

JSTL in Action

JSTL in Action
SHAWN BAYERN

M A N N I N G
Greenwich

(74° w. long.)

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Bayern, Shawn
JSTL in Action /Shawn Bayern.

p. cm.
Includes bibliographical references and index.
1. Java (Computer program language). 2. Title.

Manning Publications Co. Copyeditor: Tiffany Taylor
32 Lafayette Place Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-52-9 (alk. paper)

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

 For my future wife and kids,
 who, when I meet and conceive them,

 respectively,
 will likely be my love and my inspiration

brief contents

PART 1 BACKGROUND .. 1

1 � Dynamic web sites 3

2 � Foundation: XML and JSP 15

PART 2 LEARNING JSTL ...41

3 � The expression language 43

4 � Controlling flow with conditions 77

5 � Controlling flow with loops 95

6 � Importing text 115

7 � Selecting XML fragments 139

8 � Working with XML fragments 153

9 � Database-driven pages 181

10 � Formatting and internationalization 215
vii

viii BRIEF CONTENTS
PART 3 JSTL IN ACTION ...249

11 � Common tasks 251

12 � Dynamic features for web sites 279

13 � Case study in building a web site 301

PART 4 JSTL FOR PROGRAMMERS327

14 � Control and performance 329

15 � Using JSTL to develop custom tags 361

APPENDICES ..389

A � JSTL reference 389

B � JSTL API (for developers) 409

C � Database tags and SQL 421

D � References and resources 433

contents

preface xix

acknowledgments xxi

about this book xxiii

about the cover illustration xxvii

PART 1 BACKGROUND ..1

1 Dynamic web sites 3

1.1 The boring life of a web browser 4

1.2 The simple ideas behind dynamic web content 6

1.3 What you need to run JSTL 9
JSP containers 10

1.4 Real-world web applications 11

1.5 Summary 14
ix

x CONTENTS
2 Foundation: XML and JSP 15

2.1 Introduction to XML 16
A dose of tag terminology 17 � The relevant rules of XML 21

2.2 Introduction to JSP 23
JSP tag syntax 24 � Standard JSP tags 25
JSP tag libraries 29 � Other JSP directives 32
JSP comments 33 � How JSP organizes data 34

2.3 Summary 39

PART 2 LEARNING JSTL ...41

3 The expression language 43

3.1 Expressions and the <c:out> tag 44
What expressions look like 45 � Where expressions work 46
Default values in <c:out> 46 � Special characters and <c:out> 47

3.2 Scoped variables and the expression language 48
Basic syntax to access scoped variables 48
Different types of scoped data 50

3.3 Request parameters and the expression language 55
HTML forms 55 � A page that reads request parameters 62

3.4 More powerful expressions 63
Different ways to access properties 64 � Accessing other data with the
expression language 65 � Comparisons 67 � Boolean operations
and parentheses 69 � Multiple expressions 70

3.5 Saving data with <c:set> 71

3.6 Deleting data with <c:remove > 74

3.7 Summary 75

CONTENTS xi
4 Controlling flow with conditions 77
4.1 Different kinds of decisions 79

4.2 Yes-or-no conditions with <c:if> 79
The basic syntax of <c:if> 80 � Using <c:if> within HTML
tags 82 � Multiple <c:if> tags 82 � Nested <c:if> tags 84
The var and scope attributes 86

4.3 Mutually exclusive conditions with <c:choose>, <c:when>,
and <c:otherwise> 88
Why JSTL has complex conditional tags 88 � How the complex con-
ditional tags work 89 � Rules for using the complex conditional tags 93

4.4 Summary 94

5 Controlling flow with loops 95
5.1 General-purpose looping with <c:forEach> 96

5.2 Iterating over strings with <c:forTokens> 98
How JSTL parses strings 100

5.3 Advanced iteration with <c:forEach> and
<c:forTokens> 101
Looping over part of a collection 101 � Looping over numbers 104
Loop status 106

5.4 Loop example: scrolling through results 107
Understanding the example 109
Using varStatus in the example 111

5.5 Summary 113

6 Importing text 115
6.1 Including text with the <c:import> tag 117

Absolute and relative URLs 117 � Retrieving data from URLs 121
Saving information for later 122 � Communicating with
imported pages 124 � Import example: a customized header 127

6.2 Redirecting with <c:redirect> 132

6.3 Formatting URLs with <c:url> 134
How to use <c:url> 134 � Why to use <c:url> 135

6.4 Summary 137

xii CONTENTS
7 Selecting XML fragments 139

7.1 XPath’s vision of an XML document 140

7.2 XPath’s basic syntax 142
Deep descendants 143 � Attributes 144 � Predicates and
element order 145 � Strings and booleans 146

7.3 XPath variables and JSTL 147

7.4 JSTL, XPath, and namespaces 148

7.5 More advanced XPath 149
Nodes and axes 149 � Contexts 150 � Further reading 151

7.6 Summary 152

8 Working with XML fragments 153

8.1 Parsing documents with <x:parse> 154
Sources of XML 155

8.2 Accessing XML with <x:out> and <x:set> 156
Finding a document 156 � The <x:out> tag 157
The <x:set> tag 158

8.3 Control flow based on XML documents 159
Simple conditions with <x:if> 160 � Compound conditions
with <x:choose> 162 � Looping over parts of a document
with <x:forEach> 164

8.4 XML transformations using JSTL 169
Simple transformations with <x:transform> 170 � Using the
var attribute 172 � XSLT parameters 174 � Advantages of using
XSLT within JSTL 174

8.5 An XML example: reading RSS files 175

8.6 Summary 179

CONTENTS xiii
9 Database-driven pages 181

9.1 When to use JSTL’s database support 183
When to use databases 183 � Direct access from JSP pages 183

9.2 Setting up a database connection with
<sql:setDataSource> 185
Caution against <sql:setDataSource> 188

9.3 Performing queries with <sql:query> 189
Performing a database query 190 � Reading a query’s results 191
Limiting the size of a query’s result 197

9.4 Modifying data with <sql:update> 199
Simple uses of the <sql:update> tag 199 � Measuring the effect of
an <sql:update> tag 200

9.5 Using <sql:param> with adjustable queries 201
Template queries 202 � Safe, convenient parameters with
<sql:param> 202 � Date parameters with <sql:dateParam> 205

9.6 Managing transactions with <sql:transaction> 206
The <sql:transaction> tag 207 � Transaction isolation 210

9.7 SQL example: a hit counter 211

9.8 Summary 213

10 Formatting and internationalization 215

10.1 Printing numbers with <fmt:formatNumber> 216
Basic usage of <fmt:formatNumber> 217 � Different ways to specify
a value 218 � Storing a number instead of printing it 219
Printing different types of numbers: percentages and currencies 219
Grouping digits together … or not 222 � Controlling how many
digits print 223 � More control: custom number patterns 226

10.2 Printing dates with <fmt:formatDate> 227
Differences from <fmt:formatNumber> 227 � Printing times, dates,
or both 228 � Printing longer or shorter dates and times 229
More control: custom date patterns 230

10.3 Reading numbers with <fmt:parseNumber> 232
Why you might want to parse numbers 233
How <fmt:parseNumber> works by default 233
Changing <fmt:parseNumber>’s parsing rules 235

xiv CONTENTS
10.4 Reading dates with <fmt:parseDate> 236
How <fmt:parseDate> parses dates by default 236
Changing how <fmt:parseDate> parses dates 237

10.5 Overriding time zones with <fmt:timeZone> and
<fmt:setTimeZone> 238
How JSTL figures out time zones by default 239 � Setting time
zones for individual tags 239 � Long-lasting changes with
<fmt:setTimeZone> 240 � Temporary changes with
<fmt:timeZone> 241

10.6 Overriding locales with <fmt:setLocale> 242
How to identify locales 243 � The parseLocale attribute for
<fmt:parseNumber> and <fmt:parseDate> 244

10.7 Internationalizing text messages with <fmt:message>,
<fmt:param>,<fmt:bundle>, and <fmt:setBundle> 245
Using <fmt:message> 245 � Loading a bundle family with
<fmt:bundle> and <fmt:setBundle> 247

10.8 Summary 248

PART 3 JSTL IN ACTION.. 249

11 Common tasks 251

11.1 Handling checkbox parameters 252
The HTML form 253 � A simple checkbox handler 254
Handling some check boxes specially 256

11.2 Accepting dates 257
The HTML form 258 � Handling the form and
reading the date 259

11.3 Handling errors 261
Ignoring the issue 262 � Catching errors with <c:catch> 263
Passing errors to an error page 266

11.4 Validating input 268
Different kinds of form validation 268 � Tasks involved when
validating a form 269 � A sample form validation 271

11.5 Summary 277

CONTENTS xv
12 Dynamic features for web sites 279

12.1 An online survey 280
What our survey looks like 281 � Setting up the survey
database 281 � Adding survey questions to pages 284
How the survey works 285

12.2 A message board 291
What our message board looks like 291 � Setting up the message
database 293 � Linking to appropriate message boards 294
How the message board works 295

12.3 Summary 300

13 Case study in building a web site 301

13.1 Managing the layout 303
A framework for channels 303 � Modular channels 305

13.2 Adding dynamic content 309
Including RSS channels 309 � Including other dynamic content 311

13.3 Registering users 313
Modifying the header 313 � The registration form 314
Saving the registration 318 � The user database 319

13.4 Authenticating users 320
Logging in users 320 � Some notes about authentication 321

13.5 Personalizing the site 322
Filling in a form automatically 322 � Displaying a
chosen RSS feed 324

13.6 Summary 325

PART 4 JSTL FOR PROGRAMMERS 327

14 Control and performance 329

14.1 Scripting elements and the JSTL rtexprvalue libraries 330
Warning against scripting expressions 331 � JSTL’s dual
libraries 332 � Scripting variables and <jsp:useBean> 333

14.2 Modifying properties with <c:set> 334

xvi CONTENTS
14.3 Advanced techniques for importing text 335
Representing imported text as a java.io.Reader 335
Character encoding 337

14.4 Advanced XML parsing and manipulation 338
XML data formats 338 � Telling <x:parse> where a
document came from 340 � Efficient parsing with
org.xml.sax.XMLFilter 341 � Efficient transformations
with javax.xml.transform.Result 343

14.5 Deciphering requests with <fmt:requestEncoding> 343

14.6 Exposing data to JSP pages 344
Saving data to a scope 344 � Exposing dynamic data structures 346
Writing JavaBeans 347

14.7 Configuring JSTL 349
Providing default information to JSTL tags 349 � Managing
database access 352 � Managing internationalization 354

14.8 Enforcing good page-authoring habits 355
Requiring script-free pages 356
Enumerating legal tag libraries 357

14.9 Summary 359

15 Using JSTL to develop custom tags 361

15.1 Developing and installing tag libraries 362
JSTL’s support for tag-handler developers 363 � The tag-library
descriptor (TLD) 363 � Installing and using a tag library 366

15.2 Developing conditional tags 366
A simple conditional tag 367 � A conditional tag with
attributes 370 � Integrating custom conditional tags with
standard tags 376 � Using the expression language 377

15.3 Developing iteration tags 378
A simple loop tag 379 � More advanced iteration tags 386

15.4 Summary 387

CONTENTS xvii
A JSTL reference 389

A.1 Expression language syntax 390

A.2 Core tag library 392

A.3 XML tag library 397

A.4 Database tag library 401

A.5 Formatting tag library 404

B JSTL API (for developers) 409

B.1 Configuration variables 410

B.2 Conditions and loops 413

B.3 Interoperating with JSTL’s database tags 415

B.4 Using JSTL’s localization algorithms 417

C Database tags and SQL 421

C.1 SQL and <sql:update> 422

C.2 SQL and <sql:query> 427

C.3 SQL miscellany 429

C.4 Summary 430

D References and resources 433

D.1 JSP Standard Tag Library 434

D.2 XML-related references 435

D.3 Databases 435

D.4 Related standards 436

D.5 Miscellaneous references 437

 index 439

preface
I originally got involved in creating the JSTL in Action (JSTL) when Eduardo
Pelegri-Llopart at Sun noticed my emails on an Apache Jakarta mailing list and
thought I needed something to keep me busy.

 This wasn’t strictly true—I already had quite enough on my plate—but I soon
found myself growing more and more interested in JSP tag libraries and the JSTL
effort. Soon, I was spending a good portion of my waking hours on it (and some
nonwaking hours, too).

 If you like to design things, then helping to create a new standard and manag-
ing its reference implementation are thrilling tasks. Working with the Java Com-
munity Process means you meet bright, engaging people from all over the world,
and then spend hundreds of hours arguing with them about technical details. Like
most of my idiosyncratic pastimes (such as purchasing high-efficiency air filters or
watching the British Parliament on television), it might be hard to explain why
I’ve had so much fun with the Java Community Process—but it’s been a blast.

 However, I don’t think my enjoyment of the process alone explains my
enthusiasm for JSTL. Rather, JSTL has a special appeal because its goal is to
make JSP, and web development in general, more accessible. Just as important,
JSTL’s design reminds me why I like Java in the first place. It’s maintainable,
based on thoughtful, careful principles, and easy to use. JSTL takes Java’s and
JSP’s advantages, packages them, and places them in your reach even if you
don’t know how to program yet.
xix

xx PREFACE
 This book will show you how to make the most of JSTL. It begins without
assuming you know anything more than HTML, and it gently introduces you to all
the principles you’ll need to produce flexible, powerful web pages. The goal of this
book isn’t to satisfy my own ego by showing you how subtle and tricky technology
can be, but instead to equip you to handle any JSTL-related issue that arises when
you produce real-world, dynamic web sites. If you read an example in this book
and think, “I didn’t realize it could be so easy,” then JSTL has done its job—and so
have I.

acknowledgments
Authors often wax sentimental when their books go to press. I think that’s
because writing computer books leads some people to turn to alcohol, quit their
jobs, and start wandering the wild.

 My experience wasn’t anything like this. In fact, writing this book was a lot of
fun, and I’d do it all again (as soon as my wrists heal). Still, even a book that’s fun
to write isn’t produced in a vacuum, and it depends on the efforts and ideas of
many people.

 I’d particularly like to thank Pierre Delisle, the specification lead for JSTL, for
his friendship, guidance, and trust. Pierre encouraged me to write this book, and
he’s also the one who asked me to lead the JSTL reference-implementation
effort. I used up all the French I know thanking Pierre in my last book, so for
now, I’ll stick with English and just say that it’s been fun and that I’ll miss our
long nights and email storms—at least, until JSTL 1.1!

 I’d also particularly like to thank Marjan Bace for a wonderful author-publisher
relationship and for countless suggestions that made this book meaningfully bet-
ter. With his sharp sense of the industry, I couldn’t have asked for a better guide.
Just as important, he’s kept things fun, and has set a great tone for all of Man-
ning. After just one phone conversation with Marjan, I knew I’d found the pub-
lisher I wanted to work with.

 The JSTL spec wouldn’t exist without the JSR-052 Expert Group. If all expert
groups were as good as this one, diplomats and ambassadors would use the Java
Community Process as an example of how to bring people together from around
xxi

xxii ACKNOWLEDGMENTS
the world and solve difficult problems. Thanks in particular to the superb JSTL RI
team: Justy Horwat and Jan Luehe, with important contributions from Nathan
Abramson and Hans Bergsten (my competing JSP author!). I’m also indebted to the
JSP 1.3 spec leads, Eduardo Pelegri and Mark Roth, for making sure key JSP fea-
tures were ready for JSTL on time.

 Thanks to Ted Kennedy for coordinating the book’s reviews and managing an
amazing volume of useful and encouraging feedback from the likes of Monte Glenn
Gardner, Henri Yandell, Dean Riechman, Lance Andersen, Vimal Kansal, Phil
Hanna, Gal Shachor, Ian Jagger, Igor Fedulov, James McGovern, Rizwan Lodhi,
and James Strachan. Thanks to all of you—even the ones who objected to my off-
beat humor. Thanks especially to Martin Cooper for his insightful technical proof-
ing and to Tiffany Taylor for outstanding copyediting work.

 Thanks to the production crew—particularly Mary Piergies, Syd Brown, and
Denis Dalinnik—and to Lianna Wlasiuk and Alex Garrett for some useful early
comments. Finally, thanks to Manning’s publicist, Helen Trimes, who might very
well be the reason you’re reading this book.

 I also want to mention a few people from Yale. Thanks to my friend David
Davies for his generic-sounding name, which I’ve used in many examples through-
out the book. Thanks also to my colleagues at Yale who, unlike David, didn’t leave
to go off to business school—particularly Andy Newman, Nick Rawlings, Susan
Bramhall, Howard Gilbert, and Peter Furmonavicius, for whom “Peter’s Junk-Mail
Service” from chapter 11 is named. The eccentric members of the +@essentially.net
mailing list offered some useful minor comments too; I think they collectively had a
positive effect on about a dozen words in this manuscript. Thanks, guys.

 Of course, I want to thank my parents. If they make it through chapter 1, I’ll be
delighted.

 And thanks to you for reading all the way through the acknowledgments. But I
have to say, you’ll learn more from the book’s technical content. Get back to work!

about this book
Like JSTL, this book is aimed at both programmers and nonprogrammers.
Parts 1, 2, and 3 are accessible to page authors who start out with nothing more
than HTML. Part 4 is intended for Java programmers—and ambitious page
authors who want to learn more about how JSTL works behind the scenes.

 In part 1, we look broadly at the Web and at two technologies that are impor-
tant foundations to JSTL: JavaServer Pages (JSP) and the Extensible Markup
Language (XML).

 In part 2, we delve into JSTL’s depths. Chapters 3, 4, and 5 lay the necessary
groundwork by discussing JSTL’s expression language, conditions, and loops.
Chapters 6 through 10 discuss the more exciting features of JSTL: database
access, XML manipulation, text importing and formatting, and so forth.

 In part 3 (chapters 11, 12, and 13), we look at progressively more complete and
integrated examples of JSTL in action. We start with common, stand-alone tasks
and move to an example of organizing an entire site—a web portal—using JSTL.

 Finally, part 4 discusses how to configure JSTL, integrate Java code, and even
write custom tags using JSTL’s API.

 The appendices contain reference material. Appendix A is a brief summary of
all of JSTL’s tags. Appendix B lists JSTL’s API and goes into detail about some of
its advanced features. Appendix C describes the basics of SQL to help you follow
some of the book’s examples, and appendix D lists online and printed references.
xxiii

xxiv ABOUT THIS BOOK
How to approach the book

If you’re a web-page author who knows HTML, you’ll probably want to start at the
beginning. Chapters 1 and 2 will be particularly useful to you, and you can read the
rest of the book in order, stopping somewhere around chapter 14 if the material
becomes less interesting to you. If you already know JavaScript, pay special atten-
tion to chapter 3, because you’ll need to master the details of JSTL’s expression lan-
guage. JavaScript won’t help you produce dynamic server-side logic in this
environment. If you don’t know SQL, appendix C will help you follow the book’s
database examples.

 If you’re an experienced Java programmer looking to master JSTL in order to
use or teach it, you can probably skip part 1. You might want to begin by focusing
on the expression language in chapter 3. Chapters 4 and 5 will be a breeze, but the
rest of part 2 should be useful in orienting you to JSTL’s tag-set. The examples in
part 3 will be useful, and part 4 is specially intended for you. Also, appendix B is
both a thorough reference and an indispensable introduction to some of JSTL’s
advanced features.

 If you have a background in JSP but aren’t familiar with Java, then parts 2 and 3
will be particularly useful to you. Also, the beginning of chapter 14—integrating
JSTL with scriptlets—might be helpful.

 In general, the book gets more advanced as it moves forward. Most readers will
gain less by reading the book backward (but if you find any interesting hidden mes-
sages that way, be sure to let me know).

Conventions

By and large, the book is self-explanatory. I’ve followed a few conventions through-
out the book that should help illuminate some material; a general convention sug-
gests that I list them here. They include:

� Boldface type
In code listings, I use boldface type to differentiate dynamic code (JSTL
tags) from static text (including HTML tags). This distinction is useful because
they look the same on the surface, so they can easily blur, especially late at
night. Also, a few examples use a JSTL tag within an HTML tag, and boldface
is helpful to make sure the JSTL tag stands out.

� Other type styles
I occasionally use italics when introducing a term I want you to remember—
or a word that I’d accompany with a bang on the table if I were speaking to
you in person (and if there were a table present). Courier font marks tag

ABOUT THIS BOOK xxv
names (for HTML, XML, or JSTL tags), tag attributes, scoped-variable names, and
other words that normally appear within code.

� Tables for tags
Just like HTML tags, JSTL tags have attributes that let you modify the tags’ behavior.
For instance, in the tag <fmt:formatNumber type="currency"/>, the text type=
"currency" is an attribute. I’ve listed tag attributes in tables that have a consistent
format. Here’s an example:

This sample table shows a few things. First, tables for tag attributes have a “tag”
icon to help you find them. Such tables have four columns describing the attribute
name, a brief description of each attribute, information about whether the attribute
must be specified for each use of the tag, and information about the default value
of the attribute if you don’t specify a value. If the Default column contains None,
the attribute has no default. If this column contains Body, the default value comes
from the tag’s body. (See chapter 2 for more information about tags, attributes, and
bodies. Note that <c:spam> is, of course, not a real JSTL tag—although given the
number of applications that send out junk mail, there’s clearly a need for it; per-
haps we’ll see it in JSTL 1.1.)

� Highlighting
I highlight sections of code samples whenever I feel like it, usually to draw your
attention to a part of the code sample that has changed. Highlighting isn’t consis-
tent; it’s there only when I think it will be useful.

� Code annotations
Some longer examples are annotated using bullets like this: i. These are often
tied to paragraphs that follow and amplify the code.

� Call-out boxes
Occasionally, I draw your attention to a Note, Tip, or Warning using a noticeable
box in the middle of the page. To be honest, I do this just because other books do
it; fortunately, I use these boxes sparingly.

<c:spam> tag attributes

Attribute Description Required Default

email Email address to send junk email to Yes None

subject Subject of the junk-email message No "Long distance service
for less."

message Body of the junk-email message No Body

xxvi ABOUT THIS BOOK
Source code

All of the source code is downloadable from http://www.manning.com/bayern. I
typed it all in so that you don’t have to. Don’t thank me too much, because I had to
type it into the manuscript anyway. Visit http://www.manning.com/bayern to
download the code. It’s available in a number of convenient formats, including a
ready-to-use bundle that can get you up and running quickly, even if you haven’t
yet set up a JSP container.

Author online

I spend a lot of time online, and now, having written this book, I’m eager to discuss
it with you and answer any questions you have about it.

 Manning has set up an Author Online forum for JSTL in Action to make it easy
for you to communicate with me and other readers. The Author Online forum is
great if you have any questions or comments about the book (or even if you just
want to hold me accountable for one of my jokes). To access the Author Online
forum, visit http://www.manning.com/bayern. This page will help you register,
read other people’s messages, and post your own questions and answers.

about the cover illustration
The figure on the cover of this book is called a “Baniana,” which, as far as we can
tell, refers to the wife of an Indian merchant who, while making his fortune in that
country, is not a permanent resident of India. The illustration is taken from a
Spanish compendium of regional dress customs first published in Madrid in 1799.

 Those who know how quickly programming languages evolve might be
pleased to reflect on the changes that natural human language constantly undergo:
the descriptions that come with this source material are only about two hundred
years old, but they are not all easily translated by speakers of modern Spanish.
Some captions that accompany the illustrations contain words that are archaic but
can be found in dictionaries; others have now disappeared, not only from the oral
language but also from common written sources.

 The title page of the Spanish compendium states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.. Obra muy
util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers
xxvii

xxviii ABOUT THE COVER ILLUSTRATION
Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this draw-
ing. The “Baniana” is just one of many figures in this colorful collection. Their
diversity speaks vividly of the uniqueness and individuality of the world’s towns
and regions just 200 years ago. This was a time when the dress codes of two regions
separated by a few dozen miles identified people uniquely as belonging to one or
the other. The collection brings to life a sense of isolation and distance of that
period and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life of
two centuries ago brought back to life by the pictures from this collection.

Part 1

Background

Welcome to JSTL in Action, a guide to everything you’ll need to know about JSTL.
In the first part of this book, we explore what JSTL is and how it works. We start
by discussing the simple ideas behind dynamic content on the Web.

 After that, we look at some of the differences between HTML and XML.
This topic is important because JSTL uses an XML-like syntax, so you’ll need
to be aware of its rules. Toward the end of part 1, we also discuss the basics of
JavaServer Pages (JSP), the broader language that JSTL is based on.

 Part 1 takes for granted only a basic knowledge of HTML. This book is
designed to be a gentle but complete introduction to JSTL, and it doesn’t assume
you’re familiar with any other programming or web-design languages. Part 1 lays
a foundation so that you have all the tools you need to jump in and begin design-
ing dynamic web pages.

1Dynamic web sites
This chapter covers…
� Ideas behind dynamic web content
� What JSTL looks like
� Requirements for running JSTL
� JSTL’s role in web applications
3

4 CHAPTER 1
Dynamic web sites
Welcome to JSTL in Action. This book will teach you how to design dynamic web
pages using JSTL, the JSTL in Action.

 When you write a page in the Hypertext Markup Language (HTML), it looks the
same every time a browser loads it. Actually, that’s not quite true; it probably looks
slightly different in each browser where you view it—and on each operating sys-
tem, too. But this sort of haphazard change isn’t what I mean when I say dynamic
content. I mean pages that are responsive to users’ needs—pages that present cus-
tomized information, let the viewer interact, and even print information from data-
bases and XML files.

 I’ve designed this book to be a gentle but complete introduction to all of JSTL.
You don’t need to start with anything more than a familiarity with HTML. This
chapter and the next give you all the necessary background to begin writing practi-
cal, exciting pages.

1.1 The boring life of a web browser

Many new designers of dynamic web pages make the same mistake: they think that
for a web page to be interesting or interactive, it needs to send some program
code—like JavaScript—out to web browsers. In fact, most of the interesting soft-
ware on the Web runs on servers. The Web is based on a model of software design
called client/server, which is just a pretentious way of describing the computers in fig-
ure 1.1. All the term client/server means is that a bunch of machines, like desktops
and Personal Digital Assistants (PDAs), can access a big machine, like a web server,
to retrieve or submit information.

 To picture how the Web works, imagine that you call up a friend for directions
to his house. After you ask for directions, he pauses a moment and says, “Sure, just
give me a minute.” Then, about a minute later, he comes back to the phone and
gives you directions.

 During the minute your friend is away, you have no idea what he’s really doing.
Perhaps he’s just answering another phone line and doesn’t really need 60 seconds
to figure out how to give you directions to his home. Maybe he needs to check some-
thing—he might be asking his wife which way North is. The point is, the procedure
your friend follows—his implementation details, so to speak—aren’t accessible to
you. If he’s looking at a map, you might never know. If he is indeed talking to his
wife, you have no idea if he’s using English or Swedish. And if his wife has her own
private source of information (perhaps she’s cheating on your friend), you’re not
even close to finding that out. All you eventually get back from him are directions to
his house. You can follow these directions without caring how he produced them.

The boring life of a web browser 5
The Web works the same way. When a browser asks for a web page, it doesn’t need
to know how the web server produced the page. Maybe the page is a simple text
file, but perhaps it’s produced by a program written 20 years ago in COBOL.
Maybe it’s produced using JSTL. Whatever creates the page, the browser displays it
the same way. The browser just sees familiar HTML tags—perhaps an <html> tag,
then a <head>, then a <body>, and so on. It uses these tags to print convenient
graphical output without regard for how the content was produced.

 This simple point implies quite a bit. It means that all the different server-side
web languages have the same goal: to produce familiar web pages. A widely
diverse array of technologies all have the same purpose. Java’s JavaServer Pages
(JSP), Microsoft Active Server Pages (ASP), PHP (which recursively stands for PHP:
Hypertext Preprocessor), ColdFusion, mod_perl, Common Gateway Interface (CGI)
scripts—they’re all designed to automatically create web pages, just as you manu-
ally create them using a text editor or an HTML editor like Macromedia Dream-
weaver. The end products are the same.

 To put it another way, if you’ve designed HTML pages, you’re probably familiar
with a feature most browsers have that lets you see the underlying HTML for a web
page. Internet Explorer calls this feature View Source. When you view the source
for a web page that a web server sends you, you still see plain HTML, because that’s
all the browser sees. This HTML might include JavaScript, just as a static page can

Figure 1.1 The client/server model of computing is, for the most part, an
overblown name for a simple idea: place a server on a network and let
multiple client machines access it. This is how the Web works: web browsers
are the clients, and web servers provide data for them.

6 CHAPTER 1
Dynamic web sites
include JavaScript. But the fact that it was produced by a dynamic process on the
server doesn’t matter; it ends up as a regular web page.

 It’s worth pointing out that not all content on the Web is HTML. The Extensible
Markup Language (XML) is now used as the basis for some web content. For
instance, web servers can communicate with wireless devices using a language
called the Wireless Markup Language (WML). XML also supports a stricter succes-
sor to HTML called XHTML. At any rate, the final form of content—whether it’s
HTML, XHTML, WML, or something else—usually doesn’t matter to the server-
side web language. For instance, with JSTL (and ASP, PHP, ColdFusion, and others)
it’s as easy to produce WML as it is to produce HTML. You just need to know the
target language you want to produce.

1.2 The simple ideas behind dynamic web content

In the early days of the Web, the only way to produce dynamic content was to write
programs in traditional programming languages. These programs, while nominally
deserving of the term web applications, were really just conventional programs that
printed HTML instead of displaying text like

Please enter "yes" or "no" at the prompt:

Early web programs also knew how to read information that you entered in HTML
forms, figure out what kind of browser you were using, and so on.

 After this first generation of web programming—which saw the rise to promi-
nence of the Perl programming language—a different model for producing web
pages became popular. Languages sometimes called template systems became com-
mon. For the most part, a template system is based on the same idea as a feature of
many word processors: mail merge.

 A word processor that supports mail merge lets you write a single letter or docu-
ment—a master or template—and then use this single copy to produce customized
output for a number of individuals. For instance, you might write something like this:

Dear [NAME]:
My records show that you owe me $[DOLLARS].
I need this money now to buy myself a big
[PRESENT]. If I don’t get it, I will break
your [APPENDAGE].

This letter has two parts. Mostly, it’s made up of static template text—unchanging
text that gets printed for each copy of the letter. In other words, every time you
print a letter, it starts with the word Dear and contains the text My records show that
you owe me. Sprinkled within this template text are a few placeholders, like [NAME]
and [DOLLARS].

The simple ideas behind dynamic web content 7
 To conduct a mail merge and print a customized letter, you supply the informa-
tion missing from this single master copy of the letter—perhaps at the prompting of
your word processor, or as a preformatted, comma-separated text file. To be com-
plete, each letter needs four pieces of information: NAME, DOLLARS, PRESENT, and
APPENDAGE. Like the old Mad-Libs games, producing a customized letter simply
involves filling in these placeholders. One set of legitimate values might be

Jack, 20, tuna sandwich, finger

Another might be

Leonard, 1200, television, arm

You’d use the mail merge in the first place because doing so is simpler than typing
each letter manually—or even using a word processor to edit the letter yourself
each time you need a new, customized copy.

 Believe it or not, template languages for the Web work almost exactly the same
way. Starting with a web-development language is no harder than using mail
merge. The major difference is that instead of printing simple text letters or docu-
ments, the goal of a web-design language is usually to print HTML. For instance,
here’s what our sample mail-merge letter might look like in JSTL:

<html>

<head>

 <title>Nasty letter</title>

</head>

<body>

<h1>Dear <c:out value="${name}"/>:</h1>

<p>

 My records show that you owe me $<c:out value="${dollars}"/>.

 I need this money now to buy myself a big

 <c:out value="${present}"/>. If I don’t get it,

 I will break your <c:out value="${appendage}"/>.

</p>

</body>

</html>

NOTE In this example, and throughout the rest of this book, I use bold type to
highlight JSTL tags that occur within HTML text. This formatting makes
it easier to differentiate the dynamic parts of a page from its static, tem-
plate text.

8 CHAPTER 1
Dynamic web sites
Other than converting the letter to HTML, all we’ve done to modify the original
mail-merge letter is to use a special syntax to introduce placeholders into the page.
Instead of [NAME], we wrote

<c:out value="${name}"/>

Don’t worry about the details of this placeholder’s syntax yet. As a first step toward
learning JSTL, we’ll begin looking at its syntax more closely in chapter 2, and we’ll
cover it completely in chapter 3. For now, you just need to realize a few important
things. First, instead of using an arbitrary, made-up pattern like [NAME], the place-
holders used in JSTL look a little like HTML tags. That is, they start with <, end with
>, and have attributes like value="${name}", just like familiar HTML tags. This sim-
ilarity is intentional; it’s one of the features that make JSTL easy to work with when
you come from an HTML background.

 For the most part, learning JSTL is as easy as learning how these placeholders
work. The placeholders are called tags—like HTML tags—and that’s why JSTL is
called a tag library. It’s just a collection of placeholders.

 JSTL’s various placeholders help you gain more control over your pages than a
single, simple placeholder would allow. For instance, in our sample letter, we use
the following tag to print out a number:

<c:out value="${dollars}"/>

However, suppose we want to be precise and format the number as currency, mak-
ing sure it has an appropriate currency symbol, the right number of decimal points,
and so on. JSTL lets us do this using a slightly different placeholder:

<fmt:formatNumber value="${dollars}" type="currency"/>

JSTL also lets you retrieve the number from a database, an XML document, or
even another page on the Web. In all cases, though, the tags look very similar:
they’re still like familiar HTML tags. They just have different names and accept dif-
ferent attributes.

 Not all JSTL tags are designed to output simple values, like words and numbers.
Some tags actually make decisions in the middle of your pages. For instance, a tag
can decide to print something out, or to remain quiet, based on some data that it
checks. A JSTL tag can even decide to repeat part of your page a number of times,
which can be useful when you want to build lists or tables of data.

 There’s one more major difference between a mail merge and a dynamic web
page. When you work with a mail merge, you’re typically sitting at a single com-
puter. Web languages, however, are designed to transmit data over the Internet.

What you need to run JSTL 9
Communication over the Web
Whenever information is transmitted over a network, both sides need to agree on a
protocol—a way of communicating. The Web uses a protocol called HTTP, the
Hypertext Transfer Protocol. HTTP outlines specific rules for how web browsers
must talk to web servers. One of HTTP’s most important rules is that the Web must
work using a style of communication called request/response. That is, every operation
on the Web has two parts: an attempt to load data (the request) and an answer to that
request (the response). Web browsers and web servers don’t work like chat rooms,
where multiple parties might stay connected for hours and transmit data whenever
they want to.

 Therefore, web pages (even dynamic ones) are reactive in nature. They sit
around waiting for a web browser to request them. When this happens, they begin
to run (or execute), printing static template text and filling in placeholders when nec-
essary. A page that uses JSTL never runs on its own; it always runs in response to a
web request.

1.3 What you need to run JSTL

Not all word processors support mail merge; and, similarly, not all web servers sup-
port JSTL. You can’t necessarily take a page with JSTL placeholders (tags) and stick
it on a simple web server; not everything that vends your HTML pages can also
vend JSTL pages.

 As we’ll discuss more in chapter 2, JSTL is built on a server-side technology
called JavaServer Pages (JSP), which in turn is built on top of Java (see figure 1.2).
JSP is a powerful template system, but with its power comes complexity. For
instance, a JSP placeholder inside an HTML file can look like this:

<%= ((User) session.getAttribute("user")).getLastName() %>

This placeholder, like much of JSP, is based on the Java programming language,
and it’s hard to use unless you’re a programmer. By contrast, JSTL lets you write a
similarly functioning placeholder like this:

<c:out value="${user.lastName}"/>

It’s still not completely trivial to read and understand, but it’s much easier than its
JSP counterpart. By the end of chapter 3, you’ll be an expert on how to write tags
like this.

10 CHAPTER 1
Dynamic web sites
1.3.1 JSP containers

Because JSTL uses JSP, you need a software product called a JSP container to use
JSTL tags. A JSP container is a web server that also knows how to interpret JSP
pages and JSTL tags. Instead of simply sending HTML files out to browsers, it can
process JSTL tags and produce appropriate text in their place.

 JSTL works with JSP versions 1.2 and higher. If your working environment
already includes a JSP 1.2 container, then you can jump right in and start to use the
tags we begin to discuss in chapter 3. If you don’t already have a JSP container to
use, you’ll need to set one up. For a few reasons, this book doesn’t include instruc-
tions for installing a JSP container. For one thing, there’s a good chance you won’t
need them—JSTL is targeted at web-page authors who, in many cases, are sup-
ported by back-end Java programmers and system administrators. So, it might not
be your responsibility to set up Java server software.

 But more important, freely downloadable software products are a moving tar-
get: it’s usually not worth describing how to install them in books, because the
instructions keep changing. Therefore, I’ve written an introduction to a JSP con-
tainer called Jakarta Tomcat and posted it on Manning Publications’s web site. (See
appendix D for this article’s URL.) This way, the instructions don’t clutter the book,
and they can stay up to date. The online instructions, by the way, also cover how to
install JSTL into Tomcat; they teach you everything you need to know to get up and
running quickly.

 It’s worth mentioning a few quick mechanical details about the way JSP pages
work. JSP pages can be called anything, but just as it’s common to store HTML in
files whose names end with .html or .htm, you’ll usually save JSP files in names that
end in .jsp. For instance, index.jsp might be the main page for your application, and
we might have named our page from section 1.2 letter.jsp.

Figure 1.2
Java is a flexible, general-purpose programming
language. JavaServer Pages (JSP) depends on Java
but hides some of the hard details of writing full-
fledged programs. The JSP Standard Tag Library (JSTL)
builds on top of JSP, making it even easier to use.

Real-world web applications 11
 Other than that, JSP pages are designed to behave as much like HTML files as
possible. For instance, when you make a change to a JSP page, you just need to
reload your browser window in order to see your changes. As a result, you don’t
have to learn how to use any of the traditional programmer’s tools like compilers,
debuggers, and so on. JSTL inherits all these benefits from JSP.

1.4 Real-world web applications

Earlier in this chapter, I compared the Web to a situation in which you call a friend
and ask for directions on the phone. Figure 1.3 shows this arrangement graphically.
You ask your friend a question, he consults with whatever back-end resources he
has, and then he responds to you. The important point is that once you’ve asked
your question, you don’t know what’s happening on his end.

Now, to make a new point, let’s extend this analogy. Imagine that when your
friend talks on the telephone, he uses a device he bought through a spy magazine
to disguise his voice. Suddenly, you’re shielded from even more of what’s happen-
ing on the other side of the phone call. For example, your friend could put his wife
on the phone in the middle of a sentence, and you might not be able to tell the dif-
ference. You began speaking with him when you called, but his wife ended up
answering your question without your ever knowing. Many large, real-world Java
web applications—often called enterprise applications—work like this; secretive
hand-offs between components of the application occur without the web browser’s
ever knowing.

 First, consider the way a small, relatively simple web site might work. In
figure 1.4, the web browser interacts directly with a JSTL page. In this simple

Figure 1.3 When you ask your friend a question over the phone and he says, “Give me
a second,” and puts you on hold, you don’t know what back-end resources he’s using. He
might consult with his computer or his spouse.

12 CHAPTER 1
Dynamic web sites
design, the JSTL page does all the work. That is, it knows how to find all the data it
needs to print, without any help from back-end Java code.

 In contrast with figure 1.4’s simple design, consider figure 1.5. The web browser
makes a request for a web page, but this request is handled by a servlet, which is a
web program written in the Java programming language. In order to handle this
request, the servlet can interact with other Java code, as well as databases, directo-
ries, XML files, messaging systems, and nearly anything else. Finally, once the serv-
let has decided what it wants to display to the user, it forwards—that is, hands off—
the request to a JSTL page, which decides how to print out the information.

 One key principle of this model is that each JSTL page is designed to do a differ-
ent thing. For example, one JSTL page might be written to print a shopping cart to
cell phones using WML. Another would be designed to present a registration page
for new users in HTML. The pages themselves don’t decide what task to perform;
they only decide what to display. The servlet takes care of all the behind-the-scenes
action, which might include determining what kind of device the user’s using (cell
phone versus web browser) and what the user is asking for (shopping cart or regis-
tration page).

 Organizing an application as shown in figure 1.5 has a number of benefits.
Doing so supports division of labor in your organization, much like traditional divi-
sion of labor in a factory assembly line. If you work for a large organization, you
probably have a number of different kinds of colleagues: programmers, web-page
authors, graphics designers, database administrators, and so on. Separating the
pieces of your application into different blocks—a servlet, plain Java code, a data-
base, JSTL pages—means that all the people in your organization can focus on what
they do best.

 This division of labor also makes a site more maintainable. Before template sys-
tems, it was common to include HTML in the middle of conventional programs,
like this:

Figure 1.4 Small applications can be designed entirely using JSTL
pages. Web browsers load the pages directly, and the pages know how
to find all the information that they need to print.

Real-world web applications 13
if ($FORM{"username"}) {

 print "Congratulations, you’re logged in.";

}

There’s a big problem with code like this: if your site’s design undergoes a change,
the programs must be modified. Every time a graphic needs to be added to a web
site, programmers may have to stop what they’re doing and update their code.

 With the design from figure 1.5, though, each piece of the puzzle can stand more
robustly on its own, making your whole site easier to maintain and update. This
design is so popular that many packages and frameworks have grown up around it.
You might have heard the term Model-View-Controller (MVC) to describe the pattern
on which some web sites are based. This term, although originally more specific,
has come to be loosely applied to any arrangement that remotely resembles
figure 1.5.

 The Struts framework, from the Apache Jakarta project, is a popular MVC appli-
cation framework for Java. Many other tools, including JavaServer Faces, also rely on
back-end Java programming. They’re all designed with similar goals: to improve
maintainability and to make it easier to write web applications.

Figure 1.5 Large web applications are designed using Java, JSTL, and other
components like databases. In large applications, it’s common for requests from web
browsers to be handled by a Java program called a servlet, which interacts with
databases and other Java code on the server. The servlet figures out how it wants a
response to be printed, and then it forwards the user to the right JSTL page, which takes
care of nothing more than presenting information.

14 CHAPTER 1
Dynamic web sites
 JSTL works well with or without these technologies. As you saw in figure 1.4,
you can use it for small, stand-alone web sites. But probably more important, it
integrates well into situations where back-end Java programmers manage and sup-
port the web application, and the JSTL page’s only job is to present information to
web browsers. JSTL will be useful to you whether you use Struts, JavaServer Faces,
a different framework, or nothing. This book doesn’t describe how to use these
frameworks specifically, but the principles and techniques you learn here will be
useful to you no matter where or how you use JSTL.

1.5 Summary

If you’re new to dynamic web sites, keep the following points in mind as you read
the next few chapters:

� Web browsers don’t care how web pages are produced. To a web browser, it
makes no difference whether the page it’s displaying is static (unchanging) or
dynamic (produced by a programming language or template system).

� Template systems like JSP and JSTL are similar to a word-processing feature
called mail merge. In a web template system, template text is mixed with a
number of placeholders. These placeholders are filled in every time the page
needs to respond to a web request.

� JSTL is a template system whose placeholders look like familiar HTML tags.
� JSTL is built on JSP technology, which means you need a JSP container to use

JSTL’s tags. See appendix D for a pointer to online instructions for installing a
JSP container.

� In many large, real-world applications, JSTL pages are just one piece of the
puzzle. One popular model lets Java servlets handle every web request. The
servlet can decide what it wants to print to the user and then pass the user off
to a JSTL page, which formats the data using markup languages like HTML.

2Foundation:
XML and JSP
This chapter covers…
� The basics of XML syntax
� An introduction to JSP
� JSTL’s tag libraries in context
� JSP scoped variables
15

16 CHAPTER 2
Foundation: XML and JSP
Before we start looking at JSTL more closely, we need to discuss some of the
basics of XML and JSP. XML is important, for now, because JSTL’s syntax is based
on it. That is, when you use JSTL tags, you’re using them according to XML’s rules.
Similarly, JSTL is a technology that’s built on top of JSP, and you’ll be a more effec-
tive JSTL author if you understand JSP basics.

 You’re probably familiar with XML even if you’ve avoided reading a tedious, for-
mal description of it. If you haven’t familiarized yourself with XML yet, you might be
pleasantly surprised by how easily you’ll pick it up. In fact, if you know HTML,
you’re well on your way to understanding XML. In this chapter, we’ll look at these
principles—what XML is, how it works, and why we care.

 After that, we’ll shift gears and introduce JSP. You might be less familiar with JSP
than with HTML, but that’s fine. One of JSTL’s major goals is to simplify JSP and shield
web-page authors from unnecessary JSP implementation details. Still, it’s important
for us to consider a few JSP basics, and we’ll do that in the second half of this chapter.

2.1 Introduction to XML

If you’ve ever written or designed a web page, you probably know HTML, the
Hypertext Markup Language. But it’s worth a moment to consider what “knowing
HTML” means. When you picture HTML, you may have a set of particular markup
tags in mind—<p>, , and so on. HTML is more than just these tags, however.
Authors of HTML know how to use tag modifiers, or attributes—for example,
src="/picture.jpg" in an tag, or align="left" in a <p> tag. They also
know that HTML tags have a particular structure. For instance, a <td> doesn’t
make sense unless it appears inside a <table> element. Tags like <body> don’t
come before tags like <head>. And each page has just one <title>—having 17 titles
wouldn’t make sense.

 The point is that HTML is a collection of tags and attributes—and rules for their
usage. HTML also describes the purpose of each individual tag. The tag
refers to images, <table> represents tabular information, and so on. In doing all
this, HTML is essentially a specific application of a more general technology known
as the Extensible Markup Language (XML). (It is only “essentially” an applica-
tion—and not actually one—because HTML’s rules are looser than XML’s, as you’ll
see in section 2.1.2.)

 Here’s the simplest way to begin to look at XML: it’s what you’ve got when you
have certain kinds of markup tags. These markup tags can be of the familiar HTML
kind, like <p> and <html>, and they can also have names and attributes that are less
familiar or even downright strange, like

<beef status="rare" contaminated="true">

Introduction to XML 17
XML is an approach for using these tags to mark off information within a document.
 XML, unlike HTML, does not describe a particular set of tags (<p>, , and so

forth) or relationships between such tags. Instead, it describes the rules for using
tags in a document in the first place. To draw a loose analogy, XML is a general-
purpose mechanism, like Arabic numerals—1, 2, 3, and so on. Receiving a group of
Arabic numerals in isolation doesn’t tell you much; for example, seeing “79” on a
blank page doesn’t convey any useful information without a context. However, you
know that “79” is a valid string containing just Arabic numerals, and that “g”,
“49E”, and “©” are not.

 Similarly, the <beef> tag in the previous code snippet doesn’t mean anything in
isolation. In fact, neither does a tag like . This latter
tag has a meaning when it appears in an HTML document, but alone, it is simply an
arbitrary tag, just as “79” is an arbitrary string of digits. Nonetheless, it follows
XML’s rules, so it is a well-formed, recognizable XML tag, whereas

[am-I-an-XML-tag?]

is not. In a moment, we’ll look more at XML’s rules.
 If you’ve browsed discussion groups online or exchanged email with enough peo-

ple, you’ve probably seen informal uses of tags beyond HTML. For instance, I’ve
often seen people mark off a particularly vibrant part of an email message with tags
like <rant> and </rant>, or introduce a long, rambling section with a <ramble> tag.
This pseudo-HTML markup, insofar as it technically adds structure to a document,
represents the essential goal of XML: tags are used to mark a document in ways that
help people and programs identify the purpose of each part of that document.

 Jumping right in, we’ll first look at some of the jargon used to describe XML tags
and their relationships. Then we’ll follow up with some syntactic rules of XML.

2.1.1 A dose of tag terminology

When we talk about JSTL, it’s important to make sure we’re on the same page (so to
speak). To ensure this, one of the less glamorous things we need to do is cover some
XML terminology. We’ll also explain the terms and idioms that are used most com-
monly by JSP and JSTL users.

 As you probably know from your experience with HTML, tags often come in
pairs: one tag, which might look like <p>, starts a block; and a corresponding tag,
such as </p>, ends it. Figure 2.1 shows an example of an XML element—a block of
XML between, and including, corresponding start and end tags. The element
begins with a start tag, optionally contains a body (some inner text, tags, or both),
and wraps up with an end tag.

18 CHAPTER 2
Foundation: XML and JSP
MINOR WARNING The formal XML standard, and some books that focus on XML more
heavily than this one, use slightly different terminology. Tags that be-
gin an element are known as start-tags (note the hyphen); similarly,
tags completing an element are called end-tags. The stuff inside the
tags is typically called the element’s content. In this book, however,
I’ve decided to use the terminology more common among JSP and
JSTL users.

An element thus consists of a start tag, an optional body, and an end tag. Sometimes,
XML users confuse the terms element and tag. When speaking formally, it is best not
to do this. A tag is the text between and including the < and > characters; an element
is the combination of a start tag, and end tag, and whatever’s in between them.

 However, JSP users do not always speak formally; when discussing JSP, the term
tag is used consistently, in many cases, to refer to what XML people call elements.
This book adopts this usage, at least in cases where it isn’t ambiguous. XML purists
might complain, but it makes no sense at this point to buck the trend. Therefore, if
a later chapter were describing figure 2.1, it might discuss the “<c:forEach> tag’s
body.” This usage is the best way to keep the text simple and straightforward. (We’ll
discuss more JSP jargon later.)

Empty elements
As I’ve said, the body of an XML element is optional. The following element is per-
fectly valid:

<lonely></lonely>

The start and end tags are touching each other, with nothing in between. That is,
the element is said to be empty. (Less formally, the element is said to have an empty
body.) As it turns out, this case is so common in XML that a special, abbreviated
syntax is often used for empty elements:

<lonely/>

Figure 2.1 The basic composition of an XML element

Introduction to XML 19
This single empty-element tag is equivalent to the adjacent start and end tags. You can
use either form to represent an empty element, but the latter is far more common
and idiomatic (and it saves typing, too). From this point forward, this book uses the
shorter form exclusively.

 In accepted—or at least widespread—informal usage, empty elements are often
referred to as empty tags.

Attributes
Start tags and empty-element tags—but not end tags—can have attributes. An
attribute looks like name="value", where name is the attribute name and value is the
attribute value. A tag can have as many attributes as you want it to have, but no
attribute can be repeated in the same tag. That is,

<manager indecisive="true" indecisive="false"/>

is not legal—well-formed—XML. See figure 2.2 for an example of an attribute.

Just as in HTML, it doesn’t matter to XML what order a tag’s attributes appear in.
For instance, the following two tags are equivalent:

<pants fly="zipped" button="fastened" />

<pants button="fastened" fly="zipped" />

Namespaces
So far, you’re probably familiar with most of the tag syntax and terminology we’ve
discussed. XML, however, introduces a new feature that HTML doesn’t have:
namespaces.

 Think of XML namespaces as a way to organize tag names (and attribute names)
into groups. In HTML, all tags have simple, bare names like table. In XML, how-
ever, names can be qualified. That is, instead of being a simple word, they can have
a namespace prefix attached to them. Namespace prefixes are joined to names using a
colon (:), so that instead of seeing just <table>, you might run into <coffee:table>
or <periodic:table>.

 You might want to qualify names like this if a single document needs to use a
variety of tags that come from different places. For example, you might have one
set of tags that’s used to describe home appliances, and another that’s used for roles

Figure 2.2
An XML start tag, with an XML
namespace prefix and an attribute.
The attribute is made up of a name
and a value.

20 CHAPTER 2
Foundation: XML and JSP
within a restaurant. A tag named <dishwasher> might be used by both sets, for the
word dishwasher can refer to a person or an appliance. Thus, there might be some
confusion if the same document (for whatever reason) needed to contain both tags.
For instance, which set would the following tag belong to?

<dishwasher gallons="4.5" noiseLevel="50"/>

To you, it’s probably clear that an entity described by gallons and noiseLevel is a
machine, not a person. But a program would not necessarily be able to recognize
this difference with absolute certainty, and it might therefore confuse this tag with
the other kind of <dishwasher> tag. (Besides, there are indeed people who are best
described in terms of gallons and noiseLevel. In many cases, attribute names
might not establish a useful distinction.)

 XML namespaces let you avoid this kind of clash between names. Instead of just
specifying <dishwasher>, you would qualify the name. You might write <appli-
ance:dishwasher> and <job:dishwasher>, for instance—where appliance refers
to one namespace and job refers to another.

 To use JSTL, you don’t need to know much about namespaces. However, JSTL-
tags all use namespace prefixes when they appear in a page. As figure 2.2 shows, a
JSTL tag might use the qualified name c:forEach, where c refers to a namespace
and forEach denotes a specific tag within that space. Later in this chapter, you’ll see
the different namespace prefixes that JSTL tags generally use.

Relationships among elements
As you saw earlier, an element can contain other elements. As shown in figure 2.3,
the outer element in such a relationship is called the parent, and the inner is called
the child. (The only other common scenario I can think of where children exist
within their parents is, incidentally, mammalian pregnancy.) As usual, we often talk
about parent and child tags, not elements.

Because of the way an XML document is structured, a child element can’t have
more than one parent, but a parent element can have any number of children. JSTL
tags, like many other XML tags, are frequently parent tags, child tags, or both. The

Figure 2.3 Parent and child tags

Introduction to XML 21
terms grandparent and grandchildren are rarely used, but we do sometimes speak of
ancestor and descendant tags. For instance, in the following XML fragment, <a> is said
to be an ancestor of <c>:

<a>

 <c/>

Miscellaneous jargon
Start and end tags are occasionally called opening and closing tags. Similarly, it is
common to hear an end tag’s function described as “closing” the element or start
tag. For instance, you might hear someone say, “This tag closes the tag
from the previous line.”

 Occasionally, child tags are referred to as being “within” or “underneath” their
parent tag. Tags within one another are sometimes called nested tags.

2.1.2 The relevant rules of XML

As you saw earlier in this chapter, XML is, for the most part, a set of rules for using
tags within a document. Just as Arabic numerals have rules—a list of valid digits, a
convention that initial 0s can be removed, and so on—XML has policies and con-
ventions that are important to us. In this section, we’ll discuss some of the syntactic
rules of XML that are important to JSTL. Note that this isn’t a complete guide to
XML, because we don’t need to spend time discussing it in much detail. Instead, my
goal is to describe the general syntax that XML and JSTL tags share.

 It is important to realize that HTML’s rules are looser than XML’s. Because you
are likely already familiar with HTML, let’s jump right in and compare HTML with
XML. Table 2.1 makes this comparison for several rules, providing examples in
both loose HTML and well-formed XHTML (an XML version of HTML that ensures
compliance with XML’s dictates).

Table 2.1 Some relevant rules of XML syntax, with examples of violating and compliant markup

Rule HTML example (violating rule) XHTML example (following rule)

Attribute values must have
quotation marks

<p align=left> <p align="left">

Case matters <P ALIGN="left"> <p align="left">

Start tags must be closed <p>thy eternal summer
shall not fade

<p>summer's lease hath all
too short a date</p>

22 CHAPTER 2
Foundation: XML and JSP
A few straightforward rules

Most of these rules are self-explanatory. When writing plain HTML, you can be
somewhat sloppy without causing any problems. When constructing a list, you can
start a list item with but neglect to end it with . You can mix uppercase
and lowercase freely. And, you can leave off quotation marks in tag attributes (mod-
ifiers within a tag) in most cases.

 You can still do all these things when you use JSTL, as long as you’re just trying
to produce HTML pages and not strict XML pages. However, no matter how you
use JSTL tags, you need to introduce them into your page following the rules in
table 2.1. For instance, your document’s <a> tags can be written as <A>, and you
don’t need to explicitly end all your HTML tags—but your JSTL tags must have
their attributes quoted and must appear in the proper case.

Empty tags must be closed

The final rule in table 2.1 is one of the more confusing to HTML authors starting out
with XML or JSTL. In well-formed XML, every tag that’s meant to be empty must be
closed immediately, using either the longhand form shown earlier (
</br>) or
the vastly more common shorthand (
). Again, if you’re producing loose HTML
with your JSTL pages, you don’t have to worry about your
 tags. But if you
introduce an empty JSTL tag—for instance, <c:out>—into your page, you need to
close it or use the shorthand empty-tag syntax.

TIP If you are trying to produce well-formed XHTML pages, instead of loosely
structured HTML documents, you might run into a problem. Some older
browsers aren’t smart enough to recognize empty tags like
 or <hr/>.
They expect the loose form of HTML, where the tag is not necessarily
closed. In such cases, you can use the expanded form (
</br>). Often,
to avoid this cumbersome syntax, you can simply insert a space between
the <br and the />; many browsers (even the older ones) can handle this
correctly. Thus, tags end up looking like
 or <img src="uglier-
man.jpg" />—note the spaces before the />.

Table 2.1 Some relevant rules of XML syntax, with examples of violating and compliant
markup (continued)

Rule HTML example (violating rule) XHTML example (following rule)

Empty elements must be
closed

Introduction to JSP 23
Quotation marks and attributes
In XML, attribute values must be surrounded by quotation marks. They can be
either single quotes (') or double quotes ("). In general, it doesn’t matter which you
use, although if your attribute value has quotes of one type, it is generally sensible
to use quotation marks of the other type. For example, in the following tag the
value 12" (presumably referring to “12 inches”) is most easily surrounded by single
quotes because it contains a double quote of its own:

<ruler length=’12"’/>

If an attribute value needs to contain both single quotes and double quotes, you can
represent single quotation marks by typing ' and double quotes with ".
These unusual-looking strings are called entity references (or often just entities infor-
mally), but you can safely ignore their details. Just think of " as a way of rep-
resenting, or escaping, a double quotation mark within an XML document. Similarly,
you can escape the left bracket character (<) with <, the ampersand (&) itself with
&, and the right bracket character (>) with >.

 XML provides other rules for escaping characters, but they are less important
for our purposes. Remember, our goal is to cover just enough XML syntax that you
can understand how to use JSTL tags in web pages.

Tags must not overlap
XML tags may not overlap one another. That is, a tag cannot be closed until all of
its children tags are closed as well. For example, the following is not legal XML:

<a>

Once the start tag for appears, must be closed (with) before <a>’s end
tag can appear.

2.2 Introduction to JSP

Moving right along, let’s shift our attention to JSP. JSTL depends on JSP: every JSTL
page you write is also a JSP page. However, although JSP has a host of features that
allow for powerful, general-purpose programming, you only need to know a few
things about JSP to be an effective JSTL author.

 As you saw in chapter 1, template systems like JSP work by letting you mix pro-
gram logic and unchanging text in the same document. The major difference
among template systems involves how such program logic is introduced to the page.

24 CHAPTER 2
Foundation: XML and JSP
 In JSP, one way (in fact, the most important mechanism for our purposes) to add
program logic to a page is to use XML-like tags. When a JSP engine processes a JSP
page, it looks to see if it recognizes any tags; if so, it treats them specially. When a
JSP engine encounters an HTML tag or any other sequence of characters it doesn’t
recognize, it simply passes them through to the web browser. However, when it
encounters a tag it does recognize, it takes action behind the scenes and dynami-
cally determines what to output.

 For this reason, tags with special meaning to JSP are formally called actions. But
although this term is used by the JSP specification, it doesn’t come up much in
informal usage. Because of the popularity of the term tag library, which refers to a
collection of JSP actions, actions are generally called JSP tags. This book sticks to the
familiar, informal term tag to avoid being unnecessarily pedantic. (Even the JSP
specification occasionally lapses into this popular terminology.)

2.2.1 JSP tag syntax

JSP tags, including all of JSTL’s tags, follow the basic rules of XML syntax we out-
lined in section 2.1. For example, any JSP tag must be closed, is case sensitive, can’t
overlap another tag, and so on. However, JSP pages can produce any sorts of docu-
ments; they don’t need to produce well-formed XML documents. For instance,
you’re allowed to produce the following non-XML HTML with JSP:

 one

 two

You can mix HTML fragments like this with JSP tags all you want. JSP couldn’t care
less about what your HTML looks like; it’s all arbitrary template text as far as JSP is
concerned. However, your JSP tags need to follow XML rules. For instance, if you
have two JSP tags, <tag:one> and <tag:two>, then you can’t write the following
legally because the tags overlap each other:

<tag:one>

 <tag:two>

</tag:one>

 </tag:two>

These tags aren’t closed properly.
 An interesting subtlety about JSP tags and HTML tags is worth highlighting: you

can use JSP tags inside HTML tags, because these HTML tags are just arbitrary tem-
plate text. For instance, you can write:

<a href="<tag:one/>">

Introduction to JSP 25
If <tag:one>’s purpose is to print a URL, then this tag might be replaced with

and it works fine.
 However, JSP tags cannot appear inside another JSP tag’s attributes. For instance,

if <tag:one> and <tag:two> are both JSP tags, then you can’t write

<tag:one attribute="<tag:two/>"/>

and expect <tag:two> to run.
 Clearly, JSP tags work differently from static, template text. You might wonder,

however, what causes a tag like <tag:one> to become a JSP tag, whereas something
like <p> or <foo:bar> is considered static, template text.

 One criterion is simple: every JSP tag’s name has a namespace prefix. A tag like
<p> can never be a JSP tag, but <tag:one> can. But what decides whether it is
treated as a JSP tag, or whether it’s relegated to the uninteresting life of template
text? Sections 2.2.2 and 2.2.3 answer this question.

2.2.2 Standard JSP tags

Some JSP tags are built into JSP; they’re effectively hard-wired into the JSP stan-
dard. These tags are often called standard tags, although the term is somewhat con-
fusing. This group of “standard” tags doesn’t include JSTL tags; instead, it includes
core JSP tags that predate JSTL by several years. JSTL’s tags are also “standard,” but
they fall into a separate group of tags that we’ll discuss in section 2.2.3. Figure 2.4
demonstrates this double standard.

 The first group of standard tags—that is, the core JSP tags—uses the namespace
prefix jsp. When you see a tag like <jsp:include> or <jsp:forward>, you know it’s

Figure 2.4 The classification of JSP tags. Note that the term “standard
tag” has two unrelated meanings.

26 CHAPTER 2
Foundation: XML and JSP
a standard tag because its name starts with jsp:. Other tags, whether part of JSTL or
not, use different prefixes. (We’ll look at the usual JSTL prefixes in section 2.2.3.)

 Let’s look at two of the standard JSP tags, <jsp:include> and <jsp:forward>.
Our primary goal is simply to show a few simple standard JSP tags in use; if the
details seem intimidating, do not worry about them too much for now.

Including other pages with <jsp:include>
One standard tag, <jsp:include>, lets you include one JSP page from within
another, as suggested by figure 2.5. The <jsp:include> tag also lets you include a
large chunk of static content, which is useful when you have header or footer text
that applies to more than a single page.

For our purposes, this tag takes a single important attribute, page, which specifies
the location of the page to include. This location is relative to the current page, so
this tag works similarly to HTML tags like and <a>. That is, if you are editing
page a.jsp and you specify page="b.jsp", the page named b.jsp from the same
directory as a.jsp will be included. The target page—in this case, b.jsp—will exe-
cute just as if a web browser requested it, and its output will be included in place of
the <jsp:include> tag. For instance, suppose you have a file named a.jsp that con-
tains the following text:

Welcome to a.jsp.
Now including b.jsp . . .
<jsp:include page="b.jsp"/>

Figure 2.5
<jsp:include> lets one page
appear as if it is embedded in
another. When a <jsp:include>
tag appears in your page, it gets
replaced by the entire contents of
another page.

Introduction to JSP 27
Now, suppose b.jsp contains the following text:

Welcome to b.jsp.

Then a.jsp will output the following:

Welcome to a.jsp.
Now including b.jsp . . .
Welcome to b.jsp.

The contents of b.jsp have replaced the <jsp:include> tag in page a.jsp.
 Note that, because the <jsp:include> tag (as used here) does not contain a

body, it is closed by placing a forward slash before the closing angle bracket. As we
described earlier, JSP tags—which follow XML syntax—need to be closed in this
fashion if they are empty.

 The <jsp:include> tag can only include local files—files from the same JSP
engine servicing the page in which <jsp:include> appears. Either static or
dynamic files can be included. That is, the tag can include a simple text file,
another JSP page, or even a servlet or other arbitrary resource on the local server.

WARNING If you are an experienced designer of web applications, you might have
used the HTML <base> tag. This tag allows you to specify a location that
all tags like <a> and will use as their base. That is, if you specify a
new base with

<base href="http://www.jstlbook.com/"/>

then a tag like will cause the browser to try to
load http://www.jstlbook.com/image.jpg, not the local image.jpg file in
the same directory as the web page.

The <base> tag, however, does not affect the way that JSP tags like
<jsp:include> operate. To a JSP engine, the <base> tag is arbitrary HT-
ML. <base> has its effect because the browser interprets it and uses it to
modify the way the rest of the page loads. But JSP engines do not interpret
HTML tags; they simply pass them through to the browser. Therefore, al-
though it makes sense to think of <jsp:include> as finding files in a
manner similar to <a> and , the analogy is not perfect. <jsp:in-
clude> always looks for files on the local server.

A typical pattern is to use <jsp:include> to include header and footer text in mul-
tiple pages. For instance:

<jsp:include page="header.jsp"/>
Page contents
<jsp:include page="footer.jsp"/>

28 CHAPTER 2
Foundation: XML and JSP
This fragment causes the contents of header.jsp to be displayed, followed by the
page’s own custom contents, followed by those of footer.jsp. In many cases, using a
few simple <jsp:include> tags can help you support a common look and feel for
an entire web application.

 Even if one page includes another, that second page can include some more
pages. For instance, there would be no problem if header.jsp, from the previous
example, looked like this:

<jsp:include page="header-part1.jsp"/>

<jsp:include page="header-part2.jsp"/>

Forwarding to other pages with <jsp:forward>
A second standard JSP tag, <jsp:forward>, lets you cancel the operation of the cur-
rent page and jump to a new page. The new page is located using the same
attribute, page, and the same rules for finding files as <jsp:include>.

 When a JSP engine encounters a <jsp:forward> tag, it stops processing the cur-
rent page and begins processing the page referred to by <jsp:forward>. As shown
in figure 2.6, the browser doesn’t see the contents of the first page; it simply sees
the second.

 Just as with <jsp:include>, there is no problem if the target page of a
<jsp:forward> tag also uses <jsp:forward>. Page A may forward to page B, and
page B may forward to page C. Of course, setting up a forwarding loop is generally
undesirable: if page A forwards to page B, then page B shouldn’t forward back to
page A!

 Forwarding from one page to another is useful when you have a single page that
might act as a dispatcher to other pages. For instance, your application might have
a page that determines whether the user is a new or returning customer, and for-
wards to a specific page appropriate for one case or the other. (Because we haven’t
yet looked at how JSTL lets you make decisions like this in your pages, we can’t eas-
ily look at a useful example of <jsp:forward> at this point.)

Other standard JSP tags
JSP comes with a few other tags, but for the most part, they are made obsolete by
JSTL. You may see pages with tags like <jsp:useBean> (discussed in detail in chap-
ter 14) or <jsp:setProperty> but you will rarely need these tags when you use
JSTL. For more information on older, advanced tags like these, see Web Development
with JavaServerPages.1

1 Duane Fields, Mark Kolb, and Shawn Bayern; 2nd ed. (Manning Publications, 2001).

Introduction to JSP 29
2.2.3 JSP tag libraries

In contrast with the core JSP tags, other tags can be provided by you, vendors—
and, of course, JSTL. Such tags come in packages called tag libraries: groups of indi-
vidual tags that are usually designed to work together, or at least to serve a common
function. JSTL is a collection of such tag libraries. Of course, it is distinguished by
being the standard tag library—the one that is found everywhere, and the one you
can learn once and reuse wherever JSP containers are found.

The <%@ taglib %> directive

Tag libraries use prefixes other than jsp, and they must be explicitly imported into
pages before they can be used. Thus, whereas the jsp: tags can be used in any JSP
page without fanfare or preparation, you need to introduce others (including
JSTL’s) using a special pseudo-tag known as a directive. Think of JSP directives as
being somewhat like the HTML <head> tag: their function is not specifically to dis-
play anything in the browser, but instead to describe some information about the
page itself.

Figure 2.6 <jsp:forward> allows one page to abort its processing and jump
to another page. If the user tries to load page A, and page A forwards to page
B, then the browser sees only the contents of page B. The browser gets no
indication that page A’s content ever existed.

30 CHAPTER 2
Foundation: XML and JSP
 Directives are one JSP feature that doesn’t strictly follow an XML-like syn-
tax. Instead, a directive begins with <%@ and ends with %>. One such directive,
<%@ taglib %>, is used to import a tag library into a page. Even though they begin
with <%@ and end with %>, directives are similar to XML tags in that they accept
attributes. The <%@ taglib %> directive requires two attributes: uri and prefix.

 Every tag library has something called a Universal Resource Identifier (URI)
associated with it. For our purposes, think of a URI as a Uniform Resource Locator
(URL), although in this case, it is not used to load anything over the Web. Instead, it
simply acts as a way of differentiating one tag library from another.

 To use a tag library in a JSP page, you should know its URI, which you can usu-
ally determine from the author or provider of the library. For instance, if you work
with Java developers who write tag libraries, they will need to give you the URI for
these libraries. If you use JSTL, then the JSTL specification—and, of course, this
book—will tell you the appropriate URIs for the JSTL libraries.

 Knowing a library’s URI or file path, you can use the <%@ taglib %> directive to
register it and, at the same time, assign it an XML-like namespace prefix for use
within the page. For instance, the directive

<%@ taglib uri="http://www.acme.com/custom.tld" prefix="acme" %>

imports the tag library identified by the URI http://www.acme.com/custom.tld into
the page, using the prefix acme. After this directive appears in a page, tags from the
library can be used with the acme prefix. For instance, if the library contains two
tags named create and destroy, the tags could appear in the page as <acme:create>
and <acme:destroy>.

 Note that the prefix assigned to the tag library is under your control. When doc-
umentation, or this book, describes tags as having certain prefixes, those prefixes
are just suggestions. It’s usually best to follow the recommendations to make it easy
for others to read your pages, but if you’re more comfortable with a custom prefix,
you can certainly use it.

JSTL’s tag libraries
JSTL is provided as a collection of tag libraries designed to meet particular needs.
JSTL includes the libraries and recommends the prefixes listed in table 2.2.

Introduction to JSP 31
The core library includes tags for the following uses:
� Accessing and modifying data in memory
� Making decisions in your pages
� Looping over data

The XML library includes tags for the following purposes:
� Parsing (that is, reading) XML documents
� Printing parts of XML documents
� Making decisions in your page based on the contents of an XML document

The formatting and internationalization library includes tags for these uses:
� Reading and printing numbers
� Reading and printing dates (with support for time zones)
� Helping your application work with more than one language

The SQL library helps you read and write data from databases. Part 2 of this book
describes all of these tag libraries in detail.

Using JSTL’s tag libraries in your pages
As I mentioned earlier, you need to use the <%@ taglib %> directive to import all
tag libraries—even JSTL’s—into your pages. The four libraries can be imported into
your pages using the directives shown in table 2.3.

Table 2.2 Although JSTL is officially named the JavaServer Pages Standard Tag Library, it divides its
tags into four groups and makes them available as separate tag libraries. This table lists the differ-
ent libraries, along with their URIs and suggested prefixes.

JSTL tag library Suggested prefix URI Example tag

Core library (iteration, con-
ditions, and so forth)

c http://java.sun.com/
jstl/core

<c:forEach>

XML processing library x http://java.sun.com/
jstl/xml

<x:forEach>

Internationalization (i18n)
and formatting

fmt http://java.sun.com/
jstl/fmt

<fmt:formatDate>

Database (SQL) access sql http://java.sun.com/
jstl/sql

<sql:query>

32 CHAPTER 2
Foundation: XML and JSP
In this book, I won’t always show the <%@ taglib %> directive every time I give
you a short example of a JSTL tag. However, you’ll need to include these directives
if you plan to run the tag. (All source code available from the Manning web site
includes the appropriate directives, as do this book’s longer examples.)

2.2.4 Other JSP directives

In addition to <%@ taglib %>, JSP has two other directives that are worth looking at
quickly. As you just saw, directives are pseudo-tags that have special meaning to the
container; they are not passed through to the browser but, instead, are processed by
the JSP engine. This section is, by necessity, somewhat technical; you will not miss
much if you skip it and come back to it later.

The <%@ include %> directive
Earlier in this chapter, you saw how to include other pages using the <jsp:include>
tag. JSP also has a directive that lets you include other files: <%@ include %>. It takes a
file attribute corresponding to a relative path, similar to the <jsp:include> tag.
For instance, to include b.jsp from a.jsp, you could use a directive like

<%@ include file="b.jsp" %>

Why have two mechanisms to include data? The difference between the two is
somewhat subtle and technical, but it boils down to this: the <%@ include %> direc-
tive works by finding the target file and inserting it into your JSP page, just as if you
had cut and pasted it using a text editor. By contrast, <jsp:include> locates the tar-
get page while your JSP page is executing. This difference in operation implies the
following differences in behavior:

� If a file included with <%@ include %> changes, its changes will not be
noticed until the page containing the <%@ include %> directive also changes.
Recall from chapter 1 that the JSP engine notices when files are changed and
processes them automatically. However, the container doesn’t keep track of

Table 2.3 Before you can use a tag library, you need to import it. You can use the following lines

to import each JSTL library into your page. For each page, you only need to import the libraries

you actually use, although there’s no harm in importing all of them.

JSTL tag library <%@ taglib %> directive

Core <%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

XML <%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

Formatting <%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

Database <%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

Introduction to JSP 33
which pages include <%@ include %> directives. When page A uses <%@
include %> to include page B, page B’s data is simply included in page A
every time it is compiled. Therefore, page A must be changed—and recom-
piled—for any changes in B to take effect. By contrast, <jsp:include>
notices changes immediately.

� Because <%@ include %> works as if you had inserted the target file using a
text editor, it only works for basic text, JSP fragments, and so on. If your appli-
cation also has a Java servlet, you cannot include it with <%@ include %>.
Instead, you need to refer to it with <jsp:include>. (Java servlets are an
advanced topic more for programmers than page designers; do not be con-
cerned if you have no experience with them.)

� The <%@ include %> directive is, in many cases, more efficient than
<jsp:include>, but it also uses much more disk space when large files are
included. Either way, the differences in efficiency between the two approaches
usually are not too important.

� With <jsp:include>, the two pages involved—call them page A and page
B—are two entirely separate pages. They can use the same names for dif-
ferent variables, or they can use different prefixes for the same tag library.
With <%@ include %>, because page A and page B are essentially merged
before being compiled, there might be clashes between names within the
two pages.

Again, these differences are technical, and in most cases, they are not particularly
important. I cover them here because you might be interested in them, and we
won’t have much chance to talk about them later.

The <%@ page %> directive
A third directive, <%@ page %>, lets you modify some properties of a JSP page. For
this directive, the analogy with HTML’s <head> tag is even stronger than for the
other directives: this directive’s goal is to provide meta-information about how to
process the page.

 With one exception (errorPage, which we’ll look at in chapter 11), the default
configuration for a JSP page is usually fine for our purposes. If you need a complete
guide to the nuances of the <%@ page %> directive, references like Manning’s Web
Development with Java Server Pages provide all the information you will require.

2.2.5 JSP comments

It’s often useful to add text to a page for no other reason than to describe what you
were thinking when you wrote it. Such notes are typically called comments. They

34 CHAPTER 2
Foundation: XML and JSP
don’t have an effect on what the page outputs; instead, they’re there just for you
and other people who work with the pages you write.

 In JSP, anything between the characters <%-- and --%> counts as a comment.
For example:

<%-- I don’t like my users very much. So there! --%>

Fortunately, your users will never see this comment; that is, it will never get sent to
web browsers. (This fact highlights the point I made in chapter 1: web browsers
don’t know what goes on behind the curtains in your web application.)

 Of course, if you’re using JSP to produce HTML, you can include HTML com-
ments too:

<!-- I love my users! -->

2.2.6 How JSP organizes data

When your web pages run, they’ll often need to save and retrieve information, or to
ask questions about their environment. For instance, they might want to know what
a user typed in an <input type="text"> box, or they might need to retrieve infor-
mation provided by back-end Java developers. In chapter 4, we’ll begin to look at
how you save and retrieve data, and how you can write pages that ask questions
about their environment. For now, let’s look at how JSP pages organize their data.

 To help you store and retrieve data, JSP gives you a handful of containers or
“boxes” for information. These are formally called scopes, and they’re JSP’s way of
letting you manage your data easily. Scopes let you decide two important things:
how long your data stays around, and how your data should be shared among dif-
ferent web pages in your application.

 Sometimes, it’s convenient to think of JSP scopes as receptacles for data, just like
the organized mailboxes that some United States post offices have. For instance, at
a downtown New Haven post office, there are two mail receptacles: one for mail
within the 06520 ZIP code, and one for mail heading anywhere else. Depending on
how widely I want my mail to travel, I choose the right mailbox for it.

 It might also be convenient to think of scopes not as boxes or containers, but
just as extra pieces of information about your data. For instance, suppose that my
apartment is infested with rodents, but that some of these rodents are more capable
than others. Some simply wander around aimlessly on my carpet, but others have
located my building’s elevator shaft and move freely from floor to floor. Then (to
stretch this dubious analogy to its breaking point), imagine that several flying rats
can travel between nearby buildings in my city. Considering these three groups, it
is clear that the rodents traveling around my floor have an obviously more limited
range—or scope—than the ones that can move from floor to floor; these, in turn,

Introduction to JSP 35
have a smaller scope than the flying rats. Any particular rat is described by a partic-
ular “scope”; one rat could be called an “apartment rat,” whereas another is a
“building rat,” and yet another is a “city rat.”

 Returning to reality, different groups of JSP data can have contrasting scopes,
just like the hypothetical rodents. Some data can be accessed only from a single
JSP page; it’s called page data or page-scoped data. This data is available to any part
of a single page, but not to any other page. Other data, by contrast, moves freely
throughout a web application—it can be accessed from anywhere in the applica-
tion, and is application-scoped. We’ll discuss all the different scopes that JSP provides
in a moment.

Scoped variables
A little more formally, all variables in JSP applications have two characteristics: a
name and a scope. The name identifies the data, and the scope determines which
parts of your application can access the data. Technically, pieces of data stored in
the various scopes are referred to as attributes, but because these attributes have
nothing to do with the XML tag attributes we discussed earlier, this term is confus-
ing. Instead, JSTL refers to objects stored in scopes as scoped variables—or, often,
simply variables.

 Why would you want to assign a variable to a particular scope? It all depends on
how you want to organize your data and how long you want it to last. You could,
technically, just let all your data range freely throughout your application, but such
a disorganized approach doesn’t usually make sense. For example, imagine a situa-
tion where you look up the current user’s customer number from a database. It
probably wouldn’t make sense to store this customer number in a variable named
customerNumber that is accessible to the entire application, because more than one
user might want to use your application. As soon as a second user logged in, the
first user’s customer number would be overwritten.

 Using the application-wide name customerNumber would not be a good idea.
However, you can use a different scope that is tied specifically to the user—in which
case you can simply call the customer’s number customerNumber and let the JSP
container manage the association between users and numbers. Thus, it becomes
convenient to associate some data with scopes narrower than the entire application.

 JSP has four scopes: page, request, application, and session. As shown in
figure 2.7, three of these scopes—page, request, and application—work just like the
rodents described in my analogy earlier. They are simply subsets of one another. In
particular, page scope is a subset of request scope, which is a subset of application
scope. In other words, a particular page has access to its own data, to its request’s
data, and to its application’s data. (I’ll define the boundaries of “request” and

36 CHAPTER 2
Foundation: XML and JSP
“application” shortly.) But one page does not have access to data in another page’s
page-level scope.

 The remaining scope, session, is tied to a particular user, regardless of pages
and requests.

 For now, this discussion is admittedly somewhat abstract; the goal is simply to
describe how JSP organizes data logically. Chapter 4 describes how to store and
retrieve data using these scopes.

Page scope
Page scope is simple: it lets variables be stored by a single page and retrieved later,
as shown in figure 2.8. Data stored in page scope cannot be accessed outside that
page (unless it is explicitly stored somewhere else as well). Page scope is useful for
variables that you need to store temporarily and for data that is only useful for a sin-
gle page. You’ll see examples of this kind of data in chapter 5.

Figure 2.7 Page scope is more specific than request scope, which is
more specific than application scope. Page scope is limited to a single
page. Request scope is associated with the processing of a single web
request, which might include multiple pages if one page forwards to, or
includes, another. Application scope covers an entire web application.

Introduction to JSP 37
Request scope

Earlier in this chapter, we looked at the <jsp:include> and <jsp:forward> tags.
These tags have something in common: they tie together multiple pages.

 To access web pages, a web browser makes a request for data from a web server.
If this request hits a JSP page that uses a <jsp:include> or <jsp:forward> tag, then
multiple JSP pages can be used to service a single request. All of the pages that are
used to respond to a single request have access to a common request scope. For
instance, as suggested by figure 2.9, a page that uses <jsp:include> can use the
request scope to transfer data to or from the pages it includes. Request scope is use-
ful if the target page needs to act differently depending on an event that occurred in
the page that includes it. Or perhaps the target page wants to set a variable that the
page using <jsp:include> needs to access. Either way, request scope—which is
broader than page scope—can be appropriate.

Application scope

In the world of server-side Java programming, the term web application has a spe-
cific meaning. A web application is a collection of JSP pages and other resources,
like servlets and HTML pages. Typically, a web application is located under a
common directory on the web server, and it represents a cohesive unit of func-
tionality. For instance, an entire online store or auction site is a good candidate for
a web application.

Figure 2.8
Page scope lets one part
of a page share data with
another part.

Figure 2.9
Request scope lets pages linked
by <jsp:include> or
<jsp:forward> communicate
among themselves.

38 CHAPTER 2
Foundation: XML and JSP
 Application scope, as suggested by figure 2.10, allows all the pages in a web appli-
cation to exchange information. Application scope is typically used for either
application-wide constants or status. For instance, it might contain information
about where the application’s database is located, or what the default locale is (for
internationalized applications). It also might contain a global access counter, or
other information collected from multiple pages.

Application scope is the broadest scope, which means you usually need to be care-
ful when writing to it. In many environments, JSP pages don’t write to the applica-
tion scope at all; they simply read from it, allowing back-end Java developers to use
it to establish information.

Session scope
Session scope is unlike the others, because it isn’t tied to particular pages and it
doesn’t depend on whether a page is included (or forwarded to) from other pages.
Instead, session scope is tied to the user. When a new user connects to a JSP appli-
cation, the container notices the user and assigns him or her a session. This session
represents the user’s activity in the web application, usually until the user logs out
or walks away from the browser.

 Think of session scope as “user scope”—when you store data to the session scope,
it applies to the particular user, and it goes away when the user leaves. As figure 2.11
loosely suggests, session scope is broader than page and request scopes; it allows

Figure 2.10
Application scope lets all
pages in an application
share data.

Summary 39
access data to move between pages, even if they’re not part of the same request. But
session scope is strictly contained by the web application: a session does not include
data from multiple applications. If a user accesses two different web applications,
he or she will have two different sessions, one for each of the applications; these ses-
sions will not be related to each other in any way.

2.3 Summary

Key points to remember about XML and JSP basics are:
� XML is like HTML, but it isn’t limited to a particular set of tags. HTML has a

specific collection of tags; XML is just a system for using tags in general.
� XML has stricter rules about closing tags, quoting attributes, and case sensi-

tivity. XML also has namespaces, or collections of tags referred to by unique
prefixes within a page.

� JSP tags—both “standard” core tags and others, including JSTL’s—must use
XML syntax when they appear in JSP pages.

Figure 2.11 Session scope is associated with an individual user:
it is broader than page and request scopes, but is contained by the
web application.

40 CHAPTER 2
Foundation: XML and JSP
� Other than the core tags, all JSP tags come in tag libraries (loose collections of
tags). Tag libraries need to be explicitly imported into a JSP page and assigned
a namespace prefix.

� Tag libraries are imported using the <%@ taglib %> directive. JSP has a hand-
ful of other directives, each of which is similar to—but not quite the same
as—an XML tag.

� JSP organizes data in scopes, so that different data can be accessed from dif-
ferent places, depending on where it is appropriate. The four scopes are
page, request, application, and session.

Part 2

Learning JSTL

Now that you’ve seen the tip of the iceberg, it’s time to focus on the details and
principles of JSTL. We’ve discussed what JSTL’s supposed to do; now you get to
see how it works.

 Part 2 introduces and demonstrates nearly every JSTL tag. (We’ll leave two
tags until later.) We start with the most fundamental ones: those that handle sim-
ple decisions and loops in your pages. Then, we explore all the features JSTL has
to offer, from databases to powerful XML support.

 Although part 2 is designed as a tutorial and reference, we do (when appro-
priate) take a step back and look at useful examples of JSTL in action. For more
in-depth examples, see part 3.

3The expression language
This chapter covers…
� JSTL’s expression language syntax
� Printing dynamic content
� Storing and retrieving scoped variables
� Producing and reading HTML forms
43

44 CHAPTER 3
The expression language
Part of what makes a dynamic web page dynamic is its ability to gather data from
its environment. Dynamic web pages aren’t much better than static pages if they
can’t adapt to changing circumstances. For example, a dynamic page can figure out
which check boxes a user checked on your HTML form. Or it can retrieve data
from a database or XML file and store it for later use.

 JSTL uses a simple language called an expression language to make it easy for you
to access information. Before JSTL, you really had to know Java to produce an
effective JSP page. Even if you wanted to do something simple, like figure out
what a user entered in an <input type="text"> HTML box, you’d have to write
code like

<%= request.getParameter("username") %>

JSTL makes writing pages easier. Its expression language is much simpler than Java;
in fact, it’s even simpler than JavaScript.

 In this chapter, we’ll look at some of the things you can do with the expression
language. If you haven’t read chapter 2 yet, you might want to do so now, because
scoped variables—which we introduced in chapter 2—are one of the things that
JSTL’s expression language makes particularly easy to access.

3.1 Expressions and the <c:out> tag

Before you can use the expression language, we need to look at one basic JSTL tag:
<c:out>. It’s appropriate that <c:out> is the first JSTL tag we’ll discuss in detail,
because it’s the most fundamental one, and you’ll probably use it more often than
any other tag in JSTL.

 The <c:out> tag lets you print out the result of an expression. For instance, if you
want to output—as part of your page—some data that the user entered on a prior
HTML form, you can use <c:out>. You can also use it to print data that a back-end
Java developer exposes to you, and even to print the results of a database query.

TIP If you’ve worked with other dynamic languages for producing web pages,
you’ll find that the <c:out> tag is a little like JSP’s and ASP’s <%= %> ex-
pressions, ColdFusion’s <cfoutput> tag, and PHP code that looks like
<?php echo … ?>.

Remember how JSTL tags work: when they appear in a page, they aren’t sent
directly to the browser. Instead, they read their tag attributes and cause the JSP con-
tainer to take action behind the scenes. In <c:out>’s case, the behind-the-scenes
action is simply to print some custom text.

Expressions and the <c:out> tag 45
 Let’s look at <c:out> more closely. Table 3.1 shows the tag attributes it can take.
(Note the tag icon next to the table. In this book, all tables that show a JSTL tag’s
attributes use this icon.)

By default, <c:out> simply prints out whatever it finds in its value attribute. For
example, if you were to write

<c:out value="Hi, there!"/>

the <c:out> tag would print the text, “Hi there!” Of course, there’s normally no
reason to do this, because if you just want to include the text “Hi there!” in your
web page, you don’t need to use JSTL; you can type the text in your web page, and
it will get printed as template text. The <c:out> tag becomes useful only when the
value attribute contains an expression in JSTL’s expression language.

3.1.1 What expressions look like

Expressions in JSTL look like this:

${expression}

They start with ${ and end with }; whatever comes between these two markers is
treated as an expression. Expressions are like placeholders. In contrast with text
like “Hi there!”, they aren’t simply printed when they appear. Instead, they’re com-
puted by the expression language (see figure 3.1), and the results of this computa-
tion are printed. For example, consider the following simple expression:

<c:out value="${1 + 2}"/>

Instead of causing the <c:out> tag to print the literal text ${1 + 2}, the expression
in the value attribute causes the tag to print out 3.

 All JSTL tags work like this. In most cases, when an expression appears in a
JSTL tag’s attribute, that expression gets computed, or evaluated. The result of this
evaluation is fed to the tag, which then goes about its business.

Table 3.1 <c:out> tag attributes

Attribute Description Required Default

value The expression (in JSTL’s expression language) to compute Yes None

default The expression to compute if value fails No None

escapeXml Whether to escape characters; for example, to print the character &
as & instead

No true

46 CHAPTER 3
The expression language
3.1.2 Where expressions work

In JSTL 1.0, expressions have special meaning only inside JSTL tag attributes. Spe-
cifically, they don’t work in template text. You can’t simply write

<p>Hi ${username}</p>

in your JSP page and expect the result to be dynamic. Like all template text, this
text is printed literally; if you include it in your page, the output of your page will
contain the text <p>Hi ${username}</p>, and the user will see a paragraph with the
text Hi ${username}.

 JSTL expressions also have no special meaning inside an HTML tag’s attribute.
In an HTML tag like

the text ${link} is simply—and in this case, probably erroneously—part of the
template text. It’s not interpreted as a JSTL expression.

 However, when you include an expression in a JSTL tag, it takes on its special
meaning, and the expression language comes into play. We’ll discuss the exact
meaning of expressions like ${username} later in this chapter. For now, it’s just
important to notice how <c:out> and expressions work in general.

3.1.3 Default values in <c:out>

If the expression in the value attribute fails for any reason—for instance, in this
example, suppose that the expression is ${username} but the expression language
can’t find a variable named username—then the tag will print nothing out. Some-

Figure 3.1
Expressions act like placeholders.
When an expression appears, it gets
computed—or evaluated—by the
expression language. Therefore,
unlike simple text like “Hi”, an
expression can produce a different
result every time it runs. In this case,
it adapts to the name of a user.

Expressions and the <c:out> tag 47
times, instead of printing nothing, you want to print an error message, placeholder,
or other default value. For cases like these, <c:out> takes a parameter called
default. If value’s expression fails for any reason, default runs instead. For
instance, look at this tag:

<c:out value="${username}" default="Nobody"/>

This tag works just like the first <c:out> tag we presented; but if ${username}
doesn’t produce a sensible value, then the tag simply prints out the static text Nobody.
The <c:out> tag can also accept a body, which you can use as another way of speci-
fying a default value. Thus, the following tag is equivalent to the last one:

<c:out value="${username}">
 Nothing
</c:out>

This tag can be useful if your default value is too long to fit conveniently inside an
attribute. Or, you can stick other JSTL tags in the body, and they’ll be used as the
default if ${username} doesn’t produce a sensible value.

3.1.4 Special characters and <c:out>

You should know one more useful thing about <c:out>. By default, it makes sure
that any characters with special meaning to HTML or XML are escaped using the
entity references we discussed briefly in chapter 2. This feature lets you use <c:out>
without worrying that your data will get in the way of the HTML or XML output
you’re producing.

 Imagine that a scoped variable contains the text AT&T, or <o>, or another string
that has one or more characters with special meaning to XML. (The following char-
acters are special to XML: &, <, >, ', and ".) By default, if you print such a variable
with <c:out>, any special characters that it contains will be escaped as &, <,
and so forth. This escaping causes HTML browsers to display the characters to the
user instead of treating them as part of HTML or XML tags. For example, if the vari-
able eye contains the text <o>, then

<c:out value=”${eye}”/>

will output

<o>

where < stands in for < and > stands in for >. Thus, an HTML browser will
display the text <o>—the original value of ${eye}—to the user. If <c:out> were
instead to output <o> unescaped, then the browser would see an unrecognized
HTML tag, and the user wouldn’t see the information at all.

48 CHAPTER 3
The expression language
 Normally, <c:out>’s escaping is exactly what you want, and you don't have to
worry about it. Since <c:out>’s escaping covers quotation marks (" and '), you can
even safely use <c:out> in the middle of an HTML tag’s attribute, as follows:

<input type="text"
 name="username"
 value="<c:out value="${param.username}”/>"/>

If <c:out> didn’t escape quotation marks, then a value for ${param.username} that
contained quotes could break your <input> tag, potentially causing it to end pre-
maturely. By contrast, the escaped values are safe.

 In rare cases, you may want to shut off <c:out>’s escaping. You can do this by
setting <c:out>’s escapeXml attribute to false, as follows:

<c:out value="${quotation}" escapeXml="false"/>

This can be useful if you want to allow a variable to contain its own HTML format-
ting (such as or <i> tags). With escapeXml=”false”, the formatting tags will be
sent to the browser and will have an effect on the way text is displayed. Otherwise,
the user will see the formatting tags as literal text (e.g., will show up in the
browser window), and the browser will not interpret them.

 If this seems confusing, don’t worry. You can normally ignore the escapeXml
attribute.

3.2 Scoped variables and the expression language

Now that we’ve looked briefly at <c:out>, we can discuss the expression language
in more detail.

 The major goal of the JSTL expression language is to make data easy to access.
This data can fall into a number of categories. For instance, you might find the data
you need in scoped variables, which you initially saw in chapter 2. In addition, you
will probably often need to read data from request parameters—the mechanism JSP
uses to read HTML forms. For now, we’ll focus on scoped variables, and we’ll look
at other kinds of data later in this chapter.

 Scoped variables typically are created in one of two ways: either you establish
them yourself, or, if your pages are supported by some back-end Java code (written
by you or another member of your team), this back-end code can set them. Either
way, you can use the expression language to easily access the variables.

3.2.1 Basic syntax to access scoped variables

In some ways, the JSTL expression language centers on scoped variables. An expres-
sion like ${username} simply means “the scoped variable named username.” That

Scoped variables and the expression language 49
is, an expression that contains just a single name, or identifier, points to the scoped
variable with that name.

 When the name of a scoped variable appears alone in an expression—as in
${username}—it causes the expression language to search all the JSP scopes for a
variable. The page scope is searched first, followed by request, then session, and
finally application. So, the expression ${username} will return the value of the page-
scoped variable named username if one exists. If not, then it will return the request-
scoped variable named username, and so on. If none of the scopes has a variable
named username, then the expression returns nothing.1

 Sometimes, you want to retrieve a variable from a particular scope. For instance,
you might not want some data unless it comes from session or application scope,
perhaps because that’s where someone else working on your application has told
you it exists, or because you know that’s where you put it. Either way, you can
name specific scopes inside your expression. To do this, begin the expression with
the name of the scope, followed by the word Scope, followed by a period (.). For
example, consider the expressions in table 3.2.

For example, consider a scoped variable set by a back-end Java developer. I often
provide some data about an authenticated user to page authors I work with. I tell
them something like, “The session-scoped variable named user contains the user’s
identification.” Then, if the page needs to print the user’s identification, the author
of that page can write
<c:out value="${sessionScope.user}"/>

1 This nothingness is formally called null. You may see or hear the term null when you talk
with others about Java or JSTL, but you don’t usually need to use the null keyword in JSTL’s
expression language. Instead, see the empty operator in section 3.4.3.

Table 3.2 In addition to letting the expression language search all scopes automatically, you can
point to data in specific scopes using expressions like those in this table.

Sample expression Meaning

${pageScope.username} username variable in page scope

${requestScope.username} username variable in request scope

${sessionScope.username} username variable in session scope

${applicationScope.username} username variable in application scope

50 CHAPTER 3
The expression language
JSTL pages can store data in scoped variables themselves; scopes aren’t just for
back-end Java developers. As you’ll see later in this chapter and in the rest of this
book, many JSTL tags let you create and store scoped variables.

3.2.2 Different types of scoped data

Scoped variables can come in many different varieties, which are formally called
types (or data types) in Java applications. The expression language supports many
types of data. Normally, data types are the sorts of things programmers deal with,
and JSTL, for the most part, hides the unpleasant details of types from web pages.
Much of the time, you can use a scoped variable without worrying about its type.

 However, you’ll sometimes need to think about the data type of a scoped vari-
able. For instance, as you’ll see in chapter 4, some tags have attributes that need yes
or no values, which are represented by a particular data type. In chapter 5, we’ll
look at the <c:forEach> tag, which is useful only when one of its attributes receives
a scoped variable that stores a collection or container of other variables; as you’ll
see soon, you can’t sensibly treat all variables as if they’re collections of data.

Strings and numbers

You might already be familiar with the term string. A string is series of characters
that forms some arbitrary text: a word, a sentence, a paragraph, or even a whole
book. Strings can contain more than letters; they can also have numbers, punctua-
tion, special characters like “¢”, foreign characters like “_”, and so on. People typi-
cally use strings to store simple textual information, like users’ names, email
addresses, phone numbers, and so on. Strings are particularly useful for informa-
tion that will eventually be printed out to a web page.

 When a tag like <c:out> is pointed to a string, it prints out that string. For
instance, if the scoped variable username holds the string José, then the tag

<c:out value="${username}"/>

will print out the string José.
 What happens if the <c:out> tag points to a scoped variable that isn’t a string?

In such cases, JSTL’s ability to hide the details of data types comes into play. If the
<c:out> tag’s value attribute resolves to some data type other than a string, it will
simply convert the data into a string and print it. (In Java, every piece of data—
whether or not a string—has some way of being printed out as a string. As we look
at data types in the following sections, we’ll discuss how they’re converted to strings
when necessary.)

Scoped variables and the expression language 51
 Scoped variables can also store numbers. These numbers can be either integers
(familiar, whole numbers like 6 and –94) or floating-point numbers (like –25.77 or
3.14). Numbers are formally a different data type from strings, but with JSTL, you
usually don’t have to worry about the difference. If a tag ever needs a number, you
can provide a string that represents that number (like 5, which is a valid string even
though it represents a number). Similarly, if you ever have a number and need to
print it out in your web page, JSTL automatically prints it out for you in a default,
sensible format. (However, you might want to choose a particular format for your
numbers—for instance, you might want to display them as currencies, or with no
more than three decimal places. Chapter 10 shows you how you can change the
formatting of numbers in your pages.)

 When you have two numbers, you can use the expression language to perform
simple arithmetic on them. You saw a trivial example earlier: the expression ${1 + 2}
results in the number 3. The JSTL expression language supports the mathematical
operators listed in table 3.3.

In addition to these operators, you can precede a single number with a minus sign
(-) to switch it from positive to negative, or vice versa. For example, if the scoped
variable price held the integer 50, the expression

${-price}

would evaluate to

-50

Booleans
Programmers often speak of boolean data, named after George Boole, a nineteenth-
century mathematician who invented symbolic logic. (Symbolic logic is a mathe-

Table 3.3 JSTL supports these mathematical operators in expressions.
You can use these operators to write expressions like ${3 + 1} and
${height * width}. The operators / and div are interchangeable, as
are % and mod.

Operator Description Sample expression Result

+ Addition ${10 + 2} 12

– Subtraction ${10 – 2} 8

* Multiplication ${10 * 2} 20

/div Division ${10 / 2} 5

%mod Remainder ${10 % 2} 0

52 CHAPTER 3
The expression language
matical way of expressing statements like, “If I took my wristwatch off, it must be
on the nightstand. But it isn’t on the nightstand, so I must not have taken it off. Or
maybe I’m just growing senile.”)

 A boolean variable has two possible values: true and false. These values can
also be interpreted as “yes” and “no.” Whereas strings and numbers can take on
virtually unlimited values, a boolean variable can store only these two values.

 This limitation makes boolean variables particularly useful for yes-or-no ques-
tions. For example, the escapeXml attribute for <c:out> that we discussed in
section 3.1 is a boolean attribute: it needs a boolean variable. Our earlier example
showed escapeXml being used as follows:

<c:out value="${username}" escapeXml="false"/>

In this case, escapeXml was given the static value false. But just as <c:out>’s value
attribute can accept expressions, so can escapeXml. If the scoped variable status
has a boolean value, you can write this:

<c:out value="${username}" escapeXml="${status}"/>

This <c:out> tag will decide whether to escape special characters depending on the
value of the scoped attribute status. In chapter 4, you’ll see how to set scoped
boolean variables.

 If you print a boolean value using <c:out>, it will be printed as "true" or
"false", as appropriate.

NOTE Java has two different boolean data types: boolean and Boolean. (Java is
case-sensitive, so these represent different types.) For our purposes, they
are nearly identical, so you don’t have to worry about the differences be-
tween them.

Collections
When a scoped variable is a string, number, or boolean, it stores exactly one thing:
a piece of text, a number, or a truth value. Sometimes, however, a single scoped
variable can store an entire collection of objects. The most obvious example, in our
mercenary world, is a shopping cart. An application might make a shopping-cart
variable accessible as

${sessionScope.shoppingCart}

Such a variable refers to an entire collection of objects, organized under a single
name: shoppingCart.

Scoped variables and the expression language 53
 There are two kinds of collections, which are accessed by somewhat different
syntax. To visualize the differences, you may want to follow along with figure 3.2.

One kind of collection stores lists of items, arranged in order. This collection is sim-
ilar to an array in programming languages (in case you’ve encountered that term
before). In figure 3.2, the shoppingCart variable is a numeric, ordered collection
that stores three items. You can refer to them as ${sessionScope.shopping-
Cart[0]} (the apple), ${sessionScope.shoppingCart[1]} (the television), and
${sessionScope.shoppingCart[2]} (the cup of java). You’ll see in chapter 5 how to
cycle over each of these items automatically in turn. The point, for now, is that you
can access them individually using square brackets: [and]. See figure 3.3.2

 The second type of collection stores groups of items, organized by name.3 In fig-
ure 3.2, the user variable is a collection that has items organized by name. In this
example, it has two items: name and female. Suppose that the name item—or property—

2 If you’re familiar with Java data types, you might wonder what types of ordered data you can ac-
cess using the [] notation in the expression language. The answer is simple: any Java array, and
also any List object.

3 The JSTL expression language can access either JavaBeans or Map objects as unordered collec-
tions, though you don’t need to know this if you’re not a Java programmer. If you do know Java,
chapter 14 will show you how to expose data that the expression language can access.

Figure 3.2 A sample session that stores a variety of data. The counter variable stores a
simple number, but shoppingCart and user both refer to collections of data. Note how all
the collections ultimately lead to simple data like strings, numbers, and boolean values.

54 CHAPTER 3
The expression language
contains the user’s first name. This property is a string, and it can take on a value
like Reginald, Martha, or, in figure 3.2, José. The second property is boolean, and it
describes whether the user is female. In figure 3.2’s case, the female property is
false. (What could be less feminine than a men’s-room icon named José?)

 These items don’t have any particular order; they’re just grouped for convenience.
Therefore, accessing them with [] and a number doesn’t work. Instead, you can point
to an item by using a period (.) followed by the name of the item. For instance, to fig-
ure out the user’s name, we can write ${sessionScope.user.name}. To figure out
whether the user is female, we can write ${sessionScope.user.female}.

 Any item in a collection can be a collection itself. This fact is demonstrated by
the shoppingCart variable in figure 3.2. Each item is a collection; it might contain
properties like inStock (whether the item is in stock) and freeShipping (whether
the item qualifies for free shipping). Figure 3.2 shows one such potential property:
price. If we want to figure out the price of the second item in the shopping cart, we
can write the following:

${sessionScope.shoppingCart[1].price}

In figure 3.2’s case, such an expression ultimately points to a floating-point number,
like 0.45 or 170, representing the number of dollars in the price of the object.
Because this object is a number, we can use it with the arithmetic operators we dis-
cussed earlier and write an expression like

${sessionScope.shoppingCart[1].price - 10}

that might represent the price of the second item with a $10 discount. If the data in
figure 3.2 were accessible to our page, then the following tag

<c:out value="${sessionScope.shoppingCart[1].price - 10}"/>

would output 170.0. (This isn’t the best way to output a dollar value, but we’ll have
to wait until chapter 10 to discuss how to print currency more cleanly.)

Figure 3.3 A sample expression to access an array, or ordered
collection of items. The item is accessed as usual, and then it’s followed
by square brackets with a number, indicating the ordered item to match.
In this case, the third item is selected.

Request parameters and the expression language 55
Miscellaneous types

Java has data types for all sorts of things. Later in this book, we’ll encounter scoped
variables that store dates, XML documents, database connections, and more. You
can print the string interpretation of all these data types using <c:out>, but some
JSTL tags let you use particular types specially. For instance, a tag like <sql:query>,
which lets you retrieve data from a database, has a dataSource attribute that accepts
various kinds of objects that represent database connections. This attribute lets you
tell the tag what database you want to connect to. You’ll learn more about database
tags in chapter 9.

3.3 Request parameters and the expression language

JSP pages use scoped variables to manage their own data. But pages can also
receive input from the outside world—for instance, from a user entering informa-
tion into an HTML form. This information is made available to your web page
through request parameters.

 In this section, we’ll demonstrate how you can use JSTL to receive input from
HTML forms.

TIP If you’re already familiar with request parameters, there are just two things
you need to know, and you can quickly skim the rest of this section. First,
to point to a request parameter using the expression language, you simply
write ${param.name}, where name is the name of the parameter you
want. Second, if a request parameter has multiple values, you need to use
${paramValues.name} instead of ${param.name}. Using paramValues
lets you retrieve a collection of all the parameters with a given name.

3.3.1 HTML forms

As you might know if you’ve designed dynamic web pages before, HTML forms are
a common way to let users enter data into your web application. When you use
HTML <form>, <input>, and similar tags in your page, the user’s web browser dis-
plays a form that looks a little like a paper form (see figure 3.4).

 We don’t have the space here to go over every attribute to every HTML form tag
in detail; because many attributes for HTML form tags concern graphical layout, a
book specifically about HTML is better suited for their details. (Or see appendix D
for some excellent online HTML references.)

56 CHAPTER 3
The expression language
However, let’s look quickly at the way HTML form tags work. If you haven’t used
HTML forms before, the examples here should be enough to get you started. Take a
look at listing 3.1, which shows the HTML source used to produce figure 3.4.

<form method="post" action="formHandler.jsp">

 <p>Name:

 <input type="text" name="username" size="20" /></p>

 <p>Password:

 <input type="password" name="pw" size="14" /></p>

 <p>Gender:

 Male <input type="radio" name="gender" value="male" />

 Female <input type="radio" name="gender" value="female" />

 </p>

 <p>Your favorite season:

 <select name="season">

 <option value="winter">Winter</option>

 <option value="spring">Spring</option>

Listing 3.1 A simple HTML form

Figure 3.4
A sample HTML form, which
is built from tags like
<form>, <input>,
<select>, and
<textarea>. Forms like
this aren’t specific to JSTL,
but you can easily handle
input from them using the
JSTL expression language.

Request parameters and the expression language 57
 <option value="summer">Summer</option>
 <option value="fall">Fall</option>
 </select>
 </p>

 <p>Languages you can read:
 English
 <input type="checkbox" name="language" value="english" />
 Spanish
 <input type="checkbox" name="language" value="spanish" />
 French
 <input type="checkbox" name="language" value="french" />
 </p>

 <p>Ontological speculations:

 <textarea rows="5" columns="40" name="philosophy" />
 </p>

 <input type="submit" value="Sign up!" />

</form>

It should be easy to see how the individual tags in listing 3.1 line up with the various
parts of the form shown in figure 3.4. Let’s look at each piece of the form in turn.

The <form> tag
An HTML form begins with <form> and ends with </form>. Between these two tags
come tags for the various form elements, such as <input>, <select>, and <tex-
tarea>. We’ll look at these individual tags in a moment; for now, I want to draw
your attention to the start tag for <form>:

<form method="post" action="formHandler.jsp">

This tag has two attributes, method and action. The action attribute is more impor-
tant for us. It functions basically like href in <a> or src in —that is, it lets you
enter a link. For our purposes, this link will typically be a relative URL and point to
a JSP file in the current directory. The action attribute means, “When the user sub-
mits this form, what page should I load, and where should I send the input?” For
example, the <form> tag we just looked at causes a page named formHandler.jsp to
run and receive the form’s input when the user submits the form. (You’ll see in a
moment how the user submits a form.)

 The value of the method parameter doesn’t matter much for now, but you can
think of it this way: by default, or if method="get", all of the form’s input will show
up encoded into the URL. (You’ll see more about the way this data is structured in
chapters 5 and 6.) By contrast, when method="post", this data is hidden from the
casual observer and is instead sent to the target page using a different behind-the-

58 CHAPTER 3
The expression language
scenes mechanism. But JSTL tags don’t care whether the method attribute is set to
"get" or "post"; in either case, they read the input the same way. In general, if you
have to pick one, "post" is widely considered to be preferable and more elegant.

Text and password boxes
The most straightforward piece of an HTML form is a simple text box for input.
This is a one-line box that lets the user enter a string of text—for instance, a name
or email address. The tag looks like this:

<input type="text" name="username" size="20" />

To create a text box, use an <input> tag that has an attribute of type="text". I’ve
also included in listing 3.1 an example of the size attribute, which adjusts the width
of a text box—the approximate number of characters the user will be able to enter
into that box before it scrolls.

 The important attribute of all input tags, for our purposes, is name. The value of
the name attribute is the name we’ll use to access the data the user enters, once the
form is submitted. It is the name of the request parameter the browser will submit.

 The expression language makes it easy to access request parameters. Recall
from table 3.2 that you can use expressions like ${pageScope.variable} and
${sessionScope.variable} to access scoped variables. The syntax for accessing
request parameters is similar. Instead of beginning your expression with pageScope
or sessionScope, you start it with param. For instance, the following example lets
you access the value of the request parameter from the <input> tag you just saw:

${param.username}

In the page that handles the form, ${param.username} will equal whatever the user
typed in this text box.

 Every request parameter is a string. This is true even if the user enters a number
into a particular input field. However, as I said earlier, JSTL doesn’t force you to
worry about the difference between strings and numbers. If the user enters a proper
number, you can treat it as a number if you ever need to. (Chapter 10 discusses in
more detail how to handle cases where users input numbers—and even dates.)

 A password box is just like a plain text box, but it has the attribute type="pass-
word" instead of type="text":

<input type="password" name="pw" size="14" />

The major difference between a password box and a plain text box is that browsers
usually print stars (***) or other characters to hide the value the user types in the
box, because they presume it’s something sensitive like a password. Notice that in

Request parameters and the expression language 59
figure 3.4 you can’t see the password I chose, although you can see my name.
(You’ll have to buy my next book if you want to learn my password too.)

 A password box, like a text box, causes a request parameter to be set based on
its name attribute. For the sample tag we just looked at, we’ll be able to read the
user’s password using the expression ${param.pw}.

Selection boxes
Selection boxes are a little more complicated than text boxes. Instead of presenting
the user with blank box to type in, a selection box displays a list of choices and lets
the user select one. Rather than being introduced into your page with a single tag,
such boxes begin with a <select> tag and include a number of <option> tags that
delineate the options the user can choose from; they end with a closing </select>
tag. A select tag starts like this:

<select name="season">

In this sample <select>, the only thing we need to specify is the name of the tag’s
request parameter. Because the tag has the attribute name="season", whichever
value the user chooses will be available to us using ${param.season}.

 You can tell the browser what options to show the user by using <option> tags.
The body of each option tag is the option that will be displayed in the user’s
browser. Option tags have an optional attribute, value, that gives you control over
the request parameter that will be sent back to you. For many options, it’s common
to show the user one thing, but to receive a different chosen string back as the
request parameter. For instance, in listing 3.1, we use option tags like this:

<option value="winter">Winter</option>

This tag displays the choice Winter (with a capital letter) to the user but records the
choice as winter (lowercase) if the user chooses this option. There isn’t much differ-
ence between the two in this case, although if you’re storing the information to a
database managed by someone else, you might need to make sure you use a lower-
case instead of a capital letter (or vice versa). It’s common to use <option> tags to
convert between numbers and letters so that you don’t have to bother doing this
conversion in your JSP page. For instance, the following tags display month names,
but send you back month numbers instead:

<option value="1">January</option>

<option value="2">February</option>

…

(These numbers are really strings containing numbers, but again, this difference
doesn’t matter much in JSTL.) Just because you need numbers doesn’t mean the

60 CHAPTER 3
The expression language
user should have to see an unfriendly prompt; these tags let you choose what the
user sees but give you control over the data you receive back.

 Nothing prevents you from having multiple options map to the same value. For
instance, one application I designed for Yale University asked students to choose
their dormitory. Because my application treated some dorms the same as others,
several <option> tags had the same value. But the user didn’t need to know which
dorms were treated identically; the <option> tags took care of this behavior behind
the scenes. As an example, consider a tag like this:

Do you love me?

<select name="love">

 <option value="yes">Yes!</option>

 <option value="yes">No!</option>

</select>

This example probably isn’t useful in your web pages, but it might ease the burden
of romantic rejection; no matter which option the user chooses, the box’s parame-
ter is set to yes.

 Select boxes can be arranged to let users select multiple values instead of just a
single value. To do this, add the attribute multiple="multiple" to the <select>
tag. When we discuss check boxes in the next section, you’ll see what happens
when a browser sends multiple values for the same request parameter.

Radio buttons and check boxes
Radio buttons and check boxes are two different kinds of fields that a user can click to
provide input. Radio buttons usually appear as circles in web browsers, and a user
can click only one of them at once. They’re appropriate for fields like gender or
religion, where a user typically chooses only one out of many potential values. For
this reason, radio buttons are a lot like simple <select> boxes. The major differ-
ence between selection boxes and radio buttons is their visual appearance on your
web page. It’s common to see radio buttons when an input field has only a few
choices, whereas <select> boxes are often used when a field has a large number of
choices. This makes sense: by default, <select> shows only one choice at a time, so
it saves space on the user’s screen when there are lots of choices.

 To use radio buttons, you insert a tag for each button into your page. Unlike the
<option> tag for selection boxes, any descriptive text (such as “Male” or “Female”)
isn’t part of the tag itself; it just appears near the tag to give the user a hint about
which button to click. Here are the two radio buttons from listing 3.1:

<input type="radio" name="gender" value="male" />

<input type="radio" name="gender" value="female" />

Request parameters and the expression language 61
The interesting thing to note about these tags is that they have the same value for
the name attribute. This is how the browser knows to let the user click only one but-
ton. It doesn’t matter whether the buttons are near each other (although they usu-
ally are); the only thing that connects two different radio buttons is the fact that they
share a name. When a user submits a form, the browser determines which button
the user has clicked and sends its value as the appropriate parameter (based on the
radio-button group’s name). In this example, if the user clicks the first button, the
expression ${param.gender} will equal male.

 Check boxes work just like radio buttons, but users can check as many of them
as they want. You can add them to your pages with tags like this:

<input type="checkbox" name="language" value="english" />

You might wonder what happens when a user selects multiple check boxes and sub-
mits a form. If all request parameters are simple strings, what would ${param.lan-
guage} equal in our sample form from listing 3.1 if the user clicks the check boxes
for both English and Spanish?

 The answer is somewhat disappointing: because every param expression is a
string and not a collection, the parameter can store only one value. In this case, the
first one from the form is used. The others are stored in a collection that you can
access by starting your expression with paramValues instead of param. The collec-
tion is ordered, so you can use the [] syntax to access individual values. For
instance, ${paramValues.language[0]} indicates the first language the user chose
from the form, and ${paramValues.language[1]} indicates the second one (assum-
ing the user chose two). In chapter 11, you’ll see how to handle checkbox parame-
ters conveniently.

 By the way, I mentioned multiselect boxes—<select multiple="multiple">—
in the section about selection boxes earlier. When a user chooses multiple values
out of a multiselect box, they’re handled the same way check boxes with multiple
values are handled.

Text areas
The last HTML input type we’ll look at for now is the <textarea> box. Text areas
are useful when you want to give the user an opportunity to type in a long block of
prose (or poetry, for that matter). For instance, they’d be useful for resumés, cus-
tomer feedback, messages in a chat room, and so on. The sample form in figure 3.4
shows a box asking for the user’s philosophical thoughts, to demonstrate the broad,
flexible nature of these boxes.

 When we discussed strings earlier, I mentioned that strings can contain sen-
tences or even paragraphs. With <textarea> boxes, strings get to prove their met-

62 CHAPTER 3
The expression language
tle. The entire block of text the user types into a <textarea> comes back to your
JSP page as a single parameter. For example, the entire box created by

<textarea rows="5" columns="40" name="philosophy" />

comes back as a single parameter: ${param.philosophy}.

Submitting a form
To add a submission button to a form, you add an <input> tag with the attribute
type="submit":

<input type="submit" value="Sign up!" />

This tag adds a button to the form (labeled with whatever’s inside the value
attribute); when the user clicks it, the form is sent to the page named in the action
attribute of the original <form> tag.

TIP Submission buttons created with <input type="submit"> can also have
name attributes. That is, they can also create request parameters. For in-
stance, a button like

<input type="submit" value="Register" name="choice" />

will set a request parameter ${param.choice} equal to the string Register.
This functionality is particularly useful if you want your form to have
multiple submission buttons, and you want to figure out which button
the user clicked to submit the form.

3.3.2 A page that reads request parameters

We’ve spent quite a bit of time discussing HTML forms and individual request
parameters. Let’s look, at last, at a dynamic page that reads some parameters. As an
example, we’ll write a page called formHandler.jsp that handles the form in figure 3.4
(and listing 3.1). To get this page to work, simply add it to the same directory as the
page that produced the form. Listing 3.2 shows an example of such a page.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<p>Wow, I know a lot about you...</p>

<p>Your name is <c:out value="${param.username}"/>.</p>

<p>Your password (sssssh!) is '<c:out value="${param.pw}"/>'.</p>

<p>You are <c:out value="${param.gender}"/>.</p>

Listing 3.2 formHandler.jsp: a page that prints out the results of a form

More powerful expressions 63
<p>Your favorite season is <c:out value="${param.season}"/>.</p>

<p>One language you can read is

 <c:out value="${param.language}"/>.</p>

<p>Some of your philosophical thoughts include:</p>

 <blockquote><c:out value="${param.philosophy}"/></blockquote>

Figure 3.5 shows what this page outputs for the input from figure 3.4.

In later chapters, we’ll look at other things you can do with form input. For
instance, you can store it in a long-term database, or ask questions about what the
user entered.

3.4 More powerful expressions

JSTL’s expression language was designed to be easy to use, so although the expres-
sions we’ve covered so far are all pretty simple, they’ll meet your needs in many
pages you write. However, the expression language is a little more powerful than
we’ve given it credit for so far. The good news is that it’s not too difficult to use the
expression language’s more advanced features. In this section, we discuss two broad

Figure 3.5
Output of the
formHandler.jsp page from
listing 3.2. This page prints
out different values
depending on what the
user (in this case, me)
entered in an HTML form.
Later chapters show how
to take advantage of this
information more usefully.

64 CHAPTER 3
The expression language
topics. First, in section 3.4.1, we look at how you can use the expression language to
access data other than scoped variables and request parameters. Then, in the
remaining sections, we introduce some of the expression language’s advanced syn-
tax; it lets you write expressions that combine more than one expression, such as
${weight gt IQ} (“is the weight variable greater than the IQ variable?”) or ${cute
and single} (“are both the cute and single boolean variables equal to true?”).

3.4.1 Different ways to access properties

In section 3.2.2, you saw that you can use a period (.) to access a member of an
unordered collection. For example, to get the phone property of the user variable,
you can write ${user.phone}.

 You can also access properties of unordered collections using the [] syntax, just as
with ordered collections. However, when a collection isn’t ordered, you can’t use num-
bers inside the brackets; instead, you need to use a string. For instance, the expression
${sessionScope.user["name"]} is equivalent to ${sessionScope.user.name}

 You might wonder why JSTL supports two syntaxes to do the same thing. One
major reason is historical: JavaScript does this, so JSTL does too in order to be
familiar to as many users as possible. But in addition, if a property name contains
a special character—like . or - or just about anything that isn’t a number or a let-
ter,4 you can’t use the dot (.) notation with it; you need to use brackets ([])
instead. For example, if a property is named My-Address, you’d want to access it
like this: ${user["My-Address"]}. Note that we used quotes around the name of
the property.

TIP If you don’t use quotes, brackets also let you use a variable to decide dy-
namically which property you want to access. For instance, the expres-
sion ${user.phone} always retrieves the phone property of user. But
consider an expression like this: ${user[data]}. This expression first
looks up the data variable, and then uses its value to get a property of
user. For instance, if data equals phone, this expression is equivalent to
${user.phone}; but if data equals address, the expression means the
same thing as ${user.address}. This is an advanced pattern, so don’t
worry if it seems confusing. You’ll rarely need it, but it’s a powerful tech-
nique that you should experiment with.

4 Technically, any name that can be used for a variable in Java can be used with the period (.)
operator. I’m not going to discuss the details of which names are valid and which aren’t because
I’ve never liked books that spend pages and pages discussing what valid identifiers look like—
whether or not they, and so on.

More powerful expressions 65
3.4.2 Accessing other data with the expression language

So far, you’ve seen six different ways to start an expression: pageScope, request-
Scope, sessionScope, applicationScope, param, and paramValues. In addition,
you can simply use the name of any scoped variable as an expression unto itself, as
in ${username}.

 The interesting thing about each of the six ways you can start an expression is that
they’re all collections of their own. Remember how a variable like shoppingCart (see
figure 3.2) could contain items you access by name, simply by typing a period (.) and
the name of the item? This is exactly how the core collections—known officially as
implicit objects—work. The expression ${pageScope} points to a collection of all the
variables in page scope; ${params} points to your page’s request parameters.

 We haven’t yet discussed a few more core (implicit) objects. Table 3.4 lists them.

Let’s briefly look at each of these objects.

Cookies
A cookie is a way for a web server to send the user some information that the web
browser keeps track of persistently—for a few minutes or a few years. Cookies are
like the hand stamps that clubs and amusement parks use to record the fact that
they’ve seen you before.

 JSTL doesn’t give you any way to set cookies, because that’s the job of back-end
Java code. However, if you’re told that a cookie called colorPreference is avail-
able, you can access it with an expression like ${cookie.colorPreference}.

Headers
Headers are data that web servers and web browsers use to communicate with each
other behind the scenes. When a web page is loaded, it has the opportunity to send
header information that describes the request. Headers contain things like the
browser type, localization information about the client machine, and other details.

Table 3.4 JSTL offers several implicit objects that let you
access data other than scoped variables and parameters.

Implicit object Description

cookie The value of a cookie sent by the web browser

header A header sent by the web browser

headerValues All values of a header sent by the web browser

initParam A context-initialization parameter

pageContext Detailed information about the current page

66 CHAPTER 3
The expression language
 Most of these details aren’t important, but using headers to access the browser
type is useful when you want to decide what to display based on the user’s web
browser. Web browsers send information about their make and model to servers
using a header called User-Agent. For instance, you can use an expression like
${header["User-Agent"]}

Rarely, you might need headerValues if a browser sends two headers with the
same name. The headers you typically access are available through header instead
of headerValues in most cases.

Initialization parameters
As with scoped variables, back-end Java programmers can set information called
context initialization parameters. If you’re told to access an initialization parameter, or
if you want to access one that you set yourself, you can do so with initParam—for
example, ${initParam.headerUrl}. Initialization parameters are useful when the
same application is deployed to multiple servers at once and needs to be configured
for each of its environments.

PageContext
The variable that’s accessible as ${pageContext} lets you access some detailed
information about your page. Most of the time, you won’t need this information,
and you won’t have to use expressions starting with pageContext. Some of these
expressions are beyond the scope of the book, and they’re listed in table 3.5 only
for completeness. But we’ll touch on a few of them later in this book, so table 3.5
will be useful for future reference.

Table 3.5 JSTL expressions involving pageContext. These somewhat involved expressions are
useful if you need detailed information about the current page’s environment. Normally, you won’t
need to use such expressions, but they come in handy on occasion.

Expression Description Sample value

${pageContext.request.
authType}

The type of authentication the page
used, if applicable

BASIC

${pageContext.request.
remoteUser}

The user’s ID, if the server manages
authentication

djdavies

${pageContext.request.
contextPath}

The name of your web application
(context)

/examples

${pageContext.request.
cookies}

An ordered collection (array) of all your
page’s cookies

n/a

${pageContext.request.
method}

The HTTP method used to access your
page

GET

More powerful expressions 67
3.4.3 Comparisons

You can use the expression language to produce boolean values even when your
inputs aren’t boolean. For instance, the expression ${2 == 2} results in true. Note
the use of two equal signs (==) as a way of comparing two values. Many programming
languages, including Java and JavaScript, use similar syntax, so it might look familiar.

 Table 3.6 lists the JSTL expression language’s comparison and equality operators.

${pageContext.request.
queryString}

Your page’s entire query string p1=value1&p2=value2

${pageContext.request.
requestURL}

The URL used to access your page http://server/app/
page.jsp

${pageContext.session.
new}

true if the session is new; false
otherwise

true

${pageContext.servlet-
Context.serverInfo}

Information about your JSP container Apache Tomcat/5.0.0

${pageContext.
exception.message}

For a page marked as an errorPage,
a description of the error that
occurred

"Something very, very
bad happened"

Table 3.5 JSTL expressions involving pageContext. These somewhat involved expressions are
useful if you need detailed information about the current page’s environment. Normally, you won’t
need to use such expressions, but they come in handy on occasion. (continued)

Expression Description Sample value

Table 3.6 JSTL supports these comparison and equality operators in expressions. You can use
these operators to write expressions like ${2 == 2} or ${user.weight gt user.IQ}. Every
comparison operator has a symbolic version (==) and a textual one (eq).

Operator Description Sample expression Result

==
eq

Equals ${5 == 5} true

!=
ne

Not equals ${5 != 5} false

<
lt

Less than ${5 < 7} true

>
gt

Greater than ${5 > 7} false

<=
le

Less than or equal to ${5 le 5} true

>=
ge

Greater than or equal to ${5 ge 6} false

68 CHAPTER 3
The expression language
NOTE Every comparison operator has two different versions: one that’s symbolic
and one that’s textual. For instance, == means the same thing as eq, and !=
means the same thing as ne. You can use whichever version you’re more
comfortable with. Keep in mind, however, that < must be written as <
in an XML document.

You can use these operators to compare any two numbers that are accessible to the
expression language. Suppose you have two expressions, ${user.weight} (repre-
senting the user’s weight in pounds) and ${user.IQ} (representing the user’s IQ, or
intelligence quotient). You could compare these values (in order to see if the user
has more brains or brawn) by writing this expression:

${user.weight gt user.IQ}

This expression is true if ${user.weight} has a higher value than ${user.IQ}; it is
false otherwise.

NOTE It’s important to realize that the ${ and } delimiters cover the entire ex-
pression, not just each component of it. Thus we do not write

${user.weight} gt ${user.IQ}

or

${ ${user.weight} gt ${user.IQ} }

Neither of these expressions is valid. Instead, a single set of ${ and } is suf-
ficient for the whole expression:

${user.weight gt user.IQ}

Comparisons are particularly useful when you want to check a request parameter
again a specific value. For instance, you could use the expression

${param.month == "May"}

to determine whether the user chose month 5 from a list of months. If the month
parameter corresponds to a <select> box, and the user chooses an option like

<option>May</option>

then ${param.month == "May"} will be true.
 We’ll look more at how you can use boolean values—such as those you create

using comparison operators like == or le—in chapter 5.

More powerful expressions 69
 The JSTL expression language lets you compare more than just strings. You can
compare any two expressions as long as it makes sense to compare them. (The data
types of the objects decide what makes sense.) For instance, if you have two dates
(see chapter 10 for information on how to get a date), you can compare them to
determine which comes earlier or later.

Checking to see if a variable exists
In section 3.2.1, I mentioned that sometimes a variable points to nothingness.
Moreover, a collection or string can be empty. You can use the word empty to deter-
mine if a particular variable or parameter exists or not. For example

${empty param.choice}

is true only if the choice parameter wasn’t specified on a form. (This might be the
case if the form had no input field named choice, or—with a set of check boxes—if
the user didn’t specify any checkbox in the group named choice.) Similarly,

${empty sessionScope.userName}

is true if there’s no session-scoped variable named userName, or if the name is an
empty string or some sort of empty collection. If this variable exists and isn’t
empty, the expression will be false.5

3.4.4 Boolean operations and parentheses

When you have two boolean values—either because you retrieved them from
scoped variables or because you built them using the operators we discussed in
the last section—you can use the words and, or, and not to join them. For
instance, the expression

${2==2 and 3==3}

is true because 2 equals 2 and 3 equals 3. Similarly, the expression

${param.month == 5 and param.day == 25}

is true only if the request parameter month equals 5 and the parameter day equals 25.

NOTE In addition to and, or, and not, you can use &&, ||, and !. You can use
whichever style of boolean operator you’re more comfortable with, but
keep in mind that (as we discussed in chapter 2) the & character must be

5 You can also compare a value directly to null, as in ${param.choice == null}. For our
purposes, however, the empty operator is easier and less prone to errors.

70 CHAPTER 3
The expression language
written as & in an XML document. This requirement makes && less
useful than and.

Expressions that use or are true if any of their components is true. For instance,

${param.month == 5 or param.month == 6}

is true if the month parameter equals 5 or 6.
 Just as in mathematical expressions, you can use parentheses to force a particu-

lar grouping for your expression. For instance, the meaning of an expression like

${param.month == 5 or param.month == 6 and param.day == 25}

might not be immediately clear. But you can add parentheses to group different
parts of the expression together. For instance, if you wrote this:

${ (param.month == 5 or param.month == 6) and (param.day == 25) }

it would be true when the month was equal to 5 or 6, and the day was equal to 25.
Exactly two days would match the expression: May 25 and June 25. But if you
wrote this:

${ (param.month == 5) or (param.month == 6 and param.day == 25) }

then the expression would be true for all of May, and for June 25. Thus, it would
match 32 days in total, not just 2 (like the previous expression).

 The not operator converts true into false, and vice versa. For instance, to
check whether the parameter choice is not empty or missing, you could write

${not empty param.choice}

You can mix and, or, and not to your heart’s content. The result is always a boolean
value—true or false. You’ll see how to use boolean values in chapter 5.

3.4.5 Multiple expressions

Wherever you can use a single expression, you can use multiple expressions. You can
also mix text freely with expressions. For example, the following is perfectly valid:

<c:out value="Hi ${user.first} ${user.last}" />

This code isn’t too useful in <c:out>, because you could accomplish the same thing
with a combination of simple template text and multiple <c:out> tags, like this:

Hi <c:out value="${user.first}"/> <c:out value="${user.last}"/>

But for tags that do more than simply print out their expressions—and all JSTL tags
other than <c:out> do more—it might be useful to keep this ability in mind.

Saving data with <c:set> 71
3.5 Saving data with <c:set>

So far, we’ve looked quite a bit at how to read scoped variables, but we haven’t yet
shown how to create them. Many JSTL tags let you create scoped variables; the
most basic is <c:set>.

 The function of <c:set> is simple: it takes either an expression or its body, eval-
uates it, and saves the result. Let’s look a little more closely at how <c:set> works.
Table 3.7 lists its tag attributes.6

The var attribute tells <c:set> the name of the scoped variable to set. The var
attribute and its companion attribute scope are used across many different JSTL
tags. They mean the same thing in all JSTL tags in which they appear. The var
attribute is always used to let you decide the name of a variable to set.

 The scope attribute tells the tag what scope to use when setting the variable. It
takes four possible values: page, request, session, and application. If you want
the data you’re about to set to last for the duration of the user’s session, you write
scope="session". The scope attribute is always optional; its default is page.

 The var and scope attributes have something else in common: they are the only
JSTL tag attributes you can’t use expressions with. You can’t write var="${username}",
for instance, and expect the expression ${username} to be evaluated. (Instead,
var="${username}" creates a scoped variable named, literally, ${username}. This
result is almost never what you want.) The reasons for this limitation are complicated
and have to do with error checking and page-authoring tools, but it shouldn’t get in
your way.

Using the value attribute

For our purposes, there are two broad ways you can use the <c:set> tag: with or
without a value attribute. When you specify a value attribute, the <c:set> tag will

Table 3.7 Basic <c:set> tag attributes

Attribute Description Required Default

value The expression (in JSTL’s expression language) to compute No Use body

var The name of the scoped variable to save Yes None

scope The scope of the variable to save No page

6 The <c:set> tag has a few advanced attributes that we’ll examine in chapter 14. The var at-
tribute is not required for these advanced uses, but it’s required for the way we use the tag here.

72 CHAPTER 3
The expression language
take the result of this attribute—which may, of course, contain expressions—and
save it to the variable indicated by var and scope.

 For instance, consider the following tag:

<c:set var="four" value="${3 + 1}"/>

This tag stores the value 4 in a scoped variable named four. The scoped variable
named four is given page scope. If you wanted to store it in the session, you’d
instead write

<c:set var="four" scope="session" value="${3 + 1}"/>

The <c:set> tag can take any kind of JSTL expression in the value attribute; it can
result in a string, number, boolean, collection, or anything else.

Using the tag’s body

If you write a <c:set> tag without a value attribute, then <c:set> will take what-
ever appears in its body and save it to the scoped variable indicated by var and
scope. It’s important to realize that if other tags appear within <c:set>’s body,
these tags will be evaluated; like the browser itself, <c:set> only sees their output.

 This process might seem unusual, and it’s the first time we’ve encountered a
concept that will keep coming up in JSTL. JSP lets every tag have access to the out-
put of its body. Normally, everything in your page simply gets printed to the
browser; either it’s template text and gets printed directly, or it’s a tag and can pro-
duce dynamic output (see figure 3.6). But when template text and tags appear
inside another tag, the inner text and tags don’t get a chance to send their output
directly to the browser. Instead, the parent tag collects the output from its body and
then decides what to do with it. It can decide to send it on to the browser, to save it
to a scope variable, or to ignore it completely; it’s the tag’s choice (see figure 3.7). In

Figure 3.6 Normally, all template text and JSTL tags in your
page get the opportunity to output directly to a web browser.
The template text goes right through (as itself), and the JSTL
tags (like <c:out>) have a chance to produce dynamic output
that, by default, gets sent to a web browser.

Saving data with <c:set> 73
<c:set>’s case, the body is never output to the browser. Instead, it’s always saved to
a scoped variable.

 As an example of this usage, consider the following:

<c:set var="eight">

 <c:out value="${4 * 2}"/>

</c:set>

This tag creates a page-scoped variable named eight and sets it to the string 8,
which is the result of the <c:out> tag. This inner tag didn’t have to be a single
<c:out> tag; it could have been multiple <c:out> tags, template text, other JSTL
tags, or any mixture of these.

NOTE The <c:set> tag will remove all white space at the beginning and end of
its body. As a result, you can format the tags however you’d like without
worrying about spacing. Because you don’t have to consider white space
in HTML, it’s convenient that JSTL also lets you ignore it.

Using <c:set> with a body is particularly useful if you want to take the output from
a custom tag and store it as a scoped variable.

When is <c:set> useful?
The <c:set> tag is helpful primarily when you want to evaluate something once
and use it multiple times. It’s useful if you have to print out the same thing multiple
times but want to avoid repeating large blocks of template text and JSTL tags. It’s

Figure 3.7 In contrast with figure 3.6, JSTL tags can “capture” all the output their
bodies produce, whether these bodies contain template text, JSTL tags, or a mixture
of the two. The body of a JSTL tag doesn’t get a chance to send its output directly to
a browser; it sends the output to its parent tag, which decides what to do with it. The
parent tag can decide to send the output to the browser after all, to save the output
as a scoped variable, or to do something else. The choice is entirely up the tag.

74 CHAPTER 3
The expression language
also handy if you want to take the result of an expression—perhaps containing a
request parameter or a variable from a particular scope—and save it in a new
scope. For instance, suppose your page that handles an HTML form isn’t the only
page that needs a particular piece of information from that form. It can set a ses-
sion-scoped variable to preserve something the user typed:

<c:set var="email" scope="session" value="${param.email}"/>

This expression takes the request parameter email and saves its value in the vari-
able email, in session scope. Other pages in the user’s session could then use the
expression

${sessionScope.email}

to access the email address a user entered in the HTML form.

3.6 Deleting data with <c:remove >

The <c:remove> tag is the opposite of <c:set>. Instead of creating a scoped vari-
able, it removes the variable. You probably won’t need to do this often, and it’s cer-
tainly not a technique you’ll need right away. But in case you ever need to remove
a variable, we’ll examine how you do it.

 Table 3.8 shows the attributes that <c:remove> accepts.

The var attribute behaves as you might expect: it accepts the name of the variable
to remove. The scope attribute works a little differently from the conventions
described in the last section. It accepts the name of a scope from which to remove
the var variable, but instead of defaulting to page scope—as scope usually does in
JSTL—it defaults to each of the scopes, in turn, until a variable with the right name
is found.

 For instance, the tag

<c:remove var="doomed" scope="session"/>

Table 3.8 <c:remove> tag attributes

Attribute Description Required Default

var The name of the scoped variable to delete Yes None

scope The scope of the variable to delete No Any

Summary 75
deletes the variable doomed from session scope. But

<c:remove var="doomed"/>

doesn’t simply remove doomed from page scope. Instead, it looks in all the scopes—
page, followed by request, then session, and finally application—until it finds a vari-
able named doomed, at which point it deletes that variable.

 Either way, if the doomed variable isn’t found, the tag exits quietly, making no
change to any other scoped variables.

3.7 Summary

You’ll soon see lots of expressions in action as we discuss more JSTL tags. When you
begin to use the expression language in JSTL tags, remember the following points:

� Expressions can appear in any JSTL tag attributes except var and scope.
� Expressions start with ${ and end with }, and wherever one expression can

appear, multiple expressions can appear. For instance, value="Hi ${user.
first} ${user.last}" is a perfectly valid tag attribute.

� By default, expressions refer to scoped variables, starting with page scope and
progressing through request, session, and application scopes until the named
variable is found. You can also easily force a variable to come from a particu-
lar scope by using expressions like ${pageScope.name} and ${session-
Scope.name} (where name is the name of the variable you’re looking for).

� You can use expressions to refer to request parameters: ${param.name} and
${paramValues.name}, the latter of which is particularly useful when you
have a form with check boxes or some other reason a parameter might have
multiple values. The expression language supports easy access to a few other
types of data, like cookies and request headers.

� Expressions can perform basic arithmetic on numbers (+ - * / %), make
comparisons (== eq != ne < lt > gt <= le >= gt), compound boolean
variables together (and or not), and use parentheses to organize the pieces of
each expression appropriately. They can also help you decide whether a vari-
able is missing or not (empty).

� The <c:out> tag prints out the value of an expression, converting it to a
string if necessary.

� The <c:set> tag sets a scoped variable, either using an expression or using
its body.

� The <c:remove> tag deletes a scoped variable.

76 CHAPTER 3
The expression language
� JSTL tags use the attributes var and scope to indicate scoped variables. These
are the only JSTL attributes that don’t accept expressions. The scope attribute
typically defaults to page.

4Controlling flow
with conditions
This chapter covers…
� Simple conditions
� Mutually exclusive conditions
� Nesting condition tags
� Syntactic rules for JSTL conditions
77

78 CHAPTER 4
Controlling flow with conditions
When you see an HTML <table>, you can figure out how many rows it has just by
looking at it and counting its <tr> tags. In a static page that uses nothing more than
HTML, the table’s size can’t vary: the same layout is displayed each time a web
browser loads the page. Every tag has a predictable outcome.

 JSP pages work differently. Every time a JSP page is loaded, it can decide what it
will send to the user’s browser. For a JSP page to print an HTML table with a
dynamic number of rows, it simply needs to decide how many times to print out
the HTML <tr> and </tr> tags. Therefore, you can’t necessarily expect the same
answer each time you ask, “How many rows does this JSP page’s <table> have?”
The answer might be, “One row for each product in the shopping cart.” The
answer might even be, “No rows at all! The <table> won’t be printed unless the
user is the king of France, and France doesn’t have a king anymore.” The point is,
the page’s text and layout can change every time it runs.

 When programmers use the term flow control, they mean a program’s ability to
make decisions about what code to run. In a JSP page, flow control is similar: it
involves decisions about what tags to process.

 JSTL’s flow control comes in two forms:

� Conditional logic, or conditions
Lets your application decide whether to take a particular action (like printing
out an error message) or skip that action. For example, if your application
stores information about users’ ages, you might want to check in the middle
of the page to see if the current user is older than 18 before displaying sugges-
tive images (or even an obscene joke).

� Looping, or iteration
Lets you repeat a part of your page, usually with minor variations, over and
over (although usually not forever!). Looping is useful when you want to
build dynamic tables and lists, although it has many other uses. You might
loop to print out all the items in a user’s shopping cart, or to retrieve all the
data the user asked for.

Flow control is one reason the term template system (discussed in chapter 1) applies
only loosely to languages like JSTL. JSTL is much more powerful than a simple
mail-merge engine: it lets you do more than simply insert dynamic content into a
lifeless template. When you use JSTL, both the data and the very style and structure
of your page are under your dynamic control.

 This chapter and the next explore the JSTL tags for flow control. This chapter
focuses on conditions, and chapter 5 covers loops.

Yes-or-no conditions with <c:if> 79
4.1 Different kinds of decisions

Some questions have a simple yes or no answer. For instance, if you ask, “Did any-
one see me bump into that car while I was parallel parking?” there can be only two
possible answers: yes and no. In this sense, the question has a lot in common with
the boolean variables you learned about in chapter 3. In fact, if I phrase a yes-or-no
question as a statement—such as, “Someone saw me bump into the car”—then just
like a boolean variable, it has two possible states: true and false. Simple two-way
questions are the most basic kinds of decisions a program can make when it runs.

 Some decisions, though, are more complex; they can’t easily be satisfied by a
yes or no answer. For example, what if I ask, “Should I be driving in the left lane,
the middle lane, or the right lane right now?” This question has more than two
choices, but it still needs a single answer. (Unless I’m like the drivers on New
Haven’s Q-Bridge, I can’t drive in two lanes at once.) Similarly, a JSP page may be
presented with a situation in which it needs to pick one—and exactly one—of many
alternatives. Such decisions are said to involve mutually exclusive pathways: picking
one choice prevents, or excludes, me from picking another, at least until the next
time I get to make the choice.

 To make this discussion more concrete, let’s consider two possible situations
faced by a JSP page. Suppose you want to print the title “Dr.” before a user’s name
if you know that user has a Ph.D. This problem can be solved by asking a single
yes-or-no question: does this user have a doctorate? But suppose, instead, that you
need to print “Dr.”, “Mr.”, or “Ms.”, depending on multiple criteria: the user’s gen-
der and education. Because you want to print one title out of three candidates, you
should use a mutually exclusive conditional tag.

 As you’re about to see, JSTL makes it easy to write both types of conditional logic.

4.2 Yes-or-no conditions with <c:if>

Two-way decisions come up all the time in web pages. For example, no matter how
clear, productive, and polite an error message is, you probably want to display it
only when there’s actually an error to report. With a simple error message, you
have two choices: your page needs to either display it or not display it. JSTL sup-
ports such two-way conditions via the <c:if> tag.

80 CHAPTER 4
Controlling flow with conditions
4.2.1 The basic syntax of <c:if>

The attributes that <c:if> accepts are shown in table 4.1.

We’ll discuss the var and scope attributes in section 4.2.5. The test attribute speci-
fies a conditional—or boolean—expression to evaluate. Recall from chapter 3 that
expressions in JSTL’s expression language can evaluate to boolean values: true or
false. For example, the expression ${param.firstName==’Mildred’} is true if the
request parameter firstName is equal to Mildred; it’s false otherwise.

NOTE For a review of tag syntax, including how tag attributes work, see chapter 2.
The <c:if> tag comes from JSTL’s core package; so, to use any examples
in this chapter, your page should include the following directive at the top:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

The <c:if> tag’s test attribute accepts any boolean expression. For example:

 Dr.

</c:if>

<c:out value="${user.name}"/>

The boolean expression used in this example is ${user.education == ’doctor-
ate’}. From chapter 3’s discussion of JSTL’s expression language, you know that
this expression will be true if the education property of the current scoped vari-
able named user equals the text doctorate; otherwise, the expression will be
false. (Imagine that our user.education property can contain such values as
highschool, bachelor, master, and doctorate.)

 As shown in figure 4.1, the <c:if> tag evaluates its test attribute, and if this
expression evaluates to false, the page skips the body of the <c:if> tag. On the

Table 4.1 <c:if> tag attributes

Attribute Description Required Default

test Condition to evaluate. If true,
process the body; if false, ignore
the body.

Yes None

var Name of the attribute to expose a
boolean value

No None

scope Scope of the attribute to expose a
boolean value

No page

<c:if test="${user.education == ’doctorate’}">

Yes-or-no conditions with <c:if> 81
other hand, as suggested by figure 4.2, if the expression ends up being true, the
body is processed normally. This body can contain any valid JSP code, including
text, HTML tags, or other JSP tags.

Think of the <c:if> tag as obeying the following two rules:

Thus, in the example of the last <c:if> tag, if user.education does not equal doc-
torate, the example outputs the same thing as the simple line

<c:out value="${user.name}"/>

If, however, user.education does equal doctorate, then the example effectively
becomes equivalent to

Dr. <c:out value="${user.name}"/>

The final effect is that the example prints the text Dr. before the user’s name, but
only if the user is a doctor. The name is printed either way, using the <c:out> tag
that we looked at in chapter 3.

If the test attribute’s condition
evaluates to…

Then…

false The JSP page acts as if the entire <c:if> tag, including its contents,
never appeared in the first place.

true The JSP page acts as if just the <c:if> and </c:if> tags weren’t
present, but as if the text between these start and end tags appeared
unaltered in the page.

Figure 4.1 <c:if>’s body is skipped when its
test attribute is false.

Figure 4.2 <c:if>’s body is processed
when its test attribute is true.

82 CHAPTER 4
Controlling flow with conditions
4.2.2 Using <c:if> within HTML tags

Because JSP doesn’t draw any distinction between plain text and HTML tags, you
can use <c:if> tags anywhere in your page—even in the middle of an HTML tag.
For instance, consider this use of a <c:if> tag:
<font size="2"
 <c:if test="${user.education == ’doctorate’}">
 color="red"
 </c:if>
>
 <c:out value="${user.name}"/>

This code prints the user’s name in red if the user is a doctor. The code checks the
user.education property and, if it is equal to doctorate, outputs the following
(ignoring white space) where name is the user’s name, as output by the <c:out> tag:

 name

If user.education is different from doctorate, we instead get

 name

In the first case, the HTML tag explicitly sets the text color to red, whereas
the latter case uses the default color. Recall from chapter 1 that the browser doesn’t
care how an HTML markup tag was generated—whether it was template text, the
output of a JSTL tag, or both. Thus, JSTL tags, like <c:if>, can easily be used to
produce HTML tags or parts of them.

4.2.3 Multiple <c:if> tags

When <c:if> tags appear next to one another, they act independently:

<c:if test="${error1}">
 Error 1 has occurred.
</c:if>
<c:if test="${error2}">
 Error 2 has occurred.
</c:if>

This example assumes that when certain errors have occurred, your page (or back-
end Java code) has stored the value true in page-scoped boolean variables called
error1, error2, and so on. (You’ll see how to create such variables in section 4.2.5.)

Yes-or-no conditions with <c:if> 83
This example uses these error flags to print zero, one, or two error messages, as appro-
priate. If error1 is true, then the first error message is printed; if error2 is true, then
the second is printed. Importantly, the outcome of the first <c:if> tag doesn’t affect
the outcome from the second, and vice versa. If you remember high-school probabil-
ity, you can think of these tags like two independent flips of a coin; they don’t affect
one another. The two tags are simply next to, not related to, each other.

TIP Adjacent, unrelated <c:if> tags are useful when you want to display inde-
pendent errors simultaneously. In many applications I’ve written, I’ve
found it useful to show users all outstanding error messages at once, in-
stead of displaying them one at a time.

Note that, in the previous example, the body of each <c:if> tag begins with
and ends with . These tags cause any error messages that are printed to
appear as items in an HTML list. The and tags in the example are
printed unconditionally, because they don’t occur within any <c:if> tags. There-
fore, if neither error1 nor error2 is true, the page will simply output an empty list
(ignoring white space):

(Although this empty list gets the job done, it isn’t ideal; HTML’s tag shouldn’t
really be empty. You’ll see in the next section how to avoid this situation.) On the
other hand, if one error message is displayed, we see a list with a single item, like
the following:

 Error 2 has occurred.

If both error messages are displayed, we see a list with two items:

 Error 1 has occurred.

 Error 2 has occurred.

Placing opening and closing tags—like and —in the body of a single
<c:if> tag is an easy way to construct HTML lists that grow as needed to accommo-
date the information you want to display. The strategy is not limited to lists. For
instance, a <c:if> tag’s body could start with <tr> and end with </tr>, in which
case the <c:if> tag would represent an optional row in a table. (Whatever layout

84 CHAPTER 4
Controlling flow with conditions
you’re printing, make sure the opening and closing HTML tags match up; you don’t
want to have an application print a tag and never close it with a tag.)

4.2.4 Nested <c:if> tags

<c:if> tags can also be nested, which means they can appear inside other <c:if>
tags. When this happens, the outside tag decides whether the inside tag gets a
chance to be processed. Only if the outside tag succeeds does the inner tag even
evaluate its test attribute.

 We can use nested tags to prevent the empty from the previous sec-
tion from being displayed. For instance, consider the following tags:

 <c:if test="${error1}">

 Error 1 has occurred.

 </c:if>

 <c:if test="${error2}">

 Error 2 has occurred.

 </c:if>

Here, if neither error1 nor error2 is true, the expression ${error1 or error2}
will be false, and the entire tag will be skipped. This technique will prevent the
 tag from being empty, which is an error in HTML (even though it will proba-
bly display correctly in most browsers).

 Let’s look at a new example in more detail. Consider the following:

<c:if test="${fatalError}">

 I’m sorry,

 <c:if test="${user.education==’doctorate’}">

 Dr.

 </c:if>

 <c:out value="${user.name}"/>,

 but you have committed a fatal error.

</c:if>

This example displays an error message if the page-scoped fatalError variable is
true. The error message is interesting, because it contains a <c:if> tag of its own.

 The individual pieces of this example work just as you’d expect. The outer
<c:if> tag checks for a flag called fatalError and decides whether the error mes-
sage (its body) will be processed. If this body gets processed, then the inner <c:if>
tag is reached; this tag simply decides whether or not to display Dr., just as our first
example did.

<c:if test="${error1 or error2}">

</c:if>

Yes-or-no conditions with <c:if> 85
 The end result is an optional error message that, when printed, varies depend-
ing on the educational status of the user. If a fatal error occurs and the user is a doc-
tor, the following text is printed:

I’m sorry, Dr. name, but you have committed a fatal error.

In this output, name is the user’s name as it is printed by the <c:out> tag. (In this
case, the user who committed the fatal error is a doctor, so we should probably con-
sider printing some information about malpractice insurance.)

 Otherwise, if a fatal error occurs but the user is not a doctor, the text

I’m sorry, name, but you have committed a fatal error.

is printed. Note that the message doesn’t contain the Dr. title, because the user
doesn’t deserve it.

 Finally, if no fatal error has been recorded in the fatalError flag, then no error
message is printed.

 You can nest <c:if> tags as deeply as you’d like; for instance, the following
example is perfectly valid:

<c:if test="${a}">

 <c:if test="${b}">

 <c:if test="${c}">

 <c:if test="${d}">

 <c:if test="${e}">

 Lots of things are true! Hooray!

 </c:if>

 </c:if>

 </c:if>

 </c:if>

</c:if>

In this example, the <c:if> tags are processed like layers in an onion: the first
<c:if> tag is checked, and if it decides to include its body because the ${a} expres-
sion is true, then the second <c:if> tag is evaluated, and so on. The tags are peeled
away, so to speak, one by one. Therefore, the final, inner text (Lots of things are
true! Hooray!) is printed only if all the tags have let their contents be printed—in
this case, only if all of ${a}, ${b}, ${c}, ${d}, and ${e} are true.

 Nesting <c:if> tags is a useful technique, but if you nest them too deeply and
use too many <c:if> tags, your pages may become hard to manage. For instance,
we could have written the last example much more simply like this:

<c:if test="${a and b and c and d and e}">

 Lots of things are true! Hooray!

</c:if>

86 CHAPTER 4
Controlling flow with conditions
In other cases, though, nesting can be more convenient than the and operator; it
may let you avoid repeating an expression throughout your page.

4.2.5 The var and scope attributes

The test attribute isn’t the only one that <c:if> accepts. The tag lets you enter two
more attributes: var and scope. By and large, these attributes do the same thing
they do in the <c:set> tag from chapter 3: they create and expose a scoped vari-
able that other tags can access.

 Here, however, the variable that gets exposed is boolean—either true or false.
Its value corresponds to the end result of the test expression. Normally, the <c:if>
tag just checks test expression’s result and uses it to decide whether to let its body
be included. The var attribute, however, lets you save test’s result—either true or
false—and read it back later on the page. You can even store it for the benefit of
other pages by setting the scope attribute to request, session, or application.

 Recording a boolean value is helpful primarily in three situations:
� Making pages cleaner by avoiding repetitive conditional expressions
� Speeding up your pages by computing a conditional expression only once
� Taking a snapshot of a condition because you’re afraid it might change

For the first situation, suppose you have a condition like this:

${result.limitedByMaxRows and maxRows < 25 and maxRows > 10
 and result.rows[0].userName==’bob’
 and cart.empty}

Say that three parts of your page, far apart from each other, need to use this expres-
sion. Having to type it once is enough busy-work; there’s no reason to type it multi-
ple times. Even if your editor supports cut-and-paste operations, the long expression
clutters your page.

 In the second case, the condition might be time-consuming. Imagine, for exam-
ple, that a page-scoped variable has a boolean property called isPrime, and that
accessing this property computes whether a particular number is prime. The calcu-
lations might take a while to complete, so if you run them only once instead of mul-
tiple times, you can make your page load faster.

 Third, var is useful if you want to take a snapshot of a particular conditional
expression because you think it might change. For instance, consider the (admit-
tedly unlikely) possibility that the user receives a doctoral degree while our JSP page
is being processed. And, of course, suppose that the appropriate property—say,
user.education—is updated accordingly, perhaps by behind-the-scenes Java code.
If this happens but we have used multiple tags that look like

Yes-or-no conditions with <c:if> 87
<c:if test="${user.education==’doctorate’}">
 Dr.
</c:if>

then the page might appear inconsistent to the user. After a certain point in the
page, the Dr. title will appear; but at the beginning, it won’t. This difference might
not matter; but if consistency is important, we should record the value—whatever it
happened to be at a particular point—and then use it for the rest of the page. The
var attribute allows us to do this.

 Consider the following example:

<c:if test="${sessionScope.flags.errors.serious.error1}"

 var="error1">
 A serious error has occurred.
</c:if>

[… large page body …]

<c:if test="${error1}">
 Since a serious error occurred, your data has not been saved.
</c:if>

In this example, when the first tag is reached, the expression in its test attribute is
evaluated, and the result is saved into a page-scoped variable called error1. From
this point forward, even if the value of flags.errors.serious.error1 in the ses-
sion scope changes, the local error1 variable will stay the same. Thus, even if the
session-scoped flags.errors.serious.error1 flag changes for any reason, the
user will be given a message at the bottom of the page that is consistent with the
one displayed at the top. (Note also that in the second <c:if> tag, we save some
typing by using our own shorter variable name.)

 Although most <c:if> tags have a body, JSTL’s don’t require them to. So, you
can use <c:if> to write a tag whose only purpose is to expose a scoped variable.
For example, the following empty tag exposes a boolean variable named error1:

<c:if test="${sessionScope.flags.errors.serious.error1}"
 var="error1"/>

This tag isn’t used to make a decision during execution of the page; later tags on the
page, however, can use the error1 variable that this tag creates.

Saves variable

Uses variable

88 CHAPTER 4
Controlling flow with conditions
4.3 Mutually exclusive conditions with <c:choose>,
<c:when>, and <c:otherwise>

As I mentioned earlier, JSTL supports tags that let you introduce into your pages
conditions that are more complex than <c:if> allows. These complex conditional tags
support the mutually exclusive conditions we discussed in section 4.1.

4.3.1 Why JSTL has complex conditional tags

In section 4.1, I drew a contrast between two-way conditions and multiway condi-
tions. However, given enough opportunities to ask two-way questions, you can eas-
ily ask a multiway question. (This principle lies behind the common childhood
game Twenty Questions, where one player asks the other multiple yes-or-no ques-
tions in an attempt to narrow a general question.) Because the <c:if> tag in JSTL
can be nested, it can be used to build complex conditional control flow.

 As an example, I raised a common three-way question earlier: on a highway,
should I drive in the left lane, the middle lane, or the right lane? Instead of asking
the question this way, I could have posed it as two yes-or-no questions: should I
drive in the left lane? If not, should I drive in the middle lane? Answering these two
yes-or-no questions is enough to answer the overall three-way question and, there-
fore, to distinguish between three mutually exclusive alternatives.

 Consider the contrasting examples in figure 4.3. Like an example you saw ear-
lier, the code on the left displays up to three error messages, depending on how
many are relevant. The code on the right, however, displays at most a single error
message—the first one it finds. The code on the right implements a decision among
three mutually exclusive choices, just like the three-lane highway question.

 The example on the left in figure 4.3 should be familiar from our earlier discus-
sion of the <c:if> tag. On the right, nested <c:if> tags are structured in a way that
ensures only one error message will be displayed. Think of the example like this,
reading from top to bottom: first, if error1 is true, print out a message for error 1.
Then, if error2 is true, but only if error1 is false, print out a message for error 2.
Finally, if error3 is true, but neither error1 nor error2 is true, print out a message
for error 3. Remember that text within two or more <c:if> tags is printed only
when all the nested <c:if> tags decide to process their bodies; this is why the text
Error 3 has occurred is printed only when error3 is true but error2 and error1
are false.

 However, the code on the right side of figure 4.3 has a problem: in each succes-
sive <c:if> tag, we need to keep track of all the preceding conditional expressions
manually. Note how each new message uses extra tags. To decide whether to dis-
play the first message, we need one <c:if> tag, but the second message uses two

Mutually exclusive conditions 89
and the third uses three. This extra structure—which you have to keep track of
yourself—eventually becomes tedious and prone to errors.

NOTE The example on the right in figure 4.3 has a subtler problem, as well. It
does not really guarantee that only one error message will print, because
the values of error1, error2, and error3 might change while the exam-
ple executes, causing two or more messages to be displayed. Remember
that expressions like ${error1} can find information in any scope—in-
cluding session scope, where another page might change it while our page
accesses it.

Because mutually exclusive pathways are so common, JSTL provides an easier way
to express them in your pages; the following section explains.

4.3.2 How the complex conditional tags work

JSTL’s support for mutually exclusive conditions comes in the form of three cooper-
ating tags: <c:choose>, <c:when>, and <c:otherwise>. If you’ve used other pro-

Figure 4.3 On the left, three simple <c:if> tags appear next to each other. These tags are
unrelated; whether one runs has no effect on whether the others run. Zero, one, two, or three error
messages might be displayed, depending on how many errors have occurred. On the right, nested
conditions achieve exclusivity; no more than one error message will appear.

90 CHAPTER 4
Controlling flow with conditions
gramming or web-design languages, you might be familiar with switch statements,
sometimes called case statements. In JSTL, <c:choose> and <c:when> work similarly
to the switch and case keywords in languages like C and Java.1

 The <c:choose> tag is simple: it takes no attributes and serves only as a con-
tainer for <c:when> and <c:otherwise> tags. Just as HTML’s <td> tag makes no
sense outside a <table>, <c:when> and <c:otherwise> make no sense outside a
<c:choose>. Think of <c:choose> as somewhat like HTML’s <form> tag: its major
purpose is to contain other, related tags.

 The <c:when> tag is similar to <c:if>: it takes a single test attribute (see
table 4.2) and lets its body be processed only if its condition, which is specified by
test, is true. There’s one major difference between <c:if> and <c:when>, though.
For each <c:choose> tag, no more than one child <c:when> tag can succeed. If a
<c:when> tag decides that its body should be processed, then all other <c:when>
tags with the same parent <c:choose> tag will be ignored. (They won’t even bother
to evaluate their own test attributes; they’ll simply be skipped.) To bring back the
terminology we used earlier, child <c:when> tags are mutually exclusive with one
another inside a <c:choose> tag. See figure 4.4.

1 If you’re familiar with XSLT, you might notice that JSTL’s names for mutually exclusive condi-
tional tags follow the names that XSLT uses. This naming is not accidental; the designers of JSTL
chose these names to illustrate that the purpose and behavior of these JSTL tags is very similar
to their counterparts in XSLT.

Table 4.2 <c:when> tag attribute

Attribute Description Required Default

test Condition to evaluate if no sibling <c:when> tag
has already succeeded

Yes None

Figure 4.4
This is either an overhead shot of cattle
attempting to nurse from a mother
cow, or it’s a figurative representation
of how only one <c:when> tag can
succeed within any <c:choose>.

Mutually exclusive conditions 91
Although <c:when> tags are mutually exclusive of one another, there’s never a guar-
antee that any particular <c:when> tag will be chosen. If all the <c:when> tags under a
<c:choose> have conditions that evaluate to false, then none of them will succeed.

 This is where <c:otherwise> comes in. The <c:otherwise> tag participates in
the same mutual-exclusivity scheme as <c:when> tags, but it takes no attributes, so it
has no condition of its own to evaluate. Instead, it succeeds only if all its sibling
<c:when> tags (those with the same parent <c:choose> tag) have failed. (It’s like the
kid on a little-league team who hopes his friends will strike out because he wasn’t
chosen to bat.) The behavior of <c:otherwise> is useful if you want to have a
default condition that applies to a <c:choose> tag.

Example 1
Let’s look at a few examples of the <c:choose> tag in action. The following code
behaves similarly to the example on the right side of figure 4.3, which uses <c:if>
instead of <c:choose>, <c:when>, and <c:otherwise>:
<c:choose>
 <c:when test="${error1}">
 Error 1 has occurred.
 </c:when>
 <c:when test="${error2}">
 Error 2 has occurred.
 </c:when>
 <c:when test="${error3}">
 Error 3 has occurred.
 </c:when>
</c:choose>

Only one of the three <c:when> tags can succeed. Because the mutual exclusivity is
built into the <c:choose> and <c:when> tags, the code is much simpler than in fig-
ure 4.3, where we had to spell out the exclusivity manually, keeping track of each
condition one by one.

Example 2
Suppose we want to modify the previous example to print out a message of reassur-
ance to the user if no errors have occurred. This kind of default behavior calls for a
<c:otherwise> tag. Thus, we could modify the example as follows:
<c:choose>
 <c:when test="${error1}">
 Error 1 has occurred.
 </c:when>
 <c:when test="${error2}">
 Error 2 has occurred.
 </c:when>
 <c:when test="${error3}">

Only one of these
<c:when> tags
can succeed

92 CHAPTER 4
Controlling flow with conditions
 Error 3 has occurred.

 </c:when>

 <c:otherwise>

 Everything is fine.

 </c:otherwise>

</c:choose>

The example now prints out a reassuring message—by way of the optional <c:oth-
erwise> tag—if ${error1}, ${error2}, and ${error3} are all not true.

Example 3
Let’s consider a slightly more involved example. In the first example in this chap-
ter, we discussed a <c:if> tag used to print the text Dr. if user.education indi-
cated that the user had a doctorate. In that example, Dr. would either appear or it
wouldn’t; there was no third choice. Instead of this simple yes-or-no choice, let’s
look at an example that prints one of three choices—Dr., Ms., or Mr.—as appropri-
ate. To do this, we have our tags check both a user.education property and
another property, user.gender:

<c:choose>

 <c:when test="${user.education==’doctorate’}">

 Dr.

 </c:when>

 <c:when test="${user.gender==’female’}">

 Ms.

 </c:when>

 <c:when test="${user.gender==’male’}">

 Mr.

 </c:when>

</c:choose>

<c:out value="${user.name}"/>

We use two different properties of the user variable, but all our tests are grouped
under a single <c:choose> tag. The result is that an appropriate title (Dr., Ms., or
Mr.) is displayed in all cases. Note that the check for Dr. appears first because it
transcends gender. If we checked for a particular gender first, we would miss all the
members of that gender who were also doctors. Instead, we want to check gender
only if the user is not a doctor.

 This example demonstrates that JSTL strictly adheres to the order of your
<c:when> tags. If the first <c:when> tag succeeds, then the second (and remaining)
tags won’t be evaluated; if the second succeeds, then the third (and remaining) tags
won’t be evaluated; and so on.

 The <c:when> tag does not accept a var attribute, but it can use boolean vari-
ables exposed by earlier <c:if> tags.

Addition of <c:otherwise>
to display the default message

Mutually exclusive conditions 93
WARNING <c:when> tags only exclude other <c:when> tags with the same parent
<c:choose> tag from running. Tags later on the page (or within a nested
<c:choose> beneath the successful <c:when>) are not affected. For ex-
ample, in tags structured like the following the two <c:when> tags work
like nested <c:if> tags, not like exclusive sibling <c:when> tags:

<c:choose>
 <c:when>
 <c:choose>
 <c:when> … </c:when>
 </c:choose>
 </c:when>
</c:choose>

4.3.3 Rules for using the complex conditional tags

Some combinations of <c:choose>, <c:when>, and <c:otherwise> don’t make
sense, and JSTL outlaws these combinations. For example, as we already discussed,
<c:when> and <c:otherwise> tags cannot appear outside a <c:choose> tag. There’s
a flip side to this rule: a <c:choose> tag cannot have any direct children (or non-
white space text) except <c:when> or <c:otherwise> tags. Furthermore, if <c:oth-
erwise> occurs, it must follow all the <c:when> tags; it may not come before any of
them. Finally, every <c:choose> must have at least one <c:when> and no more than
one <c:otherwise>.

 To demonstrate these rules, consider the following illegal fragments:
<c:choose>
 <p>Here is a choice:</p>
 <c:when> … </c:when>
 <c:otherwise> … </c:otherwise>
</c:choose>

This example is illegal because only <c:when> and <c:otherwise>—no text or
other JSP tags—may occur directly beneath a <c:choose> tag. Such text outside a
<c:when> or <c:otherwise> tag never needs to be located inside a <c:choose>;
simply place it before or after the <c:choose> tag, depending on where you’d like it
to appear.

 Similarly, the following fragment is illegal:
<c:choose>
 <c:when test="${a}">
 <c:when test="${b}">
 …
 </c:when>
 </c:when>
</c:choose>

94 CHAPTER 4
Controlling flow with conditions
The inner <c:when> tag in this example is not valid; it is the child of a <c:when>, not
of a <c:choose>. It doesn’t matter that the inner <c:when> tag is inside a
<c:choose>; all <c:when> tags must have a <c:choose> as their immediate parent tag.
Note that the nesting alone doesn’t invalidate the inner <c:when> tag; <c:choose>
tags can be nested in a manner similar to <c:if> tags. However, no matter where
<c:when> appears, it must have <c:choose> as its parent.

 Finally, consider one more illegal example:

<c:choose>
 <c:otherwise> … </c:otherwise>
 <c:when> … </c:when>
</c:choose>

This example is invalid because the <c:otherwise> tag, when it appears, must be
the final tag within a <c:choose> group; it can never appear before a sibling
<c:when> tag. This rule is designed to help ensure that you haven’t made a mistake
when constructing a <c:choose> block. If a <c:otherwise> tag came before a
<c:when> tag, the <c:when> tag could never succeed; the <c:otherwise> tag would
always run, preventing the later <c:when> tag from doing so. Because the <c:when>
tag in the last example could never succeed, JSTL declares it to be illegal and pre-
vents the error before the page runs.

4.4 Summary

When using JSTL’s conditional tags, keep the following points in mind:
� <c:if> supports a simple yes-or-no condition. Adjacent <c:if> tags are inde-

pendent of each other, but nested <c:if> tags must all succeed for the inner-
most body to be printed.

� <c:choose>, <c:when>, and <c:otherwise> support multiway exclusive con-
ditions. They can be nested just like <c:if>, although too much nesting of
<c:choose> tags can lead to confusing code.

We’ll look at a few more concrete examples of JSTL’s conditional tags in the next
chapter.

5Controlling flow
with loops
This chapter covers…
� Looping over collections with <c:forEach>
� Parsing strings with <c:forTokens>
� Iterating over subsets
� Determining current loop status
95

96 CHAPTER 5
Controlling flow with loops
Looping involves repeatedly executing the same block of your JSTL page, over and
over. It sounds mind-numbingly boring—and if you were a web server, you’d prob-
ably agree. But for us, loops are anything but boring. They’re a powerful feature
that works as the cornerstone for many, if not most, dynamic web pages.

 Looping is often called iteration. As the word suggests, iteration involves repeti-
tion. Figure 5.1 illustrates the way JSTL lets you take any valid JSP fragment—
including tags, template text, or both—and cause it to be processed repeatedly. If
your repeated JSP fragment depends on scoped variables that change during the
looping process, then each repetition can produce slightly different text or HTML.
During each loop (that is, during each single pass through the iteration), the static
template text stays the same, but the tags each get another chance to run and pro-
duce new dynamic output. Because of this behavior, looping is very useful for build-
ing dynamic tables and lists.

In the core JSTL library, two tags handle looping: <c:forEach> and <c:forTokens>.
These two tags have a lot in common; they mainly differ in the type of data they
loop over—that is, the type of data they consider, item by item. In this chapter, we’ll
look first at simple uses of <c:forEach> and <c:forTokens> separately, and then
we’ll move to more complex iterations using tag attributes that are common to both
<c:forEach> and <c:forTokens>.

5.1 General-purpose looping with <c:forEach>

The <c:forEach> tag is JSTL’s general-purpose looping tag. As you saw in
chapter 4, the expression language can return a collection of items. The <c:forEach>
tag lets you loop over nearly any sensible collection of items that the expression
language returns. For instance, recall the picture of a shopping cart from figure 4.2
in chapter 4. The shopping cart contained three items: an apple, a TV, and a cup of
coffee. If we looped over the shopping cart with <c:forEach>, then <c:forEach>
would consider each of these items in turn.1

Figure 5.1
Text, other JSTL tags, and
even arbitrary JSP can
appear in the body of
<c:forEach> tags.

General-purpose looping with <c:forEach> 97
 The basic function of <c:forEach> is to consider every item in the collection
specified by its items attribute. For each item in the collection, the body of the
<c:forEach> tag will be processed once, with the current item being exposed as a
page-scoped variable whose name is specified by <c:forEach>’s var attribute.
Because this variable takes a different value for each loop, the body of the
<c:forEach> tag can print different text each time it is evaluated.

 Let’s make this behavior concrete. Consider the following use of <c:forEach>:

<c:forEach items="${user.medicalConditions}" var="ailment">
 <c:out value="${ailment}"/>
</c:forEach>

This <c:forEach> tag loops over every item in the medicalConditions property of
the user variable. If this property contains a list of medical conditions, like gingi-
vitis, myopia, and dehydration, then the example will print a string for each of
these items.

 You can also include static template text inside a <c:forEach> tag’s body, in which
case it will appear unchanged for each loop that <c:forEach> makes. For example:

<p>Sorry, you are afflicted with the following
minor medical conditions:</p>

<c:forEach items="${user.medicalConditions}" var="ailment">
 <c:out value="${ailment}"/>
</c:forEach>

If ${user.medicalConditions} contains the three conditions I mentioned earlier,
this fragment will output the following HTML (ignoring white space):

<p>Sorry, you are afflicted with the following
minor medical conditions:</p>

 gingivitis
 myopia
 dehydration

The template text outside the <c:forEach> tag is, of course, included only once.
For instance, this example prints only one tag. But text within the

1 In case you encounter specific Java types when talking with Java programmers—or in case
you’re a developer yourself—you might be interested to know the names of the data types
<c:forEach> accepts. They include arrays, Collection variables (including Lists and
Sets), Maps, Iterators, and Enumerations. As you’ll see in section 5.2, it can also accept
simple strings.

98 CHAPTER 5
Controlling flow with loops
<c:forEach> tag—in this case, the opening and closing tags—is included once
each time the body of the tag is evaluated. The <c:out> tag prints a different value
for each round of iteration because it refers to the ailment variable, which
<c:forEach> sets to a new value for every loop. The <c:forEach> tag sets the ail-
ment variable (and not some other variable with a different name) because that
identifier appears in its var attribute.

 The basic attributes of <c:forEach> are shown in table 5.1.

NOTE Even though the items attribute represents the core functionality of the
<c:forEach> tag, you can use <c:forEach> without it. See section 5.3.2
for more information on when you might want to do this.

5.2 Iterating over strings with <c:forTokens>

Sometimes, data is not structured into a formal collection. If you are communicat-
ing with a so-called legacy application, accessing user input directly, or simply deal-
ing with an application that has chosen to represent data as simple strings, you may
need a tag that breaks a string into its constituent items. For instance, suppose you
are writing an email-related web application, and the user has entered a list of email
addresses in the following form:

shawn.bayern@yale.edu,david.davies@yale.edu,peter.peters@yale.edu

You might wish to analyze the string by breaking it into individual email addresses
separated by commas and performing some action on each of them. (For instance,
you might save them into your database of addresses so you can send unwanted
junk mail to the entire world. Most web sites today seem to do this.) Analyzing a
string is known as parsing.

 When a string is broken into constituent items, these items are often called
tokens. A token is a single, discrete unit within a larger string. The <c:forTokens>
tag iterates over such tokens, which it parses from an input string. Table 5.2 shows
the basic attributes that <c:forTokens> uses to retrieve tokens from within strings.

Table 5.1 <c:forEach> tag attributes for basic iteration

Attribute Description Required Default

items Collection over which to iterate No None

var Name of the attribute to expose the current item No None

Iterating over strings with <c:forTokens> 99
In short, <c:forTokens> uses the items and delims attributes to generate tokens,
which it then exposes as the variable named by var. The items attribute refers to a
string—either a simple, literal string typed directly into the tag, or an expression
referring to a string. For instance, you could literally write

items="a,b,c"

or you could use the expression language

items="${emailAddresses}"

The delims attribute is a string that contains the characters you want to use to sepa-
rate tokens inside the string. These separators are called delimiters. For instance, your
string might be divided with a comma (,), but it could instead use another character,
like a semicolon (;) or even the letter q. Each individual character in the delims
attribute is treated, by itself, as a delimiter. Therefore, if delims is specified as

delims=".,;:"

then the four characters specified—period (.), comma (,), semicolon (;), and colon
(:)—can separate tokens. For example, these delims separate the string

 a,b.c;d:e:f.g

into the following tokens: a, b, c, d, e, f, and g.
 Let’s look at a few examples of <c:forTokens> in action. First, consider the case

where you specify the items attribute’s value directly inside the tag:

<c:forTokens items="a;b;c;d" delims=";" var="current">

 <c:out value="${current}"/>

</c:forTokens>

This example uses semicolons to separate the string a;b;c;d into four tokens: a, b,
c, and d. It then prints the following output:

a

b

c

d

Table 5.2 <c:forTokens> tag attributes for basic iteration

Attribute Description Required Default

items Input string over which to iterate Yes None

delims Delimiter characters that separate tokens Yes None

var Name of the attribute to expose the current token No None

100 CHAPTER 5
Controlling flow with loops
Now, suppose that instead of specifying a string directly in the items attribute, we
use an expression. Imagine that a variable called user contains a phone property
that stores a phone number. If ${user.phone} returns the value 203-432-6687, the
following <c:forTokens> tag will break this string into three sets of numbers, each
separated by a hyphen (-):
<c:forTokens items="${user.phone}" delims="-" var="current">
 <td><c:out value="${current}"/></td>
</c:forTokens>

This example prints the following output:
<td>203</td>
<td>432</td>
<td>6687</td>

Such output might be useful if you wanted to print a tabular list of numbers or sep-
arate the area code from the phone number.

 Like items, the delims attribute accepts expressions. However, you’ll use
expressions in items much more commonly than in delims. (It’s reasonable to
assume that you’ll just about always use an expression in items and rarely use one
for delims.)

5.2.1 How JSTL parses strings
In an items string, delimiter characters that appear consecutively are treated as a
single delimiter. Therefore, in a case like
<c:forTokens items="a,,b,,c" delims=",">

the <c:forTokens> tag finds three tokens: a, b, and c.
 This rule applies even if there are different kinds of delimiters. For example, the

following tag has the same effect as the last tag:

<c:forTokens items="a,;,b,;,c" delims=",;">

Similarly, delimiters that appear at the beginning or at the end of items are
ignored; they do not produce blank or empty tokens. Therefore, this tag has the
same effect as the last two:

<c:forTokens items=",;,a,;,b,;,c,;," delims=",;">

The tag still finds just three tokens: a, b, and c.
 Earlier, I mentioned that <c:forEach> can accept a simple string value for its

own items attribute. In cases where this occurs, it is equivalent to <c:forTokens>
with only the comma character as a delimiter (delims=","). This capability lets the
<c:forEach> tag iterate over the tokens a, b, and c like this:

<c:forEach items="a,b,c">

Advanced iteration with <c:forEach> and <c:forTokens> 101
Thus, think of <c:forEach> as supporting simple string tokenization and <c:forTo-
kens> as providing more elaborate tokenization.

5.3 Advanced iteration with <c:forEach> and
<c:forTokens>

So far, you’ve seen simple examples using <c:forEach> and <c:forTokens>. We’ve
fed them collections of items and watched them run their bodies multiple times,
producing different output each time.

 But iteration in JSTL doesn’t stop there. Using other tag attributes, you can cus-
tomize the behavior of these tags. For instance, you can determine information
about the current item’s position within the overall loop: is it first, last, or some-
where in the middle? This ability is valuable in helping you construct visually
appealing tables—for example, HTML tables whose rows alternate between two
colors, or lists that treat the first item or last item specially. You can also use
optional attributes of <c:forEach> and <c:forTokens> to decide to iterate over
only part of the collection at hand: for instance, you might want to display the first
10 items only, leaving the rest for other pages (or a later portion of the same page).
Or, you might want to print a table that uses only every second, or third, item in a
collection (imagine, for instance, that a collection alternates between dates and
times, and you want to print just dates).

 We’ll first consider JSTL’s subsetting functionality: the ability of <c:forEach>
and <c:forTokens> to use only part of the collection of items they have been
given. Following that, we’ll explore the use of iteration status (information about
the current loop in the iteration) and how this status interacts with the features
related to subsetting.

5.3.1 Looping over part of a collection

Sometimes, you simply have too much information, and you need to focus on just
one part of it. For instance, consider again the ${user.medicalConditions} expres-
sion we used in section 5.1. Imagine a situation where users are unfortunate enough
to have developed so many ailments that the list won’t manageably fit on a single
page. (Of course, this example is somewhat outlandish, but it is not a difficult leap
from this problem to one that most real-life search engines face.) In such situations,
results are so numerous that they need to be spread over multiple pages. Therefore,
an individual <c:forEach> or <c:forTokens> loop must deal with only part of the
entire collection. Such a limited part is often called a subset.

102 CHAPTER 5
Controlling flow with loops
 Both <c:forEach> and <c:forTokens> accept three optional attributes in sup-
port of subsetting, as shown in table 5.3.

JSTL assigns an index to every item in a collection; this index represents the item’s
place in the overall collection. For each collection, the index begins with 0, which—
interestingly enough—corresponds to the first item. Each successive element takes
the next index number: the second element has an index of 1, the third element has
an index of 2, and so on.

 The begin and end attributes accept numbers corresponding to these indexes.
By default, <c:forEach> and <c:forTokens> process the entire collection available
to them; like dutiful cogs in a machine, they start at the beginning and finish at the
end. The begin and end attributes override this default behavior by identifying par-
ticular start and end indexes. The begin attribute directs the tag to start with the
item at a particular index, and end causes iteration to end with a particular index.
For example, begin="0" and end="4" together instruct that a <c:forEach> or
<c:forTokens> tag should begin with the first element and end with the fifth. Simi-
larly, when a <c:forEach> or <c:forToken> tag is given the attributes begin="5"
and end="9", only the indexes 5, 6, 7, 8, and 9 will be included (that is, the sixth
through tenth elements).

WARNING Be careful! Because 0 represents the first element, end="4" will cause iter-
ation to proceed through the fifth element. Zero-based indexes can be con-
fusing, but many programming languages adhere to them for consistency.
If you have worked with JavaScript or Java before, you probably are famil-
iar with zero-based indexes. (Zero-based indexes are not limited to pro-
gramming languages. Not too far from where I live, a highway mile
marker labeled 0 indicates the beginning of the highway. As a program-
mer, it warms my heart.)

Table 5.3 Subsetting attributes for <c:forEach> and <c:forTokens>

Attribute Description Required Default

begin Item to start the loop (inclusive; 0=first item, 1=sec-
ond item).

No 0

end Item to end the loop (inclusive; 0=first item; 1=sec-
ond item).

No Last item

step Iteration will process every stepth element (1=every
element, 2=every second element).

No 1

Advanced iteration with <c:forEach> and <c:forTokens> 103
As an example of simple uses of begin and end, let’s look at a <c:forTokens> tag
that iterates over letters of the alphabet. Without a begin or end attribute, the fol-
lowing tag iterates over the letters from a through f:

<c:forTokens items="a,b,c,d,e,f" delims="," var="letter">

 <c:out value="${letter}"/>

</c:forTokens>

Suppose we add just the begin attribute:

<c:forTokens items="a,b,c,d,e,f" delims="," var="letter" begin="4">

 <c:out value="${letter}"/>

</c:forTokens>

This invocation of the tag will print out only the letters e and f. Similarly, we can
use only end:

<c:forTokens items="a,b,c,d,e,f" delims="," var="letter" end="4">

 <c:out value="${letter}"/>

</c:forTokens>

This tag outputs a, b, c, d, and e, but not f, because the index of e in this collection
is 4.

 Of course, begin and end can be combined, as in tags like the following:

<c:forTokens items="a,b,c,d,e,f" delims="," var="letter"

 <c:out value="${letter}"/>

</c:forTokens>

This loop outputs c, d, and e—the tokens with indexes 2, 3, and 4.
 Only indexes that actually exist in the underlying collection can be included in

the iteration. If begin has a value that is greater than any item’s index—for
instance, if you type begin="20" but there are only four items in your collection—
then your <c:forEach> or <c:forTokens> tag won’t iterate over anything. Its body
will never be processed. If end is higher than the highest index—for instance,
end="50" with a 47-element collection—then end has no effect.

 The step attribute lets you filter the list further by skipping elements. The
default behavior for <c:forEach> and <c:forTokens> is to include every element,
but step="2" overrides this behavior and causes the tags to process only every sec-
ond element. A value of 3 for step includes only every third element in the tag’s
iteration, and so on. If step does not line up evenly with end, or with the natural
end of the collection, then some items at the end of the collection may be skipped.
For instance, if 10 is the highest index in a collection, begin is 5, and step is 2, then
only the indexes 5, 7, and 9 will be included.

begin="2" end="4">

104 CHAPTER 5
Controlling flow with loops
 Table 5.4 shows some examples of begin, end, and step operating together,
assuming an underlying collection with 11 items (with indexes of 0 through 10). A
hyphen indicates that the attribute was not specified.

5.3.2 Looping over numbers

I mentioned earlier that the items attribute is optional in <c:forEach>. If you don’t
specify items, then begin and end must be present. When this happens, a collection
containing the numeric values specified with the begin and end attributes is the
basis for the iteration. The following example

<c:forEach begin="1" end="5" var="current">

 <c:out value="${current}"/>

</c:forEach>

outputs the following, ignoring white space:

1 2 3 4 5

In <c:forEach> tags that lack an items attribute, step is still permissible and has
the expected effect. This example

Table 5.4 Examples of the effect of the begin, end, and step attributes in iteration tags. This
table shows which values will be included in an iteration for various permutations of attributes.

Begin End Step Included items (by index: 0=first item, 1=second item, and so forth)

 - - - 0 1 2 3 4 5 6 7 8 9 10

 3 - - 3 4 5 6 7 8 9 10

 - 3 - 0 1 2 3

 - - 3 0 3 6 9

 3 3 - 3

 3 3 3 3

 0 9 2 0 2 4 6 8

 0 9 3 0 3 6 9

 0 9 4 0 4 8

 0 9 5 0 5

 0 9 6 0 6

 0 9 20 0

20 30 1 none (begin exceeds greatest index)

Advanced iteration with <c:forEach> and <c:forTokens> 105
<c:forEach begin="2" end="10" step="2" var="current">

 <c:out value="${current}"/>

</c:forEach>

has the following output:

2 4 6 8 10

In <c:forTokens>, the items attribute is mandatory. If you want to iterate over
numbers, just use <c:forEach>.

 In the examples so far, we’ve typed the begin, end, and step attributes’ values
inside the tag. But like most other attributes in JSTL tags, these attributes accept
expressions. If you have a scoped variable called loopBoundary, you could write

end="${loopBoundary}"

TIP The primary use for iterating directly over numbers is to repeat the loop
body a specific number of times. Sometimes, you just need to print a big
list of numbers, but this is rare. Instead, looping over numbers is useful
when you want to use <c:forEach> to repeat static content, but you want
to decide how many times to print that content.

For example, many HTML pages manage white space manually using
the HTML entity reference. Although there are often better ap-
proaches than using this entity to handle white space, it is more manage-
able to write

<c:forEach begin="1" end="50"> </c:forEach>

than to type or paste 50 times. For example, you might find it eas-
ier to experiment with different numbers of spaces, or change the number
quickly and in a well-defined manner, if you use the <c:forEach> tag.
And, of course, you can vary the number dynamically. If end="50" in the
previous example were instead end="${width}", where ${width}
changed as appropriate, then the number of printed occurrences
could grow or shrink as appropriate.

Although it feels like a dirty HTML hack, I have used a similar ap-
proach to produce table cells filled with dynamically generated
entity references—for example, to represent data such as poll results or ap-
plication progress graphically:

<table>

 <tr>

 <td bgcolor="#00aa00">

 <c:forEach begin="1" end="${width}"> </c:forEach>

 </td>

106 CHAPTER 5
Controlling flow with loops
 </tr>
</table>

This code prints a bar of variable width across the screen. You’ll see this
technique in practice in chapter 12.

5.3.3 Loop status

The <c:forEach> and <c:forTokens> tags also have a varStatus attribute that you
can use to expose information about the iteration that is taking place. This informa-
tion is useful when you want to exercise specialized control over a loop. Suppose,
for instance, that you need to treat a collection’s first or last item differently from
the rest.

 Like the var attribute in <c:forEach> and <c:forTokens>, varStatus lets you
create a scoped variable that can be accessed inside the loop. If var="current", the
current item is exposed inside the loop as a page-scoped variable named current.
Similarly, if varStatus="s", then a variable that contains information about the
current round of iteration is exposed as a variable named s. Table 5.5 shows the
most useful properties of this status variable.

As you saw earlier, every item in a collection has an index number. These indexes
start with 0 and increase by one for each element. The index property of varSta-
tus’s variable holds the index of the current item in the loop. For instance, in a
round of iteration for the first element in a collection, index will equal 0. For the
second, index will equal 1. Whatever the value of the step attribute (the default 1 or
a value greater than 1), index will jump by step for each round of iteration. As
another example, if you use the attribute begin="10", then for the first loop where
<c:forEach> enters its body, index will equal 10.

Table 5.5 The loop status variable (exposed by the varStatus attribute) includes properties for
determining information about the current loop, such as whether it’s the first or last iteration. You
can also use it to determine the position of the current item in its original collection.

Property Type Description

index number The index of the current item in the underlying collection

count number The position of the current round of iteration, starting with 1

first boolean Whether the current round of iteration is the first

last boolean Whether the current round of iteration is the last

Loop example: scrolling through results 107
 The count property, on the other hand, starts with 1 and reflects the current
loop’s position among the items for which <c:forEach> runs its body. No matter
what, count always increases by one for each loop. For any <c:forEach> or
<c:forToken> tag, count will be 1 the first time the body is processed, 2 the second
time, and so on. The first and last properties are boolean properties indicating
whether the current loop is the tag’s first or last, respectively. (The first property is
just a convenient way of checking to see whether count currently equals 1.) The
count attribute’s behavior isn’t affected by the begin, end, or step attribute.

 Figure 5.2 shows the values of these properties for a sample iteration.2

5.4 Loop example: scrolling through results

Earlier, we discussed how you can use the begin and end attributes to display only
part of a collection, in cases where the collection is too big to fit reasonably on a
single screen. Many applications, when they have too much information for a sin-
gle page, let users pick the information to view. For instance, the user can decide
whether to display results 0 through 19, 20 through 39, and so on.

2 The variable that varStatus creates has some other properties, but they are intended more for
developers of custom tags than for page authors. If you’re a Java developer and are interested
in these extra properties, see the LoopTagStatus interface in appendix B.

Figure 5.2
Values of the varStatus
variable’s properties during a
sample iteration. The tag in this
figure iterates three times,
producing the letters a, c, and e.
The boxes above each letter
show the values of the
varStatus variable for that
letter’s loop.

108 CHAPTER 5
Controlling flow with loops
 Let’s write a sample page that that allows the user to scroll, or page, through
information. The page’s output should look like figure 5.3: the top prints ranges of
data the user can click, and the bottom prints the data.

We can accomplish this result with just the iteration and conditional tags you’ve
seen so far, using the expression language and the <c:out> tag to assist us. Of
course, for a page to be useful, it needs real data to display. Because we haven’t yet
looked at how to retrieve information from XML files and databases, we can’t yet
display real data. So, we’ll use <c:forEach>’s ability to generate numbers for us
automatically when we use the begin and end attributes without items. Thus, we’ll
be able to experiment with a simple page that lets us scroll over numbers. (As soon
as you have real data, you can insert this data into <c:forEach>’s items attribute,
and the page will then let you loop over interesting information, not just numbers.)

 Without further ado, let’s look at the code (see listing 5.1).

Figure 5.3
When a web page has too much
data to fit on a single screen, it’s
useful to let the user jump
around within the data. In the
sample page we build in section
5.4, users can click the links at
the top of the page to choose
what data to view. You can
produce pages with this feature
using only the tags you’ve
learned about so far.

Loop example: scrolling through results 109
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<c:set var="totalCount" scope="session" value="100"/>
<c:set var="perPage" scope="session" value="20"/>

<c:forEach
 var="boundaryStart"
 begin="0"
 end="${totalCount - 1}"
 step="${perPage}">

 <a href="?start=<c:out value="${boundaryStart}"/>">
 [
 <c:out value="${boundaryStart}"/>
 -
 <c:out value="${boundaryStart + perPage - 1}"/>
]

</c:forEach>

<c:forEach
 var="current"
 varStatus="status"
 begin="${param.start}"
 end="${param.start + perPage - 1}">
 <c:if test="${status.first}">

 </c:if>
 <c:out value="${current}"/>
 <c:if test="${status.last}">

 </c:if>
</c:forEach>

5.4.1 Understanding the example

This is our first real-world example of a full JSTL page, so let’s go through it care-
fully. Overall, the example can be broken into three sections.

b We use two <c:set> tags to configure our page’s behavior. The tags are here only
for demonstrative purposes; the two values they set could easily come from any-
where else—for instance, back-end Java code, request parameters, and so on. The
rest of the example depends on the two variables these tags create:

� totalCount—The total number of items we’d like to let the user scroll
through. For instance, if we retrieved 100 items from the database, we’d want
totalCount to equal 100. That’s the sample value we use here.

Listing 5.1 scroll.jsp: Using JSTL to let the user scroll through results

Configuration b

Prints
ranges

 c

Prints data
items

 d

110 CHAPTER 5
Controlling flow with loops
� perPage—The number of results we want to show the user on each page.
Here, we set this value to 20, which seems like a reasonable number: it’s not
so small that it’s irritating, but it’s not so large that it overwhelms people.

c With these variables set, we can print out our page’s top section (see figure 5.3).
This section will look the same no matter which data the user has chosen. (As an
exercise, think about how you could highlight or otherwise draw attention to the
range the data is currently displaying.) This data depends only on the two variables
that configure our page’s behavior: totalCount and perPage.

 The goal of this section is to produce links of the form
[0 – 19]

that let the user choose which results will be displayed.
 To produce these links, we loop over our data from the first item (begin="0") to

the last one (end="${totalCount - 1}"). We set the step attribute to perPage so that
we loop only once for each range we want to print. For instance, if we start with 0
and perPage is 20, we want the current item—which we call boundaryStart—to be
0, then 20, then 40, then 60, and so on. Within each loop, we print out the starting
and ending numbers of the range. The starting number is simple: it’s boundaryStart
(the current item). To get the ending number of the range, we add perPage to bound-
aryStart using the expression language. Note that we subtract 1 from this sum,
because we don’t want this boundary to spill over into the next one. We want to print
[0 – 19], [20 – 39], and so on, not [0 – 20] and then [20 – 40]. (We
begin with 0 to demonstrate that our data starts with item 0, as is usually the case as
far as <c:forEach> is concerned. However, if we were printing real data instead of
numbers, we could add 1 to the expressions in both the begin and end attributes to
make the numbers friendlier to the user: [1 – 20], [21 – 40], and so on.)

 We use one trick that needs to be explained. The block of JSTL used to begin
each link looks like this:

 <a href="?start=<c:out value="${boundaryStart}"/>">

We’re using a <c:out> tag in the middle of an HTML <a> tag: no problem there!
Our trick involves the <a> tag itself. Once the <c:out> placeholder gets filled in, the
tag will look like this:

20 could just as easily have been any other number printed by the <c:out> tag.
This <a> tag means, “Link back to the current page, sending a request parameter
named start that equals 20.” Thus, when our user chooses a specific range, a start
parameter will indicate the start of the range the user asked for. We can access this
parameter using the expression ${param.start}.

Loop example: scrolling through results 111
TIP In general, you can send request parameters as part of a URL in the form
param1=value1¶m2=value2. In chapter 6, we’ll look at a much
friendlier way to send parameters as part of an HTML <a> link. But it’s
useful to have seen this manual style in action at least once.

d The final section of our page displays the selected results. If no results have been
selected—that is, if the start parameter is empty—we begin with the number 0.
We do so because begin="${param.start}" is the same as begin="0" if the start
parameter doesn’t exist. In the page’s second loop, we begin at the start of the range
and loop over perPage elements: end="${param.start + perPage - 1}", which
means, “End the iteration with the item perPage items away from param.start.”
We subtract 1 because the end attribute causes the loop to include the final value,
but we want to make sure our ranges don’t overlap. Subtracting 1 from the end
attribute is a fairly common pattern in JSTL pages when you work with ranges.

5.4.2 Using varStatus in the example

In the loop at the bottom of the page in our example, notice that we use varStatus
to expose a variable named status. Instead of printing the beginning and the
ending outside the <c:forEach> tag, we’ve moved those tags inside and
placed <c:if> tags around them. This way, we can be sure the element will
print only if there are items to fill it. That is, we print only when we
encounter our first piece of data, and we print the closing tag for the last
item. (Recall from the previous chapter that although empty lists——dis-
play fine in most browsers, they’re technically an error.) The empty list is not a pos-
sibility in our example; because we’re just iterating over numbers, they can’t be
missing! But a real-life collection might not be as big as we expect it to be, in which
case these defensive checks are appropriate.

 Because we expose this status variable, we can also use it to modify the loop’s
behavior in other ways. For instance, suppose we wanted to treat alternating rows
differently. Normally, we might use different colors, but because colors don’t show
up well in a black-and-white book, we’ll instead use different font sizes. Let’s make
every second row print in a small font:

<c:forEach
 var="current"
 varStatus="status"
 begin="${param.start}"
 end="${param.start + perPage - 1}">
 <c:if test="${status.first}">

112 CHAPTER 5
Controlling flow with loops
 </c:if>

 <c:out value="${current}"/>

 <c:if test="${status.last}">

 </c:if>

</c:forEach>

To pick out every second row, we use the expression ${status.count % 2 == 0}.
Recall from chapter 3 that % in JSTL’s expression language is a remainder operator.
Thus, status.count % 2 means, “Divide status.count by 2 and take the remain-
der.” This remainder will be 0 only for the even rows. Thus, only these rows print
in a smaller font in figure 5.4. Note that we use the same condition twice: once to
open a tag, and once to close it with .

<c:if test="${status.count % 2 == 0}">

</c:if>

<c:if test="${status.count % 2 == 0}">

</c:if>

Figure 5.4
Many web sites display
alternating rows in different
colors. Because colors don’t
show up well in a black-and-
white book, our example of
handling alternate rows uses
font size instead of color.
Here, every second row prints
using small text.

Summary 113
5.5 Summary

When using JSTL’s iteration (loop) tags, keep the following points in mind:
� The <c:forEach> tag is JSTL’s general-purpose looping tag. It lets you loop

over nearly any kind of collection.
� The <c:forTokens> tag breaks apart strings and loops over these string frag-

ments, called tokens.
� When you iterate, you’ll usually want to expose a variable using the iteration

tag’s var attribute. Doing so lets you access each individual item, one by one,
in the body of your iteration tag.

� The iteration tags support a varStatus attribute that lets you recover infor-
mation about where you are in the overall iteration. The tags also support
begin, end, and step attributes to let you write underachieving <c:forEach>
and <c:forToken> tags that iterate over only parts of a collection.

6Importing text
This chapter covers…
� Importing text from web pages
� Creating common headers and footers
� Managing URLs and request parameters
� Redirecting users to new pages
115

116 CHAPTER 6
Importing text
“Including data,” says the JSP specification, “is a significant part of the tasks in a JSP
page.” It might sound boring, but JSP pages often simply need to include text that
comes from elsewhere.

 There are many reasons to write a JSP page that includes content from other
pages. For instance, most professional web sites have common headers and foot-
ers—that is, they all start and end the same way in order to achieve a uniform look
and feel. If you create one file called header.jsp and another called footer.jsp, it’s
easy to establish a consistent layout and design for your site by including them at
the top and bottom of all your pages.

 But text reuse doesn’t stop there. JSP pages can act as a convenient switching
mechanism, routing the right information to the right users based on their prefer-
ences, roles, or actions, and perhaps personalizing the text for users individually
along the way. Pages can also include and merge content from a variety of sources,
much as web portals do. (In chapter 13, we’ll look at an example of how to aggre-
gate content into a single, coherent web site.)

 In chapter 2, we discussed two ways to include text in a JSP page: the <jsp:
include> tag and the <%@ include %> directive. JSTL introduces a third mecha-
nism: the <c:import> tag. Think of <c:import> as <jsp:include>: The Next Genera-
tion. The <c:import> tag supercedes <jsp:include>, providing all the functionality
of the core JSP tag but also adding new features. For example, whereas
<jsp:include> only lets you include files from the current web application,
<c:import> lets you include content from other web servers (see figure 6.1).

Figure 6.1 Whereas <jsp:include> supports simple inclusion of content from
within the same web application, <c:import> lets you retrieve text from the entire
local JSP container, as well as from web servers accessible over the network.

Including text with the <c:import> tag 117
Another important task you’ll need to handle when you write dynamic web pages
is managing Uniform Resource Locators (URLs). You need to use URLs when you
import content with <c:import>, but URLs show up in other places as well. For
example, every time your pages display hyperlinks (HTML <a> tags) to other pages,
they use URLs.

 In this chapter, we look at <c:import> and other tags that help you manage and
use URLs. We’ll also show how you can communicate with the pages you include,
in order to customize their output.

6.1 Including text with the <c:import> tag

To retrieve content from a local JSP page or from another server, you can use the
<c:import> tag. Sometimes you’ll just want to print the information that you
retrieve, but <c:import> also lets you store the retrieved text in a scoped variable
instead of printing it.

 Table 6.1 shows the <c:import> tag’s attributes.

The crucial attribute is url, which specifies the URL of the content to retrieve. The
other attributes let you modify the way the tag handles its URL.1

 Often, a page that uses <c:import> is called a source page, and the page whose
contents are included with <c:import> is called a target page.

6.1.1 Absolute and relative URLs
You’re probably familiar with the basics of URLs simply from browsing the Web. A
URL, which is often called a web address by the sort of person who’s captivated by

Table 6.1 Basic <c:import> tag attributes

Attribute Description Required Default

url URL to retrieve and import into the page Yes None

context / followed by the name of a local web application No Current context

var Name of the attribute to expose the String
contents of the URL

No None

scope Scope of the attribute to expose the String
contents of the URL

No page

1 The <c:import> tag has a few advanced attributes that you’ll need only if you’re performing
relatively sophisticated text imports. See chapter 14 for more information about advanced
<c:import> techniques.

118 CHAPTER 6
Importing text
television commercials for America Online, is a string that describes the location of
a particular piece of content on the network. A complete URL has two parts:

� A scheme, which is the name of a mechanism for finding data (like http or ftp)

� Information that follows the scheme and describes where to find the data

These two parts are separated by a colon. For instance, a full HTTP URL might look
like this:

http://java.sun.com/

This URL has a scheme of http, followed by a colon, followed by the location //
java.sun.com/. The URL therefore means, “Use the HTTP protocol to get information
from the web server named java.sun.com.”

 HTTP URLs that have a scheme and a server are called absolute, meaning that
they refer to the same content no matter where they appear. For instance, the
meaning of the following URL doesn’t change, regardless of where you see it:

http://www.uky.edu/FiscalAffairs/Environmental/hmm/outline.htm

Wherever this absolute URL appears, it refers to a specific page on the www.uky.edu
server. (When this chapter was written, this particular page offered information on
“hazardous waste generator training” for workers at the University of Kentucky. I
have no idea why it was one of my laptop’s bookmarks.)

 Not all URLs are absolute; some are relative, meaning they’re abbreviated, just
as phone numbers can be. For example, if I’m talking to a colleague across the
country, telling her that my phone number is 432-6687 won’t be enough; I also
need to give her my area code (which is 203, in case you’re interested in stalking
me). However, using a shortened version of my complete telephone number is fine
as long as the context is clear—if I’m communicating with a local dry-cleaner or
exterminator, for instance. In fact, when I give out my phone number to colleagues
within my university, I often leave off more than the area code, giving just an
extension of 2-6687.

 Similarly, the amount of information missing from a URL can vary. A relative
URL might only lack a scheme and a server, or it might leave off part of the path,
too. Just as with phone numbers, the meaning of a relative URL depends on the
place where it appears. Typically, every web page has its own URL, and when a rel-
ative URL appears in the source code for a web page, it picks up its missing pieces
based on the location (the server and the path) of the current page.

 For our purposes, there are two types of relative URLs: page-relative and context-
relative.

Including text with the <c:import> tag 119
Page-relative URLs
A URL that simply specifies a filename, or part of a file path, is sometimes called a
page-relative URL. Page-relative URLs start with any character other than a forward
slash (/); for instance, all of the following are page-relative URLs:

ugly-man.jpg

images/uglier-man.jpg

backup/images/ugliest-man.jpg

Figure 6.2 will help you visualize what these page-relative URLs mean. Assume that
these three URLs occur in a JSP page called source.jsp. The first page-relative URL,
ugly-man.jpg, refers to the file ugly-man.jpg in the same directory as source.jsp.
The second URL in the list refers to the file uglier-man.jpg in the images subdirec-
tory; the third URL points to ugliest-man.jpg in the images directory, which is in a
directory called backup.

 You may be familiar with page-relative URLs from the <a> and tags in
HTML. For instance, if you wanted to link to outline.html in the current page’s
directory, you could write

Outline

Figure 6.2 Page-relative URLs let you access files based on their relationship
to the current page. For instance, from the file source.jsp, it’s easy to use a
page-relative URL to access files in the same directory (ugly-man.jpg) or in
subdirectories (images/uglier-man.jpg, backup/images/ugliest-man.jpg). Page-
relative URLs work the same way in HTML and in JSTL.

120 CHAPTER 6
Importing text
The <c:import> tag and JSTL’s other URL-related tags work the same way. If you
wanted to include the file named outline.html from the same directory as the page
you’re writing, you could simply write

<c:import url="outline.html"/>

This kind of relative link has the advantage that it doesn’t need to be changed when
your application moves. You can pick up outline.html and the page that contains a
relative URL to it, and then move these two pages anywhere without needing to
change the link.

Context-relative URLs

As I mentioned, page-relative URLs work the same way in HTML tags like <a> that
they do in JSTL tags like <c:import>. Relative URLs that start with the / character,
however, do not. They have a special meaning to JSTL tags that’s different from
their meaning in HTML.

 In HTML, if we use the tag

then the file ugly-man.jpg comes from the images directory at the root of our entire
web server. This directory might store images that are shared by both static and
dynamic pages; pages written in Perl, JSP, or any other language can all use the
same relative URL as long as they run on the same server.

 By contrast, if we use the URL

/images/ugly-man.jpg

as input to a JSTL tag, the tag doesn’t look for the images directory at the root of our
web server. Instead, the images directory is found at the root of our JSP page’s web
application. Recall from chapter 2 that the term web application has a specific mean-
ing when describing sites built using JSP: a web application is an organized collec-
tion of pages and other resources, typically grouped under a single directory. A
single web server might run many different web applications at the same time. The
term context-relative arises because a web application is sometimes called a context.

NOTE I’ve written and posted instructions for setting up Tomcat, a free JSP con-
tainer, on Manning Publications’s web site. These instructions also de-
scribe web applications (contexts) in more detail. See appendix D for the
URL of these instructions.

Including text with the <c:import> tag 121
Note that the same relative URL might have two different meanings within your
page if it starts with /. If it’s sent directly to the browser as part of an HTML tag, it
takes on its familiar meaning in HTML (server-relative). But if it’s used as one of the
attributes to <c:import> or another JSTL tag, its JSP-specific meaning applies (con-
text-relative). This usage can be confusing, but don’t worry about it for now. Later
in this chapter, we’ll encounter the <c:url> tag, which helps you manage URLs and
which removes some of the confusion.

6.1.2 Retrieving data from URLs

Let’s look at a few examples. Suppose we’re writing a page called source.jsp, and
we want to include the text from a file named target.jsp that exists in the same
directory as source.jsp. To do this, we could just write

<c:import url="target.jsp"/>

Suppose, however, that source.jsp is in a directory called source and target.jsp is in
a directory called target, both directories being at the root of our web application.
In this case, we could import the target page as follows:

<c:import url="/target/target.jsp"/>

Now, suppose target.jsp is located on a different web server. In that case, the only
way to retrieve the file using <c:import> is be to use its full URL:

<c:import url="http://www.far-away.net/directory/target.jsp"/>

You are not limited to including JSP pages or other resources from a JSP con-
tainer. You can specify any valid URL. For instance, we can include the entire
CNN home page:

<c:import url="http://www.cnn.com"/>

We can even use the File Transfer Protocol (FTP):

<c:import url="ftp://ftp.cs.yale.edu/banner.msg"/>

Importing from another web application

Between absolute URLs and those relative to the current web application lies a mid-
dle ground. Sometimes, you want to refer to a JSP page (or other resource) from a
different web application on the same server as yours. For example, maybe an old
application has images, information, or other resources that you want to use. You
can retrieve files from another web application by specifying that web application’s
name using the <c:import> tag’s context attribute.

122 CHAPTER 6
Importing text
 The context attribute names another web application on the same server as the
page you’re writing. This name needs to start with a forward slash (/). For instance,
consider the following tag:

This tag imports the page /directory/target.jsp from the web application named
“other” in the same JSP container as our source page. Thus, the URL that appears in
the url attribute is treated as if it is relative to the root of this other web application
(that is, the other context).

Using expressions
Of course, you’re not limited to using URLs that you type literally into the
<c:import> tag’s url attribute. The <c:import> tag supports the full range of JSTL
expressions. For instance, the target URL can come from an expression, as follows:

This tag looks up the target attribute in the application scope, treats it as a URL,
and retrieves information from this URL. The context attribute can also come from
an expression:

6.1.3 Saving information for later

By default, <c:import> retrieves information from a URL and then immediately
prints it to your page. This is exactly what <jsp:include> does, and in most cases,
it’s also what you want.

 However, suppose you don’t want to immediately print the data you retrieve.
Sometimes, for instance, you want to import a page and then include its text multi-
ple times in your page. (As an example, imagine a file that contains nothing but
some HTML formatting to produce a stylized, horizontal line.) Or you might want
to retrieve some text every time the user logs in, and then store this text in the
user’s session scope for use during the user’s session. Saving data from <c:import>
lets you avoid having to retrieve the contents of a URL multiple times, which can
sometimes take a long time and slow your pages.

 To save the result of <c:import> instead of printing it out, you can use the var
attribute. Specifying a var attribute to the <c:import> tag causes the tag to not out-
put anything. Instead, the tag will simply retrieve text and save it to a scoped vari-
able. As with other JSTL tags, you can also use a scope attribute to set the scope of
the variable you create. (As usual, when you use var and scope, you need to specify
the name and scope manually; you can’t use expressions in these two attributes.)

<c:import context="/other" url="/directory/target.jsp"/>

<c:import url="${applicationScope.target}"/>

<c:import url="${applicationScope.target}"
context=" ${applicationScope.targetContext}"/>

Including text with the <c:import> tag 123
 For example, consider the following block of JSP text:
<c:import url="http://legal.com/copyright-notice.html"/>
<p>
Welcome to Joe’s Legal Services site.
We’re not lawyers, but we try real hard.
Been arrested for assault? Larceny?
Indecent exposure? Let us help!
</p>
<c:import url="http://legal.com/copyright-notice.html"/>

This page displays a copyright notice at the top and bottom of the page by import-
ing a URL that contains the copyright notice. However, this page imports the file
twice, and doing so isn’t efficient. Importing a URL can be expensive, so the follow-
ing code, which uses the var attribute, will probably run faster:
<c:import
 url="http://legal.com/copyright-notice.html"

<p>
Welcome to Joe’s Legal Services site.
We’re not lawyers, but we try real hard.
Been arrested for assault? Larceny?
Indecent exposure? Let us help!
</p>

In some situations, you might need to pass imported text from the <c:import> tag to
another tag. If a tag reads from its body, you can include the <c:import> tag inside it:

<string:lowerCase>
 <c:import url="target.jsp"/>
</string:lowerCase>

In this example, we’re importing the target.jsp page and passing it to a hypothetical,
third-party tag called <string:lowerCase>.2

 You can also use the var attribute to communicate between a <c:import> tag
and another tag that needs input. Consider the following two tags:

Here, we import a page from another context and then feed it to the JSTL <x:parse>
tag, which we’ll encounter in chapter 8.

var="copyright"/>
<c:out value="${copyright}"/>

<c:out value="${copyright}"/>

2 The open-source Jakarta Taglibs project contains a String Taglib, written by Henri Yandell. This
library includes a <string:lowerCase> tag that’s designed to convert its body into lowercase.
See appendix D for pointers to more tag libraries that are available online.

<c:import url="/target.xml" context="/other" var="doc"/>
<x:parse xml="${doc}"/>

124 CHAPTER 6
Importing text
6.1.4 Communicating with imported pages

Sometimes it isn’t enough just to retrieve a page. If the page is dynamic, you may
want to customize its output. JSTL gives you two easy ways to communicate with
your target pages, and doing so gives those pages an opportunity to tailor their out-
put to your needs.

 First, you can use the <c:param> tag, which we’ll introduce in this section. The
<c:param> tag lets you send a request parameter to your target page.

 Second, if you’re importing a relative URL for a page in your web application,
you can use the request, session, and application scopes to communicate with your
target. (Page scope is the only scope that isn’t shared.) Also, when you import a
page from the same JSP container, all of your source page’s request parameters are
passed automatically to the target page.

The <c:param> tag
The <c:param> tag is an optional child tag for <c:import> (and some other JSTL
tags we’ll encounter later in this chapter). When it appears, it tells <c:import> to
send a request parameter to the page it’s loading. You can access request parame-
ters, as you saw in chapter 3, by using expressions like ${param.user}. Technically,
<c:param> works with any URL that appears in <c:import>, but the idea of request
parameters applies most commonly for HTTP URLs.

 Table 6.2 lists the attributes for <c:param>.

As you saw in chapter 3, every HTTP request parameter has a name and a value.
The name and value attributes are used to specify these, respectively.

 For example, suppose we use this tag:

<c:param name="quarter" value="25"/>

Then if our target page uses JSTL, it can retrieve the value 25 using the expression
${param.quarter}.

 To send parameters to a page that you want to retrieve, simply insert the
<c:param> tag within <c:import>, as the following example demonstrates:

<c:import url="http://www.base.net">
 <c:param name="first" value="one"/>

Table 6.2 <c:param> tag attributes

Attribute Description Required Default

name Parameter name Yes None

value Parameter value No Body

Including text with the <c:import> tag 125
 <c:param name="second" value="two"/>
</c:import>

This code causes the URL http://www.base.net to be retrieved with two parameters
(first and second) just as if the full URL were really the following:

http://www.base.net?first=one&second=two

The result is also the same as if someone had just filled out an HTML form that
looked like this:

<form action="http://www.base.net">
 <input type="hidden" name="first" value="one"/>
 <input type="hidden" name="second" value="two"/>
</form>

Like other JSTL tags, <c:param> accepts expressions; both name and value work
with the expression language.

 For instance, consider the following tag:

This tag retrieves a variable from the session scope and sends it as a request param-
eter to a URL.

WARNING The <c:param> tag is just an easy-to-use front end to the manual tech-
nique for cramming parameters into a URL that you saw at the end of
chapter 5. This approach is fine for most purposes, but it’s not a universal
way to emulate all web forms. Some web forms use a mechanism called
HTTP POST that does not encode request parameters in the URL. If a page
is written in a language other than JSP, it’s not guaranteed to automatically
check the URL for parameters. Thus, if you want to use <c:param> to em-
ulate HTML forms for arbitrary applications, you’ll need to test the appli-
cation first to make sure it reads the parameters you send.

The <c:set> tag and implicit communication with relative URLs
When you use <c:import> with a relative URL, you can use more than just
<c:param> to communicate with your target page. If your target page is in the same
web application as your source page, then your two pages share the same request,
session, and application scopes. Even if the page is in a different web application
(and you’re accessing it using <c:import>’s context attribute), the two pages share
their request scope.

 Using <c:import> to load another page from your web application lets the two
pages communicate as if the user’s browser had accessed them separately. For

<c:param name="user" value="${sessionScope.user}"/>

126 CHAPTER 6
Importing text
instance, suppose we have two pages, cart.jsp and wishList.jsp, and they both use
the expression ${sessionScope.user} to identify the current user. If the user’s
browser accesses these two pages, they can both identify the user because the ses-
sion is shared between them. Similarly, if cart.jsp uses <c:import> to include some
data from wishList.jsp, then the two pages still share the same session; JSTL auto-
matically ensures that they do. Therefore, if the wishList.jsp page needs to know the
name of the current user, it can still retrieve this information using the expression
${sessionScope.user} even when it’s imported with <c:import> and not accessed
directly by a web browser.

 When scopes are shared, source pages can simply use the <c:set> tag (which
you first saw in chapter 3) to communicate with their targets. When using <c:set>
to communicate between pages, you need to use a scope attribute value of request,
session, or application. Request scope is useful if you want to communicate with
the target page without modifying the session or application scope. (Recall from
chapter 2 that a major reason for request scope’s existence is to support communi-
cation with included data. This applies to <c:import> the same way it applies to
<jsp:include>.) But if you’re planning to modify the session or application scope
anyway, you can count on this information’s traveling through a <c:import> to a
target page in your web application. You’ll see an example in the next section, to
make this concept more concrete.

 Why not simply use request parameters, as long as the convenient <c:param> tag
exists? Broadly speaking, you might want to use <c:set> instead for three reasons:

� Sometimes you’ll need to import a page that has already been designed. If it
looks in the session for some data, you can’t simply send it a request parame-
ter and hope that it notices. In some situations, you need to accommodate the
target page’s existing mode of communication.

� <c:param>—and request parameters in general—can use only simple strings
of text. When a request parameter is a word, or even a long sentence, this
limitation is not an issue. But if you want to communicate an entire bean or
other data to a page that you import, you can’t always easily flatten it into a
request parameter. Instead, you will probably want to use a scoped variable:
the source page uses <c:set> to store the information, and the target page
retrieves it using the expression language.

� Scoped variables allow two-way communication, whereas request parameters
let you send data only from the source page to the target.

Figures 6.3 and 6.4 contrast request parameters with other forms of communication.
 Despite the advantages of scoped variables, sometimes the explicit nature of

<c:param>’s parameters leads to cleaner design. When you’re maintaining a large

Including text with the <c:import> tag 127
web site, you might appreciate the simplicity of <c:param> and the fact that, when
you use <c:param> within <c:import>, you can immediately see what data two
pages share. If you want to understand two pages that use scoped variables, you
may need to spend more time looking at the source code for both the source and
the target.

6.1.5 Import example: a customized header

Let’s look at a concrete example of pages communicating with one another using
<c:import>. Many web applications need to standardize the appearance of a
header throughout the application. We’ll throw in a twist, however: in our example,
the header will display a customized title that the source page (the one using

Figure 6.3
<c:param> lets you communicate
simple request parameters, which
take the form name=value.
Request parameters are flexible,
but they can only consist of simple
text strings, and they only support
one-way communication (from the
source page to the target).

Figure 6.4
In contrast with request parameters,
scoped variables—which can be
accessed by both the source and target
pages of a <c:import> tag—can
include arbitrarily structured data. They
support two-way communication as
well. However, they only work for target
pages within your web application.

128 CHAPTER 6
Importing text
<c:import>) determines. The header has a few static characteristics that provide a
standard look for the web application, but each page needs to insert its own title
into this static template.

Example 1: customization with <c:param>
We’ll first look at the simplest case: communication using a request parameter
and the <c:param> tag. As we discussed in the previous section, this tag can be
used only to send simple text strings from one page to another. Our example uses
three pages:

� page1.jsp—A first sample application page
� page2.jsp—A second sample application page
� header.jsp—A JSP file that prints header information for use by both page1.jsp

and page2.jsp

Listing 6.1 contains the code for the header page.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<table width="100%">
 <tr>
 <td align="left" bgcolor="#888888">
 <big>
 <c:out value="${param.title}"/>
 </big>
 </td>
 <td align="right">
 <small>
 Import example application
 </small>
 </td>
 </tr>
</table>
<hr />

This header represents nothing spectacular; the goal is just to display some
dynamic text using the <c:out> tag we discussed in chapter 3. The rest of the page
is simply static template text. The <c:out> tag in listing 6.1 retrieves the request
parameter named title and prints it in the middle of a table that the tag constructs.
This table establishes the header’s structure, and it includes some static template
text (Import example application.) Figure 6.5 shows how the header page might
appear in a browser.

Listing 6.1 Import example application: header.jsp

Retrieves the title
parameter

Including text with the <c:import> tag 129
Let’s now look at two pages that import this header: page1.jsp and page2.jsp, shown
in listings 6.2 and 6.3, respectively.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>

<body>

<c:import url="header.jsp">

 <c:param name="title" value="Welcome to Page 1"/>

</c:import>

<h4>Page 1 information</h4>

We're pleased to introduce Page 1, our newest,

most cost-effective product.

</body>

</html>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>

<body>

<c:import url="header.jsp">

 <c:param name="title" value="Welcome to Page 2"/>

</c:import>

<h4>Page 2 information</h4>

Page 2 is our luxury version of page 1,

Listing 6.2 Import example application: page1.jsp

Listing 6.3 Import example application: page2.jsp

Figure 6.5 Our bare-bones header page, displayed directly in a browser. The URL
for this page includes a sample title.

130 CHAPTER 6
Importing text
complete with leather interior and a caviar
dispenser.

</body>
</html>

Page 1 and Page 2 are nearly identical; the only difference, aside from the different
static text they display, is the value attribute of the <c:param> tag. The two pages
send different values for the title parameter, which causes the header to be dis-
played differently for each page, as shown in figures 6.6 and 6.7.

The point of this short example was to demonstrate a simple header that accepts a
variety of input. Clearly, the HTML used in this header is not extravagant; but from
this example, it should be clear how you can supply custom text into an arbitrarily
complex HTML header that can be used across multiple pages.

Example 2: customization without <c:param>
As you saw in section 6.1.4, a page that retrieves another page using <c:import>
can communicate with its target using scoped variables. Here’s a brief example of
this type of communication—which, as we discussed earlier, can let your source
page pass information both to and from your target page.

 Consider the following pages: source.jsp and target.jsp. The former page
imports the latter, and it both sends and receives data from the page that it includes.
The code for source.jsp is as follows:

Figure 6.6 A web browser’s display of page1.jsp, which supplies the text “Welcome to
Page 1” to the header page.

Including text with the <c:import> tag 131
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<c:set var="input" scope="request" value="INPUT TEXT" />
Calling target.jsp...
<hr />
<c:import url="target.jsp" />
<hr />
source.jsp received back: <c:out value="${requestScope.output}" />

And here’s the code for target.jsp:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
target.jsp received: <c:out value="${requestScope.input}" />
<c:set var="output" scope="request" value="OUTPUT TEXT" />

These two pages work in a coordinated fashion: source.jsp is meant to be loaded
first. It sets a request-scoped variable and gives it the value INPUT TEXT. Then it calls
target.jsp, which reads this variable, prints it, and sets its own variable with a differ-
ent name. When target.jsp is finished, source.jsp prints this new variable. Figure 6.8
demonstrates graphically the flow of these two pages, and figure 6.9 shows the out-
put when source.jsp is called.

Figure 6.7 A web browser’s display of page2.jsp, which supplies the text “Welcome to
Page 2” to the header page. Note how the static text and form of the header are
unchanged from page1.jsp; only the parameterized text differs.

132 CHAPTER 6
Importing text
6.2 Redirecting with <c:redirect>

In some situations, your web pages need to act like seasoned bureaucrats and refer
you elsewhere. Fortunately, web browsers tend to have more patience than most
people do. Normally, when a browser sends a request for a web page, it receives
back an HTML file, image, or other content in response. Sometimes, however, it
gets redirected to another page. Essentially, the server says, “I don’t have what you
want; go look here instead,” where here is a particular URL the browser needs to fol-
low. The browser then loads this URL and displays its content—or perhaps it’s redi-
rected to yet another URL.

Figure 6.8 source.jsp sets a variable and then imports
target.jsp, which reads the variable. Before target.jsp
finishes, it sets its own variable, which source.jsp later reads.

Figure 6.9 source.jsp displays output that looks like this when loaded by a web browser.

Redirecting with <c:redirect> 133
 Redirections on the Web serve many purposes. Sometimes they act as forward-
ing addresses, indicating things like “My collection of illegal MP3 files doesn’t live
here any more; please find it at the following URL….” Such redirection might be
necessary if the owner of a page needed to move it to a new server (which, given
most ISPs’ policies, might happen with some regularity to a collection of illegal
MP3 files).

 In dynamic applications like JSP pages, redirections have another use: they can
simplify the overall flow of your application. For instance, imagine you have a sin-
gle page called master.jsp that routes requests to the appropriate place depending
on the value of a request parameter:
<c:choose>
 <c:when test="${param.action == ’buy’}">
 … send the user to the buy.jsp page …
 </c:when>
 <c:when test="${param.action == ’sell’}">
 … send the user to the sell.jsp page …
 </c:when>
</c:choose>

To perform redirections like this from your JSP pages, you can use the <c:redi-
rect> tag. Its attributes are listed in table 6.3.

When <c:redirect> executes, it forwards the browser to a new page, and then
your page immediately stops running. For instance, consider the following two tags:

<c:redirect url="newPage.jsp"/>
<bank:addMoney dollars="40,000,000" user="${sessionScope.user}" />

In this case, the <bank:addMoney> tag will never run; <c:redirect> aborts the page
as soon as it runs, meaning that the user will stay poor—or, at least, not gain
$40,000,000 for doing nothing. (It’s too bad; making money on the Internet used to
be easier.)

 The simplest use of <c:redirect> bounces the user to a new relative or absolute
URL. For instance, to fill in the missing code from our last example, we might write

<c:when test="${param.action == ’buy’}">

</c:when>

Table 6.3 <c:redirect> tag attributes

Attribute Description Required Default

url URL to redirect to Yes None

context / followed by the name of a local web application No Current context

<c:redirect url="buy.jsp"/>

134 CHAPTER 6
Importing text
This <c:redirect> tag sends the user to the buy.jsp page in the same directory as
the page where the <c:redirect> tag appears.

 You can also use the context attribute to bounce the user to a page in a different
web application, or context, in your JSP container:

As with the <c:import> tag, when you use the context attribute, the values of both
it and the url attribute must begin with /.

 Like <c:import>, the <c:redirect> tag lets you use <c:param> within it if you
want to send request parameters to the page to which you’re redirecting the user.
For instance, consider the following tags:

 <c:param name="stock" value="IBM"/>
</c:redirect>

These tags work like the last tag, but now a single request parameter (whose name is
stock and whose value is IBM) is passed to the buy.jsp page when the user is redirected.

6.3 Formatting URLs with <c:url>

It’s extremely common to write web pages that link to one another. In fact, you
might say that links are the essence of the Web. After all, the HT in both HTML and
HTTP stands for hypertext, which means text with links (or hyperlinks).

6.3.1 How to use <c:url>

JSTL provides a <c:url> tag whose sole job is to print out a URL (or to store one in
a scoped variable). Table 6.4 lists its attributes.

Just as with <c:import> and <c:redirect>, you can include <c:param> tags within
the body of a <c:url> tag. For instance, the following tag prints out a URL that
embeds a request parameter:

<c:redirect context="/brokerage" url="/buy.jsp"/>

<c:redirect context="/brokerage" url="/buy.jsp">

Table 6.4 <c:url> tag attributes

Attribute Description Required Default

value Base URL to print or store Yes None

context / followed by the name of a local web application No Current context

var Name of the attribute to expose the final URL No None

scope Scope of the attribute to expose the final URL No page

Formatting URLs with <c:url> 135
<c:url value="buy.jsp">
 <c:param name="stock" value="IBM"/>
</c:url>

It’s simple to use <c:url>. Simply insert it into your page whenever you want to
print a URL. Often, you’ll want to insert <c:url> in the middle of an HTML tag,
such as <a>. For example:

<a href="<c:url value="buy.jsp">
 <c:param name="stock" value="IBM"/>
 </c:url>">Buy IBM’s stock

Here, we embed <c:url> in the href attribute of an <a> tag in order to create a link
to a JSP page. This link transfers a request parameter because of the <c:param> tag
beneath <c:url>; thus, it’s a simpler way to pass parameters than the relatively con-
voluted approach we had to use in the example at the end of chapter 5.

6.3.2 Why to use <c:url>

You’ve already seen one reason to use <c:url>: it makes it easy to construct a link
that, when followed, passes a request parameter to a page. But when you’re not
passing parameters, you might wonder why you should use <c:url>. After all, you
can introduce links into your page without JSTL’s help; to create a link to the page
menu.jsp, you could just write

Return to the main menu

However, the <c:url> tag is useful even in such simple cases, and I encourage you
to use it whenever you need to create a relative link in your pages. The <c:url> tag
is useful for two primary reasons:

� URLs sometimes need to be modified to preserve the user’s session across
various pages. The <c:url> tag takes care of this modification automatically.

� You might want to adjust context-relative URLs so that they point to the root
of your web application, not to your entire server. The <c:url> tag makes
this adjustment for you.

These reasons are both somewhat technical, but they’re worth exploring briefly—if
for no other reason than to justify the use of <c:url>.

Session preservation
This first reason to use <c:url> is fairly interesting. Throughout this book, we dis-
cuss session scope as if it exists magically. A user hits your pages and is automati-
cally assigned a session, which stays around until the user goes away. But behind
the scenes, both the server and the browser must do some work to ensure that the

136 CHAPTER 6
Importing text
right session is associated with the right user. Normally, this work can be handled
using a browser feature called cookies, which we discussed briefly in chapter 3.

 Cookies let the user’s browser and your JSP container manage the details of user
sessions without your having to get involved. But not all browsers support cook-
ies—and some users, concerned more with personal privacy than with learning
how technology works, have refused to let their browsers accept cookies. There-
fore, if your application is designed to work with browsers that don’t use cookies—
and most public applications should try to accommodate as many users and brows-
ers as possible—then you need to help the JSP container by adding some informa-
tion to URLs that lets the JSP container identify users appropriately. The <c:url>
tag does this for you automatically.

Adjusting relative URLs
The second reason to use <c:url> is somewhat less interesting, but it’s just as
important. In addition to helping sessions work, <c:url> also makes sure that if
your URL begins with /, it’s mapped to the root directory of your web application,
not to your entire web server. Earlier in this chapter, we talked about the difference
between the way relative URLs are handled in JSP tags and they way they work in
plain HTML tags. When a URL starts with /, it points to the root directory of your
entire web server in HTML tags, but it refers to the root directory of your web
application in JSP tags like <c:import> and <c:redirect>. Thus a URL like the fol-
lowing can refer to two separate files, even when it appears multiple times in the
same page:
/info/copyright.txt

In HTML tags like the following, the URL refers to the info directory at your
server’s root directory:
Read the copyright notice

But in a JSTL tag like the one shown here, the URL points to the info directory
beneath your web application’s root directory:
<c:import url="/info/copyright.txt">

For instance, if your web application comes with a directory named images that
contains the application’s logos and other graphics, you can’t simply refer to a file
in that directory as
/images/logo.gif

The application’s images directory doesn’t necessarily contain the same files as the
web server’s images directory. To use such an image in your page, you could write
<img src="<c:url value="/images/logo.gif"/>"/>

Summary 137
Here, the <c:url> tag is embedded within the tag’s src attribute; it causes the
URL to be transformed appropriately so that the user’s browser can understand it.

 You can use <c:url>’s context attribute to create a URL to a page in another
web application in your JSP container.

 The <c:url> tag is also useful if you want to save a URL (using the var and
scope attributes) and use it multiple times in your application.

6.4 Summary

In this chapter, we looked at tags that support text retrieval, redirection, and URL
management. Key points to remember include the following:

� <c:import> works like <jsp:include>, but it lets you retrieve data from
absolute URLs, as well as pages from different web applications on the same
JSP server. It also lets you save data instead of printing it out immediately.

� If the source and target pages are in the same web application, then they can
share variables in request, session, and application scope. Doing so allows
two-way transmission of whatever data you’d like (including, of course, sim-
ple strings).

� <c:redirect> lets you bounce the user to a new page, using either an abso-
lute or relative URL.

� Whenever you write out a relative URL to a page, you should use <c:url>
instead of printing the URL directly. Doing so makes sure sessions work even
in browsers that don’t support cookies, and it also simplifies use of context-
relative URLs (those that begin with /).

� <c:param> lets you pass simple text strings from the source page to the target
page. It works with <c:import>, <c:redirect>, and <c:url>.

7Selecting XML fragments
This chapter covers…
� Basic syntax of XPath (the XML Path Language)
� XPath’s vision of an XML document
� JSTL’s use of XPath variables
� XML namespaces and XPath in JSTL
139

140 CHAPTER 7
Selecting XML fragments
It’s probably safe to say that no web-related standard released in 2002 would be
complete without accommodating XML. Failing to work with XML is, in some cir-
cles, tantamount to being unpatriotic or antisocial.

 JSTL indeed supports XML—and it does so with flying colors. In fact, JSTL
introduces a new and very convenient way to use XML in your dynamic pages.

 You might have heard of other technologies that let you produce dynamic pages
with XML, such as Extensible Stylesheet Language Transformations (XSLT), so you
may wonder why JSTL bothers to introduce a new way of working with XML. The
answer is simple: JSTL’s support will be easier for many page authors to use than
XSLT. If you’ve struggled with XSLT, JSTL might solve your problems with a much
gentler learning curve.

 Before we look at JSTL’s features, though, we’ll need to examine the main thing
XSLT and JSTL share: the language called XPath (the XML Path Language). This
language is the standard way to refer to parts of an XML document. Unless you
don’t care what’s inside an XML document and just want to print it out wholesale,
you’ll usually need to identify the particular fragments you care about within a doc-
ument. XPath gives you a convenient way to do this.

 In this chapter, we’ll introduce and explore XPath. By and large, this is the same
XPath language that XSLT uses, so once you learn it here, you’ll have learned a core
XSLT skill. If you’re already familiar with XPath, you can skim the beginning of this
chapter quickly; but toward the end, I discuss some important details about how
XPath and JSTL interact.

 In the next chapter, we’ll look at all of JSTL’s tags for XML manipulation.

NOTE If you don’t yet feel comfortable with XML, reviewing chapter 2 will prob-
ably help.

7.1 XPath’s vision of an XML document

XPath lets you specify parts of XML documents. For instance, you might be inter-
ested only in the document’s <customer> tags, or in those <product> tags that are
inside <inventory> tags. XPath is an extremely expressive language that is some-
what complex in its full form. Therefore, we won’t discuss all of XPath’s details
here. Instead, my goal is simply to provide a gentle tutorial for XPath’s core fea-
tures. For a more complete look at XPath, many excellent references exist,
including Bob DuCharme’s XSLT Quickly and several online tutorials, listed in
appendix D.

XPath’s vision of an XML document 141
 In chapter 2, we discussed some potential relationships between XML tags. For
example, one tag that appears inside another tag is known as a child tag. When you
work with XML documents using JSTL tags, these relationships become important.1

 If your experience with markup languages comes primarily from HTML, you
might be used to thinking of a document as linear—an ordered, one-dimensional
collection of tags. An HTML document, for instance, starts with an <html> tag; later
comes <body>, and after that, you’ll typically see a few <p>, , <a>, and <table>
tags, followed by a closing </body> tag and, eventually, the final closing </html>
tag. This is a useful, coherent way to think of (or describe) a web page.

 XPath, however, takes a slightly different approach. The relationships between
tags—for instance, the fact that one tag appears inside another—become critical.
XPath sees the entire document as a tree: parents have children, and these children
have their own children, just as in a family tree or organizational chart. Every well-
formed XML document has a single element that contains all other elements; this
root element (for example, the <html> element in an HTML document) has children,
and these children can have their own children. As an example of a tree view of a
document, consider the following HTML:

<html>
 <head>
 <title>Poem</title>
 </head>
 <body>
 <h1>Poem</h1>
 <p>I think that I shall never see</p>
 <p>an HTML document lovely as a tree.</p>
 </body>
</html>

Figure 7.1 shows this document’s basic structure in tree form. Although it’s natural
to think of the <head> and <body> tags as being so-called children of the <html> ele-
ment, you might find it stranger to describe the element as a child of the <p>
element in which it appears. Nonetheless, this structure is clear: is a child tag of
<p>, given the rules we discussed in chapter 2.

1 As I mentioned in chapter 2, this book often uses the loose XML vocabulary common to JSP au-
thors and others. For instance, I say tags instead of elements when the intent is clear. By and large,
there’s little value in sticking too closely with XML’s formal vocabulary, except to be pedantic.

142 CHAPTER 7
Selecting XML fragments
7.2 XPath’s basic syntax

XPath operates on documents using the type of tree structure you just saw. As you
probably know, trees are commonly seen on computers. On nearly all modern
operating systems, for example, a disk is organized into directories (or folders), each of
which can contain other directories. This kind of organization naturally arranges
itself into a tree, and we often speak of child directories or subdirectories when we dis-
cuss disks.

 XPath takes advantage of our familiarity with traditional filenames, applying a
similar syntax to the tree representing an XML document. If you have three direc-
tories on your disk—a, b, and c—and you are running Windows, you can refer to
these directories as follows:

c:\a\b\c

Note how the backslash character (\) is used to separate the directory names. Unix
systems use the regular slash (/) character in a similar capacity:

/a/b/c

XPath adopts this Unix convention, using the slash character to separate the name
of one XML element from another. For example, in the tree from figure 7.1, the
element could be described by the following path:

/html/body/p/b

This XPath expression matches the highlighted part of our sample document:

<html>
 <head>
 <title>Poem</title>
 </head>
 <body>
 <h1>Poem</h1>

Figure 7.1
The tree structure of a sample HTML
document. When an element like
<h1> occurs inside <body>, you
can think of it as a child of that
<body> element.

XPath’s basic syntax 143
 <p>I think that I shall never see</p>

 <p>an HTML document lovely as a tree.</p>
 </body>
</html>

7.2.1 Deep descendants

XPath introduces a new syntax to meet a need seen often in XML documents but
rarely in file systems. On a disk, you hardly ever want to find all files named
autoexec.bat or inetd.conf; if you do, you probably need to use a tool that is specif-
ically designed to let you search the disk. By contrast, when manipulating XML
documents, you may often need to perform an operation on all elements that
descend from a particular point in a document, no matter how deeply those tags
appear. For example, it’s relatively common to iterate over “all the <p> elements
underneath <body>,” all <customer> tags, and so on.

 XPath simplifies this type of search by letting you use two adjacent slashes (//)
to refer to any descendant of an element, no matter how deeply it appears. For
instance, the element from figure 7.1 could also be described by the following
XPath expression

/html/body//b

or even simply

//b

Just as file paths on a disk can refer to more than one file (for instance, b* matches
all files beginning with b in a directory), XPath expressions can match more than
one element. For instance, the XPath expression

//p

matches both of the <p> elements from figure 7.1:

<html>

 <head>

 <title>Poem</title>

 </head>

 <body>

 <h1>Poem</h1>

 </body>

</html>

<p>an HTML document lovely as a tree .</p> /html/body/p/b

<p>I think that I shall never see</p>
<p>an HTML document lovely as a tree.</p>

//p

144 CHAPTER 7
Selecting XML fragments
7.2.2 Attributes

Another simple feature of XPath syntax lets you refer to tag attributes. This capabil-
ity, just like //, has no direct analog to disk-based file paths. For instance, even
though files on disk have characteristics (like modification dates) other than their
filenames, file paths always refer to filenames alone. When prompted for a file-
name, you can’t enter something like

c:\[date=Jan 1 2004 07:02:47 a.m.]

By contrast, XPath lets you identify elements using attributes and other characteris-
tics; this is a convenient and commonly used feature.

 As an example, suppose you had the following XML document:

<customers>
 <customer id="555" status="regular">
 <name>Jim Heinz</name>
 </customer>
 <customer id="556" status="preferred">
 <name>Roberto del Monte</name>
 </customer>
 <customer id="557" status="preferred">
 <name>Richard Hunt</name>
 </customer>
</customers>

Now, suppose you’re interested only in preferred customers—those that have sta-
tus="preferred" as an attribute. XPath (somewhat cutely) lets you use the @ (“at”)
symbol to represent tag attributes. The preferred customers in this document can
be identified by the following XPath expression:

//customer[@status="preferred"]

This expression matches all <customer> tags in the document that have a status
attribute with a value of preferred. Thus, it would match the parts of our document
highlighted here:

<customers>
 <customer id="555" status="regular">
 <name>Jim Heinz</name>
 </customer>

</customers>

<customer id="556" status="preferred">
<name>Roberto del Monte</name>
</customer>

<customer id="557" status="preferred">
<name>Richard Hunt</name>

</customer>

//customer[@status=
“preferred”]

XPath’s basic syntax 145
You can easily combine /, //, and @ in the same expression, as in this example:

//customer[@id="555"]/name

In our sample document, this expression refers to the <name> element containing
the text Jim Heinz, because that element is the only one called <name> beneath a
<customer> tag with the attribute id="555":

<customers>

 <customer id="555" status="regular">

 </customer>

 <customer id="556" status="preferred">

 <name>Roberto del Monte</name>

 </customer>

 <customer id="557" status="preferred">

 <name>Richard Hunt</name>

 </customer>

</customers>

7.2.3 Predicates and element order

The previous example presupposes a fact about XPath expressions that I have
skipped until now: brackets ([]) introduce a type of conditional expression that’s
formally called a predicate. Predicates act as filters; when they appear, they serve as
additional criteria that must be satisfied for the XPath expression to match an ele-
ment. So, whereas the expression

//customer/name

would match three elements in our previous sample document (the <name> ele-
ments beneath all three <customer> tags), adding the predicate @id="555" after
customer causes the expression to match only one element (the <name> element
beneath the <customer> tag that has the attribute id="555").

 Predicates let you filter XML documents based on more than just tag attributes.
For instance, you can use a predicate to filter elements by the order in which they
appear. Thus, in the tree from figure 7.1, we can use an XPath expression to differ-
entiate the first <p> element from the second one. A predicate that consists of a sole
integer matches elements based on position. For example, p[2] means “the second
<p> element.” To refer to the second <p> element in figure 7.1’s tree, we can use the
following XPath expression:

/html/body/p[2]

<name>Jim Heinz</name> //customer[@id=”555”]/name

146 CHAPTER 7
Selecting XML fragments
NOTE In XPath, numeric predicates start with 1. This numbering is different from
situations where indices start with 0, as in the <c:forEach> tag’s begin
and end attributes.

In such XPath expressions, order doesn’t apply to the entire document; it applies
only to the part of the document that an expression already matches. For example,
the previous expression wouldn’t be affected by the presence of a <p> element that
somehow occurred outside <body>; it would still match the second <p> element
within <body>.

7.2.4 Strings and booleans

You might wonder what these XPath expressions refer to. Do they address the start
tag specifically, the whole element, the text inside the element, or something else?
The answer depends on how the XPath expression is used: where it appears, and
what, broadly speaking, is expected from it. JSTL uses XPath a few different ways.

 In the simplest case, an XPath expression like

/html/body//p

refers to a collection of one or more elements. Specifically, the expression points to
the entire element. As you’ll see in chapter 8, this approach is useful if you want to
use an XPath expression to iterate over elements in a document.

 XPath expressions are more flexible than this, however. XPath assigns a string
value to every part of an XML document, so XPath expressions can be used to pro-
duce strings of text. The string value for an XML element is, loosely speaking, all
the text that appears inside that element, as if no XML markup were present. For
instance, consider the following document fragment:

<p>
 Fortune favors the bold and <i>Italic</i>.
</p>

In this fragment, the string value of the <p> element is

Fortune favors the bold and Italic.

In addition, XPath expressions are sometimes important for their boolean val-
ues. An XPath expression may appear in a situation where only the values “true”
and “false” are sensible. For example, the following XPath expression will be
considered true if at least one element is matched; it will be false if no elements
are matched:

 //p

XPath variables and JSTL 147
Therefore, //p is true if it is applied to a document that has at least one <p> ele-
ment, and it’s false if the document has no <p> elements.

NOTE XPath expressions are more flexible than I’ve shown here. For instance,
they can also call functions that directly return numeric values, boolean
values, and so on. XPath also provides general rules for converting be-
tween numbers, booleans, and other types of data. Details about XPath
data types are beyond the scope of this book because they’re not needed
to use JSTL; see appendix D for references to more information.

7.3 XPath variables and JSTL

Like many languages, XPath supports variables. Just as in JavaScript, Java, and
other languages, XPath variables are evaluated and replaced with actual values,
which might be different every time an XPath expression executes.

 JSTL depends on XPath variables in a somewhat novel way: it maps them to
dynamic scopes that resemble JSTL’s expression language. Therefore, XPath vari-
ables can refer to things that are similar to those the familiar expression language
can refer to (see chapter 3).

 Broadly speaking, an XPath variable is simply a qualified name (see chapter 2)
introduced with a dollar sign ($). That is, it’s a dollar sign followed by either a name
without a colon, like stomach, or a name with a colon, like large:intestine.

 The XPath expressions we’ve presented until now haven’t used variables; they
simply contained text, as in

/a/b/c

You can introduce a variable into this static XPath expression. This variable can
have a different value each time an XPath expression is evaluated. Variables can
refer to data from a variety of sources. For instance, the expression

$pageScope:document/b/c/d

contains the variable $pageScope:document. Recall from chapter 2 that in the name
pageScope:document, pageScope is a namespace prefix, and document is a specific,
local name. JSTL recognizes the namespace prefixes listed in table 7.1.

 These prefixes have the same behavior as the implicit objects described in
chapter 3 for the general-purpose expression language. Furthermore, just as in
JSTL’s language, the default behavior when searching for a variable (the behavior
when no namespace prefix is specified) is to search first in the page scope, and then

148 CHAPTER 7
Selecting XML fragments
in the request, session, and application scopes, in that order. For instance, the vari-
able $doc in a JSTL XPath tag means the same thing as ${doc} in JSTL’s language.

 In chapter 8, we’ll look at how to use XPath variables practically.

7.4 JSTL, XPath, and namespaces

Imagine you have a document that looks like this:

<fax:call>
 <fax:dial number="203-432-6687"/>
 <fax:send>
 <myData:picture/>
 </fax:send>
</fax:call>

This document has tags that use XML namespace prefixes. Think about how you
might access the inner <myData:picture/> tag using XPath. Could you write

/fax:call/fax:send/myData:picture

to match the tag? Or would a simpler expression like the following do the job?

/call/send/picture

The answer, in JSTL 1.0, is somewhat unfortunate: neither expression works. In
fact, in JSTL 1.0, you can’t use simple XPath expressions like /a/b/c to access tags
that use namespaces. This is the case because a namespace prefix is just a shortcut
for the namespace’s real, behind-the-scenes identifier: a Universal Resource Identi-

Table 7.1 JSTL recognizes these namespace prefixes in its XML manipu-
lation tags’ XPath expressions. Using variables with these prefixes (such
as $pageScope:customerName or $param:status) lets you access
familiar JSTL data from within an XPath expression.

Prefix Meaning

pageScope Page scope

requestScope Request scope

sessionScope Session scope

applicationScope Application scope

param Request parameter

initParam Context initialization parameter

cookie Cookie value

header Request header

More advanced XPath 149
fier (URI). So, myData:picture doesn’t have a way to match the right namespace,
and picture is incomplete, because the tag uses a namespace.

 If the mechanics of namespaces aren’t entirely clear, don’t worry; you don’t
need to understand them to use JSTL effectively. But if you want to use JSTL’s XPath
tags to access a document that uses namespaces, you need to use a workaround.
Instead of simple XPath expressions that are based on the tag’s names, you must
use predicates to refer to the correct tags.

 For example, the following expression refers to the inner <myData:picture/>
tag in the last sample document:

//*[name()='picture']

It means “match all tags whose name is picture” regardless of namespace or
namespace prefix. You can build XPath expressions out of these kinds of predicates
similarly to the way you build simple XPath expressions. For example, the follow-
ing expression also matches the inner <myData:picture> tag:

//*[name()='send']/*[name()='picture']

You can use the namespace-uri() function if you know an XML tag’s namespace
URI and want to match it specifically. Otherwise, stick with name() when you have
a document that uses namespaces.

7.5 More advanced XPath

So far, you’ve seen only the most basic uses of XPath. These basic uses—even
though they’re simple to use—cover quite a bit of functionality. They let you pick
out relevant elements from an XML document based on parent/child relation-
ships, attributes, and the order of elements. Nonetheless, XPath supports a far
richer syntax.

NOTE You can skip this section if you’re eager to start using JSTL’s XML manipu-
lation tags right away. However, this information will be helpful if you
ever need to use the more advanced features of JSTL’s XPath support.

7.5.1 Nodes and axes

The discussion so far has broken XML documents entirely into elements (as defined
in chapter 2). But XPath sees XML documents as a collection of nodes. All elements
are nodes, but not all nodes are elements. For example, attributes, comments, and
even the text in a document are represented by nodes.

150 CHAPTER 7
Selecting XML fragments
 An XPath expression can refer to any node. For instance, an XPath expression
might not simply use attributes to help select a set of elements; the expression
might, instead, refer to the attribute nodes themselves. Similarly, you might write
an XPath expression that directly refers to text within an XML document—not to
an element or attribute.

 Also central to XPath is the concept of an axis. An XPath axis is essentially a
direction you can move in from any given node in an XML document. For instance,
“attribute” is an axis, referring to all the attributes of a node. Another axis is “ances-
tor,” which refers to all the ancestors (parent, parent’s parent, and so on) of a node.
The syntax we’ve covered so far includes a handful of the more commonly used
axes, using XPath-supported abbreviations like @ and // to invoke particular axes.

 To tie this general information together, consider the following document:

<p>
 $1000
 $800
 $200
</p>

Suppose we want to print the name of the class attribute used in the first
tag: we’re interested in the attribute itself, not the element or the element’s text. To
point to this attribute, we can use the following expression:

/p/span[1]/@class

Read this expression as “The class attribute of the first child of <p>.”
Again, the expression refers directly to an attribute—the “@” syntax appears outside
a predicate. Here’s what it matches:

<p>

 $800
 $200
</p>

Just as elements all have a string value, other kinds of nodes have string values as
well. For instance, an attribute’s string value is simply the attribute’s value; so, the
string value of the XPath expression we just saw is

first

because this is the value of the relevant class attribute.

7.5.2 Contexts

Also important to a full understanding of XPath is the recognition that XPath
expressions always have a context—a term that means roughly what it does in infor-

$1000 /p/span[1]/@class

More advanced XPath 151
mal usage. Most XPath expressions make no sense without the particular environ-
ment in which they’re rooted. This environment can contain a number of things,
but it most importantly contains a context node—a node in the XML tree that repre-
sents a jumping-off point for the XPath expression. Axes make the most sense when
you think of them in terms of a context node: axes are a direction to go from a par-
ticular context node. All the examples in this chapter have assumed that the root of
the example document is the context node.

 The notion of context might seem abstract or novel, but it’s no more compli-
cated than the corresponding principle in filesystems. Programs on Windows and
Unix all have a current working directory; when people say that programs are “in” a
particular directory at any given time, they’re referring to this directory. When a
program encounters a relative file path—one that doesn’t begin with a drive letter
on Windows (such as c:\) or / on Unix—this file path will be interpreted using the
program’s current directory as a base, or context. For example, the unadorned file-
name chapter7.doc refers to the file named chapter7.doc in the current directory.
(This might remind you of chapter 6’s discussion of relative URLs.) Similarly, the
filename images/ugly-man.jpg refers to the file named ugly-man.jpg in the direc-
tory images, which in turn can be found in the current directory. Compare it with
the filename c:\images\ugly-man.jpg, which means “the file ugly-man.jpg in the
images directory, which exists directly under the root directory on the c: drive.”

 Just as filenames can be relative, XPath expressions also need not begin with /.
For instance, the following is a relative XPath expression:

body/p

It means “<p> children of the <body> node, which in turn exists as a child of the cur-
rent (context) node.” As you’ll see in chapter 8, context nodes become important
chiefly when you’re iterating over a group of XML elements.

7.5.3 Further reading

If you printed out the official XPath specification, it would take up about 40
pages—and of course, a full tutorial on a subject is typically longer than the dry
specification. (And the XPath specification is indeed dry.)

 For this reason, and because this is not a book on XPath or XML, I don’t cover
the full range of XPath features here. My goal has simply been to cover enough of
XPath to let you begin using it productively. Given an understanding of XML as a
tree, a familiarity with the basic syntax of XPath, and an introduction to the con-
cepts of axes and predicates, you have all the tools necessary to master XPath if you
decide you need features more advanced than those covered here. Appendix D
lists some excellent online tutorials that will help you pick up where we leave off.

152 CHAPTER 7
Selecting XML fragments
7.6 Summary

In this chapter we explored XPath’s basic syntax, in order to let you use XPath with
JSTL. Keep in mind the following points:

� JSTL’s support for XML manipulation depends on XPath.
� XPath (the XML Path Language) can be used to select parts of XML documents.
� XPath treats XML documents as trees and accesses individual nodes in the

document in a similar manner to the way you access files on a disk.
� You can use XPath to filter documents based on node names, attribute values,

and even the order in which nodes appear. But be careful if your documents
use namespaces.

� XPath includes many more features than we’ve discussed here. Appendix D
lists resources that will help you learn XPath in more depth, if you want to
do so.

8Working with
XML fragments
This chapter covers…
� Referring to XML documents with XPath variables
� Printing parts of XML documents
� Loops and conditions with XML documents
� Invoking XSLT transformations from your pages
153

154 CHAPTER 8
Working with XML fragments
Knowing the basics of XPath isn’t useful in a vacuum (although it will help you find
any XML tags that happen to be in the vacuum with you). In chapter 7, you saw
how to select XML fragments using XPath. Now, we’ll look at what you can do with
these document fragments once you’ve selected them.

 In JSTL, XML support comes in two flavors. First, JSTL lets you select and
manipulate XML directly using JSTL tags. For instance, one JSTL tag lets you parse
an XML document and prepare it for use later in a page. Once you have parsed a
document, you can perform several operations on it: printing part of it, storing part
of it for later use on a page, or using it as the basis of flow control (<if> and
<forEach> operations). For example, you could ask the question, “Does the docu-
ment have any <customer> tags with a location attribute equal to Númenor?” and
perform some operations only if it does.

 Second, JSTL lets you incorporate stylesheet logic written in the Extensible
Stylesheet Language Transformation (XSLT) language into your JSP pages. If you
have an XSLT stylesheet and an XML document, you can use a JSTL tag to combine
them and produce a new XML document. Then, you can print this document out,
run more transformations on it, or manipulate it with JSTL’s other tags.

 Because JSTL supports a wide range of features, it lets you integrate XML data
into your application in a broader manner than XSLT does. For example, suppose
you want to retrieve one XML document out of a database, retrieve another from
the Web, and pull relevant text from each of them to display in your web applica-
tion. You can do this with JSTL without any programming in the traditional sense.

8.1 Parsing documents with <x:parse>

Before handling an XML document with JSTL, you must acquire it from some-
where—or, at a minimum, enter it manually into your JSP page. However, simply
having an XML document as a text string isn’t useful. What’s to say that your text
string is truly an XML document, and not a comma-separated file or a free-verse
poem? Before XML can be usefully handled, it needs to be parsed. Parsing in general
is the process of analyzing the syntax of text and turning it into a useful representa-
tion. When you parse an XML document, you convert the raw XML text into a for-
mat that can be handled with XSLT, XPath, or other XML-manipulation technologies.

 When you have raw XML text, you can parse it using JSTL’s <x:parse> tag. The
goal of this tag is to take the raw text of an XML document and, using the var
attribute, to produce a scoped variable that stores a parsed version of this docu-
ment. Table 8.1 lists its attributes.1

1 The <x:parse> tag has a few advanced attributes that we cover in chapter 14.

Parsing documents with <x:parse> 155
8.1.1 Sources of XML

The <x:parse> tag accepts raw XML text from two places: its xml attribute and its
body. For each invocation of the tag, you can use only one or the other of these
mechanisms; if xml is specified, the tag must be empty, and if not, then the tag must
have a body.

 Like <c:set>, which we first encountered in chapter 3, <x:parse> accepts input
from both a tag attribute and its body in order to be flexible. Using an attribute is
convenient when you know the location of a variable and you want to use the
expression language to pass this variable to <x:parse>. But sometimes, you’ll want
to parse a document that another tag produces, or even enter XML manually within
your JSP page. In these cases, it is useful for <x:parse> to accept XML content from
its body.

 Any text string can contain valid XML, and any such string may be passed to the
<x:parse> tag for parsing. You might get such a string from the <c:import> tag,
from a database, or from a custom tag library.

 As an example of both approaches, suppose you want to retrieve the XML con-
tent from http://www.cnn.com/cnn.rss, which, at the time this chapter was writ-
ten, contained a news feed from CNN in Rich Site Summary (RSS) format. (The
news was about 10 months old, for some reason, but that didn’t make the XML
any less valid!)

TIP RSS is an XML format commonly used by media publications and others
that offer sites that can be easily summarized in terms of headlines and
links. We’ll encounter it again at the end of the chapter and in part 3.

The content from CNN can be introduced to <x:parse> using two straightforward
patterns. First, we can store a variable in <c:import> and pass this variable to
<x:parse>:

Table 8.1 Basic <x:parse> tag attributes

Attribute Description Required Default

xml The raw XML text to parse No Body

var Name of the variable to expose the parsed document Yes None

scope Scope of the variable to expose the parsed document No page

<c:import var="cnn" url="http://www.cnn.com/cnn.rss"/>
<x:parse xml="${cnn}" var="cnnXml"/>

156 CHAPTER 8
Working with XML fragments
Alternatively, we can rely on the default behavior of <c:import>: to print the con-
tent it retrieves where it appears in the page. In this case, if it appears inside an
<x:parse> tag, it will simply print out its retrieved content, and <x:parse> will
immediately read this content back in:

<x:parse var="cnnXml">
 <c:import url="http://www.cnn.com/cnn.rss"/>
</x:parse>

These two approaches are nearly identical, so you should pick the one that seems
more straightforward to you. The former appeals to me because it lets me tell the
JSP container, “Do an import, then do a parse.” The latter pattern, though, avoids the
intermediate cnn variable and is, in many ways, more elegant. Take your pick.

8.2 Accessing XML with <x:out> and <x:set>

JSTL’s XML library parallels the core library in some ways. Even though JSTL
already has core tags that support flow control, saving data, and printing data, the
XML library supports the same operations. The major difference is that the XML
library lets you use XPath to manipulate XML documents, whereas the core library
lets you use an expression language to work with regular variables.

 For example, <c:out> lets you retrieve a scoped variable and print its value, but
<x:out> lets you retrieve part of an XML document and print its value. The <c:set>
tag saves a scoped variable representing generic data; <x:set> saves a scoped vari-
able representing XML data, or representing data pulled from an XML document.

8.2.1 Finding a document

All the XPath expressions in chapter 7 were somewhat isolated. I’d show you a doc-
ument and then say, “The XPath expression //a/b/c refers to the <c> tag inside this
document.” By contrast, in real-life JSTL pages, your XPath expressions need to
point explicitly to any documents they want to refer to.

 In section 7.3, we discussed how JSTL supports XPath variables, which look like
$sessionScope:userName. In fact, one of the major uses of XPath variables is to
point to an entire XML document that’s stored as a scoped attribute.

 For example, suppose we’ve created a scoped variable named doc by using
this tag:

 <c:import url="mydocument.xml"/>
</x:parse>

To point to this document, our XPath expression can use the variable $doc (or
$pageScope:doc). For example, instead of simply writing

<x:parse var="doc">

Accessing XML with <x:out> and <x:set> 157
//table

we’d write

$doc//table

This expression tells JSTL to find the doc variable, and then find all <table> tags
within the document it represents.

 It’s easy to confuse a variable that points to a document with the root element of
that document. For instance, consider the following <x:parse> tag:

<x:parse var="orders">
 <orders>
 <order item="4"/>
 </orders>
<x:parse>

To refer to the inner <order> element, you could write $orders/orders/order, but
not $orders/order. The inner <order> element is not a direct child of the docu-
ment; it is a child of the <orders> element.

8.2.2 The <x:out> tag

The <x:out> tag evaluates and prints out the string value of an XPath expression;
the starting node is often retrieved from an XPath variable. (For more information
about string values, see section 7.2.) The <x:out> tag is one of the most basic ways
of introducing an XPath expression into your JSP page. The tag takes the attributes
listed in table 8.2.

Let’s look at <x:out> in action. Suppose our page contains the following <x:parse> tag:

<x:parse var="simple">
 <a>

 <c>C</c>

 <d>
 <e>E</e>
 </d>

</x:parse>

Table 8.2 <x:out> tag attributes

Attribute Description Required Default

select XPath expression Yes None

escapeXml Whether to print characters like & as & No true

158 CHAPTER 8
Working with XML fragments
This tag parses a simple XML document specified inline—right in the JSP page, as
the body of the tag. The parsed document is exposed as a variable called simple.
Once this document has been exposed, we can refer to it in subsequent XPath
expressions using <x:out> and other JSTL XML tags.

 For example, consider the following tag:

<x:out select="$simple//c"/>

This tag would print out the text “C” because that is the string value of the node to
which the expression refers. In more detail, the XPath expression first causes the tag
to retrieve the document stored by the variable named simple; it then matches all
nodes named <c> descending from the root of this document. This happens to match
a single <c> node, and this <c> node has a string value of “C” because the element
contains “C” as its text content. The <x:out> tag simply prints out this string value.

 As another example, the following tag prints out the value “E”:

<x:out select="$simple/a/d/e"/>

The escapeXml attribute in <x:out> works just as it does for <c:out>. By default, if
the <x:out> tag is ever about to print a value like “AT&T”, it escapes it as “AT&T”
so you don’t have to worry about escaping it yourself. You can shut off this behav-
ior, in rare cases where it’s not what you want, by specifying escapeXml="false".

8.2.3 The <x:set> tag

The <x:set> tag’s syntax is similar to that of <x:out>, but its behavior is different.
Instead of printing out the value of its XPath expression, it stores the result in a vari-
able named by its var attribute. Table 8.3 lists the <x:set> tag’s attributes.

The <x:set> tag is primarily useful when you want to store a subset of a document,
usually for later manipulation. For instance, consider the following tags:

<x:parse var="simple">
 <a>

Table 8.3 <x:set> tag attributes

Attribute Description Required Default

select XPath expression Yes None

var Name of the variable to expose the result of the XPath
expression

Yes None

scope Scope of the variable to expose the result of the XPath
expression

No page

Control flow based on XML documents 159
 <c>C</c>

 <d>

 <e>E</e>

 </d>

</x:parse>

<x:set var="b" select="$simple/a/b"/>

First, the <x:parse> tag parses its entire document (between and including <a> and
); it stores this document in a variable called simple. Then, <x:set> stores the
following highlighted subset of the document in a variable called b:

<a>

 <d>

 <e>E</e>

 </d>

There are a few reasons you might want to store part of a document. First, it might
be simpler to use a single <x:set> before a number of intricate XPath operations in
order to simplify the expressions you need to type and maintain. Also, you might
have some data that you want to store in the session for access from other pages—
and it is both simpler and less costly, from a memory-usage perspective, to store a
small document than a larger one.

 The kind of variable that <x:set> creates is up to the XPath expression in its
select attribute. For the sorts of XPath expressions that we use in this book,
<x:set> typically exposes a partial document. (XPath calls this a node-set.)

8.3 Control flow based on XML documents

Just as with <x:out> and <x:set>, the JSTL XML library offers tags that are parallel
to those in the core JSTL library. It does so by offering two types of control-flow tags:

� Conditional tags that let you make decisions in your JSP pages based on the
contents of XML documents

� An iteration tag to loop over nodes in an XML document

When an XML document provides the raw information you need to make a condi-
tional decision in a JSP page, you’ll probably find JSTL’s conditional XML tags useful.
These tags work like the conditional tags we discussed in chapter 4, but they let you

<c>C</c>

/a/b

160 CHAPTER 8
Working with XML fragments
use an XML document directly as the basis for your decision. As you’ll see, each core
conditional tag—<c:if>, <c:when>, and so on—has an analog in the XML library.

 Similarly, the XML library provides a straightforward iteration tag—
<x:forEach>—that lets you loop over parts of an XML document.

8.3.1 Simple conditions with <x:if>

Let’s look at an example of the simple XML conditional tag—<x:if>—in action.
Table 8.4 shows its attributes.

Imagine that we have an XML document that contains a <customer> element for
each one of our customers. Suppose that this <customer> tag always contains the
customer’s name within a <name> element, and it also contains an <order> element
for each order the customer has placed. Thus, if the customer has placed no
orders, no <order> elements will appear for that customer’s record. Consider the
following example:

<customers>
 <customer id="525">
 <name>Jim Heinz</name>
 <order>20005</order>
 <order>20127</order>
 </customer>
 <customer id="526">
 <name>Roberto del Monte</name>
 </customer>
</customers>

This document shows that Jim Heinz has placed two orders—order numbers
#20005 and #20127—but that Roberto del Monte hasn’t ordered anything yet.

 Now, suppose we want to print a special greeting for repeat customers:

Thank you for letting us sell you something.
We hope you enjoyed the experience as much as we did.

If Jim hits our page, he should receive the special greeting; Roberto, however,
should not.

Table 8.4 <x:if> tag attributes

Attribute Description Required Default

select XPath expression to evaluate. If true, process the
body; if false, ignore the body.

Yes None

var Name of the variable to expose the boolean result. No None

scope Scope of the variable to expose the boolean result. No page

Control flow based on XML documents 161
 With a bit of tinkering, we might be able to produce this behavior using a com-
bination of the XML tags we’ve discussed so far and the core JSTL tags. However,
JSTL’s XML control flow tags provide a simple way to solve this problem. Display-
ing a special message to repeat customers, using the criteria I’ve outlined, is as sim-
ple as the following:

<x:if

 select="$pageScope:doc/customers/customer

 [@id=$pageScope:customerId]/order">

 Thank you for letting us sell you something.

 We hope you enjoyed the experience as much as we did.

</x:if>

This example2 encompasses quite a few things; let’s walk through them in detail.
 The example assumes that two variables have already been exposed in page

scope: doc, which refers to the XML document containing data about customers
and order numbers, and customerId, which holds the user’s customer ID number.

 The bulk of the example’s work is performed by the XPath expression in the
select attribute of the <x:if> tag. This expression finds the document stored by
the doc variable and then walks through the document, applying the rest of the
XPath expression to it. First, all <customers> elements are found; then, the XPath
expression considers all children of this element. For the expression to be interested
in a child element of <customers>, the child must be named <customer> and must
have an id attribute equal to the current value of the customerId variable. For
instance, if customerId is currently equal to 824, a child element that begins with

<customer id="1117">

or

<customer>

will be ruled out by the expression, but an element beginning with

<customer id="824">

could still match. Finally, within all these potentially useful children, all <order>
children are matched.

 That explanation was somewhat detailed, so let’s make it concrete. Look back at
the original XML document—the one that shows order records for Jim Heinz and
Roberto del Monte. Now, suppose the XPath expression we’ve just dissected is eval-
uated against this document. If customerId equals 526, then the expression will not

2 Note that white space between tokens in an XPath expression isn’t significant.

162 CHAPTER 8
Working with XML fragments
match any elements. If customerId equals 525, however, then the expression will
match the two order records for Jim Heinz.

 So, if Jim Heinz is the current customer (the one whose number is stored in
customerId), we’ll match two nodes. For Roberto, we won’t match any. Note that
we’re not interested in what the nodes are. For example, we couldn’t care less if the
order number is 20005. Because we simply want to differentiate customers who
have placed orders from those who haven’t, the mere presence of <order> ele-
ments for Jim Heinz (and their absence for Roberto del Monte) is decisive. Recall
XPath’s boolean conversion rules from section 7.2: an XPath expression that
matches one or more nodes is true, and one that doesn’t match any nodes is false.
Therefore, our sample XPath expression is true for Jim Heinz because he has
placed orders, and it’s false for Roberto del Monte because he hasn’t. Jim will
therefore receive the special message intended for repeat customers, and Roberto
won’t. Problem solved!

Storing a boolean result
The <x:if> tag, just like <c:if>, lets you save the result of a condition to a boolean
variable using the var and scope attributes. As before, this tag has a number of uses:

� To avoid wasteful re-evaluation of a condition.
� To “lock in” a condition if you’re afraid it will change.
� To use the result of a condition in a <c:when> or <x:when> tag that appears

later in the page. (We’ll look at <x:when> in a moment.)

8.3.2 Compound conditions with <x:choose>

Just as the core JSTL library provides <c:choose>, <c:when>, and <c:otherwise>
for complex, mutually exclusive conditionals, the XML library offers <x:choose>,
<x:when>, and <x:otherwise> for compound XML-based conditions. Their use is
identical to the core library’s, except that each <x:when> tag uses an XPath expres-
sion. Table 8.5 shows the attribute for <x:when>. (As with the core library, the other
mutually exclusive conditional tags don’t take attributes.)

As a simple example of <x:choose>, <x:when>, and <x:otherwise>, consider the
following small document, which you first saw in chapter 7:

Table 8.5 <x:when> tag attribute

Attribute Description Required Default

select XPath expression to evaluate. If true, process the
tag’s body; if false, ignore the body.

Yes None

Control flow based on XML documents 163
<customers>
 <customer id="555" status="regular">
 <name>Jim Heinz</name>
 </customer>
 <customer id="556" status="preferred">
 <name>Roberto del Monte</name>
 </customer>
 <customer id="557" status="preferred">
 <name>Richard Hunt</name>
 </customer>
</customers>

Let’s print out the word “Normal” if the user is a regular customer, “Important” if
the user is a preferred customer, or “Unknown” otherwise. We can do this with the
following tags:
<x:choose>
 <x:when
 select="$doc//customer[@id=$customerId]/@status=’regular’">
 Normal
 </x:when>
 <x:when
 select="$doc//customer[@id=$customerId]/@status=’preferred’">
 Important
 </x:when>
 <x:otherwise>
 Unknown
 </x:otherwise>
</x:choose>

Here, we assume that the scoped variable customerId stores the current user’s cus-
tomer number. We might have set this value earlier, or the variable could have
been set by back-end Java code. We compare this variable to the id attribute of the
<customer> tag and then see whether the status attribute of the same tag is equal
to regular, preferred, or something else.

Using XML logic with generic conditionals
Tags like <c:when> and <x:when> can’t be mixed; that is, you can’t place a <c:when>
tag under an <x:choose> tag, or vice versa. However, you can construct a mutually
exclusive condition that uses both XPath-based logic and the general-purpose
expression language by saving boolean variables using the var attribute of the
<c:if> and <x:if> tags.

 For example, let’s extend the code from section 8.3.1 to take into account infor-
mation other than whether the user has placed an order. Suppose the following
expression is a boolean value that tells us whether the user is an especially impor-
tant customer:
${user.vip}

164 CHAPTER 8
Working with XML fragments
Further, suppose that we want to display three potential messages:
� If the user is a VIP, display a polite greeting.
� Otherwise, if the user has placed an order, print the recurring-customer

message.
� If neither of the first two cases is true, inform the user that we’re losing

patience.

We could accomplish this task using the following JSTL code:

<x:if
 var="repeatCustomer"
 select=
 "$pageScope:doc/customers/customer
 [@id=$pageScope:customerId]/order"/>
<c:choose>
 <c:when test="${user.vip}">
 Ooh, it’s nice to see <i>you</i>, ma’am!
 </c:when>
 <c:when test="${repeatCustomer}">
 Thank you for letting us sell you something.
 We hope you enjoyed the experience as much as we did.
 </c:when>
 <c:otherwise>
 C’mon, cheapo. Buy something already.
 </c:otherwise>
</c:choose>

The <x:if> tag evaluates the same XPath expression that we used in the previous
section, but this time, it simply stores the result in a variable called repeatCustomer.
This boolean can be used later by tags in the core library, allowing the XML library
to communicate with the core library in a straightforward manner.

 The first <c:when> tag checks the user’s VIP flag; if the user is a VIP, then she’s
greeted warmly. The second <c:when> tag uses the repeatCustomer variable stored
earlier by <x:if>. Thus, our repeat-customer message is displayed only for non-
VIPs who have placed a previous order.

 Finally, if neither of the first two conditions applies, the page prints a rude mes-
sage to the user.

8.3.3 Looping over parts of a document with <x:forEach>

Just as you can iterate over arrays, lists, and other Java objects, you can also iterate
over XML documents. For instance, you might want to loop over every <order>
record in a document, performing some action for each order—like printing a line
in a table with the order number.

saves repeatCustomer

uses repeatCustomer

Control flow based on XML documents 165
 Recall from earlier in this chapter that an XPath expression can refer to multiple
nodes in an XPath document. For example, the following expression would refer to
every <customer> element in the document:

//customer

You can use expressions like this as the basis for iteration—that is, as the collection
of items to iterate over.

 Table 8.6 shows the attributes that <x:forEach> accepts.

Let’s look again at the short document we used as an example in the last section:

 <customers>
 <customer id="555" status="regular">
 <name>Jim Heinz</name>
 </customer>
 <customer id="556" status="preferred">
 <name>Roberto del Monte</name>
 </customer>
 <customer id="557" status="preferred">
 <name>Richard Hunt</name>
 </customer>
</customers>

This document provides a list of customers, all of whom have a unique ID number.
Some customers are marked “preferred,” whereas others are marked “regular.”
Each customer also has a name.

 To begin, let’s use //customer as the basis for a simple loop. Assume we’ve
already parsed this document and stored it in a variable called doc. Now, consider
the following tag:

<x:forEach select="$doc//customer">
 <p>Customer record found.</p>
</x:forEach>

This tag’s expression will find three customer records, and the tag will evaluate its
body for each of them. Because its body contains no dynamic text, the following
simple static value will be output three times:

<p>Customer record found.</p>

Table 8.6 <x:forEach> attributes

Attribute Description Required Default

select XPath expression over whose result to iterate Yes None

var Name of the variable to expose the current node No None

166 CHAPTER 8
Working with XML fragments
Using the context node
Of course, unless your users are spectacularly slow-witted, repeating the same static
text multiple times isn’t helpful. You normally want to do something different for
each iteration. Suppose, for example, that instead of printing a static message for
each customer, we want to print the customer’s name.

 There are a few ways to handle such tasks. The simplest and most elegant solu-
tion requires you to recall from section 7.4 that every XPath expression has a context
node that acts like the current, or starting, node. (As we discussed in section 7.4, this
is similar to the current directory that every program on a Windows or Unix machine
has.) During an <x:forEach> loop, the current node in the iteration becomes the
context node. That is, each node referenced by the original XPath expression in
<x:forEach> becomes the context node for XPath expressions that occur inside the
<x:forEach> tag’s body.

 Therefore, if we want to print the customer’s name, we note that every <cus-
tomer> element has a <name> child. So, if <customer> is the current node, the XPath
expression to print the customer’s name is as simple as

name

This expression simply means, “All <name> children directly under the current
node.” (This expression could appear more fully as ./name, but just as in file sys-
tems, the leading ./ is optional.)

 In view of this discussion, consider the following iteration:

<x:forEach select="$doc//customer">

 <p><x:out select="name"/></p>

</x:forEach>

If doc points to our sample document, then this example will print the following output:

<p>Jim Heinz</p>

<p>Roberto del Monte</p>

<p>Richard Hunt</p>

Why does it print this output? First, the $doc//customer expression matches each
individual <customer> tag in the document. Then, within each loop, the <name> tag
under the context node—each successive <customer> tag in turn—is matched and
printed by <x:out>.

 All the other XML-manipulation tags, including the control flow tags, can take
advantage of the same context node. For example, it’s easy to add a conditional
check that differentiates “preferred” customers from “regular” ones:

<x:forEach select="$doc//customer">

 <p>

Control flow based on XML documents 167
 <font
 <x:choose>
 <x:when select="@status=’preferred’">
 color="#000000"
 </x:when
 <x:otherwise>
 color="#888888"
 </x:otherwise>
 </x:choose>
 >
 <x:out select="name"/>

 </p>
</x:forEach>

In this case, preferred customers are printed in a deep black (color="#000000"),
and regular customers are printed in a lighter gray (color="#888888"). Ignoring
white space, the example outputs the following HTML text:
<p>

</p>
<p>

</p>
<p>

</p>

Note how we use XPath’s @ syntax to refer to attributes of the context node. Read
the expression “@status=’preferred’” as “Does the current node’s status attribute
equal preferred?”

Nested iteration
If a <x:forEach> tag appears inside another <x:forEach>, it inherits the outer tag’s
context node.

 Consider the following sample document:
<customers>
 <customer id="555">
 <order id="1310">
 <item id="30"/>
 <item id="84"/>
 </order>
 <order id="1340">
 <item id="46"/>
 <item id="84"/>
 </order>
 </customer>
</customers>

Jim Heinz

Roberto del Monte

Richard Hunt

168 CHAPTER 8
Working with XML fragments
This document lists individual items that have been ordered from an online store,
but it organizes them first by customer and then by order number. You can see that
customer 555 placed order 1310, which included two items: 30 and 84. The same
customer placed another order: number 1340, again for two items: 46 and 84. (The
customer must have really liked item 84, whatever it was.)

 Suppose we want to list all the item numbers customer 555 has ordered. Assum-
ing the document has been parsed and stored in a variable called doc, we can print
this information using the following JSTL tags:

<x:forEach select=’$doc/customers/customer[@id="555"]/order’>

 <x:forEach select="item">

 <x:out select="@id"/>

 </x:forEach>

</x:forEach>

This example first loops over all <order> elements for customer 555, and then, for
each one, considers each <item> element in turn. For each <item> element, the
example prints the id attribute. Thus, for this document, ignoring white space, the
example will print

30 84 46 84

Note how we’ve again used XPath’s @ syntax directly, outside a predicate. For this
example, we are interested in the attribute value for its own sake, not simply as a
basis for including or excluding an element.

 You might wonder how this example differs from a simple expression like //
item or //customer [@id="555"]/order/item. The answer is that it lets us handle
each level within the tree specially, perhaps printing custom text or formatting as
we go. For instance:

<table border="1">

<x:forEach select=’$doc/customers/customer[@id="555"]/order’>

 <tr>

 <td>

 Order #<x:out select="@id"/>:

 </td>

 <td>

 <x:forEach select="item">

 <x:out select="@id"/>

 </x:forEach>

 </td>

 </tr>

</x:forEach>

</table>

XML transformations using JSTL 169
As figure 8.1 shows, these tags produce an HTML table with one row for each order.
The first column lists the order number, and the second column lists the item num-
bers in each order. Figure 8.2 shows the source HTML that this tag produces.

8.4 XML transformations using JSTL

If you frequently need to convert one XML document into another, you may be
interested in XSLT. The XSLT language approaches XML manipulation from a dif-
ferent point of view than JSTL. Whereas JSTL’s tags tend to be imperative—they let
you direct the web server to “print this, set that, and then loop over these items”—
XSLT’s tend to be functional and based on pattern matching. Instead of letting you
construct a program or a page, step by step, XSLT lets you provide a series of rules

Figure 8.1 Output of a
sample <x:forEach> loop
that loops over parts of an
XML document and prints an
HTML table containing some
of its data

Figure 8.2
The HTML source
code for figure 8.1

170 CHAPTER 8
Working with XML fragments
for converting one document into another. Broadly speaking, these rules take the
form, “When you see input like X, produce output like Y.”

 When these rules are expressive enough, such an approach can be reasonably
powerful. On the other hand, some programmers find them constraining and
inconvenient. These programmers might compare programs to driving directions:
they want to be told, “Take exit 3 to Trumbull Street, then go a quarter of a mile,
and turn left onto Prospect Street.” Thus, they might consider XSLT stylesheets
analogous to the following disordered jumble:

� If you see Hillhouse Avenue, drive past it.

� If you find yourself on Prospect Street, go south.

� If you happen to be at exit 3 on I-91, get off the highway.

� When no other instructions match, drive straight.

If you’re in the right mood, these directions (which are based on pattern matching)
can have a certain appeal: no matter where you are, you can simply consult your
trusty action/reaction guide and determine what to do. But by and large, I think
most web-page authors and programmers find them difficult to read and write.
(Even though XSLT enjoys moderate popularity, I have never been among its
enthusiastic fans.)

 At any rate, JSTL and XSLT aren’t mutually exclusive; you can easily use both in
your applications, as this section describes. We’ll discuss the basic syntax of the
JSTL tags that support XSLT transformations, go over a few examples, and consider
briefly—from my admittedly biased point of view—how using JSTL with XSLT is
more useful than using XSLT alone.

NOTE This section assumes that you already know XSLT and that you want to
use JSTL to invoke a stylesheet from within your JSP page. I don’t have the
space to discuss XSLT here. (And even if I did, I’m not sure I’d want to!)
See appendix D for some references that will help you learn XSLT.

8.4.1 Simple transformations with <x:transform>

JSTL provides a simple tag—<x:transform>—that should handle most of your
XSLT-transformation needs. Table 8.7 shows its attributes.

 The <x:transform> tag’s two most basic attributes are xml and xslt. Given a
source XML document (xml) and an XSLT stylesheet (xslt), the tag’s default behavior
is to apply the stylesheet to the source and output the result into the page. Consider:

XML transformations using JSTL 171
<c:import var="xmlDocument" url="${documentUrl}"/>
<c:import var="xsltStylesheet" url="${stylesheetUrl}"/>
<x:transform xml="${xmlDocument}" xslt="${xsltStylesheet}"/>

This simple use of the <x:transform> tag accepts a source document and a
stylesheet, both of which are exposed by <c:import> tags. The tag then applies the
XSLT stylesheet to the document and outputs the result.

 Let’s look at a more specific example in order to make the tag’s behavior con-
crete. One typical application of XSLT is to replace tags from one kind of markup
language (such as RSS) with tags from another (perhaps HTML). Let’s use
<x:transform> to replace custom markup with more familiar HTML. Listing 8.1
shows an entire JSP page demonstrating this use.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

<c:set var="xml">
 <paragraph>
 This document uses <bold>unusual</bold> markup,
 which we want to replace with <bold>HTML</bold>.
 </paragraph>
</c:set>

<c:set var="xsl">
 <?xml version="1.0"?>
 <xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="paragraph">
 <p><xsl:apply-templates/></p>
 </xsl:template>

 <xsl:template match="bold">
 <xsl:value-of select="."/>
 </xsl:template>

 </xsl:stylesheet>
</c:set>

<x:transform xml="${xml}" xslt="${xsl}"/>

Table 8.7 Basic <x:transform> attributes

Attribute Description Required Default

xml The XML document to transform No Body

xslt The XSLT stylesheet to apply Yes None

var Name of the variable to expose the resulting document No None

scope Scope of the variable to expose the resulting document No page

Listing 8.1 transform.jsp: sample XSLT transformation

Sets xml variable

Sets xsl variable

Could be
replaced by
<c:import>
tag

Uses xml and xsl

172 CHAPTER 8
Working with XML fragments
The JSP page in listing 8.1 is an archetypal example of how to use XSLT from JSTL.
First, a <c:set> tag sets the xml variable with body content that appears directly in
the page. (Of course, this inline content could easily be replaced with a <c:import>
tag to fetch a document from elsewhere). Next, another <c:set> tag sets the xsl
variable using a simple, typed-in stylesheet. (Again, this stylesheet could reside else-
where, and the page could retrieve it using <c:import>.) Finally, the <x:trans-
form> applies the XSLT stylesheet to the XML document and outputs the result. The
page therefore outputs the following, ignoring white space:3

<?xml version="1.0" encoding="UTF-8"?>
<p>
 This document uses unusual markup,
 which we want to replace with HTML.
</p>

For information on how the XSLT stylesheet works, see the references listed in
appendix D.

8.4.2 Using the var attribute

If you specify a var attribute for <x:transform>, the document that results from the
<x:transform> tag’s transformation is saved in a variable instead of being output to
the page. This result can be useful in a number of situations. For instance, once
you’ve stored the output of a transformation using var, the output can be used as
input to another <x:transform> tag. Or, you can select portions from the resulting
document using XPath and <x:out>.

 For example, the final line of listing 8.1 is a simple <x:transform> tag that out-
puts its result to the page:

<x:transform xml="${xml}" xslt="${xsl}"/>

Suppose we replaced this tag with one that stores the document in a variable and
uses it in an <x:out> tag, as follows:

If these two lines replace the final line in listing 8.1, the listing’s JSP page then out-
puts simply HTML—the string value of the second tag in the resulting document.

 Instead of passing $doc2 to the <x:out> tag, we could have passed it to another
<x:transform> tag. Chaining XSLT transformations—applying them successively,
using the output of one transformation as input to another—is a flexible technique

3 In this example, the XML declaration (beginning <?xml) is added by the XSLT processor that’s
used behind the scenes to perform the transformation.

<x:transform var="doc2" xml="${xml}" xslt="${xsl}"/>
<x:out select="$doc2//b[2]"/>

XML transformations using JSTL 173
used by technologies like Cocoon, from the Apache Software Foundation, and
uPortal, from JA-SIG. You have direct access to this technique using JSTL and the
<x:transform> tag. You can chain transformations two ways: by using temporary
var variables, or by nesting the <x:transform> tags.

 Consider the following two contrasting examples; as suggested by figure 8.3,
they both apply three transformations to a base document called xml using three
stylesheets, xsl1, xsl2, and xsl3. The first example uses three parallel <x:trans-
form> tags and two temporary variables:

<x:transform var="tmp1" xml="${xml}" xslt="${xsl1}"/>

<x:transform var="tmp2" xml="${tmp1}" xslt="${xsl2}"/>

<x:transform xml="${tmp2}" xslt="${xsl3}"/>

In this code, the first transformation processes xml with xsl1, producing tmp1.
Then, tmp1 and xsl2 are used to produce tmp2. Finally, xsl3 is applied to tmp2, and
the result is output to the page.

 The following code does the same thing as the previous code, but it avoids the use
of temporary variables by simply placing one <x:transform> tag inside another:

<x:transform xslt="${xsl3}">

 <x:transform xslt="${xsl2}">

 <x:transform xslt="${xsl1}" xml="${xml}"/>

 </x:transform>

</x:transform>

Recall from earlier in this section that the <x:transform> tag uses its body as its
source XML document when no xml attribute is specified. Therefore, this example
uses the output of the innermost <x:transform> tag as the input to the middle
<x:transform> tag, and uses this middle tag’s output as input to the outer
<x:transform> tag. Finally, because this outer tag isn’t contained by any other
<x:transform> tag, its output can appear in the JSP page’s output.

Figure 8.3 In our two examples, the same series of transformations is conducted on an
input document. Three stylesheets (xsl1, xsl2, and xsl3) are applied to the input
document, and the final result is output by the JSP page.

174 CHAPTER 8
Working with XML fragments
 These two methods of applying successive transformations are functionally the
same; you can pick whichever you’re more comfortable with.

8.4.3 XSLT parameters

If you’re familiar with XSLT, you probably know that a stylesheet can declare
parameters using the <xsl:param> tag and accept them from outside sources. For
stylesheets that take advantage of this ability, JSTL provides the <x:param> tag,
whose attributes are listed in table 8.8.

The <x:param> tag sets the XSLT parameter called name to the value of value. For
instance, the following tag sets the color parameter to the value green:

<x:param name="color" value="green"/>

If no value attribute is specified, then <x:param> can obtain its parameter value
from its body. Therefore, the following tag also sets the color parameter to green:

<x:param name="color">green</x:param>

Of course, instead of the literal, typed-in text green, other tags (like <c:out> or
<x:out>) can appear in the <x:param> tag’s body.

 The <x:param> tag always applies to its immediate parent tag, which must be
<x:transform>.

8.4.4 Advantages of using XSLT within JSTL

The examples of applying multiple XSLT transformations from section 8.4.2 dem-
onstrate the flexibility of JSTL’s XSLT support. Instead of requiring that all modifica-
tions to a document be implemented in terms of a single XSLT stylesheet, JSTL lets
you integrate XSLT logic into your page whenever it’s appropriate but avoid using
it when it isn’t. You’re not limited to applying XSLT transformations successively.
For instance, you can use JSTL to retrieve an XML document from the Web, parse a
particular URL from this document using XPath, and then perform an XSLT trans-
formation on the document you retrieve from this second URL. You can easily mix
XML-manipulation tags with database tags, text-formatting tags, and so on. Thus, as

Table 8.8 <x:param> tag attributes

Attribute Description Required Default

name Name of the parameter to set Yes None

value Value of the parameter to set No Body

An XML example: reading RSS files 175
you’ll see in chapter 13, it’s easy to use JSTL to tie together multiple pages, aggregat-
ing the portions of each that are relevant to your site.

 Generally speaking, when you use JSTL to invoke XSLT, you get the familiar
benefit of JSTL: you need only be comfortable with JSP tags, not Java code. Even if
your application depends heavily on XSLT, something needs to invoke the transfor-
mation processor. With JSTL, you don’t have to learn Java APIs or rely on back-end
Java programmers to fit together your XSLT stylesheets.

8.5 An XML example: reading RSS files

Earlier in this chapter, I mentioned RSS files. Like HTML, RSS is an application of
XML; it’s a set of tags with rules about how these tags work and what they mean. RSS
has become popular for syndicating content on the Web. It’s a simple way to provide
pointers to articles or other kinds of information on your site. RSS lets you provide a list
of links, each of which has a headline, a description, and other characteristics.

 Figure 8.4 shows part of an RSS file, as displayed by Internet Explorer. An RSS
file begins with information describing the channel, or feed, that it represents.

Figure 8.4 Part of an RSS file, as displayed by Internet Explorer. The
<item> elements are most useful to us; they signify individual links, or
articles. For instance, in this RSS file, one article has the headline,
“Movie studios tout first DVD bust in U.S.”

176 CHAPTER 8
Working with XML fragments
Eventually, the RSS begins to list individual articles, or items. Each item is each rep-
resented by an <item> tag, which has a number of different children describing the
article. For our purposes, we’re interested in two of these children:

� The <title> element, which contains the headline for the article
� The <link> element, which tells us the URL for the article

RSS files are designed primarily to communicate information to programs; they’re
not convenient for users to read. A user might want to see a simple bulleted list of
headlines, each of which is an HTML <a> hyperlink to an article; for instance, see
figure 8.5. Let’s look at how we can use JSTL to reformat an RSS file. Listing 8.2
shows our first attempt.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

<c:import var="xml" url="${param.rssUrl}" />
<x:parse var="rss" xml="${xml}" />

<x:forEach select="$rss//item">

 <a href="<x:out select="link"/>">
 <x:out select="title"/>

Listing 8.2 simpleRss.jsp: converts an RSS channel into a list of hyperlinks

Figure 8.5
RSS files are meant to convey
information to programs, not
people. To be useful to users, the
RSS file must be converted into
something they can use—for
instance, a bulleted list of
headlines and HTML hyperlinks.

An XML example: reading RSS files 177

</x:forEach>

This surprisingly short example is all we need to handle simple RSS files. We start
by loading and parsing the RSS file from a URL specified by one of our request
parameters, rssUrl. To pass the simpleRss.jsp page this parameter, we might use an
HTML form like this:

<form method="post" action="simpleRss.jsp">
 Enter the URL for an RSS feed:
 <input type="text" name="rssUrl" />
 <input type="submit" />
</form>

Once simpleRss.jsp has retrieved its RSS file over the Web, it loops over each
<item> tag in the RSS file and prints out its <link> and <title> children. We insert
the contents of the <link> item into an <a> tag’s href attribute, and we print the
headline (<title>) as the body of the hyperlink. A sample result is shown in figure 8.5.
(This example uses a news feed from CNet, which was available at the following
URL at the time this chapter was written: http://export.cnet.com/export/feeds/
news/rss/1,11176,,00.xml. See appendix D for more examples of RSS feeds.)

Dealing with namespaces
The simpleRss.jsp example is short and sweet, and it works for many RSS files, but it
has a problem: it doesn’t work for newer types of RSS files that use XML namespaces.
This limitation arises because, as you saw in chapter 7, XPath expressions like //item
and link don’t match elements that use namespaces. To match these items in all RSS
files, you need to use a slightly different syntax. Instead of writing

//item

to match all <item> tags, we’ll need to use an XPath expression like this:

//*[name()='item']

This expression matches all tags whose name is equal to item, regardless of the RSS
document’s use of namespaces. Listing 8.3 shows a more general page that parses
and prints out RSS documents.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

Listing 8.3 rss.jsp: converts an RSS channel (with namespaces) into a list of
hyperlinks

178 CHAPTER 8
Working with XML fragments
<c:import var="xml" url="${param.rssUrl}"/>
<x:parse var="rss" xml="${xml}" />

<x:forEach select="$rss//*[name()='item']">

 <a href="<x:out select="./*[name()='link']"/>">
 <x:out select="./*[name()='title']" />

</x:forEach>

Listing 8.3 is identical to listing 8.2 except for its use of slightly more complicated
expressions that ensure compatibility with RSS files that uses XML namespaces.
Review section 7.4 for more information.

 The great thing about JSTL is that you aren’t limited to transforming the RSS
document, as you would be with XSLT. Instead, you can perform real-world opera-
tions on the data you parse out of RSS files. For instance, instead of simply printing
a URL for one of the RSS document’s articles, you could follow this URL: you could
import it using <c:import> and print it out. If this file was an XML document, you
could even parse it using <x:parse> and continue to retrieve XML data.

 As an example of this powerful technique, look at listing 8.4.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

<c:import var="xml" url="${param.rssUrl}"/>
<x:parse var="rss" xml="${xml}" />

<x:forEach select="$rss//*[name()='item']">

 <a href="<x:out select="./*[name()='link']"/>">
 <x:out select="./*[name()='title']" />

 <blockquote>

 </blockquote>

</x:forEach>

Listing 8.4 rssFollow.jsp: converts an RSS channel (with namespaces) into a list of
hyperlinks

<x:set var="newUrl" select="string(./*[name()='link'])" />
<c:import url="${newUrl}"/>

Summary 179
The highlighted section of listing 8.4 retrieves the URL of each article in the RSS file,
and then follows this URL—it retrieves the target and prints out its data. Note that
this result won’t look very pretty if each article uses its own formatting. If the target
of the hyperlink expects to be printed as a full page, then we probably shouldn’t
include it wholesale in our own page. But this technique is a good starting place if
your target links are printable fragments (instead of whole HTML pages), XML doc-
uments that you can parse with <x:parse>, or some other manageable format.

 The XPath expression that we use in <x:set> needs an explanation. When an
XPath expression uses the XPath string() function, the subexpression within
string() is converted to a string. Otherwise, expressions like

/item

or

./*[name()='link']

represent XPath nodes, not strings. We use a string here because <c:import> doesn’t
know anything about XML nodes; it accepts only a string for its url attribute.

8.6 Summary

As you manipulate XML with JSTL, keep in mind the following points:
� Before you work with an XML document, you must parse it. The <x:parse>

tag lets you parse a document and expose it to your page.
� The XML-support library in JSTL contains tags that correspond in scope and

function to the following tags:

<c:if>
<c:choose>
<c:when>
<c:otherwise>
<c:out>
<c:set>
<c:forEach>

� These tags work just like the ones in the core library, but they use XPath
instead of the normal expression language.

� You can use JSTL’s support for XPath variables to refer to a parsed document
in the XPath expressions that you feed to <x:if>, <x:out>, and the other
XML-manipulation tags.

� JSTL lets you run XSLT transformations using the <x:transform> tag. It’s
easy to conduct multiple transformations or even string transformations
together, using output from one as input to another.

9Database-driven pages
This chapter covers…
� When to use JSTL’s database support
� How to perform database queries and updates
� Ways to access data you’ve retrieved
� Why and how to use database transactions
181

182 CHAPTER 9
Database-driven pages
When you need a user’s information to last for an entire session, you can store it in
JSP’s session scope. However, some information needs to last longer than the ses-
sion scope allows.

 For instance, you probably don’t want to make your visitors enter their prefer-
ences each time they come to your site. Most users would prefer to enter their infor-
mation once and have your site remember it. Some information—like a customer’s
full name, address, and phone number—might not even have anything to do with
the user’s session or web experience; you might simply need to gather this informa-
tion for use offline, after the user has left, to process orders or conduct other busi-
ness operations.

 To store data for long periods of time, you can use a software product called a
relational database management system—abbreviated RDBMS but often, these days,
described by the more general term database. Database packages include Oracle,
Microsoft SQL Server, PostgreSQL, MySQL.

 Of course, simple files on disk can also store information for a long time. You
might wonder why you should use a database when you can store data in straight-
forward text files.

 The answer is that using databases is safer, and in many cases more convenient,
than managing arbitrary files on a disk. Databases are designed to store structured
information. When you write to files, you must devise a way to represent your data
manually. For instance, you can separate names and phone numbers with commas,
and then store each user’s record on a different line in the file. But this process is as
error-prone as it is tedious, and it makes your file idiosyncratic. A missing comma
might cause you to greet a user as “Dear Mr. 203-432-6687.” If other people or
applications need to read your data, they must learn the format you personally
devised and implemented. By contrast, databases provide standard interfaces to
your data, and they help you organize it.

 Databases also help keep your data safe and consistent. A database can be set up
to ensure that every entry for a customer comes with a phone number and birthdate,
so you don’t accidentally end up with partial data. When databases guarantee the
consistency—or integrity—of data, they let you focus on other considerations. You
can set up a database once (or have a database administrator set one up) and then
read and write data to it, confident in its ability to handle the data quickly and accu-
rately.

 All the tags we introduce in this chapter come from JSTL’s sql tag library. (See
chapter 2 for more information on JSTL’s various tag libraries.) To use any of the
examples in this chapter, you’ll need to use a directive like the following at the top
of your pages:

<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

When to use JSTL’s database support 183
9.1 When to use JSTL’s database support

Even with the advantages that they provide, databases are not appropriate for all
web applications. Furthermore, even if your application uses a database, you
might want to avoid JSTL’s database tags. This is not because of any limitation in
JSTL’s tags, but simply because JSP pages should, in some cases, avoid directly
accessing databases.

9.1.1 When to use databases

Broadly speaking, your application will need to use databases in two situations. The
first is clear-cut: you’re working in an environment where databases are already
used. For instance, your application might need to access a centralized database
that stores customers or product information. In cases like this, back-end Java pro-
grammers will often take care of managing database connections for you. You’ll
simply be given instructions about how to access the database.

 The second situation is more ambiguous: your application might need some
long-term data for its own, internal purposes. For example, suppose you want to let
your visitors decide between a flashy interface and a simple one and remember
their decision—or store a username and password used specifically to access your
web site. In such cases, the data is your application’s responsibility. Therefore, if
you are responsible for designing the application, you will need to decide where
information like this is stored.

 No catch-all rule lets you decide when databases are appropriate, but a few
guidelines are useful. As I mentioned in this chapter’s introduction, when data
needs to persist longer than the user’s session, JSP’s session scope is insufficient, and
you will need to find a longer-term alternative. The application scope in JSP can
store data even after an individual user’s session expires, but data stored in this
scope—like any other scope—is transient. (For instance, depending on which JSP
container you use, all data in application scope might go away if a single server
crashes or is rebooted.) Therefore, you should consider using databases for impor-
tant information that needs to last for a long time—preferences, credentials, user
profiles, orders, and so on. Think of databases as analogous to human long-term
memory, whereas JSP scopes are like short-term memory.

9.1.2 Direct access from JSP pages

As you saw in chapter 1, most large Java web applications are not made up
entirely of JSP pages. Many applications also contain servlets that handle requests
from the user. Servlets can directly invoke whatever logic the application requires,
and then they can pass the user’s web request to a JSP page. In such an environ-

184 CHAPTER 9
Database-driven pages
ment, JSP pages handle nothing more than the display of formatted information;
they are not responsible for answering any questions other than, “How should the
data be displayed?”

 If an application uses JSP pages just to present information, and not to handle
any application logic, then the JSP pages do not need to access databases. Instead,
as figure 9.1 suggests, they rely on Java code to manage information retrieval and
storage behind the scenes. If you are working on a project where Java programmers
handle all database access, you may have no use for JSTL’s database tags. Instead,
you’ll probably use JavaBeans or custom tags that your Java-developer colleagues
provide—or that you, wearing a different hat, create.

 However, for small applications, prototypes, or projects where you’re the only
developer, JSTL’s database tags may come in handy. As figure 9.2 suggests, these
tags allow you to access databases directly from JSP pages. This more direct
approach is useful when nobody’s around to write intermediate Java code to access
databases, or when you don’t want to go to the trouble of separating out the logic.
Even large applications can contain JSP pages that access databases directly, but
many developers feel that such applications become cumbersome. Why, they ask,
should a component of the application’s presentation need to know where the data-
base is kept? Why should the JSP pages need to change if the data model changes?
And isn’t it dangerous for a JSP page to modify data permanently in a database?

 These developers have a good point, which explains the popularity of servlet-
based application frameworks. But there are contrasting opinions that are some-
times forgotten in the debate over application design. Because this is not a book

Figure 9.1 In large applications, JSP pages do not access databases directly.
Instead, they rely on intermediate Java code to access databases.

Figure 9.2
JSP pages can access databases
directly. Doing so might be useful
in small applications, prototypes,
or when you don’t want to bother
with intermediate logic.

Database connections with <sql:setDataSource> 185
about application design, I will not address the advantages of the various approaches
here. Other books, like Web Development with JavaServer Pages,1 discuss application
architectures in some detail. For more information, see that book and appendix D.
For our purposes, it’s just important to note that it makes sense to use JSTL’s data-
base-access tags in at least some situations—perhaps many.

9.2 Setting up a database connection with
<sql:setDataSource>

JSTL’s database tags need to know what database to use, and the <sql:setData-
Source> tag is one way of telling them. It’s important to emphasize that <sql:set-
DataSource> is just one way to prepare a database for use in your pages. In many
large applications, <sql:setDataSource> is not necessary, because back-end Java
developers manage all database connections. These developers can set up a default
database behind the scenes so that you never have to worry about the issue. Or,
they can give you a scoped variable that represents a database, and you can use this
scoped variable as input to JSTL’s database tags. If you can rely on such a variable
or default database being available, then you can skip this section.2

 However, for smaller applications, or those where all database management is
handled by JSP pages instead of by back-end Java code, <sql:setDataSource> is a
useful crutch. It accepts as attributes all the information required to connect to a
database. With this information, it lets you do two things. First, you can decide to
expose a scoped variable that represents the database; you can then use this scoped
variable as input to other JSTL database tags. Second, you can change the default
database for your pages. For instance, you can set up a database each time the user
logs in, declare this database as the default for your user’s session, and then never
worry about it again.

 Table 9.1 lists the attributes for <sql:setDataSource>.

1 Duane Fields, Mark Kolb, and Shawn Bayern, 2nd ed. (Manning Publications, 2001)
2 If you’re a Java developer, chapter 14 tells you how to set up a default database for JSTL tags.

Table 9.1 <sql:setDataSource> tag attributes

Attribute Description Required Default

dataSource Existing database to use No None

driver JDBC driver class name No None

url JDBC database URL No None

186 CHAPTER 9
Database-driven pages
The <sql:setDataSource> tag depends on a Java standard known as JDBC, which
would stand for Java Database Connectivity if it weren’t actually just an opaque
product name used for marketing purposes. JDBC is Java’s package for connect-
ing to databases. To use JDBC to connect to a database, you need up to four
pieces of information:

� The URL for the database connection
� The username for the database connection
� The password for the database connection
� The name of a JDBC driver to load so that you can connect successfully

You need to get this information from whoever manages your database. When you
install a database yourself, you need to figure out these four pieces of information
on your own by consulting the database’s documentation.

TIP In case your organization doesn’t have a database for you to use, I’ve post-
ed instructions at Manning’s web site that describe how to set up a small,
free database system called hsqldb. (See appendix D for the URL for these
instructions.) Using the directions in that online document, you’ll be able
to experiment with JSTL’s <sql:setDataSource> tags. The document
also describes what URLs and driver names to use when connecting to an
hsqldb database.

Let’s look at an example of how the <sql:setDataSource> tag works. Suppose
we’re told the following pieces of information by our database administrator:

� JDBC driver name to load: org.hsqldb.jdbcDriver
� JDBC URL: jdbc:hsqldb:

� Username: sa
� Password: donkey

user Database username No None

password Database password No None

var Name of the variable that represents the database No None

scope Scope of the variable or new default No page

Table 9.1 <sql:setDataSource> tag attributes (continued)

Attribute Description Required Default

Database connections with <sql:setDataSource> 187
To prepare connections to this database, we’d use the following tag:

<sql:setDataSource

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:."

 user="sa"

 password="donkey"/>

Because this <sql:setDataSource> tag doesn’t have a var or a scope attribute, it
will replace the page’s default database. That is, any other database tags that appear
later in the same page will use the database identified by this tag’s attributes. Sup-
pose we add just a scope attribute, as follows:

<sql:setDataSource

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:."

 user="sa"

 password="donkey"

With this new attribute, the <sql:setDataSource> tag will set up a new default
database for the user’s session. We could also specify scope="request" or scope=
"application" if we wanted to set a default for the request or application scope.

 Setting a default is useful when your application has only—or primarily—one
database to use. For instance, you can put an <sql:setDataSource> tag in a com-
mon header file included with <c:import> into your page. If such an <sql:set-
DataSource> tag has a scope="application" attribute, then it sets an application-
wide default, and you may never have to think about <sql:setDataSource> again
until you start working on a new application.

 When different default databases exist for the page, request, session, and appli-
cation scopes, then JSTL’s database tags use page first, followed by request, session,
or application. This sequence lets you set a default for a specific scope without
destroying the defaults for more general scopes. For instance, you can use <sql:set-
DataSource> in a single page but rely on a session-scoped default database for other
pages.

 If your application works with multiple databases, then instead of using
<sql:setDataSource> to set a default connection, you might instead use it to
expose a scoped variable that represents a database. You can do this by adding a
var attribute:

<sql:setDataSource

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:."

 user="sa"

scope="session" />

188 CHAPTER 9
Database-driven pages
 password="donkey"

 var="databaseOne"

 scope="session" />

This tag exposes a session-scoped variable called databaseOne. Another tag might
expose a different variable called databaseTwo, or even something with a more cre-
ative name. Then, using syntax we’ll encounter in a moment, you can decide which
database to connect to for each database tag that appears in your pages.

 If back-end Java code, or an <sql:setDataSource> tag you’ve used, has created
a scoped variable that points to a database, you can feed this variable into
<sql:setDataSource> in order to instruct it to set a new default. For instance, after
we’ve exposed databaseOne, we can make it the request scope’s default with the
following tag:

<sql:setDataSource

 dataSource="${databaseOne}"

 scope="request" />

Note that when you use the url, driver, user, and password attributes, you can
leave out any of these four pieces of information except url. You might leave out
driver because sometimes, a back-end Java programmer or system administrator
will promise that a driver has already been registered for you, so you don’t need to
worry about loading it from your pages. You can omit either user or password or
both if your database doesn’t require them.

9.2.1 Caution against <sql:setDataSource>

Earlier in this chapter, I advised you that JSTL’s database tags might not be appro-
priate for large web applications. This warning is particularly true for the <sql:set-
DataSource> tag. If you’ve worked with databases before, you might have heard of
the idea of database connection pooling. Like carpooling, connection pooling uses a
single vehicle (in this case, a database connection) for multiple purposes. Pooling is
very important in real-world applications, because just like a drive to New York
City during rush hour, opening a database connection is a slow operation (and you
don’t want to do it too often).

 However, the <sql:setDataSource> tag does not support connection pooling.
It’s not designed to do so. Instead, Java programmers who set up default databases
for JSP pages have ample opportunity to set up their own pooling strategies. Doing
so makes <sql:setDataSource> suitable only for applications where high perfor-
mance isn’t crucial. In particular, <sql:setDataSource> is great for small applica-
tions, proof-of-concept or test pages, and real-world applications that don’t need to

var="databaseOne"

Performing queries with <sql:query> 189
support a lot of users. But <sql:setDataSource> probably won’t be efficient
enough for pages that handle a large number of requests.

9.3 Performing queries with <sql:query>

Databases wouldn’t be very useful if you couldn’t retrieve information from them. The
<sql:query> tag is the JSTL tag you use to pull information from databases. Its goal is
always to expose a scoped variable that represents the results of a database query.

 Table 9.2 lists <sql:query>’s attributes.

If you supply a scoped variable for the dataSource attribute, then <sql:query> will
connect to the database using the scoped variable you provide. You can expose an
appropriate scoped variable for the dataSource attribute by using <sql:setData-
Source>, or you might retrieve a scoped variable from back-end Java code through
the request, session, or application scope. For instance, we could use an <sql:query>
tag that looks like this:

If you don’t use the dataSource attribute, then the <sql:query> tag will try to find a
default database. As I mentioned in the previous section, <sql:query> (or any
other JSTL database tag) will first look in the page scope for a default database; it
will then search request, session, and application scopes in order. If no default data-
base is found, the tag will cause an error to be triggered. Chapter 11 describes dif-
ferent approaches for handling errors.3

Table 9.2 <sql:query> tag attributes

Attribute Description Required Default

sql The SQL query to execute (SELECT…) No Body

dataSource Provider of database connections No See section 9.3

startRow Row of the result to start recording No 0 (the first row)

maxRows Maximum number of rows to record No See section 9.3.3

var Name of the variable to expose the result Yes None

scope Scope of the variable to expose the result No page

<sql:query dataSource="${sessionScope.databaseOne}" …/>

3 A default database can also be hard-coded for an application in its deployment descriptor. If you’re
an advanced user, chapter 14 explains how to establish defaults, including how to use the de-
ployment descriptor to configure JSTL’s behavior.

190 CHAPTER 9
Database-driven pages
9.3.1 Performing a database query

To perform a database query, you usually need to use a language called the Struc-
tured Query Language (SQL). The rest of this chapter assumes you’re familiar with the
basics of SQL. If you haven’t learned SQL yet, appendix C shows you how to use it
with JSTL’s database tags.

 The <sql:query> tag can use any valid SQL query to retrieve information from
a database. SQL queries can appear either in the sql tag attribute or as the body of
an <sql:query> tag. For instance, if we wanted to retrieve all data from a table
named CUSTOMERS, we could use the following tag:

<sql:query var="result">
 SELECT * FROM CUSTOMERS
</sql:query>

We could also simply write:

These two approaches are nearly identical. Tag attributes, however, let us conve-
niently use the expression language, so that if the text of the SQL query (that is, the
literal text SELECT * FROM CUSTOMERS) were stored in a variable called query, we
could refer to it as follows:

On the other hand, including an SQL command in the tag’s body makes it easy to
generate the query dynamically using other tags. Imagine, for instance, that our
organization maintains a central list of SQL queries in an XML document. We could
use the <x:out> tag to retrieve a query and then print it inside an <sql:query> tag:

<sql:query var="result">

</sql:query>

NOTE These examples of the <sql:query> tag, and the rest of the examples in
this chapter, assume that a default database is properly set up (see
section 9.2). If you haven’t set a default database with <sql:setData-
Source>, and if your pages haven’t had a default database installed by a
back-end Java programmer, then you’ll need to use the dataSource at-
tribute for these examples to work.

<sql:query var="result" sql="SELECT * FROM CUSTOMERS"/>

<sql:query var="result" sql="${query}"/>

<x:out select="$doc/query/customerQuery"/>

Performing queries with <sql:query> 191
9.3.2 Reading a query’s results

The <sql:query> tag doesn’t output anything, because there’s no single, standard
way to output the result of an SQL query. The tag can’t guess whether you want to
produce a bare-bones HTML table, an elaborate graphical output, or something
else. Indeed, you might not even want to print any data immediately.

 As I said before, the goal of the <sql:query> tag is just to execute a query and
store the resulting data in the variable identified by var and scope. This scoped
variable has the structure shown in figure 9.3.

How a database result is organized
When you retrieve information from a database table, that data is presented in rows
and columns, just like a table in a spreadsheet. Each row corresponds to a record,
and each column is a field within that record. Imagine that one of our pages uses a
tag like this:

Figure 9.3 The <sql:query> tag stores a scoped variable with a few specific
properties. The query’s data is accessible using the rows and rowsByIndex
properties. You can retrieve information about the data—that is, metadata—
using the remaining properties.

192 CHAPTER 9
Database-driven pages
<sql:query var="result">
 SELECT NAME, IQ FROM USERS WHERE IQ > 120
</sql:query>

The SQL query in this tag produces a result with exactly two columns: NAME and IQ.
The number of rows depends on the data itself—in this case, on the number of peo-
ple in the USERS table who have IQs above 120.

 Table 9.3 shows a sample result for this SQL query. The user named Richard has
an IQ of 132, Jonathan weighs in at a less-impressive 121, and so on.

The job of <sql:query> is to retrieve a result—just like that in table 9.3—and
expose it as a scoped variable. Such a scoped variable isn’t as simple as a string or
number; instead, it’s divided into a number of properties. These properties let you
access two things about a database result:

� The data in the table
� Information about the data (often called metadata)

Figure 9.3 shows all the properties of the variable that each <sql:query> exposes.
The first two, rows and rowsByIndex, are for accessing data. The remaining proper-
ties—columnNames, rowCount, and limitedByMaxRows—just help describe the data.

Accessing metadata
Let’s begin by looking at the metadata. Suppose you’ve used an <sql:query> tag to
create a variable called result. The simplest property of this result variable is
rowCount. The expression ${result.rowCount} lets you retrieve the number of
rows in the result. For instance, for table 9.3, rowCount would be 5, because five
pairs of NAME and IQ values are listed.

 You can also use the result variable to retrieve the names of the columns in the
result. The columnNames property is a list of column names. Recall from chapter 3
that you can access the items in an ordered list using square brackets ([]) and index

Table 9.3 A sample result from a database, with two
columns and five rows

NAME IQ

Richard 132

Jonathan 121

Liz 140

Michael 162

Rachel 149

Performing queries with <sql:query> 193
numbers starting with zero. For instance, to access the name of the first column in a
result, you can write an expression like this:

${result.columnNames[0]}

In the case of our sample, this expression would evaluate to NAME. Similarly,

${result.columnNames[1]}

would evaluate to IQ.
 Because columnNames is a collection, you can also loop over it. Doing so is par-

ticularly useful when you want to print a header for an HTML <table>. You’ll see
an example of how to do this in a moment.

 We’ll look at the final metadata property, limitedByMaxRows, in section 9.3.3.

Accessing data
Accessing metadata can be useful, but the purpose of most database queries is to
retrieve data itself. The <sql:query> tag’s variable lets you access data through two
properties: rows and rowsByIndex. Both of these properties expose collections; typ-
ically, you’ll want to loop over these collections to print results. The difference
between rows and rowsByIndex is that during each loop, you access the data in
rows using column names, and you access the data in rowsByIndex using column
numbers. Figure 9.4 compares rows, rowsByIndex, and columnNames.

 Let’s look at a couple of different ways to access data. The following loop uses
the rows collection to loop over data and access column values using the names of
columns from table 9.3:

<sql:query var="smartUsers">

 SELECT NAME, IQ FROM USERS WHERE IQ > 120

</sql:query>

<table>

<c:forEach items="${smartUsers.rows}" var="row">

 <tr>

 <td><c:out value="${row.NAME}"/></td>

 <td><c:out value="${row.IQ}"/></td>

 </tr>

</c:forEach>

</table>

This loop prints a single HTML table row (<tr>) for each row in the database table.
Each row in the HTML table contains two columns: the first prints the user’s name,
and the second prints the user’s IQ. (Note that although we wrote ${row.NAME}, we
could also have written ${row.name}; it doesn’t matter whether the column names
we specify are uppercase, lowercase, or any mixture between the two.)

194 CHAPTER 9
Database-driven pages
For the data in table 9.3, this example would print out the following HTML (ignor-
ing white space):

<table>
 <tr>
 <td>Richard</td>
 <td>132</td>
 </tr>
 <tr>
 <td>Jonathan</td>
 <td>121</td>
 </tr>
 <tr>
 <td>Liz</td>
 <td>140</td>
 </tr>
 <tr>
 <td>Michael</td>

Figure 9.4 When <sql:query> exposes a result, its rows property lets you access
individual column values in each row by name. Its rowsByIndex property lets you access
values for each row by number. Both of these attributes are collections of collections, but
columnNames is a simple collection that lets you access column names by number.

Performing queries with <sql:query> 195
 <td>162</td>
 </tr>
 <tr>
 <td>Rachel</td>
 <td>149</td>
 </tr>
</table>

To use rowsByIndex, we’d write a similar loop; but instead of referring to row.NAME
and row.IQ, we’d use row[0] and row[1]. This approach can be useful if you don’t
know the names of the columns, or if the column names might change. For
instance, this block would have the same output as the last example, but it uses col-
umn numbers instead of column names:

<sql:query var="smartUsers">
 SELECT NAME, IQ FROM USERS WHERE IQ > 120
</sql:query>
<table>
<c:forEach items="${smartUsers.rowsByIndex}" var="row">
 <tr>
 <td><c:out value="${row[0]}"/></td>
 <td><c:out value="${row[1]}"/></td>
 </tr>
</c:forEach>
</table>

Tying it together
Often, a single loop will combine metadata and data to produce a convenient
header. This technique is particularly useful when you want to write a generic page
that handles multiple queries, no matter where they come from. For instance, you
can write a general printQuery.jsp page and then include this page, sending it the
result of an <sql:query> tag using a request-scoped attribute. Such a printQuery.jsp
page might look like listing 9.1.

<c:forEach
 items="${requestScope.result.rowsByIndex}"
 var="row"
 varStatus="s">
 <c:if test="${s.first}">
 <table>
 <tr>
 <c:forEach
 items="${requestScope.result.columnNames}"
 var="col">
 <th><c:out value="${col}"/></th>
 </c:forEach>

Listing 9.1 printQuery.jsp: general-purpose query formatter

196 CHAPTER 9
Database-driven pages
 </tr>
 </c:if>
 <tr>
 <c:forEach items="${row}" var="value">
 <td><c:out value="${value}"/></td>
 </c:forEach>
 </tr>
 <c:if test="${s.last}">
 </table>
 </c:if>
</c:forEach>

This example does a lot, so let’s walk through it. We begin by iterating over the
rowsByIndex property of an <sql:query> result we retrieve from the request scope.
We also use <c:forEach>’s varStatus attribute so that we can print special informa-
tion at the beginning and at the end of the loop. First, we use the varStatus vari-
able to print <table> at the beginning of the loop and </table> after it. Doing so is
better than writing <table> and </table> outside the <c:forEach> loop, because in
this case, we don’t print <table> and </table> unless we have some results to iter-
ate over. (If we printed <table> and </table> outside the loop, then we’d print
those tags even if the result were empty, and it’s messy to print an empty table with
no data.)

 Additionally, within the <c:if test="${s.first}"> check that runs only the
first time through the loop, we print a table row (<tr> … </tr>) that will contain a
table header. To print header entries, we loop over the columnNames property and
print each column name within a <th> element. This step works because the order
of the columns in the columnNames collection must match the order of the column
data in the rowsByIndex collection.

 Finally, in the body of the loop, we loop over the row. The rows and rowsByIn-
dex properties are collections, but each of their elements is a collection, too. (See
figure 9.4.) That is, they’re collections of collections. Thus, the inner <c:forEach>
tag loops over each row—first over rowsByIndex[0], then over rowsByIndex[1],
and so on, once for each column in the table.

 The result is a completely generic page that can print the result from any SQL
query, including a header for the result’s column names. As an example of its
results, figure 9.5 shows how printQuery.jsp might display the data and metadata in
table 9.3. We produce this output by calling printQuery.jsp as follows:

<sql:query var="result" scope="request">
 SELECT NAME, IQ FROM USERS WHERE IQ > 120
</sql:query>
<c:import url="printQuery.jsp"/>

Performing queries with <sql:query> 197
9.3.3 Limiting the size of a query’s result

We use databases because they’re good at storing large amounts of data. If all appli-
cations managed only a small amount of data, a general-purpose, relational data-
base would probably be overkill. The size of databases, though, can lead to a
problem: it becomes easy, with a simple query, to retrieve a set of results that is
unmanageably large. For example, the documentation for PostgreSQL, a free high-
quality database, says that some PostgreSQL installations have databases 60GB in
size. (That’s more than 64 billion characters.)

 Imagine that your application has a large database, and you perform a query
based on user input. You have a page that prints data for all customers who match
the user’s keyword. Now, suppose the user enters an uninspired keyword like
“Bob” that matches 50,000 rows. JSTL lets you prevent the query from going out of
control by using two attributes of the <sql:query> tag: maxRows and startRow.

The maxRows attribute
The maxRows attribute is straightforward. When it appears in an <sql:query> tag, it
ensures that no more than a specific number of rows will be stored by the scoped
variable that <sql:query> stores. For example, the following tag might produce a
very large result named customers:

<sql:query var="customers">

 SELECT * FROM CUSTOMERS

</sql:query>

However, this tag will never store more than 20 rows in customers:

 SELECT * FROM CUSTOMERS

</sql:query>

Figure 9.5
Sample output from printQuery.jsp,
using the data shown in table 9.3.
The generic printQuery.jsp page
accepts any result from
<sql:query> and formats it as a
simple HTML table.

<sql:query var="customers" maxRows="20">

198 CHAPTER 9
Database-driven pages
Sometimes, you want to let the user know whether maxRows effectively truncated a
query. For instance, you might want to print a message like, “Your query returned
more than 20 customers. Please narrow it down next time.” To make such a deci-
sion, you can use the limitedByMaxRows property of the variable exposed by
<sql:query>. As figure 9.3 showed, this is a boolean property. It’s true if the result
would have contained more than maxRows allowed but was cut short. It’s false if
the result from the database contained only as many, or fewer, rows than maxRows.
For example, in the last example, ${customers.limitedByMaxRows} would equal
true if the query returned 21 or more rows; otherwise (if the query returned 20 or
fewer rows) it would be false. You can use limitedByMaxRows like this:
<c:if test="${customers.limitedByMaxRows}">
 Your query returned too many customers.
 Please be more specific next time.
</c:if>

Back-end Java programmers can set a default maxRows for your pages, but you can
always override this value by using maxRows yourself. If you want to ensure that the
size of your result won’t be limited, you can set maxRows equal to -1.

The startRow attribute
In addition to limiting the number of rows an <sql:query> tag stores, JSTL lets you
specify a specific starting row with the startRow attribute. Recall the example of
paging through data in chapter 5. The startRow attribute works like the begin ele-
ment in <c:forEach>: it ignores all data before the particular element named by
startRow. Like begin, it is a zero-based index: the first row is numbered 0, the sec-
ond is numbered 1, and so on. For example, the following query would return all
rows in the CUSTOMERS table except the first two rows (numbered 0 and 1):

 SELECT * FROM CUSTOMERS
</sql:query>

If there were no such rows—for instance, if the table had only two rows—then the
customers variable would be empty.

 As with maxRows, you can specify any positive integer or 0 for the startRow
attribute.

Using maxRows and startRow together
You can use maxRows and startRow in the same tag. When they appear together,
each has its usual, independent effect. For example, consider the following query:

 SELECT * FROM CUSTOMERS
</sql:query>

<sql:query var="customers" startRow="2">

<sql:query var="customers" startRow="2" maxRows="10">

Modifying data with <sql:update> 199
This query will skip the first two rows (numbered 0 and 1); then, starting with the
row numbered 2, it will save up to 10 rows in the customers variable. If there aren’t
10 rows, then customers will contain fewer rows. Therefore, supposing that the
CUSTOMERS table contains 100 rows, the last example will store rows numbered 2
through 11 in customers.

TIP Some databases support two nonstandard SQL keywords, LIMIT and OFF-
SET, which work similarly to maxRows and startRow, respectively. JSTL
provides the startRow and maxRow attributes for two reasons. First, not
all databases support LIMIT and OFFSET; they are, after all, not specified
by standard ANSI SQL. Second, databases that do support LIMIT don’t
usually provide an easy way to let you know whether the LIMIT took ef-
fect, the way the result bean’s limitedByMaxRows property does. For ex-
ample, if we wrote

SELECT * FROM CUSTOMERS LIMIT 20

and received 20 customer rows in response, we wouldn’t know whether
there were exactly 20 customers, or whether the query was stopped
abruptly after the twentieth record.

9.4 Modifying data with <sql:update>

Just as you can query data using JSTL tags, you can also modify database data from
within your JSP pages. You should think twice before doing so, however. Earlier in
this chapter, I mentioned that some large applications can be maintained more eas-
ily when JSP pages do not access databases directly, leaving this task instead for
Java code in JavaBeans or custom JSP tags. This caution is particularly important
when it comes to updating data from a JSP page. If the function of JSP pages is to
display information, it can be dangerous to throw database updates into the mix.

 However, JSTL does provide an <sql:update> tag with the hope that it will be
useful, at the very least, for relatively small applications. If you don’t depend on
Java programmers to write JavaBeans or other intermediate code to read from your
database, why should you suddenly need to do so when writing data? Furthermore,
other web-scripting languages, such as PHP, provide for this kind of database access
with great effect, so it makes sense for JSTL to do so, too.

9.4.1 Simple uses of the <sql:update> tag

Because of the nature of database updates, the <sql:update> tag is extremely sim-
ple to use. Unlike queries, where the <sql:query> tag is merely the first in a series
of steps for accessing data, database inserts and updates usually stand on their own.

200 CHAPTER 9
Database-driven pages
Once you execute an <sql:update> tag, you can pretty much forget about it and
move on to other tasks.

 Like <sql:query>, the <sql:update> tag uses the SQL language. (If you’re not
familiar with SQL, see appendix C.)

 The <sql:update> tag, despite its name, doesn’t just support SQL UPDATE com-
mands; it also supports INSERT and DELETE, and in general lets you pass through
any SQL command that doesn’t produce a result. You can, for example, pass
through a CREATE TABLE command from within the <sql:update> tag. (Appendix C
describes some situations where doing so might be useful.)

 Table 9.4 lists <sql:update>’s attributes.

To figure out what database to connect to, <sql:update> uses the same rules as
<sql:query>, which we discussed in section 9.3. If the dataSource attribute is spec-
ified, the tag uses the specific variable you pass to it; otherwise, it uses the default
database connection.

 In addition, <sql:update> accepts SQL statements using both methods that
<sql:query> supports (see section 9.3.1). Specifically, the SQL statement can
appear in the sql attribute or in the tag’s body. Thus, both of the following tags are
valid; they both send a command to the application’s default database:

<sql:update>

 INSERT INTO PEOPLE(NAME, AGE, WEIGHT)

 VALUES(‘John "Fatso" Smith’, 34, 540)

</sql:update>

and

<sql:update sql="DELETE FROM PEOPLE WHERE AGE < 18"/>

9.4.2 Measuring the effect of an <sql:update> tag

Every time SQL statements like INSERT, UPDATE, and DELETE run, they affect a spe-
cific number of rows. For instance, a single UPDATE command might change 1 row,

Table 9.4 <sql:update> tag attributes

Attribute Description Required Default

sql The SQL query to execute (such as UPDATE…) No Body

dataSource Provider of the database connections No See section 9.3

var Name of the variable to store the row count No None

scope Scope of the variable to store the row count No page

Using <sql:param> with adjustable queries 201
12 rows, or some other specific number of rows. Every DELETE command removes a
particular number of rows—or even zero rows.

 You can use <sql:update>’s var attribute to record the number of rows that
<sql:update> affected. For example, for an UPDATE that modifies seven rows, the
tag will save the number 7. For SQL statements like CREATE TABLE that don’t oper-
ate with data directly, this number will always be zero.

 Consider the following tag:

<sql:update var="n">
 DELETE FROM CUSTOMERS
 WHERE AGE < 18
</sql:update>

This tag will delete all rows in CUSTOMERS whose AGE column has a value less than
18, and it will store in the scoped variable named n the number of rows that were
deleted. We could then, for instance, report this number back to the user:

<p>Our CUSTOMERS table had
<c:out value="${n}"/> minors.
They have all been removed.
Close call; we’re lucky the
Feds didn’t come after us.</p>

We could also use this number in a <c:if> condition:

<c:if value="${n == 0}">
 No rows were removed.
</c:if>

9.5 Using <sql:param> with adjustable queries

When you use SQL, you’ll find that it’s common for a query to need a small bit of
data filled in. For instance, you might write a query that can retrieve any user’s full
name and birthdate, but the query won’t make sense until you have an individual
user’s customer number. If we were sharing such queries with other people, we
might write them as follows:

SELECT * FROM TABLE WHERE CUSTOMER_NUMBER=XXX

Then, separately, we’d explain what XXX means. It’s common to have a general-
purpose template query that must be customized repeatedly—depending, per-
haps, on some information about the current user or about a specific product in
a warehouse.

202 CHAPTER 9
Database-driven pages
9.5.1 Template queries

One way to use queries like this is to customize them with simple JSP, just like you
customize an HTML page. After all, JSP is great for adding dynamic content to oth-
erwise static text. For example, we can use JSTL’s <c:out> tag (see chapter 3) to fill
in part of an SQL query:

<sql:query var="result">
 SELECT * FROM TABLE
 WHERE CUSTOMER_NUMBER=<c:out value="${customerNumber}"/>
</sql:query>

This is a simple way to use JSTL to modify a query. It effectively plugs the value of a
scoped variable into an SQL statement. However, this technique is more problem-
atic than it might seem at first. You’re not always working with numbers; sometimes
you’ll use strings. In SQL, strings must be quoted with single quotes. So far, that
doesn’t sound like a problem; we could just insert the quotes manually, like this:

WHERE CUSTOMER_NAME=’<c:out value="${customerName}"/>’

However, if the customer’s name contains a quotation mark, like David O’Davies,
the result will be the following unfortunate text:

WHERE CUSTOMER_NAME='David O'Davies'

Because <c:out> escapes the quotation mark by default, it yields an incorrect value;
SQL does not understand XML escaping.

 There’s even a security risk in building up queries manually. If you decide to get
around <c:out>’s escaping problem by using the attribute escapeXml="false", a
malicious user could purposely corrupt the query to retrieve private information or
even alter your database. For example, suppose the user, instead of a name like
David O’Davies, enters the following unexpected text:

David’ OR CUSTOMER_NAME <> ’David

In this case, the end of the query becomes

WHERE CUSTOMER_NAME=’David’ OR CUSTOMER_NAME <> ’David’

Because every customer name is either equal or not equal to ’David’, this query
will match every row in the table! Therefore, it’s not usually a good idea to use
<c:out> to build up an SQL statement yourself.

9.5.2 Safe, convenient parameters with <sql:param>

JSTL lets you avoid these problems by using a special syntax borrowed from JDBC,
the Java package that supports database connectivity. Using this syntax, you can

Using <sql:param> with adjustable queries 203
write a template query and leave out all unknown pieces, putting question marks (?)
in their place. Then, you can fill in these question marks using the <sql:param> tag,
which you insert as a child tag to <sql:query> and <sql:update>.

 Table 9.5 lists <sql:param>’s single attribute, value.

The value attribute accepts a value, and <sql:param> uses this value to fill in a sin-
gle question-mark placeholder in its parent <sql:query> or <sql:update> tag. If
multiple <sql:param> tags occur in the body of an <sql:query> or <sql:update>
statement, they will match each successive ? placeholder, in order. You need exactly
one <sql:param> tag for every ? you’ve used in an SQL command. Figure 9.6 dem-
onstrates the relationship between multiple ? placeholders and <sql:param> tags.

Let’s look at <sql:param> in action. Suppose we want to write a query that looks up
a customer’s number (from a column named NUMBER) based on the customer’s name
(NAME)—and that we want this query to work for multiple customers. We can write
this query but use a question mark instead of a specific customer name:

SELECT NUMBER FROM CUSTOMERS WHERE NAME=?

Now, suppose the customer’s name is stored in a scoped variable called customer-
Name. We can replace the question mark with the value of this variable as follows:

<sql:query>

</sql:query>

Table 9.5 <sql:param> tag attribute

Attribute Description Required Default

value Parameter value (to fill in the placeholder) No Body

SELECT NUMBER FROM CUSTOMERS WHERE NAME=?
<sql:param value="${customerName}"/>

Figure 9.6
When a tag uses a query with
multiple ? markers, it must have
exactly one <sql:param> tag
for each marker. Each
<sql:param> tag sets a
corresponding ? marker, in
order.

204 CHAPTER 9
Database-driven pages
Each time this tag runs, the ? placeholder gets filled in with a new value—the value
of the customerName variable. For example, if customerName equals David Davies,
then the query will run just as if we had written

SELECT NUMBER FROM CUSTOMERS
 WHERE NAME=’David Davies’

Note how the value is quoted properly, if it needs to be. Therefore, we don’t have
to worry about whether the variable contains a rogue quotation mark. If the last
example runs again, and customerName equals Bob O’Customer this time, the query
will execute correctly; the quotation mark in the middle of Bob’s last name is man-
aged automatically.

Question-mark syntax
The ? placeholder can’t be used just anywhere within an SQL statement. You can’t use
it to substitute for a table or column name. For example, you can’t write the following:

SELECT ? FROM CUSTOMERS WHERE CUSTOMER_NUMBER=3

You also can’t write this:

SELECT * FROM ? WHERE CUSTOMER_NUMBER=3

A ? character can only be used to substitute for a value—a string, number, or other
data—within an SQL command. So, as in our last example, we can set a column
equal to it in a SELECT query (NAME=?). You can also use ? in UPDATE, INSERT, and
DELETE statements. Consider the following <sql:update> tag, which contains an
INSERT statement:

<sql:update>
 INSERT INTO PEOPLE(NAME, AGE, WEIGHT)

</sql:update>

In this example, each <sql:param> tag in turn fills in one successive ? in the INSERT
statement. These placeholders are specified in the middle of the VALUES clause in
the statement, which is a valid use of ?. Consider another example:

<sql:update>
 UPDATE PEOPLE

</sql:update>

VALUES(?,?,?)
<sql:param value="${userName}"/>
<sql:param value="${userAge}"/>
<sql:param value="${userWeight}"/>

SET AGE=?
WHERE WEIGHT=?
<sql:param value="${newAge}"/>
<sql:param value="${oldPounds}"/>

Using <sql:param> with adjustable queries 205
This time, ? placeholders appear in the SET and WHERE clauses of an UPDATE com-
mand. The ? is legitimate in both cases. Note that the first ? is part of the new data
being added by UPDATE, and the second ? is part of the old data being matched by
the statement’s WHERE clause.

<sql:param>’s body
If <sql:param> doesn’t contain a value attribute, the tag will use the content of its
body as the value to substitute for its corresponding ?. So, you can easily produce a
value using other tags. For example, the following would replace a ? placeholder
with a value retrieved from an XML document:

<sql:param>

</sql:param>

9.5.3 Date parameters with <sql:dateParam>

Databases typically have special support for dates. A column in a database that
stores a user’s birthday really treats it as a date, not just as a string that describes the
date. This way, the database can perform date-related operations on the data; for
instance, you could compare the user’s birthday with a known date to ensure that
the user isn’t a minor.

 Consider an SQL statement like this:

SELECT * FROM USERS

 WHERE BIRTHDAY < ?

This query finds all users who were born before a given date. But if you have a
scoped variable representing a date (see chapter 10 for information on how to cre-
ate such a scoped variable), you might not be able to use <sql:param>. I say might
not because it depends the specific database driver you’re using. To make sure you
can add dates to any query, JSTL provides an <sql:dateParam> tag, whose
attributes are listed in table 9.6.

The value attribute requires an expression pointing to a scoped-variable that stores
a date, and the type attribute lets you describe more precisely how the database

<x:out select="$doc/customers/customer/number"/>

Table 9.6 <sql:dateParam> tag attributes

Attribute Description Required Default

value Date value (to fill in the placeholder) Yes None

type The value time, date, or timestamp No timestamp

206 CHAPTER 9
Database-driven pages
should treat the value: does it just store a time of day (time), a calendar date (date),
or both a time and a date (timestamp)?

 Except for accepting a date, <sql:dateParam> works just like <sql:param>. For
instance, to use our previous query, we could write an <sql:query> tag like this:

<sql:query>

 SELECT * FROM USERS

</sql:query>

9.6 Managing transactions with <sql:transaction>

If your application manages any sensitive data, it’s a good exercise to consider the
following question for every point in your page: “What would happen if lightning
struck the web server at precisely this point?” Figure 9.7 evokes this kind of reason-
ing by demonstrating a failure in the middle of a series of <sql:update> tags. Two
tags complete successfully, but the remaining three don’t.

 If these five tags are unrelated, then you have nothing to worry about (other
than making sure your server starts back up after the stroke of lightning). But some
applications require that groups of database operations either succeed or fail
together, in one fell swoop. For example, suppose the first two tags bill a customer
for a product and the final three tags ensure that the product is shipped. It isn’t
acceptable for the first two tags to run without the final three tags running, too; all

WHERE BIRTHDAY < ?
<sql:dateParam value="${myBirthday}"/>

Figure 9.7
Even the best hardware and software
can crash or run into other unexpected
errors at any point. If an error occurs in
the middle of a sensitive series of
database updates, the data can be left
in an inconsistent state. Here, a five-part
series is interrupted after the second
step, potentially leaving data in an
inconsistent state. JSTL’s
<sql:transaction> tag can help
prevent your data from getting out of
sync.

Managing transactions with <sql:transaction> 207
five operations must be treated as a single unit. Operations that need to succeed or
fail as a single unit are known as transactions.

WARNING Although most well-engineered database systems support transactions, not
every software product does. Before using the tags in this section, check
with your software’s documentation or your database administrator to en-
sure your database supports transactions.

9.6.1 The <sql:transaction> tag

In JSTL, transactions let you treat a series of <sql:query> and <sql:update> tags as
part of a unified whole. All query and update tags within a transaction succeed or
fail together; there is no middle ground. If the end of a transaction doesn’t complete
successfully, the beginning is stricken from the record: the database pretends it
never happened. This sort of pretending is formally called rolling back, and it
involves restoring the database’s state to a prior one—specifically, to the way things
were before the first <sql:update> in the transaction executed.

 JSTL supports transactions with a tag called <sql:transaction>. This tag acts as
a parent tag for <sql:update> and <sql:query> tags. Each <sql:transaction> tag

Figure 9.8
The <sql:transaction> tag
protects its <sql:update> and
<sql:query> children. It does
so by ensuring that these children
succeed or fail as a unit. If any of
the individual steps under an
<sql:transaction> fails, the
database will be rolled back to a
prior state, as if the transaction
had never begun.

208 CHAPTER 9
Database-driven pages
groups all of its children <sql:update> and <sql:query> tags into a transaction, as
figure 9.8 suggests. All child tags in an <sql:transaction> succeed or fail together.

 Even though <sql:query> tags don’t modify data, they might represent neces-
sary steps in a transaction. For instance, you might conduct an update, followed by
a query, followed by an update based on the intermediate query. This is why
<sql:transaction> allows <sql:query> tags to participate in a transaction.

 Note that any valid text, JSTL tags, or other JSP content can appear inside an
<sql:transaction> tag. If a fatal error occurs anywhere inside this block—for
example, if you decide to retrieve a file with <c:import> and this file doesn’t
exist—then the entire transaction will be stopped immediately and rolled back.
This process lets you tie the success of database operations to some non-database
actions. (Keep in mind, however, that <sql:transaction> can only roll back data-
base operations. It doesn’t erase scoped variables that you create or otherwise pre-
vent its body from having a lasting effect. Also note that anything printed from
within an <sql:transaction> tag—that is, any template text or output from tags
like <c:out>—will be ignored.)

 Table 9.7 lists the attributes for the <sql:transaction> tag.

The <sql:transaction> tag determines what database to use in the same manner
as <sql:query> and <sql:update>. It can either use its dataSource attribute or, if
none is specified, rely on the default database, which can be established by
<sql:setDataSource> or back-end Java code.

 When an <sql:transaction> tag occurs in your page, it immediately sets up a
database transaction. This transaction uses a database connection, and this connec-
tion is supplied by default to all the <sql:update> and <sql:query> children of the
transaction. For example, consider the following tag:

<sql:update sql="${command}"/>

This tag would normally use the default database, because no dataSource attribute
is specified. But when this tag appears inside an <sql:transaction> tag, it uses
whatever database its parent <sql:transaction> tag used. As figure 9.9 suggests,
<sql:transaction> takes a single database and exposes it to all its <sql:update>
and <sql:query> children, making this database the new default within its body.

Table 9.7 <sql:transaction> tag attributes

Attribute Description Required Default

dataSource Provider of the database connections No See section 9.3

isolation Transaction’s isolation from others (advanced) No See section 9.6.2

Managing transactions with <sql:transaction> 209
Let’s look at the <sql:transaction> tag in action. The typical example of database
transactions—a funds transfer, where money is added to one account and deleted
from another—happens to be a good one, so we’ll use that. Suppose the following
SQL command removes $100 from our first account:
UPDATE ACCOUNTS
SET BALANCE=BALANCE-100
WHERE ACCOUNT=’Shawn-acct1’

The following corresponding statement adds money to our second account:
UPDATE ACCOUNTS
SET BALANCE=BALANCE+98
WHERE ACCOUNT=’Shawn-acct2’

We add back only $98 instead of $100 because we’re one of those irritating banks
that charges a fee for everything.

 If we want to execute a transfer of funds, we’d better make sure that nothing
interrupts the transfer and causes it to complete only partially. We can do so with
the following <sql:transaction> tag:
<sql:transaction dataSource="${database}">
 <sql:update>
 UPDATE ACCOUNTS
 SET BALANCE=BALANCE-100
 WHERE ACCOUNT=’Shawn-acct1’
 </sql:update>
 <sql:update>
 UPDATE ACCOUNTS
 SET BALANCE=BALANCE+98
 WHERE ACCOUNT=’Shawn-acct2’
 </sql:update>
</sql:transaction>

Figure 9.9
The <sql:transaction> tag replaces
the default connection for all its
<sql:query> and <sql:update> child
tags. This step is necessary because
database transactions are, by nature, tied
to an individual connection; it’s important
that all the SQL operations beneath a
single transaction share the same
connection.

210 CHAPTER 9
Database-driven pages
This code ensures that both updates execute as a unit; they either both succeed or
both fail. If they succeed, then we know the funds (minus the $2 fee) have been
transferred safely.

 Note that the two <sql:update> tags do not specify a dataSource attribute.
They simply use the default connection that <sql:transaction> manages for them.
The master <sql:transaction> tag, on the other hand, uses the explicitly named
database variable as its database.

9.6.2 Transaction isolation

Parents often tell their kids, “Look both ways before crossing the street.” They
really mean, “Look both ways immediately before crossing the street”; planning
ahead doesn’t help. If you check for traffic but then stop, turn around, and pick up
a dime off the sidewalk, you need to check for traffic again before walking into the
middle of the street.

 You can think of “checking for traffic” and “crossing the street” as two parts of a
transactional operation, where both parts must succeed together. But these opera-
tions have an additional requirement: it’s important that nothing interrupts, dis-
tracts, or confuses you between the two parts of the operation.

 Not all database transactions have this requirement; not all transactions care
whether the data they’re working on gets pulled out from under them in the middle
of their work. Consider the example of a funds transfer from the end of the previ-
ous section. This transaction might not care if the funds in my bank account change
while the transaction is proceeding. For instance, once the first <sql:update> tag
has withdrawn $100 from our first account, it might not matter if someone else
takes out $300 more while the transaction proceeds to redeposit our money into the
second account.

 However, it’s important that some transactions be effectively isolated from other
transactions. That is, the transaction shouldn’t be affected by other things occurring
simultaneously in the database.

 For instance, imagine that you use an <sql:query> tag to determine the average
age of all your users. Then, you perform several <sql:update> operations based on
this average age. Suppose these operations depend on the average user’s age not
changing during the transaction. If a simultaneous operation outside your transac-
tion adds, modifies, or deletes a user, and if this change shows up to your transac-
tion, then your transaction might not behave correctly.

 JDBC supports four transaction modes, and JSTL mirrors JDBC’s support by let-
ting you specify one of these four modes (more formally called isolation levels) in the
<sql:transaction> tag. This is the purpose of the isolation attribute, which takes
the values listed in table 9.8.

SQL example: a hit counter 211
This table shows the four acceptable isolation levels and what sorts of potentially
undesirable reads they prohibit. A dirty read is a read (for example, from a SELECT
statement) of rows that have not yet been committed—confirmed by another transac-
tion. Uncommitted data might only be speculative; it might still be rolled back by
the other transaction. Dirty reads let your transaction see only partial data from
another transaction; this situation can be dangerous, because the partial data might
not be consistent.

 A nonrepeatable read occurs when the same SELECT statement returns different
results when executed within the same transaction. A phantom read is like a non-
repeatable read, but it involves new rows added to a table that show up under the sec-
ond SELECT (whereas, by contrast, a nonrepeatable read may affect existing data).

 You might think that the serializable mode is thus the best overall isolation
level, because it provides the most isolation and protection. However, its extra
features come at a potential performance cost, so it is not always wise to use seri-
alizable transactions.

 Overall, transaction isolation levels are an advanced, technical topic that we
can’t treat in-depth here. The important point is that JSTL supports them. For
instance, to make a transaction serializable, we could use the following tag:

 transaction body
</sql:transaction>

For more information on transaction isolation levels, consult the JDBC documenta-
tion or a book on databases; see appendix D for pointers to further reading.

9.7 SQL example: a hit counter

Let’s look at how to create a simple hit counter—a feature that counts how many
times users have loaded your pages, and optionally displays the running tally.

 To begin, we’ll need to create a database table to store the counter information.
This table will be simple in structure, because it only needs to keep track of a single

Table 9.8 isolation attribute values

Transaction isolation level Dirty reads? Nonrepeatable reads? Phantom reads?

read_uncommitted - - -

read_committed Prevented - -

repeatable_read Prevented Prevented -

serializable Prevented Prevented Prevented

<sql:transaction isolation="serializable">

212 CHAPTER 9
Database-driven pages
number. We can create a suitable table, which we’ll call counter, using the follow-
ing SQL command:

create table counter (
 counter integer
)

NOTE You’ll need to type this command into your database’s text interface. The
instructions for doing so vary from database to database, so you’ll need to
check with your database’s manual or administrator to determine how to
send it commands manually. (My hsqldb tutorial at Manning Publication’s
web site describes the procedure for hsqldb. See appendix D for its URL.)

If you have trouble sending commands to your database manually, you
can enter the command into an <sql:update> tag and run the tag manu-
ally by loading its page. This technique is somewhat clumsy, but it’s a de-
cent alternative. For instance, the following tag will create the counter
table in the default database:

<sql:update>
 create table counter (
 counter integer
)
</sql:update>

The counter table has a single column, also called counter, which stores an integer.
Our table will contain a single row, and this row’s value for the counter column will
represent the current tally of web-page hits. Before we use the counter, we’ll need to
create this row manually. To do so, we can run the following SQL command:

insert into counter(counter) values(0)

This line initializes our database and sets the counter’s starting value to 0.
 Now that we’ve set up the counter table, we’re ready to look at a page that uses

it. Listing 9.2 shows such a page.4

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<sql:transaction>

Listing 9.2 counter.jsp: a simple hit counter

4 Remember, this chapter’s examples, including listing 9.2, assume you have a default database
set up. If you don’t, you’ll need to use the <sql:setDataSource> tag and the dataSource
attribute for <sql:transaction>. See section 9.2.

Summary 213
 <sql:update>
 update counter set counter = counter + 1
 </sql:update>
 <sql:query var="result">
 select * from counter
 </sql:query>
 <c:set var="count" value="${result.rows[0].counter}" />

</sql:transaction>

This example begins by setting up an SQL transaction with <sql:transaction>.
This step is hardly necessary for something as frivolous as a hit counter, but it’s use-
ful to experiment with the tag.

 The <sql:update> tag increments the counter using this SQL statement:

update counter set counter = counter + 1

After updating the counter, we read in the new count with an SQL SELECT state-
ment inside <sql:query>. The <sql:query> tag stores its result as a scoped variable
named result.

 Normally, if our table had multiple rows, we’d iterate over them using <c:forEach>.
In this case, we know that our table has only one row, so we can access this row
directly using an expression like ${result.rows[0]}. (Remember, row numbering
starts with 0, so rows[0] represents the first row.) In our case, we’re interested in
the column named counter in our single row, so we use the following expression:

${result.rows[0].counter}

We use a <c:set> tag to save this value as a scoped variable named count. This
way, we can print out the current count later using an expression like this:

<c:out value="${count}"/>

We’ll look at many more examples of JSTL’s database tags in part 3.

9.8 Summary

Keep the following points about JSTL’s database support in mind:
� In large applications, it’s often better to access databases using behind-the-

scenes Java code rather then JSTL tags. However, JSTL provides database
tags for smaller applications and any other situations where you find them
convenient.

� JSTL’s database access requires that you understand SQL, which we discuss in
more detail in appendix C.

214 CHAPTER 9
Database-driven pages
� JSTL’s database tags work best when a database is set up behind the scenes by
Java code. However, you can also set up your own default database using the
<sql:setDataSource> tag.

� To retrieve information from a database, use the <sql:query> tag. This tag
exposes a scoped variable that stores the results of the query. You can easily
loop over these results using <c:forEach>.

� To modify data in a database, use <sql:update>. This tag exposes a scoped
variable to indicate the number of rows it modified.

� To group database operations so that they succeed or fail as a single unit, place
them within an <sql:transaction> tag. This tag has an isolation attribute
to help you ensure the transaction doesn’t get confused by other simultaneous
operations that occur in the database. In most cases, though, you won’t need
to worry about transaction isolation.

10Formatting and
internationalization
This chapter covers…
� Printing numbers and dates
� Parsing numbers and dates
� Time zones, locales, and resource bundles
� Internationalizing text messages
215

216 CHAPTER 10
Formatting and internationalization
As a designer of web pages, it’s your job to present information. Even when infor-
mation is straightforward, the best way to display it isn’t always obvious. For
instance, should your page print the number 52577 as “52577”, “52,577”
“52,577.00”, or some other alternative? If you read the date “July 2, 1947” from a
database, should you print it out as “7/2/47”, “July 2, 1947”, “2 Jul 1947”, or as
something else entirely?

 For some of your web pages, answers to these questions might merely be a mat-
ter of preference or spacing. For example, “52,577” might look better to you than
“52577”, or an HTML <table> that you’re printing might only have room for “7/2/
47” and not a longhand version of the same date. In such cases, JSTL tags let you
specify a single format and then forget about the issue.

 But if your pages are targeted to users in different countries, you might need to
make sure your page will present appropriate information every time it’s loaded.
The string “7/2/1947” means “July 2, 1947” in the United States but “February 7,
1947” in France. If your page’s target audience is half French and half English, you
might want to print dates differently depending on how the user’s browser is config-
ured (or on what country users say they’re from). JSTL tags can help you make sure
users see values that are meaningful to them.

 Some applications take internationalization—the process of setting up a single
application so that it can easily work with multiple languages—a step further. In
addition to numbers and dates, they internationalize the words and phrases they
print out. JSTL has tags to support this kind of internationalization as well.

 In this chapter, we’ll first look at a collection of JSTL tags that help you input
and output numbers and dates. Then, we’ll focus on JSTL’s support for internation-
alizing text messages. All the tags we introduce in this chapter come from JSTL’s
fmt tag library, which is used for what the JSTL spec calls “internationalization-
capable formatting.” (See chapter 2 for a list of JSTL’s tag libraries.) To use any of
the examples in this chapter, you’ll need to make sure that a directive like the fol-
lowing appears at the top of your page:

<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

10.1 Printing numbers with <fmt:formatNumber>

In chapter 3, we discussed different data types, like booleans, strings, and numbers.
If you have a scoped variable that’s a number, you can print it in your page by
using the <c:out> tag, because <c:out> lets you print out any kind of data. For
instance, if the page-scoped variable netWorth is a number that equals 500000.01,
then the tag

<c:out value="${netWorth}"/>

Printing numbers with <fmt:formatNumber> 217
will output

500000.01

The <c:out> tag prints the number in a simple, default form. Integers, for instance,
are presented as a sequence of digits. Floating-point numbers are displayed similarly,
but with a decimal point (.) separating some digits from the other digits. This simple
format might be okay for many of your pages, but if a page prints out a lot of num-
bers, or if presenting numbers is a page’s main job, then you’ll probably want more
control over how numbers are printed. That’s what <fmt:formatNumber> is for.

10.1.1 Basic usage of <fmt:formatNumber>

In its simplest form, you can use the <fmt:formatNumber> just like <c:out>. For
example, we can write

<fmt:formatNumber value="${netWorth}"/>

This usage is similar to <c:out>: the tag has an attribute, value, that points to the
number we want to print out. However, even in this simple form, the <fmt:format-
Number> tag does something more interesting than <c:out>: it prints the number
using its best guess about what format the user wants to see. Web browsers can con-
vey information about their locale—essentially, their location and preferred formats
for numbers, dates, and other data. The <fmt:formatNumber> tag can automatically
sense this locale and customize its output. So, if ${netWorth} equals 500000.01, the
simple <fmt:formatNumber> we just presented will output the following values for
these countries:

As this table shows, the format is different for the United States, France, Germany,
and (as you might know if you have a Swiss bank account) Switzerland.

TIP If you’re using Windows and Internet Explorer, you can experiment with
different locales by going to the Start menu and choosing Settings, then
Control Panel, and finally Regional Options. From there, the General tab
lets you pick your locale. (These instructions may vary slightly if you use

Country Sample numeric format

United States 500,000.01

France 500 000,01

Germany 500.000,01

Switzerland 500'000.01

218 CHAPTER 10
Formatting and internationalization
something other than Windows 2000.) This setting can be useful when
you’re testing JSTL pages; for instance, you can pretend you’re coming
from France or Germany. The interface might be messy, but it’s cheaper
than buying a plane ticket.

If you’re familiar with localization, you might have realized that I’m being impre-
cise when I say that number formats are associated with particular countries:
they’re actually associated with country/language combinations. But this difference
won’t matter for now. The point is that <fmt:formatNumber> will print the right
value based, by default, on the browser’s configuration.

 Let’s look at some <fmt:formatNumber> attributes that give you more control
over how to display numbers (see table 10.1).

10.1.2 Different ways to specify a value

Notice in table 10.1 that the value attribute is optional. Instead of specifying a
value attribute, you can use <fmt:formatNumber>’s body to feed the tag a value.
Doing so is convenient if you have a non-JSTL tag that doesn’t easily store scoped
variables but instead prints out a number. For instance, suppose our organization
produced a tag that outputs a number, like the following:

<myCompany:printMinimumShippingCharge/>

Table 10.1 <fmt:formatNumber> tag attributes

Attribute Description Required Default

value The numeric value to format No Body

type Whether to print regular numbers, currencies, or
percentages

No number

currencyCode ISO-4217 currency code No None

currencySymbol Currency symbol (such as $) No None

groupingUsed Whether to group digits, as in 1,234,567 No true

maxIntegerDigits The maximum number of integer digits to print No None

minIntegerDigits The minimum number of integer digits to print No None

maxFractionDigits The maximum number of fractional digits to print No None

minFractionDigits The minimum number of fractional digits to print No None

pattern Detailed pattern to use when formatting the number No None

var Variable to expose the formatted number (as a string) No None

scope Scope in which to expose the formatted number No page

Printing numbers with <fmt:formatNumber> 219
We could use this tag with <fmt:formatNumber> as follows:

<fmt:formatNumber>

</fmt:formatNumber>

In addition, instead of using an expression or a custom tag, we can feed <fmt:for-
matNumber> a value directly, like this:

When you type in a number or use the tag body, the string that <fmt:formatNum-
ber> receives should be printed in Java’s default numeric format, which generally
looks the way we’ve shown it here: 500000.01. It resembles a bare-bones version of
the English locale.

 The <fmt:formatNumber> tag doesn’t accept numbers already formatted for a
locale. For example, the following tag is invalid:

In many of this chapter’s examples, we’ll specify numbers directly, as with value=
"500000.01". This is just for demonstrative purposes. In most of your pages, you’ll
use expressions like value="${user.netWorth}".

10.1.3 Storing a number instead of printing it

By default, <fmt:formatNumber> prints out a formatted version of its input number.
If you want to use this formatted value multiple times or share it with another page,
you can store it in a scoped variable instead of printing it. The syntax to do so is
familiar: you use the var and scope attributes. For instance, again assuming ${net-
Worth} equals 500000.01, consider the following tag:

<fmt:formatNumber value="${netWorth}"

If this page is loaded by a French browser, it saves the formatted value 500 000,01
in a session-scoped variable named argent. This variable could later be printed
out, for instance, with <c:out>:

<c:out value="${sessionScope.argent}"/>

10.1.4 Printing different types of numbers:
percentages and currencies

If you’ve spent time with Microsoft Excel, you know it can format different cells
using special rules. If you’re working on your taxes, for example, you probably

<myCompany:printMinimumShippingCharge/>

<fmt:formatNumber value="500000.01"/>

<fmt:formatNumber value="500 000,01"/>

var="argent" scope="session" />

220 CHAPTER 10
Formatting and internationalization
want all numbers to show up as dollar values. In other situations, you want a num-
ber like .24 to appear as 24%.

 The <fmt:formatNumber> tag has a similar feature. Using the type attribute, you
can instruct the tag to print your numeric value as either a currency or a percent-
age. Table 10.2 shows the valid values for the type attribute.

Percentages
By and large, percentages work the same way as regular numbers, but the number
is multiplied by 100 before being printed. Thus, .24 becomes 24%, and the number
24 becomes (in the English locale) 2,400%. As with regular numbers, <fmt:format-
Number> prints decimal points and other pieces of the number according to locale-
specific rules. For instance, consider the following tag:

For browsers that are set to the United States’s default locale, this tag prints

2,400%

In French, however, it prints

2 400%

In principle, different locales can have different percent signs, although this doesn’t
come up very often. (At least, not in my admittedly parochial experience with dif-
ferent locales.)

Currencies
Currencies are another special case, but they’re more complicated than percentages
and regular numbers. Currencies have two important extra features:

� A currency symbol, such as $ for U.S. dollars or F for French francs
� A standard number of digits after the decimal point—for example, two for

U.S. dollars and French francs, but zero for Italian lira

Table 10.2 Using the type attribute, you can tell the <fmt:formatNumber> tag to
format numbers as percentage values and as currency. The type attribute can take the
values listed here.

type attribute value Description Example (for value .24)

number General-purpose number (default) .24

currency Locale-specific currency $0.24

percent Percentage 24%

<fmt:formatNumber type="percent" value="24"/>

Printing numbers with <fmt:formatNumber> 221
When the type attribute is set to currency, the <fmt:formatNumber> tag applies
these two extra considerations to the numbers it prints. Consider the following tag,
which formats the numeric value 78.74901:

For the typical United States locale, <fmt:formatNumber> rounds the number to
78.75 and prints it out with a dollar sign:

$78.75

For Italy, the tag shortens the number further (to 79) and prints it out with a symbol
for the lira:

L. 79

(Presumably, digits after the decimal point don’t make sense when discussing the
lira, just as a third digit after the decimal point isn’t conventional when referring to
U.S. dollars.)

 Of course, <fmt:formatNumber> doesn’t perform any currency conversions. It
doesn’t convert values between dollars, francs, and euros using any exchange rate.
(Wouldn’t it be cool if it did?) It simply takes the numeric value that it’s given and
prints it with the correct symbols and formatting.

Currency codes and symbols
The <fmt:formatNumber> tag has two special attributes that work only when
type="currency". They’re designed to give you more control over how the tag for-
mats currencies. The first attribute, currencyCode, accepts a code that you can pick
from a specific list of currency codes maintained by a group that cares intensely
about such things. You can find a current list as a link from the following URL:

http://www.bsi-global.com/iso4217currency

This list is updated as countries adopt new currencies, so if your application is par-
ticularly sensitive to how it displays currencies, you might want to use this list to
override any automatic determination your system makes based on locale.

 As an example of currency codes, EUR represents the euro, and USD represents
the dollar. Thus, the following example would display a number formatted correctly
for the U.S. dollar (such as $78.75), regardless of the browser’s preferred locale:

<fmt:formatNumber type="currency"

(Technically, there can be multiple symbols for the dollar; if so, then the browser’s
preferred one—based on locale—is chosen.)

<fmt:formatNumber type="currency" value="78.74901"/>

currencyCode="USD" value="78.74901"/>

222 CHAPTER 10
Formatting and internationalization
WARNING By default, the currencyCode attribute works only on JDK 1.4 and later
versions. Check with your system administrator if you’re not sure what
version of the JDK your JSP container runs on. If you use the currency-
Code attribute on a system that has an older version of Java, the code you
use will be printed as a currency symbol. I wouldn’t recommend this ap-
proach; use the currencySymbol attribute instead.

A separate attribute, currencySymbol, lets you set a specific currency symbol to
use. For instance, you might write currencySymbol="$" to indicate the dollar.

10.1.5 Grouping digits together … or not

By default, <fmt:formatNumber> arranges digits into groups that are appropriate for
the browser’s locale. For example, as you saw earlier, the number 500000.01 is
printed as 500,000.01 in English. This formatting is used because of the locale’s
customary rules: groups of three digits are separated by a comma (,). In Switzer-
land, the style uses groups of three digits separated by an apostrophe (’).

 You can use the groupingUsed attribute to explicitly shut off this grouping,
which will cause the number to be printed without any group separator. Figure 10.1
shows an example.

The following two tags are equivalent because groupingUsed="true" is the default:
<fmt:formatNumber value="500000.01" />

For the English locale, these tags both print
500,000.01

<fmt:formatNumber value="500000.01" groupingUsed="true" />

Figure 10.1
By default, the
<fmt:formatNumber> tag
arranges numbers into groups
of digits, using a locale-specific
group separator. You can shut
off this behavior with the
groupingUsed attribute.

Printing numbers with <fmt:formatNumber> 223
The following tag is different, however:

For the English locale, this tag simply prints
500000.01

A decimal separator—in English, the period (.)—is still used if appropriate. The
separation of numbers into a decimal part and a fractional part doesn’t count as
grouping for the purposes of the groupingUsed attribute.

10.1.6 Controlling how many digits print

No fewer than four attributes for <fmt:formatNumber> give you fine-grained but
convenient control over how many digits print when your numeric value is format-
ted. These attributes (see table 10.1) are maxIntegerDigits, minIntegerDigits,
maxFractionDigits, and minFractionDigits.

 By default, or when type="number", digits are printed only when necessary. For
values like 98.6 (the average human body temperature), three digits are printed
because you need exactly three digits to specify the value 98.6 accurately. (When
type="currency", some extra fractional digits might be added or removed, but the
number of integer digits is still based on the numeric value.) These attributes let you
override this default behavior and, instead, make explicit choices about the number
of digits that print before and after the decimal point.

 The attributes whose names begin with min let you specify a minimum number
of digits to use when printing the number. For instance, consider the following tag:

<fmt:formatNumber value="98.6"

In the English locale, this tag prints out the following:

0,098.6

Four integer digits are used, even though we only need two. This technique is useful
for padding numbers in tables or lists so that they line up correctly.

 However, notice how the leading 0s are still grouped into sets of three and sepa-
rated by a comma (,). This looks bizarre to most people; so, if you intend to pad
numbers with leading 0s, you might want to use the groupingUsed attribute we dis-
cussed in the previous section:

<fmt:formatNumber value="98.6"

For English, this tag will print the following:

0098.6

<fmt:formatNumber value="500000.01" groupingUsed="false" />

minIntegerDigits="4"/>

minIntegerDigits="4" groupingUsed="false"/>

224 CHAPTER 10
Formatting and internationalization
The minFractionDigits attribute works similarly: it makes sure that a particular num-
ber of digits will follow the decimal point, padding with 0’s at the end, if necessary.

 The other two attributes—maxIntegerDigits and maxFractionDigits—truncate
or interrupt a number. This action is more commonly appropriate for fractional
digits than for integers. For instance, sometimes you just don’t have space for (or
don’t care about) the tenth decimal place of a number. In such cases, you can use
tags like this:

<fmt:formatNumber value="3.141592653589"

This tag prints out the following when loaded by an English browser:

3.14

It’s less common to use maxIntegerDigits, but the attribute exists in case the
space that numbers take up is more important to your page than printing their val-
ues correctly!

 Table 10.3 shows a few examples of these four attributes working in concert, for
the numeric value 99.2. (This value has risen from 98.6, which we used in earlier
examples; spending too much time formatting numbers is apt to give you a slight
fever.) All examples in this table assume the English locale.

maxFractionDigits="2"/>

Table 10.3 The four attributes minIntegerDigits, maxIntegerDigits, minFractionDig-
its, and maxFractionDigits give you fine-grained control over how many digits print in each
part of your number. This table shows how these values affect the formatting of the value 99.2 in
the typical United States (English) locale. If a column contains -, an attribute wasn’t specified. For all
rows, the groupingUsed attribute is set to false.

minInteger-
Digits

maxInteger-
Digits

minFraction-
Digits

maxFraction-
Digits

Formatted
output

- - - - 99.2

1 - - - 99.2

2 - - - 99.2

3 - - - 099.2

4 - - - 0099.2

- 0 - - .2

- 1 - - 9.2

- 2 - - 99.2

- 3 - - 99.2

- - 1 - 99.2

Printing numbers with <fmt:formatNumber> 225
Notice how the attributes whose names begin with max do not force the output to
have extra digits; they simply specify an upper limit. Similarly, if a number con-
tains more digits than the min attributes specify, these attributes have no effect.

Tips for managing digits

Here are a couple of tips for managing digits:

� The maxIntegerDigits and maxFractionDigits attributes are useful when
you want to make sure a number can’t highjack your page’s overall layout.
For instance, HTML <table> elements automatically resize based on their
contents. If you print an unknown numeric value in such a table, its layout
might become distorted if the number contains too many integer or fractional
digits. Therefore, when you’re not sure where your numeric values come
from—perhaps you read them from a user, or a database beyond your con-
trol—it makes sense to think about reasonable maximums and specify both
of these attributes. However, if you specify maxIntegerDigits, your numbers
might be cut off and convey the wrong information to users. Therefore, you
should choose a number high enough that this happens rarely, if ever. You
can choose numbers as high as about 300 for the max attributes.

- - 2 - 99.20

- - 3 - 99.200

- - 4 - 99.2000

- - - 0 99

- - - 1 99.2

- - - 2 99.2

- - - 3 99.2

4 - 4 - 0099.2000

1 - 1 9.2

2 4 2 4 99.20

Table 10.3 The four attributes minIntegerDigits, maxIntegerDigits, minFractionDig-
its, and maxFractionDigits give you fine-grained control over how many digits print in each
part of your number. This table shows how these values affect the formatting of the value 99.2 in
the typical United States (English) locale. If a column contains -, an attribute wasn’t specified. For all
rows, the groupingUsed attribute is set to false. (continued)

minInteger-
Digits

maxInteger-
Digits

minFraction-
Digits

maxFraction-
Digits

Formatted
output

226 CHAPTER 10
Formatting and internationalization
� The minIntegerDigits and minFractionDigits attributes cause your num-
bers to be padded with zeroes (0) if necessary. Doing so is useful for fractional
digits, and it comes up most often when you’re printing tables and lists of
numbers that should line up. For applications that handle money, it’s better
to use type="currency" than to manage fractional digits yourself, but some-
times you’ll need to align nonmonetary numbers. (For instance, suppose
you’re listing shares of mutual funds, which are typically carried to three dec-
imal places.) In these cases, minFractionDigits is useful.

10.1.7 More control: custom number patterns

If the four attributes from section 10.1.6 aren’t enough for you, and if you want to
override locale-specific behavior by deciding on your own how a <fmt:formatNum-
ber> tag should display numeric values, you can use the pattern attribute. This
attribute gives you almost unlimited control over how numbers are displayed.

 This attribute will not be useful for most of your pages, and it’s more compli-
cated than using the other <fmt:formatNumber> attributes. One special case that’s
difficult to handle without using pattern, however, is scientific notation. Scientific
notation is particularly useful for very large and very small numbers; it shows a
core part of a number (formally called a mantissa) being raised to an exponent. For
instance, the scientific notation 7.89E40 means 7.89x1040. You can tell <fmt:for-
matNumber> to use scientific notation like this:

This tag will print out

52.577E3

The benefits of scientific notation come to the surface when we try to format a par-
ticularly large number:

<fmt:formatNumber

Instead of wasting lots of space printing the entire number, this tag instead prints

203.787E27

Without scientific notation, it’s hard to both shorten a number and still show how
large it really is. Still, scientific notation isn’t appropriate for all applications; many
web users aren’t familiar with it, so for some pages, it might be more harmful than
helpful. But if you’re printing out reports for statisticians or physicists, scientific
notation might be just what you need.

<fmt:formatNumber value="52577" pattern="###.###E0"/>

value="203787490020343266877275964040"
pattern="###.###E0" />

Printing dates with <fmt:formatDate> 227
 For more information on how patterns work, you can read the Javadoc page for
the DecimalFormat class, which (for the version of Java that was current at the time
this chapter was written) should be available at http://java.sun.com/j2se/1.4/docs/
api/java/text/DecimalFormat.html.

10.2 Printing dates with <fmt:formatDate>

Just as JSTL provides support for formatting numbers with <fmt:formatNumber>,
it gives you <fmt:formatDate> to help print out dates and times. Table 10.4 lists
its attributes.

10.2.1 Differences from <fmt:formatNumber>

Besides the obvious difference that <fmt:formatDate> is for printing dates and
<fmt:formatNumber> is for printing numbers, a few syntactic differences exist
between the two tags. First, <fmt:formatDate> always takes a value attribute; this
attribute is required. In addition, it cannot accept data from its body.

 The value attribute for <fmt:formatDate> must point to a date variable; it can’t
simply point to a string that represents a date, like "Jan 1, 2001". There’s no
good, unambiguous way for <fmt:formatDate> to accept and interpret strings as
dates. That job is given to another JSTL tag, <fmt:parseDate>, which we’ll encoun-
ter later.

 You can get real date variables a few ways. You might retrieve one from a data-
base or receive one from back-end Java code. Or, you might use the <fmt:parse-
Date> tag we just mentioned, which we’ll describe in section 10.4, to produce a date
variable. You can also produce a date using an advanced tag called <jsp:useBean>.
We’ll leave this tag’s inner workings as magic for now; we’ll mention it again in

Table 10.4 <fmt:formatDate> tag attributes

Attribute Description Required Default

value Date to print Yes None

type Whether to print dates, times, or both No date

dateStyle Preformatted style to use for the date No default

timeStyle Preformatted style to use for the time No default

timeZone Time zone to use when formatting the date No See section 10.5

pattern Explicit formatting pattern to use No None

var Variable to expose the formatted date (as a string) No None

scope Scope in which to expose the formatted date No page

228 CHAPTER 10
Formatting and internationalization
more detail in chapter 14. For now, here’s how you can use <jsp:useBean> to store
a date in a scoped variable:

<jsp:useBean id="current" class="java.util.Date"/>

This tag creates a scoped variable named current that stores the date corresponding
to the moment the <jsp:useBean> tag ran. You can use <jsp:useBean> anywhere
you can use a JSTL tag, and you don’t need a <%@ taglib %> directive to use it.

 Otherwise, <fmt:formatDate> is similar to <fmt:formatNumber>. When you
pass a date object to <fmt:formatDate>, it prints out a properly localized date by
default, automatically sensing the browser’s preferences. For instance, if we use the
previous <jsp:useBean> tag to expose a scoped variable named current with the
then-current date, then we can use the following tag to print this date in the user’s
default locale:

<fmt:formatDate value="${current}"/>

The following table shows some default values for different parts of the world, for
the date May 20, 2002:

Dates are a little more impressive than numbers, because they contain text that
JSTL automatically translates for you.

10.2.2 Printing times, dates, or both

When a Java variable—like a scoped variable named birthDate—stores a date, it
also technically stores a time. Sometimes (as with most birthdays, for example) this
time isn’t significant; it might simply be set to midnight as a reasonable default.
Other times, you’ll want to print out both a date and a time.

 By default, the <fmt:formatDate> tag prints only dates. You can use the type
attribute to print times—either in addition to, or instead of, dates. The following
table shows the three possibilities and their corresponding outputs for the familiar
English locale. In this case, the scoped variable d corresponds to a date/time com-

Country Sample default date format

United States May 20, 2002

France 20 mai 2002

Germany 20.05.2002

Netherlands 20-mei-2002

Spain 20-may-2002

Printing dates with <fmt:formatDate> 229
bination of May 20, 2002 at 7:51:30 in the morning. This table shows what
<fmt:formatDate> outputs for different values of the type attribute:

Both the date and time are formatted appropriately for a locale. You saw a few dif-
ferent date formats in the previous table. A locale’s preferred format for times can
also be different from that of English. For instance, some countries use military time
instead of 12-hour time. Others use . instead of : to separate hours from minutes
and minutes from seconds, and so on.

10.2.3 Printing longer or shorter dates and times

Two more attributes, dateStyle and timeStyle, let you choose how lengthy and
detailed the output of <fmt:formatDate> should be. Until this point, you’ve seen the
default output, which is equivalent to a <fmt:formatDate> tag with the attributes
dateStyle="default" and timeStyle="default". Table 10.5 shows the different
possibilities for these attributes, along with examples for the English locale.1

Tag Output

<fmt:formatDate
 value="${d}"

May 20, 2002

<fmt:formatDate
 value="${d}"

7:51:30 AM

<fmt:formatDate
 value="${d}"

May 20, 2002 7:51:30 AM

type="date"/>

type="time"/>

type="both"/>

Table 10.5 The dateStyle and timeStyle attributes for <fmt:formatDate> let you choose an
appropriate level of detail for the times and dates your pages print.

Attribute value Description Date example Time example

default Default style Jun 20, 2002 7:51:30 AM

short Abbreviated style 6/20/02 7:51 AM

medium Medium-length style Jun 20, 2002 7:51:30 AM

long Longer style June 20, 2002 7:51:30 AM EDT

full Full information Monday, June 20, 2002 7:51:30 AM EDT

1 Note that timeStyle="long" and timeStyle="full" add a time zone. We’ll discuss time
zones in section 10.5.

230 CHAPTER 10
Formatting and internationalization
From table 10.5, you can see that for the English locale, default has the same effect
as medium. This isn’t guaranteed to be the case for every locale.

 You can mix dateStyle and timeStyle attributes however you’d like. For
instance, we can write the following:

<fmt:formatDate
 type="both"

 value="${date}"/>

For the English locale, this tag will print out a date that looks like this:

Tuesday, January 1, 2002 12:00 AM

Note how the time defaulted to midnight, because we only specified a date in the
value field.

10.2.4 More control: custom date patterns

Just like the <fmt:formatNumber> tag, <fmt:formatDate> has a pattern attribute
that gives you more control over how to print dates. However, the pattern
attribute for dates is easier to use—and more useful—than the one for numbers.

 The pattern attribute lets you specify exactly how a date should appear. To
build a pattern, you use letters from a list of special characters to indicate parts of
the date you want to print. For instance, y represents “year” and M represents
“month.” Table 10.6 shows the most useful characters you can use in a pattern.
(Some others exist that don’t come up for most applications; you can read about
them at http://java.sun.com/j2se/1.4/docs/api/java/text/SimpleDateFormat.html.)

timeStyle="short"
dateStyle="full"

Table 10.6 In <fmt:formatDate>, the pattern attribute gives you detailed control over
how your dates will be printed. You construct a pattern using the characters in this table.
When formatting a date, the number of each character that you use is significant: “MMMM” is
different from “MM”.

Character(s) Meaning Example

yy Shorthand year 02

yyyy Full year 2002

M Month number 4

MM Zero-padded month 04

MMM Short month name Apr

MMMM Long month name April

d Day of month 5

Printing dates with <fmt:formatDate> 231
A pattern can also contain punctuation, which is passed through literally. To insert
letters into a pattern, you have to quote them using single quotes (’). To print a sin-
gle quote, you can write ’’ (two single quotes). However, you should do so only if
you’ve quoted the attribute value itself with double quotes (").

 Suppose ${d} is the following full date:

Friday, April 5, 2002 at 9:04:06 p.m., Eastern Standard Time

Consider the following examples:
 Patterns are a bit harder to use and read than the dateStyle and timeStyle

attributes, so I recommend those attributes as long as they’re suitable for your pur-
poses. But as these examples show, you can achieve some tailored, specific format-
ting using pattern.

dd Zero-padded day 05

EE Short weekday name Fri

EEEE Long weekday name Friday

H Military-time hour 21

HH Zero-padded military hour 21

h Hour (1–12) 9

hh Zero-padded hour (1–12) 09

m Minute 4

mm Zero-padded minute 04

s Second 6

ss Zero-padded second 06

S Millisecond 249

a AM / PM PM

zz Shorthand time zone EST

zzzz Full time zone name Eastern Standard Time

Z Time zone description -0500

Table 10.6 In <fmt:formatDate>, the pattern attribute gives you detailed control over
how your dates will be printed. You construct a pattern using the characters in this table.
When formatting a date, the number of each character that you use is significant: “MMMM” is
different from “MM”. (continued)

Character(s) Meaning Example

232 CHAPTER 10
Formatting and internationalization
10.3 Reading numbers with <fmt:parseNumber>

So far in this chapter, we’ve only discussed outputting data—formatting dates and
numbers and then (usually) printing them or (less frequently) saving them to scoped
variables. JSTL has two tags that help you handle input: <fmt:parseNumber> to help
you read numbers, and <fmt:parseDate> to help you read dates.

 In many cases, you don’t need these tags. As you saw in chapter 4, JSTL lets you
treat simple numbers as strings, and vice versa. For example, if the request parame-
ter named boundary equals the number 50 because that’s what the user entered in
an HTML form, we can say

<c:forEach … end="${param.boundary}">

and the <c:forEach> tag will know to stop its iteration after the fifty-first element.
 The <fmt:parseNumber> tag is specifically for cases in which you need to parse—

or interpret—more complicated numbers. If the user enters 50,000 (including the
comma), or if you read values that contain commas or spaces from an XML file or
database, you can’t treat these values as numbers; you need to parse them first.

 Table 10.7 lists the attributes that <fmt:parseNumber> accepts.

Tag Output

<fmt:formatDate
 value="${d}"

5 Apr 2002

<fmt:formatDate
 value="${d}"

4 after 9

<fmt:formatDate
 value="${d}"

April '02

<fmt:formatDate
 value="${d}"

Friday at 9:04 PM

pattern="d MMM yyyy"/>

pattern="m ’after’ h"/>

pattern="MMMM ’’yy"/>

pattern="EEEE ’at’ h:mm a"/>

Table 10.7 <fmt:parseNumber> tag attributes

Attribute Description Required Default

value The string to parse into a number No Body

type How to parse the number (number, currency, or
percent)

No number

Reading numbers with <fmt:parseNumber> 233
10.3.1 Why you might want to parse numbers

Most of your pages probably won’t have to parse numbers. The <fmt:formatNum-
ber> tag is useful only if you need to retrieve a numeric value from a string. You
might want to do this for a few reasons:

� You need to save a numeric value to a database using <sql:update> and
<sql:param>, but all you have is a string like 500 000,00.

� You want to normalize the display of numbers—that is, make sure they all
appear similarly. But some of your numbers might come from users or differ-
ent databases, and appear in different forms. Before you can feed a number to
<fmt:formatNumber>, you normally need to parse it with <fmt:parseNumber>.

� Sometimes (although rarely) you have a string like 500,000 but need a num-
ber for tags like <c:forEach> (the begin, end, and step attributes),
<sql:query> (the startRow or maxRows attribute), and so on.

� You want to perform simple math on a number the user entered (or one you
retrieved from a database, XML file, or elsewhere). For instance, suppose
you’re writing an application that assists the user with taxes, and you want to
calculate 27.5% of the user’s income.

10.3.2 How <fmt:parseNumber> works by default

The <fmt:parseNumber> tag receives the number it’s supposed to parse either by its
value attribute or from its body. It then parses this number. The resulting numeric
value is either stored to the scoped variable indicated by var (and scope) or printed
out to the page in its simple, unlocalized form—for instance, 500000.01—with no
commas, grouping, extra spaces, or other fancy formatting.

 Recall from section 10.1.1 that every locale has a default way to print numbers.
The <fmt:parseNumber> tag determines, by default, the browser’s locale, and it
uses this locale’s mechanism to parse a number. This is useful if you’re accepting

integerOnly Whether to discard any fractional digits No false

pattern More detailed information about how to parse the
number

No None

parseLocale Locale to use instead of default No See section 10.3.2

var Variable to expose the parsed number (as a number) No None

scope Scope in which to expose the parsed number No page

Table 10.7 <fmt:parseNumber> tag attributes (continued)

Attribute Description Required Default

234 CHAPTER 10
Formatting and internationalization
input from the user. For instance, if you ask an English-speaking user for his favorite
number, he might type 500,000.01. (Admittedly, this would be a strange number to
pick as a favorite, but it’s a better example than 7.) A Frenchwoman might, instead,
enter 500 000,01. The <fmt:parseNumber> tag assumes by default that users will
enter values that are formatted using the customs of their own locales.

 For instance, consider the following HTML form:

<form method="post" action="parseNumber.jsp">
 What’s your favorite number?
 <input type="text" name="favorite" size="10" />
 <input type="submit" value="Enter"/>
</form>

Listing 10.1 shows a page that handles this form.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<p>You entered "<c:out value="${param.favorite}"/>". </p>

<fmt:parseNumber var="fav" value="${param.favorite}"/>

<p>As far as I can tell, this corresponds to the
number <c:out value="${fav}"/>.</p>

<p>If you multiply this number by 2 and add 1, you get
<c:out value="${fav * 2 + 1}"/>. I like that number
better.</p>

Now, suppose my browser is configured for English and I enter 500,000 in the
input box. This page correctly parses the user’s number, and it displays the output
shown in figure 10.2.

 If I were instead French and entered 500 000, this page would not work cor-
rectly, by default, unless my browser’s locale were set to French. If it were, then
parseNumber.jsp from listing 10.1 would adapt to French automatically. This is the
key thing to realize about JSTL’s parsing and formatting support: by default, pages
automatically adapt to the correct locale, and you can forget about the matter and
focus on more important things.

Listing 10.1 parseNumber.jsp: a page that parses the user’s number

Parses number and
creates fav variable

Reading numbers with <fmt:parseNumber> 235
10.3.3 Changing <fmt:parseNumber>’s parsing rules

The remaining attributes for <fmt:parseNumber> let you change the rules by which
the number from the value attribute (or the tag’s body) will be parsed.

Throwing away fractions
The integerOnly attribute is useful if you care only about the integer part of a num-
ber and you want to throw away its fractional part. Use this attribute if you want to
be sure you get an integer back—for instance, because your database, or a tag
attribute, accepts only integers. For example, the following tag stores the number
50.05:

<fmt:parseNumber
 var="number"
 value="50.05"/>

But this one stores the number 50:

<fmt:parseNumber
 var="number"
 value="50.05"

Changing the locale
Sometimes, you read numbers not from a user but from a database or imported
XML file. If the data was imported from another country (would this involve a cus-
toms check?), you might know beforehand the locale that was used to format the
numbers. In such a case, you don’t care about the user’s browser’s preferred locale;
you instead want to parse a number using a specific locale.

 The parseLocale attribute handles this need. The attribute accepts the name of a
specific locale to use. In section 10.6, we’ll describe the values this attribute can take.

Figure 10.2 Sample output for the page shown in listing 10.1, when the user enters the number
“500,000” as the request parameter favorite. This output assumes an English locale—or at
least one that treats “500,000” as the number 500000.

integerOnly="true"/>

236 CHAPTER 10
Formatting and internationalization
Using specific patterns
Like <fmt:formatNumber>, the <fmt:parseNumber> tag has a pattern attribute that
lets you specify a particular pattern to use when parsing a number. The details of
numeric patterns are beyond the scope of this book; see section 10.1.7 for more
information.

10.4 Reading dates with <fmt:parseDate>

The <fmt:parseDate> tag is to dates what <fmt:parseNumber> is to numbers. You
can use <fmt:parseDate> when you need to read a string from the user, a database,
or an XML file and treat it as a date, using locale-specific rules.

 Table 10.8 shows the attributes for <fmt:parseDate>.

The <fmt:parseDate> tag is similar to <fmt:parseNumber>, but it parses and stores
dates instead of numbers. The value, var, scope, and parseLocale attributes work
exactly like they do in <fmt:parseNumber>, so we don’t need to discuss them here
in detail. Instead, we’ll focus on the differences between the two tags.

 We’ll also wait until section 10.5 to cover the timeZone attribute.

10.4.1 How <fmt:parseDate> parses dates by default
The <fmt:parseDate> tag, like the other formatting and parsing tags, is sensitive to
the browser’s locale by default. Without any attributes other than value, it parses a
date the same way that <fmt:formatDate> formats a date. The parsing rules are
fairly strict. Thus, the tag
<fmt:parseDate value="Aug 24, 1981"/>

Table 10.8 <fmt:parseDate> tag attributes

Attribute Description Required Default

value The date string to parse No Body

type How to parse the date (time, date, or both) No date

dateStyle How detailed a date to expect to parse No default

timeStyle How detailed a time to expect to parse No default

pattern Specific pattern to use when parsing a date No None

parseLocale Locale to use instead of the default No See section 10.3.2

timeZone Time zone to apply to the parsed date No See section 10.5

var Variable to expose the parsed date (as a number) No None

scope Scope in which to expose the parsed date No page

Reading dates with <fmt:parseDate> 237
would work for the English locale, but

<fmt:parseDate value="Aug 24 1981"/>

would lead to an error because it lacks a comma. This behavior makes the default
case almost useless for processing input from users, because it’s usually inappropri-
ate to force users to be so specific in the values they enter. However, this use of
<fmt:parseDate> is appropriate in a few situations:

� It’s useful if you know you’re getting data that was printed with <fmt:format-
Date>.

� You can also use this simple form of <fmt:parseDate> if you’re generating a
string based on individual fields of user input—for instance, a pull-down
menu for month, followed by another one for date, and so on. See chapter 11
for an example of this technique.

If given a var attribute, <fmt:parseDate> stores a scoped variable that holds a date
and time (the time is always midnight in this simple case). Otherwise, it prints the
date in a somewhat ugly, unlocalized format:

Sat Aug 24 00:00:00 EDT 2002

You therefore almost always want to use a var attribute with <fmt:parseDate>
(except, perhaps, if you’re just testing your page).

10.4.2 Changing how <fmt:parseDate> parses dates

The <fmt:parseDate> tag comes with four attributes that let you change how it
parses dates. The first is simple: you can use the type attribute to let the tag parse
times as well as dates. Just as with <fmt:formatDate>, the type attribute has three
possible values: date, time, and both; date is the default. If you specify type=
"time", then <fmt:parseDate> tries to read and parse a time in the locale’s default
representation (for example, "07:45:02 PM"). For type="both", the tag expects a
default date/time combination, like

Aug 24, 2002 08:52:00 PM

The type attribute is somewhat limited when used alone. It can be useful when
used in conjunction with two more powerful attributes, timeStyle and dateStyle.
They let the <fmt:parseDate> tag accept the sorts of values shown in table 10.5,
earlier in this chapter.

238 CHAPTER 10
Formatting and internationalization
Using patterns

The <fmt:parseDate> tag has a pattern attribute, which is typically the most useful
way to use the tag. The pattern attribute accepts a date pattern—of the same syn-
tax you saw in section 10.2.4—and parses the date according to this pattern. For
instance, if you read dates from XML files you import, you might encounter the
ISO 8601 date format. Dates that follow this format might look like this:

YYYYMMDDTHHMMSS

The T character separates the date (YYYY = year, MM = month, DD = day) from the
time (HH = hour, MM = minute, SS = second). As an example of this format, the date
August 24, 2002 at 8:52 p.m. would be written as follows:

20020824T205200

Note that 24-hour military time typically is used, as is a four-digit year.
 Suppose we’ve retrieved a date in this format from an XML file and stored it in

the scoped variable ISOdate. We could use the following tag to parse this date:

<fmt:parseDate

 value="${ISOdate}"

As you can see, using pattern with <fmt:parseDate> is much more flexible than
the other, simpler alternatives.

10.5 Overriding time zones with <fmt:timeZone> and
<fmt:setTimeZone>

Saying “May 20th at 7 in the morning” doesn’t, by itself, indicate a specific point in
time; if you want to be complete, you need to add a time zone. In normal daily con-
versations, we often leave out time zones because figuring out the correct one is
easy. But time zones are still there, lurking beneath the surface.

 Conversely, when a scoped variable points to a date, this date is somewhat
abstract; no time zone is associated with it. It represents a particular point in time,
which might equally well be described as 9:00 p.m. Eastern time, 8:00 p.m. Central
time, or 1:00 a.m. Greenwich Mean Time.

 Time zones become important when you want to print out a description of this
moment in time—that is, when you format dates with <fmt:formatDate>. Should
the <fmt:formatDate> tag display 9:00 p.m. for Eastern Standard Time (EST), 8:00
p.m. for Central Standard Time (CST), 1:00 a.m. for Greenwich Mean Time (GMT),
or any of the other equally good alternatives?

pattern="yyyyMMdd'T'HHmmss"/>

Overriding time zones 239
 Similarly, time zones are important when you parse dates and times with
<fmt:parseDate>. If the number you’re parsing contains 6:00 AM, does this mean
6:00 a.m. in EST, CST, GMT, or some other time zone?

10.5.1 How JSTL figures out time zones by default

By default, the <fmt:formatDate> and <fmt:parseDate> tags do their best to figure
out a sensible time zone. If your JSP pages interact with back-end Java code, this
code can manage time zones for you so that you don’t have to worry about them.
(This approach might be appropriate if time zones involve calculations or data
retrieval that’s beyond the scope of your JSP pages.) If you’re a Java programmer,
chapter 14 shows you how to manage time zones from within Java code.

 If no back-end Java code manages time zones, then your pages will use the time
zone of your JSP container. This is usually the time zone of the machine that runs
the container, and is therefore also usually the time zone you’re in. This time zone
might be appropriate for many applications, but if your users live throughout the
country or the world, you might need to manage time zones yourself. Even if your
application’s back-end Java code does manage time zones for you—a fact you can
determine by asking the back-end Java programmers who support your applica-
tion—you might want to override these time zones in some cases.

10.5.2 Setting time zones for individual tags

JSTL gives you three ways to set times zones from within your JSTL pages. First,
and simplest, the <fmt:formatDate> and <fmt:parseDate> tags both accept a time-
Zone attribute. This attribute lets you set a specific time zone for an individual tag.

 The timeZone attribute accepts a number of different kinds of identifiers for
time zones. The easiest ones to use are the common abbreviations for North Amer-
ican time zones: EST for Eastern Time, CST for Central Time, MST for Mountain
Time, and PST for Pacific Time. Note that you use the standard-time abbreviation
(EST, PST, and so on), and not the daylight-savings abbreviations (such as EDT and
PDT). When you specify time zones this way, JSTL automatically takes care of day-
light-savings time changes for you.2

 As an example of time zones in action, consider the following tags and their output:

2 The problem with this syntax is that not every worldwide time zone has an accepted abbrevia-
tion (and some abbreviations clash, which can be confusing). Therefore, JSTL supports standard
Java time-zone identifiers, which are based on prominent cities in each time zone. See the Jav-
adoc page for Java’s java.util.TimeZone class, which is accessible at http://java.sun.com/j2se/
1.4/docs/api/java/util/TimeZone.html, for more information on the time-zone identifiers sup-
ported by JSTL.

240 CHAPTER 10
Formatting and internationalization
10.5.3 Long-lasting changes with <fmt:setTimeZone>

If you find yourself using the timeZone attribute to set the same time zone repeat-
edly, you can save yourself a little work by using the <fmt:setTimeZone> tag.
Instead of operating on a tag-by-tag basis, <fmt:setTimeZone> lets you set a time
zone that is applied repeatedly—for a page or any other scope.

 The <fmt:setTimeZone> tag takes three attributes, which are listed in table 10.9.

You must always specify the value attribute, which takes the same sorts of time
zone identifiers described in section 10.5.2.

 If you use <fmt:setTimeZone> without a var attribute, then it overrides the
default time zone for the given scope—or the current page, if no scope is specified.
For instance, the following tag sets Eastern Standard Time to be the default time
zone for your entire application:

<fmt:setTimeZone value="EST" scope="application"/>

Tag Output

<fmt:formatDate
 value="${d}"

 type="time"/>

<fmt:formatDate
 value="${d}"

 type="time"/>

<fmt:formatDate
 value="${d}"

 type="time"/>

<fmt:formatDate
 value="${d}"

 type="time"/>

timeZone="EST"

3:04:45 AM

timeZone="CST"

2:04:45 AM

timeZone="MST"

1:04:45 AM

timeZone="PST"

12:04:45 AM

Table 10.9 <fmt:setTimeZone> tag attributes

Attribute Description Required Default

value Identifier of the time zone to set Yes None

var Variable to expose the time zone No None

scope Scope in which to expose the time zone No page

Overriding time zones 241
Similarly, this tag sets it for the session:

<fmt:setTimeZone value="EST" scope="session"/>

This technique is useful if you want to retrieve a time zone for the user from a data-
base and apply it to the user’s entire session.

 Note that <fmt:setTimeZone> just sets a new default time zone; it doesn’t man-
date one. You can still override the new time zone for individual <fmt:formatDate>
and <fmt:parseDate> tags using their timeZone attributes.

 You can also use <fmt:setTimeZone> to expose a time zone as a scoped variable
whose name you choose with var (and whose scope you optionally choose with
scope). This approach is similar to saving the string identifier for a time zone (such
as "EST"), but it’s a little more efficient. This pattern might be useful if you wanted
to retrieve a time zone from an HTML form or a database and apply it to particular
<fmt:formatDate> and <fmt:parseDate> tags in your pages. For instance:

<fmt:setTimeZone

 value="${param.timezone}"

 var="userTimeZone"

 scope="session"/>

<fmt:parseDate value="${d}" timeZone="${sessionScope.userTimezone}">

This example assumes ${param.timezone} equals something like EST or PST.
 By and large, using var with <fmt:setTimeZone> is inconvenient, and you prob-

ably won’t need to do so very often.

10.5.4 Temporary changes with <fmt:timeZone>

JSTL also provides a <fmt:timeZone> tag that you can use as a parent tag to wrap
some parts of your pages. Doing so is useful when you have a particular set of tags
that should all use the same time zone, but you don’t want to override your page’s
default time zone. Table 10.10 shows <fmt:timeZone>’s single attribute.

Figure 10.3 demonstrates <fmt:timeZone>’s behavior.
 As before, you can override individual <fmt:formatDate> and <fmt:parseDate>

tags’ time zones by specifying a timeZone attribute manually for each tag whose
zone you want to override.

Table 10.10 <fmt:timeZone> tag attribute

Attribute Description Required Default

value The identifier for the time zone to set Yes None

242 CHAPTER 10
Formatting and internationalization
10.6 Overriding locales with <fmt:setLocale>

Throughout this chapter, I’ve mentioned that tags use the user’s web browser’s pre-
ferred locale by default. But JSTL page authors and back-end Java programmers
can also influence the locale used for the <fmt:format…> and <fmt:parse…> tags.
Doing so can be useful if you want to give users a choice of locale instead of letting
the browser automatically speak for them.

 Just as with time zones, back-end programmers have control over what locales
are used; they can explicitly choose to override the browser’s locale. See chapter 14
for information (geared to programmers) about how to do this.

 JSTL also lets you control the locale using a tag: <fmt:setLocale>. Table 10.11
lists this tag’s attributes.

As table 10.11 shows, value is always required. Using value, you can specify the
name of a locale. This locale will become the new default for the scope identified
by the scope attribute—or for the current page by default, if you don’t specify a
scope attribute. (The variant attribute is beyond the scope of this book.)

Figure 10.3
When the <fmt:timeZone> tag
surrounds one or more
<fmt:formatDate> or
<fmt:parseDate> tags, the time
zone from <fmt:timeZone>
automatically applies to each of
these child tags.

Table 10.11 <fmt:setTimeZone> tag attributes

Attribute Description Required Default

value Name of a locale to use (see section 10.6.1) Yes None

variant Specific variety of the chosen local to use (see
section 10.6.1)

No None

scope Scope for which to override the locale No page

Overriding locales with <fmt:setLocale> 243
10.6.1 How to identify locales

The value attribute for <fmt:setLocale> lets you specify the name for a new
default locale. To specify a locale, you need at least one piece of information: a lan-
guage, such as English, French, or Spanish. You can also qualify this language by a
country: for instance, the United States has different conventions than England
even though residents of both countries speak English; and Canada and France dif-
fer on some formatting rules, even though both countries’ residents speak French.
In general, currency formatting varies (sensibly) more by country than by language.

 The name for a locale has two pieces: a language code and a country code. The
language code is lowercase, and the country code is uppercase. They are separated
by a hyphen (-) or an underscore (_). You can find the full list of language codes at
http://www-old.ics.uci.edu/pub/ietf/http/related/iso639.txt, and a full list of coun-
try codes at http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html.
Table 10.12 shows some commonly useful locale codes.

As an example of how the <fmt:setLocale> tag works, consider the following tags
and their corresponding output, if they occur on a page in order:

Table 10.12 The <fmt:setLocale> tag’s value attribute, as well as
the parseLocale attribute in <fmt:parseNumber> and <fmt:parse-
Date>, let you specify a specific locale to use. These attributes accept
locale codes, which contain a lowercase language code and, optionally,
an uppercase country code.

Locale code Locale description

en English

fr French

es Spanish

de German

en_US English (United States)

en_CA English (Canada)

fr_CA French (Canada)

fr_FR French (France)

de_CH German (Switzerland)

es_ES Spanish (Spain)

es_CL Spanish (Chile)

244 CHAPTER 10
Formatting and internationalization
A tag like the following changes the default locale for the current user’s whole session:

<fmt:setLocale value="fr" scope="session"/>

Of course, the value attribute can accept an expression, so we can compute and set
a locale dynamically:

<fmt:setLocale value="${param.userLocale} scope="session"/>

This tag might be appropriate if we have a form with a userLocale parameter that
lets the user choose a locale. For instance:

What language do you speak?
<select name="userLocale">
 <option value="en">English</option>
 <option value="es">Spanish</option>
 . . .
</select>

This selection box lets the user choose a language, which we can use as input to the
<fmt:setLocale> tag.

10.6.2 The parseLocale attribute for <fmt:parseNumber> and
<fmt:parseDate>

The <fmt:parseNumber> and <fmt:parseDate> tags let you override the default
locale with one for the tag itself. Doing so is useful if you know that a number or
date you need to parse was previously formatted using a specific locale.

Tag Output Description of behavior

<fmt:formatDate
value="${d}"/>

Mar 17, 2002 Prints the current date in the default
locale

<fmt:setLocale
value="es"/>

Changes the locale to Spanish

<fmt:formatDate
value="${d}"/>

17-mar-2002 Prints the current date in the Spanish
locale

<fmt:setLocale
value="fr"/>

Changes the locale to French

<fmt:formatDate
value="${d}"/>

17 mars 2002 Prints the current date in the French
locale

<fmt:setLocale
value="fr_CA"/>

Changes the locale to French (Canada)

<fmt:formatDate
value="${d}"/>

2002-03-17 Prints the current date in the French
Canadian locale

Internationalizing text messages 245
 You can override the default locale by using these tags’ parseLocale attribute.
This attribute takes the same kind of locale codes that we discussed in section 10.6.1.

10.7 Internationalizing text messages with
<fmt:message>, <fmt:param>,<fmt:bundle>,
and <fmt:setBundle>

So far, we’ve discussed how you can make sure your pages adapt to different locales
and formatting styles for numbers and dates. Of course, the world (thankfully) con-
tains more than just numbers and dates; your pages will also need to display text. If
your application is truly going to serve users in multiple locales, you’ll need to
make sure your page can figure out what language to use when printing its text.

 Except on Star Trek, this translation doesn’t come for free; you can’t flip a switch
and have a JSP container automatically translate your pages to French or German.
Java applications, however, support a standard mechanism for plugging in special
resource bundles that contain translated text. A resource bundle is essentially a file
that maps a generic key, such as WelcomeMessage, to a single translated value, like Hi
there! A different resource bundle might map WelcomeMessage to Bonjour! or
Wassup? Resource bundles come in families: groups of different, locale-specific val-
ues for the same set of keys.

 Creating resource bundles and internationalizing applications from scratch are
beyond this book’s scope. Our goal here is to briefly discuss JSTL’s support for
using existing message bundles that are already set up for your application. If you
want more information on internationalizing Java applications, see appendix D
for references.

10.7.1 Using <fmt:message>

The <fmt:message> tag accepts a key and looks up its translated value in a resource
bundle. It takes the attributes listed in table 10.13.

Table 10.13 <fmt:message> tag attributes

Attribute Description Required Default

key Internationalized key to use No Body

bundle Family of resource bundles to use No See section 10.7.2

var Variable to expose the localized message No None

scope Scope in which to expose the localized message No page

246 CHAPTER 10
Formatting and internationalization
If you don’t use the key attribute, the <fmt:message> tag looks for a key in its body.
A key is, again, something like WelcomeMessage. The exact key to use depends on
the resource bundles you’re using; typically, if your application has been interna-
tionalized, you’ll be given a list of appropriate keys.

 By default, <fmt:message> prints out its localized message—the translated mes-
sage it finds for the value of the key attribute. If var (and, optionally, scope) is spec-
ified, the localized message is saved to a scoped variable instead.

 Also by default, <fmt:message> uses a family of bundles prepared automatically
by back-end Java code. The bundles all have the same keys, but they have different
values depending on locales. For instance, the following tag will print out the value
of the WelcomeMessage key in the bundle that matches the current locale:

<fmt:message key="WelcomeMessage"/>

It therefore might print out Hello or Bonjour, depending on how the user’s browser
is configured or on the locale we previously set with <fmt:setLocale> (discussed in
section 10.6).

Message parameters

Some messages have parameters, which work a little like the SQL parameters we dis-
cussed in chapter 9. A message might have a placeholder for you to insert the user’s
name. This feature is important because different languages or dialects might
require the user’s name (and other parameters) to appear in different places within
a localized message. Whoever provides you with message keys should let you know
if they need parameters. To specify a parameter, you can use the <fmt:param> tag,
which takes a single attribute described in table 10.14.

If you don’t specify a value attribute, you can insert the value into the tag’s body.
Doing so is useful if the parameter comes from other tags.

 Here’s how you’d add the parameter represented by ${user.name} to a message:

<fmt:message key="WelcomeMessage">

 <fmt:param value="${user.name}"/>

</fmt:message>

Table 10.14 <fmt:param> tag attribute

Attribute Description Required Default

value Parameter to add No Body

Internationalizing text messages 247
10.7.2 Loading a bundle family with <fmt:bundle> and
<fmt:setBundle>

If no back-end Java code manages message bundles for your pages, or if you want
to override the bundle, you can use the <fmt:bundle> and <fmt:setBundle> tags.

 Table 10.15 lists the attributes for <fmt:bundle>.

Table 10.16 lists the attributes for <fmt:setBundle>.

The difference between <fmt:bundle> and <fmt:setBundle> is the same as the dif-
ference between <fmt:timeZone> and <fmt:setTimeZone>. The tags with set in
their names change the defaults for an entire scope, whereas the tags without set
apply only to their child tags.

 JSTL’s two bundle-related tags let you describe a group of related bundles using
the basename attribute. You’ll know the base name of a bundle if you’ve internation-
alized an application yourself; if you’re using someone else’s bundle, then whoever
internationalized the application should tell you the base name.

 The <fmt:bundle> tag changes the bundle for all the <fmt:message> tags in its
body. For instance:

<fmt:bundle basename="my.bundle">

 <fmt:message key="my.key.Welcome"/>

 <fmt:message key="my.key.Error"/>

</fmt:bundle>

When you use the <fmt:bundle> tag like this, you can give it a prefix attribute.
This attribute is a string that is added before every key in each <fmt:message> tag

Table 10.15 <fmt:bundle> tag attributes

Attribute Description Required Default

basename Name of the resource-bundle family to use Yes None

prefix String to prepend to each key (for long key names) No None

Table 10.16 <fmt:setBundle> tag attributes

Attribute Description Required Default

basename Name of the resource-bundle family to use Yes None

var Variable to expose the bundle No None

scope Scope in which to expose the bundle No page

248 CHAPTER 10
Formatting and internationalization
within <fmt:bundle>, thus saving you typing and making your pages more read-
able. For instance, this would be equivalent to the previous <fmt:bundle> tag:

</fmt:bundle>

With <fmt:setBundle>, you cannot specify a prefix. Instead, <fmt:setBundle>
lets you specify a var (and, optionally, scope) attribute to save the bundle that’s cre-
ated into a scoped variable. Then, you can point individual <fmt:message> tags at
this bundle by using their bundle attribute (see table 10.13). In addition, you can use
<fmt:setBundle> without specifying a var attribute. In this case, just like <fmt:set-
Locale> and <fmt:setTimeZone>, <fmt:setBundle> changes the default bundle for
the given scope—or the current page, if you don’t specify a scope.

10.8 Summary

JSTL’s internationalization and formatting (fmt) tags help you input and output
numbers and dates, and also help you target your page to users around the world.
When using the <fmt:…> tags, keep the following things in mind:

� The <fmt:formatNumber> tag outputs numbers, whereas <fmt:formatDate>
outputs dates. (You can use both tags to store a formatted value in a scoped
variable.)

� The <fmt:parseNumber> tag converts strings to numbers, and the <fmt:parse-
Date> tag converts strings to dates. You can normally treat simple strings like
34 as numbers, but if the strings contain commas or other special formatting,
you’ll need to parse them.

� By default, the four tags just mentioned automatically sense the user’s locale
(loosely, language and country) by reading information from the user’s web
browser. You can set a new default locale with the <fmt:setLocale> tag.

� The two tags that manage dates are sensitive to time zones. You can set a new
default time zone using the <fmt:setTimeZone> and <fmt:timeZone> tags.

� The date and number formatting and parsing tags aren’t just useful for local-
ization; they also help you handle general input and output of information. In
particular, the pattern attribute of the date tag is useful for reading and print-
ing different kinds of dates.

� The <fmt:message>, <fmt:param>, <fmt:bundle>, and <fmt:setBundle> tags
help you localize the text messages in your application. See appendix D for
references that will help you create message bundles and internationalize
your application in general.

<fmt:bundle basename="my.bundle" prefix="my.key.">
<fmt:message key="Welcome"/>
<fmt:message key="Error"/>

Part 3

JSTL in action

So far, we’ve looked at what JSTL is and how it works. You’ve seen a few exam-
ples of JSTL in action, but now we’ll examine more closely how to handle practi-
cal tasks using JSTL. In chapter 11, we’ll show how you can use JSTL to address
some common but small-scale needs. In the chapters after that, we’ll discuss
more in-depth examples of web development with JSTL.

 A minor warning is in order. In some cases, you won’t be using JSTL as a
stand-alone technology. You might use it with Jakarta Struts, for example, or with
tag libraries developed specifically for your site. We can’t cover all the technolo-
gies that JSTL might interact with in this book; therefore, although most of the
material in part 3 is core, nuts-and-bolts stuff that you can use immediately, some
of the examples push JSTL to its limits. This is intentional; I think the best way to
learn a technology is by trying to use it creatively. So don’t be surprised if some
of the examples use JSTL for tasks that you might otherwise solve with a custom,
local library or with Struts. The examples here aren’t designed to demonstrate
principles of web-application architecture; books like Web Development with Java-
Server Pages1 already address that topic quite well. Instead, my goal is to show
you as many uses of JSTL as you could possibly want to see.

 My hope is that these “stretches” will serve as a good reference as your
knowledge of JSTL progresses. You just might find that JSTL can handle more
than you’d expect!

1 Duane Fields, Mark Kolb, and Shawn Bayern, 2nd ed. (Manning Publications, 2001).

11Common tasks
This chapter covers…
� Reading check boxes from HTML forms
� Reading dates from HTML forms
� Handling errors
� Validating user input
251

252 CHAPTER 11
Common tasks
Some tasks never go away. If I had a dime for every time I had to write a JSP page
that signed up new users for a web application, I’d probably have more than $1.50
by now.

 However, JSTL makes lots of common tasks easier. In this chapter, we look at
how to use JSTL to address some common, specific issues like reading a date from a
user, accepting <input type="checkbox"> parameters, and handling errors. These
are all practical, but somewhat isolated, examples.

 They’re meant to help you generalize about JSTL. For instance, if you ever need
to read a date from a user of your web page, section 11.2 is a cookbook-like solu-
tion. But even if you don’t need to read dates frequently, understanding the exam-
ples in section 11.2 will be useful to solidify your knowledge of the <fmt:parseDate>
and <fmt:formatDate> tags. Similarly, the discussion of paramValues applies
equally well to headerValues and other collections; paramValues is just more com-
mon and practical.

 Before leaving this chapter, we get as far as a basic HTML-form handler that val-
idates its input and prepares to register a new user. Chapters 12 and 13 show more
complete, application-like examples.

11.1 Handling checkbox parameters

When we originally discussed JSTL’s expression language in chapter 3, you saw
how to use the expression language to handle HTML forms. For instance, an HTML
form parameter from a tag like

<input type="text" name="username" />

shows up to your JSTL tags as the expression ${param.username}.
 In chapter 3, however, I mentioned that checkbox parameters are special

because the same name can map to multiple values. Suppose we have an HTML
form with the following tags:

<input type="checkbox" name="language" value="english" />

<input type="checkbox" name="language" value="spanish" />

<input type="checkbox" name="language" value="french" />

If the user checks all three boxes, then the language parameter will have three val-
ues: english, spanish, and french.

 You can access a collection that contains all these values by using the expression
${paramValues.name}, where name is the name of the parameter you’re looking for.
You can use the <c:forEach> tag to loop over the individual parameters in this col-
lection and handle them one at a time.

Handling checkbox parameters 253
11.1.1 The HTML form

Let’s look at a soup-to-nuts example of how to handle checkbox parameters. Begin
with listing 11.1, which shows an HTML form with several check boxes. The goal of
this particular form is to let the user give feedback to a web site’s customer-service
department. Figure 11.1 shows what this form might look like in a browser.

<form method="post" action="checkbox.jsp">

 <p>Please check adjectives you would

 use to describe this web site's

 customer service:</p>

 <p>Atrocious

 <input type="checkbox" name="feedback" value="atrocious"/></p>

 <p>Loathsome

 <input type="checkbox" name="feedback" value="loathsome"/></p>

 <p>Flagitious

 <input type="checkbox" name="feedback" value="flagitious"/></p>

 <p>Satisfactory

 <input type="checkbox" name="feedback" value="satisfactory"/></p>

 <p><input type="submit" value="Submit" /></p>

</form>

Listing 11.1 checkboxForm.html: a form with checkbox parameters

Figure 11.1
A view of checkboxForm.html from
listing 11.1 in a web browser. Check
boxes typically show up as small boxes,
either empty or checked depending on
whether the user has selected them.
Check boxes differ from radio buttons
(see chapter 3) in that a user can
choose multiple check boxes with the
same name. For this reason, they’re a
little harder to handle than text fields
or radio buttons.

254 CHAPTER 11
Common tasks
Note how all the checkbox parameters have the same value for the name attribute:
feedback. Users can choose as many check boxes as they feel are appropriate, and the
expression ${paramValues.feedback} will contain a collection of all the parameters.

11.1.2 A simple checkbox handler

Listing 11.2 shows how we can use this expression to loop over all the feedback
parameters, one at a time.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<c:choose>

 <c:when test="${not empty paramValues.feedback}">

 You described our customer service as

 <c:forEach items="${paramValues.feedback}" var="adj">

 <c:out value="${adj}"/>

 </c:forEach>

 </c:when>

 <c:otherwise>

 You didn't choose any feedback checkboxes.

 </c:otherwise>

</c:choose>

As figure 11.2 shows, the checkbox.jsp page from listing 11.2 lists each adjective
we’ve chosen in a bulleted list (). It does so by looping over ${paramVal-
ues.feedback} with the <c:forEach> tag. The <c:forEach> tag exposes each ele-
ment as a scoped variable named adj, which is printed out by a <c:out> tag.

Listing 11.2 checkbox.jsp: a page to handle checkbox parameters

Decides if there are
any feedback params

Figure 11.2
The checkbox.jsp page figures out
which check boxes the user has
chosen and prints out the text
corresponding to each. It does so
with a <c:forEach> loop and a
<c:out> tag.

Handling checkbox parameters 255
Note how listing 11.2 prints a special message if the user didn’t choose any of the
check boxes. We do this by using a <c:choose> tag. The first condition—<c:when>—
makes sure the user has chosen at least one checkbox. It does so using the expression

${not empty paramValues.feedback}

which is true if the user chose at least one feedback checkbox, and false otherwise.
 I included this check to demonstrate a few things. Checks against nonexistent

parameters will be useful to you later for form validation, so I wanted to show you a
straightforward example of this technique. But in addition, I wanted to avoid loop-
ing over nonexistent values.

 It’s actually not a problem to loop over a collection that doesn’t exist. If you say

<c:forEach items="${paramValues.nope}" var="item">

 Item!

</c:forEach>

and the expression ${paramValues.nope} refers to a nonexistent parameter, then
the <c:forEach> tag will simply do nothing. The rationale is that a missing collec-
tion is much like a collection with zero elements, so iterating zero times makes sense.

 However, we don’t rely on this behavior of <c:forEach> here, because we don’t
want to print the trappings of a list—the initial tag and the closing tag—
when the list won’t have any items. (HTML lists, like and , should all ide-
ally have at least one item.)

TIP There are other ways to ensure that and print only when the
list has at least one item, other than wrapping the whole <c:forEach>
loop with a <c:if> or <c:when> tag. You can use <c:forEach>’s
varStatus attribute to determine whether to print before the list’s
first item and after the list’s last item, from inside <c:forEach>’s
body. For example, this set of tags will print out and only if
<c:forEach> iterates in the first place (if ${paramValues.feedback}
contains at least one parameter):

<c:forEach var="adj" items=${paramValues.feedback}" varStatus="s">
 <c:if test="${s.first}">

 </c:if>
 <c:out value="${adj}"/>
 <c:if test="${s.last}">

 </c:if>
</c:forEach>

256 CHAPTER 11
Common tasks
If you’ve used languages like XSLT, you might be surprised at this block of
JSP code. Your first thought might be, “Wait! The tag doesn’t line up
with the tag. The tags are crossed: starts, and then another
tag—<c:if>—is closed.” These crossed tags aren’t a problem for JSP pages.

11.1.3 Handling some check boxes specially

The page from listing 11.2 treats all feedback parameters the same; it prints them
all out in an undifferentiated list. But within the <c:forEach> tag, it’s easy to use
expressions that refer to the current item—adj, in this case—to make decisions
about how to handle each item individually. For instance, you might decide to save
some data in a database, or to display an otherwise hidden part of your page—but
only if a user has chosen a particular checkbox.

 Typically, you handle individual checkbox parameters by including a <c:choose>
tag directly within your <c:forEach> tag. Doing so lets you match, and take partic-
ular actions for, an individual parameter.

 Listing 11.3 shows a somewhat frivolous example, but it should drive home the
point. Instead of printing out the customer feedback that has been received, the
checkbox2.jsp page from listing 11.3 glorifies more positive remarks by printing
them in big letters and diminishes negative comments by making them small. You
can see the result in figure 11.3.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<c:choose>

 <c:when test="${not empty paramValues.feedback}">

Listing 11.3 checkbox2.jsp: a more interesting checkbox handler

Figure 11.3
The checkbox2.jsp page from
listing 11.3 looks at individual
parameters’ values before printing
them out. In this case, the page
glorifies positive remarks by
printing them in large letters; it
similarly diminishes negative
feedback by making it smaller.

Accepting dates 257
 You described our customer service as

 <c:forEach items="${paramValues.feedback}" var="adj">
 <c:choose>
 <c:when test="${adj == 'satisfactory'}">

 </c:when>
 <c:otherwise>

 </c:otherwise>
 </c:choose>
 <c:out value="${adj}"/>

 </c:forEach>
 </c:when>
 <c:otherwise>
 You didn't choose any feedback checkboxes.
 </c:otherwise>
</c:choose>

Again, this listing’s demonstration is somewhat silly, but it demonstrates an impor-
tant technique: using a <c:choose> tag directly below a <c:forEach> tag in order to
take special action depending on the parameter’s value. Instead of the trivial

it’s easy to see how you could do something more useful, like

<sql:update>
 UPDATE feedback SET satisfactory = satisfactory + 1
</sql:update>

This code would update a database when the page was loaded, but only if the box
for satisfactory customer service had been checked.

11.2 Accepting dates

Although HTML forms are flexible, they don’t do a lot of user-interface work for
you. HTML lets you choose from a few basic types of input fields—text boxes,
selection boxes, radio buttons, and so on—but it doesn’t make it easy to accept spe-
cial kinds of formatted input from the user. For instance, if you need your user to
enter a date or time, HTML doesn’t give you any tools to handle this input automat-
ically. Instead, you have to construct and interpret individual form fields.

 Using JSTL, it’s easy to write an HTML form that asks the user for a date or time.
Of course, you could always prompt the user for a date by displaying a text box
and asking them to type one in. You could then parse the date with the <fmt:

Checks to see if the
current parameter
equals a specific word

258 CHAPTER 11
Common tasks
parseDate> tag discussed in chapter 10. But most users would think that such a
generic interface is unfriendly. The whole point of <select> boxes and radio but-
tons is to guide the user toward sensible input, and this guidance is particularly use-
ful when users have to enter structured information like dates. For instance, most
users would find the interface shown in figure 11.4 convenient for entering a date. It
uses three <select> boxes for the month, day, and year. In contrast with a free-text
entry box, any user who uses this form is guaranteed to enter a structurally valid
date. (Whether it’s the right date is still, of course, up to the user.)

11.2.1 The HTML form

Listing 11.4 shows a JSP page that we could use to generate the form from
figure 11.4.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<form method="post" action="dateHandler.jsp">

 Please enter your birthday:

 <select name="month">
 <option value="Jan">January</option>
 <option value="Feb">February</option>
 <option value="Mar">March</option>
 <option value="Apr">April</option>
 <option value="May">May</option>
 <option value="Jun">June</option>
 <option value="Jul">July</option>
 <option value="Aug">August</option>
 <option value="Sep">September</option>
 <option value="Oct">October</option>
 <option value="Nov">November</option>
 <option value="Dec">December</option>
 </select>

Figure 11.4 A convenient interface for entering a date. Users might
appreciate this structured interface more than a simple text box that lets them
type in a date—or lets them enter arbitrary text that might not be a date, which
would require an irritating extra step for validating the input.

Listing 11.4 dateForm.jsp: a JSP page that lets the user enter a date

Simple, static
form field

 b

Accepting dates 259
 <select name="day">
 <c:forEach begin="1" end="31" var="day">
 <option><c:out value="${day}"/></option>
 </c:forEach>
 </select>

 <select name="year">
 <c:forEach begin="1930" end="2003" var="year">
 <option><c:out value="${year}"/></option>
 </c:forEach>
 </select>

 <input type="submit" value="Submit" />

</form>

Note that although listing 11.4 generates a simple HTML input form, it’s not a static
HTML page. JSTL tags, of course, aren’t limited to pages that handle forms; as
you’ll see in a moment, they can be useful to produce forms, too.

 b The page starts with a simple static form field. This month field lets the user choose
a month. Note how we map each month’s full name (which we want the user to see)
into an abbreviation (which is more convenient for us later).

 c After this simple month field are two fields that we produce dynamically: day and
year. These fields are unchanging lists of numbers, so we could write a static HTML
page to produce them. However, when we’re listing numbers like 1 to 31—and
1930 to 2003—it’s substantially more convenient to produce these lists dynami-
cally. The end result is the same as if we manually wrote out each <option> field,
but we’ve avoided some busy-work.

 Of course, you can include fields like these three—month, date, and year—in a
form that lets the user enter other information. For now, we’re focusing just on a
single field because it demonstrates a worthwhile technique.

11.2.2 Handling the form and reading the date
Now that we’ve produced a form, let’s look at how to retrieve the information users
enter into the form. Note that in the dateForm.jsp page from listing 11.4, the form
posts to a page called dateHandler.jsp. Listing 11.5 shows this page.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<fmt:parseDate
 var="date"
 parseLocale="en_US"
 value="${param.month} ${param.day}, ${param.year}"/>

Dynamically
generated fields

c

Listing 11.5 dateHandler.jsp: a page that reads a date from dateForm.jsp

Parses the date
from the form

 b

260 CHAPTER 11
Common tasks
You were born
<fmt:formatDate
 value="${date}"

 dateStyle="full"/>.

This page is deceptively simple. Let’s look more closely at what’s going on.

 b The core of the page’s function lies in the <fmt:parseDate> tag. Our strategy for
handling the date the user entered is simple: because the date comes in three sepa-
rate pieces—month, day, and year—we must combine them into a single string
before parsing them. We perform this aggregation inside the <fmt:parseDate>’s
value attribute, using three different expressions:

value="${param.month} ${param.day}, ${param.year}"

This expression causes the month parameter to be printed first, followed by a space,
then the day parameter, then a comma, a space, and, finally, the year parameter.
The result is a formatted string like "May 25, 1997" or "Aug 24, 1981". As you
might remember from chapter 10, such strings match the familiar U.S. English
locale exactly. (Remember how, in dateForm.jsp, we were careful to map each
month’s name to an abbreviated value in English? This is why.) To force JSTL to
parse this date using the U.S. English locale’s rules, rather than the browser’s cur-
rent locale or one that the application was configured to use, we set the <fmt:
parseDate> tag’s parseLocale attribute equal to "en_US". This way, the tag will
parse the date correctly and save it in the scoped variable date, which we set using
the var attribute.

 c Now, with the user’s chosen date saved in the date variable, we print out a full rep-
resentation of it using the <fmt:formatDate> tag. (See figure 11.5.) Just to prove that
we really parsed the date—and we aren’t just spitting back some text the user sent
us—we use the dateStyle="full" attribute, which causes the tag to print the date
in its entirety, including weekday. Note that the system figured out the weekday

Prints the
date back out

 c

Figure 11.5 We parsed the user’s date by printing the different form fields in
a single, easy-to-parse format. Once we’ve done that, it’s easy to treat the
date as a date—which lets us compute information like the date’s weekday,
which the user never entered manually.

Handling errors 261
automatically, based on the date; the user never entered it. This is something we get
for free when handling dates in JSTL.

 Thus, our parsing strategy was to take all of the users’ input and assemble it into
an easy-to-parse string. From there, parsing with <fmt:parseDate> was straightfor-
ward, and printing the date with <fmt:formatDate> was simple.

 Of course, we could do things with this date other than just printing it. We could
save it to a database with tags like this:

<sql:update>
 UPDATE user SET birthdate=?
 <sql:param value="${date}"/>
</sql:update>

Or we could use the date in a custom tag. Because we parsed it, it’s now a full-
fledged date variable, not simply a collection of text.

11.3 Handling errors

Just as good automobile drivers can still have accidents, well-designed JSP pages
can still run into errors or unexpected situations. Users might enter bizarre input, or
a URL from which your page imports information might be unavailable. Any pub-
lic, important page needs to take into account the possibility of errors. In some
cases, it’s enough to print a kind message to the user: “Something went wrong.
Please try again, or call 203-432-6687 for assistance.” In other cases, you might be
able to recover automatically, without bothering the user. As an example, imagine
that your page uses the <c:import> tag to fetch and display the weather in the
upper-right corner of the browser’s window. If the weather’s URL was unavailable
(perhaps as a result of a thunderstorm that brought down some power lines), you
could simply print “Online weather unavailable; go look outside”, or you could
automatically switch to a different URL. The point is, you don’t have to interrupt
the entire page for an error that affects only a small piece of it.

 When you use JSTL tags, there are basically three things you can do with errors:
� Avoid thinking about them. When you do this, any error that your page

encounters causes the page to fail to load, usually with the JSP container pro-
viding information about the error in the page’s place. This approach is great
while you’re debugging your pages, but it usually looks unprofessional to users.

� Use the <c:catch> tag to handle and even recover from errors within the
same page. Doing so gives you flexibility, but it can clutter your pages, and it
might not be appropriate if an error is meaningful and shouldn’t be discarded.

� Use a facility that JSP gives you known as an error page (often written
errorPage). A JSP errorPage is a page you can design and set up to handle

262 CHAPTER 11
Common tasks
your errors from multiple pages. The advantage of such a page is that it lets
you easily apply the same behavior to a group of pages; simply point all of
them at the same error page, and then figure out what to do in that page. It’s
an ideal place to say, “Something went wrong. Please try again.”

11.3.1 Ignoring the issue

JSP and JSTL don’t force you to think about errors. Some web applications’ JSP
pages don’t have to worry about errors, because the application could have been
deployed with error handling already set up. Just as back-end Java programmers
and application deployers can manage things like default locales, time zones, and
databases, they can also manage default error handling.

 Separately, if you’re reasonably confident that your pages won’t encounter any
unexpected errors—or if you’re happy with the look and feel of your JSP con-
tainer’s default error message—then you can forget about them and move on. (See

Figure 11.6 By default, errors in your JSP pages result in behavior that might look like this—or
different, depending on what your JSP container decides to show. The point is, you probably don’t
want your important pages to produce such errors. Unless back-end Java programmers supporting
your application have promised to take care of errors, you should catch and handle them yourself—
or use a JSP errorPage.

Handling errors 263
figure 11.6 for an example of what a container’s default error page might look
like—in this case, Jakarta Tomcat’s.)

 Note that your page immediately aborts when it encounters its first unhandled
error. That is, if line 2 of your page produces an error that you ignore, line 3 will
never be executed. Instead, the user will see your application’s default error behav-
ior immediately.

11.3.2 Catching errors with <c:catch>

On the opposite side of the spectrum from simply forgetting about all errors is
another alternative: you can sweep them all under the rug. The <c:catch> tag lets
you capture errors and either discard them entirely or record information about
them for later study. Table 11.1 shows its single attribute.

Errors that occur inside the body of a <c:catch> tag do not cause your whole page
to abort. Instead, they abort only the rest of the <c:catch> tag’s body.

 If you use <c:catch> without a var attribute, it ignores all errors that occur in its
body and lets your page continue. This approach is useful if you want to try some-
thing speculatively but don’t really care if it succeeds. For instance, remember the
database-driven hit counter from chapter 9? If the database for the counter is down,
that’s probably not an error serious enough to warrant the failure of your entire
page. And there’s no need to tell the user about the error, because they couldn’t do
much. Instead, you could wrap all of the counter’s logic in a <c:catch> … </
c:catch> tag.

 When you specify a var attribute, <c:catch> saves information about the error
in the indicated scoped variable.

 Let’s look at an example of <c:catch> in action. Recall from chapter 10 that the
<fmt:parseNumber> tag helps you read numbers that users enter into a form. In list-
ing 10.1, you saw an example of a page that parses the number a user entered; the
page reads the number, and then performs some simple arithmetic on it before
printing it out.

 Now, let’s add some error handling. Listing 11.6 shows how to make the page
from listing 10.1 more robust by allowing it to recover gracefully from bad input.

Table 11.1 <c:catch> tag attribute

Attribute Description Required Default

var Variable to expose information about the error No None

264 CHAPTER 11
Common tasks
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<p>You entered "<c:out value="${param.favorite}"/>". </p>

<c:catch var="parsingError">

 <fmt:parseNumber var="fav" value="${param.favorite}"/>

 <p>As far as I can tell, this corresponds to the
 number <c:out value="${fav}"/>.</p>

 <p>If you multiply this number by 2 and add 1, you get
 <c:out value="${fav * 2 + 1}"/>. I like that number
 better.</p>
</c:catch>

<c:if test="${not empty parsingError}">
 Sorry, this doesn’t look like a number to me.
 Perhaps you’re in the wrong country?
</c:if>

 b To add error handling to this page, we start by inserting a <c:catch> tag around it.
This tag ensures that any error that occurs won’t rise high enough to be noticed by
the JSP container. Instead, it will be captured within the page, as suggested by
figure 11.7.

 Note that if an error occurs during the <fmt:parseNumber> tag, the rest of the
<c:catch> tag’s body never executes. This behavior is appropriate: if the number
fails to parse, we don’t want to start performing arithmetic on it or printing it out.

 c The most useful thing you can usually do with a new scoped variable is to check if
it’s empty. In this case, because we used the attribute var="parsingError" in the
earlier <c:catch> tag, our scoped variable will be named parsingError. If pars-
ingError is empty, then no parsing error has occurred. Otherwise, we can be sure
that some error occurred within the <c:catch> block.

 We use this fact to make a decision in a <c:if> tag. If the parsingError variable
is not empty, then we know an error has occurred, and we print out a custom error
message. Thus, when an error occurs during the <fmt:parseNumber> tag, we dis-
play an error message and nothing else. (Remember, when <fmt:parseNumber>
runs into an error, the rest of <c:catch>’s body—including all the template text
beneath <fmt:parseNumber>—won’t execute. The page picks up right after the clos-
ing </c:catch> tag.)

 So, if we send this page a legitimate value like 500,000 for the parameter favor-
ite, this page behaves exactly like listing 10.1; we get a response similar to the one

Listing 11.6 parseNumberCarefully.jsp: parsing and error recovery

Creates a parsingError
variable for bad input

 b

Checks whether an
error occurred

 c

Handling errors 265
in figure 10.2. However, if we enter garbage like !@#$%^, we get the graceful error
message shown in figure 11.8. Without the <c:catch> tag, we’d get a less friendly
error message from the JSP container itself (like the one in figure 11.6).

Getting more information about errors
Variables created by <c:catch> have at least one useful property: message, which
contains some information that describes the error that occurred. This property is
useful if you want the user to have some sense of what went wrong. For instance,
having this information might help the user describe the error to your organiza-
tion’s help desk.

Figure 11.7 Normally, errors that occur in your JSP page are sent immediately to
the JSP container. By default, they abort your page and cause the container to
print out an error message. But the <c:catch> tag lets you capture and handle
errors. When you catch an error with <c:catch>, you can save information about
it in a scoped variable.

266 CHAPTER 11
Common tasks
To include information about the parsing error that might have occurred in listing 11.6,
for example, we could use the following tag:

<c:out value="${parseError.message}"/>

We could also just write

<c:out value="${parseError}"/>

Printing the scoped variable that stores the error itself—technically, it’s a Java
Throwable object—will include some more technical information about the error.
(By default, it will include the name of the Throwable’s Java class.)

11.3.3 Passing errors to an error page

When an error reaches the JSP container (see figure 11.7), the container will, by
default, display its own error message. However, you can change this behavior by
using a JSP error page. When your page has an error page, the user is forwarded to
this page whenever an error occurs (almost as if you had included a manual
<jsp:forward> tag in your page).

 To declare an error page, you use the <%@ page %> directive that JSP provides.
Include the following, typically at the top of your page:

<%@ page errorPage="target" %>

In this directive, target is the name of your error page—for instance, myEr-
rorPage.jsp.

 This error page is just like any other JSP page; for instance, you can use JSTL
tags within it as long as you use the correct <%@ taglib %> directives first. The only
difference is that you should begin this page with the following line:

<%@ page isErrorPage="true" %>

Figure 11.8 The <c:catch> tag lets us easily catch errors and print custom error messages
like the one shown here.

Handling errors 267
This line tells the JSP container that it can use this page as an error page.
 Note that you can use an error page and the <c:catch> tag from the same page.

The error page applies only if an error occurs but isn’t captured by a <c:catch> tag.
 Error pages are particularly useful when you want to provide a single, easily

changeable way to handle all your application’s errors. If you design an error page
that looks like the rest of your site—for instance, with the same headers, footers,
fonts, and color scheme—then your site’s error handling will look much more pro-
fessional.

Creating an error page
Listing 11.7 shows a simple error page.

<%@ page isErrorPage="true" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<h4>Error!</h4>

<p>Something bad happened in one of your pages:</p>

<p><c:out value="${pageContext.exception.message}"/></p>

Note how we use the expression ${pageContext.exception.message} to print out
information about the error that occurred. The pageContext.exception variable is
just like the scoped variable that <c:catch> stores: you can use its message property
to get information about the error that occurred, or you can print out the error
itself, which usually includes more technical information.1

 Listing 11.8 shows how to use an error page.

<%@ page errorPage="errorPage.jsp" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<fmt:parseDate value="A midsummer night"/>

If we load the page in listing 11.8, we’ll always get an error; the string "A midsummer
night" is not a valid date. Without the first line—<%@ page errorPage="error-

Page.jsp" %>—we’d get an error much like the one in figure 11.6. But with the

Listing 11.7 errorPage.jsp: a sample JSP error page

1 Note that the error message’s details can vary from one implementation of JSTL to another.

Listing 11.8 useErrorPage.jsp: a page that uses a JSP error page

Always an error

268 CHAPTER 11
Common tasks
error page, we get an error like that shown in figure 11.9. Unlike the default error
page, this error page is under our control; in this case, it displays the contents pro-
duced by listing 11.7.

11.4 Validating input

Whenever you accept information from the user, you should think about whether
you need to validate it—or check to make sure it’s sensible and correct—before
processing it.

 If you use JavaScript, you may already send pages to the browser with embed-
ded JavaScript to validate web forms. For instance, your scripting code might pop
open a window saying, “You must enter a username,” if the user clicks on your Sub-
mit button without entering a username.

 Although this client-side validation is convenient for the user, it’s often not
enough if you want to make sure your web application is secure and robust. The
user’s browser might not support JavaScript—or the user might even purposely be
trying to wreak havoc with your web application.

 Therefore, for important applications, it’s best to think of client-side validation
merely as a feature of the user interface. It’s a convenience and a good first line of
defense, but it’s nothing more than that. You should always think about validating
information on the server.

11.4.1 Different kinds of form validation

The first thing to realize about input validation is that, in a large web application, it
might not be your job. JSP pages—with or without JSTL—might not be the best
place to validate user input, especially in applications that use Struts or other frame-
works that promote division of labor and implementation. In such applications, the
job of your JSP pages might merely be to present some information and forms for
the user to fill out; the back-end plumbing takes care of the rest.

Figure 11.9
In contrast with figure 11.6,
error pages let us control what
is displayed when an error
that’s not handled by
<c:catch> occurs in a page.

Validating input 269
 JSTL 1.0 isn’t intended for complex data validation. For instance, if you want to
determine whether the user entered a reasonable phone number (based on the syn-
tax of phone numbers, rules about which area codes your application accepts, and
so on), you probably shouldn’t use JSTL to do it. Instead, you should use a Java-
Bean or other object that’s accessible as a scoped variable in your page. (If you’re
not a Java programmer, then tasks like this currently lie beyond your scope; they’ll
need to be handled by someone who writes Java.)

 However, JSTL is useful for simple kinds of validation. This includes things like:

� Making sure the user entered something in a form field (versus leaving it
blank)

� Checking to see that if one form field is filled in, another is too (or isn’t)
� Comparing a number that a user entered to a limit or range (such as “is the

user’s age above 13?”)

Not coincidentally, this is often the sort of validation that an application’s presenta-
tion tier (its front-end JSP pages) conducts.

 Handling these simple validations is straightforward; as you might expect, you
can use the expression language, <c:if>, and <c:choose>, as appropriate. For
example, consider the following tag:

<c:if test="${empty param.username}">

 You must enter a username!

</c:if>

There’s nothing complicated about this validation; we’re simply checking to see if a
form parameter is empty in order to determine whether the user entered something
for it.

 There are only two tricky aspects of input validation: precisely where in your
pages to check the user’s input, and what to do if it isn’t valid. The example in this
section shows one convenient approach for addressing these issues.

11.4.2 Tasks involved when validating a form

Because a good web application needs to make things easy for users, validating
input isn’t enough. When a user provides bad input, you need to make the user
aware of the error so that he or she can correct it. Typically, web applications
inform users of errors by printing the original form again, with some additional
error messages included. For instance, near a text box where the user was sup-
posed to enter a username, you might print, in bright red letters, “You must enter a
username!” Feedback like this is convenient for users; it tells them exactly what
they did wrong.

270 CHAPTER 11
Common tasks
Fortunately, it’s also easy to write pages that follow this pattern. Start by looking at
figure 11.10. Our goal is to present a page, and then to keep presenting that page—
over and over, if necessary—until the user gets the information right. Only then do
we let the user proceed to the next page.

 Under a model like this, the same page that produces the form also validates the
input. That is, a single JSP page contains tags to display the form, to check the input,
and to print error messages. The <form> tag in such a page directs the browser to
send the form’s data back to the same page. (You can do this by specifying an
action attribute that points to the URL for the current page, although it’s easier to
simply leave out the action attribute to the HTML <form> tag. When no action is
specified, the browser defaults to sending information to the current page.)

TIP Because a page that both displays and validates a form is complex, you
can break such pages into smaller sections and include the different pieces
with <jsp:include>. However, you might find it easier to keep every-
thing in a single file.

Before we look at a page that both prints and validates, I should point out one sub-
tlety. When you redisplay a form that has multiple fields, it’s irritating to users if the
form loses all the information they submitted. Unfortunately, this happens by
default; when a browser loads the page a second time, the HTML forms will be
empty. You’ll see how to solve this problem when we examine our sample page.

Figure 11.10
One simple process for validating
input is to display the same page
repeatedly until the user enters valid
input. The same page that produces
the form validates the input, and it
forwards the user to the next page
when the input is valid.

Validating input 271
 Note that there are other models for validating input. Instead of cycling the
same page repeatedly, you can cycle between two pages: one that displays the
form, and another that validates input. I present a single-page cycle here because it
demonstrates some JSTL features better than the alternatives.

11.4.3 A sample form validation

Listing 11.9 shows a page that displays our sample form, validation logic, and error
messages, as appropriate.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<h1>Peter's Junk-Mail Service</h1>

<c:if test="${param.submitted}">
 <c:if test="${empty param.name}" var="noName" />
 <c:if test="${empty param.email}" var="noEmail" />
 <c:if test="${empty param.age}" var="noAge" />

 <c:catch var="ageError">
 <fmt:parseNumber var="parsedAge" value="${param.age}" />
 <c:if test="${parsedAge < 13}" var="youngAge" />
 </c:catch>
 <c:if test="${not empty ageError}" var="badAge" />

 <c:if
 test="${not (noName or noEmail or noAge or badAge or youngAge)}">
 <c:set value="${param.name}" var="name" scope="request"/>
 <c:set value="${param.email}" var="email" scope="request"/>
 <c:set value="${param.age}" var="age" scope="request"/>
 <jsp:forward page="spamFormHandler.jsp" />
 </c:if>
</c:if>

<form method="post">
 <p>
 Thanks for signing up for our junk-mail service.
 Once you submit your information on the form below,
 you'll begin to receive all the "spam" you ever wanted.
 </p>

 <input type="hidden" name="submitted" value="true" />

 <p>
 Enter your name:
 <input type="text" name="name"
 value="<c:out value="${param.name}"/>" />

 <c:if test="${noName}">

Listing 11.9 formCycle.jsp: a page that prints and reprints a form until it’s satisfied

Validation
logic

 b

Forwards
to the next
page on
success

 c

If we didn't forward, then
we display the form

d

“Hidden” field sets
param automatically

e

Sets the default field
value dynamically

f

272 CHAPTER 11
Common tasks
 <small>
 Note: you must enter a name
 </small>
 </c:if>
 </p>

 <p>
 Enter your email address:
 <input type="text" name="email"
 value="<c:out value="${param.email}"/>" />

 <c:if test="${noEmail}">
 <small>
 Note: you must enter an email address
 </small>
 </c:if>
 </p>

 <p>
 Enter your age:
 <input type="text" name="age" size="3"
 value="<c:out value="${param.age}"/>" />

 <c:choose>
 <c:when test="${noAge}">
 <small>
 Note: you must enter your age
 </small>
 </c:when>
 <c:when test="${badAge}">
 <small>
 Note: I couldn't decipher the age you typed in
 </small>
 </c:when>
 <c:when test="${youngAge}">
 <small>
 Note: You're too young to receive adult
 junk mail. Please grow older and try again.
 </small>
 </c:when>
 </c:choose>
 </p>

 <input type="submit" value="Sign up" />

</form>

The page begins by looking more like a page that handles a form than a page that
displays one. This page does both, but we start with the validation logic. First, we
use a <c:if> tag to determine whether this page is (a) responding to a submitted

Prints an error message
if appropriate

g

More complicated
error-handling logic

h

Validating input 273
form or (b) displaying the form for the first time. We’ll explain later how the param-
eter named submitted gets set; for now, it’s just important to realize that it will be
set (that is, not empty) only when the page is responding to a form submission—not
when it’s being loaded for the first time.

 b Inside the <c:if> tag that causes the code to run only if it’s responding to a submit-
ted form, we validate the form’s parameters. Our overall goal is to make sure a few
things happened:

� The user entered a name.
� The user entered an email address.
� The user entered an age greater than or equal to 13.

We begin this validation by using a series of <c:if> tags that don’t have bodies;
instead, they’re designed only to set a scoped variable with the result of the check.
For instance, the tag
<c:if test="${empty param.name}" var="noName" />

sets a scoped variable named noName to true if param.name doesn’t have a mean-
ingful value; if the value is not empty, then noName will be false. Thus, noName func-
tions as an error flag: if it’s true, we’ve got a problem.

 When we check the user’s age, we do something a little trickier. The age param-
eter can have a few different problems:

� The user could have left it blank.
� The user could have entered garbage (an unparseable number).
� The age might be too low for our purposes (less than 13).

The first case—a blank age—is easy to address; we treat it like a blank name or email
address. But if the field isn’t blank, we want to parse it in order to determine what
numeric value the user entered. If the user didn’t enter a number, this parse will fail.
We use a <c:catch> tag to account for this possibility. The <c:catch var="ageEr-
ror"> tag sets the scoped variable named ageError if there was a parsing error while
checking the age. Right after the <c:catch> tag, we determine (with another <c:if>
tag) whether ageError has a value; if it does, we know that the user entered a bad
value, and we set the scoped variable badAge. If, instead, the user entered a parseable
date, then we compare it with 13 and set the youngAge flag to true if this check fails.

 c After the validations are complete, we have an immediate use for their result.
While still inside the <c:if> tag that makes sure the code runs only if it’s respond-
ing to a form (and not printing it for the first time), we use a big <c:if> check to
determine whether any error flags are set. This tag uses the following expression:
${not (noName or noEmail or noAge or badAge or youngAge)}

274 CHAPTER 11
Common tasks
If this expression succeeds, we know the input is valid, so we <jsp:forward> to a
new page. Before we forward, however, we do something interesting: we set a few
request-scoped attributes. When we use <jsp:forward> to forward to a new page,
that page will have access to our request parameters; it could say, for instance,
${param.name}, and retrieve the name parameter the user entered. The problem
with this approach, however, is that it gives the user a way to avoid validation. If we
let the next page rely on request parameters, it would have to redo the validations
to ensure its input makes sense. If the new page didn’t check its input, then our
checks would become meaningless; the user could contact the next page directly
and send bad data. To get around this problem, we manually set the request-scoped
variables that we know the next page will need. Request-scoped variables are never
directly under the user’s control, which makes this mechanism more secure and
robust than simple request parameters.

 This target page can do whatever it wants with the values. We don’t show a sample
target page here, although chapter 12 discusses typical things such a target page might
do. For instance, if this were really a user-registration application, the page spamForm-
Handler.jsp would probably store the user’s name and email address in a database.

 d If we’ve come as far as the <form> tag without forwarding to a new page, then we
know that one of two things is true: either this is the first time we’re printing the
form, or the form has errors. Either way, we must print the <form> and give the
user a chance (perhaps another chance) to enter correct information. We can use the
error flags to determine whether to display error messages as appropriate. We can
also use param.submitted to differentiate between the first and subsequent requests
to this page, just as we did earlier in the page. Doing so might be useful if we
wanted to print a special message the first time the form loads, but not subsequent
times. However, we don’t bother with such details in this example.

 e Earlier, I promised I’d explain how the parameter submitted is set. Recall that this
parameter will be equal to true if we’re responding to a form (instead of printing it
the first time); otherwise, it won’t be set. We create this distinction by making sure
that every time the form is submitted, it sets a parameter named submitted. Of
course, we can’t rely on users to do this themselves, so we use a special type of
HTML form field: <input type="hidden">. Hidden fields, true to their name, don’t
show up graphically in the form; the user never sees them. But behind the scenes,
they force a parameter to be set with a particular value. We could achieve some-
thing similar by adding a name attribute to our <input type="submit"> button; but
hidden fields are more flexible, and I wanted to demonstrate one here.

 f In section 11.4.2, I mentioned that we’d need to make sure we supplied the user’s old
values to a reprinted form. If we don’t do so, then the form will be cleared each time

Validating input 275
we represent it, and the user will need to reenter information. Users hate doing this, so
we don’t want to make them. Instead, we can force each form field to take a default
value. The nature of the default value is simple: it’s the parameter the user just entered.

 For <input type="text"> fields, as well as <input type="password">, we can
use the value attribute to seed a value into the form. That’s what we do in this listing:
<input type="text" name="name"

This code sets the value field in the new form to the value of the name parameter in
the old form.

 For other types of input fields—selection boxes, radio buttons, and check
boxes—it’s trickier to add default values, but doing so is still more-or-less straight-
forward. For a <select> box, you can’t simply specify a value attribute for the
default value. Instead, you must add the attribute selected="selected" to the cor-
rect <option> tag. You can do so by comparing a parameter value with the value of
the <option> tag you’re about to print. For example:
<select name="milk">

 <option value="lowfat"

 >Low fat</option>
 <option value="skim"

 >Skim milk</option>

</select>

The selected="selected" attribute will print only for the correct value.
 Radio buttons and check boxes work the same way, but instead of adding the

attribute selected="selected", you add the attribute checked="checked". For
<textarea> fields, simply insert your desired default value into the body of the
<textarea>:

TIP Note how I’ve avoided putting <c:out> on a new line within <textar-
ea>, or otherwise using extra white space. It’s good to be careful about do-
ing this, because even the white space inside <textarea> is included in
the text area’s default value. The white space (and line break) within the
<c:out> tag—before the value attribute—doesn’t matter.

value="<c:out value="${param.name}"/>" />

<c:if test="${param.milk == ’lowfat’}">
selected="selected"

</c:if>

<c:if test="${param.milk == ’skim’}">
selected="selected"

</c:if>

<textarea name="prose"><c:out
value="${param.prose}"/></textarea>

276 CHAPTER 11
Common tasks
 g At appropriate places in the form, we can use the error flags we created earlier to
print out error messages. Remember, these error flags can’t be set unless we’re re-
printing a form; this behavior is appropriate, because we wouldn’t want to accuse
users of crimes they didn’t commit.

 h We can also use <c:choose>, just as easily as <c:if>, as a way to make decisions
about what error message to print. For instance, in the case of bad ages, we want to
choose the most appropriate message to print. Our logic earlier in the page doesn’t
ensure that only one error flag related to age will be set; instead, we use <c:choose>
to make sure that only one error based on these flags will print.

 That’s it. It’s a big page, but overall, it works cleanly. The first time it’s loaded, it
displays the form shown in figure 11.11.

 Now, suppose I enter bad input to this page. Let’s say I enter a valid name, but I
leave out the email address entirely, and I enter the age 6. I’ll end up with the form
shown in figure 11.12. It’s the same form, but it includes error messages. Note also
that it includes all the information I entered earlier, saving me the trouble of having
to type it again.

 Finally, and only when the information is correct, we reach the target page—
which, as I mentioned before, could save our information in a database. We don’t
show such a page; we’ll go over thorough examples of pages that use databases in
chapters 12 and 13.

Figure 11.11
The first time our sample
page from listing 11.9
loads, it displays a regular
HTML form.

Summary 277
11.5 Summary

In this chapter, we discussed a few demonstrations of JSTL in action. Take the fol-
lowing pointers from these examples:

� Because checkbox parameters and cookies come in lists, you often need to
loop over them with <c:forEach>. You can find checkbox parameters with
the expression ${paramValues.name}, where name is the name of the parame-
ter you’re looking for.

� If you need to let the user enter dates, you can use multiple expressions in the
same attribute value to assemble different request parameters (different form
fields) into a date that’s parseable by <fmt:parseDate>.

� The <c:catch> tag lets you handle errors within your page.
� JSP’s errorPage mechanism helps you control errors that aren’t handled in

your page.
� You can use <c:if> tags, <c:choose> tags, and the expression language to

validate form input. One common strategy for validating input is to present a
page that cycles (see figure 11.10) until it receives correct input. Listing 11.9
shows an example of such a page.

Figure 11.12
When the page from listing
11.9 is fed invalid input, it
reprints its form with
appropriate error messages
interspersed. It also
explicitly fills in the form
with the values the user
entered, making it easier for
the user to correct them.

278 CHAPTER 11
Common tasks
� If a user filled out a form incorrectly and you decide to redisplay it, it’s
important to seed that form with the values the user previously entered; oth-
erwise, the user will have to retype the entire form. The process for setting
default values varies for each HTML form element, but it’s generally easy to
do with either a <c:out> or <c:if> tag. See f in listing 11.9.

12Dynamic features
for web sites
This chapter covers…
� Writing an online survey application
� Building a discussion forum
� Setting up sample applications’ databases
� Practical tips and tricks
279

280 CHAPTER 12
Dynamic features for web sites
Now that we’ve looked at a few individual, isolated tasks, we’re ready to plunge
into more complicated applications. This chapter presents two applications. The
first, an online survey program, lets you add surveys, votes, and polls to your pages.
The second, a message-board system, lets you insert discussion forums and guest
books into your web site.

 These applications have a lot in common. They both use databases, and they’re
both self-configuring. That is, they don’t require any setup or ongoing maintenance,
other than a few database tables that must be created before the applications can
run. The applications are thus simpler and more interesting than they'd be if they
included unnecessary baggage.

 If you’re like many programmers and learn by example, this chapter is defi-
nitely for you.

NOTE The applications in this chapter assume that your application has a default
database set up. If this is not the case, you’ll need to use the <sql:set-
DataSource> tag to set up a default database. See chapter 9 for more in-
formation on using the <sql:setDataSource> tag. If you don’t already
have a database you can experiment with, my instructions for installing
the hsqldb database, available from Manning Publication’s web site, might
be useful. See appendix D for the instructions’ URL.

12.1 An online survey

You’ve surely run across an online survey during your web travels. Personally, I
don’t like these polls. They’re often tedious, presenting unimaginative questions
and a handful of uninspired choices (and to top it off, they’re haphazard and non-
scientific, so their results don’t tell me much).

 Still, lots of web sites like them, and I can see why. Adding a survey to web site is
a good way to help build that site’s sense of community. To many users, a site feels
more dynamic and responsive if it lets people give quick feedback; it gives them a
chance to express an opinion and see a sample of what other people are thinking.

 An online survey isn’t difficult to write, but it involves a number of pieces. If
you’re going to write a survey, you need to store results, tabulate them, and print
them out. Fortunately, JSTL gives you all the tools you need. You can use JSTL’s
database tags to store and retrieve information; you can apply the formatting tags to
help print out results.

An online survey 281
12.1.1 What our survey looks like

Let’s start by looking at what our completed project looks like. Figure 12.1 shows a
page that might be part of a newspaper’s web site. Most of the page displays a news
article, but on the right side, we include a box with a survey question. In figure 12.1’s
case, the question has three possible answers: Yes, No, and Not sure.

 When the user clicks one of the buttons to answer the survey’s question, a new
window pops up. This window looks like figure 12.2. It presents some detailed
information about the survey’s results and a graph of these results. Of course, in a
real application, you probably wouldn’t need to display detailed information; the
graph alone might be enough. Later in this section, we’ll explain how to customize
the survey’s output. For now, I wanted to show what our survey application will be
capable of.

12.1.2 Setting up the survey database

Our survey results will be stored in a database. We’ll save and retrieve users’
responses with the <sql:update> and <sql:query> tags. Whenever you work with
a database, a key question is, “What do the database’s tables look like?” For our sur-
vey application, we need only a single table; let’s call it survey_results.

Figure 12.1 A hypothetical newspaper web site that asks a survey question. The user can respond
by clicking one of the buttons.

282 CHAPTER 12
Dynamic features for web sites
The survey_results table has two columns (see table 12.1).

The first column in this table, survey_id, contains a number that identifies an indi-
vidual survey question. For instance, survey 2 could be, “Which of your internal
organs do you find most appealing?” and survey 3 could be, “Are you a Democrat
or a Republican?” The questions don’t need to have anything to do with each other;
all questions that your site uses can live side-by-side in the survey_results table.

 Every row in this table stores an individual user’s choice. For instance, if a user
submits the value pancreas for survey 2, we add a row that looks like (2, ‘pan-
creas’). The next user might vote for the choice liver, which would lead us to
create a new row: (2, ‘liver’). The table thus allows duplicate rows, which are
fine in a relational database.

TIP We could have structured this table differently. Instead of storing one row
for each response, survey_results could contain one row for each dif-
ferent choice and could keep a counter that is incremented, much like the
counter we used in chapter 9. I decided to use the approach outlined in ta-
ble 12.1 for two reasons:

Table 12.1 Our survey application’s database table (survey_results) has two columns: one that
identifies the survey and another that stores the choices users make.

Column name Type Purpose

survey_id INTEGER Stores a number that distinguishes each survey
question from the others

choice VARCHAR(30) Contains an individual user’s choice for the
corresponding survey_id

Figure 12.2
Our survey can respond by
printing detailed
information about the
user’s choices, or even a
graph of the results.

An online survey 283
� It’s more general. If you wanted to add a column that records the user’s
name or the date the user’s choice was made, you could do that. This
way, the survey application could easily become a vote-tallying applica-
tion that prevents users from voting twice. Or, you could add logging
and error recovery more easily.

� It demonstrates a way of thinking about databases that many people
neglect. Your first instinct might have been to use a count, but as you’ll
see later in this section, the approach we use here shows a few aspects of
databases that you’d otherwise miss.

Our approach has two drawbacks. First, it wastes space in the database,
but this isn’t a big deal. Perhaps slightly more important, the database
doesn’t know the potential choices for a survey question until each choice
is picked at least once. This behavior might give the first few users of the
survey confusing results. (The results won’t be incorrect; they’ll just leave
out choices that haven’t yet been chosen.)

To make things concrete, here’s what the table could look like after a few votes:

For survey 2, the results would tally as follows: 2 liver, 3 pancreas. For survey 3, the
results would be 2 Democrat, 1 independent, 1 Republican.

 To keep this example simple, we need to keep track of our survey questions
manually. For instance, nothing in the database stores the fact that survey 2 con-
cerns body parts or survey 3 concerns political affiliation. We must remember that
ourselves; we’ll need to use the correct number when we add survey questions to
our web pages. (You’ll see how to do this in section 12.1.3.) Furthermore, nothing in

survey_id Choice

2 liver

2 pancreas

2 pancreas

2 liver

2 pancreas

3 Democrat

3 Democrat

3 independent

3 Republican

284 CHAPTER 12
Dynamic features for web sites
this database checks to make sure entries are valid. Nothing prevents a user’s voting
twice (or 100 times), and nothing checks to ensure that the user isn’t trying to sub-
mit an unacceptable choice to the survey. We could add checks to help, but doing
so would divert our attention from more fun matters. So, if you decide that you
need more error checking, I leave it as an exercise for you. (Chapter 11 discussed
validating input and handling errors.)

 With this survey application, multiple surveys can easily be active at once. You
can use the survey_results table to manage and differentiate between a virtually
unlimited number of surveys behind the scenes.

Creating the survey_results table
To create the survey_results table, we can use the following SQL statement:

create table survey_results (
 survey_id integer,
 choice varchar(30)
)

You need to type this command in your database’s command-line interface. The
procedure differs widely among databases, so consult your database’s documenta-
tion or administrator. (For the hsqldb database, see my instructions at the Manning
web site; the URL is listed in appendix D.)

12.1.3 Adding survey questions to pages

Before users can respond to survey questions, we need to add the questions to
our pages. In figure 12.1, we inserted a question inside a table cell on the right
side of the screen. To ask the question and give the user a way to respond, here’s
what we added:

The United States has an Attorney General,
a Surgeon General, and a Postmaster General.
Should it also have a Programmer General?

<form method="post" action="survey.jsp" target="_blank">
 <input type="hidden" name="surveyId" value="7" />
 <input type="submit" name="choice" value="Yes" />
 <input type="submit" name="choice" value="No" />
 <input type="submit" name="choice" value="Not sure" />
</form>

The rest of the page is simple, static HTML containing a sample news article. The
only interesting part is the <form> tag. This tag uses a few tricks to enable the look
and feel we desire.

 We include the surveyId for the survey we’re asking as a hidden field in the
HTML form. As I mentioned earlier in this chapter, nothing manages these num-

An online survey 285
bers for us. Instead, we must pick a number that hasn’t been used before every time
we write a new survey question. For this question, I picked the number 7 and
included the following hidden field:

<input type="hidden" name="surveyId" value="7" />

To give the user particular choices, we use different <input type="submit"> but-
tons. Because each of these buttons has a name attribute, clicking one of them will
cause the browser to send a request parameter to the page it loads. For instance, if
you click on the first button, then ${param.choice} in the target page will equal
Yes. If you click on the second button instead, the same parameter will be set to No.
Either way, the same page will be loaded; the only difference in the three buttons is
the value of ${param.choice} in the target page.

 This target page in the example <form> you just saw is called survey.jsp. Note
that the HTML <form> tag has an extra attribute you haven’t seen before: tar-
get="_blank". It tells the browser to open the form’s response in a new window
instead of navigating to it in the current window. Therefore, when the user clicks on
one of the three <input type="submit"> buttons, the browser will load survey.jsp
in a new window.

12.1.4 How the survey works

The survey.jsp page contains the core survey logic. This page accepts the user’s sur-
vey choice and prints out the survey’s results. It needs two parameters: surveyId
and choice. In section 12.1.3, you saw how to write a form that sends these param-
eters. The first, surveyId, contains the number for a survey. The survey.jsp page,
just like the database, can handle multiple, active surveys at once; it needs a sur-
veyId number to figure out two things:

� How to record the user’s response
� Which survey results to display

The choice parameter contains the user’s choice. For instance, if you use the form
from section 12.1.3, the choice parameter will equal Yes, No, or Not sure.

 With this in mind, let’s finally look at how the survey works. Listing 12.1 shows
the survey.jsp page.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<c:choose>

Listing 12.1 survey.jsp: stores new survey votes and prints results

286 CHAPTER 12
Dynamic features for web sites
 <c:when test="${empty param.surveyId or empty param.choice}">

 Error: survey.jsp called incorrectly!

 </c:when>
 <c:otherwise>

 <sql:update>
 insert into survey_results(survey_id, choice)
 values(?, ?)
 <sql:param value="${param.surveyId}" />
 <sql:param value="${param.choice}" />
 </sql:update>

 <sql:query var="result">
 select choice, count(choice) from survey_results
 where survey_id = ?
 group by choice
 <sql:param value="${param.surveyId}" />
 </sql:query>

 <c:set var="total" value="0"/>
 <c:forEach items="${result.rowsByIndex}" var="row">
 <c:set var="total" value="${total + row[1]}"/>
 </c:forEach>

 Total votes: <c:out value="${total}"/>

 <c:forEach items="${result.rowsByIndex}" var="row">
 <c:out value="${row[0]}"/> has
 <c:out value="${row[1]}"/> votes
 (<fmt:formatNumber type="percent"
 value="${row[1] / total}"/>)

 </c:forEach>

 <hr />

 <c:forEach items="${result.rowsByIndex}"
 var="row" varStatus="s">
 <c:if test="${s.first}">
 <table>
 </c:if>

 <tr>
 <td><c:out value="${row[0]}"/></td>
 <td>
 <table>
 <tr>
 <td bgcolor="blue">
 <c:forEach
 begin="1"
 end="${row[1] * 100 / total}"> </c:forEach>
 </td>

Checks for
bad input

 b

Saves the
user’s vote

 c

Retrieves
survey data

 d

Computes the total
number of votes

 e

Prints technical
vote data

 f

Prints graphs
for vote data

 g

An online survey 287
 </tr>
 </table>
 </td>
 </tr>

 <c:if test="${s.last}">
 </table>
 </c:if>
 </c:forEach>

 </c:otherwise>
</c:choose>

b The survey.jsp page starts with an error check. If we don’t receive the two parameters
we need (surveyId and choice), then we don’t bother going on. We put the error mes-
sage in a <c:when> block and the rest of the page in <c:otherwise>. Thus, the page
won’t try to update or access the database unless it’s given the necessary parameters.

c The first <sql:update> tag saves the user’s vote in the database. Note that this tag—
and all the database tags in survey.jsp—doesn’t use a dataSource attribute. As I
mentioned at the beginning of this chapter, I assume the page runs in an environ-
ment where the default database has been set up correctly. If this is not the case,
you’ll need to add a dataSource attribute to every <sql:query> and <sql:update>
tag in the page. For information on how to do this properly, see chapter 9.

 The SQL command that we use to save the user’s choice is simple. Remember
that the survey_results table is supposed to have a row for every individual sur-
vey response. Thus, all we need to do is add a row for the current user’s vote. To do
this, we use the base query

insert into survey_results(survey_id, choice)
 values(?, ?)

and send it our two parameters using <sql:param> tags.
d Now, after saving the new result, we want to retrieve all results for the requested

survey. We do this with an <sql:query> tag that contains an <sql:param> tag to
pass the survey_id number we’re interested in. We use a bit of advanced SQL here,
so let’s go over it carefully.

 Our SQL query retrieves two things from the survey_results table. It begins
as follows:

select choice, count(choice) from survey_results
 where survey_id = ?

The first thing we’re selecting—choice—is simple; it’s the value of a column. It’s
clear that we’re only interested in rows that have a particular survey_id.

288 CHAPTER 12
Dynamic features for web sites
 But count(choice) is a little trickier. We want to get a count for each choice that
exists for the current survey. To do so, we need to add the phrase group by choice
to the SQL statement; it tells the database that we’re interested in organizing the
results by choice. Consider the following potential rows for survey_id=7:

For these values, our SQL statement, which contains the group by choice clause,
will produce the following results:

This is the virtual table we store using the <sql:query> tag’s var attribute. In this
case, we save a copy of this virtual table into a scoped variable called result.

e When we iterate over this table, we can retrieve the value of a choice with
${row[0]} and the counter for that choice with ${row[1]}. As an example of using
these kinds of expressions, and because the computation will help us compute per-
centages later, we use a <c:forEach> loop to tally the total number of votes cast for
the survey (among all the various choices). For instance, in the virtual table we just
looked at, the total number of votes cast is 9.

 To perform this calculation, we start by setting the scoped variable total to 0.
Then, for each line of the table, we run the following tag:

<c:set var="total" value="${total + row[1]}"/>

survey_id choice

7 Yes

7 No

7 Not sure

7 Not sure

7 Yes

7 Not sure

7 Yes

7 Not sure

7 Not sure

choice count(choice)

Yes 3

No 1

Not sure 5

An online survey 289
It adds each count to the running total and, finally, leaves us with a complete count.
For our sample table, we start with 0 and add 3 (the count for Yes). We then save
this result in the total variable and loop again. The next time, we add 1 to 3, yield-
ing 4. Finally we add 5 to 4, yielding the grand total, 9. At the end of the <c:forEach>
loop, the total variable holds the final tally.

f To print the numeric voting data that we first presented in figure 12.2, we use
another <c:forEach> loop. As I mentioned, we can access the choice’s value with
${row[0]} and its count with ${row[1]}. Instead of tallying numbers internally, the
second <c:forEach> loop prints out data for the user based on this information.
First, we print the raw information; without the formatting tags, this is just

<c:out value="${row[0]}"/> has <c:out value="${row[1]}"/> votes

For instance, it could print text like this:

Yes has 3 votes

After printing this raw information, we print some calculated information. Percent-
ages are a useful way to represent parts of a whole. For instance, 3 out of 9 total
votes is about 33%. We supply a simple calculation, and the <fmt:formatNumber>
tag takes care of printing the number appropriately:

<fmt:formatNumber type="percent" value="${row[1] / total}"/>

The expression ${row[1] / total} represents the piece of the pie (so to speak)
that’s occupied by the current row. That is, row[1] represents the current row’s
count, and total—which results the first <c:forEach> loop—stores the total num-
ber of votes. The <fmt:formatNumber> tag takes care of rounding, localizing, and
formatting the number so that it looks suitable for the user.

g Finally, to display a graph for the voting data, we get creative. Consider the follow-
ing <c:forEach> loop:

<c:forEach begin="1"

 end="${row[1] * 100 / total}"> </c:forEach>

This loop doesn’t print out new and interesting values each time it runs. Its only
goal is to print out the text , which represents a nonbreaking space character
in HTML. (For our purposes, a non-breaking space is a space character the
browser can’t easily ignore.) This loop is only dynamic in that it decides how
many times to print out depending on the value of its end attribute. In this
case, we print a number of spaces proportional to the percentage of votes that the
current row received.

290 CHAPTER 12
Dynamic features for web sites
 Because we’ve included this loop in a table cell with a specific background
color—<td bgcolor="blue">—the number of spaces that we print leads to a wider
or narrower column inside the table cell.1

 Thus, we get a virtual bar graph—with almost no work, and certainly with no
special graphics. We produce the bar graph from figure 12.2 just by printing the
appropriate number of spaces for each survey result.

 Although this technique is something of a dirty trick, it’s remarkably flexible.
Suppose we wanted to overlay percentages and numbers on the bar graph. We
could do so simply by inserting some new tags into the inner <table>, as follows:
<table>
 <tr>
 <td bgcolor="blue">
 <c:forEach
 begin="1"
 end="${row[1] * 100 / total}"> </c:forEach>

 </td>
 </tr>
</table>

Adding this <fmt:formatNumber> tag produces the output shown in figure 12.3.

1 If you’re an HTML guru, you might have noticed that we need to use a <table> within a <ta-
ble> to achieve our custom spacing; this is one way to indicate to the browser not to line up all
of the outer table’s columns. I mention this fact but don’t dwell on it, because this isn’t a book
about HTML tricks. Nonetheless, this is one HTML trick that I don’t mind including; it’s both
useful and cute.

<fmt:formatNumber type="percent"
value="${row[1] / total}"/>

Figure 12.3 It’s easy to modify the display of the bar graph by
adding tags. For instance, we can overlay percentages on the bar
graph we produce. The bar graph is printed with a <c:forEach>
tag that outputs a dynamic number of spacing ()
characters. This is something of a dirty HTML trick, but it’s cute
enough to merit the example.

A message board 291
 Of course, nothing requires you to use HTML kludges to display graphs of data.
You can use a calculation similar to that in the <c:forEach> tag’s end attribute—
${row[1] * 100 / total}—inside a height or width attribute for an HTML image
tag. For instance:

<img src="blue.jpg" height="5"

This tag will dynamically size an image based on a calculation whose result
we output to the page.

NOTE Remember that for non-JSTL tags, you can’t simply include an expression
in an attribute; you need to use a <c:out> tag to print dynamic data. JSP
1.3 may alter this requirement, but it is still necessary in all earlier versions
of JSP. For instance, under JSP 1.2, you can’t write

<img src="blue.jpg" height="5"

Of course, the look and feel of your own survey.jsp page is up to you. You could
add your site’s regular header and footer to the page, along with navigational links,
advertisements, or other information.

12.2 A message board

Another web-site feature that helps build communities is a message board, guest
book, or other similar facility to let users read and post messages. A messaging sys-
tem is typically divided into forums, or message boards, that group related mes-
sages. For instance, if you’re creating a site for a news organization, you might have
a different message board for every article. If you sell software, you might have a
message board for each of your company’s products.

 In this section, we’ll create a simple messaging system. There’s no end to how
such a system could grow; you could support threaded messages, searches, admin-
istrative tools, and so on. Here, we’ll just show the basic framework for such a sys-
tem; thus this section’s pages might be more appropriate as a guest book than a
message forum.

12.2.1 What our message board looks like

Our message board will be designed so that it’s easy to link to from any of your
pages. In figure 12.4, you see a link that tells users they can discuss a news article.
When users click this link, a new window for the appropriate message board pops

width="<c:out value="${row[1] * 100 / total}"/>"/>

width="${row[1] * 100 / total}"/>

292 CHAPTER 12
Dynamic features for web sites
up. If this board doesn’t have any messages yet, then users are invited to be the first
to post a message (figure 12.5). Otherwise, users see prior messages and can add to
the discussion (figure 12.6).

Figure 12.4 It’s easy to add support for our message board to any web page. Simply add a link
where it’s appropriate. You’ll see what form this URL takes in section 12.2.3.

Figure 12.5
Users who ask for an
empty forum are told
that they can be the
first user to post a
message in the forum.

A message board 293
12.2.2 Setting up the message database

Just as with the survey system we built in section 12.1, our message-board applica-
tion uses a single database table. We call this table messages. You can create it using
the following SQL command:

create table messages (
 message_board integer,
 sent_date timestamp,
 author varchar(30),
 subject varchar(30),
 body varchar(255)
)

Table 12.2 shows more information about the database table that this command creates.
 The 30-character limits on the length of the author’s name and the message’s

subject are probably reasonable, but the 255-character limit on the length of the
body is somewhat limiting. I haven’t used a different type to store message bodies
because the database types that allow longer limits are woefully variable among dif-
ferent databases. In Oracle, you might use the LONG type; in PostgreSQL, it’s TEXT;
and in hsqldb, it’s LONGVARCHAR. Although details like this are important for real-

Figure 12.6
When a forum contains
messages, users see
those messages and can
add to the discussion
using a simple HTML form.

294 CHAPTER 12
Dynamic features for web sites
world applications, they’re beyond the scope of this book. Fortunately, limiting
message bodies to 255 characters will still let us write and test our message board.

 To help you see what the message table stores, here’s a sample set of rows that
the table could store. These rows represent a hypothetical discussion between two
users over the course of a day or two:

This table only shows rows for a particular message board (board number 4), but
the messages table can simultaneously manage multiple message boards. In this
way, it’s similar to the survey_results table from section 12.1, which could store
results for many surveys at once.

12.2.3 Linking to appropriate message boards

As with our survey application from section 12.1, you don’t need to do anything to
create a message board; you just need to decide on a number and begin using it.
This number might come from another source; for instance, you might use product
numbers for a message board about products, or article numbers for a message
board about articles—assuming you have separate databases that store products or
articles. Alternatively, you could simply manage the numbers yourself, manually.

Table 12.2 Our message-board application’s database table (messages) stores one row for every
message. Each row contains the author, subject, and body of the message, as well as the date
posted and a number that identifies the message board to which the message has been posted.

Column name Type Purpose

message_board INTEGER Indicates what message board the message is part of

sent_date TIMESTAMP Records when the message was posted

author VARCHAR(30) Records the name of the user who posted the message

subject VARCHAR(30) Contains the subject of the message

body VARCHAR(255) Contains the body of the message

message_board sent_date author subject body

4 2002-08-21
20:43:30.0

Bob Jones What a dumb product! Why would I need a
telephone cleaner?

4 2002-08-21
20:49:32.0

Customer Sup-
port

The product fills a
niche.

Some people have dirty
telephones.

4 2002-08-22
09:10:02.0

Bob Jones Oh, I see. Thanks.

A message board 295
 Once you’ve settled on a number for a board, it’s easy to provide a link to it, like
the one in figure 12.4. We can use the <c:url> tag from chapter 5, but suppose we
need to create a link from a static HTML page. In that case, we can create a normal,
static HTML hyperlink:

 Discuss this article!

The only interesting thing about this hyperlink is the highlighted part—the section
that begins with ?. As you first saw in chapter 5, you can add a ? to a URL to send it
request parameters manually. If you add

?length=30&width=5&height=2

to a URL that points to a JSP page, then when the page loads, it will have a length
parameter equal to 30, a width parameter of 5, and a height parameter of 2. For
example, the expression ${param.length * param.width * param.height} would
equal 300.

 In this case, we want to set the messageBoard parameter to the number for the
message board to which we want to create a link.

 Note how we use the target="_blank" attribute for the <a> tag that we used for
<form> in section 12.1. This attribute causes the message board to open in a new
window instead of using the current window. Of course, you don’t have to use this
attribute; but in many cases, it’s convenient if a message board opens in a new
browser window instead of interrupting the rest of your application. If you don’t
plan to open separate windows, you need to add navigational information to the
viewMessage.jsp page that we’ll look at in the following section; popping up a new
window lets you avoid spending too much time on customizing the navigation in
the message-board window.

12.2.4 How the message board works

Figure 12.7 shows the flow of our message-board application. Individual pages link
to the viewMessages.jsp page. These pages use the messageBoard parameter to tell
viewMessages.jsp what board to use. The viewMessages.jsp page displays the
appropriate board’s messages, and it includes an HTML form that points to post-
Message.jsp, which adds a message to the database and then forwards back to view-
Messages.jsp.

 Let’s begin by looking at viewMessages.jsp in listing 12.2.

296 CHAPTER 12
Dynamic features for web sites
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<c:choose>

 <c:when test="${empty param.messageBoard}">

 Error: viewMessages.jsp called incorrectly!

 </c:when>
 <c:otherwise>

 <sql:query var="result">
 select * from messages

 where message_board = ?
 order by sent_date
 <sql:param value="${param.messageBoard}" />
 </sql:query>

Listing 12.2 viewMessages.jsp: a page that displays messages from a message
board

Figure 12.7 The flow of our message-board application. Users start at outside pages,
which link to viewMessages.jsp, passing in a messageBoard parameter. This page
shows users the requested board’s messages and lets the user post a message by
submitting a form to postMessage.jsp. After it posts a message, postMessage.jsp
forwards the user to viewMessages.jsp.

Retrieves the
board’s messages

 b

A message board 297
 <c:choose>

 <c:when test="${result.rowCount == 0}">

 <p>

 Currently, there are no messages in this message board.

 Be the first to post a message by filling in the form

 below!

 </p>

 </c:when>

 <c:otherwise>

 <c:forEach items="${result.rows}" var="row">

 <p>

 From: <c:out value="${row.AUTHOR}" />

 Date: <c:out value="${row.SENT_DATE}" />

 Subject: <c:out value="${row.SUBJECT}" />

 <blockquote>

 <tt><c:out value="${row.BODY}" /></tt>

 </blockquote>

 <hr />

 </c:forEach>

 </c:otherwise>

 </c:choose>

 <form method="post" action="postMessage.jsp">

 <p>

 New message

 Name: <input type="text" name="name" />

 Subject: <input type="text" name="subject" />

 <textarea cols="30" rows="5" name="body"></textarea>

 <input type="hidden" name="messageBoard"

 value="<c:out value="${param.messageBoard}" />" />

 <input type="submit" value="Post!" />

 </p>

 </form>

 </c:otherwise>

</c:choose>

b After confirming our parameters using a technique that should look familiar by
now, we perform a simple SQL query against our database, finding all messages
associated with our messageBoard parameter. We use the SQL clause SELECT *,
which retrieves all columns from the database. Unlike in the survey application
from section 12.1, we’ll refer to each row’s columns by name (for instance ${row.name})
instead of by number (as in ${row[1]}).

 Note that the SQL query controls the order in which messages display. In
listing 12.2, the messages will be displayed in chronological order, starting with the

Checks whether the board
has any messages

 c

Prints each
message

 d

Lets a user enter
a new message

 e

Passes the
current board
number

 f

298 CHAPTER 12
Dynamic features for web sites
oldest. If you wanted to reverse the order, you could change the final line in the
SQL query to

The SQL keyword desc stands for descending and reverses the natural ordering of a
column.

c We want to print a special message for the user if the forum doesn’t yet contain any
messages for the supplied messageBoard parameter. We determine this condition by
checking to see if the rowCount property of <sql:query>’s result is 0. The rowCount
property contains the number of messages in the forum.

d Within a <c:forEach> loop, we print each message’s name, date, subject, and body.
(The example uses column names, not numbers, as promised.) The date is printed as
a string whose precise format depends on the database we’re using. We could format
the date cleanly using <fmt:parseDate> and <fmt:formatDate>, but I’ve left that
step out for simplicity—and because I don’t know what database you’ll be using.

e At the bottom of the page, we print a straightforward HTML form that points to our
other page, postMessage.jsp. (See figure 12.7.)

f This form is fairly run-of-the-mill, except for one technique it demonstrates. When
the postMessage.jsp page posts a message, it needs to know what message board to
use. More specifically, it expects a messageBoard parameter just like viewMes-
sages.jsp does. Because the goal of our form is always to let the user post a message
into the current forum, we simply pass our forum’s number to the next page using
an <input type="hidden"> form field. We do so by printing out the value of
${param.messageBoard} into the value attribute for this form field.

Posting messages
The page that posts messages, postMessage.jsp, is about as simple as viewMes-
sages.jsp. For its place in our message-board system, see figure 12.7. This page’s job
is simple: it accepts a message to be posted (as described by its request parameters),
saves the message in the database, and then forwards the user to viewMessages.jsp.
Listing 12.3 shows this page.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<c:choose>
 <c:when test="${empty param.messageBoard or
 empty param.name or

order by sent_date desc

Listing 12.3 postMessage.jsp: a page that posts messages to a message board

A message board 299
 empty param.subject or

 empty param.body}">

 |#1

 Error: you need to enter a name and subject. Please

 go back and try again.

 </c:when>

 <c:otherwise>

 <jsp:useBean id="currentDate"

 class="java.util.Date"/>

 <sql:update>

 insert into

 messages(message_board, sent_date, author, subject, body)

 values(?, ?, ?, ?, ?)

 <sql:param value="${param.messageBoard}"/>

 <sql:dateParam value="${currentDate}"/>

 <sql:param value="${param.name}"/>

 <sql:param value="${param.subject}"/>

 <sql:param value="${param.body}"/>

 </sql:update>

 <jsp:forward page="viewMessages.jsp" />

 </c:otherwise>

</c:choose>

b The postMessage.jsp page begins with a simple and convenient validation from our
perspective but a somewhat brusque and inconvenient one from the user’s. To the
application flow from figure 12.7, we could add the extra cycle shown in
figure 12.8; we already demonstrated this technique in chapter 11, so we don’t need
to do so again here.

Simple, brusque
validation

 b

Records the
current date

 c

Sends the current
date to the database

 d

Forwards to the
first page

 e

Figure 12.8
The postMessage.jsp page from
listing 12.3 validates its input, but it
displays only a crude validation
message; essentially, it says,
“Something’s wrong; go fix it,” instead
of helping the user to do so. As an
exercise, you could apply chapter 11’s
form-validation technique to this
page, which would cause it to cycle
until its input is successful.

300 CHAPTER 12
Dynamic features for web sites
c Recall from chapter 10 that we can use the <jsp:useBean> tag to record the current
date in a scoped variable. Because we want to store the date that the user posted a
message, we use this feature of <jsp:useBean> and save a scoped variable called
currentDate.

d We send this saved date to the database using a subsequent <sql:dateParam> tag.
e Once our <sql:update> has completed, we return the user to the viewMessages.jsp

page. Thus, users get to see their new messages immediately, among the other mes-
sages in the forum. As always, the viewMessages.jsp page will need a messageBoard
parameter to know what board to display. However, because request parameters
(just like request-scoped attributes) travel through <jsp:include> and <jsp:for-
ward> tags, we don’t have to do any extra work to pass postMessage.jsp’s own mes-
sageBoard parameter back to viewMessages.jsp. It happens automatically.

 We could pass information back to viewMessages.jsp from postMessage.jsp
using an appropriately scoped variable (for instance, a request-scoped or session-
scoped variable), but because viewMessages.jsp already takes a parameter that’s
easy for us to set, we don’t need to bother.

12.3 Summary

In this chapter’s examples, we touched on the following points:
� It’s surprisingly easy to produce something like an online survey—with cal-

culations, tallies, and even clever HTML bar graphs—using JSTL.
� Relational databases are flexible. Don’t just treat them like simple spread-

sheets or databases. Sometimes, simple but generic tables lead to flexible,
reusable pages.

� A JSP page that has query parameters will automatically pass these parame-
ters to the target page of a <jsp:forward> tag. Of course, two pages can also
communicate using request, session, or application scope—but if a page is
already designed to accept parameters, sometimes it’s easier to use them than
to invent a new mechanism.

13Case study in
building a web site
This chapter covers…
� Designing a reusable layout
� Plugging modular channels into a web site
� Registering and authenticating users
� Personalizing a web site
301

302 CHAPTER 13
Case study in building a web site
So far, you’ve seen how to use JSTL to solve specific problems and to write individ-
ual applications. Now, let’s look at how to tie it all together.

 In this chapter, we’ll build a simple web portal, like the one shown in figure 13.1.
You’ve probably run into portals before, such as my.yahoo.com or my.netscape.
com. To be honest, I’m not an enthusiastic user of portals. I often keep 12 different
browser windows open at once, and I know almost all the URLs I use by heart—so
I don’t need a single site to tie things together for me. But apparently, lots of users
do. They feel more comfortable with a central, customizable site that becomes their
home on the web.

 Whether you use portals or not, writing one in JSTL will be a good way to tie
our separate applications into a single web site. We’ll essentially use JSTL to create a
primitive content-management system that lets us plug in new channels to our mas-
ter web site. We’ll also see how to register users, let them log in, and personalize the
site for them.

Figure 13.1 In this chapter, we design a simple web portal that combines some features we’ve
written into a single web page. This portal uses JSTL to manage the layout and lets you insert
pluggable channels as you see fit.

Managing the layout 303
13.1 Managing the layout

We’ll begin by using JSTL to print out a simple, static site that has the look and feel
of a web portal, but without any personalization or particularly dynamic content.
That is, we’ll use JSTL just to help with our site’s organization and layout.

 Look at figure 13.2. This is a simple (albeit somewhat odd) web page. You don’t
need JSTL to produce it; it’s just HTML, with a few <table> tags and other straight-
forward formatting. However, a page like this might be unwieldy to edit frequently.
If you wanted to change the Poem of the Day, for instance, you’d have to open the
file, find the right spot, and make a change. And if you accidentally erased a </tr>
tag, you’d ruin the formatting for the entire page. Furthermore, whoever makes
changes to the file would need to learn about its overall structure; it’s not easy to
delegate the management of different table cells, or channels, to different people.
The department that’s responsible for the Testimonials channel has to work in the
same file as the guy who updates the links.

13.1.1 A framework for channels

To address these problems, we can use JSTL tags to help us manage our informa-
tion. We’ll first create a framework that makes it easy to organize, add, and remove
channels. Listing 13.1 shows an example of such a framework.

Figure 13.2
In section 13.1, we use JSTL to
help organize some simple, static
content. Every individual table
cell—or channel—in this window is
just a simple, static HTML page.
These pages are imported into a
central layout using <c:import>.
Organizing a site like this, even
when the content isn’t particularly
dynamic, makes it easier to
maintain.

304 CHAPTER 13
Case study in building a web site
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
 <title>The Nasal Irrigation Alliance</title>
 <style>
 body,td {
 font-family: arial,verdana,helvetica,sans-serif;
 font-size: 8pt;
 vertical-align: top;
 }
 .heading {
 background-color: #444444;
 color: #ffffff;
 font-family: arial,verdana,helvetica,sans-serif;
 font-size: 12pt;
 font-stylet: bold;
 }
 h1 {
 font-size: 12pt;
 margin-bottom: 0px;
 }
 h2 {
 font-size: 10pt;
 margin-bottom: 0px;
 }
 </style>
</head>
<body>
<h1>The Nasal Irrigation Alliance</h1>
<hr />

<table width="100%">

 <tr>
 <td width="60%">
 <c:import url="channel.jsp">
 <c:param name="headline" value="Welcome" />
 <c:param name="page" value="welcome.html" />
 </c:import>
 <c:import url="channel.jsp">
 <c:param name="headline" value="Testimonials" />
 <c:param name="page" value="quotes.html" />
 </c:import>
 </td>
 <td width="40%">
 <c:import url="channel.jsp">
 <c:param name="headline" value="Poem of the day" />
 <c:param name="page" value="poetry.html" />
 </c:import>

Listing 13.1 simplePortal.jsp: a file that makes it easy to add and remove channels

Imports a single
channel

Managing the layout 305
 <c:import url="channel.jsp">
 <c:param name="headline" value="Links" />
 <c:param name="page" value="links.html" />
 </c:import>
 </td>
 </tr>

</table>

</body>
</html>

Overall, this page is straightforward. It uses inline formatting instructions (the
<style> tag) written in the Cascading Style Sheets (CSS) language to establish some
basic formatting rules, and it structures the bulk of its body into a simple HTML
<table>. This table has only one row; it’s there just to establish a chosen horizontal
spacing. This row has two columns: one that’s intended to take up 60% of the
browser window (width="60%") and one that takes up the remaining 40%.

 In fact, the only part of this page that’s interesting to us is the small amount of
dynamic content. Within each table cell, we import two channels. Every channel
has two characteristics:

� A headline, which is the text that displays in the horizontal bar we use to intro-
duce a channel. For instance, “Welcome” and “Poem of the Day” are head-
lines.

� A source page, from which the content comes. For instance, one page might
contain the text in the Welcome channel (“Welcome to the home page…”),
and another could contain the haiku.

One thing about the <c:import> tags might look strange: they all import the same
page, channel.jsp. That’s because every channel uses the same basic layout—gray
headline bar with white text, followed by regular body text. How does channel.jsp
differentiate between the channels? By accessing the parameters we pass it using
the <c:param> tags. This way, each time we import channel.jsp, it can display a dif-
ferent headline and print content from a different source page.

13.1.2 Modular channels

Now, let’s look at how channel.jsp works. It’s a simple page, shown in listing 13.2.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<c:import var="body" url="${param.page}"/>

Listing 13.2 channel.jsp: a page to print each channel

Retrieves
the content

306 CHAPTER 13
Case study in building a web site
<table width="100%">

 <tr>

 <td class="heading">

 <c:out escapeXml="false" value="${param.headline}"/>

 </td>

 </tr>

 <tr>

 <td>

 <c:out escapeXml="false" value="${body}"/>

 </td>

 </tr>

</table>

The channel.jsp page just prints a headline and a body. The important thing about
channel.jsp is that it contains all the HTML formatting markup needed to produce a
channel. Each channel is an HTML <table> that’s designed to fill its entire table cell
(from the earlier simplePortal.jsp page), so the <table> tag has a width="100%"
attribute. This table has two rows: one to produce the headline, and one for the
body. The headline is set to use the formatting defined for "heading" (class=
"heading"), which we defined in simplePortal.jsp:

.heading {

 background-color: #444444;

 color: #ffffff;

 font-family: arial,verdana,helvetica,sans-serif;

 font-size: 12pt;

 font-stylet: bold;

}

This formatting accounts for the white-on-gray appearance of each headline.
Because channel.jsp is included directly into the outer simplePortal.jsp page, we
can take advantage of CSS classes (like heading) that we defined in the <style> tag
in simplePortal.jsp.

 Abstracting the procedure for displaying a channel into channel.jsp keeps the
main simplePortal.jsp page simple. Using channel.jsp lets us avoid repetitive for-
matting logic in the main page, allowing simplePortal.jsp to act as a straightfor-
ward catalog of channels. The body of simplePortal.jsp contains minimal HTML
formatting; it looks almost like a configuration file describing the channels to
import. Using channel.jsp, we avoid a hard-to-manage page containing tables
within other tables.

 There’s one more interesting thing about channel.jsp: we’ve set escapeXml=
"false" in both of the <c:out> tags, because we want to allow HTML formatting in
the headline and body of each channel. (Bodies will almost always contain HTML

Prints the
headline

Prints the
content

Managing the layout 307
markup; headings will do so less frequently, but we don’t want to prevent ourselves
from formatting a headline with, for instance, <i> or <u> tags.)

 As I mentioned before, the channel.jsp page knows what information to print by
checking its request parameters. It imports the page specified by the request param-
eter page and prints the headline from the parameter headline. Note that we could
have used the <c:import> tag directly in the body of the table (without saving the
page we imported in the body variable), but the way it’s currently arranged is more
instructive. If you experiment with channel.jsp, try removing the escapeXml=
"false" attribute from the second <c:out> tag; you’ll get output that looks like fig-
ure 13.3.

Individual channels
Our top-down view of simplePortal.jsp doesn’t end with channel.jsp. As I men-
tioned, channel.jsp doesn’t display any content of its own, other than a headline
and the HTML formatting for a channel. The final content for our simple portal, as
figure 13.4 demonstrates, comes from individual, target pages.

 The simplePortal.jsp page decides what pages should ultimately be used as
channels. For instance, in listing 13.1, our page created four channels. The first
channel’s content comes from welcome.html, the second from quotes.html, and so
on. In this example, these are just local files in the same directory as the portal, but
they could be anywhere else; these files could be loaded from a different directory
on the same web server, or even from a completely different web server. Instead of

Figure 13.3
If we remove the
escapeXml="false"
attribute from the <c:out>
tag that produces each
channel’s body, we see the
raw HTML formatting that
was used to produce each
channel.

308 CHAPTER 13
Case study in building a web site
specifying a simple filename like quotes.html, we could use a full, absolute URL like
the following in the original <c:param> tag in simplePortal.jsp:

http://my.other.server/quotes/quotes.html

Using absolute URLs lets your portal pull content from other servers on your network.
 Currently, the target pages contain nothing more than static HTML formatting

and simple content; they’re just regular HTML pages. However, these pages will be
inserted in the middle of a table cell in the final simplePortal.jsp page, so it’s inap-
propriate to import entire pages—those with <html> and <body> tags, for instance.

 As an example of a page designed to be a portal channel, here are the simple,
static contents of the poetry.html page:

Today's haiku:

<p>
 What a cute kitten!

 I'd love to go play with it,

 But it makes me sneeze.

</p>

As you can see, the final pages don’t know anything about the portal’s overall table
formatting; they contain only minimal HTML formatting. Therefore, we can change
the way pages are displayed in simplePortal.jsp without having to modify any
HTML formatting in the target pages.

Adding error checking
As it stands now, an error that occurs during channel.jsp’s <c:import> tag will
cause the whole portal to fail to load. To address this issue, we should wrap it in
<c:catch> and print out an appropriate error message, like this:

<c:catch var="error">
 <c:import var="body" url="${param.page}"/>
</c:catch>
<c:if test="${not empty error}">

Figure 13.4
Our simple portal pulls
information from many individual
pages, but these pages are all
funneled through channel.jsp to
provide the right formatting. The
result is the consistent
appearance shown in figures 13.1
through 13.3.

Adding dynamic content 309
 <c:set var="body">

 This channel failed to load. Sorry.

 <!-- Here's why: <c:out value="${error}"/> -->

 </c:set>

</c:if>

Instead of simply importing the page, we now catch errors and check for them. If
an error occurs, we set the body to contain a brief error message. (We put a more
verbose error message into an HTML comment so the user doesn’t have to see it by
default.) Suppose we now try to include a channel whose page doesn’t exist:

<c:import url="channel.jsp">

 <c:param name="headline" value="Today’s news" />

 <c:param name="page" value="nope.jsp" />

</c:import>

If the file nope.jsp doesn’t exist in the current directory, then with the channel.jsp
page in listing 13.2, the entire portal will fail to load. With our new changes, the
user will see a channel like the one in figure 13.5. The error’s still there, but it
doesn’t prevent the entire portal page from loading.

13.2 Adding dynamic content

So far, our target pages have been simple, static HTML files; they haven’t contained
dynamic content of their own. But the <c:import> tag lets us include JSP files just as
easily as HTML files, so the target pages can easily be JSP pages, and they can con-
tain all the dynamic content you’d like.

13.2.1 Including RSS channels

What would a portal be without including a few Rich Site Summary (RSS) chan-
nels? (An original, interesting one, perhaps—but that’s beside the point.) Many por-
tals rely on news feeds and other RSS channels. We discussed how to process RSS in
chapter 8; now, let’s look at how to include it in our portal. (You might want to
review the example at the end of chapter 8 before reading this one.)

 Because the theme of this chapter involves organizing content, let’s take a step
back and figure out the best way to include RSS channels in the portal. One way to
include RSS files would be for each target page to import and format a particular

Figure 13.5
Using <c:catch>, we can limit the scope of errors that a channel
encounters to that channel alone. Instead of preventing the entire portal
page from loading, channel.jsp can catch and print a friendlier error
message.

310 CHAPTER 13
Case study in building a web site
RSS feed. For instance, we could have rss1.jsp, which prints a global news feed, and
rss2.jsp, which displays technology news.

 The problem with this approach is that we end up duplicating effort. The files
rss1.jsp and rss2.jsp would probably be the same, except for the URL from which
they retrieve their RSS feeds. This duplication would make the pages harder to
manage. If we wanted to change how our RSS feeds looked, we’d have to edit mul-
tiple pages—one for each feed. Instead, why not use a single page—say, rss.jsp—to
print content from multiple RSS feeds? (See figure 13.6.)

 This single rss.jsp page will need a way for us to tell it what RSS feed it should
retrieve, each time we load it. As you might have guessed, a request parameter is a
great way to pass this kind of information. Consider the following block of tags,
which we could add to simplePortal.jsp:

<c:import url="channel.jsp">
 <c:param name="headline"
 value="Articles from <i>slashdot.org</i>" />
 <c:param name="page"
 value="rss.jsp" />

</c:import>

The first two <c:param> tags are straightforward: we’d like to insert a channel head-
lined “Articles from slashdot.org” coming from rss.jsp. The third parameter indicates
the URL for the RSS file we’d like rss.jsp to retrieve. However, we’re passing this
parameter to channel.jsp, not directly to rss.jsp. The channel.jsp page doesn’t care
about this parameter, so it simply ignores it. When channel.jsp uses a <c:import>
tag, however, the parameter is passed straight through to rss.jsp. Thus, we have no
problem communicating with rss.jsp from simplePortal.jsp, even though there’s a
page (channel.jsp) between the two.

 Now, we’re ready to look at the page that does the RSS importing. It’s similar to
the one from chapter 8; I include it here only to make the concepts concrete. List-

<c:param name="rssUrl"
value="http://www.slashdot.org/slashdot.rdf"/>

Figure 13.6
Instead of having each target
page fetch its own RSS feed,
we can centralize the logic in
a single page (rss.jsp). The
rss.jsp page is to RSS feeds
what channel.jsp is to
channels: it serves as a single
focal point for the formatting
and other logic needed to
print RSS channels.

Adding dynamic content 311
ing 13.3 shows the rss.jsp page, which fetches the URL from its rssUrl parameter
and formats the RSS file as a bulleted list.1

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

<c:import var="xml" url="${param.rssUrl}" />

<x:parse var="rss" xml="${xml}" />

<x:forEach select="$rss//*[name()='item']">

 <a href="<x:out select="./*[name()='link']"/>">

 <x:out select="./*[name()='title']" />

</x:forEach>

This rss.jsp page was used to read the RSS feeds shown in figure 13.1’s portal. The
middle column contains two RSS feeds: one from internet.com and another from
slashdot.org.

13.2.2 Including other dynamic content

To produce figure 13.1, we included an entire message board as a portal channel.
Specifically, we imported a message board from chapter 12’s messaging system,
using tags like this:

<c:import url="channel.jsp">

 <c:param name="headline" value="Message board" />

 <c:param name="page" value="viewMessages.jsp?messageBoard=1" />

</c:import>

TIP Note how we pass a messageBoard parameter within <c:param>’s value
attribute. Doing so might seem tricky, but all we’re doing is causing chan-
nel.jsp to fetch viewMessages.jsp and send it a parameter (as part of the
URL) when it does so.

Listing 13.3 rss.jsp: a channel that fetches and displays RSS feeds

1 For information on how the XPath expressions work, see chapters 7 and 8.

312 CHAPTER 13
Case study in building a web site
Because message boards in chapter 12’s message system can grow without bound,
you normally wouldn’t include an entire board in a single portal channel; but you
could if you wanted to. (Instead, you’d probably link to a forum, the way the whim-
sical “Discuss this counter” link in figure 13.1 does.)

 Our survey application from chapter 12 integrates cleanly, as well. Simply ask
the survey question in a channel that includes an appropriate HTML <form>, and
have the form open in new window—a technique you saw how to handle in
chapter 12.

 In figure 13.1, we also included chapter 9’s counter in a channel. Let’s look more
closely at how to do this; it’s a good end-to-end example of including dynamic con-
tent in the portal.

 To begin with, we modify the counter example from chapter 9 to print the count,
not simply to store the value as a scoped variable. The result is the counter.jsp page
from listing 13.4.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<sql:transaction>

 <sql:update>
 update counter set counter = counter + 1
 </sql:update>
 <sql:query var="result">
 select * from counter
 </sql:query>
 <c:set var="count" value="${result.rows[0].counter}" />

</sql:transaction>

<p>
 This site has been accessed
 <c:out value="${count}" />
 times!
</p>

<p>
 <a target="_blank"
 href="<c:url value="viewMessages.jsp">
 <c:param name="messageBoard" value="2"/>
 </c:url>">
 Discuss this counter

</p>

Listing 13.4 counter.jsp: a channel that adds a counter to the portal

Registering users 313
NOTE This example assumes that your application has an appropriate database
set up as its default data source. If it doesn’t, you’ll need to use the
<sql:setDataSource> tag that we discussed in chapter 9.

This page displays a counter and then a link that people can follow if they’re
inclined to engage in discussions in a forum about the counter. (From browsing the
Web, I think it’s clear that many people are bored enough to discuss a hit counter.)

 You can include nearly any dynamic content inside a portal channel. Just as with
HTML content, you can even pull it out of a JSP page from a different server.

13.3 Registering users

You’ve seen how to include static and dynamic content into a portal-like page, but
it’s not much of a portal unless it provides personalized output to users. To do this,
we’ll need to let the portal sign up new users.

13.3.1 Modifying the header

First, let’s look at how to modify the front page to let users register and log in.
 To produce the header at the top of figure 13.2, the simplePortal.jsp page uses

straightforward HTML:

<h1>The Nasal Irrigation Alliance</h1>
<hr />

Compare this header to figure 13.1, which shows three separate features related to
user registration:

� A greeting (“Welcome, guest!”) that can be personalized (“Welcome back,
Murray!”)

� Boxes that let the user enter a name and password, if he or she isn’t already
logged in

� A link labeled “New user?” that lets new users register

To print the header at the top of figure 13.1, we can use the following text and JSTL tags:

<table width="100%">
<tr>
 <td>
 <h1>The JSTL portal</h1>
 <c:choose>
 <c:when test="${empty sessionScope.user}">

314 CHAPTER 13
Case study in building a web site
 Welcome, guest!

 </c:when>

 <c:otherwise>

 Welcome back, <c:out value="${sessionScope.user}"/>!

 </c:otherwise>

 </c:choose>

 </td>

 <td align="right">

 <c:if test="${empty sessionScope.user}">

 <form method="post" action="login.jsp">

 User: <input type="text" name="user" size="10" />

 Password: <input type="password" name="pw" size="10" />

 <input type="submit" value="Log in" />

 New user?

 </form>

 </c:if>

 </td>

</tr>

</table>

<hr />

This block of code is designed to produce an HTML table that takes up the full
width of the page (width="100%"). The table has one row; we use it only to split the
left side of the screen from the right side. On the left side of the table, we display a
greeting, and on the right, if necessary, we display a login form.

 The JSTL tags are designed to behave differently depending on whether a user is
logged in. To determine whether a user is logged in, we check the session-scoped
variable user. We’ll demonstrate later how the portal manages this variable; for
now, it’s enough to know that if the user hasn’t yet logged in, the variable will be
empty. Thus, the expression ${empty sessionScope.user} will be true only when
the user hasn’t logged in.

 We use this fact to display a special greeting for guests on the left side of the
screen, and to display a login form on the right side. (No login form is necessary
when the user’s already logged in, so we don’t bother displaying it in that case.)

13.3.2 The registration form

Notice the HTML hyperlink that lets new users register:

New user?

This link takes users to a page that looks like figure 13.7. This page is produced by a
JSP page called register.jsp that works just like the “junk email registration” form

Registering users 315
from chapter 11. However, it’s more intricate than that example. The register.jsp
page is shown in listing 13.5.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<c:if test="${param.submitted}">
 <c:if test="${empty param.name}" var="noName" />
 <c:if test="${empty param.pw}" var="noPw" />
 <c:if test="${empty param.url}" var="noUrl" />

 <c:if
 test="${not (noName or noPw or noUrl or
 requestScope.takenName)}">
 <c:set value="${param.name}" var="name" scope="request"/>
 <c:set value="${param.pw}" var="pw" scope="request"/>
 <c:set value="${param.url}" var="url" scope="request"/>
 <jsp:forward page="doRegister.jsp" />
 </c:if>
</c:if>

<html>

<head>
 <style>
 body, td {
 font-family: arial,verdana,helvetica,sans-serif;
 font-size: 8pt;

Listing 13.5 register.jsp: a page that registers users and validates their entries

Figure 13.7 To let our portal personalize itself to our users, we need to ask
them to register. Registration involves letting the user choose a username, a
password, and the URL for an RSS channel they’d like to display.

Validates
input

316 CHAPTER 13
Case study in building a web site
 vertical-align: top;
 }
 </style>
</head>
<body>
<h1>Welcome to the JSTL portal.</h1>
<p>To sign up for an account, please enter the information
below. All fields are required.</p>

<form method="post">
<input type="hidden" name="submitted" value="true" />
<table>
 <tr>
 <td>Enter a username:</td>
 <td>
 <input type="text" name="name" size="10"
 value="<c:out value="${param.name}"/>"
 />
 <c:if test="${noName}">

You must enter a username
 </c:if>
 <c:if test="${requestScope.takenName}">

Sorry, that username
 is already taken. Please choose another.
 </c:if>
 </td>
 </tr>
 <tr>
 <td>Enter a password:</td>
 <td>
 <input type="password" name="pw" size="10"
 value="<c:out value="${param.pw}"/>"
 />
 <c:if test="${noPw}">

You must enter a password
 </c:if>
 </td>
 </tr>
 <tr>
 <td>Enter the URL for
your favorite RSS channel:</td>
 <td>
 <input type="text" name="url" size="40"
 value="<c:out value="${param.url}"/>"
 />
 <c:if test="${noUrl}">

You must enter a url
 </c:if>
 </td>
 </tr>
</table>
<input type="submit" value="Register!" />

Validates
forwarded
information

Registering users 317
</form>

</body>

</html>

Most of this page should be familiar from our prior experience in chapter 11. The
only thing that’s different about register.jsp is that it refers to a request-scoped
attribute called takenName. It does this twice. First, in its initial validation, it refuses
to pass the user on to doRegister.jsp if takenName is true. Then, it prints out a spe-
cial error message if takenName is true.

 From the special error message that prints, you can probably figure out what the
takenName variable represents: it’s true if the user has entered a username that has
already been taken by another user. But what sets this scoped variable, and how
does it do so?

 The doRegister.jsp page sets the scoped variable. When the user enters values
for all three form fields, we forward the user to doRegister.jsp. Normally, doRegis-
ter.jsp just adds the new user to a database and bounces the user back to the main

Figure 13.8 New users who try to register with the portal need to fill out the information
in the form presented by register.jsp. If the user enters valid information, then register.jsp
forwards to doRegister.jsp. Normally, doRegister.jsp adds the user to the database and
returns the user to the main portal page. However, if the user enters a duplicate username,
doRegister.jsp forwards the user back to register.jsp and gives him a chance to choose a
new name.

318 CHAPTER 13
Case study in building a web site
portal page. However, if the user’s chosen name has already been taken by some-
one else, doRegister.jsp forwards back to register.jsp after setting the takenName
variable. Thus, doRegister.jsp lets register.jsp reprint the form, but it feeds the page
special information so that it knows how to instruct the user. Figure 13.8 summa-
rizes the flow of pages that new users encounter.

13.3.3 Saving the registration

The doRegister.jsp page is shown in listing 13.6. As with the other database exam-
ples in this part of this book, it assumes that your application has a sensible default
database set up. If not, then you’ll need to use the <sql:setDataSource> tag to set
up a database connection.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<sql:transaction isolation="serializable">
 <sql:query var="result">
 select user from users where user=?
 <sql:param value="${requestScope.name}"/>
 </sql:query>
 <c:if test="${result.rowCount > 0}"
 var="takenName"
 scope="request">
 <jsp:forward page="register.jsp" />
 </c:if>
 <sql:update>
 insert into users(user, password, rss)
 values(?, ?, ?);
 <sql:param value="${requestScope.name}"/>
 <sql:param value="${requestScope.pw}"/>
 <sql:param value="${requestScope.url}"/>
 </sql:update>
</sql:transaction>
<c:set var="user" scope="session" value="${requestScope.name}"/>
<jsp:forward page="main.jsp"/>

The doRegister.jsp page reads all of its data from request-scoped variables that were
previously set by register.jsp. The page receives the following three variables:

� requestScope.name—The user’s chosen username
� requestScope.pw—The user’s chosen password
� requestScope.url—The URL for the RSS channel the user chose

Listing 13.6 doRegister.jsp: adds a new user to the portal’s database

Registering users 319
First, the page checks to see whether requestScope.name already exists in the user
database. If it does, then it returns the user to register.jsp after setting the request-
scoped variable takenName. The way doRegister.jsp does this is interesting:

<c:if test="${result.rowCount > 0}"
 var="takenName"
 scope="request">
 <jsp:forward page="register.jsp" />
</c:if>

The same <c:if> tag that decides whether to forward back to register.jsp sets the
request-scoped takenName to true. If the <c:if> tag’s condition is satisfied—if the
result includes one or more rows, indicating that the chosen username clashes with
an existing one—then takenName will also be set to true by the <c:if> tag. Thus, if
the <jsp:forward> tag is ever reached, takenName will be true.

 Finally, if the user’s chosen name isn’t a duplicate, doRegister.jsp adds the new
user to the database and returns the user to the main portal page. Before doing so, it
sets the session-scoped variable user equal to the user’s new name. This action has
the effect of logging the user in, which is convenient: why make users log in right
after they’ve registered?

 You might have noticed that we use an <sql:transaction> tag to surround all
these operations. This tag, with the attribute isolation="serializable", helps
prevent against the unlikely event that two users register the same name at once.
The read and the subsequent write are treated as a single transaction, so that if one
user has just caused the page to read the username “Bob”, no other page can create
the same username. The username is effectively reserved for the user as soon as we
check to see whether it’s a duplicate.

13.3.4 The user database

The user database is straightforward. It has three columns:

We create the table with the following SQL command:

create table users (
 user varchar(20) primary key,
 password varchar(20) not null,

Column name Type Purpose

user VARCHAR(20) Username

password VARCHAR(20) Password

rss VARCHAR(255) URL for the user’s chosen RSS feed

320 CHAPTER 13
Case study in building a web site
 rss varchar(255) not null
)

Note that we’ve made the user column a primary key. Because primary keys are
unique within a table, the database serves as a last line of defense to ensure unique
usernames. We could have depended on the database’s ability to enforce the
uniqueness of usernames instead of performing a query to determine whether the
user’s chosen name exists. That is, we could have eliminated the <sql:transac-
tion> and <sql:query> tags and used <c:catch> to determine whether an error
occurred. But doRegister.jsp is more instructive as I’ve listed it, and (in my opinion)
it’s also better designed; it checks for a particular kind of error case (duplicate user-
names) before sending data to the database. Because of this check, it’s easier to
report a specific error condition to the user (“Sorry, that username is already
taken”); moreover, we also decrease the likelihood of ignoring a real, unexpected
database error.

 The old admonition to “be careful what you wish for” applies, as well as the
story of the “boy who cried ‘wolf.’” The problem with expecting an error from an
underlying component is twofold. First, the error might not occur. Second, you
might inadvertently ignore a real problem. Thus, I advise against using <c:catch>
as a mechanism for deliberate control flow (like <c:if>); instead, it should be used
only to respond to unexpected error conditions.

13.4 Authenticating users

Now that the portal can register users and their passwords in a database, let’s look
at how we can use this information to let users log in.

13.4.1 Logging in users

The login form we created in section 13.3 sends information to a page called
login.jsp. This page, as shown in listing 13.7, is reasonably simple.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

<sql:query var="result">
 select * from users where user=? and password=?
 <sql:param value="${param.user}" />
 <sql:param value="${param.pw}" />
</sql:query>
<c:choose>
 <c:when test="${result.rowCount > 0}">
 <c:set var="user" scope="session" value="${param.user}" />

Listing 13.7 login.jsp: lets users log in to the portal

Authenticating users 321
 <c:set var="rss" scope="session"

 value="${result.rows[0].RSS}" />

 </c:when>

 <c:otherwise>

 <c:set var="failedLogin" scope="request" value="true"/>

 </c:otherwise>

</c:choose>

<jsp:forward page="main.jsp" />

The login.jsp page first performs a query against the user database. This query
includes an SQL where clause that looks like this:

where user=? and password=?

The <sql:param> tags fill in the question marks with the supplied username and
password. (The user supplies these values in the form fields at the top of figure 13.1.)
The query matches a row only if both the username and the password match. This
is how we handle authentication—the process of forcing the users to prove that they
are who they say they are.

 If the login succeeds—if a row is matched—then the login.jsp page sets the session-
scoped user variable, which proves to the portal (and its channels, if they’re inter-
ested) that a user has logged in. We also set a variable called rss with the RSS chan-
nel URL that the database associates with the user.

 If the login fails, then we simply set a variable named failedLogin. This vari-
able has request scope; we set it so that the main portal page—to which login.jsp for-
wards whether the login succeeds or fails—can print an appropriate message. For
instance, we could add a tag like this to the main login page:

<c:if test="${requestScope.failedLogin}">

 Sorry, bad username or password.

</c:if>

13.4.2 Some notes about authentication

In sections 13.3 and 13.4, we created a simple authentication mechanism for the
portal. Authentication is an important subject in its own right, and the details of it
are beyond this book’s scope. However, I want to say a few things about authentica-
tion that might be useful to you as you design web applications.

 In many environments, you don’t have to handle authentication. This will be
particularly true in large environments where you’re integrating your JSP pages
with existing data models and services and not building an application from
scratch. The JSP container can manage authentication for you, and you may be

322 CHAPTER 13
Case study in building a web site
able to retrieve the name of the current user simply by using an expression like
the following:

${pageContext.request.remoteUser}

Alternatively, back-end Java logic may manage authentication and set some infor-
mation in the session scope for you to use.

 One principle for authentication is important to keep in mind: don’t reinforce
your front door but leave your back door wide open. If you handle authentication
at a single page in your application, consider what might happen if a user tried to
access one of your other page’s URLs directly. Using session-scoped variables is a
good idea because users can’t set scoped variables directly. Similarly, using a
parameter to pass a secure username from one page to another is a very bad idea,
because users can set parameters.

 A final note: in some environments, network security is important. Sending a
cleartext password to a web site might not be acceptable in some environments.
You may have noticed that some web pages have URLs that start with https instead
of http. These URLs use the Secure Sockets Layer (SSL), which is a mechanism that
can provide both encryption and authentication for the Web.

 Overall, be careful when handling the authentication of users. In other words,
don’t use the system that we built here to protect your valuable assets until you’ve
thought long and hard about computer security!

13.5 Personalizing the site

The portal and any channel can use the session-scoped user variable to determine
who (if anyone) is logged in and react accordingly. Channels and the portal can also
use other session-scoped variables to configure themselves.

 You’ve already seen one simple example of this kind of personalization. The
header for the main portal page that we added in section 13.3 will print a custom-
ized greeting for the user. For example, instead of saying, “Welcome, guest!” it will
say, “Welcome back, Shawn!” if I log in.

 Let’s look at a few other examples of personalization.

13.5.1 Filling in a form automatically

Look again at figure 13.1. The first column contains a message board from chapter 12’s
messaging system. Normally, users need to enter a username when posting a mes-
sage. But because the portal might know who’s logged in, let’s let the messaging sys-
tem take advantage of that fact.

Personalizing the site 323
To add this capability, we can take the line in the message system’s viewMes-
sage.jsp page that reads

Name: <input type="text" name="name" />

and replace it with this:

Name: <input type="text" name="name"

If this new line runs and nobody’s logged in, it will result in

value=""

This result is fine, because it’s the default behavior of <input type="text">. If a
user is indeed logged in, however, we instead get

value="username"

where username is the current user’s name. This result leads to the personalized
output shown in figure 13.9.

value="<c:out value="${sessionScope.user}"/>"/>

Figure 13.9
Because the portal knows
who’s logged in, individual
channels don’t need to ask
separately; they can take
advantage of the centralized
authentication by referring
to a portal-managed,
session-scoped variable.

324 CHAPTER 13
Case study in building a web site
13.5.2 Displaying a chosen RSS feed

When users sign up using our register.jsp page, they also supply the URL for an RSS
channel they’d like to view. You saw earlier how to include the RSS feed from
Slashdot that appears in figure 13.1:

<c:import url="channel.jsp">
 <c:param name="headline"
 value="Articles from <i>slashdot.org</i>" />
 <c:param name="page"
 value="rss.jsp" />
 <c:param name="rssUrl"
 value="http://www.slashdot.org/slashdot.rdf"/>
</c:import>

But instead of Slashdot (which can sometimes get tedious), let’s show the RSS chan-
nel the user chose. Note that we can’t simply write

<c:param name="rssUrl" value="${sessionScope.rss}"/>

because we need to take into account the possibility that the user isn’t logged in and
thus that no session-scoped variable named rss is present. We can’t include tags
like <c:choose> inside <c:import> because the body of <c:import> is, in its famil-
iar syntax, intended only for <c:param> tags. So, instead, we can do this:

<c:import url="channel.jsp">
 <c:param name="headline"
 value="Current RSS feed" />
 <c:param name="page"
 value="rss.jsp" />

</c:import>

We use a <c:choose> tag to decide which RSS feed to use. If a user is logged in, we
note that user’s preference; otherwise, we default to using Slashdot’s URL (http://
www.slashdot.org/slashdot.rdf).

 With this change to the main portal page, users can receive custom news based
on the URL they entered. For instance, if I signed up to the portal using the URL
http://politicalwire.com/headlines.xml, which offers current political headlines, I’d

<c:choose>
<c:when test="${not empty sessionScope.rss}">
<c:set var="userRss" value="${sessionScope.rss}"/>

</c:when>
<c:otherwise>
<c:set var="userRss"
value="http://www.slashdot.org/slashdot.rdf"/>

</c:otherwise>
<c:choose>

<c:param name="rssUrl" value="${userRss}"/>

Summary 325
get the output shown in figure 13.10. New users who come to the portal will still see
the links from www.slashdot.org.

13.6 Summary

In building and expanding an online portal, we encountered the following ideas:
� Using JSTL’s <c:import> tag can help you organize your pages. You can sep-

arate commonly reused fragments and include them multiple times into your
pages, modifying their behavior by sending them different request parame-
ters each time.

� The <c:catch> tag is useful to ensure that an error in one such fragment (like
channel.jsp) doesn’t lead to an error for your whole page.

� It’s easy to roll your own simple authentication system to register and log in
users using JSTL’s SQL tags.

Figure 13.10
Because the portal records
user preferences, it can
display a user-chosen RSS
feed—like this list of political
headlines.

Part 4

JSTL for programmers

Parts 1 through 3 of this book have covered everything that web-page authors
need to know about JSTL. But if you’re a Java programmer, JSTL offers you a few
special features.

 In part 4, we present more advanced material. None of this material is neces-
sary to use JSTL, but you might find it useful if you’re a programmer who wants
to get the most out of JSTL. First, we discuss some more advanced uses of JSTL
than you saw in parts 1 through 3. Then, we examine ways to configure JSTL
tags and otherwise assist the page authors you work with. For instance, you can
use Java code to manage locales, time zones, and databases so that your page
authors don’t have to. Part 4 shows you how.

 Finally, we explore how JSTL makes it easier to write custom JSP tags. If
you’ve been intimidated by the JSP Tag Extension API, then you will probably
appreciate JSTL’s more convenient APIs for iteration and conditional tags.

 If you’re not a programmer, don’t despair. You won’t need to know any of the
material in these chapters. However, I certainly encourage you to be ambitious:
Java isn’t that hard to learn, and JSTL is designed to make things easier—for pro-
grammers, too. If you don’t know Java, I suggest you start with a good introduc-
tory book on Java, like Peter van der Linden’s Just Java.1 Then, feel free to wade
into part 4’s material. My hope is that you’ll find it more interesting and helpful
than you expected.

1 Prentice Hall, 2001.

14Control and performance
This chapter covers…
� Mixing Java code and JSTL
� Exposing data for JSTL tags
� Advanced features of JSTL tags
� Configuring JSTL
329

330 CHAPTER 14
Control and performance
JSTL was designed to be easy to use even if you don’t know anything about Java.
But if you do know Java, then you can take advantage of features that help you fine-
tune JSTL’s behavior and performance. If you know the difference between a
java.lang.String and a java.io.Reader, this chapter is for you.

 We’ll begin by looking at how to integrate JSTL tags with scripting elements—Java
code embedded directly into your pages. In most cases, JSTL and custom tag librar-
ies make scripting elements obsolete. However, if you’re a lone Java developer who
also writes web pages, then scripting elements might lie on a path of least resistance
for you. Or you might need to use scripting elements to communicate with an older
tag library. Either way, this chapter shows you how to mix JSTL tags and embedded
Java in your web pages.

 Then, we’ll look at some advanced features of JSTL. These features can help you
squeeze extra performance and flexibility out of JSTL tags.

 Finally, we’ll discuss how you can help control and configure page authors’
environments. If you’re a back-end Java developer, JSTL lets you set up default
database connections, locales, and other items for your pages. It also lets you place
restrictions on JSP pages, which can be helpful in enforcing your organization’s
web-design policies.

14.1 Scripting elements and the
JSTL rtexprvalue libraries

Scripting elements let you add Java code directly to your JSP pages. Although JSTL
tags cause Java code to run behind the scenes, scripting elements are different: they
let you insert literal Java code alongside your static HTML text. For instance, the
scripting elements in the following code are set in boldface type:

<% Date d = new Date(); %>
It’s now <%= d %>; do you know where your children are?

There are three kinds of scripting elements:
� Scriptlets—Scriptlets, the most general scripting elements, let you embed arbi-

trary Java statements into your page. For instance, the following scriptlet is
taken from a JSP page I wrote long ago; its goal was to help my page format a
date using a particular time zone:

<%
 Date now = new Date();
 TimeZone tzUser = TimeZone.getTimeZone(request.getQueryString());
 DateFormat df = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
 DateFormat.MEDIUM);
%>

Scripting elements and the JSTL rtexprvalue libraries 331
� Scripting expression—Scripting expressions work like the <c:out> tag: they
output the result of an expression in the middle of your page. But whereas
<c:out> uses JSTL’s expression language, JSP scripting expressions use Java
as their language.1 Scripting expressions start with <%= and end with %>. For
instance, the following text includes a scripting expression:

Good morning, Mr. <%= user %>.
� Declaration—A declaration is designed to let you declare Java methods and

fields that can be used later in your page. Declarations start with <%! and end
with %>.

This book doesn’t discuss the details of how scriptlets and other scripting elements
work. If you want more information about scripting expressions, books like Web
Development with JavaServer Pages2 cover them in detail. The purpose of this section is
just to show you how to integrate scripting elements with JSTL, assuming you
already know how they work.

14.1.1 Warning against scripting expressions

Advanced JSP users may feel comfortable adding Java to their web pages, but most
authorities on JSP pages believe that scriptlets and other scripting elements make
JSP pages harder to maintain. When a page mixes HTML and Java code, the page
often becomes difficult to read, edit, or test. Implementation logic is mingled with
presentation text, meaning that anyone who needs to maintain the page must the
skills both of a page designer and a Java programmer.

 JSTL was designed to make JSP pages easy to develop without using any Java
code. JSTL therefore encourages Java web-development teams to separate back-end
business logic (written in Java) from presentation logic (written with JSTL and HTML).
In large organizations that employ separate teams of Java developers and HTML
authors, this approach can lead to a productive division of labor.

 However, although pages that contain Java code have fallen out of favor, elimi-
nating Java from web pages entirely might be too extreme in your environment.
Therefore, even though I encourage you to try writing JSP pages without scriptlets,
this section shows you how to integrate them with JSTL tags.

1 Technically, JSP supports languages other than Java too, although this support, in general,
constitutes little more than lip service. For all practical purposes, JSP uses Java as its script-
ing language.

2 Duane Fields, Mark Kolb, and Shawn Bayern, 2nd ed. (Manning Publications, 2001).

332 CHAPTER 14
Control and performance
14.1.2 JSTL’s dual libraries

To work better with scripting expressions, every JSTL tag library has a twin that
uses scripting expressions (<%= … %>) instead of the JSTL expression language.
Recall from chapter 2 that JSTL offers four tag libraries:

� The core library
� The XML-processing library
� The text-formatting and internationalization library
� The database library

Each of these libraries has a counterpart that’s identical, except that every attribute
that accepts a JSTL expression in the familiar library accepts, instead, a scripting
expression in the twin library. Formally, when a tag accepts a scripting expression
for an attribute, that tag is said to accept an rtexprvalue, or request-time expression
value. For instance, the following tag uses an rtexprvalue:

Table 14.1 lists the four rtexprvalue-oriented JSTL libraries.

Importing the rtexprvalue libraries is as simple as importing the familiar libraries
you’ve already seen. For instance, chapter 2 showed how to import the core library:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

To import the rtexprvalue version of the core library, you’d instead write the following:

Then, if you wanted to use the forEach tag in the core library, you’d write

<c_rt:forEach ...>

<fmt_rt:formatNumber value="<%= netWorth %>"/>

Table 14.1 For each JSTL tag library that we discussed earlier in this book, JSTL supports a twin
rtexprvalue library that accepts Java expressions instead of JSTL expressions. This table lists the
URIs and suggested prefixes of the four JSTL rtexprvalue libraries.

JSTL tag library Suggested prefix URI Example tag

Core library (iteration,
conditions, and so on)

c_rt http://java.sun.com/jstl/core_rt <c_rt:forEach>

XML processing library x_rt http://java.sun.com/jstl/xml_rt <x_rt:forEach>

Internationalization
(i18n) and formatting

fmt_rt http://java.sun.com/jstl/fmt_rt <fmt_rt:formatDate>

Database (SQL) access sql_rt http://java.sun.com/jstl/sql_rt <sql_rt:query>

<%@ taglib prefix="c_rt" uri="http://java.sun.com/jstl/core_rt" %>

Scripting elements and the JSTL rtexprvalue libraries 333
instead of

<c:forEach ...>

For example, if we wanted to loop over a collection of products stored in the session-
scoped variable named products, we’d normally write

<c:forEach items="${sessionScope.products}" var="product">
 <c:out value="${product}" />
</c:forEach>

With the rtexprvalue library, we could instead write

<c_rt:forEach

 var="product">

</c_rt:forEach>

This book doesn’t describe how JSP’s implicit objects, such as pageContext and
session, work. The goal here is to show you how the JSTL rtexprvalue libraries
accept input, assuming you already know how to write rtexprvalues.

14.1.3 Scripting variables and <jsp:useBean>

Referring to scoped variables from within Java scripting elements can be inconve-
nient. For instance, in the last example, we used the following rtexprvalue:

<%= pageContext.getAttribute("product") %>

This seems like a lot of trouble just to retrieve the product variable. To make it eas-
ier to manage variables, JSP introduces the idea of a scripting variable—a variable
you can access by its name, as in

<%= product %>

Because of the way JSP works, we can easily create a scripting variable using a
scriptlet:

<% String product = pageContext.getAttribute("product"); %>

This scriptlet creates a Java variable, and thus a scripting variable, named product,
which we can use later in our pages. But this also seems like a lot of work for a sim-
ple task.

 Fortunately, there are easier ways. Custom tags can also produce scripting vari-
ables, but in recognition of the diminishing role of scriptlets and scripting expres-
sions, no JSTL tags take advantage of this ability. Therefore, if you want to create a
scripting variable based on a scoped variable exposed by a JSTL tag, you’ll need to
do so yourself. To do so, you can use <jsp:useBean>, a standard JSP tag.

items=’<%= session.getAttribute("products") %>’

<%= pageContext.getAttribute("product") %>

334 CHAPTER 14
Control and performance
 Like <jsp:include> and <jsp:forward>, the tags we discussed in chapter 2, the
<jsp:useBean> tag is automatically available to you in any JSP page. Its options are
complicated and already covered in detail by many JSP books; for our purposes,
we’re concerned only with its simplest usage:

<jsp:useBean id="variable name" type="variable type"/>

In this syntax, variable name is the name of the scripting variable you want to
expose, and variable type is the Java type of that variable—for instance, java.lang.
String or java.util.Date.

 When used in this way, <jsp:useBean> attempts to locate a scoped variable
using the value of its id attribute, and it creates a scripting variable associated
with this scoped variable. For instance, if we wanted to create and use a scripting
variable named product in a <c_rt:forEach> loop similar to the last one, we
could write

<c_rt:forEach
 items=’<%= session.getAttribute("products") %>’
 var="product">

</c_rt:forEach>

The <jsp:useBean> tag creates a scripting variable named product, which we can
use in subsequent scripting elements. Note that you have to specify manually the
type of the scripting variable you want to create; JSTL can’t shield you from the
details of data types when you insist on using scripting variables.

 With the syntax we’ve described, the <jsp:useBean> tag can, despite its name,
be used to expose any object, whether or not you think of that object as a JavaBean.
For instance, <jsp:useBean> works fine with java.lang.String, java.util.Date,
or whatever data types you have. Chapter 10 already showed you how to use
<jsp:useBean> with java.util.Date, but we used a different syntax (the class
attribute instead of the type attribute) for it there.

14.2 Modifying properties with <c:set>

Shifting gears a little, we’ll now begin to examine some advanced features of JSTL
tags. In most cases, these tags will already be familiar, but we’ll introduce attributes
that let you gain more control over their behavior or performance. First, we look at
an advanced feature of the <c:set> tag.

 In chapter 3 and throughout the book, you’ve seen how the <c:set> tag can set
scoped variables. It also has an advanced syntax that lets you modify a property of
an existing scoped variable. Instead of specifying the var and scope attributes, you

<jsp:useBean id="product" type="com.jstlbook.Product"/>
Your product is <%= product %>.

Advanced techniques for importing text 335
can use two different attributes: target and property. Unlike var and scope, both
of these attributes accept any valid JSTL expressions. The target attribute points to
the variable you’d like to alter, and property resolves to the name of the property
of target you want to change.

 For example, suppose ${user} points to a JavaBean or Map that stores informa-
tion about the current user. Imagine this variable has an iq property that stores the
user’s IQ. Using the syntax for <c:set> presented in chapter 3, we don’t have any
fine-grained control over this property. We can replace the entire user variable
with <c:set> or even remove it with <c:remove>, but if the user does something
brilliant or spectacularly stupid, we have no way of adjusting the iq property alone.

 The target and property attributes give us this power. To add five points to the
user’s IQ, we can use the following tag:

<c:set value="${user.iq + 5}" target="${user}" property="iq"/>

As with the familiar use of <c:set>, value accepts any JSTL expression, and you
can also use the tag’s body to supply a value.

14.3 Advanced techniques for importing text

Like all JSTL tags, the <c:import> tag’s first priority is ease of use. However,
<c:import> has a few advanced attributes you can use to gain greater control over
the way the tag operates. These attributes aren’t intended for everyone, but you
might find them useful if you’re an advanced JSP user.

14.3.1 Representing imported text as a java.io.Reader

Normally, when you use the <c:import> tag’s var attribute to save imported data to
a scoped variable, the tag simply exposes a java.lang.String that stores all the
content that the tag retrieves. If you use <c:import> to retrieve large amounts of
data, however, storing the data as a string might not be efficient. Strings take up
memory, and they also take time to process.

 To address this issue, the <c:import> tag has a varReader attribute for exposing
information as a java.io.Reader object. A reader can be more efficient than a
string because it doesn’t require <c:import> to read and buffer the entire content
retrieved from a URL. Instead, it simply opens the connection and lets another tag
read the data. This process is both faster and less memory intensive than buffering
the data into a string.

 Typically, <c:import> does not accept any text or other tags in its body, except
for <c:param>. However, when you specify varReader, the tags or scripting ele-
ments that use the exposed reader must appear within the <c:import> tag’s body.

336 CHAPTER 14
Control and performance
This is a requirement because the <c:import> tag needs to ensure that it has an
opportunity to close the Reader object to prevent resource leaks. Therefore, it can-
not simply expose a reader to an entire page on an open-ended basis; the reader
might never be used or closed. Instead, <c:import> only lets page authors use the
reader within its body, and it destroys the reader before the tag finishes.

 For example, suppose we want to import some data with <c:import> and then
feed that data to a custom tag called <custom:process>. Using the syntax we pre-
sented in chapter 6, we’d write the following:

<c:import url="target.jsp" var="data"/>

<custom:process data="${data}"/>

Note that the hypothetical <custom:process> tag needs to understand JSTL’s
expression language and accept java.lang.String objects from its data attribute.

 Now, imagine that the target.jsp page includes megabytes of data. The last
example might not run efficiently, so instead, we can use a reader:

 <custom:process data="${data}"/>

</c:import>

Here, <custom:process> needs to accept a java.io.Reader; instead of simply
using the value of a string, it needs to read characters from this reader. It appears in
<c:import>’s body so that when the </c:import> tag is finally reached, the reader
can be destroyed.

 When you expose a reader to the <c:import> tag’s body, you can’t use
<c:param> in that same body. This limitation arises because <c:import> needs to
open the connection and expose a reader immediately, before its body begins to
execute. If it had to wait for <c:param> tags, it couldn’t do this. Thus, <c:param>
tags are outlawed in this case. If you want to send parameters to a URL and also
expose a reader for the URL, you’ll need to build up the URL beforehand using
<c:url>, as follows:

 <c:param name="name1" value="value1"/>

 <c:param name="name2" value="value2"/>

</c:url>

 <custom:process data="${reader}"/>

</c:import>

WARNING Don’t use this pattern with relative URLs, because <c:url> adds the name
of the current web context to URLs. This will confuse <c:import>.

<c:import url="target.jsp" varReader="data">

<c:url value="http://url" var="url" >

<c:import url="${url}" varReader="reader">

Advanced techniques for importing text 337
One final note of caution: varReader may not be effective when you import relative
URLs. It works fine, but under most implementations of JSTL (including the refer-
ence implementation), it won’t be any faster than using a simple string.

14.3.2 Character encoding

Let’s look at another advanced feature: <c:import> gives you control over what
character set to use if you import from a URL that offers binary data. If you’ve pro-
grammed in Java, you might be familiar with the difference between an Input-
Stream and a Reader. Specifically, both classes let you read data, but InputStream
returns binary data, whereas Reader returns text characters. If you’re retrieving
data from a URL and this data begins with the character “S”, then a Reader object
simply provides the “S” to you. (Think of this “S” almost like a high-level object;
you can treat it as if it represents some real-world entity without worrying about
how it’s stored internally by the computer.) InputStream, however, returns a simple
byte, like 01010011—or, because it’s usually convenient to interpret bytes as num-
bers—83. But 83 isn’t a character; it’s still just a number. To convert it to a charac-
ter, you need to use a character encoding, otherwise known as a character set. (In the
character set that’s most widely used, 83 represents the character “S”.)

 Some resources can return characters to you directly. In particular, if you
import a JSP page with <c:import>, and the page resides in the same JSP container
as the one you’re writing, then the two pages communicate using characters, and
no character encoding is necessary. The target page simply sends characters like
“S” and “T”, and you don’t need to interpret them; you can immediately use them
as characters.

 But when you import files over the network—for example, every time you use
an absolute URL—the data is transferred over a binary medium, and you must use
a character encoding to figure out how to interpret the data. Picture a URL as
returning a series of numbers to you: 87, 72, 89, and so on. You need a character
encoding to figure out what these numbers mean.

 By default, <c:import> usually does a pretty good job of interpreting these
numbers. When you load an absolute URL from a web server, this absolute URL
has a chance to declare its character encoding. Picture it responding by saying
something like this: “Here are some bytes, encoded using the ISO-8859-4 character
set: 87, 72, 89, ….” The <c:import> tag receives this message and normally can
decipher the bytes.

 However, in some situations you want to specify a character encoding yourself.
In particular, sometimes a URL doesn’t declare its character encoding appropri-
ately. In this case, <c:import> falls back to a decoding that works most of the time.
This encoding is called ISO-8859-1, and it represents a character encoding used

338 CHAPTER 14
Control and performance
widely in the United States and Western Europe. Because this default encoding isn’t
appropriate in all circumstances—say, if you’re downloading the original Russian
text of Crime and Punishment from a server in St. Petersburg—the <c:import> tag
lets you override the default. (Incidentally, the text of Crime and Punishment is long
enough that it’s a great example of something you’d want to use a reader for,
instead of a string!)

 To do so, simply specify a value for the charEncoding attribute. To specify a
character set, use its name, as in charEncoding="ISO-8859-4". (You can also use an
expression, as long as it resolves to the name of a valid character encoding.)

 For cases where an encoding is not necessary—for instance, if you’re importing
a local JSP page—the charEncoding attribute is ignored.

14.4 Advanced XML parsing and manipulation

The XML-manipulation tags that we discussed in chapter 8 work fine in most situ-
ations. However, if you need to handle very large XML documents, these tags offer
a few attributes to let you squeeze out extra performance. In addition, <x:parse>
and <x:transform> have attributes that help you deal with complex XML docu-
ments that include or otherwise refer to documents (much as JSP pages that use
<c:import> do).

14.4.1 XML data formats

Few computer technologies have generated as much enthusiasm as XML. A side
effect of the massive hype is that dozens of different styles of parsing XML have
emerged. XML files are simple text files, but when programs work with them, they
do so using an amazingly large array of strategies. Even in Java, a platform that has
encouraged standardization, there are half a dozen standard ways to parse and
manipulate XML documents.

 Therefore, when you read about JSTL’s XML tags in chapter 7, you might have
wondered what format JSTL uses to store and retrieve XML documents as scoped
variables. For instance, consider the following tag:

<x:parse var="tasks">

 <todoList>

 <task>Shave the dog</task>

 <task>Clean the ceiling</task>

 <task>Rotate the couch’s pillows</task>

 </todoList>

</x:parse>

Advanced XML parsing and manipulation 339
It’s clear that this <x:parse> tag stores a scoped variable named tasks. It’s even
clear that this variable will be stored in the page scope. But what is the Java data
type of the tasks variable?

 It’s up to the individual implementation of JSTL that you’re using. By default,
JSTL isn’t designed to produce a specific kind of XML type that’s usable by other
tags. It just needs to make sure that it can communicate with itself consistently.
Therefore, if we write

<%= pageContext.getAttribute("tasks").getClass().getName() %>

which is a Java expression that prints out the name of the tasks variable’s Java
class, our results could vary from one implementation or version of JSTL to
another. JSTL gives this considerable flexibility to implementations to encourage
runtime efficiency. Mandating a particular Java type would restrict an implementa-
tion’s ability to adapt to new XML-parsing technologies or to choose a type that it
knows how to handle efficiently.

 Normally, you don’t have to worry about the data types that JSTL uses to store
XML documents. (This is why the topic never came up in chapter 8.) But if you
need JSTL’s tags to interoperate with other XML tags, then you can’t use the default
behavior of <x:parse>, because you don’t know what type of objects <x:parse>
will produce.

 For cases where you need to interoperate, the <x:parse> tag provides a varDom
attribute (along with a scopeDom attribute). This attribute works just like var, but
instead of exposing an implementation-specific type, it exposes an instance of
org.w3c.dom.Document, which is part of Java’s standard support for a technology
known as the Document Object Model (DOM). A DOM representation of an XML doc-
ument isn’t particularly efficient in terms of either space or time—to put it bluntly,
DOMs are big and slow—but it serves as a useful lingua franca for XML. To let the
<x:parse> tag expose XML data for a custom tag library or other custom code to
use, you can specify the varDom attribute instead of var. For instance:

 <todoList>
 <task>Shave the dog</task>
 <task>Clean the ceiling</task>
 <task>Rotate the couch’s pillows</task>
 </todoList>
</x:parse>

Now, the tasks variable is guaranteed to implement the org.w3c.dom.Document
interface.

 JSTL’s support for DOM works in both directions: not only does <x:parse>
expose a DOM when its varDom attribute is used, but JSTL’s other XML-support

<x:parse varDom="tasks">

340 CHAPTER 14
Control and performance
tags—for instance, <x:set> and <x:out>—all accept DOM objects as well.
Figure 14.1 summarizes the ways that XML data can flow among tags.

 Therefore, for your own Java code to interact with JSTL, you need to use DOM.
See appendix D for pointers to more information on DOM objects.

14.4.2 Telling <x:parse> where a document came from

The <x:parse> tag has a systemId attribute that lets you tell the tag where your raw
XML text came from. In many cases, <x:parse> couldn’t care less about where you
got your document; it’s like a broker at a pawn shop who accepts the television and
hub caps you offer without asking how they came into your possession.

 However, if your document refers to other documents and resources using rela-
tive paths, you’ll need to use the systemId attribute to tell <x:parse> where you
found the document. This path can be either relative or absolute. Here’s an example:

<c:import var="cnn" url="http://www.cnn.com/cnn.rss"/>
<x:parse var="cnnXml"
 xml="${cnn}"
 systemId="http://www.cnn.com/cnn.rss"/>

If the file at http://www.cnn.com/cnn.rss points to another document with a rela-
tive URI like style.xsl or /data/header.xml, passing the document’s full URI to
<x:parse> helps the tag find your document’s dependencies.

 Similarly, the <x:transform> tag accepts one attribute to specify a full URI for its
XML document (xmlSystemId) and another for its XSLT stylesheet (xsltSystemId).

 When you use relative paths for the systemId, xmlSystemId, and xsltSystemId
attributes and operate on documents that contain relative URIs, JSTL interprets

Figure 14.1 The <x:parse> tag can use any data type to represent XML for variables
exposed through its var attribute. JSTL tags like <x:out> and <x:if> can use these data
types, but other tags cannot. For this reason, <x:parse> lets you expose a standard DOM
through its varDom attribute. To ensure interoperability, JSTL tags accept DOM objects as
well as whatever private type <x:parse> exposes for them.

Advanced XML parsing and manipulation 341
such URIs as if they refer to resources in your web application. This is a convenient
and powerful illusion; it means you can use entity references like the following:

<!ENTITY included SYSTEM "/target.xml">

If your document contains this declaration and you parse it with a systemId of /myCon-
text/page.xml, then the entity will refer to the target.xml file at the root of your
web application. This process lets you avoid using absolute URIs in your XML doc-
uments, which is useful because you need to change cross-references that use such
URIs any time your application moves.

 When you use the xsltSystemId attribute, XSLT tags like <xsl:include> and
<xsl:import>, as well as the XSLT document() function, can work with relative
URIs too.

14.4.3 Efficient parsing with org.xml.sax.XMLFilter

The <x:parse> tag has another advanced attribute: filter. You can use this
attribute to supply an object that implements the org.xml.sax.XMLFilter interface.
This interface lets you provide Java logic that implements a SAX-based filter for
XML documents. The details of programming an XML filter are beyond the scope
of this book, but if you’re familiar with them (or if someone hands you an XMLFil-
ter object) then the filter attribute can be useful in getting your pages to run faster.

 From a performance perspective, a filter is useful primarily because it lets you
cut down the size of a document. Say you’ve downloaded an XML document repre-
senting the entire text of Hamlet, but you’re only interested in lines of the play that
are spoken by Hamlet himself. You could use an XML filter to throw away the rest
of the document, which could vastly reduce the size of the DOM (or other object)
that JSTL has to keep in memory to represent the document. If you perform multi-
ple operations on this document after parsing it, then cutting down its size can lead
to noticeable performance improvements.

 You might wonder why <x:parse> bothers to accept a filter attribute when
you can already filter documents using XPath and the <x:set> tag. The reason is
twofold. First, XPath can only operate after the entire document is parsed, but
important performance improvements can be gained during parsing itself, before
the document is ever exposed to an <x:set> tag. Second, you might want to filter a
document using something other than XPath—for instance, using arbitrary Java
code. In such cases, the org.xml.sax.XMLFilter interface can be useful.

 JSTL 1.0 doesn’t provide any standard XML filters you can use in your pages.
However, the JSTL reference implementation provides an example of a filter that
might be useful. As an example filter for the JSTL reference implementation, I
designed and implemented a small language called SPath. SPath lets you filter a

342 CHAPTER 14
Control and performance
document based on a subset of XPath’s syntax—corresponding roughly to the por-
tion of XPath we discussed chapter 7. (This isn’t a coincidence; it’s the subset of
XPath that I think is most useful in most situations.)

 You can experiment with the SPath filter by copying the spath.tld file from the
src/org/apache/taglibs/standard/extra/spath directory of the reference implemen-
tation’s source code distribution, available from http://jakarta.apache.org/taglibs,
to your web application’s WEB-INF directory. Then, you can import SPath’s small
tag library into your page using the spath prefix with the following directive:

<%@ taglib prefix="spath" uri="/WEB-INF/spath.tld" %>

After this, you’re free to use a tag called <spath:filter> in your page. The
<spath:filter> tag takes two attributes: select, which lets you specify an expres-
sion in the small SPath language, and var, which lets you expose a filter. You can
use the tag as follows:

These two lines have a very similar effect to the following:

<x:parse xml="${bigDocument}" var="unfiltered"/>

<x:set select=’$unfiltered//customer[@id="525"]’ var="unfiltered"/>

However, for large documents, the former example should run much faster than
the latter; it applies an XMLFilter before the document is ever exposed, instead of
simply applying an XPath expression to pare down an already large document.

NOTE I said the two examples have a “very similar effect”—not an identical ef-
fect. The reason for the difference is somewhat technical. The first exam-
ple exposes an entire document (in a variable called filtered), whereas
the second exposes the root XML element of a document (in a variable
called unfiltered). This might not seem like a big difference, but XPath
draws a distinction between the root node of a document and the same doc-
ument’s root element. If the variable filtered points to the root node of
a document, you can expose the document’s root element as a variable
called doc by using the following tag:

<x:set select="$filtered/node()" var="doc" />

The XPath expression in this tag works because in XPath, the root element
is a child of the root node. If this concept still seems inscrutable, don’t wor-
ry; you can get along fine without understanding the details.

<spath:filter select=’//customer[@id="525"]’ var="spath"/>
<x:parse xml="${bigDocument}" var="filtered" filter="${spath}"/>

Deciphering requests with <fmt:requestEncoding> 343
14.4.4 Efficient transformations with javax.xml.transform.Result

If you’re familiar with the Transformation API for XML (TrAX), which is part of the
Java API for XML Processing (JAXP), you know that a special attribute of the
<x:transform> tag is designed to make it easier for you to pipeline XSLT trans-
forms and otherwise gain more control over your XSLT transformations. In particu-
lar, <x:transform> has a result attribute that accepts any implementation of
javax.xml.transform.Result. In TrAX, the Result interface lets you plug in your
own logic to accept the result of a transformation.

 The result attribute is mutually exclusive with var. Thus, <x:transform> can,
in general, output its results in three different ways; but each individual <x:trans-
form> tag must choose one of them, as shown here:

When you use var, <x:transform> exposes the result of the transformation as a
DOM object (implementing org.w3c.dom.Document). Therefore, the result
attribute is useful both to gain efficiency and to interoperate with any custom TrAX
logic you have.

14.5 Deciphering requests with <fmt:requestEncoding>

Most of JSTL’s formatting tags are straightforward and don’t require any advanced
understanding. But I’ve left an entire tag, <fmt:requestEncoding>, for this chapter,
because understanding it fully—like the charEncoding attribute of <c:import>—
requires a reasonably subtle understanding of character sets.

 Earlier in this chapter, I mentioned that when you import a file over the net-
work, the <c:import> tag must use a character encoding to decipher it. But requests
for your JSP pages come in over the same network, so requests need a character
encoding to be deciphered correctly. Just like some URLs, some web browsers fail
to declare an appropriate encoding for the bytes they send to you. This failure typi-
cally shows up as an inability to read foreign characters in request parameters. For
instance, you might use an expression like ${param.firstName} and get garbage
instead of the Cyrillic character you (and your Russian user) were expecting.

Attributes specified <x:transform>’s behavior

Neither var nor result Prints the document to the JSP page immediately

var Saves the document to the variable named by var

result Sends the result directly to the TrAX object passed in using result

344 CHAPTER 14
Control and performance
 To instruct JSTL to interpret parameters with a particular character encoding,
you can use the <fmt:requestEncoding> tag. Table 14.2 lists its single attribute.

The most specific use of <fmt:requestEncoding> is to invoke it with a value
attribute:

<fmt:requestEncoding value="UTF-8"/>

This tag instructs JSTL to use the UTF-8 character encoding to interpret all request
parameters. Of course, the value attribute can come from a JSTL expression, so
you don’t have to specify it literally.

 If your JSP environment has been set up appropriately, <fmt:requestEncoding>
can also attempt to manage appropriate character encodings automatically. In such
cases, you can specify the tag with no attribute:

<fmt:requestEncoding/>

This simple tag tries to figure out the right character set to use automatically, the way
most other JSTL formatting tags do. You’ll finally see, in section 14.6.1, some of the
mechanisms the formatting tags use to figure out so much information automatically.

14.6 Exposing data to JSP pages

Throughout this book, we’ve used the JSTL expression language to access Java-
Beans and other kinds of Java data. JSTL makes JavaBeans, java.util.Lists,
java.util.Maps, and other data types extremely simple to access from a web-page
author’s perspective. Now, it’s time to look at how to fulfill the programmer’s end
of the contract. This section explains how to expose data to JSTL tags in a manner
they can easily understand.

 This section assumes that you know Java, at least at a beginner’s level. To get the
most out of this section, you should also have some familiarity with writing Java
servlets and servlet listeners.

14.6.1 Saving data to a scope

The JSTL expression ${user} refers to the scoped variable user. Your Java code
can set such scoped variables in order to expose information to a JSP page. Once

Table 14.2 <fmt:requestEncoding> tag attribute

Attribute Description Required Default

value The name of a character encoding to decode the request No Automatic

Exposing data to JSP pages 345
you’ve exposed variables, you can provide a list of them to page authors, who will
then be able to display your data using appropriate HTML or other markup.

 In this section, I’ll show you how to write to scoped variables from a servlet. I
don’t talk about listeners, and we won’t discuss the details of servlets; my goal is to
show you how to add data to scopes. For more information on servlets and listen-
ers, see Web Development with JavaServer Pages.

 When you write a servlet, you typically extend the HttpServlet class and over-
ride the doGet() method, the doPost() method, or both. These two methods
accept the same arguments: an HttpServletRequest object that represents the
request for the servlet, and an HttpServletResponse object that represents the serv-
let’s response to the browser. The definition of a doPost() method in a servlet
might look like this:

protected void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // method body

}

Within the method’s body, we have access to the parameters we’ve declared:
request points to the object representing a browser’s request for our servlet, and
response helps us manage our response.

 Assuming we’ve already written a servlet that knows how to instantiate or
retrieve data, let’s look at how we can expose this data to a JSP page before for-
warding to it. Suppose we’ve declared a doPost() method using the arguments just
described and that this method retrieves an object called user. The easiest scope to
write to is the request scope. To store this object as a request-scoped variable named
currentUser, we’d write the following:

request.setAttribute("currentUser", user);

To store the same object in session scope, we’d write:

request.getSession().setAttribute("currentUser", user);

To store user in application scope, we could write

request.getSession().getServletContext().

 setAttribute("currentUser", user);

This isn’t the most elegant way to write to the application scope, but the other tech-
niques require more planning and are beyond this book’s scope. (This cries out for
a play on words, but I’ll spare you from having to read one.)

346 CHAPTER 14
Control and performance
 Note, again, that there is no page scope for a servlet; the servlet isn’t a JSP page.
Page scope only works from within a page; it’s not useful for communicating from
a servlet.

 Once you expose data like this, a JSP page to which you forward can access the
data using expressions like ${currentUser}, ${requestScope.currentUser}, and
so on.

 Incidentally, servlets can also read data from the various scopes. Instead of
using the setAttribute() call, you can use getAttribute(), which takes only a
single argument: the name of the scoped variable you’re trying to retrieve.

 Again, this wasn’t meant to be a general introduction to using servlets with JSP
pages, just a quick pointer on how to set scoped variables.

14.6.2 Exposing dynamic data structures

Now that you can expose data to JSP scopes, you might wonder what kind of data
you should expose. To operate well with JSTL’s expression language, the easiest thing
to do is to expose objects from the Java 2 Collections API. This API contains a num-
ber of classes that hold data for you, and JSTL is designed to work with most of them.

 In particular, there are two kinds of Collections classes you can easily use to
expose data for use with the JSTL expression language. The first is called a List,
and as its name implies, it stores a list of objects. For instance, if we have three
strings that we want to expose to the user, we can create a List, add items to it, and
then expose the entire list at once. To do so, we can write code like this:

List l = new ArrayList();

l.add(string1);

l.add(string2);

l.add(string3);

request.setAttribute("strings", l);

NOTE This example assumes that java.util.List and java.util.Array-
List are imported into your Java source file. You can ensure this by add-
ing the following to the top of your file:

import java.util.List;

import java.util.ArrayList;

Some people like to import entire packages at once. You can do so with a
single statement:

import java.util.*;

Exposing data to JSP pages 347
Some programmers and style guides discourage this sort of bulk import,
but for core classes like those in Java’s standard java.util package, there
isn’t much harm in importing everything.

Once you expose your list using the previous code, a page author could access it
using expressions like ${strings[0]}, ${strings[1]}, and so on.

 In some ways, java.util.Map objects are more flexible than java.util.List
objects. They let you store pairs of items, where each item has a name and a value.
Maps are therefore useful when you have a collection of objects to expose and you
want to give each a name. For instance, we might use a map to associate ZIP codes
with city names. We can create a map as follows:

Map m = new HashMap();
m.put("11791", "Syosset, NY");
m.put("06510", "New Haven, CT");
m.put("33767", "Clearwater, FL");

NOTE As before, you’ll need to make sure that java.util.Map and java.util.
HashMap are imported into your Java source.

Exposing this map in the session scope lets page authors access the pairs of ZIP
codes and place names. For instance, if we store the map as a session-scoped vari-
able named zips, then the following tag will print out "New Haven, CT":

<c:out value=’${sessionScope.zips["06510"]}’/>

14.6.3 Writing JavaBeans

Sometimes, you want to expose one of your own Java classes to a page author.
Doing so can be more efficient and convenient than creating maps and lists for all
of your application’s data. You can expose any Java object as a scoped variable, but
simply exposing an object doesn’t mean that JSTL will be able to do anything useful
with it. If you want your object’s data to be easily readable by page authors, you’ll
need to follow a few conventions when designing your classes.

 Fortunately, these conventions are straightforward. The rules are laid out by the
JavaBeans specification (this might sound intimidating, but it’s not). You don’t have
to jump through any complicated hoops to write a JavaBean; in fact, whether a
class is a JavaBean or not is something of a blurry distinction these days. For JSTL’s
purposes, you’ll just need to follow a few simple rules.

 Think of your class as a collection of properties you want to expose. For instance,
if you’re writing a class to represent a customer, your Customer class might have

348 CHAPTER 14
Control and performance
properties like firstName, lastName, birthdate, and so on. Then, to make sure the
JSTL expression language can access your class’s data, you need to make sure your
methods follow a specific pattern: they should have names that begin with the word
get, followed by the name of a single property. The first letter of the property
should be capitalized. For instance, to expose the lastName property, your method
should be called getLastName().

 Furthermore, your “get” methods—formally called getters or accessors—should
not accept any arguments. They can return any type of object, but they must return
something; they should not be declared void. Thus, a valid definition for a Java-
Bean-style accessor would be:

public String getLastName() {

 return lastName;

}

The method can run whatever logic we want it to run before it returns a value, but
as a matter of style, running a getter method shouldn’t have any lasting effect. For
instance, you shouldn’t perform a database update from a getter method.

 If our object has such a getLastName() method, then it exposes a lastName
property to the JSTL expression language. For instance, if our object is exposed as
the session-scoped variable user, then a page author could write ${session-
Scope.user.lastName}. When this expression runs, it will call our getLastName()
method and return whatever data we return. If your getter method returns another
object of yours, and this object has its own getter methods, then page authors can
construct long expressions to navigate your objects.

 The JavaBeans specification also let you expose boolean data using a method that
returns boolean and starts with the word is, as in isRegistered() or isSmart().

NOTE The JavaBeans specification allows you to use methods with any name as
getters, but using names that don’t start with get or is requires more work.
Only methods that begin with get or is will work, by default, as getters.

Although writing simple JavaBean-style accessor methods is simple, the full set of
rules for programming JavaBeans can be complicated. Normally, you don’t have to
worry about these rules, but they may sometimes get in your way. For example, the
JavaBeans specification also specifies setter methods—methods that begin with set
and that let you change a bean property. These methods aren’t supposed to matter
when you’re trying to expose data, but they can sometimes hinder a property
you’re trying to expose. For instance, one of the JavaBeans specification’s rules says

Configuring JSTL 349
that the data types for a setter and a getter method must match. Suppose a class has
the following methods:

public String getLastName();

public void setLastName(Object o);

In this case, because the type of the setter method’s argument (Object) doesn’t
match the type returned from the getLastName() method, the JavaBeans machin-
ery that operates behind the scenes in the JSTL expression language won’t recog-
nize lastName as a property. Expressions like ${sessionScope.user.lastName}
won’t work for such an object. Accidental clashes like this happen rarely, but they
can be very confusing when they do come up.

14.7 Configuring JSTL

As I’ve emphasized throughout this book, JSTL’s major goal is simplicity for the
page authors that use it. So, JSTL tries to hide as many background details as possi-
ble. In chapter 9, for example, I mentioned that JSTL’s database tags can use a
default database if one is configured by a back-end Java developer. In this section,
we’ll look at how you—as a back-end Java developer—can provide a useful default
environment for JSTL page authors you work with. Like the previous section, this
section assumes you know how to write servlets and listeners in Java.

14.7.1 Providing default information to JSTL tags

Some JSTL tags—particularly those in the database and formatting libraries—look
for configuration variables that can be set by behind-the-scenes Java code. These vari-
ables let you store data that alters JSTL’s behavior. Each configuration variable has a
specific name and affects a specific feature of JSTL, although a single configuration
variable may have an effect on multiple tags.

How JSTL organizes configuration variables
Every JSTL configuration variable has a name that begins with javax.serv-
let.jsp.jstl. JSTL looks for configuration variables in the following places, in order:

� Page scope
� Request scope
� Session scope
� Application scope
� Context-initialization parameters

350 CHAPTER 14
Control and performance
The four scopes should be familiar from their usage in this book. As you’ll see in a
moment, context-initialization parameters can be set in your web application’s
WEB-INF/web.xml file, otherwise known as its deployment descriptor.

 Once a JSTL tag finds a configuration variable in one of the locations just listed,
it stops looking. Therefore, setting a configuration variable in session scope over-
rides any value for the same parameter in page scope. Similarly, if you set any
scoped variable for a configuration variable, that variable overrides the context-
initialization parameter with the same name.

Scoped variables
In section 14.6, we discussed how to manage scoped variables. However, you can’t
set configuration variables manually using the techniques from that section.
Instead, you must use the utility methods that JSTL provides for setting configura-
tion variables. These methods are found in the javax.servlet.jsp.jstl.core.Config
class. This class has four static methods you can use to set configuration data for
JSTL; table 14.3 describes these methods.3

Table 14.3 JSTL provides the following four methods in the class javax.servlet.jsp.jstl.
core.Config to let you provide configuration data to JSTL tags behind the scenes. You can use
these methods to set up default databases, modify your pages’ default locales, and establish other
useful defaults for your pages.

Method Description Where it’s useful

set(PageContext pc,
 String name,
 Object value,
 int scope)

Sets a configuration variable in any
scope. For the scope attribute, you can
pass the value PageCon-
text.PAGE_SCOPE, PageContext.
REQUEST_SCOPE, PageContext.
SESSION_SCOPE, or PageContext.
APPLICATION_SCOPE.

Scriptlets, tag
handlers

set(ServletRequest request,
 String name,
 Object value)

Sets a configuration variable in request
scope. You pass in a ServletRe-
quest object.

Servlets, listeners

set(HttpSession session,
 String name,
 Object value)

Sets a configuration variable in session
scope. You pass in an HttpSession
object.

Servlets, listeners

3 Appendix B describes the other methods in the javax.servlet.jstl.core.Config class.

Configuring JSTL 351
When you use the methods of this Config class, you don’t need to know the name
of the variable you want to set. Instead, you can refer to the variable using a con-
stant—a final variable—in the Config class. For example, suppose we’re writing a
servlet and need to set a variable called javax.servlet.jsp.jstl.sql.maxRows.
(You’ll see in section 14.6.2 what this variable is for.) To set this variable in session
scope, we could write

Config.set(session,
 "javax.servlet.jsp.jstl.sql.maxRows",
 new Integer(500));

However, as long as we’ve imported the javax.servlet.jsp.jstl.core.Config
class into our Java source code with a line like this

import javax.servlet.jsp.jstl.core.Config;

then we can use a constant in the Config class instead of this variable’s name:

Config.set(session,
 Config.SQL_MAX_ROWS,
 new Integer(500));

For each configuration variable we discuss in the following sections, we’ll show
both its name and the constant in Config that represents it.

Initialization parameters
Context-initialization parameters are specified in your application’s web.xml file.
The web.xml file is located in your application’s WEB-INF directory, and it con-
tains information that the container can use to tailor your application’s environ-
ment. (For full information on web.xml files, see Web Development with JavaServer
Pages.) Here, we’ll just show enough of the file’s syntax that you can configure ini-
tialization parameters.

 A reasonably minimal web.xml file looks like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app

set(ServletContext application,
 String name,
 Object value)

Sets a configuration variable in
application scope. You pass in a
ServletContext object.

Servlets, listeners

Table 14.3 JSTL provides the following four methods in the class javax.servlet.jsp.jstl.
core.Config to let you provide configuration data to JSTL tags behind the scenes. You can use
these methods to set up default databases, modify your pages’ default locales, and establish other
useful defaults for your pages. (continued)

Method Description Where it’s useful

352 CHAPTER 14
Control and performance
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<web-app>
 <description>
 My web application.
 </description>

</web-app>

The tags that create an initialization parameter are highlighted. They appear within
the <web-app> element. The outer tag, <context-param>, declares a single context-
initialization parameter. This tag has two children: <param-name>, which specifies
the name of the parameter, and <param-value>, which specifies the value of the
parameter. Our sample web.xml file sets the parameter named my.initializa-
tion.parameter to a value of my.parameter.value.

 The constants declared in the Config class aren’t relevant when setting configu-
ration variables using context-initialization parameters.

 JSTL expressions can access context-initialization parameters directly using the
initParam implicit object, as in ${initParam["my.initialization.parameter"]}.
However, page authors don’t need to access configuration variables manually; their
defaults take effect automatically.

14.7.2 Managing database access

Now that we’ve looked at how to set configuration variables, let’s see what specific
variables JSTL looks for. JSTL’s database tags support the variables listed in
table 14.4.

Default DataSource
The javax.servlet.jsp.jstl.sql.dataSource variable (Config.SQL_DATA_SOURCE)
lets you install an object that represents your pages’ default database. This variable

<context-param>
<param-name>my.initialization.parameter</param-name>
<param-value>my.parameter.value</param-value>

</context-param>

Table 14.4 JSTL’s database tags support configuration variables to help you set up default data-
bases for your pages and to help prevent against runaway queries.

Variable constant Variable name Purpose

Con-
fig.SQL_DATA_SOURCE

javax.servlet.jsp.jstl.
sql.dataSource

Default DataSource object or path

Config.SQL_MAX_ROWS javax.servlet.jsp.jstl.
sql.maxRows

Default value for <sql:query>’s
maxRows attribute

Configuring JSTL 353
is called dataSource because it is designed primarily to accept a javax.sql.Data-
Source object. A DataSource object can support connection pooling, or it can be a
naïve implementation useful for prototyping or small applications.

 However, if you don’t have a DataSource object in hand, JSTL lets you specify
two other types of information in the SQL_DATA_SOURCE variable:

� If you’re using a JSP container that also supports the Java 2 Enterprise Edi-
tion (J2EE), you can specify a string that’s a Java Naming and Directory Inter-
face (JNDI) path to a DataSource (such as jdbc/MyDataSource).

� You can specify a string that describes how to connect to a database manu-
ally, using the old JDBC java.sql.DriverManager facility. DataSources are
more flexible and powerful than DriverManager, but JSTL lets you use it in
case you don’t care about the performance advantages of connection pool-
ing—or if you simply don’t have time to learn how to use DataSource objects
with your environment’s databases.

To use this last option, you can set the variable—using either Config.set() or your
application’s deployment descriptor—to a string of the following form:

url,driver,user,password

Each of these options matches an attribute of the <sql:setDataSource> tag we dis-
cussed in chapter 9. In this string, url is required, and all the other elements are
optional. You can use two sequential commas (,,) if you want to leave out a field.
For instance, the string

jdbc:foo,,shawn,jstl

uses a url of jdbc:foo, a username of shawn, and a password of jstl—but it speci-
fies no driver. (Recall from chapter 9 that you don’t need to specify a driver if you
can be sure it’s already been loaded elsewhere.)

 The advantage of using strings like this over the <sql:setDataSource> tag is
that you can hide the information from your JSP pages. Using the configuration
variable, for example, lets you change the parameters behind the scenes without
having to tell the user. You could even start with a simple string containing manual
JDBC instructions and switch later to a DataSource as your application grows.

 In many applications, listeners are the ideal place to initialize and expose Data-
Source objects. For instance, you might want to expose a DataSource hard-wired to
a particular username for each new user session. Or, you can expose a single Data-
Source for your entire application.

354 CHAPTER 14
Control and performance
Default result-size limitation

In chapter 9, we examined the maxRows attribute for the <sql:query> tag. This
attribute helps prevent runaway queries by truncating a result that’s bigger than
expected. If you want to set an application-wide default policy for maxRows, you can
do so using the javax.servlet.jsp.jstl.sql.maxRows (Config.SQL_MAX_ROWS)
variable. To be blunt, it can be useful when you don’t trust page authors you work
with to properly set maxRows; you might find the configuration variable useful if
your pages have a tendency to engage in runaway queries, filling up your server’s
memory needlessly.

 For example, to limit the default size of results to 500 rows for the entire applica-
tion, we could write

Config.set(context,

 Config.SQL_MAX_ROWS,

 new Integer(500));

where context is an instance of HttpServletContext.

14.7.3 Managing internationalization

JSTL also supports several configuration variables for the formatting and interna-
tionalization library. They are listed in table 14.5.

The first two of table 14.5’s configuration variables are easy to understand. Con-
fig.FMT_TIME_ZONE specifies a time zone to use for a specific scope (such as a single
session or the entire application). It accepts either a java.util.TimeZone object or
a String; if it’s passed a String, then anything that works in <fmt:setTimeZone>’s

Table 14.5 JSTL’s formatting tags use configuration variables to let you describe default locales,
time zones, and other features of an internationalized application.

Variable constant Variable name Purpose

Config.FMT_TIME_ZONE javax.servlet.jsp.jstl.fmt.timeZone Default time
zone

Config.FMT_LOCALE javax.servlet.jsp.jstl.fmt.locale Default locale,
overriding
browser

Config.FMT_FALLBACK_LOCALE javax.servlet.jsp.jstl.fmt.fall-
backLocale

See section

14.7.3

Config.FMT_LOCAL-
IZATION_CONTEXT

javax.servlet.jsp.jstl.fmt.local-
izationContext

See section

14.7.3

Enforcing good page-authoring habits 355
value attribute works here. (See chapter 10 for more information about how to
specify time zones.)

 Similarly, Config.FMT_LOCALE lets you override the default browser-sensing
capabilities of JSTL’s fmt tags. It accepts a java.util.Locale object or a String. If
it’s passed a String, then anything that works in <fmt:setLocale>’s value attribute
works for the configuration variable, too.

 The other two configuration variables are more complicated because they
involve details we haven’t discussed yet. The Config.FMT_FALLBACK_LOCALE vari-
able doesn’t override the default locale the way Config.FMT_LOCALE does. Instead,
it provides a safety net for your application. Sometimes, an internationalization-
capable formatting tag can’t figure out which locale to use. For instance, the
browser might have requested a locale for which Java doesn’t know how to format
numbers or dates, or a locale that doesn’t match one of the available locales in a
resource-bundle family. When this happens, JSTL uses Config.FMT_FALLBACK_LOCALE
to recover. Thus, you can use Config.FMT_FALLBACK_LOCALE to establish a sensible
lowest-common-denominator locale for your application.

 The Config.FMT_LOCALIZATION_CONTEXT variable lets you specify two things.
First, it accepts a String representing a default bundle basename for your applica-
tion. (See chapter 10 for more information about basenames.) Second, it lets you
establish a default JSTL LocalizationContext object. Appendix B describes Local-
izationContext objects in more detail.

14.8 Enforcing good page-authoring habits

Earlier in this chapter, I advised against using scriptlets and other scripting ele-
ments. If you agree with this advice and happen to manage a web application, you
might encourage your application’s page designers to avoid scriptlets—in meetings,
by posting signs in restrooms, or through any number of other informal strategies.

 Informal encouragement doesn’t always work, however. Criticizing scriptlets at
meetings might not diminish their use in practice. To let you formalize your appli-
cation’s policies, JSTL gives you a way to help prohibit scriptlets in your applica-
tion’s pages.

 It’s important to realize that JSTL’s anti-scriptlet support isn’t a security measure.
JSTL doesn’t give you any tools that fully prevent a determined page author from
using scriptlets. Instead, JSTL lets you expose a policy that page authors can implic-
itly accept by using your tag libraries or by including a special <%@ taglib %>
directive in their pages.

 JSP 1.2 introduced the idea of a tag-library validator (TLV). A validator is a class,
written in Java, that reads a JSP page and decides whether it’s legitimate. It can use

356 CHAPTER 14
Control and performance
whatever criteria it wants to determine whether the page is legitimate. For instance,
TLVs are powerful enough to implement the kinds of constraints you saw for the
<c:choose> tag in chapter 4.

 JSTL provides two standard TLV classes that help you validate your pages
against practices that make the pages hard to maintain. The first, called Script-
FreeTLV, is designed to prevent pages from using scripting elements. The second,
PermittedTaglibsTLV, limits the tag libraries that can be imported into a page; it
lets you enumerate a list of appropriate tag libraries.

14.8.1 Requiring script-free pages

To use JSTL’s validators, you must write a tag-library descriptor (TLD) document.
We’ll discuss the syntax of this document more thoroughly in chapter 15. For now,
here’s a cookie-cutter approach that lets you use ScriptFreeTLV. Simply save the
document from listing 14.1 into your application’s WEB-INF directory as a file
called scriptfree.tld.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd">
<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>scriptfree</short-name>
 <validator>
 <validator-class>
 javax.servlet.jsp.jstl.tlv.ScriptFreeTLV
 </validator-class>
 <init-param>
 <param-name>allowDeclarations</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>allowScriptlets</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>allowExpressions</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>allowRTExpressions</param-name>
 <param-value>false</param-value>
 </init-param>

Listing 14.1 scriptfree.tld: TLD to discourage scripting elements

Allow
declarations?

 b

Allow
scriptlets?

 c

Allow scripting
expressions?

 d

Allow
rtexprvalues?

 e

Enforcing good page-authoring habits 357
 </validator>

 <tag>

 <name>noop</name>

 <tag-class>javax.servlet.jsp.tagext.TagSupport</tag-class>

 <body-content>empty</body-content>

 </tag>

</taglib>

Most of this document is boilerplate. However, it has four interesting sections,
marked by the tags <init-param> and </init-param>. These sections let you con-
figure how strict you’d like to be in monitoring against scripting elements. You can
decide to limit

b declarations (<%! … %>)

c scriptlets (<% … %>)

d scripting expressions (<%= … %>)

e rtexprvalues (a scripting expression within a JSP tag attribute)

In the file I’ve shown, all of these scripting elements are prohibited; you can selec-
tively allow them by replacing the word false with true inside the corresponding
<param-value> tags.

 If you save this file as /WEB-INF/scriptfree.tld in your web application, then script-
ing expressions will be prohibited from any page that uses the following directive:

<%@ taglib uri="/WEB-INF/scriptfree.tld" prefix="scriptfree" %>

As I mentioned, this limitation requires buy-in from any JSP page author whose
behavior you’re trying to control; a page author can always choose not to include
this directive.

 If you know how to write and package tag libraries (a topic we’ll introduce in
chapter 15) then you can include the <validator> element from scriptfree.tld in
your own TLD files, thus requiring that anyone who uses your taglibs also not use
scripting elements.

14.8.2 Enumerating legal tag libraries

JSTL’s second validator lets you list the tag libraries that are valid for a particular
page. Listing 14.2 shows an example that ensures no tag libraries other than JSTL’s
non-rtepxrvalue libraries are used in a page.

358 CHAPTER 14
Control and performance
<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>permitted</short-name>

 <validator>

 <validator-class>

 javax.servlet.jsp.jstl.tlv.PermittedTaglibsTLV

 </validator-class>

 <init-param>

 <param-name>permittedTaglibs</param-name>

 <param-value>

 http://java.sun.com/jstl/core

 http://java.sun.com/jstl/fmt

 http://java.sun.com/jstl/sql

 http://java.sun.com/jstl/xml

 </param-value>

 </init-param>

 </validator>

 <tag>

 <name>noop</name>

 <tag-class>javax.servlet.jsp.tagext.TagSupport</tag-class>

 <body-content>empty</body-content>

 </tag>

</taglib>

If you save this document as /WEB-INF/permitted.tld inside your application, then
any page that includes the directive

<%@ taglib uri="/WEB-INF/permitted.tld" prefix="permitted" %>

will be prevented from using anything but the tag libraries whose URIs you’ve
listed inside the <param-value> element. For instance, you might list only the tag
libraries that are supported at your organization. Or, if you feel particularly strongly
about the caution against JSTL’s database tags that I mentioned in chapter 9, you
could formally discourage their use in your pages by removing the URI for JSTL’s
database tags (http://java.sun.com/jstl/sql) from your /WEB-INF/permitted.tld file.

Listing 14.2 permitted.tld: TLD to constrain tag library declarations

Lists valid tag
libraries

Summary 359
14.9 Summary

If you’re a JSTL user who knows Java, keep the following points in mind when
using JSTL’s advanced features:

� Scripting expressions let you incorporate Java code directly into your JSP
pages, using pseudotags that look like <% … %> and <%= … %>. Using them can
be convenient, but it can also make your pages difficult to maintain.

� The <jsp:useBean> tag acts as a bridge between JSTL and scripting expressions.
� The <c:set> tag lets you modify properties of JavaBeans, or values in Map

objects, which you can reference using JSTL’s expression language.
� The tag libraries for text importing and XML parsing contain a handful of

extra attributes that give you more control over the libraries’ behavior. Most
of these advanced options are intended to help you squeeze more perfor-
mance out of JSTL when it’s critical that your pages run quickly.

� You can create scoped variables using servlets and listeners. To let the JSTL
expression language read your data, just write classes that use JavaBean-style
accessor methods, like getUserName().

� You can use JSTL configuration variables to modify the behavior of the data-
base and formatting tags behind the scenes.

� JSTL gives you tools to help discourage scriptlets and unwanted tag libraries
from being used in your applications’ pages.

15Using JSTL to
develop custom tags
This chapter covers…
� The basics of tag-library development
� Tag-library descriptor (TLD) files
� Writing iteration tags
� Writing condition tags
361

362 CHAPTER 15
Using JSTL to develop custom tags
As you’ve seen, JSTL gives page authors the tools they need to access databases,
format text and XML, internationalize applications, and perform many other com-
mon tasks. In many cases, authors of JSP pages don’t need to look beyond the flex-
ible set of tags that JSTL offers.

 However, JSTL’s tags aren’t meant to solve every potential problem a page
author might run into. When page authors have a need that JSTL doesn’t address,
they depend on back-end Java programmers to fill in the gaps. For example, JSTL
1.0 doesn’t offer a way to send email, read from online directories using the Java
Naming and Directory Interface (JNDI), send messages using the Java Message Ser-
vice (JMS), and so on. If page authors need to accomplish these tasks, they need to
be helped along by back-end Java programmers in their organization (or third-
party tag libraries they download or purchase).

 In this chapter, we look at how JSTL makes it easier to develop custom tag
libraries. At this point, I assume you have some knowledge of the Java program-
ming language. As you’ll see, JSTL lets you develop some kinds of tags without
making you learn the details of JSP’s complex tag-related APIs. However, under JSP
1.2, you still need to know Java to develop custom tags.

NOTE At the time I wrote this chapter, the JSP 1.3 expert group was considering
how to provide a way for non-programmers to produce custom tags using
JSP instead of Java. So, under JSP 1.3, developing tags might become even
easier. For the moment, though, JSTL’s support for tag developers is a use-
ful step in the right direction.

15.1 Developing and installing tag libraries

Tag libraries are written in Java using JSP’s tag extension API. This API lets you
develop tag handlers, which are Java classes that implement custom JSP tags. For
instance, we might write a Java class named

com.jstlbook.examples.MyIfTag

whose code runs every time the tag

<book:if>

appears in our site’s JSP pages. For such a class to be a tag handler, it must imple-
ment the javax.servlet.jsp.tagext.Tag interface, which is defined by the JSP
specification.

Developing and installing tag libraries 363
15.1.1 JSTL’s support for tag-handler developers

Writing tag handlers from scratch is not enormously difficult, but it’s tricky to get
right. Most Java developers can master the art of tag-handler development, but cre-
ating effective tag libraries requires specialized skills and knowledge. When you
develop a traditional tag handler, you need to keep in mind somewhat complex
protocols concerning the tag-handler lifecycle, the order in which methods are
expected to be invoked, and so on.

 To make your job easier, JSTL comes with several Java classes known as support
classes or base classes. Instead of building a tag handler from scratch, you can extend,
or subclass, one of these base classes. Therefore, for a few kinds of common tags,
JSTL shields you from the details of the tag-extension API. Rather than learning
how traditional tag-handler methods like doStartTag() and doAfterBody() work,
you can focus on your custom code.

 JSTL primarily helps you build two important kinds of tags: conditional tags and
loop tags. Conditional tags, as we explained in chapter 4, let page authors make
decisions within a JSP page. Loop tags, or iteration tags, help page authors cycle
over data, often to build tables or lists. Before JSTL, creating these tags was possible,
but the process was roundabout and indirect. With JSTL, writing a conditional tag is
as simple as writing a method that returns a boolean value, and developing a tag
that loops over data is as easy as providing the data you want the tag to loop over.

 We’ll look at how JSTL’s support for tag developers works in sections 15.2 and
15.3. Before that, it will help to take a step back and learn a little more about how
tag libraries work in JSP.

15.1.2 The tag-library descriptor (TLD)

Imagine that we’ve written a Java class called com.jstlbook.example.MyIfTag. If
this class implements the javax.servlet.jsp.tagext.Tag interface, it has the
potential to become a tag handler. However, before we can use this class as a tag
handler, we need to associate it with a JSP tag library.

 To make this association, we need to create a file called a tag-library descriptor
(TLD). A TLD is an XML document that describes the tags contained by an individ-
ual tag library. Books like Web Development with JavaServer Pages1 describe the TLD in
more detail, but let’s look briefly at the basics.

 The TLD is a straightforward XML document. (Because TLDs are XML docu-
ments, you may wish to browse chapter 2 if you’re not yet comfortable with XML’s

1 Duane Fields, Mark Kolb, and Shawn Bayern, 2nd ed. (Manning Publications, 2001).

364 CHAPTER 15
Using JSTL to develop custom tags
syntax.) Every TLD should have a header, or prologue. For JSP 1.2 TLDs, you can
use the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

This header simply identifies the file as a TLD. After this header, the rest of the doc-
ument is contained within a <taglib> element, which has two important sections.
First, <taglib> has a few child elements that describe the tag library as a whole.
Then, <taglib> has one or more child <tag> elements that define individual tags
within the tag library.

Taglib-wide elements
Useful taglib-wide descriptive elements that can occur within <taglib> include the
following:

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>book</short-name>

 <uri>http://jstlbook.com/tld/example.tld</uri>

 <display-name>JSTL book examples</display-name>

 <description>Taglib examples from Manning</description>

 . . .

</taglib>

The <tlib-version> element contains the version identifier for your tag library.
For example, you might use 1 or 1.0 for the first version of your tag library. It
doesn’t matter what number you choose, but you should pick a new value for each
version of your tag library that you make public. Versions facilitate documentation,
testing, and final use. In contrast with <tlib-version>, <jsp-version> describes
the version of JSP with which you want to use the tag library. For JSP 1.2, this ele-
ment should have the value 1.2. (Note that JSTL requires JSP 1.2.)

 The <short-name> tag contains, not surprisingly, a short identifier for the tag
library. Usually, this value should be the prefix you recommend using with the tag
library. Recall from chapter 2 that page authors can choose the prefixes they use.
Still, you can suggest a recommended prefix, just as JSTL recommends c for the
core library, sql for the database library, and so on. For this chapter’s sample tag
library, we choose the prefix book.

Developing and installing tag libraries 365
 As we discussed in chapter 2, every tag library is uniquely identified by a Uni-
versal Resource Identifier (URI), which we insert into the <uri> element. For this
chapter’s sample tag library, we use the following URI:

http://jstlbook.com/tld/example.tld

After <uri>, the two elements <display-name> and <description> provide
optional information that might be printed out by tools, such as integrated develop-
ment environments (IDEs), that support JSP.

 Note that the TLD <taglib> element can contain taglib-wide descriptor ele-
ments other than the ones we’ve shown here, but they’re not important for our pur-
poses. (Remember that in chapter 14, we used a <validator> element to introduce
validation logic into a TLD.)

Elements for individual tags

In addition to these taglib-wide elements, the <taglib> element contains descrip-
tions of each individual tag in the taglib. The <taglib> element has a child <tag>
element for each tag. As figure 15.1 suggests, the <tag> element maps a tag name to
a tag-handler class. Here’s a sample <tag> element:

<tag>

 <name>if</name>

 <tag-class>com.jstlbook.example.MyIfTag</tag-class>

 <attribute>

 <name>test</name>

 <required>true</required>

 </attribute>

</tag>

Figure 15.1 represents this mapping graphically.

Figure 15.1 When you write a tag handler class in Java, you need to map
it to a JSP tag using the <tag> element inside a TLD document. Only with
such a mapping does the JSP container know how your tag library’s tags are
implemented.

366 CHAPTER 15
Using JSTL to develop custom tags
 The <tag> element’s two most important children are <name> and <tag-class>,
which describe the tag’s name and its implementation class, respectively. These two
child elements provide the mapping between tag name and tag-handler class.

 For each attribute that the tag accepts, the <tag> element must have a child
<attribute> element. This <attribute> element can contain a number of its own
child elements, including <name> (containing the attribute’s name), and <required>
(true if the attribute is required, false otherwise).

 The <tag> and <attribute> elements can contain many other elements, but
they’re not important for our purposes. As I mentioned, books like Web Development
with JavaServer Pages describe the TLD in detail; we only need to cover TLD basics here.

15.1.3 Installing and using a tag library

Before you can use a TLD that you’ve written, you need to make it available to a
web application. You can do this a number of ways, but we’ll cover the simplest
one. To use a tag library in an application, follow this procedure:

1 Copy the TLD file to your application’s WEB-INF directory.
2 Install the tag handlers in WEB-INF/classes (for raw Java classes) or WEB-

INF/lib (for packaged JAR files). Note that if you add the classes to WEB-INF/
classes, you must create the appropriate subdirectory for your package. For
instance, you would add .class files for classes in the com.jstlbook.examples
package to the WEB-INF/classes/com/jstlbook/examples directory.

3 Instruct the page author to import the tag library using the <%@ taglib %>
directive. However, instead of using the tag library’s real URI, the page
author can use the local path to the TLD file for the <%@ taglib %> direc-
tive’s uri attribute. For example, if your TLD file is named example.tld and
you have added it to the WEB-INF directory, then the following directive
would import the tag library into a page:

<%@ taglib prefix="example" uri="/WEB-INF/example.tld" %>

The directive must appear in any page that uses the tag library.

Once you’ve followed these steps, page authors will be ready to use your tag library.

15.2 Developing conditional tags

As you saw in chapter 4, JSTL’s <c:if> tag lets page authors introduce conditional
logic into their pages. The <c:if> tag takes a test attribute that accepts conditional
expressions using JSTL’s expression language.

Developing conditional tags 367
 Although this expression language is useful in many situations, some pages
require more specific, focused conditional logic. The expression language lets you
compare two values, for example, but it doesn’t let you ask all the conditional ques-
tions that Java lets you ask. That’s what custom tag handlers are for.

15.2.1 A simple conditional tag

For our first example of custom conditional tags, suppose a page author for our
application needs to display different data depending on whether it’s the weekend
or weekday. Imagine the following requirement: when a page is loaded any time
between Monday and Friday, the page must print, “Our operators are standing by
at this very moment.” Otherwise, it should not print this message: no use inviting
telephone calls when nobody’s around to answer them.

 We might be able to implement this functionality using the <fmt:formatDate>
tag from chapter 10 and some clever applications of the pattern attribute. But
although this strategy would probably be fun to implement, it would lead to an
awkward, hard-to-maintain page. Instead, we’d like to create simple logic that dif-
ferentiates weekdays from weekends and expose this logic to page authors who
don’t necessarily know how to program. That is, we want page authors to be able to
write something like this:

<book:ifWeekday>
 Our operators are standing by at this very moment.
</book:ifWeekday>

The new tag, <book:ifWeekday>, should let its body be processed only if the cur-
rent day is a weekday. Thus, on Monday through Friday, this tag will cause its body
to be printed; on the weekends, it will prevent its body from printing. With this sim-
ple syntax, pages using the tag will be easy to maintain.

 Before we create the <book:ifWeekday> tag, we need to figure out how to write
code to differentiate weekends from weekdays. Ideally, we’d like to write a simple
isWeekday() method that returns true on weekdays and false on weekends. List-
ing 15.1 shows one way to write such a method, spelled out in detail to make sure
it’s clear.

package com.jstlbook.examples;

import java.util.*;

public class Weekday {

 public boolean isWeekday() {

Listing 15.1 weekday.java: a class with a method that detects weekends

Returns a boolean b

368 CHAPTER 15
Using JSTL to develop custom tags
 Calendar now = Calendar.getInstance();
 if (now.get(Calendar.DAY_OF_WEEK) == Calendar.SATURDAY)
 return false;
 if (now.get(Calendar.DAY_OF_WEEK) == Calendar.SUNDAY)
 return false;
 return true;
 }

}

This class contains a single method, isWeekday(), that implements the logic we need.

 b The isWeekday() method returns a boolean, a Java type that has exactly two val-
ues: true and false. The method uses this type because it asks a yes-or-no ques-
tion: “Is today a weekday?” The question has only two possible answers.

 c The first line of the method retrieves a Calendar object representing the current
date. When Calendar.getInstance() is called, it returns a Calendar object corre-
sponding to the current moment. We save this Calendar in a variable called now.

 The rest of the method differentiates weekends from weekdays. To determine
what day of week a Calendar object represents, you can call its get() method with
the argument Calendar.DAY_OF_WEEK. To test this method’s return value against dif-
ferent days of the week, you can compare it to the constants Calendar.SUNDAY,
Calendar.MONDAY, and so on. In the isWeekday() method, we check to see whether
the day is Calendar.SATURDAY or Calendar.SUNDAY. If it is, we return false,
because these are weekend days, not weekdays. Otherwise, for all remaining days,
we return true.

Turning simple classes into tag handlers
Our Weekday class provides all the necessary logic to differentiate weekends from
weekdays, but it isn’t useful in its current form. It’s just a stand-alone class; it can’t
be used as a tag handler.

 However, with JSTL’s support for developing conditional tags, we’re not far
from giving page authors a tag they can use to differentiate weekends from week-
days. We’ve written a boolean method that answers the question—and this is all
that JSTL’s conditional-tag support requires.

 JSTL provides an abstract class called ConditionalTagSupport in the javax.
servlet.jsp.jstl.core package. In Java, abstract classes are classes that cannot be
instantiated themselves; they must be extended, or subclassed, to be useful. Condi-
tionalTagSupport contains a few method declarations, but we’re most interested in
the following:

protected abstract boolean condition() throws JspException;

Separates
weekends
from
weekdays

 c

Developing conditional tags 369
The ConditionalTagSupport class uses this abstract method to decide whether to
include its body in its JSP page. If condition() returns true, then the tag lets its
body be evaluated, just like <c:if> when its test attribute evaluates to true. Other-
wise, if condition() returns false, then the tag skips over its body.

 Therefore, to implement the <book:ifWeekday> tag we demonstrated earlier, we
just need to extend ConditionalTagSupport and write a condition() method that
returns true for weekdays and false for weekends, as our isWeekday() method does.

 Listing 15.2 shows the changes we need to make to our Weekday class to turn it
into a ConditionalTagSupport tag handler.

package com.jstlbook.examples;

import java.util.*;
import javax.servlet.jsp.JspTagException;

 Calendar now = Calendar.getInstance();
 if (now.get(Calendar.DAY_OF_WEEK) == Calendar.SATURDAY)
 return false;
 if (now.get(Calendar.DAY_OF_WEEK) == Calendar.SUNDAY)
 return false;
 return true;
 }

}

Changes from listing 15.1 are highlighted. We now call the class WeekdayTag
because it’s conventional for tag handlers’ names to end with Tag.

 With these minor changes, we’ve written our first tag handler!

Writing the TLD
To expose this single tag to a web page, we need to create a tag library (a TLD) to
contain it. The TLD must associate the tag and the tag-handler class that imple-
ments it. The following relatively minimal TLD will do fine:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>

Listing 15.2 WeekdayTag.java: the Weekday class converted to a tag handler

public class WeekdayTag
extends javax.servlet.jsp.jstl.core.ConditionalTagSupport {

public boolean condition() throws JspTagException {

If we return
true from
here, the
tag’s body
will run

Boilerplate
TLD prologue

Describes
the taglib

370 CHAPTER 15
Using JSTL to develop custom tags
 <short-name>book</short-name>
 <uri>http://jstlbook.com/tld/weekday.tld</uri>

 <tag>
 <name>ifWeekday</name>
 <tag-class>com.jstlbook.examples.WeekdayTag</tag-class>
 </tag>
</taglib>

Note that this tag library’s single <tag> element has no <attribute> children
because our sample <ifWeekday> tag doesn’t accept any attributes.

Using the tag
If we name this TLD file weekday.tld and add it to our application’s WEB-INF direc-
tory, we can begin using the tag that it defines. We need to use a <%@ taglib %>
directive to import the tag library and give it a prefix. For instance:

<%@ taglib prefix="book" uri="/WEB-INF/weekday.tld" %>

Now, our tag is accessible as <book:ifWeekday>. Here’s a sample JSP page, from
the ground up, that uses the tag:

<%@ taglib prefix="book" uri="/WEB-INF/weekday.tld" %>
<book:ifWeekday>
 Our operators are standing by at this very moment.
</book:ifWeekday>

This JSP page will print a message only on weekdays; on weekends, it will print
nothing but white space.

15.2.2 A conditional tag with attributes

The <book:ifWeekday> tag from the last section is relatively simple—so simple, in
fact, that it’s hard to think of a compelling use for it in real life. Let’s expand this con-
ditional tag by allowing it to make more specific decisions about days of the week, as
well as times of the day. To do this, we’ll write a tag handler that accepts attributes.

 Let’s create a new tag called <book:ifTime>. This tag will take the following
attributes:

Describes
the taglib

Creates the
<ifWeekday>
tag

Attribute Explanation Examples

day Requires that the current weekday match a specific weekday.
Accepts lowercase names of days.

sunday
monday

before Requires that the current hour be earlier than a specific time of
day. Accepts numeric hours in military time.

6
18

after Requires that the current hour be later than a specific time of day.
Accepts numeric hours in military time.

8
20

Developing conditional tags 371
If multiple attributes are specified, we want them all to be satisfied before the tag
prints its body. For example, consider the following tags (with descriptions of when
their bodies should run):

Thus, we can use this tag whenever we want a web page to display something for a
particular interval of time. The tag could be useful for time-sensitive recurring
announcements, like “Don’t forget to fill out your payforms!”

The code for <book:ifTime>
To write a handler for this new tag, we’ll again implement a condition() method.
But in addition, we must process the three attributes that this tag accepts. To do so,
we’ll write methods named setXxx(), where xxx is the name of the attribute. For
instance, for the before attribute, we’ll write a method named setBefore(). (Note
that in the method name, we’ve capitalized the leading b in before.)

TIP You might recognize the form of the setXxx() methods from chapter 14.
These methods are typical JavaBeans setter methods. Tag attributes are
simply treated as JavaBeans properties: the tag handler is a bean.
Therefore, any legitimate bean-style properties that the tag-handler
class has can correspond to tag attributes; you just need to declare them
in your TLD.

Listing 15.3 shows the Java code for our <book:ifTime> tag.

package com.jstlbook.examples;

import java.util.*;

public class TimeTag

 extends javax.servlet.jsp.jstl.core.ConditionalTagSupport {

Example Includes body only…

<book:ifTime day="wednesday"> on Wednesdays

<book:ifTime day="friday"
 before="12">

on Fridays before noon

<book:ifTime after="12"> on any day, but only after noon

<book:ifTime day="sunday"
 after="21" before="22"/>

on Sundays, between 9:00 p.m.
and 10:00 p.m.

Listing 15.3 TimeTag.java: the handler for <book:ifTime>

372 CHAPTER 15
Using JSTL to develop custom tags
 private int day = -1;
 private int after = -1;
 private int before = -1;

 public void setDay(String s) {
 if (s.equals("sunday"))
 day = Calendar.SUNDAY;
 else if (s.equals("monday"))
 day = Calendar.MONDAY;
 else if (s.equals("tuesday"))
 day = Calendar.TUESDAY;
 else if (s.equals("wednesday"))
 day = Calendar.WEDNESDAY;
 else if (s.equals("thursday"))
 day = Calendar.THURSDAY;
 else if (s.equals("friday"))
 day = Calendar.FRIDAY;
 else if (s.equals("saturday"))
 day = Calendar.SATURDAY;
 else throw new IllegalArgumentException("bad weekday: " + s);
 }

 public void setBefore(int i) {
 if (i < 0 || i > 23)
 throw new IllegalArgumentException("bad hour: " + i);
 before = i;
 }

 public void setAfter(int i) {
 if (i < 0 || i > 23)
 throw new IllegalArgumentException("bad hour: " + i);
 after = i;
 }

 protected boolean condition() {
 Calendar now = Calendar.getInstance();
 int currentDay = now.get(Calendar.DAY_OF_WEEK);
 int currentHour = now.get(Calendar.HOUR_OF_DAY);

 if (day != -1 && currentDay != day)
 return false;

 if (before != -1 && currentHour >= before)
 return false;

 if (after != -1 && currentHour < after)
 return false;

 return true;
 }
}

Variables for
attributes

 b

Accepts the
day attribute

 c

Retrieves the
current date
and time

 d

Ensures the date
and time meet
requirements

 e

Developing conditional tags 373
Understanding the code
The TimeTag handler is based on the same principle as the WeekdayTag handler: it
extends ConditionalTagSupport and provides a condition() method that decides
whether the tag should include its body. However, unlike WeekdayTag, the TimeTag
handler has setter methods for attributes.

 b The tag handler needs a way to remember what attributes have been sent to it.
Handlers can store attributes any way they’d like. Here, we keep a single int vari-
able for each attribute: day, before, and after. We initialize them to -1, which hap-
pens to be an invalid value for all the attributes. This way, we can compare each
attribute later to -1 to determine whether it was set by the page author (or left out of
the tag). If an attribute has no clearly invalid values—for instance, if you need to
accept both negative and positive numbers—then you can use a separate boolean
variable to record whether an attribute is set.

 c The setDay() method accepts the day attribute. That is, if the tag is called with the
attribute day="tuesday", then the tag handler can expect the setDay() method to
be called with an argument of tuesday. In this method, we compare the input
String to all the names of days we accept. If a match is found, we store the int that
the Calendar class uses to represent the day numerically. For instance, the Calen-
dar.SUNDAY constant int represents Sunday, Calendar.MONDAY represents Monday,
and so on. If no match is found, we throw an IllegalArgumentException to indi-
cate that our argument—the attribute the page author used—isn’t valid. Thus,
because of our “bad weekday” message, a page author who uses the attribute
day="sundae" (a misspelling possibly arising from hunger) would receive the fol-
lowing error message: "bad weekday: sundae".

 The setDay() method accepts a String argument because we want the page
author to specify a string corresponding to a weekday.

 Unlike setDay(), the setBefore() method accepts an int, not a String. We
write the method this way because the only valid attributes for the before attribute
are integers. We want hours to be identified by simple integers; we don’t want to
accept 8.5 or 8:00. This is how we decided to specify the tag’s behavior earlier.
There’s nothing wrong with a tag that accepts other values—indeed, these other
values would be convenient for page authors—but I’ve limited the <book:ifTime>
tag’s behavior for simplicity and to demonstrate int attributes.

 When an attribute accepts only integer values and has a setter method whose
parameter is an int, the JSP container is responsible for converting user’s input into
an integer. Therefore, we don’t have to run Integer.parseInt() on the input our-
selves; we can assume that setBefore() will only be called with an integer. Page
authors who set the before attribute to something other than an integer will get a
fatal error and will need to correct the problem.

374 CHAPTER 15
Using JSTL to develop custom tags
 d To implement the tests we need to conduct, we first capture the current date using
the same method call in Calendar that we used in the WeekdayTag class. Here, we
also record the current day and hour from the Calendar object we retrieve. Because
the integers that Calendar uses for the current hour match the hours we accept—
24-hour, military time, starting with 0—we don’t need to interpret or translate the
number we get back from our Calendar object. We can simply store it as curr-
entHour. This value will therefore store the number corresponding to the current
hour. For example, if it’s 8:52 p.m., currentHour will equal 20; it will remain 20
exactly until 9:00 p.m., at which point it will change to 21.

 e The heart of the condition() method ensures that the current time meets all of the
attributes’ requirements. For each potential attribute, we check whether the page
author has specified it by comparing it against -1. (See b.) If the attribute has been
set, then we check to make sure the attribute’s requirement is satisfied. If any check
fails, we return false; otherwise, if all the checks succeed and we reach the end of
the method, we return true.

The TLD for <book:ifTime>
To describe the <book:ifTime> tag, we simply need to add the following <tag> ele-
ment to any TLD (for example, the one we created for <book:ifWeekday> earlier in
this chapter):
<tag>
 <name>ifTime</name>
 <tag-class>com.jstlbook.examples.TimeTag</tag-class>
 <attribute>
 <name>day</name>
 </attribute>
 <attribute>
 <name>before</name>
 </attribute>
 <attribute>
 <name>after</name>
 </attribute>
</tag>

This <tag> element specifies the tag’s three attributes: day, before, and after.
Note that because we don’t use the <required> element, all of these three attributes
are optional.

Using the tag
Assuming we’ve added the tag to our weekday.tld file and located this file in our
application’s WEB-INF directory, we can use the new tag as follows:
<%@ taglib prefix="book" uri="/WEB-INF/weekday.tld" %>
<book:ifTime day="sunday" after="21" before="22">

Developing conditional tags 375
 "Alias" is on right now on ABC. What are you doing

 browsing the web?

</book:ifTime>

Or, perhaps more usefully:

<%@ taglib prefix="book" uri="/WEB-INF/weekday.tld" %>

<book:ifTime day="sunday" after="3" before="4">

 Our site conducts routine maintenance between

 3:00 a.m. and 4:00 a.m. on Sundays. During this

 time, some services may be unavailable. We apologize

 for the inconvenience.

</book:ifTime>

This latter tag would display a warning notice to users, but only between 3:00 a.m.
and 4:00 a.m. on Sundays.

Reporting errors in tag usage
Suppose the page author enters an invalid hour in one of the <book:ifTime> tag’s
attributes, as follows:

<book:ifTime before="25">

In such cases, the precise behavior is up to the JSP container on which you’re run-
ning. In Jakarta Tomcat, the page author would receive an error message that looks
like figure 15.2.

 In figure 15.2, the text

Bad hour: 25

comes from our custom tag handler—specifically, from the following lines in
listing 15.3:

if (i < 0 || i > 23)

 throw new IllegalArgumentException("bad hour: " + i);

Because this error message might be the only indication to page authors that
they’ve done anything wrong, it’s often helpful to include descriptive error mes-
sages when you throw exceptions in your tag handlers. When you add error mes-
sages to your tag handlers, consider including the following information:

� The name of the tag throwing the exception
� The name of the attribute that contains the error, if applicable
� The nature of the error (for example, a copy of the offending attribute value)
� Information about how to fix the problem.

376 CHAPTER 15
Using JSTL to develop custom tags
For example, the message that we use in TimeTag—bad hour followed by the
offending input—is useful but not as descriptive as it could be. Instead, we could
have written something like this:

 "<ifTime>: bad hour ‘" + i + "’ in attribute ‘before’;"

+ "need an hour between 0 and 23"

Errors like this give page authors more information. Also, in general, such messages
may be more familiar to users because they resemble the JSTL reference implemen-
tation’s error messages more than a simple bad hour message does.

15.2.3 Integrating custom conditional tags with standard tags

As you saw during our discussions of JSTL’s tags in part 2, the <c:if> and <x:if>
tags let page authors expose a boolean variable using the tags’ var attribute. This
feature is useful primarily to store conditions that might change, and to use condi-
tions in mutually exclusive <c:when> tags.

 The ConditionalTagSupport base class will automatically expose a boolean
variable whose name is the value of your tag’s var attribute. (The boolean value
will represent the result of your condition() method.) This free service helps you

Figure 15.2
Page authors can see the error
messages that tag developers
write. In this case, the text
“bad hour: 25” comes from
the TimeTag handler, a custom
tag handler we wrote earlier in
this chapter. Tag authors
should take this opportunity to
provide helpful, informative
error messages when
appropriate.

Developing conditional tags 377
integrate your tags into <c:when> blocks, and it makes it easy for you to write tags
that behave like JSTL’s tags.

 To demonstrate this functionality, let’s add a few lines to the <tag> element for
<book:ifTime> in our TLD. The new lines are highlighted:

<tag>
 <name>ifTime</name>
 <tag-class>com.jstlbook.examples.TimeTag</tag-class>
 <attribute>
 <name>day</name>
 </attribute>
 <attribute>
 <name>before</name>
 </attribute>
 <attribute>
 <name>after</name>
 </attribute>

</tag>

This is all we need to add. The base ConditionalTagSupport class provides the set-
ter method for var (setVar()) and exposes the variable automatically when the
page author specifies a var attribute. ConditionalTagSupport similarly supports a
scope attribute if you’d like to add it to your tag.

15.2.4 Using the expression language

JSTL 1.0 doesn’t provide a standard way to use the expression language in your
own tags; there is no standard JSTL API for invoking the expression language to
interpret expressions within your own tags. Although JSP 1.3 wasn’t yet released at
the time this chapter was written, the plan is for JSP 1.3 to take care of resolving
expressions for you. Thus, if JSTL 1.0 provided a standard expression API, it would
be useful only under JSP 1.2, and the Java Community Process typically avoids
intentionally providing legacy interfaces.

 However, the lack of a standard API doesn’t mean you can’t accept JSTL expres-
sions in your own tags. It just makes it hard to describe an exact procedure in this
book! To use the expression language in your own tags under JSP 1.2, you’ll need to
use an API specific to an individual implementation of JSTL—one that decides to
expose an expression-language API for you to use. The JSTL reference implementa-
tion, which is available from the Jakarta Taglibs web site at http://jakarta.apache.
org/taglibs, provides such an interface.

 At the time this was written, accessing the expression language using the JSTL
reference implementation was simple: make sure the file standard.jar from the JSTL

<attribute>
<name>var</name>

</attribute>

378 CHAPTER 15
Using JSTL to develop custom tags
reference implementation is in your classpath, and call the following method in the
class org.apache.taglibs.standard.lang.support.ExpressionEvaluatorManager:

public static Object evaluate(String attributeName,

 String expression,

 Class expectedType,

 Tag tag,

 PageContext pageContext)

The first argument, attributeName, is the name of the attribute you’d like to evalu-
ate—test, value, or whatever you’ve called the attribute. The second argument,
expression, is the expression to evaluate. For instance, it might be the string
"${sessionScope.customer}”. The next argument, expectedType, is a java.lang.
Class object representing the type you want the expression language to return. If
you’re looking for a java.lang.String object, you could pass the literal java.
lang.String.class for this argument. The tag argument is the current instance of
your tag handler; you typically use the keyword this for this argument. Finally,
pageContext is your tag’s PageContext object; normally, your tag handler will have
an instance variable called pageContext that you can pass.

 Here’s an example of a call that evaluates an expression and returns a string:

evaluate("username",

 "${sessionScope.username.fullname}",

 String.class,

 this,

 pageContext);

15.3 Developing iteration tags

In addition to its support for conditional tags, JSTL makes it easier to write loop
tags. JSTL provides a LoopTagSupport class that’s almost as easy to use as Condi-
tionalTagSupport.

 Just as ConditionalTagSupport has a condition() method that lets you plug in
your own conditional logic, LoopTagSupport contains several methods that let you
provide items to loop over. You provide these items by implementing a few meth-
ods, and the base class automatically takes care of iterating over them. Therefore,
instead of needing to control the details of JSP tag iteration, you simply provide
data and let LoopTagSupport do the rest. In fact, LoopTagSupport doesn’t just han-
dle looping; it also exposes your item to its body in the same manner <c:forEach>
does, so that page authors will be able to access your data using conventions they’re
already familiar with.

Developing iteration tags 379
 LoopTagSupport has three methods you need to supply when you write your
own iteration-tag subclasses (see table 15.1).

Suppose that you’ve designed a tag called <example:loop> that loops over some of
your application’s data. The JSP container can use the same instance of your tag
handler to service multiple appearances of <example:loop> in your application.
Therefore, your tag handler must be prepared to be called multiple times. This is
the purpose of the prepare() method. You should use it instead of your class’s con-
structor to set up your class for a particular invocation of <example:loop>. Often,
you’ll want to read attributes and take some action—for example, open a database
connection or file—in prepare(). Usually, prepare() will modify some instance
variables of your tag-handler class.

 The hasNext() and next() methods function similarly to their namesakes in
java.util.Iterator. The hasNext() method returns true or false depending on
whether your tag has more items to iterate over, and next() returns the actual
items to iterate over, one at a time.

 Once the items are exhausted, the tag handler might be discarded. If this hap-
pens, its release() method will be called. The release() method is part of JSP’s
tag extension API; it’s not unique to LoopTagSupport. You should implement
release() if your tag needs to clean up after itself.

 If the tag handler isn’t discarded, it might be used again, in which case pre-
pare() will be called again.

 Figure 15.3 shows the order of method invocation in LoopTagSupport.

15.3.1 A simple loop tag

Let’s look at an example of a simple loop tag. JSTL, appropriately, doesn’t provide
a tag for you to read files directly from disk. Portable web applications should never
write to the disk directly; they can’t be sure they’ll have access to do so (or even
that a writable disk is present on the server they run on).

Table 15.1 LoopTagSupport methods

Method Purpose

void prepare() Lets you prepare for the iteration, typically using the tag’s attributes.

boolean
hasNext()

Returns true when your tag has more items to iterate over, or false otherwise.

Object
next()

Returns a new item each time it’s called. If no new items are left (that is, if hasN-
ext() would return false), next()throws a NoSuchElementException.

380 CHAPTER 15
Using JSTL to develop custom tags
However, writing a simple tag to loop over the lines of a disk file will show you all
you need to know about the LoopTagStatus interface, so it’s a good example. Such
a tag might be useful for very small applications or prototypes, where you want to
test an idea before using a real database. In an early stage of an application, you can
write your data to disk files and read them in with a tag.

 Our sample tag, <book:forEachLine>, will take a single attribute, filename,
which accepts absolute path names pointing to disk files. For instance, on a Unix
system, a page author might use the attribute filename="/etc/passwd" to load the
Unix machine’s account and password database. On Windows, you might say
filename="c:\\winnt\\system32\\drivers\\etc\\services" to retrieve the sys-
tem’s list of network services.

Figure 15.3 Each time a LoopTagSupport tag is
invoked, its prepare() method is called, followed by calls
to hasNext() and next() until all the tag’s items are
exhausted. Before the tag’s next invocation, prepare()
will be called again. Before the tag handler is discarded, its
release() method will be called; this call allows the tag
handler to clean up after itself.

Developing iteration tags 381
WARNING When a backslash character (\) appears in an attribute name, as it often
does when you refer to filenames on Windows machines, you need to es-
cape the backslash character by typing it twice. If you write a tag that re-
quires backslashes in attributes, you’ll probably need to advise page
authors of this rule, because they may not be aware of it if their back-
grounds lie with HTML alone.

We’d like to be able to use this tag as follows:

<book:forEachLine var="line" filename="/etc/group">

 <c:out value="${line}"/>

</book:forEachLine>

If <book:forEachLine> functions correctly, this JSP fragment will print out the
entire contents of the /etc/group file in the middle of a web page. (Note that print-
ing this information publicly is a bad idea in practice, because it gives the world a
list of all user groups on the machine.) As with <c:forEach>, the variable named
by var (in this case, line) contains the loop’s current item at any given point. It
can be accessed anywhere in the loop’s body. Therefore, the <c:out> tag in this
example prints the current line during each loop; finally, all lines in the file will
be printed.2

 Listing 15.4 shows the code for ForEachLineTag, a handler for this <book:for-
EachLine> tag.

package com.jstlbook.examples;

import java.io.*;

import java.util.*;

import javax.servlet.jsp.JspTagException;

public class ForEachLineTag

 extends javax.servlet.jsp.jstl.core.LoopTagSupport {

 private String filename;

 private BufferedReader input;

 public void setFilename(String s) {

 filename = s;

 }

2 The /etc/group file is found on most Unix machines. If you use Windows, imagine that the value
of the filename attribute is instead something like "c:\\temp\\notes.txt".

Listing 15.4 ForEachLineTag.java: a tag handler for <book:forEachLine>

Stores the filename
attribute

 b

Accepts the
filename
attribute

 c

382 CHAPTER 15
Using JSTL to develop custom tags
 protected void prepare() throws JspTagException {
 try {
 if (input != null)
 input.close();
 input = new BufferedReader(new FileReader(filename));
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 }

 public void release() {
 try {
 if (input != null)
 input.close();
 } catch (IOException ex) {
 // ignore
 }
 }

 protected boolean hasNext() throws JspTagException {
 try {
 return input.ready();
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 }

 protected Object next() throws JspTagException {
 try {
 return input.readLine();
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 }

}

Understanding the code
Listing 15.4 shows the code for a custom iteration tag that extends JSTL’s LoopTag-
Support base class. We store the value of the filename attribute in our own variable
named filename (b), which is set from the setFilename() accessor (c). Before
looping over the data, we prepare for the iteration by opening a file (d).

 We use the release() method to call the close() method (e) for the stream
we’ve opened. Using the simple interface that LoopTagSupport provides, we can’t
easily close the stream as soon as we’re done with it;3 but we want to make sure that

3 If we only closed it immediately before returning false from hasNext(), we would leave it
open in cases where it wasn’t fully consumed.

Prepares for
an iteration

 d

Cleans up when
we’re done

 e

Determines if
there’s more data

 f

Returns the next
line from the file

 g

Developing iteration tags 383
no matter what happens, we close it before the container says it’s done with us. The
release() method handles this task. Note that we also close any old streams that
we opened when prepare() is called again, because prepare() is designed to tell
us that we’re about to start a new loop. Thus, prepare() gives us a chance to clean
up as well.

 f The hasNext() method returns true if the BufferedReader is ready for more read-
ing, as reported by its ready() method. If this method returns true, we infer that
we have at least one more line to read.4

 g Each time the next() method is called, it returns the line that it reads from the file,
using BufferedReader.readLine().

Writing the TLD
You might have noticed that whereas our earlier example of the tag’s usage con-
tained a var attribute, no setter method for var appears in listing 15.4. We can
omit this method because, just as with ConditionalTagSupport, the setVar()
method is supplied by LoopTagSupport. Therefore, to support var—which is typi-
cally important in an iteration tag, because it’s the easiest way to access the cur-
rent item—we simply need to add it to the TLD. Here’s a sample TLD entry for
<book:forEachLine>:
<tag>
 <name>forEachLine</name>
 <tag-class>com.jstlbook.examples.ForEachLineTag</tag-class>
 <attribute>
 <name>filename</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>var</name>
 </attribute>
</tag>

This TLD entry mandates the filename attribute but lets var be optional.

Using the tag
The <book:forEachLine> tag is useful not just to display entire files, but also to for-
mat each line of a file in general. For instance, using <book:forEachLine>, it’s easy
to turn a file delimited by commas or other separators into an HTML table.

 As an example, the user database for a Unix machine is stored in /etc/passwd;
each line contains colon-separated fields corresponding to information like user-

4 It’s conceivable, in unusual circumstances, for this type of check to result in our tag’s completing
before a file is truly done. However, we ignore this fringe case for simplicity.

384 CHAPTER 15
Using JSTL to develop custom tags
name, user number, and so on. The following JSP fragment prints a formatted
HTML table for a Unix machine’s user database:

<table border="1">
<book:forEachLine filename="/etc/passwd" var="line">
 <tr>
 <c:forTokens items="${line}" delims=":" var="field">
 <td><c:out value="${field}"/></td>
 </c:forTokens>
 </tr>
</book:forEachLine>
</table>

On one of my servers, this code prints out the table shown in figure 15.4. For each
line, we execute the body of <book:forEachLine>. This body contains a <c:forTo-
kens> tag, so for each line of the file, we tokenize it into strings separated by colons
(:). (See chapter 5 for more information about <c:forTokens>.) Finally, we print
each token in a table cell.

 It’s easy to reuse tags for different purposes. For example, simply changing the
delims=":" attribute to delims="," would allow us to print an HTML table to dis-
play a comma-delimited file. Suppose I’m a bookie who wants to avoid using a for-
mal database; instead, I keep a list of names, money owed, and limbs broken in a
comma-separated file:

Bob Bobson,$100,arm
David Davies,$200,leg
Peter Peters,$50,wrist
Richard Richards,$6,finger

I can produce the table in figure 15.5 without writing any new Java code. I simply
alter the JSP fragment to look like this:

<table border="1">
<book:forEachLine filename="c:\\temp\\debts.csv" var="line">
 <tr>
 <c:forTokens items="${line}" delims="," var="field">
 <td><c:out value="${field}"/></td>
 </c:forTokens>
 </tr>
</book:forEachLine>
</table>

This fragment can print an HTML table for any comma-separated file.
 Again, I should remind you that I’m not encouraging you to write tags that read

from the filesystem within a web application. Reading a file is just a convenient
example to demonstrate the LoopTagSupport protocol. Instead of reading files,
you’ll probably read relative paths within your web application using the Servlet-

Developing iteration tags 385
Figure 15.4 The <book:forEachLine> tag appears in action, formatting a
Unix system’s user database (/etc/passwd) into an easily readable HTML table.

Figure 15.5
It’s easy to reuse <book:forEachLine>
to print tables for different kinds of files.
Here, instead of a colon-separated list of
user data, we print a table for a comma-
separated data file (maintained by a
hypothetical bookie).

386 CHAPTER 15
Using JSTL to develop custom tags
Context.getResource() or ServletContext.getResourceAsStream() method—or
just use <c:import>!

15.3.2 More advanced iteration tags

The <book:forEachLine> tag that we developed in section 15.3.1 exercises the
LoopTagSupport class nicely. But LoopTagSupport has a few more capabilities that
listing 15.4 didn’t demonstrate.

Tag status
As you saw in chapter 5, the <c:forEach> and <c:forTokens> tags have a varSta-
tus attribute that exposes a JavaBean for the page author. This bean lets the page
author determine information about the current iteration—for example, whether
it’s currently the first loop, the last loop, or somewhere in between. If we want
<book:forEachLine> to expose a similar status bean, we can simply add a varSta-
tus attribute to the TLD:

<attribute>
 <name>varStatus</name>
</attribute>

Just as with var, the LoopTagSupport class takes care of exposing a status bean for us.

Subsetting with begin, end, and step
We also discussed the begin, end, and step attributes for <c:forEach> and
<c:forTokens> in chapter 5. These attributes let a page author iterate over only
part of the data at hand, skipping the rest of it. We can add support for these
attributes to <book:forEachLine>, but doing so requires more work than support-
ing var and varStatus. Because LoopTagSupport doesn’t know how we want to
supply the beginning, ending, and increment values for an iteration, it doesn’t
provide accessors like setBegin(), setEnd(), and so forth. Instead, it provides
protected variables called begin, end, and step, and it expects us to set them if we
want to use them.

 However, setting these variables isn’t enough. We need to do two other things:
� Inform the superclass that we’ve specified particular values like begin and end
� Ask the superclass to validate them for consistency (for example, begin can’t

be greater than end, begin can’t be negative, and so on)

For example, if we want to accept a begin attribute, we can write the following set-
ter method:

public void setBegin(int i) throws JspTagException {
 this.begin = i;

Summary 387
 this.beginSpecified = true;
 validateBegin();
}

Our setBegin() method declares JspTagException because validateBegin() may
throw this exception if it decides the new value for begin is invalid.

 You could write setEnd() and setStep() methods in the same style. Then, sim-
ply add your attributes to the TLD, and you can support iteration with subsetting,
just like the core JSTL tags.

15.4 Summary

In this chapter, we looked at how JSTL makes it easier to develop condition and
iteration tags for JSP pages. When developing tags using JSTL, keep in mind the fol-
lowing points:

� JSP comes with a tag-extension API for writing custom tags.
� The tag library descriptor (TLD) document maps tag handler classes to tag

names. In a JSP page, the <%@ taglib %> directive imports a tag library by
referring to its TLD.

� JSTL simplifies the process of writing tags by providing base classes that do
some of the heavy lifting for you.

� JSTL’s ConditionalTagSupport class lets you write conditional tags by supply-
ing a condition() method that causes the tag to either include or skip its body.

� JSTL’s LoopTagSupport class lets you write iteration tags by supplying items
to iterate over.

� Tag handlers that extend ConditionalTagSupport and LoopTagSupport must
provide accessor (setXxx()) methods for their own attributes, but the JSTL
base classes provide setVar() automatically. Thus, they expose variables
without your needing to do any of the work.

AJSTL reference
389

390 APPENDIX A
JSTL reference
A.1 Expression language syntax

Chapter 2 covers the JSTL expression language. Section A.1 serves as a concise summary.

A.1.1 Implicit objects

The JSTL expression ${data} indicates the scoped variable named data. Addition-
ally, the expression language supports the following implicit objects:

For example, the expression ${param.username} indicates the request parameter
named username.

A.1.2 Operators

JSTL’s operators help you work with data.

Property access
To retrieve properties from collections, the JSTL expression supports the following
operators:

� The dot (.) operator retrieves a named property. The expression ${user.iq}
indicates the iq property of the scoped variable named user.

� The bracket ([]) operator lets you retrieve named or numbered properties:
� The expression ${user["iq"]} has the same meaning as ${user.iq}.
� The expression ${row[0]} indicates the first item in the row collection.

Implicit object Contains

pageScope Scoped variables from page scope

requestScope Scoped variables from request scope

sessionScope Scoped variables from session scope

applicationScope Scoped variables from application scope

param Request parameters as strings

paramValues Request parameters as collections of strings

header HTTP request headers as strings

headerValues HTTP request headers as collections of strings

initParam Context-initialization parameters

cookie Cookie values

pageContext The JSP PageContext object for the current page

Expression language syntax 391
Checking for emptiness
The empty operator determines whether a collection or string is empty or null. For
instance, ${empty param.firstname} will be true only if a request parameter named
firstname is not present. JSTL expressions can also compare items directly against the
keyword null, as in ${param.firstname == null}, but this is an advanced use.

Comparing variables
The JSTL expression language supports comparisons using the following operators:

Arithmetic
JSTL expressions can conduct arithmetic using the following operators:

In addition, the – operator can precede a single number to reverse its sign: ${-30},
${-discount}.

Operator Description

==
eq

Equality check

!=
ne

Inequality check

<
lt

Less than

>
gt

Greater than

<=
le

Less than or equal to

>=
ge

Greater than or equal to

Operator Description

+ Addition

- Subtraction

* Multiplication

/
div

Division

%
mod

Remainder (modulus)

392 APPENDIX A
JSTL reference
Boolean logic
The comparison operators produce boolean expressions, and JSTL expressions can
also access boolean primitives. To combine boolean subexpressions, JSTL provides
the following operators:

JSTL supports two boolean literals: true and false.

Parentheses
JSTL expressions can use parentheses to group subexpressions. For example, ${(1 + 2)
* 3} equals 9, but ${1 + (2 * 3)} equals 7.

A.2 Core tag library

JSTL’s core tag library supports output, management of variables, conditional logic,
loops, text imports, and URL manipulation. JSP pages can import the core tag
library with the following directive:
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

A.2.1 General-purpose tags

JSTL provides <c:out> for writing data, <c:set> for saving data to memory,
<c:remove> for deleting data, and <c:catch> for handling errors.

Examples
Thanks for logging in, <c:out value="${name}"/>.

<c:set var="loggedIn" scope="session" value="${true}"/>

<c:remove var="loggedOut" scope="session"/>

Tag attributes
The <c:catch> tag’s attribute is as follows:

Operator Description

&&
and

True only if both sides are true

||
or

True if either or both sides are true

!
not

True only if the expression following it is false

Attribute Description Required Default

var Variable to expose information about error No None

Core tag library 393
The <c:out> tag’s attributes are as follows:

The <c:set> tag’s attributes are as follows:

If target is specified, property must also be specified.
 The <c:remove> tag’s attributes are as follows:

A.2.2 Conditional logic

JSTL has four tags for conditions: <c:if>, <c:choose>, <c:when>, and <c:otherwise>.

Examples
<c:if test="${user.wealthy}">
 You have quite a lot of money in your account.
</c:if>

<c:choose>
 <c:when test="${user.generous}">
 Why don’t you give some of it to me?
 </c:when>
 <c:when test="${user.stingy}">
 You should transfer some of it to a CD.
 </c:when>

Attribute Description Required Default

value Information to output Yes None

default Fallback information to output No Body

escapeXml True if the tag should escape special XML characters No true

Attribute Description Required Default

value Information to save No Body

target Name of the variable whose property should be modified No None

property Property to modify No None

var Name of the variable to store information No None

scope Scope of variable to store information No page

Attribute Description Required Default

var Name of the variable to remove Yes None

scope Scope of the variable to remove No All scopes

394 APPENDIX A
JSTL reference
 <c:otherwise>
 A money-market account looks right for you.
 </c:otherwise>
</c:choose>

Tag attributes
The <c:if> tag’s attributes are as follows:

The <c:choose> tag accepts no attributes.
 The <c:when> tag’s attribute is as follows:

The <c:otherwise> tag accepts no attributes.

A.2.3 Looping

The core JSTL library offers two tags for looping: <c:forEach> for general data and
<c:forTokens> for parts of strings.

Examples
<c:forEach items="${orders}" var="order">
 <c:out value="${order.id}"/>
</c:forEach>

<c:forEach begin="0" end="100">
 I will not continue to disrupt class discussions!
</c:forEach>

<c:forTokens items="a:b:c:d" delims=":" var="token">
 <c:out value="${token}"/>
</c:forTokens>

Attribute Description Required Default

test Condition to evaluate Yes None

var Name of the variable to store the condition’s result No None

scope Scope of the variable to store the condition’s result No page

Attribute Description Required Default

test Condition to evaluate Yes None

Core tag library 395
Tag attributes
The <c:forEach> tag’s attributes are as follows:

Either items, or both begin and end, must be specified.
 The <c:forTokens> tag’s attributes are as follows:

A.2.4 Import and URL

The core library supports inclusion of text using <c:import>, URL printing and for-
matting with <c:url>, and redirections with <c:redirect>. All URL tags accept
<c:param> child tags.

Examples
<c:import url="http://www.cnn.com/cnn.rss" var="newsfeed"/>

<a href="<c:url url="/index.jsp"/>"/>

Attribute Description Required Default

items Information to loop over No None

begin Element to start with (0 = first item, 1 = second
item, …)

No 0

end Element to end with (0 = first item, 1 = second
item, …)

No Last item in the

collection

step Process every step items No 1 (all items)

var Name of the variable to expose the current item No None

varStatus Name of the variable to expose the loop status No None

Attribute Description Required Default

items String to tokenize Yes None

delims Characters to use as delimiters Yes None

begin Element to start with (0 = first item, 1 = second
item, …)

No 0

end Element to end with (0 = first item, 1 = second
item, …)

No Last item in the col-

lection

step Process every step items No 1 (all items)

var Name of the variable to expose the current item No None

varStatus Name of the variable to expose the loop status No None

396 APPENDIX A
JSTL reference
<c:redirect url="go-away.jsp">
 <c:param name="unwantedUser" value="true"/>
</c:redirect>

Tag attributes
The <c:import> tag’s attributes are as follows:

The <c:url> tag’s attributes are as follows:

The <c:redirect> tag’s attributes are as follows:

The <c:param> tag’s attributes are as follows:

Attribute Description Required Default

url URL to retrieve and import into the page Yes None

context / followed by the name of a local web application No Current application

charEncoding Character set to use for imported data (if necessary) No ISO-8859-1

var Name of the variable to expose imported text No Print to page

scope Scope of the variable to expose imported text No page

varReader Name of an alternate variable to expose
java.io.Reader

No None

Attribute Description Required Default

value Base URL Yes None

context / followed by the name of a local web application No Current application

var Name of the variable to expose the processed URL No Print to page

scope Scope of the variable to expose the processed URL No page

Attribute Description Required Default

url URL to redirect the user’s browser to Yes None

context / followed by the name of a local web application No Current application

Attribute Description Required Default

name Name of the request parameter to set in the URL Yes None

value Value of the request parameter to set in the URL No Body

XML tag library 397
A.3 XML tag library

JSTL’s XML-processing tag library supports parsing of XML documents, selection of
XML fragments, flow control based on XML, and XSLT transformations. JSP pages
can import the XML-processing tag library with the following directive:

<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

A.3.1 Parsing and general manipulation

Before you work with an XML document, it must be parsed with <x:parse> or
back-end Java code. The <x:out> and <x:set> tags can retrieve fragments of
parsed documents, whether these documents are DOM objects or a JSTL imple-
mentation’s own choice of data type.

Examples
<c:set var="textDocument">
 <orders>
 <order>
 762 cans of low-fat yogurt
 </order>
 <order>
 6 spoons
 </order>
 </orders>
</c:set>
<x:parse xml="${textDocument}" var="xml"/>
<x:out select="$xml/orders/order[1]"/>

<x:set var="fragment" select="$xml//order"/>

Tag attributes
The <x:parse> tag’s attributes are as follows:

Attribute Description Required Default

xml Text of the document to parse (String or Reader) No Body

systemId URI of the original document (for entity resolution) No None

filter XMLFilter object to filter the document No None

var Name of the variable to expose the parsed document No None

scope Scoped of the variable to expose the parsed document No None

varDom Name of the variable to expose the parsed DOM No None

scopeDom Scoped of the variable to expose the parsed DOM No None

398 APPENDIX A
JSTL reference
The <x:out> tag’s attributes are as follows:

The <x:set> tag’s attributes are as follows:

If the XPath expression results in a boolean, <x:set> exposes a java.lang.Boolean
object; for a string, java.lang.String; and for a number, java.lang.Number.
XPath node-sets are exposed using an implementation-dependent type.

A.3.2 Conditional logic

Like the core library, the XML library supports four tags for conditional logic:
<x:if>, <x:choose>, <x:when>, and <x:otherwise>.

Examples
<c:set var="textDocument">
 <orders>
 <order>
 17 carts
 </order>
 <order>
 34 horses
 </order>
 </orders>
</c:set>
<x:parse xml="${textDocument}" var="xml"/>
<x:if select="$xml//order">
 Document has at least one <order> element.
</x:if>

<x:choose>
 <x:when test="$xml//order[1] = ’17 carts’">
 Looks like you put the carts before the horses.
 </x:when>
 <x:when test="$xml//order[1] = ’49 pigs’">

Attribute Description Required Default

select XPath expression to evaluate as a string, often using XPath
variables

Yes None

escapeXml True if the tag should escape special XML characters No true

Attribute Description Required Default

select Any XPath expression, often using XPath variables Yes None

var Name of the variable to store the XPath expression’s result Yes None

scope Scope of the variable to store the XPath expression’s result No page

XML tag library 399
 Why do you need 49 pigs?
 </x:when>
 <x:otherwise>
 I don’t know <i>what</i> you ordered.
 Buy some more stuff and give us another chance
 to figure it out.
 </x:otherwise>
</x:choose>

Tag attributes
The <x:if> tag’s attributes are as follows:

The <x:choose> tag accepts no attributes.
 The <x:when> tag’s attribute is as follows:

The <x:otherwise> tag accepts no attributes.

A.3.3 Loops

Like the core library, the XML-processing library supports looping over data. It
provides a single tag, <x:forEach>, to loop over nodes in an XML document.

Examples
<c:set var="textOrders">
 <orders>
 <order>
 12 gallons of strawberry margarita mix
 </order>
 <order>
 6 tons of pickled sausage
 </order>
 <order>
 17 mice
 </order>
 </orders>

Attribute Description Required Default

select XPath expression to evaluate as boolean, often using XPath variables Yes None

var Name of the variable to store the condition’s result No None

scope Scope of the variable to store the condition’s result No page

Attribute Description Required Default

select Condition to evaluate Yes None

400 APPENDIX A
JSTL reference
</c:set>
<x:parse xml="${textOrders}" var="orders"/>

You ordered:

<x:forEach select="$orders/orders/order" var="item">
 <x:out select="." />
</x:forEach>

Tag attributes
The <x:forEach> tag’s attributes are as follows:

A.3.4 Transformations

JSTL provides an <x:transform> tag for conducting XSLT transformations from
within a JSP page.

 The <x:param> tag can set a parameter in an XSLT stylesheet.

Examples
<x:transform xml=’${xml}’ xslt=’${xslt}’/>

<x:transform xslt=’${xslt}’>
 <orders>
 <order>
 16 boxes of dried cheese
 </order>
 <order>
 34 live cattle
 </order>
 </orders>
</x:transform>

Tag attributes
The <x:transform> tag’s attributes are as follows:

Attribute Description Required Default

select XPath expression pointing to a set of nodes (often using XPath variables) Yes None

var Name of the variable to store the current item for each loop No None

Attribute Description Required Default

xml Source XML document for the XSLT transformation No Body

xmlSystemId URI of the original XML document (for entity resolution) No None

xslt XSLT stylesheet providing transformation instructions Yes None

Database tag library 401
The <x:param> tag’s attributes are as follows:

A.4 Database tag library

JSTL’s database library supports database queries, updates, and transactions. JSP
pages can import this library with the following directive:

<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>

A.4.1 Preparing databases

For JSP pages that do not have a default database, <sql:setDataSource> can pre-
pare a database for use.

Examples
<sql:setDataSource

 driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:/home/databases/orders"

 user="sa"

 password="shhhh!"/>

Tag attributes
The <sql:setDataSource> tag’s attributes are as follows:

xsltSystemId URI of the original XSLT document (for entity resolution and
XSLT tags like <xsl:include>)

No None

result javax.xml.transform.Result object to accept the
transformation’s result

No Print to page

var Name of the variable to expose the transformation’s result No Print to page

scope Scope of the variable to expose the transformation’s result No page

Attribute Description Required Default

name Name of the XSLT parameter to set Yes None

value Value of the XSLT parameter to set No Body

Attribute Description Required Default

Attribute Description Required Default

driver Name of the JDBC driver class to be registered No None

url JDBC URL for the database connection No None

402 APPENDIX A
JSTL reference
A.4.2 Queries and updates

JSTL can read from databases with <sql:query> and write to them with
<sql:update>. These tags support SQL commands with ? placeholders, which
<sql:param> and <sql:dateParam> can fill in.

Examples
<sql:query var="result">

 SELECT ORDER

 FROM ORDERS

 WHERE CUSTOMER_ID=’52’

 AND PRODUCT_NAME=’Oat Bran’

</sql:query>

<c:forEach items="${result.rows}" var="row">

 <c:out value="${row.product_name}"/>

</c:forEach>

<sql:update var="count">

 UPDATE CONVICTS

 SET ARRESTS=ARRESTS+1

 WHERE CONVICT_ID=?

 <sql:param value="${currentConvict}"/>

</sql:update>

Tag attributes
The <sql:query> tag’s attributes are as follows:

user Database username No None

password Database password No None

dataSource Database prepared in advance (String or
javax.sql.DataSource)

No None

var Name of the variable to represent the database No Set default

scope Scope of the variable to represent the database No page

Attribute Description Required Default

Attribute Description Required Default

sql SQL command to execute (should return a ResultSet) No Body

dataSource Database connection to use (overrides the default) No Default database

maxRows Maximum number of results to store in the variable No Unlimited

startRow Number of the row in the result at which to start recording No 0

Database tag library 403
The <sql:update> tag’s attributes are as follows:

The <sql:param> tag’s attribute is as follows:

The <sql:dateParam> tag’s attributes are as follows:

A.4.3 Transactions

JSTL provides an <sql:transaction> tag to group <sql:query> and <sql:update>
into transactions.

Examples
<sql:transaction>

 <sql:update>

var Name of variable to expose the result from the database Yes None

scope Scope of variable to expose the result from the database No page

Attribute Description Required Default

sql SQL command to execute (should not return a ResultSet) No Body

dataSource Database connection to use (overrides the default) No Default data-

base

var Name of the variable to store the count of affected rows No None

scope Scope of the variable to store the count of affected rows No page

Attribute Description Required Default

value Value of the parameter to set No Body

Attribute Description Required Default

value Value of the date parameter to set (java.util.Date) Yes None

type DATEa (date only), TIME (time only), or TIMESTAMP
(date and time)

a. In this appendix’s tables, I list discrete sets of permissible values in ALL CAPS to help
them stand out. JSTL is case-insensitive in this regard, and I encourage lowercase in prac-
tice because it makes the tags easier and more pleasant to read.

No TIMESTAMP

Attribute Description Required Default

404 APPENDIX A
JSTL reference
 UPDATE BALANCES
 SET BALANCE = BALANCE + 2
 WHERE USER=25
 </sql:update>
 <sql:update>
 UPDATE BALANCES
 SET BALANCE = BALANCE – 2
 WHERE USER=30
 </sql:update>
</sql:transaction>

Tag attributes
The <sql:transaction> tag’s attributes are as follows:

A.5 Formatting tag library

JSTL’s internationalization-capable formatting library supports localized formatting,
fine-grained control over the display of numbers and dates, and internationalization
of text messages. JSP pages can import this library with the following directive:

<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

A.5.1 Numbers

JSTL provides the <fmt:formatNumber> tag to display numbers and the
<fmt:parseNumber> tag to read numbers.

Examples
<fmt:formatNumber value="${balance}" type="currency"/>
<fmt:parseNumber value="${param.number}" var="numb"/>

Attribute Description Required Default

dataSource Database connection to use (overrides the
default)

No Default database

isolation Transaction isolation (READ_COMMITTED,
READ_UNCOMMITTED, REPEATABLE_READ, or
SERIALIZABLE)

No Database’s default

Formatting tag library 405
Tag attributes
The <fmt:formatNumber> tag’s attributes are as follows:

The <fmt:parseNumber> tag’s attributes are as follows:

Attribute Description Required Default

value Numeric value to display No Body

type NUMBER, CURRENCY, or PERCENT No number

pattern Custom formatting pattern No None

currencyCode Currency code (for type="currency") No From the

default locale

currencySymbol Currency symbol (for type="currency") No From the

default locale

groupingUsed Whether to group numbers (TRUE or FALSE) No true

maxIntegerDigits Maximum number of integer digits to print No None

minIntegerDigits Minimum number of integer digits to print No None

maxFractionDigits Maximum number of fractional digits to print No None

minFractionDigits Minimum number of fractional digits to print No None

var Name of the variable to store the formatted
number (as a text string)

No Print to page

scope Scope of the variable to store the formatted
number

No page

Attribute Description Required Default

value Numeric value to read (parse) No Body

type NUMBER, CURRENCY, or PERCENT No number

parseLocale Locale to use when parsing the number No Default locale

integerOnly Whether to parse to an integer (true) or floating-point
number (false)

No false

pattern Custom parsing pattern No None

var Name of the variable to store the parsed number (as a text
string)

No Print to page

scope Scope of the variable to store the parsed number No page

406 APPENDIX A
JSTL reference
A.5.2 Dates

To read and write dates, JSTL provides <fmt:parseDate> and <fmt:formatDate>,
respectively. To adjust the time zones used for reading and writing dates, JSTL
offers the <fmt:timeZone> and <fmt:setTimeZone> tags.

Examples
<fmt:formatDate value="${birthday}"/>

<sql:query>

 …

</sql:query>

Tag attributes
The <fmt:formatDate> tag’s attributes are as follows:

The <fmt:parseDate> tag’s attributes are as follows:

<fmt:parseDate value="${birthday}" var="date"/>

<sql:dateParam value="${date}"/>

Attribute Description Required Default

value Date value to display Yes None

type DATE, TIME, or BOTH No date

dateStyle FULL, LONG, MEDIUM, SHORT, or DEFAULT No default

timeStyle FULL, LONG, MEDIUM, SHORT, or DEFAULT No default

pattern Custom formatting pattern No None

timeZone Time zone of the displayed date No Default time zone

var Name of the variable to store the formatted date
(as a text string)

No Print to page

scope Scope of the variable to store the formatted date No page

Attribute Description Required Default

value Date value to read (parse) No Body

type DATE, TIME, or BOTH No date

dateStyle FULL, LONG, MEDIUM, SHORT, or DEFAULT No default

timeStyle FULL, LONG, MEDIUM, SHORT, or DEFAULT No default

parseLocale Locale to use when parsing the date No Default locale

pattern Custom parsing pattern No None

Formatting tag library 407
The <fmt:timeZone> tag’s attribute is as follows:

The <fmt:setTimeZone> tag’s attributes are as follows:

A.5.3 Other internationalization

To assist with customized internationalization of applications, JSTL offers the fol-
lowing tags: <fmt:setLocale> to specify a new default locale, <fmt:bundle> and
<fmt:setBundle> to prepare resource bundles for use, and <fmt:message> and
<fmt:param> to output localized messages.

Examples
<fmt:setLocale value="en_US"/>

<fmt:setBundle basename="vulgarInsults"/>

<fmt:bundle basename="org.apache.bookies">

 <fmt:message key="threat" >

 <fmt:param value="${address}"/>

 <fmt:param value="${numberOfChildren}"/>

 <fmt:param value="${nameOfSpouse}"/>

 </fmt:message>

</fmt:bundle>

timeZone Time zone of the parsed date No Default time zone

var Name of the variable to store the parsed date (as a
java.util.Date)

No Print to page

scope Scope of the variable to store the parsed date No page

Attribute Description Required Default

value Time zone to apply to the body (string or
java.util.TimeZone)

Yes None

Attribute Description Required Default

value Time zone to expose as a scoped or configuration
variable

Yes None

var Name of the variable to store the new time zone No Replace default

scope Scope of the variable to store the new time zone No page

Attribute Description Required Default

408 APPENDIX A
JSTL reference
Tag attributes
The <fmt:bundle> tag’s attributes are as follows:

The <fmt:setBundle> tag’s attributes are as follows:

The <fmt:message> tag’s attributes are as follows:

The <fmt:param> tag’s attribute is as follows:

Attribute Description Required Default

basename Base name of the resource bundle family to use in the body Yes None

prefix Value to prepend to each key name in <fmt:message> subtags No None

Attribute Description Required Default

basename Base name of the resource bundle family to expose as
a scoped or configuration variable

Yes None

var Name of the variable to store the new bundle No Replace default

scope Scope of the variable to store the new bundle No page

Attribute Description Required Default

key Message key to retrieve No Body

bundle Resource bundle to use (JSTL LocalizationContext;
see appendix B)

No Default bundle

var Name of the variable to store the localized message No Print to page

scope Scope of the variable to store the localized message No page

Attribute Description Required Default

value Value of the parameter to set No Body

BJSTL API (for developers)
409

410 APPENDIX B
JSTL API (for developers)
Web-page authors are JSTL’s main audience, but JSTL provides tools for back-end
Java programmers as well. This appendix is a guide to JSTL’s APIs, which promote
convenience and interoperability with the standard tag library.

 Sections B.1 and B.2 are formal, concise reviews of material already covered.
Sections B.3 and B.4 show APIs not discussed in the book’s main narrative and pro-
vide insight on the inner workings of JSTL.

B.1 Configuration variables

Chapter 14 discussed JSTL’s configuration variables and showed you how to set
defaults for applications. The core of JSTL’s configuration support is a single class:
javax.servlet.jsp.jstl.core.Config.

B.1.1 The javax.servlet.jsp.jstl.core.Config class

The Config class has two important components: static constants and static meth-
ods. Because the class’s role is solely static, you never need to instantiate the Config
class. Instead, you can directly call its methods and refer to its fields.

Constants
Each constant in the Config class represents a single configuration setting. Table B.1
lists all the constants in Config.

Using the methods in Config
The Config class contains methods for setting, retrieving, and removing configura-
tion variables. Each of these methods takes an argument that we label name, indicat-
ing the name of the variable to retrieve or modify. The name argument can be any

Table 15.1 Configuration variables exposed as constants in the javax.servlet.jsp.jstl.core.
Config class. Chapter 14 discusses the meaning of each configuration variable.

Constant Associated library Description

SQL_DATA_SOURCE Database Default database (DataSource or String)

SQL_MAX_ROWS Database Default value for <sql:query>’s maxRows
attribute

FMT_LOCALE Formatting Default locale

FMT_FALLBACK_LOCALE Formatting Fallback locale

FMT_LOCALIZATION_CONTEXT Formatting Default localization context

FMT_TIME_ZONE Formatting Default time zone

Configuration variables 411
of the constants in table B.1, or you can use your own names to configure tag librar-
ies you write.

Methods for setting configuration variables
static void set(javax.servlet.jsp.PageContext pageContext,
 String name,
 Object new,
 int scope)

This method sets the configuration variable name to the object new in the given
scope (one of PageContext.PAGE_SCOPE, PageContext.REQUEST_SCOPE, Page-
Context. SESSION_SCOPE, or PageContext.APPLICATION_SCOPE from javax.serv-
let.jsp.PageContext) of pageContext.
static void set(javax.servlet.ServletRequest request,
 String name,
 Object new)

This method sets the configuration variable name to the object new in the request
scope represented by request.
static void set(javax.servlet.http.HttpSession session,
 String name,
 Object new)

This method sets the configuration variable name to the object new in the session
scope represented by session.

static void set(javax.servlet.ServletContext application,
 String name,
 Object new)

This method sets the configuration variable name to the object new in the applica-
tion scope represented by application.

Methods for retrieving configuration variables
static Object find(javax.servlet.jsp.PageContext pageContext,
 String name)

This method retrieves the configuration variable name from pageContext, searching
the following in order: page scope, request scope, session scope, application scope,
and initialization parameters. It returns null if no configuration variable named
name is found.

static Object get(javax.servlet.jsp.PageContext pageContext,
 String name,
 int scope)

This method retrieves the configuration variable name from pageContext, looking
only in the specified scope (one of PageContext.PAGE_SCOPE, PageContext.

412 APPENDIX B
JSTL API (for developers)
REQUEST_SCOPE , PageContext.SESSION_SCOPE , or PageContext.

APPLICATION_SCOPE from javax.servlet.jsp.PageContext). It returns null if no
such configuration variable is found.

static Object get(javax.servlet.ServletRequest request,

 String name)

This method retrieves the configuration variable name from the request scope repre-
sented by request. It returns null if no such configuration variable is found.

static Object get(javax.servlet.http.HttpSession session,

 String name)

This method retrieves the configuration variable name from the session scope repre-
sented by session. It returns null if no such configuration variable is found.

static Object get(javax.servlet.ServletContext application,

 String name)

This method retrieves the configuration variable name from the application scope
represented by application. It returns null if no such configuration variable is found.

Methods for removing configuration variables
static void remove(javax.servlet.jsp.PageContext pageContext,

 String name,

 int scope)

This method removes the scoped variable name from pageContext—specifically,
from the given scope (one of PageContext.PAGE_SCOPE , PageContext.
REQUEST_SCOPE , PageContext.SESSION_SCOPE , or PageContext.

APPLICATION_SCOPE from javax.servlet.jsp.PageContext).

static void remove(javax.servlet.ServletRequest request,

 String name)

This method removes the scoped variable name from the request scope represented
by request.

static void remove(javax.servlet.http.HttpSession session,

 String name)

This method removes the scoped variable name from the session scope represented
by session.

static void remove(javax.servlet.ServletContext application,

 String name)

This method removes the scoped variable name from the application scope repre-
sented by application.

Conditions and loops 413
B.2 Conditions and loops

Chapter 15 explained how JSTL can help you write conditional and loop tags. Chapter 5
showed the bean exposed by the varStatus attribute of <c:forEach> and <c:forTo-
kens>. In this section, we look more formally at the APIs associated with these features.

B.2.1 The javax.servlet.jsp.jstl.core.LoopTag interface

JSTL’s three iteration tags (<c:forEach>, <c:forTokens>, and <x:forEach>) imple-
ment the LoopTag interface. This interface, which your own tags also implement when
they extend LoopTagSupport (see section B.2.3), shares information about the current
loop with subtags. JSTL has no tags that are intended specifically for tag bodies,
although of course tags like <c:out> can appear as children of <c:forEach>. However,
if you want to simplify the tags your page-author colleagues use, you can write a tag that
collaborates with a parent iteration tag to determine status automatically; doing so lets
page authors avoid needing to specify a var attribute to the parent <c:forEach> tag.

 LoopTag has just two methods:

public Object getCurrent()

This method retrieves the current item being looped over—the one that would be
exposed by var.

public LoopTagStatus getLoopStatus()

This method retrieves status information about the current loop and overall itera-
tion. The varStatus attribute exposes a variable of this type. See section B.2.2.

 These methods can be called by subtags that determine their parent or ancestor
classes using the findAncestorWithClass() method in javax.servlet.jsp.
tagext. TagSupport. For instance:

LoopTag t = (LoopTag) findAncestorWithClass(this, LoopTag.class);
Object current = t.getCurrent();
LoopTagStatus status = t.getLoopStatus();

B.2.2 The javax.servlet.jsp.jstl.core.LoopTagStatus interface

When a child tag in a loop calls getLoopStatus() from its parent tag, it retrieves an
object implementing the LoopTagStatus interface. This interface has a number of
methods, each of which determines some property about the current loop or the
overall iteration:

public Object getCurrent()

This method is the same as LoopTag.getCurrent(). See section B.2.1.

public int getIndex()

414 APPENDIX B
JSTL API (for developers)
This method returns the index of the current item within its containing collection,
starting with 0.
public int getCount()

This method returns the count of the current loop, starting with 1.
public boolean isFirst()

This method returns true if getCount() would return 1, or false otherwise.
public boolean isLast()

This method returns true if the current loop will be the last one for the parent tag
(in its current invocation), or false otherwise.

public Integer getBegin()

This method returns the value specified for the parent tag’s begin attribute
(wrapped as an Integer), or null if no value was specified.

public Integer getEnd()

This method returns the value specified for the parent tag’s end attribute (wrapped
as an Integer), or null if no value was specified.

public Integer getStep()

This method returns the value specified for the parent tag’s step attribute (wrapped
as an Integer), or null if no value was specified.

B.2.3 The javax.servlet.jsp.jstl.core.LoopTagSupport class

The LoopTagSupport class contains the following interesting methods (chapter 14
discusses them in more detail):

protected abstract Object next() throws JspTagException

This method lets you supply the next item to loop over.

protected abstract boolean hasNext() throws JspTagException

This method lets you inform the parent tag whether your iteration is ready to finish.

protected abstract void prepare() throws JspTagException

This method lets you prepare for an iteration; it’s called once for each invocation of
your tag.

 You can set the following protected fields of LoopTagSupport:

protected int begin
protected int end
protected int step

Interoperating with JSTL’s database tags 415
When you have set any of these three int fields, you should update the correspond-
ing boolean fields by setting them to true:
protected boolean beginSpecified
protected boolean endSpecified
protected boolean stepSpecified

Once you are finished setting begin, end, and step, you should also call the follow-
ing methods:1

protected void validateBegin() throws JspTagException
protected void validateEnd() throws JspTagException
protected void validateStep() throws JspTagException

These methods will throw a JspTagException if the values you specified are incon-
sistent or meaningless.

B.2.4 The javax.servlet.jsp.jstl.core.ConditionalTagSupport class
The ConditionalTagSupport class has the following method, which chapter 14 dis-
cusses in more detail:
protected abstract boolean condition() throws JspTagException

Your conditional tags should override this method and return true if they want
their bodies to execute, or false otherwise.

B.3 Interoperating with JSTL’s database tags

Chapter 9 showed you how to access results from <sql:query> using JSTL’s expres-
sion language. We’ll now look at the structure of the bean exposed by <sql:query>
and demonstrate how to expose your own JDBC ResultSet data using the same struc-
ture. This section also covers how your tags can send ?-style parameters to
<sql:query> and <sql:update>.

B.3.1 The javax.servlet.jsp.jstl.sql.Result interface

The <sql:query> tag exposes an object whose class implements the Result inter-
face, which is designed to act as a bean-style interface to a java.sql.ResultSet. In
JSTL’s case, the data is cached because JSTL cannot keep the ResultSet open once
the <sql:query> tag has completed its operation.

 Chapter 9 discussed how to access members of this interface as JavaBean prop-
erties. Here’s what the methods look like:

public SortedMap[] getRows()

1 This is all admittedly a somewhat odd programming model, and I think it’s my fault. Consider
this an open letter of apology.

416 APPENDIX B
JSTL API (for developers)
This method returns an array of rows, each of which is a SortedMap that has keys
representing column names and values representing column data. The Maps are
sorted by key name, case insensitively; the Comparator used by the SortedMap is
the same one you can access as String.CASE_INSENSITIVE_ORDER.

public Object[][] getRowsByIndex()

This method returns a two-dimensional array. Each “row” in the array (such as
getRowsByIndex()[0] or getRowsByIndex()[1]) represents a database row; each
element in this subarray represents column data. Both indexes start with 0. Thus,
getRowsByIndex()[0][3] is the fourth column of the first row.

public String[] getColumnNames()

This method returns an array for each column name resulting from the query. The order
of these names is the same as the order of data in each sub-array returned by getRows-
ByIndex(). For example, getColumnNames()[0] is the name of the first column, and
getRowsByIndex()[0][0] is the column data for that same column (in the first row).

public int getRowCount()

This method returns the number of rows in the result from the database.

public boolean isLimitedByMaxRows()

This method returns true if the Result object was truncated by <sql:query>’s
maxRows attribute, or false otherwise.

B.3.2 The javax.servlet.jsp.jstl.sql.ResultSupport class

The Result interface provides a convenient layer of abstraction for page authors
who need to access information from databases. One of JSTL’s virtues is that it’s a
standard, so once page authors learn how to access data from a Result bean using
the information from chapter 9, they can access data from any JDBC-compliant
database using only the <sql:query> tag.

 To take advantage of this mind-share, you can expose your own data from back-
end Java code using JSTL’s ResultSupport class. This class has static methods that
take a ResultSet parameter and return an object implementing JSTL’s Result inter-
face. After calling these methods, you can immediately close your ResultSet and
return your JDBC connection to a database pool, thus simplifying resource manage-
ment within your application. Furthermore, you need tell page authors only, “My
data looks just like the variable that comes back from <sql:query>”; you don’t
have to teach them any local, idiosyncratic skills.

 The ResultSupport class has the following two static methods:

static Result toResult(ResultSet rs)

Using JSTL’s localization algorithms 417
This method returns a Result object based on the given ResultSet. Note that the
ResultSet is consumed; it must be reset before further use (and if it is a one-way
ResultSet, it will no longer be usable).

static Result toResult(ResultSet rs, int maxRows)

This method returns a Result object based on the given ResultSet, limiting it to
maxRows rows if necessary. Recall that the Result objects returned by ResultSupport
methods cache data. The maxRows parameter lets you avoid consuming too much
memory as the result of a runaway query (for instance, a negligence to join two tables
in a query, producing an unanticipated, unfiltered cross-product of two relations).

B.3.3 The javax.servlet.jsp.jstl.sql.SQLExecutionTag interface

JSTL provides two tags for setting PreparedStatement parameters: <sql:param>
and <sql:dateParam>. However, SQL supports many data types; applications and
databases may need more support. To let you plug in your own parameter tags,
JSTL provides the SQLExecutionTag interface.

 To write a custom parameter tag designed to set a ?-style parameter in a Pre-
paredStatement, simply have your tag find its nearest SQLExecutionTag ancestor
and call the following method for this ancestor:

public void addSQLParameter(Object value)

This method adds a PreparedStatement parameter to the SQL execution tag (typi-
cally <sql:query> or <sql:update>). The SQL tag will accept this parameter
among those sent by other child tags, such as <sql:param>.

 For instance, a custom child tag might contain the following code:

SQLExecutionTag t =
 (SQLExecutionTag)
 findAncestorWithClass(this, SQLExecutionTag.class);
t.addSQLParameter(myParameter);

B.4 Using JSTL’s localization algorithms

To help you internationalize your applications, JSTL provides two classes related to
formatting and globalization.

B.4.1 The javax.servlet.jsp.jstl.fmt.LocaleSupport class

JSTL uses a detailed algorithm to select which locale to use when internationalizing
applications. This algorithm is designed to choose the best locale when the set of
available locales to satisfy any requested operation, such as a keyed lookup of an
internationalized message, does not contain the precise locale the user would prefer.

418 APPENDIX B
JSTL API (for developers)
Chapter 10 glosses over these details, because they’re not important to page authors;
this appendix doesn’t cover the behind-the-scenes algorithm, because it’s not impor-
tant for most programmers either. For more information, see the JSTL specification.
(See appendix D for information on downloading the JSTL spec online.)

 For now, it’s just important to see how to interface with this algorithm. Doing so
is important if you are writing code whose localization behavior should match
JSTL’s; this helps ensure consistency within an application.

 The LocaleSupport class gives you access to JSTL’s localization algorithm. It
provides four static methods:

static String getLocalizedMessage(PageContext pageContext,

 String key)

This method returns a localized message for the given key, using the default bundle
and locale retrieved through pageContext. Effectively, calling this method is a pro-
grammer’s way to retrieve what a default <fmt:message> tag would print into a JSP
page. If the method can’t determine a default bundle, or if the relevant Resource-
Bundle doesn’t contain the given key, the method returns the string "???key???",
where key is the key you passed as a parameter.

static String getLocalizedMessage(PageContext pageContext,

 String key,

 Object[] args)

This method is just like the previous one, but it performs parametric substitution, as
by the <fmt:param> tag. The args array is a list of parameters.

static String getLocalizedMessage(PageContext pageContext,

 String key,

 String basename)

This method returns a localized message for the given key and resource-bundle
basename, using the given pageContext to determine what locale to use (according
to JSTL’s localization algorithm). If the relevant ResourceBundle doesn’t contain the
given key, the method returns the string "???key???", where key is the key you
passed as a parameter.

static String getLocalizedMessage(PageContext pageContext,

 String key,

 String basename

 Object[] args)

This method is just like the previous one, but it performs parametric substitution, as
by the <fmt:param> tag. The args array is a list of parameters.

Using JSTL’s localization algorithms 419
B.4.2 The javax.servlet.jsp.jstl.fmt.LocalizationContext class

The LocalizationContext class is simply a way to wrap a java.util.Resource-
Bundle, a java.util.Locale, or both. Creating a LocalizationContext is useful
for two reasons: you can either set it as the application’s default LocalizationCon-
text using the Config.FMT_LOCALIZATION_CONTEXT configuration variable, or you
can give it to a page author to pass to a <fmt:message> tag’s bundle attribute.

 When you set the default localization context using Config.FMT_LOCALIZATION_
CONTEXT, you affect the behavior of a number of tags. This (along with the
FMT_LOCALE configuration variable) is how chapter 10 can magically invoke con-
cepts like “the default locale,” and details can be successfully hidden from page
authors who may not know anything about internationalization. Setting the default
LocalizationContext changes the default locale for the <fmt:formatNumber>,
<fmt:parseNumber>, <fmt:formatDate>, and <fmt:parseDate> tags. Because a con-
figuration variable can be applied to any scope, using LocalizationContext can be
particularly useful if you want to adjust the default locale for a user’s session; this
approach may be appropriate if the user supplied a preference for a particular locale
and you want to override the default preference of the user’s browser. The default
LocalizationContext also affects the default resource bundle and locale for
<fmt:message> tags.

 Instances of the LocalizationContext class are immutable, which means you
can’t change them. To obtain an appropriate LocalizationContext object, you
must supply all relevant information via a constructor:

public LocalizationContext()

This constructor creates an empty LocalizationContext object.

public LocalizationContext(ResourceBundle bundle)

This constructor creates a new LocalizationContext with the given bundle (and
with this bundle’s locale).

public LocalizationContext(ResourceBundle bundle, Locale locale)

This constructor creates a new LocalizationContext with the given bundle and
locale.

 Once you construct a LocalizationContext, you can pass the new object to one
of the “set” methods in Config (see section B.1) to establish this new Localization-
Context as the default. To establish a locale without a bundle, use the FMT_LOCALE
configuration with a Locale object, not FMT_LOCALIZATION_CONTEXT with a Local-
izationContext.

CDatabase tags and SQL
421

422 APPENDIX C
Database tags and SQL
The database tags from chapter 9 and the examples in part 3 use the Structured
Query Language (SQL) to access data. This appendix shows how you can use SQL
in your <sql:query> and <sql:update> tags. For more information about
<sql:query> and <sql:update>, see chapter 9. If you’re not familiar with SQL, this
appendix will help you follow the book’s examples.

NOTE This is not meant to be a complete guide to SQL—just a crash course to help
you understand this book’s examples if you haven’t used SQL before. For a
more complete introduction to SQL, see the resources in appendix D.

C.1 SQL and <sql:update>

SQL has two categories of commands. Commands in its Data Definition Language
(DDL) let you alter the structure of a database—for instance, add or remove a table.
By contrast, commands in SQL’s Data Manipulation Language (DML) let you work
with data—add, modify, or remove rows, for example.

 The <sql:update> tag supports both kinds of commands. You can therefore use
<sql:update> not only to add data but also to change the structure of your database.

C.1.1 Managing tables

In a relational database, a table is a collection of data that’s organized into rows and
columns. Think of a row of data as a single record or entry, and a column as a field,
or a placeholder filled in by each row.

 For example, a table of users might have three columns: ID, IQ, and BLOOD_TYPE.
Table C.1 shows an example, with some sample data.

Table 15.1 A simple table that lists users’ ID numbers, IQs, and blood
types. Relational databases store information in tables that work similarly
to printed tables in books: they are divided into rows and columns.

NAME IQ BLOOD_TYPE

1 106 O

2 82 A-

3 164 B+

4 143

5 128 AB+

SQL and <sql:update> 423
Creating a table
To create a table with these three columns, we can use an SQL command like that
shown in figure C.1.

 A CREATE TABLE command lists the columns your new table will contain. The
column definitions, separated by commas, list each column’s name, its data type,
and any constraints that limit the data the column can store.

 Like every JSP scoped variable (see chapters 2 and 4), every column has a data
type. For instance, one column might require numbers, and another might require
dates. Data types help a database ensure that your data makes sense. For example,
if one of your tags tries to store “January 20” as a user’s height, it’s probably an
error; the database should flag it as such and refuse to accept the data.

 Table C.2 lists some common data types, although many other, convenient
types exist and vary widely from database to database.

Table 15.2 Common SQL data types

SQL data type Description Sample value

INTEGER Integer 6510

REAL Floating-point number 6.02

DATE Date only (no time) January 20, 1986

TIME Time only (no date) 2:05 a.m.

TIMESTAMP Date and time January 20, 1985 2:05 a.m.

VARCHAR(x) String of up to x characters "Where did I leave my hat?"

Figure C.1
To create tables in SQL,
use the CREATE TABLE
command.

424 APPENDIX C
Database tags and SQL
In addition to types, columns have another important property: they can be marked
either as NULL or NOT NULL. A column marked NULL means that a row need not provide
data for that column. For example, in table C.1, the fourth row doesn’t contain any
BLOOD_TYPE information. This is only possible if BLOOD_TYPE is marked NULL. Columns
can enforce other kinds of restrictions, too. See appendix D for more information.

Deleting a table
If you want to delete a table and start over, the syntax is simply

DROP TABLE table

where table is the name of the table you want to delete. SQL also has commands
for changing the structure of existing tables, but these are more advanced, and we
don’t discuss them here.

C.1.2 Inserting data

To add data to a table, use the INSERT command to add a row. For instance, to add
the first row of data from table C.1 into the PEOPLE table we created in section C.1.1,
we can use the command from figure C.2.

 The general syntax for simple INSERT commands is

INSERT INTO table (column1, column2, …)

VALUES (value1, value2, …)

where value1 corresponds to the new row’s value for column1, value2 corresponds to
column2, and so on. Alternatively, you can leave out the explicit list of columns, in
which case all columns in the table (in the order in which they were created using CRE-

Figure C.2
SQL INSERT commands
add rows to tables, using
the column-by-column
values specified after the
VALUES keyword.

SQL and <sql:update> 425
ATE TABLE) will be assumed. Thus, if we were adding to the same PEOPLE table we cre-
ated earlier, the following command would be equivalent to figure C.2’s:

INSERT INTO PEOPLE
VALUES(1, 106, ’O’)

Note that if a column doesn’t appear in the INSERT command’s list of columns, it will, by
default, be given the value NULL in the new row. Standard SQL and some database sys-
tems support default values for each column, which can be used instead of NULL when a col-
umn’s value isn’t explicitly specified. However, without such default values, all columns
marked NOT NULL need to be given an explicit value when you insert a row into a table.

C.1.3 Modifying data

The SQL command for modifying data—or, to use SQL’s terminology, updating data—
is UPDATE. Its syntax is as simple as that of INSERT. In the last section, we inserted a row
for a user with an IQ of 106 and a blood type of O. Now, suppose this user gets a blood
transfusion that somehow changes her blood type and turns her into a genius. We need
to update the database so that the user’s IQ is now 182 and her blood type is AB+.

 To do so, we can use the command shown in figure C.3.
 The syntax for simple UPDATE commands is as follows:

UPDATE table
SET column1=value1, column2=value2, …
[WHERE conditions]

The UPDATE command modifies existing rows in table. It sets column1 equal to
value1, column2 to value2, and so on. By default, when no WHERE clause appears, the

Figure C.3
SQL UPDATE
commands modify one
or more rows in a table,
replacing old values
with new ones in
existing rows.

426 APPENDIX C
Database tags and SQL
command will modify every row in the table. (Be careful! Pressing the Enter key too
soon when typing SQL commands directly into a database can have disastrous effects.)

 When the word WHERE does appear, it is followed by a series of conditions that
filter, or limit, the rows that will be updated.

Conditions
SQL is powerful in part because it lets you handle a large number of rows at once
with a simple command. In other words, if you want to change all rows where some
column has a value greater than 2, you can do so in one fell swoop. You don’t have
to consider each row individually or loop over them all, as you might with a tradi-
tional programming language or even <c:forEach>.

 Instead, you can write a single SQL statement that decides which rows to handle
and which ones to ignore. Such statements contain a conditional expression (writ-
ten in SQL) that is evaluated for every row. If the expression evaluates to true, the
row is matched and processed; if it evaluates to false, the row is ignored.

 When an expression is evaluated for a row, a few things happen. First, when a
column name appears in the expression, the row’s value for that column is substi-
tuted. For example, in the following expression the value NAME is replaced with the
value of the NAME column for each row in turn:

NAME=’David Davies’

Thus, the condition is true when a row’s NAME column is equal to the value David
Davies; it is false otherwise.

 The syntax for SQL expressions is too general and complicated to cover in the
space we have here, but a few other characteristics of expressions are worth men-
tioning. First, in SQL, literal values—such as David Davies—are surrounded by sin-
gle quotation marks. This formatting contrasts with Java, which uses double
quotation marks ("") for string literals. (XML, as you may recall from chapter 2,
allows both single and double quotes for attribute values.)

 Also, simple SQL expressions can be combined to form more complicated ones.
For instance, if we want to find all rows where NAME equals David Davies and AGE is
less than 30, we can write

NAME=’David Davies’ AND AGE < 30

Separating the two simple conditions with the keyword AND requires that both sides of
the expression be true for the overall result to be true. (SQL supports other operators,
including OR.) Individual, simple subexpressions can use operators like = (equals), <
(less than), > (greater than), and <> (not equal to). You can even perform simple arith-
metic on values from different columns. For example, some of an employee’s retire-

SQL and <sql:query> 427
ment benefits might apply only if the employee’s age and years of service total 70 or
greater. We could express this condition with the following expression:

AGE + SERVICE > 70

C.1.4 Removing data

Of course, data stored in a relational database isn’t permanent. You can delete it
with the DELETE command, whose syntax is straightforward:

DELETE FROM table
[WHERE condition]

If a DELETE command appears without a WHERE clause, it deletes every row from the
table. Be very careful when using DELETE, because you can easily remove all data
from a table with a command like this:

DELETE FROM CUSTOMERS

This command deletes all data from the CUSTOMERS table, which probably isn’t a
good idea unless you’re going out of business.

 As with UPDATE, you can use the keyword WHERE, followed by a conditional SQL
expression, to narrow the set of rows to delete. For instance, if we needed to delete all
users under the age of 18, we could use the command

DELETE FROM PEOPLE
WHERE AGE < 18

C.2 SQL and <sql:query>

To retrieve data from a database, use the SQL SELECT command. Remember that,
as chapter 9 showed, <sql:query>’s only job is to acquire data, not to print it out.
SELECT is the SQL statement you use to tell a database what information you want
to receive.

C.2.1 Basic SELECT syntax

The simplest form of the SELECT statement is

SELECT * FROM table

This simple statement retrieves all data from the table named table. That is, every
column of every row is retrieved. To print the entire contents of a table, you can use
this SELECT statement with the printQuery.jsp page from listing 9.1 in chapter 9.

 Suppose, however, that you’re not interested in every row. For instance, we
might be a publisher releasing a new philosophical tract that we think will only
interest people with an IQ over 130. (As with the other examples in this chapter,

428 APPENDIX C
Database tags and SQL
don’t take the subject matter too seriously.) To help us market this book effectively,
we might run the SELECT query in figure C.4.

 Like UPDATE commands, SELECT commands can contain a WHERE clause specify-
ing a conditional expression. See the previous section for more information about
SQL conditions.

 Basic SELECT commands take the following form:

SELECT columns FROM table
WHERE condition

The list of columns can be replaced with an asterisk (*), which refers to all columns.

TIP You might wonder why you’d ever want to avoid selecting all columns at
once. After all, they might be useful even if you don’t currently need them—
and why bother modifying a query? If you’re dealing with very large data,
picking only the columns you truly care about may cause your pages to run
faster. Doing so also makes your queries clearer if you have to maintain your
pages. It’s easier to figure out the role of SELECT LAST_NAME FROM USERS
than to decide what SELECT * FROM USERS is doing in your page.

SQL SELECT statements can be considerably more complex than this simple form
suggests.

Relationships between tables
One feature that makes relational databases powerful is the ability to connect, or
join, multiple tables during a single query. For instance, suppose we have another

Figure C.4
SQL SELECT queries retrieve
one or more rows from a table,
often based on a conditional
expression following the
WHERE keyword.

SQL miscellany 429
table called ADDRESSES that, instead of storing users’ IQs and blood types, stores
their mailing addresses. This table might share user IDs with the PEOPLE table, so
the same user would have the ID 2 in both tables. To retrieve the users’ IQs and
mailing addresses at the same time, we could write the following query:

SELECT IQ, ADDRESS

 FROM PEOPLE, ADDRESSES

 WHERE PEOPLE.ID=ADDRESSES.ID

C.3 SQL miscellany

When you read and write SQL statements, you should keep in mind a few useful
facts about SQL’s syntax.

C.3.1 White space

White space isn’t significant in SQL. That is,

DELETE FROM CUSTOMERS

 WHERE AGE < 18

is equivalent to

DELETE

 FROM CUSTOMERS

 WHERE AGE < 18

and

DELETE FROM CUSTOMERS WHERE AGE < 18

White space, however, is significant inside a quoted string literal. For instance,

NAME=’David Davies’

differs from

NAME=’DavidDavies’

C.3.2 Case sensitivity

Whether actual SQL commands are uppercase or lowercase doesn’t matter; SELECT
commands can equally well begin with select. Relational database software varies
widely in whether items like table names are case sensitive or insensitive, so check
your database’s documentation before confusing CUSTOMERS with customers. Many
databases even let you configure whether matches in conditional expressions that
use single-quoted substrings (like NAME=’David Davies’) are case-sensitive.

430 APPENDIX C
Database tags and SQL
 As I mentioned in chapter 9, when you retrieve data from an <sql:query> tag’s
scoped variable, it doesn’t matter whether you use uppercase or lowercase for col-
umn names. Consider this example:

<sql:query var="smartUsers">
SELECT IQ FROM PEOPLE WHERE IQ > 140

</sql:query>
<table>
<c:forEach items="${smartUsers.rows}" var="row">
<tr>

</tr>
</c:forEach>
</table>

This fragment is equivalent to

<sql:query var="smartUsers">
SELECT IQ FROM USERS WHERE IQ > 140

</sql:query>
<table>
<c:forEach items="${smartUsers.rows}" var="row">
<tr>

</tr>
</c:forEach>
</table>

C.3.3 More advanced SQL

Again, the discussion here was designed only to introduce SQL informally. I’ve left out
complex syntax diagrams and many advanced features of the language. Also, many
databases have proprietary extensions to SQL that a general introduction can’t cover.
JSTL is compatible with all this simple, advanced, standard, and proprietary SQL. If
you’re familiar with more advanced SQL—or if someone hands you an SQL query on
a silver platter and says, “This is how you retrieve the blood types of all overweight
executives in our company, for use in your web application”—JSTL should let you use
it without a problem. The SQL is actually processed by your database, not JSTL.

C.4 Summary

Keep the following points in mind when thinking about JSTL, SQL, and databases:
� The Structured Query Language (SQL) is the typical way to access relational

databases. SQL is divided into commands for altering a database’s structure
(DDL) and working with data (DML).

� To create a table, use the command CREATE TABLE.

<td><c:out value="${row.IQ}"/></td>

<td><c:out value="${row.iq}"/></td>

Uppercase
column name

Lowercase
column name

Summary 431
� To delete a table, use DROP_TABLE.
� The SQL commands INSERT, UPDATE, DELETE modify data within tables.
� The SELECT command lets you retrieve data.
� JSTL works with whatever SQL commands your database supports. Unfortu-

nately, although SQL is a standard language, many database vendors extend
it in custom ways or fail to implement the entire standard.

DReferences and resources
433

434 APPENDIX D
References and resources
D.1 JSP Standard Tag Library

� JSTL in Action: Official book web site

http://www.manning.com/bayern. From this site, you can download the
source code, errata, and companion articles for this book.

� JSTL 1.0

http://jcp.org/aboutJava/communityprocess/final/jsr052/. The readable speci-
fication for JSTL 1.0 can serve as a useful reference, particularly for some
advanced details that are beyond the scope of this book.

� Installing Tomcat and JSTL

http://www.manning.com/bayern/tomcat. If you need to set up a JSP con-
tainer, you can access a tutorial I’ve posted on Manning’s web site.

� Installing the hsqldb database

http://www.manning.com/bayern/hsqldb. To experiment with databases, you
may want to set up your own private database. The hsqldb product is a free,
open-source database that’s easy to set up. I describe how in an article on
Manning’s site.

� JSTL reference implementation

http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html. JSTL’s refer-
ence implementation is available as open-source software through the Jakarta
Taglibs project, which is part of the Apache Software Foundation. If you run
your own JSP container, you can download and install updated versions of
the reference implementation from this site.

� Sun’s JSP site

http://java.sun.com/products/jsp/. Sun Microsystems, where Java originally
came from, maintains a web site to promote and inform people about Jav-
aServer Pages (JSP). This information also may contain current information
on tag libraries and JSTL.

� Jakarta Tomcat

http://jakarta.apache.org/tomcat/. This is the web site for Jakarta Tomcat.

� Jakarta Taglibs

http://jakarta.apache.org/taglibs/. This web site provides free, open-source tag
libraries for JSP. Many libraries in Jakarta Taglibs inspired features in JSTL.

Databases 435
� Web Development with JavaServer Pages 2d. ed
By Duane Fields, Mark Kolb, and Shawn Bayern (Manning, 2001); ISBN
193011012X. My first book with Manning, this guide covers JSP 1.2. Although
JSTL hides many details of JSP, these details are useful for advanced page authors.

D.2 XML-related references

� Online chapter on XSL Transformations
http://www.ibiblio.org/xml/books/bible2/chapters/ch17.html. An easy-to-
read guide to XSLT, available online for free.

� XSLT and XPath tutorial
http://www.vbxml.com/xsl/tutorials/intro/. Another tutorial on XSLT and XPath.

� ZVON.org: “The Guide to the XML Galaxy”
http://www.zvon.org. Some people I know swear by this collection of tutorials
and information about XML, particularly its information on XSLT and XPath.

� Slashdot’s RSS feed
http://slashdot.org/slashdot.rdf. Technology news from Slashdot, formatted
in RSS.

� RSS news
http://www.blogspace.com/rss/rss10. An RSS news feed about RSS feeds. On
the hit show Seinfeld, Kramer once wanted to produce a coffee-table book
about coffee tables. This is the RSS analogy.

D.3 Databases

� Introduction to SQL: Mastering the Relational Database Language
By Rick F. Van der Lans (Addison-Wesley, 1999); ISBN 0201596180. This
book is a readable guide to the Structured Query Language (SQL).

� JDBC Data Access API

http://java.sun.com/products/jdbc/. Read more information about JDBC,
Java’s database-access API, on the Sun site.

� hsqldb
http://hsqldb.sourceforge.net/. This is a small, free database written in Java,
formerly called Hypersonic SQL. See section D.1 for a pointer to instructions
on installing and configuring hsqldb.

436 APPENDIX D
References and resources
� Microsoft SQL Server

http://www.microsoft.com/sql/default.asp. This is the home page for
Microsoft’s database, presumptuously named SQL Server.

� MySQL

http://www.mysql.com. This is the web site for a free and very popular, but
overrated, database system.

� Oracle

http://www.oracle.com. Oracle is the world’s largest database company.
� PostgreSQL

http://www.postgresql.org. This is the web site of a free, open-source,
extremely high-quality database system.

D.4 Related standards

� Hypertext Transfer Protocol (HTTP 1.1)

http://www.ietf.org/rfc/rfc2616.txt. The Hypertext Transfer Protocol (HTTP)
is the foundation for the World Wide Web.

� Java Community Process

http://www.jcp.org/. The evolution of JavaServer Pages (JSP) and the JSTL in
Action (JSTL) is governed by the Java Community Process (JCP), a standards
organization. Read about the future of the Java platform at the JCP web site.

� Java APIs for XML

http://java.sun.com/xml/. You can read more about Java APIs for working
with XML at the Java web site. Some of these Java APIs serve as foundations
for JSTL’s XML support.

� JavaServer Pages 1.2

http://jcp.org/aboutJava/communityprocess/final/jsr053/. This site pro-
vides the JavaServer Pages (JSP) specification, version 1.2.

� Extensible Markup Language (XML) 1.0 (Second Edition)

http://www.w3.org/TR/2000/REC-xml-20001006. This site lists the XML
standard, in all its tedious glory.

� XML Path Language (XPath), Version 1.0

http://www.w3.org/TR/xpath. JSTL adopts XPath (see chapters 7 and 8), a lan-
guage for selecting XML fragments that was originally part of the XSLT standard.

Miscellaneous references 437
� XSL Transformations (XSLT), Version 1.0
http://www.w3.org/TR/xslt. JSTL includes support for XSLT (see chapter 8),
a language that’s primarily useful for converting XML documents from one
form to another.

� World Wide Web Consortium (W3C)
http://www.w3.org/. The web site for the W3C offers technical standards for
XML-related technologies. In addition to the specific URLs listed earlier, you
can read more about the Document Object Model (DOM) at this site.

D.5 Miscellaneous references

� HTML and CSS reference
http://www.blooberry.com. The HTML and CSS guides at Blooberry are well
organized and thorough.

� Just Java
By Peter van der Linden (Prentice Hall, 2001); ISBN 0130320722. This book
is an excellent, readable introduction to the Java programming language.

index
Symbols

$
to introduce XPath

variables 147
${}

for expression language 43–76
& 23
' 23
> 23
< 23
" 23
./

optional in XPath 166
<!--

HTML comments 34
<%--

comments in JSP pages 34
<%@ include %> 32

comparison with
<jsp:include> 32

<%@ page %> 33, 267
<%@ taglib %> 29
?

placeholder in SQL
query 204, 417

A

absolute URLs 117
action

definition 24
See also tag

Active Server Pages 5, 44
adultery 4, 11

alternating rows 112
America Online 118
ampersand

escaping in XML 23
ancestor tags 21
Apache Jakarta 13

See also Jakarta Taglibs,
Jakarta Tomcat

Apache Software Foundation 173
API

JSTL 410–419
application scope 37
Arabic numerals 17
attributes

definition 19
ordering of within tag 19
scoped

See scopes
authentication 302, 320–322
authType 66

B

<base>
HTML tag 27

<body>
HTML tag 5

body (of XML tags)
definition 17
empty 18
term, as substitute for

content 17
body temperature 223
boldface

use in book xviii, 7

boolean
and conditional logic 79
creating 86–88
values 44, 67–70
variables 162

bracket
escaping in XML 23

browsers 4
bundles 216
bureaucracy 132
business logic 331

C

<c:catch> 263, 392
exposed information 265

<c:choose> 88–94, 394
can’t use <x:when> 163
contrast with <c:if> 88–89
emulating with <c:if> 88–89
no attributes 90
serves as container 90
syntactic rules 93–94
XML library analog

(<x:choose>) 160
<c:forEach> 102, 395, 413

begin, end, step 96, 101–104
exposing variable for body 97
introduction 96–98
iterating over numbers 96,

104–106
loop status 96, 106–112
paging 107–112
439

440 INDEX
<c:forEach> (continued)
partial iteration 96, 101–104
scrolling over data 96, 107–

112
subsetting 96, 101–104
supported Java types 97
varStatus 106–112, 255
XML library analog

(<x:forEach>) 164
<c:forTokens> 102, 395, 413

begin, end, step 96, 101–104
introduction 96, 98–101
loop status 96, 106–112
parsing rules 100
varStatus 106–112

<c:if> 79–88, 394
contrast with complex

conditionals 88–89
exposing booleans 86–88
nested tags 84–86
preventing empty

 84
relationships with other <c:if>

tags 82–86
XML library analog

(<x:if>) 160
<c:import> 396

advanced techniques 330,
335–338

character encoding 337
cross-context imports 121
and <c:set> 116, 125–127
exposing java.io.Reader 335
for page headers 128
from other web

applications 121
replaces <jsp:include> 116
request parameters 124–125
and scoped variables 116,

125–127
sending request

parameters 116
varReader 335

<c:otherwise> 88–94, 394
for default text 91
syntactic rules 93–94
XML library analog

(<x:otherwise>) 160
<c:out> 393

as common tag 44

compared to other
languages 44

default values 46
escapeXml 47
escapeXML attribute 47
first glimpse 8
introduction 44–48
special characters 47
within HTML tags 47
XML escaping 47
and XML output 47

<c:param> 116, 124–125, 396
<c:redirect> 116, 132–134, 396
<c:remove> 393

introduction 44, 74–75
<c:set> 393

introduction 44, 71–74
modifying Maps 334–335
setting JavaBeans

properties 334–335
setting properties 331
tag body 72
use cases 73
with <c:import> 126

<c:spam> xix
<c:url> 116, 134–137, 295, 396

and context-relative
URLs 136

and sessions 135
<c:when> 88–94, 394

compared to nursing cattle 90
compared to selfish child 91
contrast with <c:if> 88–89
syntactic rules 93–94
XML library analog

(<x:when>) 160
Cable News Network 121, 155
Calendar 368
case sensitivity

and XML 21
in SQL 429

case statements 90
cat

allergies to 308
cattle

nursing 90
Chalmers, David 56
channels 303
character encoding

description of 337
chat rooms 9

checkboxes 60
reading multiple 252–257

child tags
and <c:if> 84–86
definition 20

client/server
definition 4

closing tags
See end tags 21

COBOL 5
Cocoon 173
ColdFusion 5, 44
colon

in URL 118
in XML tags 19
in XPath variables 147

columnNames
accessing metadata with 193

comments
definition 33
HTML 309

Common Gateway Interface 5
communication protocols 9
comparisons

between values 67–69
complex conditions

with XML 154, 162–164
ConditionalTagSupport 362,

366–378, 415
conditions 8

creating conditional tag
libraries 362

creating custom conditional
tags 366–378

definition 78
mixing regular and XML 163
mutually exclusive 77, 88–94
simple 77, 79–88
custom tags and 410, 413–415

Config 410
Config class 350
configuration 410–412
configuration variables 330,

349–355
API 410–412

context path 66
context-initialization

parameters 66, 351
access from XPath 148

context-relative URLs 120

INDEX 441
control flow
based on XML

documents 159–169
cookies 65–66

accessing from XPath 148
sessions without 135

cows 90
CREATE TABLE

SQL keywords 200, 423
CSS 437
currencies 8, 219–222

formatting 222
current date

determining 227
custom tags

conditions and loops 410, 413–
415

D

Data Definition Language 422
Data Manipulation

Language 422
databases 182–214, 300

columns 191
connection pooling 188
DataSources 185–189
defaults 185–189, 330, 349–

355, 410–412
deletions 199–201, 214
erroneous queries 202
examples 280–300
insertions 199–201, 214
integrity of data 182
and Java code 415–417
metadata 192
queries 189–199, 214
query parameters 201–206
relationships between

tables 428
results, organization of 191
rows 191
for storing information

offline 182
tables 422
transactions 206–211
updates 199–201, 214
versus scoped variables 182
versus text files 182
when to use JSTL’s support

for 182–185

DataSource 185–189, 353
dates 216

<sql:dateParam> 205
current 227
formatting 216, 227–232
ISO format (8601) 238
parsing 216, 236–238
patterns 230, 238
printing 216, 227–232
reading 216, 236–238
time zones 216, 238–242
user input 252, 257–261

dateStyle 230, 237, 260
Davies, David 98, 204
declarations 331
defaults 330

for JSTL tags 349–355
setting with Java code 410–412

dehydration 97
DELETE

SQL keyword 200, 427
deleting variables 74–75
delimiters

definition 99
deployment descriptors 351
DESC

SQL keyword 298
descendent tags 21
directives

See <%@ taglib %>, <%@
include %>,
<% page %> 29

dirty reads 211
division of labor 331

related to web architecture 12
DML 422
doAfterBody() 363
Document Object Model 339
doGet() 345
dollar sign

to introduce XPath
variables 147

doPost() 345
doStartTag() 363
Dreamweaver 5
DriverManager 353
driving directions

See also XSLT
compared to HTTP

response 4

DROP TABLE
SQL command 424

dynamic content
and control over layout 78
definition 4
introduction 4–9

E

efficiency
See performance 33

elements
definition 18
empty 18

email 362
empty 69, 391
empty elements

See elements, empty
end tags

required in XML 21
enterprise applications 11–14, 184
entity

as informal term for entity
reference 23, 47

error flags 86–88
error handling 261–268

in portal 308–309
repopulating forms 274–277
restoring form input 276

error messages 67
printing conditionally 77, 82–

87, 89
error pages 33, 261
errorPage

See error pages
escapeXml

attribute of <c:out> 47
escaping

See also escapeXml
special XML characters 23

evaluating expressions 44–48
exceptions 67, 261, 263–268
execution, program

definition 9
expression language

- (binary) 51
- (unary) 51
! 69–70
!= 44, 67–69
${ 45
&& 69–70

442 INDEX
expression language (continued)
* 51
+ 51
. 52
/ 51
<= 44, 67–69
== 44, 67–69
>= 44, 67–69
|| 69–70
addition 51
and 44, 69–70
applicationScope 49
arithmetic 51
boolean values 44, 67–70
brackets, square 44, 64
checking for missing

values 44, 69
comparisons 44, 67–69
context-initialization

parameters 66
cookies 65–66
data types 50, 55
div 51
division 51
empty 44, 69
eq 44, 67–69
equality 44, 67–69
ge 44, 67–69
greater than 44, 67–69
grouping 44, 69–70
gt 44, 67–69
headers 65
headerValues 66
indirect reference of

properties 64
initParam 66
interaction with Java

classes 330
interaction with Java

code 344–349
le 44, 67–69
less than 44, 67–69
logical operators 69–70
lt 44, 67–69
mod 51
modulus 51
multiple expressions in same

attribute 70
multiplication 51
ne 44, 67–69
not 44, 69–70

not allowed in var, scope 71
null 44, 69, 391
numbers 50–51
operator precedence 44, 69–70
or 44, 69–70
pageContext 66
pageScope 49
parameters 55–63
paramValues 252–257
parentheses 44
property access 44, 52, 64
purpose 44
reference 390
remainder 51
request parameters 44, 55–63
requestScope 49
scoped variables 44, 48–55
sessionScope 49
strings 50
subtraction 51
variable access, basic 48
variables 48–55
where valid 46

Extensible Markup Language
See XML

Extensible Stylesheet Language
Transformations

See XSLT

F

<fmt:bundle> 216, 245–248, 408
<fmt:formatDate> 216, 227–

232, 260, 406, 419
dates versus times 228
fine-grained control 230
no tag body 227
time zones 239
times versus dates 228
verbosity 229

<fmt:formatNumber> 216–219,
405

as cause of slight fevers 224
contrasted with <c:out> 217
currencies 219–222
digit grouping 222
fine-grained control 223–227
parsing rules 235
percentages 219–222
scientific notation 226
tag body 218

<fmt:message> 216, 245–248,
408, 418–419

parameters 246
<fmt:param> 216, 245–248,

408, 418
<fmt:parseDate> 216, 260, 406,

419
parsing rules 237
patterns 238
time zones 239

<fmt:parsedate> 236–238
<fmt:parseNumber> 216, 232–

236, 405, 419
rationale 233

<fmt:requestEncoding> 330,
343–344

<fmt:setBundle> 216, 245–248,
408

<fmt:setLocale> 216, 242–245
<fmt:setTimeZone> 216, 238–

242, 407
<fmt:timeZone> 216, 238–242,

407
<form>

HTML tag 44, 55–63
method 57

File Transfer Protocol 118, 121
first page 4
floating-point numbers 51
flow control

definition 78
footers 128–130
forms 6

check
boxes 252–257

date input 257–261
filling in 274–277
HTML 44, 55–63
prepopulating 274–277
validation of 268–277

forwarding of web requests
definition 12

functional programming 169

G

GET 57
getRemoteUser 322
gingivitis 97
globalization 216

INDEX 443
groupingUsed 222
guest book 280, 291–300

H

<head>
HTML tag 29

headers 65, 128–130
accessing from XPath 148
with <c:import> 128

hidden form fields 285
highlighting

use in book xix
highway lanes 79
Hillhouse Avenue 170
hit counter 312

example 182, 211–213
hsqldb 186, 434, 435
HTML 4

as application of XML 16
comments 309
embedded into programs 12
knowledge of 16
reference 437
static nature of 4

HTML editors 5
HTML forms

check boxes 253
date input 258
filling in automatically 276
hidden fields 285
password boxes 58
restoring user input 276
selection boxes 59
submission 62
text areas 61
text boxes 58
user registration 314
validation 252

HTML tags
JSTL tags within 48

HTTP 9, 436
GET 57
methods 57
POST 57

HTTPS 322
HttpServlet 345
Hypertext Markup Language

See HTML

Hypertext Transfer Protocol
See HTTP

I

<input>
HTML tag 44, 55–63

i18n
See internationalization

imperative programming 169
implicit objects

compared to XPath variable
prefixes 147

importing text 116–132
index

within loop 102
initialization parameters 148
initParam 352
input

reading from users 55–63
input validation 252, 268–277
InputStream 337
INSERT

SQL keyword 200, 424
internationalization 216–248,

417–419
bundles 216, 245–248
client experimentation

with 218
currencies 219, 222, 232–236
date formats 216
dates 227–232, 236–238
localized text 216, 245–248
number formats 216
numbers 216–219, 232–236
percentages 219–222, 232–

236
time zones 216
times 227–232, 236–242

Internet Explorer 5, 175, 217
irrigation, nasal 303
isErrorPage 266
ISO 8601 238
ISO-8859-1 337
isolation levels 210
iteration 78, 96

J

<jsp:forward> 26, 28, 274
circular loops 28

<jsp:include> 26
comparison with

<%@ include %> 32
versus <c:import> 116

<jsp:useBean> 333
to retrieve current date 227

Jakarta project
See Apache Jakarta

Jakarta Taglibs 434
Jakarta Tomcat 10, 120
JA-SIG 173
Java

as basis for JSP 10
JSTL APIs for 410

Java classes
for programmers 416

Java Community Process xiii,
436

Java Message Service 362
Java Naming and Directory

Interface 362
Java servlets 12
java.io.Reader

with 335
java.sql.DriverManager 353
JavaBeans 330, 344–349
JavaScript 4–5, 44, 147, 268
JavaServer Pages

See JSP
javax.servlet.* 416
javax.servlet.jstl.core.Config 350
javax.sql.DataSource 353
javax.xml.transform.Result 343
JDBC 186, 353, 435
JSP 5

actions
See tags 24

as basis for JSP 6
as basis for JSTL 9–11
errorPage 261
introduction 23–39
Java code within 330–334
JSTL’s advantages and 6
among other languages 5
recompiling pages 33
scopes 34
scripting elements 330–334
specification 436
tag-extension API 362–366
tags 24

444 INDEX
JSP (continued)
as template system 9
web applications, term 120

JSP container
definition 10
reference to installation

instructions 10, 120
JSTL

API 410–419
and basis on JSP 23
compared to XSLT 170
core library 31
formatting library 31
inside HTML tags 24
importing into pages 31
mixed with template text 24
multiple tag libraries 30
and national holidays 281
online specification 434
recommended taglib

prefixes 30
reference implementation 434
SQL library 31
taglib URIs 30
XML library 31
and XML syntax 20

K

ketchup 144

L

libraries
See tag libraries 24

lightning
server struck by 206

LIMIT
SQL keyword 199

limitedByMaxRows 193, 198
listeners 345
locales 242–245

configuring 355
default 330, 349–355, 410–

412, 419
fallback locales 355
identifying 243

LocaleSupport 417
localization 216

algorithms 417–419
LocalizationContext 419

loops 8, 96–113
beginning with 0 102
creating custom loop

tags 378–387
definition 78
indexes within 102
over XML nodes 164–169
and scrolling over data 96,

107–112
status within 96, 106–112
subsetting 96, 101–104
writing custom tags 410, 413–

415
and XML 154

LoopTag 413
LoopTagStatus 106–112, 413

interface 107
LoopTagSupport 362, 378–387,

414

M

Macromedia 5
Mad-Libs

similarity to JSTL 7
mail merge

compared to JSTL 6, 78
maintainability

of web sites 12
malpractice 85
maxFractionDigits 225
maxIntegerDigits 225
maxRows 354
message board 280, 291–300

posting messages 298
Microsoft 5, 281, 436

SQL Server 182
Windows 218

minFractionDigits 226
minIntegerDigits 226
mod_perl 5
Model-View-Controller 13
mutually exclusive conditions

see conditions, mutually
exclusive 77

with XML 162–164
myopia 97
MySQL 182, 436

N

namespace
and JSTL tags 20
and XPath 148-149
definition 19
JSTL taglib prefixes 19

nasal irrigation 303
national holidays and JSTL 281
nested tags

See child tags 21
New Haven 170
node-sets (XPath) 159
non-repeatable reads 211
NULL

SQL keyword 424
null

expression-language
keyword 391

numbers 216
digit groupings 222
formatting 216–219
parsing 216, 232–236
patterns, numeric 226, 236
printing 216–219
reading 216, 232–236
scientific notation 226

Númenor 154

O

<option>
HTML tag 59

O’Davies, David 202
OFFSET

SQL keyword 199
opening tags

See start tags 21
Oracle 182, 436
ORDER BY

SQL keywords 298
org.w3c.dom.Document 339
org.xml.sax.XMLFilter 341
outputting data 44–48

P

page scope
introduction 36

pageContext 66
page-relative URLs 119

INDEX 445
pageScope
in XPath 148

paging (over data) 96, 107–112
parameters 44, 55–63, 124–125

detecting missing 69
paramValues 252–257
parent tags

definition 20
Parliament, British xiii
parseLocale 235, 245

tag attribute 216, 242–245
parsing

definition 98
XML documents 154–156

password boxes 58
patriotism

and XML 140
percentages 219–222
performance 33
Perl 6
PermittedTaglibsTLV 356
personalizing content 302, 320–

322
phantom reads 211
phone numbers

and URLs 118
PHP 5, 44
plusmail xvi
polling applications 280–291
polls

web-site feature 280
pooling

carpooling 188
of database connections 188,

353
portals 302–325

authentication 302, 320–322
channels 303
error handling 308–309
layout 302–309
personalization 302, 320–322
user registration 302, 313–320

POST 57
PostgreSQL 182, 197, 436
prefixes

for bundles 248
See namespace prefixes

pregnancy
mammalian 20

PreparedStatement 417
printing data 44–48
protocols, communication 9

Q

qualified name 19
and XPath variables 147

query parameters 295
query string 67, 110
quotation marks

and attribute values 21, 23
escaping in XML 23

R

radio buttons 60
Rambaldi, Milo 47
RDBMS 182
read_committed 211
read_uncommitted 211
Reader

versus InputStream 337
redirection 116, 132–134

definition 132
registering users 302, 313–320
rejection

romantic 60
relational database management

systems 182
relative URLs 117
remainder

for alternating rows 112
remote user 66
removing variables 74–75
repeatable_read 211
repetition 96
request 345

definition 9
request parameters 44, 55–63,

116, 124–125
access from XPath 148
character encoding 330, 343–

344
hidden form fields 285
in URL 295
syntax in URL 111

request scope
and <jsp:include>,

<jsp:forward> 37
introduction 37

request URL 67
request/response model

definition 9
requestScope

in XPath 148
requirements

for running JSTL 9–11
resource bundles 245
ResourceBundle 419
response 345

definition 9
Result 415
ResultSet 416
ResultSupport 416
Rich Site Summary

See RSS
rodents

and JSP scopes 34
root element

of XML document 141
rowsByIndex

accessing data with 193
RSS 154, 175–179, 302, 309–

311, 435
namespaces and XPath 177

rtexprvalues 330
JSTL’s support for 332

S

<select>
HTML tag 59

<sql:dateParam> 205, 403
<sql:param> 182, 201–206, 403

body of 205
<sql:query> 182, 189–199, 281,

402, 415, 422, 427–429
data access 193
executing query with 190
limiting result sizes 197
maxRows 197
metadata access 192
reading results of 191
startRow 197
with <sql:param> 202

446 INDEX
<sql:setDataSource> 182, 185–
189, 280, 401

JDBC and 186
performance problems 188

<sql:transaction> 182, 206–211,
404

isolation 210
<sql:update> 182, 199–201, 281,

403, 422–427
measuring effect of 200
with <sql:param> 202

schemes (URL)
definition 118

scientific notation 226
scope (attribute)

conventional use in JSTL 71
defaults to page 71
legal values 71
no expressions 71

scoped variables
boolean 44
creating 44
deleting 44
exposing from Java 330
and expression language 44
for database results 193
modifying properties of 331
removing 44
setting 44
and XML 154

scopes 34–39
See also page scope, request

scope, session scope,
application scope 36

ScriptFreeTLV 356
scripting declarations 331
scripting elements 330–334

discouraging 331, 355–358
preventing 331, 355–358
warning against 331

scripting expressions 330
scripting variables 333
scriptlets 330
scrolling (over data) 96, 107–112
search-engine results 107–112
Secure Sockets Layer 322
security 202, 355

authenticating users 302, 320–
322

SELECT
SQL keyword 190, 427

selection boxes 59
multiple 60

separation 12, 184, 331
serializable 211
server information, retrieving 67
servlets

and databases 183
definition 12
exposing scoped variables

from 345
session rewriting 116, 135–137
session scope

introduction 38
sessionScope

in XPath 148
session

See also session scope 38
setting variables 71–74
simple conditions 77, 79–88

and XML 154, 160–162
site organization 302–325
Slashdot 324, 435
source page (importing)

definition 117
SPath 342
SQL 422, 435

case sensitivity 429
column constraints 424
CREATE TABLE 423
DELETE 427
deletions 199–201
DROP TABLE 424
expressions 425
INSERT 424
insertions 199–201
introduction 422–431
in JSTL tags 182–214
JSTL tags for 182
parameters 417
printing entire tables 427
queries 189–199
query parameters 201–206
SELECT 427
transactions 206–211
UPDATE 425
updates 199–201
whitespace 429

SQL Server, Microsoft 182
SQLExecutionTag 417
static text 6

strings
parsing 98–101

Structured Query Language 182
See SQL

Struts 13
Sun Microsystems 434
surveys 280–291
switch statements

(<c:choose>) 88–94
systemId 340

T

<table>
HTML tag 78

<textarea>
HTML tag 61, 275

tag libraries 29–32
conditions and loops 413–415
conditional tags 362, 366–378
configuring 362
creating 362–387
custom 362–387
definition 24
installing and using 362–366
iteration tags 362, 378–387
loop tags 362, 378–387
rationale for term 8
restricting use of 357

tag-library descriptors 362–366
TagLibraryValidator

JSTL support for 355–358
support provided by JSTL 331

tags
definition 18
JSP tags inside HTML tags 24
JSP, syntax 24
mixing HTML with 24
overlapping 23
standard JSP 25
term, as substitute for

action 24
target page (importing)

definition 117
template systems 23

introduction 6

INDEX 447
template text
definition 6
and SQL queries 202

text areas 61
text boxes 58
Throwable 266
time zones 216, 238–242

default 330, 349–355, 410–412
how JSTL determines 239

times 216
timeStyle 230, 237
timeZone 239

attribute 216
tag attribute 238–242

tokens 98–101
definition 98

Tomcat 10, 120, 434
transactions 206–211

definition 207
transformations

of XML documents 169–175
trees

and XML documents 140–142
Twenty Questions 88

U

Uniform Resource Locators
See URL

Universal Resource Identifiers
and tag libraries 30
for JSTL taglibs 30

University of Kentucky 118
UPDATE

SQL keyword 200, 425
uPortal 173
URIs

See Universal Resource Identi-
fiers

URL 30
absolute 117
absolute vs relative 117–121
compared to phone

numbers 118
context-relative 120
importing data from 117, 121–

132
managing with <c:url> 116,

134–137
page-relative 119
query strings 110

relative vs absolute 117–121
retrieving data from 117, 121–

132
user authentication 320–322
user registration 302, 313–320
UTF-8 344

V

validation 252, 268–277, 331
client-side 268

VALUES
SQL keyword 425

var attribute
conventional use in JSTL 71
no expressions 71

VARCHAR
SQL type 282

varDom 339
variables

boolean 67–69
and <c:import> 125–127
creating 71–74
creating booleans 86–88
deleting 74–75
exposing from Java 344–349
and expression language 48–55
modifying properties of 334–

335
removing 74–75
scoped 34–39, 48–55
scoped

See also scopes
setting 71–74
and XML 158–159

varReader 335
varStatus 106–112
View Source

to see HTML code 5
votes

online survey 280
voting applications 280–291

W

waste-generator training,
hazardous 118

web addresses 117
web browsers

determining type of 66
inconsistencies 4

web pages
as reactive to requests 9

web programs
versus traditional programs 6

web request 9
web response 9
web.xml 351
WEB-INF directory 366
WHERE

SQL keyword 425
whitespace

in SQL 429
Wireless Markup Language 6, 12
World Wide Web

Consortium 437

X

<x:choose> 154, 162–164, 399
can’t use <c:when> 163

<x:forEach> 154, 164–169, 400,
413

nested iteration with 167
and XPath context 166

<x:if> 154, 160–162, 399
<x:otherwise> 154, 162–164, 399
<x:out> 154, 156–158, 398
<x:param> 174, 401
<x:parse> 154–156, 397

and acquiring documents 155
advanced techniques 338–343
and <c:import> 155
and source of documents 155
systemId 340
varDom 339

<x:set> 154, 158–159, 398
<x:transform> 154, 169–175,

400
Result objects 343
system identifiers 340
xmlSystemId 340
xsltSystemId 340

<x:when> 154, 162–164, 399
XHTML

as stricter HTML 6
XML

advanced JSTL support 330,
338–343

attributes 16
as basis for web content 6

448 INDEX
comparison to Arabic
numerals 17

data formats 338
entity references 47
escaping 47
filters 341
formal terminology 18
introduction 16–23
Java APIs 436
namespaces 148–149
relationships between tags 20
special characters 47
specification 436
syntactic rules 21–23
system identifiers 340
well-formed 19

XML documents
and control flow 159–169
locating with XPath 156
looping over 164–169
parsing 154–156
printing text from 156–158
as root for XPath

expression 156
selecting fragments from 140–

152
tree structure 140

XML namespaces
See namespace

XML Path Language
See XPath

XPath 140–152, 169, 435
/ 142
// 143
@ 144
applied 169
axes 140, 149–150
basic syntax 140, 142
compared to file paths 142
contexts 140, 150–151
cookies 148
and element order 145
further reading 151
headers 148
in JSTL tags 156–169
name() function 149
namespaces 177
and namespaces 148–149
namespace-uri() function 149
nodes 140, 149–150
node-sets 159
pageScope 148
predicates 145
qualified names 147
request headers 148
request parameters 148
requestScope 148
return values 146

rooted in scoped variables 156
sessionScope 148
specification 436
and tag attributes 144
tying to documents 156
type mappings in JSTL 398
types 146
unexpected failure to match

tags 149
variables 140–148
view of XML documents 140–

142
XSLT 140, 154, 169–175, 435

advantages of JSTL’s support
for 174

chaining transformations 172
compared to JSTL 170
disadvantages of 170
multiple transformations 172
parameters 174
rant against 170
specification 437

Y

yogurt
low-fat 397

More Java titles from Manning

JMX in Action

BENJAMIN G. SULLINS AND MARK B. WHIPPLE
ISBN 1930110561

360 pages, $39.95
Fall 2002

Java Development with Ant

ERIK HATCHER AND STEVE LOUGHRAN
ISBN 1930110588
672 pages, $44.95

Summer 2002

For ordering information visit www.manning.com

More Java titles from Manning

SCWCD Exam Study Kit:
Java Web Component Developer Certification

HANUMANT DESHMUKH AND JIGNESH MALAVIA
ISBN 1930110596

560 pages, includes CD ROM, $44.95
Summer 2002

Bitter Java

BRUCE A. TATE
ISBN 193011043X
368 pages, $44.95

Spring 2002

For ordering information visit www.manning.com

More Java titles from Manning

JDK 1.4 Tutorial

GREGORY M. TRAVIS
ISBN 1930110456
408 pages, $34.95

Spring 2002

Java 3D Programming

DANIEL SELMAN
ISBN 1930110359
400 pages, $49.95

Spring 2002

For ordering information visit www.manning.com

More Java titles from Manning

Instant Messaging in Java:
The Jabber Protocols

IAIN SHIGEOKA
ISBN 1930110464
400 pages, $39.95

Spring 2002

Web Development with Java Server Pages
Second edition

DUANE FIELDS, MARK A. KOLB, AND SHAWN BAYERN
ISBN 193011012X
800 pages, $44.95
November 2001

For ordering information visit www.manning.com

	JSTL in Action.pdf
	preface
	acknowledgments
	about this book
	How to approach the book
	Conventions
	Source code
	Author online

	about the cover illustration
	Part 1 - Background
	Dynamic web sites
	1.1 The boring life of a web browser
	1.2 The simple ideas behind dynamic web content
	1.3 What you need to run JSTL
	1.3.1 JSP containers

	1.4 Real-world web applications
	1.5 Summary

	Foundation: XML and JSP
	2.1 Introduction to XML
	2.1.1 A dose of tag terminology
	2.1.2 The relevant rules of XML

	2.2 Introduction to JSP
	2.2.1 JSP tag syntax
	2.2.2 Standard JSP tags
	2.2.3 JSP tag libraries
	2.2.4 Other JSP directives
	2.2.5 JSP comments
	2.2.6 How JSP organizes data

	2.3 Summary

	Part 2 - Learning JSTL
	The expression language
	3.1 Expressions and the <c:out> tag
	3.1.1 What expressions look like
	3.1.2 Where expressions work
	3.1.3 Default values in <c:out>
	3.1.4 Special characters and <c:out>

	3.2 Scoped variables and the expression language
	3.2.1 Basic syntax to access scoped variables
	3.2.2 Different types of scoped data

	3.3 Request parameters and the expression language
	3.3.1 HTML forms
	3.3.2 A page that reads request parameters

	3.4 More powerful expressions
	3.4.1 Different ways to access properties
	3.4.2 Accessing other data with the expression language
	3.4.3 Comparisons
	3.4.4 Boolean operations and parentheses
	3.4.5 Multiple expressions

	3.5 Saving data with <c:set>
	3.6 Deleting data with <c:remove >
	3.7 Summary

	Controlling flow with conditions
	4.1 Different kinds of decisions
	4.2 Yes-or-no conditions with <c:if>
	4.2.1 The basic syntax of <c:if>
	4.2.2 Using <c:if> within HTML tags
	4.2.3 Multiple <c:if> tags
	4.2.4 Nested <c:if> tags
	4.2.5 The var and scope attributes

	4.3 Mutually exclusive conditions with <c:choose>, <c:when>, and <c:otherwise>
	4.3.1 Why JSTL has complex conditional tags
	4.3.2 How the complex conditional tags work
	4.3.3 Rules for using the complex conditional tags

	4.4 Summary

	Controlling flow with loops
	5.1 General-purpose looping with <c:forEach>
	5.2 Iterating over strings with <c:forTokens>
	5.2.1 How JSTL parses strings

	5.3 Advanced iteration with <c:forEach> and <c:forTokens>
	5.3.1 Looping over part of a collection
	5.3.2 Looping over numbers
	5.3.3 Loop status

	5.4 Loop example: scrolling through results
	5.4.1 Understanding the example
	5.4.2 Using varStatus in the example

	5.5 Summary

	Importing text
	6.1 Including text with the <c:import> tag
	6.1.1 Absolute and relative URLs
	6.1.2 Retrieving data from URLs
	6.1.3 Saving information for later
	6.1.4 Communicating with imported pages
	6.1.5 Import example: a customized header

	6.2 Redirecting with <c:redirect>
	6.3 Formatting URLs with <c:url>
	6.3.1 How to use <c:url>
	6.3.2 Why to use <c:url>

	6.4 Summary

	Selecting XML fragments
	7.1 XPath’s vision of an XML document
	7.2 XPath’s basic syntax
	7.2.1 Deep descendants
	7.2.2 Attributes
	7.2.3 Predicates and element order
	7.2.4 Strings and booleans

	7.3 XPath variables and JSTL
	7.4 JSTL, XPath, and namespaces
	7.5 More advanced XPath
	7.5.1 Nodes and axes
	7.5.2 Contexts
	7.5.3 Further reading

	7.6 Summary

	Working with XML fragments
	8.1 Parsing documents with <x:parse>
	8.1.1 Sources of XML

	8.2 Accessing XML with <x:out> and <x:set>
	8.2.1 Finding a document
	8.2.2 The <x:out> tag
	8.2.3 The <x:set> tag

	8.3 Control flow based on XML documents
	8.3.1 Simple conditions with <x:if>
	8.3.2 Compound conditions with <x:choose>
	8.3.3 Looping over parts of a document with <x:forEach>

	8.4 XML transformations using JSTL
	8.4.1 Simple transformations with <x:transform>
	8.4.2 Using the var attribute
	8.4.3 XSLT parameters
	8.4.4 Advantages of using XSLT within JSTL

	8.5 An XML example: reading RSS files
	8.6 Summary

	Database-driven pages
	9.1 When to use JSTL’s database support
	9.1.1 When to use databases
	9.1.2 Direct access from JSP pages

	9.2 Setting up a database connection with <sql:setDataSource>
	9.2.1 Caution against <sql:setDataSource>

	9.3 Performing queries with <sql:query>
	9.3.1 Performing a database query
	9.3.2 Reading a query’s results
	9.3.3 Limiting the size of a query’s result

	9.4 Modifying data with <sql:update>
	9.4.1 Simple uses of the <sql:update> tag
	9.4.2 Measuring the effect of an <sql:update> tag

	9.5 Using <sql:param> with adjustable queries
	9.5.1 Template queries
	9.5.2 Safe, convenient parameters with <sql:param>
	9.5.3 Date parameters with <sql:dateParam>

	9.6 Managing transactions with <sql:transaction>
	9.6.1 The <sql:transaction> tag
	9.6.2 Transaction isolation

	9.7 SQL example: a hit counter
	9.8 Summary

	Formatting and internationalization
	10.1 Printing numbers with <fmt:formatNumber>
	10.1.1 Basic usage of <fmt:formatNumber>
	10.1.2 Different ways to specify a value
	10.1.3 Storing a number instead of printing it
	10.1.4 Printing different types of numbers: percentages and currencies
	10.1.5 Grouping digits together … or not
	10.1.6 Controlling how many digits print
	10.1.7 More control: custom number patterns

	10.2 Printing dates with <fmt:formatDate>
	10.2.1 Differences from <fmt:formatNumber>
	10.2.2 Printing times, dates, or both
	10.2.3 Printing longer or shorter dates and times
	10.2.4 More control: custom date patterns

	10.3 Reading numbers with <fmt:parseNumber>
	10.3.1 Why you might want to parse numbers
	10.3.2 How <fmt:parseNumber> works by default
	10.3.3 Changing <fmt:parseNumber>’s parsing rules

	10.4 Reading dates with <fmt:parseDate>
	10.4.1 How <fmt:parseDate> parses dates by default
	10.4.2 Changing how <fmt:parseDate> parses dates

	10.5 Overriding time zones with <fmt:timeZone> and <fmt:setTimeZone>
	10.5.1 How JSTL figures out time zones by default
	10.5.2 Setting time zones for individual tags
	10.5.3 Long-lasting changes with <fmt:setTimeZone>
	10.5.4 Temporary changes with <fmt:timeZone>

	10.6 Overriding locales with <fmt:setLocale>
	10.6.1 How to identify locales
	10.6.2 The parseLocale attribute for <fmt:parseNumber> and <fmt:parseDate>

	10.7 Internationalizing text messages with <fmt:message>, <fmt:param>,<fmt:bundle>, and...
	10.7.1 Using <fmt:message>
	10.7.2 Loading a bundle family with <fmt:bundle> and <fmt:setBundle>

	10.8 Summary

	Part 3 - JSTL in action
	Common tasks
	11.1 Handling checkbox parameters
	11.1.1 The HTML form
	11.1.2 A simple checkbox handler
	11.1.3 Handling some check boxes specially

	11.2 Accepting dates
	11.2.1 The HTML form
	11.2.2 Handling the form and reading the date

	11.3 Handling errors
	11.3.1 Ignoring the issue
	11.3.2 Catching errors with <c:catch>
	11.3.3 Passing errors to an error page

	11.4 Validating input
	11.4.1 Different kinds of form validation
	11.4.2 Tasks involved when validating a form
	11.4.3 A sample form validation

	11.5 Summary

	Dynamic features for web sites
	12.1 An online survey
	12.1.1 What our survey looks like
	12.1.2 Setting up the survey database
	12.1.3 Adding survey questions to pages
	12.1.4 How the survey works

	12.2 A message board
	12.2.1 What our message board looks like
	12.2.2 Setting up the message database
	12.2.3 Linking to appropriate message boards
	12.2.4 How the message board works

	12.3 Summary

	Case study in building a web site
	13.1 Managing the layout
	13.1.1 A framework for channels
	13.1.2 Modular channels

	13.2 Adding dynamic content
	13.2.1 Including RSS channels
	13.2.2 Including other dynamic content

	13.3 Registering users
	13.3.1 Modifying the header
	13.3.2 The registration form
	13.3.3 Saving the registration
	13.3.4 The user database

	13.4 Authenticating users
	13.4.1 Logging in users
	13.4.2 Some notes about authentication

	13.5 Personalizing the site
	13.5.1 Filling in a form automatically
	13.5.2 Displaying a chosen RSS feed

	13.6 Summary

	Part 4 - JSTL for programmers
	Control and performance
	14.1 Scripting elements and the JSTL rtexprvalue libraries
	14.1.1 Warning against scripting expressions
	14.1.2 JSTL’s dual libraries
	14.1.3 Scripting variables and <jsp:useBean>

	14.2 Modifying properties with <c:set>
	14.3 Advanced techniques for importing text
	14.3.1 Representing imported text as a java.io.Reader
	14.3.2 Character encoding

	14.4 Advanced XML parsing and manipulation
	14.4.1 XML data formats
	14.4.2 Telling <x:parse> where a document came from
	14.4.3 Efficient parsing with org.xml.sax.XMLFilter
	14.4.4 Efficient transformations with javax.xml.transform.Result

	14.5 Deciphering requests with <fmt:requestEncoding>
	14.6 Exposing data to JSP pages
	14.6.1 Saving data to a scope
	14.6.2 Exposing dynamic data structures
	14.6.3 Writing JavaBeans

	14.7 Configuring JSTL
	14.7.1 Providing default information to JSTL tags
	14.7.2 Managing database access
	14.7.3 Managing internationalization

	14.8 Enforcing good page-authoring habits
	14.8.1 Requiring script-free pages
	14.8.2 Enumerating legal tag libraries

	14.9 Summary

	 Using JSTL to develop custom tags
	15.1 Developing and installing tag libraries
	15.1.1 JSTL’s support for tag-handler developers
	15.1.2 The tag-library descriptor (TLD)
	15.1.3 Installing and using a tag library

	15.2 Developing conditional tags
	15.2.1 A simple conditional tag
	15.2.2 A conditional tag with attributes
	15.2.3 Integrating custom conditional tags with standard tags
	15.2.4 Using the expression language

	15.3 Developing iteration tags
	15.3.1 A simple loop tag
	15.3.2 More advanced iteration tags

	15.4 Summary

	JSTL reference
	A.1 Expression language syntax
	A.1.1 Implicit objects
	A.1.2 Operators

	A.2 Core tag library
	A.2.1 General-purpose tags
	A.2.2 Conditional logic
	A.2.3 Looping
	A.2.4 Import and URL

	A.3 XML tag library
	A.3.1 Parsing and general manipulation
	A.3.2 Conditional logic
	A.3.3 Loops
	A.3.4 Transformations

	A.4 Database tag library
	A.4.1 Preparing databases
	A.4.2 Queries and updates
	A.4.3 Transactions

	A.5 Formatting tag library
	A.5.1 Numbers
	A.5.2 Dates
	A.5.3 Other internationalization

	JSTL API (for developers)
	B.1 Configuration variables
	B.1.1 The javax.servlet.jsp.jstl.core.Config class

	B.2 Conditions and loops
	B.2.1 The javax.servlet.jsp.jstl.core.LoopTag interface
	B.2.2 The javax.servlet.jsp.jstl.core.LoopTagStatus interface
	B.2.3 The javax.servlet.jsp.jstl.core.LoopTagSupport class
	B.2.4 The javax.servlet.jsp.jstl.core.ConditionalTagSupport class

	B.3 Interoperating with JSTL’s database tags
	B.3.1 The javax.servlet.jsp.jstl.sql.Result interface
	B.3.2 The javax.servlet.jsp.jstl.sql.ResultSupport class
	B.3.3 The javax.servlet.jsp.jstl.sql.SQLExecutionTag interface

	B.4 Using JSTL’s localization algorithms
	B.4.1 The javax.servlet.jsp.jstl.fmt.LocaleSupport class
	B.4.2 The javax.servlet.jsp.jstl.fmt.LocalizationContext class

	Database tags and SQL
	C.1 SQL and <sql:update>
	C.1.1 Managing tables
	C.1.2 Inserting data
	C.1.3 Modifying data
	C.1.4 Removing data

	C.2 SQL and <sql:query>
	C.2.1 Basic SELECT syntax

	C.3 SQL miscellany
	C.3.1 White space
	C.3.2 Case sensitivity
	C.3.3 More advanced SQL

	C.4 Summary

	References and resources
	D.1 JSP Standard Tag Library
	D.2 XML-related references
	D.3 Databases
	D.4 Related standards
	D.5 Miscellaneous references

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

