SSL_DH_anon_WITH_RC4_128_MD5. These are not enabled by default because
they're vulnerable to the man-in-the-middle attack discussed earlier, but at least they
allow you to write simple programs without paying Verisign money.

12.5 Methods of the SSLServerSocket Class

Once you've successfully created and initialized an SSLServerSocket, there are a lot
of applications you can write using nothing more than the methods inherited from
java.net.ServerSocket. However, there are times when you need to adjust its
behavior a little. Like SSLSocket, SSLServerSocket provides methods to choose the
cipher suites it uses, to manage sessions, and to establish whether clients are required
to authenticate themselves. Most of these methods are very similar to the methods of
the same name in SSLSocket. The difference is that they work on the server side and
set the defaults for sockets accepted by an SSLServerSocket. In some cases, once an
SSLSocket has been accepted, you can still use the methods of SSLSocket to
configure that one socket rather than all sockets accepted by this SSLServerSocket.

12.5.1 Choosing the Cipher Suites

The SSLServerSocket class has the same three methods for determining which
cipher suites are supported and enabled as SSLSocket does:

public abstract String[] getSupportedCipherSuites()
public abstract String[] getEnabledCipherSuites()
public abstract void setEnabledCipherSuites(String[] suites)

These use the same suite names as the similarly named methods in SSLSocket. The
difference is that these apply to all sockets accepted by the SSLServerSocket rather
than to just one SSLSocket. For example, this code fragment has the effect of
enabling anonymous, unauthenticated connections on the SSLServerSocket server.
It relies on the names of these suites containing the string "_anon_". This is true for
Sun's reference implementations, though there's no guarantee that other implementers
will follow this convention:

String[] supported = server.getSupportedCipherSuites();
String[] anonCipherSuitesSupported = new String[supported.length];
int numAnonCipherSuitesSupported = 0;
for (int i = 0; i < supported.length; i++) {
 if (supported[i].indexOf("_anon_") > 0) {
 anonCipherSuitesSupported[numAnonCipherSuitesSupported++]
 = supported[i];
 }
}

String[] oldEnabled = server.getEnabledCipherSuites();
String[] newEnabled = new String[oldEnabled.length
 + numAnonCipherSuitesSupported];
System.arraycopy(oldEnabled, 0, newEnabled, 0, oldEnabled.length);
System.arraycopy(anonCipherSuitesSupported, 0, newEnabled,
 oldEnabled.length, numAnonCipherSuitesSupported);

server.setEnabledCipherSuites(newEnabled);

This fragment retrieves the list of both supported and enabled cipher suites using
getSupportedCipherSuites() and getEnabledCipherSuites(). It looks at the
name of every supported suite to see whether it contains the substring "_anon_". If it
does, it's added to a list of anonymous cipher suites. Once the list of anonymous
cipher suites is built, it's combined in a new array with the previous list of enabled
cipher suites. This new array is then passed to set-EnabledCipherSuites() so that
both the previously enabled and the anonymous cipher suites can now be used.

12.5.2 Session Management

Both client and server must agree to establish a session for multisocket secure
sessions to be allowed. The server side uses the setEnableSessionCreation()
method to specify whether this will be allowed and the getEnable-
SessionCreation() method to determine whether this is currently allowed:

public abstract void setEnableSessionCreation(boolean allowSessions)
public abstract boolean getEnableSessionCreation()

Session creation is enabled by default. If the server disallows session creation, then a
client that wants a session will still be able to connect. It just won't get a session and
will have to handshake again for every socket. Similarly, if the client refuses sessions,
but the server allows them, then they'll still be able to talk to each other but without
sessions.

12.5.3 Client Mode

The SSLServerSocket class has two methods for determining and specifying whether
client sockets are required to authenticate themselves to the server. By passing true to
the setNeedClientAuth() method, you specify that only connections where the
client is able to authenticate itself will be accepted. By passing false, you specify that
authentication is not required of clients. The default is false. If for some reason you
need to know what the current state of this property is, the getNeedClientAuth()
method will tell you:

public abstract void setNeedClientAuth(boolean flag)
public abstract boolean getNeedClientAuth()

The setUseClientMode() method allows a program to indicate that even though it
has created an SSLServerSocket, it is and should be treated as a client in the
communication with respect to authentication and other negotiations. For example, in
an FTP session, the client program opens a server socket to receive data from the
server, but that doesn't make it less of a client. The getUseClientMode() method
returns true if the SSLServerSocket is in client mode, false otherwise:

public abstract void setUseClientMode(boolean flag)
public abstract boolean getUseClientMode()

Chapter 13. UDP Datagrams and Sockets
Previous chapters discussed network applications that used the TCP protocol. TCP is
designed for reliable transmission of data. If data is lost or damaged in transmission,
TCP ensures that the data is resent; if packets of data arrive out of order, TCP puts
them back in the correct order; if the data is coming too fast for the connection, TCP
throttles the speed back so that packets won't be lost. A program never needs to worry
about receiving data that is out of order or incorrect. However, this reliability comes
at a price. That price is speed. Establishing and tearing down TCP connections can
take a fair amount of time, particularly for protocols such as HTTP, which tend to
require many short transmissions.

The User Datagram Protocol (UDP) is an alternative protocol for sending data over IP
that is very quick, but not reliable. That is, when you send UDP data, you have no
way of knowing whether it arrived, much less whether different pieces of data arrived
in the order in which you sent them. However, the pieces that do arrive generally
arrive much more quickly.

13.1 The UDP Protocol

The obvious question to ask is why anyone would ever use an unreliable protocol.
Surely, if you have data worth sending, you care about whether the data arrives
correctly. Clearly, UDP isn't a good match for applications like FTP that require
reliable transmission of data over potentially unreliable networks. However, there are
many kinds of applications in which raw speed is more important than getting every
bit right. For example, in real-time audio or video, lost or swapped packets of data
simply appear as static. Static is tolerable, but awkward pauses in the audio stream,

when TCP requests a retransmission or waits for a wayward packet to arrive, are
unacceptable. In other applications, reliability tests can be implemented in the
application layer. For example, if a client sends a short UDP request to a server, it
may assume that the packet is lost if no response is returned within an established
period of time; this is one way the Domain Name System (DNS) works.[1] In fact, you
could implement a reliable file transfer protocol using UDP, and many people have:
Network File System (NFS), Trivial FTP (TFTP), and FSP, a more distant relative of
FTP, all use UDP.[2] In these protocols, the application is responsible for reliability;
UDP doesn't take care of it. That is, the application must handle missing or out-of-
order packets. This is a lot of work, but there's no reason it can't be done—though if
you find yourself writing this code, you should think carefully about whether you
might be better off with TCP.

[1] DNS can also use TCP.

[2] The latest version of NFS can use either UDP or TCP.

The difference between TCP and UDP is often explained by analogy with the phone
system and the post office. TCP is like the phone system. When you dial a number,
the phone is answered and a connection is established between the two parties. As you
talk, you know that the other party hears your words in the order in which you say
them. If the phone is busy or no one answers, you find out right away. UDP, by
contrast, is like the postal system. You send packets of mail to an address. Most of the
letters arrive, but some may be lost on the way. The letters probably arrive in the
order in which you sent them, but that's not guaranteed. The farther away you are
from your recipient, the more likely it is that mail will be lost on the way or arrive out
of order. If this is a problem, you can write sequential numbers on the envelopes, then
ask the recipients to arrange them in the correct order and send you mail telling you
which letters arrived so that you can resend any that didn't get there the first time.
However, you and your correspondent need to agree on this protocol in advance. The
post office will not do it for you.

Both the phone system and the post office have their uses. Although either one could
be used for almost any communication, in some cases one is definitely superior to the
other. The same is true of UDP and TCP. The last several chapters have all focused on
TCP applications, which are far more common than UDP applications. However,
UDP also has its place; in this chapter, we'll look at what you can do with UDP in
Java. If you want to go further, look at Chapter 14. Multicasting relies on UDP; a
multicast socket is a fairly simple variation on a UDP socket.

Java's implementation of UDP is split into two classes: DatagramPacket and
DatagramSocket. The DatagramPacket class stuffs bytes of data into UDP packets
called datagrams and lets you unstuff datagrams that you receive. A DatagramSocket
sends as well as receives UDP datagrams. To send data, you put the data in a
DatagramPacket and send the packet using a DatagramSocket. To receive data, you
receive a DatagramPacket object from a DatagramSocket and then read the contents
of the packet. The sockets themselves are very simple creatures. In UDP, everything
about a datagram, including the address to which it is directed, is included in the
packet itself; the socket needs to know only the local port on which to listen or send.

This division of labor contrasts with the Socket and ServerSocket classes used by
TCP. First, UDP doesn't have any notion of a server socket. You use the same kind of
socket to send data and to receive data. Second, TCP sockets allow you to treat a
network connection as a stream: you send and receive with input and output streams
that you get from the socket. UDP doesn't allow this; you always work with individual
datagram packets. All the data you stuff into a single datagram is sent as a single
packet and is either received or lost as a group. One packet is not necessarily related
to the next. Given two packets, there is no way to determine which packet was sent
first and which was sent second. Instead of the orderly queue of data that's necessary
for a stream, datagrams try to crowd into the recipient as quickly as possible, like a
crowd of people pushing their way onto a bus. A third difference, which is really a
consequence of the first two, is that a single DatagramSocket can send data to and
receive data from many independent hosts. The socket isn't dedicated to a single
connection, as it is in TCP. In fact, UDP doesn't have any concept of a connection
between two hosts; it only knows about individual datagrams. Figuring out who sent
what data is the application's responsibility.

13.2 The DatagramPacket Class

UDP datagrams add very little to the IP datagrams they sit on top of. Figure 13.1
shows a typical UDP datagram. The UDP header adds only eight bytes to the IP
header. The UDP header includes source and destination port numbers, the length of
everything that follows the IP header, and an optional checksum. Since port numbers
are given as a 2-byte unsigned integer, 65,536 different possible UDP ports are
available per host. These are distinct from the 65,536 different TCP ports per host.
Since the length is also a 2-byte unsigned integer, the number of bytes in a datagram
is limited to 65,536 minus the 8 bytes for the header. However, this is redundant with
the datagram length field of the IP header, which limits datagrams to from 65,467 to
65,507 bytes. (The exact number depends on the size of the IP header.) The checksum
field is optional and not used in or accessible from application layer programs. If the
checksum for the data fails, the native network software will silently discard the
datagram; neither the sender nor the receiver is notified. UDP is an unreliable protocol,
after all.

Figure 13.1. The structure of a UDP datagram

Although the theoretical maximum amount of data in a UDP datagram is 65,507 bytes,
in practice there is almost always much less. On many platforms, the actual limit is
more likely to be 8,192 bytes (8K). And implementations are not required to accept
datagrams with more than 576 total bytes including data and headers. Consequently, I
would be extremely wary of any program that depended on sending or receiving UDP
packets with more than 8K of data. Most of the time, larger packets are simply
truncated to 8K of data. For maximum safety, the data portion of a UDP packet should
be kept to 512 bytes or fewer, though this can negatively affect performance
compared to larger packet sizes. (This is a problem for TCP datagrams too, but the
stream-based API provided by Socket and ServerSocket completely shields
programmers from these details.)

In Java, a UDP datagram is represented by an instance of the DatagramPacket class:

public final class DatagramPacket extends Object

This class provides methods to get and set the source or destination address from the
IP header, to get and set the source or destination port, to get and set the data, and to
get and set the length of the data. The remaining header fields are inaccessible from
pure Java code.

13.2.1 The Constructors

There are two constructors for DatagramPacket objects in Java 1.1. The first
constructor is used to receive data from the Net; the second is for data that you will
send to the Net. (Java 1.2 adds two more constructors, one each for sending and
receiving, though these don't differ in a major way.)

This is a little unusual. Normally, constructors are overloaded to let you provide
different kinds of information when you create an object, not to create objects of the
same class that will be used in different contexts. In this case, all four constructors
take as arguments a byte array that holds the datagram's data, and the number of

bytes in that array to use for the datagram's data. When you want to receive a
datagram, these are the only arguments you provide; in addition, the array should be
empty. When the socket receives a datagram from the network, it store's the
datagram's data in the DatagramPacket object's buffer array, up to the length you
specified.

The second pair of DatagramPacket constructors is used to create datagrams you will
send to the Net. Like the first, these constructors require a buffer array and a length,
but they also require the InetAddress and port to which the packet is to be sent. In
this case, you will pass to the constructor a byte array containing the data you want to
send and the destination address and port to which the packet is to be sent. The
DatagramSocket reads the destination address and port from the packet; the address
and port aren't stored within the socket, as they are in TCP.

13.2.1.1 Constructors for receiving datagrams

These two constructors create new DatagramPacket objects for receiving data from
the network:

public DatagramPacket(byte[] buffer, int length)
public DatagramPacket(byte[] buffer, int offset, int length) // Java
1.2

When a socket receives a datagram, it stores the datagram's data part in buffer
beginning at buffer[0] and continuing until the packet is completely stored or until
length bytes have been written into the buffer. If the second constructor is used,
storage begins at buffer[offset] instead. Otherwise, these two constructors are
identical. length must be less than or equal to buffer.length-offset. If you try to
construct a DatagramPacket with a length that will overflow the buffer, the
constructor throws an IllegalArgumentException. This is a RuntimeException, so
your code is not required to catch it. It is okay to construct a DatagramPacket with a
length less than buffer.length-offset. In this case, at most the first length bytes
of buffer will be filled when the datagram is received. For example, this code
fragment creates a new DatagramPacket for receiving a datagram of up to 8,192
bytes:

byte[] buffer = new byte[8192];
DatagramPacket dp = new DatagramPacket(buffer, buffer.length);

The constructor doesn't care how large the buffer is, and would happily let you create
a DatagramPacket with megabytes of data. However, the underlying native network
software is less forgiving, and most native UDP implementations don't support more
than 8,192 bytes of data per datagram. The theoretical limit for an IPv4 datagram is
65,507 bytes of data, and a DatagramPacket with a 65,507-byte buffer can receive
any possible IPv4 datagram without losing data. IPv6 datagrams raise the theoretical
limit to 65,536 bytes. In practice, however, many UDP-based protocols such as DNS
and TFTP use packets with 512 bytes of data per datagram or fewer. The largest data
size in common usage is 8,192 bytes for NFS. Almost all UDP datagrams you're
likely to encounter will have 8K of data or fewer. In fact, many operating systems
don't support UDP datagrams with more than 8K of data and either truncate, split, or
discard larger datagrams. If a large datagram is too big and as a result the network

truncates or drops it, your Java program won't be notified of the problem. (UDP is an
unreliable protocol, after all.) Consequently, you shouldn't create DatagramPacket
objects with more than 8,192 bytes of data.

13.2.1.2 Constructors for sending datagrams

These two constructors create new DatagramPacket objects for sending data across
the network:

public DatagramPacket(byte[] data, int length,
 InetAddress destination, int port)
public DatagramPacket(byte[] data, int offset, int length,
 InetAddress destination, int port) // Java 1.2

Each constructor creates a new DatagramPacket to be sent to another host. The
packet is filled with length bytes of the data array starting at offset or if offset is
not used. If you try to construct a DatagramPacket with a length that is greater than
data.length, the constructor throws an IllegalArgumentException. It's okay to
construct a DatagramPacket object with an offset and a length that will leave extra,
unused space at the end of the data array. In this case, only length bytes of data will
be sent over the network. The InetAddress object destination points to the host
you want the packet delivered to; the int argument port is the port on that host.

Choosing a Datagram Size
The amount of data to stuff into one packet depends on the situation. Some
protocols dictate the size of the packet. For example, rlogin transmits each
character to the remote system almost as soon as the user types it. Therefore,
packets tend to be short: a single byte of data, plus a few bytes of headers.
Other applications aren't so picky. For example, file transfer is more efficient
with large buffers; the only requirement is that you split files into packets no
larger than the maximum allowable packet size.

Several factors are involved in choosing the optimal packet size. If the
network is highly unreliable, such as a packet radio network, smaller packets
are preferable since they're less likely to be corrupted in transit. On the other
hand, very fast and reliable LANs should use the largest packet size possible.
Newer technologies such as gigabit Ethernet will probably require a revision
of the IP protocol to allow for packets larger than 64K in order to achieve
maximum efficiency. Eight kilobytes—that is, 8,192 bytes—is a good
compromise for many types of networks.

It's customary to convert the data to a byte array and place it in data before creating
the DatagramPacket, but it's not absolutely necessary. Changing data after the
datagram has been constructed and before it has been sent changes the data in the
datagram; the data isn't copied into a private buffer. In some applications, you can
take advantage of this. For example, you could store data that changes over time in
data and send out the current datagram (with the most recent data) every minute.
However, it's more important to make sure that your data doesn't change when you
don't want it to. This is especially true if your program is multithreaded, and different

threads may write into the data buffer. If this is the case, synchronize the data
variable or copy the data into a temporary buffer before you construct the
DatagramPacket.

For instance, this code fragment creates a new DatagramPacket filled with the data
"This is a test" in ASCII. The packet is directed at port 7 (the echo port) of the host
metalab.unc.edu:

String s = "This is a test";
byte[] data = s.getBytes("ASCII");

try {
 InetAddress ia = InetAddress.getByName("metalab.unc.edu");
 int port = 7;
 DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
 // send the packet...
}
catch (IOException e) {
}

Most of the time, the hardest part of creating a new DatagramPacket is translating the
data into a byte array. Since this code fragment wants to send an ASCII string, it uses
the getBytes() method of java.lang.String to do this. The
java.io.ByteArrayOutputStream class can also be very useful for preparing data
for inclusion in datagrams.

13.2.2 The get Methods

DatagramPacket has five methods that retrieve different parts of a datagram: the
actual data plus several fields from its header. These methods are mostly used for
datagrams you receive from the network.

13.2.2.1 public InetAddress getAddress()

The getAddress() method returns an InetAddress object containing the address of
the remote host. If the datagram was received from the Internet, the address returned
is the address of the machine that sent it (the source address). On the other hand, if the
datagram was created locally to be sent to a remote machine, this method returns the
address of the host to which the datagram is addressed (the destination address). This
method is most commonly used to determine the address of the host that sent a UDP
datagram, so that the recipient can reply.

13.2.2.2 public int getPort()

The getPort() method returns an integer specifying the remote port. If this
datagram was received from the Internet, this is the port on the host that sent the
packet. If the datagram was created locally to be sent to a remote host, this is the port
to which this packet is addressed on the remote machine.

13.2.2.3 public byte[] getData()

The getData() method returns a byte array containing the data from the datagram.
It's often necessary to convert the bytes into some other form of data before they'll be
useful to your program. One way to do this is to change the byte array into a String
using the following String constructor:

public String(byte[] buffer, String encoding)

The first argument, buffer, is the array of bytes that contains the data from the
datagram. The second argument contains the name of the encoding used for this string
such as ASCII or ISO-8859-1. Thus, given a DatagramPacket dp received from the
network, you can convert it to a String, like this:

String s = new String(dp.getData(), "ASCII");

If the datagram does not contain text, converting it to Java data is more difficult. One
approach is to convert the byte array returned by getData() into a
ByteArrayInputStream using this constructor:

public ByteArrayInputStream(byte[] buffer, int offset, int length)

buffer is the byte array to be used as an InputStream. It's important to specify the
portion of the buffer that you want to use as an InputStream using the offset and
length arguments. When converting datagram data into InputStream objects,
offset is either (Java 1.1) or given by the DatagramPacket object's getOffset()
method (Java 2), and length is given by the DatagramPacket object's getLength()
method. For example:

InputStream in = new ByteArrayInputStream(packet.getData(),
 packet.getOffset(), packet.getLength());

You must specify the offset and the length when constructing the
ByteArrayInputStream. Do not use the ByteArrayInputStream() constructor that
takes only an array as an argument. The array returned by packet.getData()
probably has extra space in it that was not filled with data from the network. This
space will contain whatever random values those components of the array had when
the DatagramPacket was constructed.

The ByteArrayInputStream can then be chained to a DataInputStream:

DataInputStream din = new DataInputStream(in);

The data can then be read using the DataInputStream's readInt(), readLong(),
readChar(), and other methods. Of course, this assumes that the datagram's sender
uses the same data formats as Java; this is probably the case when the sender is
written in Java, and is often (though not necessarily) the case otherwise. (Most
modern computers use the same floating point format as Java, and most network
protocols specify two's complement integers in network byte order, which also
matches Java's formats.)

13.2.2.4 public int getLength()

The getLength() method returns the number of bytes of data in the datagram. This
is not necessarily the same as the length of the array returned by getData(), i.e.,
getData().length. The int returned by getLength() may be less than the length
of the array returned by getData().

13.2.2.5 public int getOffset() // Java 1.2

This method simply returns the point in the array returned by getData() where the
data from the datagram begins.

Example 13.1 uses all the methods covered in this section to print the information in
the DatagramPacket. This example is a little artificial; because you create the
DatagramPacket, you already know what's in it. More often, you'll use these methods
on a DatagramPacket received from the network, but that will have to wait for the
introduction of the DatagramSocket class in the next section.

Example 13.1. Construct a DatagramPacket to Receive Data

import java.net.*;

public class DatagramExample {

 public static void main(String[] args) {

 String s = "This is a test.";

 byte[] data = s.getBytes();
 try {
 InetAddress ia = InetAddress.getByName("metalab.unc.edu");
 int port = 7;
 DatagramPacket dp
 = new DatagramPacket(data, data.length, ia, port);
 System.out.println("This packet is addressed to "
 + dp.getAddress() + " on port " + dp.getPort());
 System.out.println("There are " + dp.getLength()
 + " bytes of data in the packet");
 System.out.println(
 new String(dp.getData(), dp.getOffset(), dp.getLength()));
 }
 catch (UnknownHostException e) {
 System.err.println(e);
 }

 }

}

Here's the output:

% java DatagramExample
This packet is addressed to metalab.unc.edu/152.2.254.81 on port 7
There are 15 bytes of data in the packet
This is a test.

13.2.3 The set Methods

Most of the time, the four constructors are sufficient for creating datagrams. However,
Java also provides four (five in Java 1.2 and later) methods for changing the data,
remote address, and remote port after the datagram has been created. These might be
important in a situation where the time to create and garbage collect new
DatagramPacket objects was a significant performance hit. In some situations,
reusing objects can be significantly faster than constructing new ones. This might be
the case in a networked twitch game like Quake that sends a datagram for every bullet
fired or every centimeter of movement, for example. However, you would have to use
a very speedy connection for this to be noticeable relative to the slowness of the
network itself.

13.2.3.1 public void setData(byte[] data)

The setData() method changes the payload of the UDP datagram. You might use
this method if you were sending a large file (where large is defined as "bigger than
can comfortably fit in one datagram") to a remote host. You could repeatedly send the
same DatagramPacket object, just changing the data each time.

13.2.3.2 public void setData(byte[] data, int offset, int length) // Java 1.2

This overloaded variant of the setData() method available only in Java 1.2 and
later provides an alternative approach to sending a large quantity of data. Instead of
sending lots of new arrays, you can put all the data in one array and send it a piece at a
time. For instance, this loop sends a large array in 512-byte chunks:

int offset = 0;
DatagramPacket dp = new DatagramPacket(bigarray, offset, 512);
int bytesSent = 0;
while (bytesSent < bigarray.length) {
 socket.send(dp);
 bytesSent += dp.getLength();
 int bytesToSend = bigarray.length - bytesSent;
 int size = (bytesToSend > 512) ? 512 : bytesToSend;
 dp.setData(bigarray, bytesSent, 512);
}

On the other hand, this requires either a lot of confidence that the data will in fact
arrive, or alternatively, a disregard for the consequences of its not arriving. It's
relatively difficult to attach sequence numbers or other reliability tags to the
individual packets when you take this approach.

13.2.3.3 public void setAddress(InetAddress remote)

The setAddress() method lets you change the address a datagram packet is sent to.
This might allow you to send the same datagram to many different recipients. For
example:

String s = "Really Important Message";
byte[] data = s.getBytes("ASCII");
DatagramPacket dp = new DatagramPacket(data, data.length);
dp.setPort(2000);
int network = "128.238.5.";
for (int host = 1; host < 255; host++) {

 try {
 InetAddress remote = InetAddress.getByName(network + host);
 dp.setAddress(remote);
 socket.send(dp);
 }
 catch (Exception e) {}
}

Whether or not this is sensible depends on your application. If you're trying to send to
all the stations on a network segment, as in this fragment, you'd probably be better off
using the local broadcast address and letting the network do the work. The local
broadcast address is determined by setting all bits of the IP address after the network
and subnet IDs to 1. For example, Polytechnic University's network address is
128.238.0.0. Consequently, its broadcast address is 128.238.255.255. Sending a
datagram to 128.238.255.255 will copy it to every host on that network (though some
routers and firewalls may block it, depending on its origin).

For more widely separated hosts, you'd probably be better off using multicasting.
Multicasting actually uses the same DatagramPacket class described here. However,
it uses different IP addresses and a MulticastSocket instead of a DatagramSocket.
This will be explored in Chapter 14.

13.2.3.4 public void setPort(int port)

The setPort() method changes the port a datagram is addressed to. I honestly can't
think of many uses for this method. It could be used in a port scanner application that
tried to find open ports running particular UDP-based services such as FSP. Another
possibility would be some sort of networked game or conferencing server where the
clients that needed to receive the same information were all running on different ports
as well as different hosts. In this case, it could be used in conjunction with
setAddress() to change the destination before sending out the same datagram again.

13.2.3.5 public void setLength(int length)

The setLength() method changes the number of bytes of data in the internal buffer
that are considered to be part of the datagram's data as opposed to merely unfilled
space. This method is useful when receiving datagrams, as we'll explore later in this
chapter. When a datagram is received, its length is set to the length of the incoming
data. This means that if you try to receive another datagram into the same
DatagramPacket, then it's limited to no more than the number of bytes in the first.
That is, once you've received a 10-byte datagram, all subsequent datagrams will be
truncated to 10 bytes; once you've received a 9-byte datagram, all subsequent
datagrams will be truncated to 9 bytes; and so on. This method lets you reset the
length of the buffer so that subsequent datagrams aren't truncated.

13.3 The DatagramSocket Class

To send or receive a DatagramPacket, you need to open a datagram socket. In Java, a
datagram socket is created and accessed through the DatagramSocket class:

public class DatagramSocket extends Object

All datagram sockets are bound to a local port, on which they listen for incoming data
and which they place in the header of outgoing datagrams. If you're writing a client,
you don't care what the local port is, so you call a constructor that lets the system
assign an unused port (an anonymous port). This port number is placed in any
outgoing datagrams and will be used by the server to address any response datagrams.
If you're writing a server, clients need to know on which port the server is listening
for incoming datagrams; therefore, when a server constructs a DatagramSocket, it
must specify the local port on which it will listen. However, the sockets used by
clients and servers are otherwise identical: they differ only in whether they use an
anonymous (system-assigned) or a well-known port. There's no distinction between
client sockets and server sockets, as there is with TCP; there is no such thing as a
DatagramServerSocket.

13.3.1 The Constructors

The DatagramSocket class has three constructors that are used in different situations,
much like the DatagramPacket class. The first constructor opens a datagram socket
on an anonymous local port. The second constructor opens a datagram socket on a
well-known local port that listens to all local network interfaces. The third constructor
opens a datagram socket on a well-known local port on a specific network interface.
All three constructors deal only with the local address and port. The remote address
and port are stored in the DatagramPacket, not the DatagramSocket. Indeed, one
DatagramSocket can send and receive datagrams from multiple remote hosts and
ports.

13.3.1.1 public DatagramSocket() throws SocketException

This constructor creates a socket that is bound to an anonymous port. For example:

try {
 DatagramSocket client = new DatagramSocket();
 // send packets...
}
catch (SocketException e) {
 System.err.println(e);
}

You would use this constructor in a client that initiates a conversation with a server.
In this scenario, you don't care what port you are using, because the server will send
its response to the port from which the datagram originated. Letting the system assign
a port means that you don't have to worry about finding an unused port. If for some
reason you need to know the local port, you can find out with the getLocalPort()
method described later in this chapter.

The same socket may be used to receive the datagrams that a server sends back to it.
A SocketException is thrown if the socket can't be created. It's unusual for this
constructor to throw an exception; it's hard to imagine situations in which the socket
could not be opened, since the system gets to choose the local port.

13.3.1.2 public DatagramSocket(int port) throws SocketException

This constructor creates a socket that listens for incoming datagrams on a specific port,
specified by the port argument. You would use this constructor to write a server that
has to listen on a well-known port; if servers listened on anonymous ports, clients
would not be able to contact them. A SocketException is thrown if the socket can't
be created. There are two common reasons for the constructor to fail: the specified
port is already occupied, or you are trying to connect to a port below 1,024 and you
don't have sufficient privileges (i.e., you are not root on a Unix system; for better or
worse, other platforms allow anyone to connect to low-numbered ports).

TCP ports and UDP ports are not related. Two unrelated servers or clients can use the
same port number if one uses UDP and the other uses TCP. Example 13.2 is a port
scanner that looks for UDP ports in use on the local host. It decides that the port is in
use if the DatagramSocket constructor throws an exception. As written, it looks at
ports from 1,024 up to avoid Unix's requirement that it run as root to bind to ports
below 1,024. You can easily extend it to check ports below 1,024, however, if you
have root access or are running it on Windows or a Mac.

Example 13.2. Look for Local UDP Ports

import java.net.*;

public class UDPPortScanner {

 public static void main(String[] args) {

 for (int port = 1024; port <= 65535; port++) {
 try {
 // the next line will fail and drop into the catch block if
 // there is already a server running on port i
 DatagramSocket server = new DatagramSocket(port);
 server.close();
 }
 catch (SocketException e) {
 System.out.println("There is a server on port " + port + ".");
 } // end try
 } // end for

 }

}

The speed at which UDPPortScanner runs depends strongly on the speed of your
machine and its UDP implementation. I've clocked Example 13.2 at as little as two
minutes on a moderately powered SPARCstation and as long as an hour on a
PowerBook 5300. Here are the results from one SPARCstation:

% java UDPPortScanner
There is a server on port 2049.
There is a server on port 4045.
There is a server on port 32771.
There is a server on port 32773.
There is a server on port 32778.
There is a server on port 32779.
There is a server on port 32787.
There is a server on port 32788.
There is a server on port 32790.

There is a server on port 32793.
There is a server on port 32797.
There is a server on port 32804.
There is a server on port 32812.
There is a server on port 32822.
There is a server on port 32834.
There is a server on port 32852.
There is a server on port 32857.
There is a server on port 32858.
There is a server on port 32860.
There is a server on port 32871.
There is a server on port 32877.
There is a server on port 33943.
There is a server on port 34955.
There is a server on port 35977.
There is a server on port 35982.
There is a server on port 36000.
There is a server on port 36159.
There is a server on port 36259.

The high-numbered UDP ports in the 30,000 range are Remote Procedure Call (RPC)
services. Aside from RPC, some common protocols that use UDP are NFS, TFTP, and
FSP.

It's much harder to scan UDP ports on a remote system than to scan for remote TCP
ports. Whereas there's always some indication that your TCP packet has been received
by a listening port regardless of application layer protocol, UDP provides no such
guarantees. To determine that a UDP server is listening, you have to send it a packet it
will recognize and respond to.

13.3.1.3 public DatagramSocket(int port, InetAddress address) throws SocketException

This constructor is primarily used on multihomed hosts; it creates a socket that listens
for incoming datagrams on a specific port and network interface. The port argument
is the port on which this socket listens for datagrams. As with TCP sockets, you need
to be root on a Unix system to create a DatagramSocket on a port below 1,024. The
address argument is an InetAddress object matching one of the host's network
addresses. A SocketException is thrown if the socket can't be created. There are
three common reasons for this constructor to fail: the specified port is already
occupied, you are trying to connect to a port below 1,024 and you don't have
sufficient privileges (i.e., you are not root on a Unix system), or address is not the
address of one of the system's network interfaces.

13.3.2 Sending and Receiving Datagrams

The primary task of the DatagramSocket class is to send and receive UDP datagrams.
One socket can both send and receive. Indeed, it can send and receive to and from
multiple hosts at the same time.

13.3.2.1 public void send(DatagramPacket dp) throws IOException

Once a DatagramPacket is created and a DatagramSocket is constructed, you send
the packet by passing it to the socket's send() method. For example, if theSocket is

a DatagramSocket object and theOutput is a DatagramPacket object, you send
theOutput using theSocket like this:

theSocket.send(theOutput);

If there's a problem sending the data, an IOException may be thrown. However, this
is less common with DatagramSocket than Socket or ServerSocket, since the
unreliable nature of UDP means you won't get an exception just because the packet
doesn't arrive at its destination. You may get an IOException if you're trying to send
a larger datagram than your host's native networking software supports, but then again
you may not. This depends heavily on the native UDP software in the OS and the
native code that interfaces between this and Java's DatagramSocketImpl class. This
method may also throw a SecurityException if the SecurityManager won't let you
communicate with the host to which the packet is addressed. This is primarily a
problem for applets.

Example 13.3 is a UDP-based discard client. It reads lines of user input from
System.in, and sends them to a discard server, which simply discards all the data.
Each line is stuffed in a DatagramPacket. Many of the simpler Internet protocols
such as discard have both TCP and UDP implementations.

Example 13.3. A UDP Discard Client

import java.net.*;
import java.io.*;

public class UDPDiscardClient {

 public final static int DEFAULT_PORT = 9;

 public static void main(String[] args) {

 String hostname;
 int port = DEFAULT_PORT;

 if (args.length > 0) {
 hostname = args[0];
 try {
 port = Integer.parseInt(args[1]);
 }
 catch (Exception e) {
 }
 }
 else {
 hostname = "localhost";
 }

 try {
 InetAddress server = InetAddress.getByName(hostname);
 BufferedReader userInput
 = new BufferedReader(new InputStreamReader(System.in));
 DatagramSocket theSocket = new DatagramSocket();
 while (true) {
 String theLine = userInput.readLine();
 if (theLine.equals(".")) break;
 byte[] data = theLine.getBytes();

 DatagramPacket theOutput
 = new DatagramPacket(data, data.length, server, port);
 theSocket.send(theOutput);
 } // end while
 } // end try
 catch (UnknownHostException e) {
 System.err.println(e);
 }
 catch (SocketException se) {
 System.err.println(se);
 }
 catch (IOException e) {
 System.err.println(e);
 }

 } // end main

}

The UDPDiscardClient class should look familiar. It has a single static field,
DEFAULT_PORT, which is set to the standard port for the discard protocol (port 9), and
a single method, main(). The main() method reads a hostname from the
command-line and converts that hostname to the InetAddress object called server.
A BufferedReader is chained to System.in to read user input from the keyboard.
Next, a DatagramSocket object called theSocket is constructed. After creating the
socket, the program enters an infinite while loop that reads user input line by line
using readLine(). We are careful, however, to use only readLine() to read data
from the console, the one place where it is guaranteed to work as advertised. Since the
discard protocol deals only with raw bytes, we can ignore character encoding issues.

In the while loop, each line is converted to a byte array using the getBytes()
method, and the bytes are stuffed in a new DatagramPacket, theOutput. Finally,
theOutput is sent over theSocket, and the loop continues. If at any point the user
types a period on a line by itself, the program exits. The DatagramSocket constructor
may throw a SocketException, so that needs to be caught. Because this is a discard
client, we don't need to worry about data coming back from the server.

13.3.2.2 public void receive(DatagramPacket dp) throws IOException

This method receives a single UDP datagram from the network and stores it in the
pre-existing DatagramPacket object dp. Like the accept() method in the
ServerSocket class, this method blocks the calling thread until a datagram arrives. If
your program does anything besides wait for datagrams, you should call receive()
in a separate thread.

The datagram's buffer should be large enough to hold the data received. If not,
receive() places as much data in the buffer as it can hold; the rest is lost. It may be
useful to remember that the maximum size of the data portion of a UDP datagram is
65,507 bytes. (That's the 65,536-byte maximum size of an IP datagram minus the 20-
byte size of the IP header and the 8-byte size of the UDP header.) Some application
protocols that use UDP further restrict the maximum number of bytes in a packet; for
instance, NFS uses a maximum packet size of 8,192 bytes.

If there's a problem receiving the data, an IOException may be thrown. In practice,
this is rare. Unlike send(), this method does not throw a SecurityException if an
applet receives a datagram from other than the applet host. However, it will silently
discard all such packets. (This behavior prevents a denial-of-service attack against
applets that receive UDP datagrams.)

Example 13.4 shows a UDP discard server that receives incoming datagrams. Just for
fun, it logs the data in each datagram to System.out so that you can see who's
sending what to your discard server.

Example 13.4. The UDPDiscardServer

import java.net.*;
import java.io.*;

public class UDPDiscardServer {

 public final static int DEFAULT_PORT = 9;
 public final static int MAX_PACKET_SIZE = 65507;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;
 byte[] buffer = new byte[MAX_PACKET_SIZE];

 try {
 port = Integer.parseInt(args[0]);
 }
 catch (Exception e) {
 }

 try {
 DatagramSocket server = new DatagramSocket(port);
 DatagramPacket packet = new DatagramPacket(buffer,
buffer.length);
 while (true) {
 try {
 server.receive(packet);
 String s = new String(packet.getData(), 0,
packet.getLength());
 System.out.println(packet.getAddress() + " at port "
 + packet.getPort() + " says " + s);
 // reset the length for the next packet
 packet.setLength(buffer.length);
 }
 catch (IOException e) {
 System.err.println(e);
 }
 } // end while
 } // end try
 catch (SocketException se) {
 System.err.println(se);
 } // end catch

 } // end main

}

This is a simple class with a single method, main(). It reads the port for the server to
listen to from the command line. If the port is not specified on the command-line, it is
set to 9. It then opens a DatagramSocket on that port and creates a DatagramPacket
with a 65,507-byte buffer—large enough to receive any possible packet. Then the
server enters an infinite loop that receives packets and prints the contents and the
originating host on the console. A high-performance discard server would skip this
step. As each datagram is received, the length of packet is set to the length of the data
in that datagram. Consequently, as the last step of the loop, the length of the packet is
reset to the maximum possible value. Otherwise, the incoming packets would be
limited to the minimum size of all previous packets. Try running the discard client on
one machine and connecting to the discard server on a second machine to verify that
both these programs work.

13.3.2.3 public void close()

Calling a DatagramSocket object's close() method frees the port occupied by that
socket. For example:

try {
 DatagramSocket theServer = new DatagramSocket();
 theServer.close();
}
catch (SocketException e) {
 System.err.println(e);
}

It's never a bad idea to close a DatagramSocket when you're through with it; it's
particularly important to close an unneeded socket if your program will continue to
run for a significant amount of time. For example, the close() method was essential
in Example 13.2, UDPPortScanner: if this program did not close the sockets it opened,
it would tie up every UDP port on the system for a significant amount of time. On the
other hand, if the program ends as soon as you're through with the DatagramSocket,
you don't need to close the socket explicitly; the socket is automatically closed on
garbage collection. However, Java won't run the garbage collector just because you've
run out of ports or sockets, unless by lucky happenstance you run out of memory at
the same time. On the gripping hand, closing unneeded sockets never hurts and is
good programming practice.

13.3.2.4 public int getLocalPort()

A DatagramSocket's getLocalPort() method returns an int that represents the
local port on which the socket is listening. You would use this method if you created a
DatagramSocket with an anonymous port and want to find out what port you have
been assigned. For example:

try {
 DatagramSocket ds = new DatagramSocket();
 System.out.println("The socket is using port " +
ds.getLocalPort());
}
catch (SocketException e) {
}

13.3.3 Managing Connections

Unlike TCP sockets, datagram sockets aren't very picky about whom they'll talk to. In
fact, by default they'll talk to anyone. But this is often not what you want. For instance,
applets are only allowed to send datagrams to and receive datagrams from the applet
host. An NFS or FSP client should accept packets only from the server it's talking to.
A networked game should listen to datagrams only from the people playing the game.
In Java 1.1, programs must manually check the source addresses and ports of the hosts
sending them data to make sure they're who they should be. However, Java 1.2 adds
four methods that let you choose which host you can send datagrams to and receive
datagrams from, while rejecting all others' packets.

13.3.3.1 public void connect(InetAddress host, int port) // Java 1.2

The connect() method doesn't really establish a connection in the TCP sense.
However, it does specify that the DatagramSocket will send packets to and receive
packets from only the specified remote host on the specified remote port. Attempts to
send packets to a different host or port will throw an IllegalArgumentException.
Packets received from a different host or a different port will be discarded without an
exception or other notification.

A security check is made when the connect() method is invoked. If the VM is
allowed to send data to that host and port, then the check passes silently. Otherwise, a
SecurityException is thrown. However, once the connection has been made,
send() and receive() on that DatagramSocket no longer make the security
checks they'd normally make.

13.3.3.2 public void disconnect() // Java 1.2

The disconnect() method breaks the "connection" of a connected
DatagramSocket so that it can once again send packets to and receive packets from
any host and port.

13.3.3.3 public int getPort() // Java 1.2

If and only if a DatagramSocket is connected, the getPort() method returns the
remote port to which it is connected. Otherwise, it returns -1.

13.3.3.4 public InetAddress getInetAddress() // Java 1.2

If and only if a DatagramSocket is connected, the getInetAddress() method
returns the address of the remote host to which it is connected. Otherwise, it returns
null.

13.3.4 Socket Options

The only socket option supported for datagram sockets in Java 1.1 is SO_TIMEOUT.
Java 1.2 adds SO_SNDBUF and SO_RCVBUF.

13.3.4.1 SO_TIMEOUT

SO_TIMEOUT is the amount of time, in milliseconds, that receive() waits for an
incoming datagram before throwing an InterruptedIOException. Its value must be
non-negative. If SO_TIMEOUT is 0, receive() never times out. This value can be
changed with the setSoTimeout() method and inspected with the getSoTimeout()
method:

public synchronized void setSoTimeout(int timeout)
 throws SocketException
public synchronized int getSoTimeout() throws IOException

The default is to never time out, and indeed there are few situations in which you
would need to set SO_TIMEOUT. You might need it if you were implementing a
secure protocol that required responses to occur within a fixed amount of time. You
might also decide that the host you're communicating with is dead (unreachable or not
responding) if you don't receive a response within a certain amount of time.

The setSoTimeout() method sets the SO_TIMEOUT field for a datagram socket.
When the timeout expires, an InterruptedIOException is thrown. You should set
this option before you call receive(). You cannot change it while receive() is
waiting for a datagram. The timeout argument must be greater than or equal to zero;
if it is not, setSoTimeout() throws a SocketException. For example:

try {
 buffer = new byte[2056];
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
 DatagramSocket ds = new ServerSocket(2048);
 ds.setSoTimeout(30000); // block for no more than 30 seconds
 try {
 ds.receive(dp);
 // process the packet...
 }
 catch (InterruptedIOException e) {
 ss.close();
 System.err.println("No connection within 30 seconds");
 }
catch (SocketException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println("Unexpected IOException: " + e);
}

The getSoTimeout() method returns the current value of this DatagramSocket
object's SO_TIMEOUT field. For example:

public void printSoTimeout(DatagramSocket ds) {

 int timeout = ds.getSoTimeOut();
 if (timeout > 0) {
 System.out.println(ds + " will time out after "
 + timeout + "milliseconds.");
 }
 else if (timeout == 0) {
 System.out.println(ds + " will never time out.");
 }
 else {

 System.out.println("Something is seriously wrong with " + ds);
 }

}

13.3.4.2 SO_RCVBUF

The SO_RCVBUF option of DatagramSocket is closely related to the SO_RCVBUF
option of Socket. It determines the size of the buffer used for network I/O. Larger
buffers tend to improve performance for reasonably fast (say, Ethernet-speed)
connections because they can store more incoming datagrams before overflowing.
Sufficiently large receive buffers are even more important for UDP than for TCP,
since a UDP datagram that arrives when the buffer is full will be lost, whereas a TCP
datagram that arrives at a full buffer will eventually be retransmitted. Furthermore,
SO_RCVBUF sets the maximum size of datagram packets that can be received by the
application. Packets that won't fit in the receive buffer are silently discarded.

Starting in Java 1.2, DatagramSocket has methods to get and set the suggested
receive buffer size used for network input:

public void setReceiveBufferSize(int size)
 throws SocketException, IllegalArgumentException
public int getReceiveBufferSize() throws SocketException

The setReceiveBufferSize() method suggests a number of bytes to use for
buffering input from this socket. However, the underlying implementation is free to
ignore this suggestion. For instance, many 4.3 BSD-derived systems have a maximum
receive buffer size of about 52K and won't let you set a limit higher than this. Other
systems raise this to about 240K. The details are highly platform-dependent.
Consequently, it's a good idea to check the actual size of the receive buffer with
getReceiveBufferSize() after setting it. The getReceiveBufferSize() method
returns the number of bytes in the buffer used for input from this socket.

Both methods throw a SocketException if the underlying socket implementation
does not recognize the SO_RCVBUF option. This might happen on a non-POSIX
operating system. The setReceiveBufferSize() method throws an
IllegalArgumentException if its argument is less than or equal to zero.

13.3.4.3 SO_SNDBUF

Starting in Java 1.2, DatagramSocket has methods to get and set the suggested send
buffer size used for network output:

public void setSendBufferSize(int size)
 throws SocketException, IllegalArgumentException
public int getSendBufferSize() throws SocketException

The setSendBufferSize() method suggests a number of bytes to use for buffering
output on this socket. Once again, however, the operating system is free to ignore this
suggestion. Consequently, you'll want to check the result of setSendBufferSize()
by immediately following it with a call to getSend BufferSize() to find out what
the buffer size really is.

Both methods throw a SocketException if the underlying native network software
doesn't understand the SO_SNDBUF option. The setSendBufferSize() method also
throws an IllegalArgumentException if its argument is less than or equal to zero.

13.4 Some Useful Applications

In this section, you'll see several Internet servers and clients that use DatagramPacket
and DatagramSocket. Some of these will be familiar from the last two chapters
because many Internet protocols have both TCP and UDP implementations. When an
IP packet is received by a host, the host determines whether the packet is a TCP
packet or a UDP datagram by inspecting the IP header. As I said earlier, there's no
connection between UDP and TCP ports; TCP and UDP servers can share the same
port number without problems. By convention, if a service has both TCP and UDP
implementations, it uses the same port for both, though there's no technical reason this
has to be the case.

13.4.1 Simple UDP Clients

Several Internet services need to know only the client's address and port; they discard
any data the client sends in its datagrams. Daytime, quote of the day, time, and
chargen are four such protocols. Each of these responds the same way, regardless of
the data contained in the datagram, or indeed regardless of whether there actually is
any data in the datagram. Clients for these protocols simply send a UDP datagram to
the server and read the response that comes back. Therefore, let's begin with a simple
client called UDPPoke, shown in Example 13.5, that sends an empty UDP packet to a
specified host and port and reads a response packet from the same host.

The UDPPoke class has three private fields. The bufferSize field specifies how large
a return packet is expected. An 8,192-byte buffer is large enough for most of the
protocols that UDPPoke is useful for, but it can be increased by passing a different
value to the constructor. The DatagramSocket object ds will be used to both send and
receive datagrams. Finally, the DatagramPacket object outgoing is the message sent
to the individual servers.

The constructors initialize all three fields using an InetAddress for the host and ints
for the port, the buffer length, and the number of milliseconds to wait before timing
out. These last three become part of the DatagramSocket field ds. If the buffer length
is not specified, 8,192 bytes is used. If the timeout is not given, 30 seconds (30,000
milliseconds) is used. The host, port, and buffer size are also used to construct the
outgoing DatagramPacket. Although in theory you should be able to send a
datagram with no data at all, bugs in some Java implementations require that you add
at least one byte of data to the datagram. The simple servers we're currently
considering ignore this data.

Once a UDPPoke object has been constructed, clients will call its poke() method to
send an empty outgoing datagram to the target and read its response. The response is
initially set to null. When the expected datagram appears, its data is copied into the
response field. This method returns null if the response doesn't come quickly enough
or never comes at all.

The main() method merely reads the host and port to connect to from the command-
line, constructs a UDPPoke object, and pokes it. Most of the simple protocols that this
client suits well return ASCII text, so we attempt to convert the response to an ASCII
string and print it. Not all VMs support the ASCII character encoding, so we provide
the possibility of using the ASCII superset Latin-1 (8859-1) as a backup.

Example 13.5. The UDPPoke Class

import java.net.*;
import java.io.*;

public class UDPPoke {

 private int bufferSize; // in bytes
 private DatagramSocket ds;
 private DatagramPacket outgoing;

 public UDPPoke(InetAddress host, int port, int bufferSize,
 int timeout) throws SocketException {

 outgoing = new DatagramPacket(new byte[1], 1, host, port);
 this.bufferSize = bufferSize;
 ds = new DatagramSocket(0);
 ds.connect(host, port); // requires Java 2
 ds.setSoTimeout(timeout);

 }

 public UDPPoke(InetAddress host, int port, int bufferSize)
 throws SocketException {
 this(host, port, bufferSize, 30000);
 }

 public UDPPoke(InetAddress host, int port)
 throws SocketException {
 this(host, port, 8192, 30000);
 }

 public byte[] poke() throws IOException {

 byte[] response = null;
 try {
 ds.send(outgoing);
 DatagramPacket incoming
 = new DatagramPacket(new byte[bufferSize], bufferSize);
 // next line blocks until the response is received
 ds.receive(incoming);
 int numBytes = incoming.getLength();
 response = new byte[numBytes];
 System.arraycopy(incoming.getData(), 0, response, 0,
numBytes);
 }
 catch (IOException e) {
 // response will be null
 }

 // may return null
 return response;
 }

 public static void main(String[] args) {

 InetAddress host;
 int port = 0;

 try {
 host = InetAddress.getByName(args[0]);
 port = Integer.parseInt(args[1]);
 if (port < 1 || port > 65535) throw new Exception();
 }
 catch (Exception e) {
 System.out.println("Usage: java UDPPoke host port");
 return;
 }

 try {
 UDPPoke poker = new UDPPoke(host, port);
 byte[] response = poker.poke();
 if (response == null) {
 System.out.println("No response within allotted time");
 return;
 }
 String result = "";
 try {
 result = new String(response, "ASCII");
 }
 catch (UnsupportedEncodingException e) {
 // try a different encoding
 result = new String(response, "8859_1");
 }
 System.out.println(result);
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }

 } // end main

}

For example, this connects to a daytime server over UDP:

D:\JAVA\JNP2\examples\12>java UDPPoke vision.poly.edu 13
Sun Oct 3 13:04:22 1999

This connects to a chargen server:

D:\JAVA\JNP2\examples\12>java UDPPoke vision.poly.edu 19
123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstu
v

Given this class, UDP daytime, time, chargen, and quote of the day clients are almost
trivial. Example 13.6 demonstrates a time client. The most complicated part is
converting the four raw bytes returned by the server to a java.util.Date object. The
same algorithm as in Example 10.5 is used here, so I won't repeat that discussion. The
other protocols are left as exercises for the reader.

Example 13.6. A UDP Time Client

import java.net.*;
import java.util.*;

public class UDPTimeClient {

 public final static int DEFAULT_PORT = 37;
 public final static String DEFAULT_HOST = "tock.usno.navy.mil";

 public static void main(String[] args) {

 InetAddress host;
 int port = DEFAULT_PORT;

 try {
 if (args.length > 0) {
 host = InetAddress.getByName(args[0]);
 }
 else {
 host = InetAddress.getByName(DEFAULT_HOST);
 }
 }
 catch (Exception e) {
 System.out.println("Usage: java UDPTimeClient host port");
 return;
 }

 if (args.length > 1) {
 try {
 port = Integer.parseInt(args[1]);
 if (port <= 0 || port > 65535) port = DEFAULT_PORT;;
 }
 catch (Exception e){
 }
 }

 try {
 UDPPoke poker = new UDPPoke(host, port);
 byte[] response = poker.poke();
 if (response == null) {
 System.out.println("No response within allotted time");
 return;
 }
 else if (response.length != 4) {
 System.out.println("Unrecognized response format");
 return;
 }

 // The time protocol sets the epoch at 1900,
 // the java Date class at 1970. This number
 // converts between them.

 long differenceBetweenEpochs = 2208988800L;

 long secondsSince1900 = 0;
 for (int i = 0; i < 4; i++) {
 secondsSince1900
 = (secondsSince1900 << 8) | (response[i] & 0x000000FF);
 }

 long secondsSince1970
 = secondsSince1900 - differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);

 System.out.println(time);
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }

 }

}

13.4.2 UDPServer

Clients aren't the only programs that benefit from a reusable implementation. The
servers for these protocols are also very similar. They all wait for UDP datagrams on
a specified port and reply to each datagram with another datagram. The servers differ
only in the content of the datagram that they return. Example 13.7 is a simple
UDPServer class that can be subclassed to provide specific servers for different
protocols.

The UDPServer class has two fields, the int bufferSize and the DatagramSocket
ds, the latter of which is protected, so it can be used by subclasses. The constructor
opens the DatagramSocket ds on a specified local port to receive datagrams of no
more than bufferSize bytes.

UDPServer extends Thread so that multiple instances can run in parallel. Its run()
method contains an infinite loop that repeatedly receives an incoming datagram, and
responds to it by passing it to the abstract respond() method. This method will be
overridden by particular subclasses to implement different kinds of servers.

UDPServer is a very flexible class. Subclasses can send zero, one, or many datagrams
in response to each incoming datagram. If a lot of processing is required to respond to
a packet, the respond() method can spawn a thread to do it. However, UDP servers
tend not to have extended interactions with a client. Each incoming packet is treated
independently of other packets, so the response can usually be handled directly in the
respond() method without spawning a thread.

Example 13.7. The UDPServer Class

import java.net.*;
import java.io.*;

public abstract class UDPServer extends Thread {

 private int bufferSize; // in bytes
 protected DatagramSocket ds;

 public UDPServer(int port, int bufferSize)
 throws SocketException {

 this.bufferSize = bufferSize;
 this.ds = new DatagramSocket(port);
 }

 public UDPServer(int port) throws SocketException {
 this(port, 8192);
 }

 public void run() {

 byte[] buffer = new byte[bufferSize];
 while (true) {
 DatagramPacket incoming = new DatagramPacket(buffer,
buffer.length);
 try {
 ds.receive(incoming);
 this.respond(incoming);
 }
 catch (IOException e) {
 System.err.println(e);
 }
 } // end while

 } // end run

 public abstract void respond(DatagramPacket request);

}

The easiest protocol to handle is discard. All that needs to be done is to write a
main() method that sets the port and start the thread. Example 13.8 is a high-
performance UDP discard server that does nothing with incoming packets.

Example 13.8. A High-Performance UDP Discard Server

import java.net.*;

public class FastUDPDiscardServer extends UDPServer {

 public final static int DEFAULT_PORT = 9;

 public FastUDPDiscardServer() throws SocketException {
 super(DEFAULT_PORT);
 }

 public void respond(DatagramPacket packet) {}

 public static void main(String[] args) {

 try {
 FastUDPDiscardServer server = new FastUDPDiscardServer();
 server.start();
 }
 catch (SocketException e) {
 System.err.println(e);
 }

 }

}

Example 13.9 is a slightly more interesting discard server that prints the incoming
packets on System.out.

Example 13.9. A UDP Discard Server

import java.net.*;

public class LoggingUDPDiscardServer extends UDPServer {

 public final static int DEFAULT_PORT = 9999;

 public LoggingUDPDiscardServer() throws SocketException {
 super(DEFAULT_PORT);
 }

 public void respond(DatagramPacket packet) {

 byte[] data = new byte[packet.getLength()];
 System.arraycopy(packet.getData(), 0, data, 0,
packet.getLength());
 try {
 String s = new String(data, "ASCII");
 System.out.println(packet.getAddress() + " at port "
 + packet.getPort() + " says " + s);
 }
 catch (java.io.UnsupportedEncodingException e) {
 }

 }

 public static void main(String[] args) {

 try {
 LoggingUDPDiscardServer server = new LoggingUDPDiscardServer();
 server.start();
 }
 catch (SocketException e) {
 System.err.println(e);
 }

 }

}

It isn't much harder to implement an echo server, as Example 13.10 shows:

Example 13.10. A UDP Echo Server

import java.net.*;
import java.io.*;

public class UDPEchoServer extends UDPServer {

 public final static int DEFAULT_PORT = 7;

 public UDPEchoServer() throws SocketException {
 super(DEFAULT_PORT);
 }

 public void respond(DatagramPacket packet) {

 try {
 DatagramPacket outgoing = new DatagramPacket(packet.getData(),
 packet.getLength(), packet.getAddress(), packet.getPort());
 ds.send(outgoing);
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

 public static void main(String[] args) {

 try {
 UDPEchoServer server = new UDPEchoServer();
 server.start();
 }
 catch (SocketException e) {
 System.err.println(e);
 }

 }

}

A daytime server is only mildly more complex. The server listens for incoming UDP
datagrams on port 13. When it detects an incoming datagram, it returns the current
date and time at the server as a one-line ASCII string. Example 13.11 demonstrates
this.

Example 13.11. The UDP Daytime Server

import java.net.*;
import java.io.*;
import java.util.*;

public class UDPDaytimeServer extends UDPServer {

 public final static int DEFAULT_PORT = 13;

 public UDPDaytimeServer() throws SocketException {
 super(DEFAULT_PORT);
 }

 public void respond(DatagramPacket packet) {

 try {
 Date now = new Date();
 String response = now.toString() + "\r\n";
 byte[] data = response.getBytes("ASCII");
 DatagramPacket outgoing = new DatagramPacket(data,
 data.length, packet.getAddress(), packet.getPort());
 ds.send(outgoing);
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

 public static void main(String[] args) {

 try {
 UDPDaytimeServer server = new UDPDaytimeServer();
 server.start();
 }
 catch (SocketException e) {
 System.err.println(e);
 }

 }

}

13.4.3 A UDP Echo Client

The UDPPoke class implemented earlier isn't suitable for all protocols. In particular,
protocols that require multiple datagrams require a different implementation. The
echo protocol has both TCP and UDP implementations. As we saw, implementing the
echo protocol with TCP is simple; it's more complex with UDP because you don't
have I/O streams or the concept of a connection to work with. A TCP-based echo
client can send a message and wait for a response on the same connection. However, a
UDP-based echo client has no guarantee that the message it sent was received.
Therefore, it cannot simply wait for the response; it needs to be prepared to send and
receive data asynchronously.

This behavior is fairly simple to implement using threads, however. One thread can
process user input and send it to the echo server, while a second thread accepts input
from the server and displays it to the user. The client is divided into three classes: the
main UDPEchoClient class, the SenderThread class, and the ReceiverThread class.

The UDPEchoClient class should look familiar. It reads a hostname from the
command-line and converts that to an InetAddress object. It uses this and the default
echo port to construct a SenderThread object. This constructor can throw a
SocketException, so the exception must be caught. Then the SenderThread starts.
The same DatagramSocket that the SenderThread uses is used to construct a
ReceiverThread , which is then started. It's important to use the same
DatagramSocket for both sending and receiving data, because the echo server will
send the response back to the port the data was sent from. Example 13.12 shows the
code for the UDPEchoClient.

Example 13.12. The UDPEchoClient Class

import java.net.*;
import java.io.*;

public class UDPEchoClient {

 public final static int DEFAULT_PORT = 7;

 public static void main(String[] args) {

 String hostname = "localhost";
 int port = DEFAULT_PORT;

 if (args.length > 0) {
 hostname = args[0];
 }

 try {
 InetAddress ia = InetAddress.getByName(hostname);
 SenderThread sender = new SenderThread(ia, DEFAULT_PORT);
 sender.start();
 ReceiverThread receiver = new
ReceiverThread(sender.getSocket());
 receiver.start();
 }
 catch (UnknownHostException e) {
 System.err.println(e);
 }
 catch (SocketException se) {
 System.err.println(se);
 }

 } // end main

}

The SenderThread class reads input from the console, a line at a time, and sends it to
the echo server. It's shown in Example 13.13. The input is provided by System.in,
but a different client could include an option to read input from a different stream—
perhaps opening a FileInputStream to read from a file. The three fields of this class
define the server to which it sends data, the port on that server, and the
DatagramSocket that does the sending. SenderThread has a single constructor,
which takes an InetAddress and the port as arguments and opens a DatagramSocket.

The run() method processes user input, a line at a time. To do this, the
BufferedReader userInput is chained to System.in. An infinite loop reads lines of
user input. Each line is stored in theLine. A period on a line by itself signals the end
of user input and breaks out of the loop. Otherwise, the bytes of data are stored in the
data array, using the getBytes() method from java.lang.String. Next, the data
array is placed in the payload part of the DatagramPacket output, along with
information about the server, the port, and the data length. This packet is then sent to
its destination by socket. This thread then yields to give other threads an opportunity
to run.

Example 13.13. The SenderThread Class

import java.net.*;
import java.io.*;

public class SenderThread extends Thread {

 private InetAddress server;
 private DatagramSocket socket;
 private boolean stopped = false;

 private int port;

 public SenderThread(InetAddress ia, int port)
 throws SocketException {
 this.server = ia;
 this.socket = new DatagramSocket();
 this.port = port;
 }

 public void halt() {
 this.stopped = true;
 }

 public DatagramSocket getSocket() {
 return this.socket;
 }

 public void run() {

 try {
 BufferedReader userInput
 = new BufferedReader(new InputStreamReader(System.in));
 while (true) {
 if (stopped) return;
 String theLine = userInput.readLine();
 if (theLine.equals(".")) break;
 byte[] data = theLine.getBytes();
 DatagramPacket output
 = new DatagramPacket(data, data.length, server, port);
 socket.send(output);
 Thread.yield();
 }
 } // end try
 catch (IOException e) {
 System.err.println(e);
 }

 } // end run

}

The ReceiverThread class shown in Example 13.14 waits for datagrams to arrive
from the network. When a datagram is received, it is converted to a String and
printed on System.out for display to the user. A more advanced EchoClient could
include an option to send the output elsewhere; it might also check to make sure that
the datagrams were in fact returned by the server to which you're talking. It's rather
unlikely that some other server on the Internet is going to bombard this particular port
with extraneous data, so this is not a big flaw. However, it's a good habit to make sure
that the packets you receive come from the right place, especially if security is a
concern.

This class has two fields. The more important is the DatagramSocket, theSocket,
which must be the same DatagramSocket used by the EchoInputThread. Data
arrives on the port used by that DatagramSocket, and any other DatagramSocket
would not be allowed to connect to the same port. The second field, stopped, is a
boolean, used to halt this thread without invoking the deprecated stop() method.

The run() method is an infinite loop that uses socket's receive() method to wait
for incoming datagrams. When an incoming datagram appears, it is converted into a
String with the same length as the incoming data and printed on System.out. As in
the input thread, this thread then yields to give other threads an opportunity to execute.

Example 13.14. The ReceiverThread Class

import java.net.*;
import java.io.*;

class ReceiverThread extends Thread {

 DatagramSocket socket;
 private boolean stopped = false;

 public ReceiverThread(DatagramSocket ds) throws SocketException {
 this.socket = ds;
 }

 public void halt() {
 this.stopped = true;
 }

 public void run() {

 byte[] buffer = new byte[65507];
 while (true) {
 if (stopped) return;
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
 try {
 socket.receive(dp);
 String s = new String(dp.getData(), 0, dp.getLength());
 System.out.println(s);
 Thread.yield();
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

 }

}

Try running the echo client on one machine and connecting to the echo server on a
second machine to verify that both these programs work.

Chapter 14. Multicast Sockets
All the sockets you've seen in the previous chapters have been unicast: they provided
point-to-point communication. That is, unicast sockets create a connection with two
well-defined endpoints. There is one sender and one receiver, and, although they may
switch roles, at any given time it is easy to tell which is which. However, although
point-to-point communications serve many, if not most, needs (people have engaged
in one-on-one conversations for millennia), many tasks require a different model. For

example, a television station broadcasts data from one location to every point within
range of its transmitter. The signal reaches every television set whether or not it's
turned on and whether or not it's tuned in to that particular station. Indeed, the signal
even reaches homes with cable boxes instead of antennas and homes that don't have a
television. This is the classic example of broadcasting. It's quite indiscriminate and
quite wasteful of both the electromagnetic spectrum and power.

Videoconferencing, by contrast, sends an audio-video feed to a select group of people.
Usenet news is posted at one site and distributed around the world to tens of
thousands of people. DNS router updates travel from the site announcing a change to
many other routers. However, the sender relies on the intermediate sites to copy and
relay the message to downstream sites. The sender does not address its message to
every host that will eventually receive it. These are examples of multicasting, though
they're implemented with additional application layer protocols on top of TCP or UDP.
These protocols require fairly detailed configuration and intervention by human
beings. For instance, to join Usenet you have to find a site willing to send news to you
and relay your outgoing news to the rest of the world. To add you to the Usenet feed,
the news administrator of your news relay has to specifically add your site to their
news config files. However, recent developments with the network software in most
major operating systems as well as Internet routers have opened up a new possibility,
true multicasting in which the routers decide how to efficiently move that message to
individual hosts. In particular, the initial router sends only one copy of the message to
a router near the receiving hosts, which then makes multiple copies for different
recipients at or closer to the destinations. Internet multicasting is built on top of UDP.
Multicasting in Java uses the DatagramPacket class introduced in the previous
chapter, along with a new MulticastSocket class.

14.1 What Is a Multicast Socket?

Multicasting is broader than unicast, point-to-point communication but narrower and
more targeted than broadcast communication. Multicasting sends data from one host
to many different hosts, but not to everyone; the data goes only to clients that have
expressed an interest in the data by joining a particular multicast group. In a way, this
is like a public meeting. People can come and go as they please, leaving when the
discussion no longer interests them. Before they arrive and after they have left, they
don't need to process the information at all: it just doesn't reach them. On the Internet,
such "public meetings" are best implemented using a multicast socket that sends a
copy of the data to a location (or a group of locations) close to the parties that have
declared an interest in the data. In the best case, the data is duplicated only when it
reaches the local network serving the interested clients: the data crosses the Internet
only once. More realistically, several identical copies of the data traverse the Internet;
but, by carefully choosing the points at which the streams are duplicated, the load on
the network is minimized. The good news is that programmers and network
administrators aren't responsible for choosing the points where the data is duplicated
or even for sending multiple copies; the Internet's routers handle all that.

IP supports broadcasting, but the use of broadcasts is strictly limited. Protocols
require broadcasts only when there is no alternative, and routers limit broadcasts to
the local network or subnet, preventing broadcasts from reaching the Internet at large.
Even a few small global broadcasts could bring the Internet to its knees. Broadcasting

high-bandwidth data such as audio, video, or even text and still images is out of the
question. A single email spam that goes to 6 million addresses is bad enough. Imagine
what would happen if a real-time video feed were copied to six million Internet users,
whether they wanted to watch it or not.

However, there's a middle ground between point-to-point communications and
broadcasts to the whole world. There's no reason to send a video feed to hosts that
aren't interested in it; we need a technology that lets us send data to the hosts that
want it, without bothering the rest of the world. One way to do this is to use many
unicast streams. If 1,000 clients want to listen to a RealAudio broadcast, the data is
sent a thousand times. This is inefficient, since it duplicates data needlessly, but it's
orders-of-magnitude more efficient than broadcasting the data to every host on the
Internet. Still, if the number of interested clients is large enough, you will eventually
run out of bandwidth or CPU power—probably sooner rather than later.

Another approach to the problem is to create static connection trees. This is the
solution used by Usenet news and some conferencing systems (notably CU-SeeMe).
Data is fed from the originating site to other servers, which replicate it to still other
servers, which eventually replicate it to clients. Each client connects to the nearest
server. This is more efficient than sending everything to all interested clients via
multiple unicasts, but the scheme is kludgy and beginning to show its age. New sites
need to find a place to hook into the tree manually; the tree does not necessarily
reflect the best possible topology at any one time; and servers still need to maintain
many point-to-point connections to their clients, sending the same data to each one. It
would be better to allow the routers in the Internet to dynamically determine the best
possible routes for transmitting distributed information and to replicate data only
when absolutely necessary. This is where multicasting comes in.

For example, if you're multicasting video in New York, and 20 people attached to one
LAN are watching you in Los Angeles, your show will be sent to that LAN only once.
If 50 more people are watching in San Francisco, the data stream will be duplicated
somewhere (let's say Fresno) and sent to the two cities. If a hundred more people are
watching in Houston, another data stream will be sent there (perhaps from St. Louis);
see Figure 14.1. Your data has crossed the Internet only three times—not the 170
times required by point-to-point connections, or the millions of times required by a
true broadcast. Multicasting is halfway between the point-to-point communication
common to the Internet and the broadcast model of television—but it's more efficient
than either. When a packet is multicast, it is addressed to a multicast group and sent to
each host belonging to the group. It does not go to a single host (as in unicasting), nor
does it go to every host (as in broadcasting). Either would be too inefficient.

Figure 14.1. Multicast from New York to San Francisco, Los Angeles, and Houston

When people start talking about multicasting, audio and video are the first
applications that come to mind; however, they are only the tip of the iceberg. Other
possibilities include multiplayer games, distributed filesystems, massively parallel
computing, multiperson conferencing, database replication, and more. Usenet news
could be sent more efficiently via multicasting. Multicasting can be used to implement
name services and directory services that don't require the client to know a server's
address in advance; to look up a name, a host could multicast its request to some well-
known address, and wait until a response was received from the nearest server.

Multicasting should also make it easier to implement various kinds of caching for the
Internet, which will be important if the Net's population continues to grow faster than
available bandwidth. Martin Hamilton has proposed using multicasting to build a
distributed server system for the World Wide Web.[1] For example, a high-traffic web
server could be split across multiple machines, all of which share a single hostname,
mapped to a multicast address. Suppose one machine chunks out HTML files, another
handles images, and a third processes CGI requests. When a client makes a request to
the multicast address, that request is sent to each of the three servers. When each
server receives the request, it looks to see whether the client wants an HTML file, an
image, or CGI processing. If the server can handle the request, it responds. Otherwise,
the server ignores the request and lets the other servers process it. It is easy to imagine
more complex divisions of labor between distributed servers.

[1] Martin Hamilton, "Evaluating Resource Discovery Applications of IP Multicast",
http://gizmo.lut.ac.uk/~martin/eval/eval.html, 1995.

Multicasting has been designed to fit into the Internet as seamlessly as possible. Most
of the work is done by routers and should be transparent to application programmers.
An application simply sends datagram packets to a multicast address, which isn't
fundamentally different from any other IP address. The routers make sure that the
packet is delivered to all the hosts in the multicast group. The biggest problem is that
multicast routers are not yet ubiquitous; therefore, you need to know enough about
them to find out whether multicasting is supported on your network. As far as the

application itself, you need to pay attention to an additional header field in the
datagrams called the Time-To-Live (TTL) value. The TTL is the maximum number of
routers that the datagram is allowed to cross; when it reaches the maximum, it is
discarded. Multicasting uses the TTL as an ad hoc way to limit how far a packet can
travel. For example, you don't want packets for a friendly on-campus game of
Dogfight reaching routers on the other side of the world. Figure 14.2 shows how
TTLs limit a packet's spread.

Figure 14.2. Coverage of a packet with a TTL of 5

14.1.1 Multicast Addresses and Groups

A multicast address is the address of a group of hosts called a multicast group. We'll
talk about the address first. Multicast addresses are IP addresses in the range 224.0.0.0
to 239.255.255.255. All the addresses in this range have the binary digits 1110 as their
first four bits. They are called Class D addresses to distinguish them from the more
common Class A, B, and C addresses.[2] Like any IP address, a multicast address can
have a hostname; for example, the multicast address 224.0.1.1 (the address of the
Network Time Protocol distributed service) is assigned the name ntp.mcast.net.

[2] Addresses starting with 11110 are called Class E addresses; currently, they're unused and reserved for future
experimentation.

A multicast group is a set of Internet hosts that share a multicast address. Any data
sent to the multicast address is relayed to all the members of the group. Membership
in a multicast group is open; hosts can enter or leave the group at any time. Groups
can be either permanent or transient. Permanent groups have assigned addresses that
remain constant, whether or not there are any members in the group. However, most
multicast groups are transient and exist only as long as they have members. All you
have to do to create a new multicast group is pick a random address from 225.0.0.0 to
238.255.255.255, construct an InetAddress object for that address, and start sending
it data.

A number of multicast addresses have been set aside for special purposes. all-
systems.mcast.net, 224.0.0.1, is a multicast group that includes all systems that
support multicasting on the local subnet. This group is commonly used for local
testing, as is experiment.mcast.net, 224.0.1.20. (There is no multicast address that
sends data to all hosts on the Internet.) All addresses beginning with 224.0.0 (i.e.,
addresses from 224.0.0.0 to 224.0.0.255) are reserved for routing protocols and other
low-level activities, such as gateway discovery and group membership reporting.
Multicast routers never forward datagrams with destinations in this range.

The IANA is responsible for handing out permanent multicast addresses as needed; so
far, about 10,000 have been assigned. Most of these begin with 224.0., 224.1., 224.2.,
or 239. Table 14.1 lists a few of these permanent addresses. The complete list is
available from ftp://ftp.isi.edu/in-notes/iana/assignments/multicast-addresses. The
remaining 248 million Class D addresses can be used on a temporary basis by anyone
who needs them. Multicast routers (mrouters for short) are responsible for making
sure that two different systems don't try to use the same Class D address at the same
time.

Table 14.1. Common Permanent Multicast Addresses
Domain Name IP Address Purpose

BASE-ADDRESS.MCAST.NET 224.0.0.0 The reserved base address. This is never assigned
to any multicast group.

ALL-SYSTEMS.MCAST.NET 224.0.0.1 All systems on the local subnet.
ALL-ROUTERS.MCAST.NET 224.0.0.2 All routers on the local subnet.

DVMRP.MCAST.NET 224.0.0.4

All Distance Vector Multicast Routing Protocol
(DVMRP) routers on this subnet. An early version
of the DVMRP protocol is documented in RFC
1075; the current version has changed
substantially.

MOBILE-AGENTS.MCAST.NET 224.0.0.11 Mobile agents on the local subnet.

DHCP-AGENTS.MCAST.NET 224.0.0.12
This multicast group allows a client to locate a
Dynamic Host Configuration Protocol (DHCP)
server or relay agent on the local subnet.

PIM-ROUTERS.MCAST.NET 224.0.0.13 All Protocol Independent Multicasting (PIM)
routers on this subnet.

RSVP-
ENCAPSULATION.MCAST.NET 224.0.0.14

RSVP encapsulation on this subnet. RSVP stands
for Resource reSerVation setup Protocol, an effort
to allow people to reserve a guaranteed amount of
Internet bandwidth in advance for an event.

NTP.MCAST.NET 224.0.1.1 The Network Time Protocol.
SGI-DOG.MCAST.NET 224.0.1.2 Silicon Graphics Dogfight game.
NSS.MCAST.NET 224.0.1.6 The Name Service Server.
AUDIONEWS.MCAST.NET 224.0.1.7 Audio news multicast.
SUB-NIS.MCAST.NET 224.0.1.8 Sun's NIS+ Information Service.
MTP.MCAST.NET 224.0.1.9 The Multicast Transport Protocol.
IETF-1-LOW-
AUDIO.MCAST.NET 224.0.1.10 Channel 1 of low-quality audio from IETF

meetings.

IETF-1- AUDIO.MCAST.NET 224.0.1.11 Channel 1 of high-quality audio from IETF
meetings.

IETF-1-VIDEO.MCAST.NET 224.0.1.12 Channel 1 of video from IETF meetings.
IETF-2-LOW- 224.0.1.13 Channel 2 of low-quality audio from IETF

AUDIO.MCAST.NET meetings.

IETF-2-AUDIO.MCAST.NET 224.0.1.14 Channel 2 of high-quality audio from IETF
meetings.

IETF-2-VIDEO.MCAST.NET 224.0.1.15 Channel 2 of video from IETF meetings.
MUSIC-SERVICE.MCAST.NET 224.0.1.16 Music service.

SEANET-
TELEMETRY.MCAST.NET 224.0.1.17

Telemetry data for the U.S. Navy's SeaNet Project
to extend the Internet to vessels at sea. See
http://web.nps.navy.mil/.

SEANET-IMAGE.MCAST.NET 224.0.1.18 SeaNet images.

MLOADD.MCAST.NET 224.0.1.19

MLOADD measures the traffic load through one
or more network interfaces over a number of
seconds. Multicasting is used to communicate
between the different interfaces being measured.

EXPERIMENT.MCAST.NET 224.0.1.20 Experiments that do not go beyond the local
subnet.

XINGTV.MCAST.NET 224.0.1.23 XING Technology's Streamworks TV multicast.

MICROSOFT.MCAST.NET 224.0.1.24 Used by Windows Internet Name Service (WINS)
servers to locate one another.

MTRACE.MCAST.NET 224.0.1.32 A multicast version of traceroute.

 224.2.0.0-
224.2.255.255

The Multicast Backbone on the Internet
(MBONE) addresses are reserved for multimedia
conference calls, i.e., audio, video, whiteboard,
and shared web browsing between many people.

 224.2.2.2

Port 9,875 on this address is used to broadcast the
currently available MBONE programming. You
can look at this with the X Window utility sdr or
the Windows/Unix multikit program.

 239.0.0.0-
239.255.255.255

Administrative scope, in contrast to TTL scope,
uses different ranges of multicast addresses to
constrain multicast traffic to a particular region or
group of routers. For example, the IP addresses
from 239.178.0 to 239.178.255 might be an
administrative scope for the state of New York.
Data addressed to one of those addresses would
not be forwarded outside of New York. The idea is
to allow the possible group membership to be
established in advance without relying on less-
than-reliable TTL values. The exact divisions of
this range into particular scopes remains to be
defined.

Although the original IP multicast RFC dates back to 1985, practical IP multicasting
is still new and uncommon enough that permanent multicast addresses are assigned
manually by the IANA. Manual assignment will certainly break down as IP
multicasting becomes more popular. Some automated system for the assignment and
allocation of multicast addresses is probably inevitable.

The MBONE (or Multicast Backbone on the Internet) is the range of Class D
addresses beginning with 224.2. that are used for audio and video broadcasts over the
Internet. The word MBONE is sometimes used less restrictively (and less accurately)
to mean the portion of the Internet that understands how to route Class D-addressed
packets.

14.1.2 Clients and Servers

When a host wants to send data to a multicast group, it puts that data in multicast
datagrams, which are nothing more than UDP datagrams addressed to a multicast
group. Most multicast data is either audio or video, or both. These sorts of data tend to
be relatively large and relatively robust against data loss. If a few pixels or even a
whole frame of video is lost in transit, the signal isn't blurred beyond recognition.
Therefore, multicast data is sent via UDP, which, though unreliable, can be as much
as three times faster than data sent via connection-oriented TCP.[3] If you're developing
a multicast application that can't tolerate data loss, it's your responsibility to determine
whether data was damaged in transit, and how to handle the missing data. For
example, if you are building a distributed cache system, you might simply decide to
leave any files that don't arrive intact out of the cache.

[3] If you think about it, multicast over TCP would be next to impossible. TCP requires hosts to acknowledge that
they have received packets; handling acknowledgements in a multicast situation would be a nightmare.

Earlier, I said that from an application programmer's standpoint, the primary
difference between multicasting and using regular UDP sockets is that you have to
worry about the TTL value. This is a single byte in the IP header that takes values
from to 255; it is interpreted roughly as the number of routers through which a packet
can pass before it is discarded. Each time the packet passes through a router, its TTL
field is decremented by at least one; some routers may decrement the TTL by two or
more. When the TTL reaches zero, the packet is discarded. The TTL field was
originally designed to prevent routing loops by guaranteeing that all packets would
eventually be discarded; it prevents misconfigured routers from sending packets back
and forth to each other indefinitely. In IP multicasting, the TTL is used to limit the
multicast geographically. For example, a TTL value of 16 limits the packet to the
local area, generally one organization or perhaps an organization and its immediate
upstream and downstream neighbors. A TTL of 127, however, sends the packet
around the world. Intermediate values are also possible. However, there is no precise
way to map TTLs to geographical distance. Generally, the farther away a site is, the
more routers a packet has to pass through before reaching it. Therefore, packets with
small TTL values won't travel as far as packets with large TTL values. Table 14.2
provides some rough estimates relating TTL values to geographical reach. Packets
addressed to a multicast group from 224.0.0.0 to 224.0.0.255 are never forwarded
beyond the local subnet, regardless of the TTL values used.

Table 14.2. Estimated TTL Values for Datagrams Originating in the Continental United
States

Destinations TTL Value to
Use

The local host 0
The local subnet 1
The local campus—that is, the same side of the nearest Internet router—but on
possibly different LANs 16

High-bandwidth sites in the United States, generally those fairly close to the backbone 32
The United States 48
North America 64
High-bandwidth sites worldwide 128
All sites worldwide 255

Once the data has been stuffed into one or more datagrams, the sending host launches
the datagrams onto the Internet. This is just like sending regular (unicast) UDP data.
The sending host begins by transmitting a multicast datagram to the local network.
This packet immediately reaches all members of the multicast group in the same
subnet. If the Time-To-Live field of the packet is greater than 1, any multicast routers
on the local network forward the packet to any other networks that have members of
the destination group. When the packet arrives at one of the final destinations, the
multicast router on the foreign network transmits the packet to each host it serves that
is a member of the multicast group. If necessary, the multicast router also retransmits
the packet to the next routers in the paths between the current router and all its
eventual destinations.

When data arrives at a host in a multicast group, the host receives it as it receives any
other UDP datagram—even though the packet's destination address doesn't match the
receiving host. The host recognizes that the datagram is intended for it because it
belongs to the multicast group to which the datagram is addressed, much as most of us
accept mail addressed to "Occupant", even though none of us are named Mr. or Ms.
Occupant. The receiving host must be listening on the proper port and be ready to
process the datagram when it arrives.

14.1.3 Routers and Routing

Figure 14.3 shows one of the simplest possible multicast configurations: a single
server sending the same data to four clients served by the same router. A multicast
socket sends one stream of data over the Internet to the clients' router; the router
duplicates the stream and sends it to each of the clients. Without multicast sockets, the
server would have to send four separate but identical streams of data to the router,
which would route each stream to a client. Using the same stream to send the same
data to multiple clients significantly reduces the bandwidth required on the Internet
backbone. This moves video and audio on the Internet from something completely
impossible to something that is marginally possible, as long as too many people don't
try it at the same time. Furthermore, some local network technologies may let the
router multicast the data to its clients, reducing the bandwidth required on the LAN.

Of course, real-world routes can be much more complex, involving multiple
hierarchies of redundant routers. However, the goal of multicast sockets is simple: no
matter how complex the network, the same data should never be sent more than once
over any given network segment. Fortunately, you don't need to worry about routing
issues. Just create a MulticastSocket, have the socket join a multicast group, and
stuff the address of the multicast group in the DatagramPacket you want to send. The
routers and the MulticastSocket class take care of the rest.

Figure 14.3. With and Without Multicast Sockets

The biggest restriction on multicasting is the availability of special multicast routers
(mrouters). Mrouters are reconfigured Internet routers or workstations that support the
IP multicast extensions. Many consumer-oriented ISPs quite deliberately do not
enable multicasting in their routers. In the year 2000, it is still possible to find hosts
between which no multicast route exists (i.e., there is no route between the hosts that
travels exclusively over mrouters). This situation is being remedied rapidly, especially
in the United States and western Europe. However, it is often the case that a more
efficient route would be possible if more multicast routers were available.

Before you can use multicasting, you must be using an operating system, network
interface card, and network router that provide multicast support. Most major current
Unixes support multicasting. The only notable exceptions are the increasingly
obsolete SunOS 4.1 (and earlier), and Digital Ultrix. Both require special patches to
the kernel for multicasting. Multicasting is supported in the built-in TCP stack of
Microsoft Windows 95, 98, and NT. On Macs, multicasting is supported by
OpenTransport but not by MacTCP.

To send and receive multicast data beyond the local subnet, you need a multicast
router. Check with your network administrator to see whether your routers support
multicasting. You can also try pinging all-routers.mcast.net. If any router responds,
then your network is hooked up to a multicast router:

% ping all-routers.mcast.net
all-routers.mcast.net is alive

This still may not allow you to send to or receive from every multicast-capable host
on the Internet. For your packets to reach any given host, there must be a path of
multicast capable routers between your host and the remote host. Alternately, some
sites may be connected by special multicast tunnel software that transmits multicast
data over unicast UDP that all routers understand. If you have trouble getting the
examples in this chapter to produce the expected results, check with your local
network administrator or ISP to see whether multicasting is actually supported by
your routers.

14.2 Working with Multicast Sockets

Enough theory. In Java, you multicast data using the java.net.MulticastSocket
class. This is a subclass of java.net.DatagramSocket:

public class MulticastSocket extends DatagramSocket

As you would expect, MulticastSocket's behavior is very similar to
DatagramSocket's: you put your data in DatagramPacket objects that you send and
receive with the MulticastSocket. Therefore, I won't repeat the basics; this
discussion assumes that you already know how to work with datagrams. However, if
you're jumping around in this book rather than reading it cover to cover, now might be
a good time to go back and read the previous chapter on UDP.

To receive data that is being multicast from a remote site, you first create a
MulticastSocket with the MulticastSocket() constructor. Next, you join a
multicast group using the MulticastSocket's joinGroup() method. This signals
the routers in the path between you and the server to start sending data your way and
tells the local host that it should pass you IP packets addressed to the multicast group.

Once you've joined the multicast group, you receive UDP data just as you would with
a DatagramSocket. That is, you create a DatagramPacket with a byte array that
serves as a buffer for data, and enter a loop in which you receive the data by calling
the receive() method inherited from the DatagramSocket class. When you no
longer want to receive data, you leave the multicast group by invoking the socket's
leaveGroup() method. You can then close the socket with the close() method
inherited from DatagramSocket.

Sending data to a multicast address is similar to sending UDP data to a unicast address.
You do not need to join a multicast group to send data to it. You create a new
DatagramPacket, stuff the data and the address of the multicast group into the packet,
and pass it to the send() method. The one difference is that you must explicitly
specify the packet's TTL value.

There is one caveat to all this: multicast sockets are a security hole big enough to
drive a small truck through. Consequently, untrusted applets are not allowed to do
anything involving multicast sockets. An untrusted applet is allowed to send
datagrams to or receive datagrams from the applet host. However, multicast sockets
don't allow this sort of restriction to be placed on the packets they send or receive.
Once you send data to a multicast socket, you have very limited and unreliable control
over which hosts do and do not receive that data. Consequently, most applet
environments take the conservative approach of disallowing all multicasting.

14.2.1 The Constructors

The constructors are simple. Each one calls the equivalent constructor in the
DatagramSocket superclass.

14.2.1.1 public MulticastSocket() throws SocketException

This constructor creates a socket that is bound to an anonymous port (i.e., an unused
port assigned by the system). It is useful for clients (i.e., programs that initiate a data

transfer), because they don't need to use a well-known port: the recipient replies to the
port contained in the packet. If you need to know the port number, you can find out
with the getLocalPort() method inherited from DatagramSocket. This constructor
throws a SocketException if the Socket can't be created. For example:

try {
 MulticastSocket ms = new MulticastSocket();
 // send some datagrams...
}
catch (SocketException se) {
 System.err.println(se);
}

14.2.1.2 public MulticastSocket(int port) throws SocketException

This constructor creates a socket that receives datagrams on a well-known port. The
port argument specifies the port on which this socket listens for datagrams. As with
regular TCP and UDP unicast sockets, on a Unix system a program needs to be run
with root privileges to create a MulticastSocket on a port numbered from 1 to 1,023.

This constructor throws a SocketException if the Socket can't be created. A Socket
can't be created if you don't have sufficient privileges to bind to the port, or that the
port you're trying to connect to is already occupied. Note that since, as far as the
operating system is concerned, a multicast socket is a datagram socket, a
MulticastSocket cannot occupy a port already occupied by a DatagramSocket, and
vice versa. For example, this code fragment opens a multicast socket on port 4,000:

try {
 MulticastSocket ms = new MulticastSocket(4000);
 // receive incoming datagrams...
}
catch (SocketException se) {
 System.err.println(se);
}

14.2.2 Communicating with a Multicast Group

Once a MulticastSocket has been created, it can perform four key operations. These
are:

1. Join a multicast group.
2. Send data to the members of the group.
3. Receive data from the group.
4. Leave the multicast group.

The MulticastSocket class has methods for operations 1, 2, and 4. No new method
is required to receive data. The receive() method of the superclass,
DatagramSocket, is all that's needed for receiving. You can perform these operations
in any order, with the exception that you must join a group before you can receive
data from it (or, for that matter, leave it). You do not need to join a group to send data
to it, and the sending and receiving of data may be freely interwoven.

14.2.2.1 public void joinGroup(InetAddress address) throws IOException

To receive data from a MulticastSocket, you must first join a multicast group. To
join a group, pass an InetAddress object for the multicast group to the joinGroup()
method. If you successfully join the group, you'll receive any datagrams intended for
that group. Once you've joined a multicast group, you receive datagrams exactly as
you receive unicast datagrams, as shown in the previous chapter. That is, you set up a
DatagramPacket as a buffer and pass it into this socket's receive() method. For
example:

try {
 MulticastSocket ms = new MulticastSocket(4000);
 InetAddress ia = InetAddress.getByName("224.2.2.2");
 ms.joinGroup(ia);
 byte[] buffer = new byte[8192];
 while (true) {
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
 ms.receive(dp);
 String s = new String(dp.getData(), "8859_1");
 System.out.println(s);
 }
}
catch (IOException ie) {
 System.err.println(ie);
}

If the address that you try to join is not a multicast address (that is, it is not from
224.0.0.0 to 239.255.255.255), the joinGroup() method throws an IOException.

A single MulticastSocket can join multiple multicast groups. Information about
membership in multicast groups is stored in multicast routers, not in the object. In this
case, you'd use the address stored in the incoming datagram to determine which
address a packet was intended for.

Multiple multicast sockets on the same machine and even in the same Java program
can all join the same group. If so, they'll all receive all data addressed to that group
that arrives at the local host.

14.2.2.2 public void leaveGroup(InetAddress address) throws IOException

The leaveGroup() method signals that you no longer want to receive datagrams
from the specified multicast group. A signal is sent to the appropriate multicast router
telling it to stop sending you datagrams. If the address you try to leave is not a
multicast address (that is, it is not from 224.0.0.0 to 239.255.255.255), the method
throws an IOException. However, no exception occurs if you leave a multicast group
you never joined.

14.2.2.3 public void send(DatagramPacket packet, byte ttl) throws IOException

Sending data with a MulticastSocket is similar to sending data with a
DatagramSocket. Stuff your data into a DatagramPacket object and send it off using
the send() method inherited from DatagramSocket:

public void send(DatagramPacket p) throws IOException

The data is sent to every host that belongs to the multicast group to which your packet
is addressed. For example:

try {
 InetAddress ia = InetAddress.getByName("experiment.mcast.net");
 byte[] data = "Here's some multicast data\r\n".getBytes();
 int port = 4000;
 DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
 MulticastSocket ms = new MulticastSocket();
 ms.send(dp);
}
catch (IOException ie) {
 System.err.println(ie);
}

However, the MulticastSocket class adds an overloaded variant of the send()
method that lets you provide a value for the Time-To-Live field ttl. By default, the
send() method uses a TTL of 1; that is, packets don't travel outside the local subnet.
However, you can change this for an individual packet by passing an integer from to
255 as the second argument to the send() method. For example:

DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
 MulticastSocket ms = new MulticastSocket();
 ms.send(dp, 64);

14.2.2.4 public void setInterface(InetAddress address) throws SocketException

On a multihomed host, the setInterface() method chooses the network interface
used for multicast sending and receiving. setInterface() throws a
SocketException if the InetAddress you give it is not the address of a network
interface on the local machine. It is unclear why the network interface is immutably
set in the constructor for unicast Socket and DatagramSocket objects but is variable
and set with a separate method for MulticastSocket objects. To be safe, you should
set the interface immediately after constructing a MulticastSocket and not change it
thereafter. Here's how you might use setInterface():

MulticastSocket ms;
InetAddress ia;
try {
 ia = new InetAddress("metalab.unc.edu");
 ms = new MulticastSocket(2048);
 ms.setInterface(ia);
 // send and receive data...
}
catch (UnknownHostException ue) {
 System.err.println(ue);
}
catch (SocketException se) {
 System.err.println(se);
}

14.2.2.5 public InetAddress getInterface() throws SocketException

If you need to know the address of the interface you're using, you can call
getInterface(). It isn't clear why this method would throw an exception; in any
case, you must be prepared for it. For example:

try {
 MulticastSocket ms = new MulticastSocket(2048);
 InetAddress ia = ms.getInterface();
}
catch (SocketException se) {
 System.err.println(ue);
}

14.2.2.6 public void setTimeToLive(int ttl) throws IOException // Java 1.2

The setTimeToLive() method sets the default TTL value used for packets sent from
the socket using the send(Datagrampacket dp) method inherited from
DatagramSocket (as opposed to the send(Datagrampacket dp, byte ttl) method
in MulticastSocket). This method is available only in Java 1.2 and later. In Java 1.1,
you have to use the setTTL() method instead:

public void setTTL(byte ttl) throws IOException

The setTTL() method is deprecated in Java 2 and later because it allows you only to
set TTL values from 1 to 127 rather than the full range from 1 to 255.

14.2.2.7 public int getTimeToLive() throws IOException // Java 1.2

The getTimeToLive() method returns the default TTL value of the
MulticastSocket. It's not needed very much. This method is also available only in
Java 1.2 and later. In Java 1.1, you have to use the getTTL() method instead:

public byte getTTL() throws IOException

The getTTL() method is deprecated in Java 1.2 and later because it doesn't properly
handle TTLs greater than 127. It truncates these to 127. The getTimeToLive()
method can handle the full range from 1 to 255 without truncation because it returns
an int instead of a byte.

14.3 Two Simple Examples

Most multicast servers are indiscriminate about who they will talk to. Therefore, it's
easy to join a group—and watch the data that's being sent to it. Example 14.1 is a
MulticastSniffer class that reads the name of a multicast group from the
command-line, constructs an InetAddress from that hostname, and then creates a
MulticastSocket, which attempts to join the multicast group at that hostname. If the
attempt succeeds, it receives datagrams from the socket and prints their contents on
System.out. This program is useful primarily to verify that you are receiving
multicast data at a particular host. Most multicast data is binary and won't be
intelligible when printed as ASCII.

Example 14.1. Multicast Sniffer

import java.net.*;
import java.io.*;

public class MulticastSniffer {

 public static void main(String[] args) {

 InetAddress group = null;
 int port = 0;

 // read the address from the command line
 try {
 group = InetAddress.getByName(args[0]);
 port = Integer.parseInt(args[1]);
 } // end try
 catch (Exception e) {
 // ArrayIndexOutOfBoundsException, NumberFormatException,
 // or UnknownHostException
 System.err.println(
 "Usage: java MulticastSniffer multicast_address port");
 System.exit(1);
 }

 MulticastSocket ms = null;

 try {
 ms = new MulticastSocket(port);
 ms.joinGroup(group);

 byte[] buffer = new byte[8192];
 while (true) {
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
 ms.receive(dp);
 String s = new String(dp.getData());
 System.out.println(s);
 }
 }
 catch (IOException e) {
 System.err.println(e);
 }
 finally {
 if (ms != null) {
 try {
 ms.leaveGroup(group);
 ms.close();
 }
 catch (IOException e) {}
 }
 }

 }

}

The program begins by reading the name and port of the multicast group from the first
command-line argument. Next, we create a new MulticastSocket ms on the
specified port. This socket joins the multicast group at the specified InetAddress.
Then it enters a loop in which it waits for packets to arrive. As each packet arrives, the
program reads its data, converts the data to an ISO Latin-1 String, and prints it on

System.out. Finally, when the user interrupts the program or an exception is thrown,
the socket leaves the group and closes itself.

MBONE session announcements are broadcast to the multicast group sap.mcast.net
on port 9,875. You can use this program to listen to those announcements. Generally,
if you're connected to the MBONE (not all sites are), then you should see a site
announcement pop through within the first minute or two. In fact, you'll probably see
a lot more. I collected about a megabyte and a half of announcements within the first
couple of minutes I had this program running. I show only the first two here:

% java MulticastSniffer sap.mcast.net 9875
úv=0
o=ellery 3132060082 3138107776 IN IP4 131.182.10.250
s=NASA TV - Broadcast from NASA HQ
i=NASA TV Multicasting from NASA HQ
u=http://www.nasa.gov/ntv
e=Ellery.Coleman@hq.nasa.gov (Ellery D. Coleman)
p=+202 651 8512
t=3138107776 3153918976
r=15811200 15811200 0
a=recvonly
a=tool:FVC.COM I-Caster V3.1/3101, Windows95/NT
a=cat:Corporate/Events
m=audio 23748 RTP/AVP 0
c=IN IP4 224.2.203.38/127
m=video 60068 RTP/AVP 31
c=IN IP4 224.2.203.37/127
b=AS:380
a=framerate:9
a=quality:8
a=grayed:0
4 224.2.255.115/15
.77/25
4 RTP wbbesteffort
c=IN IP4 224.2.224.41/25

 Â¡_v=0
o=dax 3137417804 3141052115 IN IP4 horla.enst.fr
s=VREng UDP (Virtual Reality Engine)
i=Virtual Reality Engine: Distributed Interactive 3D Multicast
navigator in Virtual Worlds. For more information and downloading,
see
URL: http://www.infres.enst.fr/net/vreng/.
u=http://www.infres.enst.fr/net/vreng/
e=Philippe Dax (ENST) <dax@inf.enst.fr>
p=Philippe Dax (ENST) +33 (0) 145817648
t=0 0
a=tool:sdr v2.9
a=type:test
m=dis 62239 RTP 99
c=IN IP4 224.2.199.133/127
/3
m=mdesk 64538 RTP/AVP mdesk
c=IN IP4 224.2.160.68/3
e please stop your receiving programs and the stream should stop from
coming to you.
u=http://tv.funet.fi/ohjelmat/index.html
e=Harri Salminen <mice-nsc@nic.funet.fi>
p=Harri Salminen +358 400 358 502

t=3085239600 3299658800
a=tool:CDT mAnnouncer 1.1.2
a=type:broadcast
m=audio 4004 RTP/AVP 0
c=IN IP4 239.239.239.239/40
a=ptime:40
m=video 6006 RTP/AVP 31
c=IN IP4 239.239.239.239/40
m=whiteboard 4206 udp wb
c=IN IP4 224.239.239.245/48

MBONE session announcements are not pure ASCII text. In particular, they contain a
lot of embedded nulls as well as various characters with their high bit set.
Consequently, I've had to take a few liberties with the output to print it in this book.
To really handle MBONE session announcements, you'd have to parse the relevant
ASCII text out of the binary format and display that. Peter Parnes has written a Java
program called mSD that does exactly that. If you're interested, you can find it at
http://www.cdt.luth.se/~peppar/progs/mSD/. However, since this is a book about
network programming and not parsing binary file formats, we'll leave our example
here and move on to sending multicast data. Example 14.2 is a MulticastSender
class that sends data read from the command-line to a multicast group. It is fairly
simple overall.

Example 14.2. MulticastSender

import java.net.*;
import java.io.*;

public class MulticastSender {

 public static void main(String[] args) {

 InetAddress ia = null;
 int port = 0;
 byte ttl = (byte) 1;

 // read the address from the command line
 try {
 ia = InetAddress.getByName(args[0]);
 port = Integer.parseInt(args[1]);
 if (args.length > 2) ttl = (byte) Integer.parseInt(args[2]);
 }
 catch (Exception e) {
 System.err.println(e);
 System.err.println(
 "Usage: java MulticastSender multicast_address port ttl");
 System.exit(1);
 }

 byte[] data = "Here's some multicast data\r\n".getBytes();
 DatagramPacket dp = new DatagramPacket(data, data.length, ia,
port);

 try {
 MulticastSocket ms = new MulticastSocket();
 ms.joinGroup(ia);
 for (int i = 1; i < 10; i++) {

 ms.send(dp, ttl);
 }
 ms.leaveGroup(ia);
 ms.close();
 }
 catch (SocketException se) {
 System.err.println(se);
 }
 catch (IOException ie) {
 System.err.println(ie);
 }

 }

}

Example 14.2 reads the address of a multicast group, a port number, and an optional
TTL from the command line. It then stuffs the string "Here's some multicast
data\r\n" into the byte array data using the getBytes() method of
java.lang.String, and places this array in the DatagramPacket dp. Next, it
constructs the MulticastSocket ms, which joins the group ia. Once it has joined the
group, ms sends the datagram packet dp to the group ia 10 times. The TTL value is
set to one to make sure that this data doesn't go beyond the local subnet. Having sent
the data, ms leaves the group and closes itself.

Run MulticastSniffer on one machine in your local subnet. Listen to the group all-
systems.mcast.net on port 4,000 like this:

% java MulticastSniffer all-systems.mcast.net 4000

Then send data to that group by running MulticastSender on another machine in
your local subnet. You can also run it in a different window on the same machine,
though that's not as exciting. However, you must start running the MulticastSniffer
before you start running the MulticastSender. Send to the group all-
systems.mcast.net on port 4,000 like this:

% java MulticastSender all-systems.mcast.net 4000

Back on the first machine you should see this output:

Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data

For this to work beyond the local subnet, the two subnets will each have to have
multicast routers.

Chapter 15. The URLConnection Class

URLConnection is an abstract class that represents an active connection to a resource
specified by a URL. The URLConnection class has two different but related purposes.
First, it provides more control over the interaction with a server than the URL class.
With a URLConnection, you can inspect the MIME headers sent by an HTTP server
and respond accordingly. You can adjust the MIME header fields used in the client
request. You can use a URLConnection to download binary files. Finally, a
URLConnection lets you send data back to a web server with POST or PUT and use
other HTTP request methods. We will explore all of these techniques in this chapter.

Second, the URLConnection class is part of Java's protocol handler mechanism,
which also includes the URLStreamHandler class. The idea behind protocol handlers
is simple: they separate the details of processing a protocol from processing particular
data types, providing user interfaces, and doing the other work that a monolithic web
browser performs. The base java.net.URLConnection class is abstract; to
implement a specific protocol, you write a subclass. These subclasses can be loaded at
runtime by your own applications or by the HotJava browser; in the future, it may be
possible for Java applications to download protocol handlers over the Net as needed,
making them automatically extensible. For example, if your browser runs across a
URL with a strange prefix, such as compress:, rather than throwing up its hands and
issuing an error message, it could download a protocol handler for this unknown
protocol and use it to communicate with the server. Writing protocol handlers is the
subject of the next chapter.

Only abstract URLConnection classes are present in the java.net package. The
concrete subclasses are hidden inside the sun.net package hierarchy. Many of the
methods and fields as well as the single constructor in the URLConnection class are
protected. In other words, they can be accessed only by instances of the
URLConnection class or its subclasses. It is rare to instantiate URLConnection objects
directly in your source code; instead, the runtime environment creates these objects as
needed, depending on the protocol in use. The class (which is unknown at compile
time) is then instantiated using the forName() and newInstance() methods of the
java.lang.Class class.

URLConnection does not have the best designed API in the Java
class library. It's been cleaned up somewhat in Java 1.1 and 1.2,
but it's still a lot more confusing than it should be. Since the
URLConnection class itself relies on the Socket class for
network connectivity, there's little you can do with
URLConnection that can't also be done with Socket. The
URLConnection class is supposed to provide an easier-to-use,
higher-level abstraction for network connections than Socket
does. In practice, however, it's so poorly designed that most
programmers have chosen to ignore it and simply use the Socket
class instead. One of several problems is that the
URLConnection class is too closely tied to the HTTP protocol.
For instance, it assumes that each file transferred is preceded by
a MIME header or something very much like one. However,
most classic protocols such as FTP and SMTP don't use MIME
h d A h bl I h ll i i hi h

headers. Another problem, one I hope to alleviate in this chapter,
is that the URLConnection class is extremely poorly
documented, so very few programmers understand how it's really
supposed to work.

15.1 Opening URLConnections

A program that uses the URLConnection class directly follows this basic sequence of
steps:

1. Construct a URL object.
2. Invoke the URL object's openConnection() method to retrieve a

URLConnection object for that URL.
3. Configure the URLConnection.
4. Read the header fields.
5. Get an input stream and read data.
6. Get an output stream and write data.
7. Close the connection.

You don't always perform all these steps. For instance, if the default setup for a
particular kind of URL is acceptable, then you're likely to skip step 3. If you want
only the data from the server and don't care about any meta-information, or if the
protocol doesn't provide any meta-information, you'll skip step 4. If you want only to
receive data from the server but not send data to the server, you'll skip step 6.
Depending on the protocol, steps 5 and 6 may be reversed or interlaced.

The single constructor for the URLConnection class is protected:

protected URLConnection(URL url)

Consequently, unless you're subclassing URLConnection to handle a new kind of
URL (that is, writing a protocol handler), you can get a reference to one of these
objects only through the openConnection() methods of the URL and
URLStreamHandler classes. For example:

try {
 URL u = new URL("http://www.greenpeace.org/");
 URLConnection uc = u.openConnection();
}
catch (MalformedURLException e) {
 System.err.println(e);
}
catch (IOException e) {
 System.err.println(e);
}

In practice, the openConnection() method of java.net.URL
is the same as the openConnection() method of
java.net.URLStreamHandler. All a URL object's
openConnection() method does is call its
URLStreamHandler's openConnection() method.

The URLConnection class is declared abstract. However, all but one of its methods
are implemented. The single method that subclasses are forced to implement is
connect(), which makes a connection to a server and thus depends on the type of
service you're implementing (HTTP, FTP, etc.). For example, a
sun.net.www.protocol.file.FileURLConnection's connect() method converts
the URL to a filename in the appropriate directory, creates MIME information for the
file, and then opens a buffered FileInputStream to the file. The connect() method
of sun.net.www.protocol.http.HttpURLConnection creates an HttpClient
object (from sun.net.www.http.HttpClient), which is responsible for connecting
to the server. Of course, you may find it convenient or necessary to override other
methods in the class.

public abstract void connect() throws IOException

When a URLConnection is first constructed, it is unconnected; that is, the local and
remote host cannot send and receive data. There is no socket connecting the two hosts.
The connect() method establishes a connection—normally using TCP sockets but
possibly through some other mechanism—between the local and remote host so that
you can send and receive data. However, the getInputStream(), getContent(),
getHeaderField(), and other methods that require an open connection will
themselves call connect() if the connection isn't yet open. Therefore, you rarely
need to call connect() directly.

15.2 Reading Data from a Server

The minimal set of steps needed to retrieve data from a URL using a URLConnection
object are these:

1. Construct a URL object.
2. Invoke the URL object's openConnection() method to retrieve a

URLConnection object for that URL.
3. Invoke the URLConnection's getInputStream() method.
4. Read from the input stream using the usual stream API.

The getInputStream() method returns a generic InputStream, which lets you read
and parse the data that the server sends yourself.

public InputStream getInputStream()

Example 15.1 uses the getInputStream() method to download a web page.

Example 15.1. Download a Web Page with a URLConnection

import java.net.*;
import java.io.*;

public class SourceViewer2 {

 public static void main (String[] args) {

 if (args.length > 0) {
 try {
 //Open the URLConnection for reading
 URL u = new URL(args[0]);
 URLConnection uc = u.openConnection();
 InputStream raw = uc.getInputStream();
 InputStream buffer = new BufferedInputStream(raw);
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(buffer);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException e) {
 System.err.println(e);
 }

 } // end if

 } // end main

} // end SourceViewer2

It is no accident that this program is almost the same as Example 15.5. The
openStream() method of the URL class just returns an InputStream from its own
URLConnection object. The output is identical as well, so I won't repeat it here.

The differences between URL and URLConnection aren't apparent with just a simple
input stream as in this example. The biggest differences between the two classes are:

• URLConnection provides access to the MIME header associated with an
HTTP 1.0 response.

• URLConnection lets you configure the request parameters sent to the server.
• URLConnection lets you write data to the server as well as read data from the

server.

15.3 Reading the Header

HTTP servers provide a substantial amount of information in the MIME headers that
precede each response. For example, here's a typical MIME header returned by an
Apache web server running on Solaris:

HTTP 1.1 200 OK
Date: Mon, 18 Oct 1999 20:06:48 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17

Last-Modified: Mon, 18 Oct 1999 12:58:21 GMT
ETag: "1e05f2-89bb-380b196d"
Accept-Ranges: bytes
Content-Length: 35259
Connection: close
Content-Type: text/html

There's a lot of information there. In general, an HTTP MIME header may include the
content type of the requested document, the length of the document in bytes, the
character set in which the content is encoded, the date and time, the date the content
expires, and the date the content was last modified. However, the information sent
depends on the server; some servers send all this information for each request, others
send some information, and a few don't send anything. The methods of this section
allow you to query a URLConnection to find out what MIME information the server
has provided.

Aside from HTTP, very few protocols use MIME headers. When writing your own
subclass of URLConnection, it is often necessary to override these methods so that
they return sensible values. The most important piece of information you may be
lacking is the MIME content type. URLConnection provides some utility methods that
help you guess the data's content type, based on its filename or (in the worst case) the
first few bytes of the data itself.

15.3.1 Retrieving Specific MIME Header Fields

The first six methods request specific, particularly common fields from the MIME
header. These are:

• Content-type
• Content-length
• Content-encoding
• Date
• Last-modified
• Expires

15.3.1.1 public String getContentType()

This method returns the MIME content type of the data. It relies on the web server to
send a proper MIME header, including a valid content type. (In a later section, we'll
see how recalcitrant servers are handled.) It throws no exceptions and returns null if
the content type isn't available. text/html will be by far the most common content
type you'll encounter when connecting to web servers. Other commonly used types
include text/plain, image/gif, and image/jpeg.

15.3.1.2 public int getContentLength()

This method tells you how many bytes there are in the content. Many servers send
Content-length headers only when they're transferring a binary file, not when
transferring a text file. If there is no Content-length header, getContentLength()
returns -1. The method throws no exceptions. It is used when you need to know

exactly how many bytes to read or when you need to create a buffer large enough to
hold the data in advance.

In Chapter 7, you saw how to use the openStream() method of the URL class to
download text files from an HTTP server. Although in theory you should be able to
use the same method to download a binary file, such as a GIF image or a .class byte
code file, in practice this procedure presents a problem. HTTP servers don't always
close the connection and give you an EOF character exactly where you need it;
therefore, you don't know when to stop reading. To download a binary file, it is more
reliable to use a URLConnection's getContentLength() method to find the file's
length, then read exactly the number of bytes indicated. Example 15.2 is a program
that uses this technique to save a binary file on a disk.

Example 15.2. This Program Downloads a Binary File from a Web Site and Saves It to
Disk

import java.net.*;
import java.io.*;

public class BinarySaver {

 public static void main (String args[]) {

 for (int i = 0; i < args.length; i++) {

 try {
 URL root = new URL(args[i]);
 saveBinaryFile(root);
 }
 catch (MalformedURLException e) {
 System.err.println(args[i] + " is not URL I understand.");
 }
 catch (IOException e) {
 System.err.println(e);
 }
 } // end for

 } // end main

 public static void saveBinaryFile(URL u) throws IOException {

 URLConnection uc = u.openConnection();
 String contentType = uc.getContentType();
 int contentLength = uc.getContentLength();
 if (contentType.startsWith("text/") || contentLength == -1) {
 throw new IOException("This is not a binary file.");
 }

 InputStream raw = uc.getInputStream();
 InputStream in = new BufferedInputStream(raw);
 byte[] data = new byte[contentLength];
 int bytesRead = 0;
 int offset = 0;
 while (offset < contentLength) {
 bytesRead = in.read(data, offset, data.length-offset);
 if (bytesRead == -1) break;
 offset += bytesRead;

 }
 in.close();

 if (offset != contentLength) {
 throw new IOException("Only read " + offset
 + " bytes; Expected " + contentLength + " bytes");
 }

 String filename = u.getFile();
 filename = filename.substring(filename.lastIndexOf('/') + 1);
 FileOutputStream fout = new FileOutputStream(filename);
 fout.write(data);
 fout.flush();
 fout.close();

 }

} // end BinarySaver

As usual, the main() method loops over the URLs entered on the command-line,
passing each URL to the saveBinaryFile() method. saveBinaryFile() opens a
URLConnection uc to the URL. It puts the type into the variable contentType and the
content length into the variable contentLength. Next, an if statement checks
whether the MIME type is text, or the content-length field is missing or invalid
(contentLength == -1). If either of these is true, an IOException is thrown. If these
assertions are both false, we have a binary file of known length: that's what we want.

Now that we have a genuine binary file on our hands, we prepare to read it into an
array of bytes called data. data is initialized to the number of bytes required to hold
the binary object, contentLength. Ideally, you would like to fill data with a single
call to read(), but you probably won't get all the bytes at once so the read is placed
in a loop. The number of bytes read up to this point is accumulated into the offset
variable, which also keeps track of the location in the data array at which to start
placing the data retrieved by the next call to read(). The loop continues until
offset equals or exceeds contentLength; that is, the array has been filled with the
expected number of bytes. We also break out of the while loop if read() returns -1,
indicating an unexpected end of stream. The offset variable now contains the total
number of bytes read, which should be equal to the content length. If they are not
equal, an error has occurred, so saveBinaryFile() throws an IOException. This is
the general procedure for reading binary files from HTTP connections.

Now we are ready to save the data in a file. saveBinaryFile() gets the filename
from the URL using the getFile() method and strips any path information by
calling filename.substring(theFile.lastIndexOf('/') + 1). A new
FileOutputStream fout is opened into this file, and the data is written in one large
burst with fout.write(b).

15.3.1.3 public String getContentEncoding()

This method returns a String that tells you how the content is encoded. If the content
is sent unencoded (as is commonly the case with HTTP servers), then this method
returns null. It throws no exceptions. The most commonly used content encoding on

the Web is probably x-gzip, which can be straightforwardly decoded using a
java.util.zip.GZipInputStream.

When writing your own URLConnection subclass, you need to override this method if
you expect to be dealing with encoded data. This might be the case for an NNTP or
SMTP protocol handler; in these applications, many different encoding schemes, such
as BinHex and uuencode, are used to pass 8-bit binary data through a 7-bit ASCII
connection.

15.3.1.4 public long getDate()

The getDate() method returns a long that tells you when the document was sent, in
milliseconds since midnight, GMT, January 1, 1970. You can convert it to a
java.util.Date. For example:

Date documentSent = new Date(uc.getDate());

This is the time the document was sent as seen from the server; it may not agree with
the time on your local machine. If the MIME header does not include a Date header,
getDate() returns 0.

15.3.1.5 public long getExpiration()

Some documents have server-based expiration dates that indicate when the document
should be deleted from the cache and reloaded from the server. getExpiration() is
very similar to getDate(), differing only in how the return value is interpreted. It
returns a long indicating the number of milliseconds after 12:00 A.M., GMT, January
1, 1970, at which point the document expires. In practice, few servers send expiration
dates. If the MIME header does not include an Expiration header, getExpiration()
returns 0, which means 12:00 A.M., GMT, January 1, 1970. The only reasonable
interpretation of this date is that the document does not need to be expired, and can
remain in the cache indefinitely.

15.3.1.6 public long getLastModified()

The final date method, getLastModified(), returns the date on which the document
was last modified. Again, the date is given as the number of milliseconds since
midnight, GMT, January 1, 1970. If the MIME header does not include a Last-
modified header (and many don't), this method returns 0.

Example 15.3 reads URLs from the command-line and uses these six methods to print
their content type, content length, content encoding, date of last modification,
expiration date, and current date.

Example 15.3. Return the MIME Header

import java.net.*;
import java.io.*;
import java.util.*;

public class MIMEHeadersViewer {

 public static void main(String args[]) {

 for (int i=0; i < args.length; i++) {
 try {
 URL u = new URL(args[0]);
 URLConnection uc = u.openConnection();
 System.out.println("Content-type: " + uc.getContentType());
 System.out.println("Content-encoding: "
 + uc.getContentEncoding());
 System.out.println("Date: " + new Date(uc.getDate()));
 System.out.println("Last modified: "
 + new Date(uc.getLastModified()));
 System.out.println("Expiration date: "
 + new Date(uc.getExpiration()));
 System.out.println("Content-length: " +
uc.getContentLength());
 } // end try
 catch (MalformedURLException e) {
 System.err.println(args[i] + " is not a URL I understand");
 }
 catch (IOException e) {
 System.err.println(e);
 }
 System.out.println();
 } // end for

 } // end main

} // end MIMEHeadersViewer

Here's the result when used to look at http://www.oreilly.com:

% java MIMEHeadersViewer http://www.oreilly.com
Content-type: text/html
Content-encoding: null
Date: Mon Oct 18 13:54:52 PDT 1999
Last modified: Sat Oct 16 07:54:02 PDT 1999
Expiration date: Wed Dec 31 16:00:00 PST 1969
Content-length: -1

The MIME type of the file at http://www.oreilly.com is text/html. No content
encoding was used. The file was sent on Monday, October 18, 1999 at 1:54 P.M.,
Pacific Daylight Time. It was last modified on Saturday, October 16, 1999 at 7:54
A.M. Pacific Daylight Time; and it expires on Wednesday, December 31, 1969 at
4:00 P.M, Pacific Standard Time. Did this document really expire 31 years ago? No.
Remember that what's being checked here is whether the copy in your cache is more
recent than 4:00 P.M. PST, December 31, 1969. If it is, you don't need to reload it.
More to the point, after adjusting for time zone differences, this date looks
suspiciously like 12:00 A.M., Greenwich Mean Time, January 1, 1970, which
happens to be the default if the server doesn't send an expiration date. (Most don't.)

Finally the content length of -1 means that there was no Content-length header. Many
servers don't bother to provide a Content-length header for text files. However, a
Content-length header should always be sent for a binary file. Here's the MIME
header you get when you request the GIF image

http://www.oreilly.com/graphics/space.gif. Now the server sends a Content-length
header with a value of 57.

% java MIMEHeadersViewer http://www.oreilly.com/graphics/space.gif
Content-type: image/gif
Content-encoding: null
Date: Mon Oct 18 14:00:07 PDT 1999
Last modified: Thu Jan 09 12:05:11 PST 1997
Expiration date: Wed Dec 31 16:00:00 PST 1969
Content-length: 57

15.3.2 Retrieving Arbitrary MIME Header Fields

The last six methods requested specific fields from a MIME header, but there's no
theoretical limit to the number of header fields a MIME message can contain. The
next five methods inspect arbitrary fields in a MIME header. Indeed, the methods of
the last section are just thin wrappers over the methods discussed here; you can use
these methods to get MIME headers that Java's designers did not plan for. If the
requested header is found, it is returned. Otherwise, the method returns null.

15.3.2.1 public String getHeaderField(String name)

The getHeaderField() method returns the value of a named MIME header field.
The name of the header is not case-sensitive and does not include a closing colon. For
example, to get the value of the Content-type and Content-encoding header fields of a
URLConnection object uc, you would write:

String contentType = uc.getHeaderField("content-type");
String contentEncoding = uc.getHeaderField("content-encoding"));

To get the Date, Content-length, or Expires headers, you'd do the same:

String data = uc.getHeaderField("date");
String expires = uc.getHeaderField("expires");
String contentLength = uc.getHeaderField("Content-length");

These methods all return String, not int or long as the getContentLength(),
getExpirationDate(), getLastModified(), and getDate() methods of the last
section did. If you are interested in a numeric value, you must convert the String to a
long or an int.

Do not assume the value returned by getHeaderField() is valid. You must check to
make sure it is non-null.

15.3.2.2 public String getHeaderFieldKey(int n)

This method returns the key (that is, the field name: for example, Content-length or
Server) of the nth MIME header field. The request method is header zero and has a
null key. The first header is one. For example, to get the sixth key of the MIME
header of the URLConnection uc, you would write:

String header6 = uc.getHeaderFieldKey(6);

15.3.2.3 public String getHeaderField(int n)

This method returns the value of the nth MIME header field. The request method is
header field zero, and the first actual header is one. Example 15.4 uses this method in
conjunction with getHeaderFieldKey() to print the entire MIME header.

Example 15.4. Print the Entire MIME Header

import java.net.*;
import java.io.*;

public class AllMIMEHeaders {

 public static void main(String args[]) {

 for (int i=0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 URLConnection uc = u.openConnection();
 for (int j = 1; ; j++) {
 String header = uc.getHeaderField(j);
 if (header == null) break;
 System.out.println(uc.getHeaderFieldKey(j) + ": " + header);
 } // end for
 } // end try
 catch (MalformedURLException e) {
 System.err.println(args[i] + " is not a URL I understand.");
 }
 catch (IOException e) {
 System.err.println(e);
 }
 System.out.println();
 } // end for

 } // end main

} // end AllMIMEHeaders

For example, here's the output when this program is run against
http://www.oreilly.com:

% java AllMIMEHeaders http://www.oreilly.com
Server: WN/1.15.1
Date: Mon, 18 Oct 1999 21:20:26 GMT
Last-modified: Sat, 16 Oct 1999 14:54:02 GMT
Content-type: text/html
Title: www.oreilly.com -- Welcome to O'Reilly & Associates!
-- computer books, software, online publishing
Link: <mailto:webmaster@oreilly.com>; rev="Made"

You can see that besides Date, Last-modified, and Content-type headers, this server
also provides Server, Title, and Link headers. Other servers may have different sets of
headers.

15.3.2.4 public long getHeaderFieldDate(String name, long default)

This method first retrieves the header field specified by the name argument and tries to
convert the string to a long that specifies the milliseconds since midnight, January 1,
1970, GMT. getHeaderFieldDate() can be used to retrieve a MIME header that
represents a date: for example, the Expires, Date, or Last-modified headers. To
convert the string to an integer, getHeaderFieldDate() uses the parseDate()
method of java.util.Date. The parseDate() method does a decent job of
understanding and converting most common date formats, but it can be stumped; for
instance, if you ask for a header field that contains something other than a date. If
parseDate() doesn't understand the date, or if getHeaderFieldDate() is unable
to find the requested header field, then getHeaderFieldDate() returns the default
argument. For example:

Date expires = new Date(uc.getHeaderFieldDate("expires", 0));
long lastModified = uc.getHeaderFieldDate("last-modification", 0);
Date now = new Date(uc.getHeaderFieldDate("date", 0));

You can use the methods of the Date class to convert the long to a String.

15.3.2.5 public int getHeaderFieldInt(String name, int default)

This method retrieves the value of the MIME header field name and tries to convert it
to an int. If it fails, either because it can't find the requested header field or because
that field does not contain a recognizable integer, then getHeaderFieldInt()
returns the default argument. This method is often used to retrieve the Content-
length field. For example, to get the content length from a URLConnection uc, you
would write:

int contentLength = uc.getHeaderFieldInt("content-length", -1);

In this code fragment, getHeaderFieldInt() returns -1 if the Content-length header
doesn't exist or is garbled.

15.4 Configuring the Connection

The URLConnection class has seven protected instance fields that define exactly how
the client will make the request to the server. These are:

protected URL url;
protected boolean doInput = true;
protected boolean doOutput = false;
protected boolean allowUserInteraction = defaultAllowUserInteraction;
protected boolean useCaches = defaultUseCaches;
protected long ifModifiedSince = 0;
protected boolean connected = false;

For instance, if doOutput is true, then you'll be able to write data to the server over
this URLConnection as well as read data from it. If useCaches is false, the
connection will bypass any local caching and download the file from the server afresh.

Since these fields are all protected, their values are accessed and modified via
obviously named setter and getter methods:

public URL
getURL()
public void setDoInput(boolean doInput)
public boolean getDoInput()
public void

setDoOutput(boolean doOutput)
public boolean getDoOutput()
public void setAllowUserInteraction(boolean allowUserInteraction)
public boolean getAllowUserInteraction()
public void

setUseCaches(boolean useCaches)
public boolean getUseCaches()
public void setIfModifiedSince(long ifModifiedSince)
public long getIfModifiedSince()

You can modify these fields only before the URLConnection is connected (that is,
before you try to read content or headers from the connection). Most of the methods
that set fields throw an IllegalAccessError if they are called while the connection
is open. In general, you can set the properties of a URLConnection object only before
the connection is opened.

Throwing an error instead of an exception here is very unusual.
An error generally indicates an unpredictable, generally
unhandleable fault in the VM, whereas an exception indicates a
predictable, manageable problem. More specifically, a
java.lang.IllegalAccessError is supposed to indicate that
an application is trying to access a nonpublic field it doesn't have
access to. According to the class library documentation,
"Normally, this error is caught by the compiler; this error can
only occur at run time if the definition of a class has
incompatibly changed." Clearly, that's not what's going on here.
This is simply a mistake on the part of the programmer who
wrote this class.

A better solution here would be to throw an
IllegalStateException or some other runtime exception. Sun
has acknowledged the problem—it's bug #4082758 in the Bug
Parade on the Java Developer Connection at
http://developer.java.sun.com/developer/bugParade/index.html—
however, they have not yet fixed it, nor apparently do they have
any plans to fix it in future releases.

There are also some private static fields that define the default behavior for all
instances of URLConnection. These are:

private static boolean defaultAllowUserInteraction = false;
private static boolean defaultUseCaches = true;
private static FileNameMap fileNameMap;

These fields are also accessed and modified via obviously named setter and getter
methods:

public boolean

getDefaultUseCaches()
public void setDefaultUseCaches(boolean
defaultUseCaches)
public static void setDefaultAllowUserInteraction(
 boolean defaultAllowUserInteraction)
public static boolean

getDefaultAllowUserInteraction()
public static FileNameMap getFileNameMap()
public static void setFileNameMap(FileNameMap map)

Unlike the instance fields, these fields can be changed at any time. The new defaults
will apply only to URLConnection objects constructed after the new default values are
set.

15.4.1 protected URL url

The url field specifies the URL that this URLConnection connects to. It is set by the
constructor when the URLConnection is created and should not change. You can
retrieve the value by calling the getURL() method. Example 15.5 opens a
URLConnection to http://www.oreilly.com/, gets the URL of that connection, and prints
it.

Example 15.5. Print the URL of a URLConnection to http://www.oreilly.com/

import java.net.*;
import java.io.*;

public class URLPrinter {

 public static void main(String args[]) {

 try {
 URL u = new URL("http://www.oreilly.com/");
 URLConnection uc = u.openConnection();
 System.out.println(uc.getURL());
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

}

Here's the result, which should be no great surprise. The URL that is printed is the one
used to create the URLConnection.

% java URLPrinter
http://www.oreilly.com/

15.4.2 connected

The boolean field connected is true if the connection is open and false if it's closed.
Since the connection has not yet been opened when a new URLConnection object is
created, its initial value is false. This variable can be accessed only by instances of
java.net.URLConnection and its subclasses.

There are no methods that directly read or change the value of connected. However,
any method that causes the URLConnection to connect should set this variable to true.
This includes connect(), getInputStream(), and getOutputStream(). Any
method that causes the URLConnection to disconnect should set this field to false.
There are no such methods in java.net.URLConnection, but some of its subclasses,
such as java.net.HttpURLConnection, have disconnect() methods.

If you subclass URLConnection to write a protocol handler, you are responsible for
setting connected to true when you are connected and resetting it to false when the
connection closes. Many methods in java.net.URLConnection read this variable to
determine what they can do. If it's set incorrectly, your program will have severe bugs
that are not easy to diagnose.

15.4.3 allowUserInteraction

Some URLConnections need to interact with a user. For example, a web browser may
need to ask for a username and password. However, many applications cannot assume
that a user is present to interact with it. For instance, a search engine robot is probably
running in the background without any user to provide a username and password. As
its name suggests, the allowUserInteraction field specifies whether user
interaction is allowed. It is false by default.

Since this variable is protected, you use the public getAllowUserInteraction()
method to read its value, and the public setAllowUserInteraction() method to
set it:

public void setAllowUserInteraction(boolean allowUserInteraction)
 throws IllegalAccessError
public boolean getAllowUserInteraction()

The value true indicates that user interaction is allowed; false indicates that there is
no user interaction. The value may be read at any time but may be set only when the
connection is closed. Calling setAllowUserInteraction() when the connection is
open throws an IllegalAccessError. Programs usually don't catch errors (unlike
exceptions); an uncaught error usually forces the program to terminate.

Example 15.6 creates a new HttpURLConnection, uses
getAllowUserInteraction() to see whether user interaction is allowed, and, if it
isn't, uses setAllowUserInteraction() to allow user interaction. Of the major
standalone VMs, only Apple's Macintosh Runtime for Java will pop up an
authentication dialog box in a standalone application like Example 15.6, even when
allowUserInteraction is true. Specifically, Sun's JDK on Windows and Unix will
not ask the user for authentication unless you've installed an Authenticator as was

discussed in Chapter 7. Unfortunately, this class is available only in Java 1.2 and later.
However, most web browsers will ask if allowUserInteraction is true and the
request is made from inside an applet.

You actually can get Sun's JDK to pop up an authentication
dialog in Java 1.1, but you have to use undocumented methods in
sun.net.www.protocol.http.HttpURLConnection and
sun.net.www.protocol.http.HttpAuthenticator classes to
do so.

Example 15.6. A URLConnection That's Allowed to Interact with the User If Necessary

import java.net.*;
import java.io.*;
import java.awt.*;

public class PasswordedPageViewer {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 URLConnection uc = u.openConnection();
 uc.setAllowUserInteraction(true);
 InputStream in = uc.getInputStream();
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 System.out.println();
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

 }

}

Figure 15.1 shows the dialog box that pops up when you try to access a
passwordsprotected page. If you cancel this dialog, you'll get 401 Authorization
Required error and whatever text the server sends to unauthorized users. However, if
you refuse to send authorization at all, which you can do by pressing OK, then
answering No when asked if you want to retry authorization, getInputStream()
will throw a ProtocolException.

Figure 15.1. An authentication dialog box

15.4.4 defaultAllowUserInteraction

The static defaultAllowUserInteraction field determines whether URLConnection
objects whose setAllowUserInteraction() method is not explicitly invoked are
allowed to pop up dialogs or otherwise interact with the user. It may be read by
calling the public method getDefaultAllowUserInteraction() and set by calling
the public method setDefaultAllowUserInteraction(). Since this field is
static (i.e., a class variable instead of an instance variable), setting it changes the
default behavior for all instances of the URLConnection class that are created after
setDefaultAllowUserInteraction() is called.

For instance, the following code fragment checks to see whether user interaction is
allowed by default with getDefaultAllowUserInteraction(). If user interaction
is not allowed by default, the code uses setDefaultAllowUser-Interaction() to
make allowing user interaction the default behavior.

if (!URLConnection.getDefaultAllowUserInteraction()) {
 URLConnection.setDefaultAllowUserInteraction(true);
}

15.4.5 doInput

Most URLConnection objects provide input to a client program. For example, a
connection to a web server with the GET method would produce input for the client.
However, a connection to a web server with the POST method might not. A
URLConnection can be used for input to the program, output from the program, or
both. The protected boolean field doInput is true if the URLConnection can be used
for input, false if it cannot be. The default is true. To access this protected variable,
use the public getDoInput() and setDoInput() methods:

public void setDoInput(boolean doInput)
public boolean getDoInput()

For example:

try {
 URL u = new URL("http://www.oreilly.com");
 URLConnection uc = u.openConnection();
 if (!uc.getDoInput()) {
 uc.setDoInput(true);
 }
 // read from the connection...

catch (IOException e) {
 System.err.println(e);
}

15.4.6 doOutput

Programs can use a URLConnection to send output back to the server. For example, a
program that needs to send data to the server using the POST method could do so by
getting an output stream from a URLConnection. The protected boolean field
doOutput is true if the URLConnection can be used for output, false if it cannot be;
it is false by default. To access this protected variable, use the getDoOutput() and
setDoOutput() methods:

public void setDoOutput(boolean dooutput)
public boolean getDoOutput()

For example:

try {
 URL u = new URL("http://www.oreilly.com");
 URLConnection uc = u.openConnection();
 if (!uc.getDoOutput()) {
 uc.setDoOutput(true);
 }
 // write to the connection...
catch (IOException e) {
 System.err.println(e);
}

When you set doOutput to true for an http URL, the request method is changed from
GET to POST. In Chapter 7, you saw how to send data to CGI programs with GET.
GET is straightforward to work with, but it does limit the amount of data you can send.
Some web servers have maximum numbers of characters they'll accept as part of a
GET request, typically 255 or 1,024. This is generally enough for a simple search
request or page navigation, but not enough for a form that allows journalists to submit
articles, for example. Forms that allow larger blocks of text should use POST instead.
We'll explore this more below when we talk about writing data to a server.

15.4.7 ifModifiedSince

Many clients, especially web clients, keep caches of previously retrieved documents.
If the user asks for the same document again, it can be retrieved from the cache.
However, it may have changed on the server since it was last retrieved. The only way
to tell is to ask the server. Clients can include an If-modified-since in the client
request MIME header. This header includes a date and time. If the document has
changed since that time, the server should send it. Otherwise, it should not. Typically,
this time is the last time the client fetched the document. For example, this client
request says the document should be returned only if it has changed since 7:22:07
A.M., October 31, 1999, Greenwich Mean Time:

GET / HTTP 1.1
User-Agent: Java1.3beta
Host: login.metalab.unc.edu:56452

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
If-Modified-Since: Sun, 31 Oct 1999 19:22:07 GMT

If the document has changed since that time, the server will send it as usual.
Otherwise, it will reply with a 304 Not Modified message like this:

HTTP 1.0 304 Not Modified
Server: WN/1.15.1
Date: Mon, 01 Nov 1999 16:26:16 GMT
Last-modified: Fri, 29 Oct 1999 23:40:06 GMT

The client will then load the document from its cache. Not all web servers respect the
If-modified-since field. Some will send the document whether it's changed or not.

The ifModifiedSince field in the URLConnection class specifies the date (in
milliseconds since midnight, Greenwich Mean Time, January 1, 1970), which will be
placed in the If-modified-since MIME header field. Because ifModifiedSince is
protected, programs should call the getIfModifiedSince() and
setIfModifiedSince() methods to read or modify it:

public long getIfModifiedSince()
public void setIfModifiedSince(long ifModifiedSince)

Example 15.7 prints the default value of ifModifiedSince, sets its value to 24 hours
ago, and prints the new value. It then downloads and displays the document but only
if it's been modified in the last 24 hours.

Example 15.7. Set ifModifiedSince to 24 Hours Prior to Now

import java.net.*;
import java.io.*;
import java.util.*;

public class Last24 {

 public static void main (String[] args) {

 // Initialize a Date object with the current date and time
 Date today = new Date();
 long millisecondsPerDay = 24 * 60 * 60 * 1000;

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 URLConnection uc = u.openConnection();
 System.out.println("Will retrieve file if it's modified since
"
 + new Date(uc.getIfModifiedSince()));
 uc.setIfModifiedSince((new Date(today.getTime()
 - millisecondsPerDay)).getTime());
 System.out.println("Will retrieve file if it's modified since
"
 + new Date(uc.getIfModifiedSince()));
 InputStream in = new
BufferedInputStream(uc.getInputStream());

 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 System.out.println();

 }
 catch (Exception e) {
 System.err.println(e);
 }
 }

 }

}

Here's the result. First, we see the default value: midnight, January 1, 1970, GMT,
converted to Pacific Standard Time. Next, we see the new time, which we set to 24
hours prior to the current time:

% java Last24 http://www.oreilly.com
Will retrieve file if it's been modified since Wed Dec 31 16:00:00
PST 1969
Will retrieve file if it's been modified since Sun Oct 31 11:17:04
PST 1999

Since this document hasn't changed in the last 24 hours, it is not reprinted.

15.4.8 useCaches

Some clients, notably web browsers, can retrieve a document from a local cache,
rather than retrieving it from a server. The useCaches variable determines whether a
cache will be used if it's available. The default value is true, meaning that the cache
will be used; false means the cache won't be used. Because useCaches is protected,
programs access it using the getUseCaches() and setUseCaches() methods:

public void setUseCaches(boolean useCaches)
public boolean getUseCaches()

This code fragment disables caching to ensure that the most recent version of the
document is retrieved:

try {
 URL u = new URL("http://www.sourcebot.com/sourcebot/");
 URLConnection uc = u.openConnection();
 if (uc.getUseCaches()) {
 uc.setUseCaches(false);
 }
}
catch (IOException e) {
 System.err.println(e);
}

15.4.9 defaultUseCaches

defaultUseCaches defines the initial value of the useCaches field.
defaultUseCaches can be read and modified by the public getDefaultUseCaches()
and setDefaultUseCaches() methods:

public void setDefaultUseCaches(boolean useCaches)
public boolean getDefaultUseCaches()

Since this variable is static (i.e., a class variable instead of an instance variable),
setting it changes the default behavior for all instances of the URLConnection class
created after the change. The next code fragment disables caching by default; after
this code runs, URLConnections that want caching must enable it explicitly using
setUseCaches(true).

if (uc.getDefaultUseCaches()) {
 uc.setDefaultUseCaches(false);
}

15.5 Configuring the Client Request MIME Header

In HTTP 1.0 and later, the client sends the server not only a request line, but also a
MIME header. For example, here's the MIME header that Netscape Navigator 4.6 for
Windows uses:

Connection: Keep-Alive
User-Agent: Mozilla/4.6 [en] (WinNT; I)
Host: login.metalab.unc.edu:38309
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

A simple web server can ignore this. A more sophisticated web server can use this
information to serve different pages to different clients, to get and set cookies, to
authenticate users through passwords, and more. All of this is done by placing
different fields in the MIME headers that the client sends and the server responds with.

It's important to understand that this is not the MIME header that
the server sends to the client, and that is read by the various
getHeaderField() and getHeaderFieldKey() methods
discussed previously. This is the MIME header that the client
sends to the server.

Each concrete subclass of URLConnection sets a number of different name-value
pairs in its MIME header by default. (Really, only HttpURLConnection does this,
since HTTP is the only major protocol that uses MIME headers in this way.) For
instance, here's the MIME header that a connection from the SourceViewer2 program
of Example 15.1 sends:

User-Agent: Java1.3beta

Host: login.metalab.unc.edu:38358
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close

As you can see, it's a little simpler than the one Netscape Navigator sends, and it has a
different user agent and accepts different kinds of files. However, you can modify
these and add new fields before connecting. In Java 1.3 and earlier, you do this with
the static URLConnection.setDefaultRequestProperty() and
URLConnection.getDefaultRequestProperty() methods:

public String getDefaultRequestProperty(String name)
public static void setDefaultRequestProperty(String name, String
value)

The setDefaultRequestProperty() method adds a field with a specified name and
value to the MIME header of all subsequently created URLConnection objects. The
getDefaultRequestProperty() method returns the value of the named field of the
MIME header used by all URLConnection objects. For example, if you wanted to add
Accept-language and Accept-charset headers to all your outgoing connections, you'd
use this code before you opened the connection:

URLConnection.setDefaultRequestProperty("Accept-Language", "en");
URLConnection.setDefaultRequestProperty("Accept-Charset",
 "iso-8859-1,utf-8");

This is frankly a rather strange approach. For instance, you normally wouldn't use an
Accept-language header when requesting a binary file such as a JPEG image.
However, you'll get one anyway because this is pretty much an all-or-nothing
approach. It would make more sense to set custom MIME headers on a connection-
by-connection basis. Indeed, Sun has realized this, and both of these methods are
deprecated in Java 1.3. Instead, their functionality is provided by the
setRequestProperty() and getRequestProperty() instance methods:

public void setRequestProperty(String name, String value) // Java
1.3
public String getRequestProperty(String name) // Java 1.3

Both the instance and static methods really have meaning only
when the URL being connected to is an http URL, since only the
HTTP protocol makes use of MIME headers. While they could
possibly have other meanings in other protocols, such as NNTP,
this is really just an example of poor API design. These methods
should be part of the more specific HttpURLConnection class
and not the generic URLConnection class.

The setRequestProperty() method adds a field to the MIME header of this
URLConnection with a specified name and value. This method can be used only
before the connection is opened. It throws an IllegalAccessError if the connection
is already open. The getRequestProperty() method returns the value of the named
field of the MIME header used by this URLConnection.

For example, web servers and clients store some limited persistent information by
using cookies. A cookie is simply a name-value pair. The server sends a cookie to a
client using the response MIME header. From that point forward, whenever the client
requests a URL from that server, it includes a Cookie field in the MIME request
header. That field looks like this:

Cookie: username=elharo; password=ACD0X9F23JJJn6G; session=100678945

This particular Cookie field would send three name-value pairs to the server. There's
no limit to the number of name-value pairs that can be included in any one cookie.
Given a URLConnection object uc, you could add this cookie to the connection like
this:

uc.setRequestProperty("Cookie",
 "username=elharo; password=ACD0X9F23JJJn6G; session=100678945");

15.6 Writing Data to a Server

Sometimes you need to write data to a URLConnection—for example, when you
submit a form to a web server using POST or upload a file using PUT. The
getOutputStream() method returns an OutputStream on which you can write data
for transmission to a server:

public OutputStream getOutputStream()

Since a URLConnection doesn't allow output by default, you have to call
setDoOutput(true) before asking for an output stream. When you set doOutput to
true for an http URL, the request method is changed from GET to POST. In Chapter 7,
you saw how to send data to CGI programs with GET. GET is straightforward to
work with, but it does limit the amount of data you can send. Some web servers have
maximum lengths of lines they'll accept as part of a GET request, typically 255 or
1,024. This is generally enough for a simple search request or page navigation, but not
enough for a form that allows users to contribute to a bulletin board, for example.
Forms that allow larger blocks of text should use POST instead. We'll explore this
more shortly.

Once you've got the OutputStream, you should buffer it by chaining it to a
BufferedOutputStream or a BufferedWriter. You generally also chain it to a
DataOutputStream, an OutputStreamWriter, or some other class that's more
convenient to use than a raw OutputStream. For example:

try {

 URL u = new URL("http://www.somehost.com/cgi-bin/acgi");
 // open the connection and prepare it to POST
 URLConnection uc = u.openConnection();
 uc.setDoOutput(true);

 OutputStream raw = uc.getOutputStream();
 OutputStream buffered = new BufferedOutputStream(raw);
 OutputStreamWriter out = new OutputStreamWriter(buffered, "8859_1");

out.write("first=Julie&middle=&last=Harting&work=String+Quartet\r\n");
 out.flush();
 out.close();

}
catch (IOException e) {
 System.err.println(e);
}

Sending data with POST is almost as easy as with GET. You invoke
setDoOutput(true), then use the URLConnection's getOutputStream() method to
write the query string rather than attaching it to the URL. Java buffers all the data
written onto the output stream until the stream is closed. This is necessary so that it
can determine the necessary Content-length header. The request it sends, including
request line and MIME header, looks something like this:

POST /cgi-bin/register.pl HTTP 1.0
Content-type: application/x-www-form-urlencoded
Content-length: 66

username=Elliotte+Rusty+Harold&email=elharo%40metalab%2eunc%2eedu

The query string contains two name-value pairs, separated by ampersands. When
using POST, you can also put each name-value pair on a line by itself; this avoids
problems if the server doesn't like lines greater than some maximum length. For
example:

% telnet hoohoo.ncsa.uiuc.edu 80
Trying 141.142.103.54...
Connected to hoohoo.ncsa.uiuc.edu.
Escape character is '^]'.
POST /cgi-bin/post-query HTTP 1.0
ACCEPT: text/plain
Content-type: application/x-www-form-urlencoded
Content-length: 66

username=Elliotte+Rusty+Harold
email=elharo%40metalab%2eunc%2eedu
HTTP 1.0 200 Document follows
Date: Tue, 30 Jul 1996 15:10:41 GMT
Server: NCSA/1.5.2
Content-type: text/html

<H1>Query Results</H1>You submitted the following name/value
pairs:<p>

 <code>name = Elliotte Rusty Harold</code>
 <code>email = elharo@metalab.unc.edu</code>

Connection closed by foreign host.

For that matter, as long as you control both the client and the server, you can use any
other sort of data encoding you like. However, if you deviate from the standard, you'll
find that your nonconforming client can't talk to most CGI programs or that your
nonconforming CGI program can't process requests from most clients. The query

string format used here, in which either an & or a \r\n separates name-value pairs, is
used by all web browsers and is expected by most CGI programs.

Example 15.8 is a program called FormPoster that uses the URLConnection class and
the QueryString class from Chapter 7 to post form data. The constructor sets the
URL. The query string is built using the add() method. The post() method
actually sends the data to the server by opening a URLConnection to the specified
URL, setting its doOutput field to true, then writing the query string on the output
stream. It then returns the input stream containing the server's response.

The main() method is a simple test for this program that sends the name "Elliotte
Rusty Harold" and the email address elharo@metalab.unc.edu to the CGI program
http://hoohoo.ncsa.uiuc.edu/cgi-bin/post-query. This CGI program is a simple form
tester that accepts any input using the POST method and returns an HTML page
showing the names and values that were submitted. The data returned is HTML; this
example simply displays the HTML rather than attempting to parse it. It would be
easy to extend this program by adding a user interface that lets you enter the name and
email address to be posted, but since that triples the size of the program while
showing nothing more of network programming, it is left as an exercise for the reader.
Once you understand this example, it should be easy to write Java programs that
communicate with other CGI scripts.

Example 15.8. Posting a Form

import java.net.*;
import java.io.*;
import com.macfaq.net.*;

public class FormPoster {

 private URL url;
 // from Chapter 7, Example 7.9
 private QueryString query = new QueryString();

 public FormPoster (URL url) throws IllegalArgumentException {
 if (!url.getProtocol().toLowerCase().startsWith("http")) {
 throw new IllegalArgumentException(
 "Posting only works for http URLs");
 }
 this.url = url;
 }

 public void add(String name, String value) {
 query.add(name, value);
 }

 public URL getURL() {
 return this.url;
 }

 public InputStream post() throws IOException {

 // open the connection and prepare it to POST
 URLConnection uc = url.openConnection();
 uc.setDoOutput(true);

 OutputStreamWriter out
 = new OutputStreamWriter(uc.getOutputStream(), "ASCII");

 // The POST line, the Content-type header,
 // and the Content-length headers are sent by the URLConnection.
 // We just need to send the data
 out.write(query.toString());
 out.write("\r\n");
 out.flush();
 out.close();

 // Return the response
 return uc.getInputStream();

 }

 public static void main(String args[]) {

 URL url;

 if (args.length > 0) {
 try {
 url = new URL(args[0]);
 }
 catch (MalformedURLException e) {
 System.err.println("Usage: java FormPoster url");
 return;
 }
 }
 else {
 try {
 url = new URL("http://hoohoo.ncsa.uiuc.edu/cgi-bin/post-
query");
 }
 catch (MalformedURLException e) { // shouldn't happen
 System.err.println(e);
 return;
 }
 }

 FormPoster poster = new FormPoster(url);
 poster.add("name", "Elliotte Rusty Harold");
 poster.add("email", "elharo@metalab.unc.edu");

 try {
 InputStream in = poster.post();

 // Read the response
 InputStreamReader r = new InputStreamReader(in);
 int c;
 while((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 System.out.println();
 in.close();
 }
 catch (IOException e) {
 System.err.println(e);
 }

 }

}

Here's the response from the CGI program:

% java FormPoster
<H1>Query Results</H1>You submitted the following name/value
pairs:<p>

 <code>name = Elliotte Rusty Harold</code>
 <code>email = elharo@metalab.unc.edu</code>

The main() method tries to read the first command-line argument from args[0].
The argument is optional; if there is an argument, it is assumed to be the URL of a
CGI script. If there are no arguments, main() initializes url with a default URL,
http://hoohoo.ncsa.uiuc.edu/cgi-bin/post-query. main() then constructs a
FormPoster object. Two name-value pairs are added to this FormPoster object. Next,
the post() method is invoked and its response read and printed on System.out.

The post() method is the heart of the class. It first opens a connection to the URL
stored in the url field. It sets the doOutput field of this connection to true since this
URLConnection needs to send output. Then it chains the OutputStream for this URL
to an ASCII OutputStreamWriter that sends the data; then flushes and closes the
stream. Do not forget to close the stream! If the stream isn't closed, no data will be
sent. Finally, the URLConnection's InputStream is returned.

To summarize, posting data to a form requires these steps:

1. Decide what name-value pairs you'll use send data to the CGI program.
2. Write the CGI! If it doesn't use any custom data encoding, you can test the

CGI program using a regular HTML form and your web browser.
3. Create a query string in your Java program. The string should look like this:

name1=value1&name2=value2&name3=value3

Pass each name and value in the query string to URLEncoder.encode()
before adding it to the query string.

4. Open a URLConnection to the CGI program.
5. Set doOutput to true by invoking setDoOutput(true).
6. Write the query string onto the URLConnection's OutputStream.
7. Close the URLConnection's OutputStream.
8. Read the server response from the URLConnection's InputStream.

Posting forms is considerably more complex than using the GET method described in
Chapter 7. However, with POST you get more control over the connection. More
important, GET has an annoying habit of failing once the query string grows past 200
characters. (The exact point where GET fails varies from operating system to

operating system and from web server to web server.) POST lets you send long strings
of data reliably.

The getOutputStream() method is also used for the PUT request method, a means
of storing files on a web server. The data to be stored is written onto the
OutputStream that getOutputStream() returns. However, this can be done only
from within the HttpURLConnection subclass of URLConnection, so discussion of
PUT will have to wait a little while.

15.7 Content Handlers

The URLConnection class is intimately tied to Java's protocol and content handler
mechanism. The protocol handler is responsible for making connections, exchanging
headers, requesting particular documents, and so forth. It handles all the overhead of
the protocol for requesting files. The content handler deals only with the actual data. It
takes the raw input after all headers and so forth are stripped and converts it to the
right kind of object for Java to deal with; for instance, an InputStream or an
ImageProducer.

15.7.1 Getting Content

The getContent() methods of URLConnection use a content handler to turn the raw
data of a connection into a Java object.

15.7.1.1 public Object getContent() throws IOException

This method is virtually identical to the getContent() method of the URL class. In
fact, that method just calls this method. getContent() downloads the object
selected by the URL of this URLConnection. For getContent() to work, the
environment needs to recognize and understand the content type. The only content
types that are supported in the JDK are text/plain, image/gif, and image/jpeg. Other
VMs and applications may support additional types. For instance, HotJava 3.0
includes a PDF content handler. Furthermore, you can install additional content
handlers that understand other content types.

getContent() works only for protocols like HTTP that have a clear understanding
of MIME content types. If the content type is unknown, or the protocol doesn't
understand content types, getContent() throws an UnknownServiceException.

15.7.1.2 public Object getContent(Class[] classes) throws IOException // Java 1.3

Java 1.3 lets a content handler provide different object representations of data. This
overloaded variant of the getContent() method lets you choose what class you'd
like the content returned as. The method will attempt to return the content in the form
of one of the classes in the classes array. The order of preference is the order of the
array. For instance, if you'd prefer an HTML file to be returned as a String, but your
second choice is a Reader and your third choice is an InputStream, you would write:

URL u = new URL("http://www.thehungersite.com/");
URLConnection uc = u.openConnection()

Class[] types = {String.class, Reader.class, InputStream.class};
Object o = uc.getContent(types);

You would then have to test for the type of the returned object using instanceof. For
example:

if (o instanceof String) {
 System.out.println(o);
}
else if (o instanceof Reader) {
 int c;
 Reader r = (Reader) o;
 while ((c = r.read()) != -1) System.out.print((char) c);
}
else if (o instanceof InputStream) {
 int c;
 InputStream in = (InputStream) o;
 while ((c = in.read()) != -1) System.out.write(c);
}
else if (o == null) {
 System.out.println("None of the requested types were available.");
}
else {
 System.out.println("Error: unexpected type " + o.getClass());
}

That last else clause isn't supposed to be reached. If none of the requested types are
available, this method is supposed to return null rather than returning an unexpected
type.

15.7.2 ContentHandlerFactory

The URLConnection class contains a static Hashtable of ContentHandler objects.
Whenever the getContent() method of URLConnection is invoked, Java looks in
this Hashtable to find the right content handler for the current URL, as indicated by
the URL's Content-type. If it doesn't find a ContentHandler object for the MIME
type, then it tries to create one using a ContentHandlerFactory, which you'll learn
more about in Chapter 17. That is, a content handler factory tells the program where it
can find a content handler for a text/html file, an image/gif file, or some other kind
of file. You can set the ContentHandlerFactory by passing an instance of the
java.net.ContentHandlerFactory interface to the setContentHandlerFactory()
method:

public static synchronized void setContentHandlerFactory(
 ContentHandlerFactory factory) throws SecurityException, Error

You may set the ContentHandlerFactory only once per application; this method
throws a generic Error if it is called a second time. As with most other
setFactory() methods, untrusted applets will generally not be allowed to set the
content handler factory whether one has already been set or not. Attempting to do so
will throw a SecurityException.

15.8 The Object Methods

The URLConnection class overrides only one method from java.lang.Object,
toString():

public String toString()

Even so, there is little reason to print a URLConnection object or to convert one to a
String, except perhaps for debugging. toString() is called the same way as every
other toString() method.

15.9 Security Considerations for URLConnections

URLConnection objects are subject to all the usual security restrictions about making
network connections, reading or writing files, and so forth. For instance, a
URLConnection can be created by an untrusted applet only if the URLConnection is
pointing to the host that the applet came from. However, the details can be a little
tricky because different URL schemes and their corresponding connections can have
different security implications. For example, a jar URL that points into the applet's
own jar file should be fine. However, a file URL that points to a local hard drive
should not be.

Before attempting to connect a URL, you may want to know whether that connection
will be allowed. Starting in Java 1.2, the URLConnection class has a
getPermission() method:

public Permission getPermission() throws IOException // Java 1.2

This returns a java.security.Permission object that specifies what permission is
needed to connect to the URL. It returns null if no permission is needed (e.g., there's
no security manager in place). Subclasses of URLConnection will return different
subclasses of java.io.Permission. For instance, if the underlying URL pointed to
www.gwbush.org, then getPermission() would return a
java.net.SocketPermission for the host www.gwbush.org with the connect and
resolve actions.

15.10 Guessing MIME Types

If this were the best of all possible worlds, every protocol and every server would use
the MIME typing method to specify what kind of file it was transferring.
Unfortunately, that's not the case. Not only do we have to deal with older protocols,
such as FTP, that predate MIME, but also many HTTP servers that should use MIME
either don't provide MIME headers at all, or they lie and provide headers that are
incorrect (usually because the server has been misconfigured). The URLConnection
class provides two static methods to help programs figure out the MIME type of some
data; you can use these if the content type just isn't available, or if you have reason to
believe that the content type you're given isn't correct. The first of these is
URLConnection.guessContentTypeFromName():

protected static String guessContentTypeFromName(String name)

This method tries to guess the content type of an object based upon the extension in
the filename portion of the object's URL. It returns its best guess about the content
type as a String. This guess is likely to be correct; people follow some fairly regular
conventions when thinking up filenames. It's unfortunate that
guessContentTypeFromName() is protected. It's useful for any class that needs to
deal with MIME types (for example, mail clients and HTTP servers), not just for
URLConnection.

The guesses are determined by the content-types.properties file, probably found in
your jre/lib directory. On Unix, Java may also look at the mailcap file to help it guess.
Table 15.1 shows the guesses the JDK 1.3 makes.

Table 15.1. Java Extension-Content-Type Mappings
Extension MIME Content Type

No extension content/unknown
.saveme, .dump, .hqx, .arc, .obj, .lib, .bin, .exe, .zip, .gz application/octet-stream
.oda application/oda
.pdf application/pdf
.eps, .ai, .ps application/postscript
.rtf application/rtf
.dvi application/x-dvi
.hdf application/x-hdf
.latex application/x-latex
.nc, .cdf application/x-netcdf
.tex application/x-tex:
.texinfo, .texi application/x-texinfo
.t, .tr, .roff application/x-troff
.man application/x-troff-man
.me application/x-troff-me
.ms application/x-troff-ms
.src, .wsrc application/x-wais-source
.zip application/zip
.bcpio application/x-bcpio
.cpio application/x-cpio
.gtar application/x-gtar
.sh, .shar application/x-shar
.sv4cpio application/x-sv4cpio:
.sv4crc application/x-sv4crc
.tar application/x-tar
.ustar application/x-ustar
.snd, .au audio/basic
.aifc, .aif, .aiff audio/x-aiff
.wav audio/x-wav
.gif image/gif
.ief image/ief
.jfif, .jfif-tbnl, .jpe, .jpg, .jpeg image/jpeg
.tif, .tiff image/tiff
.fpx, .fpix image/vnd.fpx

.ras image/x-cmu-rast

.pnm image/x-portable-anymap

.pbm image/x-portable-bitmap

.pgm image/x-portable-graymap

.ppm image/x-portable-pixmap

.rgb image/x-rgb

.xbm, .xpm image/x-xbitmap

.xwd image/x-xwindowdump

.png image/png

.htm, .html text/html

.text, .c, .cc, .c++, .h, .pl, .txt, .java, .el text/plain

.tsv text/tab-separated-values

.etx text/x-setext

.mpg, .mpe, .mpeg video/mpeg

.mov, .qt video/quicktime

.avi application/x-troff-msvideo

.movie, .mv video/x-sgi-movie

.mime message/rfc822

.xml application/xml

This list is not complete by any means. For instance, it omits various XML
applications such as RDF (.rdf), XSL (.xsl), and so on that should have the MIME-
type application/xml. It also doesn't provide a MIME type for CSS stylesheets (.css).
However, it's a good start.

The second MIME type guesser method is URLConnection.guessContentType-
FromStream():

protected static String guessContentTypeFromStream(InputStream in)

This tries to guess the content type by looking at the first few bytes of data in the
stream. For this method to work, the InputStream must support marking so that you
can return to the beginning of the stream after the first bytes have been read. Java 1.2
inspects the first eight bytes of the InputStream, though sometimes fewer than eight
bytes are needed to make an identification. Table 15.2 shows how Java 1.3 guesses.
Note that these guesses are nowhere near as reliable as the guesses made by the
previous method. For example, a file that begins with the Unicode byte order mark
0xFEFF or 0xFFFE may merely be a plain Unicode text file rather than an XML file,
and it won't recognize a document that begins "<!DOCTYPE html" as an HTML file.
Therefore, this method should be used only as a last resort.

Table 15.2. Java First Bytes-Content-Type Mappings
First Bytes in Hexadecimal First Bytes in ASCII MIME Content Type

0xACED application/x-java-serialized-object
0xCAFEBABE application/java-vm
 GIF8 image/gif
 #def image/x-bitmap
! XPM2 image/x-pixmap

0x89504E 470D0A1A0A image/png
0x2E736E64 audio/basic
0x646E732E audio/basic
 <?xml application/xml
0xFEFF application/xml
0xFFFE application/xml
 <html text/html
 <body text/html
 <head text/html
 <HTML text/html
 <BODY text/html
 <HEAD text/html
0xFFD8FFE0 image/jpeg
0xFFD8FFEE image/jpeg
 RIFF audio/x-wav
0xD0CF11E0A1B11AE1[1] image/vnd.fpx

[1] This actually just checks for a Microsoft structured storage document. Several other more complicated checks
have to be made before deciding whether this is indeed an image/vnd.fpx document.

ASCII mappings, where they exist, are case-sensitive. For example,
guessContentTypeFromStream() does not recognize <Html> as the beginning of a
text/html file.

15.11 HttpURLConnection

The java.net.HttpURLConnection class is an abstract subclass of URLConnection
that provides some additional methods that are helpful when working specifically with
http URLs.

public abstract class HttpURLConnection extends URLConnection

In particular, it contains methods to get and set the request method, to decide whether
to follow redirects, to get the response code and message, and to figure out whether a
proxy server is being used. It also includes several dozen mnemonic constants
matching the various HTTP response codes. Finally, it overrides the
getPermission() method from the URLConnection superclass, though it doesn't
change the semantics of this method at all.

Since this class is abstract and since its only constructor is protected, you can't
directly create instances of HttpURLConnection. However, if you construct a URL
object using an http URL, and then invoke its openConnection() method, the
URLConnection object returned will be an instance of HttpURLConnection. You can
cast that URLConnection to HttpURLConnection like this:

URL u = new URL("http://www.amnesty.org/");
URLConnection uc = u.openConnection();
HttpURLConnection http = (HttpURLConnection) uc;

Or, skipping a step, like this:

URL u = new URL("http://www.amnesty.org/");
HttpURLConnection http = (HttpURLConnection) u.openConnection();

There's another HttpURLConnection class in the undocumented
sun.net.www.protocol.http package. This is a concrete
subclass of java.net.HttpURLConnection that actually
implements the abstract connect() method.

public class HttpURLConnection extends
java.net.HttpURLConnection

There's little reason to access this class directly. It doesn't add
any important methods that aren't already declared in
java.net.HttpURLConnection or java.net.URLConnection.
However, any URLConnection you open to an http URL will be
an instance of this class.

15.11.1 The Request Method

When a web client contacts a web server, the first thing it sends is a request line.
Typically, this line begins with GET and is followed by the name of the file that the
client wants to retrieve and the version of the HTTP protocol that the client
understands. For example:

GET /catalog/jfcnut/index.html HTTP 1.0

As you saw just previously, this is generally followed by a MIME header. However,
modern web clients can do more than simply GET files from web servers. They can
POST responses to forms. They can PUT a file on a web server or DELETE a file
from a server. And they can ask for just the MIME HEAD of a document. They can
ask the web server for a list of the OPTIONS supported at a given URL. They can
even TRACE the request itself. All of these are accomplished by changing the request
method from GET to a different keyword. For example, here's how a browser asks for
just the MIME header of a document using HEAD:

HEAD /catalog/jfcnut/index.html HTTP 1.1
User-Agent: Java1.3beta
Host: www.oreilly.com
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close

By default, HttpURLConnection uses the GET method. However, you can change
this with the setRequestMethod() method:

public void setRequestMethod(String method) throws ProtocolException

The method argument should be one of these seven case-sensitive strings:

• GET
• POST
• HEAD

• PUT
• OPTIONS
• DELETE
• TRACE

If it's some other method, then a java.net.ProtocolException, a subclass of
IOException, is thrown. However, it's generally not enough to simply set the request
method. Depending on what you're trying to do, you may need to adjust the MIME
header and provide a message body as well. For instance, POSTing a form requires
you to provide a Content-length header. We've already explored the GET and POST
methods. Let's look at the other five possibilities.

Some web servers support additional request methods. For
instance, Apache 1.3 also supports CONNECT, OPTIONS,
PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK,
and UNLOCK. However, Java doesn't support any of these, at
least as of Java 1.3.

15.11.1.1 HEAD

The HEAD function is possibly the simplest of all the request methods. It behaves
much like GET. However, it tells the server only to return the MIME header, not to
actually send the file. The most common use of this method is to check whether a file
has been modified since the last time it was cached. Example 15.9 is a simple program
that uses the HEAD request method and prints the last time a file on a server was
modified.

Example 15.9. Get the Time When a URL Was Last Changed

import java.net.*;
import java.io.*;
import java.util.*;

public class LastModified {

 public static void main(String args[]) {

 for (int i=0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 HttpURLConnection http = (HttpURLConnection)
u.openConnection();
 http.setRequestMethod("HEAD");
 System.out.println(u + "was last modified at "
 + new Date(http.getLastModified()));
 } // end try
 catch (MalformedURLException e) {
 System.err.println(args[i] + " is not a URL I understand");
 }
 catch (IOException e) {
 System.err.println(e);
 }
 System.out.println();

 } // end for

 } // end main

} // end LastModified

Here's the output from one run:

D:\JAVA\JNP2\examples\14>java LastModified
http://metalab.unc.edu/xml/
http://metalab.unc.edu/xml/was last modified at Thu Oct 21 06:06:57
PDT 1999

It was not absolutely necessary to use the HEAD method here. We'd have got the
same results using GET. However, by using GET, the entire file at
http://metalab.unc.edu/xml/ would have been sent across the network, whereas all we
cared about was one line in the MIME header. When you can use HEAD, it's much
more efficient to do so.

15.11.1.2 OPTIONS

The OPTIONS request method asks what options are supported for a particular URL.
If the request URL is an asterisk (*), that indicates that the request applies to the
server as a whole rather than to one particular URL on the server. For example:

OPTIONS /xml/ HTTP 1.1
User-Agent: Java1.3beta
Host: metalab.unc.edu
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close

The server responds to an OPTIONS request by sending back a MIME header
containing a list of the commands it allows on that URL. For example, when the
previous command was sent, here's what Apache responded with:

Date: Thu, 21 Oct 1999 18:06:10 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Content-Length: 0
Allow: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH,
PROPFIND,
PROPPATCH, MKCOL, COPY, MOVE, LOCK, UNLOCK, TRACE
Connection: close

The list of legal commands is found in the Allow field. However, in practice, these are
just the commands the server understands, not necessarily the ones it will actually
perform on that URL. For instance, let's look at what happens when you try the
DELETE request method.

15.11.1.3 DELETE

The DELETE method removes a file at a specified URL from a web server. Since this
is an obvious security risk, not all servers will be configured to support this, and those
that are will generally demand some sort of authentication. A typical DELETE request
looks like this:

DELETE /javafaq/1999march.html HTTP 1.1
User-Agent: Java1.3beta
Host: metalab.unc.edu
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close

The server is free to refuse this request or ask for identification For example:

Date: Fri, 22 Oct 1999 14:32:15 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Allow: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH,
PROPFIND,
PROPPATCH, MKCOL, COPY, MOVE, LOCK, UNLOCK, TRACE
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html
content-length: 313

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>405 Method Not Allowed</TITLE>
</HEAD><BODY>
<H1>Method Not Allowed</H1>
The requested method DELETE is not allowed for the
URL /javafaq/1999march.html.<P>
<HR>
<ADDRESS>Apache/1.3.4 Server at metalab.unc.edu Port 80</ADDRESS>
</BODY></HTML>

Even if the server accepts this request, how it responds is implementation-dependent.
Some servers may delete the file. Others may simply move it to a trash directory.
Others may simply mark it as not readable. Details are left up to the server vendor.

15.11.1.4 PUT

The PUT method is used by many HTML editors and other programs that want to
store files on a web server. It allows clients to place documents in the abstract
hierarchy of the site without necessarily knowing how the site maps to the actual local
filesystem. This contrasts with FTP, where the user has to know the actual directory
structure as opposed to the server's virtual directory structure.

Here's a how a browser might PUT a file on a web server:

PUT /hello.html HTTP 1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.6 [en] (WinNT; I)
Pragma: no-cache
Host: metalab.unc.edu
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Content-Length: 364

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
 <meta name="Author" content="Elliotte Rusty Harold">
 <meta name="GENERATOR" content="Mozilla/4.6 [en] (WinNT; I)
[Netscape]">
 <title>Mine</title>
</head>
<body>
Hello
</body>
</html>

As with deleting files, allowing arbitrary users to PUT files on your web server is a
clear security risk. Generally, some sort of authentication will be required, and the
server will have to be specially configured to support PUT. The details are likely to
vary from server to server. Most web servers do not include full support for PUT out
of the box. For instance, Apache requires you to install either an additional CGI script
or module just to handle PUT requests.

15.11.1.5 TRACE

The TRACE request method sends back the MIME header that the server received
from the client. The main reason for this is to see what any proxy servers between the
server and client might be changing. For example, suppose this TRACE request is
sent:

TRACE /xml/ HTTP 1.1
Hello: Push me
User-Agent: Java1.3beta
Host: metalab.unc.edu
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close

The server should respond like this:

Date: Thu, 21 Oct 1999 17:50:02 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Connection: close
Transfer-Encoding: chunked
Content-Type: message/http
content-length: 169

TRACE /xml/ HTTP 1.1
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close
Hello: Push me
Host: metalab.unc.edu
User-Agent: Java1.3beta

The first six lines are the server's normal response MIME header. The lines from
TRACE /xml/ HTTP 1.1 on are the echo of the original client request. In this case, the
echo is faithful, though out of order. However, if there were a proxy server between
the client and server, it might not be.

Apache 1.3.4 (and possibly other versions) actually has a bug in
responding to this request. It omits the blank line separating the
header from the body, so some browsers (and Java) think that all
it sends back is a MIME header.

15.11.2 Disconnecting from the Server

Recent versions of HTTP support what's known as Keep-Alive. Keep-Alive enhances
the performance of some web connections by allowing multiple requests and
responses to be sent in series over a single TCP connection. A client indicates that it's
willing to use HTTP Keep-Alive by including a Connection field in the MIME request
header with the value Keep-Alive.

Connection: Keep-Alive

However, when Keep-Alive is being used, the server can no longer close the
connection simply because it has sent the last byte of data to the client. The client may,
after all, send another request. Consequently, it is now up to the client to decide when
to close the connection when it's done.

Java marginally supports HTTP Keep-Alive, mostly by piggybacking on top of
browser support. It doesn't provide any convenient API for making multiple requests
over the same connection. However, in anticipation of a day when Java better
supports Keep-Alive, the HttpURLConnection class adds a disconnect() method
that allows the client to break the connection:

public abstract void disconnect()

In practice, you rarely if ever need to call this.

15.11.3 Handling Server Responses

Beginning with HTTP 1.0, the first line of an HTTP server's response includes a
numeric code and a message indicating what sort of response is made. For instance,
the most common response is 200 OK, indicating that the requested document was
found, and follows the response MIME header. For example:

HTTP 1.1 200 OK
Date: Fri, 22 Oct 1999 15:33:40 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Last-Modified: Sun, 06 Jun 1999 16:30:33 GMT
ETag: "28d907-657-375aa229"
Accept-Ranges: bytes
Content-Length: 1623
Connection: close
Content-Type: text/html

<HTML>
<HEAD>
rest of document follows...

Another response that you're undoubtedly all too familiar with is 404 Not Found,
indicating that the URL you requested no longer points to a document. For example:

HTTP 1.1 404 Not Found
Date: Fri, 22 Oct 1999 15:39:16 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Last-Modified: Mon, 20 Sep 1999 19:25:05 GMT
ETag: "5-14ab-37e68a11"
Accept-Ranges: bytes
Content-Length: 5291
Connection: close
Content-Type: text/html

<html>
<head>
<title>Lost ... and lost</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
</head>

<body bgcolor="#FFFFFF">
<div align="left">
 <h1>404 FILE NOT FOUND</h1>
Rest of error message follows...

There are many other, less common responses. For instance, code 301 indicates that
the resource has permanently moved to a new location. The browser should redirect
itself to the new location and update any bookmarks that point to the old location. For
example:

HTTP 1.1 301 Moved Permanently
Date: Fri, 22 Oct 1999 15:36:44 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Location: http://metalab.unc.edu/javafaq/books/beans/index.html
Connection: close
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved <A
HREF="http://metalab.unc.edu/javafaq/books/beans/index
.html">here.<P>
<HR>
<ADDRESS>Apache/1.3.4 Server at metalab.unc.edu Port 80</ADDRESS>
</BODY></HTML>

The first line of this response is called the response message. It is not part of the
MIME header and it will not be returned by the various getHeaderField() methods
in URLConnection. However, HttpURLConnection has a method to read and return
just the response message. This is the aptly named getResponseMessage():

public String getResponseMessage() throws IOException

Often all you need from the response message is the numeric response code.
HttpURLConnection also has a getResponseCode()method to return this as an int:

public int getResponseCode() throws IOException

HTTP 1.0 defines 16 response codes. HTTP 1.1 expands this to 40 different codes.
While some numbers, notably 404, have become slang almost synonymous with their
semantic meaning, most of them are less familiar. The HttpURLConnection class
includes 36 named constants representing the most common response codes. These
are summarized in Table 15.3.

Table 15.3. The HTTP 1.1 Response Codes
Code Meaning Java Constant
1XX Informational

100

The server is prepared to accept the
request body and the client should
send it; a new feature in HTTP 1.1
that allows clients to ask whether
the server will accept a request
before they send a large amount of
data as part of the request.

N/A

101

The server accepts the client's
request in the Upgrade header field
to change the application protocol;
e.g., from HTTP 1.0 to HTTP 1.1.

N/A

2XX Request succeeded.

200

The most common response code. If
the request method was GET or
POST, then the requested data is
contained in the response along with
the usual headers. If the request
method was HEAD, then only the
header information is included.

HttpURLConnection.HTTP_OK

201

The server has created a data file at
the URL specified in the body of the
response. The web browser should
now attempt to load that URL. This
code is sent only in response to
POST requests.

HttpURLConnection.HTTP_CREATED

202

This rather uncommon response
indicates that a request (generally
from POST) is being processed, but
the processing is not yet complete,
so no response can be returned.
However, the server should return
an HTML page that explains the
situation to the user, and provide an
estimate of when the request is
likely to be completed, and, ideally,
a link to a status monitor of some
kind.

HttpURLConnection.HTTP_ACCEPTED

203

The information was returned from
a caching proxy or other local
source, and is not guaranteed to be
up to date.

HttpURLConnection.HTTP_NOT_AUTHORITATIVE

204

The server has successfully
processed the request but has no
information to send back to the
client. This is normally the result of
a poorly written form-processing
CGI that accepts data but does not
return a response to the user.

HttpURLConnection.HTTP_NO_CONTENT

205

The server has successfully
processed the request but has no
information to send back to the
client. Furthermore the client should
clear the form to which the request
is sent.

HttpURLConnection.HTTP_RESET

206

The server has returned the part of
the document the client requested
using the byte range extension to
HTTP, rather than the whole
document.

HttpURLConnection.HTTP_PARTIAL

3XX Relocation and redirection.

300

The server is providing a list of
different representations (e.g.,
PostScript and PDF) for the
requested document.

HttpURLConnection.HTTP_MULT_CHOICE

301

The page has moved to a new URL.
The web browser should
automatically load the page at this
URL, and update any bookmarks
that point to the old URL.

HttpURLConnection.HTTP_MOVED_PERM

302

This unusual response code
indicates that a page is at a new
URL temporarily, but its location
will change again in the foreseeable
future, and therefore bookmarks
should not be updated.

HttpURLConnection.HTTP_MOVED_TEMP

303

Generally used in response to a
POST form request, this code
indicates that the user should
retrieve a document other than the
one requested (as opposed to a
different location for the requested
document).

HttpURLConnection.HTTP_SEE_OTHER

304

The If-modified-since header
indicates that the client wants the
document only if it has been
recently updated. This status code is
returned if the document has not
been updated. In this case, the web
browser should load the document
from its cache.

HttpURLConnection.HTTP_NOT_MODIFIED

305
The Location MIME header field
contains the address of a proxy that
will serve the response.

HttpURLConnection.HTTP_USE_PROXY

307

Almost the same as code 303, a 307
response indicates that the page has
moved to a new URL, though it may
move again to a different URL in
the future. The web browser should

N/A

automatically load the page at this
URL.

4XX Client error.

400

The client request to the server used
improper syntax. This is rather
unusual, but may become more
common as more programmers start
writing custom clients and servers.

HttpURLConnection.HTTP_BAD_REQUEST

401

Authorization, generally username,
and password controlled, is required
to access this page. Either a
username and password have not yet
been presented or the username and
password are invalid.

HttpURLConnection.HTTP_UNAUTHORIZED

402

Not used today, but may be used in
the future to indicate that some sort
of digital cash transaction is
required to access the resource.

HttpURLConnection.HTTP_PAYMENT_REQUIRED

403

The server understood the request,
but is deliberately refusing to
process it. Authorization will not
help. This might be used when
access to a certain page is denied to
a certain range of IP addresses.

HttpURLConnection.HTTP_FORBIDDEN

404

This most common error response
indicates that the server cannot find
the requested page. It may indicate a
bad link, a page that has moved with
no forwarding address, a mistyped
URL, or something similar.

HttpURLConnection.HTTP_NOT_FOUND

405

The request method is not allowed
for the specified resource; for
instance, you tried to PUT a file on
a web server that doesn't support
PUT or tried to POST a URI that
doesn't refer to a CGI script.

HttpURLConnection.HTTP_BAD_METHOD

406

The requested resource cannot be
provided in a format the client is
willing to accept, as indicated by the
Allow field of the request MIME
header.

HttpURLConnection.HTTP_NOT_ACCEPTABLE

407

An intermediate proxy server
requires authentication from the
client, again probably in the form of
a username and password, before it
will retrieve the requested resource.

HttpURLConnection.HTTP_PROXY_AUTH

408
The client took too long to send the
request, perhaps because of network
congestion.

HttpURLConnection.HTTP_CLIENT_TIMEOUT

409

A temporary conflict prevents the
request from being fulfilled; for
instance, two clients are trying to
PUT the same file at the same time.

HttpURLConnection.HTTP_CONFLICT

410

Like a 404, but makes a stronger
assertion about the existence of the
resource. The resource has been
deliberately deleted (not moved) and

HttpURLConnection.HTTP_GONE

will not be restored. Links to it
should be removed.

411
The client must but did not send a
Content-length field in the client
request MIME header.

HttpURLConnection.HTTP_LENGTH_REQUIRED

412
A condition for the request that the
client specified in the request MIME
header is not satisfied.

HttpURLConnection.HTTP_PRECON_FAILED

413
The body of the client request is
larger than the server is able to
process at this time.

HttpURLConnection.HTTP_ENTITY_TOO_LARGE

414
The URI of the request is too long.
This is important to prevent certain
buffer overflow attacks.

HttpURLConnection.HTTP_REQ_TOO_LONG

415
The server does not understand or
accept the MIME type of the request
body.

HttpURLConnection.HTTP_UNSUPPORTED_TYPE

416 The server cannot send the byte
range the client requested. N/A

417
The server cannot meet the client's
expectation given in an Expect-
request header field.

N/A

5XX Server error.

500
An unexpected condition occurred
that the server does not know how
to handle.

HttpURLConnection.HTTP_SERVER_ERROR

HttpURLConnection.HTTP_INTERNAL_ERROR

501

The server does not have a feature
that is needed to fulfill this request.
A server that cannot handle POST
requests might send this response to
a client that tried to POST form data
to it.

HTTP_NOT_IMPLEMENTED

502

This code is applicable only to
servers that act as proxies or
gateways. It indicates that the proxy
received an invalid response from a
server it was connecting to in an
effort to fulfill the request.

HttpURLConnection.HTTP_BAD_GATEWAY

503
The server is temporarily unable to
handle the request, perhaps
overloading or maintenance.

HttpURLConnection.HTTP_UNAVAILABLE

504

The proxy server did not receive a
response from the upstream server
within a reasonable amount of time,
so it can't send the desired response
to the client.

HttpURLConnection.HTTP_GATEWAY_TIMEOUT

505

The server does not support the
version of HTTP the client is using
(e.g., the as-yet-non-existent HTTP
2.0).

HttpURLConnection.HTTP_VERSION

Example 15.10 is a revised source viewer program that now includes the response
message. The lines added since SourceViewer2 are in bold.

Example 15.10. A SourceViewer That Includes the Response Code and Message

import java.net.*;
import java.io.*;
import javax.swing.*;
import java.awt.*;

public class SourceViewer3 {

 public static void main (String[] args) {

 for (int i = 0; i < args.length; i++) {
 try {

 //Open the URLConnection for reading
 URL u = new URL(args[i]);
 HttpURLConnection uc = (HttpURLConnection)
u.openConnection();
 int code = uc.getResponseCode();
 String response = uc.getResponseMessage();
 System.out.println("HTTP 1.x " + code + " " + response);
 for (int j = 1; ; j++) {
 String header = uc.getHeaderField(j);
 String key = uc.getHeaderFieldKey(j);
 if (header == null || key == null) break;
 System.out.println(uc.getHeaderFieldKey(j) + ": " + header);
 } // end for
 InputStream in = new
BufferedInputStream(uc.getInputStream());
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException e) {
 e.printStackTrace();
 System.err.println(e);
 }

 } // end if

 } // end main

} // end SourceViewer3

The only thing this program doesn't read that the server sends is the version of HTTP
the server is using. There's currently no method to return that. If you need it, you'll
just have to use a raw socket instead. Consequently, in this example, we just fake it as
"HTTP 1.x" like this:

% java SourceViewer3 http://www.oreilly.com
HTTP 1.x 200 OK
Server: WN/1.15.1
Date: Mon, 01 Nov 1999 23:39:19 GMT
Last-modified: Fri, 29 Oct 1999 23:40:06 GMT
Content-type: text/html
Title: www.oreilly.com -- Welcome to O'Reilly & Associates! --

computer books, software, online publishing
Link: <mailto:webmaster@ora.com>; rev="Made"
<HTML>
<HEAD>
...

15.11.3.1 Error conditions

On occasion, the server will encounter an error but return useful information in the
message body nonetheless. For example, when a client requests a non-existent page
from the metalab.unc.edu web site, rather than simply returning a 404 error code, the
server sends the search page shown in Figure 15.2 to help the user figure out where
the missing page might have gone.

Figure 15.2. Metalab's 404 page

The getErrorStream() method returns an InputStream containing this data or null
if no error was encountered or no data returned:

public InputStream getErrorStream()

In practice, this isn't necessary. Most implementations will return this data from
getInputStream() as well.

15.11.3.2 Redirects

The 300-level response codes all indicate some sort of redirect; that is, that the
requested resource is no longer available at the expected location but that it may be
found at some other location. When encountering such a response, most browsers will
automatically load the document from its new location. However, this can be a
security risk, because it has the potential to move the user from a trusted site to an
untrusted one, perhaps without his even noticing.

By default, an HttpURLConnection will follow redirects. However, the
HttpURLConnection class has two static methods that let you decide whether to
follow redirects:

public static boolean getFollowRedirects()
public static void setFollowRedirects(boolean follow)

The getFollowRedirects() method returns true if redirects are being followed,
false if they aren't. With an argument of true, the setFollowRedirects() method
makes HttpURLConnection objects follow redirects. With an argument of false, it
makes them not follow redirects. Since these are static methods, they change the
behavior of all HttpURLConnection objects constructed after the method is invoked.
The setFollowRedirects() method may throw a SecurityException if the
security manager disallows the change. Applets especially are not allowed to change
this value.

Java 1.3 adds methods to configure redirection on an instance-by-instance basis.
These are:

public boolean getInstanceFollowRedirects()
public void setInstanceFollowRedirects(boolean followRedirects)

If setInstanceFollowRedirects() is not invoked on a given HttpURLConnection,
then that HttpURLConnection simply follows the default behavior as set by the class
method HttpURLConnection.setFollowRedirects().

15.11.4 Proxies

Many users behind firewalls or simply using AOL or other high-volume ISPs access
the web through proxy servers. Starting in Java 1.3, the usingProxy() method tells
you whether the particular HttpURLConnection is going through a proxy server:

public abstract boolean usingProxy()

It returns true if a proxy is being used, false if it isn't. In some contexts, the existence
or use of a proxy server may have security implications.

15.12 JarURLConnection

Applets often store their .class files in a JAR archive. This bundles all the classes in
one package that still maintains the directory hierarchy needed to resolve fully

qualified class names like com.macfaq.net.QueryString. Furthermore, since the
entire archive is compressed and can be downloaded in a single HTTP connection, it
requires much less time to download the .jar file than to download its contents one
file at a time. Some programs store needed resources such as sounds, images, and
even text files inside these JAR archives. Java provides several mechanisms for
getting the resources out of the JAR archive, but the one that we'll address here is the
jar URL. Java 1.2 introduces a new class that allows you to use URLs that point
inside JAR archives, JarURLConnection:

public abstract class JarURLConnection extends URLConnection // Java
1.2

A jar URL starts with a normal URL that points to a JAR archive like
http://metalab.unc.edu/javafaq/network.jar or file:///D%7C/javafaq/network.jar. Then
the protocol jar: is prefixed to this URL. Finally, !/ and the path to the desired file
inside the JAR archive are suffixed to the original URL. For example, to find the file
com/macfaq/net/QueryString.class inside the previous .jar files, you'd use the URLs
jar:http://metalab.unc.edu/javafaq/network.jar!/com/macfaq/net/QueryString.class or
jar:file:///D%7C/javafaq/network.jar!/com/macfaq/net/QueryString.class. Of course,
this isn't limited simply to Java .class files. You can use jar URLs to point to any kind
of file that happens to be stored inside a JAR archive, including images, sounds, text,
HTML files, and more. If the path is left off, then the URL refers to the entire JAR
archive; e.g., jar:http://metalab.unc.edu/javafaq/network.jar!/ or
jar:file:///D%7C/javafaq/network.jar!/.

Web browsers don't understand jar URLs though. They're used only inside Java
programs. To get a JarURLConnection, you construct a URL object using a jar URL,
then cast the return value of its openConnection() method to JarURLConnection.
Java downloads the entire JAR archive to a temporary file, opens it, and positions the
file pointer at the beginning of the particular entry you requested. You can then read
the contents of the particular file inside the JAR archive using the InputStream
returned by getInputStream(). For example:

try {
 //Open the URLConnection for reading
 URL u = new URL(

"jar:http://metalab.unc.edu/javafaq/course/week1.jar!/week1/05.html");
 URLConnection uc = u.openConnection();

 InputStream in = uc.getInputStream();
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
}
catch (IOException e) {
 System.err.println(e);
}

Besides the usual methods of the URLConnection class that JarURLConnection
inherits, this class adds eight new methods, mostly to return information about the
JAR archive itself. These are:

public URL getJarFileURL() //
Java 1.2
public String getEntryName() //
Java 1.2
public JarEntry getJarEntry() throws IOException //
Java 1.2
public Manifest getManifest() throws IOException //
Java 1.2
public Attributes getAttributes() throws IOException //
Java 1.2
public Attributes getMainAttributes() throws IOException // Java
1.2
public Certificate[] getCertificates() throws IOException //
Java 1.2
public abstract JarFile getJarFile() throws IOException //
Java 1.2

The getJarFileURL() method is the simplest. It merely returns the URL of the jar
file being used by this connection. This generally differs from the URL of the file in
the archive being used for this connection. For instance, the jar file URL of
jar:http://metalab.unc.edu/javafaq/network.jar!/com/macfaq/net/QueryString.class is
http://metalab.unc.edu/javafaq/network.jar. The getEntryName() returns the other
part of the jar URL; that is, the path to the file inside the archive. The entry name of
jar:http://metalab.unc.edu/javafaq/network.jar!/com/macfaq/net/QueryString.class is
com/macfaq/net/QueryString.class.

The getJarFile() method returns a java.util.jar.JarFile object that you can
use to inspect and manipulate the archive contents. The getJarEntry() method
returns a java.util.jar.JarEntry object for the particular file in the archive that
this URLConnection is connected to. It returns null if the URL points to a whole JAR
archive rather than a particular entry in the archive.

Much of the functionality of both JarFile and JarEntry is duplicated by other
methods in the JarURLConnection class. Which to use is mostly a matter of personal
preference. For instance, the getManifest() method returns a
java.util.jar.Manifest object representing the contents of this JAR archive's
manifest file. A manifest file is included in the archive to supply meta-information
about the contents of the archive, such as which file contains the main() method and
which classes are Java beans. It's called MANIFEST.MF, placed in the META-INF
directory, and its contents typically look something like this:

Manifest-Version: 1.0
Required-Version: 1.0

Name: com/macfaq/net/FormPoster.class
Java-Bean: true
Last-modified: 10-21-1999
Depends-On: com/macfaq/net/QueryString.class
Digest-Algorithms: MD5
MD5-Digest: XD4578YEEIK9MGX54RFGT7UJUI9810

Name: com/macfaq/net/QueryString.class
Java-Bean: false
Last-modified: 9-11-1999
Digest-Algorithms: MD5
MD5-Digest: YP7659YEEIK0MGJ53RYHG787YI8900

The name-value pairs associated with each entry are called the attributes of that entry.
The name-value pairs not associated with any entry are called the main attributes of
the archive. The getAttributes() method returns a java.util.jar.Attributes
object representing the attributes that the manifest file specifies for this jar entry, or
null if the URL points to a whole JAR archive. The getMainAttributes() method
returns a java.util.jar.Attributes object representing the attributes that the
manifest file specifies for the entire JAR archive as a whole.

Finally, the getCertificates() method returns an array of digital signatures (each
represented as a java.security.cert.Certificate object) that apply to this jar
entry, or null if the URL points to a JAR archive instead of a particular entry. These
are actually read from separate signature files for each jar entry, and not from the
manifest file. Unlike the other methods of JarURLConnection, getCertificates()
can be called only after the entire input stream for the jar URL has been read. This is
because the current hash of the data needs to be calculated, and that can be done only
when the entire entry is available.

More details about the java.util.jar package, JAR archives,
manifest files, entries, attributes, digital signatures, how this all
relates to zip files and zip and jar streams, and so forth can be
found on Sun's web site at
http://java.sun.com/products/jdk/1.2/docs/guide/jar/index.html or
in Chapter 15 of my previous book, Java I/O (O'Reilly &
Associates, Inc., 1999).

Chapter 16. Protocol Handlers
When designing an architecture that would allow them to build a self-extensible
browser, the engineers at Sun divided the problem into two parts: handling protocols
and handling content. Handling a protocol means taking care of the interaction
between a client and a server: generating requests in the correct format, interpreting
the headers that come back with the data, acknowledging that the data has been
received, etc. Handling the content means converting the raw data into a format Java
understands, for example, an InputStream or an AudioClip. These two problems,
handling protocols and handling content, are distinct. The software that displays a GIF
image doesn't care whether the image was retrieved via FTP, HTTP, gopher, or some
new protocol. Likewise, the protocol handler, which manages the connection and
interacts with the server, doesn't care if it's receiving an HTML file or an MPEG
movie file; at most, it will extract a content type from the headers to pass along to the
content handler.

Java divides the task of handling protocols into a number of pieces. As a result, there
is no single class called ProtocolHandler. Instead, pieces of the protocol handler
mechanism are implemented by four different class es in the java.net package: URL,
URLStreamHandler, URLConnection, and URLStreamHandlerFactory. URL is the
only concrete class in this group; URLStreamHandler and URLConnection are both
abstract classes, and URLStreamHandlerFactory is an interface. Therefore, if you are
going to implement a new protocol handler, you have to write concrete subclasses for
the URLStreamHandler and the URLConnection. To use these classes, you may also
have to write a class that implements the URLStreamHandlerFactory interface.

16.1 What Is a Protocol Handler?

The way the URL, URLStreamHandler , URLConnection, and
URLStreamHandlerFactory classes work together can be confusing. Everything
starts with a URL, which represents a pointer to a particular Internet resource. Each
URL specifies the protocol used to access the resource; typical values for the protocol
include mailto, http, and ftp. When you construct a URL object from the URL's
string representation, the constructor strips the protocol field and passes it to the
URLStreamHandlerFactory. The factory's job is to take the protocol, locate the right
subclass of URLStreamHandler for the protocol, and create a new instance of that
stream handler, which is stored as a field within the URL object. Each application has
at most one URLStreamHandlerFactory; once the factory has been installed,
attempting to install another will throw an Error.

Now that the URL object has a stream handler, it asks the stream handler to finish
parsing the URL string and create a subclass of URLConnection that knows how to
talk to servers using this protocol. URLStreamHandler subclasses and
URLConnection subclasses always come in pairs; the stream handler for a protocol
always knows how to find an appropriate URLConnection for its protocol. It is worth
noting that the stream handler does most of the work of parsing the URL. The format
of the URL, although it is standard, depends on the protocol; therefore, it must be
parsed by a URLStreamHandler, which knows about a particular protocol, and not by
the URL object, which is generic and thus should have no knowledge of specific
protocols. This also means that if you are writing a new stream handler, you can
define a new URL format that's appropriate to your task.

The URLConnection class, which you learned about in the previous chapter,
represents an active connection to the Internet resource. It is responsible for
interacting with the server. A URLConnection knows how to generate requests and
interpret the headers that the server returns. The output from a URLConnection is the
raw data requested with all traces of the protocol (headers, etc.) stripped, ready for
processing by a content handler.

In most applications, you don't need to worry about URLConnection objects and
stream handlers; they are hidden by the URL class, which provides a simple interface
to the methods you need. When you call the getInputStream() ,
getOutputStream(), and getContent() methods of the URL class, you are really
calling similarly named methods in the URLConnection class. We have seen that
interacting directly with a URLConnection can be convenient when you need a little

more control over communication with a server, most commonly when downloading
binary files.

However, the URLConnection and URLStreamHandler classes are even more
important when you need to add new protocols. By writing subclasses of these classes,
you can add support for standard protocols such as finger, whois, or NTP that Java
doesn't support out of the box. Furthermore, you're not limited to established protocols
with well-known services. You can create new protocols that perform database
queries, search across multiple Internet search engines, view pictures from binary
newsgroups, and more. You can add new kinds of URLs as needed to represent the
new types of resources. Furthermore, Java applications can be built so that they can
load new protocol handlers at runtime. Unlike current browsers such as Mozilla and
Internet Explorer, which contain explicit knowledge of all the protocols and content
types they can handle, a Java browser can be a relatively lightweight skeleton that
loads new handlers as needed. Supporting a new protocol just means adding some
new classes in predefined locations, not writing an entirely new release of the browser.

What's involved in adding support for a new protocol? As I said earlier, you need to
write two new classes: a subclass of URLConnection and a subclass of
URLStreamHandler. You may also need to write a class that implements the
URLStreamHandlerFactory interface. Your URLConnection subclass handles the
interaction with the server, converts anything the server sends into an InputStream,
and converts anything the client sends into an OutputStream. This subclass must
implement the abstract method connect(); it may also override the concrete
methods getInputStream(), getOutputStream(), and getContent Type().

The URLStreamHandler subclass parses the string representation of the URL into its
separate parts and creates a new URLConnection object that understands that URL's
protocol. This subclass must implement the abstract openConnection() method,
which returns the new URLConnection to its caller. If the String representation of
the URL doesn't look like a standard http URL, then you should also override the
parseURL() and toExternalForm() methods.

Finally, you may need to create a class that implements the
URLStreamHandlerFactory interface. The URLStreamHandlerFactory helps the
application find the right protocol handler for each type of URL. The
URLStreamHandlerFactory interface has a single method, create
URLStreamHandler(), which returns a URLStreamHandler object. This method
must find the appropriate subclass of URLStreamHandler given only the protocol (e.g.,
ftp); that is, it must understand whatever package and class naming conventions you
use for your stream handlers. Since URLStreamHandlerFactory is an interface, you
can place your createURLStreamHandler() method in any convenient class,
perhaps the main class of your application.

When it first encounters a protocol, Java looks for URLStreamHandler classes in this
order:

1. First, Java checks to see whether a URLStreamHandlerFactory is installed. If
it is, the factory is asked for a URLStreamHandler for the protocol.

2. If a URLStreamHandlerFactory isn't installed or if Java can't find a
URLStreamHandler for the protocol, then Java looks in the packages named in
the java.protocol.handler.pkgs system property for a sub-package that
shares the protocol name and a class called Handler. The value of this
property is a list of package names separated by a vertical bar (|). Thus, to
indicate that Java should seek protocol handlers in the com.macfaq.net.www
and org.cafeaulait.protocols packages, you would add this line to your
properties file:

java.protocol.handler.pkgs=com.macfaq.net.www|org.cafeaulait.pr
otocols

Then to find an FTP protocol handler (for example), Java would look first for
the class com.macfaq.net.www.ftp.Handler. If that weren't found, Java
would next try to instantiate org.cafeaulait.protocols.ftp.Handler.

3. Finally, if all else fails, Java looks for a URLStreamHandler named
sun.net.www.protocol.name.Handler, where name is replaced by the name
of the protocol; for example, sun.net.www.protocol.ftp.Handler.

In the early days of Java (circa 1995) Sun was promising that
protocols could be installed at runtime from the server that used
them. For instance, in 1996, James Gosling and Henry McGilton
wrote: "The HotJava Browser is given a reference to an object (a
URL). If the handler for that protocol is already loaded, it will be
used. If not, the HotJava Browser will search first the local
system and then the system that is the target of the URL." [1]
However, the loading of protocol handlers from web sites was
never implemented; and Sun doesn't much talk about it anymore.

[1] James Gosling and Henry McGilton, The Java Language Environment, A
White Paper, May 1996,
http://java.sun.com/docs/white/langenv/HotJava.doc1.html.

Most of the time, an end user who wants to permanently install an extra protocol
handler in a program such as HotJava will place the necessary classes in the program's
class path and add the package prefix to the java.protocol.handler.pkgs property.
However, a programmer who just wants to add a custom proto col handler to her
program at compile time will write and install a URLStreamHandlerFactory that
knows how to find her custom protocol handlers. The factory can tell an application to
look for URLStreamHandler classes in any place that's convenient: on a web site, in
the same directory as the application, or somewhere in the user's class path.

When each of these classes has been written and compiled, you're ready to write an
application that uses your new protocol handler. Assuming that you're using a
URLStreamHandlerFactory, pass the factory object to the static URL.setURL
StreamHandlerFactory() method like this:

URL.setURLStreamHandlerFactory(new MyURLStreamHandlerFactory());

This method can be called only once in the lifetime of an application. If it is called a
second time, it will throw an Error. Untrusted applets will generally not be allowed
to install factories or change the java.protocol.handler.pkgs property.
Consequently, protocol handlers are primarily of use to standalone applications such
as HotJava; Netscape and Internet Explorer use their own native C code instead of
Java to handle protocols, so they're limited to a fixed set of protocols.

To summarize, here's the sequence of events:

1. The program constructs a URL object.
2. The constructor uses the arguments it's passed to determine the protocol part

of the URL, e.g., http.
3. The URL() constructor tries to find a URLStreamHandler for the given

protocol like this:
a. If the protocol has been used before, then the URLStreamHandler

object is retrieved from a cache.
b. Otherwise, if a URLStreamHandlerFactory has been set, then the

protocol string is passed to the factory's createURLStreamHandler()
method.

c. If the protocol hasn't been seen before and there's no URlStream
HandlerFactory, then the constructor attempts to instantiate a
URLStreamHandler object named protocol.Handler in one of the
packages listed in the java.protocol.handler.pkgs property.

d. Failing that, the constructor attempts to instantiate a
URLStreamHandler object named protocol.Handler in the
sun.net.www.protocol package.

e. If any of these attempts succeed in retrieving a URLStreamHandler
object, the URL constructor sets the URL object's handler field. If none
of the attempts succeed, the constructor throws a
MalformedURLException.

4. The program calls the URL object's openConnection() method.
5. The URL object asks the URLStreamHandler to return a URLConnection object

appropriate for this URL. If there's any problem, an IOException is thrown.
Otherwise, a URLConnection object is returned.

6. The program uses the methods of the URLConnection class to interact with the
remote resource.

Instead of calling openConnection() in step 4, the program can call getContent()
or getInputStream(). In this case, the URLStreamHandler still instantiates a
URLConnection object of the appropriate class. However, instead of returning the
URLConnection object itself, the URLStreamHandler returns the result of
URLConnection's getContent() or getInputStream() method.

16.2 The URLStreamHandler Class

The abstract URLStreamHandler class is a superclass for classes that handle specific
protocols—for example, HTTP. You rarely call the methods of the
URLStreamHandler class directly; they are called by other methods in the URL and
URLConnection classes. By overriding the URLStreamHandler methods in your own

subclass, you teach the URL class how to handle new protocols. Therefore, we'll focus
on overriding the methods of URLStreamHandler rather than on calling the methods.

16.2.1 The Constructor

You do not create URLStreamHandler objects directly. Instead, when a URL is
constructed with a protocol that hasn't been seen before, Java asks the application's
URLStreamHandlerFactory to create the appropriate URLStreamHandler subclass
for the protocol. If that fails, Java guesses at the fully package-qualified name of the
URLStreamHandler class and uses Class.forName() to attempt to construct such an
object. This means concrete subclasses should have a noargs constructor. The single
constructor for URLStreamHandler doesn't take any arguments:

public URLStreamHandler()

Because URLStreamHandler is an abstract class, this constructor is never called
directly; it is only called from the constructors of subclasses.

16.2.2 Methods for Parsing URLs

The first responsibility of a URLStreamHandler is to split a string representation of a
URL into its component parts and use those parts to set the various fields of the URL
object. The parseURL() method splits the URL into parts, possibly using setURL()
to assign values to the URL's fields. It is very difficult to imagine a situation in which
you would call parseURL() directly; instead, you override it to change the behavior
of the URL class.

16.2.2.1 Protected void parseURL(URL u, String spec, int start, int limit)

This method parses a string spec into a URL u. All characters in the spec string before
start should already have been parsed into the URL u. Characters after limit are
ignored. Generally, the protocol will have already been parsed and stored in u before
this method is invoked, and start will be adjusted so that it starts with the character
after the colon that delimits the protocol.

The task of parseURL() is to set the URL u's protocol, host, port, file, and ref
fields. It can assume that any parts of the String that are before start and after
limit have already been parsed or can be ignored.

The parseURL() method that Java supplies assumes that the URL looks more or less
like an http URL:

protocol://www.host.com:port/directory/another_directory/file#ref

This works for ftp and gopher URLs. It does not work for mailto or news URLs and
may not be appropriate for any new URL types you define. If your protocol handler
uses URLs that fit this form, you don't have to override parseURL() at all; the
method inherited from URLStreamHandler will work just fine. If your URLs are
completely different, you must supply a parseURL() method that parses the URL
completely. However, there's often a middle ground that can make your task easier. If

your URL looks somewhat like a standard URL, you can implement a parseURL()
method that handles the nonstandard portion of your URL and then calls
super.parseURL() to do the rest of the work, setting the offset and limit
arguments to indicate the portion of the URL that you didn't parse.

For example, a mailto URL looks like mailto:elharo@metalab.unc.edu. First, you
need to figure out how to map this into the URL class's protocol, host, port, file,
and ref fields. The protocol is clearly mailto. Everything after the @ can be the host.
The hard question is what to do with the username. Since a mailto URL really doesn't
have a file portion, we will use the URL class's file field to hold the username. The
ref can be set to the empty string or null. The parseURL() method that follows
implements this scheme:

public void parseURL(URL u, String spec, int start, int limit) {

 String protocol = u.getProtocol();
 String host = "";
 int port = u.getPort();
 String file = ""; // really username
 String ref = null;

 if(start < limit) {
 String address = spec.substring(start, limit);
 int atSign = address.indexOf('@');
 if (atSign >= 0) {
 host = address.substring(atSign+1);
 file = address.substring(0, atSign);
 }
 }
 this.setURL(u, protocol, host, port, file, ref);
}

Rather than borrowing an unused field from the URL object, it's possibly a better idea
to store protocol-specific parts of the URL, such as the username, in fields of the
URLStreamHandler subclass. The disadvantage of this approach is that such fields
can be seen only by your own code; in this example, you couldn't use the getFile()
method in the URL class to retrieve the username. Here's a version of parseURL()
that stores the username in a field of the Handler subclass. When the connection is
opened, the username can be copied into the Mailto URLConnection object that
results. That class would provide some sort of getUserName() method:

String username = "";

public void parseURL(URL u, String spec, int start, int limit) {

 String protocol = u.getProtocol();
 String host = "";
 int port = u.getPort();
 String file = "";
 String ref = null;

 if(start < limit) {
 String address = spec.substring(start, limit);
 int atSign = address.indexOf('@');
 if (atSign >= 0) {

 host = address.substring(atSign+1);
 this.username = address.substring(0, atSign);
 }
 }
 this.setURL(u, protocol, host, port, file, ref);

}

16.2.2.2 Protected String toExternalForm(URL u)

This method puts the pieces of the URL u—that is, its protocol, host, port, file,
and ref fields—back together in a String. If you override parseURL(), you should
also override toExternalForm() . Here's a toExternalForm() method for a
mailto URL; it assumes that the username has been stored in the URL's host field:

protected String toExternalForm(URL u) {

 return "mailto:" + u.getFile() + "@" + u.getHost();

 }

Since toExternalForm() is protected, you probably won't call this method directly.
However, it is called by the public toExternalForm() and toString() methods
of the URL class, so any change you make here is reflected when you convert URL
objects to strings.

16.2.2.3 Protected void setURL(URL u, String protocol, String host, int port, String file,
String ref)

This method sets the host, port, file, and ref fields of the URL u to the given values.
It sets the protocol field to the protocol argument in Java 1.1.x and earlier only. (In
Java 1.2 and later, this field is set before this method is called and cannot be changed.
The protocol argument is ignored.) This method is used by parseURL() to set these
fields to the values it has found by parsing the URL. You need to call this method at
the end of the parseURL() method when you subclass URLStreamHandler.

This method is deprecated in Java 1.3 (though not in Java 1.2). The reason is that Java
1.3 also allows you to add a query string, user info, and an authority to the URL. Thus,
Java 1.3 prefers this alternative setURL() method, which supports those features:

protected void setURL(URL u, String protocol, String host, int port,
// Java 1.3
 String authority, String userInfo, String path, String query,
 String ref)

In Java 1.2 and earlier, user info and authority can be included as part of the host
argument. The query string can be included at the end of the file. Even in Java 1.3,
this method is a little flaky, since the host, port, and user info together make up the
authority. In the event of a conflict between them, they're all stored separately, but the
host, port, and user info are used in preference to the authority when deciding which
site to connect to.

This is actually quite relevant to the mailto example, since mailto URLs often have
query strings that indicate the subject or other header; for example,
mailto:elharo@metalab.unc.edu?subject=JavaReading. Here the query string is
subject=JavaReading. If we were to rewrite the above parseURL() method to
support mailto URLs in this format, the result would look like this:

public void parseURL(URL u, String spec, int start, int limit) {

 String protocol = u.getProtocol();
 String host = "";
 int port = u.getPort();
 String file = "";
 String userInfo = null;
 String query = null;
 String ref = null;

 if (start < limit) {
 String address = spec.substring(start, limit);
 int atSign = address.indexOf('@');
 int questionMark = address.indexOf('?');
 int hostEnd = questionMark >= 0 ? questionMark :
address.length();
 if (atSign >= 0) {
 host = address.substring(atSign+1, hostEnd);
 userInfo = address.substring(0, atSign);
 }
 if (questionMark >= 0 && questionMark > atSign) {
 query = address.substring(questionMark + 1);
 }
 }
 String authority = "";
 if (userInfo != null) authority += userInfo + '@';
 authority += host;
 if (port >= 0) authority += ":" + port;

 this.setURL(u, protocol, host, port, authority, userInfo, file,
 query, ref);

}

Note that this works only in Java 1.3 and later. It will not work in Java 1.1 or 1.2.

16.2.2.4 Protected int getDefaultPort() // Java 1.3

Java 1.3 adds a getDefaultPort() method to the URLStreamHandler class whose
responsibility is to return the default port for the protocol; e.g., 80 for HTTP. The
default implementation of this method simply returns -1, but each subclass should
override that with the appropriate default port for the protocol it handles. For example,
here's a getDefaultPort() method for the finger protocol that normally operates on
port 79:

public int getDefaultPort() {
 return 79;
}

As well as providing the right port for finger, this overriding method also makes
getDefaultPort() public. Although there's only a default implementation of this
method in Java 1.3, there's no reason you can't provide it in your own subclasses in
any version of Java. You simply won't be able to invoke it polymorphically from a
reference typed as the superclass.

16.2.2.5 Protected InetAddress getHostAddress(URL u) // Java 1.3

Java 1.3 also adds a getHostAddress() method to the URLStreamHandler class
whose responsibility is to return an InetAddress object pointing to the server in the
URL. This requires a DNS lookup, and the method does block while the lookup is
made. However, it does not throw any exceptions. If the host can't be located, whether
because the URL does not contain a host part or there is a DNS failure or a
SecurityException, then it simply returns null. The default implementation of this
method is sufficient for any reasonable case. It shouldn't be necessary to override it.

16.2.2.6 Protected boolean hostsEqual(URL u1, URL u2) // Java 1.3

Java 1.3's hostsEqual() determines whether the two URLs refer to the same server.
This method attempts to use DNS to actually look up the hosts. If that succeeds for
both hosts, then it can tell that, for example, http://metalab.unc.edu/Dave/Dr-
Fun/latest.jpg and ftp://sunsite.unc.edu/pub/linux/distributions/redhat/current/ are the
same host. However, if the DNS lookup fails for any reason, then hostsEqual()
falls back to a simple case-insensitive string comparison, in which case it would think
those were two different hosts.

The default implementation of this method is sufficient for most cases. You probably
won't need to override it. The only case I can imagine where you might want to is if
you were trying to make mirror sites on different servers appear equal.

16.2.2.7 Protected boolean sameFile(URL u1, URL u2) // Java 1.3

Java 1.3's sameFile() determines whether two URLs point to the same file. It does
this by comparing the protocol, host, port, and path. The files are considered to be the
same only if each of those four pieces is the same. However, it does not consider the
query string or the ref. Furthermore, the hosts are compared by the hostsEqual()
method so that metalab.unc.edu and sunsite.unc.edu can be recognized as the same if
DNS can resolve them. This is similar to the sameFile() method of the URL class.
Indeed, in Java 1.3, that sameFile() method just calls this sameFile() method.

The default implementation of this method is sufficient for most cases. You probably
won't need to override it. You might perhaps want to do so though if you needed a
more sophisticated test that converted paths to canonical paths or followed redirects
before determining whether two URLs had the same file part.

16.2.2.8 Protected boolean equals(URL u1, URL u2) // Java 1.3

The final equality method added by Java 1.3 tests almost the entire URL, including
protocol, host, file, path, and ref. Only the query string is ignored. All five of these
must be equal for the two URLs to be considered equal. Everything except the ref is

compared by the sameFile() method, so overriding that method changes the
behavior of this one. The refs are compared by simple string equality. Since the
sameFile() method uses hostsEqual() to compare hosts, this method does too.
Thus it performs a DNS lookup if possible and may block. In Java 1.3, the equals()
method of the URL class calls this method to compare two URL objects for equality.
Again, you probably won't need to override this method. The default implementation
should suffice for most purposes.

16.2.2.9 Protected int hashCode(URL u) // Java 1.3

Java 1.3 also gives URLStreamHandlers the opportunity to change the default hash
code calculation by overriding this method. You should do this if you override
equals(), sameFile(), or hostsEqual() to make sure that two equal URL
objects will have the same hash code, and two unequal URL objects will not have the
same hash code, at least to a very high degree of probability.

16.2.3 A Method for Connecting

The second responsibility of a URLStreamHandler is to create a URLConnection
object appropriate to the URL. This is done by the abstract openConnection()
method.

16.2.3.1 Protected abstract URLConnection openConnection(URL u) throws
IOException

This method must be overridden in each subclass of URLConnection. It takes a single
argument u, which is the URL to connect to. It returns an unopened URLConnection,
directed at the resource u points to. Each subclass of URLStreamHandler should know
how to find the right subclass of URLConnection for the protocol it handles.

The openConnection() method is protected, so you usually do not call it directly; it
is called by the openConnection() method of a URL class. The URL u that is passed
as an argument is the URL that needs a connection. You override this method in your
subclasses to handle a specific protocol. Your subclass's openConnection() method
is usually extremely simple; in most cases, it just calls the constructor for the
appropriate subclass of URLConnection. For example, URLStreamHandler for the
mailto protocol might have an openConnection() method that looks like this:

protected URLConnection openConnection(URL u) throws IOException {
 return new com.macfaq.net.www.protocol.MailtoURLConnection(u);
 }

Example 16.1 demonstrates a complete URLStreamHandler for mailto URLs. The
name of the class is Handler, following Sun's naming conventions. It assumes the
existence of a MailtoURLConnection class.

Example 16.1. A mailto URLStreamHandler

package com.macfaq.net.www.protocol.mailto;

import java.net.*;

import java.io.*;
import java.util.*;

public class Handler extends URLStreamHandler {

 protected URLConnection openConnection(URL u) throws IOException {
 return new MailtoURLConnection(u);
 }

 public void parseURL(URL u, String spec, int start, int limit) {

 String protocol = u.getProtocol();
 String host = "";
 int port = u.getPort();
 String file = ""; // really username
 String userInfo = null;
 String authority = null;
 String query = null;
 String ref = null;

 if(start < limit) {
 String address = spec.substring(start, limit);
 int atSign = address.indexOf('@');
 if (atSign >= 0) {
 host = address.substring(atSign+1);
 file = address.substring(0, atSign);
 }
 }

 // For Java 1.2 comment out this next line
 this.setURL(u, protocol, host, port, authority,
 userInfo, file, query, ref);

 // In Java 1.2 and earlier uncomment the following line:
 // this.setURL(u, protocol, host, port, file, ref);

 }

 protected String toExternalForm(URL u) {

 return "mailto:" + u.getFile() + "@" + u.getHost();;

 }
}

16.3 Writing a Protocol Handler

To demonstrate a complete protocol handler, let's write one for the finger protocol,
which is defined in RFC 1288 and was introduced in Chapter 10. Finger is a relatively
simple protocol compared to JDK-supported protocols such as HTTP and FTP. The
client connects to port 79 on the server and sends a list of usernames followed by a
carriage return/linefeed pair. The server responds with ASCII text containing
information about each of the named users or, if no names were listed, a list of the
currently logged in users. For example:

% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.

Login Name TTY Idle When Where
jacola Jane Colaginae *pts/7 Tue 08:01 208.34.37.104
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-
dialup11.poly.e
matewan Sepin Matewan *pts/17 17: Thu 15:32 128.238.10.177
hengpi Heng Pin *pts/10 Tue 10:36 128.238.18.119
nadats Nabeel Datsun pts/12 56 Mon 10:38 128.238.213.227
matewan Sepin Matewan *pts/8 4 Sun 18:39 128.238.10.177
Connection closed by foreign host.

Or, requesting information about a specific user:

% telnet rama.poly.edu 79
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '^]'.
marcus
Login Name TTY Idle When Where
marcus Marcus Tullius pts/15 13d Tue 17:33 farm-
dialup11.poly.e

Since there's no standard for the format of a finger URL, we will start by creating one.
Ideally, this should look as much like an http URL as possible. Therefore, we will
implement a finger URL like this:

finger://hostname:port/username

Second, we need to determine the content type returned by the finger protocol's
getContentType() method. New protocols such as HTTP use MIME headers to
indicate the content type; in these cases, you do not need to override the default
getContentType() method provided by the URLConnection class. However, since
most protocols precede MIME, you often need to specify the MIME type explicitly or
use the static methods URLConnection.guess Content TypeFromName(String
name) and URLConnection.guessContent TypeFromStream(InputStream in) to
make an educated guess. This example doesn't need anything so complicated,
however. A finger server returns ASCII text, so the getContentType() method
should return the string text/plain. The text/plain MIME type has the advantage
that Java already understands it. In the next chapter, you'll learn how to write content
handlers that let Java understand additional MIME types.

Example 16.2 is a FingerURLConnection class that subclasses URLConnection. This
class overrides the getContentType() and getInputStream() methods of
URLConnection and implements connect(). It also has a constructor that builds a
new URLConnection from a URL.

Example 16.2. The FingerURLConnection Class

package com.macfaq.net.www.protocol.finger;

import java.net.*;
import java.io.*;

public class FingerURLConnection extends URLConnection {

 private Socket connection = null;

 public final static int DEFAULT_PORT = 79;

 public FingerURLConnection(URL u) {
 super(u);
 }

 public synchronized InputStream getInputStream() throws
IOException {

 if (!connected) this.connect();
 InputStream in = this.connection.getInputStream();
 return in;

 }

 public String getContentType() {
 return "text/plain";
 }
 public synchronized void connect() throws IOException {

 if (!connected) {
 int port = url.getPort();
 if (port < 1 || port > 65535) {
 port = DEFAULT_PORT;
 }
 this.connection = new Socket(url.getHost(), port);
 OutputStream out = this.connection.getOutputStream();
 String names = url.getFile();
 if (names != null && !names.equals("")) {
 // delete initial /
 names = names.substring(1);
 names = URLDecoder.decode(names);
 byte[] result;
 try {
 result = names.getBytes("ASCII");
 }
 catch (UnsupportedEncodingException e) {
 result = names.getBytes();
 }
 out.write(result);
 }
 out.write('\r');
 out.write('\n');
 out.flush();
 this.connected = true;
 }
 }
}

This class has two fields. connection is a Socket between the client and the server.
Both the getInputStream() method and the connect() method need access to
this field, so it can't be a local variable. The second field is DEFAULT_PORT, a final
static int, that contains the finger protocol's default port; this port is used if the
URL does not specify the port explicitly.

The class's constructor holds no surprises. It just calls the superclass's constructor with
the same argument, the URL u. The connect() method opens a connection to the
specified server on the specified port or, if no port is specified, then to the default
finger port, 79. It sends the necessary request to the finger server. If any usernames
were specified in the file part of the URL, they're sent. Otherwise, a blank line is sent.
Assuming the connection is successfully opened (no exception is thrown), it sets the
boolean field connected to true. Recall from the previous chapter that connected is
a protected field in java.net.URLConnection, which is inherited by this subclass.
The Socket that connect() opens is stored in the field connection for later use by
getInputStream(). The connect() and getInputStream() methods are
synchronized to avoid a possible race condition on the connected variable.

The getContentType() method returns a String containing a MIME type for the
data. This is used by the getContent() method of java.net.URLConnection to
select the appropriate content handler. The data returned by a finger server is almost
always ASCII text or some reasonable approximation thereof, so this
getContentType() method always returns text/plain. The getInputStream()
method returns an InputStream, which it gets from the Socket that connect created.
If the connection has not already been established when getInputStream() is called,
the method calls connect() itself.

Once you have a URLConnection, you need a subclass of URLStreamHandler that
knows how to handle a finger server. This class needs an openConnection()
method that builds a new FingerURLConnection from a URL. Since we defined the
finger URL so that it is similar to an http URL, we don't need to implement a
parseURL() method. Example 16.3 is a stream handler for the finger protocol. For
the moment, we're going to use Sun's convention for naming protocol handlers, so we
call this class Handler and place it in the package
com.macfaq.net.www.protocol.finger.

Example 16.3. The Finger Handler Class

package com.macfaq.net.www.protocol.finger;

import java.net.*;
import java.io.*;

public class Handler extends URLStreamHandler {

 public int getDefaultPort() {
 return 79;
 }

 protected URLConnection openConnection(URL u) throws IOException {
 return new FingerURLConnection(u);
 }

}

You can use HotJava to test this protocol handler. Add the following line to
your .hotjava/properties file or some other place from which HotJava will load it:

java.protocol.handler.pkgs=com.macfaq.net.www.protocol

Some (but not all) versions of HotJava may also allow you to set the property from
the command line:

% hotjava -Djava.protocol.handler.pkgs=com.macfaq.net.www.protocol

You also need to make sure that your classes are somewhere in HotJava's class path.
Note that HotJava does not normally use the CLASSPATH environment variable to
look for classes, so just putting them someplace where the JDK or JRE can find them
may not be sufficient. Using HotJava 3.0 on Windows with the JDK 1.3b1, I was able
to put my classes in the jdk1.3/jre/lib/classes folder. Your mileage may vary
depending on what version of HotJava you're using with which version of the JDK on
which platform.

Run it, and ask for a URL of a site running finger, such as utopia.poly.edu. Figure
16.1 shows the result.

Figure 16.1. HotJava using the finger protocol handler

16.4 More Protocol Handler Examples and Techniques

Now that you've seen how to write one protocol handler, it's not at all difficult to write
more. Remember the five basic steps of creating a new protocol handler:

1. Design a URL for the protocol, if a standard URL for that protocol doesn't
already exist. As of July 2000, the official list of URL schemes at the IANA
(http://www.isi.edu/in-notes/iana/assignments/url-schemes) includes only 29
different schemes and reserves three more. For anything else, you need to
define your own. Make your new URL as similar to an http URL as possible.

2. Decide what MIME type should be returned by the protocol handler's
getContentType() method. The text/plain content type is often appropriate
for legacy protocols. Another option is to convert the incoming data to HTML
inside getInputStream() and return text/html. Binary data often uses one of

the many application types. In some cases, you may be able to use the
URLConnection.guessContentTypeFromName() or
URLConnection.guessContentTypeFromStream() methods to determine
the right MIME type.

3. Write a subclass of URLConnection that understands this protocol. It should
implement the connect() method and may override the getContent
Type(), getOutputStream(), and getInputStream() methods of URL
Connection. It also needs a constructor that builds a new URLConnection
from a URL.

4. Write a subclass of URLStreamHandler with an openConnection() method
that knows how to return a new instance of your subclass of URLConnection.
Also provide a getDefaultPort() method that returns the well-known port
for the protocol. If your URL does not look like an http URL, override
parseURL() and toExternalForm() as well.

5. Implement the URLStreamHandlerFactory interface and the createStream
Handler() method in a convenient class.

Let's look at handlers for two more protocols, daytime and chargen, that will bring up
different challenges.

16.4.1 A daytime Protocol Handler

For a daytime protocol handler, let's say that the URL should look like
daytime://metalab.unc.edu. We'll allow for nonstandard port assignments in the same
way as with HTTP: follow the hostname with a colon and the port
(daytime://metalab.unc.edu:2082). Finally, allow a terminating slash, and ignore
everything following the slash. For example, daytime://metalab.unc.edu/index.html is
equivalent to daytime://metalab.unc.edu. This is similar enough to an http URL that
you'll be able to use the default toExternalForm() and parseURL() methods.

Although the content returned by the daytime protocol is really text/plain, this
protocol handler is going to reformat the data into an HTML page. Then it can return
a content type of text/html and let the web browser display it more dramatically. The
resulting HTML will look like this:

<html><head><title>The Time at metalab.unc.edu</title></head><body>
<h1>Fri Oct 29 14:32:07 1999</h1>
</body></html>

The trick is that the page can be broken up into three different strings:

• Everything before the time
• The time
• Everything after the time

The first and the third strings can be calculated before the connection is even opened.
We'll formulate these as byte arrays of ASCII text and use them to create two
ByteArrayInputStreams. Then we'll use a SequenceInputStream to combine those
two streams with the data actually returned from the server. Example 16.4
demonstrates. This is a neat trick for protocols such as daytime that return a very

limited amount of data; it can be inserted in a single place in an HTML document.
Protocols such as finger that return more complex and less predictable text might need
to use a FilterInputStream that inserts the HTML on the fly instead. And of course
a third possibility is simply to return a custom content type and use a custom content
handler to display it. This third option will be explored in the next chapter.

Example 16.4. The DaytimeURLConnection Class

package com.macfaq.net.www.protocol.daytime;

import java.net.*;
import java.io.*;

public class DaytimeURLConnection extends URLConnection {

 private Socket connection = null;
 public final static int DEFAULT_PORT = 13;

 public DaytimeURLConnection (URL u) {
 super(u);
 }

 public synchronized InputStream getInputStream() throws
IOException {

 if (!connected) connect();

 String header = "<html><head><title>The Time at "
 + url.getHost() + "</title></head><body><h1>";
 String footer = "</h1></body></html>";
 InputStream in1 = new
ByteArrayInputStream(header.getBytes("8859_1"));
 InputStream in2 = this.connection.getInputStream();
 InputStream in3 = new
ByteArrayInputStream(footer.getBytes("8859_1"));

 SequenceInputStream result = new SequenceInputStream(in1, in2);
 result = new SequenceInputStream(result, in3);
 return result;

 }

 public String getContentType() {
 return "text/html";
 }

 public synchronized void connect() throws IOException {

 if (!connected) {
 int port = url.getPort();
 if (port <= 0 || port > 65535) {
 port = DEFAULT_PORT;
 }
 this.connection = new Socket(url.getHost(), port);
 this.connected = true;
 }
 }
}

This class declares two fields. The first is connection, which is a Socket between
the client and the server. The second field is DEFAULT_PORT, a final static int
variable, that holds the default port for the daytime protocol (port 13) and is used if
the URL doesn't specify the port explicitly.

The constructor has no surprises. It just calls the superclass's constructor with the
same argument, the URL u. The connect() method opens a connection to the
specified server on the specified port (or, if no port is specified, to the default port); if
the connection is opened successfully, connect() sets the boolean variable
connected to true. Recall from the previous chapter that connected is a protected
field in URLConnection that is inherited by this subclass. The Socket that's opened by
this method is stored in the connection field for later use by getInputStream().

The getContentType() method returns a String containing a MIME type for the
data. This method is called by the getContent() method of URLConnection to
select the appropriate content handler. The getInputStream() method reformats the
text into HTML, so the getContentType() method returns text/html.

The getInputStream() method builds a SequenceInputStream out of several
string literals, the host property of url, and the actual stream provided by the Socket
connecting the client to the server. If the socket is not connected when this method is
called, then the method calls connect() to establish the connection.

Next, you need a subclass of URLStreamHandler that knows how to handle a daytime
server. This class needs an openConnection() method that builds a new
DaytimeURLConnection from a URL and a getDefaultPort() method that returns
the well-known daytime port 13. Since the daytime URL has been made similar to an
http URL, we don't need to override parseURL(); once we have written
openConnection(), we're done. Example 16.5 shows the daytime protocol's
URLStreamHandler.

Example 16.5. The DaytimeURLStreamHandler Class

package com.macfaq.net.www.protocol.daytime;

import java.net.*;
import java.io.*;

public class Handler extends URLStreamHandler {

 public int getDefaultPort() {
 return 13;
 }

 protected URLConnection openConnection(URL u) throws IOException {
 return new DaytimeURLConnection(u);
 }
}

Since we've used the same package-naming convention here as for the previous finger
protocol handler, no further changes to HotJava's properties need to be made to let
HotJava find this. Just compile the files, put the classes somewhere in HotJava's class

path, and load a URL that points to an active daytime server. Figure 16.2
demonstrates.

Figure 16.2. HotJava using our daytime protocol handler

16.4.2 A chargen Protocol Handler

The chargen protocol, which is defined in RFC 864, is a very simple protocol
designed for testing clients. The server listens for connections on port 19. When a
client connects, the server sends an endless stream of characters until the client
disconnects. Any input from the client is ignored. The RFC does not specify which
character sequence to send, but recommends that the server use a recognizable pattern.
One common pattern is rotating, 72-character carriage return/linefeed delimited lines
of the 95 ASCII printing characters like this:

!"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh
"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi
#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij
$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk
%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm
'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmn
()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmno

The big trick with this protocol is deciding when to stop. A TCP chargen server sends
an unlimited amount of data. Most web browsers don't deal well with this. HotJava
won't even attempt to display a file until the end of stream is seen. Consequently, the
first thing we'll need is a FilterInputStream subclass that cuts off the server (or at
least starts ignoring it) after a certain amount of data has been sent. Example 16.6 is
such a class.

Example 16.6. FiniteInputStream

package com.macfaq.io;

import java.io.*;

public class FiniteInputStream extends FilterInputStream {

 private int limit = 8192;
 private int bytesRead = 0;

 public FiniteInputStream(InputStream in) {
 this(in, 8192);
 }

 public FiniteInputStream(InputStream in, int limit) {
 super(in);
 this.limit = limit;
 }

 public int read() throws IOException {

 if (bytesRead >= limit) return -1;
 int c = in.read();
 bytesRead++;
 return c;

 }

 public int read(byte[] data) throws IOException {
 return this.read(data, 0, data.length);
 }

 public int read(byte[] data, int offset, int length)
 throws IOException {

 if (data == null) throw new NullPointerException();
 else if ((offset < 0) || (offset > data.length) || (length <
0) ||
 ((offset + length) > data.length) || ((offset + length) < 0))
{
 throw new IndexOutOfBoundsException();
 }
 else if (length == 0) {
 return 0;
 }

 if (bytesRead >= limit) return -1;
 else if (bytesRead + length > limit) {
 int numToRead = bytesRead + length - limit;
 int numRead = in.read(data, offset, numToRead);
 if (numRead == -1) return -1;
 bytesRead += numRead;
 return numRead;
 }
 else { // will not exceed limit
 int numRead = in.read(data, offset, length);
 if (numRead == -1) return -1;
 bytesRead += numRead;
 return numRead;
 }
 }

 public int available() throws IOException {

 if (bytesRead >= limit) return 1;
 else return in.available();
 }
}

Next, since there's no standard for the format of a chargen URL, we have to create one.
Ideally, this should look as much like an http URL as possible. Therefore, we will
implement a chargen URL like this:

chargen://hostname:port

Second, we need to choose the content type to be returned by the chargen protocol's
getContentType() method. A chargen server returns ASCII text, so the
getContentType() method should return the string text/plain. The text/plain
MIME type has the advantage that Java already understands it.

Example 16.7 is a ChargenURLConnection class that subclasses URLConnection.
This class overrides the getContentType() and getInputStream() methods of
URLConnection and implements connect(). It also has a constructor that builds a
new URLConnection from a URL.

Example 16.7. The ChargenURLConnection Class

package com.macfaq.net.www.protocol.chargen;

import java.net.*;
import java.io.*;
import com.macfaq.io.*;

public class ChargenURLConnection extends URLConnection {

 private Socket connection = null;

 public final static int DEFAULT_PORT = 19;

 public ChargenURLConnection(URL u) {
 super(u);
 }

 public synchronized InputStream getInputStream() throws
IOException {

 if (!connected) this.connect();
 return new FiniteInputStream(this.connection.getInputStream());

 }

 public String getContentType() {
 return "text/plain";
 }

 public synchronized void connect() throws IOException {

 if (!connected) {
 int port = url.getPort();
 if (port < 1 || port > 65535) {
 port = DEFAULT_PORT;

 }
 this.connection = new Socket(url.getHost(), port);
 this.connected = true;
 }
 }
}

This class has two fields. connection is a Socket between the client and the server.
The second field is DEFAULT_PORT, a final static int that contains the chargen
protocol's default port; this port is used if the URL does not specify the port explicitly.

The class's constructor just passes the URL u to the superclass's constructor. The
connect() method opens a connection to the specified server on the specified port
(or, if no port is specified, then to the default chargen port, 19) and, assuming the
connection is successfully opened, sets the boolean field connected to true. The
Socket that connect() opens is stored in the field connection for later use by
getInputStream(). The connect() method is synchronized to avoid a possible
race condition on the connected variable.

The getContentType() method returns a String containing a MIME type for the
data. The data returned by a chargen server is always ASCII text, so this
getContentType() method always returns text/plain.

The getInputStream() connects if necessary, then gets the InputStream from
this.connection. Rather than returning it immediately, getInputStream() first
chains it to a FiniteInputStream.

Now that we have a URLConnection, we need a subclass of URLStreamHandler that
knows how to handle a chargen server. This class needs an openConnection()
method that builds a new ChargenURLConnection from a URL and a
getDefaultPort() method that returns the well-known chargen port. Since we
defined the chargen URL so that it is similar to an http URL, we don't need to
implement a parseURL() method. Example 16.8 is a stream handler for the chargen
protocol.

Example 16.8. The chargen Handler Class

package com.macfaq.net.www.protocol.chargen;

import java.net.*;
import java.io.*;

public class Handler extends URLStreamHandler {

 public int getDefaultPort() {
 return 19;
 }

 protected URLConnection openConnection(URL u) throws IOException {
 return new ChargenURLConnection(u);
 }
}

You can use HotJava to test this protocol handler. Run it, and ask for a URL of a site
running a chargen server, such as vision.poly.edu. Figure 16.3 shows the result.

Figure 16.3. HotJava using the chargen protocol handler

16.5 The URLStreamHandlerFactory Interface

The last section showed you how to install new protocol handlers that you wrote into
HotJava, an application that someone else wrote. However, if you write your own
application, you can implement your own scheme for finding and load ing protocol
handlers. The easiest way to do this is to install a URLStream HandlerFactory in
your application:

public abstract interface URLStreamHandlerFactory

Only applications are allowed to install a new URL
StreamHandlerFactory. Applets that run in the applet viewer or
a web browser must use the URLStreamHandlerFactory that is
provided. An attempt to set a different one will fail, either
because another factory is already installed or because of a
Security Exception.

The URLStreamHandlerFactory interface declares a single method,
createURLStreamHandler():

public abstract URLStreamHandler createURLStreamHandler(String
protocol)

This method loads the appropriate protocol handler for the specified protocol. To use
this method, write a class that implements the URLStreamHandlerFactory interface
and include a createURLStreamHandler() method in that class. This method needs
to know how to find the protocol handler for a given protocol. This is no more
complicated than knowing the names and packages of the custom protocols you've
implemented.

The createURLStreamHandler() method does not need to know the names of all
the installed protocol handlers. If it doesn't recognize a protocol, then it should simply
return null. This tells Java to follow the default procedure for locating stream handlers;
that is, to look for a class named protocol.Handler in one of the packages listed in
the java.protocol.handler.pkgs system property or in sun.net.www.protocol.

To install the stream handler factory, pass an instance of the class that implements the
URLStreamHandlerFactory interface to the static method
URL.setURLStreamHandlerFactory() at the start of your program. Example 16.9
is a URLStreamHandlerFactory() whose createURLStreamHandler() method re
cognizes the finger, daytime, and chargen protocols and returns the appropriate
handler from the last several examples. Since these classes are all named Handler,
fully package-qualified names are used.

Example 16.9. A URLStreamHandlerFactory for finger, daytime, and chargen

package com.macfaq.net.www.protocol;

import java.net.*;

public class NewFactory implements URLStreamHandlerFactory {

 public URLStreamHandler createURLStreamHandler(String protocol) {

 if (protocol.equalsIgnoreCase("finger")) {
 return new com.macfaq.net.www.protocol.finger.Handler();
 }
 else if (protocol.equalsIgnoreCase("chargen")) {
 return new com.macfaq.net.www.protocol.chargen.Handler();
 }
 else if (protocol.equalsIgnoreCase("daytime")) {
 return new com.macfaq.net.www.protocol.daytime.Handler();
 }
 else {
 return null;
 }
 }
}

We use the equalsIgnoreCase() method from java.lang.String to test the
identity of the protocol because it shouldn't make a difference whether you ask for
finger://rama.poly.edu or FINGER://RAMA.POLY.EDU. If the protocol is recognized,
then createURLStreamHandler() creates an instance of the proper Handler class
and returns it; otherwise, the method returns null, which tells the URL class to look
for a URLStreamHandler in the standard locations.

Since browsers, HotJava included, generally don't allow you to install your own
URLStreamHandlerFactory, this will be of use only in applications. Example 16.10
is a simple character mode program that uses this factory and its associated protocol
handlers to print server data on System.out. Notice that it does not import
com.macfaq.net.www.protocol.chargen,
com.macfaq.net.www.protocol.finger, or
com.macfaq.net.www.protocol.daytime. All this program knows is that it has a
URL. It does not need to know how that protocol is handled or even how the right
URLConnection object is instantiated.

Example 16.10. A SourceViewer Program That Sets a URLStreamHandlerFactory

import java.net.*;
import java.io.*;
import com.macfaq.net.www.protocol.*;

public class SourceViewer3 {
 public static void main (String[] args) {

 URL.setURLStreamHandlerFactory(new NewFactory());

 if (args.length > 0) {
 try {
 //Open the URL for reading
 URL u = new URL(args[0]);
 InputStream in = new BufferedInputStream(u.openStream());
 // chain the InputStream to a Reader
 Reader r = new InputStreamReader(in);
 int c;
 while ((c = r.read()) != -1) {
 System.out.print((char) c);
 }
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a parseable URL");
 }
 catch (IOException e) {
 System.err.println(e);
 }
 } // end if
 } // end main
} // end SourceViewer3

Aside from the one line where the URLStreamHandlerFactory is set, this is almost
exactly like the earlier SourceViewer program of Example 7.5 in Chapter 7. For
instance, here the program reads from a finger URL:

D:\JAVA\JNP2\examples\15>java SourceViewer3 finger://rama.poly.edu/
Login Name TTY Idle When Where
nadats Nabeel Datsun pts/0 55 Fri 16:54
128.238.213.227
marcus Marcus Tullius *pts/1 20 Thu 12:12
128.238.10.177
marcus Marcus Tullius *pts/5 2:24 Thu 16:42
128.238.10.177
wri Weber Research Insti pts/10 55 Fri 13:26
rama.poly.edu

jbjovi John B. Jovien pts/9 25d Mon 14:54
128.238.213.229

Here it reads from a daytime URL:

% java SourceViewer3 daytime://tock.usno.navy.mil/
<html><head><title>The Time at
tock.usno.navy.mil</title></head><body><h1>Fri Oc
t 29 21:22:49 1999
</h1></body></html>

However, it still works with all the usual protocol handlers that come bundled with the
JDK. For instance here are the first few lines of output when it reads from an http
URL:

% java SourceViewer3 http://www.oreilly.com/oreilly/about.html
<HTML>
<HEAD>
<TITLE>About O'Reilly & Associates</TITLE>
</HEAD>
<BODY LINK="#770000" VLINK="#0000AA" BGCOLOR="#ffffff">

<table border=0 cellspacing=0 cellpadding=0 width=515>
<tr>
<td>
<img
src="http://www.oreilly.com/graphics_new/generic_ora_header_wide.gif"
width="515" height="37" ALT="O'Reilly and Associates">

Chapter 17. Content Handlers
Content handlers are one of the ideas that got developers excited about Java in the
first place. At the time that HotJava was created, Netscape, NCSA, Spyglass, and a
few other combatants were fighting a battle over who would control the standards for
web browsing. One of the battlegrounds was the ability of different browsers to
handle various kinds of files. The first browsers understood only HTML. The next
generation understood HTML and GIF. JPEG support was soon added. The intensity
of this battle meant that new versions of browsers were released every couple of
weeks. Netscape made the first attempt to break this infinite loop by introducing plug-
ins in Navigator 2.0. Plug-ins are platform-dependent browser extenders written in C
that add the ability to view new content types such as Adobe PDF and VRML.
However, plug-ins have their drawbacks. Each new content type requires the user to
download and install a new plug-in, if indeed the right plug-in is even available for
the user's platform. To keep up, users had to use huge amounts of bandwidth just to
download new browsers and plug-ins, each of which would fix a few bugs and add a
few new features.

The Java team saw a way around this. Their idea was to use Java to download only
the parts of the program that had to be updated rather than the entire browser.
Furthermore, when the user encountered a web page that used a new content type, the
browser could automatically download the code that was needed to view that content
type. The user wouldn't have to stop, ftp a plug-in, quit the browser, install the plug-in,
restart the browser, and reload the page. The mechanism that the Java team envisioned

was the content handler. Each new data type that a web site wanted to serve would be
associated with one content handler written in Java. The content handler would be
responsible for parsing the content and displaying it to the user in the web browser
window. The abstract class that content handlers for specific data types such as PNG
or RTF would extend was java.net.ContentHandler. James Gosling and Henry
McGilton described this scenario in 1996:

HotJava's dynamic behavior is also used for understanding different
types of objects. For example, most Web browsers can understand a
small set of image formats (typically GIF, X11 pixmap, and X11
bitmap). If they see some other type, they have no way to deal with it.
HotJava, on the other hand, can dynamically link the code from the
host that has the image allowing it to display the new format. So, if
someone invents a new compression algorithm, the inventor just has to
make sure that a copy of its Java code is installed on the server that
contains the images they want to publish; they don't have to upgrade all
the browsers in the world. HotJava essentially upgrades itself on the fly
when it sees this new type.[1]

[1] James Gosling and Henry McGilton, The Java Language Environment, A White Paper,
May 1996, http://java.sun.com/docs/white/langenv/HotJava.doc1.html.

Unfortunately, content handlers never really made it out of Sun's white papers into
shipping software. The ContentHandler class still exists in the standard library, and
it has some uses in custom applications. However, neither HotJava nor any other web
browser actually uses it to display content. When HotJava downloads an HTML page
or a bitmapped image, it handles it with hardcoded routines that process that particular
kind of data. When HotJava encounters an unknown content type, it simply asks the
user to locate a helper application that can display the file, almost exactly as a
traditional web browser such as Netscape Navigator or Internet Explorer would do.
(Figure 17.1 demonstrates.) The promise of dynamically extensible web browsers
automatically downloading content handlers for new data types as they encounter
them was never realized. Perhaps the biggest problem was that the ContentHandler
class was too generic, providing too little information about what kind of object was
being downloaded and how it should be displayed.

Figure 17.1. HotJava's reaction to an unexpected content type, even though a content
handler for this type is installed

A much more robust and better thought-out content handler
mechanism is now available under the name JavaBeans
Activation Framework. This is a standard extension to Java 1.1
and later that provides the necessary API for deciding what to do
with arbitrary datatypes at runtime. However, JAF has not yet
been used inside web browsers or even widely adopted, though
certainly that shouldn't stop you from using it inside your own
applications if you find it useful. See
http://java.sun.com/beans/glasgow/jaf.html for more details.

17.1 What Is a Content Handler?

A content handler is an instance of a subclass of java.net.ContentHandler:

public abstract class ContentHandler extends Object

The SAX2 interface for XML parsing defines a completely
separate interface named ContentHandler. This has nothing to
do with the content handlers we're discussing in this chapter.

This class knows how to take a URLConnection and a MIME type and turn the data
coming from the URLConnection into a Java object of an appropriate type. Thus, a
content handler allows an applet to understand new kinds of data. Since Java lowers
the bar for writing code below what's needed to write a browser or a Netscape plug-in,
the theory is that many different web sites can write custom handlers, rather than
having to rely on the overworked browser manufacturers.

Java can already download classes from the Internet. Thus, there isn't much magic to
getting it to download a class that can understand a new content type. A content

handler is just a .class file like any other. The magic is all inside the web browser,
which knows when and where to request a .class file to view a new content type. Of
course, some browsers are more magical than others. Currently, the only way to make
this work in a browser is in conjunction with an applet that knows how to request the
content handler explicitly. It can also be used—in fact, it can be used considerably
more easily—in a standalone application that ignores browsers completely.

Specifically, a content handler reads data from a URLConnection and constructs an
object appropriate for the content type from the data. Each subclass of
ContentHandler handles a specific MIME type and subtype, such as text/plain or
image/gif. Thus, an image/gif content handler returns a URLImageSource object (a
class that implements the ImageProducer interface), while a text/plain content
handler returns a String. A database content handler might return a
java.sql.ResultSet object. An application/x-macbinhex40 content handler
might return a BinhexDecoder object written by the same programmer who wrote the
application/x-macbinhex40 content handler.

Content handlers are intimately tied to protocol handlers. In the previous chapter, the
getContent() method of the URLConnection class returned an InputStream that
fed the data from the server to the client. This works for simple protocols that return
only ASCII text, such as finger, whois, and daytime. However, returning an input
stream doesn't work well for protocols such as FTP, gopher, and HTTP that can return
many different content types, many of which can't be understood as a stream of ASCII
text. For protocols like these, getContent() needs to check the MIME type, and
then use the createContentHandler() method of the application's
ContentHandlerFactory to produce a matching content handler. Once a
ContentHandler exists, the URLConnection's getContent() method calls the
ContentHandler's getContent() method, which creates the Java object to be
returned. Outside of the getContent() method of a URLConnection, you rarely, if
ever, call any ContentHandler method. Applications should never call the methods
of a ContentHandler directly. Instead, they should use the getContent() method
of URL or URLConnection.

An object that implements the ContentHandlerFactory interface is respons- ible for
choosing the right ContentHandler to go with a MIME type. A
ContentHandlerFactory is installed in a program by the static
URLConnection.setContentHandlerFactory() method. Only one
ContentHandlerFactory may be chosen during the lifetime of an application. When
a program starts running, there is no ContentHandlerFactory; that is, the
ContentHandlerFactory is null.

When there is no factory, Java looks for content handler classes with the name
type.subtype, where type is the MIME type of the content and subtype is the
MIME subtype. It looks for these classes first in any packages named by the
java.content.handler.pkgs property, then in the sun.net.www.content package.
The java.content.handler.pkgs property should contain a list of package prefixes
separated from each other by a vertical bar (|). This is similar to how Java finds
protocol handlers. For example, if the java.content.handler.pkgs property has the
value com.macfaq.net.www.content|org.cafeaulait.content and your program

is looking for a content handler for text/xml files, then it would first try to instantiate
com.macfaq.net.www.content.text.xml. If that fails, it would next try to
instantiate, org.cafeaulait.content.text.xml. If that fails, as a last resort, it
would try to instantiate sun.net.www.content.text.xml. These conventions are
also used to search for a content handler if a ContentHandlerFactory is installed but
the createContentHandler() method returns null.

To summarize, here's the sequence of events:

1. A URL object is created that points at some Internet resource.
2. The URL's getContent() method is called to return an object representing

the contents of the resource.
3. The getContent() method of the URL calls the getContent() method of

its underlying URLConnection.
4. The URLConnectiongetContent() method calls the nonpublic method

getContentHandler() to find a content handler for the MIME type and
subtype.

5. getContentHandler() checks to see whether it already has a handler for this
type in its cache. If it does, that handler is returned to getContent(). Thus,
browsers won't download content handlers for common types, such as
text/html, every time the user goes to a new web page.

6. If there wasn't an appropriate ContentHandler in the cache and the
ContentHandlerFactory isn't null, getContentHandler() calls the
ContentHandlerFactory's createContentHandler() method to instantiate
a new ContentHandler. If this is successful, the ContentHandler object is
returned to getContent().

7. If the ContentHandlerFactory is null or createContentHandler() fails to
instantiate a new ContentHandler, then Java looks for a content handler class
named type.subtype, where type is the MIME type of the content and
subtype is the MIME subtype in one of the packages named in the
java.content.handler.pkgs system property. If a content handler is found,
it is returned. Otherwise . . .

8. Java looks for a content handler class named
sun.net.www.content.type.subtype. If it's found, it's returned. Otherwise,
createContentHandler() returns null.

9. If the ContentHandler object is not null, then this ContentHandler's
getContent() method is called. This method returns an object appropriate
for the content type. If the ContentHandler is null, an IOException is thrown.

10. Either the returned object or the exception is passed up the call chain,
eventually reaching the method that invoked getContent().

You can affect this chain of events in three ways: first, by constructing a URL and
calling its getContent() method; second, by creating a new ContentHandler
subclass that getContent() can use; third, by installing a ContentHandlerFactory
with URLConnection.setContentHandlerFactory(), changing the way the
application looks for content handlers.

17.2 The ContentHandler Class

A subclass of ContentHandler overrides the getContent() method to return an
object that's the Java equivalent of the content. This method can be quite simple or
quite complex, depending almost entirely on the complexity of the content type you're
trying to parse. A text/plain content handler is quite simple; a text/rtf content
handler would be very complex.

The ContentHandler class has only a simple noargs constructor:

public ContentHandler()

Since ContentHandler is an abstract class, you never call its constructor directly,
only from inside the constructors of subclasses.

The primary method of the class, albeit an abstract one, is getContent():

public abstract Object getContent(URLConnection uc) throws
IOException

This method is normally called only from inside the getContent() method of a
URLConnection object. It is overridden in a subclass that is specific to the type of
content being handled. getContent() should use the URLConnection's
InputStream to create an object. There are no rules about what type of object a
content handler should return. In general, this depends on what the application
requesting the content expects. Content handlers for text-like content bundled with the
JDK return some subclass of InputStream. Content handlers for images return
ImageProducer objects.

The getContent() method of a content handler does not get the full InputStream
that the URLConnection has access to. The InputStream that a content handler sees
should include only the content's raw data. Any MIME headers or other protocol-
specific information that come from the server should be stripped by the
URLConnection before it passes the stream to the ContentHandler. A
ContentHandler is responsible only for content, not for any protocol overhead that
may be present. The URLConnection should have already performed any necessary
handshaking with the server and interpreted any headers it sends.

17.2.1 A Content Handler for Tab-Separated Values

To see how content handlers work, let's create a ContentHandler that handles the
text/tab-separated-values content type. We aren't concerned with how the tab-
separated values get to us. That's for a protocol handler to deal with. All a
ContentHandler needs to know is the MIME type and format of the data.

Tab-separated values are produced by many database and spreadsheet programs. A
tab-separated file may look something like this. Tabs are indicated by arrows:

JPE Associates 341 Lafayette Street, Suite 1025 New York Æ NY Æ 10012
O'Reilly & Associates 103 Morris Street, Suite A Sebastopol Æ CA Æ 95472

In database parlance, each line is a record, and the data before each tab is a field. It is
usually (though not necessarily) true that each field has the same meaning in each
record. In the previous example, the first field is the company name.

The first question to ask is: what kind of Java object should we convert the tab-
separated values to? The simplest and most general way to store each record is as an
array of Strings. Successive records can be collected in a Vector. In many
applications, however, you have a great deal more knowledge about the exact format
and meaning of the data than we do here. The more you know about the data you're
dealing with, the better a ContentHandler you can write. For example, if you know
that the data you're downloading represents U.S. addresses, then you could define a
class like this:

public class Address {

 private String name;
 private String street;
 private String city;
 private String state;
 private String zip;

}

This class would also have appropriate constructors and other methods to represent
each record. In this example, we don't know anything about the data in advance, or
how many records we'll have to store. Therefore, we will take the most general
approach and convert each record into an array of strings, using a Vector to store
each array until there are no more records. The getContent() method can return the
Vector of String arrays.

Example 17.1 shows the code for such a ContentHandler. The full package-qualified
name is com.macfaq.net.www.content.text.tab_separated_values. This
unusual class name follows the naming convention for a content handler for the
MIME type text/tab-separated-values. Since MIME types often contain hyphens, as in
this example, a convention exists to replace these with the underscore (_). Thus
text/tab-separated-values becomes text.tab_separated_values. To install
this content handler, all that's needed is to put the compiled .class file somewhere the
class loader can find it and set the java.content.handler.pkgs property to
com.macfaq.net.www.content.

Example 17.1. A ContentHandler for text/tab-separated-values

package com.macfaq.net.www.content.text;

import java.net.*;
import java.io.*;
import java.util.*;
import com.macfaq.io.SafeBufferedReader // From Chapter 4

public class tab_separated_values extends ContentHandler {

 public Object getContent(URLConnection uc) throws IOException {

 String theLine;
 Vector v = new Vector();

 InputStreamReader isr = new
InputStreamReader(uc.getInputStream());
 SafeBufferedReader in = new SafeBufferedReader(isr);
 while ((theLine = in.readLine()) != null) {
 String[] linearray = lineToArray(theLine);
 v.addElement(linearray);
 }

 return v;

 }

 private String[] lineToArray(String line) {

 int numFields = 1;
 for (int i = 0; i < line.length(); i++) {
 if (line.charAt(i) == '\t') numFields++;
 }
 String[] fields = new String[numFields];
 int position = 0;
 for (int i = 0; i < numFields; i++) {
 StringBuffer buffer = new StringBuffer();
 while (position < line.length() && line.charAt(position) !=
'\t') {
 buffer.append(line.charAt(position));
 position++;
 }
 fields[i] = buffer.toString();
 position++;
 }

 return fields;

 }
}

Example 17.1 has two methods. The private utility method lineToArray() converts
a tab-separated string into an array of strings. This method is for the private use of this
subclass and is not required by the ContentHandler interface. The more complicated
the content you're trying to parse, the more such methods your class will need. The
lineToArray() method begins by counting the number of tabs in the string. This
sets the numFields variable to one more than the number of tabs. An array is created
for the fields with the length numFields. Then a for loop fills the array with the
strings between the tabs. Then this array is returned.

You may have expected a StringTokenizer to split the line into
parts. However, that class has unusual ideas about what makes
up a token. In particular, it would interpret multiple tabs in a row
as a single delimiter. That is, it never returns an empty string as a
token.

The getContent() method starts by instantiating a Vector. Then it gets the
InputStream from the URLConnection uc and chains this to an InputStreamReader,
which is in turn chained to the SafeBufferedReader introduced in Chapter 4, so it
can read it one line at a time in a while loop. Each line is fed to the lineToArray()
method, which splits it into a String array. This array is then added to the Vector.
When no more lines are left, the loop exits and the Vector is returned.

17.2.2 Using Content Handlers

Now that you've written your first ContentHandler, let's see how to use it in a
program. Files of MIME type text/tab-separated-values can be served by gopher
servers, HTTP servers, FTP servers, and more. Let's assume you're retrieving a tab-
separated-values file from an HTTP server. The filename should end with the .tsv
or .tab extension so that the server knows it's a text/tab-separated-values file.

Not all servers are configured to support this type out of the box.
Consult your server documentation to see how to set up a
MIME-type mapping for your server. For instance, to configure
my Apache server, I added these lines to my .htaccess file:

AddType text/tab-separated-values tab
AddType text/tab-separated-values tsv

You can test the web server configuration by connecting to port
80 of the web server with Telnet and requesting the file
manually:

% telnet metalab.unc.edu 80
Trying 127.0.0.1...
Connected to metalab.unc.edu.
Escape character is `^]'.
GET /javafaq/addresses.tab HTTP 1.0

HTTP 1.0 200 OK
Date: Mon, 15 Nov 1999 18:36:51 GMT
Server: Apache/1.3.4 (Unix) PHP/3.0.6 mod_perl/1.17
Last-Modified: Thu, 04 Nov 1999 18:22:51 GMT
Content-type: text/tab-separated-values
Content-length: 163

JPE Associates 341 Lafayette Street, Suite 1025 New
York NY 10012
O'Reilly & Associates 103 Morris Street, Suite A
Sebastopol CA 95472
Connection closed by foreign host.

You're looking for a line that says Content-type: text/tab-
separated-values. If you see a Content-type of text/plain,
application/octet-stream, or some other value, or you don't
see any Content-type at all, the server is misconfigured and must
be fixed before you continue.

The application that uses the tab-separated-values content handler does not need to
know about it explicitly. It simply has to call the getContent() method of URL or
URLConnection on a URL with a matching MIME type. Furthermore, the package
where the content handler can be found has to be listed in the
java.content.handlers.pkg property.

Example 17.2 is a class that downloads and prints a text/tab-separated-values
file using the ContentHandler of Example 17.1. However, note that it does not
import com.macfaq.net.www.content.text and that it never references the
tab_separated_values class. It does explicitly add com.macfaq.net.www.content
to the java.content.handlers.pkgs property because that's the simplest way to
make sure this standalone program works. However, the lines that do that could be
deleted if the property were set in a property file or from the command line, and
indeed this is required in Java 1.1.

Example 17.2. The tab-separated-values ContentTester Class

import java.io.*;
import java.net.*;
import java.util.*;

public class TSVContentTester {

 private static void test(URL u) throws IOException {

 Object content = u.getContent();
 Vector v = (Vector) content;
 for (Enumeration e = v.elements() ; e.hasMoreElements() ;) {
 String[] sa = (String[]) e.nextElement();
 for (int i = 0; i < sa.length; i++) {
 System.out.print(sa[i] + "\t");
 }
 System.out.println();
 }

 }

 public static void main (String[] args) {

 // If you uncomment these lines in Java 1.2, then you don't
 // have to set the java.content.handler.pkgs property from the
 // command line or your properties files.

/* String pkgs = System.getProperty("java.content.handler.pkgs",
"");
 if (!pkgs.equals("")) {
 pkgs = pkgs + "|";
 }
 pkgs += "com.macfaq.net.www.content";
 System.setProperty("java.content.handler.pkgs", pkgs); */

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 test(u);
 }
 catch (MalformedURLException e) {

 System.err.println(args[i] + " is not a good URL");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

Here's how you run this program in Java 1.1 and 1.3. The arrows indicate tabs:

% java -Djava.content.handler.pkgs=com.macfaq.net.www.content\
 TSVContentTester http://metalab.unc.edu/javafaq/addresses.tab
JPE Associates

341 Lafayette Street, Suite 1025

New York

NY

10012
O'Reilly & Associates

103 Morris Street, Suite A

Sebastopol

CA

95472

Java 1.2 is trickier because the new class-loading policy used in Java 1.2 prevents
content handlers from being loaded from the local class path. This bug is fixed in Java
1.3. However, in Java 1.2, simply running Example 17.2 will result in a
ClassCastException. Since the custom content handler isn't found, getContent()
returns an InputStream (specifically a sun.net.www.MeteredStream) instead:

% java TSVContentTester http://metalab.unc.edu/javafaq/addresses.tab
java.lang.ClassCastException: sun.net.www.MeteredStream
 at TSVContentTester.test(TSVContentTester.java:10)
 at TSVContentTester.main(TSVContentTester.java:35)

There are a couple of ways around this. You can use the oldjava interpreter instead.
This does load content handlers from the local class path. For example:

% oldjava TSVContentTester
http://metalab.unc.edu/javafaq/addresses.tab
JPE Associates

341 Lafayette Street, Suite 1025

New York

NY

10012
O'Reilly & Associates

103 Morris Street, Suite A

Sebastopol

CA

95472

Alternatively, you can use the nonstandard -Xbootclasspath command-line switch
to tell Java where to find the content handlers. For example, this line tells Java to look
in the current directory for content handlers and other files before looking in the rt.jar
file (the exact location of the rt.jar file will have to be adjusted to match your system):

% java -Xbootclasspath:.;/usr/local/jdk1.3/jre/lib/rt.jar\
TSVContentTester http://metalab.unc.edu/javafaq/addresses.tab
JPE Associates

341 Lafayette Street, Suite 1025

New York

NY

10012
O'Reilly & Associates

103 Morris Street, Suite A

Sebastopol

CA

95472

The bug that requires these workarounds is present in all versions of Java 1.2, though
it doesn't manifest itself in applets because of the different nature of the ClassLoader
that a web browser uses. Of course, the ultimate solution is to use a
ContentHandlerFactory, an option I'll discuss later.

17.2.3 Choosing Return Types

Java 1.3 adds one overloaded variant of the getContent() method to the
ContentHandler class:

public Object getContent(URLConnection uc, Class[] classes) // Java
1.3
 throws IOException

The difference is the array of java.lang.Class objects passed as the second
argument. This allows the caller to request that the content be returned as one of the
types in the array and enables content handlers to support multiple types. For example,
the text/tab-separated-values content handler could return data as a Vector, an array,
a string, or an InputStream. One would be the default used by the single argument
getContent() method, while the others would be options that a client could request.

If the client doesn't request any of the classes this ContentHandler knows how to
provide, then it returns null.

To call this method, the client invokes the method with the same arguments in a URL
or URLConnection object. It passes an array of Class objects in the order it wishes to
receive the data. Thus, if it prefers to receive a String but is willing to accept an
InputStream and will take a Vector as a last resort, then it would put String.class
in the zeroth component of the array, InputStream.class in the first component of
the array, and Vector.class in the last component of the array. Then it would use
instanceof to test what was actually returned and either process it or convert it into
the preferred type. For example:

Class[] requestedTypes = {String.class, InputStream.class,
 Vector.class};
Object content = url.getContent(requestedTypes);
if (content instanceof String) {
 String s = (String) content;
 System.out.println(s);
}
else if (content instanceof InputStream) {
 InputStream in = (InputStream) content;
 int c;
 while ((c = in.read()) != -1) System.out.write(c);
}
else if (content instanceof Vector) {
 Vector v = (Vector) content;
 for (Enumeration e = v.elements() ; e.hasMoreElements() ;) {
 String[] sa = (String[]) e.nextElement();
 for (int i = 0; i < sa.length; i++) {
 System.out.print(sa[i] + "\t");
 }
 System.out.println();
 }
}
else {
 System.out.println("Unrecognized content type " +
content.getClass());
}

To demonstrate this, let's write a content handler that can be used in association with
the time protocol. Recall that the time protocol returns the current time at the server as
a 4-byte, big-endian unsigned integer giving the number of seconds since midnight,
January 1, 1900, Greenwich Mean Time. There are several obvious candidates for
storing this data in a Java content handler, including java.lang.Long
(java.lang.Integer won't work since the unsigned value may overflow the bounds
of an int), java.util.Date, java.util.Calendar, java.lang.String, and
java.io.InputStream, which often works as a last resort. Example 17.3 provides all
five options. Since there's no standard MIME type for the time format, we'll use
application for the type to indicate that this is binary data, and x-time for the
subtype to indicate that this is a nonstandard extension type. It will be up to the time
protocol handler to return the right content type.

Example 17.3. A Time Content Handler

package com.macfaq.net.www.content.application;

import java.net.*;
import java.io.*;
import java.util.*;

public class x_time extends ContentHandler {

 public Object getContent(URLConnection uc) throws IOException {

 Class[] classes = new Class[1];
 classes[0] = Date.class;
 return this.getContent(uc, classes);

 }

 public Object getContent(URLConnection uc, Class[] classes)
 throws IOException {

 InputStream in = uc.getInputStream();
 for (int i = 0; i < classes.length; i++) {
 if (classes[i] == InputStream.class) {
 return in;
 }
 else if (classes[i] == Long.class) {
 long secondsSince1900 = readSecondsSince1900(in);
 return new Long(secondsSince1900);
 }
 else if (classes[i] == Date.class) {
 long secondsSince1900 = readSecondsSince1900(in);
 Date time = shiftEpochs(secondsSince1900);
 return time;
 }
 else if (classes[i] == Calendar.class) {
 long secondsSince1900 = readSecondsSince1900(in);
 Date time = shiftEpochs(secondsSince1900);
 Calendar c = Calendar.getInstance();
 c.setTime(time);
 return c;
 }
 else if (classes[i] == String.class) {
 long secondsSince1900 = readSecondsSince1900(in);
 Date time = shiftEpochs(secondsSince1900);
 return time.toString();
 }
 }

 return null; // no requested type available

 }

 private long readSecondsSince1900(InputStream in)
 throws IOException {

 long secondsSince1900 = 0;
 for (int j = 0; j < 4; j++) {
 secondsSince1900 = (secondsSince1900 << 8) | in.read();
 }
 return secondsSince1900;

 }

 private Date shiftEpochs(long secondsSince1900) {

 // The time protocol sets the epoch at 1900, the Java Date class
 // at 1970. This number converts between them.
 long differenceBetweenEpochs = 2208988800L;

 long secondsSince1970 = secondsSince1900 -
differenceBetweenEpochs;
 long msSince1970 = secondsSince1970 * 1000;
 Date time = new Date(msSince1970);
 return time;

 }
}

Most of the work is performed by the second getContent() method. This checks to
see whether it recognizes any of the classes in the classes array. If so, it attempts to
convert the content into an object of that type. The for loop is arranged so that classes
earlier in the array take precedence; that is, first we try to match the first class in the
array; next we try to match the second class in the array; then the third class in the
array; and so on. As soon as one class is matched, the method returns so later classes
won't be matched even if they're an allowed choice.

Once a type is matched, a simple algorithm converts the four bytes that the time
server sends into the right kind of object, either an InputStream, a Long, a Date, a
Calendar, or a String. The InputStream conversion is trivial. The Long conversion
is one of those rare times when it seems a little inconvenient that primitive data types
aren't objects. Although you can convert to and return any object type, you can't
convert to and return a primitive data type like long, so we return the type wrapper
class Long instead. The Date and Calendar conversions require shifting the origin of
the time from January 1, 1900 to January 1, 1970 and changing the units from seconds
to milliseconds as discussed in Chapter 10. Finally, the conversion to a String simply
converts to a Date first, then invokes the Date object's toString() method.

While it would be possible to configure a web server to send data of MIME type
application/x-time, this class is really designed to be used by a custom protocol
handler. This handler would know not only how to speak the time protocol, but also
how to return application/x-time from the getContentType() method. Example
17.4 and Example 17.5 demonstrate such a protocol handler. It assumes that time
URLs look like time://vision.poly.edu:3737/.

Example 17.4. The URLConnection for the Time Protocol Handler

package com.macfaq.net.www.protocol.time;

import java.net.*;
import java.io.*;
import com.macfaq.net.www.content.application.*;

public class TimeURLConnection extends URLConnection {

 private Socket connection = null;
 public final static int DEFAULT_PORT = 37;

 public TimeURLConnection (URL u) {
 super(u);
 }

 public String getContentType() {
 return "application/x-time";
 }

 public Object getContent() throws IOException {
 ContentHandler ch = new x_time();
 return ch.getContent(this);
 }

 public Object getContent(Class[] classes) throws IOException {
 ContentHandler ch = new x_time();
 return ch.getContent(this, classes);
 }

 public InputStream getInputStream() throws IOException {
 if (!connected) this.connect();
 return this.connection.getInputStream();
 }

 public synchronized void connect() throws IOException {

 if (!connected) {
 int port = url.getPort();
 if (port < 0) {
 port = DEFAULT_PORT;
 }
 this.connection = new Socket(url.getHost(), port);
 this.connected = true;
 }
 }
}

In general, it should be enough for the protocol handler to simply know or be able to
deduce the correct MIME content type. However, in a case like this where both
content and protocol handlers must be provided, you can tie them a little more closely
together by overriding getContent() as well. This allows you to avoid messing
with the java.content.handler.pkgs property or installing a
ContentHandlerFactory. You will still need to set the
java.protocolhandler.pkgs property to point to your package or install a URLS
StreamHandlerFactory, however. Example 17.5 is a simple URLStreamHandler for
the time protocol handler.

Example 17.5. The URLStreamHandler for the Time Protocol Handler

package com.macfaq.net.www.protocol.time;

import java.net.*;
import java.io.*;
public class Handler extends URLStreamHandler {

 protected URLConnection openConnection(URL u) throws IOException {
 return new TimeURLConnection(u);
 }
}

We could install the time protocol handler into HotJava, as in the previous chapter.
However, even if we place the time content handler in HotJava's class path, HotJava
won't use it. Consequently, I've written a simple standalone application, shown in
Example 17.6, that uses these protocol and content handlers to tell the time. Notice
that it does not need to import or directly refer to any of the classes involved. It
simply lets the URL find the right content handler.

Example 17.6. URLTimeClient

import java.net.*;
import java.util.*;
import java.io.*;

public class URLTimeClient {

 public static void main(String[] args) {

 System.setProperty("java.protocol.handler.pkgs",
 "com.macfaq.net.www.protocol");

 try {
 // You can replace this with your own time server
 URL u = new URL("time://tock.usno.navy.mil/");
 Class[] types = {String.class, Date.class,
 Calendar.class, Long.class};
 Object o = u.getContent(types);
 System.out.println(o);
 }
 catch (IOException e) {
 // Let's see what went wrong
 e.printStackTrace();
 }
 }
}

Here's a sample run:

D:\JAVA\JNP2\examples\16>java URLTimeClient
Thu Nov 18 08:27:31 PST 1999

In this case, a String object was returned. This was the first choice of
URLTimeClient but the last choice of the content handler. The client choice always
takes precedence.

17.3 The ContentHandlerFactory Interface

A ContentHandlerFactory defines the rules for where ContentHandler classes are
stored. Create a class that implements ContentHandlerFactory, and give this class a
createContentHandler() method that knows how to instantiate your
ContentHandler. The createContentHandler() method should return null if it
can't find a ContentHandler appropriate for a MIME type; null signals Java to look
for ContentHandler classes in the default locations. When your application starts,
call the URLConnection's setContentHandlerFactory() method to set the

ContentHandlerFactory. This method may be called only once in the lifetime of an
application.

17.3.1 The createContentHandler() Method

Just as the createURLStreamHandler() method of the URLStreamHandlerFactory
interface was responsible for finding and loading the appropriate protocol handler, so
too the createContentHandler() method of the ContentHandlerFactory
interface is responsible for finding and loading the appropriate ContentHandler
given a MIME type:

public abstract ContentHandler createContentHandler(String mimeType)

This method should be called only by the getContent() method of a
URLConnection object. For instance, Example 17.7 is a ContentHandlerFactory
that knows how to find the right handler for the text/tab-separated-values content
handler of Example 17.1:

Example 17.7. TabFactory

package com.macfaq.net.www.content;

import java.net.*;

public class TabFactory implements ContentHandlerFactory {

 public ContentHandler createContentHandler(String mimeType)) {

 if (mimeType.equals("text/tab-separated-values") {
 return new
com.macfaq.net.www.content.text.tab_separated_values();
 }
 else {
 return null; // look for the handler in the default locations
 }
 }
}

This factory knows how to find only one kind of content handler, but there's no limit
to how many a factory can know about. For example, this createContentHandler()
method also suggests handlers for application/x-time, text/plain, video/mpeg, and
model/vrml. Notice that when you're using a ContentHandlerFactory, you don't
necessarily have to stick to standard naming conventions for ContentHandler
subclasses:

public ContentHandler createContentHandler(String mimeType)) {

 if (mimeType.equals("text/tab-separated-values") {
 return new
com.macfaq.net.www.content.text.tab_separated_values();
 }
 else if (mimeType.equals("application/x-time") {
 return new com.macfaq.net.www.content.application.x_time();
 }
 else if (mimeType.equals("text/plain") {

 return new sun.net.www.content.text.plain();
 }
 if (mimeType.equals("video/mpeg") {
 return new com.macfaq.video.MPEGHandler();
 }
 if (mimeType.equals("model/vrml") {
 return new com.macfaq.threed.VRMLModel();
 }
 else {
 return null; // look for the handler in the default locations
 }
}

17.3.2 Installing Content Handler Factories

A ContentHandlerFactory is installed in an application using the static
URLConnection.setContentHandlerFactory() method:

public static void setContentHandlerFactory(ContentHandlerFactory fac)
 throws SecurityException, Error

Note that this method is in the URLConnection class, not the ContentHandler class.
It may be invoked at most once during any run of an application. It throws an Error if
it is called a second time.

Using a ContentHandlerFactory such as the TabFactory in Example 17.5, it's
possible to write a standalone application that can automatically load our tab-
separated-values content handler and that runs in Java 1.1 through 1.3 without any
major hassles with the class path. Example 17.8 is such a program. However, as with
most other setFactory() methods, untrusted applets will generally not be allowed
to set the content handler factory. Attempting to do so will throw a
SecurityException. Consequently, installing new content handlers in applets pretty
much requires directly accessing the getContent() method of the ContentHandler
subclass itself. Ideally, this shouldn't be necessary, but until Sun provides better
support for downloadable content handlers in browsers, this is what we're stuck with.

Example 17.8. TabLoader That Uses a ContentHandlerFactory

import java.io.*;
import java.net.*;
import java.util.*;
import com.macfaq.net.www.content.*;

public class TabLoader {

 public static void main (String[] args) {

 URLConnection.setContentHandlerFactory(new TabFactory());

 for (int i = 0; i < args.length; i++) {
 try {
 URL u = new URL(args[i]);
 Object content = u.getContent();
 Vector v = (Vector) content;
 for (Enumeration e = v.elements() ; e.hasMoreElements() ;)
{

 String[] sa = (String[]) e.nextElement();
 for (int j = 0; j < sa.length; j++) {
 System.out.print(sa[j] + "\t");
 }
 System.out.println();
 }
 }
 catch (MalformedURLException e) {
 System.err.println(args[i] + " is not a good URL");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

Here's a typical run. As usual, tabs are indicated by arrows:

% java TabLoader http://metalab.unc.edu/javafaq/addresses.tab
JPE Associates

341 Lafayette St, Suite 1025

New York

NY

10012
O'Reilly & Associates

103 Morris St, Suite A

Sebastopol

CA

95472

17.4 A Content Handler for an Image Format: image/x-fits

That's really all there is to content handlers. As one final example, I'll show you how
to write a content handler for image files. These differ from the text-based content
handlers you've already seen in that they generally produce an object that implements
the java.awt.ImageProducer interface rather than an Input Stream object. The
specific example we'll choose is the Flexible Image Transport System (FITS) format
in common use among astronomers. FITS files are grayscale, bitmapped images with
headers that determine the bit depth of the picture, the width and the height of the
picture, and the number of pictures in the file. Although FITS files commonly contain
several images (typically pictures of the same thing taken at different times), in this
example we look at only the first image in a file.[2]

[2] For more details about the FITS format and how to handle FITS files, see The Encyclopedia of Graphics File
Formats, 2nd ed., by James D. Murray and William vanRyper, pp. 392-400 (O'Reilly & Associates, Inc.)

There are a few key things you need to know to process FITS files. First, FITS files
are broken up into blocks of exactly 2,880 bytes. If there isn't enough data to fill a

block, it is padded with spaces at the end. Each FITS file has two parts, the header and
the primary data unit. The header occupies an integral number of blocks, as does the
primary data unit. If the FITS file contains extensions, there may be additional data
after the primary data unit, but we ignore that here. Any extensions that are present
will not change the image contained in the primary data unit.

The header begins in the first block of the FITS file. It may occupy one or more
blocks; the last block may be padded with spaces at the end. The header is ASCII text.
Each line of the header is exactly 80 bytes wide. The first eight characters of each
header line contain a keyword, which is followed by an equals sign (character 9),
followed by a space (10). The keyword is padded on the right with spaces to make it
eight characters long. Columns 11 through 30 contain a value; the value may be right-
justified and padded on the left with spaces if necessary. The value may be an integer,
a floating point number, a T or an F signifying the boolean values true and false, or a
string delimited with single quotes. A comment may appear in columns 31 through 80;
comments are separated from the value of a field by a slash (/). Here's a simple header
taken from a FITS image produced by K. S. Balasubramaniam at the Vacuum Tower
Telescope at the National Solar Observatory in Sunspot, New Mexico
(http://www.sunspot.noao.edu/):

SIMPLE = T /
BITPIX = 16 /
NAXIS = 2 /
NAXIS1 = 242 /
NAXIS2 = 252 /
DATE = '19 Aug 1996' /
TELESC = 'NSO/SP - VTT' /
IMAGE = 'Continuum' /
COORDS = 'N29.1W34.2' /
OBSTIME = '13:59:00 UT' /
END

Every FITS file begins with the keyword SIMPLE. This keyword always has the
value T. If this isn't the case, the file is not valid. The second line of a FITS file always
has the keyword BITPIX, which tells you how the data is stored. There are five
possible values for BITPIX, four of which correspond exactly to Java primitive data
types. The most common value of BITPIX is 16, meaning that there are 16 bits per
pixel, which is equivalent to a Java short. A BITPIX of 32 is a Java int. A BITPIX
of -32 means that each pixel is represented by a 32-bit floating point number
(equivalent to a Java float); a BITPIX of -64 is equivalent to a Java double. A
BITPIX of 8 means that 8 bits are used to represent each pixel; this is similar to a Java
byte, except that FITS uses unsigned bytes ranging from to 255; Java's byte data
type is signed, taking values that range from -128 to 127.

The remaining keywords in a FITS file may appear in any order. They are not
necessarily in the order shown here. In our FITS content handler, we first read all the
keywords into a Hashtable and then extract the ones we want by name.

The NAXIS header specifies the number of axes (that is, the dimension) of the
primary data array. A NAXIS value of one identifies a one-dimensional image. A
NAXIS value of two indicates a normal two-dimensional rectangular image. A
NAXIS value of three is called a data cube and generally means the file contains a

series of pictures of the same object taken at different moments in time. In other
words, time is the third dimension. On rare occasions, the third dimension can
represent depth: i.e., the file contains a true three-dimensional image. A NAXIS of
four means the file contains a sequence of three-dimensional pictures taken at
different moments in time. Higher values of NAXIS, while theoretically possible, are
rarely seen in practice. Our example is going to look at only the first two-dimensional
image in a file.

The NAXISn headers (where n is an integer ranging from 1 to NAXIS) give the
length of the image in pixels along that dimension. In this example, NAXIS1 is 242,
so the image is 242 pixels wide. NAXIS2 is 252, so this image is 252 pixels high.
Since FITS images are normally pictures of astronomical bodies like the sun, it
doesn't really matter if you reverse width and height. All FITS images contain the
SIMPLE, BITPIX, END, and NAXIS keywords, plus a series of NAXISn keywords.
These keywords all provide information that is essential for displaying the image.

The next five keywords are specific to this file and may not be present in other FITS
files. They give meaning to the image, though they are not needed to display it. The
DATE keyword says this image was taken on August 19, 1996. The TELESC
keyword says this image was taken by the Vacuum Tower Telescope (VTT) at the
National Solar Observatory (NSO) on Sacramento Peak (SP). The IMAGE keyword
says that this is a picture of the white light continuum; images taken through
spectrographs might look at only a particular wavelength in the spectrum. The
COORDS keyword gives the latitude and longitude of the telescope. Finally, the
OBSTIME keyword says this image was taken at 1:59 P.M. Universal Time
(essentially, Greenwich Mean Time). There are many more optional headers that don't
appear in this example. Like the five discussed here, the remaining keywords may
help someone interpret an image, but they don't provide the information needed to
display it.

The keyword END terminates the header. Following the END keyword, the header is
padded with spaces so that it fills a 2,880-byte block. A header may take up more than
one 2,880-byte block, but it must always be padded to an integral number of blocks.

The image data follows the header. How the image is stored depends on the value of
BITPIX, as explained earlier. Fortunately, these data types are stored in formats (big-
endian, two's complement) that can be read directly with a DataInputStream. The
exact meaning of each number in the image data is completely file-dependent. More
often than not, it's the number of electrons that were collected in a specific time
interval by a particular pixel in a charge coupled device (CCD); in older FITS files,
the numbers could represent the value read from photographic film by a densitometer.
However, the unifying theme is that larger numbers represent brighter light. To
interpret these numbers as a grayscale image, you map the smallest value in the data
to pure black, the largest value in the data to pure white, and scale all intermediate
values appropriately. A general-purpose FITS reader cannot interpret the numbers as
anything except abstract brightness levels. Without scaling, differences tend to get
washed out. For example, a dark spot on the Sun tends to be about 4,000K. That is
dark compared to the normal solar surface temperature of 6,000K, but considerably
brighter than anything you're likely to see on the surface of the Earth.

Example 17.9 is a FITS content hander. FITS files should be served with the MIME
type image/x-fits. This is almost certainly not included in your server's default
MIME-type mappings, so make sure to add a mapping between files that end
in .fit, .fts, or .fits and the MIME type image/x-fits.

Example 17.9. An x-fits Content Handler

package com.macfaq.net.www.content.image;

import java.net.*;
import java.io.*;
import java.awt.image.*;
import java.util.*;

public class x_fits extends ContentHandler {

 public Object getContent(URLConnection uc) throws IOException {

 int width = -1;
 int height = -1;
 int bitpix = 16;
 int[] data = null;
 int naxis = 2;
 Hashtable header = null;

 DataInputStream dis = new DataInputStream(uc.getInputStream());
 header = readHeader(dis);

 bitpix = getIntFromHeader("BITPIX ", -1, header);
 if (bitpix <= 0) return null;
 naxis = getIntFromHeader("NAXIS ", -1, header);
 if (naxis < 1) return null;
 width = getIntFromHeader("NAXIS1 ", -1, header);
 if (width <= 0) return null;
 if (naxis == 1) height = 1;
 else height = getIntFromHeader("NAXIS2 ", -1, header);
 if (height <= 0) return null;

 if (bitpix == 16) {
 short[] theInput = new short[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readShort();
 }
 data = scaleArray(theInput);
 }
 else if (bitpix == 32) {
 int[] theInput = new int[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readInt();
 }
 data = scaleArray(theInput);
 }
 else if (bitpix == 64) {
 long[] theInput = new long[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readLong();
 }
 data = scaleArray(theInput);
 }

 else if (bitpix == -32) {
 float[] theInput = new float[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readFloat();
 }
 data = scaleArray(theInput);
 }
 else if (bitpix == -64) {
 double[] theInput = new double[height * width];
 for (int i = 0; i < theInput.length; i++) {
 theInput[i] = dis.readDouble();
 }
 data = scaleArray(theInput);
 }
 else {
 System.err.println("Invalid BITPIX");
 return null;
 } // end if-else-if

 return new MemoryImageSource(width, height, data, 0, width);

 } // end getContent

 private Hashtable readHeader(DataInputStream dis)
 throws IOException {

 int blocksize = 2880;
 int fieldsize = 80;
 String key, value;
 int linesRead = 0;

 byte[] buffer = new byte[fieldsize];

 Hashtable header = new Hashtable();
 while (true) {
 dis.readFully(buffer);
 key = new String(buffer, 0, 8, "ASCII");
 linesRead++;
 if (key.substring(0, 3).equals("END")) break;
 if (buffer[8] != '=' || buffer[9] != ' ') continue;
 value = new String(buffer, 10, 20, "ASCII");
 header.put(key, value);
 }
 int linesLeftToRead
 = (blocksize - ((linesRead * fieldsize) % blocksize))/fieldsize;
 for (int i = 0; i < linesLeftToRead; i++) dis.readFully(buffer);

 return header;

 }

 private int getIntFromHeader(String name, int defaultValue,
 Hashtable header) {

 String s = "";
 int result = defaultValue;

 try {
 s = (String) header.get(name);
 }
 catch (NullPointerException e) {

 return defaultValue;
 }
 try {
 result = Integer.parseInt(s.trim());
 }
 catch (NumberFormatException e) {
 System.err.println(e);
 System.err.println(s);
 return defaultValue;
 }

 return result;

 }

 // parameterized types (templates) would help a lot here
 private int[] scaleArray(short[] theInput) {

 int data[] = new int[theInput.length];
 int max = 0;
 int min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 long r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;

 }

 private int[] scaleArray(int[] theInput) {

 int data[] = new int[theInput.length];
 int max = 0;
 int min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 long r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;

 }

 private int[] scaleArray(long[] theInput) {

 int data[] = new int[theInput.length];
 long max = 0;
 long min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 long r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;

 }

 private int[] scaleArray(double[] theInput) {

 int data[] = new int[theInput.length];
 double max = 0;
 double min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 double r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;

 }

 private int[] scaleArray(float[] theInput) {

 int data[] = new int[theInput.length];
 float max = 0;
 float min = 0;
 for (int i = 0; i < theInput.length; i++) {
 if (theInput[i] > max) max = theInput[i];
 if (theInput[i] < min) min = theInput[i];
 }
 double r = max - min;
 double a = 255.0/r;
 double b = -a * min;
 int opaque = 255;
 for (int i = 0; i < data.length; i++) {
 int temp = (int) (theInput[i] * a + b);
 data[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;
 }
 return data;
 }
}

The key method of the x_fits class is getContent(); it is the one method that the
ContentHandler class requires subclasses to implement. The other methods in this
class are all simply utility methods that help to break up the program into easier-to-
digest chunks. getContent() is called by a URLConnection, which passes a
reference to itself in the argument uc. The getContent() method reads data from
that URLConnection and uses it to construct an object that implements the
ImageProducer interface. To simplify the task of creating an ImageProducer, we
create an array of image data and use a MemoryImageSource object, which
implements the ImageProducer interface, to convert that array into an image.
getContent() returns this MemoryImageSource.

MemoryImageSource has several constructors. The one we use here requires us to
provide the width and height of the image, an array of integer values containing the
RGB data for each pixel, the offset of the start of that data in the array, and the
number of pixels per line in the array:

public MemoryImageSource(int width, int height, int[] pixels,
 int offset, int scanlines);

The width, height, and pixel data can be read from the header of the FITS image.
Since we are creating a new array to hold the pixel data, the offset is zero and the
scanlines are the width of the image.

Our content handler has a utility method called readHeader() that reads the image
header from uc's InputStream. This method returns a Hashtable containing the
keywords and their values as String objects. Comments are thrown away.
readHeader() reads 80 bytes at a time, since that's the length of each field. The first
eight bytes are transformed into the String key. If there is no key, the line is a
comment and is ignored. If there is a key, then the eleventh through thirtieth bytes are
stored in a String called value. The key-value pair is stored in the Hashtable. This
continues until the END keyword is spotted. At this point, we break out of the loop
and read as many lines as necessary to finish the block. (Recall that the header is
padded with spaces to make an integral multiple of 2,880). Finally, readHeader()
returns the Hashtable header.

After the header has been read into the Hashtable header, the InputStream is now
pointing at the first byte of data. However, before we're ready to read the data, we
must extract the height, width, and bits per pixel of the primary data unit from the
header. These are all integer values, so to simplify the code, we use the
getIntFromHeader(String name, int defaultValue, Hashtable header)
method. This method takes as arguments the name of the header whose value we want
(e.g., BITPIX), a default value for that header, and the Hashtable that contains the
header. This method retrieves the value associated with the string name from the
Hashtable and casts the result to a String object—we know this cast is safe because
we put only String data into the Hashtable. This String is then converted to an int
using Integer.parseInt(s.trim()); we then return the resulting int. If an
exception is thrown, getIntFromHeader() returns the defaultValue argument
instead. In this content handler, we use an impossible flag value (-1) as the default to
indicate that getIntFromHeader() failed.

getContent() uses getIntFromHeader() to retrieve four crucial values from the
header: NAXIS, NAXIS1, NAXIS2, and BITPIX. NAXIS is the number of
dimensions in the primary data array; if it is greater than or equal to two, we read the
width and height from NAXIS1 and NAXIS2. If there are more than two dimensions,
we still read a single two-dimensional frame from the data. A more advanced FITS
content handler might read subsequent frames and include them below the original
image, or display the sequence of images as an animation. If NAXIS is one, the width
is read from NAXIS1, and the height is set to one.[3] If NAXIS is less than one, there's
no image data at all, so we return null.

[3] A FITS file with NAXIS as one would typically be produced from observations that used a one-dimensional
CCD.

Now we are ready to read the image data. The data can be stored in one of five
formats, depending on the value of BITPIX: unsigned bytes, shorts, ints, floats, or
doubles. This is where the lack of parameterized types and templates in Java makes
coding painful: we need to repeat the algorithm for reading data five times, once for
each of the five possible data types. In each case, the data is first read from the stream
into an array of the appropriate type called theInput. Then this array is passed to the
scaleArray() method, which returns a scaled array. scaleArray() is an
overloaded method that reads the data in theInput and copies the data into the int
array theData, while scaling the data to fall from to 255; there is a different version
of scaleArray() for each of the five data types we might need to handle. Thus, no
matter what format the data starts in, it becomes an int array with values from to 255.
This data now needs to be converted into grayscale RGB values. The standard 32-bit
RGB color model allows 256 different shades of gray ranging from pure black to pure
white; 8 bits are used to represent opacity, usually called "alpha". To get a particular
shade of gray, the red, green, and blue bytes of an RGB triple should all be set to the
same value, and the alpha value should be 255 (fully opaque). Thinking of these as
four byte values, you need colors like 255.127.127.127 (medium gray) or
255.255.255.255 (pure white). This is produced by the lines:

int temp = (int) (theInput[i] * a + b);
theData[i] = (opaque << 24) | (temp << 16) | (temp << 8) | temp;

Once it has converted every pixel in theInput[] into a 32-bit color value and stored
the result in theData[], scaleArray() returns theData. The only thing left for
getContent() to do is feed this array, along with the header values previously
retrieved, into the MemoryImageSource constructor and return the result.

This FITS content handler has one glaring problem. The image has to be completely
loaded before the method returns. Since FITS images are quite literally astronomical
in size, loading the image can take a significant amount of time. It would be better to
create a new class for FITS images that implements the ImageProducer interface and
into which the data can be streamed asynchronously. The ImageConsumer that
eventually displays the image can use the methods of ImageProducer to determine
when the height and width are available, when a new scanline has been read, when the
image is completely loaded or errored out, and so on. getContent() would spawn a
separate thread to feed the data into the ImageProducer and would return almost
immediately. However, a FITS ImageProducer would not be able to take significant
advantage of progressive loading, because the file format doesn't define

unambiguously what each data value means; before you can generate RGB pixels, you
must read all of the data and find the minimum and maximum values.

Example 17.10 is a simple ContentHandlerFactory that recognizes FITS images.
For all types other than image/x-fits, it returns null so that the default locations will be
searched for content handlers.

Example 17.10. The FITS ContentHandlerFactory

import java.net.*;

public class FitsFactory implements ContentHandlerFactory {

 public ContentHandler createContentHandler(String mimeType) {

 if (mimeType.equalsIgnoreCase("image/x-fits")) {
 return new com.macfaq.net.www.content.image.x_fits();
 }
 return null;

 }
}

Example 17.11 is a simple program that tests this content handler by loading and
displaying a FITS image from a URL. In fact, it can display any image type for which
a content handler is installed. However, it does use the FitsFactory to recognize
FITS images.

Example 17.11. The FITS Viewer

import java.awt.*;
import javax.swing.*;
import java.awt.image.*;
import java.net.*;
import java.io.*;

public class FitsViewer extends JFrame {

 private URL url;
 private Image theImage;

 public FitsViewer(URL u) {
 super(u.getFile());
 this.url = u;
 }

 public void loadImage() throws IOException {

 Object content = this.url.getContent();
 ImageProducer producer;
 try {
 producer = (ImageProducer) content;
 }
 catch (ClassCastException e) {
 throw new IOException("Unexpected type " +
content.getClass());
 }
 if (producer == null) theImage = null;

 else {
 theImage = this.createImage(producer);
 int width = theImage.getWidth(this);
 int height = theImage.getHeight(this);
 if (width > 0 && height > 0) this.setSize(width, height);
 }

 }

 public void paint(Graphics g) {
 if (theImage != null) g.drawImage(theImage, 0, 0, this);
 }

 public static void main(String[] args) {

 URLConnection.setContentHandlerFactory(new FitsFactory());
 for (int i = 0; i < args.length; i++) {
 try {
 FitsViewer f = new FitsViewer(new URL(args[i]));
 f.setSize(252, 252);
 f.loadImage();
 f.show();
 }
 catch (MalformedURLException e) {
 System.err.println(args[i] + " is not a URL I recognize.");
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

The FitsViewer program extends JFrame. The main() method loops through all the
command-line arguments creating a new window for each one. Then it loads the
image into the window and shows it. The loadImage() method actually downloads
the requested picture by implicitly using the content handler of Example 17.9 to
convert the FITS data into a java.awt.Image object stored in the field theImage. If
the width and the height of the image are available (as they will be for a FITS image
using our content handler but maybe not for some other image types that load the
image in a separate thread), then the window is resized to the exact size of the image.
The paint() method simply draws this image on the screen. Most of the work is
done inside the content handler. In fact, this program can actually display images of
any type for which a content handler is installed and available. For instance, it works
equally well for GIF and JPEG images. Figure 17.2 shows this program displaying a
picture of part of solar granulation.

Figure 17.2. The FitsViewer application displaying a FITS image of solar granulation

Chapter 18. Remote Method Invocation
Historically, networking has been concerned with two fundamental applications. The
first application is moving files and data between hosts, which is handled by FTP,
SMTP (email), HTTP, NFS, and many other protocols. The second application is
allowing one host to run programs on another host. This is the traditional province of
Telnet, rlogin, Remote Procedure Call (RPC), and a lot of database middleware; you
can also think of CGI as a means to get a server to run a program for a client. Except
for the sections on CGI, most of this book has implicitly concerned itself with file and
data transfer. Remote Method Invocation (RMI), however, is an example of the
second application for networking: running a program on a remote host from a local
machine.

RMI is a core Java API and class library that allows Java programs to call certain
methods on a remote server. Furthermore, the methods running on the server can
invoke methods in objects on the client. Return values and arguments can be passed
back and forth in both directions. In essence, parts of a single program run in a Java
virtual machine on a local client while other parts of the same program run on a Java
virtual machine on a remote server. RMI creates the illusion that this distributed
program is running on one system with one memory space holding all the code and
data used on either side of the actual physical connection.

18.1 What Is Remote Method Invocation?

The Remote Method Invocation API lets Java objects on different hosts communicate
with each other. A remote object lives on a server. Each remote object implements a
remote interface that specifies which of its methods can be invoked by clients. Clients
invoke the methods of the remote object almost exactly as they invoke local methods.
For example, an object running on a local client can pass a database query as a
String argument to a method in a database object running on a remote server to ask it
to sum up a series of records. The server can return the result to the client as a double.
This is more efficient than downloading all the records and summing them up locally.
Java-compatible web servers can implement remote methods that allow clients to ask
for a complete index of the public files on the site. This could dramatically reduce the
time a server spends filling requests from web spiders such as Lycos and AltaVista.
Indeed, Excite already uses a non-Java-based version of this idea.

From the programmer's perspective, remote objects and methods work just like the
local objects and methods you're accustomed to. All the implementation details are
hidden. You just import one package, look up the remote object in a registry (which
takes one line of code), and make sure that you catch RemoteException when you
call the object's methods. From that point on, you can use the remote object almost as
freely and easily as you use an object running on your own system.

More formally, a remote object is an object whose methods may be invoked from a
different Java virtual machine than the one in which the object itself lives, generally
one running on a different computer. Each remote object implements one or more
remote interfaces that declare which methods of the remote object can be invoked by
the foreign system. RMI is the facility by which a Java program running on one
machine, say java.oreilly.com, can invoke a method in an object on a completely
different machine, say metalab.unc.edu.

For example, suppose an object on metalab.unc.edu has a query method that looks up
information in a local database. The query method would be exported in a remote
interface. The client on java.oreilly.com would look up the object in MetaLab's
registry, then call the query method, just as it would call a query method in an object
on java.oreilly.com. The object that queries the database runs on the server, but it
accepts arguments from and returns results to the client on java.oreilly.com. This is
simpler than designing and implementing a new socket-based protocol for
communication between the database server and its client. The details of making the
connections between the hosts and transferring the data are hidden in the RMI classes.

RPC
Remote Procedure Call (RPC), an older technology that Sun developed, does
much the same thing as RMI. RPC is language- and processor-independent;
RMI is processor-independent by nature but limited to programs written in
Java. To get the cross-platform portability that Java provides, RPC requires a
lot more overhead than RMI. RPC has to convert arguments between
architectures so that each computer can use its native datatypes. For example,
integers have to be converted between big-endian and little-endian
implementations. Furthermore, RPC can send only primitive datatypes, while
RMI can send objects. Sun doesn't support RPC in Java, though there are
some third-party implementations. See, for example, Netbula JavaRPC
(http://netbula.com/javarpc/). In short, RMI is the simplest solution for
communication between Java programs on different hosts. If you need to
connect with programs written in other languages, however, you should
investigate RPC or look into CORBA or SOAP.

18.1.1 Security

The prospect of remote hosts invoking methods in the local host's objects raises many
security issues. Super.secret.cia.gov probably doesn't want kgb.kremlin.ru to be able
to call readFile() methods on its machine. Java is uniquely suited to solving these
problems. Just as an applet host can limit the activities of an applet, so too can a host
that allows Remote Method Invocation to limit what the remote hosts can do.

The activities that a remote object can perform are limited in much the same way an
applet's activity is limited. A SecurityManager object checks all operations to make
sure they're allowed. Custom security managers can be defined for specific
applications. Public key authentication can be used to verify a user's identity and
allow different users different levels of access to a remote object. For example, the
general public may be allowed to query a database but not update it, while users from
inside a company might be allowed to both query and update the database.

18.1.2 Object Serialization

When an object is passed to or returned from a Java method, what's really transferred
is a reference to the object. In most current implementations of Java, references are
handles (doubly indirected pointers) to the location of the object in the memory of the
virtual machine. Passing objects between two machines thus raises some problems.
The remote machine can't read what's in the memory of the local machine. A
reference that's valid on one machine isn't meaningful on the other.

There are two ways around this problem. A special remote reference to the object (a
reference that points to the memory in the remote machine) can be passed, or a copy
of the object can be passed. When the local machine passes a remote object to the
remote machine, it passes a remote reference. The object has never really left the
remote machine. However, when the local machine passes one of its own objects to
the remote machine, it makes a copy of the object and sends the copy. The copy
moves from the local machine to the remote machine.

To copy an object, you need a way to convert the object into a stream of bytes. This is
more difficult than it appears at first glance because objects can include other objects
as fields; these fields also need to be copied when the object is copied. Object
serialization is a scheme by which objects can be converted into a byte stream and
then passed around to other machines, which rebuild the original objects from the
bytes. These bytes can also be written to disk and read back from disk at a later time,
allowing you to save the state of a program (or even an individual object).

For security reasons, Java places some limitations on which objects can be serialized.
All Java primitive types can be serialized, but nonremote Java objects can be
serialized only if they implement the java.io.Serializable interface. Basic Java
types that implement Serializable include String and Component. Container
classes such as Vector are serializable if all the objects they contain are serializable.
Furthermore, subclasses of a serializable class are also serializable. For example,
java.lang.Integer and java.lang.Float are serializable because the class they
extend, java.lang.Number, is serializable. Exceptions, errors, and other throwable
objects are always serializable. Most AWT and Swing components, containers, and
events are serializable. However, event adapters, image filters, and peer classes are
not. Streams, readers and writers, and most other I/O classes are not serializable. Type
wrapper classes are serializable except for Void. Classes in java.math are
serializable. Classes in java.lang.reflect are not serializable. The URL class is
serializable. However, Socket, URLConnection, and most other classes in java.net
are not. If in doubt, the class library documentation will tell you whether a given class
is serializable.

Object serialization is discussed in much greater detail in
Chapter 11 of my previous book, Java I/O (O'Reilly &
Associates, Inc., 1999).

CORBA and Friends
RMI isn't the final word in distributed object systems. Its biggest limitation is
that you can call only methods written in Java. What if you already have an
application written in some other language, such as C++, and you want to
communicate with it? You could use RPC, which I mentioned earlier—but
RPC isn't well adapted for object-oriented programming. The most general
solution for distributed objects is CORBA, the Common Object Request
Broker Architecture. CORBA lets objects written in different languages
communicate with each other. Java hooks into CORBA through the Java-
IDL. This goes beyond the scope of this book; to find out about these topics,
see:

Java-IDL

http://java.sun.com/products/jdk/idl/index.html

CORBA for Beginners

http://cgi.omg.org/corba/beginners.html

The CORBA FAQ list

http://www.corbadev.kiev.ua/corba-faq

Client/Server Programming with Java and CORBA

By Dan Harkey and Robert Orfali (John Wiley & Sons, 1998, ISBN
0-471-24578-X)

18.1.3 Under the Hood

The last two sections skimmed over a lot of details. Fortunately, Java hides most of
the details from you. However, it never hurts to understand how things really work.

The fundamental difference between remote objects and local objects is that remote
objects reside in a different virtual machine. Normally, object arguments are passed to
methods and object values are returned from methods by referring to something in a
particular virtual machine. This is called passing a reference. However, this method
doesn't work when the invoking method and the invoked method aren't in the same
virtual machine; for example, object 243 in one virtual machine has nothing to do
with object 243 in a different virtual machine. In fact, different virtual machines may
implement references in completely different and incompatible ways.

Therefore, three different mechanisms are used to pass arguments to and return results
from remote methods, depending on the type of the data being passed. Primitive types
(int, boolean, double, etc.) are passed by value, just as in local Java method
invocation. References to remote objects (that is, objects that implement the Remote
interface) are passed as a remote reference that allows the recipient to invoke methods
on the remote object. This is similar to the way local object references are passed to
local Java methods. Objects that do not implement the Remote interface are passed by
value; that is, complete copies are passed, using object serialization. Objects that do
not allow themselves to be serialized cannot be passed to remote methods. Remote
objects run on the server but can be called by objects running on the client.
Nonremote, serializable objects run on the client system.

To ensure compatibility with existing Java programs and implementations, and to
make the process as transparent to the programmer as possible, communication
between a remote object client and a server is implemented in a series of layers as
shown in Figure 18.1.

Figure 18.1. The RMI Layer Model

To the programmer, the client appears to talk directly to the server. In reality, the
client program talks only to a stub. The stub passes that conversation along to the
remote reference layer, which talks to the transport layer. The transport layer on the
client passes the data across the Internet to the transport layer on the server. The
server's transport layer then communicates with the server's remote reference layer,
which talks to a piece of server software called the skeleton. The skeleton
communicates with the server itself. (Servers written in Java 1.2 and later omit the
skeleton layer.) In the other direction (server-to-client), this flow is simply reversed.
Logically, data flows horizontally (client-to-server and back), but the actual flow of
data is vertical.

This approach may seem overly complex, but remember that most of the time you
don't need to think about it, any more than you need to think about how a telephone
translates your voice into a series of electrical impulses that get translated back to
sound at the other end of the phone call. You just call methods and return values.

Before you can call a method in an object, you need a reference to that object. To get
this reference, you'll ask a registry for it by name. The registry is a program that runs
on the server. It contains a list of all the remote objects that server is prepared to
export and their names. A client connects to the registry and gives it the name of the
remote object that it wants. Then the registry sends the client a reference to the object
that it can use to invoke methods on the server.

In reality, the client is only invoking local methods in a stub. The stub is a local object
that implements the remote interfaces of the remote object; this means that the stub
has methods matching the signatures of all the methods the remote object exports. In
effect, the client thinks it is calling a method in the remote object, but it is really
calling an equivalent method in the stub. Stubs are used in the client's virtual machine
in place of the real objects and methods that live on the server; you may find it helpful
to think of the stub as the remote object's surrogate on the client. When the client
invokes a method, the stub passes the invocation to the remote reference layer.

The remote reference layer carries out a specific remote reference protocol, which is
independent of the specific client stubs and server skeletons. The remote reference
layer is responsible for understanding what a particular remote reference means.
Sometimes the remote reference may refer to multiple virtual machines on multiple
hosts. In other situations, the reference may refer to a single virtual machine on the
local host or a virtual machine on a remote host. In essence, the remote reference layer
translates the local reference to the stub into a remote reference to the object on the
server, whatever the syntax or semantics of the remote reference may be. Then it
passes the invocation to the transport layer.

The transport layer sends the invocation across the Internet. On the server side, the
transport layer listens for incoming connections. Upon receiving an invocation, the
transport layer forwards it to the remote reference layer on the server. The remote
reference layer converts the remote references sent by the client into references for the
local virtual machine. Then it passes the request to the skeleton. The skeleton reads
the arguments and passes the data to the server program, which makes the actual
method call. If the method call returns a value, that value is sent down through the
skeleton, remote reference, and transport layers on the server side, across the Internet
and then up through the transport, remote reference, and stub layers on the client side.
In Java 1.2 and later, the skeleton layer is omitted and the server talks directly to the
remote reference layer. Otherwise, the protocol is the same.

18.2 Implementation

Most of the methods you need for working with remote objects are in three packages:
java.rmi , java.rmi.server, and java.rmi.registry. The java.rmi package
defines the classes, interfaces, and exceptions that will be seen on the client side. You
need these when you're writing programs that access remote objects but are not
themselves remote objects. The java.rmi.server package defines the classes,
interfaces, and exceptions that will be visible on the server side. You use these classes
when you are writing a remote object that will be called by clients. The
java.rmi.registry package defines the classes, interfaces, and exceptions that are
used to locate and name remote objects. These packages are part of the core API
starting in Java 1.1.

In this chapter and in Sun's documentation, the server side is
always considered to be "remote" and the client is always
considered "local". This can be confusing, particularly when
you're writing a remote object. When writing a remote object,
you're probably thinking from the viewpoint of the server, so that
the client appears to be remote.

18.2.1 The Server Side

To create a new remote object, you first define an interface that extends the
java.rmi.Remote interface. The Remote interface does not have any methods of its
own; its sole purpose is to tag remote objects so that they can be identified as such.
One definition of a remote object is an instance of a class that implements the Remote
interface, or any interface that extends Remote.

Your subinterface of Remote determines which methods of the remote object may be
called by clients. A remote object may have many public methods, but only those
declared in a remote interface can be invoked remotely. The other public methods
may be invoked only from within the virtual machine where the object lives.

Each method in your subinterface must declare that it throws RemoteException.
RemoteException is the superclass for most of the exceptions that can be thrown
when RMI is used. Many of these are related to the behavior of external systems and
networks and are thus beyond your control.

Example 18.1 is a simple interface for a remote object that calculates Fibonacci
numbers of arbitrary size. (Fibonacci numbers are the sequence that begins 0, 1, 1, 2,
3, 5, 8, 13 . . . in which each number is the sum of the previous two.) This remote
object can run on a high-powered server to calculate results for low-powered clients.
The interface declares two overloaded getFibonacci() methods, one of which
takes an int as an argument and the other of which takes a BigInteger. Both
methods return BigInteger because Fibonacci numbers grow very large very quickly.
A more complex remote object could have many more methods.

Example 18.1. The Hello Interface

import java.rmi.*;
import java.math.BigInteger;

public interface Fibonacci extends Remote {

 public BigInteger getFibonacci(int n) throws RemoteException;
 public BigInteger getFibonacci(BigInteger n) throws RemoteException;

}

Nothing in this interface says anything about how the calculation is implemented. For
instance, it could be calculated directly, using the methods of the
java.math.BigInteger class. It could be done equally easily with the more efficient

methods of the com.ibm.BigInteger class from IBM's alphaWorks
(http://www.alphaworks.ibm.com/tech/bigdecimal). It could be calculated with ints
for small values of n and BigInteger for large values of n. Every calculation could
be performed immediately, or a fixed number of threads could be used to limit the
load that this remote object places on the server. Calculated values could be cached
for faster retrieval on future requests, either internally or in a file or database. Any or
all of these are possible. The client neither knows nor cares how the server gets the
result as long as it produces the correct one.

The next step is to define a class that implements this remote interface. This class
should extend java.rmi.server.UnicastRemoteObject, either directly or indirectly
(i.e., by extending another class that extends UnicastRemoteObject):

public class UnicastRemoteObject extends RemoteServer

Without going into much detail, the UnicastRemoteObject provides a number of
methods that make Remote Method Invocation work. In particular, it marshals and
unmarshals remote references to the object. (Marshaling is the process by which
arguments and return values are converted into a stream of bytes that can be sent over
the network. Unmarshaling is the reverse: the conversion of a stream of bytes into a
group of arguments or a return value.)

If extending UnicastRemoteObject isn't convenient—for instance, because you'd
like to extend some other class—then you can instead export your object as a remote
object by passing it to one of the static UnicastRemoteObject.exportObject()
methods:

public static RemoteStub exportObject(Remote obj)
 throws RemoteException
public static Remote exportObject(Remote obj, int port) // Java 1.2
 throws RemoteException
public static Remote exportObject(Remote obj, int port, // Java 1.2
 RMIClientSocketFactory csf, RMIServerSocketFactory ssf)
 throws RemoteException

These create a remote object that uses your object to do the work. It's similar to how a
Runnable object can be used to give a thread something to do when it's inconvenient
to subclass Thread. In Java 1.2, you can pick the port your server runs on and even
the socket factories used to make the connections. In Java 1.1, you can use only a
randomly selected port. However, the registry will be able to tell clients which port
the server is running on. The registry generally runs on a well-known port.

Java 1.2 adds another kind of RemoteServer, the
java.rmi.activation.Activatable class:

public abstract class Activatable extends RemoteServer // Java 1.2

A UnicastRemoteObject exists only as long as the server that created it still runs.
When the server dies, the object is gone forever. Activatable objects allow clients to
reconnect to servers at different times across server shutdowns and restarts and still
get access to the same remote objects. It also has static

Activatable.exportObject() methods to invoke if you don't want to subclass
Activatable.

Example 18.2, the FibonacciImpl class, implements the remote interface Fibonacci.
This class has a constructor and two getFibonacci() methods. Only the
getFibonacci() methods will be available to the client, because they're the only
ones defined by the Fibonacci interface. The constructor is used on the server side
but is not available to the client.

Example 18.2. The FibonacciImpl Class

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.math.BigInteger;

public class FibonacciImpl implements Fibonacci {

 public FibonacciImpl() throws RemoteException {
 UnicastRemoteObject.exportObject(this);
 }

 public BigInteger getFibonacci(int n) throws RemoteException {

 return this.getFibonacci(new BigInteger(Long.toString(n)));

 }

 public BigInteger getFibonacci(BigInteger n) throws RemoteException
{

 System.out.println("Calculating the " + n + "th Fibonacci
number");
 BigInteger zero = new BigInteger("0");
 BigInteger one = new BigInteger("1");

 if (n.equals(zero)) return zero;
 if (n.equals(one)) return one;

 BigInteger i = one;
 BigInteger a = zero;
 BigInteger b = one;

 while (i.compareTo(n) == -1) {
 BigInteger temp = b;
 b = b.add(a);
 a = temp;
 i = i.add(one);
 }

 return b;

 }
}

The FibonacciImpl() constructor exports the object; that is, it creates a
UnicastRemoteObject on some port and starts it listening for connections. The

constructor is declared to throw RemoteException because
UnicastRemoteObject.exportObject() can throw that exception.

The getFibonacci(int n) method is trivial. It simply returns the result of
converting its argument to a BigInteger and calling the second getFibonacci()
method. The second method actually performs the calculation. It uses BigInteger
throughout the calculation to allow for arbitrarily large Fibonacci numbers of an
arbitrarily large index to be calculated. This can use a lot of CPU power and huge
amounts of memory. That's why you might want to move it to a special-purpose
calculation server rather than performing the calculation locally.

Although getFibonacci() is a remote method, there's nothing different about the
method itself. This is a simple case, but even vastly more complex remote methods
are not algorithmically different than their local counterparts. The only difference—
that a remote method is declared in a remote interface and a local method is not—is
completely external to the method itself.

Next we need to write a server that makes the Fibonacci remote object available to
the world. Example 18.3 is such a server. All it has is a main() method. It begins by
entering a try block that catches RemoteException. Then it constructs a new
FibonacciImpl object and binds that object to the name "fibonacci" using the Naming
class to talk to the local registry. A registry keeps track of the available objects on an
RMI server and the names by which they can be requested. When a new remote object
is created, the object adds itself and its name to the registry with the Naming.bind()
or Naming.rebind() method. Clients can then ask for that object by name or get a
list of all the remote objects that are available. Note that there's no rule that says the
name the object has in the registry has to have any necessary relation to the class
name. For instance, we could have called this object "Fred". Indeed, there might be
multiple instances of the same class all bound in a registry, each with a different name.
After registering itself, the server prints a message on System.out signaling that it is
ready to begin accepting remote invocations. If something goes wrong, then the catch
block prints a simple error message.

Example 18.3. The FibonacciServer Class

import java.net.*;
import java.rmi.*;

public class FibonacciServer {

 public static void main(String[] args) {

 try {
 FibonacciImpl f = new FibonacciImpl();
 Naming.rebind("fibonacci", f);
 System.out.println("Fibonacci Server ready.");
 }
 catch (RemoteException re) {
 System.out.println("Exception in FibonacciImpl.main: " + re);
 }
 catch (MalformedURLException e) {
 System.out.println("MalformedURLException " + e);
 }

 }

}

Although the main() method finishes fairly quickly here, the server will continue to
run because a nondaemon thread is spawned when the FibonacciImpl() exports the
FibonacciImpl object. This completes the server code you need to write.

18.2.2 The Client Side

Before a client can call a remote method, it needs to retrieve a remote reference to the
remote object. A program retrieves a remote reference by asking a registry on the
server for a remote object. It asks by calling the registry's lookup() method. The
exact naming scheme depends on the registry you use; the java.rmi.Naming class
provides a URL-based scheme for locating objects. As you can see in the following
code, these URLs have been designed so that they are similar to http URLs. The
protocol is rmi. The URL's file field specifies the remote object's name. The fields for
the hostname and the port number are unchanged:

Object o1 = Naming.lookup("rmi://metalab.unc.edu/fibonacci");
Object o2 = Naming.lookup("rmi://metalab.unc.edu:2048/fibonacci");

Like objects stored in Hashtables, Vectors, and other data structures that store
objects of different classes, the object that is retrieved from a registry loses its type
information. Therefore, before using the object, you must cast it to the remote
interface that the remote object implements (not to the actual class, which is hidden
from clients):

Fibonacci calculator = (Fibonacci) Naming.lookup("fibonacci");

Once a reference to the object has been retrieved and its type restored, the client can
call the object's remote methods pretty much as it would call methods in a local object.
The only difference is that you'll need to catch RemoteException for each remote
invocation:

try {
 BigInteger f56 = calculator.getFibonacci(56);
 System.out.println("The 56th Fibonacci number is " + f56);
 BigInteger f156 = calculator.getFibonacci(new BigInteger(156));
 System.out.println("The 156th Fibonacci number is " + f156);
}
catch (RemoteException e) {
 System.err.println(e)
}

Example 18.4 is a simple client for the Fibonacci interface of the last section.

Example 18.4. The FibonacciClient

import java.rmi.*;
import java.net.*;
import java.math.BigInteger;

public class FibonacciClient {

 public static void main(String args[]) {

 if (args.length == 0 || !args[0].startsWith("rmi:")) {
 System.err.println(
 "Usage: java Fibonacci client
rmi://host.domain:port/fibonacci number");
 return;
 }

 try {
 Object o = Naming.lookup(args[0]);
 Fibonacci calculator = (Fibonacci) o;
 for (int i = 1; i < args.length; i++) {
 try {
 BigInteger index = new BigInteger(args[i]);
 BigInteger f = calculator.getFibonacci(index);
 System.out.println("The " + args[i] + "th Fibonacci number
is "
 + f);
 }
 catch (NumberFormatException e) {
 System.err.println(args[i] + "is not an integer.");
 }
 }
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a valid RMI URL");
 }
 catch (RemoteException e) {
 System.err.println("Remote object threw exception " + e);
 }
 catch (NotBoundException e) {
 System.err.println(
 "Could not find the requested remote object on the server");
 }
 }
}

Compile the class as usual. Notice that because the object that Naming.lookup()
returns is cast to a Fibonacci, either the Fibonacci.java or Fibonacci.class file needs
to be available on the local host. A general requirement for compiling a client is to
have either the byte or source code for the remote object you're connecting to. To
some extent, you can relax this a little bit by using the reflection API, but you'll still
need to know at least something about the remote interface's API. Most of the time,
this isn't an issue, since the server and client are written by the same programmer or
team. The point of RMI is to allow a VM to invoke methods on remote objects, not to
compile against remote objects.

18.2.3 Compiling the Stubs

Before your server can begin accepting invocations, you must generate the stubs and
skeletons that the program requires. We have already discussed what the stubs and
skeletons do: the stub contains the information in the Remote interface (in this

example, an object with two getFibonacci() methods), and a skeleton is similar
but on the server side. Fortunately, we don't have to write them ourselves: they can be
generated automatically from the remote object's Java source code, using a utility
called rmic included with the JDK. To generate the stubs and skeletons for the
FibonacciImpl remote object, run rmic on the remote object's class. For example:

% rmic FibonacciImpl
% ls Fibonacci*
Fibonacci.class FibonacciImpl.class
FibonacciServer.class
Fibonacci.java FibonacciImpl.java
FibonacciServer.java
FibonacciClient.class FibonacciImpl_Skel.class
FibonacciClient.java FibonacciImpl_Stub.class

rmic reads the .class file of a remote object and produces .class files for the stubs and
skeletons needed for the remote object. The command-line argument to rmic is the
fully package-qualified class name (e.g., com.macfaq.rmi.examples.Chat, not just
Chat) of the remote object class.

rmic supports the same command-line options as the javac compiler for example, -
classpath and -d . For instance, if the class doesn't fall in the class path, then you
can specify the location with the -classpath command-line argument. For example,
the following command searches for FibonacciImpl.class in the directory test/classes:

% rmic -classpath test/classes FibonacciImpl

For the moment, copy the Fibonacci.class and FibonacciImpl_Stub.class files to both
the directory on the remote server from which the Fibonacci object will be run and
the directory on the local client where the Fibonacci object will be invoked.

18.2.4 Starting the Server

Now you're ready to start the server. There are actually two servers you need to run,
the remote object server itself (FibonacciServer in this example) and the registry
that allows local clients to connect to the remote server. Since the server expects to
talk to the Naming registry, you must start the registry first. Make sure all the stub,
skeleton, and server classes are in the server's class path and type:

% rmiregistry &

On Windows, you start it from a DOS prompt like this:

C:> start rmiregistry

In both examples here, the registry runs in the background. The registry tries to listen
to port 1,099 by default. If it fails, especially with a message like
"java.net.SocketException: Address already in use", then some other program is using
port 1099, possibly (though not necessarily) another registry service. You can run the
registry on a different port by appending a port number like this:

% rmiregistry 2048 &

If you use a different port, you'll need to include that port in URLs that refer to this
registry service.

Finally, you're ready to start your server. Run the server program just as you'd run any
Java class with a main() method:

% java FibonacciServer
Fibonacci Server ready.

Now your server and registry are ready to accept remote method calls.

18.2.5 Running the Client

Go back to the client system. Make sure that the client system has
FibonacciClient.class, Fibonacci.class, and FibonacciImpl_Stub.class in its class path.
On the client system, type:

C:\>java FibonacciClient rmi://host.com/fibonacci 0 1 2 3 4 5 56 156
The 0th Fibonacci number is 0
The 1th Fibonacci number is 1
The 2th Fibonacci number is 1
The 3th Fibonacci number is 2
The 4th Fibonacci number is 3
The 5th Fibonacci number is 5
The 56th Fibonacci number is 225851433717
The 156th Fibonacci number is 178890334785183168257455287891792

The client converts the command-line arguments to BigInteger objects. It sends
those objects over the wire to the remote server. The server receives each of those
objects, calculates the Fibonacci number for that index, and sends a BigInteger
object back over the Internet to the client. Here, I'm using a PC for the client and a
remote Unix box for the server. You can actually run both server and client on the
same machine, though that's not as interesting.

18.3 Loading Classes at Runtime

All the client really has to know about the remote object is its remote interface.
Everything else it needs—for instance, the stub classes—can be loaded from a web
server (though not an RMI server) at runtime using a class loader. Indeed, this ability
to load classes from the network is one of the unique features of Java. This is
especially useful in applets. The web server can send the browser an applet that
communicates back with the server for instance, to allow the client to read and write
files on the server. As with any time that classes are loaded from a potentially
untrusted host, they must be checked by a SecurityManager.

Unfortunately, while remote objects are actually quite easy to work with when you
can install the necessary stubs and classes in the local client class path, doing so when
you have to dynamically load the stubs and other classes is fiendishly difficult. While
Sun is good at application programming interface design, it is poor at user interface
design. The class path, the security architecture, and the reliance on poorly
documented environment variables are all bugbears that torment Java programmers.
Getting a local client object to download remote objects from a server requires

manipulating all of these in precise detail. Making even a small mistake will prevent
programs from running, with only the most generic of exceptions being provided to
tell the poor programmer what he or she did wrong. Exactly how difficult it is to make
the programs work depends on the context in which the remote objects are running. In
general, applet clients that use RMI are somewhat easier to manage than standalone
application clients. Standalone applications are feasible if the client can be relied on to
have access to the same .class files as the server has. Standalone applications that
need to load classes from the server border on impossible.

18.3.1 An Applet Client for a Remote Object

Example 18.5 is an applet client for the Fibonacci remote object. It has the same
basic structure as the FibonacciClient in Example 18.4. However, it uses a
TextArea to display the message from the server instead of using System.out.

Example 18.5. An Applet Client for the Fibonacci Object

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.rmi.*;
import java.math.BigInteger;

public class FibonacciApplet extends Applet {

 private TextArea resultArea
 = new TextArea("", 20, 72, TextArea.SCROLLBARS_BOTH);
 private TextField inputArea = new TextField(24);
 private Button calculate = new Button("Calculate");
 private String server;

 public void init() {

 this.setLayout(new BorderLayout());

 Panel north = new Panel();
 north.add(new Label("Type a non-negative integer"));
 north.add(inputArea);
 north.add(calculate);
 this.add(resultArea, BorderLayout.CENTER);
 this.add(north, BorderLayout.NORTH);
 Calculator c = new Calculator();
 inputArea.addActionListener(c);
 calculate.addActionListener(c);
 resultArea.setEditable(false);

 server = "rmi://" + this.getCodeBase().getHost() + "/fibonacci";

 }

 class Calculator implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 try {
 String input = inputArea.getText();
 if (input != null) {

 BigInteger index = new BigInteger(input);
 Fibonacci f = (Fibonacci) Naming.lookup(server);
 BigInteger result = f.getFibonacci(index);
 resultArea.setText(result.toString());
 }
 }
 catch (Exception ex) {
 resultArea.setText(ex.getMessage());
 }
 }
 }
}

You'll notice that the rmi URL is built from the applet's own codebase. This helps
avoid nasty security problems that arise when an applet tries to open a network
connection to a host other than the one it came from. RMI-based applets are certainly
not exempt from the usual restrictions on network connections.

Example 18.6 is a simple HTML file that can be used to load the applet from the web
browser.

Example 18.6. FibonacciApplet.html

<html>
<head>
<title>RMI Applet</title>
</head>
<body>
<h1>RMI Applet</h1>

<P>
<applet align="center" code=FibonacciApplet width=300 height=100>
</applet>
<hr>
</P>
</body>
</html>

Place FibonacciImpl_Stub.class, Fibonacci.class, FibonacciApplet.html, and
FibonacciServer.class in the same directory on your web server. Add this directory to
the server's class path, and start rmiregistry on the server. Then start
FibonacciServer on the server. For example:

% rmiregistry &
% java FibonacciServer &

Make sure that both of these are running on the actual web server machine. Many web
server farms use different machines for site maintenance and web serving, even
though both mount the same filesystems. To get past the applet security restriction,
both rmiregistry and FibonacciServer have to be running on the machine that serves
the FibonacciApplet.class file to web clients.

Now load FibonacciApplet.html into a web browser from the client. Figure 18.2
shows the result.

Figure 18.2. The Fibonacci applet

18.3.2 An Application Client for a Remote Object

RMI is one of the few areas of Java where it's actually easier to write an applet than a
standalone application. Writing standalone applications that can talk to remote objects
without already having the necessary .class files installed in the local class path is a
black art that has driven more than one humble programmer to madness. When you're
writing an applet, you rely on the web browser to handle security and class loading for
you. When you're writing a standalone application, you have to do all this yourself.
Most standalone applications ignore security and don't load classes from the network.
However, these are fundamental features of any program that uses RMI, whether an
applet or an application. Consequently, you have to deal with these issues, painful as
they are.

Java loads stubs from a remote host only if several conditions are met. These include:

• The application must be running under the control of a SecurityManager.
• The registry's java.rmi.server.codebase property must specify a URL

from which classes can be loaded.
• The stub and implementation classes must not be in the registry's class path.

The first thing to provide is a SecurityManager. The java.rmi package includes an
RMISecurityManager class. In Java 1.1, this class does permit access to the methods
needed to load classes from the network. Unfortunately, in Java 1.2, this class relies
on the default security policy, which is far too restrictive to allow classes to be loaded
from the network. This policy can be edited with the policytool, but only on a host-by-
host basis. Consequently, the only thing that really works is to write and install your

own subclass of SecurityManager that implements a looser policy. Example 18.7 is a
SecurityManager that permits everything in Java 1.2 but only what is required for
RMI in Java 1.1.

Example 18.7. A Very Lax SecurityManager

import java.rmi.*;
import java.security.*;

public class LaxSecurityManager extends RMISecurityManager {

 public void checkPermission(Permission p) {
 // do nothing
 }

}

You'll need to use Java 1.2 or later to compile this because Java 1.1 doesn't have a
Permission class. However, it can run in Java 1.1 provided you set Java 1.1 as your
target (the default target used by javac) and no code running in a 1.1 VM actually
invokes the checkPermission() method. This will work because Java 1.1 ignores
the checkPermission() method. Security checks are made by invoking methods
such as checkConnect() and checkRead() directly. These invocations will fall
back to the same methods in the RMISecurityManager superclass. In Java 1.2 and
later, however, all security checks go through the checkPermission() method. If
this method doesn't throw a SecurityException, then the action is allowed. A better
implementation would allow only those actions (like resolving hosts and connecting
to the codebase) that were really needed to implement class loading for RMI, but I'd
like to keep this example as simple as possible.

Next, this SecurityManager has to be installed in the client application. Example
18.8 is a very slight modification of the FibonacciClient of Example 18.4. All it
adds is three lines (shown in bold) to install the LaxSecurityManager. Otherwise, it's
the same.

Example 18.8. A FibonacciClient That Can Load Stubs from the Network

import java.rmi.*;
import java.net.*;
import java.math.BigInteger;

public class FibonacciClient {

 public static void main(String args[]) {

 if (args.length == 0 || !args[0].startsWith("rmi://")) {
 System.err.println(
 "Usage: java Fibonacci client
rmi://host.domain:port/fibonacci number");
 return;
 }

 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new LaxSecurityManager());

 }

 try {
 Object o = Naming.lookup(args[0]);
 Fibonacci calculator = (Fibonacci) o;
 for (int i = 1; i < args.length; i++) {
 try {
 BigInteger index = new BigInteger(args[i]);
 BigInteger f = calculator.getFibonacci(index);
 System.out.println("The " + args[i] + "th Fibonacci number
is "
 + f);
 }
 catch (NumberFormatException e) {
 System.err.println(args[i] + "is not an integer.");
 }
 }
 }
 catch (MalformedURLException e) {
 System.err.println(args[0] + " is not a valid RMI URL");
 }
 catch (RemoteException e) {
 System.err.println("Remote object threw exception " + e);
 }
 catch (NotBoundException e) {
 System.err.println(
 "Could not find the requested remote object on the server");
 }
 }
}

Now comes the tricky part. You'll need three machines: a client, an RMI server, and a
web server. (An anonymous FTP server can be used instead of the web server in a
pinch. Furthermore, all three can run on the same machine, though it's more
interesting if they run on different machines.) Compile all the files and generate the
necessary stubs. Make sure that any stubs and classes from previous examples are
safely out of the way and outside the class path. On the client, put the three files
FibonacciClient.class, Fibonacci.class, LaxSecurityManager.class—and nothing else.
On the web server, put the files that the client will need to load in a publicly
accessible directory: the stub and skeleton files as well the remote interface file
Fibonacci.class. And on the RMI server, put FibonacciServer.class,
FibonacciImpl.class, Fibonacci.class, and all the stub and skeleton files. However,
make sure that the directory containing these files is not in the class path of the RMI
server.

Check that the .class files on the web server are accessible. The easiest way to do this
is just to try to load one from your web browser, then cancel out of the dialog box that
asks you what to do with the .class file. Take note of the URL of the directory where
the .class files are.

On the RMI server, change to a directory that does not contain FibonacciServer.class,
FibonacciImpl.class, Fibonacci.class, and the stub and skeleton files. (Remember,
you need to keep these out of your class path. Otherwise, they'll be loaded from there
instead of from the network as you want.) Start rmiregistry in the background in the
usual fashion, that is:

% rmiregistry &

Or on Windows from a DOS prompt like this:

C:> start rmiregistry

If rmiregistry is already running, you can load new remote objects without shutting it
down. However, loading changed versions of old classes requires you to shut it down
and restart it.

Now, still on the RMI server, change into the directory that contains all your .class
files and stubs and skeletons. From here, start the FibonacciServer program while
setting the java.rmi.server.codebase property to the URL where the .class files
are stored on the network. For example, to specify that the classes can be found at
http://metalab.unc.edu/javafaq/rmi2/, you would type:

% java -
Djava.rmi.server.codebase=http://metalab.unc.edu/javafaq/rmi2/
FibonacciServer &
Fibonacci Server ready.

If the classes are in packages, then the java.rmi.server.codebase property would
point to the directory containing the top-level com or org directory rather than the
directory containing the .class files themselves. Both servers and clients will load
the .class files from this location if the files are not found in the local class path first.

Now the server's started and you're ready to connect to it from the client on the third
machine. The client will need to have the FibonacciClient.class file as well as the
LaxSecurityManager.class file. However, the client does not need to have the stub nor
any .class files for classes that the server uses. Run the FibonacciClient from the
command line as normal, and this is what you should see:

% java FibonacciClient rmi://login.metalab.unc.edu/fibonacci 0 1 56
156
The 0th Fibonacci number is 0
The 1th Fibonacci number is 1
The 56th Fibonacci number is 225851433717
The 156th Fibonacci number is 178890334785183168257455287891792

However, there are a lot of things that can go wrong, resulting in a variety of not
particularly helpful exceptions. If the java.rmi.server.codebase property is not set
on the server, or if the value of that property does not end in a / or the name of a JAR
archive, or if the directory structure doesn't match the package structure, then you'll
get some sort of MarshalException. If rmiregistry is using an older version of the
classes than some other part of the system, then the client will get a
RemoteException wrapping an UnmarshalException. If the .class files on the server
are in the rmiregistry's class path, then the client won't be able to load the stubs from
the web server, and you'll get a Class NotFoundException even though the classes
are right where they're supposed to be on the web server and even though the
java.rmi.server.codebase property is set to point to them. Getting all the details
right is challenging; so challenging, in fact, that I recommend you simply don't try to

load RMI classes from the network in standalone applications until Sun makes some
much needed simplifications in the setup required.

This still hasn't gone quite as far as it's possible to go. It loaded only the stubs from
the remote server. The client still needed to have the Fibonacci.class file on the
local system. An alternate approach is to load everything, including the main client
class itself from the server. Only a small bootstrap program is needed on the client.
This bootstrap program knows either the name of the client class it needs or how to
calculate it from the names in the registry. (For example, you might adopt a
convention that for every name Foo in the registry, there's a FooClient class that
accesses that service.) However, instead of casting the object returned by
Naming.lookup("Foo") to FooClient, which would require the local system to
already have the .class file for FooClient, you cast it to a well-known interface or
superclass. (For instance, you can adopt the convention that all your clients implement
java.lang.Runnable and that they are started by invoking their run() method. Or
perhaps you decided that all clients are applets that are started by invoking their
init() and start() methods.) The exact convention for naming and classes is up
to you, as long as a client can start simply by using well-known classes in the Java
core API.

18.4 The java.rmi Package

The java.rmi package contains the classes that are seen by clients (objects that
invoke remote methods). Both clients and servers should import java.rmi. While
servers need a lot more infrastructure than what's present in this package, java.rmi is
all that's needed by clients. This package contains one interface, three classes, and a
handful of exceptions.

18.4.1 The Remote Interface

The Remote interface tags objects as being remote objects. It doesn't declare any
methods; remote objects usually implement a subclass of Remote that does declare
some methods. The methods that are declared in the interface are the methods that can
be invoked remotely.

Example 18.9 is a database interface that declares a single method, SQLQuery(),
which accepts a String and returns a String array. A class that implements this
interface would include the code to send an SQL query to a database and return the
result as a String array.

Example 18.9. A Database Interface

import java.rmi.*;

public interface SQL extends Remote {

 public String[] SQLQuery(String query) throws RemoteException;

}

An SQLImpl class that implemented the SQL interface would probably have more
methods, some of which might be public. However, only the SQLQuery() method
can be invoked by a client. Because the Remote interface is not a class, a single object
can implement multiple Remote subinterfaces. In this case, any method declared in
any Remote interface can be invoked by a client.

18.4.2 The Naming Class

The java.rmi.Naming class talks to a registry running on the server in order to map
URLs like rmi://metalab.unc.edu/myRemoteObject to particular remote objects on
particular hosts. You can think of a registry as a DNS for remote objects. Each entry
in the registry has a name and an object reference. Clients give the name (via a URL)
and get back a reference to the remote object.

Naming is the only means of communicating with the registry included with RMI at
this time; others may be included in the future or may be provided by other vendors.
The biggest deficiency of Naming is that it requires the client to know the server on
which the remote object lives; you might also complain that Naming implements a flat
(i.e., nonhierarchical) namespace. As you've seen, an rmi URL looks exactly like an
http URL except that the protocol field is rmi instead of http. Furthermore, the file
part of the URL is an arbitrary name that the server has bound to a particular remote
object, not a filename.

The Naming class has five public methods: list(), to list all the names bound in the
registry; lookup(), to find a specific remote object given its URL; bind(), to bind
a name to a specific remote object; rebind(), to bind a name to a different remote
object; and unbind(), to remove a name from the registry. Let's look at these
methods in turn.

18.4.2.1 public static String[] list(String url) throws RemoteException,
MalformedURLException

The list() method returns all the URLs that are currently bound as an array of
strings. The url argument is the URL of the Naming registry to query. Only the
protocol, host, and port are used. The file part of the URL is ignored. list() throws
a MalformedURLException if url is not a valid rmi URL. A RemoteException is
thrown if anything else goes wrong, such as the registry's not being reachable or
refusing to supply the requested information.

Example 18.10 is a simple program to list all the names currently bound in a
particular registry. It's sometimes useful when debugging RMI programs. It allows
you to determine whether the names you're using are the names the server expects.

Example 18.10. RegistryLister

import java.rmi.*;

public class RegistryLister {

 public static void main(String[] args) {

 int port = 1099;

 if (args.length == 0) {
 System.err.println("Usage: java RegistryLister host port");
 return;
 }

 String host = args[0];

 if (args.length > 1) {
 try {
 port = Integer.parseInt(args[1]);
 if (port <1 || port > 65535) port = 1099;
 }
 catch (NumberFormatException e) {}

 }

 String url = "rmi://" + host + ":" + port + "/";
 try {
 String[] remoteObjects = Naming.list(url);
 for (int i = 0; i < remoteObjects.length; i++) {
 System.out.println(remoteObjects[i]);
 }
 }
 catch (RemoteException e) {
 System.err.println(e);
 }
 catch (java.net.MalformedURLException e) {
 System.err.println(e);
 }
 }
}

Here's a result from a run against the RMI server I was using to test the examples in
this chapter:

% java RegistryLister login.metalab.unc.edu
rmi://login.metalab.unc.edu:1099/fibonacci
rmi://login.metalab.unc.edu:1099/hello

You can see that the format for the strings is full rmi URLs rather than just names.

18.4.2.2 public static Remote lookup(String url) throws RemoteException,
NotBoundException, AccessException, MalformedURLException

A client uses the lookup() method to retrieve the remote object associated with the
file portion of the name; so, given the URL
rmi://metalab.unc.edu:2001/myRemoteObject, it would return the object bound to
myRemoteObject from metalab.unc.edu on port 2,001.

This method throws a NotBoundException if the name is not recognized by the
remote server. A RemoteException is thrown if the remote registry can't be reached;
for instance, because the network is down or because no registry service is running on
the specified port. An AccessException is thrown if the server refuses to look up the
name for the particular host. Finally, if the URL is not a proper rmi URL, a
MalformedURLException is thrown.

18.4.2.3 public static void bind(String url, Remote object) throws RemoteException,
AlreadyBoundException, MalformedURLException, AccessException

A server uses the bind() method to link a name like myRemoteObject to a remote
object. If the binding is successful, then clients will be able to retrieve the remote
object stub from the registry using a URL like
rmi://metalab.unc.edu:2001/myRemoteObject.

Many things can go wrong with the binding process. bind() throws a
MalformedURLException if url is not a valid rmi URL. A RemoteException is
thrown if the registry cannot be reached. An AccessException, a subclass of
RemoteException, is thrown if the client is not allowed to bind objects in this registry.
If the URL is already bound to a local object, bind() throws an
AlreadyBoundException.

18.4.2.4 public static void unbind(String url) throws RemoteException,
NotBoundException, AlreadyBoundException, MalformedURLException,
AccessException // Java 1.2

The unbind() method removes the object with the given URL from the registry. It is
the opposite of the bind() method. What bind() has bound, unbind() releases.
unbind() throws a NotBoundException if url was not bound to an object in the
first place. Otherwise, this method can throw the same exceptions for the same
reasons as bind().

18.4.2.5 public static void rebind(String url, Remote object) throws RemoteException,
AccessException, MalformedURLException

The rebind() method is just like the bind() method, except that it binds the URL
to the object, even if the URL is already bound. If the URL is already bound to an
object, the old binding is lost. Thus, this method does not throw an
AlreadyBoundException. It can still throw RemoteException, AccessException,
or MalformedURLException, which have the exact same meanings as they do when
thrown by bind().

18.4.3 The RMISecurityManager Class

A client loads stubs from a potentially untrustworthy server; in this sense, the
relationship between a client and a stub is somewhat like the relationship between a
browser and an applet. Although a stub is only supposed to marshal arguments and
unmarshal return values and send them across the network, from the standpoint of the
virtual machine, a stub is just another class with methods that can do just about
anything. Stubs produced by rmic shouldn't misbehave, but there's no reason someone
couldn't handcraft a stub that would do all sorts of nasty things, such as reading files
or erasing data. The Java virtual machine does not allow stub classes to be loaded
across the network unless there's some SecurityManager object in place. (Like other
classes, stub classes can always be loaded from the local class path.) For applets, the
standard AppletSecurityManager fills this need. Applications can use the
RMISecurityManager class to protect themselves from miscreant stubs:

public class RMISecurityManager extends SecurityManager

In Java 1.1, this class implements a policy that allows classes to be loaded from the
server's codebase (which is not necessarily the same as the server) and allows the
necessary network communications between the client, the server, and the codebase.
In Java 1.2 and later, the RMISecruity Manager doesn't allow even that, and this class
is so restrictive, it's essentially useless.

18.4.3.1 public RMISecurityManager()

RMISecurityManager has a single constructor that takes no arguments. To set the
security manager, use the static System.setSecurityManager() method. Most
often, you create a new SecurityManager directly inside this method. For example:

System.setSecurityManager(new RMISecurityManager());

18.4.3.2 public Object getSecurityContext()

The getSecurityContext() method determines the environment for certain
operations. An RMISecurityManager allows more operations by a class loaded from
a local host than from a network host. Eventually (though not as of this writing),
public key signatures will be used to grant different classes different trust levels.

18.4.3.3 Checking operations

There are 23 methods that check various operations to see whether they're allowed.
All are public synchronized, and void, except for checkTopLevelWindow(),
which returns a boolean. Each one throws a StubSecurityException if the action is
forbidden; if the action is allowed, the method just returns. These methods check only
actions perfomed by stubs, not by other classes in the application. Since only one
SecurityManager can be installed in an application, you may have to replace this
class with a class of your own if you want to check both actions performed by stubs
and actions performed by other classes such as applets.

Table 18.1 lists the methods of the RMISecurityManager, what they check for, and
the circumstances under which the operation will be allowed for Java 1.1. (Java 1.2
and later uses a completely different setup that doesn't allow remote stubs to do
anything interesting.) It is unlikely that you will need to call these methods yourself.
However, knowledge of these methods is required to understand what a stub can and
cannot do.

Table 18.1. RMISecurityManager Permissions in Java 1.1

Method Checks For If Stub is
Local

If Stub is
Remote

checkCreateClass Loader() Can a stub create a
ClassLoader? No No

checkAwtEventQueueAccess()

Can a stub retrieve
events from or post
events to the AWT event
queue?

No No

checkMemberAccess(Class c, int which)
Can a stub use the
Reflection API to access
members of other

Only of
classes
loaded by

Only of classes
loaded by the
same class

classes? the same
class
loader.

loader.

checkAccess (Thread
t)checkAccess (ThreadGroup g)

Can a stub manipulate
threads outside its own
thread group?

No No

checkExit(int status)

Can a stub force the
virtual machine to exit?
i.e., can it call
System.exit()?

No No

checkExec(String cmd)

Can a stub execute
system processes? i.e.,
can it call
System.exec()?

No No

checkLink(String lib) Can a stub link to
dynamic libraries? No No

checkProperties Access()
Can a stub read the
properties of the local
machine?

No No

checkProperty Access(String
key)

Can a stub check a
specific property? No No

checkRead(String
file)checkRead(String file,
Object context)checkRead(File
Descriptor fd)

Can a stub read a file? No No

checkWrite (String
file)checkWrite(File Descriptor
fd)

Can a stub write to a
file? No No

checkListen(int port) Can a stub listen for
connections on a port? No No

checkAccept (String host, int
port)

Can a stub accept
connections on a port? No No

checkConnect (String host, int
port)checkConnect (String host,
int port, Object context)

Can a stub open a
connection to this host
on this port?

Yes

Yes, if the host
is the one from
which the stub
was
downloaded;
otherwise, no.

checkMulticast (InetAddress
address)checkMulticast (InetAddress
address, byte ttl)

Can a stub send a
datagram to the specified
address with the
specified TTL?

Yes No

checkTopLevelWindow(Object
window)

Can the stub create a
new window? No No

checkPackage Access(String pkg) Can a stub access the
specified package?

Varies
depending
on package.

Varies
depending on
package.

checkPackageDefinition(String
pkg)

Can a stub define classes
in the specified package?

Yes, except
in the java
and sun
packages.

Yes, except in
the java and
sun packages.

checkSetFactory() Can a stub set a network
factory? No. No.

Except for checkPackageAccess(), these methods have all been removed from the
RMISecurityManager class in Java 1.2 This doesn't break any existing code, however,
because RMISecurityManager still inherits them from its SecurityManager superclass.

18.4.4 Remote Exceptions

The java.rmi package defines 16 exceptions, listed in Table 18.2. All except
RemoteException extend java.rmi.RemoteException; java.rmi.Remote
Exception extends java.lang.Exception. Thus, all are checked exceptions that
must be enclosed in a try block or declared in a throws clause.

Remote methods depend on many things that are not under your control: for example,
the state of the network and other necessary services such as DNS. Therefore, any
remote method can fail: there's no guarantee that the network won't be down when the
method is called. Consequently, all remote methods must be declared to throw the
generic RemoteException and all calls to remote methods should be wrapped in a
try block. When you just want to get a program working, it's simplest to catch
RemoteException:

try {
 // call remote methods...
}
catch (RemoteException e) {
 System.err.println(e);
}

More robust programs should try to catch more specific exceptions and respond
accordingly.

Table 18.2. Remote Exceptions
Exception Meaning

AccessException A client tried to do something that only local objects are allowed to
do.

AlreadyBoundException The URL is already bound to another object.
ConnectException The server refused the connection.

ConnectIOException An I/O error occurred while trying to make the connection between
the local and the remote host.

MarshalException

An I/O error occurred while attempting to marshal (serialize)
arguments to a remote method. This exception could be caused by a
corrupted I/O stream, and making the remote method call again may
be successful.

UnmarshalException

An I/O error occurred while attempting to unmarshal (deserialize) the
value returned by a remote method. This exception could be caused
by a corrupted I/O stream, and making the remote method call again
may be successful.

NoSuchObjectException

The object reference is invalid or obsolete. This might occur if the
remote host becomes unreachable while the program is running,
perhaps because of network congestion, system crash, or some other
malfunction.

NotBoundException The URL is not bound to an object. This might be thrown when you
try to reference an object whose URL was rebound out from under it.

RemoteException The generic superclass for all exceptions having to do with remote

methods.

ServerError An error (that is, an instance of a subclass of java.lang.Error)
was thrown while the remote method was executing.

ServerException A RemoteException was thrown while the remote method was
executing.

StubNotFoundException

The stub for a class could not be found. The stub file may be in the
wrong directory on the server. There could be a namespace collision
between the class that the stub substitutes for and some other class.
The client could have requested the wrong URL.

UnexpectedException Something unforeseen happened. This is a catchall that should occur
only in bizarre situations.

UnknownHostException The host cannot be found. This is very similar to
java.net.UnknownHostException.

RMISecurityException
An object tried to do something that is prohibited by the stub's
SecurityManager. This class is deprecated and no longer used
starting in Java 1.2.

ServerRuntimeException
An unchecked, uncaught runtime exception occurred on the server,
such as ArrayIndexOutOfBoundsException. This class is
deprecated and no longer used starting in Java 1.2.

The RemoteException class contains a single public field called detail:

public Throwable detail

This field may contain the actual exception thrown on the server side, so it may give
you further information about what went wrong. For example:

try {
 // call remote methods...
}
catch (RemoteException e) {
 System.err.println(e.detail);
 e.detail.printStackTrace();
}

18.5 The java.rmi.registry Package

How does a client that needs a remote object locate that object on a distant server?
More precisely, how does it get a remote reference to the object? Clients find out what
remote objects are available by querying the server's registry. A registry advertises the
availability of the server's remote objects. Clients query the registry to find out what
remote objects are available and to get remote references to those objects. You've
already seen one: the java.rmi.Naming class for interfacing with registries.

The Registry interface and the LocateRegistry class allow clients to retrieve
remote objects on a server by name. A RegistryImpl is a subclass of RemoteObject,
which links names to particular RemoteObject objects. The methods of the
LocateRegistry class are used by clients to retrieve the RegistryImpl for a specific
host and port.

18.5.1 The Registry Interface

The java.rmi.registry.Registry interface has five public methods: bind() , to
bind a name to a specific remote object; list(), to list all the names bound in the
registry; lookup(), to find a specific remote object given its URL; rebind(), to
bind a name to a different remote object; and unbind(), to remove a name from the
registry. All of these behave exactly as previously described in the java.rmi.Naming
class, which implements this interface. Other classes that implement this interface
may use a different scheme for mapping names to particular objects, but the methods
still have the same meaning and signatures.

Besides these five methods, the Registry interface also has one field,
Registry.REGISTRY_PORT, the default port on which the registry listens. Its value is
1,099.

18.5.2 The LocateRegistry Class

The java.rmi.registry.LocateRegistry class lets the client find the registry in
the first place. This is achieved with five overloaded versions of the static
LocateRegistry.getRegistry() method:

public static Registry getRegistry() throws RemoteException
public static Registry getRegistry(int port) throws RemoteException
public static Registry getRegistry(String host) throws
RemoteException
public static Registry getRegistry(String host, int port)
 throws RemoteException
public static Registry getRegistry(String host, int port, // Java
1.2
 RMIClientSocketFactory factory) throws RemoteException

Each of these methods returns a Registry object that can be used to get remote
objects by name. LocateRegistry.getRegistry() returns a stub for the Registry
running on the local host on the default port, 1,099.
LocateRegistry.getRegistry(int port) returns a stub for the Registry running
on the local host on the specified port. LocateRegistry.getRegistry(String host)
returns a stub for the Registry for the specified host on the default port, 1,099.
LocateRegistry.getRegistry(String host, int port) returns a stub for the
Registry on the specified host on the specified port. Finally,
LocateRegistry.getRegistry(String host, int port,
RMIClientSocketFactory factory) returns a stub to the registry running on the
specified host and port, which will be contacted using sockets created by the provided
java.rmi.server.RMIClientSocketFactory object. If the host String is null,
getRegistry() uses the local host; if the port argument is negative, it uses the
default port. Each of these methods can throw an arbitrary RemoteException.

For example, a remote object that wanted to make itself available to clients might do
this:

Registry r = LocateRegistry.getRegistry();
r.bind("My Name", this);

A remote client that wished to invoke this remote object might then say:

Registry r = LocateRegistry.getRegistry("thehost.site.com");
RemoteObjectInterface tro = (RemoteObjectInterface)
r.lookup("MyName");
tro.invokeRemoteMethod();

The final two methods in the LocateRegistry class are the overloaded
LocateRegistry.createRegistry() methods. These create a registry and start it
listening on the specified port. As usual, each can throw a RemoteException. Their
signatures are:

public static Registry createRegistry(int port) throws
RemoteException
public static Registry createRegistry(int port,
 RMIClientSocketFactory csf, RMIServerSocketFactory ssf) // Java 1.2
 throws RemoteException

18.6 The java.rmi.server Package

The java.rmi.server package is the most complex of all the RMI packages; it
contains the scaffolding for building remote objects and thus is used by objects whose
methods will be invoked by clients. The package defines 6 exceptions, 9 interfaces,
and 10 classes. Fortunately, you need to be familiar with only a few of these to write
remote objects. The important classes are the RemoteObject class, which is the basis
for all remote objects; the RemoteServer class, which extends RemoteObject; and
the UnicastRemoteObject class, which extends Remote Server. Any remote objects
you write will likely either extend or use UnicastRemoteObject. Clients that call
remote methods but are not themselves remote objects don't use these classes, and
therefore don't need to import java.rmi.server.

18.6.1 The RemoteObject Class

Technically, a remote object is not an instance of the RemoteObject class but an
instance of any class that implements a Remote interface. In practice, most remote
objects will be instances of a subclass of java.rmi.server.RemoteObject:

public abstract class RemoteObject extends Object
 implements Remote, Serializable

You can think of this class as a special version of java.lang.Object for remote
objects. It provides toString(), hashCode(), clone(), and equals() methods
that make sense for remote objects. If you create a remote object that does not extend
RemoteObject, you need to override these methods yourself.

The equals() method compares the remote object references of two
RemoteObjects and returns true if they point to the same remote object. As with the
equals() method in the Object class, you may want to override this method to
provide a more meaningful definition of equality.

The toString() method returns a String that describes the remote object. Most of
the time, toString() returns the hostname and port from which the remote object

came as well as a reference number for the object. You can override this method in
your own subclasses to provide more meaningful string representations.

The hashCode() method maps a presumably unique int to each unique object; this
integer may be used as a key in a Hashtable. It returns the same value for all remote
references that refer to the same remote object. Thus, if a client has several remote
references to the same object on the server, or multiple clients have references to that
object, they should all have the same hash code.

Starting in Java 1.2, there's one other instance method in this class, getRef():

public RemoteRef getRef() // Java 1.2

This returns a remote reference to the class:

public abstract interface RemoteRef extends Externalizable

Java 1.2 also adds one static method, RemoteObject.toStub():

public static Remote toStub(Remote ro) // Java 1.2
 throws NoSuchObjectException

RemoteObject.toStub() converts a given remote object into the equivalent stub
object for use in the client virtual machine. This can help you dynamically generate
stubs from within your server without using rmic.

18.6.2 The RemoteServer Class

The RemoteServer class extends RemoteObject; it is an abstract superclass for server
implementations such as UnicastRemoteObject . It provides a few simple utility
methods needed by most server objects:

public abstract class RemoteServer extends RemoteObject

In Java 1.1, UnicastRemoteObject is the only subclass of RemoteServer included in
the core library. Java 1.2 adds the java.rmi.activation.Activatable and
java.rmi.activation.ActivationGroup classes. You can add others (for example,
a UDP or multicast remote server) by writing your own subclass of RemoteServer.

18.6.2.1 Constructors

There are two constructors for this class:

protected RemoteServer()
protected RemoteServer(RemoteRef r)

However, you won't instantiate this class yourself. Instead, you will instantiate a
subclass like UnicastRemoteObject. That class's constructor will call one of these
protected constructors from the first line of its constructor.

18.6.2.2 Getting information about the client

The RemoteServer class has one method to locate the client with which you're
communicating:

public static String getClientHost() throws
ServerNotActiveException

RemoteServer.getClientHost() returns a String that contains the hostname of
the client that invoked the currently running method. This method throws a
ServerNotActiveException if the current thread is not running a remote method.

18.6.2.3 Logging

For debugging purposes, it is sometimes useful to see the calls that are being made to
your remote object and the object's responses. You can get a log for your
RemoteServer by passing an OutputStream object to the setLog() method:

public static void setLog(OutputStream out)

Passing null turns off logging. For example, to see all the calls on System.err
(which sends the log to the Java console), you would write:

myRemoteServer.setLog(System.err);

For example, here's some log output I collected while debugging the Fibonacci
programs in this chapter:

Sat Apr 29 12:20:36 EDT 2000:RMI:TCP Accept-1:[titan.oit.unc.edu:
sun.rmi.transport.DGCImpl[0:0:0, 2]: java.rmi.dgc.Lease
dirty(java.rmi.server.ObjID[], long, java.rmi.dgc.Lease)]
Fibonacci Server ready.
Sat Apr 29 12:21:27 EDT 2000:RMI:TCP Accept-
2:[macfaq.dialup.cloud9.net:
sun.rmi.transport.DGCImpl[0:0:0, 2]: java.rmi.dgc.Lease
dirty(java.rmi.server.ObjID[], long, java.rmi.dgc.Lease)]
Sat Apr 29 12:22:36 EDT 2000:RMI:TCP Accept-
3:[macfaq.dialup.cloud9.net: sun.rmi.
transport.DGCImpl[0:0:0, 2]: java.rmi.dgc.Lease
dirty(java.rmi.server.ObjID[], long, java.rmi.dgc.Lease)]
Sat Apr 29 12:22:39 EDT 2000:RMI:TCP Accept-
3:[macfaq.dialup.cloud9.net:
FibonacciImpl[0]: java.math.BigInteger
getFibonacci(java.math.BigInteger)]
Sat Apr 29 12:22:39 EDT 2000:RMI:TCP Accept-
3:[macfaq.dialup.cloud9.net:
FibonacciImpl[0]: java.math.BigInteger
getFibonacci(java.math.BigInteger)]

If you want to add extra information to the log, in addition to what's provided by the
RemoteServer class, you can retrieve the log's PrintStream with the getLog()
method:

public static PrintStream getLog()

Once you have the print stream, you can write on it to add your own comments to the
log. For example:

PrintStream p = RemoteServer.getLog();
p.println("There were " + n + " total calls to the remote object.");

18.6.3 The UnicastRemoteObject Class

The UnicastRemoteObject class is a concrete subclass of RemoteServer. To create a
remote object, you can extend UnicastRemoteObject in your own subclass and
declare that your subclass implements some subclass of the java.rmi.Remote
interface. The methods of the interface provide functionality specific to the class,
while the methods of UnicastRemoteObject handle general remote object tasks like
marshaling and unmarshaling arguments and return values. All of this happens behind
the scenes. As an application programmer, you don't need to worry about it.

A UnicastRemoteObject runs on a single host, uses TCP sockets to communicate,
and has remote references that do not remain valid across server restarts. While this is
a good general-purpose framework for remote objects, it is worth noting that you can
implement other kinds of remote objects. For example, you may want a remote object
that uses UDP, or one that remains valid if the server is restarted, or even one that
distributes the load across multiple servers. To create remote objects with these
properties, you would extend RemoteServer directly and implement the abstract
methods of that class. However, if you don't need anything so esoteric, you will find it
much easier to subclass UnicastRemoteObject.

The UnicastRemoteObject class has three protected constructors:

protected UnicastRemoteObject() throws RemoteException
protected UnicastRemoteObject(int port) // Java 1.2
 throws RemoteException
protected UnicastRemoteObject(int port, RMIClientSocketFactory csf,
 RMIServerSocketFactory ssf) throws RemoteException // Java 1.2

The noargs constructor creates a UnicastRemoteObject that listens on an anonymous
port chosen at runtime.[1] Java 1.2 adds two more constructors that listen on the
specified port. The third constructor also allows you to specify the socket factories
used by this UnicastRemoteObject. When you write a subclass of
UnicastRemoteObject, you call one of these constructors, either explicitly or
implicitly, in the first line of each constructor of your subclass. All three constructors
can throw a RemoteException if the remote object cannot be created.

[1] By the way, this is an example of an obscure situation I mentioned in Chapter 10, and Chapter 11. The server is
listening on an anonymous port. Normally, this would be next to useless because it would be impossible for
clients to locate the server. In this case, clients locate servers by using a registry, which keeps track of what
servers are available and what ports they are listening to.

The UnicastRemoteObject class has several public methods:

public Object clone() throws CloneNotSupportedException
public static RemoteStub exportObject(Remote r) throws
RemoteException
public static Remote exportObject(Remote r, int port)

 throws RemoteException // Java 1.2
public static Remote exportObject(Remote r, int port,
 RMIClientSocketFactory csf, RMIServerSocketFactory ssf)
 throws RemoteException // Java 1.2
public static boolean unexportObject(Remote r, boolean force)
 throws NoSuchObjectException // Java 1.2

The clone() method simply creates a clone of the remote object. You call the
UnicastRemoteObject.exportObject() to use the infrastructure that Unicast
RemoteObject provides for an object that can't subclass Unicast RemoteObject
Similarly, you pass an object UnicastRemoteObject.unexportObject() to stop a
particular remote object from listening for invocations.

18.6.4 Exceptions

The java.rmi.server package defines six new exceptions. The exceptions and their
meanings are listed in Table 18.3. All except
java.rmi.server.ServerNotActiveException extend, directly or indirectly,
java.rmi.RemoteException. All are checked exceptions that must be caught or
declared in a throws clause.

Table 18.3. java.rmi.server Exceptions
Exception Meaning

ExportException You're trying to export a remote object on a port that's already in
use.

ServerNotActiveException An attempt was made to invoke a method in a remote object that
wasn't running.

ServerCloneException An attempt to clone a remote object on the server failed.

SocketSecurityException
This subclass of ExportException is thrown when the
SecurityManager prevents a remote object from being
exported on the requested port.

SkeletonNotFoundException

The server is unable to load the skeleton it needs to respond to a
remote method invocation. This can mean several things: the
skeleton class file may not be anywhere in the codebase; the
skeleton is in the codebase but has a name conflict with another
class; the URL given may be incorrect; or the skeleton may be of
the wrong class. This is deprecated starting in Java 1.2 because
skeletons are no longer used.

SkeletonMismatchException

The skeleton and the stub for a class don't match. This is unusual
but may happen if different versions of the source code are used
to make the stub and the skeleton. This is deprecated starting in
Java 1.2 because skeletons are no longer used.

This chapter has been a fairly quick look at Remote Method Invocation. For a more
detailed treatment, see Java Distributed Computing, by Jim Farley (O'Reilly &
Associates, Inc., 1998).

Chapter 19. The JavaMail API
Email was the Internet's first killer app, and still generates more Internet traffic than
any protocol except HTTP. One of the most frequently asked questions about Java is
how to send email from a Java applet or application. While it's certainly possible to

write a Java program that uses sockets to communicate with mail servers, doing this
for more than the most trivial of applications requires detailed knowledge of some
fairly complicated protocols, such as SMTP, POP, and IMAP. Just as the URL class
makes interacting with HTTP servers a lot simpler than it would be with raw sockets,
so too can a class library dedicated to handling email make writing email clients a lot
simpler.

The JavaMail API is a standard extension to Java 1.1 and later that provides a class
library for fairly sophisticated email clients. It's a required component of the Java 2
Platform, Enterprise Edition (J2EE). The JavaMail API can be implemented in 100%
Pure JavaTM using sockets and streams, and indeed Sun's reference implementation is
so implemented. Programs use the JavaMail API to communicate with SMTP and
IMAP servers to send and receive email. By taking advantage of this API, you can
avoid focusing on the low-level protocol details and focus instead on what you want
to say with the message. Additional providers can add support for other mail systems
such as POP3, Lotus Notes, or MH. You can even get providers that add support for
NNTP, the protocol used to transport Usenet news.

There's no limit to the uses Java programs have for the JavaMail API. Most obviously,
you can write standard email clients such as Eudora. Or it can be used for email-
intensive applications such as mailing list managers, like majordomo. But the
JavaMail API is also useful as one part of larger applications that simply need to send
or receive a little email. For instance, a server monitoring application such as Whistle
Blower can periodically load pages from a web server running on a different host and
email the webmaster if the web server has crashed. An applet can use email to send
data to any process or person on the Internet that has an email address, in essence
using the web server's SMTP server as a simple proxy to bypass the usual security
restrictions about whom an applet is allowed to talk to. In reverse, an applet can talk
to an IMAP server on the applet host to receive data from many hosts around the Net.
A newsreader could be implemented as a custom service provider that treats NNTP as
just one more means of exchanging messages. And that's just the beginning of the sort
of programs the JavaMail API makes it very straightforward to write.

19.1 What Is the JavaMail API?

The JavaMail API is a fairly high-level representation of the basic components of any
email system. The components are represented by abstract classes in the javax.mail
package. For instance, the abstract class javax.mail.Message represents an email
message. It declares abstract methods to get and set various envelope information for
the message, such as the sender and addressee, the date sent, and the subject of the
message. The abstract class javax.mail.Folder represents a message container. It
declares abstract methods to get messages from a folder, to move messages between
folders, and to delete messages from a folder.

These classes are all abstract because they don't make many assumptions about how
the email is stored or transferred between machines. For instance, they do not assume
that messages are sent using SMTP or that they're structured as specified in RFC 822.
Concrete subclasses of these classes specialize the abstract classes to particular
protocols and mail formats. If you want to work with standard Internet email, you
might use javax.mail.MimeMessage instead of javax.mail.Message,

javax.mail.InternetAddress instead of javax.mail.Address, and
com.sun.mail.imap.IMAPStore instead of javax.mail.Store. If you were writing
code for a Lotus Notes-based system, you'd use different concrete implementation
classes but the same abstract base classes.

The JavaMail API roughly follows the abstract factory design pattern. This pattern
allows you to write your code based on the abstract superclasses without worrying too
much about the lower-level details. The protocols and formats used and the associated
concrete implementation classes are determined mostly by one line of code early in
your program that names the protocol. Changing the protocol name goes 90% of the
way to porting your program from one protocol (say, POP) to another (say, IMAP).

Service providers implement particular protocols. A service provider is a group of
concrete subclasses of the abstract JavaMail API classes that specialize the general
API to a particular protocol and mail format. These subclasses are probably (though
not necessarily) organized into one package. Some of these (IMAP, SMTP) are
provided by Sun with its reference implementation in the undocumented
com.sun.mail package. Others (NNTP, MH) are available from third parties. And
some (POP) are available from both Sun and third parties. The purpose of the abstract
JavaMail API is to shield you from low-level details like this. You don't write code to
access an IMAP server or a POP server. You write your programs to speak to the
JavaMail API. Then, the JavaMail API uses the service provider to speak to the server
using its native protocol. This is middleware for email. All you need to do to add
support for a new protocol is install the service provider's JAR file. Simple, carefully
designed programs that use only the core features of the JavaMail API may be able to
use the new provider without even being recompiled. Of course, programs that make
use of special features of individual protocols may need to be rewritten.

Since mail arrives from the network at unpredictable times, the JavaMail API relies
on an event-based callback mechanism to handle incoming mail. This is exactly the
same pattern (even using some of the same classes) used by the AWT and JavaBeans
starting in Java 1.1. The javax.mail.event package defines about a half dozen
different kinds of mail events as well as the associated listener interfaces and adapter
classes for these events.

While many people still fondly recall the early days of ASCII email and even ASCII
pictures like the one shown in Figure 19.1, modern email messages contain a
bewildering array of multilingual text and multimedia data encoded in formats such as
Base64, quoted-printable, BinHex, and uuencode. To handle this, the JavaMail API
uses the JavaBeans Activation Framework (JAF) to describe and display this content.

This chapter covers Version 1.1.3 of the JavaMail API, which is compatible with Java
1.1 and higher. Version 1.2 of the Java Mail API is currently making its way through
the Java Community Process. This seems likely to add a few convenience methods
and classes, but will not significantly change anything described here. The JavaMail
API is a standard extension to Java, not part of the core JDK or JRE class library,
even in Java 1.3. Consequently, you'll need to download it separately from Sun and
install it on your system. At the time of this writing, it's freely available from
http://java.sun.com/products/javamail/, though of course this URL is subject to
change. It comes as a zip archive containing documentation, sample code, and the all-

important mail.jar file. This file contains the actual .class files that implement the
JavaMail API. To compile or run the examples in this chapter, you'll need to add this
file to your class path, either by adding its path to the CLASSPATH environment
variable or, in Java 1.2 and later, by placing mail.jar in your jre/lib/ext directory.

The JavaBeans Activation Framework is also a standard extension to Java, not part of
the core API. You can download it from http://java.sun.com/beans/glasgow/jaf.html,
though as always the URL is subject to change. This download contains the
activation.jar archive, which you'll also need to place in your class path.

Finally, you may want to add some additional providers. Sun's implementation
includes SMTP and IMAP providers. However, both Sun and third parties have
written providers for other protocols such as POP3, NNTP, MH, and more. Table 19.1
lists some of these.

Table 19.1. Mail Providers
Product

(Company) URL Protocols License

JavaMail
(Sun) http://java.sun.com/products/javamail/ SMTP,

IMAP Free

POP3
Provider
(Sun)

http://java.sun.com/products/javamail/ POP3 Free

POP3
Provider for
JavaMail
(Jason
Diamond)

http://injektilo.org/pop3mail.html POP3 Free

ICE MH
JavaMail
Provider
(ICE
Engineering,
Inc.)

http://www.trustice.com/java/icemh MH Public
domain

POP3
Provider for
JavaMail
1.1
(Linkable
Software)

http://www.linkable.com/products/pop3/ POP3,
mbox

Evaluation
only

POPpers (Y.
Miyadate) http://www2s.biglobe.ne.jp/~dat/java/project/poppers/index_en.html POP3 GPL

dog.mail
(Christopher
Burdess)

http://www.dog.net.uk/knife/
POP3,
NNTP,
mbox

Mozilla
Public
License

19.2 Sending Email

The most basic email need of a Java program is to send messages. While email clients
like Eudora and mailing list managers like listproc are the only common programs
that receive messages, all sorts of programs send messages. For instance, web
browsers can submit HTML forms via email. Security scanning tools like Satan can
run in the background and email their results to the administrator when they're done.

When the Unix cron program detects a misconfigured crontab file, it emails the error
to the owner. Books & Writers runs a service that's very popular with authors to track
the sales rank of their books on Amazon.com and notify them periodically via email.
(See http://www.booksandwriters.com/rank.html.) A massively parallel computation
like the SETI@home project can submit individual results via email. Some
multiplayer games like chess can be played across the network by emailing the moves
back and forth (though this scheme wouldn't work for faster-moving games like
Quake or even for speed chess). And these are just a few of the different kinds of
programs that send email. In today's wired world, by far the simplest way to notify a
user of an event when he's not currently sitting in front of the computer that the
program is running on is to send him email.

The JavaMail API provides everything your programs need to send email. To send a
message, a program just follows these eight steps:

1. Set the mail.host property to point to the local mail server.
2. Start a mail session with the Session.getInstance() method.
3. Create a new Message object, probably by instantiating one of its concrete

subclasses.
4. Set the message's From: address.
5. Set the message's To: address.
6. Set the message's Subject:.
7. Set the content of the message.
8. Send the message with the Transport.send() method.

The order of these steps is not especially rigid. For instance, steps 4 through 7 can be
performed in any order. Furthermore, each of these steps is individually quite simple.

The first step is to set up the properties for the mail session. The only property you
have to set in order to send mail is mail.host. This is configured as a
java.util.Properties object rather than an environment variable. For example,
this code fragment sets the mail.host property to mail.cloud9.net :

Properties props = new Properties();
props.put("mail.host", "mail.cloud9.net");

Your programs will of course have to set this property to the name of your own mail
server. These properties are used to retrieve a Session object from the
Session.getInstance() factory method like this:

Session mailConnection = Session.getInstance(props, null);

The Session object represents an ongoing communication between a program and
one mail server. The second argument to the getInstance() method, null here, is a
javax.mail.Authenticator that will ask the user for a password if one is requested
by the server. We'll discuss this more later in the section on password authentication.
Most of the time, you do not need to provide a username and password to send email,
only to receive it.

The Session object is used to construct a new Message object:

Message msg = new MimeMessage(mailConnection);

I specify the MimeMessage class in particular since I know I'm sending Internet email.
However, this is the one place where I do explicitly choose a format for the email
message. In some cases, this may not be necessary if I can copy the incoming message
format instead.

Now that I have a Message object, I need to set up its fields and contents. The From:
address and To: address will each be javax.mail.internet.InternetAddress
objects. You can provide either an email address alone or an email address and a real
name. For example:

Address bill = new InternetAddress("god@microsoft.com", "Bill Gates");
Address elliotte = new InternetAddress("elharo@metalab.unc.edu");

The setFrom() message allows us to say who's sending the message by setting the
From: header. There's no protection against forgery here. It's quite easy for me to
masquerade as Bill Gates at a (presumably) fictitious email address:

msg.setFrom(bill);

The setRecipient() method is slightly more complex. You not only have to
specify the address that the message will be sent to, but how that address is used; that
is, as a To: field, a Cc: field, or a Bcc: field. These are indicated by three mnemonic
constants of the Message.RecipientType class:

Message.RecipientType.TO
Message.RecipientType.CC
Message.RecipientType.BCC

For example:

msg.setRecipient(Message.RecipientType.TO, elliotte);

The subject is set as a simple string of text. For example:

msg.setSubject("You must comply.");

The body is also set as a single string of text. However, as well as that text you need
to provide the MIME type of the text. The most common type is text/plain. For
example:

msg.setContent("Resistance is futile. You will be assimilated!",
 "text/plain");

Finally, the static Transport.send() method connects to the mail server specified
by the mail.host property and sends the message on its way:

Transport.send(msg);

Example 19.1 puts all these steps together into a standalone program that sends the
following message:

Date: Mon, 29 Nov 1999 15:55:42 -0500 (EST)
From: Bill Gates <god@microsoft.com>
To: elharo@metalab.unc.edu
Subject: You must comply.

Resistance is futile. You will be assimilated!

I've shown this message here in standard RFC 822 format used for Internet email.
However, that isn't necessary. The main point is that you need to know the addressee
(elharo@metalab.unc.edu), the sender (god@microsoft.com), and the subject and
body of the message.

Example 19.1. Sending a Very Simple Mail Message

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class Assimilator {

 public static void main(String[] args) {

 try {
 Properties props = new Properties();
 props.put("mail.host", "mail.cloud9.net");

 Session mailConnection = Session.getInstance(props, null);
 Message msg = new MimeMessage(mailConnection);

 Address bill = new InternetAddress("god@microsoft.com",
 "Bill Gates");
 Address elliotte = new
InternetAddress("elharo@metalab.unc.edu");

 msg.setContent("Resistance is futile. You will be assimilated!",
 "text/plain");
 msg.setFrom(bill);
 msg.setRecipient(Message.RecipientType.TO, elliotte);
 msg.setSubject("You must comply.");

 Transport.send(msg);

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }
}

19.2.1 Sending Email from an Application

Example 19.1 is a simple application that sends a fixed message to a known address
with a specified subject. Once you see how to do this, it's straightforward to replace
the strings that give the message address, subject, and body with data read from the
command line, a GUI, a database, or some other source. For instance, Example 19.2 is
a very simple GUI for sending email. Figure 19.1 shows the program running. The

mail code is all tied up in the actionPerformed() method and looks very similar to
the main() method of Example 19.1. The big difference is that now the host, subject,
from: address, to: address, and text of the message are all read from the GUI
components at runtime rather than being hardcoded as string literals in the source
code. The rest of code is related to setting up the GUI and has little to do with the
JavaMail API.

Example 19.2. A Graphical SMTP Client

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class SMTPClient extends JFrame {

 private JButton sendButton = new JButton("Send Message");
 private JLabel fromLabel = new JLabel("From: ");
 private JLabel toLabel = new JLabel("To: ");
 private JLabel hostLabel = new JLabel("SMTP Server: ");
 private JLabel subjectLabel = new JLabel("Subject: ");
 private JTextField fromField = new JTextField(40);
 private JTextField toField = new JTextField(40);
 private JTextField hostField = new JTextField(40);
 private JTextField subjectField = new JTextField(40);
 private JTextArea message = new JTextArea(40, 72);
 private JScrollPane jsp = new JScrollPane(message);

 public SMTPClient() {

 super("SMTP Client");
 Container contentPane = this.getContentPane();
 contentPane.setLayout(new BorderLayout());

 JPanel labels = new JPanel();
 labels.setLayout(new GridLayout(4, 1));
 labels.add(hostLabel);

 JPanel fields = new JPanel();
 fields.setLayout(new GridLayout(4, 1));
 String host = System.getProperty("mail.host", "");
 hostField.setText(host);
 fields.add(hostField);

 labels.add(toLabel);
 fields.add(toField);

 String from = System.getProperty("mail.from", "");
 fromField.setText(from);
 labels.add(fromLabel);
 fields.add(fromField);

 labels.add(subjectLabel);
 fields.add(subjectField);

 Box north = Box.createHorizontalBox();

 north.add(labels);
 north.add(fields);

 contentPane.add(north, BorderLayout.NORTH);

 message.setFont(new Font("Monospaced", Font.PLAIN, 12));
 contentPane.add(jsp, BorderLayout.CENTER);

 JPanel south = new JPanel();
 south.setLayout(new FlowLayout(FlowLayout.CENTER));
 south.add(sendButton);
 sendButton.addActionListener(new SendAction());
 contentPane.add(south, BorderLayout.SOUTH);

 this.pack();

 }

 class SendAction implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 try {
 Properties props = new Properties();
 props.put("mail.host", hostField.getText());

 Session mailConnection = Session.getInstance(props, null);
 final Message msg = new MimeMessage(mailConnection);

 Address to = new InternetAddress(toField.getText());
 Address from = new InternetAddress(fromField.getText());

 msg.setContent(message.getText(), "text/plain");
 msg.setFrom(from);
 msg.setRecipient(Message.RecipientType.TO, to);
 msg.setSubject(subjectField.getText());

 // This can take a non-trivial amount of time so
 // spawn a thread to handle it.
 Runnable r = new Runnable() {
 public void run() {
 try {
 Transport.send(msg);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 };
 Thread t = new Thread(r);
 t.start();

 message.setText("");
 }
 catch (Exception e) {
 // We should really bring up a more specific error dialog
here.
 e.printStackTrace();
 }

 }

 }

 public static void main(String[] args) {

 SMTPClient client = new SMTPClient();
 // Next line requires Java 1.3. We want to set up the
 // exit behavior here rather than in the constructor since
 // other programs that use this class may not want to exit
 // the application when the SMTPClient window closes.
 client.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 client.show();

 }
}

This is far from an ideal program. The GUI could be more cleanly separated from the
mailing code. And it would be better to bring up an error dialog if something went
wrong rather than just printing a stack trace of the exception on System.err.
However, since none of that would teach us anything about the JavaMail API, I leave
all that as an exercise for the interested reader.

Figure 19.1. A simple GUI mail program

19.2.2 Sending Email from an Applet

In terms of GUIs and the JavaMail API, there's no difference between sending email
from an applet and an application. However, the browser's security manager can get in
your way. Like everything else in this book, the JavaMail API can't get around the
normal restrictions on network connections from applets. An applet that wants to send
email can still talk only to the host the applet itself came from.

Fortunately, however, most hosts that run web servers also run SMTP servers.[1] If this
is the case, then it's quite straightforward to make an applet that sends email. The
JavaMail API and the Java Activation Framework on which it depends aren't included
with most browsers, but since they're implemented in pure Java in the javax package,
browsers can download the necessary classes from the server. For example, this

APPLET element references not only the applet's own code but also the mail.jar and
activation.jar files for the JavaMail API and the Java Activation Framework,
respectively:

[1] This is perhaps a little more likely to be true of a Unix web server than a Mac or Windows web server, since
most Mac and Windows servers don't ship with SMTP servers by default.

<APPLET CODE=SMTPApplet ARCHIVE="activation.jar,mail.jar"
 WIDTH=600 HEIGHT=400>
 <PARAM NAME="to" VALUE="hamp@sideview.mtsterling.ky.us">
 <PARAM NAME="subject" VALUE="Hay Orders">
 <PARAM NAME="from" VALUE="noone">
</APPLET>

In practice, the JavaMail API works only in HotJava and Internet
Explorer. Netscape Navigator 4.x and earlier place additional
restrictions on what resources an untrusted applet is allowed to
load. These restrictions break the JavaMail API in applets.

Example 19.3 is a simple applet that sends email. The address to send email to and the
subject are read from PARAM tags. The address to send email from is also read from a
PARAM tag, but the user has the option to change it. The text to send is typed into a text
area by the user. Finally, the server is determined by looking at the applet's codebase.

Example 19.3. An Applet That Sends Email

import java.applet.*;
import javax.mail.*;
import javax.mail.internet.*;
import java.util.Properties;
import java.awt.event.*;
import java.awt.*;

public class SMTPApplet extends Applet {

 private Button sendButton = new Button("Send Message");
 private Label fromLabel = new Label("From: ");
 private Label subjectLabel = new Label("Subject: ");
 private TextField fromField = new TextField(40);
 private TextField subjectField = new TextField(40);
 private TextArea message = new TextArea(30, 60);

 private String toAddress = "";

 public SMTPApplet() {

 this.setLayout(new BorderLayout());

 Panel north = new Panel();
 north.setLayout(new GridLayout(3, 1));

 Panel n1 = new Panel();
 n1.add(fromLabel);
 n1.add(fromField);
 north.add(n1);

 Panel n2 = new Panel();
 n2.add(subjectLabel);
 n2.add(subjectField);
 north.add(n2);

 this.add(north, BorderLayout.NORTH);

 message.setFont(new Font("Monospaced", Font.PLAIN, 12));
 this.add(message, BorderLayout.CENTER);

 Panel south = new Panel();
 south.setLayout(new FlowLayout(FlowLayout.CENTER));
 south.add(sendButton);
 sendButton.addActionListener(new SendAction());
 this.add(south, BorderLayout.SOUTH);

 }

 public void init() {

 String subject = this.getParameter("subject");
 if (subject == null) subject = "";
 subjectField.setText(subject);

 toAddress = this.getParameter("to");
 if (toAddress == null) toAddress = "";

 String fromAddress = this.getParameter("from");
 if (fromAddress == null) fromAddress = "";
 fromField.setText(fromAddress);

 }

 class SendAction implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 try {
 Properties props = new Properties();
 props.put("mail.host", getCodeBase().getHost());

 Session mailConnection = Session.getInstance(props, null);
 final Message msg = new MimeMessage(mailConnection);

 Address to = new InternetAddress(toAddress);
 Address from = new InternetAddress(fromField.getText());

 msg.setContent(message.getText(), "text/plain");
 msg.setFrom(from);
 msg.setRecipient(Message.RecipientType.TO, to);
 msg.setSubject(subjectField.getText());

 // This can take a non-trivial amount of time so
 // spawn a thread to handle it.
 Runnable r = new Runnable() {
 public void run() {
 try {
 Transport.send(msg);
 }
 catch (Exception e) {

 e.printStackTrace();
 }
 }
 };
 Thread t = new Thread(r);
 t.start();

 message.setText("");
 }
 catch (Exception e) {
 // We should really bring up a more specific error dialog
here.
 e.printStackTrace();
 }
 }
 }
}

Figure 19.2 shows this applet running in Internet Explorer 4.0.1 on the Macintosh.
I've been careful to only use methods and classes available in Java 1.1 so that this
applet will run across the most web browsers possible. I also avoided using Swing so
that there'd be one less large JAR file to download. As it is, the mail.jar and
activation.jar files that this applet requires take up almost 300K, more than I'm
comfortable with but manageable on a fast connection.

Figure 19.2. The SMTP applet

Proper behavior of this applet depends on several external factors:

• The browser must support at least Java 1.1 with a security model no stricter
than the default.

• The mail.jar and activation.jar files must be available in the applet's codebase.

• The web server that serves the applet must also be an SMTP server willing to
relay mail from the client system to the receiver system. Nowadays, most open
SMTP relays have been shut down to avoid abuse by spammers, so this can be
a sticking point. If it is, you'll get an exception like this:

javax.mail.SendFailedException: 550
<hamp@sideview.mtsterling.ky.us>... Relaying denied

However, you should at least be able to send email to addresses in the web
server's domain

19.3 Receiving Mail

Receiving mail is considerably more complex than sending it. For instance, where a
simple HELLO command is sufficient to access most SMTP servers (a fact that is the
source of much forged email and spam), retrieving email generally requires providing
both a username and a password. SMTP uses only 14 different commands, and a
simple email client can be implemented with just five of them. POP3, however, has 12
commands, almost all of which a client must be able to handle, and IMAP4 has 24
different commands.

The JavaMail API is designed around the idea that you're retrieving messages from an
IMAP or perhaps an NNTP server. That is, it assumes that the server can return
headers separate from the messages they belong to, that it can search through
mailboxes, that it provides the storage for the messages rather than the client, and so
forth. The JavaMail API provides less of what you need for client-oriented mail
access protocols, such as POP3, that assume the client stores and manage the mail
archive, but it still gives you the tools to download the mail from the server. You just
have to implement your own storage system on the client.

More clients today use POP rather than IMAP to access their mail (especially at ISPs
that don't want to spend disk space on storing users' mailboxes), so we'll begin with
the simpler POP protocol, then move on to IMAP. From the perspective of JavaMail,
IMAP can be viewed largely as POP plus some commands for manipulating folders.
For simple programs that operate only on the INBOX folder, POP and IMAP clients
are more or less the same. Sun's implementation of JavaMail does not include a POP3
service provider, so to connect to a POP server, you'll have to install one. Several POP
providers are listed in Table 19.1. For the examples in this chapter, Sun's POP3
provider will be sufficient, though Linkable Software's POP3 Provider for JavaMail
1.1 is more feature complete. Both of these include a .jar file you add to your
CLASSPATH environment variable or place in your ext directory.

There are about 12 steps to reading a remote mailbox. (The exact number can vary a
little, since some steps are optional or can be combined with or replaced by others.)

1. Set up the properties you'll use for the connection.
2. Construct the Authenticator you'll use for the connection.
3. Get a Session object with Session.getDefaultInstance().
4. Use the session's getStore() method to return a Store.
5. Connect to the store.

6. Get the INBOX folder from the store with the getFolder() method.
7. Open the INBOX folder.
8. Open the folder you want inside the INBOX folder. Repeat as many times as

necessary to reach the folder you're seeking.
9. Get the messages from the folder as an array of Message objects.
10. Iterate through the array of messages, processing each one in turn using the

methods of the Message class. For instance, you might print out each message
or simply display the sender, subject, and other vital information in a GUI for
the user to select from, as in Figure 19.3.

11. Close the folder.
12. Close the store.

Figure 19.3. A GUI for selecting mail messages

Each of these steps is individually quite simple. The first is to set up the properties for
the mail session. Properties you might want to set include mail.host,
mail.store.protocol, mail.user, mail.pop3.user, and mail.pop3.host.
However, you don't absolutely need to set any of these. If the Session will be used
only to retrieve mail, then an empty Properties object will be enough. For example:

Properties props = new Properties();

Next, you'll want to create an instance of the javax.mail.Authenticator class
(more properly, an instance of a concrete subclass of the abstract Authenticator
class) that can ask the user for her password. For now, we'll simply hardcode those
values and pass null instead of an actual Authenticator. However, we'll fix this later
when we discuss authentication:

Authenticator a = null;

Then, use your Properties and Authenticator objects to get a Session instance
like this:

Session session = Session.getDefaultInstance(props, a);

Next ask the session for a store for the provider. Here, we want a provider for POP3:

Store store = session.getStore("POP3");

Finally, you're ready to actually connect to the store using the connect() method.
You'll need to provide the host to connect to and the username and password to use:

store.connect("mail.cloud9.net", "elharo", "my_password");

You can pass null for the password to indicate that the previously specified
Authenticator should be queried for the password.

Now that the store is connected, you're ready to open a folder in the store. This step is
really more oriented to IMAP than POP, since POP servers don't keep track of
different folders. They simply provide all of a user's incoming mail as one
undifferentiated amalgam. For purposes of the JavaMail API, POP3 providers use the
folder name INBOX:

Folder inbox = store.getFolder("INBOX");

The folder is closed when you get it. You can perform some operations on a closed
folder including deleting or renaming it, but you can't get the messages out of a closed
folder. First you have to open it. You can open a folder for read access by passing the
mnemonic constant Folder.READ_ONLY to the open() method for read access, or
Folder.READ_WRITE for read/write access:

inbox.open(Folder.READ_ONLY);

Now you're ready to download the messages. Do this with the getMessages()
method, which returns an array containing all the messages in the folder:

Message[] messages = inbox.getMessages();

(If you were using IMAP instead of POP, this step would not actually download the
messages. Each one would stay on the server until you accessed it specifically. You'd
just get a pointer to the actual message.)

The Message class provides many methods for working with individual messages. It
has methods to get the various header fields of the message, to get the content of the
message, to reply to the message, and more. We'll discuss these soon, when we talk
about the Message and MimeMessage classes. For now, we'll do just about the
simplest thing imaginable, print each message on System.out using the message's
writeTo() method:

for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 messages[i].writeTo(System.out);
}

Once you're done with the messages, you should close the folder, then close the
message store with the aptly named close() methods:

inbox.close(false);
store.close();

The false argument to the folder's close() method indicates that we do not want
the server to actually expunge any deleted messages in the folder. We simply want to
break our connection to this folder.

Example 19.4 puts this all together with a simple program that downloads and prints
out the contents of a specified POP mailbox. Messages are simply dumped on
System.out in the default encoding. The servers, usernames, and so forth are all
hardcoded. However, this quickly demonstrates most of the key points of receiving
mail with the JavaMail API. A more advanced program would include an appropriate
GUI.

Example 19.4. POP3Client

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class POP3Client {

 public static void main(String[] args) {

 Properties props = new Properties();

 String host = "utopia.poly.edu";
 String username = "eharold";
 String password = "mypassword";
 String provider = "pop3";

 try {

 // Connect to the POP3 server
 Session session = Session.getDefaultInstance(props, null);
 Store store = session.getStore(provider);
 store.connect(host, username, password);

 // Open the folder
 Folder inbox = store.getFolder("INBOX");
 if (inbox == null) {
 System.out.println("No INBOX");
 System.exit(1);
 }
 inbox.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = inbox.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 messages[i].writeTo(System.out);
 }

 // Close the connection
 // but don't remove the messages from the server
 inbox.close(false);
 store.close();

 }

 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Here's some sample output I got when I pointed it at an account I don't use much:

D:\JAVA\JNP2\examples\18>java POP3Client
------------ Message 1 ------------
Received: (from eharold@localhost)
 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728
 for eharold; Tue, 30 Nov 1999 16:14:29 -0500 (EST)
Date: Tue, 30 Nov 1999 16:14:29 -0500 (EST)
From: Elliotte Harold <eharold@utopia.poly.edu>
Message-Id: <199911302114.QAA05728@utopia.poly.edu>
To: eharold@utopia.poly.edu
Subject: test
Content-Type: text
X-UIDL: 87e3f1ba71738c8f772b15e3933241f0
Status: RO

hello you

------------ Message 2 ------------
Received: from russian.cloud9.net (russian.cloud9.net [
.4])
 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id OAA28428
 for <eharold@utopia.poly.edu>; Wed, 1 Dec 1999 14:05:06 -0500
(
Received: from [168.100.203.234] (macfaq.dialup.cloud9.net
[168.100.203
 by russian.cloud9.net (Postfix) with ESMTP id 24B93764F
 for <eharold@utopia.poly.edu>; Wed, 1 Dec 1999 14:02:50 -
0500
Mime-Version: 1.0
X-Sender: macfaq@mail.cloud9.net
Message-Id: <v04210100b46b1f97969d@[168.100.203.234]>
Date: Wed, 1 Dec 1999 13:55:40 -0500
To: eharold@utopia.poly.edu
From: Elliotte Rusty Harold <elharo@macfaq.com>
Subject: New system
Content-Type: text/plain; charset="us-ascii" ; format="flowed"
X-UIDL: 01fd5cbcf1768fc6c28f9c8f934534b5

Just thought you'd be happy to know that now that I've got my desk
moved over from my old apartment, I've finally ordered the Windows NT
system I've been promising for months.
--
David

About the only change you'd need to make to port this program to IMAP would be
setting the provider variable to imap instead of pop3.

19.4 Password Authentication

Hardcoding passwords in source code as Example 19.4 does is, to say the least, a very
bad idea. If a password is required, you should ask the user for it at runtime.

Furthermore, when the user types the password, it should not be displayed on the
screen. Ideally, it should not even be transmitted in clear text across the network,
though in fact many current POP clients and servers do exactly that. (IMAP tends to
be a little more secure.)

When you open a connection to a message store, the JavaMail API allows you to
provide a javax.mail.Authenticator object that it can use to get the username and
password. Authenticator is an abstract class:

public abstract class Authenticator extends Object

When the provider needs to know a username or password, it calls back to the
getPasswordAuthentication() method in a user-defined subclass of
Authenticator. This returns a PasswordAuthentication object containing this
information:

protected PasswordAuthentication getPasswordAuthentication()

These two classes are almost exactly the same as the
java.net.Authenticator and
java.net.PasswordAuthentication classes discussed in
Chapter 7. However, those classes are available only in Java 1.2
and later. To make the JavaMail API work in Java 1.1, Sun had
to duplicate their functionality in the javax.mail package. Sun
could have included java.net.Authenticator and
java.net.PasswordAuthentication in mail.jar, but that
would have meant that the JavaMail API could not be certified as
100% Pure Java. However, everything you learned about
java.net.Authenticator and
java.netPasswordAuthentication in Chapter 7 is true of
javax.mail.Authenticator and
javax.mailPasswordAuthentication in this chapter. The only
thing you have to watch out for is that if you import both
java.net.* and javax.mail.* in a class, then your source code
will have to use fully qualified names like
java.net.Authenticator instead of short names like
Authenticator.

To add runtime password authentication to your programs, you subclass
Authenticator and override getPasswordAuthentication() with a method that
knows how to securely ask the user for a password. One useful tool for this process is
the JPasswordField component from Swing. Example 19.5 demonstrates a Swing-
based Authenticator subclass that brings up a dialog to ask the user for his
username and password.

Example 19.5. A GUI Authenticator

import javax.mail.*;
import javax.swing.*;
import java.awt.*;

import java.awt.event.*;

public class MailAuthenticator extends Authenticator {

 private JDialog passwordDialog = new JDialog(new JFrame(), true);
 private JLabel mainLabel = new JLabel(
 "Please enter your user name and password: ");
 private JLabel userLabel = new JLabel("User name: ");
 private JLabel passwordLabel = new JLabel("Password: ");
 private JTextField usernameField = new JTextField(20);
 private JPasswordField passwordField = new JPasswordField(20);
 private JButton okButton = new JButton("OK");

 public MailAuthenticator() {
 this("");
 }

 public MailAuthenticator(String username) {

 Container pane = passwordDialog.getContentPane();
 pane.setLayout(new GridLayout(4, 1));
 pane.add(mainLabel);
 JPanel p2 = new JPanel();
 p2.add(userLabel);
 p2.add(usernameField);
 usernameField.setText(username);
 pane.add(p2);
 JPanel p3 = new JPanel();
 p3.add(passwordLabel);
 p3.add(passwordField);
 pane.add(p3);
 JPanel p4 = new JPanel();
 p4.add(okButton);
 pane.add(p4);
 passwordDialog.pack();

 ActionListener al = new HideDialog();
 okButton.addActionListener(al);
 usernameField.addActionListener(al);
 passwordField.addActionListener(al);

 }

 class HideDialog implements ActionListener {

 public void actionPerformed(ActionEvent e) {
 passwordDialog.hide();
 }

 }

 public PasswordAuthentication getPasswordAuthentication() {

 passwordDialog.show();

 // getPassword() returns an array of chars for security reasons.
 // We need to convert that to a String for
 // the PasswordAuthentication() constructor.
 String password = new String(passwordField.getPassword());
 String username = usernameField.getText();

 // Erase the password in case this is used again.
 // The provider should cache the password if necessary.
 passwordField.setText("");
 return new PasswordAuthentication(username, password);

 }
}

Most of this code is just for handling the GUI. Figure 19.4 shows the rather simple
dialog box this produces.

Figure 19.4. An authentication dialog

Interestingly, JPasswordField takes more pains to be secure than does
PasswordAuthentication. JPasswordField stores passwords as an array of chars
so that when you're done with the password, you can overwrite it with nulls. This
means that the password exists in memory for less time and is less likely to be
accidentally swapped out to disk and left there in a virtual memory system. However,
PasswordAuthentication stores passwords as strings, which are immutable and
therefore may be unintentionally stored on the disk.

Modifying the POP client to support this style of authentication is straightforward, as
Example 19.6 demonstrates. We replace the hardcoded username and password with
nulls and pass an instance of MailAuthenticator as the second argument to
connect(). The only other change is that we call System.exit() at the end of the
main() method, since the program will no longer exit when the main() method
returns once the AWT thread has been started.

Example 19.6. A POP Client That Asks the User for the Password as Necessary

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class SecurePOP3Client {

 public static void main(String[] args) {

 Properties props = new Properties();

 String host = "utopia.poly.edu";
 String provider = "pop3";

 try {

 // Connect to the POP3 server
 Session session = Session.getDefaultInstance(props,
 new MailAuthenticator());
 Store store = session.getStore(provider);
 store.connect(host, null, null);

 // Open the folder
 Folder inbox = store.getFolder("INBOX");
 if (inbox == null) {
 System.out.println("No INBOX");
 System.exit(1);
 }
 inbox.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = inbox.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 messages[i].writeTo(System.out);
 }

 // Close the connection
 // but don't remove the messages from the server
 inbox.close(false);
 store.close();

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // since we brought up a GUI returning from main() won't exit
 System.exit(0);

 }
}

19.5 Addresses

The javax.mail.Address class is very simple. It's an abstract class that exists mainly
to be subclassed by other, protocol-specific address classes:

public abstract class Address extends Object

There are two of these subclasses in the standard JavaMail API: InternetAddress
for SMTP email, and NewsAddress for Usenet newsgroups:

public class InternetAddress extends Address
public class NewsAddress extends Address

Providers of other mail protocols would also subclass Address with classes that
represented their style of address.

19.5.1 The Address Class

The Address class itself is extremely simple. It has only three methods, all abstract
and two of which are simple utility methods that override the corresponding methods
in java.lang.Object:

public abstract String

getType()
public abstract String toString()
public abstract boolean equals(Object o)

Since all three of these methods are abstract, there aren't any guarantees here about the
methods' semantics, since all must be overridden in subclasses. However, this does
require that subclasses provide their own implementations of equals() and
toString() rather than relying on the rather generic implementations available from
java.lang.Object. In general, the getType() method will return a string such as
"rfc822" or "news" that indicates the kind of Address object this is.

19.5.2 The InternetAddress Class

An InternetAddress object represents an RFC 822-style email address. This is the
standard Internet-style email address that is rapidly supplanting all other proprietary
formats. It looks like elharo@metalab.unc.edu or ask_tim@oreilly.com. However, it
can contain a name as well—for instance, ask_tim@oreilly.com (Tim O'Reilly).

The state of an InternetAddress object is maintained by three protected fields:

protected String address
protected String personal
protected String encodedPersonal

The address field is the actual email address—for example, ask_tim@oreilly.com.
The personal field is the name—for example, Tim O'Reilly. Although Java strings
are pure Unicode that can express names like Erwin Schrödinger or

, the strings used in mail headers must be pure
ASCII in order to pass through most existing mail software. Consequently, Java's
Unicode strings need to be converted to pure ASCII using a sort of hexadecimal
escape. The details of this conversion are described in RFC 2047, MIME
(Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for
Non-ASCII Text. The encoded string is placed in the encodedPersonal field. All of
these fields will be initially set in the constructor. There are four overloaded
constructors for InternetAddress objects:

public InternetAddress()
public InternetAddress(String address) throws AddressException
public InternetAddress(String address, String personal)
 throws UnsupportedEncodingException
public InternetAddress(String address, String personal, String
charset)
 throws UnsupportedEncodingException

They are used exactly as you'd expect. For example:

Address tim = new InternetAddress("ask_tim@oreilly.com", "Tim
O'Reilly");

Although two of these methods are declared to throw
UnsupportedEncodingException, this should happen only in the last method and
then only if the name of the character set is not recognized by the VM. (For example,
Java 1.1 does not recognize "ASCII", though in that case you don't really need to
specify a character set.)

There are nine instance methods in this class—three setter methods, three getter
methods, and three utility methods:

public void setAddress(String address)
public void setPersonal(String name, String charset)
 throws UnsupportedEncodingException
public void setPersonal(String name)
 throws UnsupportedEncodingException
public String getAddress()
public String getPersonal()
public String getType()
public String toString()
public boolean equals(Object o)
public int hashCode()

The setAddress() method sets the address field of the object to the specified value.
The setPersonal() methods sets the personal and encodedPersonal fields to the
specified value (after encoding it as necessary). The getAddress() and
getPersonal() methods return the values of the address and personal or decoded
encodedPersonal fields, respectively. Finally, the getType() method returns the
string "rfc822".

The toString() method returns an email address suitable for use in a To: or From:
field of an RFC 822 email message. The equals() and hashCode() methods have
their usual semantics.

There are also five static utility methods, four of which convert addresses to and from
strings:

public static String toString(Address[] addresses)
 throws ClassCastException
public static String toString(Address[] addresses, int used)
 throws ClassCastException
public static InternetAddress[] parse(String addressList)
 throws AddressException
public static InternetAddress[] parse(String s, boolean strict)
 throws AddressException

The InternetAddress.toString() methods convert an array of Address objects
into a comma-separated list of addresses encoded in pure ASCII, possibly folded onto
multiple lines. The optional used argument gives the number of characters that will
precede this string in the header field, such as To: or Cc:, into which this string will be
inserted. This lets toString() decide where it needs to break the lines. A

ClassCastException is thrown if any of the Address objects in the array are not
more specifically InternetAddress objects.

The two parse() methods perform this operation in reverse, converting a comma-
separated String of addresses into an array of InternetAddress objects. Setting the
optional strict argument to false changes the behavior so that strings that use
whitespace instead of commas (or whitespace and commas) to separate email
addresses are also understood. All four of these methods are useful for message
header fields that contain multiple addresses; for example, a Cc: that's directed to six
people.

Finally, the getLocalAddress() method checks several system properties
(mail.from, mail.user, mail.host, and user.name) as well as
InetAddress.getLocalName() to determine the email address of the current user:

public static InternetAddress getLocalAddress(Session session)

For example, this code fragment tries to use the user's own email address rather than
one hardcoded into the program as a string:

msg.setFrom(InternetAddress.getLocalAddress());

However, there's no guarantee that any of these properties will necessarily give the
user's true address.

19.5.3 The NewsAddress Class

Perhaps a little surprisingly, with an appropriate service provider, the JavaMail API
can also access Usenet news. The API is mostly the same as for reading a POP or
IMAP mailbox. However, instead of using an InternetAddress, you use a
NewsAddress:

public class NewsAddress extends Address

A NewsAddress object represents a Usenet newsgroup name, such as
comp.lang.java.machine. It may include the hostname for the news server as well. The
state of a NewsAddress object is maintained by two protected fields:

protected String newsgroup
protected String host

The newsgroup field contains the name of the newsgroup—for example,
netscape.devs-java. The host field is either null or contains the hostname of the news
server—for example, secnews.netscape.com. Both of these fields are set in the
constructor. There are three overloaded constructors for NewsAddress objects:

public NewsAddress()
public NewsAddress(String newsgroup)
public NewsAddress(String newsgroup, String host)

They are used exactly as you'd expect. For example:

Address netscape_java = new NewsAddress("netscape.devs-java.",
 "secnews.netscape.com");

There are eight instance methods in this class—three getter methods, two setter
methods, and three utility methods:

public String getType()
public String getHost()
public String getNewsgroup()
public void setNewsgroup(String newsgroup)
public void setHost(String host)
public String toString()
public boolean equals(Object o)
public int hashCode()

The setNewsgroup() and setHost() methods set the newsgroup and host fields
of the object to the specified values. The getNewsgroup() and getHost() methods
return the values of the newsgroup and host fields. Finally, the getType() method
returns the string "news".

The toString() method returns the newsgroup name in a form suitable for the
Newsgroups: header field of a Usenet posting. The equals() and hashCode()
methods have their usual semantics.

There are also two static utility methods for converting addresses to and from strings:

public static String toString(Address[] addresses)
 throws ClassCastException
public static NewsAddress[] parse(String newsgroups)
 throws AddressException

The toString() method converts an array of Address objects into a comma-
separated list of newsgroup names. A ClassCastException is thrown if any of the
Address objects in the array are not more specifically NewsAddress objects. The
parse() method reverses this operation, converting a comma-separated String of
newsgroup names, such as
"comp.lang.java.programmer,comp.lang.java.gui,comp.lang.java.help", into an array
of NewsAddress objects. It throws an AddressException if the newsgroups argument
is not a comma-separated list of newsgroup names.

Sun's implementation of the JavaMail API does not have a service provider for news,
however; so although you can create news addresses, before you can actually read and
post news, you'll need to install a service provider that does support it. Table 19.1 lists
some possible sources of news providers. Once you've got one, reading news is as
straightforward as talking to an IMAP server.

19.6 The URLName Class

javax.mail.URLName represents the name of a URL; that is, it treats a URL as a
string, but does not attempt to connect to or resolve any of the parts of the string. URL
names are mainly used as convenient ways to identify folders and stores with
nonstandard URLs, such as

pop3://elharo:mypassword@mail.metalab.unc.edu:110/INBOX, that don't have a
matching protocol handler:

public class URLName Object

The methods of URLName are very similar to those of java.net.URL discussed in
Chapter 7, except that all those involving actual connections have been deleted.
What's left is a bunch of methods for breaking a URL string into its component parts
or building a URL from pieces.

19.6.1 The Constructors

There are three overloaded URLName constructors. One takes the individual pieces of a
URL as arguments; another takes a java.net.URL object; and a third takes a String
containing a URL:

public URLName(String protocol, String host, int port, String file,
 String userName, String password)
public URLName(URL url)
public URLName(String url)

Constructing a URLName does not require that a protocol handler for the scheme be
available. All the operations on the URLName take place with simple substring
manipulation. This allows the URLName class to support very nonstandard URLs like
pop3://eharold:password@utopia.poly.edu/INBOX or
imap://elharo@metalab.unc.edu/Speaking/SD99West. These URLName objects can be
used to refer to particular folders on the server.

19.6.2 Parsing Methods

These seven getter methods that return individual pieces of the URL are the main
purpose for this class:

public int getPort()
public String getProtocol()
public String getFile()
public String getRef()
public String getHost()
public String getUsername()
public String getPassword()

These can all be easily understood by analogy with the similarly named methods in
java.net.URL. Except for getPort(), these all return null if the piece is missing.
getPort() returns -1 if the port is not explicitly included in the URL.

There's also a getURL() method that converts a URLName to a java.net.URL. Since
doing so requires that Java have a protocol handler for the URL's scheme, this method
can throw a MalformedURLException:

public URL getURL() throws MalformedURLException

Finally, there are the usual three utility methods with the usual semantics:

public boolean equals(Object o)
public int hashCode()
public String toString()

The toString() method simply returns the string form of the URL.

We can use the URLName class to provide an interface for an email client that is
completely protocol-independent. All information about protocol, host, and other
details is provided by a URL read from the command line. Example 19.7
demonstrates.

Example 19.7. A Protocol-Independent Mail Client

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class MailClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java MailClient
protocol://username:password@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 null);

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not
found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 messages[i].writeTo(System.out);
 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }

 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

URLName does make the code a little more compact since it moves some information
from the source code to the command line. Besides eliminating the obvious variables
and string literals for username, host, and so forth, we've managed to eliminate any
direct reference to the Store class. A typical run starts like this:

% java MailClient pop3://eharold:mypassword@utopia.poly.edu/INBOX
------------ Message 1 ------------
Received: (from eharold@localhost)
 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728
 for eharold; Tue, 30 Nov 1999 16:14:29 -0500 (EST)
Date: Tue, 30 Nov 1999 16:14:29 -0500 (EST)
From: Elliotte Harold <eharold@utopia.poly.edu>
Message-Id: <199911302114.QAA05728@utopia.poly.edu>
To: eharold@utopia.poly.edu
Subject: test
Content-Type: text
X-UIDL: 87e3f1ba71738c8f772b15e3933241f0
Status: RO

hello you

For demonstration purposes, this program includes the password in the URL. In
general, however, that's a huge security risk. It would be much better to use a runtime
Authenticator as Example 19.6 did. Of course, ultimately it's very questionable
whether this is really a superior interface to Example 19.6 and its ilk.

19.7 The Message Class

The javax.mail.Message class is the abstract superclass for all individual emails,
news postings, and similar messages:

public abstract class Message extends Object implements Part

There's one concrete Message subclass in the standard JavaMail API,
javax.mail.internet.MimeMessage. This is used for both email and Usenet news
messages. Service providers are free to add classes for their own message formats. For
instance, IBM might provide a NotesMessage class for Lotus Notes.

The Message class mainly declares abstract getter and setter methods that define the
common properties of most messages. These properties include the addressees of the
message, the recipients of the message, the subject and content of the message, and
various other attributes. You can think of these as properties of the envelope that
contains the message.

Furthermore, the Message class implements the Part interface. The Part interface
mostly handles the body of an email message. It declares methods for getting and
setting the content type of the message body, getting and setting the actual message

body content, getting and setting arbitrary headers from the message, and getting
input streams that are fed by the message body. The main body part of a message can
contain other parts. This is used to handle attachments, message bodies that are
available in multiple formats, and other multipart emails. Since the Message class is
abstract and needs to be subclassed by concrete classes such as MimeMessage, most of
these methods are not actually redeclared in Message but can be invoked by any
actual instance of Message. We'll begin by discussing the methods actually declared
in Message, then move on to those declared in Part.

19.7.1 Creating Messages

The Message class has three constructors:

protected Message()
protected Message(Folder folder, int messageNumber)
protected Message(Session session)

Since all the constructors are protected, these are primarily for the use of subclasses
such as MimeMessage. If you're sending a message, you'll use one of the constructors
in the subclass instead. If you're reading messages, then the Folder or Session you're
reading from will create the Message objects and pass them to you.

19.7.1.1 Replying to messages

If you already have a Message object, one way to create a new Message object is to
reply to the existing one using the reply() method:

public abstract Message reply(boolean replyToAll)
 throws MessagingException

This method creates a new Message object with the same subject prefixed with "Re: "
and addressed to the sender of the original message. If replyToAll is true, then the
message is addressed to all known recipients of the original message. The content of
the message is empty. If you want to quote the original message, you'll have to do that
yourself.

19.7.1.2 Getting messages from folders

You've already seen that when you're reading email, the JavaMail API creates
Message objects to represent the messages it finds on the server. The primary means
of doing this are the getMessage() and getMessages() methods in the Folder
class:

public abstract Message getMessage(int messageNumber)
 throws MessagingException
public Message[] getMessages(int start, int end)
 throws MessagingException
public Message[] getMessages(int[] messageNumbers)
 throws MessagingException
public Message[] getMessages() throws MessagingException

The first three methods allow the caller to specify which messages it wants. The last
simply returns all messages in the folder. What's actually returned are stubs holding
the places of the actual messages. The text and headers of the message won't
necessarily be retrieved until some method of the Message class is invoked that
requires this information.

19.7.2 Basic Header Info

A typical RFC 822 message contains a header that looks something like this:

From levi@blazing.sunspot.noao.edu Fri Aug 5 10:57:08 1994
Date: Fri, 5 Aug 1994 10:57:04 +0700
From: levi@blazing.sunspot.noao.edu (Denise Levi)
To: volleyball@sunspot.noao.edu
Subject: Apologies
Content-Length: 517
Status: RO
X-Lines: 13

The exact fields can vary, but most messages contain at least a From: field, a To: field,
a Date: field, and a Subject: field. Other common fields include Cc: (carbon copies)
and Bcc: (blind carbon copies). In general, these will be accessible through getter and
setter methods.

19.7.2.1 The From address

These four methods allow you to get and set the From: field of a message:

public abstract Address[] getFrom() throws MessagingException
public abstract void setFrom() throws MessagingException,
 IllegalWriteException, IllegalStateException
public abstract void setFrom(Address address)
 throws MessagingException, IllegalWriteException,
IllegalStateException
public abstract void addFrom(Address[] addresses)
 throws MessagingException, IllegalWriteException,
IllegalStateException

The getFrom() method returns an array of Address objects, one for each address
listed in the From: header. (In practice, it's rare for a message to be from more than
one address. It's quite common for a message to be addressed to more than one
address.) It returns null if the From: header isn't present in the message. It throws a
MessagingException if the From: header is malformed in some way.

The noargs setFrom() and addFrom() methods set and modify the From: headers
of outgoing email messages. The noargs setFrom() method sets the header to the
current value of the mail.user property or, as a fallback, the user.name property.
The setFrom() method with arguments sets the value of the From: header to the
listed addresses. The addFrom() method adds the listed addresses to any addresses
that already exist in the header. All three of these methods can throw a
MessagingException if one of the addresses they use isn't in the right format. They
can also throw an IllegalWriteException if the From: field of the given Message

object cannot be changed or an IllegalStateException if the entire Message object
is read only.

19.7.2.2 The Reply-to address

Some messages contain a Reply-to: header indicating that any replies should be sent
to a different address than the one that sent the message. There are two methods to set
and get these addresses:

public Address[] getReplyTo() throws MessagingException
public void setReplyTo(Address[] addresses) throws MessagingException,
 MethodNotSupportedException, IllegalWriteException,
 IllegalStateException

The semantics of these methods are the same as for the equivalent getFrom() and
setFrom() methods—in fact, the default implementation of getReplyTo() simply
returns getFrom()--with the single caveat that an implementation that doesn't
support separate Reply-to: addresses may throw a MethodNotSupportedException
when setReplyTo() is invoked.

19.7.2.3 The recipient addresses

Whereas the sender of the message is generally found only in the From: header, the
recipients of the message are often split across the To:, Cc:, and Bcc: fields. Rather
than providing separate methods for each of these fields, the various
getRecipients() and setRecipients() methods rely on a
Message.RecipientType argument to determine which field's value is desired.
RecipientType is a public inner class in javax.mail.Message whose private
constructor limits it to exactly these three static objects:

Message.RecipientType.TO
Message.RecipientType.CC
Message.RecipientType.BCC

There are two methods to find the addressees of the Message:

public abstract Address[]getRecipients(Message.RecipientType type)
 throws MessagingException
public Address[] getAllRecipients() throws MessagingException

The getRecipients() method returns an array of Address objects, one for each
address listed in the specified header. It returns null if the specified header isn't
present in the message. It throws a MessagingException if the specified header is
malformed in some way. The getAllRecipients() method does the same except
that it combines the contents of the To:, Cc:, and Bcc: headers.

There are two methods to set the recipients of the message while replacing any
previous recipients and two methods to add recipients to the message:

public abstract void setRecipients(Message.RecipientType type,
 Address[] addresses) throws MessagingException,
IllegalWriteException,

 IllegalStateException
public void setRecipient(Message.RecipientType type, Address address)
 throws MessagingException, IllegalWriteException
public abstract void addRecipients(Message.RecipientType type,
 Address[] addresses) throws MessagingException,
 IllegalWriteException, IllegalStateException
public void addRecipient(Message.RecipientType type, Address address)
 throws MessagingException, IllegalWriteException

All four of these methods can throw a MessagingException, typically because one of
the addresses used isn't in the right format. They can also throw an
IllegalWriteException if the specified field of the given Message object cannot be
changed or an IllegalStateException if the entire Message object is read-only.

19.7.2.4 The subject of the message

Since the subject is simply a single string of text, it's very easy to set and get with
these two methods:

public abstract String getSubject() throws MessagingException
public abstract void setSubject(String subject) throws
 MessagingException, IllegalWriteException, IllegalStateException

As with earlier setter methods, null is returned if the subject field isn't present in the
message. An IllegalWriteException is thrown if the program isn't allowed to set
the value of the Subject: field, and an IllegalStateException is thrown if the
program isn't allowed to change the message at all.

19.7.2.5 The date of the message

Messages also have sent and received dates. Three methods allow programs to access
these fields:

public abstract Date getSentDate() throws MessagingException
public abstract void setSentDate(Date date) throws MessagingException,
 IllegalWriteException, IllegalStateException
public abstract Date getReceivedDate() throws MessagingException

The underlying implementation is responsible for converting the textual date format
found in a message header like "Fri, 5 Aug 2000 10:57:04 +0700" to a
java.util.Date object. As usual, a MessagingException indicates some problem
with the format of the underlying message; an IllegalWriteException indicates
that the field cannot be changed; and an IllegalStateException indicates that the
entire message cannot be changed.

Example 19.8 is a simple example program that follows the basic pattern of the last
several mail-reading programs. However, this one no longer uses writeTo().
Instead, it uses the methods in this section to print just the headers. Furthermore, it
prints them in a particular order regardless of their order in the actual message on the
server. Finally, it ignores the less important headers such as X-UIDL: and Status:. The
static InternetAddress.toString() method converts the arrays that most of these
methods return into simple, comma-separated strings.

Example 19.8. A Program to Read Mail Headers

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class HeaderClient {

 public static void main(String[] args) {
 if (args.length == 0) {
 System.err.println(
 "Usage: java HeaderClient
protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not
found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 // Here's the big change...
 String from =
InternetAddress.toString(messages[i].getFrom());
 if (from != null) System.out.println("From: " + from);
 String replyTo = InternetAddress.toString(
 messages[i].getReplyTo());
 if (replyTo != null) System.out.println("Reply-to: "
 + replyTo);
 String to = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.TO));
 if (to != null) System.out.println("To: " + to);
 String cc = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.CC));
 if (cc != null) System.out.println("Cc: " + cc);
 String bcc = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.BCC));
 if (bcc != null) System.out.println("Bcc: " + to);
 String subject = messages[i].getSubject();
 if (subject != null) System.out.println("Subject: " +
subject);
 Date sent = messages[i].getSentDate();
 if (sent != null) System.out.println("Sent: " + sent);
 Date received = messages[i].getReceivedDate();

 if (received != null) System.out.println("Received: " +
received);

 System.out.println();
 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }
}

Here's some typical output. Several of the requested strings were null because the
fields simply weren't present in the messages in the INBOX; for instance, Cc: and
Bcc:. HeaderClient checks for that and simply omits the fields if they're not present.

% java HeaderClient pop3://eharold@utopia.poly.edu/INBOX
------------ Message 1 ------------
From: Elliotte Harold <eharold@utopia.poly.edu>
Reply-to: Elliotte Harold <eharold@utopia.poly.edu>
To: eharold@utopia.poly.edu
Subject: test
Sent: Tue Nov 30 13:14:29 PST 1999

------------ Message 2 ------------
From: Elliotte Rusty Harold <elharo@macfaq.com>
Reply-to: Elliotte Rusty Harold <elharo@macfaq.com>
To: eharold@utopia.poly.edu
Subject: New system
Sent: Wed Dec 01 10:55:40 PST 1999

------------ Message 3 ------------
From: Dr. Mickel <Greatsmiles@mail.com>
Reply-to: Dr. Mickel <Greatsmiles@mail.com>
To: eharold@utopia.poly.edu
Subject: Breath RX Products now available Online!
Sent: Thu Dec 02 03:45:52 PST 1999

Notice that none of these messages have received dates. That's because the receive
time is not part of the message envelope itself. It has to be provided by the server, and
POP servers don't provide it. An IMAP server would be much more likely to include a
received date, as will be shown in Example 19.9.

19.7.2.6 Saving changes

When you invoke one of the previous set or add methods, some implementations will
store the changes immediately. Others, however, may not. The saveChanges()
method commits the changes made to a Message object:

public abstract void saveChanges() throws MessagingException,
 IllegalWriteException, IllegalStateException

This is not quite a flush. The actual changes may not be committed to disk until the
folder containing the message is closed. However, this method does ensure that the
changes are stored in the folder and that they will be saved when the folder is saved.

19.7.3 Flags

Mail programs can save extra information about the messages that are not part of the
messages themselves. For instance, Pine lets me know whether I've replied to a
message, whether I've read a message, and so on. As Figure 19.5 shows, these are
indicated by symbols and letters in the lefthand column. D means a message has been
deleted; A means it's been answered; N is a new message that hasn't been read yet;
and so forth. In the JavaMail API, these are all represented as flags. A flag is an
instance of the javax.mail.Flags class:

public class Flags extends Object implements Cloneable

Seven flags are predefined as instances of the public static inner class Flags.Flag.
These are:

Flags.Flag.ANSWERED
Flags.Flag.DELETED
Flags.Flag.DRAFT
Flags.Flag.FLAGGED
Flags.Flag.RECENT
Flags.Flag.SEEN
Flags.Flag.USER

In addition, some implementations may allow arbitrary user-defined flags. If so, the
USER flag will be set.

Figure 19.5. Pine shows flags as letters in the lefthand column

The getFlags() method returns the flags of a particular message:

public abstract Flags getFlags() throws MessagingException

The isSet() method tests whether a specified flag is set for the given message:

public boolean isSet(Flags.Flag flag) throws MessagingException

Finally, the setFlags() and setFlag() methods set or unset (depending on the
second argument) the flag indicated by the first argument:

public abstract void setFlags(Flags flag, boolean set)
 throws MessagingException, IllegalWriteException,
 IllegalStateException
public void setFlag(Flags.Flag flag, boolean set) throws
 MessagingException, IllegalWriteException, IllegalStateException

You delete messages by setting their Flags.Flag.DELETED flag to true. For example,
to delete message:

message.setFlag(Flags.Flag.DELETED, true);

This only marks the message as deleted. It does not actually expunge it from the file
on the server. Until the message is expunged, it can still be undeleted by setting
Flags.Flag.DELETED back to false.

Example 19.9 is a slight modification of Example 19.8, HeaderClient, that prints the
flags as well. As a general rule, POP servers won't report flags. Only a protocol that
stores messages and forwards them, such as IMAP or mbox, will report flags.

Example 19.9. A Program to Read Mailbox Flags

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class FlagsClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java FlagsClient protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not
found.");

 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 // Get the headers
 String from =
InternetAddress.toString(messages[i].getFrom());
 if (from != null) System.out.println("From: " + from);
 String replyTo = InternetAddress.toString(
 messages[i].getReplyTo());
 if (replyTo != null) System.out.println("Reply-to: "
 + replyTo);
 String to = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.TO));
 if (to != null) System.out.println("To: " + to);
 String cc = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.CC));
 if (cc != null) System.out.println("Cc: " + cc);
 String bcc = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.BCC));
 if (bcc != null) System.out.println("Bcc: " + to);
 String subject = messages[i].getSubject();
 if (subject != null) System.out.println("Subject: " +
subject);
 Date sent = messages[i].getSentDate();
 if (sent != null) System.out.println("Sent: " + sent);
 Date received = messages[i].getReceivedDate();
 if (received != null) System.out.println("Received: " +
received);

 // Now test the flags:
 if (messages[i].isSet(Flags.Flag.DELETED)) {
 System.out.println("Deleted");
 }
 if (messages[i].isSet(Flags.Flag.ANSWERED)) {
 System.out.println("Answered");
 }
 if (messages[i].isSet(Flags.Flag.DRAFT)) {
 System.out.println("Draft");
 }
 if (messages[i].isSet(Flags.Flag.FLAGGED)) {
 System.out.println("Marked");
 }
 if (messages[i].isSet(Flags.Flag.RECENT)) {
 System.out.println("Recent");
 }
 if (messages[i].isSet(Flags.Flag.SEEN)) {
 System.out.println("Read");
 }
 if (messages[i].isSet(Flags.Flag.USER)) {
 // We don't know what the user flags might be in advance
 // so they're returned as an array of strings
 String[] userFlags =
messages[i].getFlags().getUserFlags();
 for (int j = 0; j < userFlags.length; j++) {
 System.out.println("User flag: " + userFlags[j]);

 }
 }

 System.out.println();
 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }
}

Here's a sample run. The first message has been read and deleted. The second
message has no set flags. It hasn't been read, deleted, or answered. The third message
has been read and answered but not deleted. Notice that I'm using an IMAP server
instead of a POP server:

% java FlagsClient imap://elharo@mail.metalab.unc.edu/INBOX
------------ Message 1 ------------
From: Mike Hall <mikehall@spacestar.com>
Reply-to: Mike Hall <mikehall@spacestar.com>
To: mrj-dev@public.lists.apple.com
Subject: Re: dialog box, parents & X-platform
Sent: Mon Dec 13 05:24:38 PST 1999
Received: Mon Dec 13 06:33:00 PST 1999
Deleted
Read

------------ Message 2 ------------
From: Kapil Madan <kapil.madan@MIT-MISYS.COM>
Reply-to: XML-INTEREST@JAVA.SUN.COM
To: XML-INTEREST@JAVA.SUN.COM
Subject: Re: first mail to the list!
Sent: Mon Dec 13 06:19:46 PST 1999
Received: Mon Dec 13 06:40:00 PST 1999

------------ Message 3 ------------
From: Jim Jackl-Mochel <jmochel@foliage.com>
Reply-to: Jim Jackl-Mochel <jmochel@foliage.com>
To: elharo@metalab.unc.edu
Subject: CPreProcessorStream
Sent: Mon Dec 13 07:14:00 PST 1999
Received: Mon Dec 13 07:08:00 PST 1999
Answered
Read

19.7.4 Folders

Messages received from the network (as opposed to being sent to the network) will
generally belong to some Folder. The getFolder() method returns a reference to
the Folder object that contains this Message:

public Folder getFolder()

It returns null if the message isn't contained in a folder.

Within a folder, messages are organized from first (message 1) to last. The
getMessageNumber() method returns the relative position of this Message in its
Folder:

public int getMessageNumber()

Messages that aren't in any folder have number 0. Message numbers may change
while a program is running if other messages are added to or deleted from a folder.

There's also a protected setMessageNumber() method, but it's only for service
providers, not for user code:

protected void setMessageNumber(int number)

We'll talk more about folders and what they can do at the end of this chapter. One of
the things you can do with a folder is expunge messages from it. This physically
deletes the message if it's already been marked deleted. (A merely deleted message
can be "undeleted", whereas an expunged message cannot be.) If a message is
expunged, there may still be a Message object pointing to the message but almost all
methods on the message will throw a MessagingException. Thus, it may be
important to check whether a message has been expunged before working with it. The
isExpunged() method does that:

public boolean isExpunged()

There's also a protected setExpunged() method, but it's only for service providers,
not for user code:

protected void setExpunged(boolean expunged)

19.7.5 Searching

The final method left in the Message class is match(). The match() method is used
to determine whether a Message satisfies particular search criteria. We'll discuss this
more in a bit when we talk about searching folders:

public boolean match(SearchTerm term) throws MessagingException

19.8 The Part Interface

The Part interface is implemented by both Message and BodyPart. Every Message is
a Part. However, some parts may contain other parts. The Part interface declares
three kinds of methods:

• Methods for getting and setting the attributes of the part
• Methods for getting and setting the headers of the part
• Methods for getting and setting the contents of the part

The attributes of the part are things such as the size of the message or the date it was
received. These aren't explicitly specified in the message's header. The headers, by
contrast, are name-value pairs included at the front of the part. Finally, the content of
the part is the actual data that the message is trying to transmit.

19.8.1 Attributes

The JavaMail API defines five attributes for parts. These are:

Size

The approximate number of bytes in the part

Line count

The number of lines in the part

Disposition

Whether the part is an attachment or should be displayed inline

Description

A brief text summary of the part

Filename

The name of the file that the attachment came from

Not all parts have all attributes. For instance, a part that does not represent an attached
file is unlikely to have a filename attribute. Each attribute is mapped to a getter
method:

public int getSize() throws MessagingException
public int getLineCount() throws MessagingException
public String getDisposition() throws MessagingException
public String getDescription() throws MessagingException
public String getFileName() throws MessagingException,
ParseException

Generally, the getter method returns null or -1 if a part doesn't possess the requested
attribute. It throws a MessagingException if there's some problem retrieving the

message; for instance, if the connection goes down while the message is being
retrieved.

The getSize() method returns the approximate number of bytes in the part.
Depending on the server and protocol, this may or may not account for changes in the
size caused by operations such as Base64 encoding the data.

The getLineCount() method returns the approximate number of lines in the content
of the part or -1 if the number of lines isn't known. Again, the number returned may or
may not account for changes in the size of the part caused by the part's encoding.

The getDisposition() method returns a string indicating whether the content
should be presented inline or as an attachment. The value returned should either be
null (the disposition is not known) or one of the two named constants Part.INLINE or
Part.ATTACHMENT:

public static final String ATTACHMENT = "attachment";
public static final String INLINE = "inline";

If the disposition is Part.ATTACHMENT, then the getFileName() method should
return the name of the file to save the attachment in. Otherwise, getFileName() will
probably return null. However, some email clients, including Netscape 4.5 for
Windows, do not properly set the Content-disposition header for attachments.
Consequently, when receiving messages with attachments that were sent by Navigator,
you'll often get a null disposition but a non-null filename. In practice, it seems more
reliable to assume that any body part with a non-null filename is an attachment
regardless of the Content-disposition header, and any body part with no filename and
no Content-disposition header should be displayed inline if possible. If it's not
possible—for instance, if you can't handle the MIME type—then you can either ask
the user for a filename or pick some reasonable default, such as attachment1.tif.

Normally, the filename includes only the actual name of the file but not any of the
directories that the file was in. It's up to the application receiving the message to
decide where to put the incoming file. For instance, Eudora generally stores
attachments in the Attachments folder inside the Eudora folder. However, the user has
an option to pick a different location. Since it's not uncommon to receive multiple
attachments with the same name over time (vcard.vcf is a particularly common
attachment), always check to see whether a file with the attached file's name already
exists before writing out the attachment. If a similarly named file does exist, you'll
have to rename the attachment in some reasonable fashion; for instance, by appending
a 1 or a 2 to it; e.g., vcard1.vcf, vcard2.vcf, and so on.

The description, disposition, and filename attributes also have setter methods.
However, the size and line count attributes are determined by the content of the part
rather than a setter method:

public void setDisposition(String disposition) throws
 MessagingException, IllegalWriteException, IllegalStateException
public void setFileName(String filename) throws MessagingException,
 IllegalWriteException, IllegalStateException
public void setDescription(String description) throws

 MessagingException, IllegalWriteException, IllegalStateException

The setter methods all throw a MessagingException if there's some problem while
changing the message. They can also throw an IllegalWriteException if the
relevant attribute of the part is not allowed to be modified or an
IllegalStateException if the part belongs to a read-only folder.

The setDisposition() method determines whether the part is to be viewed inline
or as an attachment. Although it's declared to take a String as an argument, this
String should be one of the two named constants Part.INLINE or Part.ATTACHMENT.
Parts that are attachments will generally have a filename included in their meta-
information. This name can be set with the setFileName() method. Finally, the
setDescriptionMethod() can take any String at all to add a description to the part.

Example 19.10 is a simple program that connects to a mail server and reads the
attributes of the messages in the mailbox. Since each message is itself a part (even if it
contains other parts), we can invoke these methods on the entire message.

Example 19.10. A Program to Read Mail Attributes

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class AttributeClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java AttributeClient
protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not
found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");

 String from =
InternetAddress.toString(messages[i].getFrom());
 if (from != null) System.out.println("From: " + from);
 String to = InternetAddress.toString(
 messages[i].getRecipients(Message.RecipientType.TO));
 if (to != null) System.out.println("To: " + to);
 String subject = messages[i].getSubject();
 if (subject != null) System.out.println("Subject: " +
subject);
 Date sent = messages[i].getSentDate();
 if (sent != null) System.out.println("Sent: " + sent);

 System.out.println();
 // Here's the attributes...
 System.out.println("This message is approximately "
 + messages[i].getSize() + " bytes long.");
 System.out.println("This message has approximately "
 + messages[i].getLineCount() + " lines.");
 String disposition = messages[i].getDisposition();
 if (disposition == null) ; // do nothing
 else if (disposition.equals(Part.INLINE)) {
 System.out.println("This part should be displayed inline");
 }
 else if (disposition.equals(Part.ATTACHMENT)) {
 System.out.println("This part is an attachment");
 String fileName = messages[i].getFileName();
 if (fileName != null) {
 System.out.println("The file name of this attachment is "
 + fileName);
 }
 }
 String description = messages[i].getDescription();
 if (description != null) {
 System.out.println("The description of this message is "
 + description);
 }

 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }
}

Here's some typical output. I used an IMAP server because most of these methods
don't work nearly as well with POP servers. IMAP servers can give you the attributes
of a message without making you download the entire message, but POP servers
aren't that sophisticated:

% java AttributeClient imap://elharo@mail.sunsite.unc.edu/INBOX
------------ Message 1 ------------
From: "Richman, Jeremy" <jrichman@hq.ileaf.com>
To: 'xsl-list' <XSL-List@mulberrytech.com>
Subject: Re: New twist: eliminating nodes with duplicate content
Sent: Mon Dec 06 08:37:51 PST 1999

This message is approximately 3391 bytes long.
This message has approximately 87 lines.
------------ Message 2 ------------
From: schererm@us.ibm.com
To: Unicode List <unicode@unicode.org>
Subject: Re: Number ordering
Sent: Mon Dec 06 11:00:28 PST 1999

This message is approximately 1554 bytes long.
This message has approximately 18 lines.
------------ Message 3 ------------
From: John Posner <jjp@connix.com>
To: 'Nakita Watson' <nakita@oreilly.com>
Subject: RE: Another conference Call
Sent: Mon Dec 06 11:16:38 PST 1999
This message is approximately 1398 bytes long.
This message has approximately 19 lines.

19.8.2 Headers

Classes that implement the Part interface—for example, Message—generally declare
methods to return specific headers such as To: or From:. The Part interface, by
contrast, declares methods to get and set arbitrary headers regardless of name.

The getHeader() method gets the values of all the headers with a name that
matches the name argument. Some headers such as Received: can have multiple
values and can be included in a message multiple times, so this method returns those
values as an array of strings. It returns null if no header with that name is present in
this Part:

public String[] getHeader(String name) throws MessagingException

The setHeader() method adds a new header to an outgoing message:

public void setHeader(String name, String value) throws
 MessagingException, IllegalWriteException, IllegalStateException

If there's already a header with this name, then that header is deleted and the new one
inserted in its place—unless the folder in which the message resides is read only, in
which case an IllegalStateException is thrown.

By contrast, the addHeader() method adds header with the specified name but does
not replace any that exist:

public void addHeader(String name, String value) throws
 MessagingException, IllegalWriteException, IllegalStateException

The removeHeader() method deletes all instances of the named header from this
Part:

public void removeHeader(String name) throws MessagingException,
 IllegalWriteException, IllegalStateException

The getAllHeaders() method returns a java.util.Enumeration object
containing all the headers in this message:

public Enumeration getAllHeaders() throws MessagingException

The Enumeration contains one javax.mail.Header object for each header in the
message.

public class Header extends Object

The Header class is very simple with just a constructor to set the name and value of
the header, and getName() and getValue() methods to return them:

public Header(String name, String value)
public String getName()
public String getValue()

Finally, the getMatchingHeaders() method returns an Enumeration containing all
the headers in this message whose name is one of the strings in the argument names
array. The getNonMatchingHeaders() method returns an Enumeration containing
all the headers in this message whose name is not one of the strings in the argument
names array. Again, the Enumeration contains Header objects:

public Enumeration getMatchingHeaders(String[] names)
 throws MessagingException
public Enumeration getNonMatchingHeaders(String[] names)
 throws MessagingException

You may recall that Example 19.8, HeaderClient, printed only a few prespecified
headers, such as To: and From:. With the methods of the Part interface (that Message
implements), it's easy to expand this to cover all headers in the message, whether
known in advance or not. Example 19.11 demonstrates. This is important because
Internet email can contain arbitrary headers. It's not limited to just a few headers
mentioned in the relevant RFCs. For instance, some graphical mail clients for X
Windows use a completely nonstandard X-Face: header whose value is a 48-pixel ×
48-pixel, black-and-white, uuencoded bitmap of the sender's countenance. Other
clients use custom headers for purposes both more serious and more silly.

Example 19.11. A Program to Read Mail Headers

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public class AllHeaderClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java AllHeaderClient
protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not
found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");
 // Here's the difference...
 Enumeration headers = messages[i].getAllHeaders();
 while (headers.hasMoreElements()) {
 Header h = (Header) headers.nextElement();
 System.out.println(h.getName() + ": " + h.getValue());
 }
 System.out.println();
 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }
}

Here's a typical run:

% java AllHeaderClient pop3://eharold@utopia.poly.edu/INBOX
------------ Message 1 ------------
Received: (from eharold@localhost)

 by utopia.poly.edu (8.8.8/8.8.8) id QAA05728
 for eharold; Tue, 30 Nov 1999 16:14:29 -0500 (EST)
Date: Tue, 30 Nov 1999 16:14:29 -0500 (EST)
From: Elliotte Harold <eharold@utopia.poly.edu>
Message-Id: <199911302114.QAA05728@utopia.poly.edu>
To: eharold@utopia.poly.edu
Subject: test
Content-Type: text
X-UIDL: 87e3f1ba71738c8f772b15e3933241f0
Status: RO

------------ Message 2 ------------
Received: from russian.cloud9.net (russian.cloud9.net [168.100.1.4])
 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id OAA28428
 for <eharold@utopia.poly.edu>; Wed, 1 Dec 1999 14:05:06 -0500
(EST)
Received: from [168.100.203.234] (macfaq.dialup.cloud9.net
[168.100.203.234])
 by russian.cloud9.net (Postfix) with ESMTP id 24B93764F8
 for <eharold@utopia.poly.edu>; Wed, 1 Dec 1999 14:02:50 -
0500 (EST)
Mime-Version: 1.0
X-Sender: macfaq@mail.cloud9.net
Message-Id: <v04210100b46b1f97969d@[168.100.203.234]>
Date: Wed, 1 Dec 1999 13:55:40 -0500
To: eharold@utopia.poly.edu
From: Elliotte Rusty Harold <elharo@macfaq.com>
Subject: New system
Content-Type: text/plain; charset="us-ascii" ; format="flowed"
X-UIDL: 01fd5cbcf1768fc6c28f9c8f934534b5
Status: RO

------------ Message 3 ------------
Received: from russian.cloud9.net (russian.cloud9.net [168.100.1.4])
 by utopia.poly.edu (8.8.8/8.8.8) with ESMTP id HAA17345
 for <eharold@utopia.poly.edu>; Thu, 2 Dec 1999 07:55:04 -0500
(EST)
Received: from [168.100.203.234] (macfaq.dialup.cloud9.net
[168.100.203.234])
 by russian.cloud9.net (Postfix) with ESMTP id C036A7630E
 for <eharold@utopia.poly.edu>; Thu, 2 Dec 1999 07:54:58 -
0500 (EST)
Mime-Version: 1.0
X-Sender: elharo@luna.oit.unc.edu
Message-Id: <v04210100b46c0c686ecc@[168.100.203.234]>
Date: Thu, 2 Dec 1999 06:45:52 -0500
To: eharold@utopia.poly.edu
From: "Dr. Mickel" <Greatsmiles@mail.com>(by way of Elliotte Rusty
Harold)
Subject: Breath RX Products now available Online!
Sender: elharo@metalab.unc.edu
Content-Type: text/plain; charset="us-ascii" ; format="flowed"
X-UIDL: 40fa8af2aca1a8c11994f4c56b792720
Status: RO

19.8.3 Content

Every part has a certain content that can be represented as a sequence of bytes. For
instance, in a part that's a simple email message, the content is the body of the
message. However, in multipart messages, this content may itself contain other parts.

The content of each of these parts can be represented as a sequence of bytes.
Furthermore, this sequence of bytes may represent some more specific content type,
such as a uuencoded GIF image or a Base64 encoded WAV audio clip.

19.8.3.1 Reading the contents of the part

The Part interface declares two methods for determining a part's MIME content type.
The getContentType() method returns the MIME content type of this part as a
string; for example, text/plain; charset="us-ascii"; format= "flowed". It
returns null if the content type can't be determined:

public String getContentType() throws MessagingException

The isMimeType() method returns true if this part has the specified MIME type and
subtype. Additional parameters, such as charset, are ignored:

public boolean isMimeType(String mimeType) throws MessagingException

The Part interface also declares several methods that return the content as a variety of
different Java objects including InputStream, String, DataHandler, and more. The
getInputStream() method returns an InputStream from which the part's content
can be read:

public InputStream getInputStream() throws IOException,
 MessagingException

If the part's content has been encoded in some way—for example, by Base64
encoding it—then the InputStream reads the decoded content. The JavaMail API
supports all the common encodings except the BinHex format used for Macintosh
files. If it encounters a BinHex-encoded attachment, then it strips the MIME headers
but otherwise leaves the BinHex data untouched. BinHex documents are tough to deal
with on most platforms because of the unusual two-fork nature of a Mac file. Unless
you're a real Mac expert, you're probably better off using a third-party utility such as
StuffIt Expander (http://www.aladdinsys.com/) to decode the file.

Another possibility is to request a DataHandler for the content with the
getDataHandler() method. The DataHandler class comes from the Java
Activation Framework. It declares methods to help you decide what to do with the
content; for instance, by finding the right Java bean or helper application to display
the content:

public javax.activation.DataHandler getDataHandler()
 throws MessagingException

A third possibility is to request the content as an unspecified Java object using the
getContent() method:

public Object getContent() throws IOException, MessagingException

This is reminiscent of the getContent() method of java.net.URL. However, rather
than relying on the poorly designed content handler mechanism, this getContent()

method uses the Java Activation Framework, so the behavior is a little more clearly
specified. Most of the time, if the content type is text/plain, then a String will be
returned. If the content type is multipart, then regardless of the subtype, a
javax.mail.Multipart object is returned. If the content type is some other type that
is recognized by the underlying DataHandler, then an appropriate Java object is
returned. Finally, if the type is unrecognized, then an InputStream is returned.

You can change which objects are returned for which content types by providing your
own DataHandler. This would be installed with the setDataHandler() method:

public void setDataHandler(javax.activation.DataHandler dh) throws
 MessagingException, IllegalWriteException, IllegalStateException

Although this method is declared to throw the usual group of exceptions, it's perhaps a
little less likely to actually do so, since setting the DataHandler affects only the
Message object rather than the actual message stored on the server.

19.8.3.2 Writing the contents of the part

When sending a message, you naturally must set the message's contents. Since email
messages are text, the most straightforward way is just to provide the text of the part
with setText():

public void setText(String text) throws MessagingException,
 IllegalWriteException, IllegalStateException

The setText() method sets the MIME type to text/plain. Other objects can be made
into content as well, provided the part has a DataHandler that understands how to
convert them to encoded text. This is done with the setContent() method:

public void setContent(Object o, String type) throws
 MessagingException, IllegalWriteException, IllegalStateException

Another way to write the contents of a part is by using an OutputStream. The
writeTo() method writes the content of the Part onto an OutputStream. If
necessary, it will encode the content using Base64, quoted-printable, or some other
format as specified by the DataHandler:

public void writeTo(OutputStream out) throws IOException,
 MessagingException

In fact, this not only writes the content of this Part; it also writes the attributes and
headers of the part. Example 19.4 used this to provide a simple way of getting an
entire email message in one fell swoop. It's most convenient, though, when you want
to send an entire message to an SMTP server in one method call.

Finally, multiple parts can be added to a part by wrapping them in a Multipart object
and passing that to setContent():

public void setContent(Multipart mp) throws MessagingException,
 IllegalWriteException, IllegalStateException

In this case, the entire message will typically have a content type such as
multipart/mixed, multipart/signed, or multipart/alternative. The individual parts of the
message are all enclosed in one envelope, but each part of the message has its own
content type, content encoding, and data. The multiple parts may be used to present
different forms of the same document (e.g., HTML and plain-text mail), a document
and meta-information about the document (e.g., a message and the MD5 digest of the
message), or several different documents (e.g., a message and several attached files).
The next section expands on this process.

19.9 Multipart Messages and File Attachments

The way all the different text and binary file types are encoded into raw text that can
be passed through 7-bit email gateways is fairly ingenious and rather detailed.
Fortunately, the JavaMail API shields you from those details, interesting as they are.
To send a multipart message using the JavaMail API, all you have to do is add the
parts to a MimeMultipart object, then pass that object to the Message's
setContent() method. To receive a multipart message, you simply process each of
the parts individually.

Most of the methods you use to build and deconstruct multipart messages are in the
abstract javax.mail.Multipart class:

public abstract class Multipart extends Object

However, since this class is abstract, you'll generally start with a
javax.mail.internet.MimeMultipart object instead:

public class MimeMultipart extends Multipart

Each part you add to a Multipart is an instance of the abstract
javax.mail.BodyPart class that implements the Part interface of the last section:

public abstract class BodyPart extends Object implements Part

In Internet email, the concrete subclass of BodyPart you'll use is
javax.mail.internet.MimeBodyPart:

public class MimeBodyPart extends BodyPart implements MimePart

Most of the methods you need in the MimeBodyPart and BodyPart classes are the
ones you're already familiar with from the Part interface, methods such as
setContent() and setDataHandler(). There are also three methods to read the
contents of a Multipart object:

public String getContentType()
public int getCount() throws MessagingException
public BodyPart getBodyPart(int index)
 throws IndexOutOfBoundsException, MessagingException

The getContentType() method returns the MIME type of the entire Multipart,
which is typically something like multipart/mixed or multipart/alternative. This is not

the same as the MIME types of the individual parts, which are something like
text/plain or image/gif.

The getCount() method returns the number of parts in this Multipart. The
getBodyPart() method returns a particular part. Parts are numbered starting at like
the components of an array. Multiparts are not hierarchical. A Multipart may not
contain another Multipart. This makes writing programs to parse multipart messages
fairly straightforward. Example 19.12 is very similar to Example 19.11,
AllHeaderClient. However, this adds the necessary code to handle the body of the
message. If the message is a single-part message, then it's simply printed on
System.out. However, if the message has multiple parts, then each part is handled
separately. If the part has no filename, does not have the disposition
Part.ATTACHMENT, and has MIME type text/plain, then it's assumed to be an inline
message and is printed on System.out. Otherwise, it's assumed to be an attachment
and is saved into an appropriate file. If necessary, the static File.createTempFile()
method introduced in Java 1.2 is used to generate a reasonable name for the file.

Example 19.12. A Mail Client that Handles Multipart Messages with Attached Files

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class AllPartsClient {

 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java AllPartsClient
protocol://username@host:port/foldername");
 return;
 }
 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not
found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 // Get the messages from the server
 Message[] messages = folder.getMessages();
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");

 // Print message headers
 Enumeration headers = messages[i].getAllHeaders();
 while (headers.hasMoreElements()) {
 Header h = (Header) headers.nextElement();
 System.out.println(h.getName() + ": " + h.getValue());
 }
 System.out.println();

 // Enumerate parts
 Object body = messages[i].getContent();
 if (body instanceof Multipart) {
 processMultipart((Multipart) body);
 }
 else { // ordinary message
 processPart(messages[i]);
 }

 System.out.println();

 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }

 public static void processMultipart(Multipart mp)
 throws MessagingException {

 for (int i = 0; i < mp.getCount(); i++) {
 processPart(mp.getBodyPart(i));
 }

 }

 public static void processPart(Part p) {

 try {
 String fileName = p.getFileName();
 String disposition = p.getDisposition();
 String contentType = p.getContentType();
 if (fileName == null && (disposition.equals(Part.ATTACHMENT)
 || !contentType.equals("text/plain"))) {
 // pick a random file name. This requires Java 1.2 or later.
 fileName = File.createTempFile("attachment",
".txt").getName();
 }
 if (fileName == null) { // likely inline
 p.writeTo(System.out);
 }

 else {
 File f = new File(fileName);
 // find a version that does not yet exist
 for (int i = 1; f.exists(); i++) {
 String newName = fileName + " " + i;
 f = new File(newName);
 }
 FileOutputStream out = new FileOutputStream(f);

 // We can't just use p.writeTo() here because it doesn't
 // decode the attachment. Instead we copy the input stream
 // onto the output stream which does automatically decode
 // Base-64, quoted printable, and a variety of other formats.
 InputStream in = new
BufferedInputStream(p.getInputStream());
 int b;
 while ((b = in.read()) != -1) out.write(b);
 out.flush();
 out.close();
 in.close();
 }
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
}

You can also get a part from a multipart message by passing an OutputStream to the
part's writeTo() method:

public abstract void writeTo(OutputStream out)
 throws IOException, MessagingException

However, this differs from the approach taken in Example 19.12 in that it does not
decode the part before writing it. It leaves whatever Base64 or BinHex or quoted-
printable encoding that the sender applied to the attachment alone. Instead, it simply
writes the raw data.

Attaching files (or other documents) to messages you send is more complicated. To
attach a file to a message, you first have to wrap the data in a BodyPart object and
add it to the Multipart using one of the two addBodyPart() methods:

public void addBodyPart(BodyPart part)
 throws IllegalWriteException, MessagingException
public void addBodyPart(BodyPart part, int index)
 throws IllegalWriteException, MessagingException

The first variant simply appends the part to the end of the message. The second
variant adds the given part at the specified position. If the position is greater than the
number of parts in the message, then it's simply added to the end. If it's added
somewhere in the middle, this may cause the positions of other parts to change. If the
message can't be changed, then an IllegalWriteException is thrown.

The tricky part is creating the BodyPart object. To do this, you'll first need to guess a
reasonable MIME content type for the file (text/plain and application/octet-stream are
the most common types). Next you'll need to read the file and convert it into some
class of Java object. Then you'll install a javax.activation.DataHandler class that
knows how to convert your data class according to your chosen MIME type. Once
you've done all this, you can create a new MimeBodyPart object and use the various
methods of the Part interface to set attributes such as the filename and the content
disposition.

There are also two removeBodyPart() methods that delete a specified part from the
message, though these aren't as commonly used:

public boolean removeBodyPart(BodyPart part)
 throws IllegalWriteException, MessagingException
public void removeBodyPart(int index)
 throws IndexOutOfBoundsException, MessagingException

If the message can't be changed, then an IllegalWriteException is thrown. If the
specified index doesn't identify a part, then an IndexOutOfBoundsException is
thrown. If the specified part isn't present in the message, then a MessagingException
is thrown.

19.10 MIME Messages

MIME was designed mainly for Internet email, and it was specifically organized so
that it would be backward compatible with existing protocols and software. Therefore,
a typical Internet email message is in fact a MIME message. The only concrete
subclass of Message in the JavaMail API is javax.mail.internet.MimeMessage:

public class MimeMessage extends Message implements MimePart

This class declares almost seventy public and protected methods. However, with the
natural exception of the constructors, almost all of these either override methods from
the Message superclass or implement methods declared by the Part interface. The
only new methods are a baker's dozen declared in the MimePart interface, a
subinterface of Part:

public interface MimePart extends Part

Most of these methods are very similar to either methods in Part or methods in
Message. However, they have features that are unlikely to be found in non-MIME
messages. For instance, a MIME part may have an MD5 digest, which would be
encoded as an extra header inside the part. Thus, the MimePart interface declares and
the MimeMessage class implements two methods to set and get this digest:

public String getContentMD5() throws MessagingException
public void setContentMD5(String md5) throws MessagingException,
 IllegalWriteException, IllegalStateException

The addHeaderLine() method adds a string of text to the header of the message. It's
up to you to make sure that this string will actually make sense in the header:

public void addHeaderLine(String line) throws
 MessagingException, IllegalWriteException, IllegalStateException

The getHeader() method returns the value of every header in the message with the
given name. If there are multiple headers with this name, then the string separates the
values of the different headers with the specified delimiter string:

public String getHeader(String name, String delimiter)
 throws MessagingException

The getAllHeaderLines() method returns a java.util.Enumeration containing
every header in the message. The Enumeration contains String objects, one per
header. Each String contains the full name and value; for example, "Subject: Re:
Java 2 support". It is not divided into a separate name and value:

public Enumeration getAllHeaderLines() throws MessagingException

The getMatchingHeaderLines() method returns all header lines whose names are
given in the names argument array. The getNonMatchingHeaderLines() method
does the same thing except that it returns all those header lines with a name not
mentioned in the names argument:

public Enumeration getMatchingHeaderLines(String[] names)
 throws MessagingException
public Enumeration getNonMatchingHeaderLines(String[] names)
 throws MessagingException

The getEncoding() method returns the encoding of this MIME part as a String as
given by the Content-transfer-encoding: header. The typical encoding for a plain-text
email is 7-bit or perhaps 8-bit or quoted-printable. The typical encoding for a file
attachment is Base64:

public String getEncoding() throws MessagingException

The getContentID() method returns a string that uniquely identifies this part as
given by the part's Content-ID: field. A typical ID looks like
<Pine.LNX.4.10.9912290930220.8058@akbar.nevex.com>. It returns null if the
part doesn't have a content ID:

public String getContentID() throws MessagingException
 IllegalWriteException, IllegalStateException

The getContentLanguage() method returns the value of the Content-language:
header. This is a comma-separated list of two (or more) letter abbreviations for
languages as defined by RFC 1766. For example, English is "en" and French is "fr". It
returns null if the part doesn't have a Content-language: header.

public String[] getContentLanguage() throws MessagingException

There's also a setContentLanguage() method that you might use when sending a
message:

public void setContentLanguage(String[] languages) throws
 MessagingException, IllegalWriteException, IllegalStateException

Finally, the two setText() methods set the content of the part with the MIME type
text/plain. The second setText() method also lets you specify the character set; for
example, us-ascii or ISO 8859-1:

public void setText(String text) throws MessagingException
public void setText(String text, String charset)
 throws MessagingException

19.11 Folders

So far, we've worked mostly with the INBOX folder. This is the default folder where
most mail resides until the user filters or saves it into some other folder. On some
systems, it may actually reside in a file called INBOX. On other systems, it may be
called something different. Nonetheless, you can always access it from the JavaMail
API using the name INBOX.

Most mail programs do allow you to organize your messages into different folders.
These folders are hierarchical; that is, one folder may contain another folder. In
particular, in the IMAP protocol, servers store the messages in different folders, from
which clients retrieve and manipulate the messages as necessary. POP servers, by
contrast, generally send all the messages to the user when the user connects, then rely
on the client to store and manage them. The primary advantage of the IMAP approach
over POP is that it allows a user to easily access his entire email archive from multiple
client machines.

The JavaMail API represents IMAP-like folders as instances of the abstract Folder
class:

public abstract class Folder extends Object

This class declares methods for requesting named folders from servers, deleting
messages from folders, searching for particular messages in folders, listing the
messages in a folder, and so forth. Most of these methods are declared abstract. When
you ask a session, a store, or a folder to give you one of the folders it contains, it will
give you an instance of a concrete subclass appropriate for the protocol in use: IMAP,
POP, mbox, or whatever. The reference implementation of the JavaMail API knows
how to do these operations only for IMAP servers. However, some third-party
implementations provide these operations in local mailbox folders stored on the
client's filesystem as well.

19.11.1 Opening Folders

You cannot create folders directly. The only constructor is protected:

protected Folder(Store store)

Instead, you get a Folder from a Session, a Store, or another Folder like this:

Folder outbox = container.getFolder("sent-mail");

There are actually three getFolder() methods, one each in the Session, Store, and
Folder classes. They all have the same signature and behave similarly:

public abstract Folder getFolder(String name) throws
MessagingException

These methods share an annoying idiosyncrasy with the File class. Getting a Folder
object doesn't imply that the named Folder actually exists on the server. To tell
whether the folder is really present, you have to test for it with the exists() method:

public boolean exists() throws MessagingException

When you first get a folder, it's closed. Before you can read the messages it contains,
you have to open the folder using the open() method:

public abstract void open(int mode)
 throws FolderNotFoundException, MessagingException

The mode argument should be one of the two named constants Folder.READ_ONLY or
Folder.READ_WRITE. Some but not all implementations allow you to open multiple
read-only connections to one real folder using multiple Folder objects. However, all
implementations allow at most one Folder object to have write access to a folder at
one time.

Some operations discussed in this section such as searching or retrieving messages
from a folder can be performed only on an open folder. Others such as deleting or
changing the name of a folder can be performed only on a closed folder. The
isOpen() method returns true if the folder is open, false if it's closed:

public abstract boolean isOpen()

Generally, trying to do something with a closed folder that requires the folder to be
open or vice versa will throw a java.lang.IllegalStateException. This is a
runtime exception, so it doesn't need to be explicitly caught or declared.

When you're done with a folder, you should close it using the close() method:

public abstract void close(boolean expunge)
 throws FolderNotFoundException, MessagingException

If the expunge argument is true, then any deleted messages in the folder are deleted
from the actual file on the server. Otherwise, they're simply marked as deleted, but the
message can still be undeleted.

19.11.2 Basic Folder Info

The Folder class has eight methods that return basic information about a folder:

public abstract String getName()

public abstract String getFullName()
public URLName getURLName() throws MessagingException
public abstract Folder getParent() throws MessagingException
public abstract int getType() throws MessagingException
public int getMode() throws IllegalStateException
public Store getStore()
public abstract char getSeparator()
 throws FolderNotFoundException, MessagingException

The getName() method returns the name of the folder, such as "Reader Mail",
whereas the getFullName() method returns the complete hierarchical name from
the root, such as "books/JNP2E/Reader Mail". The getURLName() method includes
the server; for instance, "imap://elharo@mail.metalab.unc.edu/books/JNP2E/Reader
Mail". In this example, the slash character is used as a separator between parts of the
folder. The separator can vary from implementation to implementation, but the
getSeparator() method always tells you what it is.

The getParent() method returns the name of the folder that contains this folder;
e.g., "JNP2E" for the previous Reader Mail example.

The getType() method returns an int indicating whether the folder can contain
messages and/or other folders. If it can contain messages but not folders, then
getType() returns the named constant Folder.HOLDS_MESSAGES. If it can contain
folders but not messages, then getType() returns the named constant
Folder.HOLDS_FOLDERS. If it can contain both folders and messages, then getType()
returns the bitwise union Folder.HOLDS_FOLDERS & Folder.HOLDS _MESSAGES.

The getMode() method tells you whether a folder allows writing. It returns one of
the two named constants Folder.READ_ONLY or Folder.READ_WRITE or -1 if the
mode is unknown. Finally, the getStore() method returns the Store object from
which this folder was retrieved.

19.11.3 Managing Folders

The create() method creates a new folder in this folder's Store:

public abstract boolean create(int type) throws MessagingException

The type of the folder should be one of the named constants
Folder.HOLDS_MESSAGES or Folder.HOLDS_FOLDERS depending on whether it will
hold other folders or messages. It returns true if the creation succeeded, false if it
didn't.

The delete() method deletes this folder. It can do that only if the folder is closed.
Otherwise, an IllegalStateException is thrown.

public abstract boolean delete(boolean recurse) throws
 IllegalStateException, FolderNotFoundException, MessagingException

If there are messages in this folder, then they are deleted along with the folder. If the
folder contains subfolders, then the subfolders are deleted if the recurse argument is

true. If the recurse argument is not true, then the folder will only be deleted if it does
not contain any subfolders. If it does contain subfolders, then the delete fails. If the
folder does contain subfolders and also contains messages, then it's implementation-
dependent whether or not the messages will be deleted even though the folder itself
isn't. If the delete succeeded, then the method returns true; otherwise, it returns false.

The renameTo() method changes the name of this folder. A folder must be closed to
be renamed. Otherwise, an IllegalStateException is thrown. This method returns
true if the folder is successfully renamed, false if it isn't:

public abstract boolean renameTo(Folder f) throws
 IllegalStateException, FolderNotFoundException, MessagingException

19.11.4 Managing Messages in Folders

On occasion, you may find a need to put a message in a folder. There's only one
method to do this, appendMessages():

public abstract void appendMessages(Message[] messages)
 throws FolderNotFoundException, MessagingException

As the name implies, the messages are placed at the end of this folder.

The copyMessages() method copies messages into this folder from a specified
folder given as an argument:

public void copyMessages(Message[] messages, Folder destination)
throws
 IllegalStateException, FolderNotFoundException, MessagingException

The copied messages are appended to the destination folder. They are not removed
from the source folder. To move a message, you have to copy it from the source to the
destination, then delete it from the source folder, then finally expunge the source
folder.

To delete a message from a folder, you set its Flags.Flag.DELETED flag to true. To
physically remove deleted messages from a folder, you have to expunge it using the
expunge() method:

public abstract Message[] expunge() throws MessagingException,
 IllegalStateException, FolderNotFoundException

After a message has been expunged, there may still be Message objects that refer to it.
In this case, almost any method call on such an object, except isExpunged() and
getMessageNumber(), will throw an exception.

19.11.5 Subscriptions

Some implementations (though not the default IMAP implementation) allow you to
subscribe to particular folders. This would be most appropriate for an NNTP provider,
where a typical server offers thousands of newsgroups, but the typical user will want

to retrieve messages from a few dozen of these at most. Each newsgroup would be
represented as a Folder object. A subscription to the newsgroup's Folder indicates
that the user wants to retrieve messages from that newsgroup:

public boolean isSubscribed()
public void setSubscribed(boolean subscribe)
 throws FolderNotFoundException, MethodNotSupportedException,
 MessagingException

If a provider doesn't support subscription, then setSubscribed() throws a
MethodNotSupportedException and isSubscribed() returns false.

19.11.6 Listing the Contents of a Folder

Folders are hierarchical. That is, a folder can contain other folders. There are four
methods to list the folders that a folder contains. These are:

public Folder[] list()
 throws FolderNotFoundException, MessagingException
public Folder[] listSubscribed()
 throws FolderNotFoundException, MessagingException
public abstract Folder[] list(String pattern)
 throws FolderNotFoundException, MessagingException
public Folder[] listSubscribed(String pattern)
 throws FolderNotFoundException, MessagingException

The first method returns an array containing all the folders that this folder contains.
The second method returns an array containing all the subscribed folders that this
folder contains.

The third and fourth methods repeat these first two except that they allow you to
specify a pattern. Only folders whose full names match the pattern will be in the
returned array. The pattern is a string giving the name of the folders that match.
However, the string can contain the % character, which is a wildcard that matches any
sequence of characters not including the hierarchy separator, and *, which matches
any sequence of characters including the hierarchy separator.

19.11.7 Checking for Mail

The getMessageCount() method returns the number of messages in this folder:

public abstract int getMessageCount()
 throws FolderNotFoundException, MessagingException

This method can be invoked on an open or closed folder. However, in the case of a
closed folder, this method may (or may not) return -1 to indicate that the exact
number of messages isn't easily available.

The hasNewMessages() method returns true if new messages have been added to the
folder since it was last opened (not since the last time you checked!):

public abstract boolean hasNewMessages()
 throws FolderNotFoundException, MessagingException

The getNewMessageCount() method uses a slightly different approach for
determining how many new messages there are. It checks the number of messages in
the folder whose RECENT flag is set:

public int getNewMessageCount()
 throws FolderNotFoundException, MessagingException

Unlike hasNewMessages(), getNewMessageCount() can be invoked on either an
open or a closed folder. However, in the case of a closed folder,
getNewMessageCount() may return -1 to indicate that the real answer would be too
expensive to obtain.

The getUnreadMessageCount() method is similar but returns the number of
messages in the folder whose SEEN flag is not set:

public int getUnreadMessageCount()
 throws FolderNotFoundException, MessagingException

Like getNewMessageCount(), getUnreadMessageCount() can be invoked on
either an open or a closed folder. However, in the case of a closed folder, it may
return -1 to indicate that the real answer would be too expensive to obtain.

19.11.8 Getting Messages from Folders

The Folder class provides four methods for retrieving messages from open folders.
These are:

public abstract Message getMessage(int messageNumber) throws
 IndexOutOfBoundsException, FolderNotFoundException,
 IllegalStateException, MessagingException
public Message[] getMessages() throws FolderNotFoundException,
 IllegalStateException, MessagingException
public Message[] getMessages(int start, int end) throws
 IndexOutOfBoundsException, FolderNotFoundException,
 IllegalStateException, MessagingException
public Message[] getMessages(int[] messageNumbers) throws
 IndexOutOfBoundsException, FolderNotFoundException,
 IllegalStateException, MessagingException

The getMessage() method returns the nth message in the folder. The first message
in the folder is number 1 (not 0). Message numbers may change when messages are
expunged from the folder. An IndexOutOfBoundsException is thrown if you ask for
message n and there are n-1 or fewer messages in the folder.

The first getMessages() method returns an array of Message objects representing
all the messages in this folder. The second getMessages() method returns an array
of Message objects from the folder beginning with start and finishing with end,
inclusive. The third getMessages() method returns an array containing only those
messages specifically identified by number in the messageNumbers array.

All four of these methods create only the Message objects and fill in the minimal
number of fields in those objects. The actual text and other content of the message

will be fetched from the server only when the Message's methods that use those things
are invoked. This means, for example, that you can't get all the messages from the
server, then hang up your PPP connection and work with them offline. There is,
however, a fetch() method, which fills in certain parts of the Message objects with
actual data from the server:

public void fetch(Message[] messages, FetchProfile fp)
 throws IllegalStateException, MessagingException

The messages argument is an array containing the Message objects to be prefetched.
The FetchProfile argument specifies which headers in the messages to prefetch.
However, this is still just a suggestion. Implementations are free to ignore this request
and fetch the message content only when it's actually needed.

You can request prefetching of individual headers such as Subject: by name. You can
also request prefetching of three predefined blocks of information: the envelope
(essentially the subject and addressees of the message), the flags of the message, or
the content info of the messages. The three groups you can ask for are given as
constant FetchProfile.Item objects. They are FetchProfile.Item.ENVELOPE,
FetchProfile.Item.FLAGS, and FetchProfile.Item.CONTENT_INFO.

The FetchProfile class has a simple noargs constructor as well as methods for
constructing a new profile, for adding particular items and headers to the profile, and
for testing whether a particular item is part of a particular profile. These are:

public FetchProfile()
public void add(FetchProfile.Item item)
public void add(String headerName)
public boolean contains(FetchProfile.Item item)
public boolean contains(String headerName)
public FetchProfile.Item[] getItems()
public String[] getHeaderNames()

For example, suppose you wanted to download just the subjects, the To: addresses,
and the content information of a block of messages. Then you would fetch them like
this:

Message[] messages = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.CONTENT_INFO);
fp.add("Subject");
fp.add("To");

19.11.9 Searching Folders

If the server supports searching (as many IMAP servers do and most POP servers
don't), it's easy to search a folder for the messages meeting certain criteria. The
criteria are encoded in SearchTerm objects:

public abstract class SearchTerm extends Object

The SearchTerm class is abstract, but the JavaMail API provides many subclasses for
performing common searches:

public abstract class AddressTerm extends SearchTerm
public abstract class FlagTerm extends SearchTerm
public abstract class StringTerm extends SearchTerm
public final class FromTerm extends AddressTerm
public final class FromStringTerm extends AddressStringTerm
public final class ReceipientTerm extends AddressTerm
public final class AddressStringTerm extends StringTerm
public final class BodyTerm extends StringTerm
public final class HeaderTerm extends StringTerm
public final class MessageIDTerm extends StringTerm
public final class SubjectTerm extends StringTerm
public abstract class DateTerm extends ComparisonTerm
public final class ReceivedDateTerm extends DateTerm
public final class SentDateTerm extends DateTerm

It also provides several classes for combining searches:

public final class AndTerm extends SearchTerm
public abstract class ComparisonTerm extends SearchTerm
public final class NotTerm extends SearchTerm
public final class OrTerm extends SearchTerm

And of course you can write your own subclasses that implement your own search
logic. To implement a search, you have to write a subclass and override the subclass's
match() method to describe your search:

public abstract boolean match(Message message)

This method returns true if the message argument satisfies the search and false if it
doesn't.

You set up a SearchTerm matching your desired parameters, then pass it to one of
these two search() methods in the Folder class:

public Message[] search(SearchTerm term) throws SearchException,
 FolderNotFoundException, IllegalStateException, MessagingException
public Message[] search(SearchTerm term, Message[] messages)
 throws SearchException, FolderNotFoundException,
 IllegalStateException, MessagingException

A SearchException indicates that the search term is more complicated than the
implementation can handle. For example, this search term seeks out all messages from
billg@microsoft.com:

Address billg = new InternetAddress("billg@microsoft.com");
SearchTerm term = new FromTerm(billg);

This search term looks for all messages from billg@microsoft.com after 1999:

Address billg = new InternetAddress("billg@microsoft.com");
SearchTerm term1 = new FromTerm(billg);
Date millennium = Calendar.getInstance().set(2000, 0, 1).getTime();

SearchTerm term2 = new SentDateTerm(ComparisonTerm.GE, millennium);
SearchTerm term = new AndTerm(term1, term2);

Example 19.13 is a simple variation of the MailClient program of Example 19.7. It
allows the user to list email addresses on the command line after the initial URL like
this:

% java SearchClient imap://elharo@mail.metalab.unc.edu/INBOX
willis@nvx.com billg@microsoft.com

Only those messages from the specified users will be returned. However, if no email
addresses are given, then all messages will be returned.

Example 19.13. A Mail Client That Searches by From: Address

import javax.mail.*;
import javax.mail.search.*;
import javax.mail.internet.*;
import java.util.*;
import java.io.*;

public class SearchClient {
 public static void main(String[] args) {

 if (args.length == 0) {
 System.err.println(
 "Usage: java SearchClient
protocol://username@host/foldername");
 return;
 }

 URLName server = new URLName(args[0]);

 try {

 Session session = Session.getDefaultInstance(new Properties(),
 new MailAuthenticator(server.getUsername()));

 // Connect to the server and open the folder
 Folder folder = session.getFolder(server);
 if (folder == null) {
 System.out.println("Folder " + server.getFile() + " not
found.");
 System.exit(1);
 }
 folder.open(Folder.READ_ONLY);

 SearchTerm term = null;
 if (args.length > 1) {
 SearchTerm[] terms = new SearchTerm[args.length-1];
 for (int i = 1; i < args.length; i++) {
 Address a = new InternetAddress(args[i]);
 terms[i-1] = new FromTerm(new InternetAddress(args[i]));
 }
 if (terms.length > 1) term = new OrTerm(terms);
 else term = terms[0];
 }

 // Get the messages from the server

 Message[] messages;
 if (term == null) {
 messages = folder.getMessages();
 }
 else {
 messages = folder.search(term);
 }
 for (int i = 0; i < messages.length; i++) {
 System.out.println("------------ Message " + (i+1)
 + " ------------");

 // Print message headers
 Enumeration headers = messages[i].getAllHeaders();
 while (headers.hasMoreElements()) {
 Header h = (Header) headers.nextElement();
 System.out.println(h.getName() + ": " + h.getValue());
 }
 System.out.println();

 // Enumerate parts
 Object body = messages[i].getContent();
 if (body instanceof Multipart) {
 processMultipart((Multipart) body);
 }
 else { // ordinary message
 processPart(messages[i]);
 }

 System.out.println();

 }

 // Close the connection
 // but don't remove the messages from the server
 folder.close(false);

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Since we may have brought up a GUI to authenticate,
 // we can't rely on returning from main() to exit
 System.exit(0);

 }

 public static void processMultipart(Multipart mp)
 throws MessagingException {

 for (int i = 0; i < mp.getCount(); i++) {
 processPart(mp.getBodyPart(i));
 }

 }

 public static void processPart(Part p) {

 try {
 // I'd prefer to test the Content-Disposition header here.
 // However, too many common email clients don't use it.

 String fileName = p.getFileName();
 if (fileName == null) { // likely inline
 p.writeTo(System.out);
 }
 else if (fileName != null) {
 File f = new File(fileName);
 // find a version that does not yet exist
 for (int i = 1; f.exists(); i++) {
 String newName = fileName + " " + i;
 f = new File(newName);
 }
 FileOutputStream out = new FileOutputStream(f);

 // We can't just use p.writeTo() here because it doesn't
 // decode the attachment. Instead we copy the input stream
 // onto the output stream which does automatically decode
 // Base-64, quoted printable, and a variety of other formats.
 InputStream in = new
BufferedInputStream(p.getInputStream());
 int b;
 while ((b = in.read()) != -1) out.write(b);
 out.flush();
 out.close();
 in.close();
 }
 }
 catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
}

19.11.10 Flags

It's sometimes useful to be able to change the flags for an entire group of messages at
once. The Folder class has two methods for doing this:

public void setFlags(Message[] messages, Flags flag, boolean value)
 throws IllegalStateException, MessagingException
public void setFlags(int start, int end, Flags flag, boolean value)
 throws IllegalStateException, MessagingException
public void setFlags(int[] messageNumbers, Flags flag, boolean value)
 throws IndexOutOfBoundsException, IllegalStateException,
 MessagingException

Ultimately, these are just conveniences. There's nothing you can do with these that
you can't do by setting the flags on each message individually with the setFlags()
method of the Message class. In fact, the default implementation simply invokes that
method on each message in the specified block of messages.

The Folder class also has a getPermanentFlags() method to return the flags that
this folder will supply for all messages. This includes all the flags except the user-
defined flags, which are applied only to particular messages that the user has flagged.
For instance, not all folder implementations may track whether messages have been
answered:

public abstract Flags getPermanentFlags()

19.11.11 Event Handling

Many email programs such as Eudora and Pine can be configured to periodically
check for incoming email in the background. One way to structure an email program
is as a series of responses to unpredictable events. This is much like programming for
a graphical user interface, and indeed the JavaMail API uses the same basic patterns
to handle mail events that the AWT and Swing use to handle GUI events.

The JavaMail API defines six different kinds of mail events, all in the
javax.mail.event package. These are all subclasses of MailEvent:

public abstract class MailEvent extends EventObject

The six concrete kinds of mail events, the first four of which involve folders, are:

ConnectionEvent

A Folder (or Store or Transport) has been opened, closed, or disconnected.

FolderEvent

A Folder has been created, deleted, or renamed.

MessageChangedEvent

The message's envelope or flags have changed.

MessageCountEvent

A message was added to or deleted from a Folder.

StoreEvent

A notification or alert from a Store.

TransportEvent

A notification from a Transport that a message was delivered, partially
delivered, or failed to be delivered.

There are listener interfaces for each of these six kinds of events:

public interface ConnectionListener extends EventListener
public interface FolderListener extends EventListener
public interface MessageChangedListener extends EventListener
public interface MessageCountListener extends EventListener
public interface StoreListener extends EventListener
public interface TransportListener extends EventListener

Each of these interfaces declares one or more methods that must be provided by
implementing classes. For example, the ConnectionListener class declares these
three methods:

public void opened(ConnectionEvent e)
public void disconnected(ConnectionEvent e)
public void closed(ConnectionEvent e)

The FolderListener interface declares these three methods:

public void folderCreated(FolderEvent e)
public void folderDeleted(FolderEvent e)
public void folderRenamed(FolderEvent e)

Four of these events can be fired by folders. Consequently, there are 14
addXXXListener(), removeXXXListener(), and notifyXXXListener()
methods in the Folder class:

public void addConnectionListener(ConnectionListener l)
public void removeConnectionListener(ConnectionListener l)
protected void notifyConnectionListeners(int type)
public void addFolderListener(FolderListener l)
public void removeFolderListener(FolderListener l)
protected void notifyFolderListeners(int type)
protected void notifyFolderRenamedListeners(Folder folder)
public void addMessageCountListener(MessageCountListener l)
public void removeMessageCountListener(MessageCountListener l)
protected void notifyMessageAddedListeners(Message[] messages)
protected void notifyMessageRemovedListeners(boolean removed,
 Message[] messages)
public void addMessageChangedListener(MessageChangedListener l)
public void removeMessageChangedListener(MessageChangedListener l)
protected void notifyMessageChangedListeners(int type, Message
message)

The addXXXListener() methods are invoked to add an implementation of the
particular interface to the list of listeners. The removeXXXListener() methods are
invoked to remove an implementation from that list. The notify XXXListener()
methods are not used directly. Instead, they're used by instances of Folder and its
subclasses to notify registered listeners of particular events. All of this works exactly
as it does in the AWT and Swing, just with different events.

19.11.12 Utility Methods

Finally, for completeness' sake, I'll note that the Folder class overrides two methods
from java.lang.Object, finalize() and toString():

protected void finalize() throws Throwable
public String toString()

Neither of these is especially important to the client programmer.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Java™ Network Programming, Second Edition, is a North
American river otter (Lutra canadensis). These small carnivores are found in all major
waterways of the United States and Canada, in almost every habitat except the tundra
and the hot, dry regions of the southwestern U.S. They weigh about 20 pounds and are
approximately two and a half feet long, and females tend to be about a third smaller
than males. Their diet consists mainly of aquatic animals like fish and frogs, but since
they spend about two-thirds of their time on land, they also eat the occasional bird or
rodent. Two layers of fur—a coarse outer coat and a thick, dense inner coat—protect a
river otter from the cold, and, in fact, they seem to enjoy playing in snow and ice. A
diving river otter's pulse rate slows to only 20 beats per minute from its normal 170,
conserving oxygen and allowing the otter to stay underwater longer. These animals
are sociable and domesticated easily, and in Europe, a related species was once
trained to catch fish for people to eat.

Beverly Goldfarb was the copyeditor for Java™ Network Programming, Second
Edition. Deborah English was the proofreader. Jeffrey Holcomb, Sarah Jane
Shangraw, and Claire Cloutier performed quality control reviews. Nancy Crumpton
wrote the index. Interior composition was done by Claire Cloutier, Sarah Jane
Shangraw, Molly Shangraw, and Joan McGaw.

The cover was designed by Emma Colby using a series design by Edie Freeman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma
Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond
font. Alicia Cech and David Futato designed the interior layout.

The text was produced in FrameMaker 5.5.6 using a template implemented by Mike
Sierra. The heading font is Bodoni BT; the text font is New Baskerville. The
illustrations that appear in the book were created in Macromedia Freehand 8 and
Adobe Photoshop 5 by Robert Romano and Rhon Porter. This colophon was written
by Leanne Soylemez.

