
JSP Tag Libraries

JSP Tag Libraries
GAL SHACHOR

ADAM CHACE

MAGNUS RYDIN

MANN I NG
Greenwich

(74° w. long.)

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
32 Lafayette Place Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2001 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Library of Congress Cataloging-in-Publication Data
Shachor, Gal.
 JSP tag libraries / Gal Shachor, Adam Chace, Magnus Rydin.
 p. cm.
 Includes bibliographical references and index.
 ISBN 1-930110-09-X
 1. Java (Computer program language) 2. JavaServer Pages. I. Chace,
Adam. II. Rydin, Magnus. III. Title.

QA76.73.J38.S44 2001
005.2'762--dc21

2001030933

Manning Publications Co. Copyeditors: Elizabeth Martin, Sharon Mullins
32 Lafayette Place Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02 01

brief contents

Part I The language of tags 1

1 � The big picture 3

2 � Web development with Java 23

3 � Developing your first tags 58

4 � Custom JSP tag API and lifecycle 80

5 � Integrating custom tags with the JSP runtime 107

Part II Basic techniques 127
6 � Tag development techniques 129

7 � Building a tag library for sending email 195

8 � Using JavaBeans with Tags 235

Part III Advanced techniques 277
9 � Posing conditions with tags 279

10 � Iterating with tags 302

11 � Database access with tags 340

12 � Custom tags and J2EE 385

6 BRIEF CONTENTS
Part IV Case studies 443
13 � JDBC driven WebStore 445

14 � EJB-driven WAPStore 527

Part V Design 565
15 � JSP tag libraries—tips and tricks 567

contents

preface xvii

acknowledgments xix

about this book xxi

author online xxvi

about the cover illustration xxvii

PART I THE LANGUAGE OF TAGS 1

1 The big picture 3
1.1 The JSP custom tags solution 4

1.2 HTTP review 5
HTTP protocol 5

1.3 Dynamic web servers 9
Common Gateway Interface 10 � Web server APIs 12
Server pages techniques 13 � Separating business and
presentation logic 15

1.4 Tag-based programming 17
Benefits of a tag-based approach 18

1.5 WAP, voice, and other alternative web clients 19

1.6 Summary 22

viii CONTENTS
2 Web development with Java 23
2.1 Java and dynamic web content 24

2.2 Introduction to Java servlets 25
The servlet API and programming model 25 � Servlets
and non-Java web servers 30 � Servlet shortcomings 31

2.3 Introduction to JavaServer Pages 32
Basic JSP syntax elements 33 � A JSP example 33
Scriptlets 34 � Implicit variables 37 � Directives 38
Tags 40 � Tags for JavaBean manipulation 41
Executing a JSP page 43

2.4 Access models for business/presentation de-coupling 48
Model-1 48 � Model-2 49

2.6 Servlets, JSP, and application configuration 52
The WAR file and its structure 53
The application deployment descriptor 55

2.6 Summary 57

3 Developing your first tags 58
3.1 What are JSP custom tags? 59

Anatomy of a tag 59 � Using a tag in JSP 60
The tag library descriptor 61

3.2 Why tags? 62
Comparisons of scriptlets and custom tags 63

3.3 Setting up a development environment 63
Installing the JDK 64 � Installing Tomcat 64
Testing your Tomcat installation 65

3.4 Hello World example 66
Compiling the tag 67 � Creating a tag library
descriptor (TLD) 68 � Testing HelloWorldTag 69
Did it work? 72 � A tag with attributes 72
Packaging tags for shipment 75

3.5 A tag with a body 76
LowerCaseTag handler 77

3.6 Summary 79

CONTENTS ix
4 Custom JSP tag API and life cycle 80
4.1 Requirements of custom tags 81

4.2 Overview of the tag API 83
Tag interface 87 � Tag life cycle 90

4.3 The BodyTag interface and its life cycle 94
BodyTag interface 94 � BodyTag life cycle 97

4.4 Tag API classes 97
TagSupport and BodyTagSupport 99 � PageContext
class 99 � BodyContent class 100

4.5 Tag-related features of JSP 1.2 101
TryCatchFinally interface 101 � IterationTag
interface 102 � EVAL_BODY_BUFFERED,
EVAL_BODY_AGAIN return codes 102
Updated Tag life cycle 103

4.6 Summary 106

5 Integrating custom tags with the JSP runtime 107
5.1 Tag library descriptor in a nutshell 108

The role of the TLD 110
5.2 Referencing a tag library from a JSP 112

The Taglib’s uri attribute 113
5.3 How the JSP runtime works 117

Send tag example 117
Translating the JSP into a servlet 121

5.4 Summary 126

PART II BASIC TECHNIQUES....................................127

6 Tag development techniques 129
6.1 Reusable tag programming techniques 130

The techniques you'll use most 130

x CONTENTS
6.2 Writing content back to the user 132
Adding data to the output 133 � Exceptions and
writing to the user 137 � Flushing the JspWriter’s
internal buffer 137

6.3 Setting tag attributes 139
Specifying tag attributes in the TLD 140 � Providing
validity checks at translation time 142 � Using the
JavaBeans coding conventions 145

6.4 Logging and Messaging 146
Logging 147 � Handling and throwing exceptions 147
Improving logging 148

6.5 Using the Servlet API 150
Accessing the implicit JSP objects 151
Accessing the JSP attributes 160

6.6 Configuring tags and bundling resources 169
Configuring a web application 170

6.7 Working with the tag’s body 176
Tag body evaluation 177 � Referencing your
tag's body 180 � A BodyTag example–
logging messages 184

6.8 Tag cooperation through nesting 188

6.9 Cleaning up 189
Review of tag life cycle 190
Exceptions and cleanup 190
Improving our base classes to handle cleanup 192

6.10 Summary 194

7 Building a tag library for sending email 195
7.1 Sending email from a Java program 196

The Simple Mail Transfer Protocol 196
Java-based email 197

7.2 Our first email tag 200
SimpleJavaMailTag example 200

CONTENTS xi
7.3 Integrating the tag with the application 206
Specifying the SMTP server at the application level 206
Using an existing mail session 206 � Specifying the
sender’s address at the application level 207
An enhanced SimpleJavaMailTag: JavaMailTag 207
The JavaMailTag in action 212

7.4 Collecting attributes from the tag’s body 215
Implementing body processing 217 � Extending
the email tag 217 � Creating tags for subject
and message 218

7.5 Adding assertions and input validation 223
Performing validation using custom tags 224
Creating a tag for the send mail tag library 225

7.6 Summary 233

8 Using JavaBeans with Tags 235
8.1 Java reflection 236

What is reflection? 237
The reflection API 238

8.2 JavaBeans and reflection 244
Tags and JavaBeans 244 � JavaBeans properties 244
JavaBeans introspection 247 � Properties and
introspection 247

8.3 The Show tag 251
Components of the tag 252

8.4 Exporting bean values from tags 264
Informing the runtime of exported scripting
variables 264 � The ExportTag 270

8.5 Summary 275

xii CONTENTS
PART III ADVANCED TECHNIQUES 277

9 Posing conditions with tags 279
9.1 Evaluating conditions in JSPs 280

9.2 IfTag—A simple condition tag 281
Implementing IfTag 282
The problem with IfTag 283

9.3 The advanced condition tag family 285
WithTag 287 � TestTag 290 � TLD for the advanced
condition tags 296 � Our tag library in action 297

9.4 Improving our advanced condition tags 299
Supporting complex conditions with a condition
language 300 � Supporting complex conditions
with JavaBeans 300

9.5 Summary 301

10 Iterating with tags 302
10.1 Iterating with tags 101 305

Iteration example: SimpleForeachTag 306
10.2 Generalized iterating tags 311

A generic iteration interface 311
IterationTagSupport 312

10.3 IterateTag 317
Design considerations for IterateTag 317 � Wrapping
iterators 317 � Implementing IterateTag 319

10.4 Look, Mom! No scriptlets—IterateTag in action 323
Printing the shopping cart with scriptlets 323
Printing the shopping cart with IterateTag 325

10.5 Making it easier on the JSP author 326
Building a better tag 328 � The design 328
FieldGetter and ReflectionFieldGetter 329
Integrating FieldGetter with IterationTagSupport 331
Updating IterateTag to perform field
substitution 334 � Field substitution in action 335

CONTENTS xiii
10.6 JSP1.2 and IterationTag 336
IterationTag 336

10.7 Summary 328

11 Database access with tags 340
11.1 Choosing how to present database information 341

Why not just wrap everything in a JavaBean? 342
11.2 Designing our database presentation tag library 342

Handling database connectivity and passing
results 343 � Additional design considerations 343
Implementation conclusions 345

11.3 IterateResultSetTag 345
ResultSetIterationSupport class 346 � JDBCFieldGetter
class 347 � IterateResultSetTag in action 348

11.4 Full JDBC connectivity through tags 349
Improving our one-tag approach 350

11.5 Database tag library design 352
Requirements 352 � Choosing our tags 354

11.6 Implementing the library 357
DBConnectionTag 358 � SQLQueryTag 365
EnumRsTag 370 � Using our library for the first
time 373 � ViewRsTag 375

11.7 Integrating a controller servlet with our new library 380
The controller servlet 380 � The JSP 382

11.8 Summary 383

12 Custom tags and J2EE 385
12.1 What is J2EE? 386

J2EE server components and client access 388
Deployment in J2EE 389 � Why custom tags and
J2EE are a good fit 389

12.2 What are EJBs, and why learn of them? 390
EJBs—What are they? 390

xiv CONTENTS
Types of EJB components 392 � EJBs and their
functions 395 � Example: catalogue entry
EJB 397 � Points to keep in mind 406

12.3 Using and configuring J2EE services 406
Getting services 407 � Tag and Servlet API
integration 408 � Setting environment entries 409
Setting EJB reference entries 410 � Setting resource
factory reference entries 411 � Wrap it up 412

12.4 J2EE database connection tags 413
DataSource 413
Updating database tags to use J2EE conventions 414

12.5 J2EE email tag 421
Defining a mail service 421 � Referencing the
mail service 422 � J2EE send tag 424

12.6 Using EJBs from within JSP 429
Writing custom tags for EJB access 429 � Retrieving the
EJB home interface 430 � Using the EJB home
interface 434

12.7 Summary 442

PART IV CASE STUDIES .. 443

13 JDBC-driven WebStore 445
13.1 Introduction 446

Custom tags used 446
13.2 Overview 447

13.3 Requirements 448

13.4 Design 452
Model 452 � View 456 � Control 461
Utilities 461

13.5 Implementation 461
Tags 462 � Views 474

13.6 Summary 526

CONTENTS xv
14 EJB-driven WAPStore 527
14.1 Introduction 528

Custom tags used 528 � WAP 529 � EJB 529
14.2 Overview 529

14.3 Implementation 530
Normal flow of events 530 � Model 531
View 532 � Welcome view 535 � Controller 561

14.4 Summary 563

PART V DESIGN ... 565

15 JSP tag libraries—tips and tricks 567
15.1 The case for custom tags 568

Tags and nonprogrammers 568
Reusing tags 569 � Maintaining tags 570
Tags and application performance 570

15.2 Development considerations 571
Tag development dos 571
Tag development don’ts 576

15.3 Further development and testing 578
Debugging tags 578 � Testing tags on
more than one JSP container 578

15.4 Design recommendations 579
Opening library internals 579 � Generalizing
your tags 580 � Integration and the surrounding
environment 583 � Tags and general purpose
libraries 584

15.5 Additional points to remember 584
The tag life cycle 584 � The case for
scriptlets 585 � Freeing allocated resources 585
Caching expensive results 586
Supporting JSP1.1 and JSP1.2 586

15.6 Summary 584

xvi CONTENTS
A What is XML? 589
A.1 XML vs HTML 590

A.2 XML syntax 590
DTDs 592

A.3 XML pitfalls 593

A.4 Why XML? 594

A.5 Summary 595

A.6 Additional reading 595

B The Tag Library Descriptor 597
B.1 TLD elements 598

The taglib element 598 � The tag element 599
Element Recap 601

B.2 A sample TLD 602

B.3 JSP1.2 and the new TLD entries 604
New taglib elements 604 � New tag elements 605
New attribute elements 607

B.4 Summary 607

C Using the code examples 608
C.1 Using the example tags 609

Obtaining example tags 609 � Using the example
tags 609
Compiling the example tags 610

C.2 Using the case studies 611
The WebStore application 611 � The WAPStore
application 613

references 615

index 617

preface
Six years ago, Java burst onto the computing scene and dramatically changed the
way programmers develop applications. Misunderstood initially, Java was typecast as
a client-side language suitable only for building simple browser applications (i.e.,
applets). Though some patient developers built entire applications with Java, many
dismissed it as an experimental language with little enterprise potential. As Java
matured, bolstered by a firm focus on server-side functionality, it began to turn the
heads of enterprise and web developers.

 Servlet technology, the first server-side Java offering, was introduced in 1996.
Web developers could now create Java components that extended the web server to
provide dynamic content to their users. Servlets were followed by other technolo-
gies, such as JavaServer Pages and, more recently, by custom JSP tag libraries which
aim to give nonprogrammers and web designers all the power of Java with a simple,
tag-based syntax.

 When servlets first appeared, we used them in real-world projects and saw how
useful Java was for creating dynamic, data-driven sites. However, servlets and JSP
were still too difficult for nonprogrammers to use, requiring them to learn at least
some Java to accomplish most tasks. With the arrival of JSP tags, developing
dynamic content with JSP became easier than ever. For the first time, it was possible
for the HTML developer to perform complex operations like querying databases,
iterating results, and performing other server-side activities without needing to
understand any high-level programming language. The Java community has been
quick to see the merits of this new technology, with dozens of companies and orga-
nizations already offering custom JSP tag libraries that perform everything from
database access to translation of content for wireless devices.

xviii PREFACE
 The amazing experience we had working with custom JSP tags is what drove us
to write this book. Its goal is to share our hard-earned knowledge with you, our
readers, so you can begin building tags that suit the needs of your applications. We
hope that you will share our excitement.

acknowledgments

The efforts, support, and understanding of many people made this book possible.
We acknowledge:

 Our publisher, Marjan Bace, for assembling our team of three authors from
around the world and giving us the opportunity to write this book.

 Our developmental editor, Lianna Wlasiuk, who offered exceptional guidance
and patience in helping this book take shape.

 Our editors, Elizabeth Martin and Sharon Mullins, for their work in making our
prose more readable and succinct. Their insights and advice were invaluable.

 Our review editor, Ted Kennedy, and the following expert reviewers he assem-
bled, whose comments greatly improved our manuscript in its various stages of
development: Ram Anantha, Michael Andreano, Pierre Delisle, Vimal Kansal, Dave
Miller, and Bob Rudis. Also Matthew Hansbury who reviewed all the code listings
in the book before it went to press.

 Our production team at Manning Publications, including Mary Piergies who
managed the project; Tony Roberts who typeset the book; and Syd Brown, the
design editor.

 Our friends, families, and coworkers for their support, assistance, and under-
standing throughout the writing process. Without them this book would not have
been possible.

Gal Shachor My thanks and gratitude to Shlomit and Bar for enriching my life
and making it complete.

xx ACKNOWLEDGMENTS
Adam Chace I would like to thank my wife and best friend Heather for her pa-
tience and encouragement throughout this project. I would also like to thank my
family, friends, and my business partner Dennis for his support and comic relief.

Magnus Rydin My sincere thanks to my family, my colleagues at Cypoint, and the
Orion team.

about this book
JSP custom tags is a new technology that has one main objective: defining a compo-
nent model for JavaServer Pages (JSP). JSP tags let programmers develop JSP-aware
components that can later be used by others in the development process, starting
with peer developers and ending with nonprogrammer HTML coders who are part
of the team.

 Using custom tags in web projects is a great productivity boost. By building a
tag-based application you can assemble your project, using existing tags that are
available from third parties (either as open-source or for purchase) and, more
importantly, develop your own JSP tags to meet your specific needs. Developing
custom tags is the focus of this book.

Who should read it?
We assume that our readers know their way around Java, are familiar with HTML,
and have some background working with JSP, although the latter is not necessary.

 JSP custom tags are related to JSP, and JSP in turn relates to the Web and to Java;
however, we are not going to devote much space to those three subjects. There are
many good Java books in print and we did not see a reason to write yet another
one. Nor is this book intended to be an HTML reference or a JSP primer; again,
each of these subjects deserves (and has) books of its own. This book does include
two chapters that introduce the Web and JSP so that you can dive right in, even
without prior JSP knowledge.

How is it organized?
The book has 15 chapters organized into 5 parts, plus 3 appendices, as follows:

xxii ABOUT THIS BOOK
Part I The language of tags Chapter 1 introduces the ABCs of the Web. It is
intended for readers with modest knowledge of web technologies, such as HTTP and
web servers, and will bring them up to speed on these topics. The chapter answers
questions such as: How are web clients and servers able to communicate? Why is
there a need to extend the web server? This chapter also presents traditional non-Java
server extension methods that are common practice today. The chapter ends with a
discussion of the cellular device and the new complexity it adds to the Web.

 Chapter 2 presents Java methods used to extend the web server: servlets and JSP.
Servlets are the foundation for JSP, and, in order to develop JSP tags you need to
know something about JSP. The chapter presents these technologies in enough detail
to enable you to follow the examples in later chapters.

 Chapter 3 is the first to deal entirely with tags. It presents a set of “hello world”
tags that covers the two basic tag types (tags with and without body) and shows
how to compile and test them. By the end of this chapter not only will you know
what tags look like, you will also know the mechanics related to compiling and test-
ing tags within the Tomcat container.

 Chapters 4 and 5 present the rules for writing JSP tags. These rules are the tag
API set and life cycle as defined in the JSP specification and the chapters will show
how the tags reflect their needs and integrate them into the JSP runtime. The JSP
specification defines which API the tags can use, which API the tag needs to imple-
ment, as well as the life cycle for the tag (i.e., when it gets created, when it executes,
etc.) but it falls short in fully explaining them. Explaining the “dry” specification is
what these two chapters aim to do. After reading them, you will know when and
why the methods in your tags are being called and who is calling them. Chapter 5
marks the end of part I whose role was to introduce the basics of tags and their
environment. The next chapters will deal directly with tag development.

Part II Basic techniques Chapter 6 presents several elements of tag programming
and code snippets that are the cornerstone of tag development. For example, many
tags need to print information back to the user, yet the Tag API does not contain a
print method—so how do you print? Many tags need to access their body content
and manipulate it—but how do you do that? These questions and others are posed,
answered, and explained in chapter 6, accompanied by sample code that shows you
how to take advantage of various techniques. Later chapters take the issues dis-
cussed here and integrate them into the full-fledged tag libraries developed
throughout the book.

 Chapter 7 presents the development of a mail-sending tag library. The key issue
here is not sending mail but rather doing it in a user-friendly manner. First, the
chapter presents the API that a Java component can use to send email, and then
shows the development of several mail-sender tags. The chapter starts with a naïve

ABOUT THIS BOOK xxiii
implementation that is hard for the nonprogrammer to use and ends with a small
mail-sender library that is powerful enough to send complex email, yet simple
enough to be used by nonprogrammers. At the end of the chapter we show how
parameters can be validated using assertion tags.

 Chapter 8 deals with JavaBeans and JSP tag integration. JavaBeans are Java com-
ponents; JSP tags are another type of Java component, geared toward the Web and
the nonprogrammer. It is obvious that one day these two component models will
come together. Indeed, this chapter explains how JSP tags can take advantage of
JavaBeans and use them. Making your tags JavaBeans-aware can help you in reusing
all the logic already implemented in the beans. This chapter shows you how. Chap-
ter 8 ends part II of the book, which covered programming techniques. Part III will
discuss developing tags whose goals are more ambitious; for example, controlling
the flow of a JSP file or accessing the application back end.

Part III Advanced techniques Chapter 9 discusses posing conditions with tags, or,
to be more precise, tags with conditional body execution. Posing conditions on a
tag’s body is the equivalent of having an if clause in a programming language; it is
important when you want to generate conditional content (e.g., for Internet
Explorer, generate this content; for Netscape, generate another content). This
chapter presents techniques for creating tags whose semantics closely resemble
those of the if and switch statements in Java.

 Chapter 10 is devoted to performing loops with tags. Tags can repeat their body
execution, which means that tags can loop over their body much like the for state-
ment can do in Java. Implementing loops with JSP tags can be tricky, especially if
you want to take advantage of some of the new JSP1.2 features and still have the
same code run with JSP1.1. Chapter 10 solves all of these problems for you. Essen-
tially this framework lets you iterate on anything with iteration semantics (e.g.,
arrays, vectors, hashtables, etc.) and exposes the iterator object to the JSP file (to be
used by other tags or scriptlets) across all JSP versions.

 Chapter 11 is geared toward developers who wish to develop database-driven
sites with JSP tags. Databases are one of the most common tools on the Web and
there is a need to bring them to the nonprogrammer in a pervasive way. This chap-
ter presents the development of a tag library whose role is to integrate data queried
from a database into the content returned to the user. The library is developed with
several goals in mind, such as integration with servlets (to assist Model-2 architec-
tures), application configuration, and ease of use.

 Chapter 12 explains how tags can be integrated into a J2EE web application.
J2EE is an emerging standard for server-side Java applications; it builds around
Enterprise Java Beans (EJBs) to access distributed and transactional business logic

xxiv ABOUT THIS BOOK
and around servlets and JSP to provide web interface. This chapter explains the
basics of J2EE and then shows how J2EE can easily be accessed from within tags.
For this purpose, chapter 12 presents tags which use EJBs, access J2EE resources
using JNDI, and so forth.

Part IV Case studies This part deals with practical issues related to tag develop-
ment and deployment. Chapters 13 and 14 present two full-fledged case studies
which demonstrate how tags can be used. First, a database-driven web store is
developed where users can buy goods (cosmetic products in our case). In the sec-
ond case study, the cosmetics web store is converted into an EJB-based application
that is accessed through WAP devices. By following these two cases, you should
experience hands-on what tags can do for you.

Part V Design Chapter 15 rounds out the book by presenting a set of recommen-
dations for designing, developing, and testing tag libraries. It is very easy to write a
tag or two that executes well in a single container–it is harder to develop libraries
that run on all containers and perform a significant task. In chapter 15 we provide
tips for developing complex tag libraries.

Appendices The last section of the book consists of three appendices that
introduce the reader to the Extensible Markup Language (XML) which is used
throughout the book in the deployment descriptors, describe the exact syntax of
the tag library descriptor, and provide guidelines for using the listings.

Source code
The book is loaded with code listings, some of which were snipped in order to focus
on the new ideas presented in them. All source code for the listings presented in JSP
Tag Libraries is available to purchasers of the book from the Manning web site. The
url http://www.manning.com/shachor includes a link to the source code files.

 In the two case study chapters (13 and 14), you will come across tags that were
not discussed in other parts of the book. We recommend that you download the
source code from the publisher’s site before reading these two chapters.

Typographical conventions
The following typographical conventions are used throughout the book:

� New terms when introduced are set in an italic typeface.
� Code examples and fragments (Java, JSP, HTML, XML) are set in Courier,

which is a fixed-width font.
� Elements and attributes, method names, classes, interfaces, and other identifi-

ers are also set in Courier.

ABOUT THIS BOOK xxv
� As code listings are modified from one step to the next, the changes are high-
lighted in Courier bold.

� Code annotations accompany many segments of code. Annotated code is
marked with chronologically ordered bullets, such as B. The annotations
themselves follow the code and are marked with the corresponding bullets for
identification purposes.

� Code line continuations are indented.

Which version of JSP?
This book covers JSP1.2 and JSP1.1. During the development of the book, JSP1.1
was in use and JSP1.2 was still under development. After using the public review
mechanism for the JSP1.2 specification, we can report that there are not many sub-
stantial changes between the two versions.

 The tags in this book should run on both JSP1.2 and JSP1.1, which is significant
since both versions will continue to be used in the future. However, whenever
JSP1.2 diverges from JSP1.1 and presents an improved functionality (such as
improved iteration and clean up), we call the reader’s attention to this fact.

How to use the book
The most obvious approach to the book is to read it chapter by chapter. However,
you will then lose many of the book’s hidden benefits. A better approach would be
to download the source code for the examples and to walk through them, testing
the code while reading the corresponding chapters. Appendix C explains how to
obtain the code and build it; chapter 3 explains how you can set up a testing envi-
ronment using the various tags.

 If you find yourself confused with the tag life cycle (the various methods, their
return codes, and when they get called), it might be a good idea to deploy the sam-
ples and use them from within an IDE, such as VisualAge Java, Forte, or Jbuilder.
These IDEs are known for their ability to run Tomcat from within. All you have to
do is to place a break point in the tags, execute the JSP file, and step through the
various breakpoints that you set. This way, you will gain the in-depth understanding
that you are looking for.

 If you still need help or have questions for the authors, please read about the
unique Author Online support that is offered from the publisher’s web site.

author online
Purchase of JSP Tag Libraries includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
shachor. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.

about the cover illustration
The figure on the cover of JSP Tag Libraries is a “Gran General,” a high-ranking
military officer from Abyssinia, today called Ethiopia. While the exact meaning of
his title and military rank is for us lost in historical fog, there is no doubt that we are
facing a man of power and ambition. The illustration is taken from a Spanish com-
pendium of regional dress customs first published in Madrid in 1799. The book’s
title page informs us:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

Which we loosely translate as:
General Collection of Costumes currently used in the Nations of the Known
World, designed and printed with great exactitude by R.M.V.A.R. This work is
very useful especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers and artists who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing.
The Gran General is just one of a colorful variety of figures in this collection which
reminds us vividly of how distant and isolated from each other the world’s towns
and regions were just 200 years ago. Dress codes have changed since then and the
diversity by region, so rich at the time, has faded away. It is now often hard to tell
the inhabitant of one continent from another. Perhaps we have traded a cultural and
visual diversity for a more varied personal life—certainly a more varied and interest-
ing world of technology. At a time when it can be hard to tell one computer book
from another, Manning celebrates the inventiveness and initiative of the computer
business with book covers based on the rich diversity of regional life of two centu-
ries ago—brought back to life by the pictures from this collection.

Part I

The language of tags

C hapters 1 through 5 set the stage for tag development with an
introduction to JSP tags, the world in which they exist, and a look at
the rules by which they are developed and used. In this section, you’ll
learn what tags are, why they are needed, and the basic ground rules for
building custom JSP tags. This introduction prepares you for part II,
which will teach you to enhance your skills by learning common tag
building techniques.

 1The big picture

In this chapter
� The web environment
� Dynamic web servers
� Tag-based programming
� Web clients and WAP
3

4 CHAPTER 1

The big picture
1.1 The JSP custom tags solution

Building data-driven, dynamic web sites is a problem as old as the Internet. Devel-
opers have progressed from Common Gateway Interface (CGI), server-side Java-
Script, and web server plug-ins to Java servlets to build sites. As with any
technology, something newer and greater, bigger and better is always just around
the corner. Today’s newer and greater, bigger and better technology is JavaServer
Pages (JSP) custom tags.

 Although custom tags (and the servlet technology from which custom tags are
derived) are much easier to develop and learn than some of their predecessors, they
still require a solid understanding of the environment in which they run, namely,
the Internet.

 Since JSP custom tags represent a way to serve dynamic content in a web site,
you’ll need a strong working knowledge of basic web concepts before you begin.
Before exploring JSP custom tags, familiarity with the Web and developing dynamic
web sites is strongly recommended. If you are thoroughly versed in this, you may
skip to the next chapter where we discuss the basics of servlets and JSPs. If you are
new to web development we suggest you read this chapter to obtain an overview of
fundamental topics that will prove useful later in this book:

� Basic Internet programming concepts such as HTTP
� Existing techniques to extend a web server to serve dynamic content
� How tag-based techniques like custom JSP tags work.

This chapter is not meant to replace a book dedicated to any of these topics. It will,
however, explain the fundamentals of Internet development and discuss existing
web development platforms that explain the basis for using JSP custom tags and the
environment in which they function.

 We finish this chapter with a brief discussion of alternative web clients, such as
WAP phones/devices, and we cover the growing trend to extend web development
to nontraditional devices, such as phones and pagers, and how this has created an
even greater demand for custom tags.

 Before learning JSP custom tags, you may be asking yourself “Why should I?”
There is, after all, no shortage of technologies available to anyone who wishes to
build a dynamic web application. The question is best answered by reading through
this chapter and learning about web development techniques, their shortcomings,
and how JSP custom tags compare to these techniques. You’ll learn how JSP cus-
tom tags offer a way to create flexible web solutions that fit several bills: they are
built on industry standards, they enjoy Java’s cross-platform feature, and they solve
one of the most troubling problems of web development—cleanly separating

HTTP review 5
business logic from presentation logic. We’ll discuss this separation in detail in sec-
tion 1.3.4. We present a discussion of the benefits of using JSP custom tags in
chapter 15.

1.2 HTTP review

We begin this chapter with a brief discussion of Internet fundamentals and basic
web development that provides a grounding for exploring the complexities of JSP
custom tag development.

 The Web is a client/server application on a huge
scale. The client (a browser) connects to the server
(also known as a web server or an HTTPserver)
using a protocol called HyperText Transfer Proto-
col (HTTP). The server then returns content to the
browser which presents this content (for example,
as a GIF image or an HTML page) to the user.

 Each client/server connection is initiated by the
browser and the browser alone. This procedure
begins by opening a TCP/IP connection to the
server and sending an HTTP request. The server then processes the incoming
request and returns an HTTP response. These requests and responses follow a very
specific, yet simple, syntax as specified by the HTTP protocol.

1.2.1 HTTP protocol

Since HTTP is a pull technology, meaning that a connection starts when a client
requests a document, we start our discussion with the request.

The HTTP request
An HTTP request begins with a request line whose structure is http-method request
uri http-version, and is terminated with the carriage return-line feed characters. The
http-method portion of the request line should be one of the methods defined in
the HTTP protocol specification:

� GET—This asks the server to serve a resource as referenced in the request-uri.
Request parameters should be coded in the request-uri. This is the method
your web browser uses when you type in a URL for it to retrieve.

� POST—Similar to GET, except that POST contains a body wherein the request
parameters are encoded. A web browser most often uses this method to sub-
mit HTML forms, such as those you fill out when making an online purchase.

Web Server
Browser

Get

Reply

Figure 1.1 An HTTP client and
server

6 CHAPTER 1

The big picture
� HEAD—Similar to GET, but the server only returns the response line and
response headers. By using this information, the browser maintains a cache
and reloads files only when needed.

Following the HTTP request method, the browser should specify a request URI,
which references the resource serviced by the server. In many cases1 the request
URI starts with a “/” and references a static file resource located relative to the web
server’s root directory, but the request URI can reference more than just static
HTML files. It can also reference Java servlets, CGI scripts, and other dynamic enti-
ties, as we will soon see. The versions of the HTTP protocol used by the client come
after the request URI. The current supported versions of the protocol are HTTP/1.0
and HTTP/1.1, and thus the server expects to see one of these in the request line.

 After sending the request line, the browser may send a few headers which pro-
vide information about the request, its content, the browser which sent the
request, and so forth. The headers appear in consecutive lines of the form header-
name: header-value. Each header line is terminated with the carriage return-line
feed characters, and the entire set of request headers is terminated with a line con-
taining only carriage return-line feed. Some important request headers are pre-
sented in table 1.1.

1 When the browser connects to the server through a proxy, the request URI received by the proxy does
not start with a “/”, but we will not be discussing proxies in this book.

Table 1.1 Important HTTP request headers and their roles

Header name Role Sample value

User-Agent Informs the server of the type of
browser that sent the request (i.e.,
Navigator, Explorer, etc.).

Mozilla/4.7 [en] (WinNT; I)

Content-Type Indicates the media type of the
request body (if available).

text/html

Content-Length Indicates the length of the request
body (if available).

10

Authorization Contains the values of user creden-
tials (if sent by the user).

Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Cookie Echoes a cookie from the browser to
the server.

Name=value

Accept Specifies certain media types which
are acceptable for the response.

text/*, text/html

HTTP review 7
After sending the headers, the browser may send content (also known as request
body). The content is an arbitrary set of bytes as defined by the request headers. Note
that in most cases the browser does not send any content to the server in this way.

The HTTP response
The HTTP response has a status line (similar to the request line) and response head-
ers, as well as an optional response body. Nonetheless, there are differences in the
headers used and in the status line.

 The response starts with a status line that informs the browser of (1) the HTTP
version used to send this response and (2) the status for this service request. The syn-
tax for the response line is http-version status-code reason-phrase and, as is typical in
HTTP, the line is terminated with the carriage return-line feed sequence. The http-
version in the status line is the same as in the request line; the other two portions of
the status line are new. The status code is a number whose value can be one of a set of
codes as defined in the HTTP specification. For example, the HTTP specification
defines the value 200 as representing a successful service. Following the response
code, the server can send an optional reason phrase for the code: 200 will usually
mean “OK,” but 400 can indicate “Bad Request.” Exact reason phrase values are
not defined in the HTTP specification, and servers can append their own values.

 After returning the status line, the server can add response headers. The
response headers’ syntax is identical to that used by the request headers, yet the
actual headers used through the response may differ from those used in the request.
For example, the User-Agent header does not have a place in the response, but
there is a Server header that the server can use to identify its version. Table 1.2 lists
important response headers and, as you can see, it contains a few that can only be
part of the response.

 The server can then position the response body after the response headers. This
body is the content the browser will show to the user. Be aware that, unlike the

Host Specifies the Internet host and port
number of the resource being
requested, as obtained from the
original URI given by the user.

This header is extremely important
for virtual hosting.

www.site.com

Table 1.1 Important HTTP request headers and their roles (continued)

Header name Role Sample value

8 CHAPTER 1

The big picture
HTTP request, the response usually has some body text. Responses to the HEAD
method should not include any content.

NOTE Once the browser receives the response from the server, the TCP/IP con-
nection between the browser and the server can be closed. A user may con-
nect from the same browser to the same server and have the request served
each time on a different TCP/IP socket. This HTTP feature is one of the
reasons that HTTP is considered a stateless protocol.

A sample HTTP session
Let’s take a look at a hypothetical request-response pair. Assume that a user directs
the browser to http://www.name.com:8080/some/file.html. What will happen,
and what will the request and response look like? In our example we will be using
Netscape Navigator 4.7 (HTTP/1.1) to submit the request to an Apache web server.

 First we open a TCP/IP connection from the browser to the server. The
browser will analyze the URL entered by the user and see that the user is asking

Table 1.2 Important HTTP response headers and their roles

Header name Role Sample value

Content-Type Indicates the media type of the response
body (if available).

text/html

Content-Length Indicates the length of the response body
(if available).

10

Set-Cookie Sets a cookie into the browser. A server
can set cookies into the browsers and, as
a result, the browser saves these cookies
and later echoes them back to the server
using the (request) Cookie header.

This way the server can keep track of the
clients visiting it and save per-client data.

Part ="Rocket_Launcher";
Path="/acme"

Server Identifies the server version returning the
response (i.e., Apache, Netscape, IIS,
etc.).

Apache/1.3.9 (UNIX)

WWW-Authenticate Specifies to the browser how to authenti-
cate its user to the server.

Basic realm="MyWorld"

Location Instructs the browser to redirect itself to
the location indicated by the header value.

http://some.other.host/
index.html

Dynamic web servers 9
for information located on the host www.name.com and on port 8080. The
browser subsequently opens a TCP/IP connection (socket) to this host and port.

 The next step is to send an HTTP request to the server, which may look some-
thing like:

GET /some/file.html HTTP/1.1
Host: www.name.com:8080
User-Agent: Mozilla/4.7 [en] (WinNT; I)
Accept: text/*, text/html

Note that the request URI was extracted from the URL specified by the user.
 The server will return the requested content to the browser. The response sent

by the server should look something like the following (assuming that the response
is OK and that the server returns 100 bytes of type text/html):

HTTP/1.1 200 OK
Server: Apache/1.3.9 (UNIX)
Content-Type: text/html
Content-Length: 100

<html> And now some 100 bytes of text/html…

Now both server and browser can close their sockets and we have finished serving
this request. Although we presented only a small portion2 of HTTP in this section,
it was enough to serve a file.

 As demonstrated in the sample, all we need to do to serve an HTML file is parse
incoming requests that follow the HTTP protocol, read the file, and return its con-
tent to the browser using HTTP. In general, the core web server only knows how to
use HTTP to return static content.

 Serving static content was fine in the old days when all you wanted from the
Web was to read information, but now that ecommerce is a mantra, many sites can-
not get along with static content alone. If your web server only knows how to serve
static files, how will you save form data in a database or search a catalogue for a spe-
cific product? You just can’t.

 To solve this problem, all web servers come with an extension mechanism. The
next section explores the most common of these.

1.3 Dynamic web servers

There are many methods for executing code on a web server, each with its own
merits. Why should you concern yourself with these other mechanisms if you’re

2 HTTP/1.1 is more complex than the simplified protocol we have just presented, and includes complex
content negotiation as well as many performance-related options.

10 CHAPTER 1

The big picture
only trying to find out about custom JSP tags? The answer is two-fold. First, since
custom JSP tags function in the same environment (the Web) as these technologies,
learning other approaches is helpful for understanding how tags work. Second, dis-
cussing the shortcomings of these earlier technologies and how they could be
improved helps us understand Sun’s reasons for introducing JSP custom tags.

 We will present the extension methods more or less in the order of their births,
starting with CGI followed by Server API, Server pages, and ColdFusion.

1.3.1 Common Gateway Interface

CGI was the earliest extension mechanism that web servers had and, even today, it
serves as the workhorse of many sites. Figure 1.2 shows how CGI operates. It is a very
simple mechanism that spawns background processes in the same manner as a UNIX
command-line interpreter (not surprising, as CGI was invented by UNIX folks).

 In a CGI-served request:

1 A user sends a request to the web server.

2 The web server analyzes the request and determines (based on some part of
the request URI) that it should execute an external program to handle it.

3 The web server spawns a child process which executes the external program.

4 The external program reads the parameters sent by the user as well as the
request parameters via its command-line arguments, environment variables,
and standard input. The program processes these parameters and generates
output to be seen by the user.

5 The web server grabs the output from the child process and sends it to the
user.

6 The child process dies.

Implementing CGI as part of your web server is relatively simple, as is developing
external programs that work with your web server. You can code your external
programs in the desired language, generate an executable program, and the web
server will take its output and send it over to the client. Its ease of use and support
for known languages helped CGI become the technology of choice for creating
dynamic web sites. CGI, in fact, still powers a sizable number of dynamic sites,
though that percentage is declining as newer, faster solutions become available.

CGI drawbacks
If CGI is so great, why have other extension techniques been introduced? One of
the major disappointments with CGI is that it requires a process per request. This

Dynamic web servers 11
means that the per-request burden on the hosting computer can be quite taxing. A
lot of memory and processor overhead is involved in creating, executing, and clean-
ing up after a new process. With CGI, this overhead is incurred for each and every
request to the web server, and naturally affects performance as the number of
requests increases. When a busy site meant a few thousand requests per day, the per-
formance challenge associated with CGI was acceptable. Today, busy sites serve
thousands of concurrent requests and the degradation in performance associated
with CGI cannot be overlooked.

 The process-per-request policy of CGI hurts performance in other ways as well.
These processes often end up performing the same processing (i.e., opening a data-
base connection) over and over again with no way to share or cache results from
one request to another. This is hardly acceptable for applications that rely on data-
base access or other time-consuming operations that may need to repeat themselves.

 There are other disincentives to using CGI, but the two we’ve mentioned were
probably the most pressing catalysts for the web community’s development of new
approaches to serving dynamic content. As we’ll see in chapter 2, custom tags don’t
suffer from these drawbacks. But even before custom tags were introduced (or the

A request
arrives

Parse
request

parameters

Is CGI?

Generate
content (say

read a static file)

Spawn CGI
child

process

Read CGI
process
output

Send
results to
the user

Execute an
external
program

External program
 generates
response

Web server

Child Process
YesNo

Figure 1.2 Executing a CGI program from within the web server

12 CHAPTER 1

The big picture
servlets or JSPs they’re based on), the industry addressed the performance shortcom-
ings of CGI by introducing a new web extension mechanism, the web server API.

1.3.2 Web server APIs

In a web server API, the application developer first writes a loadable module (a DLL
in Microsoft Windows, a shared object in UNIX) that follows the API definition for
the specific server. The web server loads this module on startup, and calls it when-
ever a user makes a request which should be handled by that module. Popular APIs
include Netscape Server Application Programming Interface (NSAPI) for Netscape
Enterprise Server, and Internet Information Server Application Programming
Interface (ISAPI), though all popular servers have one. Most web servers use a con-
figuration file which contains directives specifying which modules to load and the
requests a particular module should handle.

 By loading the extension module directly into the web server, we gain
unmatched performance since invoking our extension is merely a function call.
Unlike CGI, the function calls take place within a single process that is already run-
ning; namely, the web server process itself. We can also save state inside the web
server address space. This allows us to save the results of expensive processing (such
as objects that are slow to initialize) in a central location so that they can be shared
by requests instead of being created over and over again. These two features alone
address both of the major shortcomings we saw with CGI.

Server API drawbacks
Oddly enough, the unmatched performance available by writing to the web server
API did not win this extension method the popularity of CGI or other extension
techniques that we will discuss. It failed to catch on for several reasons:

� Each server has a different API. This means there is no standard that can be
learned once and applied across servers.

Generate
content (say

read a static file)

A request
arrives

Send
results to
the user

Call method
in module

Is
the requested file

handled by a
module?

Yes

No

Figure 1.3 Executing a module with a web server API

Dynamic web servers 13
� The extensions need to be developed in a low-level language such as C or C++.
This places the extension development knowledge bar at a fairly high level.

� A bug in an extension can often bring an entire web server down. This means
extensions must be tested thoroughly and the extension developer must be an
experienced developer.

The overall result is that developing a server API extension is very expensive (in
terms of salaries and development time), rendering server API inapplicable for many
tasks. Some other extension technique was needed. We’ll see in chapter 2 how JSP
and its custom tags can be developed with far more ease than a server API exten-
sion; namely because they are written in the well known, standard Java language.
This fact alone addresses all the weaknesses of an API approach since the Java is fairly
high-level, strictly standard, and robust enough that a simple bug won’t blow up an
entire web server, and JSP greatly simplifies the generation of dynamic content.

NOTE We are not saying that the server API is useless. In fact, many interesting
problems (e.g., content filtering and redirection in the native web server)
can only be solved within the context of the server API. Moreover, most of
the extension techniques that we are about to see use the server API to link
to the web server. This API is, however, more suited for low-level tasks and
too cumbersome and costly to use in developing full-scale web applications.

1.3.3 Server pages techniques

The goal of the server pages approach to web development is to support dynamic
content without the performance problems of CGI, or the difficulty of using a server
API. The most popular server page approaches today are Microsoft Active Server
Pages (ASP), JSP from Sun Microsystems Inc., and an open-source approach called
PHP. Server pages development simplifies dynamic web development by allowing
programmers to embed bits of program logic directly into their HTML pages. This
embedded program logic is written in a simple scripting language (which, depending
on what your server supports, could be VBScript, JavaScript, Java, or something
else). At runtime, the server interprets this script and returns the results of the
script’s execution to the client. Let’s look at an example of ASP in listing 1.1.

14 CHAPTER 1

The big picture
<% @Language = "VBScript" %>
<HTML>
 <BODY>

<% If Request.ServerVariables("SERVER_NAME") = "localhost" then %>
 You asked for the server located on your local machine.
<% else %>
 You asked for the server <%= Request.ServerVariables("SERVER_NAME") %>
<% end if %>

</BODY>
</HTML>

This fragment obviously contains standard HTML, with the exception of special text
found between the <% and %> characters. That special text is the script the server
executes when this page is requested. In this case (and in most ASPs), the script is
written in Microsoft VBScript language. This particular ASP fragment creates
dynamic content which is affected by the value of a server variable, SERVER_NAME.
You should be able to make out the conditional logic in this fragment, which dic-
tates that if the value pointed to by SERVER_NAME is the string “localhost”, a mes-
sage is returned to the user stating they are on their local machine. Otherwise, a
different message is returned, including the value of the variable SERVER_NAME. This
logic is pretty easy to identify, even if you’ve never before seen ASP. The scripting
languages for server page technologies have been designed to keep the entry barrier
low, so that both beginning programmers and ambitious HTML developers can
readily grasp the syntax.

 To further simplify the generation of dynamic content, server pages technologies
provide a means of extending the core scripting syntax with objects that enable low-
level functionality, such as database access and email support. Most server pages
environments ship with built-in support for popular databases, which greatly simpli-
fies the task of generating data-driven web applications. This simplicity, coupled
with the fact that the server does not have to repeatedly open (and initialize) new
processes, makes server pages technologies the foundation of many web applica-
tions. Yet, as you may imagine, this simplicity comes at a price.

Server pages drawbacks
A number of issues must be admitted in any complete discussion of server pages. To
begin, there is the matter of speed. Server pages-based applications are slow relative
to the server API counterpart. Yes, the programmer’s productivity is enhanced, but
the performance decline makes it obvious there is room for improvement.

Listing 1.1 Sample ASP fragment that generates dynamic content

Dynamic web servers 15
 Another issue is the proprietary nature of the server pages. Aside from PHP (an
open-source software freely available to most web servers), server pages technolo-
gies are only available on a single server (e.g., server side JavaScript on Netscape
servers) and sometimes even only on a single operating system (ASP, which relies
heavily on COM and is, largely, Microsoft-only). This means that you usually cannot
leverage your ASP experience on Netscape and UNIX. Furthermore, the API used to
extend the scripting language with low-level services is very different among the
various systems; thus, porting complex projects requiring custom language exten-
sions is very difficult. Simply put, when using server pages you lock yourself in with
a vendor, which is often an unpleasant arrangement. These disadvantages are insig-
nificant compared to the most egregious shortcoming of server page technologies:
the lack of separation between your application’s business logic and the presenta-
tion logic that displays it. This unfortunate weakness isn’t the problem of server
page mechanisms alone, in fact all the mechanisms we’ve explored thus far have suf-
fered from it. Before we discuss the way to overcome this hurdle we should define
the need for separation.

1.3.4 Separating business and presentation logic

One of the greatest challenges in web development is in cleanly separating presenta-
tion and business logic. All of the web server extension methods we’ve looked at so
far have suffered from this obstacle. What does it mean to separate these layers? To
start with, we can partition any application into two parts:

� Business logic—The portion of the application that solves the business need
(e.g., the logic to look into the user’s account, draw money, and invest it in a
certain stock). Implementing the business logic often requires a great deal of
coding and debugging, and is the task of the programmer.

� Presentation layer—Takes the results from the business logic execution and
displays them to the user. The goal of the presentation layer is to create
dynamic content and return it to the user’s browser, which means that those
responsible for the presentation layer are graphics designers and HTML devel-
opers.

If applications are composed of a presentation layer and a business logic layer, what
separates them, and why would we want to keep them apart?

 Clearly there needs to be interaction between the presentation layer and the
business logic, since the presentation layer presents the business logic’s results. But
how much interaction should there be, and where do we place the various parts? At
one extreme, the presentation and the business logic are implemented in the same
set of files in a tightly coupled manner, so there is no separation between the two.

16 CHAPTER 1

The big picture
At the other extreme, the presentation resides in a module totally separate from the
one implementing the business logic, and the interaction between the two is
defined by a set of well-known interfaces. This type of application provides the nec-
essary separation between the presentation and the business logic.

 Why is this separation so crucial? In most cases the developers of the presenta-
tion layer and the business logic are different people with different sets of skills.
Usually the developers of the presentation layer are graphics designers and HTML
developers who are not necessarily skilled programmers. Their main goal is to create
an easy-to-use, attractive web page. The goal of programmers who develop the
business logic is to create a stable and scalable application that can feed the presen-
tation layer with data. These two developers differ in the tools they use, their skill
sets, their training, and their knowledge. When the layers aren’t separated, the
HTML and program code reside in the same place. Think back to our previous dis-
cussions of CGI and web server API extension techniques. Many sites built with
those techniques have code (either in a module or a CGI script) that executes dur-
ing a page request and returns HTML. Imagine how difficult it is to modify the
User Interface if the presentation logic, HTML in our example, is embedded
directly in a script or compiled code. Though developers can overcome this diffi-
culty by building template frameworks that break the presentation away from the
code, this requires extra work for the developer since the extension mechanisms
don’t natively support such templating.

 Server pages technologies are not any more helpful with this problem. Many
developers simply place Java, VBScript, or other scripting code directly into the
same page as the HTML content. Obviously, this implies maintenance challenges as
the server pages now contain content requiring the skills of both content developers
and programmers. They must check that each updating of content to a specific
server goes through without breaking the scripts inside the server page. This check
is necessary because the server page is cluttered with code that only the business
developer understands. This leaves the presentation developer walking on eggshells
out of concern for preserving the work of the business logic developer. Worse, this
arrangement can often cause situations in which both developers need to modify a
single file, leaving them the tedious task of managing file ownership. This scenario
can make maintaining a server pages-based application an expensive effort (which
undermines many of the achievements related to server pages).

<html>
<body>
<h1>Welcome to my dot-com
(some program code)

Listing 1.2 A tightly coupled page

Tag-based programming 17
<table>
(more program code)
</table>
</html>

Separating these two layers is a problem in the other extension mechanisms we’ve
mentioned, but the page-centric nature associated with server pages applications
makes the problem much more pronounced. Whereas a CGI developer can come up
with his or her own page-generation template system to separate presentation and
business logic, server pages technologies dictate a specific template system into
which the developer is locked. In addition, the powerful scripting language that can
be used within the pages makes it possible to implement quick and dirty applica-
tions that place the majority of the business logic directly inside the server page.
The result is that many server pages-based applications lack an adequate separation
of layers.

1.4 Tag-based programming

Thus far we’ve covered a number of different approaches to dynamic web develop-
ment. We’ve seen how CGI scripts allow the building of dynamic sites, but suffer
from some significant performance problems. We’ve seen how server API solutions
may overcome CGI’s speed issues, but add a lot of complexity to development and
tie you very closely to a particular server vendor. We’ve looked at server page
approaches which are acceptably quick at execution time and much easier to imple-
ment than API solutions, but encourage poor separation between presentation and
business logic layers. What is the next step in the evolution of dynamic web devel-
opment? It is none other than the subject of this book: tag-based development.

 JSP custom tags are not the first tag-based approach. ColdFusion, a product
from Allaire Corp., is a well-known implementation of this tag-based concept and
was introduced before custom JSP tags. ColdFusion still enjoys a solid market share
for web development, but is less attractive to many developers because it is a propri-
etary solution while custom tags are defined in the open JSP specification. Being a
purely Java solution, custom tags also enjoy all the normal benefits such as being
cross platform, widely supported, and written in a fully functional language. Cold-
Fusion does not boast this same cross platform ability, nor is it an open standard
that is available to multiple vendors. As we’ll see in future chapters, engines that run
custom JSP tags within a web server can be built by any company willing to adhere
to certain open standards. At least a dozen vendors have built these solutions today,
Allaire being one of them.

18 CHAPTER 1

The big picture
 What is a tag-based solution like? We’ll defer specifics about custom JSP tags
until chapter 3, but will mention some of the basics of this extension mechanism to
afford a glimpse at its benefits.

 Developing with tags resembles the server pages development model with one
crucial difference—the development language is not a script, but is rather based on
sequences of characters (usually starting with a “<” and ending with a “>”) known
as tags.

 A tagged server page includes the page’s content (usually HTML) plus tags that
can be used to add logic to the content. When the user asks for a tagged page, the
server interprets the page, finds all the logic tags, and executes them along with the
page content.

 To see an example of tag-based programming, let’s look at a ColdFusion frag-
ment (listing 1.3) which mimics the ASP code in listing 1.1.

<HTML>
 <BODY>

 <CFIf (CGI.SERVER_NAME eq ‘localhost’) >
 You asked for the server located on your local machine.
<CFELSE>
 You asked for the server #CGI.SERVER_NAME#
</CFIf>

</BODY>
</HTML>

As you can see, instead of using VBScript (the language of choice in listing 1.1) we
are now using special ColdFusion tags (prefixed with CF). Using these tags, the
developer can easily implement simple logic. ColdFusion started up with a limited
tag set geared toward database manipulation and presentation. They soon added
tags to perform programming tasks, including iteration over arrays with tags such as
CFLOOP; catching exceptions with tags such as <CFTRY> and <CFCATCH>; and per-
forming various utility operations with tags such as <CFLDAP>, and <CFREGISTRY>.

1.4.1 Benefits of a tag-based approach

How is using tags any different from embedding script in a server page? After all,
this may look like yet another case of server pages with just a different scripting syn-
tax (tag-based, instead of the more common programming syntax). In a way, this is
correct; however, tag-based technologies offer advantages. Using tags is much more
comfortable for many HTML developers who are very familiar with the use of tags

Listing 1.3 Sample ColdFusion fragment that generates dynamic content

WAP, voice, and other alternative web clients 19
from their HTML development. Since coding with tags is usually simpler then using
a full-fledged language and, since most content creation tools already accept tags,
two benefits are:

� There is a single, consistent, and easy-to-follow style in the page. This makes
tagged pages a breeze to work with for many content creators (and their tools).

� Many HTML developers can program simple tagged pages such as the one
presented in listing 1.3.

This introduction of the tag-based approach continues in chapters 2 and 3, where
we talk at length about JSPs, servlets, and custom tags themselves.

1.5 WAP, voice, and other alternative web clients

Up to now our discussions have assumed a classic web programming model, with
an HTML browser and HTML content being generated by the server. Today, how-
ever, there is a great deal of buzz surrounding the concept of wireless and nontradi-
tional access to the Web. At the forefront of this new wave of web clients is the
Wireless Application Protocol (WAP) device.

 WAP is a set of specifications which enables users to browse online content and
services using a wireless device. WAP devices range from cellular phones to pagers
and Personal Digital assistants (PDA), such as PalmPilots. WAP preserves the archi-
tecture used through the Web, in which servers are holding the information and cli-
ents are accessing it through requests to the servers. The creators of WAP (the WAP
Forum) took great pains to ensure that this model was very close to the traditional
HTML web model, in order to keep the barrier to entry for this new technology as
low as possible.

 How can a WAP device access a traditional web server? To access a web server, the
WAP device should communicate using HTTP and TCP/IP; isn’t that too complex
for a cellular phone? To expect that level of software support from a mobile phone
today is still a bit ambitious (although it is being anticipated), but WAP architecture
obviates the need for HTTP and TCP/IP support on the phone by using gateways.

WAP architecture
As figure 1.4 shows, the telephone network is connected to the Web through a
transcoding gateway. This gateway takes WAP requests and passes them to the Web
as if they were HTTP requests; it then takes the HTTP responses and transforms
them to WAP and returns them to the WAP device. Using these gateways, WAP
devices can interoperate with the Web and fetch content without changing too
much of the web infrastructure. In fact, any standard web server can receive

20 CHAPTER 1

The big picture
requests from a WAP device with this model; it simply needs to format the responses
to conform to the capabilities of the device.

 Today, the resources available for the WAP device are very limited:
� The display is extremely small and its drawing capabilities range from basic to

nonexistent. While HTML applications are normally designed for clients run-
ning at least 800 x 600 in 256 or more colors, WAP applications are normally
designed to show only a few characters in a row, and only a small number of
rows on the same display.

� Compared to the Internet, the network connection is slow but improving,
especially in Europe and Asia, which means that the application utilizes the
fewest connections possible during a user’s session.

� Processing power and memory are minimal.

Based on these limitations, it is easy to imagine why WAP devices cannot support
full-fledged HTML. What they do support is an XML dialect known as Wireless
Markup Language (WML) and WMLScript, JavaScript’s counterpart that supports a
limited JavaScript subset feasible for weak phone processors. Thus, any content we
return to a WAP request must be in WML, instead of in standard HTML.

Internet
Wireless
network

WAP
device

WAP
device

WAP
device

WAP
device

WAP
device

WAP
device

Web
site

Web
site

Gateway

This side knows
WAP protocols

This side knows
TCP/IP and HTTP

Converts:
� WAP requests to

HTTP requests
� HTTP response to

WAP response

Figure 1.4 Connecting the WAP device to the Web

WAP, voice, and other alternative web clients 21
Brief WML overview
Each WML file contains a “deck” of “cards,” each card being a presentation view
and a possible point of interaction.3 WAP interaction is accomplished in much the
same way as in HTML applications, through links or options that take the user to
other cards within the same deck (similar to anchors in HTML), or to resources out-
side the current deck. One of the major differences between WML and HTML appli-
cations is that WML is based upon XML, while HTML is based upon SGML. This
means that stricter rules apply to WML than to HTML, and that there is a document
type definition (DTD) that tells the parser of the WML the order in which certain ele-
ments may appear. The following fragment constructs a WML deck of cards and, as
you can see, although WML resembles HTML’s look and feel, they are not the same.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="image"
 ontimer="#login"
 title="Cosmetix">
 <timer value="100"/>
 <p>
 <img src="images/logo.wbmp"
 alt="Cosmetix"/>
 </p>
 </card>
 <card id="login"
 title="Cosmetix">
 <do type="Login">
 <go href="somewhere.wml"/>
 </do>
 <p align="left">
 <input type="text"
 name="username"
 format="32A"
 title="Username:"/>
 <input maxlength="32"
 type="password"
 size="7"
 name="passwd"
 title="Password"/>
 </p>
 </card>
</wml>

3 It is possible for the deck to contain just one card.

22 CHAPTER 1

The big picture
Why are we discussing WAP in a book concerned with custom JSP tags? Because
WAP and the pervasive cellular devices are much more than another client type.
There are many more mobile phones than computers in use today and, although
most of those phones cannot yet access the Internet, most market research suggests
it won’t be long before there are more wireless than standard wired clients. Other
technologies, such as VoiceXML, extend the web paradigm even further by enabling
users to browse web sites using only their voice from any standard telephone. Imag-
ine how large your potential user base becomes when anyone in the world with
access to a phone can visit your site. This increase in nontraditional web clients is
likely to continue to grow, making the Internet as ubiquitous and accessible as one
can imagine. As a result of these growing trends, it is important to keep in mind
that application designs will be targeting a multitude of presentation types.

 Using custom JSP tags with a well-designed Java component
layer can help your web application accommodate these different
device types. The advantages tags offer in this arena are their
content-agnostic behavior, that is, custom JSP tags don’t have
any predisposition to HTML, and can seamlessly support return-
ing HTML, WML VoiceXML, or any other markup language you
choose. Also, since alternative client types work (at some level)
with Internet cornerstones such as HTTP, any tags that you write
to handle cookies, request parameters, and the like can be reused
for different client types. Moreover, with JSP custom tag libraries
defined in the widely accepted and popular J2EE standard, it is
very likely that third-party tag libraries will become prevalent.
These third-party libraries might take care of some of the tedious
tasks associated with alternative clients, such as identifying devices, their attributes
(screen size, color, etc.), and general content formatting for a particular device.

1.6 Summary

You should now be able to see how previous extension mechanisms have fallen
short of providing a fast, easy-to-use, and well-designed approach to building
dynamic web applications. These goals are especially important in light of the grow-
ing trend toward alternative web clients (such as WAP, PDA, and Voice) and the
likely additional development efforts and complexity required for their support.

 After our cursory look at extension techniques, we will focus more closely on the
extension techniques that relate to this book, namely, those offered by Java. In our
quest to learn about JSP custom tags, we’ll take one more crucial side trip to learn
the basics of the technologies on which custom tags are built: Java servlets and Java-
Server Pages. These technologies are the focus of our next chapter.

Figure 1.5 WML
in action

 2Web development
with Java
In this chapter
� Servlets and the Servlet API
� Java ServerPages
� Model-1 and Model-2
� WAR files and deployment descriptors
23

24 CHAPTER 2

Web development with Java
 To learn more about the present, we must take a look at the past. In this case, we
will study Java’s evolution as a web development leader—servlets to JSP to JSP cus-
tom tags—which stands on the shoulders of the previous two technologies. The
servlet API outlined here is used heavily by both JSP and custom tags. Equally
important are the deployment techniques which are identical for any of the Java
extension techniques. A working knowledge of the servlet API and JSP basics will be
crucial to understanding the rest of this book.

 If you have extensive servlet or JSP experience, this chapter will be review. If you
are less experienced with either of these technologies (or the deployment tech-
niques associated with them), you’ll be well served by taking a look at it.

2.1 Java and dynamic web content

None of the server extension techniques discussed in chapter 1 are Java-based.
Although you could write CGI scripts with Java, or extend the scripting languages
in server pages with Java classes, such techniques are not natively based on Java as
most of them were created when it was in its infancy. Today, however, it has
matured into a stable, high performance, and scalable server platform. As a result,
there has been an explosion in Java’s usage on the server.

Extending a server with Java
Developers can use Java to extend the web server by using servlets and JSPs, both of
which allow you to specify some Java code to be executed when a specific HTTP
request is made (figure 2.1). The Java code you embed in a servlet or JSP can do
everything normally associated with dynamic web programming such as looking at
cookies, headers, or form parameters, and returning dynamic content based on that
information. While servlets are Java classes that you can write to handle HTTP
requests (somewhat like CGI, seen in chapter 1), JSPs are a server page technology
based on Java (more like ASP, also seen in chapter 1). The two technologies are very
similar; however, before receiving a request, a JSP is translated into a functionally

Static content
(such as an HTML

file) is retrieved

HTTP
request

Content is
returned to

the user

Servlet/JSP
Java code

executes and
produces

dynamic contentRequest for
a servlet or

JSP?

Yes

No

Figure 2.1 Extending the server with JSP

Introduction to Java servlets 25
identical servlet which takes HTTP requests on its behalf. Since JSP custom tags are
actually part of JSP technology, we’ll place more emphasis on JSP topics. JSP is, how-
ever, based on the servlet infrastructure and, as such, requires some understanding
of servlets as well.

2.2 Introduction to Java servlets

Servlets are Java components whose role is to extend web servers, enabling them to
return dynamic content, instead of just static files. A common comparison describes
servlets as the server-side version of applets. Whereas applets are small bits of Java
code that execute on a web client, servlets are bits of Java code (not necessarily
small) that execute on a web server. These servlets are handed an incoming HTTP
request (including any parameters, headers, cookies, etc.) which they then process
and, ultimately, return a response to the user. Servlets started out as the extension
API of JavaWebServer, a Java-based web server product from JavaSoft. The only
remains of JavaWebServer are servlets, which became the first successful and wide-
spread server-side Java API.

 There are many reasons for the success of servlets: ease of use, ease of develop-
ment, and the maturity of the Java language. The most important feature is that
servlets can extend practically any web server on virtually all operating systems. This
means that using a servlet does not tie you into a specific vendor, unlike many of the
techniques we saw in chapter 1. Servlet-based applications developed on IIS and NT
can later be deployed on Linux and Apache, and vice versa.

 The next few sections will present the servlet API and programming model, and
will also discuss how servlets and web servers interact.

2.2.1 The servlet API and programming model

Extending the web server with a Java servlet consists of four steps:
� The developer provides a servlet class that obeys the servlet API (presented

later in this section).
� The server administrator deploys the servlet in a web container (a web server

that knows how to handle servlets) and informs the container which requests
should be handled by the servlet (e.g., any request URI suffixed with .jsp
should be forwarded to the JSP servlet).

� When a request arrives, the web container checks the request URI against the
servlet mappings and invokes a servlet, if needed.

� The servlet takes over the request and serves it.

26 CHAPTER 2

Web development with Java
NOTE The term web container evolved out of an attempt to harmonize the terms
used in Java 2 Enterprise Edition (J2EE). A web container is the runtime
environment in which servlets operate; the container is responsible for the
instantiation, initialization, execution, and termination of the servlets.
There are other names for the servlet runtime environment; the most com-
mon of which is servlet engine. Think of a web container as a web server
with servlet support.

As developers, we will concentrate on how the servlet API and the servlets them-
selves look. Later sections will present a way to configure the web container in a
cross-server fashion.

 The servlet API defines:

1 How the servlet appears to the web container and its life cycle

2 What services the web container renders on the servlet’s behalf

3 Container-neutral application bundling

To understand the servlet API, keep in mind that servlets are essentially Java classes
whose job is to receive the parameters of the HTTP request and return an HTTP
response. To facilitate this, the servlet API defines a set of Java interfaces (table 2.11) that
define what a servlet can do for a container, and what the container offers to a servlet.

1 For specific information, such as method names and their parameters, please take a look into the servlet
API javadocs available from http://www.javasoft.com/products/servlet/index.html.

Table 2.1 Important interfaces in the servlet API

Interface Role Useful methods/services

javax.servlet.Servlet Defines the look of a servlet.
Any servlet class must
implement this interface.

The Servlet interface contains three impor-
tant methods: (1) init()—initializes the
servlet instance. init() has a single
parameter which is the ServletConfig
for this servlet; using the Servlet-
Config the servlet can initialize itself.
(2) service()—serves a single user
request. This method has two parameters,
request and response objects, which let
the servlet read the request information
and write a response back to the user. (3)
destroy()—cleans up the servlet
instance prior to destroying it.

Introduction to Java servlets 27
javax.servlet.Servlet
Request &
javax.servlet.http.
HttpServletRequest

These two interfaces repre-
sent the HTTP request sent
by the user as well as adding
request related services
such as, sharing of
attributes among the entities
serving the request.

We are talking about a set of useful ser-
vices rendered by the request object.
Some of these services are:
(1) Obtaining a Reader/InputStream
object to let the servlet read from the user.
(2) Reading parameters as sent by the
user (say, HTML form parameters). (3)
Looking up the values of the request head-
ers and various request information (for
example, the request URI). (4) Sharing the
request attribute among the various enti-
ties that serve the user request.

javax.servlet.Servlet
Response &
javax.servlet.http.
HttpServletResponse

These two interfaces let the
servlet construct an HTTP
response and send it over to
the user.

Using the servlet response, the servlet can
obtain a Writer that can later write the
content of the response back to the user.

Additionally, the servlet can use the
response to add headers and set the HTTP
status code for the response.

javax.servlet.Servlet
Config

Lets the servlet read per-
servlet configuration param-
eters as well as retrieve the
ServletContext.

The servlet can read per-servlet configura-
tion parameters using methods such as
getInitParameter(). It can also refer-
ence its ServletContext using the
method getServletContext().

javax.servlet.Servlet
Context

A context is a group of serv-
lets and other web entities
grouped together to form a
web application. The Serv-
letContext is shared by
all the servlets belonging to
the context and provides
services such as attribute
sharing, logging, and appli-
cation-based configuration,
and referencing various enti-
ties that are part of the con-
text through RequestDis-
patchers.

The ServletContext provides: (1) Appli-
cation-scoped object sharing through meth-
ods such as getAttribute() and
setAttribute(). (2) Application-
scoped configuration through methods
such as getInitParameter(). (3)
Access to other entities (JSP and Servlets)
in the application through the use of
RequestDispatchers. (4) Miscella-
neous utility methods to perform chores
such as logging and resource reading.

Table 2.1 Important interfaces in the servlet API (continued)

Interface Role Useful methods/services

28 CHAPTER 2

Web development with Java
The interfaces presented in table 2.1 form the backbone of the servlet API. Addi-
tional interfaces such as Filter were added in servlet API version 2.3, but these
interfaces are less crucial for understanding servlets, JSP, and eventually JSP tags.

 Table 2.2 lists important classes in the servlet API. Some are exceptions that the
servlet may throw; others are basic implementations of the interfaces defined by the
servlet API (geared toward easing the work performed by the servlet writer).

javax.servlet.http.
HttpSession

A session is a sequence of
requests from a browser to a
certain site on behalf of a
certain user. The HttpSes-
sion is a placeholder that
the servlet can use to place
data it collects in the course
of a certain user session.
Each session has an
HttpSession of its own
and the servlet container is
responsible for handing over
the current HttpSession
to the servlet on demand.

The job of the session object is to let the
servlets store user-related objects through
its visit in the site. The HttpSession pro-
vides the methods getAttribute(),
getAttributeNames(), set-
Attribute(), and removeAt-
tribute() that let the servlet save
objects inside the session state.

Additionally, the HttpSession provides
methods to fetch metainformation on the
session such as maximum inactivity time,
etc.

javax.servlet.Request
Dispatcher

A RequestDispatcher
wraps a resource and lets
the servlet execute this
resource and have the
results of this execution
written into the response
flowing to the user.

Using the RequestDis-
patcher, a servlet can
delegate the request han-
dling to other entities in the
server such as JSP pages
and other servlets.

The RequestDispatcher lets a servlet
reference other entities in its application
(ServletContext). Usually these enti-
ties are other servlets and/or JSP files.

To obtain a RequestDispatcher, the
servlet approaches the ServletContext
and uses one of its getRequestDis-
patcher()/getNamedDispatcher()
methods.

The servlet can then call one of the
include() or forward() methods on
the RequestDispatcher and, in this
way, execute the referenced entity and
include its output in the response flowing
to the user.

Table 2.1 Important interfaces in the servlet API (continued)

Interface Role Useful methods/services

Introduction to Java servlets 29
The technical content of tables 2.1 and 2.2 can be distilled into the following
guidelines:

1 Your servlet should extend HttpServlet.

2 You should implement the service() method or doGet(), doPost(),
and so forth (depending on the HTTP methods that you want your servlet
to support).

3 In the service phase, take parameters from the HttpServletRequest object
and use them to produce a response that you write using the HttpServlet-
Response object.

4 You can perform servlet initialization in the init() method.

5 You can perform servlet cleanup in the destroy() method.

To illustrate these guidelines, let’s look at a servlet example. The servlet in listing 2.1
generates a response to the user that identifies the name of the server requested.

Table 2.2 Important classes in the servlet API

Class Use

javax.servlet.GenericServlet Provides abstract implementation for the servlet inter-
face to define a generic, protocol-independent servlet.
GenericServlet does not implement the ser-
vice() method (left to the user). This is purely a key-
stroke saver class.

javax.servlet.http.HttPServlet HttPServlet extends GenericServlet to provide
an abstract implementation for an HTTP aware servlet.
HttpServlet implements the method service()
which handles requests by dispatching them to the han-
dler methods for each HTTP request type. For example,
a request that uses the HTTP GET method will be dis-
patched to a method named doGet().

javax.servlet.ServletException An exception that a servlet can throw to signal some
error. Generally the servlet will throw a ServletEx-
ception when it hits an unexpected problem prohibit-
ing it from serving some request.

javax.servlet.UnavailableException An exception that a servlet can throw to signal that it hit
some unexpected problem, prohibiting it from serving
requests permanently or temporarily.

30 CHAPTER 2

Web development with Java
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.*;
import javax.servlet.http.*;

public class SampleServlet
 extends HttpServlet {

 // init is already implemented in HttpServlet
 // and GenericServlet as an empty method.
 // ditto for destroy.

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 PrintWriter out = response.getWriter();

 out.println("<HTML>\r\n<BODY>\r\n");
 if(request.getServerName().equals("localhost")) {
 out.println("You asked for the server " +
 "located on your local machine.");
 } else {
 out.println("You asked for the server " +
 request.getServerName());
 }
 out.println("</BODY>\r\n</HTML>\r\n");
 }
}

The servlet created in listing 2.1 extends HttpServlet so the methods init()
and destroy() are already implemented as empty methods. All we have left to do
is to implement the service logic, which we do in doGet(). Note in doGet() how
the servlet uses the request object to read request parameters and generate the
response using the response object (or, more precisely, the PrintWriter available
from the response). The practice of getting parameters and using them in some
logic to produce a response represents a common occurrence in servlet develop-
ment. A good grasp of this example will provide solid footing in the basics of
servlet development.

2.2.2 Servlets and non-Java web servers

How can so many different web servers work with servlets? It is obvious that Java-
based web servers can work with servlets since both are written in Java, but how
does a web server written in a native language such as C or C++ interact with

Listing 2.1 Sample servlet that generates dynamic content

Introduction to Java servlets 31
servlets? Servlet support is added to these servers by “plugging” a web container
into them.

 Plugging servlet support into the web server is accomplished in the following
way. The container vendor takes advantage of the web server-specific API exported
by the web server and writes a plug-in to connect the web server and the web con-
tainer. The plug-in filters the requests and, whenever it sees one that should be exe-
cuted by a servlet, grabs the request from the server and has the container serve it.
Some of the popular servlet plug-ins available include the open-source TomCat for
Apache, Allaire Corporation’s JRun, and New Atlanta’s ServletExec.

 A schematic description of a web server extended to include servlet support is
presented in figure 2.2, in which a user request arrives at the core web server, is
accepted, grabbed by the container redirector plug-in, and handed over to the web
container JVM.

 As illustrated in figure 2.2, we can now execute a servlet from within a legacy
web server that was written in a native language.

2.2.3 Servlet shortcomings

Once we understand how servlets work, life should be much simpler, right? After
all, servlets offer a usable web server extension method that performs well and is

Internet
Web server

core

Web
container

plug-in

Web container's
JVM

Web Server

1) A request arrives
to the web server.
The web server's
core read the
request.

When a response is
ready the server core
will return it to the
user.

2) The plug-in checks
if this is a servlet
request and grabs
the request

3) The plugin passes
the request to the
container and
receives the results.

Figure 2.2 Integrating a web server and a web container

32 CHAPTER 2

Web development with Java
cross-platform. Unfortunately, we aren’t out of the woods yet. Even with their
many benefits, servlets still possess shortcomings that make them less than ideal for
dynamic web development.

� Servlets do not encourage a separation of presentation and logic. To start
with, servlets (such as the one in listing 2.1) present an enormous challenge
in the now familiar dilemma of separating presentation from logic. As we saw
in listing 2.1, the servlet often contains the actual content (the HTML) as
hard-coded text. Imagine how tedious a task it is to cut and paste HTML con-
tent from the presentation developers directly into servlets. This can be
avoided by building templates that your servlets parse, modify, and write to
the response; but this still places a great deal of knowledge about presentation
directly into our business logic and requires us to come up with our own tem-
plating syntax.

� Servlets require mastery of Java. Another obvious drawback is that creating a
servlet is much more difficult than creating a server page. The servlet developer
must master a complex language (Java), compile source code, and generally
take on far too great a burden, especially when merely rendering simple pages.

For Java to become a viable dynamic page technology, it needed to improve the
servlet technology to:

� Adapt it to a wider audience (one that does not know Java).
� Make it easy to separate presentation and business logic.

The outcome of these requirements was a technology known as JSP.

2.3 Introduction to JavaServer Pages

Servlets offer several improvements over other server extension methods, but still
suffer from a lack of presentation and business logic separation. In response, devel-
opers created servlet-based environments that provided the sought-after separation,
and some of them (e.g., FreeMarker and WebMacro) gained considerable accep-
tance in the marketplace. Parallel to the efforts of these individual developers, the
Java community worked to define a standard for a servlet-based server pages envi-
ronment. The outcome was what we now know as JSP.

 In a nutshell, JSP is a server page technology based on servlets that let its users
embed Java code and special tags within a page’s content.

 JSP developers were able to accept the good and reject the bad in the popular
server extension products that came before it. JSP, for example, allows you to
embed logic in a page using tags (as in ColdFusion) or scriptlets (as in ASP). A
considerable amount of work went into making sure that content developers and

Introduction to JavaServer Pages 33
business logic coders can now cooperate in ways that minimize the interactions
between them, either by using standard JavaBeans and scriptlets or by using special
JSP tags. The business logic can thus produce data and the content developer can
seamlessly embed this data in dynamic content.

2.3.1 Basic JSP syntax elements

A JSP page contains HTML (or other text-based format such as XML) mixed with ele-
ments of the JSP syntax. Table 2.3 shows the most commonly used JSP elements:

We’ll look at each of these syntax elements later in this chapter, but let’s first look at
an actual JSP file to see its syntax.

2.3.2 A JSP example

A sample JSP file is in listing 2.2 which, again, implements a simple dynamic content
generation task. The syntax uses scriptlets to perform conditional HTML and is eas-
ier to follow than the servlet. All we’ve done is embed standard Java syntax directly
in an HTML file, and embedded it between <% and %> characters.

<HTML>
<BODY>
<% if(request.getServerName().equals("localhost")) { %>
You asked for the server located on your local machine.

Table 2.3 JSP Syntax elements

Element Description

scriptlets Snippets of Java code that let the developer add things like flow-control
(and other logic they choose) into the server pages.

JSP implicit variables A number of objects that are available in any JSP file and provide access
to the servlet API services.

Page translation directives Directives to the JSP translator.

JSP tags Standard tags that are included in any implementation of the JSP specifi-
cation. These tags let the developer add functionality to the JSP file with-
out writing any code. The number of these tags (and the extent of their
functionality) is limited.

Custom JSP tags The JSP specification explains how to extend the page functionality with
custom made tags that allow the JSP developer to expose complex Java
code in a simple tag. Developing these custom tags is the subject of this
book.

Listing 2.2 Sample JSP file

34 CHAPTER 2

Web development with Java
<% } else { %>
You asked for the server <%= request.getServerName() %>
<% } %>
</BODY>
</HTML>

It is very obvious by the title that JSP is central to this book. It is mandatory that
you know how to create the simple JSP files in which your custom tags will be con-
tained. To this end, we will discuss its syntax elements, how to use them, and how
the JSP runtime executes the generated pages.

2.3.3 Scriptlets

Scriptlets are probably the most common JSP syntax element. In essence, a scriptlet
is a portion of regular Java code embedded in the JSP content within <% ... %>
tags. The Java code in scriptlets is executed when the user asks for the page. Script-
lets can be used to do absolutely anything the Java language supports, but some of
their more common tasks are:

� Executing logic on the server side; for example, accessing a database.
� Implementing conditional HTML by posing a condition on the execution of

portions of the page.
� Looping over JSP fragments, enabling operations such as populating a table

with dynamic content.

The bits of code we saw in listing 2.2 were scriptlets that performed some condi-
tional logic. To see another scriptlet in action, take a look at listing 2.3.

<html>
<body>
<%
 double num = Math.random();
 boolean bigger = num > 0.5;
 int cap = (int)(num * 10);
%>
 <p>
 Is <% out.print(num); %> bigger then 0.5?
 b
<% if(bigger) { %>
 Yes!
<% } else { %>
 No!
<% } %>
 </p>

Listing 2.3 Sample JSP file that uses scriptlets

b

c

Introduction to JavaServer Pages 35
 <p>
 Now, let’s loop randomly ...

<% for(int i = 0 ; i < cap ; i++) { %>
 This is iteration number <% out.print(i); %>.

<% } %>
 </p>
</body>
</html>

B Our very simple business rules and output scriptlets The first scriptlet is embed-
ding java code that represents the business logic, in this case just some simple math.
Once our math logic is complete, we print the response to the user with the
out.print.() statement.

C Some conditional control based on the value of bigger The second set of scriptlets
is performing conditional HTML; the condition is posed over the results of the
“business logic,” namely, the variable bigger.

d Looping more output The last set of scriptlets is performing a simple iteration
using a for loop.

As you can see, listing 2.3 uses scriptlets for all the tasks we mentioned in our bul-
leted list.

 You probably recognize the syntax of these scriptlets immediately since, again, it
is standard Java.

The special Writer object
In listing 2.3 we are using a scriptlet that looks like <% out.print(expression);
%>. This code is used to print the value of an expression to the output that is
returned to the user. The out object we’re referring to is a special Writer object
that is available at all times in any JSP, known by the simple name “out.” Anything
written to this special Writer will be returned within the page to the user. This is
exactly the same Writer we write to in a servlet (which we retrieve by calling
response.getWriter()). JSP also offers a simpler syntax defined for writing to the
response. The syntax defined for JSP expression printing is of the form <%= java-
expression %>, where “java-expression” is simply Java code that evaluates to a
result. The Java expression is converted into a string and then placed into the
response flowing to the user. It is important to make sure the expression you are try-
ing to use has a meaningful string conversion, since whatever the expression evalu-
ates to will be converted to a string and then sent in the response. Listing 2.4 shows
what the JSP in listing 2.3 would look like using this simpler JSP printing syntax:

d

36 CHAPTER 2

Web development with Java
<html>
<body>
<%
 double num = Math.random();
 boolean bigger = num > 0.5;
 int cap = (int)(num * 10);
%>
 <p>
 Is <%= num %> bigger then 0.5?

<% if(bigger) { %>
 Yes!
<% } else { %>
 No!
<% } %>
 </p>

 <p>
 Now, let’s loop randomly ...

<% for(int i = 0 ; i < cap ; i++) { %>
 This is iteration number <%= i %>.

<% } %>
 </p>
</body>
</html>

As you can see, using the expression printing syntax made the code cleaner and
more readable.

NOTE Many see scriptlets as a necessary evil since using too many scriptlets in
code breaks the separation of presentation and business logic. Scriptlets are
a powerful weapon; after all, they are written in Java—a full-blown pro-
gramming language. Yet, like most powerful weapons, consider carefully
before using them. For example, implementing business logic or some re-
usable code by using a scriptlet in your page is dangerous and could harm
your content developers. As we will see in this book, custom JSP tags are an
excellent tool to avoid the scriptlet overflow.

Having seen a simple scriptlet example, let’s look at how scriptlets interact with
the rich JSP environment on which they depend for web functionality. We saw an
example of this in listing 2.2 where we used an object called request to fetch the
server name.

Listing 2.4 Improved JSP file that uses scriptlets and expression printing

Introduction to JavaServer Pages 37
2.3.4 Implicit variables

To gain access to crucial objects like the HTTP parameters, sessions, cookies, and
the response, JSPs and servlets need to interact with the container environment in
which they run. These objects, in the JSP world, can be accessed any time in any JSP
file using a simple one-word name (like the “out” and “request” objects we’ve just
seen). These ever present objects are known as the JSP implicit variables. Implicit
variables enable the JSP environment to expose itself to the JSP developer. A sum-
mary of all of the implicit objects is presented in table 2.4.

Table 2.4 Implicit JSP objects and their use

JSP implicit object Type Typical use by the scriptlet writer

pageContext javax.servlet.jsp.PageContext Barely in use. This is more of a backbone
object used by the servlet that was auto-
generated from the servlet code. We will
discuss the autogenerated servlet later in
this chapter.

request javax.servlet.http.HttpServ-
letRequest

Queries request information; for example,
queries form parameters, inbound cook-
ies, request headers, etc.

response javax.servlet.http.HttpServ-
letResponse

Manipulates the response; for example,
add cookies, redirect, etc.

session javax.servlet.http.HttpSes-
sion

Accesses the session state information
associated with the request. For example,
get/set session attributes or invalidate the
session.

config javax.servlet.ServletConfig Obtains configuration parameters for this
page.

application javax.servlet.ServletContext Obtains configuration parameters for this
application and uses its utility method (for
example, log()).

out javax.servlet.jsp.JspWriter Writes data into the page and manipulates
the output buffer used by JSP.

page java.lang.Object Represents the Java this variable for the
current page invocation.

exception java.lang.Exception In error pages only (see more on error
pages in the upcoming sections), repre-
sents the exception that triggered the error
page.

38 CHAPTER 2

Web development with Java
The implicit objects are the same ones used by a servlet through the servlet API, with
the addition of one object, pageContext, which is unique to JSP (and seldom used
by scriptlet developers). Using the implicit objects, the scriptlet writer can accom-
plish the same tasks as a servlet developer, such as reading user submitted form vari-
ables (as demonstrated in listing 2.5) and checking for configuration variables.

<html>
<body>
 <p>
<%
 java.util.Enumeration e = request.getParameterNames();
 if(e.hasMoreElements()) {
%>
 Your form variables are:
 <table>
 <tr><th>name</th><th>value</th></tr>
 <% while(e.hasMoreElements()) {
 String name = (String)e.nextElement();
 String value = request.getParameter(name); b
 %>
 <tr><td><%= name %></td><td><%= value %></td></tr>
 <% } %>
 </table>
<% } else { %>
 No parameters are available!
<% } %>
 </p>
</body>
</html>

B Use of the “request” implicit variable to get user posted parameters.

As listing 2.5 shows, using the implicit variables is powerful; however, their use ren-
ders the JSP relatively difficult to follow for the nonprogrammer (and has very lim-
ited support in most content developer’s tools).

2.3.5 Directives

JSP directives are instructions to the JSP runtime (similar to what #pragma is to C
and C++). A directive does not produce output visible to the user, but tells the JSP
runtime how to execute the page. The general syntax of a directive is <%@ direc-
tive attribute=”…” %>. Directives are:

� include—Instructs the JSP environment to statically include the content of a
specific file in the generation of the servlet. The file to include is specified

Listing 2.5 A JSP file that presents the submitted form variables using implicit objects

Introduction to JavaServer Pages 39
using an attribute called file. For example, the following directive instructs
the JSP environment to include the content of header.html in the page: <%@
include file="header.html" %>

� taglib—Instructs the JSP environment to import a certain tag library. We
will look into this directive in the next chapters.

� page—Specifies page-related parameters to the JSP environment. For exam-
ple, the parameters can be the length of the buffer used by the page, any Java
imports to perform, whether the page uses session state, and so forth. A par-
tial list of the more useful page directive attributes is in table 2.5.

Table 2.5 Useful attributes for the page directives

Page attribute Sample syntax Use

import <%@ page import=”class” %> Specifies which Java classes
and packages to import into the
servlet generated from the JSP
file.

session <%@ page session=”false” %> Specifies whether the page is
using session state. The value
of the session attribute can be
true or false (default is
true).

contentType <%@ page contentType=”text/html” %> Defines the MIME type for the
response. The default is
“text/html;charset=ISO-
8859-1”.

buffer <%@ page buffer=”12KB” %> Specifies the buffer length used
for the “out” writer. Can take
the value none (in which case
buffering will not take place) or
some numeric value (the
default is 8KB).

errorPage <%@ page errorPage=”/pathto-page” %> Each page can have an error
handler page. The error handler
will be invoked by the JSP run-
time upon an exception in the
page. The JSP developer speci-
fies the error handler using the
errorPage attribute.

40 CHAPTER 2

Web development with Java
Listing 2.6 uses the JSP directives to perform simple daily tasks.

<%@ page contentType="text/html" %> b
<%@ page import="java.util.*" %> c
<%@ page buffer="1kb" %> d
<html>
<body>
 <p>
 Today's date is <%= new Date() %>.
 </p>

</body>
</html>

B Sets the content type of this HTTP response for HTML content.

C Performs an import of the classes in java.util. Works just like “import” in any Java file.

D Sets the buffer for this page to 1KB.

As listing 2.6 shows, the JSP page attribute is extremely useful for configuring
your page. Many JSP files use directives to define error handling, package import,
and the like.

2.3.6 Tags

The last element of JSP syntax to discuss is the group of JSP tags defined in the JSP
specification. These are basic JSP tags that perform a few simple duties and are
included in every product that fully implements the JSP 1.1 specification. They can
be placed into roughly two groups:

isErrorPage <%@ page isErrorPage=”true” %> Identifies the page as an error
handler. The JSP runtime will let
error handlers (and only error
handlers) access the exception
implicit variable, and this vari-
able will hold the value of the
exception that caused this
errorPage to be invoked.

Listing 2.6 A JSP file that uses directives

Table 2.5 Useful attributes for the page directives (continued)

Page attribute Sample syntax Use

Introduction to JavaServer Pages 41
� Tags that make JSP services available by simple means, accessible to the non-
programmer, such as the <jsp:forward/> tag that allows a JSP developer to
forward a request to another page.

� Tags that allow the JSP developer to manipulate a JavaBean component, with-
out knowing Java.

The first group of tags performs basic page-level functionality such as forwarding
the page, including other files’ content in the page, or downloading a plug-in (typi-
cally an applet) to a browser. These tags are listed in table 2.6.

The second group of tags is discussed in the next section.

2.3.7 Tags for JavaBean manipulation

The standard JSP tags that permit you to interact with JavaBeans are used quite regu-
larly in JSP development, and require a bit of know-how. We’ll explore their usage now.

NOTE We will discuss the JavaBean component model at length in chapter 8. For
the time being, think of JavaBean components as regular Java objects.

The goal of the JavaBean-related tags is to minimize the amount of hand-coding
needed to work with JavaBeans. The tags let the JSP developer instantiate Java-
Beans, place/fetch them from the session state, and get and set their attribute val-
ues. This goes some distance toward realizing the goal of separating content from
logic, since the business logic developer can build JavaBeans with which a content
developer can interact using only simple tags. To unleash these capabilities, the JSP
specification defines three tags:

<jsp:useBean> Introduces a bean reference into the page. This is a rather com-
plex tag that makes the bean instance accessible to the other bean-related tags as
well as the scriptlets in the page. If the bean instance already exists, <jsp:useBean>
will only reference the instance; but, if the instance is not available, <jsp:useBean>

Table 2.6 The standard JSP tags that perform functions other than bean manipulation.

Tag Duty

<jsp:forward> Forwards a client request to another URL.

<jsp:include> Includes the text of a particular file (or JSP/servlet, etc.) in a page.

<jsp:plugin> Downloads a Java plug-in (applet or Bean) to a client browser).

42 CHAPTER 2

Web development with Java
will create it. This tag’s attributes include: (1) The scope used by the bean; for exam-
ple, a session-scoped bean should be available through the user’s session state object
and, if <jsp:useBean> needs to instantiate it, the new instance is placed into the ses-
sion object. (2) The bean’s type and class. These attributes instruct the JSP envi-
ronment which class to instantiate to create the bean, and what type to be used by
the JSP environment for the Java variable to reference it. (You can get by with specify-
ing either type or class.) (3) The bean ID. The ID will be the name of the bean.

<jsp:getProperty/> Gets the value of a named bean property and prints it to the
response (the bean must be previously introduced by <jsp:useBean>).

<jsp:setProperty/> Sets the value of the bean’s properties (again, the bean must
be introduced by <jsp:useBean> before calling <jsp:setProperty/>). This is a
very useful tag that can even take the values sent by an HTML form and set them
into the bean.

Tag example
To see these concepts in action, listings 2.7 and 2.8 present a Java bean component
and a JSP file that handles this component through tags.

public class SessionCounterBean
{
 int visitCount = 0;

 public int getCount()
 {
 return visitCount;
 }

 public void incCount()
 {
 visitCount++;
 }
}

SessionCounterBean can be used to track the number of visits that a certain user
has made to the site. By keeping SessionCounterBean in the user’s session and
incrementing the visit count each time the user comes to the site, you may retrieve
the exact number of visits by calling getCount() (listing 2.8).

Listing 2.7 The session counter JavaBean component

Introduction to JavaServer Pages 43
<%@ page import="SessionCounterBean" %>

<jsp:useBean id="counter"
 scope="session"
 class="SessionCounterBean"/>
<%
 counter.incCount();
%>

<BODY>
<h1> JSP Session Counter using JavaBeans </h1>
You visited this page <jsp:getProperty name="counter"

property="count"/>
times.
</BODY>

B Defines an instance of SessionCounterBean, called counter in the session scope.

C Gets the count property of this bean (by calling getCount).

Listing 2.8 demonstrates the aspects associated with using the JSP tags. First, the
JSP code uses <jsp:useBean> to reference the bean, and possibly even creates it if
the bean is not available in the session. Later on, a scriptlet is used to increment the
visit count. Note how the value of the id property from <jsp:useBean> is used to
name the variable that holds a reference to the bean. Lastly, the JSP fragment uses
<jsp:getProperty/> to show how many times the user visits this site. As you can
see, using the JavaBean tags relieved us from writing long (and messy) scriptlet
code, and kept listing 2.8 concise and tidy.

2.3.8 Executing a JSP page

JSP syntax clearly allows you to embed Java scriptlets or tags directly in a page in
order to produce dynamic content. But how does the JSP runtime execute these JSP
pages? You probably have a few questions about what happens to the JSP file after
you’ve written it. Are the pages interpreted or compiled? Does JSP parsing happen
at runtime or beforehand?

 In answer to the first question, JSPs are not interpreted;2 they are instead com-
piled into servlets which ultimately handle requests for the JSP file. As depicted in
figure 2.3, when a user asks for a JSP file, the JSP runtime intercepts the request and

Listing 2.8 A JSP file that uses JavaBean tags

2 Some might make the academic argument here that the JVM interprets bytecode, and therefore JSPs are
interpreted. We understand this perspective, but our point is that JSPs themselves are compiled into byte-
code, not interpreted on the fly as are ASPs and the like.

b

c

44 CHAPTER 2

Web development with Java
checks if the JSP file already has a servlet representation. If it does, the runtime will
execute the servlet. If there is no servlet representation, or the file was modified, the
JSP runtime will:

1 Read the JSP file into the memory.

2 Translate the JSP file into a Java source file containing a servlet representing
this page.

3 Compile the translated servlet into a class.

4 Load the autogenerated servlet.

5 Execute the autogenerated servlet.

How a JSP becomes a servlet
You can probably guess that the most trying is the translation step that takes an
ordinary JSP file and produces a servlet representing it. The JSP specification pro-
vides some guidelines for the generation of the Java code, but normally the emitted
servlet is vendor specific. Although the translation may be vendor specific, we can
create a set of general guidelines regarding the translation from JSP to Java. For
example, a section of static HTML (or other content) in a JSP is translated to multi-
ple write() calls on the response’s PrintWriter in the servlet. Scriptlets in a JSP are
simply embedded verbatim into the servlet source code. While translating the page,
the JSP translator also consults the page translation directives to better understand
how to generate the servlet (i.e., what Java code to emit into the servlet). For exam-
ple, a <%@ page import=”…” %> directive gets mapped into an import statement in
the emitted Java code and a <%@ include … %> directive causes the translator to
include verbatim the content from a specific file into the resulting servlet.

 To help illustrate this translation phase, look at listing 2.9, which shows the serv-
let produced by the translator for the JSP in listing 2.2. It is clear that the method
jspService() (where the service logic of the JSP page is implemented) merely ini-
tializes the implicit variables and then executes the page. This execution produces
the static HTML via calls to out.write() and executes the scriptlet logic. The
scriptlets were added to the file “as is.”

Introduction to JavaServer Pages 45
A JSP
request
arrives

Was compiled
to a servlet?

Send
results to
the user

No

No

Yes

Web server

Execute the
compiled
servlet

Has the JSP
file changed?

Yes

Read the
JSP
file

Emit Java
code

for the servlet

Compile the
generated

servlet

Load the
compiled
servlet

Figure 2.3 Executing a JSP file

46 CHAPTER 2

Web development with Java
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;
import org.apache.jasper.runtime.*;
import java.beans.*;
import org.apache.jasper.JasperException;

public class jspsample1 extends HttpJspBase {

 static {
 }
 public jspsample1() {
 }

 private static boolean _jspx_inited = false;

 public final void _jspx_init() throws JasperException {
 }

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String value = null;
 try {

 if(_jspx_inited == false) {
 _jspx_init();
 _jspx_inited = true;
 }
 jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html;charset=8859_1");
 pageContext = _jspxFactory.getPageContext(this,
 request,
 response,
 "",
 true,
 8192,
 true);

Listing 2.9 Sample JSP autogenerated servlet

Introduction to JavaServer Pages 47
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 out.write("<HTML>\r\n<BODY>\r\n"); c
 if(request.getServerName().equals("localhost")) {
 out.write("\r\nYou asked for the server located on your

 local machine.\r\n");
 } else {
 out.write("\r\nYou asked for the server ");
 out.print(request.getServerName());
 out.write("\r\n");

 }
 out.write("\r\n</BODY>\r\n</HTML>\r\n");
 } catch(Exception ex) {
 if(out.getBufferSize() != 0)
 out.clearBuffer();
 pageContext.handlePageException(ex);
 } finally {
 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
 }
}

B Initialization of the JSP implicit objects. We see here why they are always available to a
JSP by name.

C Static content written to the out object.

d Scriptlet content is copied verbatim into our servlet file.

NOTE In JSP1.2, the translation from JSP to Java is not direct but involves an in-
termediate step whereby the JSP code is translated into an XML representa-
tion. This representation is important for reasons such as page validation.
Once the page validation is complete, the XML representation is trans-
formed into the Java source.

Note from listing 2.9 that the servlet emitted by the JSP runtime does not add any
real overhead to a hand-coded counterpart. As a result, other than the initial over-
head associated with the servlet generation, JSP files share the performance advan-
tages attributed to servlets because the just-in-time (JIT) compiler available with the
Java virtual machine (JVM) will compile them into native code. JIT compilers

b

d

c

48 CHAPTER 2

Web development with Java
compile Java on the fly, allowing interpreted Java to execute at speeds comparable
to native C++.

2.4 Access models for business/presentation de-coupling

Concurrent with the JSP specification’s release, two JSP “access models” (architec-
tures) were introduced in order to further the crusade to separate presentation from
business logic (commonly called decoupling). These access models were mentioned
first in version 0.92 of the JSP specification and are known in the industry as
Model-1 and Model-2. The JSP access models specify an overall architecture for
servlet/JSP web applications, defining how servlets, JSP files, JavaBean components,
and back-end systems should cooperate. The architecture enforced by these models
provides rules of thumb that ease the conflict between Java business code and
HTML (or other) presentations. These models help provide structure to JSP web
development, which can occasionally be so flexible that it inadvertently encourages
poor programming practices (such as overusing scriptlets). Both models are gaining
popularity as architectures for the building of JSP applications, and therefore war-
rant some discussion of them here. We will first talk about the Model-1 access
model, and then explore Model-2.

2.4.1 Model-1

To understand the Model-1 architecture, look at figure 2.4. This figure sketches a
simple system that adheres to the Model-1 architecture. As it shows, a request arriv-
ing at the server is served in the following manner:

� The container assigns the request to some JSP file.
� The JSP file accesses the business logic using JavaBeans (and scriptlets or

bean tags).
� The JavaBeans access the enterprise information systems and return dynamic

data to the JSP file.

Altogether, a single JSP file and a collection of beans serve the user. Separating pre-
sentation and business logic is achievable in Model-1 by restricting all the business
logic into JavaBeans and confining the JSP file to generating the response.

 Model-1 has a distinct advantage over unstructured JSP development, since all of
the complex, bulky Java code that is central to our application is hidden from the
content developer inside the JavaBean. This results in JSP files that are relatively free
of scriptlets and easy to understand. We have, in fact, already seen a tiny Model-1
example in listings 2.7 and 2.8. There is, however, a problem with Model-1: any

Access models for business/presentation de-coupling 49
processing before or after accessing the JavaBean still must be done with scriptlets.
The need for processing at these times is quite normal for validating user parame-
ters, getting session variables, setting cookies, and so forth. Introducing scriptlets in
these cases undoes some of the abstraction we achieved with this model. As a result,
Model-1 is suitable for simpler applications, and requires careful attention to pre-
vent scriptlet overuse. The pitfalls of Model-1 were remedied in Model-2, at the
expense of simplicity.

2.4.2 Model-2

A schematic description of Model-23 is in figure 2.5. When a request arrives to a
web application built on the Model-2 architecture:

� The container assigns the request to some Controller servlet.
� The servlet manipulates the request if needed. For example, it can verify the

input parameters.
� The servlet selects a Model object. This object is responsible for executing

the business logic that should be performed for this request.

3 Model-2 is also known as model view controller (MVC) because it is a special case of this well-known de-
sign pattern.

Internet JSP JavaBeans

Information systems
(e.g. ERP, databases,

and transaction
monitors)

Web container

1) A request arrives
to the web server.
The web server
invokes a JSP file to
handle it.

2) While executing
the JSP file accesses
Java beans that
implement the
business logic.

These beans return
results to the JSP
file.

3) The JavaBeans
access the
information system
as part of their
business logic
implementation.

For example a bean
may access a
database and look
for a part number to
be displayed to the
user.

JavaBeans

Figure 2.4 Serving a request using the Model-1 architecture

50 CHAPTER 2

Web development with Java
� The results of the business logic execution are wrapped within a set of Java-
Beans and forwarded from the controller servlet to a presentation (View) JSP.

� The JSP file accesses the results of the Model execution and generates a
response based on those results.

� The content generated by the JSP file is included in the result to the user.

Under Model-2, the request is served using a controller servlet, Model objects,
beans to encapsulate the results, and a JSP file to format the returned content. Sep-
arating presentation and business logic can easily be achieved in Model-2, since all
of the code is written by the Java (business logic) developer. Recall that in Model-1
the separation of layers breaks down when we need to perform processing before or
after using the JavaBean(s). Model-2 overcomes this flaw by adding a controller
servlet to handle any special processing needed prior to or after the execution of the
model. This controller servlet also acts as the error handler. The business logic is, of
course, still implemented in Java (in the model objects). With the model and con-
troller both implemented as Java classes (and not scriptlets) we insure that any
meaningful logic is executed outside the JSP file. Achieving separation between Java
and content developers is not without its price however; the controller servlet in
Model-2 introduces complexity that was not part of Model-1.

 To better understand Model-2, we’ll look at a short sample that implements the
Model-2 counterpart in listing 2.8. If you recall, listing 2.8 counted and presented
the number of hits to our site for a specific user. We will now implement the same
logic in Model-2 using a servlet and a JSP file. Listing 2.10 shows the new presenta-
tion JSP file in the Model-2-based implementation. The scriptlet in listing 2.8 was
dropped, and now all we have is presentation logic that is easily accomplished with
the JavaBean tags.

<%@ page import="SessionCounterBean" %>
<jsp:useBean id="counter"
 scope="session"
 class="SessionCounterBean"/>
<BODY>
<h1> JSP Session Counter using JavaBeans and a Controller
Servlet </h1>
You visited this page <jsp:getProperty name="counter"
 property="count"/>
times.
</BODY>

Listing 2.10 The Model-2 presentation JSP

Access models for business/presentation de-coupling 51
The controller servlet is available in listing 2.11 and the action of incrementing the
visit count is implemented in it.

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;

public class ControllerServlet
 extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 HttpSession s = request.getSession(true);
 SessionCounterBean b =
 (SessionCounterBean)s.getAttribute("counter");
 if(null == b) {
 b = new SessionCounterBean();
 s.setAttribute("counter", b);
 }

Listing 2.11 The Model-2 controller servlet

Internet
Controller

servlet

JavaBeans

(e.g. ERP, databases
and transaction

monitors)

Web Container

Model
JavaBeans

Presentation
JSP

4) The controller
servlet dispatches
the request to the
most suitable
presentation JSP.

3) The model can be
encapsulated in JavaBeans.

Another option is to
encapsulate the
results returning from
the model as JavaBeans.

2) The controller servlet
performs whatever needed
processing and then accesses
the application model.

The model is the only part in
the application that actually
accesses the information
systems.

Information Systems

1) A request arrives
to the web server.
The web server
invokes a controller
servlet to handle the
request.

5) The presentation
JSP uses the data
captured in the
JavaBeans to
produce dynamic
content.

Figure 2.5 Serving a request using the Model-2 architecture

52 CHAPTER 2

Web development with Java
 b.incCount();

 RequestDispatcher rd =
 request.getRequestDispatcher("/show_count.jsp");
 rd.forward(request, response);
 }
}

In addition to the manipulation of the counter bean, the controller servlet selects
the JSP presentation to be used and forwards the request to its destination. This dis-
patch operation can be implemented using the RequestDispatcher object available
in the servlet API.

 Each architecture presented in this section has its pitfalls, beginning with the
rather weak presentation and logic separation in Model-1 and ending with the rela-
tive complexity of Model-2. In spite of their weaknesses, both models offer vast
improvements over undisciplined use of scriptlets and Beans in JSPs. Using the stan-
dard JSP tags in our JSP files dramatically reduces the amount of Java code needed
inside the files. In fact, the Model-2 implementation of our counter was able to
forgo any scriptlets by using JSP tags instead. Don’t let these simple scriptlet-free
examples lull you into believing that standard JSP tags alone can eliminate scriptlets
entirely from your JSPs. In real-world applications one often needs more than the
minimal JavaBean manipulation offered by canned JSP tags. Luckily, there is a
solution that offers the promise of scriptlet-free JSPs. This is where custom tags
libraries finally come into the picture.

2.5 Servlets, JSP, and application configuration

For some time, the cross server capabilities of servlets and JSP were overshadowed
by the challenges of configuring them to work with web containers. Each of the ten
or so servlet/JSP containers used in the industry operated differently and required
different configurations for servlets to work. Why should developers and server
administrators learn the specifics of their server merely to deploy Java components?
Why couldn’t the server be responsible only for knowing how to deploy the appli-
cation by itself? Since the application developers knew exactly what initialization
variables were needed and what URIs to use, why shouldn’t the developers provide
all this information in a standard document that all servers understood and could
deploy? Java-based web applications could then be distributed using this standard
format and be easily deployed.

 For these reasons, the servlet API specification was developed to define a stan-
dard web archive (WAR) for distributing web applications. This archive includes a

Servlets, JSP, and application configuration 53
predefined directory structure that facilitates finding application components and a
web application deployment descriptor (web.xml). A web application deployment
descriptor is an XML4 file with specific tags that make it possible for the developer
to define—in a server-neutral manner—servlets, initialization parameters, and serv-
let-to-URI mappings. The benefits of using a WAR for distribution are obvious to
anyone who has ever muddled through the configuring of a web application on
their server—or, worse yet—ported a Java web application from one server vendor
to the next. In the following sections we introduce WARs, starting with the archive
structure and followed by a description of the WAR deployment descriptor.

2.5.1 The WAR file and its structure

A web application is distributed in a WAR file, which is largely a jar file with a spe-
cific structure and a fancy suffix (.war). The structure of a web archive file includes
a root directory that serves as the application document root for serving application
files, and a special directory named WEB-INF where you place application meta-
data, class files, and jar files.

 The root directory includes files that are to be served to the client. The files in
this directory may be simple flat files (HTML, audio, and video), class and jar files
that implement a certain Applet, or certain files processed by servlets to produce
output to the user (JSP, SSI, and other types of files). Files placed under the root
directory will appear to the user as if they were under the URI where the application
is rooted. For example, if an application is rooted under the URI “/shop” and the
application root directory includes the following files:

/index.jsp
/file_with_applet.html
/images/next.gif
/images/ok.gif
/classes/MyApplet.class
/effects/ping.au

the user will see these files as if they were accessible by issuing requests for:

http://www.host.com/shop/index.jsp
http://www.host.com/shop/file_with_applet.html
http://www.host.com/shop/images/next.gif
http://www.host.com/shop/images/ok.gif
http://www.host.com/shop/classes/MyApplet.class
http://www.host.com/shop/effects/ping.au

4 For more XML information, see appendix A.

54 CHAPTER 2

Web development with Java
SECURITY Since the root directory will become the application root, users will be able
to access all its content (with the exception of the WEB-INF directory). Be
careful about placing sensitive information there.

The WEB-INF directory is the repository for the application’s configuration as well
as its building blocks such as servlets, beans, utility classes, and so forth. Since the
content of the directory is very sensitive, this directory is not a part of the public
document tree and its files should not be served to users. The content of the WEB-
INF directory includes three entities:

� The deployment descriptor file named web.xml.
� A Classes directory in which you can place the servlets and utility classes that

comprise your application.
� A Lib directory in which you can place jar files that comprise your application.

Let’s look at a sample WAR directory structure:

/index.jsp
/file_with_applet.html
/images/next.gif
/images/ok.gif
/classes/MyApplet.class
/effects/ping.au
/WEB-INF/web.xml
/WEB-INF/lib/myean.jar
/WEB-INF/lib/myotherean.jar
/WEB-INF/lib/utility.jar
/WEB-INF/classes/com/seomecompany/Aservlet.class
/WEB-INF/classes/com/seomecompany/Anotherservlet.class
/WEB-INF/classes/com/seomecompany/Utility.class
/WEB-INF/classes/com/seomecompany/localstrings.properties

This WAR file contains an application whose implementation comprises three jar
files and four classes as located in the Lib and Classes directories, exposing a lot of
files to the user.

 Sharing a common structure makes it possible to automatically deploy an appli-
cation from its WAR file since the container knows what to do with each file (e.g.,
add the content of the Lib and Classes to the classpath, present the files under the
root directory to the users, etc.). It should be clear where you need to put the dif-
ferent components of your application. Now we look at the deployment descriptor
used by the container to configure the app.

Servlets, JSP, and application configuration 55
2.5.2 The application deployment descriptor

Each application has a deployment descriptor, a simple XML file containing the
application configuration. The goal of the deployment descriptor is to provide a
common file format developers can use to specify application configuration infor-
mation. By enforcing a universal XML format (via a DTD), developers know that all
containers will support and understand the descriptor.

 Some of the configuration information associated with an application (and thus
detailed in a deployment descriptor) includes:

� Global initialization parameters
� Associations between servlet names and their implementing class, as well as

any private initialization parameters for that servlet
� Mappings of servlets to URIs
� Session state for the application
� MIME type mappings
� The welcome file list
� Error pages
� Security constraints
� J2EE environment information.

Rather than try to showcase all these configuration options, we will select two
configuration tasks—defining an application configuration parameter and defin-
ing a servlet. This introduction will provide a grounding in the deployment
descriptor’s nature so that other configuration tasks will be easy to pick up.

Initialization parameters in the deployment descriptor
The first task we’ll look at is defining context (or application-based) initialization
parameters. These are parameters that specify initialization information for an entire
application, such as what database to connect to, or the name of the email server to
use. Application-scoped initialization parameters are supplied using three tags,
<context-param>, <param-name>, and <param-value>. As an example, the follow-
ing descriptor includes two application-scoped initialization parameters:

<?xml version="2.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
 <context-param>
 <param-name>adminemail</param-name>

56 CHAPTER 2

Web development with Java
 <param-value>admin@site.com</param-value>
 </context-param>
 <context-param>
 <param-name>adminpager</param-name>
 <param-value >12345678</param-value>
 </context-param>
</web-app>

Each initialization parameter is encapsulated within a <context-param> tag that
holds the <param-name> and <param-value> tags, encapsulating the values of the
parameter name and the parameter’s value. In this example, we specify an admin
email address and pager number that, hypothetically, would be used by all the error
pages in our application to send notification of a problem to the administrator.
Specifying these parameters in this way lets us add and modify parameters in a cen-
tral location, accessible by our entire Java web application.

Configuring servlets in the deployment descriptor
Our next configuration task is defining a servlet to the container. Defining a servlet
involves the usage of a fair number of tags. A servlet may include an optional icon,
display name, and description, but these are of less interest to us. More important
elements in a servlet configuration include:

� The name you selected for the servlet, encapsulated within a <servlet-
name> tag.

� The class implementing the servlet, encapsulated within a <servlet-class> tag.
� Optional servlet initialization parameters, encapsulated within <init-param>,

<param-name>, and <param-value> tags (similar in usage to the manner in
which application initializations are provided).

� Optional startup loading indicator that causes the container to load the serv-
let in its boot time. You can specify such requirements using the <load-on-
startup> tag. The content encapsulated within the <load-on-startup> tag
should be an integer, and the container will use it to determine the servlet
loading order. Servlets with more negative <load-on-startup> values are
initialized first.

The following example shows a descriptor defining a servlet. The servlet loads on
startup and accepts two initialization variables.

<?xml version="2.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
 <servlet>

Summary 57
 <servlet-name>aservletname</servlet-name>
 <servlet-class>com.corp.servlet.Aservlet</servlet-class>
 <load-on-startup>-1</load-on-startup>
 <init-param>
 <param-name>param-name1</param-name>
 <param-value>some value </param-value>
 </init-param>
 <init-param>
 <param-name>param-name2</param-name>
 <param-value>some other value </param-value>
 </init-param>
 </servlet>
</web-app>

And, as you can see, configuring a servlet through the deployment descriptor is a
fairly simple task requiring only a few intuitive tags.

 This section presented how to configure and distribute a Java-based web appli-
cation in a server-neutral manner. This solves one of the more acute problems in the
servlet and JSP world, making it possible for developers to distribute preconfigured
applications in a standard way. Any server touting Java servlet and JSP support
should support the WAR standard. This means any WAR file you create should be
readily deployable on such a server with no modifications needed whatsoever. Com-
bine this with Java’s inherent cross-platform support and you can see why WAR files
are the Visa cards of web application development—accepted just about anywhere.

2.6 Summary

We’ve devoted a lot of time to learning about servlets and JSPs because they have so
much in common, a point we made in this chapter’s introduction. JSP custom tags
are intimately tied to these two predecessor technologies in both API and deploy-
ment. We will soon learn how custom tags use the servlet API extensively (in the
same way a JSP does) to interact with the web server, the client, HTTP parameters,
cookies, and more. We’ll also see that tags cannot exist by themselves, and must be
embedded in a JSP file in order to function. Thus, knowledge of how to write and
deploy a JSP is a critical prerequisite for learning JSP custom tags.

 With our knowledge of servlets, JSPs, and the motivation for tag-based develop-
ment in hand, we are finally ready to introduce ourselves to custom JSP tags.

 3Developing your first tags
In this chapter
� JSP custom tags defined
� Setting up a development environment
� Hello World (the tag way)
� Compiling, deploying, and testing
58

59 CHAPTER 3

Developing your first tags
Thus far we have seen how servlets and JSPs can be used to build a web application.
These technologies go some distance toward making web development easier, but
do not yet facilitate the separation of Java from HTML in a reusable way. Custom
tags make this possible by bundling Java code into concise, HTML-like fragments
recognizable by presentation developers. Custom tags are therefore an attractive
choice for Java-based web applications and in this chapter, we’ll introduce custom
tags and walk through examples of their development and use. We’ll also look at
how to set up a development environment and deploy, test, and troubleshoot tags.

 This chapter takes a mountain-top view of custom JSP tags in order to provide a
clear, high-level look at the subject’s landscape. Later chapters will dive deeper and
home in on each of the topics touched upon here. So don’t be concerned if the
finer details are left for later explanation. The goal now is to jumpstart your tag
development and ensure that you’re sufficiently comfortable with the basics so that
you may start building tags on your own.

3.1 What are JSP custom tags?

At its most fundamental level, a tag is a group of characters read by a program for
the purpose of instructing the program to perform an action. In the case of HTML
tags, the program reading the tags is a Web browser, and the actions range from
painting words or objects on the screen to creating forms for data collection. Cus-
tom JSP tags are also interpreted by a program; but, unlike HTML, JSP tags are
interpreted on the server side—not client side. The program that interprets custom
JSP tags is the runtime engine in your application server (TomCat, JRun,
WebLogic, etc.). When the JSP engine encounters a custom tag, it executes Java
code that has been specified to go with that tag. Common tasks performed by tag
codes include retrieving database values, formatting text, and returning HTML to a
browser. Since a tag references some Java code to run when it’s encountered, one
way to think of a tag is simply as a shorthand notation for a block of code.

 Notice in figure 3.1 that when the JSP runtime encounters the tag, it causes a
block of Java code to execute and return a message to the client’s browser.

3.1.1 Anatomy of a tag

Tags are often structured with a body and/or attributes which are the places where a
page author (the user of the tag) can include more information about how the tag
should do its job. The following snippet shows the general structure of a tag.

<tagname attributename=“attributevalue”
 otherattributename=“otherattributevalue”>

Tag’s body... can contain about anything.
</tagname>

What are JSP custom tags? 60
This syntax should look familiar, since we see it so often in HTML tags, such as:

Tag, you’re it!

Tags can also appear without a body, meaning that the start tag does not have a
matching end tag. These “bodyless” tags look like this:

<bodylesstagname attributename=“attributevalue”
 otherattributename=“otherattributevalue”/>

 You’ve probably seen examples of bodyless tags in HTML, such as:

<input type="input" name=”body">

Bodyless tags usually represent a certain function, as in the printing of the value of a
database field onto the page. Tags often have bodies in order to perform an opera-
tion on the content in the body, such as formatting, translating, or processing it in
some way.

 JSP custom tags are merely Java classes that implement one of two special inter-
faces. Since tags are standard Java classes, they can interact with, delegate to, or
integrate with any other Java code in order to make that functionality available
through a tag. For instance, we might have a library of utility classes we’ve written
for composing and sending email, or for accessing a particular database that we’d
like to make available to HTML developers. We need build only a few tags that col-
lect the necessary information through attributes and pass this information to our
utility classes.

3.1.2 Using a tag in JSP

JSP code that uses email and database tags such as those just mentioned might look
something like this:

Figure 3.1 A tag in action

61 CHAPTER 3

Developing your first tags
<html>
I am sending you an email with your account information
<jspx:sendmail server=”mail.corp.com”
 from=”john.doe@corp.com”
 to=”foo@bar.com”
 subject=”mail from a tag”>
Look at how easy it is to send an email from a tag... here is
your status.

<jspx:dbaccess>
 <jspx:wdbcon id="con1"/>

 <jspx:wjitdbquery>
 select reserves from account where id='<%= userid %>'
 </jspx:wjitdbquery>

You have <jspx:wdbshow field="reserves "/>$ in your saving account.
</jspx:dbaccess>

</jspx:sendmail>
</html>

Among the JSP and HTML fragments are special tags prefixed with jspx. Even to
the untrained eye, these tags appear to query a database, present the information in
the content of an email, and send the message. Notice how the attributes help
gather information such as the email sender and subject and the field in the data-
base to display. Also, note how the <jspx:wjitdbquery> tag contains a Structured
Query Language (SQL) statement within its body that it uses for the database query.
This is a good example of what a JSP using custom tags might look like. Consider
how much messier this JSP would look if we had to include all the Java code neces-
sary for creating classes, setting properties, catching exceptions, and so forth.

3.1.3 The tag library descriptor

An important step in creating tags is specifying how they will be used by the JSP
runtime that executes them. To properly work with a tag, the runtime must know
several things about it, such as what (if any) attributes it has, and whether or not it
has a body. This information is used by the runtime to verify that the tag is properly
employed by a JSP author and to correctly execute the tag during a request. This
crucial information is made available to the runtime engine via a standard XML file
called a tag library descriptor (TLD), a key component of the JSP Specification and
standard across all products that implement it. How to create a TLD is discussed in
section 3.2.4, and covered in greater detail in chapter 5 and appendix B.

Why tags? 62
3.2 Why tags?

JSP already makes it possible to embed scriptlets (bits of Java code) and JavaBeans in
line with HTML content, so why do we need JSP tags? We need them because tags
were never intended to offer more functionality than scriptlets, just better packag-
ing. JSP tags were created to improve the separation of program logic and presenta-
tion logic; specifically, to abstract Java syntax from HTML.

 Scriptlets are not a suitable solution for all web development because most con-
tent developers (art designers, HTML developers, and the like) don’t know Java
and, perhaps, don’t care to. Though much Java code can be encapsulated in beans,
their usage in a JSP still requires the presentation developer to have a basic knowl-
edge of Java syntax and datatypes in order to be productive. JSP tags form a new
“scriptlet-free” and even a completely “Java-free” component model that is adapted
perfectly to the JSP environment with its different developer types. If custom tags
are properly constructed, they can be of enormous use to HTML developers, even
those who have no working knowledge of Java—they won’t even have to know
they’re using it. Tags can reduce or eliminate the number of scriptlets in a JSP appli-
cation in four ways:

� A tag is nothing more than a Java component that takes its arguments from
attribute and body. Since tags can have attributes and body, any necessary param-
eters to the tag can be passed within the tag’s body or as one of its attributes. No
Java code is needed to initialize or set properties on the component.

� JSP requires a considerable quantity of scriptlets for tasks such as iteration,
setting of initial values, and performing conditional HTML. All of these tasks
can be cleanly abstracted in a few simple tags.

� In many cases, a JavaBean component is configured and activated using
scriptlets. One can develop a set of JSP tags to perform this configuration and
activation without any Java.

� Tags can implement many utility operations, such as sending email and con-
necting to a database, and in this way reduce the number of utility scriptlets
needed inside JSP.

The benefits of custom tags also include the creation of a neat abstraction layer
between logic and presentation. This abstraction creates an interface that allows
Java developers to fix bugs, add features, and change implementation without
requiring any changes to the JSPs that include those tags. In short, JSP tags help
bring you one step closer to the Holy Grail of web development—true abstraction
of presentation and control. For more on the benefits of custom tags, see
chapter 15.

63 CHAPTER 3

Developing your first tags
3.2.1 Comparisons of scriptlets and custom tags

The differences between scriptlets and custom tags are fairly concrete:

1 Custom tags have simpler syntax. Scriptlets are written in Java and require
the author to be familiar with Java syntax, whereas tags are HTML-like in syn-
tax and require no Java knowledge.

2 Custom tags are easier to debug and are less error prone than scriptlets, since
omitting a curly bracket, a semicolon, or some other minute character in a
scriptlet can produce errors that are not easy to understand. Custom tag syn-
tax is extraordinarily simple and, with most JSP runtime products, even the
occasional typo in custom tag usage will produce meaningful error messages.

3 Custom tags are easy to integrate in development environments. Since tags
are a common component of many web technologies, HTML editors have
support for adding tags into the development environment. This allows JSP
authors to continue using their favorite integrated development environ-
ment (IDE) to build tag-based JSPs. Support for JSP scriptlets syntax in
development environments exists, but is only useful to JSP authors well
versed in Java.

4 Custom tags can eliminate the need for Java in your JSPs. By containing
most of your logic within objects in your scriptlets, you can vastly reduce
the amount of Java code in a JSP; however, custom tags still carry the
advantage of imposing absolutely no Java syntax, something scriptlets can-
not achieve.

For small projects in which all your JSPs will be authored by developers knowledge-
able in Java, scriptlets are a fine solution. For larger projects, where content devel-
opers unfamiliar with Java will be handling most of the presentation, JSP custom
tags provide a real advantage and are a logical choice.

3.3 Setting up a development environment

Before we can build our first tag, we need to configure our development environ-
ment. This development environment should at least make it possible to:

� Compile the tags with the servlet, JSP, and JSP custom tags API1

� Test the developed tags
� Browse the JSP custom tags API documentation.

1 We will take a look at the JSP custom tag API in chapter 4.

Setting up a development environment 64
There are several Java IDEs in today’s market, some of which provide fine support
for servlet and JSP development; however, we are not going to work with any par-
ticular IDE because it is highly unlikely that you would have the same one that we
select. Also, IDEs are notorious for lagging behind the leading edge of the Servlet
and JSP API. Instead we explain how to fetch all the ingredients for a minimal devel-
opment environment and how to set them up so that you may start developing tags
immediately. This development environment will be concentrated around Tomcat,2

the reference implementation of the servlet API, and the JDK1.2.2 or above (as
available to most operating systems).

3.3.1 Installing the JDK

The first step in setting up the development environment is to install JDK1.2.2 (or
higher) on your development system. More than two years since its first appearance,
JDK1.2 can be found in a matured state on most operating systems, and this book
uses many of its new classes and interfaces, such as java.util.Iterator. Although
JDK1.2 is recommended for tag development, a JDK1.1.x version should suffice.
Installing the JDK is an operating system-dependent task and will not be covered
here, so we’ll assume that you have a JDK installed and that you point into the
installation directory with an environment variable named JAVA_HOME.

3.3.2 Installing Tomcat

Tomcat is the reference implementation of the Servlet and JSP API. It is easy to use
and install, has a very small footprint (both on the hard drive and in memory), and
is Open Source—all of which makes it a perfect learning tool. Installing Tomcat with
the basic functionality of a stand-alone servlet and JSP container is really a cinch:

1 Extract the Tomcat binary distribution archive3 (available as either .zip or
tar.gz archives).

2 Define an environment variable named TOMCAT_HOME to point to Tomcat’s
installation root directory.

3 Make sure that the environment variable JAVA_HOME is defined and points
to the directory wherein you installed your JDK.

2 Tomcat’s home on the web is at http://www/jakarta.apache.org
3 You can download the binary distribution directly from Tomcat’s web site. The installation directives sup-

plied in this book apply to Tomcat versions 3.1 and 3.2.

65 CHAPTER 3

Developing your first tags
3.3.3 Testing your Tomcat installation

To test-drive Tomcat, change the directory to TOMCAT_HOME and execute the
startup script in Tomcat’s bin directory. Tomcat should start running in the back-
ground and you can test i t by issuing an HTTP request (i .e . , http://
your.machine.name:8080/). Once Tomcat is running, the installation of the devel-
opment environment is complete and you may start immediately to develop tags;
but first, let’s look at the Tomcat distribution.

servlet.jar
The .jar file is where you find the interfaces and classes constituting the Servlet and
JSP API. This file is named servlet.jar and is located in Tomcat’s Lib directory. When
compiling a servlet or JSP custom tag, you should make sure that this file is in your
compilation CLASSPATH definition.

webapps directory
Where to place your web applications for Tomcat is the next consideration. Tomcat
can generally be configured to take applications from any place you choose, but
why bother configuring individual applications when you can simply drop your
application into a single directory for deployment? The one directory approach will
prove much simpler for your first applications. Under TOMCAT_HOME there is a
subdirectory named webapps; and whenever Tomcat starts to run, it inspects this
subdirectory, searches for web-application archive files (.war), and automatically
deploys them. Moreover, if Tomcat finds subdirectories under webapps, it will
assume that these directories contain web applications. Deployment to this direc-
tory is thus a simple task.

Javadoc documentation
One last thing to consider with Tomcat is the location of the Javadoc documents for
the Servlet and JSP API. These documents are located in an application bundled
with the Tomcat samples. In the webapps directory, there’s a directory named
ROOT, the home of Tomcat default root application. The root application has a
subdirectory path named docs/api where you can find the Javadoc documents for
the Servlet and JSP API (start with the file index.html).4

 With the environment configured and a basic understanding of the deployment
picture, it’s time to build our first custom tag.

4 You can also browse these documents by starting Tomcat and referring to http://your.ma-
chine.name:8080/docs/api/index.html.

Hello World example 66
3.4 Hello World example

Our goal in this section is to create a simple tag that may not be particularly reus-
able, but it will introduce most of the concepts needed for building useful tags. This
simplicity is necessary now, as the myriad details involved with constructing even a
Hello World tag can be daunting at first. Later sections in this chapter will present
tags that have more real-world relevance.

 Our Hello World tag is merely going to print “Hello JSP tag World” out to an
HTML page. Listing 3.1 presents the source code for the Hello World implementation.

package book.simpletasks;

import java.io.IOException;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;
import javax.servlet.jsp.tagext.TagSupport;

public class HelloWorldTag
 extends TagSupport {

 public int doStartTag()
 throws JspException
 {
 try {
 pageContext.getOut().print("Hello JSP tag World"); d
 } catch(IOException ioe) { e
 throw new JspTagException("Error:

IOException while writing to the user");
 }
 return SKIP_BODY;
 }
}

B TagSupport is an abstract class which is part of the JSP tag APIs Listing 3.1 pre-
sents a Java class that implements a tag handler, but it also contains methods and
objects that are new to you unless you already have a very solid background in serv-
lets and JSPs. We mentioned earlier that tags are Java classes that implement one of
two special interfaces. These interfaces define all the methods the JSP runtime uses
to get at the tag’s functionality. As with many Java interfaces, some utility-only
classes that provide basic implementations of these interfaces are available, making
development easier. In the case of our HelloWorldTag, we extend one such utility
class called TagSupport. TagSupport and the interface it implements, Tag, are both

Listing 3.1 Source code for the HelloWorldTag handler class

b

c

67 CHAPTER 3

Developing your first tags
part of the custom JSP tag API. Don’t worry too much over the specifics of this
interface. For now it’s important to know only that we need to implement Tag to
create a tag, and we’ve done so by extending TagSupport.

C JSP runtime calls doStartTag() to execute the tag Here we note that there is no
explicit constructor for this tag, nor is there a main() method for invoking the class.
This is because a tag handler is not a stand-alone class, but is instantiated by the JSP
runtime that invokes its methods. The JSP custom tags API defines a set of methods
for custom tags (which are included in the two special interfaces previously men-
tioned) that the JSP runtime calls throughout a tag’s life cycle. One of these meth-
ods, doStartTag(), can be seen in our example and is called by the JSP runtime
when it starts executing a tag (more about the Tag methods in chapter 4). The
doStartTag() method is a repository for code that we wish to have executed when-
ever the JSP runtime encounters our tag within the page.5

D Tag echoes the hello message to the user In our implementation of doStart-
Tag(), we perform three operations. We print the hello message using an out
object that we got from the PageContext (in chapter 2).

E Aborts the execution upon errors We watch out for IOExceptions that may be
thrown by the response Writer, catch them, and abort the tag’s execution by
throwing a JspTagException. Finally, as required by the method, we return an
integer value which tells the JSP runtime how to proceed after encountering our
tag. A value of SKIP_BODY tells the runtime engine to simply ignore the tag’s body,
if there is one, and go on evaluating the rest of the page. There are, of course, other
valid return values for doStartTag(), which we’ll explore in future chapters.

As listing 3.1 shows, the tag is only a few lines long and, indeed, all it does is write
out to the page, but a few details that will reappear in other tags are already evident.

 Now that we have the Java source of our tag, it is time to compile it.

3.4.1 Compiling the tag

Compiling Java source into its class (without an IDE) requires careful setting of the
compilation CLASSPATH (a list of all directories and .jar files that hold the classes ref-
erenced in our source code). Basically, the CLASSPATH for a tag handler must
include the Servlet and JSP APIs; you should also include any additional classes or
libraries that you are using within the tag handler (such as JavaMail and JNDI). In
the case of HelloWorldTag, we are not using any additional libraries, and can settle

5 Though this would seem to imply that the runtime evaluates a JSP each time a page is requested, we know
from JSP development that the page is only interpreted and compiled into a servlet once. Tags are no ex-
ception; this is just a convenient way to think about how the tag will behave at runtime.

Hello World example 68
with the following Javac command line (assuming that JAVA_HOME and
TOMCAT_HOME are both defined and we are compiling the source file into a directory
named classes):

 For UNIX:

$JAVA_HOME/bin/javac -d ../classes -classpath $TOMCAT_HOME/lib/servlet.jar
book/simpletasks/HelloWorldTag.java

For Windows:

%JAVA_HOME%\bin\javac -d ..\classes -classpath %TOMCAT_HOME%\lib\servlet.jar
book\simpletasks\HelloWorldTag.java

Both command lines use the TOMCAT_HOME environment variable to add the Servlet
and JSP API into the CLASSPATH, and this is actually the only JSP-Tags-specific por-
tion in the compilation command. When the compilation ends, we have our com-
piled tag handler in the classes directory and we are ready to continue to the next
step—creating the tag library descriptor (TLD).

3.4.2 Creating a tag library descriptor (TLD)

The JSP runtime requires your assistance if it is to understand how to use your cus-
tom tag. For example, it has to know what you want to name your tag and any tag
attributes. To do this you need to create a file called a tag library descriptor for your
tag. An in-depth explanation of the exact use of a TLD will be covered in chapter 5,
and its syntax is explained in appendix B, so we needn’t go into great detail on these
now. Instead, if we look at our example for the HelloWorldTag, the ways to use a
TLD will emerge.

 The TLD is nothing more than a simple extended markup language (XML6) file,
a text file including a cluster of tags with some predefined syntax. Since the TLD is
just a text file, you can create it with your preferred editor (Emacs, VI, notepad,
etc.) as long as you keep to some rudimentary guidelines as explained in appendix
B. The TLD created for the HelloWorld tag is presented in listing 3.2.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>

6 XML is briefly described in appendix A.

Listing 3.2 Tag library descriptor for the HelloWorldTag

69 CHAPTER 3

Developing your first tags
 <jspversion>1.1</jspversion>
 <shortname>simp</shortname>
 <uri> http://www.manning.com/jsptagsbook/simple-taglib </uri>
 <info>
 A simple sample tag library
 </info>

 <tag>
 <name>hello</name>
 <tagclass>book.simpletasks.HelloWorldTag</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 Say hello.
 </info>
 </tag>
</taglib>

Listing 3.2 defines a tag whose name is “hello,” and whose implementing class is
HelloWorldTag, which we just developed. This means that whenever the JSP run-
time sees the tag <hello/> it should actually execute the methods contained in our
HelloWorldTag.

 The portion of listing 3.2 unique to this tag is in bold face and, as it demon-
strates, creating a tag library involves many “overhead lines” that specify such infor-
mation as the desired version of JSP and the like. Normally you can just grab (and
update) these overhead lines from a pre-existing library descriptor and add your
own tags below them.

 Let’s assume that we saved the TLD in a file named simpletags.tld. We now have
our tag handler class and the TLD to help the JSP runtime use it. These two files are
all we need to deploy our HelloWorldTag and begin using it in a JSP.

3.4.3 Testing HelloWorldTag

Testing HelloWorldTag involves deploying it to a JSP container and writing a JSP
file to use the tag. To do this:

1 Create a web application for your tags (in our case, HelloWorldTag).

2 Deploy your tags in the application.

3 Write a JSP file that will use HelloWorldTag.

4 Execute the JSP file created in step 3 and look at the results.

Creating a web application
What must be done to create a new web application in Tomcat? This can be accom-
plished either by deploying a web application archive or creating an application

Hello World example 70
directory that follows the WAR structure. We are going to create an application
directory, as follows:

1 Make a directory named testapp in Tomcat’s webapps directory.

2 Under the testapp directory make another directory named WEB-INF, and
inside this create directories named lib and classes.

Create a file named web.xml in the WEB-INF directory and add the content of
listing 3.3 into it; web.xml is going to be your web application deployment descrip-
tor; and listing 3.3 contains an “empty” deployment descriptor content.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
</web-app>

Deploying a tag
You now have an application structure under the testapp directory into which you
may deploy your tags. Tag deployment takes the following steps:

1 Copy your tag implementation classes or jar files into the application direc-
tory; .jar files should go into the newly created lib directory, .class files
should go into the classes directory. In the present case, we will copy the
compiled class into the classes directory (while preserving the package
directory structure).

2 Copy the TLD into a location in the application’s directory structure (WEB-
INF is a good location). In our example we will copy our TLD from
listing 3.2 (simpletags.tld) into the WEB-INF directory.

3 Add a tag library reference into the web application deployment descriptor.
In our case, edit web.xml and add the content of listing 3.4 into the <web-
app> section (these last two steps set up a reference to the TLD as will be
explained in chapter 5).

Listing 3.3 An empty web application deployment descriptor

71 CHAPTER 3

Developing your first tags
<taglib>
 <taglib-uri>
 http://www.manning.com/jsptagsbook/simple-taglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/simpletags.tld
 </taglib-location>
</taglib>

The tag was deployed into the web application; all we need to do now is to create a
JSP that uses the tag and verify whether it works.

Creating a JSP file to test HelloWorldTag
Developing a JSP file to test HelloWorldTag is a relatively simple task. All we need
to do is craft a JSP file similar to the one presented in listing 3.5.

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="jspx" %>
<html>
<title><jspx:hello/></title> c
<body>
Executing your first custom tag... <jspx:hello/> c
</body>
</html>

B Declares that the JSP file uses the library referenced by the URI and that the library’s
tags are referenced by jspx Listing 3.5 is elementary, yet it illustrates a few impor-
tant points about tags. The first is the taglib directive at the beginning of the JSP
file. The taglib directive is further discussed in chapter 5, but for now we need to
note that it indicates to the JSP runtime where the tag library lives and the prefix by
which we’ll refer to tags in this library. With this directive in place, the JSP runtime
will recognize any usage of our tag throughout the JSP, as long as we precede our
tag name with the prefix “jspx.”

C Uses the hello tag through the JSP file We also see how the custom tag can be used
through the JSP file. We use the HelloWorldTag twice, and we could, of course, have
used it as much as we wanted. All that’s needed is to add it to the JSP content. Note
that our tag is bodyless, necessitating the use of the trailing backslash.

Listing 3.4 A TLD reference entry for the tags described in simpletags.tld

Listing 3.5 A JSP file to drive HelloWorldTag

b

Hello World example 72
Figure 3.2 shows the results achieved by executing the JSP file in listing 3.5. Observe
that wherever we had the <hello> tag, we now have the content generated by it.

Executing HelloWorldTag
Once we’ve created a web application, deployed the tag, and created and deployed
a JSP to use it, all that’s left is to view the page in a browser.

3.4.4 Did it work?

If your tag didn’t work properly there is always some recourse. The error messages
you see will vary, depending on which JSP runtime engine you’ve chosen. If, how-
ever, the messages you’re seeing aren’t helpful, here are a couple of suggestions:

� Make sure there are no spelling errors in the URL that you specified for the
browser when asking for the JSP f i le (it should look l ike http://
www.host.name/appname/jspfile.jsp).

� Make sure there are no spelling errors in your TLD file and that you’ve spec-
ified the fully qualified class name for your tag—package names and all.

� Verify that your TLD file is in a location where the JSP engine will be seeking
it, such as the WEB-INF directory in your web application.

� Make sure the taglib directive has been properly placed at the top of the JSP.
Without this, the engine doesn’t know where to find the code for your tags
and will just ignore them. When that happens, you’ll actually see the tag in
the HTML source.

3.4.5 A tag with attributes

Our HelloWorldTag is predictable; in fact, it always does exactly the same thing.
In the dynamic world of web development, that is seldom the case, so let’s look at
a tag that behaves realistically, based on some user-specified attributes.

Figure 3.2 Output generated using the hello tag driver JSP

73 CHAPTER 3

Developing your first tags
 A web page might, for instance, need to display the value stored in a cookie such
as a user name. Rather than forcing the page author to learn Java to access that value,
we’ll build a simple tag that does this for him. The tag should be flexible enough
to be used in retrieving the value of any accessible cookie, so we’ll create a tag
attribute called cookieName to allow this. The first step in supporting this new
attribute is to modify our tag handler class to receive and make use of this new
attribute(listing 3.6):

package book.simpletasks;

import java.io.IOException;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;
import javax.servlet.jsp.tagext.TagSupport;
import javax.servlet.http.*;

public class CookieValueTag extends TagSupport {

 String cookieName; b
 public int doStartTag()
 throws JspException
 {
 try {
 Cookie[] cookies =
 ((HttpServletRequest)pageContext.getRequest()).getCookies();
 if (cookies != null) {
 for (int i=0; i < cookies.length; i++) {
 if (cookies[i].getName().equalsIgnoreCase(cookieName)) {
 pageContext.getOut().print(cookies[i].getValue()); c
 break;
 }
 }
 }
 } catch(IOException ioe) {
 throw new JspTagException("Error: IOException while writing to the user");
 }
 return SKIP_BODY; d
 }

 public void setCookiename(String value) {
 cookieName = value;
 }
 }

B The field that will get set by the attribute.

Listing 3.6 Source code for the CookieValueTag handler class

e

Hello World example 74
c Prints the value of the cookie to the response.

D Returns SKIP_BODY to tell the JSP runtime to skip the body if one exists.

E Invokes the set method when the JSP runtime encounters this attribute.

All we needed to do was add a set method called setCookieName() and assign a
variable within it. The value of that variable is examined within our tag handler’s
doStartTag() to decide which cookie value to return. Now we need to inform the
JSP runtime of this new tag and its attribute. Recall that the TLD is where we spec-
ify this kind of information, so we need to modify our previous TLD to support
CookieValueTag. The tag declaration in our TLD file (listing 3.7) now looks like
the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>simp</shortname>
 <uri> http://www.manning.com/jsptagsbook/simple-taglib </uri>
 <info>
 A simple sample tag library
 </info>

 <tag>
 <name>hello</name>
 <tagclass>book.simpletasks.HelloWorldTag</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 Say hello.
 </info>
 </tag>
 <tag>
 <name>cookievalue</name>
 <tagclass>book.simpletasks.CookieValueTag</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 Get a cookie's value.
 </info>
 <attribute>
 <name>cookiename</name>
 <required>true</required> c
 </attribute>
 </tag>
</taglib>

Listing 3.7 The new TLD file with our CookieValueTag

b

75 CHAPTER 3

Developing your first tags
B This tag will have an attribute called cookiename.

C Specifies that this attribute is always required for this tag.

The tag definition itself should look familiar, since it is very similar to our Hello-
WorldTag. The important difference is, of course, the attribute we’ve included.
Note that the name of an attribute, in our case cookiename, is used by the JSP run-
time to find setCookieName() to use in the tag handler; therefore, these need to
match exactly for the tag to function.

 To use this attribute within a JSP, syntax such as in listing 3.8 works well:

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="jspx" %>
<html>
<title>C is for Cookie</title>
<body>
Welcome back, <jspx:cookievalue cookiename="username"> c
</body>
</html>

B Declares that the JSP file uses the library referenced by the URI and that the library’s
tags are referenced by jspx.

C Uses the cookeivalue tag to retrieve a cookie called "username".

Assuming we’ve used this tag in a case
where a cookie named “username” will be
accessible, we’ll see a message like that
shown in figure 3.3.

 Adding attributes to your tags makes
them much more flexible and useful to the
web pages where they are used. We
explore the use of tag attributes in further
detail in chapters 4 and 6.

3.4.6 Packaging tags for shipment

Once the tags have been tested to your
satisfaction, it’s time to package them in a
standard deployable manner. Packaging
tags means putting the implementation classes along with the library descriptor in a
.jar file following a convention that further instructs you to:

Listing 3.8 A JSP file to drive HelloWorldTag

b

Figure 3.3 CookieValueTag in action.

A tag with a body 76
� Put your tag class files inside the .jar archive while maintaining their package
structure.

� Put your TLD in the .jar file in a directory called META-INF.

For example, packaging our lone HelloWorldTag will require the following .jar
file structure:

/book/simpletasks/HelloWorldTag.class
/META-INF/simpletags.tld

This .jar packaging need not be complicated; all that’s required is to create the
desired directory structure on your file system and use the jar command (bundled
with the JDK) to archive this structure into the .jar file. The command to place our
class and TLD in a jar called hello.jar looks like this:

jar cf hello.jar META-INF book

Now you can distribute your tag.

3.5 A tag with a body

Remember that tags can have a body or be bodyless. Our HelloWorldTag was an
example of a tag without a body, so let’s see an example of a tag with one. We create
them whenever we want to take a block of content (typically HTML) and modify it
or include it in the server’s response. Think back to the HTML tag. The
body of the is where you put text to which you wish to apply a particular
font. Tags with bodies are great for translating content (from, say, HTML to WML),
applying formatting, or indicating that a grouping of content should be treated in a
special way, as is the case with the HTML <form> tag.

 Here is an extremely simplified example that illustrates how a tag with a body
works. Suppose we need to create a tag that will change a block of text from capital
letters to lower case. We’ll be creative and call this tag LowerCaseTag. Our new tag
will have a lot in common with HelloWorldTag, but there are a few differences. The
first is that LowerCaseTag doesn’t extend from TagSupport, rather from BodyTag-
Support. The formula is elementary: if your custom tag doesn’t have a body or will
include just its body verbatim, it should either implement the Tag interface or extend
its utility class, TagSupport. If, however, your tag will modify or control its body, it
needs to implement BodyTag or extend its utility class called BodyTagSupport. We’ll
cover several additional examples of both types in the next chapters.

77 CHAPTER 3

Developing your first tags
3.5.1 LowerCaseTag handler

Here is the code for our LowerCaseTag handler class:

package book.simpletasks;

import java.io.StringWriter;
import java.io.PrintWriter;
import java.io.IOException;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class LowerCaseTag extends BodyTagSupport { b

 public int doAfterBody()
 throws JspException
 {

 try {
 BodyContent body = getBodyContent(); d
 JspWriter writer = body.getEnclosingWriter(); e
 String bodyString = body.getString();
 if (bodyString != null) {
 writer.print(bodyString.toLowerCase()); f
}

 } catch(IOException ioe) {
 throw new JspException("Error: IOException while writing to the user");
 }
 return SKIP_BODY; g
 }

B BodyTagSupport is an abstract class which is part of the JSP tag APIs.

C The method doAfterBody() is executed by the JSP runtime, once it has read in the
tag’s body.

D Retrieves the body that was just read in by the JSP runtime.

E Gets JspWriter to output the lowercase content.

f Writes the body out to the user in lowercase.

G Returns SKIP_BODY is returned to tell the JSP runtime to continue processing the rest
of the page.

With the tag handler class written, the next step is, once again, to create a TLD.
This time our tag entry looks like this:

Listing 3.9 Source code for the LowerCaseTag handler class

c

A tag with a body 78
 <tag>
 <name>lowercase</name>
 <tagclass>book.simpletasks.LowerCaseTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Put body in lowercase.
 </info>
 </tag>

The only difference in this listing is that the <bodycontent> field is no longer
empty but now must be JSP. This is the way to indicate to the runtime that Lower-
CaseTag will have a body, unlike our HelloWorldTag that did not. There will be
much more about bodycontent and other TLD fields in chapters 5 and 6.

 We have returned to the stage where we need to use this new tag in a JSP file.
Our JSP looks like this:

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="jspx" %>
<html>
<title>LowerCaseTag </title>
<body>
<jspx:lowercase>

I’ve got friends in low places.</jspx:lowercase> c
</body>
</html>

B Declares that the JSP file uses the library referenced by the URI and that the library’s
tags are referenced by jspx.

C Uses the lowercase tag to change its body to lowercase.

Now we add our tag to our deployment directory, pull up the JSP in our browser
(figure 3.4), and voila!

 This tag doesn’t do anything especially useful, however it is always possible to
modify it to do something worthwhile with the body. Some examples might include
the body as the message of an email, translating the body from one markup lan-
guage to another, or parsing the body of XML and outputting certain nodes or

Listing 3.10 Tag entry for LowerCaseTag

Listing 3.11 A JSP file to drive the LowerCaseTag

b

79 CHAPTER 3

Developing your first tags
attributes. In the next chapters, we’ll see how the body of a custom tag can include
other custom tags to allow cooperation with very powerful results.

3.6 Summary

What are custom tags? Why use them?
Custom tags are unique JSP compo-
nents that make it easy to integrate
portions of Java logic into a JSP file in
an easy-to-use, well-recognized for-
mat. Custom tags also answer to well-
known API and life cycle definitions
(to be discussed in chapter 4) that
make it clear how tags behave in any
development or runtime environment.

 Why use custom tags? Custom tags
represent a great way to separate the
business logic and presentation, thus
enhancing manageability and reducing overall maintenance costs. Another benefit is
their ease of use. By using tag syntax, many of the scriptlets and other portions of
Java code associated with the classic JSP programming are no longer needed, and the
JSP development can be opened to content (commonly, HTML) developers.

 We also discussed the mechanics related to tag development, and saw that it is
not so difficult to develop simple, but useful, tags.

 This chapter provided a solid foundation for you to start developing custom JSP
tags. It presented four important tools that you will use in your daily tag development:

� How to configure a simple (and free) development environment with which
you can compile and test your tags.

� How to develop, compile, and test simple tags using this development
environment.

� How to write a TLD file to describe your tag’s runtime behavior and attributes.
� How to package your tag library in a distributable .jar file.

If you have a lot of questions at this point, that’s good. We’ve only lightly touched
on many of the nuances of tag development in order to help you get started right
away. In the next chapters, we will dive in and explore more fully each of the topics
presented here.

Figure 3.4 Output generated using the
lowercase tag driver JSP

 4Custom JSP tag AP
and life cycl
I
e

In this chapter
� Requirements for the custom tag API
� The tag APIs, classes, and interfaces
� The tag life cycle
� The BodyTag life cycle
80

Requirements of custom tags 81
While an aerial view is all encompassing, there is nothing like a walking tour to get a
clear sense of the landscape, to learn the environment close at hand. In the previous
chapter, in our aerial view, we used doStartTag() throughout our examples, but
didn’t discuss what it does or why we chose to use it. In the narrower scope of this
chapter we discuss all the methods in custom JSP tag handlers, how they are called,
the processes that call them, and when.

 This chapter concentrates on two important topics in tag development: the JSP
custom tag API and the life cycle of a tag. These topics can be thought of as sets of
rules that answer the all important what, when, why, and how of creating custom
tags. We saw in chapter 3 that building your own tags requires the use of special
interfaces, classes, and methods that exist specifically for tag building. These classes,
interfaces, and methods make up what is known as the JSP custom tag API, which
we will call custom tag API. Similarly, the developers of your JSP runtime engine
also need a set of rules specifying how their product is to run your custom tags. The
rules dictating a tag’s role, once it’s deployed to a JSP engine, constitute the custom
tag life cycle. A working knowledge of both sets of rules (the custom tag API and
tag life cycle) is crucial for building reliable, predictable web applications that con-
tain custom tags.

 This chapter strives to make the rules come alive for you. To do so, we walk
through the methods classes and interfaces that comprise the custom tag API and
examine the tag life cycle in detail. By the end of this chapter you will have a solid,
working knowledge of all the building blocks you need to confidently construct
custom tags.

NOTE The concepts discussed here are formally presented in Sun’s JSP specifica-
tion.1 Though most of this chapter focuses on version 1.1 of the specifica-
tion, at the time of our publication version 1.2 was nearing its final draft.
Therefore, we’ll finish the chapter by discussing the changes this new ver-
sion proposes and how they affect tag development.

We’ll begin our discussion by talking about the goals of custom tags.

4.1 Requirements of custom tags

To understand what the custom tag API and life cycle are, it is helpful to know the
requirements they were designed to support. The needs of tag developers who use

1 This specification can be found online at http://java.sun.com/products/jsp/. For JSP 1.1, custom tags
are described in chapter 5, “Tag Extensions.”

82 CHAPTER 4

Custom JSP tag API and life cycle
custom tags are actually pretty straightforward—we want to be able to write code,
create a tag that uses that code, and then embed those tags in logical places
throughout our web pages. The latter part of this statement makes an obvious but
important point, which is that these tags will be used in web applications. Hence,
tags must be able to perform all the tasks we’d expect in a web application, such as
reading post and query string parameters, redirecting a client browser, using cook-
ies, and so forth. Tags also need to be able to cooperate with one another in order
to create single-purpose tags that can be combined to produce complex solutions.
The ability of tags to interact with the JSP content in which they are embedded is
also a necessity in order for them to read state from and write results to their envi-
ronment. Let’s reiterate for clarity:

� Tags should make it possible to reference complex code via simple tag syntax.
� Tags should allow us to perform tasks associated with web applications (such

as reading parameters, cookies, redirecting, etc.) in a simple way.
� Tags should be able to cooperate with one another and share information.
� Tags should be able to read information from and write information to the

JSP content in which they are embedded.

Perhaps the ultimate goal of custom tags is to have all the power and flexibility that
free-standing Java code has in a JSP, but without the messiness of mixing Java and
HTML. In order to accomplish these goals, the authors of the JSP specification
needed to answer several questions:

� How does the JSP environment know the identity of the tags and the handler
classes implementing them?

� How does the JSP environment know the attributes allowed for a specific tag?
� How does a tag handler interact with a JSP page?
� How does a JSP page interact with a tag handler?
� How do tag handlers interact with each other?

Solutions to these and other questions were agreed upon and made available in ver-
sion 1.1 of the JSP specification. There are four elements of the JSP specification in
particular that address the use of custom tags. They are:

1 A special JSP custom tag API that all tags must obey (e.g., all tags must
implement the Tag interface)

2 A strict life cycle and programming model for the tags

3 The Tag Library Descriptor (TLD), which maps tag names to handler
classes and provides tag-based syntactic information

Overview of the tag API 83
4 An extension to the web application deployment descriptor making it possi-
ble to point to the tag libraries used within the web application

In this chapter we’ll discuss the custom tag API and life cycle (elements 1 and 2). Ele-
ments 3 and 4, the TLD and web deployment descriptor, are covered in chapter 5.

4.2 Overview of the tag API

The first stop on our walking tour is the custom tag API. The API is actually a small
collection of Java classes and interfaces that allows developers to build their own
custom tag libraries. The key definitions made by the API include:

1 How a tag should look to the JSP environment.
In other words, the methods a tag exposes to the JSP runtime.

2 What the JSP environment looks like to a tag.
In other words, the methods and objects the JSP runtime makes available to
tags.

Judging from its role, you might expect the custom tag API to be huge, but it is
not. The number of classes and interfaces directly related to custom tags is surpris-
ingly small. In JSP1.1 there are only two interfaces and nine classes in the Java pack-
age containing the custom tag API (javax.servlet.jsp.tagext). These classes
and interfaces are listed in tables 4.1 and 4.2. We can accomplish so much with so
few classes because many of the classes and interfaces we use during our develop-
ment actually belong to the much broader JavaServer Pages API, which is itself a
part of the broader-yet Java Servlet API (see figure 4.1). Tasks commonly per-
formed by tags, such as reading HTTP parameters, modifying cookies, using the
Session, and writing content to a response are actually supported by classes and
interfaces in these higher level APIs.

Java Servlet API

(javax.servlet.*)

JavaServer Pages API

(javax.servlet.jsp.*)

Custom tag API

(javax.servlet.jsp.tagext.*)

Figure 4.1 The Servlet, JSP, and Custom tag APIs

84 CHAPTER 4

Custom JSP tag API and life cycle
 What then is the role of classes and interfaces that are part of the custom tag
API? The interfaces we’ll study here act as contracts between the JSP engine and the
tag handler, enabling them to interact. They define all the methods the JSP engine
will use to execute the tags when they are found within a particular page. The nine
classes in the custom tag API serve a variety of purposes that range from describing
the components in a tag library to providing interaction with the environment in
which the tags live.

At the heart of this API is an interface called Tag. All tag handlers must implement
this interface. The Tag interface contains several methods used by the JSP runtime
engine to initialize, activate, and prompt the tag handler to do its work. Table 4.3

Table 4.1 The interfaces in the Custom tag API (Package javax.servlet.jsp.tagext)

Interface Name Description

Tag The interface all tags must implement. Defines all the methods the JSP run-
time engine calls to execute a tag.

BodyTag Extends the tag interface and defines additional methods that enable a tag
handler to inspect and change its body.

Table 4.2 The classes in the Custom tag API (Package javax.servlet.jsp.tagext)

Class Description

BodyContent A JspWriter subclass that provides the tag handler with methods to read and
manipulate its body.

BodyTagSupport A convenience class that provides default implementations of the methods in
the BodyTag interface.

TagAttributeInfo Contains information about attributes for a tag. Based on information in the
TLD.

TagData Contains the values for tag attributes.

TagExtraInfo Specifies extra information about a tag such as the scripting variables it intro-
duces, or how attributes are validated.

TagInfo Information about a specific tag within a library. Based on information in the
TLD.

TagLibraryInfo Represents the information in a particular tag library’s TLD.

TagSupport A convenience class that provides default implementations of the methods in
the Tag interface.

VariableInfo Contains information about the type and scope of scripting variables that are
created and/or modified by a tag handler.

Overview of the tag API 85
shows these methods and a brief description of each. We’ll explore each of these
methods in detail in the following sections.

Some tags need to be able to inspect their bodies and make changes to them before
they’re included in the JSP’s response to the user. These tags implement an inter-
face called BodyTag (which itself extends from Tag), and offer extra methods to
facilitate body manipulation. In addition to the methods in table 4.3, BodyTag
includes those in table 4.4.

Table 4.3 The Tag interface and its methods

Method name Description

setPageContext(PageContext pc) Called by the JSP runtime to set the PageContext for this
tag. This gives the tag handler a reference to all the objects
associated with the page it is in.

setParent(Tag t) Called by the JSP runtime to pass a tag handler a reference
to its parent tag (if it has one).

getParent() Returns a Tag instance that is the parent of this tag.

doStartTag() Called by the JSP runtime to prompt the tag handler to do its
work and indicate (via return value) what the engine runtime
should do next.

doEndTag() Called by the JSP runtime when it reaches the end mark of a
tag to allow it to do additional work and indicate (via return
value) what to do next.

release() Called by the JSP runtime to prompt the tag handler to per-
form any cleanup necessary before it is reused.

Table 4.4 BodyTag's additional methods

Method name Description

setBodyContent(BodyContent bc) Called by the JSP runtime to set a BodyContent object for
this tag. This gives the tag handler access to its processed
body.

doInitBody() Called by the JSP runtime to prompt the tag handler to per-
form any needed initialization before processing its body.

doAfterBody() Called by the JSP runtime after it reads in and processes a
tag’s body to prompt the tag handler to perform any inspec-
tion or modification of the processed body.

86 CHAPTER 4

Custom JSP tag API and life cycle
Both the Tag and the BodyTag interface have convenience classes that are also part
of the custom tag API. These convenience classes, TagSupport and BodyTagSup-
port, offer default implementations of Tag and BodyTag interfaces (respectively)
and facilitate the writing of a tag handler. Most tag handlers we’ll develop extend
from one of these convenience classes, rather than implementing all their interface
methods explicitly. We’ve seen examples of these tag handlers in chapter 3, and will
see many more in the coming chapters.

 Seven more classes round out the custom tag API (table 4.2). At least one of them,
BodyContent, will be recognizable from chapter 3. BodyContent is a class that repre-
sents the processed body of a tag and offers methods for reading this body and writ-
ing back to it. The complete method list for BodyContent can be found in table 4.5.

The TagLibraryInfo, TagInfo, and TagAttributeInfo classes are of little impor-
tance to you as a tag developer, and you will rarely have to interact with them. They
are mostly used by the JSP runtime engine and serve to represent the information
contained in a library’s TLD file. Thus, the TagLibraryInfo class represents and
offers access methods for the high-level information in an entire tag library.
TagInfo represents and allows access to the information in the TLD regarding a
particular tag, while the TagAttributeInfo class represents individual tag
attributes.

 The three remaining classes in the custom tag API, TagExtraInfo, Vari-
ableInfo, and TagData will be discussed along with more advanced tag develop-
ment in later chapters. For now, it’s enough to know that we’ll need to use these
classes if our tag is to introduce new scripting variables into a JSP, or if we want to
provide some precise validation of a tag’s attributes. Both of these features are very
useful and come in handy in any significant custom tag library and are, therefore,
covered in great detail in chapters 6 and 8.

 The single most important component of the custom tag API is the Tag inter-
face. This interface is so vital because every tag handler you create must implement

Table 4.5 The key methods in BodyContent

Method name Description

clearBody() Wipes out the current contents in this instance.

getReader() Gets a Reader for the contents of this instance.

getString() Gets the contents of this instance as a String.

writeOut(Writer writer) Writes the contents of this instance to a Writer object.

getEnclosingWriter() Returns the JspWriter that encloses this instance. This
is the writer we use to write back to the tag’s body.

Overview of the tag API 87
it. In addition to learning the methods of this interface (and what they do), you
need to know when and how the JSP runtime will call them. These topics comprise
the next two sections.

4.2.1 Tag interface

The Tag interface defines several methods that are called by the JSP runtime during
a page request. The tags you develop will implement, sometimes indirectly, all of
these methods in order to perform their various functions (sending email, querying
a database, etc.) when the runtime engine calls upon them. To start, let’s look at the
Tag interface in detail. Listing 4.1 shows the full source code for the Tag interface.

package javax.servlet.jsp.tagext;
import javax.servlet.jsp.*;

public interface Tag {

 public final static int SKIP_BODY = 0;
 public final static int EVAL_BODY_INCLUDE = 1;
 public final static int SKIP_PAGE = 5;
 public final static int EVAL_PAGE = 6;

 void setPageContext(PageContext pc);

 void setParent(Tag t);

 Tag getParent();

 int doStartTag() throws JspException;

 int doEndTag() throws JspException;

 void release();
}

Understanding the Tag interface is extremely important, so we will walk through
each method in it.

setPageContext() method
The first method in the Tag interface is setPageContext(). This method takes, as
its single parameter, an instance of the PageContext class. PageContext primarily
provides the tag developer with access to the JSP runtime in which it is executing.
You may recall that in chapter 3 we called pageContext.getOut() to get a refer-
ence to the JSP’s JspWriter with which we wrote HTML to client. There are several
other methods in this class which perform functions such as retrieving the servlet
response or request object, or setting variables into the JSP scope. The PageCon-
text was originally introduced to promote portability among JSP environments. In

Listing 4.1 The Tag interface

88 CHAPTER 4

Custom JSP tag API and life cycle
chapter 6, PageContext is covered in detail; for now it is sufficient to understand
that each and every executing JSP has its own PageContext instance which provides
custom tags with a regulated interface into the current page. The setPageCon-
text() method, therefore, is used by the runtime to pass the current PageContext
into a tag so that the tag may reference it later.

setParent() and getParent() methods
The next two methods in the Tag interface are setParent() and getParent().
First, we’ll need to provide background by looking at the important issue of tags
that contain other tags (commonly called nesting). Consider the following JSP code
fragment:

<jspx:dbaccess>
 <jspx:wdbcon id="con1"/>

 <jspx:wjitdbquery>
 select reserves from account where id='<%= userid %>'
 </jspx:wjitdbquery>

You have <jspx:wdbshow field=" reserves "/>$ in your saving account.
</jspx:dbaccess>

As you can see, some of the tags are enclosed (nested) within the bodies of other
tags. For example, in the above fragment <jspx:wdbcon> is enclosed within
<jspx:dbaccess>. Tags are nested in this way so that they may cooperate with one
another. An outer tag will often contain state information and variables that will be
accessed and/or modified by an inner tag. In such inclusion relationships, the outer
tag is considered the parent of the inner tag. The example above provides a scenario
in which a parent tag holds all the information about a particular database query
while child tags create the database connection, specify the structured query lan-
guage (SQL) query, and extract a particular field from the query’s results. The
nested tags cooperate by storing and reading values (such as the database connec-
tion, the query results, etc.) in their common parent. This type of cooperation is
very useful in tag development, as we’ll see in several examples in later chapters. To
facilitate nested tags, the JSP runtime passes each tag a reference to its parent via
the tag’s setParent() method. For tags that are not nested, and therefore don’t
have a parent, their parent is just set to null. The getParent() method can later
be used to retrieve the value passed to setParent().

doStartTag() method
One of the key methods is doStartTag(), in which the tag performs its unique
logic. When the JSP runtime engine calls this method, it is a cue to the tag handler
that the engine has reached the custom tag within a JSP and the tag should now do

Overview of the tag API 89
its work. It isn’t the first method that’s called on the tag (as we’ll learn in our dis-
cussion of the tag life cycle), but if we think of a tag as an alias for a block code,
then doStartTag() begins execution of that code block. In chapter 3 we saw this
method in action with several examples that wrote some contents back to the user
within it. Those examples, however, merely scratched the surface of what can be
done in doStartTag(). When called, the tag handler is given an opportunity to run
any Java code we wish and to respond to the user with any content we choose (or,
perhaps, none at all). This method also offers an opportunity to control what the
JSP runtime does after reading the tag. We exercise this control by specifying differ-
ent return values from the method.

 To illustrate, consider a typical case in which the JSP page execution path brings
it to a custom tag. The runtime first calls setPageContext() and setParent() and
then calls doStartTag(). When doStartTag() is called, the tag is notified that its
moment has arrived and it can now perform its work. Most often, the tag executes
some business logic and writes the outcome of that logic back to the user. Once this
business logic is complete, the tag has the ability to control what happens next. Its
options are:

� Tell the JSP runtime to ignore the tag’s body and therefore not return it to
the user. This is done by returning SKIP_BODY from the method. Tags that
don’t have a body at all, such as HelloWorldTag from chapter 3, always
return SKIP_BODY. Tags containing a body may also want to return
SKIP_BODY based on the result of some business logic. An example might be a
tag that includes text about special offers for repeat customers. In this case,
the tag could determine through a query if the user requesting the page has
placed a previous order and, if not, return SKIP_BODY so that they don’t see
the offer.

� Tell the JSP runtime to evaluate the tag’s body as standard JSP and then
return it to the user. This is accomplished by returning EVAL_BODY_INCLUDE
from the method. In the example of the special offer tag, doStartTag()
would return EVAL_BODY_INCLUDE for customers who had placed a previous
order. Remember here that the body is processed by the JSP engine, so we
could include any standard JSP syntax in the body (including other tags) and
it would be evaluated before returning to the user.

� Tell the JSP runtime that it is going to inspect the body and possibly modify it.
We will discuss this option later.

Our discussion of a tag’s life cycle will illustrate these control flow options again
with a helpful diagram to clarify these concepts.

90 CHAPTER 4

Custom JSP tag API and life cycle
doEndTag() method
The doEndTag()method, like doStartTag(), is one of the methods of a tag in
which it performs its unique logic. As with doStartTag(), its name indicates when
it will be called; in this case, when the end of a tag is reached. For tags without a
body (<jspx:wdbshow field="reserves"/>), this means it is called when the trail-
ing backslash (“/”) is reached. For tags with a body, this method is called when the
close tag is encountered (i.e., </jspx:dbaccess>). By calling doEndTag(), the JSP
runtime is notifying the tag that its processing is complete, and that the runtime is
about to continue processing the rest of the page. However, it may be that at this
point the tag would prefer to have the page terminate instead of continuing its exe-
cution. For example, a tag implementing an abort semantic, or a tag whose job it is
to redirect the user to another URL, would not want the page to continue its execu-
tion when the tag’s execution is complete. Like doStartTag(), doEndTag() indi-
cates to the runtime what to do next, based on its return value. Its options are:

� Tell the JSP runtime to continue evaluating the rest of the page as usual. To
do so, doEndTag() returns a value of EVAL_PAGE.

� Tell the JSP runtime to abort the processing of the rest of the page. To do so,
doEndTag() returns a value of SKIP_PAGE.

Again, we will look at doEndTag() and its role in tag processing when we discuss
tag life cycle.

release() method
The role of release() will become clearer after we discuss the tag’s life cycle; for
now, note that the JSP runtime will call release() to allow your tag handler to
clean up.

4.2.2 Tag life cycle

After having discussed the Tag interface, you should have a better grasp of the rules
to follow as a developer in creating a custom tag. Now we look at the rules that dic-
tate what happens to our tag when it is executed. The steps during the tag’s execu-
tion time from creation to cleanup are collectively known as the life cycle.

 The tag’s life cycle determines:
� When and how it is created
� When and how it is initialized
� When and how it will perform cleanup
� Its reuse options.

Overview of the tag API 91
In the case of the BodyTag, to be discussed later, it also determines how a tag can
take a look at its body.

Instantiation
Tag t = new SomeTag(); or

Tag t =
Class.forName("SomeTag").newInstance();

Reuse

Pooled tags are
waiting for
execution

Obtain a handler to
SomeTag

The JSP page needs to
execute the tag SomeTag

Initialization

t.setPageContext(ctxt);
t.setParent(parent);

Set custom attributes

Service

t.doStartTag()

Process the
body

Service and
cleanup

t.doEndTag()

doStartTag() returns
SKIP_BODY

Take a pooled handler Instantiates a new handler

doStartTag() returns
EVAL_BODY_INCLUDE

Reset

t.release();

doEndTag() returns
EVAL_PAGE

doEndTag() returns
SKIP_PAGE

Should reuse
tag No

Garbage
collection

t is garbage
collected

Yes
Use t yet

another time

No

Yes

Set modified
attributes

Figure 4.2 The Tag life cycle

92 CHAPTER 4

Custom JSP tag API and life cycle
 Figure 4.2 shows a tag’s life cycle, which may look a little daunting at first, but
after we explain each part in detail it will be much more comprehensible. As you can
see, the life cycle is partitioned into phases:

� Instantiation—Takes place when the JSP runtime needs a fresh copy of the
tag handler.

� Initialization—Takes place before the tag can be used by the JSP runtime.
� Service—Performs its unique logic.
� Cleanup—Lets the tag clean itself from the state generated during the service.
� Reuse—Reuses the tag handler for further tag executions.
� Garbage Collection—Lets the tag handler go.

Now to examine each phase in detail.

Instantiation
The life cycle story begins with the JSP runtime arriving at the point in the page
where it needs to execute a tag (SomeTag in figure 4.2). For this execution, the page
needs an instance of the tag handler. The JSP specification allows the tag handler to
be obtained from a pool of already instantiated tag handlers, or the page can instan-
tiate a fresh instance of the tag handler class. Either way, the JSP runtime will need to
instantiate the tag at least once. Tags can be instantiated by executing the default
constructor: an action which may happen directly (Tag foo = new FooTag()) or
indirectly using Class.forName() (Tag foo = (Tag)Class.forName("FooTag")
.newInstance()), depending on how the runtime author decides to implement it.
In both cases, the final result is a new tag instance whose properties are set to some
initial values.

Initialization
After obtaining the handler and before actually using it, the JSP runtime initializes
the handler by setting its properties. We can generally distinguish between two
types of properties:

� The pageContext associated with the page and the tag’s parent.
These properties are mandatory with all tags and are dictated by the JSP spec-
ification (so the runtime will set them no matter what).

� Custom tag attributes that the JSP runtime set into the handler.
We saw an example of a custom tag attribute with our CookieValueTag in
chapter 3. The values of these attributes are specified in the JSP file.

Overview of the tag API 93
The JSP runtime will set the properties in the following order: pageContext, par-
ent, and last, the tag’s custom attributes. When the JSP runtime has finished setting
the attributes, the tag instance is considered initialized.

Service
Once the properties are set, the runtime will start executing the tag and will first
call the doStartTag() method. As previously stated, doStartTag() grants the tag
author an opportunity to execute business logic, print output to the user, save inter-
mediate results in its instance variables, or perform any other useful action the tag
author chooses.

 When doStartTag() returns, it must specify to the JSP runtime how to proceed.
Again, the values it could return are SKIP_BODY (which instructs the page to skip
the tag’s body) or an EVAL_BODY_INCLUDE (which forces the page to process the
tag’s body and include it in the content returned to the user). The page will process
the body, if so instructed, and eventually it will call the method doEndTag(). Here,
after executing any additional business logic, a value of SKIP_PAGE will abort pro-
cessing and EVAL_PAGE will continue.

Cleanup, reuse, and garbage collection
Upon the return of doEndTag(), the tag should be left in a state such that its reuse
is possible. We recommend, in doEndTag(), making sure any instance variables such
as database connections, Vectors, and so forth, be reinitialized to the state they were
in when the tag was first encountered. This cleanup is needed because one of the
rules of the JSP specification is that custom tag instances can be pooled and reused.
If we didn’t reset all these variables, we would run the risk of our tag producing
unexpected results by executing with some leftover state from a past execution. If
you’re wondering why such a requirement exists for custom tags, look at the fol-
lowing JSP fragment:

<jspx:wdbenum>
 <jspx:wdbshow field="NAME"/> ,
 <jspx:wdbshow field="PRICE"/> ,
 <jspx:wdbshow field="TYPE"/> ,
 <jspx:wdbshow field="SERIAL"/>

</jspx:wdbenum>

With so many tags of the same type in close proximity, it would beneficial for per-
formance reasons if the JSP runtime could decide to reuse the same tag instance for
all four <jspx:wdbshow> incidents. In this case, the JSP runtime grabs the allocated
tag, initializes it once, and then uses it over and over again. Before each reuse, the
JSP runtime must set the modified attributes; therefore, in the JSP fragment in the

94 CHAPTER 4

Custom JSP tag API and life cycle
example, the runtime will need to set the field attribute for each of the tag execu-
tions (the pageContext and page attributes remain unmodified).

 When the JSP runtime has finished with the tag, it should have the tag clear its
properties by calling release(). This call signals the tag that the JSP runtime has
finished with it (at least for now), and that its internal state should be restored to its
original, prior to setting its properties (prior to the call to setPageContext() and
setParent()). When release() returns, the JSP runtime assumes that the tag han-
dler state is identical to its state after the execution of the empty constructor, mean-
ing that the JSP runtime has yet another option for reuse optimizations. If the
handler is in the same state as it was after the empty constructor, then the next time
the JSP environment needs a handler it can use this instance instead of creating one.
The JSP runtime can decide to keep the handler in a pool of free tag handles and
reuse this tag from the pool the next time one is needed.

 You are probably wondering, justifiably, about what to do in release() versus
what should be done before doEndTag() returns. It should be noted that we are
looking at two types of tag reuse here, though the differences are subtle. One
option is to reuse the tags in their closest proximity by setting only the modified
attributes and calling them again. The second option is to pool tags and reuse them
over and over again, without releasing them to the garbage collector. Both of these
reuse techniques are optional to the JSP runtime vendor, but always program your
tags with the assumption that your JSP runtime will reuse your tag aggressively.
What this means for most tags is having two cleanup methods: one that is called by
doEndTag() to clear the tag’s private per-invocation state and another that is called
by release() to return the tag to the state it was in after creation.

4.3 The BodyTag interface and its life cycle

For many tags (such as those which implement iteration), it is important to get a
hold of their bodies and manipulate them. We saw an example of this in chapter 3
with the LowerCaseTag, which converted any text in its body to lowercase. This
section covers the second of our two tag interfaces, BodyTag, which offers methods
to support these body-changing tags.

4.3.1 BodyTag interface

To fully grasp the BodyTag interface, you need to know its goals, which are:
� To provide a tag the ability to obtain its processed body; meaning, to get its

JSP body after it is processed by the JSP runtime. A tag often requires access
to its body because that content is used to process the tag’s logic. An example

The BodyTag interface and its life cycle 95
is a database query tag whose body contains an SQL statement that it must
retrieve and use.

� To make it possible for the tag to instruct the JSP runtime to process its body
repeatedly until a particular condition is met. An example is a tag that imple-
ments looping.

� To support the practice of nesting tags within the bodies of other tags.

Based on the goals of the interface, the solution provided in the JSP specification
is rather simple, and it includes the extended BodyTag interface and its extended
body life cycle.

 The BodyTag interface is presented in listing 4.2.

import javax.servlet.jsp.tagext.*;
public interface BodyTag extends Tag {

 public final static int EVAL_BODY_TAG = 2;

 void setBodyContent(BodyContent b);
 void doInitBody() throws JspException;
 int doAfterBody() throws JspException;
}

A tag that needs to process its body will implement the interface BodyTag, which
extends the Tag interface. So, although only some tags implement BodyTag, all tags
implement Tag in one way or another. This means that tags implementing BodyTag
still have all the same methods we saw in Tag (setParent(), getParent()✌ set-

PageContext(), doStartTag(), and doEndTag()), except that BodyTag introduces
a new static return code and three new methods to support body modification.
Let’s look at these additions in detail.

EVAL_BODY_TAG return code
The BodyTag interface presents a new value to the return code protocol we saw in
the Tag interface called EVAL_BODY_TAG. For tags implementing BodyTag, the
doStartTag() me thod shou ld r e tu r n EVAL_BODY_TAG i n s t e ad o f
EVAL_BODY_INCLUDE whenever it needs to process its body (SKIP_BODY can still be
returned to skip the body altogether). Returning EVAL_BODY_TAG instructs the JSP
runtime that the tag wants to inspect and possibly modify its body. As a result, the
JSP runtime will evaluate the tag’s body as JSP2 and hand it over to the tag.

Listing 4.2 The BodyTag interface

96 CHAPTER 4

Custom JSP tag API and life cycle
setBodyContent() method
This method is used to pass the tag a reference to its body so it can inspect and pos-
sibly modify it. The method takes a single argument of type BodyContent, a class
that encapsulates all the information we need to know about the body of our tag.
BodyContent exposes methods that allow reading the tag’s body and then writing
any changes back to the user. In section 6.6 we cover this more thoroughly.

 We should note here that setBodyContent() is called only if our tag is going
to look at its body; that is, if doStartTag() returns EVAL_BODY_TAG. If
doStartTag() returns SKIP_BODY, there is no reason for the runtime to bother
passing the tag its body, since it’s simply going to be skipped.

doInitBody() method
This method is called by the JSP runtime to give the tag an opportunity to perform
any initialization it requires before the body is evaluated and passed to the tag. This
method is a good place to create any necessary objects or set variables to be used
during the tag’s evaluation and/or modification of its body.

 An example will make things clearer. Imagine a tag that takes XML as its body
and parses that XML for a few important values to return to the user as HTML. This
tag could use doInitBody() to create an instance of the XML parser of its choice, as
well as initialize any other variables set during parsing. Why not just perform this
initialization during doStartTag()? The reason we choose doInitBody() is because
we know it is only called if the body is going to be evaluated; that is, if doStart-
Tag() has returned EVAL_BODY_TAG. So, by placing initialization in doInitBody(),
we can be assured of incurring only the performance costs of initialization when it is
necessary.

doAfterBody() method
With the doAfterBody() method, you finally get the chance to look at the tag’s body
and change it. All of our BodyTag initialization and setup led up to this method.

 As its name implies, doAfterBody() is called after the JSP runtime has read and
evaluated a tag’s body. What a tag does most often during this method is inspect its
body and make changes to it, based on what it sees. As discussed in chapter 3, this
process involves getting a reference to the BodyContent object, call ing
getString() on it, and using that string to produce output to the user. Once
doAfterBody() has completed its work, it too must indicate to the JSP runtime its
next step. It shares the same options for this return value as doStartTag(); that is,

2 The body of the tag can contain any legal JSP syntax you want (not just text or HTML), which will be
interpreted by the JSP runtime. The result of this interpretation will be given to the tag as its body.

Tag API classes 97
it can return either SKIP_BODY or EVAL_BODY_TAG. If the tag needs to evaluate the
body again, it returns EVAL_BODY_TAG, causing the JSP runtime to call doAfter-
Body() again. This is used most often when a tag wants to repeat its body until a
certain condition is satisfied. While the condition evaluates to false, doAfterBody()
returns EVAL_BODY_TAG, forcing another processing of the body and a call to itself.
Once the condition is satisfied (or if the tag doesn’t want to repeat in the first
place), doAfterBody() simply returns SKIP_BODY. This instructs the JSP runtime
that body processing is complete and to proceed to doEndTag(). We’ll provide
examples of using the EVAL_BODY_TAG return value for the purpose of iterating with
a tag in future chapters, but you can probably think of some useful scenarios
already, such as repeating a tag’s body for each row in the result set of a query.

 To illustrate the order in which the JSP runtime calls the methods in BodyTag,
we’ll examine the tag life cycle it follows.

4.3.2 BodyTag life cycle

The BodyTag life cycle (figure 4.3) is a slightly modified version of the Tag life cycle
in which the body-handling portion of the life cycle is extended.

 Figure 4.3 provides a visual representation of the body handling steps we’ve just
discussed. All of the additions to the Tag life cycle occur in a new phase we call
Body Handling (in gray). This new phase takes place within the previously dis-
cussed Ser vice phase. That phase begins when doStartTag() returns
EVAL_BODY_TAG, at which point the JSP runtime initializes the tag for body handling
by calling setBodyContent() (to pass the body to the tag) and doInitBody() (giv-
ing the tag a chance to initialize its state). Once the body handling initialization is
complete, the body is processed by the JSP runtime and doAfterBody() is called,
allowing the tag to manipulate its body and decide how to proceed. If the tag needs
to repeat its body processing phase, it returns EVAL_BODY_TAG and goes another
round. If the tag has finished inspecting and/or changing its body, it returns
SKIP_BODY to bail out. Once SKIP_BODY is returned, the tag exits from this phase
and returns to the last step of the Service phase, calling doEndTag().

4.4 Tag API classes

Up to now, we have only discussed the Tag and BodyTag interfaces. This section will
cover the classes included in the custom tag API.

98 CHAPTER 4

Custom JSP tag API and life cycle
Body handling

t.setBodyContent()
t.doInitBody()

Instantiation
Tag t = new SomeTag(); or

Tag t =
Class.forName("SomeTag").newInstance();

Reuse

Pooled tags are
waiting for
execution

Obtain a handler to
SomeTag

The JSP page needs to
execute the tag SomeTag

Initialization

t.setPageContext(ctxt);
t.setParent(parent);

Set custom attributes

Service

t.doStartTag()

Body handling

Process the
body

Service and
cleanup

t.doEndTag()

doStartTag() returns
SKIP_BODY

Take a pooled
handler Instantiate a new handler

doStartTag() returns
EVAL_BODY_TAG

Reset

t.release();

doEndTag() returns
EVAL_PAGE

Should reuse
tag

Garbage
collection

t is garbage
collected

Yes

Use t yet
another time

No

Yes

Set modified
attributes

Body Handling
t.doAfterBody()

doAfterBody() returns
EVAL_BODY_TAG

doAfterBody() returns
SKIP_BODY

No

doEndTag() returns
SKIP_PAGE

Figure 4.3 The BodyTag life cycle

Tag API classes 99
4.4.1 TagSupport and BodyTagSupport

All tags must implement the Tag interface, and those that want to process their body
should implement BodyTag. Implementing these interfaces, however, requires a
good bit of coding. You will not usually be interested in implementing all of the
methods in either interface; for example, consider a tag that returns some content to
the user. Such a tag can get by with implementing only doStartTag(); none of the
other methods of the Tag interface are needed, and are therefore something of a nui-
sance to code. As a result, the custom tag API includes standard basic implementation
classes for the Tag and BodyTag interfaces. TagSupport and BodyTagSupport classes
provide full implementation for all the mandatory tag properties (such as parent,
pageContext, and bodyContent) as well as an implementation for a property named
id, to be discussed later. TagSupport and BodyTagSupport even provide default
implementations for the life cycle methods according to the following rationale:

� Most tags do not need a body, so the default doStartTag() implementation
returns SKIP_BODY.

� Most tags want the page execution to continue, so the default doEndTag()
implementation returns EVAL_PAGE.

� release() just clears the mandatory tag properties.
� Empty doInitBody().
� Most body tags do not need to repeat their body execution, so the default

doAfterBody() implementation returns SKIP_BODY.

In our discussion of the Tag and BodyTag interfaces, we saw many methods new to
us, even though we’d already written several tags in chapter 3. We didn’t have to
worry about those methods because our examples extended these helper classes and
inherited their default implementations. Though extending TagSupport or
BodyTagSupport in your tags can save you work, these classes are not mandatory.
They have been included in the custom tag API for your convenience, but you may
choose not to extend them and to use your own base classes instead, or none at all.

4.4.2 PageContext class

The PageContext class can best be seen as an interface to all the information associ-
ated with a particular page execution. Through it we can access the Request,
Response, and Session objects for a request, as well as a Writer object with which
we can write results back to the user (see chapter 3). PageContext also provides
access to the ServletContext and ServletConfig objects associated with a JSP, as
well as an Exception object if one has been passed to it. If you have written Java-
Server Pages before, you’ll probably recognize these objects as the implicit objects

100 CHAPTER 4

Custom JSP tag API and life cycle
always available in any JSP (such as request, response, etc.). In addition to providing
access to these implicit objects, PageContext offers methods for dispatching page
requests and interacting with attributes. Most of our interaction with this class will
focus on the accessor methods for implicit JSP objects (table 4.6). Information
about additional methods in PageContext can be found in the Java Servlet API doc-
umentation at http://www.javasoft.com.

NOTE Technically, PageContext is not a member of the custom tag API. It be-
longs to the javax.servlet.jsp package, and is used in standard JSP de-
velopment as well. Its recurring role in our tag development makes it an
unofficial member of the custom tag API, however.

4.4.3 BodyContent class

The BodyContent class serves as a placeholder for the results of the processed tag
body. While processing the body of a BodyTag, the JSP runtime writes the results of
the processed body into an instance of the BodyContent class. Later on, the tag can
use its BodyContent to read the results of the processed body and possibly change
them. Once again, we look back to chapter 3 where we saw this class used in our
LowerCaseTag example. That example contained code similar to listing 4.3.

Table 4.6 PageContext's accessor methods for the implicit JSP objects

Method Description

getException() Returns the Exception object passed to this page (for use in error
pages).

getOut() Returns the output Writer for the current page.

getRequest() Returns the ServletRequest object that initiated this page’s process-
ing.

getResponse() Returns the ServletResponse object associated with this page.

getServletConfig() Returns the ServletConfig object for this JSP.

getServletContext() Returns the ServletContext for this JSP.

getSession() Returns the Session object associated with the current page request.

Tag-related features of JSP 1.2 101
BodyContent body = getBodyContent();
String bodyString = body.getString();
JspWriter writer = body.getEnclosingWriter();
writer.write(bodyString.toLowerCase());

This code snippet illustrates two of the most common methods used with Body-
Content:

� getString() simply returns a string containing the tag’s body.
� getEnclosingWriter() returns a special instance of the now familiar Jsp-

Writer class, which we use to write content back to the user.

BodyContent also offers the following methods for use by the tag author:
� getReader() lets the tag read its body using a Reader instead of a string.
� writeOut(Writer out) writes the results held in the BodyContent into some
Writer object. This method could be used to write the body out to a file, a
stream, a URL, and so forth.

The methods in BodyContent are fairly intuitive and essentially grant options to the
tag author for reading and writing the tag’s body.

4.5 Tag-related features of JSP 1.2

Thus far we have discussed the JSP1.1 view of the custom tag API and life cycle,
but JSP1.2 has a few enhancements:

� Adding a new tag interface called TryCatchFinally. This interface provides
the tag developer with better exception-handling capabilities.

� Adding a new tag interface called IterationTag. This is a cross between Tag
and BodyTag, in the sense that it lets the developer repeat the evaluation of
the tag’s body over and over again, but does not require the setting of a
BodyContent object into the tag (and the associated overhead).

� Adding new API protocol return codes (EVAL_BODY_AGAIN and EVAL_-
BODY_BUFFERED) and deprecating one (EVAL_BODY_TAG) to improve clarity
and promote tighter control over the body evaluation.

4.5.1 TryCatchFinally interface

The tag life cycle as defined in JSP1.1 pays no attention to exceptions. Nowhere will
you see a description of the actions that must be taken in the face of an exception

Listing 4.3 Using BodyContent

102 CHAPTER 4

Custom JSP tag API and life cycle
that is thrown out of the tag handler. However, exception handling is important.
When the tags need to clean up and free resources, the interface TryCatchFinally
provides the much needed exception-handling assistance.

 A tag implementing the interface TryCatchFinally exposes two methods used
by the JSP runtime when the tag’s methods or its body throw exceptions:

� doCatch() allows the JSP runtime to inform the tag that an exception was
thrown while executing it. The tag can then respond to the exceptional con-
dition based on the exception parameter and the general state of the tag.

� The method doFinally() is called by the JSP runtime whenever the tag fin-
ishes its service phase. This way the tag can free the state it accumulated when
serving the request.

We will take a closer look into the TryCatchFinally interface when we will deal
with the issue of tag cleanup.

4.5.2 IterationTag interface

As you will see in chapter 10 when we discuss tag-based iteration, the Iteration-
Tag interface is an important addition to the Tag and BodyTag, since it lets the tag
developer iterate efficiently on the tag’s JSP body.

 A tag implementing the IterationTag interface provides extended body con-
trol via the method doAfterBody(). In JSP 1.1, this method was only included in
the BodyTag interface. To implement iteration, the tag uses this method’s return
code protocol. You may question why this tag is associated with so much hoopla
since it is a mere subset of the BodyTag interface (which was already a part of
JSP1.1) with some restricted functionality. The answer is simple: the new tag pro-
vides a significant gain when performing iterations because, unlike BodyTags, the
IterationTag does not requires double buffering. In chapter 10, we will look at
how to achieve this improved performance.

4.5.3 EVAL_BODY_BUFFERED, EVAL_BODY_AGAIN return codes

JSP 1.2 introduces new names to the return codes whose role is largely to improve
code readability.

NOTE The changes to the return codes were made in a backward compatible
manner. Changes were made only to the names of the return codes (such
as EVAL_BODY_TAG), and not to the values themselves, meaning that legal
JSP1.1 tags should also run in JSP1.2.

Tag-related features of JSP 1.2 103
JSP 1.2 deprecates the return code EVAL_BODY_TAG. In JSP1.1, EVAL_BODY_TAG is
used in two methods, and in neither is it explicit enough to explain how the tag’s
body is evaluated. A JSP1.1 tag developer should return EVAL_BODY_TAG in the fol-
lowing cases:

� From doStartTag() in BodyTag, to indicate that the tag’s body must be eval-
uated into a new BodyContent that was created for this BodyTag execution.

� From doAfterBody() in BodyTag, to indicate that the JSP runtime should
again execute the tag’s body.

In both cases, the name EVAL_BODY_TAG was found to be confusing; thus JSP1.2 com-
pliant tags should use other named constants as the return codes of the tag’s methods.

 The problem associated with returning EVAL_BODY_TAG from doStartTag() is
that the variable name (EVAL_BODY_TAG) provides no indication that the evaluation
will go into a buffer. EVAL_BODY_INCLUDE, on the other hand, does indicate that the
body is included in the JSP output without buffering, possibly creating confusion for
the tag developer. To solve this, JSP1.2 introduced a new member to BodyTag, named
EVAL_BODY_BUFFERED, to replace EVAL_BODY_TAG in doStartTag(). In order to
ensure that tags developed according to JSP1.1 will remain compatible with JSP1.2,
EVAL_BODY_BUFFERED preserved the value of the old EVAL_BODY_TAG (2), allowing
tags built according to JSP1.1 to run in a JSP1.2 environment.

 The problem with returning EVAL_BODY_TAG from doAfterBody() is that, again,
the name EVAL_BODY_TAG is confusing, as it does not indicate explicitly that the JSP
runtime will re-evaluate the tag’s body. Also, with the introduction of Iteration-
Tag in JSP1.2, tags can ask the JSP environment to re-evaluate their body, even if
these tags are not BodyTags. JSP1.2 solves these problems by introducing a new
constant member named EVAL_BODY_AGAIN into the interface IterationTag.
JSP1.2-compliant tags return this value from doAfterBody() to ask the JSP runtime
to re-evaluate their body. Again, to provide backward compatibility with JSP1.1,
EVAL_BODY_AGAIN preserves the values of the old EVAL_BODY_TAG and, in this way,
JSP1.1 tags should be able to run in a JSP1.2 environment.

 The addition of the IterationTag renders a slight change in the tag life cycle.
We will take a look at this change in the next section.

4.5.4 Updated Tag life cycle

The JSP1.2 tag’s life cycle is almost identical to the JSP1.1 version, except for a few
changes attributed to the new return codes and new IterationTag interface. This
section will address these differences by presenting the life cycle diagrams of the
tags, emphasizing the changes made to the life cycle.

104 CHAPTER 4

Custom JSP tag API and life cycle
Instantiation
Tag t = new SomeTag(); or

Tag t =
Class.forName("SomeTag").newInstance();

Reuse

Pooled Tags are
waiting for
execution

Obtain a handler to
SomeTtag

The JSP page needs to
execute the tag SomeTag

Initialization

t.setPageContext(ctxt);
t.setParent(parent);

Set custom attributes

Service

t.doStartTag()

Body Handling

Process the
body

doStartTag() returns
SKIP_BODY

Take a pooled
handler Instantiate a new handler

doStartTag() returns
EVAL_BODY_INCLUDE

Reset

t.release();

Should reuse
tag

Garbage
Collection

t is garbage
collected

Yes

Use t yet
another time

No

Yes

Set modified
attributes

Service and
cleanup

t.doEndTag()

doEndTag() returns
EVAL_PAGE

doEndTag() returns
SKIP_PAGE

Body Handling
t.doAfterBody()

doAfterBody() returns
EVAL_BODY_TAG

doAfterBody() returns
SKIP_BODY

No

Figure 4.4 The JSP1.2 IterationTag life cycle

Tag-related features of JSP 1.2 105
Body Handling

t.setBodyContent()
t.doInitBody()

Instantiation
Tag t = new SomeTag(); or

Tag t =
Class.forName("SomeTag").newInstance();

Reuse

Pooled Tags are
waiting for
execution

Obtain a handler to
SomeTtag

The JSP page needs to
execute the tag SomeTag

Initialization

t.setPageContext(ctxt);
t.setParent(parent);

Set custom attributes

Service

t.doStartTag()

Body Handling

Process the
body

doStartTag() returns
SKIP_BODY

Take a pooled
handler Instantiate a new handler

doStartTag() returns
EVAL_BODY_BUFFERED

Reset

t.release();

Should reuse
tag

Garbage
Collection

t is garbage
collected

Yes

Use t yet
another time

No

Yes

doStartTag() returns
EVAL_BODY_INCLUDE

Set modified
attributes

Service and
cleanup

t.doEndTag()

doEndTag() returns
EVAL_PAGE

doEndTag() returns
SKIP_PAGE

Body Handling
t.doAfterBody()

doAfterBody() returns
EVAL_BODY_TAG

doAfterBody() returns
SKIP_BODY

No

Figure 4.5 The JSP1.2 BodyTag life cycle

106 CHAPTER 4

Custom JSP tag API and life cycle
 Because JSP 1.2 does not include substantial changes to the basic Tag life
cycle, we’ll examine instead the new IterationTag life cycle. Figure 4.4 shows
the changes to the Tag life cycle, as well as the body processing loop provided by
the IterationTag.

 In figure 4.4 there is a single place (highlighted with gray background) where
IterationTag diverts from the JSP1.1 Tag life cycle with a brand new body-pro-
cessing loop. The JSP runtime will call doAfterBody() whenever it finishes process-
ing the tag’s body and, based on the returned value, will either re-evaluate the body
or skip it and continue to the method doEndTag().

 life cycle changes in BodyTag, are highlighted in figure 4.5.
 There are two major changes to the BodyTag life cycle:

1 The body-processing loop now uses the new return codes (i.e.,
EVAL_BODY_BUFFERED and EVAL_BODY_AGAIN).

2 If doStartTag() returns EVAL_BODY_INCLUDE, BodyTag behaves like an
IterationTag. This is a deviation from JSP1.1 in which BodyTags were kept
from returning anything but SKIP_BODY and EVAL_BODY_TAG. This change
reflects the fact that the BodyTag is also an extension of IterationTag.

The changes made in JSP1.2 are clearly very small (compared to the life cycle of a
tag). For this reason, it is relatively easy to create forward-compatible tags (tags
designed for JSP1.1, but that will also run and take advantage of JSP1.2).

4.6 Summary

The rules for tag development and runtime behavior are the most important con-
cepts in this book since they provide the cornerstone upon which all future chapters
are built. Although we looked at some examples of custom tags in chapter 3, much
of the material had to be taken on faith since we were moving so quickly. In this
chapter, we’ve slowed the pace to establish a solid foundation in the building blocks
and rules to which tags must adhere. If you’re not sure you’ve mastered every
single nuance, take heart. The remainder of the book will reaffirm and gradually
build upon these concepts.

 We began this chapter thinking about the goals the tag API and life cycle set out
to accomplish and, in doing so, came up with several questions needing answers. By
now, you should be able to answer the first two, “How does a tag handler interact
with a JSP page?” and “How does a JSP page interact with a tag handler?” Our next
chapter presents yet another important issue, the translation time behavior of tags
that permits the JSP runtime to bond with them. In it, we’ll learn the answers to the
remaining questions posed here.

 5Integrating custom tag
with the JSP runtime
s

In this chapter
� Custom tags and the JSP runtime
� The deployment descriptor
� How the JSP runtime works
� Translating a JSP with tags into a servlet
107

108 CHAPTER 5

Integrating custom tags with the JSP runtime
The API and life cycle to which custom tags must adhere are essential guidelines
that will serve us every time we build a tag. However, missing from our discussions
have been the details of what happens to a JSP after we’ve written some custom tags
and embedded them in that JSP.

 As you may recall, before taking requests, a JSP file is actually translated into a
servlet, which then serves any HTTP requests made to the JSP file. The time at which
the JSP is looked at by the runtime engine, verified for correctness, and output as a
servlet, is called translation time. The particulars of this translation, and the informa-
tion we developers must provide the JSP runtime, are the foci of this chapter.

 Initially, it may seem that this issue should be of no consequence. After all, both
custom tags and servlets are simple Java classes, so wouldn’t the translation process
simply write a servlet that creates and runs the tags within service()? Actually, this
is exactly what occurs during translation, but there are a few questions the runtime
needs answers to in order to translate the file correctly:

� What are all of the valid custom tags for a page (as opposed to the invalid tags
it must reject)?

� What tag handler class is used for a particular tag?
� How is the custom tag syntax validated (for example, which tag attributes are

allowed for a particular tag)?

Only after answering these questions will the JSP runtime be able to generate the
Java code for the translated servlet.

 How then do we provide the runtime with the answers it needs? We’ve already
seen, in chapters 2 and 3, the instrument, the tag library descriptor (TLD) file, that
provides these answers. In it, we supply all the necessary information about our tags
so that the JSP runtime engine can translate each page in our application flawlessly.
This chapter focuses entirely on the translation time semantics and syntax associated
with the TLD.

5.1 Tag library descriptor in a nutshell

In essence, the TLD (see appendix B) is a simple XML (see appendix A) file contain-
ing information regarding JSP tags. The information in a TLD specifies many details
regarding a tag or tag library, such as the names of the tags, the handler classes asso-
ciated with them, and any of their attributes. The best way to start talking about this
file is to look at an example. listing 5.1 shows a sample of the structure of the TLD.

Tag library descriptor in a nutshell 109
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>simpletags</shortname>
 <uri> http://www.manning.com/jsptagsbook/simple-taglib </uri>
 <info> A simple sample tag library </info>

 <tag>
 <name>viewError</name>
 <tagclass>book.simpletasks.ExceptionWriterTag</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 Prints the stack trace of the exception object
 </info>
 </tag>

 <tag>
 <name>formparam</name>
 <tagclass>book.simpletasks.ShowFormParamTag</tagclass>
 <bodycontent>empty</bodycontent> d
 <info>
 Shows a single named FORM parameter
 </info>
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>log</name>
 <tagclass>book.simpletasks.LogWriterTag</tagclass>
 <bodycontent>JSP</bodycontent> f
 <info>
 Logs information based on the enclosed body content.
 </info>
 </tag>
</taglib>

Listing 5.1 Sample tag library descriptor

b

c

e

110 CHAPTER 5

Integrating custom tags with the JSP runtime
B General TLD material, the version of the library, the required version of the JSP specifi-
cation, and information that can be used by tools such as a short name and informa-
tive string Each TLD contains the definition of a single tag library. This definition
should contain basic tag library information (such as the name of the library and a
description for it), as well as one or more tag definitions. The general tag library
information contains data that will be of use to library management and JSP devel-
opment tools, such as short name, informative string, and the like. It also contains
the JSP version required for this tag library (e.g., we require JSP1.1 for our sample
TLD, but one may require JSP1.2).

C Simple tag definition, enclosed within a body of a <tag> and should contain the name
of the tag and the handler class Following the general tag library information, we
can find the tag definitions. Each tag definition must contain at least the tag’s name
and its implementing handler class. All other tag related data is not mandatory and,
when not specified, is given reasonable default values.

D Body specification. This particular tag must have an empty body E Attribute defini-
tion, enclosed within the body of an <attribute> and should contain the name of the
attribute F Body specification. This particular tag body contains JSP compliant
text Other than the obvious name and handler, the tag definition may also con-
tain a declaration regarding the type of` body it is willing to accept. For example, in
our case we see tags declaring their body as empty, and others declaring that they
can have body and that the JSP runtime should consider this body to be JSP (we saw
some examples of this in chapter 3). This is also where we specify any of the tag’s
attributes, and whether or not those attributes will be mandatory or optional.

Since the TLD is an XML file, it begins with a standard XML header specifying the
DTD for this document. You needn’t understand everything this header is doing;
just make sure it’s included (verbatim) at the top of every TLD you write. Immedi-
ately following this header is the open tag for our tag library definition, <taglib>.

5.1.1 The role of the TLD

An important lesson from this discussion is that the TLD serves two purposes: (1) It
contains information to assist JSP authoring tools which in turn analyze, use, and
display this information. (2) It contains all the syntactic data required by the run-
time engine during JSP translation. How does the JSP runtime engine use this? In a
nutshell, when the runtime translates a JSP file into a Java servlet, it first loads the
TLD for each of the tag libraries associated with the page. Next, it parses the TLD
and populates a few helper classes with the information contained within the file.
Finally, when the runtime encounters a custom tag in the JSP, it consults the data
stored in these helper classes, validating the tag’s syntax, and creates the Java stubs
for the tags.

Tag library descriptor in a nutshell 111
 In figure 5.1 each arrow is numbered according to
its order in the process. The steps in that process are:

1 The JSP runtime reads a taglib directive at
the top of the JSP, indicating that this page
uses tags and where to find the TLD file for
the tag library or libraries it uses.

2 The JSP runtime next locates the TLD and
reads all the information about the library
from it.

3 The TLD’s information is placed in instances of the helper classes.

4 The runtime returns to reading the JSP. When it encounters a tag, it needs
to validate its usage, meaning: (1) checking if it is indeed a tag defined in
the TLD and (2) whether or not it is used properly (i.e., the tag has valid
attributes and proper body type). The TLD also informs it of the tag han-
dler class that implements this tag, in order for it to use that class in the
servlet being produced.

5 To validate the tag against the TLD, the runtime can make calls to the in-
memory helper objects, instead of referring to the TLD.

NOTE The JSP specification defines a standard set of helper classes to hold the in-
formation extracted from the TLD. These are classes such as: (1) TagLib-
raryInfo, that gives the JSP runtime access to all the information in the
TLD (including the library and JSP versions, as well as an array of tags); (2)
TagInfo, that contains per-tag information (such as the attribute list and
the implementing handler class); and (3) TagAttributeInfo, that con-
tains per-attribute information. The JSP runtime will instantiate these class-
es based on the TLD and use them later in the context of the JSP file
translation

For additional information, such as exact tags that can be used within a TLD and
their semantics, see appendix B. There is still one question: how does the JSP run-
time know which tag libraries a given JSP uses, and where do you find the TLDs for
those libraries? Let’s look at a typical JSP fragment to illustrate this question. The
example fragment uses two different tag libraries (differentiated by their tag prefix):
one for sending email and the other for database access.

<html>
I am sending you an email with your account information

1

2

4

3 5

JSP
runtime

Helpers class
instances

TLD

JSP

Figure 5.1 JSP runtime use of
the TLD

112 CHAPTER 5

Integrating custom tags with the JSP runtime
<mail:send server=”mail.corp.com”
 from=”john.doe@corp.com”
 to=”foo@bar.com”
 subject=”mail from a tag”>
Look at how easy it is to send an email from a tag... here is
your status.

<dbx:access>
 <dbx:con id="con1"/>
 <dbx:query>
 select reserves from account where id='<%= userid %>'
 </dbx:query>
 You have <dbx:show field=" reserves "/>$ in your saving account.
</dbx:access>

</mail:send>
</html>

Notice the use of tags like send and access, preceded by the prefixes dbx and mail
(respectively). As discussed in our chapter 3 examples, these prefixes are used before
the name of a tag as a nickname for the library to which they belong. How do we
assign a prefix to a tag library within a JSP? How do we refer to a tag library from a
JSP in the first place? The answers to these questions are the topic of the next section.

5.2 Referencing a tag library from a JSP

We already know that a JSP must let the runtime know which tag libraries it will be
using, but how does it do this? JSP files use a JSP directive called <@ taglib> to
indicate which tag libraries they intend to make use of. The syntax for the taglib
directive is:

<@ taglib uri=”unique uri referencing the library”
 prefix=”someprefix” %>

The taglib directive serves the following goals:
� Declares that the JSP file uses a specified tag library.
� Identifies the TLD for this tag library by referencing it with a unique uri (the

uri can either point to the TLD directly or to a tag library section in web.xml
that references it).

� Assigns a prefix to all the tags that are part of the library. This provides a
namespace for your tags, not unlike Java package names, to prevent name col-
lisions (two or more tags having the same name in different libraries). Thus,
when naming your tag, you needn’t worry that it will have the same name as
a tag in another library, existing HTML tag, XML tag, or any other tagged
language’s tag.

Referencing a tag library from a JSP 113
By using the taglib directive we can reference one or more tag libraries from a sin-
gle JSP. Let’s see, in listing 5.2, what the JSP fragment from the previous section
might look like when we add the proper taglib directives.

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/mail-taglib"
 prefix="mail" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/db-taglib"
 prefix="dbx" %>

<html>

I am sending you an email with your account information
<mail:send server=”mail.corp.com” d
 from=”john.doe@corp.com”
 to=”foo@bar.com”
 subject=”mail from a tag”>
Look at how easy it is to send an email from a tag... here is your status.

<dbx:access> e
 <dbx:con id="con1"/>
 <dbx:query>
 select reserves from account where id='<%= userid %>'
 </dbx:query>
 You have <dbx:show field=" reserves "/>$ in your saving account.
</dbx:access>

</mail:send>
</html>

B Declaring that we are using some tag library referenced by the uri http://www.man-
ning.com/jsptagsbook/mail-taglib and that all tags associated with this library are pre-
fixed with mail.

C Declaring that we are using some tag library referenced by the uri http://www.man-
ning.com/jsptagsbook/db-taglib and that all tags associated with this library are pre-
fixed with dbx.

D This tag is associated with the mail library by the mail prefix.

E These tags are associated with the database library by the dbx prefix.

5.2.1 The Taglib’s uri attribute

In our discussion of the taglib directive we glossed over an important issue: how
to know what the uri attribute of the directive should be in any given JSP. Earlier,
we mentioned that the uri usually points to a tag library section in the web

Listing 5.2 Sample JSP files with tag library references

b

c

114 CHAPTER 5

Integrating custom tags with the JSP runtime
application deployment descriptor, but what did we mean by this? To answer, we
first need to note that there are two ways we can point to a TLD within the taglib
directive:

� Directly
The uri attribute must be a relative URI and point directly at the TLD. A rela-
tive URI does not begin with a protocol scheme or authority (such as http://),
and is relative either to the root directory of the web application (if the uri
attribute begins with “/” as in /WEB-INF/taglib.tld) or to the current JSP file
location (if the uri attribute does not begin with a “/” as in tlds/taglib.tld).

� Indirectly
The uri attribute refers to a special taglib section in the web application
deployment descriptor that in turn points to the TLD. This is the approach
we mentioned in the last section. Refer to chapter 2 if you are unsure how a
web application deployment descriptor works.

Indirectly referencing a TLD
The direct approach is quite straightforward, since referring to files by their relative
URIs is commonplace in web development. The indirect approach is more typical
and more involved, warranting a look at it in some depth. To reference the tag
library indirectly one must use the taglib section in the web application deploy-
ment descriptor (the file web.xml) that is structured as follows:

<taglib>
 <taglib-uri>
 The uri defined in the <%@ taglib %> directive in
 the JSP file
 </taglib-uri>
 <taglib-location>
 The location of the TLD in the web application.
 </taglib-location>
</taglib>

Using the taglib section you reference the tag library’s TLD.
 To see an example of this indirect reference, we will create a web.xml file for a

web application that contains the JSP file in listing 5.2. For this example, assume
that the TLDs for the mail and database tag libraries are located under the web
application root in the /WEB-INF/mail.tld and /WEB-INF/database.tld files,
respectively. Based on that directory structure, the web application descriptor
should contain the taglib sections we see in listing 5.3.

Referencing a tag library from a JSP 115
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>

 <!-Note: All portions of the deployment descriptor that are
 not a strict part of the taglib sections where removed.
 -->

 <taglib> b
 <taglib-uri>
 http://www.manning.com/jsptagsbook/mail-taglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/mail.tld
 </taglib-location>
 </taglib>

 <taglib> c
 <taglib-uri>
 http://www.manning.com/jsptagsbook/db-taglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/database.tld
 </taglib-location>
 </taglib>
</web-app>

B First taglib entry, points to the exact location of the mail library tld.

C Second taglib entry, points to the exact location of the database library tld.

A sketch of this indirect referencing is shown in figure 5.2. In it, the JSP taglib
directives reference the appropriate taglib sections in web.xml, which in turn point
to the precise location of the TLDs.

NOTE Although it is possible to point directly at the location of the TLD, it is not
recommended and this (as well as its simplicity) is partially the reason we did
not refer to it at length. Normally, you will have more than one JSP file ref-
erencing your tag library in a given web application. With all these JSP files
pointing directly to the TLD, if the TLD changes name or location you will
have to modify all JSP files instead of a single web.xml file. Referencing the
TLD indirectly adds some inconvenience to a quick-and-dirty development,
but it makes better sense in the long run.

Listing 5.3 Employing two taglib entries that point to two tag library descriptors

116 CHAPTER 5

Integrating custom tags with the JSP runtime
By now it should be clear how the JSP runtime and the custom tags work together.
However, all you have seen so far are small details piling up; that is, how the JSP
runtime locates the TLDs, what the methods call sequence is in the tags life cycle,
and so forth. You have yet to see a complete case in which the JSP runtime processes
a file containing custom tags and eventually executes it. The next section provides
such an example.

Figure 5.2 Indirect referencing of a tag library descriptor

How the JSP runtime works 117
5.3 How the JSP runtime works

We’ll now look at each stage in the life of a JSP containing custom tags, from cre-
ation through translation and, finally, execution. To present this case, we will use a
custom tag that provides email functionality. For a more solid understanding of
what the JSP translation process involves, we’ll also take a look at the servlet gener-
ated by the JSP runtime when it translates our page.

5.3.1 Send tag example

The JSP file in listing 5.4 has a very simple
goal: to provide users with web-based email-
sending service. In our application, the user
will be able to write an email using a simple
HTML form, as seen in figure 5.3. The con-
tents of this form will be submitted to a JSP
page which sends the email to the specified
address via a custom JSP tag.

 Since it is not the goal of this example to
fully develop the email-sending (send) tag,
we will take only a cursor y look at the
attributes associated with this tag and discuss
their uses. We will develop and discuss this
tag and other, more sophisticated email tags
in chapter 7.

Understanding the send tag
The send tag is a simple custom tag that supports sending standard email. Every-
thing we need to know about it is provided in its TLD, as presented in listing 5.4:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- A tag library descriptor for the simple mail tag -->

<taglib>

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>simplemail</shortname>
 <uri> http://www.manning.com/jsptagsbook/mail-taglib </uri>

Listing 5.4 Tag library descriptor for our mail sender tag

Figure 5.3 Form-based interface for the
email sender JSP

118 CHAPTER 5

Integrating custom tags with the JSP runtime
 <info>
 A tag library that describes the simple mail tag
 </info>

 <tag>
 <!-- This tag sends emails. -->
 <name>send</name>
 <tagclass>book.mail.SimpleJavaMailTag</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 Sends an email based on the provided attributes.
 </info>

 <attribute>
 <name>server</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>from</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>to</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>subject</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>body</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

You can see from the TLD that the tag is controlled by several attributes which spec-
ify the parameters to use when sending the email. These tag attributes are described
in table 5.1.

How the JSP runtime works 119
Note in table 5.1 that many of the send tag’s attributes can be the result of a run-
time expression. Instead of hard-coding an attribute’s value directly in the JSP file,
we can specify a scriptlet. When the JSP is executed, the scriptlet is evaluated (as
with any other Java code in the JSP) and the result is passed as the attribute. Speci-
fying attributes in this way offers a great deal of flexibility and is especially useful for
this type of application in which the attribute values differ from user to user.

NOTE All input to our mail program comes from tag attributes, but that this ap-
proach isn’t always optimal. For example, attributes don’t support multi-
line values (ones with a carriage return) or those containing characters that
ought to be escaped (such as “”“). To support more complex values, it is
better to pass the information using the tag’s body.

Creating the JSP that uses the Send tag
We aren’t going to be looking at the code for the send tag’s tag handler class here,
since it is largely irrelevant to our discussion. We will see this code in all its splendor
in chapter 7. For now, we’ll assume we’ve written the tag handler as required, and
jump right to writing our JSP and the HTML form that will POST to it.

 The HTML form should submit three variables to the JSP page:
� the recipient of the email (named as the form parameter “to”)
� the subject of the email (named as the form parameter “subject”)
� the body of the email (named as the form parameter “content”)

Table 5.1 The mail sender tag attributes

Attribute name Use Comments

server Provides the DNS of the out-
going SMTP server that is
used by the tag.

Mandatory attribute, the tag cannot survive without
an SMTP server.

from Provides the email address
of the sending entity.

Mandatory. Can be a runtime expression and should
be set from the session state (based on some
authentication).

to The destiny of the email. Mandatory. Should be a runtime expression that
flows from the FORM filled by the user.

subject The mail subject. Optional. Should be a runtime expression that flows
from the FORM filled by the user.

body The mail body content. Mandatory. Should be a runtime expression that
flows from the FORM filled by the user.

120 CHAPTER 5

Integrating custom tags with the JSP runtime
These variables will arrive at the JSP file and will be fed into the send tag’s attributes
using runtime expressions (meaning, using scriptlets).

 To prevent the user from specifying an arbitrary “from” address for the email,
we’ll retrieve the user’s email address from the session state object (where we
assume it is placed when the user logs into our site). Under this design we create
the JSP file presented in listing 5.5.

<%@ page session="true" %> b
<%@ taglib c
 uri="http://www.manning.com/jsptagsbook/simplemail-taglib"
 prefix="mail" %>
<html>
<body>

<p>
 Dear <%= session.getAttribute("sender") %> we are now
 sending your email.
</p>

<mail:send d
 server="mail.corp.com"
 from='<%= (String)session.getAttribute("sender") %>'
 to='<%= request.getParameter("to") %>'
 subject='<%= request.getParameter("subject") %>'
 body='<%= request.getParameter("content") %>' />

<p>
 Mail was sent to: <tt><%= request.getParameter("to") %></tt>

 Subject was: <tt><%= request.getParameter("subject") %></tt>

 Content was:

 <pre>
 <%= request.getParameter("content") %>
 </pre>
</p>
</body>
</html>

B Informs the JSP runtime that we are going to use session state in this page.

c References the simple mail library. This is clearly an indirect reference.

d Uses the send tag. Note how all the information is provided via the attributes.

Listing 5.5 JSP file employing the mail sender tag

How the JSP runtime works 121
Deploying the JSP
Now it is time to deploy the JSP file. As in chapter 3, deploying the JSP file includes
the following tasks:

� Copying the JSP file to the appropriate location in the web application.
� Copying the tag to a place where it is accessible to the web application class

loader. For example, if the tag is wrapped inside some jar file, copy the jar file
to the WEB-INF/lib directory of the web application.

� Copying the TLD so that it will be accessible in the context. For example,
copy the TLD file to the WEB-INF directory.

� Updating the deployment descriptor (web.xml) to include a reference to the
TLD associated with the tag library.

� Restarting the application so that changes in the deployment descriptor will
take effect.

5.3.2 Translating the JSP into a servlet

After deploying the JSP file, we can actually access it by submitting an email from
the form. The JSP runtime will translate our JSP into a new servlet and then compile
it. This occurs when the JSP is requested for the very first time, which means the
first time we submit the HTML form.1

Translation of static content
When a JSP is translated, the runtime engine opens a new file to which it will write
the servlet source code. The first things it writes to this new servlet source include
all the Java import statements the servlet will need, the first line of the servlet class
definition, and a few lines of code to initialize the JSP implicit objects (see
chapter 2). With this information in place, the runtime engine begins reading the
JSP and translating its contents into Java code in the servlet. For static JSP content,
the conversion between JSP syntax and Java servlet code is straightforward and
intuitive. Static content within a JSP, whether it is HTML, WML, or another lan-
guage, is simply translated into a familiar out.write(“”) statement within the serv-
let (see figure 5.4).

1 Some JSP runtime engine vendors offer the ability to precompile your JSPs, but in most cases the JSP is
not compiled until the server receives its first request for it.

122 CHAPTER 5

Integrating custom tags with the JSP runtime
Translation of scriptlets
For scriptlets that appear in a JSP,
the translation process is even sim-
pler. The runtime engine takes the
Java code within the scriptlet tags
(<% and %>) and copies it verbatim
into the servlet. See figure 5.5 for
an example.

Translation of custom tags
Both scriptlets and static content offer fairly obvious syntax translations from a JSP
to a servlet, but are custom tag translations so simple? Translating a custom tag
from its JSP syntax to servlet code is trickier, but it makes perfect sense when looked
at closely. What then are the steps that take place when the runtime engine trans-
lates a tag-bearing JSP? When translating the file to a servlet, the JSP runtime will
first inspect the taglib directive at the beginning of the file and determine from its
uri attribute which tag library to use. It then looks for a matching taglib entry
inside web.xml, finds it, and extracts the location of the actual TLD. Once the TLD
is known, the JSP runtime reads its content and uses it to create the appropriate
helper classes (merely Java objects that represent the information in the TLD). For
each custom tag that the runtime finds within the JSP, it refers to the helper classes
to determine whether a particular tag name is valid for this library, what handler
class implements the tag, and what attributes the tag allows. The runtime engine
uses this information to decide which handler class to create within the servlet it is
producing, and which methods to call on the handler. Perhaps the best way to
understand what happens to a tag when it is translated is to look line by line at an
example, such as the one in listing 5.6.

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

Listing 5.6 JSP file employing the send tag

<html>
 <body>
 <p>Hello good looking</p>

out.write("\r\n<html>\r\n
<body>\r\n<body>\r\n\n<p>
Hello good looking</p>");

JSP file Servlet

translates

into

Figure 5.4 Static content translated from a JSP to servlet code

int i = 3;
int y = 4;
y = y * i;

JSP file Servlet

translates

into

<%
int I = 3;
int y = 4;
y = y * i;
%>

Figure 5.5 Scriptlets translated from JSP to servlet
code

How the JSP runtime works 123
import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;
import org.apache.jasper.runtime.*;
import java.beans.*;
import org.apache.jasper.JasperException;

public class mailsender
 extends HttpJspBase {

 private static boolean _jspx_inited = false;

 public final void _jspx_init() throws JasperException {
 }

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;
 try {
 if(_jspx_inited == false) {
 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html;charset=8859_1");
 pageContext = _jspxFactory.getPageContext(this, request, response,
 "", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 out.write("\r\n");
 out.write("\r\n<html>\r\n<body>\r\n\r\n<p>\r\n Dear ");
 out.print(session.getAttribute("sender"));
 out.write(" we are now \r\n sending your email.\r\n</p>\r\n\r\n");
 /* ---- mail:send ---- */
 book.mail.SimpleJavaMailTag _jspx_th_mail_send_0 =
 new book.mail.SimpleJavaMailTag();
 _jspx_th_mail_send_0.setPageContext(pageContext);
 _jspx_th_mail_send_0.setParent(null);

b

c

124 CHAPTER 5

Integrating custom tags with the JSP runtime
 _jspx_th_mail_send_0.setServer("mail.corp.com");
 _jspx_th_mail_send_0.setFrom((String)session.getAttribute("sender"));
 _jspx_th_mail_send_0.setTo(request.getParameter("to"));
 _jspx_th_mail_send_0.setSubject(request.getParameter("subject"));
 _jspx_th_mail_send_0.setBody(request.getParameter("content"));

 try {
 int _jspx_eval_mail_send_0 = _jspx_th_mail_send_0.doStartTag();

 if(_jspx_eval_mail_send_0 == BodyTag.EVAL_BODY_TAG)
 throw new JspTagException("Since tag handler class " +
 "book.mail.SimpleJavaMailTag does" +
 " not implement BodyTag, it can't "+
 "return BodyTag.EVAL_BODY_TAG");
 if(_jspx_eval_mail_send_0 != Tag.SKIP_BODY) {
 do {
 // This is where the tag's body should be.
 } while(false);
 }
 if(_jspx_th_mail_send_0.doEndTag() == Tag.SKIP_PAGE)
 return;
 } finally {
 _jspx_th_mail_send_0.release();
 }

 out.write("\r\n\r\n<p> \r\n Mail was sent to: <tt>");
 out.print(request.getParameter("to"));
 out.write("</tt>\r\n
\r\n Subject was: <tt>");
 out.print(request.getParameter("subject"));
 out.write("</tt>\r\n
\r\n \r\n Content was:
\r\n

<pre>\r\n ");
 out.print(request.getParameter("content"));
 out.write("\r\n </pre>\r\n</p>\r\n</body>\r\n</html>\r\n");

 } catch(Exception ex) {
 if(out.getBufferSize() != 0)
 out.clearBuffer();
 pageContext.handlePageException(ex);
 } finally {
 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
 }
}

B Allocates a new tag instance The first segment is allocating a fresh tag instance for
the current tag. You probably remember from our previous chapter that the JSP
runtime can decide to reuse tags. In this case, however, the JSP runtime (the one
bundled with Tomcat 3.2) is not reusing this tag but is creating one.

d

e

How the JSP runtime works 125
C Sets the standard tag attributes into the tag d Sets the custom tag attributes into
the tag After obtaining a fresh instance of our tag, the JSP runtime is setting the
tag’s property values. First, the page will set the mandatory pageContext and par-
ent properties (whose roles were discussed in chapter 4). Later, it will set the tag’s
custom properties, including the server, from, to, and so forth, using the values
specified in the TLD. Note that in runtime expression values, the JSP runtime is set-
ting the current values of expressions and not the string containing them.

e Executes the tag method call protocol according to the life cycle diagram The la st
code segment that handles the tag executes the tag’s method call protocol. It is
interesting to note how the codes returned by the doStartTag()/doEndTag() pair
are scanned for the special protocol return codes, and how the JSP runtime
includes/excludes the tag’s body and aborts the execution of the JSP page based on
these codes. This is where we get to see the API and life cycle in action. It is also
interesting to note that since this is not a BodyTag, the page will not try to call
methods that are associated with the body protocol (such as doAfterBody()).

Understanding the servlet source code
Listing 5.6 presents the somewhat beautified source for the servlet generated by
Tomcat for the JSP fragment in listing 5.5 (it was autogenerated by the JSP runtime
and its coding style required some polishing to make it readable). The area marked
in bold is where the JSP runtime placed the code fragment that handles the send tag
and, as you can see, we’ve partitioned it into four segments. We will now take a
closer look at these segments.

 Finally, we see in this example what happens to the tag when the JSP runtime
finishes executing it. At this point the tag is recycled to its initial state via a call to
release(), after which the page is free to pool the tag for further reuse or let it be
garbage collected.

 If you followed chapter 4 closely, you should be experiencing a real sense of aha!
We’ve dispelled some of the mystery of the JSP runtime by looking under the hood
to see the code used to run custom tags. The rather abstract concepts of tag life
cycles and the custom tag API become very concrete in this example when we see,
in no uncertain terms, the exact order and nature of each method call on a tag han-
dler. This approach, looking at the source code for a JSP-translated servlet, can be
very helpful in becoming more comfortable with the runtime behavior of a tag-
bearing JSP.

 The rest of the autogenerated servlet is not that important to us. The page will
simply finish its execution and the resulting content will be written to the request-
ing user.

126 CHAPTER 5

Integrating custom tags with the JSP runtime
5.4 Summary

By now you should have a solid grounding in how the TLD helps the JSP runtime
validate tag usage, and how you, as a developer, can author a TLD. You also know
how the JSP runtime uses the various bits of information in the TLD to translate a
JSP into a servlet. We hope our page translation and execution samples have aided
you in understanding how custom tags and JSPs are wrapped into a servlet that ends
up handling the page requests.

 Having covered the guidelines for tag development (API and life cycle) and the
ins and outs of the TLD, we have a firm grasp of the ground rules for writing and
deploying custom tags. What we’ve seen so far can be thought of as the language of
JSP custom tags; but we have yet to put this language to good use, to learn how
we’ll speak it in our daily tag development. These topics are the focus of the next
part of the book, where we explore some of the common techniques you’ll use in
your day-to-day tag development, and we build our first real-world tag library.

Part II

Basic techniques

With the foundations for a basic understanding of tag development
in hand, it is time to focus on honing these skills to take advantage of all
the functionality custom tags can offer. In chapters 6 through 8 you’ll
learn several common coding techniques that are needed to build a suc-
cessful tag library, from sending content back to the client browser to writ-
ing tags that make use of their body content. In part IV we will showcase
these techniques by building two full-fledged tag libraries; one for sending
email within a JSP and a second that integrates with JavaBeans.

 6Tag development technique
s

In this chapter
� Common programming tasks with tags
� Integrating tags with their environment
� Tag cleanup
� Base classes for future examples
129

130 CHAPTER 6

Tag development techniques
Just when you thought you might be able to settle in and start using all your new-
found knowledge about writing tags, the custom tag API, and life cycles, you dis-
cover that there needs to be something more. Mastering the details of a TLD’s
anatomy and its role in making tags known to the JSP runtime engine may mean the
ability to build and deploy simple tags; unfortunately, as with any technology,
knowing the basics will only get you so far. To build tags that can actually make a
difference in your projects, you need a few key programming techniques that will
prove highly beneficial for most of the tags you build. You can think of these tech-
niques as tools in the toolbox that holds all your tag development knowledge. The
tools we discuss in this chapter will be the mainstays in your daily tag construction.

6.1 Reusable tag programming techniques

Once you’ve tried out the examples in the previous chapters and built some basic
tags, you’re likely to find yourself in need of additional techniques pertaining to tag
behavior, initialization, configuration, and cleanup. It’s vital that you know how to
reliably write content to the user, pass parameters to tags, and share information
between tags. You may also benefit from knowing how to configure an entire tag
library via a single application variable, and how to create tags that inspect and mod-
ify their body. Of course, after adding all this functionality, you’ll have to be able to
write your tags in a way that they can be properly cleaned up after the runtime has
finished with them. Though these techniques vary greatly, the common theme is
that each is a typical component in the construction of a production tag library.

6.1.1 The techniques you'll use most

What kinds of applications will benefit from the techniques in this chapter? Most of
them! This chapter covers the programming techniques most commonly used when
building a tag-based application. They are:

� Writing content back to the user
� Logging and messaging
� Using tag attributes
� Using the Servlet API

� Configuring tags
� Writing tags that modify or use their body
� Properly cleaning up state after your tag has executed.

 Let’s discuss these techniques and how they fit into a typical web application.

Reusable tag programming techniques 131
Writing content back to the user
Almost any web application you build with tags is likely to have at least one tag that
performs the task of getting a value and returning it to the user. This value may come
from a database, a cookie, another web server, or perhaps an Enterprise JavaBean
(EJB). This kind of tag can be used to echo a username, as in “Welcome back, Cole,”
report a bank balance, or present some other piece of data stored in the database.

Using tag attributes
Sometimes a tag will take a parameter from the JSP author so that it may behave dif-
ferently under different circumstances. The ability of tags to take parameters (typi-
cally made possible by tag attributes) is what makes your tags flexible enough to be
reused across projects.

Logging and Messaging
Like any programming project, writing tags will require the ability to log error mes-
sages as they occur and propagate them to the developer/administrator.

Using the servlet API
Since JSP custom tags run in the same environment as servlets and JSPs, namely the
Web, it is also to be expected that your tags need to interact with the same kinds of
web-related information that most servlets and JSPs use. This includes reading from
and writing to cookies, looking at HTTP headers, redirecting requests, and so forth.
Almost any web application has a need for some of these functions, and web appli-
cations built on custom tags are no different.

Configuring tags
When building a web application that uses tags, you might like to configure some
aspects of a tag (or group of tags) in a central place, rather than in each and every
JSP that uses those tags. We may, for example, wish to build a suite of tags that send
email and use a particular mail server to do so. It would, in such a case, be ideal to
indicate that server name once in a central place, and allow any JSP that has our
email tags to pick up and use that property. This type of configuration, though
optional, can often clean up your design and make implementing changes fairly
painless. Not all tag libraries will require this kind of configuration, but even most
small libraries will have at least one or two settings that would benefit from being
configured in a central place.

132 CHAPTER 6

Tag development techniques
Writing tags that modify/use their body
For many (if not most) tags, looking at or changing their bodies is not necessary.
This tactic is useful for tags that need to take parameters too complex to be passed
as attributes, or for tags that want to operate on a block of HTML or text.

Cleaning up
Of all the techniques, learning how to properly clean up after your tags is the most
important we’ll discuss, since any and all applications should have tags that leave
resources and state clean after they’ve run.

 Now that we know what these techniques can do for us, let’s look at each tech-
nique in detail.

6.2 Writing content back to the user

Returning content from your tags is probably the most widely known technique.
Generally, custom tags write a bit of content to the page for the user to see. Though
some tags may run without creating any user-visible output, such as a tag that iter-
ates through a set of parameters or exports new beans into the page, the majority of
tags will ultimately write text into the response flowing back to the user. We saw
three such tags in chapter 3.

 To facilitate this requirement, the JSP infrastructure provides tags with a special
Writer class called JspWriter. With this class, a tag can include any text you
choose in the web server’s response to a user. The advantage of including text in
this way is that it appears in the proper place on the page in the user’s browser.1 The
methods that are of greatest interest to us in the JspWriter are in table 6.1.

1 Much of our discussion in this chapter assumes a classic web application model with a standard HTML
browser for a client. It should be mentioned that, like any servlet or JSP, custom tags can return data to
anything that issues an HTTP request. This includes WAP browsers, Internet spiders, or any other process
that asks the web server for a page.

Table 6.1 Important methods in the JspWriter class

Methods use for printing to the user Methods used for buffer manipulation

abstract public void newLine() abstract public void clear()

abstract public void print(boolean b) abstract public void clearBuffer()

abstract public void print(Object obj)

abstract public void println() abstract public void flush()

abstract public void println(Object x) public int getBufferSize()

Writing content back to the user 133
As you can see, the JspWriter offers the following facilities in addition to those
available in the simple Writer we already know:

� Print—The original Java Writer only supports writing chunks of data from
an array. JspWriter, on the other hand, adds those methods that usually exist
in the PrintWriter class. This way you can easily print data (such as String,
primitive types, and Objects) to the response.

� Buffer manipulation—The output returned by a servlet or JSP typically is
buffered. This buffering is implemented by the Servlet/JSP container. The
JspWriter class provides methods to query the buffer’s internal state and to
clear its contents.

A tag may obtain a reference to the JspWriter to use for output in the current page
by calling the method PageContext.getOut().

NOTE The JspWriter returned by PageContext.getOut() is not always con-
nected directly to the user. The JSP runtime can use multiple JspWriters
to collect the output of certain page fragments. For this reason, the re-
turned JspWriter may change from call to call; in fact, the JSP engine is
holding a stack of JspWriters that correspond to the file structure of an
individual JSP. The contents of all these individual JspWriters are concat-
enated after the processing and it’s that concatenated content that is sent
to the user. This is explained in greater detail later in this chapter.

Now, we look at how to use the JspWriter to manipulate the response.

6.2.1 Adding data to the output

Listing 6.1 shows a code fragment taken from ShowFormParamTag which demon-
strates writing data to the user.

public class ShowFormParamTag extends TagSupport {

 // Some other code was omitted here.

 public int doStartTag()

public boolean isAutoFlush()

Listing 6.1 Printing output to the user

Table 6.1 Important methods in the JspWriter class (continued)

Methods use for printing to the user Methods used for buffer manipulation

134 CHAPTER 6

Tag development techniques
 throws JspException
 {
 try {
 HttpServletRequest req =
 (HttpServletRequest)pageContext.getRequest();
 String value = req.getParameter(name);
 if(null != value) {
 writeHtml(pageContext.getOut(), value); b
 }
 return SKIP_BODY;
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 //log an error and throw a JSPTagException
 //...
 }
 }
 // Some other code was omitted here too.
}

B Performs HTML special tags filtering and writes the output back to the user Show-
FormParamTag prints the value of a particular form parameter sent by the user, but
for this discussion we’ve tried to omit all the code that is not directly related to the
actual printing. From this code fragment you can see that the JspWriter is
obtained through a call to pageContext.getOut().

C Handles the ever annoying IOException. Logs the exception and interrupts the JSP
execution by throwing a JSPTagException.

Writing HTML properly with writeHtml()
You’ll note that we are not using the JspWriter directly, as we did in chapter 3.
Instead of calling pageContext.getOut().print(value) we are calling a method
we’ve written called writeHtml() to print the parameter value to the response.
Why take this extra step? If you look at writeHtml() (listing 6.2) you’ll see that it
simply applies the proper escape sequences for special HTML characters such as “<”,
“>”, and “&”. The incidents in which we’ll need to pass our output through
writeHtml() will be those when we aren’t sure if the String we are writing to the
user contains any of these special characters. We want to make sure the user reads
the String as it was intended to be; and not allow it to be accidentally interpreted by
the browser as HTML. Consider, for example, a case where our ShowFormParamTag
is being used to echo an individual’s username that was just submitted on a previous
form. A malicious user could enter the username as the following:

<script>
 alert(“this is a big bad virus, the site is not protected!!!”)
</script>

c

Writing content back to the user 135
If we write this username back to the response unescaped, the browser will interpret
it as standard Javascript and the user’s evil alert message will pop up. By passing the
parameter through writeHTML() instead, we convert all of the “<” and “>” charac-
ters to their escaped equivalents. The user then sees the text they’ve typed echoed
back to them verbatim, instead of the ill-intentioned JavaScript message.

protected void writeHtml(JspWriter out,
 String html)
 throws IOException
{
 if((html.indexOf('<') == -1) &&
 (html.indexOf('>') == -1) &&
 (html.indexOf('&') == -1)) {
 out.print(html);
 } else {
 int len = html.length();
 for(int i = 0 ; i < len ; i++) {
 char c = html.charAt(i);
 if('<' == c) {
 out.print("<");
 } else if('>' == c) {
 out.print(">");
 } else if('&' == c) {
 out.print("&");
 } else {
 out.print(c);
 }
 }
 }
}

Defining base classes for our tags
Since writeHtml() is a useful method to have in any tag that returns content to a
user, we’ll want to use it in most of the tags we develop. Now is a good time to
define a base class for our tags where we can place fuctionality like this. We’ll call
this class ExTagSupport and it will serve as the base for most of our tag examples for
the remainder of the book. Throughout the upcoming chapters, we’ll add to
ExTagSupport as we encounter logic that we want inherited by all our tags. For
now, ExTagSupport will define only one method, writeHtml(), and, of course,
extend the TagSupport utility class. We’ll need a base class for our BodyTags which
will extend BodyTagSupport. We’ll call that class ExBodyTagSupport. You’ll see ref-
erences to both these classes throughout examples in the remainder of this book.

Listing 6.2 The writeHtml() method defined.

136 CHAPTER 6

Tag development techniques
NOTE We don't need to list ExBodyTagSupport separately here because, for
now, it is identical in listing 6.3, except for the class name and the fact that
it extends BodyTagSupport instead of TagSupport.

package book.util;

import java.util.Enumeration;
import java.io.Exception;

import javax.servlet.ServletContext;
import javax.servlet.ServletConfig;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.tagext.TagSupport;

public class ExTagSupport extends TagSupport {

 protected void writeHtml(JspWriter out,
 String html)
 throws IOException
 {
 if((html.indexOf('<') == -1) &&
 (html.indexOf('>') == -1) &&
 (html.indexOf('&') == -1)) {
 out.print(html);
 } else {
 int len = html.length();

 for(int i = 0 ; i < len ; i++) {
 char c = html.charAt(i);
 if('<' == c) {
 out.print("<");
 } else if('>' == c) {
 out.print(">");
 } else if('&' == c) {
 out.print("&");
 } else {
 out.print(c);
 }
 }
 }
 }
}

Listing 6.3 Our base class for future tag development: ExTagSupport

Writing content back to the user 137
6.2.2 Exceptions and writing to the user

Note that the print methods in the JspWriter may throw IOExceptions. This is
nothing new. IO-related methods throw IOExceptions all the time, but if you
understand what is going on you can react accordingly. In the context of custom
tags, why should there be an IOException? There are several reasons, some of
which have to do with problems in connection with the user. For example, an IOEx-
ception would be thrown if the user’s browser crashed or the user pressed Reload
while we were writing back to them. Other reasons stem from the implementation
of JSPs. For example, if the JSP output buffer overflows and the autoFlush directive
is set to false, the JSP runtime will generate an IOException.

 No matter what the reason for the exception, we handle it properly and in a way
consistent with the policy acceptable for our web server. To begin with, you’ll defi-
nitely want to abort the page execution. To do so, throw a JspException (or, even
better, a JspTagException) from your tag and the JSP runtime will do the rest.
Unfortunately, aborting the page is typically not enough. JspExceptions can be a
symptom of several problems, such as poor design (buffer overflow), slow site (a
reason why the user pressed Reload), or denial of service attacks. To help identify
any of these potential problems, we should also log this exception to the servlet
container’s log file for later analysis.

6.2.3 Flushing the JspWriter’s internal buffer

The JspWriter is heavily buffered, as that allows the servlet container and the JSP
runtime to provide services such as error pages and improved performance. Also,
when an error occurs, the JSP runtime can erase the content of the buffer and for-
ward the request to the error page. Despite its benefits, buffering also has the draw-
back of delaying the receipt of the user’s response. Imagine that you are writing a
JSP file that will access several databases, and that each database query provides
enough information to build a portion of the output. Since JSP uses buffering, the
user may need to wait a long time until the page preparation is completed (many
database queries). In the meantime, the waiting user could become bored and
switch to another site.

 To keep this from happening, most developers flush the response buffer when-
ever a significant portion of the page is ready. Flushing the buffer causes its current
contents to be sent immediately to the user. The JspWriter facilitates this by expos-
ing a method named flush(), which allows an override of the normal buffering
behavior of a JSP and assures that the user receives the buffered content immediately.

138 CHAPTER 6

Tag development techniques
NOTE The flush() method does not work when tags are executed within the
body of other tags. Body-modifying tags like to collect the contents of
their bodies and manipulate them. The JSP runtime implements that be-
havior by creating an instance of BodyContent (a special derivative of
JspWriter) in which to hold the processed body. Since BodyContent is
created only for the purpose of collecting the content of the tag’s body, it
doesn’t really represent the stream of content flowing back to the user. It
is, rather, a holding tank for the content in a tag’s body. It makes sense
then that flushing a BodyContent has no meaning and, therefore, any call
to BodyContent.flush() will result in an IOException. It is therefore
important that, before flushing the JspWriter, you verify that it is not ac-
tually an instance of BodyContent.

FlushWriterTag example
The next tag we’ll look at is called FlushWriterTag, whose job is to flush the Jsp-
Writer to the user. With this tag, a JSP author can specify places in the page where
the output of the processing (up to that point) will be flushed to the user. Since we
are placing all of the necessary logic for a flush within this custom tag, a page author
can use its functionality without knowing anything about Java, the internals of the
JspWriter, or the exact type of JspWriter currently in use. FlushWriterTag’s
source code appears in listing 6.4.

package book.simpletasks;

import book.util.LocalStrings;
import book.util.ExTagSupport;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.BodyContent;

public class FlushWriterTag extends ExTagSupport {

 //some code was omitted for clarity

 public int doStartTag()
 throws JspException
 {
 try {
 JspWriter out = pageContext.getOut();
 if(!(out instanceof BodyContent)) {
 out.flush();
 }
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...

Listing 6.4 Source code for FlushWriterTag’s handler class

b

c

Setting tag attributes 139
 // log an error and throw a JspTagException
 // …
 }
 return SKIP_BODY;
 }
}

B Check if the JspWriter can be flushed and flush it to the user (if applicable) We
first check if the JspWriter in use is actually an instance of BodyContent. If so,
flushing it would throw an exception since the method is not implemented. But in
cases in which the JspWriter is not a BodyContent, it will trigger a flush call that
will immediately write the buffer contents to the user.

C Handle the IOException. Log the exception and abort the JSP execution by throwing a
JSPTagException As always, methods executing on the JspWriter can throw
IOExceptions. We handle them here by throwing a JspTagException that causes
the JSP runtime engine to abort the processing of the page.

6.3 Setting tag attributes

The second technique is one you will use in most of the tags you develop. In order
to make tags more flexible and reusable it is often necessary to let JSP authors pass
parameters to them. One way to do this is through tag attributes. As noted in
chapte 3, attributes are very common in HTML tags. One example is the HTML
 tag, in which we see usage like the following:

Manning Press

In this case, face and size are attributes that allow the page author to specify how
the tag should format the text in its body. Imagine how useless the tag
would be if it always formatted text in the same size, style, and face.

 The custom tags we build likely need attributes as well. We saw the use of
attributes in chapter 3 with our CookieValueTag, but we did not, up until now,
conduct a serious discussion on how attributes are implemented, nor did we discuss
the different options available with the custom tags attributes mechanism. Now is a
good time to start, because almost any tag (including most of our future samples)
requires a great deal of configuration, and attributes are the prime tool for that.

 Before describing the JSP runtime behavior when it tackles a tag attribute, let’s
think of the possible requirements associated with custom attributes for custom tags:

1 We need to specify, for a given tag, all of the attributes valid for it and indi-
cate which are mandatory and which are not. This information must be

140 CHAPTER 6

Tag development techniques
available at translation time to the JSP engine so that it can make decisions
about whether a particular tag is being used properly.

2 Some criteria have to be specified for validating the values an author sets for
a particular attribute. For example, if we are writing a custom version of the
HTML tag, we want to specify logic that checks if the size attribute
is a positive integer.

3 In some pages and tags you may want to pass dynamic value, such as the
results of a JSP scriptlet, as attribute values. Functionality is required to sup-
port this.

4 We need a standard way to define methods in our tag handler class that can
be called to set an attribute’s value. The JSP specification could mandate a
special method with the signature of void setAttribute(String name,
Object value) in all tags, and pass the values this way. But this is a brute
force technique requiring additional work by the tag developer (something
that specification writers prefer to avoid).

All of these requirements are met through the following conventions described by
the JSP specification:

� Special entries in the TLD indicate the valid attributes (by name) for a partic-
ular tag, as well as whether or not each attribute is mandatory. The entry can
also specify whether a particular attribute is the result of evaluating Java code
embedded in the JSP. Recall the case in which we are writing our own version
of the HTML tag. We might want our size attribute to equal the
result of some arithmetic we perform on local variables within the page.

� A special helper class that lets the tag writer code attribute validity checks
being performed by the JSP runtime during translation time.

� JavaBeans coding conventions for defining methods in the tag handler to be
used in setting methods.

We will review each of these in detail.

6.3.1 Specifying tag attributes in the TLD

In addition to the tag name and implementing class, each tag entry in the TLD file
can contain attribute information (if nothing is specified, the tag cannot have any
attributes). For each attribute the tag supports, a name must be specified, whether
or not the attribute is mandatory (defaults to no), and whether the attribute’s value
is the result of runtime expression (again, the default is no). For example, assume
that we have a tag called Greeting that will greet a returning user to our site.

Setting tag attributes 141
Greeting will be implemented by a class called book.simpletasks.GreetingTag.
Its TLD entry should look something like this:

<tag>
 <name>Greeting</name>
 <tagclass>book.simpletasks.GreetingTag</tagclass>
<tag>

Assume that Greeting has the following set of attributes:
� user

The person to greet. This is a mandatory attribute whose value can be the
outcome of a runtime expression.

� type
The type of greeting. This is a mandatory attribute whose value must be
hard-coded into the JSP file. Some possible values for this might be tip (to
show a helpful tip with this greeting), promotion (to include a link to the
current promotion on the site), standard (to output the standard greeting),
and so forth.

� tip
A tip to include with the greeting (used only if its type attribute equals tip).
This might be a tip about how to navigate the site or help for the current
page the user is on. This is an optional attribute whose value must be hard-
coded into the JSP file.

In order to support these tag attributes, our TLD entry should have three attribute
entries and will look like:

<tag>
 <name>Greeting</name>
 <tagclass>book.simpletasks.GreetingTag</tagclass>
 <attribute>
 <name>user</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>tip</name>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 </attribute>
<tag>

As you can see, each definition is enclosed within an <attribute> tag that wraps
the following three subtags: <name> to specify a name, <required> to specify

142 CHAPTER 6

Tag development techniques
whether an attribute is mandatory (true) or optional (false, the default), and
<rtexprvalue> specifying whether the value can result from a runtime expression
(true) or is a hard-coded value (false, the default).

NOTE The runtime expression assigned to an attribute value must be a JSP lan-
guage expression of the form <%= expression %>. If you want to provide
dynamic input whose complexity exceeds a scriptlet, you will need to em-
ploy another way such as using the tag’s body to provide the complex dy-
namic input. Future sections in this chapter will deal with body processing
and custom tags.

Now that each possible attribute for the tag is specified, the JSP runtime can per-
form syntactic checks when translating the JSP file to a servlet. These checks deter-
mine whether any required attributes are missing or if a certain attribute is not legal
for a tag (meaning it’s not listed in the TLD). The JSP runtime also determines
whether a certain attribute is allowed to contain the results of a runtime expression
and handles it accordingly.

 Introducing the attribute information into the TLD solved many of the transla-
tion time syntax problems associated with custom tag attributes. This affords us a
basic level of control, but what if we desire some specific conditions with which to
validate our attributes? For example, in our Greeting tag, we might want to be sure
that when the greeting includes a tip, that the page author provides its text. Recall
that specifying a value of tip for the type attribute in our tag will indicate that this
greeting should include some helpful text along with our standard “Good after-
noon, so and so” message. We could make our tip attribute mandatory, but then
page authors using the Greeting tag would be required by the JSP runtime to
include a tip even when it won’t be used. What is optimal is to make the tip
attribute required in some cases (namely, when type equals tip) and optional in
others (when type is anything besides tip). This type of conditional check is com-
monly needed for tags and, luckily, the authors of the JSP specification made provi-
sions for it. For such a complex check, the JSP specification allows tag developers to
define a TagExtraInfo object which specifies the logic for our condition.

6.3.2 Providing validity checks at translation time

You say you want to provide extra syntax checks on your attribute data? No prob-
lem. The way we accomplish this is by coding the checks in Java and injecting that
code into the JSP runtime by overriding a method in a class called TagExtraInfo.
But first, let’s take a look at TagExtraInfo and how the JSP runtime uses it.

Setting tag attributes 143
TagExtraInfo
The JSP runtime associates each custom tag with a set of metadata objects derived
from the information stored in the TLD. These metadata objects contain all the
information specified about a tag such as its name, implementing class, valid
attributes, and so forth. During the translation phase, the JSP translator consults the
data stored in these objects and, based on that, determines how to invoke a tag han-
dler and whether or not a tag is being used properly. One of these metadata objects
is TagExtraInfo but, unlike all other metadata objects the translator uses, TagEx-
traInfo does not simply echo data that is in the TLD. Instead, it is written explicitly
by the tag developer and then registered with the JSP runtime for a particular tag.
This TagExtraInfo object provides extra attribute checks and scripting variables
information to the JSP runtime.

NOTE TagExtraInfo is not mandatory and most tags manage without it. But if
you want your tag to perform special syntax checks or export scripting vari-
ables (a feature we’ll talk about in the next chapter), you need it.

Table 6.2 shows the methods in TagExtraInfo.

The only method we’ll need to use for now is isValid(). This is where we will
place the code for the JSP runtime to use in evaluating our attributes.

 Here are the steps to follow if we want our tag to have its own attribute checks:

1 Create a class that extends javax.servlet.jsp.tagext.TagExtraInfo.
This class will serve the JSP runtime during the translation phase of the page
and provide it with the extra tag-related information.

2 In the new class, override the method boolean isValid(TagData data).
The JSP runtime will call this method with the attribute information inside

Table 6.2 TagExtraInfo's methods

Method name Description

public VariableInfo[] getVariableInfo(TagData data) Used to expose new scripting variables into the JSP.
This method will be discussed in the next chapter.

public boolean isValid(TagData data) The method we'll override to check conditions on
our tag attributes. We return true if the attributes
are valid or false otherwise.

public final void setTagInfo(TagInfo tagInfo) Setter method for the TagInfo object (discussed
later in the book).

144 CHAPTER 6

Tag development techniques
the data parameter, and you will need to check these attributes and return
true if you approve them (false if not).

3 Inform the JSP runtime that the custom tag has a TagExtraInfo associated
with it. You will need to add a <teiclass> entry for your tag description in
the TLD.

Attribute validation in GreetingTag
To clarify, let’s relate this to our Greeting tag. Remember, the rule is that if the
Greeting tag’s type attribute is tip, then the tag user must specify a value for the
tip attribute. This new requirement forces us to implement a TagExtraInfo for
Greeting tag (let’s name it GreetingTagInfo). We associate the GreetingTagInfo
class with the Greeting tag in the TLD file:
<tag>
 <name>Greeting</name>
 <tagclass>book.simpletasks.GreetingTag</tagclass>
 <teiclass>book.simpletasks.GreetingTagInfo</teiclass>
 <attribute>
 <name>user</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>tip</name>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 </attribute>
<tag>

And the implementation of GreetingTagInfo will be:
import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

public class GreetingTagInfo extends TagExtraInfo {

 public boolean isValid(TagData data)
 {
 String greetType = data.getAttributeString("type"); b
 if(greetType.equals("tip")) {
 String tip = data.getAttributeString("tip"); c
 if(null == tip || 0 == tip.length()) {
 return false;
 }
 }

 return true;
 }
}

Setting tag attributes 145
B Gets the String value of type isValid() uses TagData.getAttributeString() to
collect the values of the attributes. Once collected, we determine whether the values
satisfy our condition and return either true or false. Normally, the values stored in
the TagData are instances of String, with runtime expression attributes as the excep-
tion. These attributes, by their very nature, have no value until runtime, whereas the
TagExtraInfo is used for checks at translation time. Because of this, runtime expres-
sions are assigned a value for a plain Java Object2 to represent them in TagData.

C Performs the syntactic check on type and tip.

With our GreetingTagInfo class in place we are now assured that our JSP runtime
engine will enforce proper usage of our tag. If a JSP author attempts to set the
attribute type to the value tip and not set a value to the tip attribute, the compiler
will produce an error when it tries to translate the JSP that this tag is in. The error
will produce output that varies slightly from vendor to vendor, but will ultimately
inform the developer via some message in his or her web browser that the attributes
are invalid for this tag.

 Specifying attributes and their associated syntax and content constraints should
be clear by now. The last piece left in the puzzle is how we write our tag handler to
accept and use these attributes.

NOTE In JSP1.2, the JSP file is translated into an XML document, then the JSP
runtime translates this XML document into a servlet. A JSP1.2-compliant
library can provide a validator class to work on the intermediate XML doc-
ument representing the JSP file, and in this way perform a more rigorous
validation spanning a whole document instead of one tag at a time. How-
ever, the majority of tags do not require the power, nor the complexity, of
this validator.

6.3.3 Using the JavaBeans coding conventions

Setting the attributes of Java objects is not a new problem, so the designers of the
JSP specification selected a tried-and-true solution—having the tag attribute setters
follow the JavaBeans coding conventions. JavaBeans, as you know, is the Java

2 To facilitate working with non-String attributes, TagData also has a method named getAttribute()
that returns an Object value. If your attribute is the result of a runtime expression, this is the method
to use.

146 CHAPTER 6

Tag development techniques
component model, and its specification defines the way to set a property into an
object based on the property’s name. JavaBeans uses a simple coding convention
that implies that a Bean with a writable property named foo should have a setter
method named setFoo(). Using this convention, a JavaBean’s environment can
discern the method to call for every property value it needs to set.

 Instructing the tags to expose attribute properties as JavaBeans properties solves
the problem in a very pleasant way, since the names of the attributes are known in
advance. Let’s look at what the attribute setters of the Greeting tag should look like:

public class GreetingTag extends TagSupport {

// Omitted code
 String user;
 String type;
 String tip;

 public void setUser(String user) {
 this.user = user;
 }

 public void setType(String type) {
 this.type = type;
 }

 public void setTip(String tip) {
 this.tip = tip;
 }

// Some more omitted code
}

Nice and intuitive. After we’ve defined our setter methods, we need only refer to
those local variables in any of the tag methods where attributes are required. As you
might guess by their usefulness, the majority of the custom tags you build will include
attributes. This is also true for most of the custom tags we build in the remainder of
this book, and you’ll see plenty of examples of this in the coming chapters.

6.4 Logging and messaging

Another important practice in any tag development project is logging error and
informational messages and handling errors. It is important for debugging and
troubleshooting, especially with web applications, to be able to review log files or
inspect error pages to determine where things went wrong. Virtually all the tags we
write in this book will need to have this ability. Here is an approach that will prove
useful in future tag development.

Logging and messaging 147
6.4.1 Logging

Logging messages to a file is a very common practice in software development and,
as such, is already integrated into the language or runtime environment. A JSP run-
time container is no exception, with built-in logging facilities at your disposal. The
actual location of the log file (as well as other, more advanced features, such as
whether or not they can be rolling logs) typically varies depending on the runtime
container vendor. The method for logging, however, is the same for any web con-
tainer and is done via log() of the ServletContext object. This method allows
either the logging of a simple String message or a String message and a Throw-
able in which case the stack trace for the Throwable is printed to the log.

 It would be best not to have to write the logging code in every tag we develop,
so we’ll add two simple methods to our tag base classes (ExTagSupport and
ExBodyTagSupport). These methods are:

 protected void log(String msg)
 {
 getServletContext().log(msg);
 }

 protected void log(String msg,
 Throwable t)
 {
 getServletContext().log(msg, t);
 }

 protected ServletContext getServletContext()
 {
 return pageContext.getServletContext();
 }

These methods are basically delegates to the log methods in the ServletContext.
They remove the step of having to explicitly get the ServletContext in each tag
and provide a place where we can enhance our logging, for example, by adding log-
ging levels or checking debug flags.

6.4.2 Handling and throwing exceptions

Now that we have logging functionality, we can log any exceptions caught within
our tags, but merely logging an error typically isn’t enough. Many times, an
exception will mean that the action the user was trying to process in the JSP, such
as saving registration information or performing a search, has failed. In these
cases, we want to log the problem and handle the exception properly so that the
user is aware that the intended action failed and can contact technical support or
otherwise correct the situation.

148 CHAPTER 6

Tag development techniques
 Once again, we find that the functionality for handling errors this way is built
into any JSP/Servlet container. For any JSP we write we can indicate easily where
the users’s browser should be redirected should an error occur. We do this through
the errorPage attribute of the page directive. For example:

<%@ page errorPage="errorpage.jsp" %>

indicates that if an uncaught exception is thrown during the JSP’s execution, the
user should be redirected to errorpage.jsp, which can either show a default mes-
sage to warn the user that there is a problem and/or inspect the exception that was
thrown and display information about it.3 By specifying an error page in our JSP’s
in this way, we only need to throw a JspTagException when an error occurs (such
as the following).

public int doStartTag()
 throws JspException
{
 try {
 JspWriter out = pageContext.getOut();
 //some code that could create an exception
 out.println(“Look Ma, no errors!”);
 } catch(Exception e) {
 // Log the error and throw a JspTagException
 log(“An error occurred”);
 throw new JspTagException(“Yikes!”);
 }
 return SKIP_BODY;
}

If a problem is encountered, we log the error and throw a JspTagException
which, assuming the JSP has the errorPage defined, will cause the user to be redi-
rected to the proper error page.

6.4.3 Improving logging

The logging and error handling code we’ve written thus far is pretty straightfor-
ward. It satisfies our needs but we could improve it slightly by getting our messages
from a resource file to gain flexibility for changing our messages and retrieving sup-
port internationalization in our tags. This ability is achieved with the addition of
two simple helper classes: LocalStrings, which will read the properties file with
our messages and make them available to the tags and Constants, which will pro-
vide tag-specific keys with which to refer to messages in LocalStrings.

3 For more information on how to write an error page, see the Sun tutorial at http://developer.ja-
va.sun.com/developer/onlineTraining/JSPIntro/exercises/ErrorHandling/.

Logging and messaging 149
LocalStrings
Essentially, all our LocalStrings class will do is read the LocalStrings.properties file
from the classpath which will hold name-value pairs of keys and messages. The for-
mat for the LocalStrings.properties file is:

 Key=message or, for example:

IO_ERROR=Error: IOException while writing back to the user

Defining error messages in this way lets us create LocalStrings.properties files for
every locale in which our application is deployed and lets us quickly change, add, or
delete messages. As the implementation of this class is not specifically relevant to
tag development as a whole, we will forgo an in-depth look here. You can, however,
download the source for this class from the book’s web site.

Constants
The keys to the messages in the LocalStrings.properties files will be stored in tag-
specific classes that we’ll call Constants (one Constants class for each package,
since each package is likely to have different error or information message needs).
For the previous IO_ERROR example, this key would be stored in a Constants class,
such as:

public class Constants {

 public static final String IO_ERROR = "IO_ERROR";
 //other keys follow
}

Putting it together
How does our revised error handling look with the addition of our two new classes?
See listing listing 6.5.

public class ShowFormParamTag extends TagSupport {
 // Some other code was omitted here.
 static LocalStrings ls =
 LocalStrings.getLocalStrings(ShowFormParamTag.class); b
 public int doStartTag()
 throws JspException
 {
 try {
 HttpServletRequest req =
 (HttpServletRequest)pageContext.getRequest();
 String value = req.getParameter(name);
 if(null != value) {

Listing 6.5 Improved error handling in ShowFormParamTag

150 CHAPTER 6

Tag development techniques
 writeHtml(pageContext.getOut(), value);
 }
 return SKIP_BODY;
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 log(ls.getString(Constants.IO_ERROR), ioe); c
 throw new
 JspTagException(ls.getStr(Constants.IO_ERROR)); d
 }
 }
}

b Loads the key-value pairs in the LocalStrings.properties file in which this class is
deployed.

c Gets the proper message string for an IO_ERROR.

d Gets the proper message string for an IO_ERROR and throws a JspTagException with it.

We now have a simple and clean logging and messaging interface that lets us handle
errors in our tags and send those errors to the client (with built-in internationaliza-
tion). This approach is used in the examples throughout the book.

6.5 Using the Servlet API

Another technique central to custom tag development is interacting with the Serv-
let API. If you’ve had any experience with JSP or servlet development (or you have
read through chapters 1 and 2), you are familiar with the classes and interfaces in
the Servlet API that enable web development. These are the objects that make web
programming possible by allowing access to request parameters, session variables,
the HTTP response, the user session, and so forth. To be of any use in a web envi-
ronment, custom tags must be able to access these same objects to do their work.
Since we know that custom tags and JSPs are ultimately compiled into servlets, it is
no wonder that all Java web technologies (serlvets, JSPs, or tags) eventually interact
with the same classes to do their jobs. The only difference is the way in which each
technology gains access to the objects.

 In servlets, these objects are retrieved via method parameters and local variables.
In JSPs, the objects are always available (in scope) and can be referred to by name
anywhere in the file (i.e., request, response, etc.). For JSPs, these ever present
objects are referred to as the implicit JSP objects. Since tags actually sit within JSPs,
we refer to this group of objects as the implicit JSP objects in the context of tags as
well. This simple naming convention mustn’t distract you from the fact that we’re
talking about a few key classes that reside in the Servlet API and in which all three
technologies share an interest.

Using the Servlet API 151
 What then are the implicit JSP objects and what are they used for? They are:
� The request object—To obtain request parameters and other information.
� The response object—To add headers and redirect the request.
� The session object—If we want the tag to manipulate the session directly (e.g.,

when we want to perform metaactions on the session, such as invalidation).
� The application (ServletContext) and ServletConfig objects

To obtain context and page-level initialization variables.
� All of the JSP attribute objects in the four scopes used by a JSP (application/

session/request/page)—This way the tag can interact with other portions of
the web application. For example, one tag may open a JDBC connection and
place it as an attribute in the page scope; later on another tag can take this
connection and use it to query a database.

If servlets have variables and methods to access these objects and JSPs can refer to
them by name, how do custom tags obtain them? The solution is straightforward:
all of these variables are made available to custom tags via the PageContext.

 Each tag has two mandatory attributes: its parent and the PageContextassigned
to the current JSP execution. The PageContext has many roles, but as far as JSP tags
are concerned, the most important ones are to connect the tag to the JSP environ-
ment and to provide access to this environment’s services and the implicit objects.
Let’s look at how tags can use the PageContext to get a reference to the different
objects in the environment.

6.5.1 Accessing the implicit JSP objects

A JSP implicit object represents a key object in the Servlet API and it is always avail-
able. Table 6.3 shows the available JSP implicit objects and how a tag can attain ref-
erence to each:

Table 6.3 Implicit JSP objects and their tag counterpart

JSP implicit
objects

Custom tags counterpart Typical use by the tags

pageContext The pageContext attribute of the tag. This
attribute is set on tag initialization by the
page implementation.

Obtains other implicit variables. Obtains
JSP attribute. Accesses RequestDis-
patcher type services.

request Calling pageContext.getRequest() Queries request information; for example,
query form parameters or in-bound
cookies.

152 CHAPTER 6

Tag development techniques
All the implicit JSP objects are accessible for the custom tags and the key to all of
them is the tag’s pageContext attribute. We’ll now show how to use these variables
through a few examples.

ShowFormParam tag example
In web development, we know that the only way to pass information from the
browser to the server (other than a cookie) is through the use of POST variables or
query string parameters. Accessing these parameters is, therefore, one of the most
important tasks we need to perform in a JSP. Regular JSPs can access the form
parameters through the implicit request object (usually by means of the method
String req.getParameter(String name)). How does a tag do this?

 The answer recalls the workings of a JSP or servlet except, in custom tags we
don’t have the request object at our fingertips, so we must first get a reference to it.
Looking back at the ShowFormParamTag, we remember that it prints the value of a
named form parameter into the response that is returning to the user. Since we need
to print a named value, ShowFormParamTag has an attribute that specifies the name
of the parameter to print. And, of course, we will need to have the implementation
of this tag’s unique logic actually fetch the form parameter and print its value to the
user. The resulting tag source is in listing 6.6:

response Calling pageContext.getResponse() Manipulates the response; for example,
add cookies, redirect, etc.

session Calling pageContext.getSession() Manipulates the session directly; for exam-
ple, invalidate the session or set a different
inactivity timeout.

config Calling pageContext.getServletConfig() Obtains configuration parameters for this
page.

application Calling pageContext.getServletContext() Obtains configuration parameters for this
application and uses its utility method (for
example, log()).

out Calling pageContext.getOut() Writes data into the page.

page Calling pageContext.getPage() Usually not in use. Unless coded specifi-
cally for a certain page, the tag cannot
know the services exposed by the page
class.

exception Calling pageContext.getException() Analyzes and displays in the response.

Table 6.3 Implicit JSP objects and their tag counterpart (continued)

JSP implicit
objects

Custom tags counterpart Typical use by the tags

Using the Servlet API 153
package book.simpletasks;

import book.util.LocalStrings;
import book.util.ExTagSupport;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;

public class ShowFormParamTag extends ExTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ShowFormParamTag.class);

 protected String name = null;

 public void setName(String name)
 {
 this.name = name;
 }

 public int doStartTag()
 throws JspException
 {
 try {
 HttpServletRequest req =
 (HttpServletRequest)pageContext.getRequest();
 String value = req.getParameter(name);
 if(null != value) {
 writeHtml(pageContext.getOut(), value);
 }
 return SKIP_BODY;
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 log(ls.getStr(Constants.IO_ERROR), ioe);
 throw new
 JspTagException(ls.getStr(Constants.IO_ERROR));
 }
 }

 protected void clearProperties()
 {
 name = null;
 super.clearProperties();
 }
}

B Implements the tag’s name attribute The tag starts by defining a setter for the
name attribute (setName()), and continues by implementing the doStartTag()

Listing 6.6 Source code for ShowFormParamTag’s handler class

b

c

154 CHAPTER 6

Tag development techniques
method that simply fetches the request object from the pageContext and queries
it for the named parameter. The tag ends with an odd-looking method named
clearProperties() that we will discuss in the section dealing with tag cleanup.

C Fetches the request object from the pageContext and obtains the needed form
parameter.

After creating this tag, the next step is to put together a TLD for it and test drive it
using a JSP file. Listing 6.7 is the result.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>simp</shortname>
 <uri> http://www.manning.com/jsptagsbook/simple-taglib </uri>
 <info>

 A simple sample tag library
 </info>

 <tag>
 <name>formparam</name>
 <tagclass>book.simpletasks.ShowFormParamTag</tagclass>
 <bodycontent>empty</bodycontent>

 <info> Show a single named form parameter</info>
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 </tag>
</taglib>

B The name attribute is required and can be the result of a runtime expression, providing
of flexibility in listing the parameters.

The JSP can be found in listing 6.8.

<%@ page errorPage="error.jsp" %>
<%@ taglib

Listing 6.7 Tag library descriptor for ShowFormParamTag

Listing 6.8 Sample page employing ShowFormParamTag

b

b

Using the Servlet API 155
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simp" %>

<html>
<body>

Here are your FORM request parameters:

<table>
<tr><th>Name</th> <th>Value</th> </tr>
<% java.util.Enumeration e = request.getParameterNames();
 while(e.hasMoreElements()) {
 String paramname = (String)e.nextElement();
%>
 <tr>
 <td> <%= paramname %></td>
 <td><simp:formparam name='<%= paramname %>'/> </td> e
 </tr>
<% } %>
</table>
That's all for now.
</body>
</html>

B Uses the error page that we developed in our first hello chapter.

C Instructs the page to use the simple tags library.

D Walks through all the request parameters E Prints a named request parameter
based on its runtime value The test JSP simply gets the list of FORM parameters
and iterates on them, printing the different values for each. This is also a demon-
stration of how runtime expressions in attributes can come in handy. Since we’d like
this JSP to work with any HTML form, each with any number of parameters, we
couldn’t possibly hard-code a value for the tag’s name attribute. Because we speci-
fied in the TLD that the name attribute can be the result of a runtime expression, the
JSP engine evaluates <%= paramname %> first and then passes the results of this evalu-
ation to our tag handler (by calling setName() with the result).

Figure 6.1 shows the results of accessing showform.jsp with a few parameters. The
output of our JSP is a table displaying the names and values of the FORM parameters.

RedirectTag example
Once you know how to manipulate values in the request, it is time to look at the
response. To do so, we’ll look at a tag we’ll call RedirectTag which redirects the
user’s browser to another location. Since we’ll want the JSP author to specify which
URL to redirect to, the tag will have an attribute called location.

c

d

156 CHAPTER 6

Tag development techniques
 To ensure that our redirect tag works reliably, we need to build it with one key
nuance of HTTP in mind. An HTTP redirect response includes a standard HTTP
redirect response code as well as unique redirection headers. Once a response to the
user begins, it is too late to modify the headers and response code (and thus, too
late to send a redirect). The RedirectTag must watch closely to make sure it is not
too late to modify the HTTP header. If it is, we should inform the executing JSP by
throwing an exception.

 Fortunately, the JSP infrastructure is buffering the response, which makes it
possible to ask for a redirection at any time, as long as the buffer hasn’t already
been flushed. The buf fer can be f lushed explicitly by calling pageCon-
text.getOut().flush(), or automatically when it becomes full. Once the
response is flushed to the user it is considered committed, and you will be unable
to modify the headers. listing 6.9 presents the source code for the RedirectTag.

package book.simpletasks;

import book.util.LocalStrings;
import book.util.ExTagSupport;

import javax.servlet.http.HttpServletResponse;
import javax.servlet.jsp.JspException;

public class RedirectTag extends ExTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(RedirectTag.class);

 protected String location = null;

 public void setLocation(String location)
 {

Listing 6.9 Source code for RedirectTag’s handler class

Figure 6.1 The results of accessing showform.jsp

b

Using the Servlet API 157
 this.location = location;
 }

 public int doStartTag()
 throws JspException
 {
 HttpServletResponse res =
 (HttpServletResponse)pageContext.getResponse();
 if(res.isCommitted()) {
 throw new JspException(ls.getStr(Constants.COMMITTED));
 }

 try {
 res.sendRedirect(res.encodeRedirectURL(location));
 return SKIP_BODY;
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 // log an error and throw a JspTagException
 // …
 }
 }

 public int doEndTag()
 throws JspException
 {
 super.doEndTag();
 return SKIP_PAGE;
 }

 protected void clearProperties()
 {
 location = null;
 super.clearProperties();
 }
}

B Implements the tag’s location attribute. This is the location to which we redirect the
browser.

C Fetches the response object from pageContext and checks to see if it is commited
(which is an error).

D Uses the response object to redirect the browser (keeps URL-based rewrite session
state in place) Since Servlet/JSP-based applications have two methods to keep
session state, namely cookies and URL encoding, one must support URL encoding
when redirecting the user from one page to another. To facilitate this, the request
object exposes a method (encodeRedirectURL()) whose job is to rewrite the redi-
rected URL according to the URL encoding specifications. Calling this method is
exactly what we are doing prior to calling the utility redirect method. Remember
also to call encodeURL() any time you print a URL or FORM action field into the
output sent to the user.

b

c

d

e

158 CHAPTER 6

Tag development techniques
NOTE URL encoding is a method wherein session tracking is accomplished by en-
coding the user’s session id inside all the JSP file’s URLs (each user there-
fore receives a slightly different set of URLs in his content). In most web
servers, this approach is a backup to the preferred method of placing ses-
sion information in a cookie. Some users choose not to use cookies, or
their firewalls prevent it, so embedding the session id in a URL is a fallback
approach. For more information about URL encoding, refer to the Servlet
API specification of any servlet book.

E Terminates the execution of the page by returning SKIP_PAGE from doEndTag This
is the first time any of our tags has implemented doEndTag(). We can usually leave
doEndTag() out of our tag handlers since it is implemented by our ExTagSupport
base class; however, in this tag we must alter the value returned from doEndTag()
to tell the JSP runtime engine to stop page execution after the redirection. The
default implementation of doEndTag returns EVAL_PAGE, a constant value that
instructs the JSP runtime to continue executing the remainder of the JSP page. This
default behavior is not appropriate for our redirect tag, because a redirection means
that we do not want to continue with this JSP file execution. We would like to
instruct the JSP runtime to stop the execution and return immediately. As you recall
from chapter 3, this can be accomplished by overriding the default doEndTag()
method and returning SKIP_PAGE.

Testing RedirectTag
It is useful to test the RedirectTag in cases in which the output is already committed
(to see how the tag works in case of an error), and fortunately we can accomplish
that by using a tag-only approach. Earlier we developed FlushWriterTag whose job
was to flush the output to the user, so combining these two tags serves as a good test
case for both of them.

 Listing 6.10 presents the TLD we are using which includes two tags. We define
the two tags, redirect and flush, their respective attributes (flush does not have any),
and we’re through.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>

Listing 6.10 Tag library descriptor for the redirect tag

Using the Servlet API 159
 <shortname>simp</shortname>
 <uri> http://www.manning.com/jsptagsbook/simple-taglib </uri>
 <info>
 A simple sample tag library
 </info>

 <tag> b
 <name>redirect</name>
 <tagclass>book.simpletasks.RedirectTag</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 Redirect the browser to another site. Stop the response.
 </info>
 <attribute>
 <name>location</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag> c
 <name>flush</name>
 <tagclass>book.simpletasks.FlushWriterTag</tagclass>
 <bodycontent>empty</bodycontent>
 <info> Flush the JSP output stream. </info>
 </tag>
</taglib>

B Defining the redirect tag.

C Defining the flush tag.

After naming each of the tags, we can also write the JSP driver (flushredirect.jsp) as
presented in listing 6.11:

<%@ page errorPage="error.jsp" %> b
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simp" %>
<html>
<body>

Here is some text before the redirection.

<simp:flush/>
<simp:redirect location="/"/>
Here is some text after the redirection.

</body>
</html>

Listing 6.11 Sample page employing RedirectTag and causing an exception

c

160 CHAPTER 6

Tag development techniques
B Assigns an error page

C Flushes the output before trying to rediret. This should cause an exception Note that
we force the committing of the response prior to the redirect via our <simp:flush/>
tag. The redirect tag is forced to throw an exception because the response will
already have been committed by the time it is executed. With the response commit-
ted, the user’s browser has received our server’s response and it is too late to per-
form a redirect.

Note that we set a standard JSP error page in the very first line of listing 6.11. In
most cases, doing so will cause the user’s browser to be directed to the specified
error page whenever an exception is thrown within the JSP. In this case, will the
exception that is thrown by the redirect tag cause this type of error handling? The
answer is, of course, no. Since we can’t redirect with our tag because the response is
already committed, it would only make sense that we cannot redirect to an error
page either. What we will see instead is a notification from the container that some-
thing went awry (figure 6.2).

6.5.2 Accessing the JSP attributes

JSPs are executed in the context of a Java web application, as defined in the Servlet
API specification. This specification defines a set of scopes wherein the entities tak-
ing part in the application (i.e., servlets, JSPs, custom tags, etc.) can store Java
objects. We store objects in this way in order to share them between entities and
from request to request. These Java objects are called attributes, but should not be
confused with the tag attributes we discussed earlier in this chapter. The scopes
defined for attributes are request, session, application, and page. Let’s look at each
scope in detail.

Figure 6.2 The results of accessing flushredirect.jsp

Using the Servlet API 161
Request scope
Web application entities can store objects within the ServletRequest object. This
scope makes an attribute available to all the entities taking part in the service of a
particular request. For example, a servlet can retrieve data from the database,
embed that data in a JavaBean, set the Bean as an attribute in the request object
and, finally, forward the user to a JSP. A custom tag in the JSP can then retrieve the
bean from the request and format its data for presentation to the user as HTML.4 In
this case, the servlet and the custom tag are functioning within the same HTTP
request and, therefore, the request scope is the proper choice for their data sharing.

Session scope
When web application entities are associating attributes with a particular user, they
can store objects within the HttpSession object. This scope allows all the entities
taking part in the service of a user session (typically more than one page request) to
exchange information. For example, in an ecommerce application, a certain request
may put the shopping cart as a session attribute, and the next request may perform
the checkout operation based on the previously stored cart session attribute. This
scope differs from the request scope in that it renders stored attributes available for
the life of a user’s visit (their session) instead of a single page request.

Application scope
Web application entities can store objects within the ServletContext. Associating
objects in this way makes them available to any entity, no matter what session or
request it is serving. Setting attributes in the application scope means that all enti-
ties taking part in the application can exchange information. For example, a certain
servlet can initialize a database connection pool and store it inside the ServletCon-
text; later on, other parts of the application can fetch the initialized connection
pool attribute and use it to query values from the database.

Page scope
The scripting elements within a certain JSP
file may need to share information between
themselves. For example, we may want a
custom tag to produce information and a
JSP scriptlet in the same page to display it.
How can these elements share this informa-
tion? Of the scopes we’ve covered, the most appropriate one for such a need is the

4 This facilitates the popular Model-2 approach described in chapter 2.

Page scope is only
available for the
life of one JSP.

Scope

Scope

Request scope
is available to
all JSPs or
servlets in a
request.

Figure 6.3 Page scope vs. request scope

162 CHAPTER 6

Tag development techniques
request. Using the request scope means, however, that the shared information
will be available through all the different stages of the request. Though a single JSP
will often handle the entire life of a client request, there are times when the request
will be forwarded to or included by another JSP or servlet. In such a case, storing
attributes in the request scope may pollute our request scope and attributes of the
same name from different pages may clash. To avoid this rare but possible case, the
JSP specification adds a new page scope that is implemented by the PageContext
instance. The PageContext instance for a given page holds a table with attribute
names and their values and, whenever a page’s scoped attribute is required, the
PageContext is used to fetch/store it.

Accessing attributes through PageContext
We’ve now discussed four different scopes, each with its own job, and our custom
tags need to access objects in all of them. How will the tags do that? One simple
way is to fetch the needed JSP implicit object (the request, session, application, or
pageContext) and ask that object for the attribute. The problem with this approach
is that it forces tight coupling between the tags and the different implicit objects
and their methods which (from a design and reusability perspective) is not a good
idea. Since the access methods for getting and setting attributes on each object are
so similar, a better way to handle attribute interaction might be to have uniform
access to all the different scopes. This design goal was considered in the implemen-
tation of the JSP specification and, as was realized in several methods, exposed by
PageContext. The role of these methods is to provide a common interface to all the
variable scopes. These methods are shown in table 6.4.

Table 6.4 Attribute control methods in PageContext

Method Description

public Object getAttribute(String name, int scope) Fetches a named attribute from a specific scope.
Possible scopes (in all the methods listed in this
section) are: PageContext.PAGE_SCOPE, PageCon-
text.REQUEST_SCOPE, PageContext.SESSION-
_SCOPE, and PageContext.APPLICATION_SCOPE.

public Object getAttribute(String name) Sets/adds a named attribute in a specific scope.

public void setAttribute(String name, Object
attribute, int scope)

Sets/adds attribute in the page scope.

public void removeAttribute(String name, int scope) Removes a named attribute from a specific scope.

public void removeAttribute(String name) Removes a named attribute from the page scope.

Using the Servlet API 163
PageContext also provides methods
to enumerate the names of the
attributes in a specific scope and to
find the scope of a specific attribute;
but these methods are of less impor-
tance to us. Also note that all the
methods in table 6.4 are actually
abstract in the formal PageContext
class definition. When we manipu-
late a PageContext instance within our tags (or JSPs), we are referring to a subclass
that is implemented by the JSP runtime vendor.

ShowObjectTag example
Since all the needed functionality is easily available through the PageContext, there
is no longer a reason to use the implicit objects for attribute interaction. Let us now
look at an example tag to illustrate the concepts introduced here. We’ll build a sim-
ple tag to access JSP attributes based on their name and scope which we’ll call
ShowObjectTag.

 ShowObjectTag prints the value of a named (and optionally scoped) JSP attribute
into the response returned to the user. In many ways, it is similar to ShowForm-
ParamTag, except that it prints real JSP attribute objects and not simple request
parameters. ShowObjectTag has two tag attributes that provide it with (1) the name
of the JSP attribute to show and (2) an optional scope for this attribute. From these
two attributes, the tag will fetch the matching object and present it. The source
code for ShowObjectTag is displayed in listing 6.12.

package book.simpletasks;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;

import book.util.ExTagSupport;
import book.util.LocalStrings;

public Object findAttribute(String name) Fetches a named attribute by searching for it in all
scopes; starting with the page scope, continuing
with request and session, and ending with applica-
tion.

Listing 6.12 Source code for ShowObjectTag handler class

Table 6.4 Attribute control methods in PageContext (continued)

Method Description

Application
scope

Request
scope

Page
scope

Session
scope

PageContext

setAttribute
removeAttribute getAttribute

findAttribute

Figure 6.4 PageContext provides access to all
four scopes

164 CHAPTER 6

Tag development techniques
public class ShowObjectTag extends ExTagSupport {

 public static final String PAGE_ID = "page";
 public static final String REQUEST_ID = "request";
 public static final String SESSION_ID = "session";
 public static final String APPLICATION_ID = "application";

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ShowObjectTag.class);

 protected String name = null;
 protected String scope = null;

 public void setName(String newName) { c
 name = newName;
 }

 public void setScope(String newScope) c
 {
 scope = newScope;
 }

 public int doStartTag()
 throws JspException
 {
 Object o = getPointedObject(name, scope);
 try {
 writeHtml(pageContext.getOut(), o.toString());
 return SKIP_BODY;
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 // signal that by throwing a JspException
 //
 }
 }

 protected Object getPointedObject(String name,
 String scope)
 throws JspException
 {
 Object rc = null;
 if(null != scope) {
 rc = pageContext.getAttribute(name,
 translateScope(scope));
 } else {
 rc = pageContext.findAttribute(name); f
 }
 if(null == rc) {
 // No such object, this is probably an error
 // signal that by throwing a JspTagException
 ...
 }

 return rc;
 }

b

d

e

Using the Servlet API 165
 protected int translateScope(String scope)
 throws JspException
 {
 if(scope.equalsIgnoreCase(PAGE_ID)) {
 return PageContext.PAGE_SCOPE;
 } else if(scope.equalsIgnoreCase(REQUEST_ID)) {
 return PageContext.REQUEST_SCOPE;
 } else if(scope.equalsIgnoreCase(SESSION_ID)) {
 return PageContext.SESSION_SCOPE;
 } else if(scope.equalsIgnoreCase(APPLICATION_ID)) {
 return PageContext.APPLICATION_SCOPE;
 }

 // No such scope, this is probably an error maybe the
 // TagExtraInfo associated with this tag was not configured
 // signal that by throwing a JspTagException
 //
 }

 protected void clearProperties()
 {
 name = null;
 scope = null;
 super.clearProperties();
 }
}

B The scope names, page.

C The tag properties: name and scope.

D Getting the JSP attribute object pointed by the name and scope and printing it to the result.

E When both name and atributes are provided, we are using getAttribute() to locate
the pointed attribute F When only the name is provided, findAttribute() is the
best way to locate an attribute in a consistent way getPointedObject() is where
the tag looks for the JSP attribute (and returns it). The method has two parameters:
the name of the attribute (mandatory) and the scope (recommended, but optional).
When the scope is given, we translate its name to its PageContext identifier (as in
translateScope()) and call the PageContext method getAttribute(). Doing so
will cause the PageContext to seek the named attribute in a specified scope. Assum-
ing the parameter can be found in one of the four scopes, findAttribute will
return it.

G Translates the scope name to the integer id that the pageContext understands.

To ensure proper behavior from our tag, we insist that the user provide a valid
scope in our tag’s attribute. This is a case in which we apply the tactics we just dis-
cussed for validating tag attributes. To do so, we associate a TagExtraInfo deriva-

g

166 CHAPTER 6

Tag development techniques
tive (ShowObjectTagExtraInfo) that will add a semantic check on the value the JSP
author passes to the scope attribute. This check will verify that the value is one of
the four legal scope names, or null (if not specified at all). ShowObjectTagEx-
traInfo is displayed in listing 6.13.

package book.simpletasks;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

public class ShowObjectTagExtraInfo extends TagExtraInfo {

 public boolean isValid(TagData data)
 {
 String scope = data.getAttributeString("scope");
 if(null == scope) {
 return true;
 }
 if(scope.equals(ShowObjectTag.PAGE_ID) ||
 scope.equals(ShowObjectTag.REQUEST_ID) ||
 scope.equals(ShowObjectTag.SESSION_ID) ||
 scope.equals(ShowObjectTag.APPLICATION_ID)) {
 return true;
 }

 return false;
 }
}

Note that isValid() does not assume the existence of the scope attribute; in fact it
is all right for the scope to be missing. A problem could arise, however, if the scope
name has any value other than those defined, and in such a case the method will
notify the JSP runtime by returning false.

 Now that we have the tag’s implementation available, we create a TLD entry for
it (listing 6.14) and a driver JSP file (listing 6.15).

<tag>
 <name>show</name>
 <tagclass>book.simpletasks.ShowObjectTag</tagclass>
 <teiclass>book.simpletasks.ShowObjectTagExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>

 Show a certain object by its name.
 </info>

Listing 6.13 Source code for the ShowObjectTagExtraInfo class

Listing 6.14 Tag library descriptor for ShowObjectTag

Using the Servlet API 167
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 </attribute>
</tag>

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simp" %>
<html>
<body>

Here are your application attributes:
<table> b
<tr><th>Name</th> <th>Value</th> </tr>
<% java.util.Enumeration e = application.getAttributeNames();
 while(e.hasMoreElements()) {
 String attname = (String)e.nextElement();
%>
 <tr>
 <td> <%= attname %></td>
 <td><simp:show name='<%= attname %>'
 scope="application" /> </td>
 </tr>
<% } %>
</table>
And here they are again (scope not given this time):
<table>
<tr><th>Name</th> <th>Value</th> </tr>
<% e = pageContext.getAttributeNamesInScope(e
 PageContext.APPLICATION_SCOPE);
 while(e.hasMoreElements()) {
 String attname = (String)e.nextElement();
%>
 <tr>
 <td> <%= attname %></td>
 <td><simp:show name='<%= attname %>' /> </td> f
 </tr>
<% } %>
</table>
That's all for now.
</body>
</html>

Listing 6.15 JSP file employing ShowObjectTag

c

d

168 CHAPTER 6

Tag development techniques
B Lists the attributes given the name and the scope.

C Enumerates the names of the application attributes To enumerate, we are using the
application object directly. For now we need to use a script to enumerate the
attribute names.

d Shows the named attribute using its name and scope (application).

E Enumerates the names of the application attributes using the PageContext’s getAttri-
buteNamesInScope() The results are the same as using the application object directly.

f Shows the named attribute using its name only.

The JSP driver enumerates the application-scoped attributes in two ways. These
techniques are interesting on their own since they demonstrate the manner in which
to use the PageContext attribute’s manipulation methods:

� In the first enumeration, the JSP driver uses the application object to enu-
merate its attributes. Accessing the application object makes it possible to
call application.getAttributeNames(), which retrieves an enumeration of
the application-scoped attribute names. Later, the driver will print these
attributes to the result returned to the user, using the name and the scope.

� The second shows how to use the PageContext.getAttributeNamesIn-
Scope() method, instead of directly using the application object. In doing
so, we gain the use of uniform code when we want to access the different
scopes and the end results are the same. This time the driver shows the appli-
cation attributes only by name (the scope is not provided), yet the results are
the same since the attribute names are unique.

The end results of running our JSP driver on Tomcat 3.1 are shown in figure 6.5.
 In figure 6.5, the generated page presents two identical tables filled with

Tomcat’s built-in application attributes (which point to the server’s temporary

Figure 6.5 Accessing the application attributes

Configuring tags and bundling resources 169
application directory). The attribute javax.servlet.context.tempdir is actually
part of the Servlet API 2.2 specification, and the sun.servlet.workdir is a propria-
tery implementation attribute used within Tomcat.

 In chapter 8 we will show how to use the TagExtraInfo class to add scripting
variables to the page. Doing so allows you to define and set a variable within a tag
and make that variable available to any scriptlets that follow the tag. Adding new vari-
ables in this way requires adding new attributes to the environment. We’ll discover in
chapter 8 that this is done via setAttribute() that was neglected in this section.

6.6 Configuring tags and bundling resources

Earlier in this chapter, we learned the technique of using tag attributes when pass-
ing parameters to our tags. This is a great tool, but tag attributes alone aren’t always
enough to let us really control tag configuration. Sometimes it’s preferable to hide
the more complex configuration from the page programmers, instead of burdening
them with it. We want to be able to define and modify some applicationwide param-
eters in a central place and have all of our tags use those parameters. For example,
tags sometimes need access to a database. In a data-driven application, it is likely
that more than one tag in our library will have to use a single database, in which
case it would be beneficial to configure the database properties in a single place
(within the application) and have all the tags access this centralized configuration
data. It would be an extra burden (not to mention, prone to error) to require JSP
page authors to include database configuration in the attributes of every tag on
every page.

 There are two clear approaches to configuring tags in this way:
� Use the web application built-in configuration. In this way, the tags read con-

figuration items from the ServletContext initialization parameters to con-
figure themselves. This approach is very appealing when you need to provide
a relatively limited and focused configuration. An example could be a certain
application attribute, such as the name of the database connection pool.

� Use homegrown configuration. There are several variants to this approach:
(1) Placing the configuration file in the application classpath and using
Class.getResourceAsStream() to get a reference to the file’s contents. (2)
Placing the configuration file in the application directories and using Serv-
letContext.getResourceAsStream() to get a reference to the file contents.
(3) Placing the configuration file somewhere in the file system and informing
the tag (using the web application built-in configuration) where this file is.
The homegrown configuration is very useful when you need to provide a big

170 CHAPTER 6

Tag development techniques
chunk of relatively constant information, such as the default behavior of the
tags, product license keys, and so forth.

We’ll discuss using the web application built-in configuration here. So-called home-
grown configurations can offer more control, but vary greatly and are beyond the
scope of this book.

6.6.1 Configuring a web application

Since version 2.2 the Servlet API defines two configuration scopes, ServletCon-
text and ServletConfig, as well as an API to access them, in the application scope
(accessible via a ServletContext object) you can provide configuration items that
all the servlets or JSPs (including tags) can access. In the servlet/JSP scope, accessi-
ble via a ServletConfig object, only an individual servlet or JSP file can access the
configuration items. The servlet scope holds the most interest for servlet develop-
ers. For tags, however, the application scope is much more useful, because it allows
a tag to be configured once for the entire application, no matter how many times or
on how many pages it is used.

 The APIs used by tags to access the configuration parameters (as well as the
exact configuration syntax to be used in the web application deployment descrip-
tor) are defined in the Servlet API 2.2 specification. A tag may use the Servlet-
Context object to access the broader, application-scoped configuration, and the
ServletConfig object for individual JSP file-scoped configuration. In both
objects the methods to be used are:

� getInitParameterNames() — Gets an enumeration with the names of the
configuration parameters.

� getInitParameter() — Gets the string value of a certain named configura-
tion parameter.

Note that all the parameters are string values. If you want a different type (such as
Boolean) in your parameter, you simply need to convert the string value to the
desired type.

 Accessing the configuration parameters is not available through the PageCon-
text, which makes accessing the various configuration parameters needlessly painful
(you need to access the appropriate object and call the needed method). Since
accessing configuration parameters is a relatively common practice, we’ve added a
set of initialization parameters handling methods to ExTagSupport and ExBodyTag-
Support (our previously defined tag handler base classes) as shown in listing 6.16:

Configuring tags and bundling resources 171
 // Some of the class implementation is available above...
 protected String getInitParameter(String name) b
 {
 return getInitParameter(name,
 PageContext.APPLICATION_SCOPE);
 }

 protected Enumeration getInitParameterNames() c
 {
 return getInitParameterNamesForScope(
 PageContext.APPLICATION_SCOPE);
 }

 protected String getInitParameter(String name, d
 int scope)
 {
 switch(scope) {
 case PageContext.PAGE_SCOPE:
 return getServletConfig().getInitParameter(name);

 case PageContext.APPLICATION_SCOPE:
 return getServletContext().getInitParameter(name);

 default:
 throw new IllegalArgumentException("Illegal scope");
 }
 }

 protected Enumeration getInitParameterNamesForScope(int scope) e
 {
 switch(scope) {
 case PageContext.PAGE_SCOPE:
 return getServletConfig().getInitParameterNames();

 case PageContext.APPLICATION_SCOPE:
 return getServletContext().getInitParameterNames();

 default:
 throw new IllegalArgumentException("Illegal scope");
 }
 }

 protected ServletContext getServletContext()
 {
 return pageContext.getServletContext();
 }

 protected ServletConfig getServletConfig()
 {
 return pageContext.getServletConfig();
 }
 // Some of the class implementation continues below...

Listing 6.16 Initialization parameter handling in ExTagSupport and ExBodyTagSupport

172 CHAPTER 6

Tag development techniques
B Shortcut method which fetches a named configuration parameter from the default
scope (application).

C Shortcut method which enumerates the configuration parameter in the default scope
(application).

D Fetches a configuration parameter based on the parameter name and scope.

E Enumerates the configuration parameter in a specified scope.

We’ve kept to the spirit of PageContext by providing scope-based methods to fetch
the initialization parameters, as well as shortcut methods for the most common
scope (application). This way we can use initialization parameters in our tags while
we think in terms of scopes instead of having to remember which object (Servlet-
Config or ServletContext) exposes a certain scope.

ShowConfigTag
To test drive the configuration methods and illustrate how to integrate configura-
tion parameters into your tags, we’ve written ShowConfigTag (listing 6.17). This
tag accesses named configuration parameters and prints their values to the result.
ShowConfigTag has a single tag attribute that allows us to set the name of the con-
figuration property whose value it should display. The tag will look for the value in
the page scope first; but, if it is not there, ShowConfigTag will look for the value in
the application scope.

package book.simpletasks;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;

import book.util.ExTagSupport;
import book.util.LocalStrings;

public class ShowConfigTag extends ExTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ShowConfigTag.class);

 protected String name = null;

 public void setName(String newName) {
 name = newName;
 }

 public int doStartTag()
 throws JspException
 {
 String conf = getInitParameter(name,
 PageContext.PAGE_SCOPE);

Listing 6.17 Source code for the ShowConfigTag’s handler class

Configuring tags and bundling resources 173
 if(null == conf) {
 conf = getInitParameter(name,
 PageContext.APPLICATION_SCOPE);
 }

 try {
 writeHtml(pageContext.getOut(), conf);
 return SKIP_BODY;
 } catch(java.io.IOException ioe) {
 // User probably disconnected...
 }
 }

 protected void clearProperties()
 {
 name = null;
 super.clearProperties();
 }
}

The next thing to look into is the JSP driver for ShowConfigTag (listing 6.18). You
should be familiar with the driver’s general structure, as it is a modification to the
driver used by ShowObjectTag. In this case, however, instead of enumerating the
JSP attributes in a certain scope, the driver is enumerating the configuration param-
eters (first in the application scope, then in the page scope).

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simp" %>
<html>
<body>

Here are your application initialization parameters:
<table>
<tr><th>Name</th> <th>Value</th> </tr>
<% java.util.Enumeration e = application.getInitParameterNames();
 while(e.hasMoreElements()) {
 String name = (String)e.nextElement(); b
%>
 <tr>
 <td> <%= name %></td>
 <td> <simp:conf name='<%= name %>' /> </td> </td>
 </tr>
<% } %>
</table>
And here they are again (scope not given this time):

Listing 6.18 JSP file employing ShowConfigTag

174 CHAPTER 6

Tag development techniques
<table>
<tr><th>Name</th> <th>Value</th> </tr>
<% e = config.getInitParameterNames();
 while(e.hasMoreElements()) {
 String name = (String)e.nextElement(); c
%>
 <tr>
 <td> <%= name %></td>
 <td> <simp:conf name='<%= name %>' /> </td>
 </tr>
<% } %>
</table>
That's all for now.
</body>
</html>

B Enumerates the names and shows the values of the configuration parameter in the
application scope.

C Enumerates the names and shows the values of the the configuration parameter in the
page scope.

The web application descriptor
A more interesting aspect of the JSP driver is the web application deployment
descriptor that was generated to provide initialization parameters. Until now we
have not provided configuration parameters in any of the samples. This example’s
web.xml, available in listing 6.19, configures two application-scoped parameters
and two page-level parameters.

<?xml version="1.0"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <context-param> b
 <param-name>contextparam_name_1</param-name>
 <param-value>contextparam_value_1</param-value>
 </context-param>
 <context-param>
 <param-name>contextparam_name_2</param-name>
 <param-value>contextparam_value_2</param-value>
 </context-param>

 <servlet> c
 <servlet-name>showconfig</servlet-name>
 <jsp-file>/showconfig.jsp</jsp-file>

Listing 6.19 Web application descriptor for the ShowConfigTag JSP driver

Configuring tags and bundling resources 175
 <init-param> d
 <param-name>pageparam_name_1</param-name>
 <param-value>pageparam_value_1</param-value>
 </init-param>
 <init-param>
 <param-name>pageparam_name_2</param-name>
 <param-value>pageparam_value_2</param-value>
 </init-param>
 </servlet>

 <taglib>
 <taglib-uri>
 http://www.manning.com/jsptagsbook/simple-taglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/simpletags.tld
 </taglib-location>
 </taglib>
</web-app>

B Defines a context (application-scoped) configuration parameter Each application-
scoped configuration parameter is defined in the web deployment descriptor with a
<context-param> tag. The <context-param> wraps two other tags: <param-name>,
which encloses the name of the configuration parameter name; and <param-
value>, which encloses the value of the named configuration parameter.

C To provide a configuration parameter for a JSP file, the file needs to be associated with a
servlet D Defines a servlet (page-scoped) configuration parameter To associate a
JSP file to a servlet name, define a servlet and, in lieu of an implementing class, spec-
ify the JSP file as the entity that implements the servlet (later you will be able to
bind the JSP-implemented servlet to some arbitrary URLs, instead of the URL that
represents the JSP file). When you specify a servlet for the JSP file, add initialization
parameters to this servlet by adding an <init-param> tag to the servlet definitions.
This <init-param> will again enclose <param-name> and <param-value> tags as
defined for the application-scoped parameter.

When we are ready5, we can deploy the JSP driver and the tag. After it has executed,
we will have two tables, one with the application-scoped parameters and the other
with the page-scoped parameters.

5 We omitted the tag entry in the TLD because we aren’t introducing anything new to it here.

176 CHAPTER 6

Tag development techniques
NOTE The example in this section did not use the configuration parameters for
configuration, but rather showed you how to access them. Later in this
book we will use these techniques for actual configuration purposes.

6.7 Working with the tag’s body

Until now, our tags paid little attention to their body. In fact, most of the tags we’ve
seen so far simply returned SKIP_BODY from doStartTag(), thereby instructing the
JSP environment to disregard their body content altogether. This practice is not,
however, always the case. Tags often find body content manipulation to be a very
useful tool. Some examples are:

� A tag that displays some data values (like those implemented in this chapter)
may need to have its body contain alternative content to be presented in the
absence of its intended item.

� A tag that performs the equivalent of an “if-condition” statement needs to
have a body that it can execute conditionally.

� A tag that performs looping needs to repeat its body execution until a certain
condition is meet.

� A filter/translator type of tag needs to get a reference to its body and replace
certain tag occurrences with some specified values, or translate the body into
some other format. An example of this is the LowerCaseTag we created in
chapter 3.

� A tag that executes a query could have the SQL for its query specified in its
body.

These are just a few of the possible instances in which body manipulation in a tag is
desirable.

 Generally, we can make a clear distinction between:
� Tags that need to enable/disable their entire body evaluation conditionally.

Tags that belong in this group either don’t include their body, or include it
unchanged, after the JSP engine has processed it.

� Tags that need to obtain their body content, either to send a modified version of
the body to the user or to use it as an input to another application component.

These two cases differ greatly in the APIs that enable them, and also in the way that
the JSP runtime executes the tag. The next few sections are going to tackle these
issues, starting with the simple conditional body execution.

Working with the tag’s body 177
6.7.1 Tag body evaluation

As explained in chapter 4, enabling and disabling a tag’s body evaluation is performed
using the doStartTag() return code protocol. As a rule, whenever doStartTag()
returns a value of SKIP_BODY, the JSP runtime will ignore the tag’s body (if there is
one) and neither evaluate it nor include it in the response to the user. Alternatively, a
tag can enable its body evaluation by returning a value of EVAL_BODY_INCLUDE (for
simple tags) or EVAL_BODY_TAG (for BodyTags, that is, tags that implement the
BodyTag interface).

 To illustrate this, we’ll modify the ShowFormParamTag such that its body can
contain text to be shown if the parameter cannot be found (similar to the “alt”
attribute for images in the HTML tag). Our goal is to add functionality to the
ShowFormParamTag that enables us to specify alternative content like this:

<td>
<simp:formparam name=”username”> Username was not found
</simp:formparam>
</td>

In this JSP fragment, we would expect the tag to send the client the “Username was
not found” message when the form parameter username isn’t found.

NOTE You may be asking why you would use the tag’s body to specify an alter-
native content and not some other attribute (e.g., <simp:formparam
name=”paramname” alt=“\”paramname\” was not provided”/>).
Using an attribute to specify alternative values is possible, but not as flexi-
ble as using the body. The body lets the alternative content be as complex
and dynamic as necessary; tag attributes are much more limited. It can also
be looked at as a style issue as well, where you can easily wrap your alterna-
tive content between start and end tags rather than burying it in an attribute
and worrying about quote delimiting and other tedious formatting issues.

To enable this feature in ShowFormParamTag’s handler class requires a minimal
change (confined to a single method doStartTag()), as illustrated in listing 6.20.

public class ShowFormParamBodyTag extends ExTagSupport {

 // Some code was removed

 public int doStartTag()
 throws JspException
 {

Listing 6.20 Modifying ShowFormParamTag’s handler class to make it body aware

178 CHAPTER 6

Tag development techniques
 try {
 HttpServletRequest req =
 (HttpServletRequest)pageContext.getRequest();
 String value = req.getParameter(name);
 if(null != value) {
 writeHtml(pageContext.getOut(), value);
 return SKIP_BODY; b
 }
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 // log an error and throw a JspTagException
 // …
 }
 return EVAL_BODY_INCLUDE; c
 }
 // Some more code was removed
}

B We managed to print, do not show the body.

C The variable is not available, show the alternative text contained in the body.

BodyTags and the TLD
When instructing the JSP runtime engine in handling a tag’s body, changing the tag
handler is only one of the procedures required. Each tag must also provide informa-
tion regarding its body in the TLD.

 Each tag element in the TLD should reflect how its body looks by providing an
optional <bodycontent> entry with one of the following three possible values:

� JSP—Specifies that the body of the tag contains JSP. In this case, if the body
is not empty, the JSP runtime will process it the same as any other content in
a JSP. Choosing this option means that we can include any Java scriptlet or
variable references we wish within the tag’s body and it will be processed first.
The outcome of this processing is passed to the tag as its body or included in
the response to the user. If the <bodycontent> entry is missing, the runtime
assumes that its value is JSP.

� tagdependent—Specifies that the body of the tag contains tag-dependent
data that is not JSP and not to be processed by the JSP runtime.

� empty—The tag body must be empty.

Now it would be advantageous to create a TLD tag entry for ShowFormParam-
BodyTag and specify its <bodycontent> type. To allow the body to contain Java
scriptlets (if the tag user chooses), we will assign the value JSP to the tag’s <body-
content> entry. A value of JSP is probably the most widely used bodycontent type
since it provides the greatest flexibility. Using it, the body can either be empty,

Working with the tag’s body 179
contain static content, or contain legal Java scriptlets. The new TLD tag element is
provided in listing 6.21.

<tag>
 <name>bformparam</name>
 <tagclass>book.simpletasks.ShowFormParamBodyTag</tagclass>
 <bodycontent>JSP</bodycontent> b
 <info>
 Show a single named form parameter or an alternate content
 taken from the tag's body
 </info>
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

B Defines the body of the tag to be JSP.

With our modified tag handler and TLD, we can now develop JSP code such as the
one in listing 6.22. In it you see how we take advantage of the fact that alternative
values can be used when the required form variable is not available.

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simp" %>
<html>
<body>
Checking for a form variable named <tt>"varname"</tt>:

Value of variable "varname" is
<simp:bformparam name="varname"> unspecified </simp:bformparam>
 b
That's all for now.
</body>
</html>

b Specifing an alternative content in case the variable “varname” was not sent by the form.

This section provided a small step toward implementing conditional body evalua-
tion. We will discuss this issue again, in somewhat greater detail, in chapter 9.

Listing 6.21 Tag library descriptor for the body aware ShowFormParamTag

Listing 6.22 JSP file employing ShowFormParamBodyTag

180 CHAPTER 6

Tag development techniques
6.7.2 Referencing your tag's body

The previous section showed an example of conditional body evaluation; that is, let-
ting a tag choose whether or not to include its body based on some logic in the tag.
As you noticed, our tag either ignored its body or included it in the response verba-
tim. There are times when we want to take it one step further and have our tags
inspect and modify their body. In chapter 4 we noted that tags with this ability need
to implement an interface called BodyTag (which augments the simpler Tag inter-
face). We saw an example of a BodyTag usage in the very simple LowerCaseTag
example from chapter 3. Let’s take a closer look at this technique as well as some
more meaningful examples.

 The primary difference between a BodyTag and a simple Tag is that it has access
to the content between its opening and closings markups (the tag’s body). We cov-
ered the BodyTag API and life cycle in chapter 4, but let’s recap the important
details of the API here.

� BodyTag introduces an additional method called doAfterBody() which is
called on a tag handler after the JSP engine reads the tag’s body and processes
it. This is the method in which the tag handler can inspect and/or change its
processed body.

� A tag handler accesses its processed body through its BodyContent object,
which can be retrieved simply by calling getBodyContent() as long as the
tag handler extends BodyTagSupport.

� Calling getString() on the BodyContent object for a tag returns a String
containing the processed body of the tag.

� Calling getEnclosingWriter() on the BodyContent object for a tag returns
a JspWriter which can be used to write back to the user. Note that this is dif-
ferent than the pageContext.getOut() method we used in simpler tags.
We’ll discuss the reason for this difference later in this section.

� doAfterBody() can return EVAL_BODY_TAG to cause the JSP runtime engine
to process the body again and call doAfterBody() once more (useful in tags
that iterate). It can return SKIP_BODY to inform the JSP engine to proceed to
the doEndTag() method.

A discussion of some details of how the runtime engine manages BodyTags will
clarify what is happening when a BodyTag is executed, and will also answer the
question about why we must use a different JspWriter (accessed via Body-
Content.getEnclosingWriter()) to write to the user than we did with standard
tags. This section is pretty technical and discusses some of the intricacies of the
JSP runtime that you might happily take for granted. Knowing these details will,
however, help you truly understand what happens to the tags you are building.

Working with the tag’s body 181
BodyTags and the JSP runtime engine (behind the scenes)
Having gone through an in-depth discussion of the life cycle of BodyTags in
chapter 4, you might think we know everything possible about JSP engines han-
dling BodyTags, right? Although we learned when and why the runtime engine calls
the methods of a BodyTag, what we didn’t cover was how the engine manages the
output of BodyTags. Since BodyTags can modify the contents of their body (which
can contain other tags or scriptlets) these modifications must be managed by the
engine until the tags are finished changing it. At that point they can be aggregated
and sent to the user. This process requires a little juggling by the runtime engine in
order to produce the predicted results for pages containing BodyTags. Let’s take a
look at that juggling act.

 No matter what the content of a tag’s body, whether it be scriptlets, static
HTML, or other custom tags, the JSP engine will first process this content (as if it
were anywhere else in the JSP) and then pass the results of that processing to the tag
as its BodyContent. This is not such a simple task. How can all the scriptlets and
tags suddenly hand over their results to the BodyTag? Redirecting all this output to
a new location seems to be a daunting task, but the solution chosen by the JSP spec-
ification made it all much simpler than might be imagined.

 The JSP specification’s solution works on the premise that all output flowing to
the user must be written to the implicit out object. When the JSP engine begins
processing the body of a BodyTag, it swaps the implicit out with a new JspWriter
that writes to a temporary holding tank. All the code and/or tags within a
BodyTag’s body that “think” they are writing to the user, are really writing to some
storage managed by the JSP engine. Later, when the body processing is completed,
the engine gives the enclosing BodyTag access to this storage which now contains all
the processed output of the tag’s body. Indeed, the JSP specification defines a spe-
cial JspWriter derivative called BodyContent, whose role is to serve as this holding
tank and to be the implicit out variable during the processing of a BodyTag’s body.
The BodyContent provides methods that let its developer access the content written
into the BodyContent, as well as erase this content when needed. The problem
becomes more complex in the face of BodyTag recursion—meaning BodyTag whose
body encloses yet another BodyTag, and whose body encloses yet another BodyTag,
and so forth. All these tags together force the JSP runtime to remember each tag’s
BodyContent and return to it when the enclosed tag is finished. To solve that, the
JSP runtime is managing a stack of all the active JspWriter instances in the current
page. In this way it can always pop the enclosed BodyContent out of the stack and
return to the previous JspWriter.

182 CHAPTER 6

Tag development techniques
NOTE This solution breaks down if one of the page developers breaks the rules and
uses the Writer/OutputStream exported by the implicit response object.
This is one of the reasons you must not use these Writer/OutputStreams.

This JSP fragment demonstrates how the JSP runtime uses the writer stack and the
out implicit variable:

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simp" %>

<html>
<body>
<simp:BodyTag1>
 Some text
 <simp:BodyTag2>
 Some other text
 </simp:BodyTag2>
</simp:BodyTag1>
</body>

Figure 6.6 shows the values taken by out and the use of the writer stack at any given
moment. In this figure there are five phases in the JSP execution. In the first phase
(a) the JSP runtime is passing through the file and approaches the tag named
BodyTag1. At this time, the output generated from the JSP execution goes to the
original out variable (generated by the JSP runtime) and the writer stack is empty.

 The next phase (b) occurs when the JSP runtime tackles BodyTag1 and starts to
process its body. At this point, the JSP runtime creates a BodyContent (out1) to be
used inside the body, pushes the original out on the writer stack, and sets out1 to
be the current implicit out variable. From this moment forward, the JSP output
goes into out1.

 Phase (c) occurs when the JSP runtime tackles BodyTag2 and begins processing
its body. The JSP runtime will create yet another BodyContent, out2, to be used
inside the body, push out1 onto the writer stack (there are now two writers on the
stack), and set out2 to be the current implicit out variable. Now the JSP output
goes into out2.

 The finalization of BodyTag2 triggers the next phase (d) and the JSP runtime
should return the writer state to the way it was before phase (c). To do that, the JSP
runtime pops out1 from the writer stack and sets it to be the implicit out variable.
The JSP output goes again into out1.

 In the final phase (e), when BodyTag1 completes its execution, the JSP runtime
should return the output state to its original form in phase (a). To facilitate this, the

Working with the tag’s body 183
JSP runtime pops the original out from the writer stack and sets it into the implicit
out variable. The writer stack is empty again and whatever is written by the JSP goes
again into the original Writer out.

 In general, if the tag decides it wants to process its body, it informs the JSP runtime
that it wants its body processed by returning the value BodyTag.EVAL_BODY_TAG. This
causes the JSP runtime to do the following:

� The JSP runtime takes the current JspWriter object and pushes it onto the
JspWriter stack.

� The JSP runtime takes the new BodyContent and sets it into the out implicit
object. This way the new BodyContent will collect all the processed JSP that is
written into the out object.

� The JSP runtime sets the new BodyContent object into the BodyTag, allowing
the tag to get a reference to its processed body.

� The JSP runtime calls the tag’s method doInitBody(). This lets the tag pre-
pare for the body execution. The preparation can be initializing a variable

<BodyTag1>

Current Tag
Context

Empty Out Stack out

out1

out

out

out

Empty Out Stack

out1

out2

out1

out

Writer Stack Current Writer

</BodyTag1>

<BodyTag2>

</BodyTag2>

a

b

c

d

e

P
R

O
G

R
A

M
 E

X
E

C
U

T
IO

N

Figure 6.6 Body processing performed by the JSP runtime

184 CHAPTER 6

Tag development techniques
that is needed through the body processing or introducing new JSP scripting
variables (discussed later on in the book).

� The JSP runtime processes the tag’s body and writes all the results into the
current JspWriter.

� When the body evaluation is completed, the JSP runtime needs to know if the
tag wants it to repeat the body evaluation one more time. To find out, it will
call the tag’s method doEndBody(). A return code of BodyTag.EVAL_BODY_TAG
instructs the runtime to repeat the body processing one more time, or a return
code of Tag.SKIP_BODY instructs the runtime to stop evaluating the body.

� When finished processing the body, the JSP runtime pops the previous Jsp-
Writer from the stack and assigns its value to the implicit out object.

Handling the body obviously involves many steps and is a relatively complex opera-
tion that relies on cooperation between the tag and the JSP runtime. Fortunately,
most of this complexity is not an issue since it is all handled by the JSP engine.

 It should be clear why the JspWriter returned by BodyContent.getEnclos-
ingWriter() is not always the one returned by pageContext.getOut(). In cases in
which our tag is enclosed within yet another tag (as BodyTag2 was within
BodyTag1) the enclosing writer is the BodyContent associated with the enclosing
tag; for example, the enclosing writer for out2 in our previous example was out1.

6.7.3 A BodyTag example–logging messages

Having covered the low-level details of how BodyTags are executed, let’s now
look at some examples. We can break the usage patterns for BodyTags into two
logical groups:

1 Tags that inspect and optionally modify their body one time.
Tags in this group do so by returning Tag.SKIP_BODY from doAfterBody()
the first time it is called.

2 Tags that return BodyTag.EVAL_BODY_TAG from doAfterBody() until a cer-
tain condition is met (at which point it returns Tag.SKIP_BODY to mark the
end of the processing).
In this way the tag may repeat its body processing over and over again, pos-
sibly while iterating some data source such as an array or a database.

Clearly both of these patterns fulfill two extremely useful cases, and we will deal
with both of them at length.

 We will now develop a sample tag that uses the first body pattern and offer sev-
eral examples of the second pattern in chapter 10. This tag will log whatever infor-
mation is located in its body into the servlet log. With this tag you can log errors in

Working with the tag’s body 185
your JSP files as well as improve error handler by logging the thrown exception to
the servlet log. Let’s first see how a tag can log information to the servlet logger.

Logging in servlets or JSPs
Logging in a servlet or a JSP is quite simple. Tags access the servlet log in the same
way servlets do, by using the ServletContext. The ServletContext has two log
methods that accept:

� A message string to be logged
� A message string and a Throwable object to be logged

A tag can use the pageContext to access the ServletContext by calling the
method pageContext.getServletContext(), after which it can simply call any of
the log methods.

Writing the Logging tag
If we want to design a simple tag to log messages we could just have it require two
tag attributes: a message and a Throwable runtime object. The problem with this
naïve approach is that it lacks flexibility. For example, there is a limit to what we can
put in an attribute; hence, the message is limited and we will not be able to combine
scriptlets (or other tags) with constant text. Moreover, you cannot have more than
one message line since tag attributes cannot include multiple lines of text.

 A preferable solution is to have the log tag take its input from its body. This way
we can have any JSP content inside the body (including dynamic entities such as
scriptlets and tags) and the log tag will use the processed output without a problem.
Based on this argument, we’ll build our tag so that it gets its log message from its
body, rather than through a tag attribute.

NOTE Since logging is such a common practice, we implemented log methods in
our superclasses ExBodyTagSupport and ExTagSupport. These log meth-
ods simply fetch the ServletContext object associated with this page and
call the matching log method.

As we approach our log writer implementation, we see that this will not be the last
tag we develop that needs to access its body. It will be useful then to have a base
class to provide the functionality of body reading so that more specialized tags
(such as the log writer) can just inherit from it. To accomplish this, we’ve built the
abstract class BodyReaderTag (listing 6.23).

186 CHAPTER 6

Tag development techniques
package book.util;

import javax.servlet.jsp.JspException;

public abstract class BodyReaderTag extends ExBodyTagSupport {

 public int doAfterBody()
 throws JspException
 {
 processBody(bodyContent.getString());
 return SKIP_BODY; b
 }

 protected abstract void processBody(String content)
 throws JspException;
}

B Returning SKIP_BODY instructs the JSP runtime not to repeat processing the body In
essence, the first body pattern is implemented here.

The role of BodyReaderTag is to read the body and send it as a string to be pro-
cessed by the method processBody(), implemented by an extending class. With
BodyReaderTag it is now very easy to implement our log writer tag as presented in
llisting 6.24.

package book.simpletasks;

import book.util.LocalStrings;
import book.util.BodyReaderTag;

import javax.servlet.jsp.JspException;

public class LogWriterTag extends BodyReaderTag {

 protected void processBody(String content)
 throws JspException
 {
 log(content); b
 }
}

B The method log() is implemented by the superclass ExBodyTagSupport.

Listing 6.24 shows how the simple code that is the guts of LogWriterTag is
dropped nicely into processBody(). Other tags may require more complex body

Listing 6.23 Source code for the BodyReaderTag abstract handler

Listing 6.24 Source code for the LogWriterTag’s tag handler

Working with the tag’s body 187
processing or initialization before entering the tag’s body (through the use of
doInitBody()), but they will still do the bulk of their processing in our process-
Body() method.

 Using the logger tag we can create a useful error handler page. We’ll forgo
showing the TLD for this tag, since we’ve already seen several examples of this. Our
tag’s name will be “log” for the following example (which implements an error
handling page):

<%@ page isErrorPage="true" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simp" %>
<html>
<head>
</head>
<body>
Sorry but your request was terminated due to errors:
<pre>
<simp:viewError/>
</pre>

<simp:log>
The following exception was thrown: <simp:viewError/> b
</simp:log>
</body>
</html>

B Uses the error viewer to print the thrown exeption into the logger’s body This way
the exception is reported into the servlet log.

In this example, we assume that the <simp:viewError> tag simply writes the cur-
rent exception out to the page. Let’s review what happens during a request to this
page and how our new tag is used. Note: we mention only the methods in this pro-
cess that are important to this example; some life cycle calls have been omitted.

� The page is requested and passed an exception from some other servlet or JSP.
� The HTML at the top of the page is returned to the user.
� Our <simp:log> tag is encountered and its body is processed.
� The body is written to a BodyContent object, including the static message

(“The following …”) and the result of the evaluation of <simp:viewError/>,
which is just the text of the exception.

� doAfterBody() is called, which is now handled at our base class. This, in turn,
gets the BodyContent as a string and invokes processBody() on our subclass.

� Our log method is called with the stringified BodyContent as its parameter—
thereby logging the message and the exception text to the servlet log.

188 CHAPTER 6

Tag development techniques
We’ve now built a useful BodyTag and a reusable base class that will be helpful in
upcoming examples. Later chapters will build on this section to provide high-level
functionality such as conditioning (chapter 9) and iteration (chapter 10) but the
fundamental principles we’ve learned here will not change.

6.8 Tag cooperation through nesting

A very powerful technique, though not as widespread as attribute use or even body
manipulation, is tag nesting. Until now, none of our tags cooperated directly with
any others. Admittedly, sometimes the execution of one tag affected another (such
as in the case of the flush and redirect tags, and in our previous logger example),
but this was not explicit cooperation. One tag acting alone cannot solve many real-
world cases, which brings us to the need for some cooperation between different tags.

 One obvious way that tags can cooperate is by using the JSP attributes (not to be
confused with tag attributes). In this technique, tags use the JSP attributes as a
shared memory space where they can exchange data. However, simple data
exchange using the JSP attributes is not always sufficient. For example, what if we
have a complex containment relation between two tags such that one tag has mean-
ing only within the body of another? We surely cannot force such relations using
the JSP attributes. When JSP attributes are used to coordinate two different tags, the
JSP developer is typically required to name the different attributes (usually by pro-
viding an ID to the produced attribute) and to link the consumer of the attribute by
again providing its name. Sometimes this is unnecessary extra work that can be
resolved by another coordination technique. Indeed, JSP custom tags offer an
implicit coordination technique by using parent-child relations among tags and the
tag’s parent attribute. This is known as nesting.

 In chapter 4 we said that when a certain tag is contained within the body of
another, the containing tag is the parent of the contained one (for instance, in the
error handler presented in the previous section, <simp:log> was the parent tag of
<simp:viewError>). Each tag has an attribute named parent that holds reference
to its parent tag (set by the JSP runtime). This way the tag can traverse its parent
list, searching for a specific tag with which it needs to cooperate.

 This traversing and searching for a specific class is already implemented by fin-
dAncestorWithClass()in the class TagSupport. This method takes two parame-
ters: a reference to the tag from which it should start to search (in many cases it will
be this), and a class representing the type of tag handler we are seeking. For
example, the following code fragment uses findAncestorWithClass() to find a tag
in this tag parent chain whose class is WrapperTag.

Cleaning up 189
WrapperTag wrapper =
 (WrapperTag)findAncestorWithClass(this,
 WrapperTag.class);

The class TagSupport provides yet another set of methods to ease tag cooperation
through nesting, and these are the methods that deal with value manipulation. In
many cases, contained tags will set values into their parents. One way is to have a
setter method for each such value. TagSupport, however, provides an alternative
group of value manipulation methods (including setting, removing, and getting
value) that allow tags to exchange values with others without implementing setter
methods. (All this value manipulation is implemented by keeping the values in a tag
internal hash table and exposing its set() and get() methods.) So we can now take
the wrapped class and set values into it in the following manner:

WrapperTag wrapper =
 (WrapperTag)findAncestorWithClass(this,
 WrapperTag.class);
wrapper.setValue(“valuekey”, “some value object”);

Cooperation through nesting as shown in the previous code fragment is extremely
useful when you design a tag family with specific syntactic structure (e.g., tag x
should be contained within tag y), and it provides very easy coordination requiring
nothing from the JSP developer. In the next chapter, when we implement a set of
email-sending tags, we will see a more concrete example of the benefits and syntax
for implementing this powerful feature.

6.9 Cleaning up

It’s no accident that the final technique to discuss corresponds with the last stage of
the tag’s life cycle: cleanup. Most nontrivial tags collect state while executing, and
these tags must free their state or else resource leaks will happen (Armageddon for an
application server). Cleaning resources can be a tricky proposition for components
managed by an external environment such as the JSP runtime engine. With tags, how-
ever, resource management is not the only motivation for cleanup. Tags are defined as
reusable objects and, therefore, any tag is a candidate for pooling and reuse. Not only
do tags need to free accumulated state, they also need to recycle themselves so that
each reuse starts with all the properties in the exact same states.

 To facilitate state cleanup and tag recycling, the JSP specification defines the tag
method calls wherein these steps should occur. Cleaning after your tags is not
rocket science, but doing it correctly requires a few considerations that we will
explore soon. We will begin with a short reminder of the tag’s life cycle and then

190 CHAPTER 6

Tag development techniques
discuss how this life cycle affects your tag design cleanup. We will then see how the
tags developed for this book implement cleanup and reuse.

6.9.1 Review of tag life cycle

Looking back at the tag’s life cycle as explained in chapter 4, we can divide the tag
life cycle into five stages:

� A tag is created. It should then have some initial state that allows it to be
used by the JSP environment as needed.

� The JSP environment initializes the tag. At this time, the JSP environment
sets various properties into the tag, starting with the pageContext and par-
ent properties, and ending with other properties as specified by the tag
attributes and the TLD.

� The JSP environment puts the tag into service by calling doStartTag().
The tag is now starting to collect state needed for the current execution.

� The JSP environment informs the tag that the current service is done by call-
ing doEndTag(). The tag should now free all the resources accumulated for
the ended service phase. At the end of doEndTag(), the tag should be in a
state that allows it to be reused again at the same JSP page.

� The JSP environment puts the tag into reuse by calling its release()
method. The tag should now recycle itself, returning to the same state as
when it was created.

All this life cycle discussion makes it clear that there are two cleanup points:

1 doEndTag()—The tag must free all the state allocated for its current ser-
vice period.

2 release()—The tag must recycle itself. This usually entails clearing the
tag’s properties (for example pageContext and parent), since all other
state was probably part of the service phase.

6.9.2 Exceptions and cleanup

What happens if an exception is thrown somewhere within this life cycle? Most of
the tag’s methods can throw a JspException, but the method may (of course)
throw a runtime exception such as java.lang.NullPointerException. What
then? The answer is rather simple. If doStartTag(), doEndTag(), or some other tag
callback method was called and threw an exception, in JSP1.1 the JSP runtime
would immediately call release(), not doEndTag(). This is not per the specifica-
tion, but is the common practice and a reasonable solution since the tag should not

Cleaning up 191
gather state until the call to doStartTag(). For example, look at the following
pseudocode fragment that is similar to that generated by Tomcat’s JSP1.1 translator.

Sometag _t = get Sometag ();
t.setPageContext(pageContext);
t.setParent(null);
t.setSomeProperty(…);

try {
 t.doStartTag();
 // some code was omitted …
 t.doEndTag();
} finally {
 t.release();
}

As you can see, release() is executing within a finally block, assuring us that it
will be called even in the face of exceptions.

 JSP1.2 offers an improved and regulated exception handling capability by pro-
viding the TryCatchFinally interface. Tags that implement TryCatchFinally
inform the JSP runtime that they want to be notified when exceptions occur during
their run. The JSP runtime will assure that the TryCatchFinally methods in the
tags will be called in the appropriate time.

TryCatchFinally and the JSP runtime
As stated in chapter 4, the TryCatchFinally interface exports the following methods:

� doCatch() allows the JSP runtime to inform the tag that an exception was
thrown while executing it.
The tag can then respond to the exceptional condition based on the excep-
tion parameter and the general state of the tag.

� doFinally() is called by the JSP runtime whenever the tag finishes its service
phase.
This way the tag can free the state it accumulated when serving the request.

But how will the JSP runtime assure that?
 The answer is elementary. The JSP translator surrounds the tag with code frag-

ments as demonstrated in the following listing;

// Execute the tag lifecycle
h = get a Tag(); // get a tag handler

h.setPageContext(pc); // initialize as desired
h.setParent(null);
h.setFoo("foo");

// Call the lifecycle methods inside a try-catch-finally
// fragment.

192 CHAPTER 6

Tag development techniques
try {
 doStartTag()...

 doEndTag()...
} catch (Throwable t) {
 // react to exceptional condition
 // assure that doCatch() get called
 h.doCatch(t);
} finally {
 // restore data invariants and release per-invocation resources
 // assure that doFinally() get called
 h.doFinally();
}

... other invocations perhaps with some new setters

...
h.release(); // release long-term resources

The code emitted by the JSP runtime makes sure that the tag will be notified of
exceptions, no matter what happens in or out of the tag.

 Using the TryCatchFinally interface, implementing cleanup for our tag is very
simple. All we need is to make sure that we use the method doFinally() and
doCatch() to clean up the tag, and the JSP runtime will assure us that these meth-
ods are called, even in the face of exceptions.

6.9.3 Improving our base classes to handle cleanup

The end result is that a tag should be ready to perform two tasks: cleaning its accu-
mulated state and recycling itself. Although these two tasks will usually occur in dif-
ferent methods, sometimes (when an exception is thrown) both will happen in
release() (or in doFinally()). All this rather complex cleanup logic would fit
best in some superclass and the extending classes should just implement their own
resource deallocation and recycling. So, in all the samples in this book, most
cleanup logic is buried inside ExTagSupport and ExBodyTagSupport,6 as seen in
listing 6.25.

public int doEndTag()
 throws JspException
{
 clearServiceState();
 return super.doEndTag();
}

6 For JSP1.2 we replace release() with doFinally() in the TryCatchFinally interface.

Listing 6.25 Cleanup logic in ExTagSupport and ExBodyTagSupport

b

Cleaning up 193
public void release()
{
 clearServiceState(); c

 clearProperties();
 super.release();
}

protected void clearProperties() e
{
}

protected void clearServiceState() e
{
}

B Implementing service state cleanup, calling clearServiceState, and informing that
the state is clear.

C Implementing service state cleanup in the face of exceptions. False value in isSer-
viceStateClear means that an exception prevented the execution of clearSer-
viceState.

D Clearing the tag’s properties.

E Placeholder methods for clearing tag’s properties and service state.

The idea behind the presented cleanup logic is to release the developer from think-
ing in terms of “OK, release is getting called, what should I do?” and instead, think
in terms of a specific tag logic (“OK, lets clear these two attributes.”). To help, we
extend the ExTagSupport and ExBodyTagSupport classes to expose two methods
the tag developer may wish to override. The rules for overriding these methods are
the following:

� clearProperties()—Overriding this lets the tag clear its specific custom
properties.
If the tag inherits yet another tag with properties of its own, it should add a
call to super.clearProperties() at the end of its clearProperties()
method (always do that by default, just to make sure).

� clearServiceState()—Overriding this allows the tag to free its service
phase state.
In cases of tag inheritance, the rules for clearProperties() are also applica-
ble for clearServiceState(). Note that in many cases clearService-
State() is being called twice, once in doEndTag() and again in release().
This is because we need to make sure that clearServiceState() will be
called in case of an exception.

d

194 CHAPTER 6

Tag development techniques
Using these two methods frees the tag developer to think in terms of the specific
tag state, but for the cleanup logic to work, the developer would be wise to follow
these rules:

� Tags that override release() should call super.release() to activate the
cleanup logic.

� Tags that override doEndTag() should call super.doEndTag().

These rules are not complex or restrictive as most of the tags do not need to over-
ride doEndTag() and release(). For that reason, all the tags developed for this
book are going to use this autocleanup mechanism.

JSP1.2 NOTE The ExXXXSupport classes for JSP1.2 implement the cleanup logic using
the TryCatchFinally interface by putting the call to clearServiceS-
tate() and clearProperties() inside doFinally().

As a final note, you do not have to use this proposed cleanup logic in your own tags
(although we recommend it), but it’s a good idea to observe the basic cleanup
guidelines described in this section.

6.10 Summary

We’ve covered a wealth of useful techniques here, including how to write content
to the user, how to use tag attributes, using the servlet API, initializing tags, sharing
data in different scopes, BodyTags, and cleaning up your tags’ resources. The com-
mon theme throughout these techniques is providing tags the facilities they need to
make them effective. With these skills alone, you can begin building production
quality tag libraries for your applications.

 There are still several aspects of tag development with which we’ve only flirted
so far. The remainder of the book will focus on strengthening your grasp of the
concepts learned here and applying them to real-world examples and scenarios. In
the next chapter we apply many of these techniques as we build our first, real-world
tag library for sending email.

 7Building a tag librar
for sending ema
y
il

In this chapter
� Sending email with Java
� Building a simple email tag library
� Using the tag’s body for attribute collection
� Handling input validation with tags
195

196 CHAPTER 7

Building a tag library for sending email
The concepts we’ve covered up to now provide the groundwork for building a tag
library that supports simple Internet email. Unlike many of the examples we’ve seen
so far, the tags in this chapter will be useful in real-world situations, and will dem-
onstrate appropriate usage of BodyTags, tag nesting, tag attributes, and application
configuration. We will start with a bare-bones implementation of the library and
gradually improve it by adding features and improving usability.

 The development goals for the send mail tag library are:
� To implement email functionality in a web application using JSP pages,

even without prior knowledge of how email messaging is implemented on
the Internet

� To enable tag users with limited development skills to configure their tags in a
way that uses application-level configuration (covered in the previous chapter)

� To generate the body of the email dynamically
� To generate the subject of the email dynamically
� To specify senders and receivers of the email dynamically

All of these requirements relate directly to tag development and design. However,
since our tags will provide email functionality, a brief discussion of the roles of
SMTP (Simple Mail Transfer Protocol) and its Java API is essential.

7.1 Sending email from a Java program

Sending email is by far one of the most common activities on the Web; so it is no
surprise that it passed regularization at the protocol as well as API levels. In this sec-
tion, we will discuss this regularization, starting with the protocol used to send
email and ending with the Java API used by a Java program to send email.

7.1.1 The Simple Mail Transfer Protocol

Email transmission was regularized by two standards:
� SMTP, as specified in RFC821, defines how an email client and server should

communicate in order to send messages. Briefly, SMTP specifies a client/
server architecture (as illustrated in figure 7.1) wherein the SMTP servers
listen for incoming SMTP requests on socket port number 25. When a cli-
ent wishes to send an email it connects to the SMTP server, and then sends
the server SMTP commands as defined in RFC821.

� The Internet text messages structure, as specified in RFC822, defines how an
email message should appear. Simply put, it begins with a few headers that
specify information such as the email sender, the recipients, the subject of the

Sending email from a Java program 197
email, and so forth, followed by an empty line, and then the content of the
message body.

Let’s look at a scenario in which john@foo.com
wishes to send an email to doe@bar.com. To do so,
John uses an email client to connect to his mail
server. The email client then starts an SMTP session
with commands and server return codes similar to
those in listing 7.1. Note that return codes sent by
the mail server are in bold.

220 mail.foo.com Simple Mail Transfer Service Ready
HELO some-station.foo.com
250 mail.foo.com
MAIL FROM:<john@foo.com>
250 OK
RCPT TO:<doe@bar.com>
250 OK
DATA
354 Start mail input; end with <CRLF>.<CRLF>
From: <john@foo.com>
To: <doe@bar.com>
Subject: Just a test

OK, this is the email's body as defined in RFC822. It is
terminated by a line that contains a single dot.
.
250 OK
QUIT
221 mail.foo.com Connection closed

When the SMTP server accepts a request, it begins forwarding it to the recipient
user(s). This forwarding may require the help of other SMTP servers that act as a
relay, but eventually the message arrives at the mailbox of doe@bar.com.

7.1.2 Java-based email

This discussion of SMTP was intended merely to familiarize you with its essence
before discussing the sending of email from Java programs. How do we
programmatically send email? The most obvious way is to open a socket to the
SMTP server and communicate with the syntax in RFC821. Though this works,
most seasoned Java developers know that for common functionality there is usually

Listing 7.1 A sample SMTP session

Email
client

SMTP
server

SMTP Requests

SMTP Responses

Figure 7.1 An SMTP client and
 server

198 CHAPTER 7

Building a tag library for sending email
a class (or library) already in existence. Sending email is no exception, so instead of
reinventing the wheel, let’s work with a readily available option.

Using the SMTPClient class
In searching for ways to send email from a Java program, our first stop is in the class
sun.net.smtp.SmtpClient, which is provided inside the JDK, though not sup-
ported, by Sun. Running javap on sun.net.smtp.SmtpClient yields the public
interface presented in listing 7.2.

public class sun.net.smtp.SmtpClient
 extends sun.net.TransferProtocolClient {

 public sun.net.smtp.SmtpClient()
 throws java.io.IOException;
 public sun.net.smtp.SmtpClient(java.lang.String)
 throws java.io.IOException;
 void closeMessage() b
 throws java.io.IOException;
 public void closeServer() c
 throws java.io.IOException;
 public void from(java.lang.String) d
 throws java.io.IOException;
 public java.lang.String getMailHost();
 void issueCommand(java.lang.String, int)
 throws java.io.IOException;
 public java.io.PrintStream startMessage e
 throws java.io.IOException;
 public void to(java.lang.String) f
 throws java.io.IOException;
}

B Closes the message being sent.

C Closes the connection to the SMTP server to which the message is being sent.

D This method is passed the email address of the sender.

E Connects to the server and starts the message.

F This method is passed the email address of the recipient.

Although undocumented, the SmtpClient class is well known in the Java community
for facilitating email in a way that complies with all Internet mail standards (such as
RFC821 and RFC822). Listing 7.3 shows an example of how sun.net.smtp.Smtp-
Client works in sending email.

Listing 7.2 The public interface of sun.net.smtp.SmtpClient

Sending email from a Java program 199
SmtpClient smtp = new SmtpClient(“mail.foo.com”);
smtp.from(“john@foo.com”);
smtp.to(“doe@bar.com”);
java.io.PrintStream msg = smtp.startMessage();

msg.println("From: " + "john@foo.com");
msg.println("To: " + "doe@bar.com");
msg.println("Subject: Just a test");
msg.println();
msg.println("OK, this is the email's body as”);
msg.println("defined in RFC822. It is");
msg.println("terminated by a line that contains");
msg.println("a single dot.");
msg.println(".");
smtp.closeServer();

B Constructing the email message according to RFC822 Headers come first, followed
by an empty line, and then the message body.

Working with sun.net.smtp.SmtpClient is much easier than writing your own
SMTP library, but generating the email’s content may be frustrating since you need
to write a correct RFC822-compliant message into the PrintStream returned from
startMessage(). To add to this headache, using sun.net.smtp.SmtpClient hard-
codes us to a specific mail protocol. What if we wish to use Lotus Notes proprietary
protocol instead? And what if our message should not be coded as an Internet mes-
sage? JavaMail package comes to our rescue.

Using the JavaMail API
JavaMail is a standard for Java messaging APIs that defines how a Java application
can send, list, and receive email messages in a protocol-neutral manner. The applica-
tion does not need to know how to structure the message or anything about the
internal workings of SMTP. Instead, it can use classes such as MimeMessage, Ses-
sion, and Transport to send email messages, as demonstrated in listing 7.4. Unlike
the somewhat dubious SmtpClient class, this API is the standard, Sun-supported
method for sending email using Java.

import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;

// ... Some code omitted here.

Listing 7.3 Sending email with sun.net.smtp.SmtpClient

Listing 7.4 Sending email with JavaMail

b

200 CHAPTER 7

Building a tag library for sending email
Properties props = new Properties();

props.put("mail.smtp.host", “mail.foo.com”); b

Session session = Session.getInstance(props, null);
MimeMessage message = new MimeMessage(session);
message.setFrom(new InternetAddress(“john@foo.com”));
message.addRecipient(Message.RecipientType.TO,
 new InternetAddress(“doe@bar.com”));
message.setSubject("Just a test");
message.setText("OK, this is the email's body as”);
message.setText("defined in RFC822. It is");
message.setText("terminated by a line that contains");
message.setText("a line with a single dot.");
Transport.send(message);

B Informing the location of the SMTP server via a property This approach is much
more generic than using a setter.

As shown in listing 7.4, sending email using JavaMail is virtually effortless. Unlike
the SmtpClient class, with the JavaMail API we needn’t worry about constructing a
message to comply with RFC822, as the MimeMessage class handles this for us. We
may instead rely on the intuitive setFrom(), addRecipient(), setSubject(), and
setText() methods to construct our message properly. Because of its ease of use
and feature support, we’ll implement our email tag library with JavaMail, instead of
SmtpClient or a homegrown solution.

7.2 Our first email tag

Revising our requirements for the email tag in light of this knowledge of JavaMail,
the tag should have the following information/parameters:

� The mail server (or a Session object that contains it) to send the email
� The address of the sender
� The address of the recipient
� The subject of the email (optional)
� The body of the email

7.2.1 SimpleJavaMailTag example

A naïve email tag can be designed as a simple bodyless tag wherein each parameter
is set by using tag attributes and property setters. Our email tag’s attributes and set-
ter and getter methods are illustrated in table 7.1.

Our first email tag 201
package book.mail;

import book.util.LocalStrings;
import book.util.ExTagSupport;

import java.util.Properties;

import javax.mail.Transport;
import javax.mail.Session;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.AddressException;
import javax.servlet.jsp.JspException;

public class SimpleJavaMailTag extends ExTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(SimpleJavaMailTag.class);

 protected String mailServer = null;
 protected String from = null;
 protected String to = null;
 protected String body = null;
 protected String subject = null;

 public void setServer(String server)
 {
 this.mailServer = server;
 }

 public void setFrom(String from)
 {
 this.from = from;
 }

Table 7.1 Attributes and methods in SimpleJavaMailTag

Attribute name Use Setter/Getter method

server The SMTP server to connect to for
sending email

setServer()/getServer()

to The recipient of the email setTo()/getTo()

from The sender of the email setFrom()/getFrom()

subject The subject line of the email setSubject()/getSubject()

body The body of the email setBody()/getBody()

Listing 7.5 SimpleJavaMailTag custom tag

b

202 CHAPTER 7

Building a tag library for sending email
 public void setTo(String to)
 {
 this.to = to;
 }

 public void setBody(String body)
 {
 this.body = body;
 }

 public void setSubject(String subject)
 {
 this.subject = subject;
 }

 public int doStartTag()
 throws JspException
 {
 try {
 sendMail(mailServer, from, to, body, subject); c
 return SKIP_BODY;
 } catch(AddressException ae) {
 // Log the error
 } catch(MessagingException me) {
 // Log the error
 }
 // Throw an exception to inform the error.
 }

 protected void sendMail(String smtpServer,
 String sender,
 String recipient,
 String content,
 String subject)
 throws AddressException, MessagingException
 {
 Properties props = new Properties();
 props.put("mail.smtp.host", smtpServer);
 Session session = Session.getInstance(props, null);

 MimeMessage message = new MimeMessage(session);
 message.setFrom(new InternetAddress(sender));
 message.addRecipient(Message.RecipientType.TO,
 new InternetAddress(recipient));
 if(null != subject) {
 message.setSubject(subject);
 } else {
 message.setSubject("");
 }

 if(null == content) { // Empty body
 content = "";
 }
 message.setText(content);

d

Our first email tag 203
 Transport.send(message);
 }

 protected void clearProperties() e
 {
 mailServer = null;
 from = null;
 to = null;
 body = null;
 subject = null;
 super.clearProperties();
 }
}

B Tag’s properties and their setters.

C Calls the tag. All we need to do here is send the email based on the parameters that
are provided.

D Sends an email using the specified SMTP server from the sender to the recipient. The
email's content and subject are specified parameters.

E Clears all the properties set into the tag. Called by the cleanup login that is imple-
mented in the superclass.

SimpleJavaMailTag is aptly named—all it contains are the properties and their set-
ters, in addition to an email sending routine and doStartTag(), that cause the
email to be sent.

The TLD for SimpleJavaMailTag
The TLD entry for this tag is provided in listing 7.6.

 <tag>
 <name>send</name>
 <tagclass>book.mail.SimpleJavaMailTag</tagclass>
 <teiclass>book.mail.MailTagExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Sends an email based on the provided attributes.
 </info>

 <attribute>
 <name>server</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>

Listing 7.6 SimpleJavaMailTag entry

204 CHAPTER 7

Building a tag library for sending email
 <name>from</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>to</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>subject</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>body</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

As shown in this listing, most of the tag’s attributes may have runtime values, only
the SMTP server address must, for security reasons, be a constant value. By keep-
ing the SMTP server from accepting runtime expressions, we close a door on the
option of tampering with the mail server address. Careful JSP programming can
also avoid this danger, but it is not much of a problem to have the server accept
only constant strings.

 The listing also shows that most attribute values are mandatory. This allows the
JSP runtime to verify that all the needed parameters were provided (so it does not
have to be done in the tag). Two of the attributes, from and to, may also require a
syntax check. Both are supposed to be an email address, so checking them for correct-
ness is possible (e.g., we may want to check that the address looks like
userid@domain). Fortunately for us, JavaMail makes a syntactic check for the pro-
vided address string when you create an InternetAddress. If the constructor for
InternetAddress is passed an invalid email address, an AddressException is thrown.

Adding validation code for email addresses
Recall from chapter 6 that we can specify validation code for tag attributes by defin-
ing a subclass of TagExtraInfo to be associated with our tag. In this case, our sub-
class is called MailTagExtraInfo. In it, we utilize the InternetAddressconstructor
to test the validity of the email addresses that are passed as attributes to our tag.
Listing 7.7 shows what our MailTagExtraInfo class looks like.

Our first email tag 205
package book.mail;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

import javax.mail.internet.InternetAddress;
import javax.mail.internet.AddressException;

public class MailTagExtraInfo extends TagExtraInfo {

 public boolean isValid(TagData data)
 {
 try {
 Object from = data.getAttribute("from");
 if(null != from && from instanceof String) {
 new InternetAddress((String)from); c
 }

 Object to = data.getAttribute("to");
 if(null != to && to instanceof String) {
 new InternetAddress((String)to); e
 }

 return true;
 } catch(AddressException ae) {
 /* One of the addresses failed to parse */
 ae.printStackTrace();
 }
 return false; f
 }
}

B Checks that the from attribute was specified in the JSP file and is not a runtime
expression.

C Checks that the from address is OK by constructing an InternetAddress. The con-
struction will throw AddressException in case of invalid address.

D Checks that the to attribute was specified in the JSP file and is not a runtime expression.

E Checks that the to address is OK by constructing an InternetAddress. The construc-
tion will throw AddressException in case of an invalid address.

F We had an exception. This probably means that InternetAddress had parsing errors
in one of the addresses. We will return false.

This tag is a decent start; it provides all required functionality and shields the JSP
author from the complexity of Java and SMTP.

Listing 7.7 MailTagExtraInfo’s implementation

b

d

206 CHAPTER 7

Building a tag library for sending email
Limitations of the SimpleJavaMailTag
There are, however, a few shortcomings of this email tag implementation:

� The tag is not integrated with the application in which it runs.
We might, for instance, want the tag to take advantage of any objects that are
already created in that application (such as an open mail session, if one exists).

� The tag relies on its attributes to collect information, rather than using its body.
Having a tag attribute specify the email’s body and subject also makes it rela-
tively difficult to generate it dynamically without a lot of scriptlets. It also
makes it impossible to have a static email body that contains more than a sin-
gle line;1 plus it forces the writer to escape certain characters, such as ‘”’.

Both of these issues should be resolved to produce a truly useful, reusable tag. The
remainder of this chapter will focus on incrementally overcoming these shortcomings.

7.3 Integrating the tag with the application

First we will integrate our tag with the application in which it runs. SimpleJava-
MailTag has several properties that would be better specified at the application con-
figuration level in order to avoid being repeated as tag attributes in every JSP in
which the tag appears. In chapter 6 we discussed how we can centrally specify
attributes for an entire web application. We’ll now see how to apply this technique
to our email tag, improving its configuration.

7.3.1 Specifying the SMTP server at the application level

The tag attribute for the SMTP server is a prime candidate for relocation to the
application level. It seems odd that whenever we use the email tag we have to spec-
ify the mail server in the JSP file. This intensifies if we imagine what would happen if
the name of our SMTP server needed to change. We’d be eternally searching and
replacing throughout all the JSP files in our application in order to update them
with the new server. It makes sense then to specify the mail server as an application
configuration parameter instead (a context initialization parameter) and have the
tag conduct the search for it.

7.3.2 Using an existing mail session

Why should the tag get the location of the mail server and repeatedly instantiate a
Session to it? Assuming that the application is using email extensively, shouldn’t
the tag be able to use the application’s mail session by taking it from the application

1 Tag attributes cannot contain more than one line of text. See chapter 6 for details.

Integrating the tag with the application 207
attributes (where it is stored after its first opening)? By allowing the application to
hand over an already open mail session, we make it possible for the application to
use a non-SMTP server and have our tag operate on this server. This renders our tag
much more reusable since it can operate in this way on any valid mail session.

7.3.3 Specifying the sender’s address at the application level

Another parameter that we may wish to draw from an external configuration is the
sender’s address. Why? Let’s take a look at the following scenario:

� A user wishes to open an account in a web-based service through an HTML
interface.

� To ensure that only the logged-in user can access this account, the web appli-
cation emails an acknowledgement to the user’s address with the new user-
name and password.

� The sender of the acknowledgement email has an administrative type of
address such as customerservice@ourdotcom.com.

In this scenario, the administrative address may change from time to time and we
may also use this address in several different pages. In this case it is logical to place
the email address in an application configuration parameter and have the tag imple-
mentation read that instead of providing it through a tag attribute.

7.3.4 An enhanced SimpleJavaMailTag: JavaMailTag

Given these issues, the following changes should be made to our mailer tag:
� In addition to the tag’s attribute properties, the tag must also be capable of

searching for alternative configuration parameters in the application
configuration. Priority is given to values specified in the tag attributes, but in
cases in which no value emanated from the attributes, the tag should search
for the value in the application configuration. If no attribute was found, the
tag should throw an exception.

� The tag should be able to take mail sessions from the application attributes.
The name of the attribute used for this mail session will be hard-coded.

NOTE These changes make it impossible for the JSP runtime to check that all nec-
essary attributes/parameters are provided by the JSP file developer. That is
because some of the configuration values can now come from tag at-
tributes or the application (namely, server and from). When these param-
eters come from the application layer, the JSP engine won’t know whether
the parameters are present or absent until runtime, unlike tag attributes
that are verifiable at translation time. To provide for this, we should now

208 CHAPTER 7

Building a tag library for sending email
have the server and from attributes marked as optional tag attributes, and
check for the availability of all the needed information while serving the re-
quest (instead of at translation time).

The resulting improved tag is shown in listing 7.8.

package book.mail;

import book.util.LocalStrings;

import java.util.Properties;

import javax.mail.Transport;
import javax.mail.Session;
import javax.mail.Message;
import javax.mail.MessagingException;

import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.AddressException;

import javax.servlet.jsp.JspException;

public class JavaMailTag extends SimpleJavaMailTag { b

 public static final String SMTP_SERVER =
 "smtp_server_host";
 public static final String FROM_ATTRIBUTE =
 "from_sender";

 static LocalStrings ls =
 LocalStrings.getLocalStrings(JavaMailTag.class);

 protected InternetAddress sender = null;
 protected InternetAddress recipient = null;
 protected Session session = null;

 public int doStartTag()
 throws JspException
 {
 try {
 checkParameters();
 sendMail(session, sender, recipient, body, subject);
 return SKIP_BODY;
 } catch(AddressException ae) {
 log(ls.getStr(Constants.SEND_ADDRESS_ERROR), ae);
 } catch(MessagingException me) {
 log(ls.getStr(Constants.SEND_MESSAGING_ERROR), me);
 } finally {
 sender = null;
 recipient = null;

Listing 7.8 An improved JavaMailTag implementation

c

Integrating the tag with the application 209
 session = null;
 }
 // Throw a JspTagException
 }

 protected void checkParameters()
 throws JspException
 {
 try {
 if(null == mailServer) {
 session = (Session)
 getServletContext().getAttribute(SMTP_SERVER);
 if(null == session) {
 String configuredSMTP =
 getInitParameter(SMTP_SERVER);
 if(null == configuredSMTP) {
 // Throw JspTagException
 }
 Properties props = new Properties();
 props.put("mail.smtp.host", configuredSMTP);
 session = Session.getInstance(props, null);
 }
 } else {
 Properties props = new Properties();
 props.put("mail.smtp.host", mailServer);
 session = Session.getInstance(props, null);
 }

 recipient = new InternetAddress(to);

 if(null == from) {
 String configuredFrom =
 getInitParameter(FROM_ATTRIBUTE);
 if(null == configuredFrom) {
 // Throw JspTagException
 }
 sender = new InternetAddress(configuredFrom);
 } else {
 sender = new InternetAddress(from);
 }
 } catch(MessagingException me) {
 // Throw JspTagException
 }
 }

 protected void sendMail(Session session,
 InternetAddress sender,
 InternetAddress recipient,
 String content,
 String subject)
 throws MessagingException
 {

d

e

210 CHAPTER 7

Building a tag library for sending email
 MimeMessage message = new MimeMessage(session);
 message.setFrom(sender);
 message.addRecipient(Message.RecipientType.TO,
 recipient);
 if(null != subject) {
 message.setSubject(subject);
 } else {
 message.setSubject("");
 }

 if(null == content) { // Empty body
 content = "";
 }
 message.setText(content);
 Transport.send(message);
 }
}

B By extending the SimpleJavaMailTag we have all the properties and properties setters.

C We separated our service time into two methods, one that checks parameters and cre-
ates the email objects, and the one that actually sends the email.

D Checks the provided attributes as well as fetching missing properties from the applica-
tion configuration and attributes JavaMailTag represents a significant change to
the simple email sender that we developed in the previous section, not only because
we are now reading configuration properties and application attributes, but also
because the location wherein we create the JavaMail objects shifted. A new method,
checkParameters(), was introduced, which is where we find most of our changes.
This method has two tasks:

� To make sure that in one way or another we have all the needed mail-sending
information. checkParameters() will look for the missing properties in the
application configuration (sender identity and SMTP server location) as well
as in the application attributes (mail session).

� To instantiate some of the JavaMail objects so that the mail-sending method
will only need to create the desired message and set the needed parameters
into it. Note that instantiating the addresses and the mail session also checks
whether the provided configuration parameters are correct (e.g., syntactically
correct email addresses).

E Sends the email The fact that most of the JavaMail objects are created in checkPa-
rameters() makes it possible to substantially simplify sendMail(). Now it merely
sets the already instantiated addresses as well as the subject and body into the Java-
Mail message object and sends it using the transport object.

Integrating the tag with the application 211
The revised TLD entry
Our new TLD entry should now resemble the following (note how “server” and
“from” are no longer required attributes):

<tag>
 <name>sender</name>
 <tagclass>book.mail.JavaMailTag</tagclass>
 <teiclass>book.mail.MailTagExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Sends an email based on the provided attributes
 and application configuration.

 The user can specify the SMTP server address and
 the sender's identity using context parameter. He can
 also provide an already initialized JavaMail session
 object to be used when sending the email.
 </info>

 <attribute>
 <name>server</name>
 <required>false</required> b
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>from</name>
 <required>false</required> b
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>to</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>subject</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>body</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

b Neither the from nor server attribute is mandatory.

212 CHAPTER 7

Building a tag library for sending email
7.3.5 The JavaMailTag in action

Armed with our new JavaMailTag and TLD, we can now implement improved JSP
files that provide increased management over the mail parameters. To demonstrate
the working of and advantages associated with the new tag, let’s develop a simple
registration application. The application’s role is to allow users to register them-
selves at an online resource. Access to the resource requires a user name and pass-
word that the registration application emails to the user.

 The user first needs to provide standard information such as name, address,
email address, desired username, and the like; the site accepts these parameters,
comes up with a password, and sends it by email. Since the user may also forget his
password or username, the registration application also provides a reminder service
whereby the user can provide his email address and the site will again send those to
him. It is obvious that the user can access one of two HTML forms:

� Registration form, in which the user provides basic information, thus regis-
tering with the service.

� Reminder form, wherein the user can enter his email address so that the site
will re-send him his user name and password when necessary.

The system will send one type of email for new accounts and a different type for
password reminders, yet these emails share the sender ID and the mail server.

NOTE In a real-world site, all information should be kept inside a database. Our
sample, however, is not yet centered on one, as database access is not our
primary concern here and it may move the focus away from email tag us-
age. Instead, we are using Beans that mimic possible database results by re-
turning random results. This logic is implemented in the class book.-
beans.Registrator.

The HTML-based registration form
The user registration form is presented in figure 7.2. After the users provide the
required information and submit it to the site, the site will then execute the regis-
tration JSP file.

The registration JSP file
The registration JSP file is presented in listing 7.9.

Integrating the tag with the application 213
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/email-taglib"
 prefix="mail" %>

<jsp:useBean id="reg" scope="page" class="book.beans.Registrator">
 <jsp:setProperty name="reg" property="*"/>
</jsp:useBean>
<% reg.register(); %> c

<html>
<body>

<p>
 Dear <jsp:getProperty name="reg" property="name"/>, you were
 registered sucessfuly.

 We are about to email you your user name and password.
</p>

<%
String emailBody = "Dear " + reg.getName();
 emailBody += ", you were registered to the";
 emailBody += " service under the username:\n\t";
 emailBody += reg.getUsername();
 emailBody += "\nand the passwrod:\n\t";
 emailBody += reg.getPassword();
 emailBody += ".\n\n";
 emailBody += "Good luck";

Listing 7.9 The register JSP file, employing the improved mail tag

Figure 7.2 Sample user registration form

b

d

214 CHAPTER 7

Building a tag library for sending email
%>

<mail:send
 to='<%= reg.getEmail() %>'
 subject="Your new user name and password"
 body='<%= emailBody %>' />
</body>
</html>

b Instantiates and initalizes a new Registrator bean, to be used later to register the user.

c Performs the actual registration work.

d Creates the email content; we are forced to use a scriptlet.

e Sends the email itself Note that the sender’s identity and the mail server location
are not taken from the JSP file. Instead we specify them in the web application
deployment descriptor.

The web application deployment descriptor
The web application deployment descriptor is presented in listing 7.10.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>

 <context-param>
 <param-name>from_sender</param-name>
 <param-value>sender@foo.com</param-value>
 </context-param>
 <context-param>
 <param-name>smtp_server_host</param-name>
 <param-value>mail.foo.com</param-value>
 </context-param>

 <taglib>
 <taglib-uri>

 http://www.manning.com/jsptagsbook/email-taglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/mail.tld
 </taglib-location>
 </taglib>
</web-app>

Listing 7.10 A web application descriptor for the registration application

e

b

c

Collecting attributes from the tag’s body 215
b Specifies the sender identity.

C Specifies the used SMTP server.

By providing the sender and server information as context parameters, we introduce
a greater usage flexibility. For example, if we switch mail servers, all we need then is
to modify the application configuration in a single location (and probably with
some configuration GUI). Had we stayed with our previous SimpleJavaMailTag,
we would be required to update any and all JSP files that happened to send email.
Moreover, the tag users could decide to manage the mail server connectivity them-
selves and provide a preinitialized mail session object for the tag to use, thus con-
necting the tag to servers that are not pure SMTP.

Dependence on tag attributes
JavaMailTag represents a big step in tag usability and application integration, yet
something is still missing. The following code fragment is the mail message body
generation code as taken from listing 7.9:

<%
String emailBody = "Dear " + reg.getName();
 emailBody += ", you were registered to the";
 emailBody += " service under the username:\n\t";
 emailBody += reg.getUsername();
 emailBody += "\nand the passwrod:\n\t";
 emailBody += reg.getPassword();
 emailBody += ".\n\n";
 emailBody += "Good luck";
%>

Notice that we had to generate our message body with a scriptlet. This is undesir-
able for several reasons:

� The message body is not readable.
� You need to be a programmer to write it (e.g., to escape all the key charac-

ters). This defeats the intent that tags be usable by nonprogrammers.
� You can’t take advantage of the jsp:getProperty tag provided by JSP for

fetching bean properties.

Clearly there must be a better solution, and there is. We will introduce that solution
in the next section.

7.4 Collecting attributes from the tag’s body

Had we provided requirements for the mail message body, these would probably be
rather complex—and conflicting—requirements. For example, we would like to

216 CHAPTER 7

Building a tag library for sending email
have a message body that is dynamic, yet easy to specify. We would like it to contain
runtime information from the page and request, yet not require that the message
author be a scriptlet master. How can we accomplish all that? One way is to use our
mail tag’s body in place of some of its attributes.

 In our tag’s current state, both the message subject and body are provided as tag
attributes, yet tag attributes pose major restrictions on their structures and content.
Instead of a single tag with several attributes, imagine building several tags that
could be used cooperatively to facilitate specifying email parameters. Take a look at
the following JSP fragment, demonstrating how these cooperative tags might work:

<mail:send
 to='<%= reg.getEmail() %>'>

 <mail:subject>
 Your new user name and password
 </mail:subject>
 <mail:body>
Dear <jsp:getProperty name="reg" property="name"/>, you
were registered to the service under the username:
<jsp:getProperty name="reg" property="username"/>
and the password:
<jsp:getProperty name="reg" property="password"/>.

Good luck.

 </mail:body>
</mail:send>

Isn’t that an improvement? The benefits of this approach are fairly obvious. First,
the JSP page author does not need to escape special Java characters. Second, the
page author no longer has to know Java, since the message body can now be speci-
fied as a simple block of text within the body of the <mail:body> tag. Last, the tag
author can now use the standard jsp:getProperty tag to interact with JavaBeans,
eliminating scriptlets from the page entirely.

 Rest assured, we don’t lose anything with this approach. In fact, we can always
return to the old way of sending email by using a JSP fragment similar to the following:

<mail:send
 to='<%= reg.getEmail() %>'>
 <mail:subject>
 Your new user name and password
 </mail:subject>
 <mail:body><%= emailBody %></mail:body>
</mail:send>

Collecting attributes from the tag’s body 217
7.4.1 Implementing body processing

Of course, implementing our improved solution requires a lot more development
effort:

� We will need to implement two new custom tags: one to read the subject and
one to read the body.

� The tags will need to verify that they are enclosed within a mail sender tag.
� We will need to convert the mail sender into a body aware tag.
� We will need to modify the TLD entry for the mail sender and add two new

entries for the subject and body readers.

But all this effort is worthwhile; creating a more useful email tag will render our
users more productive and save them time and money, So, let’s proceed.

7.4.2 Extending the email tag

We start by extending the email tag one more time and creating a new version
(listing 7.11) that allows its body to be processed. This is made possible by return-
ing EVAL_BODY_INCLUDE from doStartTag(), instead of the previously returned
SKIP_BODY. Also, some of our mailer tag input is now provided through its body, so
we postpone sending the email during execution of doEndTag(). We perform the
attribute validation and configuration reading in doStartTag() in order to validate
them as soon as possible and throw an exception in case of trouble. We also add a
state cleanup routine because we now have state that carries over from
doStartTag() to doEndTag(). Note here that the email body and subject are now
part of the tag’s internal state (instead of the attributes-based properties that they
were previously), and so require a cleanup when the tag’s execution is complete.
Other than that, the mail methods used by the tag have not been radically altered.
We use the same body and subject attributes setters, except that now they are called
by the enclosed message and subject tags.

package book.mail;

import book.util.LocalStrings;
import javax.servlet.jsp.JspException;
import javax.mail.MessagingException;

public class BodyJavaMailTag extends JavaMailTag {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(BodyJavaMailTag.class);

Listing 7.11 Source code for BodyJavaMailTag

218 CHAPTER 7

Building a tag library for sending email
 public int doStartTag()
 throws JspException
 {
 checkParameters(); b
 return EVAL_BODY_INCLUDE; c
 }

 public int doEndTag()
 throws JspException
 {
 try {
 sendMail(session, sender, recipient, body, subject);
 return super.doEndTag();
 } catch(MessagingException me) {
 log(ls.getStr(Constants.SEND_MESSAGING_ERROR), me);
 }
 // ...
 // Throw JspTagException
 }

 protected void clearServiceState() e
 {
 sender = null;
 recipient = null;
 session = null;
 subject = null;
 body = null;
 super.clearServiceState();
 }
}

B Input verification is done in doStartTag() to abort execution when errors are found.

C Lets the JSP runtime into the tag’s body.

D Sends the email and then calls the superclass’s doEndTag() to trigger cleanup.

E Cleans the tag’s state.

Getting the tag to accept body-based parameters did not require much work. We
now move to implement the subject and message tags.

7.4.3 Creating tags for subject and message

The subject and message tags are similar to the BodyReaderTag presented in the
previous chapter, but with a few modifications:

� Both tags should check that they are located within the body of a mail sender.
� The subject tag should trim its body value from unwanted leading and trail-

ing white characters.
� Both tags should set the appropriate values into the mail sender.

d

Collecting attributes from the tag’s body 219
Creating a base class
Achieving the first of those bulleted items in a base class that will be verifying the
enclosing condition is straightforward. This base class implementation is presented
in listing 7.12.

package book.mail;

import book.util.LocalStrings;
import book.util.BodyReaderTag;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.Tag;

public abstract class EnclosedMailBodyReaderTag extends
 BodyReaderTag {

 public int doStartTag()
 throws JspException
 {
 checkEnclosedInMailer();
 return super.doStartTag();
 }

 protected void checkEnclosedInMailer()
 throws JspException
 {
 Tag t = getParent();
 if(null == t) { c
 // Error throw JspTagException
 }

 if(t instanceof BodyJavaMailTag) { d
 return;
 }
 // Error throw JspTagException
 }
}

B Checks that the tag is enclosed within the wanted parent during doStartTag() to
abort execution when errors are found. We call the super class’s doStartTag() to let
BodyReaderTag do its job.

C Checks that there is an enclosing tag.

D Checks that the enclosing tag is of the correct type.

Now that the parenthood validation has been performed by a base class, it can be
extended by adding the specific actions required by the subject and message-body tags.

Listing 7.12 Source code for the mail body and subject readers’ super class

b

220 CHAPTER 7

Building a tag library for sending email
Creating the subject tag
Listing 7.13 presents the subject tag.

package book.mail;

import book.util.LocalStrings;

import javax.servlet.jsp.JspException;

public class MessageSubjectReaderTag extends
 EnclosedMailBodyReaderTag {

 protected void processBody(String subject)
 throws JspException
 {
 subject = subject.trim();

 if(subject.length() > 0) {
 BodyJavaMailTag mailer =
 (BodyJavaMailTag)getParent();
 mailer.setSubject(subject);
 }
 }
}

B Sets the subject into the mail sender.

Listing 7.13 shows how uncomplicated the subject tag is, as almost all the work is
performed elsewhere, starting with collecting the body content and ending with
syntax/enclosement verification. As a result, when processBody() is being called,
the tag does not have much to do other than call its parent (which we’ve verified to
be available and of the right type) with the filtered subject. Recall that process-
Body() was specified in the BodyReaderTag base class in the previous chapter.

Creating the message body tag
The message body tag (listing 7.14) is equally simple.

package book.mail;

import javax.servlet.jsp.JspException;

public class MessageBodyReaderTag extends
 EnclosedMailBodyReaderTag {

 protected void processBody(String content)

Listing 7.13 Source code for the MessageSubjectReaderTag

Listing 7.14 Source code for MessageBodyReaderTag

b

Collecting attributes from the tag’s body 221
 throws JspException
 {
 ((BodyJavaMailTag)getParent()).setBody(content);
 }
}

Creating the TLD
Now that all relevant tags are in place, we write a TLD (listing 7.15) that describes
our new email tag library.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>simplemail</shortname>
 <uri> http://www.manning.com/jsptagsbook/simplemail-taglib </uri>
 <info>
 A tag library that describes the simple mail tag
 </info>

 <tag>
 <name>send</name>
 <tagclass>book.mail.BodyJavaMailTag</tagclass>
 <teiclass>book.mail.MailTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Sends an email based on the provided attributes,
 application configuration, and body parameters.

 The user can specify the SMTP server address as well as
 the sender's identity using context parameter. He can
 also provide an already initialized JavaMail session
 object to be used when sending the email.

 The user should specify the email message body through
 the message tag.

 The user can specify the email message subject through
 the subject tag.
 </info>

 <attribute>
 <name>server</name>
 <required>false</required>

Listing 7.15 Tag library descriptor entries for the mailer tags

222 CHAPTER 7

Building a tag library for sending email
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>from</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>to</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>message</name>
 <tagclass>book.mail.MessageBodyReaderTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Provides a place holder for the user to enter the
 contents of the mail's body.
 </info>
 </tag>

 <tag>
 <name>subject</name>
 <tagclass>book.mail.MessageSubjectReaderTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Provides a place holder for the user to enter the
 contents of the mail's message.
 </info>
 </tag>
</taglib>

Here, our mail tags were redefined to own a body (JSP body) and the body and
subject attributes were dropped, as we will use the message and subject tags instead.

Using the tags in a revised registration JSP file
A modified registration handler JSP that uses the new body-based tags is available in
listing 7.16 and is much simpler than the one used earlier.

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/email-taglib"
 prefix="mail" %>

<jsp:useBean id="reg" scope="page" class="book.beans.Registrator">
 <jsp:setProperty name="reg" property="*"/>

Listing 7.16 The register JSP file, employing the mail, subject, and message tags

Adding assertions and input validation 223
</jsp:useBean>
<% reg.register(); %>

<html>
<body>

<p>
 Dear <jsp:getProperty name="reg" property="name"/>, you were
 registered successfully.

 We are about to email you your user name and password.
</p>

<mail:send to='<%= reg.getEmail() %>'>
 <mail:subject>Your new user name and password</mail:subject>
 <mail:message>
Dear <jsp:getProperty name="reg" property="name"/>, you were
registered to the service under the username:
<jsp:getProperty name="reg" property="username"/>
and the password:
<jsp:getProperty name="reg" property="password"/>.
 Good luck.
 </mail:message>
</mail:send>

</body>
</html>

B Composes the message naturally by editing the message tag’s body.

With this improvement we've produced a tag library that satisfies all our original
goals for functionality and usability. As it stands, our email tag library is a clean,
workable solution that satisfies basic email requirements. We improved our tags, not
by exposing greater capabilities, but by making them less burdensome to use. Keep
in mind that, above all else, using tags must be relatively effortless. It is, in fact, the
very nature of tags to offer a simple interface to complex logic. If using them is only
slightly less complicated than learning and writing Java, we haven't improved web
development for our page authors. Although we've met all our design goals for this
library, there is still one more section we can improve: input validation. We will
focus on that for the remainder of this chapter.

7.5 Adding assertions and input validation

Our registration application certainly functions well enough as it stands, but it
could use improvement. Currently, we don’t perform any input validation. Our reg-
istration JSP assumes that all needed incoming parameters are available and their
content is correct; that the user provides a valid email address or name. In the real

b

224 CHAPTER 7

Building a tag library for sending email
world, of course, we cannot make such assumptions. The reason is a well-known
law of development: “If users can break it, they will.”

7.5.1 Performing validation using custom tags

Validating input parameters is by no means limited to a specific registration applica-
tion. Input validation has a broad range and yet, our application won’t be complete
without it, so let’s check how validation might be implemented with custom tags.

 If tags should be declarative, it would then be a design mistake to define a set of
tags that lets the user program validation into the page. Instead, we want to look for
a declarative and reusable approach that allows a relatively naïve user to specify limita-
tions over the incoming parameters, and an action to take in case said limitation is not
met. Fortunately, there is such an approach and it is in widespread use—assertions.

Using assertions
An assertion is a programming element with a condition and action which is some-
times implicit. When working with an assertion, the developer can specify its condi-
tion and, if this condition is not met, the assertion’s action takes place (a failed
assertion may trigger a program exit). We might, for example, use an assertion to
check whether a particular HTTP form parameter is a number, or to check whether
a form field has been left empty by the user. We can use assertions in our page to
specify a condition or set of conditions on our parameters, and the action can be to
forward the request to an assertion failed handler URI.

Specifying conditions using assertions
A possible syntax is provided in the following JSP fragment:

<jspx:assert parameter="paramname"
 handler="path to handler"
 condition1="some condition"
 condition2="some condition"
 ...
 conditionN="some condition"/>

The conditions specified in the assertion may range from checking the existence of
the parameter to a condition on the parameter value or its type. For example, one
could assert on our email address parameter in the following way:

<jspx:assert parameter="email"
 handler="/request_parameter_error.jsp"
 exists="true"
 type="emailaddress"/>

We can imagine some complex conditions that would not work with this approach
to evaluating assertions. Supporting increasingly complex assertions will force us to

Adding assertions and input validation 225
implement a brand new language for defining conditions, and this is something
we’d like to avoid. Luckily, most cases require only a relatively simple condition,
such as the one presented in our email assertion sample, so assertions will satisfy our
need for declarative parameter checking.

 Having chosen a model for parameter verification, we ask ourselves what condi-
tions we might ever pose over incoming parameters:

� Existence conditions
To check if a certain parameter is available in the input parameters.

� Type conditions
The parameter may be of type number, alphanumeric string, alpha-only
string, email address, and so forth.

� One of condition
We may want the parameter to be one of the items in a list.

� Interval condition
We may want the parameter to be in a certain range.

� Equality condition
We may want the parameter to be of a certain value.

7.5.2 Creating a tag for the send mail tag library

There is no end to the conditions we may want to pose; hence, one important
characteristic of the assert tag should be its capacity to be extended by adding new
assertion conditions. To meet this requirement, the following interface and tag
were developed.

The Assertion interface
The cornerstone to assert tag is the Assertion interface (listing 7.17) that
defines what is to be implemented by the developer in adding new assertion logic to
our tag.

package book.assert;

public interface Assertion {

 public boolean assert(String value,
 String condition);

 public boolean isValidCondition(String condition);
}

Listing 7.17 Source code for the Assertion interface

226 CHAPTER 7

Building a tag library for sending email
The assertion developer should implement two methods:
� assert() accepts a value and a condition parameter and performs the asser-

tion logic. It should return true if successful, and false otherwise. For
example, a type assertion will get a type specification as the condition param-
eter and will have to check whether the value is of the given type. AssertTag
should use this method while the page is executed.

� isValidCondition() verifies whether its input is a valid assertion parameter.
For example, in a type assertion the method should check if the condition
parameter is one of the types known to the assertion. This method should be
used by the TagExtraInfo to be implemented for AssertTag.

Creating AssertTag
Now that the assertion logic is implemented by different assertion objects,
AssertTag (listing 7.18) is more concerned with instantiating the assertion objects,
accepting the conditions posed on the assertion, and calling the correct assertion
with the correct condition. When the condition fails, the tag takes the failed param-
eter’s name, adds it to the request attributes, and forwards the request to the
required handler.

package book.assert;

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletRequest;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;

import javax.mail.internet.InternetAddress;

import book.util.LocalStrings;
import book.util.StringUtil; b
import book.util.ExTagSupport;

public class AssertTag extends ExTagSupport {

 public static final String GUILTY_VAR_TAG = "guilty_variable";

 public static final String TYPE_TAG = "type";
 public static final String EXISTS_TAG = "exists";
 public static final String ONEOF_TAG = "oneof";

 // Additional static final objects where omitted for
 // clarity.

 static Assertion typeAssertion = new TypeAssertion();
 static Assertion existsAssertion = new ExistsAssertion();
 static Assertion oneofAssertion = new OneOfAssertion();

Listing 7.18 Source code for AssertTag

Adding assertions and input validation 227
 protected boolean isAsserted = false;

 protected String parameterName = null;
 protected String handlerUri = null;

 protected String type = null;
 protected String exists = null;
 protected String oneof = null;

 public void setParameter(String parameterName)
 {
 this.parameterName = parameterName;
 }

 public void setHandler(String handlerUri)
 {
 this.handlerUri = handlerUri;
 }

 public void setType(String type)
 {
 this.type = StringUtil.trimit(type);
 }

 public void setExists(String exists)
 {
 this.exists = StringUtil.trimit(exists);
 }

 public void setOneof(String oneof)
 {
 this.oneof = StringUtil.trimit(oneof);
 }

 public int doStartTag()
 throws JspException
 {
 ServletRequest req = pageContext.getRequest();
 String value = req.getParameter(parameterName); c

 if(null == exists) {
 exists = "true";
 }

 if(!existsAssertion.assert(value, exists)) {
 isAsserted = true;
 } else if((null != type) &&
 !typeAssertion.assert(value, type)) {
 isAsserted = true;
 } else if((null != oneof) &&
 !oneofAssertion.assert(value, oneof)) {
 isAsserted = true;
 }
 return SKIP_BODY;
 }

d

228 CHAPTER 7

Building a tag library for sending email
 public int doEndTag()
 throws JspException
 {
 int rc = isAsserted ? SKIP_PAGE : EVAL_PAGE; e

 if(isAsserted) {
 pageContext.setAttribute(GUILTY_VAR_TAG, f
 parameterName,
 PageContext.REQUEST_SCOPE);

 ServletRequest req = pageContext.getRequest() g
 RequestDispatcher rd =
 req.getRequestDispatcher(handlerUri);
 try {
 rd.forward(pageContext.getRequest(),
 pageContext.getResponse());
 } catch(Throwable t) {
 // Log and throw an exception
 }
 }
 super.doEndTag(); h
 return rc;
 }

 protected void clearServiceState()
 {
 isAsserted = false;
 super.clearServiceState();
 }

 protected void clearProperties()
 {
 parameterName = null;
 handlerUri = null;
 type = null;
 exists = null;
 oneof = null;
 super.clearProperties();
 }

 static class ExistsAssertion implements Assertion i
 {
 public boolean assert(String value,
 String condition)
 {
 boolean exists =
 new Boolean(condition).booleanValue();

 if(exists && null != value) {
 return true;
 }
 return false;
 }

Adding assertions and input validation 229
 public boolean isValidCondition(String condition)
 {
 return condition.equals("true") ||
 condition.equals("false");
 }
 }

 static class TypeAssertion implements Assertion
 {
 // Implementation omitted for clarity
 }

 static class OneOfAssertion implements Assertion
 {
 // Implementation omitted for clarity
 }
}

B stringUtil is a utility class with string-related methods.

c Gets the named parameter.

d Runs the assertions The exists assertion is always applied.

e If an assertion fails, we abort the page execution.

f Adds a request attribute with the name of the failed parameter.

g Forwards the request to the error handler.

h Runs the superclass so that the cleanup logic will run.

i Sample implemenation of an assertion object All the assertion objects in this listing
are implemented as inner classes of the AssertTag handler. We did not have to do it
this way, but the typical assertion object was small and was used only within the tag
handler. The tag handler implements common operations, such as property setters,
for all the different conditions that we may pose (and the values are stored inter-
nally within the tag). During the later service execution, any non-null condition will
trigger an assertion whose failure triggers the execution of the error handler.

One can argue that AssertTag implementation is not as generic as it could be. For
example, we could instantiate all assertion objects dynamically using Class.for-
Name(), thereby removing the hard-coded dependency between the tag handler
and the different assertions. There is some truth in this claim; however, there is a
problem in implementing this approach, namely implementing the property setters
and validation for each condition. As you saw in listing 7.17, each assertion object
accepts two arguments: the value to assert on and a condition parameter. The han-
dler tag implementation should know in advance all the different assertions, so that
it will be able to receive the properties via its property setters when running, and

230 CHAPTER 7

Building a tag library for sending email
validate them during the translation phase. Chapter 9 discusses implementing such
tag-contained action relationships, wherein a tag may validate the properties of
some internal condition operation with ease. For now, we will hold off on providing
a fully extensible and generic assertion tag and not use Class.forName() to instan-
tiate a set of configured assertion objects.

Validating user input
While implementing AssertTag, we need to also consider validating the attribute
values provided by the user. The user should provide attribute values to be used as
condition parameters to the assertions, and it is clear that not all possible values are
accepted. Hence, we should validate them during the translation time. To facilitate,
AssertExtraInfo was created to accompany AssertTag; this class validates the con-
ditions posed by the user and ensures that their provided values are correct.

package book.assert;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

public class AssertExtraInfo extends TagExtraInfo
{
 public boolean isValid(TagData data)
 {
 String cond =
 (String)data.getAttribute(AssertTag.EXISTS_TAG);
 if((null != cond) &&
 !AssertTag.existsAssertion.isValidCondition(cond)) {
 return false;
 }

 cond = (String)data.getAttribute(AssertTag.TYPE_TAG);
 if((null != cond) &&
 !AssertTag.typeAssertion.isValidCondition(cond)) {
 return false;
 }

 cond = (String)data.getAttribute(AssertTag.ONEOF_TAG);
 if((null != cond) &&
 !AssertTag.oneofAssertion.isValidCondition(cond)) {
 return false;
 }

 return true;
 }
}

Listing 7.19 Source code for AssertExtraInfo

b

Adding assertions and input validation 231
B Gets a condition value and validates it using the appropriate assertion object Note how
easy it is to implement AssertExtraInfo. All of the actual validation work is per-
formed by isValidCondition(), so that all AssertExtraInfo needs to do is fetch
the condition values from TagData and use the appropriate assertion object to vali-
date it.

Creating the TLD
The last item to discuss before using AssertTag is its TLD entry (listing 7.20).

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>assert</shortname>
 <uri> http://www.manning.com/jsptagsbook/assert-taglib</uri>
 <info>
 A tag library for the assert tag
 </info>

 <tag>
 <name>assert</name>
 <tagclass>book.assert.AssertTag</tagclass>
 <teiclass>book.assert.AssertExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Asserts based on a set of conditions
 </info>

 <attribute>
 <name>parameter</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>handler</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>

Listing 7.20 Tag library descriptor for AssertTag

232 CHAPTER 7

Building a tag library for sending email
 <name>exists</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>oneof</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
</taglib>

Listing 7.20 shows how all the attributes in AssertTag are constant strings. Why
did we exclude runtime expressions for this tag? Because translation time valida-
tion of runtime attributes is impossible, and incorrectly configured assertions may
cause problems ranging from plain embarrassment (this site is throwing exceptions
instead of showing a reasonable error page) to profit loss (if the assertion needs to
rule out stolen credit card numbers). By preventing assertions from being runtime
expressions, we discover any syntax problems in our attributes before the page is
requested by a user (at translation time), and well before any damage can occur. It
is preferable to be safe than sorry, so we’ve decided that the assertion tag is one
such case.

Using assertion mail tags in the registration JSP file
Having developed the assertions, let’s use them in our registration page (listing 7.21).
In its current sample state, the registration page accepts three parameters:

� The user’s email—Validate with an existence and type (email) assertions.
� The user’s name—Validate with an existence and type (alpha) assertions.
� The user’s family name—Validate with an existence and type (alpha) assertions.

An error in any one of the three parameters ought to trigger an internal redirection
to an error handler that will present the offending parameter.

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/email-taglib"
 prefix="mail" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/assert-taglib"
 prefix="assert" %>

<assert:assert parameter="email"
 handler="/parameter_error.jsp"

Listing 7.21 A JSP file employing the assertion email tags

b

Summary 233
 type="email"/>
<assert:assert parameter="name"
 handler="/parameter_error.jsp"
 type="alpha"/>
<assert:assert parameter="family"
 handler="/parameter_error.jsp"
 type="alpha"/>

<%-- snip

 Starting with this point we are back to the
 previous JSP file

 snip --%>

</body>
</html>

b Asserting a single parameter based on its type, the existence assertion is implicit.

Asserting on a named parameter became a very simple matter. We actually reduced
many potential scriptlets (to validate parameters) and made our page more robust.
Our AssertTag may not be the Holy Grail (we cannot pose really complex ques-
tions on the parameters) but it is extensible. However, even with the relatively lim-
ited functionality that we have, assertions can solve most problems we confront in
our daily work.

7.6 Summary

Tags have clearly facilitated sending emails with dynamically generated content
from within a JSP. We have gone from something that usually requires in-depth
know-how, such as SMTP and Java mail, and rendered its power in such a pervasive
way that any page author comfortable with tags can use it. The key issue was not
the underlying email technology, but how to create a simple, robust interface to
that technology with custom tags. The role of custom tags is not to develop a new
technology, but to enable rapid development and to expose a wanted technology in
the most convenient, pervasive way to your JSP developers.

 Is there a drawback to the tag approach? Perhaps. A Java developer may look at
the tags and believe that they are less easy to use than JavaBeans. He or she may say,
“… Hey, I put all that effort into the tag and all I got is functionality that I could
have implemented with a couple of scriptlets and a simple email bean….” This may
be true, yet that effort freed us from the need to maintain all the scriptlets involved
in JavaBeans usage, and helped further separate the duties of Java coders from the
JSP page authors.

234 CHAPTER 7

Building a tag library for sending email
 We also covered how assertions can be implemented. All applications need to
check their input parameters, and normally this requires a fair amount of Java code.
Yet, as we saw, a great deal of what is needed for parameter checking can be accom-
plished declaratively, using tags similar to the assertions developed for our tiny
application. The key issue here is not that we can cover 100 percent of possible val-
idations, but that we can extend our assertions whenever there is a need and that
the code within the assertions can now be reused without any modification.

 Ultimately, the goal of this chapter was to apply the previously discussed con-
cepts of tag development to a library with real-world use. A gradual approach was
chosen to enforce not only the mechanics of tag development, but also to under-
stand fully the tools at our disposal for producing a well-designed, robust solution.

 8Using JavaBeans with tags
In this chapter
� Reflection and the Java Reflection API
� JavaBeans primer
� Printing bean attributes
� Exploring bean attributes and

scripting variables
235

236 CHAPTER 8

Using JavaBeans with tags
One of the most common tasks in any Java program is to get and set properties of
JavaBeans. Web development in Java is no different in that respect. In an object-ori-
ented Java web application, your servlets and JSPs likely contain a good deal of code
that interacts with JavaBeans. For servlets, working with JavaBeans is the same as is
in any other Java program: beans are instantiated and the proper get or set methods
are called. JSPs interact with JavaBeans differently, by using three standard tags that
are defined in the JSP specification (<jsp:usebean>, <jsp:setProperty>, and
<jsp:getProperty>). These tags, discussed in chapter 2, instantiate beans, intro-
duce them to the page as scripting variables, and set properties in the beans in addi-
tion to printing properties back to the user. Unfortunately, the functionality
exposed by the JavaBeans-related tags is rather limited. Two of the more trouble-
some limitations are:

� The tags cannot operate on objects unless they were introduced to the page
via a JavaBeans-related JSP tag.

� The tags cannot manipulate indexed properties (properties that have multiple
values and are referred to by an index like getSomeProperty(i)).

These shortcomings render JavaBeans standard tags useless for solving many practi-
cal problems such as iterating over an indexed property of a bean, or printing an
attribute value of a bean that we would rather not introduce as a JSP scripting vari-
able. Not surprisingly, developers increasingly find themselves in need of a more
versatile set of JavaBeans tags. In this chapter, we address that need.

 To this end we’ll create a custom tag library that supports interaction with Java-
Beans, free from the limitations of today’s standard tags. We start with a brief dis-
cussion of the Java reflection API, which we’ll soon see is crucial to building our
JavaBean tags. We then move on to discuss the JavaBean component standard and
how reflection assists us in getting and setting properties of Java Beans. We finish by
creating our custom tag library which will consist of two tags: one that allows us to
expose any JavaBean as a JSP scripting variable, and one that supports printing of
the value of any JavaBean property to the user.

8.1 Java reflection

If tags are to be useful, they must be created such that they are versatile enough to
get and set the properties of any JavaBean. This requires that they be capable of
calling a bean’s get or set methods, simply by knowing the class name of the Java-
Bean and the name of the property to be manipulated. If you’ve heard of the Java
reflection API, you know that it is a set of Java methods and classes that allows us to
do just that. Using reflection, we can learn about the attributes of any Java class
(including its methods) and even call any method of the class we choose. Before

Java reflection 237
discussing the integration of reflection, JavaBeans, and custom tags, a quick look at
the Java reflection API is in order. This will not be an in-depth description of reflec-
tion or method invocation by using reflection, but will provide a helpful explana-
tion of the technology, its advantages, and the API that can put it to good use.

8.1.1 What is reflection?

Javasoft describes the purpose of the reflection API as “to enable Java code to dis-
cover information about the fields, methods, and constructors of loaded classes, and
to use reflected fields, methods, and constructors to operate on their underlying
counterparts on objects, within security restrictions.” Quite a mouthful, so what
does all that mean? In brief, the reflection API lets us learn about a particular Java
class and then use that knowledge to properly call methods, get and set fields, or
call the constructor of any instance of that class. The reflection API is particularly
useful for debuggers and development tools that need to browse classes and display
certain information from the classes to the user. The API is also useful when parts of
your Java program have to interact with any type of Java object and need to learn
about it at runtime. The tags we create in this chapter will have this requirement,
since they will be designed to work with any and all JavaBeans. This definition can
be clarified with a few examples of programs that use Java reflection.

Reflection and development tools
Consider the case of an environment wherein a developer manipulates program
components through the GUI of a Java IDE (like JBuilder, Visual Café, etc.). We
recognize that the development environment knows nothing about the compo-
nents in advance, yet it must be able to present the developer with the possible
methods that can be used in each component. Spying on the component to discern
the interfaces, methods, and properties they expose can be accomplished using the
reflection API, and is better known as Introspection.

Reflection and scripting engines
Another case is one wherein a user employs a JavaBean-capable scripting engine to
create an application. Since a script is not usually precompiled with all its compo-
nents, it does not know anything in advance about the different JavaBeans compo-
nents with which it will interact at runtime (not even their type); yet, during
runtime it should be able to perform the following:

� Introspect the components to find the method that it should execute.
� Dynamically execute the method on the scripted object.

Both of these functions are available through the reflection API.

238 CHAPTER 8

Using JavaBeans with tags
 By now you have seen how reflection is used to learn about a class at runtime.
The tags we build in this chapter, like the standard JavaBean tags, will take as tag
attributes the reference to an instance of a JavaBean and, for our printing tag, also
the name of the property to print. Since the JSP author may specify any JavaBean
instance at all, our tags will need to be able to take that instance at runtime and use
reflection to find and call the proper methods. It should be clear that the only way
to accomplish this is through the reflection API. Let us look at the syntax of that
API in greater detail.

NOTE Using the reflection API in order to introspect methods and later invoke
them follows strict security rules that disallow overriding the Java security
model. For example, one may not introspect private and package protect-
ed classes.

8.1.2 The reflection API

The reflection APIs are contained in the Java package java.lang.reflect. Some of
the more important classes in this package are shown in table 8.1.

The Class class
The means to obtain all the constructors, methods, and fields for a particular class
(or interface) in Java is through an instance of java.lang.Class. We obtain an
instance of Class that corresponds to a particular Java class in a couple of ways:

� Calling Class.forName(“com.manning.SomeClass”) where “com.manning.
SomeClass” is the fully qualified name of the class we want to study.

� Referring to the class field of a particular Java class. Code for this looks like:

Class c= com.manning.SomeClass.class

Table 8.1 Classes that are important for reflection

Class Description

Class Represents a Java class. Although not part of the java.lang.reflect pack-
age, this class is very important for reflection.

Method Represents a method of class (also allows that method to be called).

Array Supports creation and accessing of Java arrays (without having to know the exact
type of the array in advance).

Constructor Represents a specific class constructor (and allows that constructor to be called).

Java reflection 239
Once we have a Class object for our class, we may use methods such as getConstruc-
tors(), getMethods(), and getFields() to retrieve information about this class.

The Method class
For the purpose of this book, the class most important to us is Method, mainly
because, by obtaining a Method object from a certain class, we are able to call that
method repeatedly and on any instance of this class. This is the approach we will use
to call the get and set property methods within the custom JavaBean tags we are
building. The methods that are part of the Method class are presented in table 8.2,
along with a brief description of each.

Some of the methods mentioned in table 8.2, such as equals(), hashCode(), and
toString() do not require any real explanation, as anyone familiar with Java pro-
gramming knows how and when to use these methods. The remainder of the meth-
ods, however, require some ground rules:

Table 8.2 Methods in the Method class

Method name Description

getDeclaringClass() Returns a Class object that represents the class or interface to
which that method belongs. Think of it as the Class object that, if
you call one of its getMethod() methods, will return this as the
Method object.

getModifiers() Returns an integer representation of Java language modifiers. Later
on, the Modifier utility class can decode this integer.

getName() Returns the name of the method.

getParameterTypes() Returns an array of Class objects that represent the parameter
types, in declaration order, of the method.

getReturnType() Returns a Class object that represents the return type of the
method.

invoke(Object obj,
Object[] args)

Invokes the underlying method on the specified object with the spec-
ified parameters.

getExceptionTypes() Returns an array of Class objects representing the types of excep-
tions declared to be thrown by the method.

equals(Object obj) Compares this Method against the specified object.

hashCode() Returns a hashcode for this Method.

toString() Returns a string describing this Method.

240 CHAPTER 8

Using JavaBeans with tags
� All parameters and return codes in invoke() are passed wrapped within an
object type. If some of the parameters or the return value are of primitive
types (such as char) they need to be wrapped in an object (such as
java.lang.Character). Table 8.3 presents the primitive types and their cor-
responding wrapping objects.

� The object on which invoke() will execute the method is passed as the obj
parameter to invoke().

� Since the number of parameters differs from one method to another,
invoke() accepts an array of objects in which we place the parameters
according to the order of declaration.

� The value returned from the invoked method is returned from invoke()
(wrapped in an object if necessary).

� Exceptions thrown by the invoked methods are thrown by invoke()
wrapped inside a java.lang.reflect.InvocationTargetException (from
which you can then obtain the original exception).

� All methods that return type information, for example getParameter-
Types(), return Class objects that represent this type. Even void has a
Class object of type java.lang.Void to represent it.

The Method class provides the functionality we need to call any method with what-
ever arguments are necessary for a given class. This class will be very useful as we
build our JavaBean tags.

Table 8.3 The primitive types and their corresponding wrappers

Primitive type Wrapper class

boolean java.lang.Boolean

char java.lang.Character

byte java.lang.Byte

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

Java reflection 241
Array class
The Array class offers functionality for manipulating arrays of an unknown type.
We’ll forgo a deeper discussion of this class since the tags in this chapter won’t need
to use it.

Constructor class
Constructor class represents the constructor of a JavaBean, including any and all
parameters to it (much like Method class). This class will not be used in our tags
either so, once again, we’ll forgo discussing it here.

Using reflection: QueryRequestTag
To better understand reflection, let’s develop a tag that uses the reflection API. The
tag will call some methods (to fetch a request property) of the request (HttpServ-
letRequest) object using reflection. The source for the QueryRequestTag is in
listing 8.1.

package book.reflection;

import java.util.Hashtable;
import java.lang.reflect.Method;
import java.lang.reflect.InvocationTargetException;

import book.util.LocalStrings;
import book.util.ExTagSupport;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.jsp.JspException;

public class QueryRequestTag extends ExTagSupport {

 static Object []params = new Object[0];

 static Hashtable methods = new Hashtable();

 static LocalStrings ls =
 LocalStrings.getLocalStrings(QueryRequestTag.class);

 static {
 try {
 Class []p = new Class[0];
 Class reqc = HttpServletRequest.class;
 methods.put("method",
 reqc.getMethod("getMethod", p));
 methods.put("queryString",
 reqc.getMethod("getQueryString", p));
 methods.put("requestURI",
 reqc.getMethod("getRequestURI", p));

Listing 8.1 Source code for the QueryRequestTag handler

b

242 CHAPTER 8

Using JavaBeans with tags
 methods.put("userPrincipal",
 reqc.getMethod("getUserPrincipal", p));
 methods.put("remoteUser",
 reqc.getMethod("getRemoteUser", p));
 } catch(Throwable t) {
 }
 }

 protected String property = null;

 public void setProperty(String property)
 {
 this.property = property;
 }

 public int doStartTag()
 throws JspException
 {
 try {
 Method m = (Method)methods.get(property); c
 if(null != m) {
 writeHtml(pageContext.getOut(),
 m.invoke(pageContext.getRequest(), d
 params).toString());
 return SKIP_BODY;
 } else {
 // Log and throw a JspTagException
 }

 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 // Log and throw a JspTagException
 } catch(InvocationTargetException ite) { e
 // Exception in the called method
 // Log and throw a JspTagException
 } catch(IllegalAccessException iae) {
 // We are not allowed to access this method
 // Log and throw a JspTagException
 }
 }

 protected void clearProperties()
 {
 property = null;
 super.clearProperties();
 }
}

B Obtains method objects from the HttpServletRequest class and stores them in a
method cache for later use. First we create an empty array of classes (see note) and
procure an instance of HttpServletRequest from which to retrieve the methods.

b

Java reflection 243
Instead of the conventional approach, our tag extracts Method objects from the
HttpServletRequest class and stores them in a hashtable. The key to the stored
methods is the name of the property the method retrieves.

NOTE Note that we use Class.getMethod() to obtain the Method objects.
Class.getMethod() expects two parameters: (1) The name of the meth-
od and (2) an array of class objects in which each entry in the array specifies
the type of argument. In our case, using this approach was easy since all the
needed methods have an empty argument list (array of size zero). This pa-
rameter is required since Java supports method overloading; meaning, a
class may contain more than one method with the same name as long as
the arguments to those methods are different.

C Fetches the method object from the method cache; the key to the method cache is the
property name D Invokes the method using the current request variable; the
method parameter list is an empty array of objects (no parameters) When a request
arrives, serving it is a breeze. All we need to do is fetch the method object that is
stored in the cache, using the property name as the key. We use the Method class’s
invoke() with the current request object as the first parameter, and an empty argu-
ment list as the second. We use an empty argument list since none of the methods
we are calling takes any arguments.

E Handles the InvocationTargetException If the invoked method throws an
exception, we will need to handle it here.

The implementation of QueryRequestTag as seen in listing 8.1 is very different
from what might have been expected had we worked without reflection. A conven-
tional implementation of this tag would have taken the property name and per-
formed a few if-else statements based on its value until it knew the method to
use, and then it would call that method. Using reflection completely changes this
algorithm.

 What did we gain? We could implement this with a simple if-else statement.
We gained extensibility! Suppose that we want to add new property for the tag to
handle—simply add the code to fetch and store the Method in the method cache,
and we’re finished. In the case of this tag, the work to support a new method with
reflection isn’t much more (if any) than the work it takes to add another condition
to an if-else statement. To further appreciate reflection, imagine if our tag did
not store methods in a hashtable and, instead, simply looked for the methods by
name at runtime. This approach would allow our tag to call any get method on the
request. If the Servlet API were updated to add new properties to the request

244 CHAPTER 8

Using JavaBeans with tags
object, our tag would still be usable (without changes or even recompilation) since it
would always look for a method with the name that was passed as the property
attribute. This type of flexibility can only be achieved by using the reflection API. We
now see how this flexibility can be applied to JavaBeans.

8.2 JavaBeans and reflection

The topic of JavaBeans has books devoted to the subject, so we needn’t delve into
its finer points. We will only mention issues that directly affect the tags we develop
in this chapter; namely, JavaBean properties, introspection, and what all this has to
do with reflection.

 What then are JavaBeans? In a nutshell, a JavaBean is merely a Java class. Java-
Beans conventions are the de facto development conventions (as introduced by Java-
Soft) for Java components. These conventions define how a JavaBean is to expose
its properties and events. JavaBeans publish properties and any events they provide
through a strict method signature pattern, making these method names predictable
so that Java development and debugging tools may easily use the reflection API to
learn about the bean and offer a visual interaction with it. When a tool uses reflection
to analyze a bean in this way, we call it introspection. The benefit of building Java
components that adhere to JavaBeans conventions is that they are guaranteed to
work well with any of the multitude of JavaBean supporting software tools available.

8.2.1 Tags and JavaBeans

Most interactions between our tags and beans will revolve around fetching data
from the bean and presenting it. Typically, bean interaction will involve a JSP get-
ting the value of some property of a bean and displaying that value to the user. In
light of this, we forgo discussing the second role of the JavaBean standard we men-
tioned, which is defining how events are specified. Primarily, our tags are concerned
with two bean-related issues:

� Introspecting the beans to find the properties and get the methods that these
tags should call for property retrieval.

� Calling these methods with the correct set of parameters.

The next two sections deal with the properties of JavaBeans and introspecting them.

8.2.2 JavaBeans properties

What makes a JavaBean unique is that it conforms to specific criteria regarding how
it exposes its properties and events. What exactly are properties? Properties are
attributes of the JavaBean, something in its state or functionality that the bean

JavaBeans and reflection 245
wishes to expose. The code that uses the bean takes advantage of the properties
(reads them or modifies them) by calling some of the bean’s methods.

 Imagine that you want to represent the data you have about a computer user in
a bean, so that an administration program will be able to manipulate these users.
Table 8.4 lists attributes each user might have.

To follow the JavaBean standard, each of the attributes described in table 8.4 will
map into a bean property, and the methods that expose these properties in our
UserBean would resemble the following code fragment.

public class UserBean implements java.io.Serializable {

 public String getName() { ... }

 public void setName(String name) { ... }

 public String getFamily() { ... }

 public void setFamily(String family) { ... }

 public String getPassword() { ... }

 public void setPassword(String pass) { ... }

 public String getUsername() { ... }

 public void setUsername(String name) { ... }

 public String getGroups(int index) { ... }
 public String []getGroups() { ... }

 public void setGroups(int index,
 String group) { ... }

 public void setGroups(String []groups) { ... }

 public int getState() { ... }
};

Table 8.4 Sample User attributes and related properties

User Attribute Description JavaBean property

Name The user’s name name

Family name The user’s family name family

Password The password that the user needs to enter when it logs into
the computer

pass

Username The user’s login name username

Groups An array of user groups in which the user is a member groups

User state Specifies whether or not a user is logged in state

246 CHAPTER 8

Using JavaBeans with tags
When we look into these properties we may see differences between them. Some
properties such as the user’s password are read-write, meaning we can read their
value as well as modify them. The user’s state, however, is a read-only property;
there is no meaning to set the value of this property since it represents something
beyond our control (user logged in or logged out). The groups property is an array,
since a user may belong to several groups, and we can access the different groups via
an index. Our other properties are single values that do not need an index. The
JavaBeans specification differentiates between read-only, write-only, and read-write
properties, as well as indexed and nonindexed properties.

 The differences between read-only, write-only, and read-write properties are
manifested in our Java code through the types of methods we use for each. Each
property can have a property setter method, getter method, or both. A property
with only a getter method is said to be read-only, a property with only a setter
method is said to be write-only, and a property with both methods is read-write.

NOTE The state property has only a getter method. This means that the
state is read-only.

Indexed properties are handled by providing getter and setter methods that accept
an index parameter. In this way the bean user accesses discrete values of the property
by using their index within the property array. The bean may also provide array-based
setters and getters to allow the bean user to set the whole property array.

NOTE The group property implements the indexed access with an integer as an
index. One can consider using types other than an integer to index a prop-
erty (for example, a string) but the JavaBeans specification is vague in the
issue of property indexing using noninteger values. We also provide a
means for the bean user to get the groups array in a single method call.
Both method patterns (array getter/setter and indexed getter/set-
ter) are permitted by the JavaBeans specification.

This clarifies properties and how the user of the JavaBean manipulates the bean’s
properties using setters and getters. However, how can the bean user find out
about the different properties or their methods? As helpful as the beans might be,
we cannot use them without knowing what methods to use to access the different
properties. We answer this in our next section.

JavaBeans and reflection 247
8.2.3 JavaBeans introspection

Recall that introspection is the process by which a JavaBean is analyzed, typically by
a development tool, through reflection, for the purpose of determining its proper-
ties and events. The available properties as well as their setter and getter methods
are discoverable by using introspection as defined in the JavaBeans specification.
Introspection requires cooperation between the bean developer, who provides
properties information, and the JavaBeans introspector, that reads this information
and presents it to the user in a programmatic manner.

8.2.4 Properties and introspection

The simplest way for a developer to specify properties and their associated methods
is to use the special JavaBean properties method naming conventions and parameter
signatures in his or her JavaBeans.

Simple properties (nonindexed)
According to the JavaBean specification, either of the following methods can iden-
tify a simple property named age of type int:

public int getAge();
public void setAge(int age);

Note that to conform to the JavaBeans standard, we’ve defined methods whose
names are getProperty() and setProperty() wherein property is the name of
the property to manipulate; the first character constructing the property name is
capitalized (in this case, age becomes Age). The presence of getAge() means that
the property called age is readable, while the presence of setAge() means that age
is writable. This naming convention applies when the property is of any data type
whatsoever, except boolean. In such a case, the setter/getter method looks like
the following

public boolean isFoo();
public void setFoo(boolean foo);

The getter method name was changed to reflect the fact that we are making a
query on a value that can have only true or false values (by changing get to is).

Indexed properties
Indexed properties are specifiable in one of two ways. One way is by having an array
type as the input and output to the setter and getter, respectively. This approach
is presented in the following code fragment.

public Bar[] getFoo();
public void setFoo(Bar[] foo);

248 CHAPTER 8

Using JavaBeans with tags
Another way is by having setter and getter methods that take an index parameter
(e.g., the next code fragment shows a setter/getter pair with an integer index).

public Bar getFoo(int index);
public void setFoo(int index, Bar foo);

Either of these index property coding conventions will suffice to inform an intro-
specting program of the existence of an indexed property of type Bar[] and with
the name foo.

BeanInfo interface
This coding convention approach provides an easy way to inform the system of the
existence of properties and their methods. But what happens if we want to provide
more explicit property information? In this case, the bean author provides an imple-
mentation of the BeanInfo interface. A BeanInfo object allows the JavaBean
author to provide additional information about a bean, ranging from the icon that
represents it to the properties and events it exposes. If a JavaBean author opts not
to create a BeanInfo object for a bean and uses the coding convention approach
instead, a BeanInfo is automatically created for the class during the introspection
and holds on the information that is accessible from the coding conventions. In
fact, as we will soon see in code, the BeanInfo interface is a crucial component of
the introspection process and, therefore, will be used by our custom tags to learn
about the Beans with which they are interacting.

How introspection works
The introspection process is provided through a class called java.beans.Intro-
spector whose methods provide control over the introspection process as well as
methods to obtain BeanInfo objects for any JavaBean. The tags in this chapter will
be constructed to use an Introspector to get a BeanInfo object for a particular
JavaBean, in order to learn about and manipulate its properties. To reach the crux
of this long story, let’s look at getSetPropertyMethod() (listing 8.2), whose job it
is to find the setter method of a property in a certain JavaBean (for simplicity, the
method does not work on indexed properties).

JavaBeans and reflection 249
package book.util;

import java.util.Hashtable;

import java.beans.BeanInfo;
import java.beans.Introspector;
import java.beans.PropertyDescriptor;
import java.beans.IndexedPropertyDescriptor;
import java.beans.IntrospectionException;

import java.lang.reflect.Method;

public class BeanUtil {

 // Snipped some of the code...
 /*
 * We are not dealing with indexed properties.
 */
 public static Method
 getSetPropertyMethod(Class claz,
 String propName)
 throws IntrospectionException,
 NoSuchMethodException
 {
 Method rc = null;
 BeanInfo info = Introspector.getBeanInfo(claz);
 PropertyDescriptor[] pd = info.getPropertyDescriptors();
 if(null != pd) {
 for(int i = 0; i < pd.length; i++) {
 if(propName.equals(pd[i].getName()) &&
 !(pd[i] instanceof IndexedPropertyDescriptor)) {
 Method m = pd[i].getWriteMethod();
 if(null == m) {
 continue;
 }
 Class[]params = m.getParameterTypes();
 if(1 == params.length) {
 rc = m;
 break;
 }
 }
 }
 }
 if(null == rc) { e
 throw new NoSuchMethodException();
 }

 return rc;
 }
}

Listing 8.2 Source code of a method that uses introspection to find a property setter

b

c

d

250 CHAPTER 8

Using JavaBeans with tags
B Gets an array of the property descriptors of this class Listing 8.2 shows an elemen-
tary example of bean property introspection that covers all the important introspec-
tion issues. The first step in getSetPropertyMethod(), as in any method that
performs some type of bean introspection, is to get the properties descriptors (or
events, depending on what you want to find). To get to properties descriptors we
use the built-in bean Introspector in two phases; the first one fetches a BeanInfo
for the class, and later obtains the PropertyDescriptor array from BeanInfo. The
PropertyDescriptor interface (as its name implies) provides methods to retrieve
logical information about JavaBean properties. The obtained array provides infor-
mation on all the properties as identified by the Introspector, so we can now iter-
ate this array and learn about the bean’s properties.

C Iterates over all the properties in the class and looks for a property with a nonindexed
matching name A simple for statement will suffice; while iterating on the array we
can check each of the properties as represented by a PropertyDescriptor object.

NOTE There are two PropertyDescriptor types: the one that provides informa-
tion on nonindexed properties, and IndexedPropertyDescriptor that
extends PropertyDescriptor to provide information on indexed proper-
ties. The main difference between them is that IndexedPropertyDe-
scriptor also provides a method informing us of the index variable’s type.

Since (in this example) we are only looking for a specific named, nonindexed prop-
erty, we will ignore all other properties and look only at simple properties.

d Found a property, performs a sanity check over the mehod. Do we have a method
(meaning, is this property writable)? Does the method accept only a single parameter
(the value to set)? When we find a property of the type we want, we need to verify
that the method we are seeking exists (maybe the property is read-only?). Thus we
get the setter method from PropertyDescriptor and check it out. (We did not
have to check the number of method arguments.)

E We could not find a matching property The method we were looking for does not
exist. We should notify the user by throwing an exception.

We have outlined some of the basics of reflection, and more specifically, JavaBean
introspection. We’ll see more code examples of introspection as we develop our tags
in the next section. If, at this point you feel less than entirely comfortable with the
topic of introspection and reflection, that’s all right. Only the most rudimentary
grasp is required to comprehend our custom tags. If you are, however, interested in
learning more about reflection, take a look at JavaSoft’s tutorial on the subject

The Show tag 251
which is available online at http://java.sun.com/docs/books/tutorial/reflect/
index.html.

 Now, to the main event of this chapter: writing our JavaBean tags.

8.3 The Show tag

Our first JavaBeans-related tag is going to improve upon the standard <jsp:get-
property> tag by providing a JavaBeans property getter tag with the following
enhancements:

� No need for previous bean declaration through a <jsp:useBean> tag (or any
other tag).
This makes it much easier to use the tag.

� Accessibility to all types of properties, including indexed properties with possi-
ble index type of string and integer.
The inability of <jsp:getproperty> to access indexed properties cripples
the use of the property getters, and string indices are very important in the
web arena.

� Bean object specification either through name and scope or using a runtime
expression.
We can use this tag with values created within scriptlets.

As we have a rather high level of expectation here, our implementation will be
rather involved. For example, our tag will let JSP authors specify the JavaBean for
the tag to use in two ways:

� By specifying the bean’s name and scope explicitly in an attribute
� By specifying the bean as a result of a runtime expression.

Since our tag must confirm that the JSP author properly uses one of these options,
we need to use a TagExtraInfo object to verify the tag’s attributes (a technique we
saw in chapter 6). We also have the choice of allowing the tag to support indexed
properties, which can become particularly tricky when a method is overloaded with
different indices (such as a String index and an int index into the same property).
In such a case, we do not want one tag attribute to specify the String index and a
different one to specify the int index, so we need to design a way to place these two
index value types into a single attribute. We’ll soon see how we tackle these ambi-
tious features.

252 CHAPTER 8

Using JavaBeans with tags
8.3.1 Components of the tag

The implementation of our new property getter tag included using four Java
classes (table 8.5).

Let’s take a close look at the code for each of these components in order to gain a
greater understanding of them.

BeanUtil
The first class we use to compose our Show tag is BeanUtil which is a utility class that
will do the introspection and method caching for a bean. Its source is in listing 8.3.

package book.util;

import java.util.Hashtable;
import java.beans.BeanInfo;
import java.beans.Introspector;
import java.beans.PropertyDescriptor;
import java.beans.IndexedPropertyDescriptor;
import java.beans.IntrospectionException;
import java.lang.reflect.Method;
import java.lang.reflect.InvocationTargetException;

public class BeanUtil {

Table 8.5 The classes comprising the bean getter tag

Java class Description

BeanUtil A utility class that performs the JavaBeans’s introspection.

ReflectionTag A tag whose role is to collect all our object and properties attributes
and fetch the value pointed by them. This way we can reuse the logic in
this class (by making it the base class) in other tags that require
object property access through reflection.

ShowTag A tag that takes the value fetched by our basic tag and prints it to the
user. This is a relatively simple tag since most of the work is done in
ReflectionTag from which it inherits.

ReflectionTagExtraInfo A TagExtraInfo class to verify the tag’s attributes. Since we want
the tag to be very flexible, most of the attributes are not mandatory
and some are applicable only in the presence of other attributes (for
example, a scope attribute is not applicable without an object name
attribute). This TagExtraInfo validates this complex attribute syn-
tax.

Listing 8.3 Source code of JavaBeans utility class

The Show tag 253
 static LocalStrings ls =
 LocalStrings.getLocalStrings(BeanUtil.class);

 public static final Object []sNoParams = new Object[0];
 public static Hashtable sGetPropToMethod = new Hashtable(100);

 public static Object
 getObjectPropertyValue(Object obj,
 String propName,
 Object index)
 throws InvocationTargetException,
 IllegalAccessException,
 IntrospectionException,
 NoSuchMethodException
 {
 Method m = getGetPropertyMethod(obj, b
 propName,
 null == index ?
 null: index.getClass());
 if(null == index) {
 return m.invoke(obj, sNoParams); C
 } else {
 Object []params = new Object[1]; D
 params[0] = index;
 return m.invoke(obj, params);
 }
 }

 public static Method
 getGetPropertyMethod(Object obj,
 String propName,
 Class paramClass)
 throws IntrospectionException,
 NoSuchMethodException
 {
 Class oClass = obj.getClass();
 MethodKey key = new MethodKey(propName,
 oClass,
 paramClass);
 Method rc = (Method)sGetPropToMethod.get(key);
 if(rc != null) {
 return rc;
 }
 BeanInfo info = Introspector.getBeanInfo(oClass); F
 PropertyDescriptor[] pd = info.getPropertyDescriptors();
 if(null != pd) {
 for(int i = 0; i < pd.length; i++) {
 if(pd[i] instanceof IndexedPropertyDescriptor) { G
 if(null == paramClass ||
 !propName.equals(pd[i].getName())) {
 continue;
 }

e

254 CHAPTER 8

Using JavaBeans with tags
 IndexedPropertyDescriptor ipd =
 (IndexedPropertyDescriptor)pd[i];
 Method m = ipd.getIndexedReadMethod();
 if(null == m) {
 continue;
 }
 Class[]params = m.getParameterTypes();
 if((1 == params.length) &&
 params[0].equals(paramClass)) {
 rc = m;
 break;
 }
 } else {
 if(null != paramClass || I
 !propName.equals(pd[i].getName())) {
 continue;
 }
 rc = pd[i].getReadMethod();
 break;
 }
 }
 }

 if(null == rc) {
 StringBuffer methodName = new StringBuffer(); J
 methodName.append("get");
 methodName.append(propName.substring(0,1).toUpperCase());
 methodName.append(propName.substring(1));
 if(null == paramClass) {
 rc = oClass.getMethod(methodName.toString(),
 new Class[0]);
 } else {
 rc = oClass.getMethod(methodName.toString(),
 new Class[] {paramClass});
 }
 }
 if(null == rc) {
 // No such method; throw an exception
 }
 sGetPropToMethod.put(key, rc); 1)
 return rc;
 }
}

B Finds the needed method C Invokes a nonindexed property D Invokes an indexed
property The utility class exports two methods: The first accepts an object, prop-
erty name, and index, and returns the desired property value from the object by
using introspection. The second method introspects the object’s class and retrieves
the method required to get the property. The first method is not especially

h

The Show tag 255
interesting; we already know how a method is called using reflection and the only
new issue here is that you see how to provide parameters to the invoked method
using an array of objects.

E 1) Looks for the method in the introspected methods cache The second method
presents several new ideas, starting with the use of a method cache, continuing with
introspecting indexed properties, and ending with our own low-level introspection
when the default Introspector fails us. The method cache was added when we
found out how time-consuming introspection is. In fact, in pages loaded with
reflection, adding the method cache gave the pages a 33% performance boost. It’s
important to remember that the key to the cache needs to be a combination of the
object’s class, property name, and method parameters. This is a rather complex key,
so a new method key object was created (when caching methods for indexed set-
ters, the key is even more involved). If we fail to find a method in the cache, we
will introspect it and, when complete, place it in the cache.

F Method not in the cache, start introspecting.

G Skip methods that do not match our needs H Validate that this method matches
our indexed property I Skip methods that do not match our needs Introspect-
ing the class is different from introspection code in listing 8.2, mainly because we
now introspect indexed properties. We iterate over the properties descriptor array
and differentiate between indexed (instances of IndexedPropertyDescriptor)
from non-indexed properties, and then check on the indexed property method.
The check includes testing the parameter list of the indexed property, because a cer-
tain method in Java may be overloaded. For example, think of the following class:

class SuperHero{
 Power getSuperPower(int i);
 Power getSuperPower(String s);
}

 We may want to inspect getSuperPower(String), yet the Introspector will prob-
ably give us the descriptor of getSuperPower(int).

We will then need to skip this descriptor and hope our luck is better elsewhere.

J Method was not found using the default introspector; try our own low-level introspec-
tion We are finally finished with the property introspection, yet we may not have
found the property method. The above example, wherein a specific method has two
index types, is a good example of such a case (no, it is not a bug in the default
Introspector, just our desire to attain more than the simple indexes regulated in
JavaBeans). To overcome cases in which the default Introspector fails to find the
needed method, we employ elementary low-level reflection to look for a method

256 CHAPTER 8

Using JavaBeans with tags
matching our property name and parameter types. If we find such a method, we
assume that it is the one we seek.

1) Places the newly introspected method in the cache.

ReflectionTag
The class presented in listing 8.3 had nothing to do with tags (in fact, you can use
it in any program that employs JavaBeans). The next class, ReflectionTag, is an
abstract tag handler that integrates the JavaBeans reflection capabilities to the
tag’s world:

package book.reflection;

import java.beans.IntrospectionException;
import java.lang.reflect.InvocationTargetException;
import book.util.LocalStrings;
import book.util.ExTagSupport;
import book.util.BeanUtil;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

public abstract class ReflectionTag extends ExTagSupport {

 public static final String PAGE_ID = "page";
 public static final String REQUEST_ID = "request";
 public static final String SESSION_ID = "session";
 public static final String APPLICATION_ID = "application";

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ReflectionTag.class);

 protected Object obj = null;
 protected String objName = null;
 protected String objScope = null;

 protected String property = null;
 protected String index = null;

 public void setObject(Object o)
 {
 this.obj = o;
 }

 public void setName(String name)
 {
 this.objName = name;
 }

 public void setScope(String scope)
 {
 this.objScope = scope;
 }

Listing 8.4 Source code for the ReflectionTag base class

b

c

The Show tag 257
 public void setProperty(String property)
 {
 this.property = property;
 }

 public void setIndex(String index)
 {
 this.index = index;
 }

 public int doStartTag()
 throws JspException
 {
 processObject(getPointed()); d
 return SKIP_BODY;
 }

 protected Object getPointed()
 throws JspException
 {
 Object value = (null == obj ?
 getPointedObject(objName, objScope) :
 obj);
 if(null != property) {
 value = getPointedProperty(value); f
 }
 return value;
 }

 protected Object getPointedObject(String name,
 String scope)
 throws JspException
 {
 Object rc = null;
 if(null != scope) {
 rc = pageContext.getAttribute(name,
 translateScope(scope));
 } else {
 rc = pageContext.findAttribute(name);
 }
 if(null == rc) {
 // Log and throw a JspTagException
 }

 return rc;
 }

 protected int translateScope(String scope)
 throws JspException
 {
 if(scope.equalsIgnoreCase(PAGE_ID)) {
 return PageContext.PAGE_SCOPE;
 } else if(scope.equalsIgnoreCase(REQUEST_ID)) {

e

258 CHAPTER 8

Using JavaBeans with tags
 return PageContext.REQUEST_SCOPE;
 } else if(scope.equalsIgnoreCase(SESSION_ID)) {
 return PageContext.SESSION_SCOPE;
 } else if(scope.equalsIgnoreCase(APPLICATION_ID)) {
 return PageContext.APPLICATION_SCOPE;
 }

 // Log and throw a JspTagException
 }

 protected Object getPointedProperty(Object v)
 throws JspException
 {
 try {
 Object indexParam = null;
 if(null != index) {
 if(index.startsWith("#")) { g
 indexParam = new Integer(index.substring(1));
 } else {
 indexParam = index;
 }
 }
 return BeanUtil.getObjectPropertyValue(v, h
 property,
 indexParam);
 } catch(InvocationTargetException ite) {
 // Log and throw a JspTagException
 } catch(IllegalAccessException iae) {
 // Log and throw a JspTagException
 } catch(IntrospectionException ie) {
 // Log and throw a JspTagException
 } catch(NoSuchMethodException nme) {
 // Log and throw a JspTagException
 }
 }

 protected void processObject(Object v) i
 throws JspException
 {
 }

 protected void clearProperties()
 {
 obj = null;
 objName = null;
 objScope = null;
 property = null;
 index = null;
 super.clearProperties();
 }
}

The Show tag 259
B Points to the object whose property we want to get We can have either the object
itself or its name and scope (optional). There are two ways to specify the object
used by the tag: one way is to set the object as a runtime expression value, the other
is to specify the name and the scope. These two object specification methods are
mutually exclusive, and our TagExtraInfo implementation should take care of this.
But we are getting ahead of ourselves.

C g Refers to the property name and the index (optional) in this property The prop-
erty value is specified by two attributes: the property name and an index into the
property. The index is not mandatory and the tag can handle cases in which the
index is not specified. The index, you’ll recall, may be a string or an integer; but
how can we specify two different types using a single attribute? We cheat! We spec-
ify the integer within a string, but prefix its value with a ‘#’ so that the tag knows
that the value represents an integer. Why are we giving an advantage to the string?
Because strings are far more useful as an index when we are creating web pages. In
most cases, we will index our properties using a string, as it was felt that string
indexing should be easily done.

D doStartTag() fetches the property value and lets the tag process it using process-
Object().

E Fetches the object If the object was configured as a runtime value, either use it, or
get a reference to it using the name and the scope.

F As soon as we receive the object, fetches the property value.

G A ‘#’ prefix denotes an integer Translates the string to an integer.
H Gets the propery value using the beans utility class.

I processObject() is a method that an extending class can overide to process the
value of our object property As previously stated, ReflectionTag is an abstract
class whose job is to provide access through reflection to properties in the JSP
scripting objects. In this spirit, we defined an empty method named process-
Object() that can be overridden by an extending class, whose only goal is to
manipulate the property value. Implementing processObject() is not mandatory
and, for many cases, it may be better to override doStartTag() and use the method
getPointed() directly; however, for the purpose of our new ShowTag (listing 8.5),
overriding processObject() is enough.

ShowTag
The ShowTag handler is the handler for the tag to be used by the JSP author, and
inherits from ReflectionTag to make use of its introspection work. This tag then
retrieves the value for a property and prints it to the user.

260 CHAPTER 8

Using JavaBeans with tags
package book.reflection;

import book.util.LocalStrings;
import javax.servlet.jsp.JspException;

public class ShowTag extends ReflectionTag {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ShowTag.class);

 protected void processObject(Object v) b
 throws JspException
 {
 try {
 writeHtml(pageContext.getOut(), v.toString());
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 // Log and throw an exception
 }
 }
}

B Overrides processObject() to print the property value.

TagExraInfo for ShowTag
The last portion of code left unseen is the TagExtraInfo that we shall attach to the
ShowTag. In fact, since ShowTag does not add any new attribute or syntactic con-
straints, we can actually take a TagExtraInfo, as developed for ReflectionTag, and
use it for ShowTag (listing 8.6).

package book.reflection;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;
import javax.servlet.jsp.tagext.VariableInfo;

public class ReflectionTagExtraInfo
 extends TagExtraInfo {

 public boolean isValid(TagData data)
 {
 Object o = data.getAttribute("object");
 if((o != null) && (o != TagData.REQUEST_TIME_VALUE)) { b
 return false;
 }

Listing 8.5 Source code for the ShowTag handler class

Listing 8.6 Source code for the ReflectionTagExtraInfo class

The Show tag 261
 String name = data.getAttributeString("name");
 String scope = data.getAttributeString("scope");

 if(o != null) {
 if(null != name || null != scope) {
 return false;
 }
 } else {
 if(null == name) {
 return false;
 }

 if(null != scope && e
 !scope.equals(ReflectionTag.PAGE_ID) &&
 !scope.equals(ReflectionTag.REQUEST_ID) &&
 !scope.equals(ReflectionTag.SESSION_ID) &&
 !scope.equals(ReflectionTag.APPLICATION_ID)) {
 return false;
 }
 }

 if((null != data.getAttribute("index")) &&
 (null == data.getAttribute("property"))) {
 return false;
 }
 return true;
 }
}

B The object attribute must be the product of a runtime expression.

C If the object was provided through a runtime expression, the name and scope
attributes should not be used.

D If the object is not provided through a runtime expression, we must provide a variable
name.

E The scope value must be one of the four defined scopes.

F We cannot provide an attribute index without specifying a property.

ShowTag’s TLD
All that is left for us to do before using ShowTag in a JSP file is to create a TLD
(listing 8.7). Note in this listing that not all the attributes are mandatory. This loss
of control is required by the flexible functionality that was required from the tag.

<tag>
 <name>show</name>

Listing 8.7 Tag library descriptor entry for ShowTag

c

d

f

262 CHAPTER 8

Using JavaBeans with tags
 <tagclass>book.reflection.ShowTag</tagclass>
 <teiclass>book.reflection.ReflectionTagExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Show a certain object property value.
 </info>
 <attribute>
 <name>object</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>index</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>property</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
</tag>

ShowTag in action
We can create a JSP file that uses our new tag to show bean properties; the JSP
driver (listing 8.8) uses our tag to explore the values present in the request and
response objects (this is possible since both objects are JavaBeans).

<%@ page import="java.util.*" %>
<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<html>
<body>
<%-- javax.servlet.jsp.jspRequest is the JSP attribute

Listing 8.8 JSP file that uses ShowTag

The Show tag 263
 name of the request object
 --%>

 <bean:show name="javax.servlet.jsp.jspRequest" b
 property="locale"/>

<table>
<tr>
<th> Header </th> <th> Value </th>
</tr>

<% Enumeration e = request.getHeaderNames(); c
 while(e.hasMoreElements()) {
 String name = (String)e.nextElement();
%>
<tr>

<td> <%= name %> </td>

<td>
 <bean:show object="<%= request %>"
 property="header"
 index="<%= name %>"/>
</td>
</tr>
<%
 }
%>
</table>
<%-- javax.servlet.jsp.jspResponse is the JSP attribute
 name of the response object
 --%>

 <bean:show name="javax.servlet.jsp.jspResponse" e
 scope="page"
 property="committed"/>

</body>
</html>

B Shows the request locale.

C Creates a table of header names and values. Starts by enumerating the header names.

D Prints the header value We are using runtime expression to define the object we
work with and to provide the index into the header property.

E Gets the value of the response ’s committed property It should be false, since writ-
ing back to the user has not started.

Throughout the entire JSP file we never defined any of the objects used as a Java-
Bean; ShowTag will treat any object we give it as a bean, and this lets us take the reg-
ular request and response objects and use them without prior definition. This

d

264 CHAPTER 8

Using JavaBeans with tags
sample JSP file presents different usage patterns for the tag. Sometimes it is
employed in an elementary way. For example, we only specify the JSP attribute
name associated with the object (optionally the scope) and the name of the prop-
erty. There might be a case, however, in which the tag is used with runtime expres-
sions and indexed properties; in fact, we produce a fine table with the header names
and values by using the tag with the header indexed property.

 This section showed how easy it is to print the values of JavaBeans properties
back to the response flowing to the user. Now we move on to build the second tag
of our library, which allows us to export new JavaBeans from our tags and have
them serve as scripting variables in the page.

8.4 Exporting bean values from tags

Exporting new scripting variables from a tag is a handy feature. For example, a
JDBC connection tag can connect to a database and export a JDBC connection as a
scripting variable so that JSP scriptlets further down the page may use the connec-
tion object. Though useful, exporting a new scripting variable is more than a minor
maneuver for the JSP engine; it first needs to know:

� The Java type of the new scripting variable so that a correct Java scripting
variable will be declared for the newly exported object.

� The duration (scope) of the scripting variable. Sometimes you want your Java
scripting variable to last until the end of the page; in other cases you may
want it to exist within the body of the tag. The JSP environment needs to be
informed of that.

� The name of the scripting variable.

This reflective information must arrive at the JSP environment in order to take
advantage of it while translating the JSP file to a servlet.

 The methods to provide this information were defined in the JSP specification,
which we will present now. Next, we take a look at a tag whose job it is to export
JavaBean property values as new JSP scripting variables.

8.4.1 Informing the runtime of exported scripting variables

The JSP specifications define a simple way to inform the JSP runtime of the
exported scripting variables, by overriding yet another method in TagExtraInfo.
Up until now, the only method we overrode in TagExtraInfo was isValid(),
which we used to validate tag attribute syntax and values. The TagExtraInfo class
also allows you to indicate any scripting variables your tag will export by overriding
getVariableInfo().

Exporting bean values from tags 265
 The signature for getVariableInfo()is presented below:

public VariableInfo[] getVariableInfo(TagData data);

As you can see, getVariableInfo() accepts a TagData object which stores the val-
ues for the tag’s attributes. The method returns an array of objects of type Vari-
ableInfo, whose methods and static variables are presented in listing 8.9.

public class VariableInfo {

 public static final int NESTED = 0;
 public static final int AT_BEGIN = 1;
 public static final int AT_END = 2;

 public VariableInfo(String varName,
 String className,
 boolean declare,
 int scope) { ... }

 public String getVarName() { ... }
 public String getClassName() { ... }
 public boolean getDeclare() { ... }
 public int getScope() { ... }
}

The job of a VariableInfo object is to provide variable information, starting with
the variable’s name and ending with its scope. A developer wishing to export script-
ing variables from a tag should first override getVariableInfo() and, within the
method, use the tag’s attributes to decide the exact variables to be exported. Next,
for each scripting variable, the JSP author should create a VariableInfo instance
with the desired variable name, type, and scope, and return an array containing
these VariableInfos. Based on this information, the JSP page translator will emit
Java code to implement the newly exposed scripting variables in a way that scriptlets
and other JSP entities can access them.

Constructing a VariableInfo
How de we create a VariableInfo object? The parameters to the VariableInfo’s
constructor have the following semantics:

� The varName parameter has two roles. It informs the JSP runtime of the name
under which the newly generated JSP attributes (that hold the value of the
new scripting variable) are kept; and it tells the JSP runtime the name of the
variable it should emit into the generated servlet code. In the second role, the
name of the exported scripting variable should match the rules of the scripting

Listing 8.9 Methods and static fields in VariableInfo

266 CHAPTER 8

Using JavaBeans with tags
language employed in the page; for example, if the language is Java, then the
name value may not include the “.” character.

� The className parameter specifies the type of the exported object. Cur-
rently, tags can only export objects, so this is the fully qualified class name.
You cannot export primitive types such as float values (they should be
wrapped in some Java object type such as java.lang.Float).

� By default, the JSP engine will declare our variable as a new scripting variable
in the JSP. If we want, instead, to assign a value to an existing scripting vari-
able with our tag, we set the declare parameter to false, informing the JSP
runtime that this variable has already been declared and to not declare it as a
new variable.

� The scope parameter specifies the scope of the scripting variable that the page
translator needs to emit into the Java servlet being generated for the JSP file.
The scope parameter specifies, for example, whether the scripting variable will
be known through all of the generated servlet or only within the tag’s body
(more on this soon).

Scripting variable scope
The last parameter to the VariableInfo’s constructor is the variable’s scope. The
possible values for this parameter (the different scope types as defined in the JSP
specification) are listed in table 8.6.

Table 8.6 Possible scope types and their uses

Scope name Scope in the generated servlet Use

NESTED Between the starting and clos-
ing marks of the custom tag, as
presented in figure 8.1.

The JSP runtime emits a variable declaration in the
block of code between the calls to doStartTag() and
doEndTag(). Such NESTED scope variables are very
useful in tags that perform iterations and need an itera-
tion index of some sort.

AT_BEGIN Between the starting mark of
the custom tag and the end of
the JSP file, as presented in
figure 8.1.

The JSP runtime emits a variable declaration so that
the variable will live in the block of code between the
calls to doStartTag() and the end of the JSP file.
This way you can define scripting variables whose
scope spans the entire JSP file and whose value is
specified in doStartTag().

AT_END Between the ending mark of the
custom tag and the end of the
JSP file, as presented in
figure 8.1.

The JSP runtime emits a variable declaration so that
the variable will live in the block of code between the
calls to doEndTag() and the end of the JSP file. This
way you can define scripting variables whose scope
spans the entire JSP file and whose value is specified
in doEndTag().

Exporting bean values from tags 267
VariableInfo in action: TestTag example
Let’s try to crystallize some of the information presented in this section with an
example. We’ll look at a simple BodyTag example called TestTag that exposes three
scripting variables:

� sName—A variable of type java.lang.String with ET_BEGIN scope.
� iName—A variable of type java.lang.Integer with ET_END scope.
� fName—A variable of type FooClass with NESTED scope.

Let’s look at the TagExtraInfo object we need to create for this class in order to
export these three variables (listing 8.10).

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;
import javax.servlet.jsp.tagext.VariableInfo;

public class TestTei extends TagExtraInfo {

 public VariableInfo[] getVariableInfo(TagData data)
 {

 VariableInfo[] rc = new VariableInfo[3];

Listing 8.10 Source code for TestTei

<Tag>

</Tag>

FooClass nested; FooClass atBegin;

FooClass atEnd;

Tag’s
body

Tag’s
closing
mark

Tag’s
opening

mark

N
E

S
T

E
D

A
T

_E
N

D

A
T

_B
EG

IN

End of JSP file

Figure 8.1 Scripting variable scopes illustrated

268 CHAPTER 8

Using JavaBeans with tags
 rc[0] = new VariableInfo("sName",
 "java.lang.String",
 true,
 VariableInfo.AT_BEGIN);
 rc[1] = new VariableInfo("iName",
 "java.lang.Integer",
 true,
 VariableInfo.AT_END);
 rc[2] = new VariableInfo("fName",
 "FooClass",
 true,
 VariableInfo.NESTED);

 return rc;
 }
}

This is an example of how to create and return an array of VariableInfo objects,
each with its own type name and scope, in order to tell the JSP runtime engine the
variables our tag will expose.

NOTE The JSP specification instructs tag developers to use a special attribute
named id to let the user name the variable exported by the tag. (Usually a
single tag will export only a single object.) The sample provided in this sec-
tion does not follow this rule; in part because there are several different
variables to export, and because we wanted to make it as simple as possible.
Do your best to follow this instruction, meaning that if you want your tag
foo to export a variable, let your user specify this variable name by using an
attribute named id in the following manner: <foo id="bar"/>. The im-
plications of these instructions are that your TagExtraInto implementa-
tion should look into the attribute’s data, grab the value of the id
attribute, and use it as the name (first parameter to the VariableInfo’s
constructor) returned in the VariableInfo.

To see how the TestTag class affects the servlet code generated at translation time,
let’s look at the source code generated by Tomcat’s JSP translator for TestTag when
used with our TestTag class (listing 8.11).

TestTag testtag = new TestTag();
testtag.setPageContext(pageContext);
testtag.setParent(null);
java.lang.String sName = null; c

Listing 8.11 Java that was generated for TestTag

b

Exporting bean values from tags 269
try {
 int rc = testtag.doStartTag();
 sName = (java.lang.String) pageContext.getAttribute("sName"); d
 if (rc == Tag.EVAL_BODY_INCLUDE)
 // Throw exception. TestTag implements BodyTag so
 // it can't return Tag.EVAL_BODY_INCLUDE
 if (rc != Tag.SKIP_BODY) {
 try {
 if (rc != Tag.EVAL_BODY_INCLUDE) {
 out = pageContext.pushBody();
 testtag.setBodyContent((BodyContent) out);
 }
 testtag.doInitBody();
 do {
 FooClass fName = null;
 fName = (FooClass)
 pageContext.getAttribute("fName");

 sName = (java.lang.String) f
 pageContext.getAttribute("sName");

 // Evaluate body ...

 } while(testtag.doAfterBody() == BodyTag.EVAL_BODY_TAG);
 sName = (java.lang.String) g
 pageContext.getAttribute("sName");
 } finally {
 if (rc != Tag.EVAL_BODY_INCLUDE)
 out = pageContext.popBody();
 }
 }
 if (testtag.doEndTag() == Tag.SKIP_PAGE)
 return;
} finally {
 testtag.release();
}
java.lang.Integer iName = null;
iName = (java.lang.Integer)pageContext.getAttribute("iName");

B Initializes the test tag. Tomcat does not pool its tag handlers, but rather instantiates them.

C Declaring sName outside of the tag body so that it will be known through the page.

D Setting a value into sName right after the call to doStartTag() to set an initial value.

E Declaring and initializing fName. Since it is a NESTED variable it will be declared and
initialized once per iteration.

F Updating sName ’s value each iteration (so the tag can modify it over and over again).

G Updating sName’s value one more time when we are bailing out of the body processing loop.

H Declaring and initializing iName; this is done only once, after the tag processing is done.

e

h

270 CHAPTER 8

Using JavaBeans with tags
Each of the variables is generated within a Java scope that matches the defined vari-
able scope; for example, fName is defined within the curly brackets of the body eval-
uation loop. The JSP runtime updates the values of the exported variables from the
PageContext whenever one of the tag’s methods is called so that the tag can modify
the value of the scripting variables as often as possible.

 Our next step will be to use the information in this section to develop a real-
world tag that exports objects into the JSP environment.

8.4.2 The ExportTag

ShowTag that we developed earlier in this chapter took the value of the certain bean
property and printed it to the response flowing to the user. This capability is handy,
but what if the property you want to print is not a primitive value or some type with
a reasonable string conversion method that can be easily printed to the user? Or,
what if this property is a bean of its own and we only want to echo some of its prop-
erties to the user? In these cases, ShowTag falls short of meeting our needs and we
require the help of some other tag to export the complex property value into the
JSP environment where ShowTag can take this bean property and print it the way we
want. For this purpose, ExportTag was developed.

 ExportTag acts very much like ShowTag except, instead of printing the property
to the response, it exports the property as a JSP scripting variable. This lets us use
the variable in scriptlets, just as if we’d defined it in a scriptlet or utilized the
<jsp:useBean> standard tag to define it. To facilitate this task, we implemented the
two objects presented in table 8.7:

It may seems as though ExportTag is a waste of time; why not just improve ShowTag
such that it will be able to print the property of a property? The answer is twofold:
First, this improved ShowTag will be too complex (just how many attributes will it
take to print an indexed property of an indexed property)? Second, ExportTag offers

Table 8.7 The ExportTag implementation objects

Java class Description

ExportTag Extends ReflectionTag to export the value gathered through
reflection. This tag has two additional attributes: id for the user to
choose a name for an exported bean, and type for the user to
specify a type for the exported object.

ExportTagExtraInfo Extends ReflectionTagExtraInfo to add an implementation for
the method getVariableInfo(), which grabs the value of the id
and type attributes and returns a VariableInfo with the desired
name and type as well as AT_BEGIN scope.

Exporting bean values from tags 271
clear advantages by being able to export a complex attribute (such as an enumerator)
to be used later by our scriptlets. For example, the following JSP fragment:

<%
 Enumeration e = request.getHeaderNames();
%>

can be replaced by an alternative tag usage that looks similar to:

<beans:export id=”e” type”enum”
 object=”<%= request =>”
 property=”headerNames”/>

Though this may be a matter of taste, the ability to grab complex properties that
will be accessible for other JSP entities to work on (including other custom tags that
do not know a thing about reflection) opens a great opportunity for synergy.

ExportTag handler
As a first step, let’s look into ExportTag handler class (listing 8.12), which is actu-
ally the simpler part of the implementation of ExportTag.

package book.reflection;

import book.util.LocalStrings;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

public class ExportTag extends ReflectionTag {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ExportTag.class);

 public void setType(String type)
 {
 // Unused, needed only for the translation phase
 }

 protected void processObject(Object v)
 throws JspException
 {
 pageContext.setAttribute(id,
 v,
 PageContext.PAGE_SCOPE);
 }

 protected void clearProperties()
 {
 id = null;
 super.clearProperties();
 }
}

Listing 8.12 Source code for the ExportTag handler class

b

272 CHAPTER 8

Using JavaBeans with tags
B Exports the object into the JSP runtime by setting its value into the page scope with
the id serving as the name.

Listing 8.12 does not show anything new, but the property setters in ExportTag
may seem strange. What happened to the type property (we didn’t keep it) and
why don’t we need to implement a property setter for the id property?

 The answer is easy. First, we do not use the type property during the service
phase (only while translating the page), so keeping its value in the tag handler is not
needed. As for the id attribute setter, the TagSupport base class implements a set-
ter method for the property id (probably because it was regulated in the JSP speci-
fication as the recommended way to name the exported variables).

TagExtraInfo for ExportTag
The second class we implemented for the ExportTag is its TagExtraInfo implemen-
tation shown in listing 8.13. In its base, ExportTagExtraInfo should extend
ReflectionTagExtraInfo to implement getVariableInfo(). This implementation
is interesting because it shows how you can use the tag’s attributes to define your
exported variable parameters.

package book.reflection;

import java.util.Hashtable;
import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;
import javax.servlet.jsp.tagext.VariableInfo;

public class ExportTagExtraInfo extends ReflectionTagExtraInfo {

 static Hashtable types = new Hashtable();

 static {
 types.put("iterator", "java.util.Iterator");
 types.put("enum", "java.util.Enumeration");
 types.put("string", "java.lang.String");
 types.put("boolean", "java.lang.Boolean");
 types.put("byte", "java.lang.Byte");
 types.put("char", "java.lang.Character");
 types.put("double", "java.lang.Double");
 types.put("float", "java.lang.Float");
 types.put("int", "java.lang.Integer");
 types.put("long", "java.lang.Long");
 types.put("short", "java.lang.Short");
 }

 public VariableInfo[] getVariableInfo(TagData data)
 {
 VariableInfo[] rc = new VariableInfo[1];

Listing 8.13 Source code for ExportTagExtraInfo

b

Exporting bean values from tags 273
 rc[0] = new VariableInfo(data.getId(), c
 guessVariableType(data), d
 true,
 VariableInfo.AT_BEGIN);
 return rc;
 }
 protected String guessVariableType(TagData data)
 {
 String type = (String)data.getAttribute("type");

 if(null != type) {
 type = type.trim();
 String rc = (String)types.get(type); e

 if(null != rc) {
 return rc;
 }

 if(type.length() > 0) {
 return type;
 }
 }
 return "java.lang.Object";
 }
}

B e Prepares a translation table for the primitive types as well as a few shortcuts for
common types What is clear from ExportTagExtraInfo is that we go a long way
to prevent users from specifying primitive types for the exported scripting variable!
This is because for now, in JSP1.1 and 1.2, you are not allowed to export primitive
types, only objects (less painful than you might think, but something to keep in
mind). Other than that, take a look at how we used a type attribute to specify the
exported bean’s type. Whenever you export a bean from your tag, you will rarely
know the exported type in advance (meaning we export an arbitrary bean) and,
since the runtime object that we will reflect is not available during the translation,
we will have to convey the type using some attribute (as demonstrated in
listing 8.13). The last item to note here is that the id property receives special treat-
ment in the TagData class which provides a special getId() method for easily
obtaining the value of the id attribute (saving us a call to data.getAttribute-
String("id")).

C Specifies the value of the id property as the name of the exported variable (as speci-
fied in the specification).

D Guesses the exported variable type using the type attribute.

E Looks for the type in the translation table. If it exists in the translation table, uses the
lookup value.

274 CHAPTER 8

Using JavaBeans with tags
ExportTag’s TLD
The final piece in the implementation of ExportTag is the tag library entry as pre-
sented in listing 8.14.

<tag>
 <name>export</name>
 <tagclass>book.reflection.ExportTag</tagclass>
 <teiclass>book.reflection.ExportTagExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Exports an object property into the JSP environment
 </info>
 <attribute>
 <name>id</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 ... Additional attributes as defined for the ShowTag
</tag>

The id and type attributes in listing 8.14 were both defined as nonruntime expres-
sion values for a simple reason: we need these values during the translation process.
We did not make the type attribute mandatory for the ExportTag, because often
the type of the exported variables is not that important; for example, when another
reflection-driven tag is processing the exported object. In these cases, Export-
TagExtraInfo provides a default type (java.lang.Object), and eases the job of
the JSP developer that does not deal with the exact details.

ExportTag in action
The last step of the ExportTag tour is the JSP file that uses it, which is actually a
modified version of the JSP file that drove ShowTag.

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<html>

Listing 8.14 Tag library descriptor entry for ExportTag

Listing 8.15 A JSP driver for ExportTag

Summary 275
<body>
<table>
<tr>
<th> Header </th> <th> Value </th>
</tr>

<bean:export id="e"
 type="enum"
 object="<%= request %>"
 property="headerNames" />

<% while(e.hasMoreElements()) {
 String name = (String)e.nextElement();
%>
<tr>

<td> <%= name %> </td>

<td>
 <bean:show object="<%= request %>"
 property="header"
 index="<%= name %>"/>
</td>
</tr>
<%
 }
%>
</table>
</body>
</html>

The modified portion of the JSP driver is in bold and is relatively straightforward.
However, using ExportTag is shaded by the fact that we need some (relatively com-
plex) scriptlet to iterate over the exported enumeration. This iteration scriptlet
makes the ExportTag seem both clumsy (we need to specify a type for the exported
value) and useless (if we already have a scriptlet, why add this tag?). We will return
to this sample again in chapter 10 when we implement an enumerator that reduces
the need for the iteration scriptlet and overcomes this limitation.

8.5 Summary

We have seen how easy it is to integrate beans and tags to produce a winning com-
bination. The tags in this chapter free the JSP developer from the need to use script-
lets such as the following:

<%= obj.getPropertyName(“index”) %>
<% ClassType t = obj.getPropertyName(“index”); %>

276 CHAPTER 8

Using JavaBeans with tags
thus reducing the amount of real Java code in our JSPs. By removing Java syntax
from JSPs, we further our cause of decoupling presentation logic and business logic;
and by making the syntax cleaner and easier, reduce the possibility of writing incor-
rect or error-prone code. Future chapters show how to perform conditioning and
iteration through tags, and how the availability of these bean-property related tags
makes it possible to write out JSP files with minimal coding. We will also use bean
integration in other future tags (such as conditioning) for which the know-how
acquired in this chapter will prove worthwhile.

Part III

Advanced techniques

N ow that you are well versed in common tag development tech-
niques, we will show you in chapters 9 through 12 how to apply these
techniques to solve some advanced yet common problems. In this sec-
tion, we examine how to use custom tags for everyday development
tasks, such as evaluating conditions in a JSP, iterating over a set of val-
ues, accessing a database, and integrating with the many services in the
Java 2 Enterprise Edition.

 9Posing conditions with tag
s

In this chapter
� Using tags to evaluate conditions
� Using tags as if-then-else statements
� Supporting complex conditions with a tag

language
� Supporting complex conditions with

JavaBeans
279

280 CHAPTER 9

Posing conditions with tags
Almost any form of dynamic content generation requires you to evaluate conditions.
You may, for example, want to generate different content based on the user’s browser
(e.g., Internet Explorer does not support some of Navigator’s JavaScript, and vice
versa), or based on the internal state of server-side objects. If a shopping cart is empty
you might not wish to show it to the user, for example. Deciding on what condition-
based content to send to the user is a common issue in any web application.

 In this chapter, we’ll see how JSP authors use conditions to serve their dynamic
content without tags, and discuss how this approach could be improved through
custom tags. We’ll then build a custom tag library that will allow us to evaluate con-
ditions and return dynamic content based on the condition results within our JSPs.

9.1 Evaluating conditions in JSPs

For JSPs without custom tags, evaluating such conditions must be done in a script-
let.The following JSP fragment shows, for instance, how to employ the User-Agent
header in producing HTML that matches a specific browser:

<%
 String userAgent = request.getHeader("User-Agent");
 if((null != userAgent) &&
 (-1 != userAgent.indexOf("MSIE"))) {
%>

You are using Microsoft Internet Explorer

<% } else { %>

I guess that you are using Netscape Navigator

<% } %>

The problem with putting conditions inside scriptlets is that the syntax is rather
involved. In order to provide conditional HTML using Java, the content developer
must be aware of the Java operators, condition syntax, data types, and when and
where to put curly brackets and semicolons (all within scriptlets, which are inher-
ently difficult to debug in the first place).

 To overcome the problems associated with evaluating conditions in scriptlets,
some developers use beans to encapsulate most of the condition logic. For example,
the following code fragment produces a browser detection bean and later performs
conditions on some of the bean’s properties.

<jsp:useBean id="browserDetect"
 scope="page"
 class="phony.BrowserDetect">
 <jsp:setProperty name="browserDetect"
 property="userAgent"
 value="<%= request.getHeader(\"User-Agent\")%>"/>

IfTag—A simple condition tag 281
</jsp:useBean>

<%
 if(browserDetect.isMsIE()) {
%>

You are using Microsoft Internet Explorer

<% } else { %>

I guess that you are using Netscape Navigator

<% } %>

Using a bean to encapsulate the condition result inside a property yields an
improved JSP; yet, if all we are doing here is checking the value of a bean, why
should we use a scriptlet? Note also that we are still using the Java if statement,
which requires that the JSP author know some Java syntax (especially when the bean
returns different data types). To clean up this syntax and reduce the likelihood of
errors, we can create a custom tag that will perform conditional evaluation. The
creation of such a tag is the subject of the rest of this chapter.

 We start by exploring a basic custom tag that implements the functionality usu-
ally found within a simple if condition. Next we’ll look at the shortcomings
involved with that if condition and seek an improved implementation of condi-
tioning using custom JSP tags.

9.2 IfTag—A simple condition tag

Let’s start by developing a tag that lets the content developer evaluate conditions
based on the value of some object or its property within a JSP. We’ll want the JSP
author to be able to specify an object (either by name and scope or as a runtime
expression) and a boolean property of that object to evaluate. The tag will then
evaluate whether the object’s property is true or false. Before jumping into the
code, let’s see how it will look in a JSP.

 The following JSP fragment shows a possible use of the custom condition tag:

<jsp:useBean id="browserDetect"
 scope="page"
 class="phony.BrowserDetect">
 <jsp:setProperty name="browserDetect"
 property="userAgent"
 value="<%= request.getHeader(\"User-Agent\")%>"/>
</jsp:useBean>

<cond:if object="<%= browserDetect %>" property="msIE">

You are using Microsoft Internet Explorer

</cond:if>

282 CHAPTER 9

Posing conditions with tags
Here the tag poses a condition on the value of the bean property as specified with
the tag attributes object and property. Based on this usage pattern, let’s start
building our conditional tag.

9.2.1 Implementing IfTag

The first issue to note regarding IfTag is that we want it to be able to pose condi-
tions on the property values of JavaBeans (as in the previous code snippet). We can
inherit most of the necessary functionality for this from ReflectionTag that was
developed in chapter 8.

 IfTag will also need to implement some conditional logic inside doStartTag()
once it gets the JavaBean property. Our IfTag will only look at the value of the
object or property it received in its attributes, convert the value to a boolean, and, if
the boolean value is true, evaluate the tag’s body into the response. Implementing
this logic is no problem if the value on which we base our condition is already bool-
ean; in other cases we just convert the value to a boolean. For IfTag, we’ve chosen
an extremely simple conversion logic (since the goal of the tag is to demonstrate
conditional execution, not necessarily data-type conversion).

 With this in mind, let’s take a look at IfTag’s implementation.

package book.conditions;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

import book.util.LocalStrings;
import book.reflection.ReflectionTag;

public class IfTag extends ReflectionTag {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(IfTag.class);

 public int doStartTag()
 throws JspException
 {
 boolean b = evalBoolean(getPointed()); b

 if(null != id) {
 pageContext.setAttribute(id,
 new Boolean(b),
 PageContext.PAGE_SCOPE);
 }

 if(b) {
 return EVAL_BODY_INCLUDE;
 }
 return SKIP_BODY;

Listing 9.1 Source code for IfTag handler

c

IfTag—A simple condition tag 283
 }

 protected boolean evalBoolean(Object o)
 {
 if(o instanceof Boolean) {
 return ((Boolean)o).booleanValue();
 }
 if(o instanceof Number) {
 return ((Number)o).intValue() != 0;
 }
 return new Boolean(o.toString()).booleanValue();
 }
}

B Sends the pointed variable (our condition) to boolean evaluation.

C Based on the returned value includes the body (if true) or excludes it (false).

D Evaluates the condition value as boolean (the simple way).

There is nothing too complex in implementing IfTag. All the reflection work is
implemented by ReflectionTag and the rest of the work is actually evaluating the
pointed value as a boolean and whether to include the tag’s body in the response
(returning EVAL_BODY_INCLUDE) or exclude it (returning SKIP_BODY).

 What is not obvious about IfTag is why it exports a new JSP scripting variable
with the result of the condition evaluation. The reason for this is to allow other
IfTags and scriptlets to read and possibly react, based on the result of the condi-
tion. Because we may not need this capability in all cases, exporting the scripting
variable occurs only when the tag’s user provides an id attribute value.

9.2.2 The problem with IfTag

IfTag is quite useful for pages in which the content developer is interested in per-
forming very simple conditions on various values. But when trying to develop pages
that require the use of complex conditions (such as those provided by the Java’s
switch and if else), we run into a problem. At the very least we would like our
tag to be able to handle the case wherein the condition fails via an else clause. As
we will soon see, extending the tag as it currently stands to support an else clause
proves to be somewhat problematic.

 To support an else clause, you might expect that we could simply add an else
tag to our library and proceed with syntax such as the following:

<cond:if object=”...” property=”...”>
Some JSP if the condition is true.
<cond:else>
Some JSP if the condition is false.
</cond:if>

d

284 CHAPTER 9

Posing conditions with tags
The problem with the above code fragment is that it does not constitute valid JSP
syntax (because JSP tags follow the rules for XML tags). The issue with this frag-
ment is that <cond:else> tag must be closed. An alternative is:

<cond:if id=“someid” object=”...” property=”...”>
Some JSP if the condition is true.
</cond:if>
<cond:else id=“someid”>
Some JSP if the condition is false.
</cond:else>

Another possible alternative is:

<cond:if object=”...” property=”...”>
Some JSP if the condition is true.
<cond:else>
Some JSP if the condition is false.
</cond:else>
</cond:if>

Though legal JSP, both options have problems that render them undesirable.
Namely:

� In the first option, there is no implicit link between if and else. To rectify
this, we had to link if and else explicitly by supplying an id in <cond:if>
and referencing this id in <cond:else>. This syntax is somewhat messy and
places an unneeded burden on the JSP developer.

� The second option, though possible if we use a BodyTag to implement our
<cond:if> and <cond:else> tags, runs the risk of introducing unwanted side
effects. Since <cond:else> resides within the body of <cond:if>, the
<cond:if> must always evaluate its body to determine whether a
<cond:else> exists within it. Hence, the body of the <cond:if> is evaluated,
even if the condition is false (in which case, it would be evaluated and
ignored). This is a problem, because evaluating the body even when the con-
dition is false will cause any scriptlets or tags within the body to be exe-
cuted, potentially causing side effects like throwing an exception or wasting
processing time. It’s similar to having a standard Java if statement that exe-
cutes both branches when evaluated, but returns the results of only the
proper branch.

� In both cases, the type of condition you impose is bound to be simple since
the number of attributes in the tags is becoming unmanageable (we need
attributes to point to the property/object, to link the if and else, and to
specify a complex condition).

The advanced condition tag family 285
Based on these complications, it would appear that our initial IfTag is too simplistic
to be properly built upon and extended. We can conclude from this that we should
implement a new set of tags to cope with complex conditions (including else
clauses). Building this more flexible tag library is the subject of the next section.

9.3 The advanced condition tag family

Following the discussion in the previous section, an advanced condition tag should:
� Allow the developer to create the equivalent of a chain of Java if-else-if

statements that are based on the same object.
� Provide a straightforward syntax for the JSP developer (for example, obviate

the entering of needless IDs and object references, even if they want to query
a certain object more than once).

� Eliminate the simple and sometime useless conversion of the conditioned
object to a boolean, and let the developer specify a more exact condition
(such as: the object is a String that contains the sub-string “MSIE”).

Considering these requirements, it is clear that what we are looking for is not a sin-
gle complex tag but a family of tags working together. A single tag, as powerful as it
might be, is going to be too complex to develop and use. The library we will
develop, which we’ll call the advanced condition tags, will have to obtain the Java
object on which we want to perform conditions, and evaluate various conditions on
the object’s values. Also, we want it to have more than one conditional fragment of
JSP to be evaluated if its condition is true. For example, we want to have the follow-
ing ability as demonstrated in this pseudo JSP fragment:

<%-- Define the object that we are going to
 query --%>
<withobject name=”somevalue”
 property=”someproperty”>

 <test condition=”some true condition on the object”>
 <%-- Some JSP is evaluated here--%>
 </test>

 <test condition=”some other true condition on the object”>
 <%-- Some other JSP is evaluated here--%>
 </test>

</withobject>

If both tests are evaluated as true, we want both to run (not exactly an if-else
behavior but very useful).

286 CHAPTER 9

Posing conditions with tags
 Based on these requirements, we see the need for the following two tags to be
developed:

� TestTag

The role of the TestTag is to pose a condition on the value of a reference
object. If this condition is evaluated to be true the body of the TestTag is
added to the response that goes to the user.

� WithTag

The role of WithTag is to wrap one
or more of the TestTags and man-
age them. This includes obtaining
and handing over the reference
object that the TestTags test (as
sketched in figure 9.1), and serving
as a repository for information that
all the TestTags need to share (e.g.,
if one of the test tags was evaluated
to be true). Additionally, WithTag selects one of two test evaluation policies:
The first allows only the first TestTag that was evaluated as true to be added
to the response; the second allows any TestTag evaluated as true to be added
to the response.

To help clarify what these tags do, let’s look at an example in which a JSP uses them
(listing 9.2):

<% Boolean b = new Boolean(true); b
<cond:with object="<%= b %>"> c
 The value is
 <cond:test condition="eq true"> d
 true
 </cond:test>
 <cond:test condition="eq false"> d
 false
 </cond:test>
</cond:with>

B The object, in this case a Boolean, on which the condition will be evaulated.

C Usage of the cond:with tag, specifying that the object for condition evaluation is b.

D Usage of the test tag, with the condition specified with a special syntax (discussed later).

Listing 9.2 Using our new conditional tags with a Boolean value

Figure 9.1 WithTag exposing a
ReferenceObject for two nested
TestTags to refer to and evaluate

The advanced condition tag family 287
We’ll look at this syntax in more detail once we’ve seen the tag handler implementa-
tions, but it is helpful at this point to note how the general architecture for these
two tags works together. Of specific interest is the way in which the <cond:with>
tag wraps all the subsequent <cond:test> tags and points to the object on which
conditions will be evaluated.

 Let’s now drill down into the implementation of each tag’s tag handler class.

9.3.1 WithTag

The WithTag will manage our TestTags, helping glue them together and communi-
cate together. The role of this tag can be greatly clarified by looking at the imple-
mentation of its handler (listing 9.3).

package book.conditions;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

import book.util.LocalStrings;
import book.reflection.ReflectionTag;

public class WithTag extends ReflectionTag {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(IfTag.class);

 public void setMultichoice(String trueOrFalse) b
 {
 if(trueOrFalse.equals("true")) {
 multiChoice = true;
 }
 }
 protected boolean multiChoice = false;

 public boolean isSelected() c
 {
 return selected;
 }
 public void setSelected(boolean selected)
 {
 this.selected = selected;
 }
 protected boolean selected = false;

 public Object getValueWith() d
 {
 return value;
 }
 protected Object value;

Listing 9.3 Source code for the WithTag handler

288 CHAPTER 9

Posing conditions with tags
 public boolean isExecutionPossible() e
 {
 return multiChoice || !isSelected();
 }

 public int doStartTag()
 throws JspException
 {
 selected = false;
 try {
 value = getPointed();
 } catch(JspException ex) {
 value = null;
 }

 return EVAL_BODY_INCLUDE;
 }

 protected void clearProperties()
 {
 multiChoice = false;
 super.clearProperties();
 }

 protected void clearServiceState() g
 {
 value = null;
 selected = false;
 }
}

B A set property method for the multichoice attribute. If this property is on (“true”
value), multiple enclosed tags can be evaluated as true and enclosed within the output.

C The selected property is set by the enclosed tags when one is evaluated as true.

D A getter for the reference object that the enclosed tags will use.

E Implements the condition evaluation policy. The enclosed tags will call this method to
find out if they are allowed to execute.

F Gets the pointed object so that the enclosed tags will be able to get a reference to it.
If we received an exception, the object is not available (null value).

G Clears the state that the tag holds while its body is being evaluated.

The purpose of WithTag is to make it possible for the enclosed tags to procure a ref-
erence to information and to coordinate with one another. WithTag holds the
pointed object (the object on which the conditions will be evaluated) for the
enclosed tags and hands it over to them, thereby freeing the JSP developer from
specifying the referenced object for each TestTag. It also coordinates the evaluation
of the enclosed TestTags by providing isExecutionPossible(); each enclosed

f

The advanced condition tag family 289
TestTag should call this method in order to obtain permission to run (and evaluate
its body). In this way we can have different TestTag condition evaluation policies.
A final item to note here is the selected property. Each enclosed TestTag should set
this property to true if its condition evaluates to true. This information is used
inside isExecutionPossible() to produce instruction to the other tags (e.g., if
multichoice is off and some tag sets the selected property to true, no other tag is
allowed to run). This tag will become clearer shortly, when we see how the
TestTags interact with it.

WithTagExtraInfo
WithTag is accompanied by a TagExtraInfo implementation, whose job is to vali-
date its attribute as presented in listing 9.4.

package book.conditions;

import book.reflection.ReflectionTagExtraInfo;

import javax.servlet.jsp.tagext.TagData;

public class WithTagExtraInfo extends ReflectionTagExtraInfo {

 public boolean isValid(TagData data)
 {
 if(!super.isValid(data)) {
 return false;
 }

 String multiChoice =
 data.getAttributeString("multichoice");

 if(null != multiChoice) {
 if(!multiChoice.equals("true") &&
 !multiChoice.equals("false")) {
 return false;
 }
 }

 return true;
 }
}

Most of the attribute validation work in WithTagExtraInfo is performed by its super-
class ReflectionTagExtraInfo. WithTagExtraInfo is responsible only for the vali-
dation of the multichoice attribute (it can only accept true or false).

Listing 9.4 Source code for the WithTagExtraInfo class

290 CHAPTER 9

Posing conditions with tags
9.3.2 TestTag

Now that you have seen how the WithTag provides access to the reference object
and policy for execution of several conditions, we shall move on to examine the
implementation of the tag that evaluates conditions and performs branching based
on that evaluation: TestTag.

package book.conditions;

import java.util.Hashtable;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

import book.util.LocalStrings;
import book.util.ExTagSupport;
import book.util.StringUtil;

public class TestTag extends ExTagSupport {

 static Hashtable operators = new Hashtable();

 static {
 operators.put("contains", b
 new ContainsOperator(true));
 operators.put("eq",
 new EqualsOperator(true));
 operators.put("cleq",
 new ClequalsOperator(true));
 operators.put("startswith",
 new StartswithOperator(true));
 operators.put("endswith",
 new EndswithOperator(true));

 operators.put("ncontains",
 new ContainsOperator(false));
 operators.put("neq",
 new EqualsOperator(false));
 operators.put("ncleq",
 new ClequalsOperator(false));
 operators.put("nstartswith",
 new StartswithOperator(false));
 operators.put("nendswith",
 new EndswithOperator(false));
 }

 public static final String OPER_EXISTS = "exists";
 public static final String OPER_NEXISTS = "nexists";

 static LocalStrings ls =
 LocalStrings.getLocalStrings(TestTag.class);

 protected String condition = null;

Listing 9.5 Source code for the TestTag handler

The advanced condition tag family 291
 public void setCondition(String condition) c
 {
 this.condition = condition;
 }

 public int doStartTag()
 throws JspException
 {
 if(evalCondition()) {
 return EVAL_BODY_INCLUDE;
 }
 return SKIP_BODY;
 }

 protected boolean evalCondition()
 throws JspException
 {
 WithTag wrapper =
 (WithTag)findAncestorWithClass(this, e
 WithTag.class);
 if(null == wrapper) {
 // Throw a JspTagException
 }

 if(!wrapper.isExecutionPossible()) { f
 return false;
 }

 String []oper = StringUtil.splitArray(condition, " ");
 boolean result = false;

 switch(oper.length) {

 case 1:
 result = unaryOperation(oper[0],
 wrapper.getValueWith()); g
 break;

 case 2:
 result = binaryOperation(oper[0],
 oper[1], h
 wrapper.getValueWith());

 break;

 default :
 // Log and throw a JspTagException
 }

 if(result) {
 wrapper.setSelected(true); i
 }
 return result;
 }

d

292 CHAPTER 9

Posing conditions with tags
 protected boolean unaryOperation(String oper,
 Object lh)
 throws JspException
 {
 if(oper.equals(OPER_EXISTS)) {
 return (null != lh); j
 } else if(oper.equals(OPER_NEXISTS)) {
 return (null == lh);
 } else {
 // Log and throw a JspTagException
 }
 }

 protected boolean binaryOperation(String oper,
 String rh,
 Object lh)
 throws JspException
 {
 Object oRh = getOperand(rh);
 Operator o = (Operator)operators.get(oper); 1)
 if(null == o) {
 // Log and throw a JspTagException
 }
 return o.cmp(lh, oRh);
 }

 protected Object getOperand(String spec)
 throws JspException
 {
 Object rc = spec;
 if(spec.charAt(0) == '$') {
 rc = pageContext.findAttribute(spec.substring(1));
 } else if(spec.charAt(0) == '#') {
 rc = new Integer(spec.substring(1));
 }

 if(null == rc) {
 // Log and throw a JspTagException
 }

 return rc;
 }

 protected void clearProperties()
 {
 id = null;
 condition = null;
 super.clearProperties();
 }

 static interface Operator {
 public boolean cmp(Object lh, Object rh);
 }

1!

1@

The advanced condition tag family 293
 static class ContainsOperator implements Operator {
 boolean reference;
 public ContainsOperator(boolean reference) {
 this.reference = reference;
 }
 public boolean cmp(Object lh, Object rh) {
 return ((lh.toString().indexOf(rh.toString()) != -1) ?
 reference :
 !reference);
 }
 }
 static class EqualsOperator implements Operator {
 boolean reference;
 public EqualsOperator(boolean reference) {
 this.reference = reference;
 }
 public boolean cmp(Object lh, Object rh) {
 return (lh.toString().equals(rh.toString()) ?
 reference :
 !reference);
 }
 }

 // Other operators were removed for clarity ...
}

B j 1) 1@ Prepares a lookup table with condition operator names as keys and the
operator implementation as value TestTag shows (on purpose) two methods to
implement multiple condition operators. The unary operators (comparing only one
operand) are hard-coded inside TestTag, while the binary operators (comparing two
operands) are implemented by a set of classes (each implementing a different opera-
tor) and a Hashtable, used as a look-up table for the correct operator. Looking into
the two methods, it is obvious that the second is much cleaner and can scale well
(i.e., adding many more operators should not pose a problem). By implementing
each operator in a different class, it is much easier to extend TestTag to handle new
operators. One can modify TestTag to read a resource file with the operator names
and implementing classes and avoid the coupling between the tag and its operators.

C TestTag has a single attribute which is the condition to test.

D If the condition is true, include the body in the response, otherwise ignore it.

E Get a reference to the wrapper tag and keep it for later use.

F Consult the condition policy logic in the wrapper tag before evaluationg the condition.
If we are not allowed to run, this is just like a false condition.

G Single operand, send to the unary condition evaluator.

H Two operands, send to the binary condition evaluator.

294 CHAPTER 9

Posing conditions with tags
i If the condition is true, notify the policy logic in the wrapping tag using setSelected().

J The implementation of the unary operators is hard-coded in the tag.

1) Gets the operator object from the operator table. The name of the operator saves as
the key.

1! Evaluates the condition operand. Two metachars may prefix the operand value, a #
signs for an integer value, a $ informs us that the following string is a JSP scripting
attribute name The condition may have a single operand or two. In both cases the
first operand is the one held within the wrapping WithTag; the second, however,
comes from the condition string. The condition string describes the condition
using a syntax we’ve developed (recall, this string was eq true or eq false in
listing 9.2). In general, the binary condition string looks like: <condition opera-
tor> <condition operand>, in which the condition operator can be one of the
operator names held within the operator tables and the condition operand is the
second operand to be used within the condition. We wanted the second operand to
be as flexible as possible, but without adding too much of a burden to the JSP
developer. The solution was to add some special metacharacters to the operand in
the following way:

� If the operand starts with a “#,” then following the “#” is an integer value,
and the second operand should be an Integer object that was created from
this value.

� If the operand starts with a “$,” then following the “$” is the name of a JSP
scripting variable (some Java object) whose value should be used as the sec-
ond operand.

� If the operand does not start with “$” or “#” it is a plain string value.

These three rules make the second operand very flexible, yet keep things simple for
the JSP developer.

1@ All our binary operators implement the same Operator interface. This way we can
handle many different operators the same way.

In a nutshell TestTag’s job is to evaluate its condition and, based on the result, to
embed (or not) its body content in the response. This is accomplished relatively
simply because of the work partition between WithTag and TestTag.

TestTagExtraInfo
We saw that TestTag created a framework where we can plug additional operators
as needed. With all these operators, you might expect the TagExtraInfo associated
with TestTag to be huge. Will we have to change it whenever we add a new opera-
tor? If so, this entire flexible operator framework does not seem to be worth all that

The advanced condition tag family 295
much. The answer to these concerns is in listing 9.6 where you see the implementa-
tion of TestTagExtraInfo.

package book.conditions;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

import book.util.StringUtil;

public class TestTagExtraInfo extends TagExtraInfo {

 public boolean isValid(TagData data)
 {
 String condition =
 data.getAttributeString("condition");
 String[] parsed =
 StringUtil.splitArray(condition, " ");

 if((parsed[0].equals(TestTag.OPER_EXISTS) ||
 parsed[0].equals(TestTag.OPER_NEXISTS)) &&
 parsed.length == 1) {
 return true;
 }
 if(parsed.length == 2 &&
 null != TestTag.operators.get(parsed[0])) { c
 return true;
 }

 return false;
 }
}

B Checking the unary operators for correctness, we need to individually check each oper-
ator name.

C Checking the binary operators for correctness, all we need is a single look-up in the
operator table.

TestTagExtraInfo provides one more reason for using an operator table instead of
hard-coding the operators in TestTag; just look at the difference between the vali-
dation of the unary and binary conditions. Since the implementation of the unary
operators is hard-coded in TestTag, TestTagExtraInfo must create an if state-
ment with the specific unary operator, which will force a developer that adds
another unary operator to modify both as well as TestTag. On the other hand,
since the binary operators are implemented with an operator look-up table, all that

Listing 9.6 Source code for the TestTagExtraInfo class

b

296 CHAPTER 9

Posing conditions with tags
is needed to validate the binary operator is to search the look-up table for a valid
operator. Happily, this means that a developer will not need to change TestTagEx-
traInfo in order to add new operators.

9.3.3 TLD for the advanced condition tags

To complete our discussion of advanced condition tags, we shall also provide the
important tag library descriptor, as well as sample JSP code that take advantage of
the condition tags.

 First, let’s look at the tag library descriptor as presented in listing 9.7.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>simp</shortname>
 <uri>
 http://www.manning.com/jsptagsbook/condition-taglib
 </uri>
 <info>
 Condition tags library.
 </info>

 <tag>
 <name>with</name>
 <tagclass>book.conditions.WithTag</tagclass>
 <teiclass>book.conditions.WithTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Wrap a JSP fragment with test conditions.
 </info>

 <attribute>
 <name>multichoice</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>object</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>name</name>
 <required>false</required>

Listing 9.7 Tag library descriptor for the advanced condition tags

The advanced condition tag family 297
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>index</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>property</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>test</name>
 <tagclass>book.conditions.TestTag</tagclass>
 <teiclass>book.conditions.TestTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Pose a condition on the reference object.
 </info>
 <attribute>
 <name>condition</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
</taglib>

As seen in the TLD, both tags are marked as having JSP contents, which tells the JSP
environment to evaluate the body. As for tag attributes, the WithTag entry inherits
most of its attributes from ReflectionTag and adds just a single new multichoice
attribute, instructing the tag as to the condition evaluation policy that is desired.
TestTag, on the other hand, is less complex with only a single tag attribute that
specifies the condition string.

9.3.4 Our tag library in action

We can now take a look at a few JSP fragments that use the tag. You’ll recognize the
following JSP fragment from earlier in this chapter; and it will prove even more use-
ful based on what we’ve just learned. This fragment shows how the tag is employed

298 CHAPTER 9

Posing conditions with tags
in testing a boolean value; the conditions we use are eq true and eq false,
meaning equals true and equals false. We are not doing a simple if-else (we actu-
ally can’t), but instead are asking about two negatives.

<% Boolean b = new Boolean(true); %>
<cond:with object="<%= b %>">
 The value is
 <cond:test condition="eq true">
 true
 </cond:test>
 <cond:test condition="eq false">
 false
 </cond:test>
</cond:with>

You may wonder about the fact that in listing 9.8 we generated our object in a
scriptlet (about the easiest way to pass a value to the tag), but don’t let it concern
you. We could get this value from anywhere in the JSP environment (e.g., we could
get this value from a bean) and our tag would work equally well.

 Another sample JSP fragment shows a more complex scenario in which the devel-
oper grabs the User-Agent header and checks to see what type of client is being served.

<cond:with object="<%= request %>"
 property="header"
 index="User-Agent"
 multichoice="true"> c

 Your browser is IE?
 <cond:test condition="contains MSIE">
 Yes
 </cond:test>
 <cond:test condition="ncontains MSIE">
 No
 </cond:test>

 <cond:test condition="contains #98"> e
 You are probably using some Windows98 variation.
 </cond:test>

 <cond:test condition="nstartswith Mozilla/"> f
 What's that? No Mozilla?
 </cond:test>
</cond:with>

Listing 9.8 Using the conditional tags with a boolean value

Listing 9.9 A complex usage of the conditional tags

b

d

Improving our advanced condition tags 299
B Points to the User-Agent header.

C Informs the wrapper tag that we are going to allow the execution of multiple success-
ful tests By setting the multichoice attribute to true, we indicate that all tests
wrapped in this WithTag should be evaluated. For example, if you try to access this
JSP fragment from Internet Explorer running on Win98, both the “MSIE” and
“98” containment conditions will come up true and you will see the body of these
tests in the response. If you wonder why someone would want to have several suc-
cessful tests in the same JSP fragment, just picture some JSP code in which you want
to adapt yourself to the browser as much as possible. In this case you will need to
test the browser’s capabilities over and over again. Using the multichoice option
can give you this flexibility.

D Execution of an if-else logic—first test if the header contains MSIE and then check that
it does not.

E Provides an Integer as a second operand.

F Checks if the User-Agent header does not start with a Mozilla/ prefix (most browsers do).

Note from these two samples that using our tags is fairly straightforward; the tag
attributes make sense and we’ve kept the syntax to a minimum. It is also easy, using this
library, to test the reference object and specify conditions; but aren’t these conditions
too elementary for many real-world uses? The next section will discuss this concern.

9.4 Improving our advanced condition tags

The tags we’ve built do a fair job of handling condition evaluation, so what’s miss-
ing? The main shortcoming with our tag library is that many real applications have
conditions that use more than two operands, which is the maximum our library can
handle. In Java we can have conditions that look like:

if(s.trim().equals(“somevalue”) && someBoolean && otherBoolean) {
 // do something
}

Such a condition could not be represented using our current library. Does it mean
that we cannot use condition tags in a real-world case? There are a number of possi-
ble ways to support these complex conditions within tags. Here are two of them:

� Invent a complex condition language to be used within the tags and extend
the tags we developed to use this language.

� Have the user of the tags put all of the complex conditions inside a bean and
use the bean’s attributes to grab the condition’s result inside the tags.

300 CHAPTER 9

Posing conditions with tags
9.4.1 Supporting complex conditions with a condition language

Inventing a condition language is a reasonable approach to supporting conditions;
in fact, we had a very simple type of condition language in our TestTag. Why not
improve on it? For example, assume that our condition can look like this:

<cond:test condition=”Trim($s) = ‘somevalue’ and
 $someBoolean and $otherBoolean”>
Some JSP code ...
</cond:test/>

One resounding benefit to creating a new condition language is that you can make
it as complex and as powerful as you desire. Since you’ll have total control over the
language, you can support as many operands, functions, or comparisons as you
desire by extending it. At this level, defining our own conditional language seems
like a good approach. There are, however, several notable drawbacks.

Drawbacks of complex condition languages
By designing your own condition language you can easily support complicated que-
ries; however, to do so you need first to develop a complex parsing mechanism and
then implement all the functionality the language supports, including utility func-
tions (such as Trim() in the previous example). This can prove to be a substantial
undertaking. Furthermore, once you are finished with new language implementa-
tion, you will have to teach it to whomever will be using it. And if that were not
enough, you will probably need to provide mechanisms for JSP authors to debug
their conditions. Will you provide an IDE to let developers step into your propri-
etary implementation? After this analysis, it becomes clear that in order to build a
debuggable, feature-rich condition language (and the code to support it) you end
up building a system similar to commercial products like ColdFusion. Unless you
are planning on selling this tag library commercially and for a nifty price, the effort
required to support complex conditions this way is not worth it. There must be a
better way to solve the problem with a more standard condition language and less
effort. One alternative, it turns out, is to use Java.

9.4.2 Supporting complex conditions with JavaBeans

JSP already supports Java. To take advantage of this, let’s place all our conditions in a
JavaBean and query the values of that bean’s properties. The JavaBean now contains
the complicated Java code that performs the condition, and can leverage all the natu-
ral features of the Java language. This approach also makes it very easy to debug the
code (since you can simply use your favorite Java IDE), and prevents us from support-
ing any complex parsing or training JSP authors in our own proprietary language.
Though this method requires you to write the beans that contain the conditional
logic, this will simply be handled by the business logic developer, freeing the JSP

Summary 301
author or content developer from concerns over conditional logic so they may focus
on presentation. A solution that bases itself on beans should look something like:

<jsp:useBean id="condBean"
 scope="page"
 class="my.condition.Bean">
 <jsp:setProperty name="condBean"
 property="request"
 value="<%= request %>"/>
 </jsp:useBean>
 <cond:with object="<%= condBean %>"
 property="myQuery">

 <cond:test condition="eq true">
 <%-- We are here if the query is true --%>
 </cond:test>
 <cond:test condition="eq false">
 <%-- We are here if the query is false --%>
 </cond:test>
</cond:with>

This approach keeps the JSP syntax clean and straightforward, while enforcing a tidy
separation of the business logic and presentation. The advantages of using Java-
Beans to evaluate your conditions make it vastly superior to the previous approach,
while satisfying all the requirements of supporting complex, real-world use.

9.5 Summary

While it is feasible to implement an easy-to-use conditional tag, representing a
condition (even a simple one) in a declarative manner is impossible. Therefore,
unless you are going to implement your own condition specification language,
you will be better off implementing your condition evaluation in a JavaBean, in
which you can leverage all the power of the Java language to pre-process and eval-
uate your conditions. This approach leaves your tags with the sole task of check-
ing the JavaBean’s resulting values and including or excluding content based on
the bean’s exported values.

 Once you resolve to never attempt implementing a full-fledged condition speci-
fication language, implementing custom conditional tags becomes relatively easy.
JSP is well adapted for conditional inclusion (as well as exclusion) of content using
the Tag method call protocol and JSP will evaluate the conditioned content with no
additional effort on your part.

 In the next chapter, we will look at how to build tags that support iteration, such
as iterating over a list of JavaBean property values. We saw scriptlet code in chapter 8
that performed iteration; now we’ll see how to eliminate these scriptlets and replace
them with simple to use, flexible custom tags that perform the same functions.

 10Iterating with tag
s

In this chapter
� Iterating with tags 101
� Universal iteration with tags (iterate anything!)
� Tag-only presentation of a shopping cart
� The JSP1.2 IterationTag

Iterating With Tags
302

303 CHAPTER 10

Iterating with tags
At the end of chapter 8, we used our newly created JavaBean tags to export an Enu-
meration which was then iterated over with a scriptlet. Let’s take another look at
this JSP fragment.

<table>
<tr>
<th> Header </th> <th> Value </th>
</tr>

<bean:export id="e"
 type="enum"
 object="<%= request %>"
 property="headerNames" />

<% while(e.hasMoreElements()) {
 String name = (String)e.nextElement();
%>
<tr>

<td> <%= name %> </td>

<td>
 <bean:show object="<%= request %>"
 property="header"
 index="<%= name %>"/>
</td>
</tr>
<%
 }
%>
</table>

As you can see (note the highlighted code), although our JavaBean tags greatly
reduce the need for scriptlets, we are still unable to avoid them when working with
indexed JavaBean properties that have more than one value. In cases of multivalued
properties (Enumerations, arrays, etc.) we typically want to loop through (iterate)
and perform a function with each value in the property. Without a tag to handle this
iteration, we’re left using a scriptlet like the one here. This is unfortunate since we
want to be able to provide our JSP authors with the ability to perform common
functions on JavaBeans without prior knowledge of Java. Ideally, we’d like to offer
them a very user-friendly JSP custom tag that would work for iteration.

 Iteration, especially enumerating some value, can be very declarative, and, as
we’ve seen, declarative tasks are easily performed with tags. For example, by using
iteration tags we can modify the previous JSP fragment:

<table>
<tr>
<th> Header </th> <th> Value </th>
</tr>

Iterating With Tags 304
<iter:foreach id="name"
 type="String"
 object="<%= request %>"
 property="headerNames" />

<tr>

<td> <%= name %> </td>

<td>
 <bean:show object="<%= request %>"
 property="header"
 index="<%= name %>"/>
</td>
</tr>
<iter:foreach>
</table>

This is obviously quite an improvement.
 Why should we bother creating special iteration tags when a two-line scriptlet

hardly seems demanding for a Java developer? Again, we can’t forget that the goal of
building custom tag libraries is to make it possible for non-Java developers (presenta-
tion/HTML developers) to build complex sites. Though iteration using scriptlets
may not be complex for the Java programmer, it does require the JSP developer to:

� Know how to iterate on different Java types—Enumerations, Iterators,
arrays, and so forth. To further complicate the situation, iteration methods
usually return an Object that the JSP developer will have to cast.

� Position the curly brackets in the correct location. If the JSP developer forgets
a curly bracket, the JSP compilation will fail, usually with a relatively obscure
error message.

� Maintain and debug yet another portion of Java code.

As a result, iteration tags are necessary to enhance the effectiveness of our JavaBean
tags and to keep our JSPs scriptlet-free.

 This chapter explores iteration with tags and shows how to build JSP custom
tags that perform iteration for us. We’ll start with a brief introduction to iterating
with custom JSP tags and discuss their design principles; later, we will develop itera-
tion tags to handle cases in which we wish to iterate over Java’s common object
containers.

NOTE In this chapter, you will see the word iterator used in two distinct ways.
When we use the generic term, we mean any multivalued object (be it an
Array, an implementation of the java.util.Enumeration interface or
an implementation of the java.util.Iterator interface). When we
mention Iterator we are speaking strictly about the Java interface.

305 CHAPTER 10

Iterating with tags
10.1 Iterating with tags 101

Developing custom JSP tags that iterate over some set of values requires us to work,
once again, with the familiar BodyTag interface. The BodyTag interface provides a
method call protocol to control the execution of the tag’s body—which we’ll need
in order to repeat the tag’s body for every value in the JavaBean’s indexed property.

NOTE In JSP1.2 a new IterationTag interface was defined and we can also cre-
ate tags using this interface. You can find information regarding the Iter-
ationTag later in this chapter.

Figure 10.1 shows how a tag can implement iteration using the BodyTag method
call protocol.

Body Processing

The JSP
environment

Process the body

Reiterating
or Termination

t.doAfterBody()

doAfterBody() returns
EVAL_BODY_TAG

doAfterBody() returns
SKIP_BODY

Iteration
Initalization

t.doInitBody()

Iteration is done Figure 10.1
Implementing iteration using
the BodyTag interface

Iterating with tags 101 306
 To further illustrate how iteration is accomplished with tags, we’ve translated the
flow chart in figure 10.1 into (roughly) its Java equivalent.

t.doInitBody();
do {
 // The JSP runtime execute
 // the tag’s body ...
} while(t.doAfterBody() == BodyTag.EVAL_BODY_TAG);

As figure 10.1 and the code fragment show, two methods (table 10.1) take part in
implementing the iteration:

NOTE You can skip the implementation of doBodyInit() and perform its work
in doStartTag(). This will not have any effect on performance and may
even simplify your tags. Better yet, since doStartTag() is not available in
IterationTag, code that does not use it will be easier to port to this new
tag. In any case, it is a good idea to separate the iteration handling from
doStartTag() so that doStartTag() will only deal with service initializa-
tion (e.g., obtaining the object set that we are going to iterate) and
doBodyInit() will deal with the initialization of the loop.

10.1.1 Iteration example: SimpleForeachTag

Now that you know how to implement iteration in your tags, we will take a look at
a sample iterative tag and the code that performs iteration.

 Our first iteration tag, SimpleForeachTag, will take a tag attribute that specifies a
list of strings, walk over the string list, and, one by one, export an iterator object that
contains the current string value for that iteration round. The following JSP frag-
ment shows a sample usage of this tag:

Table 10.1 Iteration methods

JSP method Description

doBodyInit() Used to initialize preiteration JSP scripting variables and the tags’ internal
values. For example, if your tag exposes some iterator object as a JSP
scripting variable, it will probably use doBodyInit() to export its initial
value.

doAfterBody() Controls the iteration with its return codes: To continue the iteration,
doAfterBody() returns a value of BodyTag.EVAL_BODY_TAG (or
IterationTag.EVAL_BODY_AGAIN in JSP1.2).To break the iteration , it
returns a value BodyTag.SKIP_BODY. This method is also where we
re-export the iterator value (the current value of the property on which we
are iterating), and where we write the result of the current iteration into the
response.

307 CHAPTER 10

Iterating with tags
<iter:foreach id=”item”
 elements=“1,2,3,4”>
The selected item is <%= item %>

</iter:foreach>

Executing the above JSP fragment generates the following content:

The selected item is 1

The selected item is 2

The selected item is 3

The selected item is 4

 Let’s look at the code for the SimpleForeachTag’s handler (listing 10.1).

package book.iteration;

import java.util.StringTokenizer;
import java.util.LinkedList;
import java.util.List;
import java.util.Iterator;
import book.util.LocalStrings;
import book.util.ExBodyTagSupport;
import javax.servlet.jsp.JspException;

public class SimpleForeachTag extends ExBodyTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(SimpleForeachTag.class);

 Iterator elementsList = null;

 protected String elements = null;

 public void setElements(String elements)
 {
 this.elements = elements;
 }

 public int doStartTag()
 throws JspException
 {
 parseElements(); b

 if(elementsList.hasNext()) {
 return EVAL_BODY_TAG;
 }
 return SKIP_BODY;
 }

 public void doInitBody()
 throws JspException
 {
 pageContext.setAttribute(id, elementsList.next()); d

Listing 10.1 Source code for the SimpleForeachTag handler class

c

Iterating with tags 101 308
 }

 protected void parseElements()
 throws JspException
 {
 List l = new LinkedList();
 StringTokenizer st = new StringTokenizer(elements, ",");
 while(st.hasMoreTokens()) {
 l.add(st.nextToken());
 }

 elementsList = l.iterator();
 }

 public int doAfterBody()
 throws JspException
 {
 try {
 getBodyContent().writeOut(getPreviousOut());
 getBodyContent().clear();
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 log(ls.getStr(Constants.IO_ERROR), ioe);
 throw new
 JspTagException(ls.getStr(Constants.IO_ERROR));
 }
 if(elementsList.hasNext()) {
 pageContext.setAttribute(id, elementsList.next());
 return EVAL_BODY_TAG;
 }

 return SKIP_BODY;
 }

 protected void clearProperties()
 {
 id = null;
 elements = null;
 super.clearProperties();
 }

 protected void clearServiceState()
 {
 elementsList = null;
 }
}

B Parses the list of strings into a Java list and creates an enumerator.

C If we have an element in the list, continues the body evaluation; otherwise skips the
body (empty iteration).

D Sets the iterator variable with the first element in the list.

e

f

g

309 CHAPTER 10

Iterating with tags
E Breaks the string list into a Java list.

F Writes the results of this iteration back to the user and clears the body buffer.

G If we have more elements in the list, exports a new iterator value and repeats evaluat-
ing the body.

The work in SimpleForeachTag takes place in three designated locations:
� The service phase initialization in doStartTag(). The tag initializes the set of

objects on which we plan to iterate, and determines if we need to process the
body. This is not necessary if the list of objects is empty.

� The loop initialization in doInitBody(). The tag exports the needed itera-
tor object by calling pageContext.setAttribute() with the name of the
object and the object itself. In doing so, we publish the iterator as a scripting
variable, so that it ends up in the scope in the JSP (a practice we first came
across with JavaBean tags in chapter 8). By exporting the iterator object, other
tags and scriptlets can take advantage of it.

� The loop termination/repeating in doAfterBody(). The tag writes the
results of the last loop into the previous writer (usually the writer that goes to
the user) and then clears the body content to prepare it for the next iteration.
In the final step, if there are additional items to iterate, the tag exposes a new
iterator value and signals the JSP environment to repeat the execution by
returning EVAL_BODY_TAG.

NOTE When implementing iterations using tags, you do not have to write the re-
sults of each loop separately. You may instead wait for the body execution to
finish (no more elements on which to iterate) and then write the complete
result. Doing so usually results in improved performance, but it may also
cause a delay in the user’s receipt of the results. For example, consider read-
ing a substantial amount of data from a database and presenting it to the
user with some iteration on the result set. Since we are working with a data-
base, completing the iteration may take a while and writing the response
only on completion may cause the user to leave the page. Writing the result
of each loop incrementally would (depending on buffer size) cause the re-
sults to return to the user incrementally, instead of in a large chunk.

SimpleForeachTag’s TagExtraInfo
Following the development of SimpleForeachTag we must now create its TagEx-
traInfo counterpart. You may recall from our discussions of the TagExtraInfo
class in chapters 6 and 8, we need to create a subclass of TagExtraInfo whenever
we have a tag that exports a scripting variable. Since SimpleForeachTag will need

Iterating with tags 101 310
to export the values of the iterator, we’ll create a TagExtraInfo class for it that will
inform the runtime of this. We’ll call this class ForeachTagExtraInfo. Its imple-
mentation is in listing 10.2 wherein you see that it merely notifies the JSP runtime
that a new scripting variable of type String is exported.

package book.iteration;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;
import javax.servlet.jsp.tagext.VariableInfo;

public class ForeachTagExtraInfo extends TagExtraInfo {

 public VariableInfo[] getVariableInfo(TagData data)
 {
 VariableInfo[] rc = new VariableInfo[1];
 rc[0] = new VariableInfo(data.getId(),
 "java.lang.String",
 true,
 VariableInfo.NESTED);
 return rc;
 }
}

NOTE Note that the scope defined for the scripting variable is NESTED, meaning
the variable exists and is accessible only within the body of the tag that ex-
ported it. This is important since the variable we export is our iterator, and
so should exist only within the body of the loop.

SimpleForeachTag in action
Having written SimpleForeachTag and its TagExtraInfo we can now write JSP code
to work with it. Since this is only the beginning of our iteration tags discussion, we will
take that same JSP fragment and make it the content of our JSP as seen in listing 10.3.

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/iteration-taglib"
 prefix="iter" %>

<html>
<body>

<iter:foreach id="item"

Listing 10.2 Source code for the ForeachTagExtraInfo class

Listing 10.3 JSP driver for SimpleForeachTag

311 CHAPTER 10

Iterating with tags
 elements="1,2,3,4">
The selected item is <%= item %>

</iter:foreach>

</body>
</html>

Now when we execute our JSP, SimpleForeachTag will repeat its body four times
(one for each string in “elements”); first with 1 as the value of the item (our itera-
tor), and lastly with 4 as its value.

10.2 Generalized iterating tags

In perusing the implementation of SimpleForeachTag it appears that most of the
work done by the tag is not unique to it. In fact, other than the creation of the
Iterator object in parseElements() all the other code was generic. True, some
tags will not want to expose an iterator, and others may want to expose more than a
single iterator as a scripting variable (for some other tag-specific purpose), but these
tags are not representative of the majority. In most cases, tags will differ only in the
objects they iterate (some will iterate over an Enumeration, others on Array, etc.)
but the general structure will stay the same; a single iterator scripting variable will be
exposed and updated for each element.

 Based on this general iterating structure, we’ll build:
� A generic iteration interface that lets the tag developer specify how to iterate

over some set of objects.
� A basic iterator tag that takes a generic iteration object (Enumeration, Array,

etc.) and iterates on it.

Creating these two, generic components will then streamline the creation of various
iteration tags. These specialized iteration tags will be custom-built, based on the
type of Java object to be contained in the iterator, and the iterator type in which
these objects are to be contained. For example, our SimpleForeachTag had an iter-
ator type of java.util.Iterator, and contained in that iterator was a list of
Strings. We are now going to build these two components (the class and interface)
and modify SimpleForeachTag to use this new, more generic infrastructure.

10.2.1 A generic iteration interface

Before looking into the new ForeachTag, let’s study the generic iteration infra-
structure on which it is constructed, starting with the generic iteration interface as
seen in listing 10.4.

Generalized iterating tags 312
package book.iteration;

import javax.servlet.jsp.JspException;

public interface IterationSupport {

 public boolean hasNext()
 throws JspException;

 public Object getNext()
 throws JspException;
}

Why do we need another iteration/enumeration interface, as Java already offers
plenty. You may also wonder, why a JspException is thrown from the methods
hasNext() and getNext(). Shouldn’t a generic interface remove JSP related ties?
We do this because we want to provide better JSP integration. Let’s explore our
motivation for this integration.

NOTE We could consider the option of defining a new exception type (such as
IterationException) that the iteration support methods could throw;
but why should we? This code is written for the JSP tags, and we are not
going to reuse it. In 99 percent of all cases, you are going to throw a
JspException as a result of the error. Based on this argument, we’ve re-
jected the new exception type idea, and continue to use JspException as
our error-reporting vehicle.

10.2.2 IterationTagSupport

Let’s look at the basic iteration tag class, IterationTagSupport, and how it uses
IterationSupport. Before taking a look into the implementation of Iteration-
TagSupport as presented in listing 10.5, let’s consider how we would like it to work.

What should IterationTagSupport do?
Most emphatically, the generic iteration tag class should automatically take care of
iteration-related issues such as flow control, as well as exporting default iterator
variables. In addition, it must be able to:

� Create an IterationSupport object out of the elements provided as a tag
attribute. This can be accomplished by defining a method that our specialized
iteration tags can override and that IterationTagSupport will call during its
doStartTag(). By specialized tag we mean the special version of the tag that

Listing 10.4 Source code for the generic iteration interface

313 CHAPTER 10

Iterating with tags
is custom built to handle a particular iterator type and a particular type of
object in that iterator.

� Export a different set of JSP variables. Whenever IterationTagSupport
wants to export its iterator value, it should call yet another method that can
be overridden by the specialized tag (but the default implementation of the
variable exportation method should export only a single iterator).

IterationTagSupport’s implementation
IterationTagSupport was created with a few methods that may be overridden by
specialized iteration tags.

package book.iteration;

import book.util.LocalStrings;
import book.util.ExBodyTagSupport;
import javax.servlet.jsp.JspException;

public abstract class IterationTagSupport
 extends ExBodyTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(IterationTagSupport.class);

 IterationSupport elementsList = null;

 public int doStartTag()
 throws JspException
 {
 fetchIterationSupport();
 if(elementsList.hasNext()) {
 return EVAL_BODY_TAG;
 }
 return SKIP_BODY;
 }

 public void doInitBody()
 throws JspException
 {
 exportVariables();
 }

 public int doAfterBody()
 throws JspException
 {
 try {
 getBodyContent().writeOut(getPreviousOut());
 getBodyContent().clear();
 } catch(java.io.IOException ioe) {

Listing 10.5 Source code for the generic iteration tag handler

Generalized iterating tags 314
 // User probably disconnected ...
 // Log and throw a JspTagException
 }

 if(elementsList.hasNext()) {
 exportVariables();
 return EVAL_BODY_TAG;
 }

 return SKIP_BODY;
 }

 protected abstract void fetchIterationSupport() b
 throws JspException;

 protected void exportVariables() c
 throws JspException
 {
 pageContext.setAttribute(id, elementsList.getNext());
 }

 protected void clearProperties() d
 {
 id = null;
 super.clearProperties();
 }

 protected void clearServiceState() e
 {
 elementsList = null;
 }
}

B First override point. The specialized tag must implement this method to create and set
an IterationSupport object The first method that tags can and must override is fet-
chIterationSupport(). This abstract method is the location wherein the overriding
tag should implement the creating and setting of the IterationSupport object and
any specialized iteration tag must provide such objects to make the generic infrastruc-
ture work. If problems rise within fetchIterationSupport(), it can throw a JspEx-
ception that the generic implementation will pass to the JSP runtime.

C Second override point. The specialized tag may want to export additional objects The
second method that can be overridden is exportVariables(), which is where the
generic iteration tag exports the iterator (based in the id attribute). An overriding
tag may override this method to add more variables. For example, a certain tag
iterates a hash table and wants to export both the key to the table and the value itself.
In this case you would like to add the exportation of the value variable along with
the default iterator.

315 CHAPTER 10

Iterating with tags
D Override if you have additional attributes in the specialized tag (you probably do).

E Override if you have additional service state in the specialized tag.

Listing 10.5 shows that the general structure of IterationTagSupport is very
similar to the one presented in SimpleForeachTag. The tag is merely a generic
iteration infrastructure with several methods to override as explaned in the anno-
tations. Note also that IterationTagSupport extends our now familiar
ExBodyTagSupport, and therefore inherits its functionality.

An improved ForeachTag which uses IterationTagSupport
We’ve mentioned several times the concept of a specialized tag, by which we infer a
tag that uses our generic interface and class for a specific iterator and object type.
Let’s now look at one such specialized tag, ForeachTag, which uses IterationTag-
Support to support an Iterator containing a list of Strings (see listing 10.6).

package book.iteration;

import java.util.StringTokenizer;
import java.util.LinkedList;
import java.util.Iterator;
import java.util.List;
import book.util.LocalStrings;
import book.util.ExBodyTagSupport;
import javax.servlet.jsp.JspException;

public class ForeachTag extends IterationTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ForeachTag.class);

 protected String elements = null;

 public void setElements(String elements)
 {
 this.elements = elements;
 }

 protected void fetchIterationSupport()
 throws JspException
 {
 List l = new LinkedList();
 StringTokenizer st = new StringTokenizer(elements, ",");
 while(st.hasMoreTokens()) {
 l.add(st.nextToken());
 }
 elementsList = new IteratorIterationSupport(l.iterator());
 }

Listing 10.6 Source code for the ForeachTag handler class

b

Generalized iterating tags 316
 protected void clearProperties()
 {
 elements = null; c
 super.clearProperties();
 }
}

class IteratorIterationSupport implements IterationSupport { d
 Iterator i = null;

 IteratorIterationSupport(Iterator i)
 {
 this.i = i;
 }

 public boolean hasNext()
 throws JspException
 {
 return i.hasNext();
 }

 public Object getNext()
 throws JspException
 {
 return i.next();
 }
}

b Parsing the list specification string and making an IterationSupport out of it.

C Clearing the additional tag property.

D Implementing an IterationSupport class that uses a Java Iterator object.

The new ForeachTag has most of its code implementing its tag-specific functional-
ity, that is, dealing with an Iterator of Strings. Also of note in our implementation
is the additional IteratorIterationSupport class we created, which is simply an
implementation of the generic IterationSupport that works on the
java.util.Iterator interface. We can imagine a similar class that works on
Arrays and even another for Enumerations (or perhaps one that handles all?). The
IteratorIterationSupport class is not, of course, unique to ForeachTag and we
will be able to reuse it many times in other specialized tags.

 We now have a way to easily create iteration tags that iterate on all sorts of
objects. We’ll flex the power of this infrastructure in the next section in creating a
tag that is capable of iterating on just about anything.

317 CHAPTER 10

Iterating with tags
10.3 IterateTag

The previous section presented a generic iteration tag infrastructure that we will
now use to develop a new iteration tag (named IterateTag) which will be able to
iterate over the following types of objects:

� Arrays of all types
� Enumerations—objects of type java.util.Enumeration
� Iterators—objects of type java.util.Iterator.

We’re going to put this functionality into a single tag so its users will be able to use
one tag for all their iteration chores. They will be able to reference the object they
want to iterate in the same way as in chapter 8, using Java reflection. In fact, we’ll
reuse the reflection code we saw in chapter 8’s ReflectionTag to accomplish this.
In doing so, our tag will be able to take any bean property value and iterate its
objects. For example, we will be able to take a shopping cart with a method such as:

public Enumeration getProducts();

and iterate on the Enumeration value returned from it.

10.3.1 Design considerations for IterateTag

Given that we have the generic iteration infrastructure, and that we have a previ-
ously built basic reflection tag, implementing our tag should be a breeze (almost
codeless, you might expect). But this is not quite the case because a Java class can-
not inherit two superclasses (no multiple inheritance, if you recall). Also, our
ReflectionTag did not implement BodyTag; instead, it implemented the Tag inter-
face, so it cannot serve as a base class for an iteration-related tag. As a result, our
iteration tag will have to reimplement the reflection code that we previously devel-
oped. There are ways to share the implementation code between the tags, but for
simplicity’s sake, we will merely copy and paste the needed code.

10.3.2 Wrapping iterators

We will use the ReflectionTag code from chapter 8 to procure the referenced
object from within the iteration tag, but we still need to decide what to do with it;
meaning, how are we going to wrap it within an IterationSupport? We choose to
create an IterationSupport implementation for each of the different iterator types
(Iterator, Enumeration, and Array), then wrap the object within the matching
IterationSupport implementation. An IterationSupport wrapper for the Iter-
ator interface was covered in the previous section, so let’s now look at the individ-
ual wrappers for Array and Enumeration.

IterateTag 318
ArrayIterationSupport
The first IterationSupport wrapper class we implement will be for Arrays. Imple-
menting IterationSupport is not usually too much of a challenge, yet this case is
different due to the requirement to be iteratable on any type of Array (i.e., an
Array of Strings, an Array of Dates, etc.). Normally, when the array element
type is known, indexing the array elements is a snap, but how do you do that when
the element type is unknown?

 The answer, as you might have guessed, is reflection. The reflection package
contains an Array class with static methods for manipulating array elements and
querying the array’s length. We make use of this reflection class in our implemen-
tation of ArrayIterationSupport, as seen in listing 10.7.

package book.iteration;

import java.lang.reflect.Array;
import javax.servlet.jsp.JspException;

class ArrayIterationSupport implements IterationSupport {

 protected Object a = null;
 protected int pos = 0;

 ArrayIterationSupport(Object a)
 {
 this.a = a;
 this.pos = 0;
 }

 public boolean hasNext()
 throws JspException
 {
 return (pos < Array.getLength(a)); b
 }

 public Object getNext()
 throws JspException
 {
 if(hasNext()) {
 Object rc = null;
 rc = Array.get(a, pos); c
 pos++;
 return rc;
 }

 // Throw an exception
 }
}

Listing 10.7 Source code for the ArrayIterationSupport utility class

319 CHAPTER 10

Iterating with tags
B Using Array’s static method to find the length of the input array.

C Using Array’s static method to get an indexed value.

The functionality rendered by the Array class is enough for us to be able to have
full access to all the array’s attributes and elements.

EnumerationIterationSupport
The IterationSupport class supporting Enumerations, EnumerationIteration-
Support, is very straightforward, since both the IterationSupport and Enumera-
tion interfaces are so similar (see listing 10.8)

package book.iteration;

import java.util.*;

public class EnumerationIterationSupport implements IterationSupport
 {

 Enumeration elements;

 public EnumerationIterationSupport(Enumeration e)
 {
 elements = e;
 }

 public boolean hasNext()
 throws JspException
 {
 return elements.hasMoreElements(); b
 }

 public Object getNext()
 throws JspException
 {
 return elements.nextElement(); c
 }
}

B Using Enumeration’s method to determine if more elements exist.

C Using Enumeration’s method to retrieve the current object.

10.3.3 Implementing IterateTag

The next step is the implementation of IterateTag (listing 10.9) in which we’ll see
how all the wrappers, reflection logic, and our generic iteration framework combine
in its creation (note that for clarity reasons we snipped the reflection code out of the
code listing).

Listing 10.8 EnumerationIterationSupport

IterateTag 320
package book.iteration;

import java.beans.IntrospectionException;
import java.lang.reflect.InvocationTargetException;
import java.util.Enumeration;
import java.util.Iterator;
import book.reflection.ReflectionTag;
import book.util.LocalStrings;
import book.util.BeanUtil;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

public class IterateTag extends IterationTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(IterateTag.class);

 // Reflection related properties and properties setters
 // were removed from this section.

 protected void fetchIterationSupport()
 throws JspException
 {
 Object o = getPointed(); b

 if(o instanceof Iterator) {
 elementsList =
 new IteratorIterationSupport((Iterator)o);
 } else if(o instanceof Enumeration) {
 elementsList =
 new EnumerationIterationSupport((Enumeration)o);
 } else if(o.getClass().isArray()) {
 elementsList = new ArrayIterationSupport(o);
 } else {
 // Throw an exception to inform that we cannot
 // iterate this object
 }
 }

 // The reflection code below this line
 // was removed from this listing
}

B getPointed() retrieves the object the tag should iterate on. This method is inherited
from ExBodyTagSupport.

C Gets the referenced object and wraps it within the appropriate IterationSupport
implementation.

Listing 10.9 Source code for the IterateTag handler class

c

321 CHAPTER 10

Iterating with tags
Apart from the reflection related code which we’ve omitted (we’ve seen how this
code works in chapter 8), IterateTag’s implementation consists of a single method
implementation: fetchIterationSupport(). This method merely checks the
object that is passed as the tag attribute and selects an appropriate iterator and
IterationSupport wrapper, based on the object’s type.

IterateTagExtraInfo
Accompanying the IterateTag is the IterateTagExtraInfo whose implementation
is fairly effortless. Once again, we need to create this TagExtraInfo object for our
IterateTag because we will be exporting a scripting variable from it. From an
attribute and variable exportation point of view, IterateTag and ExportTag (as pre-
sented in chapter 8) are quite similar. The only difference is that our current variable
is exported as a NESTED variable, meaning its scope only exists within the tag’s body.
Because they are so similar, all we need to do is inherit ExportTagExtraInfo (again,
from chapter 8) and modify the VariableInfo it returns to reflect a NESTED variable.
As listing 10.10 shows, this is exactly what we did.

package book.iteration;

import book.reflection.ExportTagExtraInfo;
import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;
import javax.servlet.jsp.tagext.VariableInfo;

public class IterateTagExtraInfo extends ExportTagExtraInfo {

 public VariableInfo[] getVariableInfo(TagData data)
 {
 VariableInfo[] rc = new VariableInfo[1];

 rc[0] = new VariableInfo(data.getId(),
 guessVariableType(data),
 true,
 VariableInfo.NESTED); b
 return rc;
 }
}

B Returns a NESTED variable.

IterateTag’s TLD
The last step in our implementation of IterateTag is its tag library descriptor entry
as seen in listing 10.11.

Listing 10.10 Source code for the IterateTagExtraInfo class

IterateTag 322
<tag>
 <name>iterate</name>
 <tagclass>book.iteration.IterateTag</tagclass>
 <teiclass>book.iteration.IterateTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Iterate over an Object. The object can be an array,
 Iterator or Enumeration.
 </info>

 <attribute>
 <name>id</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>object</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>index</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>property</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
</tag>

Listing 10.11 Tag library descriptor entry for IterateTag

323 CHAPTER 10

Iterating with tags
The tag library entry is almost identical to the one we had for ExportTag. The only
significant difference is that ExportTag had an empty body, whereas IterateTag
has, of course, a JSP body.

10.4 Look, Mom! No scriptlets—IterateTag in action

Armed with IterateTag we can now greatly improve our JSP development and even
reach the point at which scriptlets are no longer needed. To illustrate, we present a
real world example wherein a JSP file shows a user the content of his or her shopping
cart. For this example, the shopping cart is kept inside a session variable that the JSP
file retrieves to create a table containing the current products in the cart.

 The methods provided by the shopping cart and the cart items are available in
listing 10.12.

public class Cart implements Serializable {

 public int getDollars();
 public int getCents();
 public boolean isEmpty();
 public Enumeration getProducts();
 public Enumeration getProductNames();
 public CartElement getProduct(String key);
 public CartElement []getProductValues();
 public void addProduct(String key, CartElement ince);
 public void removeProduct(String key);
}

public class CartElementImp implements CartElement {

 public int getDollars();
 public void setDollars(int dollars);
 public int getCents();
 public void setCents(int cents);
 public int getQuantity();
 public void setQuantity(int quantity);
 public void setName(String name);
 public String getName();
}

10.4.1 Printing the shopping cart with scriptlets

Assuming we have the cart in the session state and we want to display the cart’s
content in some tabular format (figure 10.2), we could create a scriptlet-littered JSP
file, such as the one seen in listing 10.13.

Listing 10.12 The methods exposed by the cart and cart elements

Look, Mom! No scriptlets—IterateTag in action 324
<%@ page errorPage="error.jsp" %>
<%@ page import="book.util.*,java.util.*" %> b

<html>
<body>

<%
 Cart cart = (Cart)session.getAttribute("cart"); c
 if(!cart.isEmpty()) {
 %>
Your cart contains the following products:

<table>
<tr><th>Product</th> <th>Quantity</th> <th>Price</th> </tr>
<% java.util.Enumeration e = cart.getProducts();
 while(e.hasMoreElements()) {
 CartElementImp p = (CartElementImp)e.nextElement();
%>
 <tr>
 <td> <%= p.getName() %></td>
 <td> <%= p.getQuantity() %> </td>
 <td> <%= p.getDollars() %>.<%= p.getCents() %>$ </td>
 </tr>
<% } %>
 <tr>
 <td> Totals <td>
 <td> <%= cart.getDollars() %>.<%= cart.getCents() %>$<td> e
 <tr>
</table>

<% } else { %>
Your cart is empty.
<% } %>

</body>
</html>

B Importing classes to be used in the scriptlets.

C Gets a reference to the cart.

d Enumerates the products and presents their properties.

E Presents the total price (property of the cart).

Listing 10.13 serves as a basic example for a piece of JSP code that, once introduced
to the scriptlets, is no longer manageable by anyone but a Java programmer. The
file is replete with the familiar Java curly brackets, Java flow control statements, and
casting and import statements—all of which are difficult for a non-Java programmer

Listing 10.13 JSP file that uses scriptlets to present the cart information

d

325 CHAPTER 10

Iterating with tags
to grasp. Instead of this chaos, we can use the IterateTag we just developed to
substantially improve the JSP.

10.4.2 Printing the shopping cart with IterateTag

All of the scriptlets in listing 10.13 can be eliminated by making use of our new
IterateTag as in listing 10.14. Executing the JSP code on a sample cart content
yielded the response presented in figure 10.2.

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/iteration-taglib" b
 prefix="iter" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>

<html>
<body>

<cond:with name="cart" property="empty">
<cond:test condition="eq true">
 Your cart is empty.
</cond:test>
<cond:test condition="eq false">
 Your cart contains the following products:

Listing 10.14 JSP file that uses custom tags to present the cart information

Figure 10.2 Cart presentation output

Making it easier on the JSP author 326
 <table>
 <tr><th>Product</th> <th>Quantity</th> <th>Price</th> </tr>

 <iter:iterate name="cart" property="products" id="product"> c

 <tr>
 <td><bean:show name="product" property="name"/> </td>
 <td><bean:show name="product" property="quantity"/></td> d
 <td><bean:show name="product" property="dollars"/>.
 <bean:show name="product" property="cents"/>$</td>
 </tr>
 </iter:iterate>
 <tr>
 <td>Totals<td>
 <td><bean:show name="cart" property="dollars"/>. e
 <bean:show name="cart" property="cents"/>$<td>
 <tr>
 </table>

</cond:test>
</cond:with>
</body>
</html>

B References all the TLDs we use.

c Enumerates the products (using the enumeration property).

D Presents the product’s properties.

E Presents the total price (property of the cart).

Comparing listings 10.13 and 10.14 shows the advantages of using custom tags.
Listing 10.14 is much simpler: all the curly brackets, type casting, and the like are
gone, and it is readable by almost anyone. Moreover, all tag supporting tools can
manipulate the file and we feel certain that they will be able to get along with our
custom tags. Listing 10.13 is littered with endless scriptlets to the point that devel-
oping the page without a programmer’s help is very difficult. Which page would
you prefer to have your HTML coder maintain?

10.5 Making it easier on the JSP author

As convenient as the JSP might be in listing 10.14, there is still something that both-
ers us from a usability standpoint; namely, the printing of the value of a bean prop-
erty to the user is too cumbersome. To illustrate, look at the following JSP fragment:

<iter:iterate name="cart" property="products" id="product">

<tr>

327 CHAPTER 10

Iterating with tags
 <td><bean:show name="product" property="name"/> </td>
 <td><bean:show name="product" property="quantity"/></td>
 <td><bean:show name="product" property="dollars"/>.
 <bean:show name="product" property="cents"/>$</td>
</tr>
</iter:iterate>

Seeing all those <bean:show> tags begs the question: why do we need so much
overhead associated with using the bean tag and pointing to the property in the
product? We know that we are interested in the product object (since we’re iterat-
ing on it) yet our <bean:show> tag forces us to pass it as a name attribute for every
property we print to the user. Can’t we make access to bean-based, nonindexed
properties in an iterator less complicated (or friendlier)? We can, but how?

Improving access to nonindexed JavaBean properties
The first thought that comes to mind is to create a tag with a single attribute that
points to the property name. When running, this tag will fetch the iterator object
from the iteration tag and query its property value. The following JSP fragment
shows a revised version of the previous JSP fragment that uses this simplified tag.

<iter:iterate name="cart" property="products" id="product">
<tr>
 <td><bean:showp property="name"/> </td>
 <td><bean:showp property="quantity"/></td>
 <td><bean:showp property="dollars"/>.
 <bean:showp property="cents"/>$</td>
</tr>
</iter:iterate>

This is an improvement; however, we still are not entirely satisfied with the new JSP
fragment, largely because the number of keystrokes we’ve saved is not especially sig-
nificant. To make the syntax for retrieving a property extremely terse, we don’t
want to use a tag at all; we want something that is even more minimal. Syntax such
as the following is clearly an improvement for the JSP author, especially if they’re
building a number of JSPs with property access in iterators.

<iter:iterate name="cart" property="products" id="product">
 <tr>
 <td> <$ name $> </td>
 <td> <$ quantity $> </td>
 <td> <$ dollars $>.<$cents$>$ </td>
 </tr>
</iter:iterate>

In this JSP fragment we no longer use tags to present the property values of the iter-
ator. Instead, a property value in the current iterator is referenced by using a special
directive with field placement syntax <$property-name$>. Using this field

Making it easier on the JSP author 328
placement could be a time-saver, but how would we implement it? Up to this point,
everything we created was a tag; this new proprietary directive is not. The way to
implement this functionality is to modify our iteration tags to perform a pass on
their body content and translate these field placement directives into values that
should replace them. By processing the body in this way, we can easily swap any spe-
cial directive we want with some other value; in this case, the value of a JavaBean’s
nonindexed property.

10.5.1 Building a better tag

Remember that the iterator tags implement the BodyTag interface; hence, the itera-
tion tags can have direct access to their body before they write it to the response
stream. All the tag has to do is implement some body parsing in doAfterBody(), in
which the tag will replace our field placement directives with the actual field values.

 Implementing the substitution of field placement directives with their actual val-
ues should be done in a generic manner, for several reasons:

� It is not safe to assume that we will always want to use the field placement
directives. For example, certain users may not want to use proprietary syntax.
In such cases we do not want to take the performance penalty associated with
parsing the body. Thus we require the ability to disable/enable substitutions
on the fly.

� We can imagine many different objects on which we may iterate, as well as
many field types that we may want to show, from JavaBean properties to data-
base columns. We want to build a generic solution such that we do not imple-
ment the body parsing differently for each case.

� We may develop many different iteration tags and most of them will need the
(extremely nifty) field substitution feature, and we do not want to implement
the related substitution logic more than once.

10.5.2 The design

To attain these goals, we distribute the implementation of the field substitution into
the following units:

� Body parsing—This part of our solution searches for field references and
identifies them. We’ll implement this functionality in IterationTagSupport,
our iteration tag superclass. This will make all tags derived from Iteration-
TagSupport capable of performing field substitution.

� Field fetching—This is the part of our solution that retrieves a field’s value
when one is found. Whenever IterationTagSupport parses and identifies a
field reference, it will use an object that implements an interface we’ll call

329 CHAPTER 10

Iterating with tags
FieldGetter. This interface will allow us to get the value of the referenced
field from the current iterator. Since FieldGetter will be an interface, we
can create many different implementations of it, such as one that fetches a
database column value, or another that gets bean properties. This will
become clearer when we see the code.

� Setting the FieldGetter—Combining the first two portions of our design,
we see that any specialized implementation of IterationTagSupport will
need a specialized version FieldGetter, corresponding to the type of objects
the iterator contains. The specialized iteration tag will know the type of
objects that it exposes as iterators and will therefore know what type of
FieldGetter to use. If no FieldGetter is used, the tag will not implement
any field substitution, hence avoiding the associated performance costs from
parsing the body. This accomplishes our previously mentioned goal of making
the field substitution optional for performance reasons.

This design should accomplish all our defined goals. Our abstract design will become
much more comprehensible as we look at our implementation and an example.

10.5.3 FieldGetter and ReflectionFieldGetter

Let’s start by looking at the FieldGetter interface, which provides one method to
set the object whose fields we’ll want to retrieve and a second method to get those
fields from the object. We present this interface in listing 10.15, along with an
implementation of it called ReflectionFieldGetter whose job is to implement a
FieldGetter that gets JavaBeans properties (through reflection).

package book.util;

import java.beans.IntrospectionException;
import java.lang.reflect.InvocationTargetException;

public interface FieldGetter {

 public void setObject(Object o) b
 throws IllegalArgumentException;

 public Object getField(String fieldName) c
 throws IllegalAccessException;
}

public class ReflectionFieldGetter implements FieldGetter {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ReflectionFieldGetter.class);

 protected Object o;

Listing 10.15 Source code of FieldGetter and ReflectionFieldGetter

Making it easier on the JSP author 330
 public void setObject(Object o) d
 throws IllegalArgumentException
 {
 this.o = o;
 }

 public Object getField(String fieldName) e
 throws IllegalAccessException
 {
 try {
 return BeanUtil.getObjectPropertyValue(o,
 fieldName,
 null); e
 } catch(InvocationTargetException ex) {
 } catch(IllegalAccessException ex) {
 } catch(IntrospectionException ex) {
 } catch(NoSuchMethodException ex) {
 }

 // Throw an exception
 }
}

B Generic method to set the object whose fields we ’ll later retrieve.

C Generic method to get an object’s field by name.

D For ReflectionFieldGetter, setObject will be set with a JavaBean.

e For ReflectionFieldGetter, getField uses reflection (seen in chapter 8) to get a
field from the JavaBean.

FieldGetter has two methods: setObject() that tells the getter which object we
are going to query for a field and getField() to procure the field’s value. When
using a FieldGetter, instantiate it, then set an object into the FieldGetter using
setObject(), and then call getField() to get the values of the wanted fields. For
error notification, FieldGetter’s methods can throw exceptions (e.g., if the object
set into the FieldGetter implementation is not of the right type, say a ResultSet
for a database-aware FieldGetter). To further clarify FieldGetter, listing 10.15
also shows the implementation of ReflectionFieldGetter which implements the
FieldGetter functionality for JavaBeans by using the reflection API. Remember-
ing the types of objects IterateTag enumerates, it is reasonable to assume that it is
going to step over beans in its iterations.

10.5.4 Integrating FieldGetter with IterationTagSupport

Having established the nature of the FieldGetter, how do we integrate it into the
iteration process? The answer is in the updated implementation of IterationTag-

331 CHAPTER 10

Iterating with tags
Support wherein FieldGetter was integrated. An updated listing of Iteration-
TagSupport is in listing 10.16 (for clarity, unmodified code was omitted and
whenever new and old code are mixed, the new code is in bold).

package book.iteration;

import java.io.Reader;
import java.io.IOException;
import book.util.LocalStrings;
import book.util.FieldGetter;
import book.util.ExBodyTagSupport;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.JspException;

public abstract class IterationTagSupport
 extends ExBodyTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(IterationTagSupport.class);

 protected IterationSupport elementsList = null;
 protected Object current;
 protected FieldGetter fGetter = null;

 // Some unmodified code was removed

 public int doAfterBody()
 throws JspException
 {
 try {
 if(null == fGetter) {
 getBodyContent().writeOut(getPreviousOut());
 } else {
 populateFields();
 }
 getBodyContent().clear();
 } catch(java.io.IOException ioe) {
 // User probably disconnected ...
 // Log and throw a JspTagException
 }

 if(elementsList.hasNext()) {
 exportVariables();
 return EVAL_BODY_TAG;
 }

 return SKIP_BODY;
 }

 protected void populateFields()
 throws JspException
 {

Listing 10.16 An updated IterationTagSupport with FieldGetter integration

b

c

Making it easier on the JSP author 332
 String field = null;
 try {
 Reader r = getBodyContent().getReader();
 JspWriter w = getPreviousOut();

 fGetter.setObject(current); d

 int ch = r.read();
 while(-1 != ch) {
 if('<' == ch) {
 ch = r.read();
 if('$' == ch) {
 /* found a field reference */
 field = readFieldName(r);
 w.print(fGetter.getField(field));
 ch = r.read();
 } else {
 w.write('<');
 }
 } else {
 w.write(ch);
 ch = r.read();
 }
 }
 } catch(IllegalAccessException e) {
 // Throw a JspTagException
 } catch(IOException ioe) {
 // Throw a JspTagException
 }
 }

 protected String readFieldName(Reader r)
 throws JspException, IOException
 {
 StringBuffer sb = new StringBuffer();
 int ch = r.read();
 while(-1 != ch) {
 if('$' == ch) {
 ch = r.read();
 if('>' == ch) {
 /* found a field ending mark */
 return sb.toString().trim();
 } else {
 sb.append((char)ch);
 }
 } else {
 sb.append((char)ch);
 ch = r.read();
 }
 }
 // Throw a JspTagException (parse error, directive
 // was not terminated)

e

f

g

333 CHAPTER 10

Iterating with tags
 }

 // Some unmodified code was removed
 protected void exportVariables()
 throws JspException
 {
 current = elementsList.getNext(); h
 pageContext.setAttribute(id, current);
 }

 // Some unmodified code was removed

 protected void clearServiceState()
 {
 elementsList = null;
 current = null;
 fGetter = null;
 }
}

B h Two new instance variables for the field substitution The majority of new code
that was added has to do with parsing the body and propagating the current iterator
value to the field substitution code. Propagating the value of the current iterator is
needed because doAfterBody() does not know the value. Implementing the propa-
gation involves adding an instance variable to carry the iterator value as well as ini-
tialize this value whenever a new iterator value is exported.

b c If a field getter is available, field substitution is on Now that the iterator value is
available for all methods, we can use doAfterBody() to process the body. Body pro-
cessing is turned on whenever a value is set to the class FieldGetter member,
fGetter, which informs IterationTagSupport that field substitution is required
and populateFields() is being called.

D Sets the current iterator into the field getter to make it possible to get field values
from the iterator E Searches for a directive starting prefix (<$) F Reads the
field name and prints its value using the getter G Looks for the directive-terminat-
ing sequence ($>) populateFields() and readFieldName() are those that actually
implement the field substitution. populateFields() parses through the body looking
for the substitution directive-starting prefix. Whenever populateFields() finds this
directive it will ask readFieldName() to read the rest of the directive (including its suf-
fix) and return the name of the field referenced therein. Once populateFields()
holds the referenced field name, it uses the FieldGetter to obtain the field’s value,
print it, and continue parsing the body (looking for other directives).

H Stores the current iterator for later use in doEndBody().

Making it easier on the JSP author 334
10.5.5 Updating IterateTag to perform field substitution

Now that the modifications to IterationTagSupport are complete, the road to
field substitution is open. All we need is to modify IterateTag and make it set the
ReflectionFieldGetter into IterationTagSupport in order to turn on field sub-
stitution. The modifications to IterateTag are presented in listing 10.17 (unmodi-
fied code was omitted and new code is in bold).

package book.iteration;

// Some unmodified code was removed

import book.util.LibraryConfig;

// Some unmodified code was removed

public class IterateTag extends IterationTagSupport {

 // Some unmodified code was removed

 protected void fetchIterationSupport()
 throws JspException
 {
 Object o = getPointed();

 if(o instanceof Iterator) {
 elementsList =
 new IteratorIterationSupport((Iterator)o);
 } else if(o instanceof Enumeration) {
 elementsList =
 new EnumerationIterationSupport((Enumeration)o);
 } else if(o.getClass().isArray()) {
 elementsList = new ArrayIterationSupport(o);
 } else {
 // Throw an exception to inform that we cannot
 // iterate this object
 }
 if(LibraryConfig.isFieldPlacementInUse()) {
 fGetter = new ReflectionFieldGetter();
 }
 }

 // Some unmodified code was removed
}

Only fetchIterationSupport() was modified to add the ReflectionFieldGetter
into IterationTagSupport according to a property in the library configuration.

Listing 10.17 An updated IterateTag handler class with field substitution support

335 CHAPTER 10

Iterating with tags
10.5.6 Field substitution in action

Once the tweaking of the iteration code is behind us, we can modify our original
JSP (which printed the shopping cart) and adapt it to use field substitution. The end
result of this adaptation is shown in listing 10.18 and, as you shall see, the loop that
populates the HTML table with cart items has been simplified.

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/iteration-taglib"
 prefix="iter" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>

<html>

<body>
<cond:with name="cart" property="empty">
<cond:test condition="eq true">
 Your cart is empty.
</cond:test>
<cond:test condition="eq false">
 Your cart contains the following products:

 <table>
 <tr><th>Product</th> <th>Quantity</th> <th>Price</th> </tr>

 <iter:iterate name="cart" property="products" id="product">

 <tr>
 <td> <$ name $> </td>
 <td> <$ quantity $> </td>
 <td> <$ dollars $>.<$cents$>$ </td>
 </tr>
 </iter:iterate>
 <tr>
 <td> Totals <td>
 <td> <bean:show name="cart" property="dollars"/>.

 <bean:show name="cart" property="cents"/>$ <td>
 <tr>
 </table>
</cond:test>
</cond:with>
</body>
</html>

Listing 10.18 A JSP file that uses field substitution

JSP1.2 and IterationTag 336
This section showed more than a mere ease-of-use enhancement to the iteration
task. It showed how to add your own proprietary additions to the JSP syntax. Some
developers may reject the idea of working with proprietary JSP additions, since this
syntax will not be useful in other settings. However, the additions presented in this
chapter are based on custom tags, and since custom tags are a standard JSP feature,
the field replacement features developed here will run on all JSP engines. Although
our creation’s nature is indeed proprietary, our tags and their additions can run any-
where. The simplicity of our field substitution syntax and the time it will save JSP
authors who use it are well worth the expense of a bit of proprietary syntax.

10.6 JSP1.2 and IterationTag

This chapter created iteration tags using BodyTag, but using BodyTag for iteration
includes within it a hidden performance hazard due to its buffering overhead.

 As noted in chapter 6, when using BodyTag the JSP runtime places the body into
an intermediate buffer (the BodyContent object) and leaves it up to the tag to actu-
ally do something with the results of the body execution. In our iteration tags, what
we did with these results was to copy them into the response flowing to the user,
thereby suffering needless buffering overhead. Granted, using the buffer made it
possible to develop ease of use techniques such as field placement, but if the JSP file
developer decides not to use field placement, why suffer the performance penalty?

10.6.1 IterationTag

This performance penalty was solved in JSP1.2 with the introduction of the Itera-
tionTag, which can repeatedly execute its body for as long as it returns EVAL_-
BODY_AGAIN from doAfterBody(). Hence, all we need do is take the iteration
framework that was developed in this chapter and have it work with the JSP1.2
IterationTag.

 All our iteration-related code was part of a single class, IterationTagSupport,
which is where we implemented our doStartTag(), doBeforeBody(), and doAf-
terBody(). All the tags that work with the iteration framework have only to
extend IterationTagSupport and provide an implementation for a few methods.
At this point, we only need to port IterationTagSupport, which requires the
following steps:

� Remove any code portion related to the field placement (no buffering means
no field placement).

� Return EVAL_BODY_INCLUDE from doStartTag() so that the JSP runtime
includes the body’s results into the stream flowing to the client.

337 CHAPTER 10

Iterating with tags
� Export variables in doStartTag() instead of doBeforeBody(), since Itera-
tionTag does not have a doBeforeBody() method.

� Return EVAL_BODY_AGAIN from doAfterBody() as per the JSP1.2 specification.

When we have finished, our iteration tags can take advantage of the IterationTag
interface and its improved performance. Listing 10.19 presents such an adaptation
of IterationTagSupport to the JSP1.2 IterationTag interface.

package book.iteration;

import book.util.LocalStrings;
import book.util.ExTagSupport;
import book.util.StringUtil;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.JspException;

public abstract class IncludedIterationTagSupport
 extends ExTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(IncludedIterationTagSupport.class);

 protected IterationSupport elementsList = null;
 protected Object current;

 public int doStartTag()
 throws JspException
 {
 fetchIterationSupport();
 if(elementsList.hasNext()) {
 exportVariables();
 return EVAL_BODY_INCLUDE;
 }
 return SKIP_BODY;
 }

 public int doAfterBody()
 throws JspException
 {
 if(elementsList.hasNext()) {
 exportVariables();
 return EVAL_BODY_AGAIN;
 }

 return SKIP_BODY;
 }

 protected abstract void fetchIterationSupport()
 throws JspException;

Listing 10.19 IterationTagSupport adapted to the JSP1.2 IterationTag

Summary 338
 protected void exportVariables()
 throws JspException
 {
 current = elementsList.getNext();
 pageContext.setAttribute(id, current);
 }

 protected void clearProperties()
 {
 id = null;
 super.clearProperties();
 }

 protected void clearServiceState()
 {
 elementsList = null;
 current = null;
 }
}

IncludedIterationTagSupport presented in Listing 10.19 is much less compli-
cated than IterationTagSupport. This simplicity comes partially from the removal
of the field placement code, and partially from the fact that we no longer need to
handle the BodyContent buffer and write its content back to the user.

 To summarize, all tags developed in this chapter should be able to run unmodi-
fied in JSP1.2 (as BodyTag is supported there). However, tags wishing to take advan-
tage of the new IterationTag interface should abandon the field placement as a
means of populating the iterator’s fields, since the tags can then extend our new
IncludedIterationTagSupport and gain performance improvements.

10.7 Summary

Iteration is a crucial task in almost any web application, yet until the arrival of cus-
tom JSP tags, it could only be accomplished using scriptlets. As we stated, iteration
scriptlets render the JSP code difficult to read and maintain, and even worse, place a
premium on the content developer’s knowledge of Java. Custom tags fix these
problems at a reasonably low price.

 We also presented a generic way to develop iteration tags. In fact, the code
developed for this chapter can be used in your own daily work (e.g., iteration on
something that is not an Array, Enumeration, or Iterator) with a relatively small
time investment. Simply extend IterateTag or IterationTagSupport, override a
method, and gain full access to the custom tag iteration functionality.

339 CHAPTER 10

Iterating with tags
 As a last phase in enhancing the quality and ease-of-use of our iteration tags,
body content processing was added to the iteration tags to make using the iterator
properties easier. This body content processing is by no means unique to iteration
tags. In fact, you can implement it in any tags that extend the BodyTag interface and
have complete control over their body. Body content processing in this way can
speed up the work of the JSP developer, by allowing you to introduce simple, pro-
prietary syntax in your JSPs. It should be considered an appealing alternative to
using smaller custom tags, such as the show tags that we developed, especially in
cases in which the size of the parsed content is small compared to the size of the
entire page.

 Next we’ll see how we can integrate custom tags with a database to provide sim-
ple tag-based access to a database server.

 11Database access with tags
In this chapter
� Writing a Database Connection tag
� Writing a Query tag
� Writing a tag for viewing ResultSets
� Using a controller servlet with database tags
340

Choosing how to present database information 341
The vast majority of web applications communicate with a database—for reasons
which vary from one application to another; but, as a general statement, a large por-
tion of the important information on the web is located somewhere in a database.
Databases will store any important information your site needs.

 Because database access is a cornerstone of interactive web sites, having a custom
tag library provide that access allows content developers to handle the task without
the help of a Java guru, resulting in faster development time. In this chapter we will
build a library which uses Java’s standard database access API, Java Database Con-
nectivity (JDBC), to implement database access.

11.1 Choosing how to present database information

There are a number of approaches for handling database presentation and storage in
a Java web application. Chapter 2 presented two such approaches, Model-1 and
Model-2.

 Model-2 uses the popular Model-View-Controller (MVC) pattern for integrat-
ing servlets/JSPs with a database. In a purist’s implementation of Model-2, JSP files
are only supposed to present data that was obtained by a servlet. These servlets give
and receive data to and from JSPs which in turn display and collect the data, and do
not get involved with its storage or retrieval.

 Under Model-2, the servlet can grab the dynamic data, place it in the JSP script-
ing environment as a request, session, or application attribute, and ask a JSP page to
render a response based on the dynamic content. The servlet that places the data in
the JSP scripting environment can either wrap the data in a set of beans (hiding the
data complexity from the JSP page) or leave the data in its raw format, as a JDBC
ResultSet object, and let the JSP pull data from rows and columns of the Result-
Set as needed.

 For cases in which the data is wrapped inside a set of beans, we can use the cus-
tom JavaBeans tags we developed in chapter 8 to get and set the bean properties
(and ultimately, records in the database). The second case, wherein data is kept in a
raw format instead of in beans, requires that our JSP file use scriptlets to process
JDBC access itself; yet, there must be a better way than using scriptlets— which is in
fact handling JDBC with tags.

 Under Model-1 the JSP file is also supposed to access the dynamic data through
JavaBeans. However, if we need only to present raw data from a database and do
not wish to use beans for each query, we will probably want to access the database
with some database tags. Right?

342 CHAPTER 11

Database access with tags
11.1.1 Why not just wrap everything in a JavaBean?

Why would we have our JSPs perform database access directly through tags, instead
of using a Model-2 approach, wherein a servlet hits the database and wraps every-
thing in an object. We can also use Model-1 (if it fits our development style) and
again, only see JavaBeans. So, why access the database directly?

 It is largely a matter of taste and requirements, but we might decide to use raw
database results from within JSP, in an attempt to provide the rationale for this
choice. To start with, not all data requests require that an object be associated with
them for enforcing or implementing business rules. Sometimes all we want is to
present the results of a complex query in a table, and nothing more.

 Consider a case in which the user wants to produce a tabular report from an SQL
database. In a common design approach, a controller servlet can submit an SQL
query (specified by the user) to the database, then retrieve and pass the results to a
JSP. The JSP takes those results and uses them to populate an HTML table that is
returned to the user. Since the user could specify one of any number of different
queries, we would need many different beans to represent the different result sets,
yet these beans would not be mandatory for the report generation and could even
be considered overkill. We can easily imagine presenting the user with a UI flexible
enough to produce any one of thousands of possible data result combinations, from
any number of database tables. We certainly wouldn’t want to create a JavaBean for
every possible query permutation, and creating a generic bean to support any result
would essentially force us to rewrite the JDBC ResultSet class (and some of its
helper classes). In a case such as this, a tag library that could effortlessly iterate over
any JDBC ResultSet and present the results to the user would clearly be more effi-
cient than wrapping everything in a JavaBean.

 This type of ad hoc querying and reporting is common for web applications, but
using direct database access (without an intermediate Java object layer) is also desir-
able for prototyping and testing, and small tasks that do not warrant building an
object model. In cases such as these, or any others in which modeling query results
with JavaBeans is undesirable, direct database access can reduce both your develop-
ment time and your runtime overhead. Having a set of tags that makes this database
access easy and overcomes the need for scriptlets proves to be a big help. In this
chapter, we’ll create tags that allow direct database access and address this need.

11.2 Designing our database presentation tag library

Before discussing the presentation of database data using tags, we need to frame
our approach by addressing a couple of design questions:

� Where will the code that opens and closes the database connections live?

Designing our database presentation tag library 343
� How do we pass database results from that code to the JSP?

Answering these two questions will provide a necessary prerequisite in implement-
ing our database presentation tag.

11.2.1 Handling database connectivity and passing results

The answers to our two design questions are a matter of personal choice. We’ve
chosen to proceed with a design that borrows from the Model-2 architecture; but
instead of using JavaBeans (for reasons already discussed), the controller servlet
passes the database results directly to the JSP. The object the servlet passes in this
scenario is an instance of java.sql.ResultSet (the standard JDBC object for rep-
resenting a query response) which the servlet retrieves from the JDBC query.
Figure 11.1 shows, using this design, what happens when a user request arrives:

� A servlet will be executed to serve the request. The servlet will open a con-
nection to the database, query its values, and store the ResultSet object
returned from the database in the request attributes. This answers our ques-
tion regarding where the database code will go.

� The servlet will hand the request, with the ResultSet stored inside, to the
JSP so it can generate the response content. This answers our second design
question of how the JSP would get the database results.

� The JSP file now executes. At a certain point in the JSP file’s execution, it will
find (and execute) one or more database-aware tags, which will take the
ResultSet object from the request attributes and use it to populate the
response returned to the client with the values stored in the database.

� As the response is finished, the request handling returns to the servlet which
closes the database connection.

We now have a clear design pattern, the servlet code is our site to create the connec-
tion, obtain data from the database, and dispose the connection. The JSP will only
present the data obtained from the database in the response. One benefit of this
design is that we can implement resource-leaking protection (ensuring that all data-
base connections are closed) in a central location in the servlet. This tactic avoids
the possibility that JSP authors could accidentally create resource leaks within their
own code.

11.2.2 Additional design considerations

In addition to simply passing data from the controller servlet to the JSP, and ulti-
mately, our new tag we need to consider how the data is presented. We should note,

344 CHAPTER 11

Database access with tags
of course, the likelihood of the database results spanning multiple rows and col-
umns, and that we will sometimes want to specify the order by which we present the
columns. At other times we might instead want to preserve the order of the rows
that the query returns, such as when the database sorts the rows based on the SQL
query. With this in mind, our design will need to be able to:

� Iterate over the database results. At a code level this means that we will be
iterating over the JDBC ResultSet object.

� Present column values by their name or index. We may reference the columns
as the first column, second column, and so forth, or as a named column based
on the column name in the database table.

Request processing begins

A servlet
starts serving
the request

The JSP
generates

The servlet ends
the request
processing

The servlet opens a
connection to the database
and queries its content

The servlet places the
database result in the
response object

Populate the
response with the
database content

The servlet loses the
database connection

Ask JSP to create a
response

Response creation
done

<DatabaseTag>

</DatabaseTag>

Request processing ends

Figure 11.1 Serving a user to database request in a Model-2 fashion

IterateResultSetTag 345
11.2.3 Implementation conclusions

Keeping these requirements in mind, we at last contemplate writing our library.
Even given all our features, creating a database presentation tag library will not
prove to be too daunting as we have some useful base tags (from previous chapters)
from which we can borrow valuable functionality.

 Two of the requirements for our library, iteration and field presentation, will be
handled by a tag we’ll call the IterateResultTag. This tag can reuse much of the
infrastructure we developed in chapter 10, such as the IterationSupport and
FieldGetter interfaces. Recall that we defined a generic interface, IterationSup-
port, that could be extended to iterate over any type of Java object. For our data-
base tags, all we need to do is create an IterationSupport that will iterate over a
ResultSet (which, again, our tag gets from the controller servlet) and a FieldGet-
ter that gets fields out of that ResultSet.

11.3 IterateResultSetTag

IterateResultTag will be used to iterate on the ResultSet that the JSP receives
from the controller servlet. This iteration tag extends the one developed in the pre-
vious chapter, which lets us use the reflection infrastructure in IterateTag to fetch
ResultSet. All that is left to do is to modify fetchIterationSupport() so that it
will set an IterationSupport object. This in turn iterates a ResultSet and a
FieldGetter that can read columns out of that ResultSet. All this reuse, in fact,
means that the whole implementation of IterateResultSetTag (listing 11.1) con-
sists of only one short method.

package book database;

import java.sql.ResultSet;

import book.iteration.IterateTag;
import book.util.LocalStrings;
import book.util.LibraryConfig;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

public class IterateResultSetTag extends IterateTag {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(IterateResultSetTag.class);

 protected void fetchIterationSupport()
 throws JspException
 {

Listing 11.1 implementation of the IterateResultSetTag handler class

346 CHAPTER 11

Database access with tags
 Object o = getPointed();

 elementsList = new ResultSetIterationSupport((ResultSet)o); b
 if(LibraryConfig.isJDBCFieldPlacementInUse()) {
 fGetter = new JDBCFieldGetter();
 }
 }
}

b Uses the ResultSetIterationSupport class to wrap a ResultSet.

C If we are using JDBC Field placement, we create a JDBCFileGetter to get ResultSet fields.

IterateResultSetTag by itself isn’t especially interesting. The action in this tag
resides in the ResultSetIterationSupport and JDBCFieldGetter classes it uses,
which we present in the next code listings.

11.3.1 ResultSetIterationSupport class

First let’s look at ResultSetIterationSupport, a class which takes a ResultSet
object and wraps it so that it can be iterated by the framework developed in
chapter 10.

package book.database;

import java.sql.ResultSet;
import java.sql.SQLException;

import book.util.LocalStrings;
import book.iteration.IterationSupport;

import javax.servlet.jsp.JspException;

class ResultSetIterationSupport implements IterationSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ResultSetIterationSupport.class);

 protected ResultSet rs = null;
 protected boolean nextAvailable = false;
 protected boolean nextAvailableValid = false;

 ResultSetIterationSupport(ResultSet rs)
 {
 this.rs = rs;
 }

 public boolean hasNext()
 throws JspException
 {
 if(nextAvailableValid) {
 return nextAvailable;

c

IterateResultSetTag 347
 }
 try {
 nextAvailable = rs.next();
 nextAvailableValid = true;
 return nextAvailable;
 } catch(SQLException sqe) {
 throw new JspException(ls.getStr(Constants.SQL_EXCEPTION));
 }
 }

 public Object getNext()
 throws JspException
 {
 if(hasNext()) {
 nextAvailableValid = false;
 return rs;
 }
 throw new JspException(ls.getStr(Constants.NO_MORE_ROWS));
 }
}

The most interesting part of ResultSetIterationSupport is hasNext() which
wraps next(), provided by ResultSet, and adapts it to the needs of the iteration
framework. next() returns true if there is a next row to read in ResultSet, but it
also has the side effect of moving to this next row. If we call next() twice we may
get two different results, and skip one of the rows. This row skipping behavior is
not acceptable for our iteration tags, so hasNext() and getNext() cooperate to
eliminate row skipping by keeping track of what the user does in ResultSet, thus
avoiding needless calls to next().

11.3.2 JDBCFieldGetter class

The success of IterateResultSetTag is then made possible by JDBCFieldGetter,
which also builds on the iteration framework from chapter 10. It accomplishes this
by implementing the FieldGetter interface which, you may recall, provides some
basic methods for getting field values out of a Java object. In this case, the Java
object is simply a ResultSet. All JDBCFieldGetter does is fetch named column
values by calling JDBC methods over the ResultSet object.

package book.database;

import java.sql.ResultSet;
import java.sql.SQLException;

import book.util.FieldGetter;
import book.util.LocalStrings;

public class JDBCFieldGetter implements FieldGetter {

 static LocalStrings ls =

348 CHAPTER 11

Database access with tags
 LocalStrings.getLocalStrings(JDBCFieldGetter.class);

 protected ResultSet rs;

 public void setObject(Object o) b
 throws IllegalArgumentException
 {
 if(!(o instanceof ResultSet)) { b
 throw new IllegalArgumentException(ls.getStr(Constants.NOT_AN_RS));
 }
 this.rs = (ResultSet)o; b
 }

 public Object getField(String fieldName)
 throws IllegalAccessException
 {
 try {
 return rs.getObject(fieldName); c
 } catch(SQLException ex) {
 }

 throw new IllegalAccessException(ls.getStr(Constants.SQL_EXCEPTION));
 }
}

B Sets the object, in this case, a ResultSet.

C Retrieves the field value for a given field name from the ResultSet.

11.3.3 IterateResultSetTag in action

Combining IterateResultSetTag, ResultSetIterationSupport, and JDB-
CFieldGetter, we now have a tag that can be used to iterate over an SQL query
result and present it to the user. Note again that, since we rely heavily on the itera-
tion tag framework, the amount of coding needed was relatively minor, leaving us
to concentrate on the unique portion of our problem: the iterating and presenting
of a ResultSet.

 A sample JSP file that uses IterateResultSetTag can be seen in listing 11.2
(note that the name chosen for IterateResultSetTag is dbenum).

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/database-taglib"
 prefix="db" %>
<html>
<head>
<title> Database query results </title>
</head>
<body>

Listing 11.2 A sample JSP file that uses IterateResultSetTag

Full JDBC connectivity through tags 349
 <h1> Database query results </h1>
 <table border="1" bgcolor="#c0c0c0">
<tr>
 <th bgcolor="#a0a0a0">id</th>
 <th bgcolor="#a0a0a0">First name</th>
 <th bgcolor="#a0a0a0">Last name</th>
 <th bgcolor="#a0a0a0">Street</th>
 <th bgcolor="#a0a0a0">City</th>

</tr>
 <db:dbenum name="result" id="i"> b
 <tr>
 <td> <$ ID $> </td>
 <td> <$ FIRSTNAME $> </td>
 <td> <$ LASTNAME $> </td>
 <td> <$ STREET $> </td>
 <td> <$ CITY $> </td>
 </tr>

 </db:dbenum>
 </table>
</body>
</html>

B Starts the iteration over the ResultSet in the JSP attribute named result.

C Presents the various columns in the ResultSet.

As listing 11.2 shows, presenting the database results in the JSP became fairly easy.
What previously required a number of complex scriptlets is now a simple use of a
custom tag. A sample response created with the JSP file in listing 11.2 is presented
in figure 11.2; the data populated in the table is from the sample content provided
by the (free and open-source) hypersonic database.

 This tag does some impressive work with a database, but on its own is not yet
a fully functional database presentation tag library. In the next section we discuss
some of the shortcomings of this tag, and some of the features we would like to
see in our library.

11.4 Full JDBC connectivity through tags

In the previous section we built a tag displaying the result of an SQL query in a
JSP. This tag may be useful, but much more can be done with databases that we’d
like to support and, unfortunately, being able to show the results of a query is not
always enough.

c

350 CHAPTER 11

Database access with tags
11.4.1 Improving our one-tag approach

IterateResultTag served its design purpose well, but as we consider broader JSP
to database needs, we can identify areas for improvement.

Making database access available to JSP authors
The previous section was based on the assumption that there is a controller servlet
which opens a connection to the database, executes the query, and finally closes the
results and connection. Though this approach does an adequate job of protecting
the database access code, its shortcoming is that we are forced to keep a Java pro-
grammer on hand to modify query code whenever database tables and/or columns
are added, removed, or changed. This restriction is especially problematic when you
want only to create a simple, department-level online reporting page, or if your site
provides searchable access to tables that are added on a regular basis. Under such
circumstances, we’d ideally like to offer our content developers some tags that
could perform database tasks without the controller servlet. We will solve this prob-
lem by providing a stronger database access tag library.

Improving resource utilization
Another problem with our IterateResultSetTag is that the database connection
and the accompanying query results are kept open during the entire time of the JSP

Figure 11.2 The output of the Model-2 user to database
access with IterateResultSetTag

Full JDBC connectivity through tags 351
file’s execution. This ties our precious database resources up for a longer period
than necessary. In a basic JSP file, the execution will not take long; but complex,
database-driven JSPs will probably be more time consuming (e.g., because portions
of the page need to be written to the user). In these pages, the allocated database
connection will be occupied for a relatively lengthy period, yet it will be idle most of
the time. Any connection to the database causes a substantial penalty in terms of
memory usage, file handles, sockets, and other resources allocated for the connec-
tion. Moreover, since connecting to the database also takes time, most server appli-
cations use database connection pool techniques. This allows a few connections,
used later by the server’s threads, to be allocated in advance. Thus, if we keep a con-
nection for too extended a period, the pool will reach its maximum number of open
connections and start to block service threads, which leads to yet another perfor-
mance failure. It is clear then, that keeping the open connection’s idle time to a
minimum will ensure that we use fewer resources to satisfy our database needs.

Improvement conclusions
Taking into account all of these areas for improvement, it is clear that having only a
single, simple data presentation tag like IterateResultTag is not enough to satisfy
many common database needs. To address this, we create tags that can obtain a
database connection, execute a query, and free the connection. This will address
both improvement areas, as it will also allow us to:

� Use tags in our JSP file to manipulate the database, rather than coding in Java
in some controller servlet.

� Have fine-grained control over the duration of the connection to the data-
base, including just-in-time (JIT) opening/closing of the connection.

These are some genuine benefits, but we must be ever mindful of at least one possible
gotcha: resource leaking. Resource-leaking is well-known by all who work with data-
bases and can be summarized in one sentence: If you do not close each of the con-
nections you opened, given enough requests, the system will crash. You could say
that the solution is obvious: just close all the connections; yet closing the connections
is not so trivial in the face of exceptions. With IterateResultSetTag, we didn’t have
to worry about this contingency, because our servlet handled all connection use. By
making our tags more flexible, and putting connection creation in the hands of the
JSP author, we surrender this control in exchange for versatility. We need to be aware
of this danger as we construct our tags, and take precautions to minimize the likeli-
hood of a resource leak as much as possible, since its effects can be crippling.

352 CHAPTER 11

Database access with tags
 The next sections in this chapter will deal with the design and implementation of
a database manipulation custom tag library. First we’ll explore the requirements for
the library and its design, then take a look at its implementation.

11.5 Database tag library design

In order to build a truly useful custom tag solution, we need to create a tag library
that addresses the shortcomings of our IterateResultSetTag and takes into con-
sideration additional requirements, to be covered shortly. Our ultimate goal is to
build a library that JSP authors can use to easily create dynamic pages that will dis-
play data from a database in a flexible way (and with minimal effort). To reach this
goal, we need to first look at a definitive list of all the requirements we want our
library to meet. Following this assessment, we will decide how we may build our
library to implement those requirements; in short, we must decide how many tags
the library requires and what each tag should do.

11.5.1 Requirements

As always, the design flows from our requirements, so let’s now look at each in
detail. The prerequisites we cited for IterateResultTag were fairly modest, this list
raises the bar for a tag library that is much more useful for everyday development.

Database query support
 First, we want our tag library to include at least one tag that defines:

� A connection to a database, including all the necessary parameters such as
connecting user name and password.

� A query on some table, such that we can actually provide an SQL query that
will later run on a defined connection. The user should be able to construct
the SQL query dynamically from within JSP.

� A way to present the query results to the user while taking into account that
the response could span multiple rows we subsequently must iterate over.

NOTE We are very thin here in the area of result manipulation, especially if we
do not define any data-related conditions that allow the creation of
conditional HTML based on database results. We could require a tag to
pose an if condition on the database response and, based on the result
of this if, create a different table entry; for example, color table rows dif-
ferently based on the state of some column. However, while these tags
add functionality, they will not provide anything new.

Database tag library design 353
The required functionality will necessitate the development of three tags. We will
discuss how these tags look and communicate later in this chapter.

Resource allocation and deallocation
The next requirement is to support fine-grained control over the allocation of data-
base connections and then free the connections without leaking them. This is actu-
ally a behavioral requirement implying that our tags should allocate resources in a
JIT fashion. We will not allocate a connection and execute a query until we actually
need to present it and we will free the connection as soon as the presentation is
done. In the face of exceptions of all types and shapes, we will free allocated connec-
tions. This leads to the following needs:

� The presentation tag should allocate and free the connections (this is the JIT
presentation requirement)

� The presentation tag should have a fail-safe mechanism to free database
resources, probably in its doEndTag()/release() or some other method
called from them.

This requirement places a burden on the presentation tag, but more important is
the possibility that, since the presentation tag needs to handle information retrieved
in other tags, it will need to know about the internal implementation. The design of
the library should handle that.

Integration with application architectures
Integration with application architectures such as Model-2 is also an important
requirement. Just because we give more responsibility to the JSP author does not
mean that the controller servlet is no longer in the picture. We want to be able to
define connections and queries in controller servlets and send them to the JSP for
JIT execution and presentation.

Connection extensibility
Another requirement is the ability to add new connection and query tags to the
library, even those not developed by the original library developer, and seamlessly
integrate them with the current tags. This flexibility is crucial because different
applications and application servers may have several ways of obtaining JDBC
connection objects. For example, you may want to use a proprietary connection
pool or a J2EE-compliant pool, and you will need to modify the connection tags to
match your needs.

354 CHAPTER 11

Database access with tags
Configuration support
Finally, there is the need for integration with configuration mechanisms such as the
web application deployment descriptor (in order to facilitate the user configuring
your tags).

11.5.2 Choosing our tags

With these requirements in mind, the first design step is to think of tags that the
library should contain and what each should do, in terms of functionality and
attributes. When reviewing the types of operations we want to perform with our tag
library, we have a number of options (table 11.1).

Clearly the first option is the easiest to implement, but it does not answer some of
our requirements. When using a single monolithic tag it is difficult to extend the
library with new tags representing different types of connections, queries, and pre-
sentations. A single monolithic tag is also somewhat harder to use because it will
include an excessive number of attributes to handle the different tasks. As a result, a
divide-and-conquer approach that uses several tags to implement our different tasks
is more effective.

 Now that the first approach is eliminated, which of the other two tag options
should we use? Both suggest the use of several tags and the communication
between tags is accomplished through exporting and exchanging objects. There is,
however, a big difference in how this communication takes place.

 Generally speaking, the third option, wherein the tags use parenthood relations
to exchange information, is easiest to use by the JSP programmer because all coor-
dination between tags is implemented internally by the tag family. On the other
hand, using the JSP environment to communicate between tags makes it possible
for Model-2 style controller servlets to export objects into the JSP environment and

Table 11.1 Database tag library design options

Design option Description

A single tag approach Uses one tag that has all the needed functionality in it, such as opening
a connection, defining a database query, and presenting the results.

A tag for each task approach Uses one tag for opening a connection, one for defining a database
query, and another for presenting the results. In this scenario, the tags
would communicate by exporting objects which obey a predefined set of
interfaces to the JSP environment.

A tag for each task approach
(with tag nesting)

Similar to #2, except that the tags will communicate using a nested,
parent tag model, accomplished by enclosing all the tags in a single
wrapper parent tag.

Database tag library design 355
communicate with the database tags. This capability makes the second option much
more suitable for Model-2 applications.

 Moreover, by exporting variables, other JSP entities such as scriptlets and Java-
Beans can access the database resources. Both the second and third methods have
their merits (integration versus ease of use); however, due to the extended integra-
tion available when the tags communicate using the JSP environment, we’ve
decided to develop the tag library using the second approach.

The tags that make up our library
Having settled on our design approach, let’s consider the tags we need to achieve
this. There are at least four tags to implement. We list each tag function and the
name of the corresponding tag used to implement it in table 11.2:

Table 11.2 Our tag library’s functions and the tags that will perform them

Tag function Description Tag name

Connection
definition

Defines the connection to be used for the query and how
to use it. This tag has attributes that let the user define
parameters such as the JDBC URL for the connection and
the username and password for the current connection.
In doStartTag(), the connection tag will read the con-
nection parameters, merge them with the application
configuration, and export a new connection object.

DBConnectionTag

Query definition Defines the SQL query that we should show. This should
be a BodyTag and the SQL query should be provided in
its body; this way the users of the query tag can specify
complex queries with dynamic content. The query tag
should also obtain (in its attributes or via parenthood
relations if the third approach is in use) a reference to the
connection object that it would use in order to make the
query to the database. The query tag exports result
objects that other JSP entities can use in order to handle
(and free) the query’s results.

SQLQueryTag

Result iteration Iterates over the result of the SQL query and makes sure
that the query is closed when the iteration is done. This
tag gets the identity of a result object as a parameter and
then iterates over the result. When the iteration is com-
plete, it will make sure that the result object is closed.

EnumRsTag

Database column
presentation

Takes the current row and shows the value of a named
column in it. The input to this tag is the name of the col-
umn and a reference to the query result object.

ViewRsTag

356 CHAPTER 11

Database access with tags
Sharing information between our tags
Now that our library’s main cornerstone (the identity of the tags) is in place, we
need to decide what objects should be exported by the tags in order to allow coop-
eration between them. The tags in our library will communicate among themselves
using interfaces that wrap the actual database objects which are handed over to the
result presentation layer when needed. For our design there will be two such wrap-
per interfaces:

� DbConnectionWrapper

Wraps a database connection. A database connection tag exports a DbConnec-
tionWrapper object to allow other entities (such as other tags and scriptlets)
inside the JSP file reference and free database connections.

� DbResultWrapper

Wraps the result of a database query. A database query tag exports a DbRe-
sultWrapper object to let other entities (such as other tags and scriptlets)
inside the JSP file reference the results of a database query.

The way we’ll share these objects between the tags (and the JSP) is to have the
tags export the wrapper objects to the page scope of the JSP attribute table (a
practice we first saw in chapter 8). Using this mechanism we achieve a loose and
flexible integration:

� Since the integration is based on interfaces and not actual objects, anyone
can provide other implementation to the interfaces and in this way extend
the library.

� Since the wrapper interfaces are referenced from the JSP attribute table there is
a very loose coupling between the producer of the wrapper and its consumer.

In fact, it is this loose integration that allows the users of the tag library to extend it
by adding new tags, because the new tags have only to export/reference objects
that obey the DbConnectionWrapper and DbResultWrapper interfaces.

 Another important aspect of using wrapper interfaces and the JSP attribute
table-based communication method is that they make it relatively easy to integrate
controller servlets and JSP database tags. If a controller servlet wants to use the JSP
database tags to present an SQL result, it has only to export objects of type DbRe-
sultWrapper and, perhaps, DbConnectionWrapper into the JSP environment and
the database tag in the JSP file will use them as if they were created by a tag.

DBConnectionWrapper and DBResultWrapper interfaces
After this lengthy introduction, let’s take a look into the DbConnectionWrapper
and DbResultWrapper interfaces presented in listing 11.3.

Implementing the library 357
package book.database;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.ResultSet;

public interface DbConnectionWrapper {

 public Connection getConnection()
 throws SQLException;

 public void freeConnection();
}
public interface DbResultWrapper {

 public ResultSet getResultSet()
 throws SQLException;

 public void freeResult();
}

Each interface has a method to get the database-related resource as well as a
method to free it. You may find it alarming that these interfaces do not specify
when the resource was created or what parameters were used in its creation (e.g.,
there is no method to get the SQL query that caused the generation of the
DbResultWrapper object). However, such information is of no interest to the users
of these objects; the presentation layers do not care what usernames and passwords
were used to connect to the database.

 Since the resources are fetched using getter methods (getConnection() and
getResultSet()), these methods can create the wanted resource at the time it is
asked for. This is consistent with our desire to use database resources during pre-
sentation, thus reducing the amount of time these resources are tied up to an
absolute minimum.

 With this, we have finished our design which should produce both a solid and
flexible implementation of our original requirements. We know which tags we are
going to implement and roughly how they will be implemented, so let’s begin the
implementation of our database presentation custom tag library.

11.6 Implementing the library

This section presents the implementation of the tag library design that we devel-
oped in the previous section, using the JSP attribute table to integrate between the
different tags. Our design becomes clearer now as we look at how each of these tags
will cooperate (namely, which objects they will use and export) in order to

Listing 11.3 The DbConnectionWrapper and DbResultWrapper interfaces

358 CHAPTER 11

Database access with tags
accomplish their allotted tasks. Figure 11.3 illustrates this cooperation, which can
be summed up in the following steps:

� The connection tag (DBConnectionTag) exports a DbConnectionWrapper
that the query tag uses to produce the result.

� The query tag (SQLQueryTag) uses the DbConnectionWrapper and exports a
DbResultWrapper that the database result enumerator iterates on.

� The database result enumerator tag (EnumRsTag) exports an iterator that the
column viewer presents in the generated content.

We’ll discuss each of these tags in the order in which they appear in this workflow.
You will first see how the connection and query tags were implemented, followed
by the database result enumeration tag, and lastly, the column viewer tag.

11.6.1 DBConnectionTag

The goal of DBConnectionTag is to gather information that will be used to connect
to a database. When the information gathering phase is complete, the tag will export
a DbConnectionWrapper scripting variable that other JSP entities may use to connect
to the database. Using JDBC, the information needed by the connection tag includes:

<Connection Tag>

<Query Tag>

<Result enumeration Tag>

<Column view Tag>

Connection Wrapper

Result Wrapper

Iterator

Exports

Uses to query

Exports

Iterate Over

Export

Presents

Figure 11.3 Dependencies among the database library tags

Implementing the library 359
1 The JDBC driver class—used to connect to a database of a specific type.

2 The database URL—used to locate a connection to the specified database.

3 The connecting user name.

4 The connecting user’s password.

The tag should be able to figure out these parameters, either through tag attributes
or other configurations. For a robust approach, we’ll build the tag so that it first
looks for the JDBC parameters as tag attributes. If the JSP file does not specify a cer-
tain parameter through an attribute, the tag will attempt to grab it from the page/
application initialization parameters (as defined in the application deployment
descriptor). When the tag completes its parameter gathering, it exports a DbCon-
nectionWrapper implementation that reflects the tag’s obtained configuration and
finishes its execution. This implementation is presented in listing 11.4.

package book.database;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;
import book.util.LocalStrings;
import book.util.ExTagSupport;

public class DbConnectionTag extends ExTagSupport {

 public static final String DBUSER = "db_user";
 public static final String DBPASS = "db_pass";
 public static final String DBURL = "db_url";
 public static final String DBDRIVER = "db_driver";

 static LocalStrings ls =
 LocalStrings.getLocalStrings(DbConnectionTag.class);
 protected String dbuser = null;
 protected String dbpass = null;
 protected String dburl = null;
 protected String dbdriver = null;

 public void setUser(String user)
 {
 this.dbuser = user;
 }

 public void setPass(String pass)
 {
 this.dbpass = pass;
 }
 public void setUrl(String url)
 {
 this.dburl = url;

Listing 11.4 Source code for the DbConnectionTag handler class

360 CHAPTER 11

Database access with tags
 }
 public void setDriver(String driver)
 {
 this.dbdriver = driver;
 }

 public int doStartTag()
 throws JspException
 {
 checkParameters(); b
 exportWrapper(createDbConnectionWrapper()); c
 return SKIP_BODY;
 }

 protected void clearProperties()
 {
 id = null;
 dbuser = null;
 dbpass = null;
 dburl = null;
 dbdriver = null;
 super.clearProperties();
 }

 protected void checkParameters()
 throws JspException
 {
 if(null == dbuser) {
 dbuser = findInitParameter(id+"."+DBUSER);
 }
 if(null == dbpass) {
 dbpass = findInitParameter(id+"."+DBPASS);
 }
 if(null == dburl) {
 dburl = findInitParameter(id+"."+DBURL);
 }
 if(null == dbdriver) {
 dbdriver = findInitParameter(id+"."+DBDRIVER);
 }

 if(null == dburl) {
 // Throw an exception, we must have a url
 }
 if(null == dbdriver) {
 // Throw an exception, we must have a driver class
 }
 }

 protected void exportWrapper(DbConnectionWrapper con)
 throws JspException
 {
 pageContext.setAttribute(id, e
 con,

d

Implementing the library 361
 PageContext.PAGE_SCOPE);
 }

 protected DbConnectionWrapper createDbConnectionWrapper()
 throws JspException
 {
 try {
 Class.forName(dbdriver).newInstance(); f
 return new DbConnection(id, g
 getServletContext(),
 dburl, dbuser, dbpass);
 } catch(ClassNotFoundException cnfe) {
 // Throw an exception
 } catch(InstantiationException ie) {
 // Throw an exception
 } catch(IllegalAccessException eae) {
 // Throw an exception
 }
 }
}

B Checks and merges the JDBC parameters.

C Exports a connection wrapper that represents the connection parameters.

D Merges the application and page initialization properties and the tag’s attribute
values Merging the initialization parameters and the tag attributes value is one of
the more interesting tasks that we face in DbConnectionTag. As discussed previ-
ously, if the tag’s attributes provide a valid value, we use it; but, absent a value, we
look for it in the page and application initialization parameters. So that these param-
eters might serve more than a single database connection tag, we are using the tag’s
id attribute (the only mandatory attribute for this tag) as the prefix to all initializa-
tion parameters. For example, if the tag’s id is con and we want to configure it with
a URL, the initialization parameter should be named con.db_url. By taking advan-
tage of the standard configuration parameters we make it possible for the users of
our tags to bundle them with their applications preconfigured, without having to
add nonstandard property files that may require special handling. The only possible
reason for concern over the merging of initialization parameters is that the default
TLD entry for DbConnectionTag (listing 11.5) must have all JDBC-related attributes
optional. This is a drawback since there is no way for us to ensure that the parameter
is either a tag attribute or application parameter. It is therefore possible that the JSP
author could fail to specify it in either place and discover it only when the servlet (the
one created from the JSP translation) receives a request, rather than at compile/
translation time.

E Exports the wrapper variable into the JSP environment.

362 CHAPTER 11

Database access with tags
F Loads the database driver Before exporting the DbConnection, DbConnectionTag
guarantees that the database driver class is loaded by creating an instance of the
class; in this way DbConnectionTag knows that at least the supplied driver parame-
ter is valid. Testing the rest of the parameters is impossible without allocating a
database connection, so no actual testing is done on them.

G Creates a connection wrapper with the configured parameters As you have proba-
bly noticed, listing 11.4 does not contain any real JDBC code. In fact, it does not
even import any of the java.sql classes. Instead, it creates and exports an imple-
mentation to the DbConnectionWrapper interface that is going to use JDBC APIs to
access the database. This wrapper implementation class, DbConnection, implements
the DBConnectionWrapper interface and handles all the JDBC code for us. We will
see the implementation of DBConnection in the next section.

Let’s now look at the TLD for DBConnectionTag:

 <tag>
 <name>connection</name>
 <tagclass>book.database.DbConnectionTag</tagclass>
 <teiclass>book.database.DbConnectionExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Defines a database connection. The JDBC parameters may
 come from the attributes or from the web application's
 initialization parameters.
 </info>

 <attribute>
 <name>id</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>user</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>pass</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>url</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

Listing 11.5 TLD for DBConnectionTag

Implementing the library 363
 <attribute>
 <name>driver</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>

You’ll notice that none of the attributes are specified as required in this TLD. Once
again, we allow the information regarding the JDBC parameters to be specified as
tag attributes or in the environment.

DbConnection class
DbConnection is the implementation of one of our two interfaces used for sharing
among the tags—DbConnectionWrapper. As previously pointed out, DbConnection-
Tag does not perform any JDBC-related work itself; it exports an instance of type
DbConnection instead. DbConnection source code is presented in listing 11.6.

package book.database;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.DriverManager;

import javax.servlet.ServletContext;

import book.util.LocalStrings;

public class DbConnection implements DbConnectionWrapper {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(DbConnection.class);

 protected String id;
 protected ServletContext app;
 protected String dburl;
 protected String dbuser;
 protected String dbpass;
 protected Connection con;

 public DbConnection(String id,
 ServletContext app,
 String dburl,
 String dbuser,
 String dbpass)
 {
 this.id = id;
 this.app = app;
 this.dburl = dburl;

Listing 11.6 Source code for DbConnection

364 CHAPTER 11

Database access with tags
 this.dbuser = dbuser;
 this.dbpass = dbpass;
 this.con = null;
 }

 public Connection getConnection()
 throws SQLException
 {
 if(con == null) {
 con = DriverManager.getConnection(dburl,
 dbuser,
 dbpass);
 }

 return con;
 }

 public void freeConnection()
 {
 try {
 if(null != con) { c
 con.close();
 }
 } catch(Throwable t) {
 app.log(ls.getStr(Constants.SQL_EXCEPTION), t);
 }
 }

 protected void finalize()
 throws Throwable
 {
 freeConnection(); d
 }
}

B Creates the connection once and returns it thereafter C C loses the connect ion
(avoids database resource leak) D When garbage-collected, makes sure connections
are closed In essence, DbConnection keeps the JDBC parameters that were handed
over to the tag and later creates a JDBC connection to a database as specified in the
parameters. It also ensures that the connection is closed by:

� Providing a method named freeConnection() that allows a user class to free
the encapsulated connection (created on the first call to getConnection())

� Implementing finalize(), ensuring that even if the using class (or JSP) does
not call freeConnection(), it will be called when the object is garbage-col-
lected. Relying on the garbage collector to free the connection is not always a
great idea; it may execute after we lose interest in the connection, and relying
on it could cause us to waste the connection resource for this duration.

b

Implementing the library 365
A class that wishes to use the database connection encapsulated within DbConnec-
tion should first call getConnection(), thereby triggering the connection’s creation
and getting a reference to it. Later, the connection should be used and, when the
user is through with it, the user should release it by calling freeConnection().

NOTE The JIT capabilities that we wanted to inject into our database library are
coming to life with the implementation of DbConnectionTag and DbCon-
nection. These two classes cooperate to ensure that the connection is cre-
ated only when getConnection() is called. A different implementation,
for example one in which the tag creates the connection and simply lets
DbConnection close it, would jeopardize the JIT goal, as it would create
the connection before using it.

11.6.2 SQLQueryTag

SQLQueryTag is, of course, the tag that actually performs the SQL query and shares
the results of this query with the JSP. Recall from our discussion of tags’ information
sharing, that SQLQueryTag engages in a great deal of sharing in performing its job.
First, it gets the DbConnectionWrapper that DBConnectionTag has put into scope
for it, and uses that connection to create a DbQueryResult which implements the
DbResultWrapper interface. It then shares the results of the query by placing the
DbQueryResult in the JSP environment. We present SQLQueryTag in listing 11.7.

package book.database;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

import book.util.LocalStrings;
import book.util.BodyReaderTag;

public class SQLQueryTag extends BodyReaderTag {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(SQLQueryTag.class);

 protected String connection = null;

 public void setConnection(String connection)
 {
 this.connection = connection;
 }

 protected void processBody(String content)
 throws JspException

Listing 11.7 Source code for the SQLQueryTag handler class

366 CHAPTER 11

Database access with tags
 {
 exportWrapper(getDbConnectionWrapper(), content); b
 }

 protected void exportWrapper(DbConnectionWrapper c,
 String query)
 throws JspException
 {
 pageContext.setAttribute(id, c
 new DBQueryResult(id,
 query,
 getServletContext(),
 c),
 PageContext.PAGE_SCOPE);
 }

 protected DbConnectionWrapper getDbConnectionWrapper()
 throws JspException
 {
 return
 (DbConnectionWrapper)pageContext.findAttribute(connection); d
 }

 protected void clearProperties()
 {
 connection = null;
 super.clearProperties();
 }
}

B Exports a wrapper with the related connection and query string.

C Exports the result wrapper variable into the JSP environment.

D Finds the connection wrapper in the JSP environment.

SQLQueryTag is unique in that not all of its parameters come from its attributes. In
fact, the single most important parameter, the SQL query, is provided within the
tag’s body (which is why SQLQueryTag is a BodyTag). The reasons for making the
SQL query provided within the body are elementary: the query is a relatively com-
plex parameter that may span several lines and we may want to embed dynamic con-
tent within it. Consider the following query:

select * from product
where cost > <%= request.getParameter("mincost") %>
order by name

This is a valid SQL query with dynamic content in the where clause, but it cannot be
specified in a mere tag attribute. It is, however, completely reasonable to encapsu-
late it within the JSP body of the query tag.

Implementing the library 367
 SQLQueryTag provides the first incidence within this library wherein two tags
communicate using the JSP environment. In getDbConnectionWrapper() we are
looking for the DbConnectionWrapper object that was previously exported to the
JSP environment, and whose name is within a mandatory query tag attribute to be
provided by the user. This shows us how the two tag handlers are not programmed
to work with each other, and yet manage to cooperate by exchanging objects using
the JSP environment table.

 The next code fragment shows the TLD entry for SQLQueryTag. SQLQueryTag is
an easy to use single attribute and body-based input tag but, as we will later see, the
need to point with the attribute to a specific DbConnectionWrapper is not especially
convenient.

 <tag>
 <name>query</name>
 <tagclass>book.database.SQLQueryTag</tagclass>
 <teiclass>book.database.DbResultExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Defines a database query. The SQL query should be enclosed
 within the body of the tag. The connection attribute should
 point to a valid connection tag id.
 </info>

 <attribute>
 <name>id</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>connection</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>

DBQueryResult
In much the same way as DbConnection implemented the generic DbConnection-
Wrapper interface, DbQueryResult implements the DbQueryResultWrapper inter-
face, which we wrote as a wrapper to provide access to a JDBC ResultSet.
DBQueryResult is the merging point between the connection and query informa-
tion, and is also where the actual SQL query is executed. In a nutshell, it uses
DbConnectionWrapper and the SQL query string defined by SQLQueryTag to per-
form an SQL query over the connection contained in DbConnectionWrapper. From
a timing perspective, DBQueryResult performs the query only when the query’s

368 CHAPTER 11

Database access with tags
ResultSet is called upon. Database resources such as connections and results are
therefore allocated on demand and only upon explicit request.

package book.database;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.ResultSet;

import javax.servlet.ServletContext;

import book.util.LocalStrings;

public class DBQueryResult implements DbResultWrapper {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(DBQueryResult.class);

 protected String id;
 protected String querySql;
 protected ServletContext app;
 protected DbConnectionWrapper c;
 protected Connection con;
 protected Statement st;
 protected ResultSet rs;

 public DBQueryResult(String id,
 String querySql,
 ServletContext app,
 DbConnectionWrapper c)
 {
 this.id = id;
 this.querySql = querySql;
 this.app = app;
 this.c = c;
 this.con = null;
 this.st = null;
 this.rs = null;
 }

 public ResultSet getResultSet()
 throws SQLException
 {
 if(null == rs) { b
 boolean finished = false;
 try {
 con = c.getConnection();
 st = con.createStatement();
 rs = st.executeQuery(querySql);
 finished = true;
 } catch(SQLException sqe) {

Listing 11.8 Source code for DBQueryResult

c

Implementing the library 369
 app.log(ls.getStr(Constants.SQL_EXCEPTION), sqe);
 throw sqe;
 } finally {
 if(!finished && null != con) {
 freeResult();
 }
 }
 }

 return rs;
 }

 public void freeResult()
 {
 closeJdbcObjects(); e
 id = null;
 querySql = null;
 app = null;
 c = null;
 con = null;
 st = null;
 rs = null;
 }

 protected void closeJdbcObjects()
 {
 if(null != rs) {
 try { rs.close(); } catch (Throwable t) {}
 }
 if(null != st) {
 try { st.close(); } catch (Throwable t) {}
 }
 if(null != con) {
 try { c.freeConnection(); } catch (Throwable t) {}
 }
 }

 protected void finalize()
 throws Throwable
 {
 freeResult(); g
 }
}

B Makes the query the first time only.

C Performs the query on the connection enclosed within the connection wrapper.

D Makes sure that all resources are freed upon errors DBQueryResult exerts a con-
siderable effort to ensure that nothing will cause database resource leaking, and
its first concern is in the method that allocates these resources. When opening the

d

f

370 CHAPTER 11

Database access with tags
connection, DBQueryResult traces the resource allocation and, if there are errors,
will make sure that all the resources are freed.

E Frees all database resources and nulls the internal state (to mark closure) F Closes
all database resources, ignores exceptions G When garbage-collected, makes sure
database resources are freed DBQueryResult also prevents resource leaking in the
location in which freeResult(), closeJdbcObjects(), and finalize() are imple-
mented. A class using DBQueryResult should make sure that it calls freeResult()
to free all the database resources. freeResult() will call closeJdbcObjects() forc-
ing closure on all database resources, even if exceptions are thrown (exceptions are
ignored). On a final note, if freeResult() is not called, DBQueryResult implements
finalize() to make sure that resources are freed upon garbage collection.

From the previous code listings, DBQueryResult and DbConnection clearly cooper-
ate to provide database results to anyone wishing to use them. It is time now to
present this using a class, which happens to be the database results enumerator
tag—EnumRsTag.

11.6.3 EnumRsTag

It is EnumRsTag that brings the work of DBConnectionTag and SQLQueryTag to fru-
ition, by permitting access to the values of an SQL query. It uses the DBQueryRe-
sult that SQLQueryTag puts into scope to obtain the wrapped ResultSet and to
iterate on the ResultSet rows. EnumRsTag is a descendent of IterationTagSup-
port, from which it inherits iteration (and iterator export) capabilities. Using these
capabilities means that EnumRsTag should implement the method fetchIteration-
Support() and use it to set an IterationSupport object and (optionally) a Field-
Getter in cases in which we want field placement.

package book.database;

import java.sql.SQLException;

import book.util.LocalStrings;
import book.util.LibraryConfig;

import book.iteration.IterationTagSupport;

import javax.servlet.jsp.JspException;

public class EnumRsTag extends IterationTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(EnumRsTag.class);

 protected String query = null;
 protected DbResultWrapper rs = null;

Listing 11.9 Source code for the EnumRsTag handler class

Implementing the library 371
 public void setQuery(String query)
 {
 this.query = query;
 }

 protected void fetchIterationSupport()
 throws JspException
 {
 rs = (DbResultWrapper)pageContext.findAttribute(query); b

 if(null == rs) {
 // Throw an exception
 }

 try {
 elementsList =
 new ResultSetIterationSupport(rs.getResultSet());
 } catch(SQLException sqe) {
 // Throw an exception
 }
 if(LibraryConfig.isJDBCFieldPlacementInUse()) {
 fGetter = new JDBCFieldGetter();
 }
 }

 protected void clearProperties()
 {
 query = null;
 super.clearProperties();
 }

 protected void clearServiceState()
 {
 if(null != rs) {
 rs.freeResult();
 }
 rs = null;
 super.clearServiceState();
 }
}

B Fetches the result wrapper from the JSP environment C Sets the support objects
into the iteration infrastructure fetchIterationSupport() starts by referencing
the DbResultWrapper from the JSP environment. We assume nothing about this
DbResultWrapper, and we especially do not assume that it is an instance of
DBQueryResult, is exactly what it is. We simply call its getResultSet() method to
obtain the wrapped ResultSet. Having this ResultSet, we need to provide an
IterationSupport for it. Fortunately, we have implemented the requisite support
objects for our previous (and plain) result set iteration tag, and can reuse them now.

c

d

372 CHAPTER 11

Database access with tags
D Frees the database resources After setting the support objects, the generic itera-
tion code developed in chapter 10 will perform all the iteration-related work we
need in EnumRsTag, so our next implementation stop is to clean up the tag’s state.
EnumRsTag has a very important state associated with it, the database result wrapper.
Failing to free the result wrapper will result in severe resource leaks, which we must
avoid. Happily, freeing the wrapper state is an easy chore since we already have a
state clearing callback designed for this type of work, clearServiceState(), and
now we only need to use it to free our wrapper.

Handling exceptions (and preventing resource leaks) in EnumRsTag
You may wonder what might result if an exception is thrown somewhere in the body
of EnumRsTag, the likely locus of our resource leaking if we fail to catch the excep-
tion and properly close the database resources. In order to answer this, let’s take a
look at the following code fragment taken from our ExBodyTagSupport base class.

 public int doEndTag()
 throws JspException
 {
 clearServiceState();
 return super.doEndTag();
 }

 public void release()
 {
 clearServiceState();
 clearProperties();
 super.release();
 }

You probably recognize this as the JSP1.1 clean-up code used by all our tags for
cleaning up their resources after use. clearServiceState() is called twice: in
doEndTag() (if no exception is thrown), and in release(), which is more central to
the current discussion, because in JSP1.1 release() always executes, even in the
face of exceptions. In JSP1.2 we can use the TryFinally interface, making our
work easier. Our implementation is safe, because the servlet generated from the JSP
file places the call to release() in a finally clause. Look at the following code
fragment that was generated by Tomcat’s JSP1.1 translator.

book.database.EnumRsTag _jspx_th_db_enum_0 = new book.database.EnumRsTag();
jspx_th_db_enum_0.setPageContext(pageContext);
jspx_th_db_enum_0.setParent(null);
JspRuntimeLibrary.introspecthelper(_jspx_th_db_enum_0, "id","i",null,null,

false);
JspRuntimeLibrary.introspecthelper(_jspx_th_db_enum_0,

"query","above12",null,null, false);
try {
 int _jspx_eval_db_enum_0 = _jspx_th_db_enum_0.doStartTag();

Implementing the library 373
 // some code was omitted …
 if (_jspx_th_db_enum_0.doEndTag() == Tag.SKIP_PAGE)
 return;
} finally {
 jspx_th_db_enum_0.release();
}

Tomcat placed the release() call in the finally section; hence, release() will
execute even if an exception happens inside EnumRsTag’s body. Calling release()
will, of course, result in a call to clearServiceState() which will ultimately free
the database result. This confirms the safety of our design, since we can now be
assured that, no matter what, our database resources are cleared.

EnumRsTag’s TLD
With EnumRsTag complete, we are only one TLD entry away from being able to use
it with the query and connection tags. EnumRsTag’s TLD entry is presented in the
next code fragment. Note that it has only two attributes: id to define the iterator
identifier, and query to define the result that we are about to present.

<tag>
 <name>enum</name>
 <tagclass>book.database.EnumRsTag</tagclass>
 <teiclass>book.database.EnumRsTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Presents a database result set.
 </info>

 <attribute>
 <name>id</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

 <attribute>
 <name>query</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
</tag>

11.6.4 Using our library for the first time

We can now create the first JSP file that uses our new database tag library. We won’t
start with anything fancy, just a JSP file that accesses a database and presents the
query results in a table. The uniqueness of this file (listing 11.10) however, is that we
manage to query a database table from it without using even a single scriptlet or
importing any Java class into our JSP. For the purpose of this as well as other samples

374 CHAPTER 11

Database access with tags
that use database through this book, we are using an open-source, pure Java data-
base called Hypersonic SQL which we’ve populated with some autogenerated data.

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/database-taglib"
 prefix="db" %>
<html>
<head>
<title> Database query results </title>
</head>
<body>
 <h1> Database manipulation </h1>
 Creating a connection, query a database and presenting the
 results. All from within JSP tags.

 <db:connection id="con"
 user="sa"
 url="jdbc:HypersonicSQL:http://localhost:8090/"
 driver="org.hsql.jdbcDriver" />

 <db:query connection="con" id="above12">
 select * from product where cost > 12
 </db:query>

 <table border="1" bgcolor="#c0c0c0">
 <tr>
 <th bgcolor="#a0a0a0">id</th>
 <th bgcolor="#a0a0a0">Name</th>
 <th bgcolor="#a0a0a0">Cost</th>
 </tr>
 <db:enum query="above12" id="i"> d
 <tr>
 <td> <$ ID $> </td>
 <td> <$ NAME $> </td>
 <td> <$ COST $> </td>
 </tr>
 </db:enum>
 </table>
</body>
</html>

B Defines a connection to the database The first tag encountered here is the connec-
tion tag. We define a JDBC connection named con to the Hypersonic SQL database
and provide almost all of the JDBC connection properties, except for the user’s
password (a null password works fine for this database connection).

Listing 11.10 A JSP file that uses the database library

b

c

e

Implementing the library 375
C Defines the query that we ’ll be making Immediately after defining the connection,
we define the query that we are going to execute over the database. Note how the
SQL query is defined. Later, we will see how to construct an SQL query with values
taken from dynamic data; but for the purpose of this sample, a static SQL query will
suffice. The query tag references the connection using its connection attribute; this
is why we must define the connection before approaching the query.

D Enumerates the results This is where we enumerate the result and present it to the
user. Up to now we did not implement a special tag to present the result’s rows, and
we have to work with the field getter supplied by the iteration tag.

E Presents the results with our field getter <db:enum> comes with a long list of
responsibilities:

� Coordinating the database access by using the result object.
� Iterating on the results.
� Reading and presenting the results.

Yet, since EnumRsTag was built out of several layers (each with its own responsibil-
ity), programming it to perform all these tasks was relatively easy (and actually
didn’t require special JSP or web knowledge).

 When we test the JSP file in listing 11.10, it produces the results in figure 11.4.
Voila! We can now access a database, issue a query, and present the response by
writing a JSP with absolutely no Java scriptlets required.

11.6.5 ViewRsTag

Our current library supports almost all of our original requirements; however, one
thing is still missing—a tag to present the value of a particular field (column) in a
query’s result. Why might we need such a tag, since we seemed to be doing just fine
with the field placement extension? Is a code segment that looks like:

<td> <db:view query=”i” field=”ID”/> </td>

preferable to:

<td> <$ ID $> </td> ?

In fact, you might even say that the <db:view/> tag is clumsy compared to the ele-
gant (and short) field placement. Why then do we need a presentation tag?

 For several reasons:
� Our field placement extension added a nonstandard feature to the library that

some users may reject. Tags are the standard way of doing things on the Web
and purist web developers may not like using other syntax.

376 CHAPTER 11

Database access with tags
� There is overhead associated with the parsing of the iteration tag body, espe-
cially when the body is relatively long.

� It is very easy for tools to integrate with tags. JSP development tools can use
the TLD to find out about tags and their attributes, but the field placement is
a proprietary feature hidden in our tags.

� In JSP1.2 the IterationTag interface works well to implement bufferless
iteration. Our field placement mechanism will not work with the Iteration-
Tag interface, yet the <db:view/> tag will.

For these reasons we’ve decided to develop the ViewRsTag, which is the ResultSet
column viewer tag in listing 11.11. ViewRsTag accepts two parameters through its
attributes: the name of the JSP environment attribute under which the ResultSet is
stored (the iterator as exported by EnumRsTag) and the name of the column the tag
should present. We can then use ViewRsTag to present the columns in the iterator
object that EnumRsTag exports.

Figure 11.4 Accessing a database with the database tag library

Implementing the library 377
package book.database;

import java.sql.ResultSet;
import java.sql.SQLException;

import javax.servlet.jsp.JspException;

import book.util.LocalStrings;
import book.util.ExTagSupport;

public class ViewRsTag extends ExTagSupport {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(ViewRsTag.class);

 protected String query = null;
 protected String field = null;

 public void setQuery(String query)
 {
 this.query = query;
 }

 public void setField(String field)
 {
 this.field = field;
 }

 public int doStartTag()
 throws JspException
 {
 ResultSet rs = null;
 try {
 rs = (ResultSet)pageContext.findAttribute(query); b
 if(null != rs) {
 writeHtml(pageContext.getOut(),
 rs.getString(field));
 }
 return SKIP_BODY;
 } catch(java.io.IOException ioe) {
 // Throw an exception
 } catch(SQLException sqe) {
 // Throw an exception
 }
 }

 protected void clearProperties()
 {
 query = null;
 field = null;
 super.clearProperties();
 }
}

Listing 11.11 Source code for the ViewRsTag handler class

c

378 CHAPTER 11

Database access with tags
B Fetches the ResultSet from the JSP environment.

C Writes the wanted column value to the response.

ViewRsTag in action
Armed with our new presentation tag, we can now develop database presentation
JSPs without using field placement. One such JSP file is presented in listing 11.12.

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/database-taglib"
 prefix="db" %>
<html>
<head>
<title> Database query results </title>
</head>
<body>
 <h1> Database manipulation </h1>
 Creating a connection, query a database and presenting the
 results. All from within JSP tags.

 <db:connection id="con"

 user="sa"
 url="jdbc:HypersonicSQL:http://localhost:8090/"
 driver="org.hsql.jdbcDriver" />

 <db:query connection="con" id="above12">
 select * from product
 where cost > <%= request.getParameter("mincost") %>
 order by name
 </db:query>

 <table border="1" bgcolor="#c0c0c0">
 <tr>
 <th bgcolor="#a0a0a0">id</th>
 <th bgcolor="#a0a0a0">Name</th>
 <th bgcolor="#a0a0a0">Cost</th>
 </tr>
 <db:enum query="above12" id="i">
 <tr>
 <td> <db:view field="ID" query="i"/> </td>
 <td> <db:view field="NAME" query="i"/> </td>
 <td> <db:view field="COST" query="i"/> </td>
 </tr>
 </db:enum>
 </table>
</body>
</html>

Listing 11.12 A JSP file that uses the view tag to present column values

b

c

Implementing the library 379
B Defines a query with dynamic parameters The query incorporates a request param-
eter into itself and uses it to select the type of rows to be presented. In our case, we
are looking for a request parameter named mincost and using it as a condition in
our SQL query. Because the SQL query is defined within the JSP body of the query
tag, it is very easy to construct dynamic SQL queries using the known JSP syntax.
The query tag then takes this query and uses it to select information from the data-
base. Note that the SQL query spans a couple of lines, something that would not
have been doable if the SQL query had been a tag attribute (due to an inherent rule
for tag attributes that they be contained in a single line).

C Presents the columns using tags The database results view tag frees us from the
need to use the proprietary syntax associated with the field placement.

A sample result created by an execution of this listing is available in figure 11.5. In
this execution, the mincost parameter has the value of 20, which is reflected in the
fact that all of the products we see in the table cost more then 20 dollars.

Figure 11.5 Tag-only database access results with constraint
on one of the columns`

380 CHAPTER 11

Database access with tags
11.7 Integrating a controller servlet with our new library

To round out our implementation discussion, let’s look at a basic integration
between a controller servlet and a JSP that uses our database tags. This will not be
anything extraordinary, just a servlet that integrates our wrapper objects with the
database presentation tags (namely, the EnumRsTag and the ViewRsTag).

 The first step in integrating the controller servlet and the JSP tags is to decide on
the objects that the servlet will expose in the JSP runtime, allowing the tags to
cooperate with the servlet. Generally speaking, the servlet may expose either a
DbConnectionWrapper or a DbResultWrapper. In the first case, the JSP tags must
define a query that uses the DbConnectionWrapper that would be exposed by the
controller servlet. In the second case, the JSP tags will use the servlet-generated
DbResultWrapper directly, and we will not have to define either of these through
tags. In listing 11.12 is an example in which the servlet exposes a DbResultWrap-
per. Note that in one sense it reduces the flexibility associated with having the SQL
defined in the JSP (because the query and database parameters are hard-coded in
the servlet); however, it adds the ability to employ complex Java logic in construct-
ing DbConnectionWrapper and DbResultWrapper. Such logic may verify the query
parameters and gracefully check that the database is working.

11.7.1 The controller servlet

Listing 11.13 shows the core of the controller servlet. Interesting to note is how
the servlet passes the created DbResultWrapper to the JSP file and the tags within it.
(The logic that was used to create this is not of particular interest and depends on
your actual case.)

package book.util;

import java.io.IOException;
import book.database.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DbTagIntegrationControllerServlet extends HttpServlet {

 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);

 try {
 Class.forName("org.hsql.jdbcDriver").newInstance(); b

Listing 11.13 Source code for the controller servlet

Integrating a controller servlet with our new library 381
 } catch(Exception e) {
 // Log and throw an exception
 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 RequestDispatcher rd =
 getServletContext().getRequestDispatcher("/dbexplorservlet.jsp");

 DbConnectionWrapper con =
 new DbConnection("servlet-creation-con",
 getServletContext(),
 "jdbc:HypersonicSQL:http://localhost:8090/",
 "sa",
 null);
 DbResultWrapper res = c
 new DBQueryResult("servlet-creation-res",
 "select * from product where cost > 12",
 getServletContext(),
 con);
 request.setAttribute("above12", res);
 rd.include(request, response);
 }
}

B Loads the JDBC driver C Creates a DbResultWrapper to be presented in the
JSP One task faced by the controller servlet is to prepare the DbResultWrapper
for use within the JSP tags. This portion of the code was oversimplified in
listing 11.13. A real-world controller implementation would, of course, do much
more than has been done here, such as create DbConnectionWrapper that uses
some application’s internal database connection pool, or construct a complex SQL
query, and so forth. These are, however, application-specific details that vary from
one application to another, but the method by which we expose DbResultWrap-
per stays the same.

D Adds the DbResultWrapper to the request attributes and executes the JSP As stat-
ed previously, our main event in the controller servlet is the method that we used to
export a servlet-created object into the JSP attributes table. Exporting the attribute is
not a daunting undertaking. It involves adding the object into the ServletRequest
attributes along with a name for the attribute. Remember though, the exported at-
tribute will never be a page-scoped attribute. The fact that the exported attributes
do not arrive to the page scope is the reason why we used findAttribute() in our

d

382 CHAPTER 11

Database access with tags
tags. You may recall from chapter 6, findAttribute() walks over all the available
scopes and looks for the named attribute. Even if our attribute is request-scoped
(which is the case with our controller servlet) or even session- or application-
scoped, it will be found and returned to the tag.

11.7.2 The JSP

The second part of our servlet-JSP combination is, of course, the JSP file itself. Do
we really need to change anything that we currently have in the JSP file? Yes, we
need to remove all the tags that defined the database connection and the query since
we no longer need them (the servlet will now be providing this functionality).
Therefore, the JSP file can be slightly stripped down. Look at listing 11.14, which
presents the JSP file that cooperates with the controller servlet.

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/database-taglib"
 prefix="db" %>
<html>
<head>
<title> Database query results </title>
</head>
<body>
 <h1> Database manipulation </h1>
 Presenting a query that was defined in a controller servlet.

 <table border="1" bgcolor="#c0c0c0">
 <tr>
 <th bgcolor="#a0a0a0">id</th>
 <th bgcolor="#a0a0a0">Name</th>
 <th bgcolor="#a0a0a0">Cost</th>
 </tr>
 <db:enum query="above12" id="i"> b
 <tr>
 <td> <db:view field="ID" query="i"/> </td>
 <td> <db:view field="NAME" query="i"/> </td>
 <td> <db:view field="COST" query="i"/> </td>
 </tr>
 </db:enum>
 </table>
</body>
</html>

B References the object that was exported from the servlet using its name The actual
integration between the controller servlet and the JSP tags is accomplished via the

Listing 11.14 A JSP file that uses the object exported from the servlet

Summary 383
JSP attributes table, which is why we could drop the tag-generated wrappers and
replace them with the servlet-generated objects. The JSP developer links the
<db:enum> tag to the JSP attribute exported by the servlet using the attribute’s
name, which in our case is above12.

Listings 11.14 and 11.12 are very similar except that listing 11.14 omits the
<db:connection> and <db:query> tags in listing 11.12. This is because the work
that the tags did for us in listing 11.12 is now part of the controller servlet. The end
result of the entire system is similar to that achieved with the JSP file in listing 11.12.

11.8 Summary

The main lesson we learned in this chapter was related to the tag library’s func-
tionality, but we were increasingly concerned with good database—and even gen-
eral—tag design:

� Database resources conservation—By using JIT activation, we only allocate
resources when we really need to.

� Prevention of resource leakage—By checking, double checking, and checking
again, we can determine that all allocated database resources are freed, even if
an exception occurs.

� Extensibility—By using interfaces to communicate between the different tags
in the library we can switch a tag’s implementation and still use the library.

� Integration with the Model-2 architecture—By using the JSP environment to
exchange information, we make is possible for controller servlets to start the
database access and hand the presentation task to the tags in the JSP file. All that
these database presentation tags are required to do is to work with JSP environ-
ment entries created by servlets, and fetch the wrapper objects from them.

Although the library created in this chapter is quite versatile, there are plenty of
enhancements from which it could benefit. It could, for instance, be improved by
using the ResultSet’s metadata to print the data in a more content-oriented man-
ner. From the metadata we could find the exact SQL type of a certain column and
print its values accordingly; for example, we could format a date or currency col-
umn in a number of different ways.

 Also missing from this library are tags for performing operations on the results
(other than merely presenting them). It would be quite useful to have tags:

� Export column values as JSP variables so that scriptlets and other tags are able
to use their value.

384 CHAPTER 11

Database access with tags
� Perform conditions on the values of certain columns. This functionality could
be achieved by using the column value export tag previously described and
the condition library implemented in chapter 9, but exporting the values and
then posing a condition is not as slick as a single integrated tag.

� Perform updates on the database. Our library concentrates primarily on pre-
senting data as it becomes available in the database; but one may also want to
update the database directly from the JSP file.

This list could continue indefinitely, but, the purpose of this chapter not so much to
create an exhaustive database tag library, as to encourage you to think like a tag
developer and introduce the underlying design principles of the tag library.

 In the next chapter, we examine how to use custom tags in accessing resources
defined by the (J2EE) specification—such as email services, directory services, and
Enterprise JavaBeans.

 12Custom tags and J2EE
In this chapter
� Introducing J2EE
� Introducing EJB
� Developing tags that work with

J2EE resources
� Developing tags that work with EJB
385

386 CHAPTER 12

Custom tags and J2EE
Java 2 Enterprise Edition (J2EE) is a popular and very important standard that
defines a Java environment for the development and deployment of enterprise
applications. Among the standards included in J2EE are Enterprise Java Beans
(EJBs) which is Java’s enterprise component architecture, the Servlet API, Java
Naming and Directory services (JNDI), Java Messaging Services (JMS), an email
API (JavaMail) and Java Transaction Services (JTS). This significant feature list and
the success of the Java language itself have contributed to a widespread adoption of
the J2EE standard by software vendors. In fact, Sun Microsystems estimates that
close to 90 percent of the application server market is already occupied by J2EE-
compliant products.

 By writing servlets, JSPs, and custom JSP tags, we’ve already dabbled in the
realm of J2EE. However, the Servlet API only scratches the surface of the many pro-
gramming standards set forth by J2EE. With all that this standard has to offer, the
benefits that many web applications will derive come quickly to mind. We can easily
imagine cases wherein our JSPs need to interact with J2EE’s email API, or use its
directory services to gain access to database or user information, or to interact with
an EJB. As in most of our JSP tasks, building tags that facilitate interaction with
J2EE can assist us in decoupling our presentation logic and business logic, and pro-
vide us with basic building blocks for code reuse.

 We’ll begin this chapter with an introduction to J2EE, zeroing in on EJBs. EJB is
the standard for Java’s enterprise component and is, therefore, a central part of
many J2EE applications. Next we’ll look at the environment J2EE services run in;
namely, how services are defined and configured, and how one J2EE component
shares information with another. Finally, we’ll see how to begin leveraging all the
great features of J2EE within our custom tags.

 If you’re sufficiently familiar with J2EE, you can jump ahead to section 12.4, in
which we discuss building a custom tag that gets a database connection using J2EE.
If this topic is new to you, read on to equip yourself with the tools you’ll need for
the subject matter to be covered later in this chapter.

12.1 What is J2EE?

J2EE is a platform definition for enterprise applications in Java: a set of several stan-
dards that Java developers can follow in building large-scale applications. Its goal is
to streamline the building of distributed, enterprise-level applications in Java by giv-
ing developers a common set of services to use, a standard approach to, and a uni-
fied platform for application configuration. Since J2EE is no more than a collection
of standards with integration semantics, we will look briefly at what those standards

What is J2EE? 387
are and why they are a part of J2EE. Table 12.1 lists the standards included in the
1.3 version of the J2EE specification with a brief description of each:.

We’ve already seen a couple of these standards in this book, namely JDBC (in
chapter 11) and the Servlet API (which we’ve worked with since chapter 2). Of the
other standards, a few (EJBs and JNDI) are used in many J2EE applications, while
others (the connector architecture or JavaIDL) address needs that are not found in
most applications. Though all of the standards in J2EE provide useful functions,
we’ll focus our attention on EJB, JNDI, JDBC, and JavaMail.

 Before we delve too deeply into any one standard, let’s look at J2EE application
architecture (server components and their Java and non-Java clients), general
deployment in J2EE, and why all of this fits so comfortably into custom JSP tags.

Table 12.1 The J2EE standards

Standard Description

Enterprise Java Beans (EJB) A standard component model for enterprise development in Java.
This model serves the same purpose the JavaBean standard
serves for ordinary Java applications.

Java Database Connectivity (JDBC) A standard API for accessing databases.

Java Servlet API (includes JSP and
custom JSP tags)

A standard for defining dynamic web components in Java.

Java Transaction API (JTA) Defines an interface for J2EE application components to use for
handling transactions.

JavaIDL An API that allows Java components to communicate with objects
defined in CORBA (Common Object Request Broker Architecture).

Java Message Service (JMS) A standard API for messaging in Java, ultimately facilitating J2EE
components to send point-to-point messages to one another, or
to use a publish-subscribe approach.

Java Naming and Directory Interface
(JNDI)

A standard API for listing and offering directory access to J2EE
resources (such as a phone book for J2EE services).

JavaMail A standard API for sending email.

Java API for XML Parsing (JAXP) A standard API for parsing XML documents.

J2EE Connector Architecture A standard interface that facilitates connectivity to existing legacy
and other non-Java enterprise systems and services.

Java Authentication and Authoriza-
tion Service (JAAS)

A standard API for authentication and enforcement of access con-
trol on users of a J2EE application.

388 CHAPTER 12

Custom tags and J2EE
12.1.1 J2EE server components and client access

One axiom that can be promulgated of any J2EE application component is that it
needs a place to run. When writing a J2EE component such as an EJB or a Servlet,
we develop our Java code and compile the class, but then what? The components
must be deployed to a site that actually runs them for our use. Part of the J2EE stan-
dard is the definition of server-side containers in which enterprise applications run.
As seen in figure 12.1, the server-side components hosted in these containers are:

� Servlets and JSPs running inside a web container.
� EJBs running inside an EJB container.

These server components can be used by a number of clients (including Java com-
ponents) that connect to the server entities:

� Stand-alone Java clients that can use JNDI to find EJBs (and other services) and
then access them via a remote method invocation protocol such as RMI/IIOP.1

� Java applets running inside a user’s browser can access either EJBs or servlets
and JSP files using HTTP.

� HTML browsers can access servlets and JSP files using HTTP.

NOTE Note that even though servlets and EJBs are server components, they are
not excluded from acting as clients of other J2EE components. It is, in
fact, quite common for a servlet or JSP or tag to interact with EJBs to get
and set data within a web application. The same is true of EJBs that use
other EJBs.

The server-side containers in J2EE not only run components like EJBs and JSPs, but
provide them with lifecycle management and accessibility to other enterprise Java
facilities such as JNDI, JDBC, JMS, JavaMail, as well as to other EJB and servlet/JSP
components deployed in the same J2EE server. These containers create the play-
ground in which all J2EE components and services operate, and are typically
wrapped into a single product most commonly known as a J2EE application server.
IBM WebSphere, BEA WebLogic, and Borland Application Server are just a few
examples of J2EE application servers on the market.

1 RMI is a remote method invocation infrastructure that allows a Java program to seamlessly call methods
on objects located in remote Java virtual machines (JVMs). IIOP is the communication protocol that was
selected for the J2EE RMI method calls.

What is J2EE? 389
12.1.2 Deployment in J2EE

In addition to writing J2EE components, parts of the J2EE specification are standards
for deploying and configuring applications. In J2EE, each application (or in the case
of EJB, even a component) has a unique deployment descriptor containing metadata
that instructs the container in deploying it, and includes a standard jar file structure
(similar to the deployment descriptor and WAR format discussed in chapter 2). The
deployment descriptors are XML documents with syntax as defined in the J2EE spec-
ification. These standards-based deployment descriptors and the jar file structure are
essential when it comes to deploying an application, since the deployment tools can
take the standard jar file and automatically import it into the application server’s con-
figuration repository. This standard, easy deployment is one of the strengths of the
J2EE architecture, ensuring that any J2EE-compliant component is deployable on
any J2EE-compliant product (no matter which vendor actually makes the product).
As a J2EE developer you can take the EJBs and JSPs written for your WebLogic server
and run them on a WebSphere server with no fear of incompatibility.

12.1.3 Why custom tags and J2EE are a good fit

Now that you know what J2EE is, why is it so important to you, the JSP custom tag
developer? Knowing how much J2EE offers—from a rich email API to a scaleable,
enterprise-level component model—it isn’t dif ficult to imagine how your

RMI/
IIOP

Web containerWeb Container
JMS

JNDI

JDBC

JTA

Web container
(servlets and

JSP files)

JavaMail

EJB container
(EJBs)

Browser

Java client application

Applet

HTTP

HTTP

RMI/
IIOP

RMI/
IIOP

Figure 12.1 Clients and servers in J2EE

390 CHAPTER 12

Custom tags and J2EE
applications might benefit from it. Since JSP files may execute within J2EE-compliant
application servers, with all those services available, you are likely to want or even
need one or more of these standards in many of your web applications. For example,
common tasks such as fetching a database connection or sending an email within
your tags will require you to use J2EE standard interfaces. This chapter will demon-
strate how to use many of these J2EE facilities from within your custom JSP tags.

 The first J2EE member we’ll study, in anticipation of integrating it into our cus-
tom tags, is EJBs. In many applications, one common task for your custom tag will
be to interact with EJBs. EJBs can be used to encapsulate business logic and data-
base access at a very high level, letting the EJB container (the software in which the
EJBs run) take care of low-level details such as generating proper SQL statements
and handling transactions. These benefits render EJBs a popular choice for building
software components; thus, it is no surprise that you will often need to let your
dynamic web site (and namely, your custom tags) communicate with these server-
side beans. Before we discuss how this interaction works, let’s take a moment to fur-
ther specify what EJBs are.

12.2 What are EJBs, and why learn of them?

You can’t go anywhere in the Java world without seeing or hearing about EJBs.
There are currently some twenty-seven EJB container implementations available on
the market, and there have been dozens of white papers written about creating
dynamic web sites using EJBs. What is all the fuss? We answer this question and pro-
vide an overview of EJB in the following sections. After this introduction we will
look at a sample EJB to clarify the concepts introduced in the coming sections.

12.2.1 EJBs—What are they?

The EJB specification is a distributed, secure, scalable, and transaction-aware compo-
nent architecture for Java. In one sense, EJBs are the industrial-strength version of the
JavaBean component standard. Both standards define a way of packaging Java code in
objects to make them usable by other Java code. The similarities end there, however,
since EJBs offer much more functionality and control than simple JavaBeans.

 Its specification defines how an EJB container (the software that hosts and runs
EJBs) instantiates and manages EJBs, how clients locate these components and/or
call methods on them, and how Java developers can write an EJB.

 One of the greatest attributes of this technology is that it defines a framework
that makes it easy to develop distributed and transactional business logic compo-
nents without having to consider the painstaking details of coding transaction
and distribution logic. Such magic is possible because the EJB container and

What are EJBs, and why learn of them? 391
J2EE-compliant deployment tools create the necessary code to handle functional-
ity such as distribution, load balancing, fault tolerance, and transactions.

The anatomy of an EJB
To produce a component that benefits from the services offered by an EJB con-
tainer, the developer has only to follow the EJB guidelines for creating one. These
guidelines specify a number of classes and interfaces that need to be created for each
EJB, with each class and interface filling a specific role for the component.
Table 12.2 lists the pieces of an EJB:

If you follow the EJB specification of first creating these classes and interfaces, then
deploying them properly to an EJB container, the container will run the bean and
make it available to other Java code that requires access to it.

EJB container
The EJB container as sketched in figure 12.2 is where EJB components live. The
container manages the EJB components’ lifecycles and exposes the components by
listing each EJB within a JNDI directory (which acts like a phone book for EJBs). Cli-
ents use the JNDI API to look up a particular EJB by name, then receive a reference
to the home interface of that EJB.

 Using the home interface, the client can obtain a reference to the specific EJB
by creating it or by finding an existing instance of it that is already running in the
container. After obtaining the reference to the needed EJB, the client can invoke
methods on it.

 These method invocations appear to the client code as if they are taking place in
the same way they would on any other Java object within the local VM. However,
behind the scenes, calling a method uses RMI over IIOP to communicate with an

Table 12.2 The parts of an EJB

Class/Interface Description

EJB Home interface Offers methods for finding, creating, and removing a particu-
lar EJB.

EJB Remote interface Offers the business methods that your EJB will expose.

EJB Implementation class The actual Java class that implements the methods in the
Remote Interface.

EJB Primary Key class (optional) A class that represents the data that makes a particular entity
EJB unique (such as a primary key in a relational database
table).

392 CHAPTER 12

Custom tags and J2EE
EJB which is typically running on a different machine. This seamless support for dis-
tributed computing is one of the benefits of the J2EE standard.

 What do we mean when we say that an EJB container manages the EJB’s life-
cycle? The EJB specification defines a certain set of states, state transition rules, and
a method calling protocol for EJB components. The container is responsible for the
state of a particular EJB and that state is unknown to any client. When a client wants
to access a particular bean, the container may already have it in memory, may create
a new instance of it, or may activate an instance that was previously in memory and
has been “passivated” (a process that persists the current contents of the bean to
disk or some other persistent storage). As a result, the container freely moves its
EJBs between the allowed states to conserve scarce resources and to sustain transac-
tion integrity.

 For example, if a certain EJB instance is no longer in use, the container will pas-
sivate the bean and return it to the bean instance pool for reuse. In fact, some EJBs
can be reused after any method call. Though this management by the container
helps control transactions and maintain valuable server resources, it does present
some development considerations; such as, at no point can the EJB developer
assume that an EJB is in memory, since the container may have chosen to passivate it
for memory conservation.

12.2.2 Types of EJB components

There are two main flavors of EJB components, session EJBs and entity EJBs.

Web container
(servlets and

JSP files)

Browser

Java client application

RMI/
IIOP

RMI/
IIOP

EJB container (EJBs)

Home1

EJB1
instance

EJB1
instance

Home2

EJB2
instance

EJB2
instance

Figure 12.2 The EJB container, homes, and EJBs

What are EJBs, and why learn of them? 393
Session EJBs
Session EJBs can be used to control complex transactional operations and to model
business processes. In plainer terms, session beans are components that typically
perform any logic or calculations that are useful for your application. You might use
a session EJB to control online order processing using a credit card. The bean
would need to verify the credit card, place the order inside the order database, and
actually charge the credit card. A session EJB is used in performing simple distrib-
uted services such as sending an email. It can be used by a single client application,
and may be seen as the application’s remote hand on the server side. Typically, a ses-
sion bean only exists for the duration of the client’s session, and only one client will
access any single instance of a session bean.

 There are two subtypes of session EJBs differentiated by their state preservation
policy: stateless and stateful. Stateless session EJBs do not keep state between method
calls. Stateful beans, on the other hand, accumulate state information that carries
from method call to method call, but this does not override server shutdown or crash.
When a stateful session bean is destroyed, so is the state information it contains.

Entity EJBs
Entity EJBs are persistent, domain-specific objects that model a record located in
some persistent storage (usually in a database). An entity EJB can represent a credit
card, saving account, catalogue item, user account or any other real-world object
that has persistent data. Unlike the typical session bean model, entity beans may be
used by multiple clients and persist indefinitely, even in the face of server shutdown
and crash. Each entity EJB has a primary key, its identity, which makes sense when
you consider that an entity bean almost always represents a record of data in a data-
base. User applications search for entity beans based on their primary key, and occa-
sionally based on other EJB attributes.

 There are two subtypes of entity EJBs differentiated by their state persistency
mechanism, Bean Managed Persistency (BMP) and Container Managed Persistency
(CMP). BMP entity EJBs implement persistency on their own; the container man-
ages the transactions for them, but the code that persists them (such as JDBC code
for storing the bean’s data in a database) needs to be written by the EJB developer.
By contrast, CMP entity EJBs let the container implement their persistency, which
typically includes the container automatically generating JDBC and SQL related code
and storing the bean’s data using this generated code. The CMP capabilities available
in EJB are very important for several reasons, but the three most important are:

394 CHAPTER 12

Custom tags and J2EE
1 We eliminate coding the persistency (saves lots of development time).

2 Since the persistency code is gone, the EJBs are now database agnostic. You
can switch databases and still use the same EJBs.

3 The container can perform persistency optimizations in the container level
(opens the door to major performance improvements).

On the other hand, CMP EJBs are notorious for their poor performance and limited
persistency capabilities. More complicated entity beans, such as those that pull their
data from multiple tables, often have nontrivial persistence rules that the container
cannot know. For these nontrivial cases, the EJB developer must write the persis-
tence code that stores the bean’s properties back into the database.

 It is also important to know that the EJB container supports automatic transac-
tion management. It is possible to write an EJB without any transaction aware code;
however, during the deployment the administrator may assign transaction proper-
ties to the EJB method so that this method will take part in a transaction. This capa-
bility greatly simplifies any transaction related job, and eliminates a lot of hard work
and complex transaction management code.

The differences between session and entity beans
Entity and session EJBs are quite different in a number of ways:

� Session EJBs are transient; entity EJBs persist forever.
� A single session EJB’s instance can be used by a single client; an entity EJB can

be used by many clients.
� An entity EJB may be looked up by using a primary key that identifies it;

there is no real identity for a session EJB.
� Session EJBs are used to model a certain process and logic; entity EJBs are

used to model a persistent real-world object.
To clarify the differences, imagine we need to develop a set of EJBs for an airline
application. The EJBs should offer functionality that lets the airline system book and
cancel reservations, as well as keep track of open seats for each flight. It should be
clear that flights, seats, and orders will need to be persistent objects, to be stored as
records in our database, thus, we should make these items entity EJBs. In addition
to these persistent objects, our system also needs to support several operations:

� List all free seats for a particular flight.
� List all reserved seats for a particular flight.
� Reserve a seat.
� Cancel a seat reservation.
� List all flights from city x to city y.

What are EJBs, and why learn of them? 395
These are logical operations in our system; we therefore package them as session
EJBs, with methods implementing each operation. As there is no need for us to keep
track of any state (each of these operations is autonomous and independent) we use
the stateless variety of session beans. Our example also needs some transactional sup-
port. For instance, the method that reserves a seat should modify the state of a cer-
tain seat by using its entity EJB, and then creating a new EJB to represent the
reservation. To maintain the system in its correct state, both operations must be per-
formed under the same distributed transaction, which the container manages for us
automatically (provided we indicate the transactional methods at deployment time).

 Let’s now see what EJBs can do for us.

12.2.3 EJBs and their functions

We mentioned that J2EE has two different container types, the web container (that
manages servlet and JSP files) and the EJB container (that manages EJBs), but we
did not discuss the differences between EJBs and servlet/JSPs. Though their differ-
ences might seem quite stark, EJBs and servlets do have a few attributes in common:

� Both are server-side components managed by a container.
� Both are distributed.
� In both, the containers can provide scalability and fault tolerance.

What then is the real difference? The answer sheds light on using EJBs inside web
applications.

EJBs vs servlets
The major difference between these two specifications is the type of solution each
offers. Servlets are stream-oriented services, designed from the start with one goal
in mind: serving stream-based clients such as web browsers. The HTTP servlets in
web applications were designed for one purpose only: to serve web clients. EJBs, on
the other hand, were designed to provide generic, secure, transactional, and distrib-
uted components—pure overkill when it comes to serving HTML, but exactly what
you need to build scalable distributed data based models.

 EJBs cannot accept HTTP requests (at least not in a natural way), so they cannot
serve requests emanating from a browser. An EJB cannot then implement the pre-
sentation and control layers for a web application. On the other hand, servlets and
servlet-derived technologies such as JSP are great when implementing web
presentation and control, but have no built-in provisions to handle distributed
transactions. Where do the EJBs shine? They shine in implementing transaction and
database oriented application models. Moreover, EJBs, unlike servers, can be easily
called from any Java-based client.

396 CHAPTER 12

Custom tags and J2EE
 We’ll borrow from the Model-2 approach to summarize: in a web application,
servlets and JSPs construct the controllers and the views. The model (where the
data is stored) that is manipulated by the controller servlet and presented by the JSP
(the view) can be implemented in any number of ways. We’ve seen examples in
which the model is a set of JavaBeans representing business data for our application,
or where it is a set of JDBC calls that get and set data directly from and to a data-
base—without even a JavaBean object wrapper. These models work well for many
different applications; however, under certain conditions, the model is best imple-
mented using EJBs.

When to use EJBs
What are the conditions under which EJBs are a good fit for the model in our
Model-2 (MVC) web application? The answer is in the benefits of EJBs:

� EJB gives you easy-to-use transactions. If your application needs distributed
transactions, you should use EJBs.

� EJB lets you distribute the work among different computers with ease. For
example, you may decide that for management/performance reasons you
should place the entire database access code on a limited set of nodes and
provide access to the information located in the database via entity EJBs.

� You can improve the scalability of your model by adding a tier between the
servlets and the databases (sometimes at the expense of response time). This
tier is probably going to be an EJB tier as EJB components and their con-
tainers are the perfect fit for this task. Better scalability is achieved because
the EJB container provides smart resource pooling as well as queuing of
incoming requests. In addition, the container may also provide smart data
caching (depending on the vendor). You can probably develop these capa-
bilities yourself, but it would take a great deal of time to do so, and life is
too short. Use EJBs.

� If your application model needs to be accessible to many types of clients, EJBs
can help. Imagine that the model we are using must serve clients arriving
from the web (with the help of servlets, JSP, and custom tags), nontraditional
web clients (such as those using WAP and VoiceXML browsers), and corporate
employees using a full Java application to access the model information. By
storing most of the model inside a set of EJBs you make it possible to use the
same model with all clients. Additionally, such design can also solve the scal-
ability/performance problems that often occur when multiple clients access a
database directly.

What are EJBs, and why learn of them? 397
� Though the EJB market is young, many foresee a strong market for EJB com-
ponents in the future. In such a market you will be able to buy (perhaps pick
up for free) existing components for your applications. EJB technology makes
incorporating these third-party EJB products a cinch.

Despite all their benefits, EJBs are not the Holy Grail. Developing simple models
with EJBs is not as effortless as developing a standard JavaBean model utility class.
Adding needless EJBs to your application is likely to increase development effort
and may even reduce performance. Like any new technology, sometimes a devel-
oper’s desire to use something cool and cutting-edge can overshadow smart design
decisions. There is a cost associated to use this technology. For many applications,
these costs are minute compared to the benefits of gaining a scalable, transactional
platform to which you may deploy large applications. For other systems, the bene-
fits of using EJBs do not outweigh the costs. In short, if your application cannot
realize a clear benefit from using EJBs, you are best off avoiding them.

12.2.4 Example: catalogue entry EJB

Let’s solve a problem using an EJB. We shall only take on a very small problem and
in the process develop a fairly elementary EJB, but this exercise will demonstrate how
EJBs are written and hosted by the container. All the interfaces and objects we create
in this example will adhere to the EJB1.1 specification which instructs us as to which
types of exceptions should be thrown, valid method call return types, and the like.

 For this example, imagine that we have a catalogue of products which we keep in
a database. The catalogue is a collection of many entries with each entry keyed off
the product’s serial number. Each entry also has fields such as the product’s name,
price, description, and so on. We want to provide easy access to the information in
these catalogue entries so that user applications won’t have to deal with database
connections and JDBC calls, but can instead use a simple object-based interface.

 Given these parameters, we have two options for our implementation:

1 Write a set of utility classes (which we could write as standard JavaBeans)
and isolate the database code in them.

2 Create an EJB to represent the catalogue entries.

Although the relative simplicity of our application may not warrant EJB use, we’ll
try them anyway, for purposes of illustration. To minimize our work, our catalogue
entry EJB will use container-managed persistence—the container will be the one
responsible for persisting the various catalogue entries to the database, freeing us to
concentrate on the details of the application itself and the interfaces that the EJB
should support.

398 CHAPTER 12

Custom tags and J2EE
 Let’s now look at each of the interfaces and objects we need to create in build-
ing our EJB. Recall from table 12.2 that each EJB will need:

� A Remote interface that exposes the methods the EJB will support.
� A Home interface that provides life cycle (creation, finding, etc.) methods for

the EJB.
� An Implementation class that is the guts of the EJB, including any business

rules and logic it needs. This would also be the site to place any code for
retrieving and setting the EJB’s properties (from/to the database); but since
we are using container managed persistence, we don’t have to write this code;
the container does it for us.

The remote interface
The first action to take with our new EJB is to define its functionality through its
remote interface, which specifies the methods available for its users. If we were writ-
ing a plain JavaBean, the public methods of our JavaBean would be the business
methods we expose to other Java classes. The methods in an EJB’s remote interface
are analogous, in this way, to the public methods in a JavaBean. The operations we
want to conduct over the catalogue entries include reading the values stored in the
entry and updating them. Supporting these operations yields the remote interface
presented in listing 12.1.

package book.ejb.catalogue;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface CatalogueEntry
 extends EJBObject { b
 public String getName() c
 throws RemoteException;

 public void setName(String name) c
 throws RemoteException;

 public String getSerial() c
 throws RemoteException;

 public String getDescription() c
 throws RemoteException;

 public void setDescription(String description) c
 throws RemoteException;

 public String getType() c
 throws RemoteException;

Listing 12.1 The remote interface of the CatalogueEntry EJB

What are EJBs, and why learn of them? 399
 public void setType(String type) c
 throws RemoteException;

 public int getPriceCents() c
 throws RemoteException;

 public void setPriceCents(int cents) c
 throws RemoteException;

 public int getPriceDollars() c
 throws RemoteException;

 public void setPriceDollars(int dolars) c
 throws RemoteException;
}

B Declaration of the CatalogueEntry interface Two things are obvious about this
remote interface (both required by the EJB specification):

1 The remote interface does not extend the interface java.rmi.Remote in
the same way that the usual RMI remote interfaces do; instead, it extends
javax.ejb.EJBObject. The methods in javax.ejb.EJBObject (that are
implemented by the container) let their caller perform operations such as
removing the EJB from the container

2 All the methods in the interface throw a RemoteException because EJBs
are subject to distribution and, in most cases, a method call on an EJB is
actually a remote method call. In these cases we need the RemoteException
to signal us that some error has occurred.

Other than these two findings, the methods seem obvious. We have methods to set
and get most of the catalogue entry’s properties, with the sole exception being that
the serial number has only a getter, since it is the key to the catalogue entry and
cannot be changed.

C Business methods we want to expose to users of this EJB.

The home interface
Looking at listing 12.1, we see no methods that help us create or get a reference to
an instance of the CatalogueEntry EJB. This inability will be a problem for us since
we want to, of course, create catalogue entries and search for products. You do not
see these services in the EJB’s remote interface because these are not services that the
EJB itself provides, but are services provided by its home interface. An EJB’s home
interface is implemented by the EJB container and, using the container, this home
implementation will support creation and searching for our CatalogueEntry EJB. To
make this possible, all we need to do is define a home interface as seen in listing 12.2.

400 CHAPTER 12

Custom tags and J2EE
package book.ejb.catalogue;

import java.util.Collection;
import java.rmi.RemoteException;
import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import javax.ejb.FinderException;

public interface CatalogueEntryHome
 extends EJBHome {

 public CatalogueEntry create(String serial,
 String type,
 String name,
 String description,
 int dollars,
 int cents)
 throws RemoteException, CreateException;

 public CatalogueEntry findByPrimaryKey(String serial)
 throws FinderException, RemoteException;

 public Collection findByType(String type)
 throws FinderException, RemoteException;
}

B Creates a method used to create an instance of CatalogueEntry EJB C Finds a Cat-
alogueEntry EJB by its serial number D Finds a CatalogueEntry EJB by its
type The home interface defines a creation method as well as numerous find-
XXX() methods. Using these methods, one can create EJB instances and then search
for them by serial number or type. We should also note here that all the home inter-
face’s methods throw some type of exception: (1) The creation methods throw a
CreateException, which signals that the creation failed. (2) The findXXX() meth-
ods can throw a FinderException which indicates that there was some error while
looking for the appropriate EJBs. (3) All methods throw a RemoteException to sig-
nal a possible communication error with the remote server. In using these excep-
tions one gains a good idea of its method call status.

C d The find methods that are looking for a set of catalogue entries return a Col-
lection object. This collection will contain references to all EJBs that match the
find criteria. For example if we are looking for all the books in our catalogue, the
returned Collection will let us reference all the CatalogueEntry EJBs that repre-
sent books.

Listing 12.2 The home interface of the CatalogueEntry EJB

b

c

d

What are EJBs, and why learn of them? 401
The EJB implementation class
By now we have some idea of what functionality will be exposed by the EJB and
how we can create or look for a catalogue entry. Now we must implement the
CatalogueEntryEJB itself. The code we include in this class is the code that exe-
cutes any time a remote method is invoked on the CatalogueEntry interface by a
client (listing 12.3).

package book.ejb.catalogue;

import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.ejb.CreateException;

public class CatalogueEntryEJB
 implements EntityBean {

 public String serial;
 public String type;
 public String name;
 public String description;
 public int dollars;
 public int cents;

 private EntityContext context;

 public String getName() b
 {
 return name;
 }

 public void setName(String name) b
 {
 this.name = name;
 }

 public String getSerial() b
 {
 return serial;
 }

 public String getDescription() b
 {
 return description;
 }

 public void setDescription(String description) b
 {
 this.description = description;
 }

Listing 12.3 The implementation of the CatalogueEntry EJB

402 CHAPTER 12

Custom tags and J2EE
 public String getType() b
 {
 return type;
 }

 public void setType(String type) b
 {
 this.type = type;
 }

 public int getPriceCents() b
 {
 return cents;
 }

 public void setPriceCents(int cents) b
 {
 this.cents = cents;
 }

 public int getPriceDollars() b
 {
 return dollars;
 }

 public void setPriceDollars(int dollars) b
 {
 this.dollars = dollars;
 }

 public String ejbCreate(String serial, c
 String type,
 String name,
 String description,
 int dollars,
 int cents)
 throws CreateException
 {

 if(null == serial ||
 null == type ||
 null == name ||
 null == description ||
 0 > dollars || 0 > cents) {
 throw new CreateException("The productId is required.");
 }

 this.serial = serial;
 this.type = type;
 this.name = name;
 this.description = description;
 this.dollars = dollars;
 this.cents = cents;

 return serial;

What are EJBs, and why learn of them? 403
 }

 public void ejbPostCreate(String serial, d
 String type,
 String name,
 String description,
 int dollars,
 int cents) { }

 public void ejbActivate() e
 {
 serial = (String)context.getPrimaryKey();
 }

 public void ejbPassivate() f
 {
 serial = null;
 name = null;
 type = null;
 description = null;
 cents = 0;
 dollars = 0;
 }

 public void ejbRemove() { }

 public void ejbLoad() { }

 public void ejbStore() { }

 public void setEntityContext(EntityContext context)
 {
 this.context = context;
 }

 public void unsetEntityContext()
 {
 context = null;
 }
}

B Implementaion of the business methods exposed by this EJB in the remote interface.

C Called by the container to construct our EJB Note how the create() methods in
the EJB’s home and the actual EJB implementation match in terms of parameters.
For every create() in the home interface, the EJB should implement an ejbCre-
ate() with the same argument list. When executing create() on the home inter-
face the call will be proxy to the matching ejbCreate() in the EJB implementation.

g

404 CHAPTER 12

Custom tags and J2EE
D For this EJB, nothing is needed here E Called by the container to activate the EJB.
Reloads the serial number F Called by the container to passivate the EJB. Resets all pri-
vate variables G Lifecylce methods that we don’t need to implement for our EJB The
EJB implementation is flooded with methods that use the naming convention
ejbXXX(). The ejbXXX() methods are actually part of the EJB specification and are
callbacks to be used by the EJB container. Some of these callbacks are called when the
EJB is created, others are called when the EJB is to be stored in a database, and so on.
These methods facilitate the container’s ability to control the life cycle of our bean.

The amazing thing about listing 12.3 is that we do not see a single line of database
access code because CatalogueEntryEJB uses container-managed persistence. Cat-
alogueEntryEJB has six container-managed fields (serial, type, name, descrip-
tion, dollars, and cents), and there is no JDBC/SQL code to store/load them or
to perform the find operations on the EJBs. The container implements all this dis-
tasteful database code. This is a victory because we wrote a relatively simple piece of
code, and we end up with something that uses database connection pooling and
SQL. Our only responsibility is specifying the exact SQL queries to be used by the
find methods, and the table structure for the container managed fields. The con-
tainer does the rest.

 You may ask why CatalogueEntryEJB doesn’t implement the remote interface
CatalogueEntry? After all, this is the interface that CatalogueEntryEJB should
implement, isn’t it? The answer is that CatalogueEntryEJB does not have to imple-
ment the remote interfaces (CatalogueEntry and CataloogEntryHome) because
the container takes care of them instead. The container wraps CatalogueEntryEJB
with the implementation of its home and with an implementation of the remote and
home interfaces (which is what the user sees), and this container-created remote
interface implementation references CatalogueEntryEJB and calls its methods.

 The fact that the container implements the remote interface and calls the meth-
ods on CatalogueEntryEJB gives rise to method call interception. Interception
occurs when the container implements the remote interface in a way that places spe-
cific logic before calling the actual EJB implementation. This logic intercepts
remote method calls and acts upon them. In these interception points, the con-
tainer may implement security and transaction propagation (as defined in the EJB
specification) before actually calling CatalogueEntryEJB’s methods.

The CatalogueEntryEJB client
The last step in our EJB coding sample is to write the client application, as in
listing 12.4.

What are EJBs, and why learn of them? 405
package book.ejb.catalogue;

import java.util.Collection;
import java.util.Iterator;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

public class ProductClient {
 public static void main(String[] args)
 {
 String regLocation = args[0];
 String serial = args[1];

 try {
 Context initial = new InitialContext();
 Object objref = initial.lookup(regLocation);

 CatalogueEntryHome home = (CatalogueEntryHome)
 PortableRemoteObject.narrow(objref,
 CatalogueEntryHome.class);

 CatalogueEntry entry = home.findByPrimaryKey(serial); d
 print(entry);

 System.out.println("Print all books");
 Collection c = home.findByType("books");
 Iterator i = c.iterator();
 while (i.hasNext()) {
 entry = (CatalogueEntry) PortableRemoteObject.

 narrow(i.next(),CatalogueEntry.class);
 }
 } catch(Exception ex) {
 System.err.println("Caught an exception.");
 ex.printStackTrace();
 }
 }

 public static void print(CatalogueEntry ce) throws Exception
 {
 System.out.println("Informaton on : " +
 ce.getName());
 System.out.println("Description is : " +
 ce.getDescription());
 System.out.println("Serial number is: " +
 ce.getSerial());
 System.out.println("Type is : " +
 ce.getType());
 System.out.println("Price is : " +
 ce.getPriceDollars() + "." + ce.getPriceCents());
 }
}

Listing 12.4 The implementation of the CatalogueEntry EJB

b

c

e

406 CHAPTER 12

Custom tags and J2EE
B References the EJB using the JNDI registry Obtains a reference to the home object
through the JNDI registry. The container signs up the EJB home (container-gener-
ated) implementation in the JNDI registry. The EJB’s user references this home by
resolving its name from the JNDI registry.

C Narrows the returned home to the actual class Casts the home reference into the
correct home class. The process of casting the home from a remote reference as
retrieved from the JNDI registry to a real object may differ from one remote
method call implementation to another, so the client uses the class javax.rmi.Por-
tableRemoteObject to perform the protocol and platform-specific casting.

D Uses a single EJB by its primary key E Lists all the books by finding based on the
type attribute Uses one of the finder (or create) methods to reference an EJB
instance and then calls any desired instance methods. Note that when the finder
method returns more than a single result, it will return all these results within a
Collection object that the client iterates through to fetch returned EJBs.

Overall, and considering what we managed to achieve (locating a remote object and
calling methods that actually go to a database), the complexity price is not that
high. In the code samples in this section, we created a program that accesses a data-
base and searches for specific table entries within that database with very little fuss.
This showcases some of the advantages of EJB technology.

12.2.5 Points to keep in mind

The goal of this EJB tutorial was not to turn you into an EJB wizard, but to
acquaint you with EJB terminology and the programming model. The key points
here are that EJBs are distributed objects, that you access them by connecting to
their home interface (retrieved through JNDI), and that you create or find the EJB
you want through their home. Once you reference an EJB, you can call its methods
as if the EJB were running locally inside your client process.

 The information will be important when we implement custom tags that pro-
vide access to an EJB.

12.3 Using and configuring J2EE services

As a JSP tag developer you will likely find yourself working with a J2EE-compliant
application server. That is, again, because the servlet and JSP specification is a subset
of the larger J2EE specification. This has prompted many vendors to release applica-
tion server products that adhere to all the J2EE standards, not only those portions
detailing servlets and JSP. How will you take advantage of the services rendered by
the container? How will you reference database connections and EJBs in your tags?

Using and configuring J2EE services 407
 A component running inside a J2EE-enabled container can take advantage of
many container-provided and managed services. These services include:

� Distributed transactions and persistency, using EJB and JTA.
� Database pooling, employing the JDBC2.0 standard extensions.
� Naming services, with JNDI.
� Message queuing services, with JMS.
� Mailing services, using JavaMail.

12.3.1 Getting services

These services are all helpful, but obtaining them would be a nightmare if the con-
tainers did not provide access in a simple, standard way. To avoid the nightmare, the
J2EE specification defines a means of referencing the service by looking them up
according to a unique name in a directory, the equivalent of a Yellow Pages for J2EE
components. The API that supports this directory functionality is called JNDI. This
system works by having each J2EE-compliant system provide a JNDI service called
an environment, which contains environment variables (values to be shared across
the application), EJB references, and resource factory references (references to
objects that create common J2EE resources). Each J2EE application can have a
description of the environment variables, EJBs, and resources that it uses. The J2EE
server looks at the descriptor and then binds the values described in the descriptor
into the JNDI name space, thereby making them available for the application.
Before we see how to enter and retrieve services with JNDI, let’s look at what these
environment variables, EJBs, and resources actually do for us:

� Environment variables allow application customization by providing initial
parameter values. The environment duplicates some of the functionality pro-
vided by the web application-scoped initialization parameters. The JNDI
URLs for these values start with java:comp/env.

� EJBs’ references allow applications to refer to EJB homes using logical names
instead of JNDI registry values. EJB references are part of the environment
name space provided by J2EE but have a unique focus on EJB. Using these
references, an application can easily access EJBs, and in a customized manner.
The JNDI URLs for EJB values should start with java:comp/env/ejb.

� Resource references allow applications to refer to resource factories (objects
that create desired resources) by using a logical name. These resources can be
JDBC connections, JMS connections, mail connections, and so forth. The
JNDI URLs for resource values starts with java:comp/env/jdbc, java:comp/
env/jms, java:comp/env/mail.

408 CHAPTER 12

Custom tags and J2EE
An example of accessing the environment
To help understand how environment entities are registered and accessed, let’s
assume that a certain web application needs an environment variable named
intValue with the value 1. In this case, the deployment descriptor of the applica-
tion should include an entry of type <env-entry> that looks like:

<env-entry>
 <env-entry-name>intValue</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>1</env-entry-value>
</env-entry>

To access the value of intValue we use JNDI in our application in a manner similar
to the following fragment:

Context initContext = new InitialContext();
Context envContext = initContext.lookup(“java:comp/env”);

Integer intValue = (Integer)envContext.lookup(“intValue”);
// use intValue …

 Accessing the environment is easy, but managing it seems to require a consider-
able amount of work by the J2EE runtime and the administrators. In that light, you
may ask yourself why we need all of this when you could just hand-code most of the
functionality provided here. The answer is threefold:

1 The infrastructure exposed here provides a tight integration to the con-
tainer services in a container-neutral manner.

2 Having a standard configuration infrastructure allows tool vendors to cre-
ate tools that help the administrator. This also makes it possible for all those
involved in developing and deploying an application to master only a single
configuration method.

3 Though you could code and manage this entire configuration process on
your own and in a proprietary way, you probably do not want to. It is much
easier to defer to the container for these types of configuration features.

The next section explains what we as custom tag developers must know in order to
integrate with J2EE environments.

12.3.2 Tag and servlet API integration

Knowing that custom JSP tags are one aspect of a larger whole, the J2EE specifica-
tion, you may wonder how the two specifications interact. Are we supposed to use
any new APIs to employ this integration? What about the web application
deployment descriptor? J2EE integration is not solely a set of APIs, but is also a way

Using and configuring J2EE services 409
to allow the use of current APIs available in the standard version of Java, Java Stan-
dard Edition (JSE), in a more integrated fashion. If you have already used JNDI,
which is itself part of JSE, you needn’t learn any new APIs in order to gain access to
J2EE services within your tags. All that is required is that these environment vari-
ables, EJB references, and resource factory references be listed as entries inside the
web application deployment descriptor for your web application. Doing so impels
the servlet container to publish those services in the JNDI directory that we access
within our tags. The following sections explain the process of configuring a web
application deployment descriptor in this way, for the purpose of exposing and gain-
ing access to J2EE services.

12.3.3 Setting environment entries

First we look at J2EE service’s configuration for environment variables. To do this,
we need to modify the web application deployment descriptor (web.xml, which we
first saw in chapter 2) by making an entry for each variable. Specifically, in the
deployment descriptor, we encapsulate an environment variable within an <env-
entry> tag. Like most entries in the deployment descriptor, you can assign it an
optional description in addition to several mandatory values (table 12.3).

Next is a fragment taken from a descriptor that creates a string environment variable
with a predefined value:

<env-entry>
<description> Sample environment value</description>
<env-entry-name>sampleValue</env-entry-name>

Table 12.3 Important environment variable information

Elements of the <env-entry> tag Description

<env-entry-name> Specifies the environment name to which the value is bound.

<env-entry-type> Specifies the environment variable type as one of the following:
java.lang.Boolean
java.lang.Byte
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.String

<env-entry-value> Specifies an optional property value that must match the type sup-
plied within the <env-entry-type>. If the value is not specified
within the deployment descriptor, one must be specified during the
deployment.

410 CHAPTER 12

Custom tags and J2EE
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>This is a sample String</env-entry-value>

</env-entry>

With the above entry in our web.xml file, let’s see how the code for gaining access
to sampleValue looks:

// Getting a naming initial context.
javax.naming.Context initContext = new javax.naming.InitialContext();
// Printing the environment value.
System.out.println(initContext.lookup(“java:comp/env/sampleValue”));

Getting the value requires using some of the JNDI APIs. First you need to obtain
the default naming context by instantiating a new Java naming context, which pro-
vides a handle into the directory in which the services and environment variables are
listed. With the directory context in hand, you simply look up the environment
value by its JNDI URL, in this case, “java:comp/env/sampleValue”.

12.3.4 Setting EJB reference entries

The second J2EE service we will gain access to is an EJB. Once again, we can create
an entry in the environment Yellow Pages for our EJB by putting an entry in the
web application deployment descriptor. Within the file, an EJB reference is encapsu-
lated within an <ejb-ref> tag, which has an optional description as well as the EJB-
referencing related information shown in (table 12.4).

As an example of using EJBs within a J2EE container let’s take our catalogue entry
EJB and see how it will look like in the J2EE environment.

 As a first step, we put the EJB reference into the deployment descriptor:

<ejb-ref>
 <description> Reference to the Catalogue EJB </description>
 <ejb-ref-name>ejb/catalogue</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>book.app.ejb.CatalogueEntryHome</home>
 <remote>book.app.ejb.CatalogueEntry</remote>

Table 12.4 Properties for EJB references

Elements of the <ejb-ref> tag Description

<ejb-ref-name> The unique, environment entry name for the EJB. This is the JNDI
name by which it can be retrieved.

<ejb-ref-type> The EJB’s type, either Session or Entity.

<home> The fully qualified class name of the EJB’s home interface.

<remote> The fully qualified class name of the EJB’s remote interface.

Using and configuring J2EE services 411
</ejb-ref>

Now look at how we would access the EJB that this deployment descriptor entry
makes available:

try {
 Context initial = new InitialContext();
 Object home = initial.lookup(“java:comp/env/ejb/catalogue”);

} catch(Exception e) {
 // Handle errors
}

Clearly, specifying and getting access to an EJB using the environment is a simple task.

12.3.5 Setting resource factory reference entries

The way we specify and access some J2EE resources such as database connection in
our custom tags is through the use of a resource factory reference. Earlier we said a
resource factory reference represents a handle to a factory class that can produce
some J2EE resource, such as a database connection, a JMS object, a JavaMail con-
nection, and so forth. A resource reference is specified in the deployment descriptor
within a <resource-ref> tag. As with other entries, it may include an optional
description as well as the resource referencing information shown in table 12.5.

Table 12.5 Properties for resource references

Elements of the <resource-ref> tag Description

<res-ref-name> The environment name for the resource (its JNDI name).

<res-ref-type> The type of resource factory used. The J2EE specification con-
tains several standard resource factories:
javax.sql.DataSource for JDBC connection factories,
javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory for JMS connec-
tion factories, javax.mail.Session for JavaMail connec-
tion factories and java.net.URL for general URL
connection factories.

<res-auth> Resource authentication type. Specifies the way to perform
authentication with this resource. Possible authentication val-
ues can be Container or Bean. Container instructs the
container to authenticate using properties configured during
the deployment. Bean instructs the container to let the appli-
cation authenticate programmatically.

412 CHAPTER 12

Custom tags and J2EE
For an example of using resources within a J2EE container, let’s look at the follow-
ing resource entry, which specifies a database resource.

<resource-ref>
 <description> Some JDBC reference</description>
 <res-ref-name>jdbc/somedatabase</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Getting a JDBC resource factory from this reference can be done easily with code
such as the following:

 // Construct the database source
 try {
 Context ctxt = new InitialContext();

 // Get the JDBC factory from the JNDI registry.
 DataSource mDs = (DataSource)
 ctxt.lookup(“java:comp/env/jdbc/somedatabase”);
 …
 } catch(NamingException ne) {
 // Handle errors
 }

Instead of using the JDBC DriverManager, we are using the DataSource object
(which is standard practice in J2EE applications). DataSource is a standard extension
of JDBC2.0 that facilitates the application server’s control over allocation of data-
base connections. To obtain a JDBC connection out of a DataSource all you need
to do is call one of its getConnection() methods. When you are done with the
JDBC connection, close it. Some DataSource variants also provide built-in database
connection pooling (using the class PooledConnection). In such a case, calling
close() on the database connection will not really close the connection, but will
inform the application server that the user is finished with the connection and that
it can be reused.

12.3.6 Wrap it up

We now know that the J2EE environment provides a standardized means of defin-
ing and referencing resources and we have seen several examples of how this is
accomplished. The next few sections will demonstrate the integration of tags with
these J2EE services, starting with a J2EE capable version of the previously defined
database tags, and finishing with the newly encountered EJBs.

J2EE database connection tags 413
12.4 J2EE database connection tags

Working with databases from within J2EE is somewhat different from the simple
database access demonstrated in chapter 11. Most notably, the allocation of the
database connection changes considerably:

� With standard JDBC, we used the DriverManager class to attain new connec-
tions. The input to DriverManager was complex and included several config-
uration items such as user name, password, driver class, and a URL specifying
the exact location to which we want to connect.

� In the brave new world of J2EE, we no longer use the DriverManager. In its
place we use JNDI to obtain a reference to a DataSource object, from which
we can get a connection. All the configuration information specified to the
DriverManager is now specified in one place, the web application deploy-
ment descriptor.

The DataSource object requires some explanation, and now would be a good time
to start that.

12.4.1 DataSource

DataSource is a factory class whose job is to create new database connections. It is
part of the JDBC2.0 standard and was designed especially for application servers to
provide database access to components running within them. The methods in
DataSource are presented in listing 12.5 and, as you can see, most of them deal
with some connection retrieving aspect.

public interface DataSource {

 public Connection getConnection() b
 throws SQLException;
 public Connection getConnection(String username,
 String password)
 throws SQLException;

 public void setLoginTimeout(int seconds) c
 throws SQLException;
 public int getLoginTimeout() c
 throws SQLException;

 public void setLogWriter(PrintWriter out) c
 throws SQLException;
 public PrintWriter getLogWriter() c
 throws SQLException;
}

Listing 12.5 The methods in DataSource

b

414 CHAPTER 12

Custom tags and J2EE
B Returns a JDBC Connection object The first two methods in DataSource basically
return a JDBC database connection that we can use for our queries, closing after
use. The difference between the two getConnection() methods is that the param-
eterless getConnection() method uses the applications server’s configuration to
authenticate to the database (known as Container-typed authentication), while the
second one accepts a username and password parameters that were in some way
obtained by the using classes (known as Bean-typed authentication).

C Helper methods that let us set parameters The four remaining methods are help-
ers that let us set up login timeout (so that we do not block forever on a getCon-
nection() method call) and logging destination. Messages from the DataSource
and DataSource-generated object will be directed to this destination.

12.4.2 Updating database tags to use J2EE conventions

Other than using the DataSource object to create JDBC connections, nothing
changes in the way JDBC is used within J2EE. When considering the effects on the
database tag library we built in chapter 11, we need only modify the database con-
nection tag and the DbConnectionWrapper object exported by it. We’ll do that now
by rewriting DbConnectionTag and DbConnection in order to adapt them to J2EE.

J2EEDbConnectionTag
The first class we are going to implement is J2EEDbConnectionTag, the handler
class for the J2EE aware database connection tag. The implementation of this tag is
in listing 12.6 and, as you shall see, things have changed considerably since the
plain JDBC connection tag we developed in chapter 11. The greatest change is that
J2EEDbConnectionTag’s role shifts to finding the DataSource that will later be
used to get a connection.

package book.j2ee;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.PageContext;

import javax.sql.DataSource;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import book.util.LocalStrings;
import book.util.ExTagSupport;
import book.database.DbConnectionWrapper;

Listing 12.6 The implementation of J2EEDbConnectionTag

J2EE database connection tags 415
public class J2EEDbConnectionTag extends ExTagSupport {

 public static final String DBURL = "db_url";

 static LocalStrings ls =
 LocalStrings.getLocalStrings(J2EEDbConnectionTag.class);

 protected String dburl = null;

 public void setUrl(String url)
 {
 this.dburl = url;
 }

 public int doStartTag()
 throws JspException
 {
 check parameters;
 exportWrapper(createDbConnectionWrapper());
 return SKIP_BODY;
 }

 protected void clearProperties()
 {
 id = null;
 dburl = null;
 super.clearProperties();
 }

 protected void checkParameters()
 throws JspException
 {
 if(null == dburl) {
 dburl = findInitParameter(id+"."+DBURL);
 }

 if(null == dburl) {
 // Log and throw an Exception.
 }
 }

 protected void exportWrapper(DbConnectionWrapper con)
 throws JspException
 {
 pageContext.setAttribute(id,
 con,
 PageContext.PAGE_SCOPE);
 }

 protected DbConnectionWrapper createDbConnectionWrapper()

416 CHAPTER 12

Custom tags and J2EE
 throws JspException
 {
 try {
 Context initial = new InitialContext();
 DataSource ds = (DataSource)initial.lookup(dburl);
 initial.close();

 return new J2EEDbConnection(getServletContext(), c
 ds);
 } catch(NamingException ne) {
 // Log and throw an Exception.
 }
 }
}

B Fetches the DataSource from the configured JNDI URL Once we have our single con-
figuration parameter, we need only to fetch the DataSource from JNDI. There is
nothing especially unique in this step since the JNDI method call sequence should
be well known by now. Note only that we close the JNDI Context object once we
are through with it. Doing so is very important since different application servers
are using the context differently and, in some, keeping the Context open may lead
to a resource leak.

C Creates a J2EE aware wrapper object The last notable action taken by J2EEDb-
ConnectionTag is the creation of a new J2EE-aware DbConnectionWrapper to wrap
the DataSource in such a way that the rest of the database tag library will understand.

J2EEDbConnectionTag shown in listing 12.6 was greatly simplified by the move to
J2EE. In the past, the connection tag had many input parameters (username, pass-
word, driver class, JDBC database URL). We can now accomplish all this with one
parameter, the JNDI URL wherein we placed the reference to the DataSource (e.g.,
java:comp/env/jdbc/BookDataSource). The reason, again, for the decrease in the
number of input parameters is that the application server itself will hold the config-
uration for each of the configured DataSources. When we retrieve a DataSource in
this way, it comes preconfigured with all the JDBC parameters specified at the appli-
cation server level. With fewer input parameters, we need fewer attribute setter
methods in our tag handler, and our checkParameters() method is much smaller
and simpler. Fewer input parameters also mean an easier to use tag.

J2EEDbConnection
The J2EE aware connection object, J2EEDbConnection, is presented in listing 12.7.
As can be seen, the only method in DataSource essential to us is the plain and
parameter-free getConnection().

b

J2EE database connection tags 417
 This method grabs all the information it needs from the application server’s con-
figuration. One could argue that not letting the programmer who is using the tag
provide username and password dynamically makes our connection tag less attrac-
tive in certain cases; yet, these cases in which the database user and its password are
determined dynamically are generally rare in the web environment, so we forgo
handling them in our tag.

package book.j2ee;

import java.sql.Connection;
import java.sql.SQLException;
import javax.sql.DataSource;

import javax.servlet.ServletContext;

import book.util.LocalStrings;
import book.database.DbConnectionWrapper;

public class J2EEDbConnection implements DbConnectionWrapper {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(J2EEDbConnection.class);

 protected ServletContext app;
 protected DataSource ds;
 protected Connection con;

 public J2EEDbConnection(ServletContext app,
 DataSource ds)
 {
 this.app = app;
 this.ds = ds;
 this.con = null;
 }

 public Connection getConnection()
 throws SQLException
 {
 if(con == null) {
 con = ds.getConnection();
 }

 return con;
 }

 public void freeConnection()
 {

Listing 12.7 The implementation of J2EEDbConnection

b

418 CHAPTER 12

Custom tags and J2EE
 try {
 if(null != con) {
 con.close();
 con = null;
 }
 } catch(Throwable t) {
 // Log the exception.
 }
 }

 protected void finalize()
 throws Throwable
 {
 freeConnection();
 }
}

B Gets a JDBC connection from the DataSource Moving to J2EE made our database
connection wrapper easier to implement. J2EEDbConnection is smaller in size (than
DbConnection) and is much simpler due to the omission of security-related parameters.
In general the omission of JDBC parameters from our tag also makes it possible for the
administrator to manage the connection’s attributes from the application server’s man-
agement console (or other configuration tool used by the server). This capability makes
it a breeze to perform a variety of operations, such as switching between databases,
connection pooling policies, and changing security attribute, among others.

Adding a JDBC resource reference for use with our new tag
Once the connection tag is available, we need only add a JDBC resource reference
in the web-application deployment descriptor, and we can execute our JSP files
using the J2EE managed database connection. Adding a resource reference to the
deployment descriptor may seem tricky the first time, so let’s look at listing 12.8
wherein we see a stripped down web-application deployment descriptor used for
testing J2EEDbConnectionTag.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
 <taglib>
 <taglib-uri>

Listing 12.8 A working web deployment descriptor with JDBC resource reference

J2EE database connection tags 419
 http://www.manning.com/jsptagsbook/j2eedatabase-taglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/j2eedatabase.tld
 </taglib-location>
 </taglib>

 <resource-ref>
 <description>A sample database connection for
 J2EEDbConnectionTag </description>
 <res-ref-name>jdbc/BookDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

B Declares a JDBC connection resource The <resource-ref> entry indicates that a
JDBC connection named java:comp/env/jdbc/BookDataSource should be offered
by the container and that the authentication to the database is to be based on the
container’s configuration parameters. Note that the java:comp/env/ part of the
name is omitted from the <res-ref-name> value for all J2EE environment entries.

If you wonder where the promised linking between the resource reference and the
actual database connection configuration is, the answer is that this part is server spe-
cific. You will not find it in the deployment descriptor, and will have to use the
application server configuration tools provided by your particular application server
vendor to link the application’s URL (java:comp/env/jdbc/BookDataSource) with
the actual connection configuration.

NOTE Developers are often confused about JNDI entries and their scopes. This is
usually due to the environment entries starting with java:comp/env/. All
such entries are actually JNDI URLs, so, can one URL (say java:comp/
env/foo) serve a variety of web applications? Can these same URLs point
to different values? Couldn’t these URLs become mixed up? The answer is
that the environment space is private to the application, such that you may
have different web applications come from different vendors that use the
same environment entries, and the application server will know to differen-
tiate between them. Thus, each application will always receive whatever
was specified for it.

b

420 CHAPTER 12

Custom tags and J2EE
Our new J2EEDBConnectionTag in action
Using the deployment descriptor as specified earlier, we can write a new version of
our database-driven JSP files (listing 12.9).

<%@ page errorPage="error.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/j2eedatabase-taglib" b
 prefix="db" %>
<html>
<head>
<title> Database query results </title>
</head>
<body>
 <h1> Database manipulation </h1>
 Creating a connection, query a database and presenting the
 results. All from within JSP tags.

 <db:connection id="con"
 url="java:comp/env/jdbc/BookDataSource"/> c

 <db:query connection="con" id="above12">
 select * from product where cost > 12
 </db:query>

 <table border="1" bgcolor="#c0c0c0">
 <tr>
 <th bgcolor="#a0a0a0">id</th>
 <th bgcolor="#a0a0a0">Name</th>
 <th bgcolor="#a0a0a0">Cost</th>
 </tr>
 <db:enum query="above12" id="i">
 <tr>
 <td> <$ ID $> </td>
 <td> <$ NAME $> </td>
 <td> <$ COST $> </td>
 </tr>
 </db:enum>
 </table>
</body>
</html>

B References the J2EE tag library The taglib reference now points to a different tag
library entry (the J2EE database library).

C Fetches the JDBC connection from the specified URL The connection tag accepts
only a single attribute, which is the JNDI pointer URL.

Listing 12.9 Sample JSP file that uses our J2EE database connections

J2EE email tag 421
Listing 12.9 is merely one of the JSP files developed for chapter 11, modified to use
our new J2EEDBConnectionTag. We made changes to two locations (shown in bold):

12.5 J2EE email tag

Recalling that we talked at length about the JavaMail API in chapter 7, let us now
look at how we can modify the <send> tag from that chapter to use J2EE. The mod-
ified version of the <send> tag will ask the environment for a javax.mail.Ses-
sion, rather than using ServletContext parameters, as in the previous
implementation of the tag (and instantiating the Session ourselves). Of course, we
must first define a mail Session in the application server configuration, so that the
environment can pass it to the <send> tag. Let’s look at how we define our mail ser-
vice first, then see how our tag will access this Session.

12.5.1 Defining a mail service

The J2EE specification does not define how a certain resource is configured in the
application server. This means that the J2EE specification does not specify how a
mail service should be defined. It only tells us that we should assign a JNDI URL to
the configured Session so that it can be referenced from inside our applications.
The actual URL to use and configuration practice differ from vendor to vendor. It
may be of benefit to look at such vendor-specific configurations. Listing 12.10
shows how to define a mail service in Orion. Your application server will probably
vary, so consult the documentation for the exact syntax it uses.

<mail-session location=”mail/mailSession”
 smtp-host=”mail.smtp.host”>
 <property name=”mail.from”
 value=”your.name@email.address”/>
 <property name=”mail.transport.protocol”
 value=”smtp”/>
 <property name=”mail.smtp.from”
 value=”your.name@email.address”/>
</mail-session>

In the case of Orion, this listing would be written into a file called server.xml, the
server configuration file. Again, since the J2EE specification leaves the details of this
task up to the application server vendor, this approach might not translate precisely
to your particular vendor.

Listing 12.10 Defining a mail service in the Orion application server

422 CHAPTER 12

Custom tags and J2EE
 For the Orion application server, adding this entry to server.xml will add an
environment entry to the application that can be retrieved with the JNDI URL
java:comp/env/mail/mailSession. The value of this resource will, of course, be a
javax.mail.Session resource factory. By following this practice you can define a
number of different mail services, usable from one or more applications.

12.5.2 Referencing the mail service

Although the mail service’s configurations may differ across vendors, the J2EE spec-
ification is clear on how our applications should reference such external resources to
render them accessible by the components inside the application. Listing 12.11 is
an example of how a Session resource factory is referenced from within a web
application.

<resource-ref>
 <description>Mailing Service</description>
 <res-ref-name>mail/mailSession</res-ref-name>
 <res-type>javax.mail.Session</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

In the listing we make sure that a mail Session will be available for use by the vari-
ous parts of the application by looking up the JNDI URL java:comp/env/mail/
mailSession, in the same way we’ve seen throughout the chapter (most recently in
listing 12.6).

Sending a simple email
Let’s look at how we could use this session in the code snippet that appears in
listing 12.12.

 try {
 Context context = new InitialContext();
 Session session = (Session)
 context.lookup(“java:comp/env/mail/mailSession”);
 Message msg = new MimeMessage(session); c
 msg.setFrom(from_address); d
 msg.setRecipient(Message.RecipientType.TO,to_address); e
 msg.setSubject(“This is a subject”); f
 msg.setContent(
 “This is the content of the message”,
 ”text/plain”);

Listing 12.11 Referencing the mail Session from a web-application

Listing 12.12 Sending an email

b

g

J2EE email tag 423
 Transport.send(msg); h
 } catch(NamingException ne) {
 // Handle errors
 } catch(MessagingException me) {
 // Handle errors
 }

B Retrieves the Session instance.

C Creates a new Message.

D Sets the sender’s InternetAddress.

E Sets the InternetAddress of the recipient of the Message.

F Sets the subject of the Message.

G Sets the content and specifies the MIME type for this content.

H Sends the message to the recipient.

In this example, we use the Session to send a single-part message to a single recipient.

Sending attachments with email
At times, however, you may wish to send attachments along with your messages.
This is also simple to do, as described in listing 12.13.

 try {
 Context context = new InitialContext();
 Session session = (Session)
 context.lookup(“java:comp/env/mail/mailSession”);
 Message msg = new MimeMessage(session);
 msg.setFrom(from_address);
 msg.setRecipient(Message.RecipientType.TO,to_address);
 msg.setSubject(“This is a subject”);
 Multipart multipart=new MimeMultipart(); b
 MimeBodyPart part1=new MimeBodyPart(); c
 part1.setContent(
 “This is the content of the message”,
 “text/plain”);
 MimeBodyPart part2= new MimeBodyPart(); c
 part2.setContent(
 “<HR>This is an attachment to the message<HR>”,
 “text/html”);
 part2.setFileName(“attachment.html”); e
 multipart.addBodyPart(part1);
 multipart.addBodyPart(part2);
 msg.setContent(multipart); g
 Transport.send(msg);

Listing 12.13 Sending a multipart email

d

d

f

424 CHAPTER 12

Custom tags and J2EE
 } catch(NamingException ne) {
 // Handle errors
 } catch(MessagingException me) {
 // Handle errors
 }

B Creates a MimeMultipart instance.

C Creates a MimeBodyPart First we create two different MimeBodyPart instances.

D Sets the content and speciies the MIME type for this content for this MimeBodyPart.

E Sets the filename for this MimeBodyPart The second MimeBodyPart was given a
filename, so that when the recipient views this email, he will see this as the name of
the HTML file attached to the message.

F Adds the MimeBodyParts to the MimeMultipart instance We add these instances
to a MimeMultipart instance.

G Sets the content to be the MimeMultiPart We add this instance as content to the
MimeMessage.

Notice that we add the text message first, as email readers often open the first part
of a multi-part email for viewing by default. If, for some reason, we want to add the
attachment before the default part, we can specify the precedence that the added
part should have by adding an int value at the time of adding the MimeBodyPart to
the MimeMultiPart instance. The signature of this method should then look like
multipart.addBodyPart(part1,0). Notice that the numbering of the parts starts
at zero, which is normal in Java.

12.5.3 J2EE send tag

Although J2EE greatly reduces the amount of code required in order to send an
email, we still want to wrap this up in some neat tags that will make this attainable
from our JSP pages. We will do this by extending the <send> tag from chapter 7, in
a manner described in listing 12.14.

package book.j2ee;

import book.util.LocalStrings;

import java.util.Properties;

import javax.mail.Transport;
import javax.mail.Session;
import javax.mail.Message;
import javax.mail.MessagingException;

Listing 12.14 Implementation of the J2EE Send tag

J2EE email tag 425
import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.AddressException;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;

import book.mail.BodyJavaMailTag;
import javax.naming.*;

public class J2EEMailTag extends BodyJavaMailTag {

 protected String sessionName;

 static LocalStrings ls =
 LocalStrings.getLocalStrings(J2EEMailTag.class);

 public void setSessionName(String sessionName){
 this.sessionName=sessionName;
 }

 protected void checkParameters() throws JspException
 {
 try {
 if(null == sessionName){
 session=Session.getDefaultInstance(new Properties(),null); b
 }else{
 InitialContext context=new InitialContext();
 session=(Session)context.lookup(
 "java:comp/env/mail"+sessionName);
 }
 recipient = new InternetAddress(to);
 if(from!=null){
 sender=new InternetAddress(from); d
 }
 } catch(NamingException ne) {
 throw new JspTagException(
 ls.getStr(Constants.SEND_SESSION_ERROR));
 } catch(AddressException ae){
 throw new JspTagException(
 ls.getStr(Constants.SEND_ADDRESS_ERROR));
 } catch(MessagingException me){
 throw new JspTagException(
 ls.getStr(Constants.SEND_MESSAGING_ERROR));
 }
 }

 protected void sendMail(Session session,
 InternetAddress sender,
 InternetAddress recipient,
 String content,
 String subject)
 throws MessagingException
 {

c

426 CHAPTER 12

Custom tags and J2EE
 MimeMessage message = new MimeMessage(session);
 if(null!=sender){
 message.setFrom(sender);
 }
 message.addRecipient(Message.RecipientType.TO, recipient);
 if(null != subject) {
 message.setSubject(subject);
 } else {
 message.setSubject("");
 }
 if(null == content) { // Empty body
 content = "";
 }
 message.setText(content);
 Transport.send(message);
 }

 protected void clearServiceState()
 {
 sessionName = null;
 super.clearServiceState();
 }
}

B Gets the default Session instance.

C Looks up the specified Session instance.

D Creates an InternetAddress for a specified sender if one is given.

E Adds the sender’s InternetAddress if one is given.

In listing 12.14, we do more or less the same as with the <send> tag in chapter 7.
We override the checkParameters() method in order to look up a mail Session or
defined default if a mail Session name is not given. As the from parameter is
optional, we create a sender InternetAddress only if the from parameter is given;
otherwise we will assume that the tag user wants us to use the default sender
address as configured in the application server. There is no way to verify whether a
default sender is specified in the configuration of the mail Session before the mes-
sage is given to the Transport. Thus we also have to override the sendMail()
method to ensure that a sender is only added to the message if so specified.

The J2EE send tag TLD
In order to use our new tag, we need to write a new tag library descriptor. This
should look like listing 12.15.

e

J2EE email tag 427
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- A tag library descriptor for the J2EE mail tags -->

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>j2eemail</shortname>
 <uri> http://www.manning.com/jsptagsbook/j2ee-mail-taglib</uri>
 <info>
 A tag library that describes the j2ee mail tags
 </info>
 <tag>
 <name>send</name>
 <tagclass>book.j2ee.J2EEMailTag</tagclass>
 <teiclass>book.mail.MailTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Sends an email based on the provided attributes
 and mail Session configuration.
 </info>
 <attribute>
 <name>sssionName</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>from</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>to</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
 <tag>
 <name>message</name>
 <tagclass>book.mail.MessageBodyReaderTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Provides a place holder for the user to enter the
 contents of the mail's body.
 </info>
 </tag>

Listing 12.15 Tag library descriptor for the Send tag

428 CHAPTER 12

Custom tags and J2EE
 <tag>
 <name>subject</name>
 <tagclass>book.mail.MessageSubjectReaderTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Provides a place holder for the user to enter the
 contents of the mail's message.
 </info>
 </tag>
</taglib>

As you can see, the tag library descriptor is basically a modification of our previous
mail tag library.

J2EE send tag in action
Now, with the tag library descriptor in place and our web application configured
with a mailSession service, we can use our new tag as in listing 12.16.

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/j2eemail-taglib"
 prefix="mail" %>
<HTML>
<HEAD>
 <TITLE>Sending mail </TITLE>
</HEAD>
<BODY BGCOLOR=”#FFFFFF”>
 <HR>
 <H1>Sending email..</H1>
 <mail:send to=”your.name@email.address”> b
 <mail:subject>a J2EE mail</mail:subject> c
 <mail:message> d
Hi there!
This mail was sent to you by the use of the <send> tag.
 </mail:message> e
 </mail:send> f
 <H1>Email sent</H1>
 <HR>
</BODY>
</HTML>

B Start of message where receiver is defined.

C Sets the subject of the message.

D Start of the body of the message.

Listing 12.16 Sample JSP file that uses our J2EE mail tag

Using EJBs from within JSP 429
E End of message body.

F End of message, points where mail gets sent.

Executing the JSP in listing 12.16 will send a short email to the recipients stated.
Note that since we are not specifying a JNDI URL for the mail Session, the tag will
use the default. All line breaks and blank characters inside the body of the <mes-
sage> tag will be included in the sent content, so be careful with source code styl-
ing. In the example, we do not state a sender of the message; therefore, the sender
defined in the mail session will be used. If no such sender is defined, a Messagin-
gException will be thrown.

12.6 Using EJBs from within JSP

The advantages of J2EE for accessing powerful resources are becoming apparent,
and fussing over the intricate details of how those resources are shared and imple-
mented is left to the application server vendor. One of these powerful resources is
the EJB layer. As explained earlier, EJBs are commonly used as a controller layer (a
place to deposit business logic and processes) and as a way of persisting objects. The
server vendor is responsible for ensuring that the objects are stored correctly, and
that simultaneous access is handled properly. With EJBs, it is possible to write the
entities that represent our system without having to design the underlying data
structure for storage. We can use session beans to control access to these entities
and offer utility operations that the client developers may utilize without having to
be versed in their implementation.

12.6.1 Writing custom tags for EJB access

It should come as no surprise that our preferred method of accessing EJBs in JSP is
through custom tags. To facilitate utilization of the EJB layer, we will create tags
that assist us in accessing them. We do so by writing a tag library that will contain
two tags:

� <home> allows instantiation of a home interface of a specific EJB.
� <use> grants the capacity to use the home interface to find existing entities or

create new session or entity EJBs.
After an EJB has been retrieved, we treat it as any other bean with our tags. You can
use any of the JavaBean tags we’ve developed in the book so far, such as <show>, to
display EJB entity fields in a JSP page, and so forth.

 As RMI over IIOP is used behind the scenes whenever an EJB method is called,
all returned home or remote interfaces must be narrowed before being used. Both
the <home> and <use> tags will therefore narrow the instances before adding them

430 CHAPTER 12

Custom tags and J2EE
to the given scope. We also need to extend our tags for iteration so that all remote
interfaces in a collection are narrowed before usage.2 We therefore develop a third
EJB tag that will be an <iterator> for collections of remote interfaces.

12.6.2 Retrieving the EJB home interface

The <home> tag retrieves home interfaces for EJBs that are defined as EJB references
in our web applications deployment descriptor. The tag then narrows and adds the
home interface to the JSP page scope so that it can be used to our heart’s desire. In
listing 12.17, you can see the implementation of this tag.

package book.j2ee;

import javax.ejb.*;
import javax.naming.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import book.util.ExTagSupport;

public class HomeTag extends ExTagSupport
{
 protected String name;
 protected String type;

 public void setName(String name)
 {
 this.name = name;
 }

 public void setType(String type)
 {
 this.type = type;
 }

 public int doStartTag() throws JspException
 {
 try{
 InitialContext context = new InitialContext(); b
 ClassLoader classLoader=
 pageContext.getPage().getClass().getClassLoader();
 EJBHome home =
 (EJBHome)javax.rmi.PortableRemoteObject.narrow(
 context.lookup("java:comp/env/"+name),
 Class.forName(type, true, classLoader));

2 The narrow method is used to check whether a certain remote or abstract interface can be cast to a given
type.

Listing 12.17 The implementation of the home tag

c

d

Using EJBs from within JSP 431
 pageContext.setAttribute(this.getId(), home);
 return SKIP_BODY;
 }
 catch(NamingException e)
 {
 throw new JspTagException(
 "NamingException: " + e.getMessage());
 }
 catch(ClassNotFoundException e){
 throw new JspTagException(
 "ClassNotFoundException: " + e.getMessage());
 }
 }

 protected void clearServiceState()
 {
 name = null;
 type = null;
 }
}

B Creates an InitialContext The tag creates an InitialContext which it will use
to look up the EJB.

C Retrieves the page ’s ClassLoader The tag retrieves the current page’s Class-
Loader, which will be used to instantiate a class of the type specified by the user.

D Narrows the returned home to the specified class type The tag uses the Initial-
Context to look up a JNDI path consisting of the root string java:comp/env/ plus
the JNDI name given by the user (such as ejb/MyHome). The returned class is then
narrowed to the specific home type specified by the user. Finally, we add the home
interface to the page scope.

HomeTEI
We must now define how this home interface is available throughout the page,
which requires us to make it available as a scripting variable. As we have seen several
times in this book, the way to specify a tag published scripting variable is to define a
TagExtraInfo object for the tag. We do this in listing 12.18.

package book.j2ee;

import javax.ejb.*;
import javax.naming.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

Listing 12.18 The implementation of HomeTEI

432 CHAPTER 12

Custom tags and J2EE
public class HomeTEI extends TagExtraInfo
{
 public VariableInfo[] getVariableInfo(TagData data)
 {
 return new VariableInfo[]
 {
 new VariableInfo(
 data.getId(),
 data.getAttributeString("type"),
 true,
 VariableInfo.AT_BEGIN
),
 };
 }
}

Here we specify that a variable with the given ID and the given type will be added
to the page scope from the start of this tag to the end of the page.

The HomeTag TLD
Now we need to write a tag library descriptor and the HomeTag will be complete.
Listing 12.19 is the descriptor we will need.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//

EN" "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>ejb-tags</shortname>
 <uri>http://www.manning.com/jsptagsbook/ejb-taglib</uri>
 <info>EJB Taglib</info>
 <tag>
 <name>home</name>
 <tagclass>book.j2ee.HomeTag</tagclass>
 <teiclass>book.j2ee.HomeTEI</teiclass>
 <bodycontent>empty</bodycontent>
 <info>Adds a EJB Home interface to the page scope</info>
 <attribute>
 <name>id</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>name</name>
 <required>true</required>

Listing 12.19 The HomeTag TLD

Using EJBs from within JSP 433
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
</taglib>

In the tag library descriptor, we state that the tag library will contain a <home> tag
that requires an ID, a name, and a type, which cannot be a runtime expression (so
that it will be available in the translation phase).

HomeTag in action
Since the CatalogueEntry EJB has been given an EJB reference in an applications
deployment configuration, we may access its home interface from JSP in the way
described in listing 12.20.

<%@ taglib uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<HTML>
<HEAD>
 <TITLE>Accessing an EJB home interface</TITLE>
</HEAD>
<BODY BGCOLOR=”#FFFFFF”>
 <H1>Accessing an EJB home interface</H1>
 <HR>
 Retrieving the EJB home interface..

 <ejb:home id=”home”
 type=”book.ejb.catalogue.CatalogueEntryHome”
 name=”ejb/catalogueEntry”/>
 The EJB home interface is retrieved.

 <HR>
</BODY>
</HTML>

B Adds the home interface to the page scope.

In the page, the <home> tag is passed the ID to use when adding our home interface
to the page scope. We also ascribe the tag with the type of class that we want
returned when we look up our EJB home with the given name.

Listing 12.20 Accessing the CatalogueEntry home interface from JSP

b

434 CHAPTER 12

Custom tags and J2EE
12.6.3 Using the EJB home interface

Now that the home interface of an EJB is retrievable, we may access its methods
with the use of tags from earlier in the book. For example, we could use the <iter-
ate> tag in a fashion as described in listing 12.21.

…
<ejb:home id=”home”
 name=”ejb/catalogueEntry”
 type=”book.ejb.catalogue.CatalogueEntryHome”/>
<iter:iterate id=”entry”
 type=”book.ejb.catalogue.CatalogueEntry”
 object=”<%=home.findByType(\”pda\”).iterator()%>”>
 <bean:show name=”entry”
 property=”serial”/>

</iter:iterate>
…

In this listing, we let the <iterate> tag iterate over the collection of entries as
returned from the finder method, introduce the entries using their remote inter-
face, and display the serial number property for each CatalogueEntry of the type
pda. As previously stated, executing this JSP on an application server that uses RMI
over IIOP could throw an exception, as the remote interfaces that the <iterate>
tag returns to the page have not been narrowed. Later we will solve this by extend-
ing the <iterate> tag further. Yet, the narrowing problem is not unique for the
<iterate> tag and is going to appear for any remote interface returned by an EJB,
so we need a tag that allows us to use the home interface by retrieving and narrow-
ing a remote interface. We’ll now build the UseTag, which will do just that.

UseTag
Our UseTag is somewhat analogous to the standard JSP <jsp:useBean> tag, but
differs in that it lets us use and put into scope an EJB, instead of a standard JavaBean
(listing 12.22).

package book.j2ee;

import javax.ejb.*;
import javax.naming.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import book.util.ExTagSupport;

Listing 12.21 Using the EJB home interface

Listing 12.22 The implementation of UseTag

Using EJBs from within JSP 435
public class UseTag extends ExTagSupport
{
 protected String type;
 protected EJBObject instance;

 public void setType(String type)
 {
 this.type = type;
 }

 public void setInstance(EJBObject instance)
 {
 this.instance = instance;
 }

 public int doStartTag() throws JspException
 {
 EJBObject object=null;
 try{
 ClassLoader classLoader=
 pageContext.getPage().getClass().getClassLoader();
 object = (EJBObject)javax.rmi.PortableRemoteObject.narrow(
 instance, Class.forName(type, true, classLoader));
 }
 catch(ClassNotFoundException e){
 throw new JspTagException(
 "ClassNotFoundException: " + e.getMessage());
 }
 pageContext.setAttribute(this.getId(),object);
 return SKIP_BODY;
 }

 protected void clearServiceState()
 {
 type = null;
 instance = null;
 }
}

B Retrieves the page ’s ClassLoader.

C Narrows the instance to the specified class type.

UseTag is given an EJB instance as a parameter through the instance attribute. It
then adds the instance given to the page scope after narrowing it into an EJBObject
that matches the type that was provided as attribute. The code is very similar to the
code used to retrieve the home interface, the only major difference being that we
needn’t use lookup since the instance was given to us as a parameter to the tag.
Next let’s look at the TEI given in listing 12.23.

b

c

436 CHAPTER 12

Custom tags and J2EE
UseTEI
UseTag will put an instance of any EJB it is used with into page scope. Here’s a look
at how this is accomplished.

package book.j2ee;

import javax.ejb.*;
import javax.naming.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class UseTEI extends TagExtraInfo
{
 public VariableInfo[] getVariableInfo(TagData data)
 {
 return new VariableInfo[]
 {
 new VariableInfo(
 data.getId(), b
 (String)data.getAttribute("type"), c
 true,
 VariableInfo.AT_BEGIN
),
 };
 }
}

B Publishes the scripting variable with the id that is specified by tag attribute.

C Publishes a variable of a type that is also specified by a tag attribute.

In listing 12.23, we specify that a variable named with the given ID and the given
type will be added to the page scope from the start of this tag to the end of the
page, just as in HomeTEI.

Updating the TLD to include UseTag
We should now update the EJB tag library descriptor by adding the tag descriptor as
in listing 12.24.

…
<tag>
 <name>use</name>
 <tagclass>book.j2ee.UseTag</tagclass>
 <teiclass>book.j2ee.UseTEI</teiclass>

Listing 12.23 The implementation of UseTEI

Listing 12.24 Adding the tag to the descriptor

Using EJBs from within JSP 437
 <bodycontent>empty</bodycontent>
 <info>Adds a EJB Remote Interface to the page scope</info>
 <attribute>
 <name>id</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>instance</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
…

In the addition to the tag library descriptor, we state that the library will also con-
tain the <use> tag, which requires an ID, an instance, and a type as parameters. Of
these parameters, only instance can be a runtime expression.

UseTag in action
Because the CatalogueEntry EJB described in the beginning of this chapter has
received an EJB reference in an application’s deployment configuration, we may use
the EJB’s home interface from JSP in the way described in listing 12.25.

<%@ taglib uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<HTML>
<HEAD>
 <TITLE>Accessing an EJB home interface</TITLE>
</HEAD>
<BODY BGCOLOR=”#FFFFFF”>
 <H1>Accessing an EJB home interface</H1>
 <HR>
 Retrieving the EJB home interface..

 <ejb:home id=”home”
 type=”book.ejb.catalogue.CatalogueEntryHome”
 name=”ejb/catalogueEntry”/>
 The EJB home interface is retrieved.

 Finding the Entry with serial ABC123..

Listing 12.25 Using the CatalogueEntry home interface in JSP

b

438 CHAPTER 12

Custom tags and J2EE
 <ejb:use id=”entry”
 type=”book.ejb.catalogue.CatalogueEntry”
 instance=”<%=home.findByPrimaryKey(\“ABC123\”)%>”/>
 The entry was found.

 <HR>
</BODY>
</HTML>

B Defines an instance of CatalogueEntryHome into the JSP scope Walking through the
JSP, you’ll see that we add the home interface for the CatalogueEntry EJB to the
page scope with an ID of home.

C Uses the home interface to find a CatalogueEntry and to return its remote inter-
face Next, we use the <use> tag to narrow and add the remote interface of
CatalogueEntry EJB to the page scope, by asking the home interface to find the
CatalogueEntry that has a serial of “ABC123”. If such an entry is found, we can
refer to "entry" as a scripting variable through the remainder of the JSP, calling
methods of the EJB as desired.

IterateEJBTag
In order to iterate through collections of remote interfaces returned by methods
called on the EJB home interfaces, we need a tag that works similarly to the <iter-
ate> tag of chapter 10. The only difference will be that this tag will try to narrow
the remote interface to the specified type before adding it to the given scope (see
listing 12.26). Note that there is an alternative to the updated <iterate> tag. We
could use the <use> tag to narrow the iterator exported from the <iterate> tag
prior to using it. However this forces the JSP coder to develop insight into the
intrinsics of EJB, something we chose to avoid.

package book.j2ee;

import java.util.Enumeration;
import java.util.Iterator;
import javax.ejb.*;
import javax.servlet.jsp.JspException;
import book.iteration.*;

public class IterateEJBTag extends IterateTag
{

 protected String type;

 public void setType(String type) b

Listing 12.26 The implementation of IterateEJBTag

c

Using EJBs from within JSP 439
 {
 this.type=type;
 }

 public String getType()
 {
 return type;
 }

 protected void exportVariables() throws JspException
 {
 try{
 current = elementsList.getNext();
 ClassLoader classLoader=
 pageContext.getPage().getClass().getClassLoader();
 EJBObject object =
 (EJBObject)javax.rmi.PortableRemoteObject.narrow(
 current,Class.forName(getType(),
 true, classLoader));
 pageContext.setAttribute(id, object);
 }catch(ClassNotFoundException cnfe){
 throw new JspException(cnfe.getMessage());
 }
 }
}

B Overriding setType() to save the type The tag overrides setType() of the Iter-
ateTag class and adds a method for reading this value. We will need the type’s value
in order to narrow the iterator object into a concrete type in exportVariables().

C Retrieves the page ’s ClassLoader D Narrows the next remote interface to the
specified class type The tag overrides exportVariables() of the IterationTag-
Support class. In that method, the tag first retrieves the current page’s ClassLoader.
The tag then narrows the next item in the collection into the remote interface type
specified by the user. Finally, we add the remote interface to the page scope.

As the new tag can use the same TEI as the original <iterate>, we needn’t create a
TEI for this tag.

The IterateEJBTag TLD
We now need to update the EJB TLD by adding the tag descriptor as in listing 12.27.

c

d

440 CHAPTER 12

Custom tags and J2EE
…
<tag>
 <name>iterate</name>
 <tagclass>book.j2ee.IterateEJBTag</tagclass>
 <teiclass>book.iteration.IterateTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Iterate over an Object. The object can be an array, an Iterator
 or an Enumeration of Remote interfaces.
 </info>
 <attribute>
 <name>id</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>object</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>index</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>property</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
</tag>
…

Listing 12.27 Adding the tag to the descriptor

Using EJBs from within JSP 441
In this addition to the tag library descriptor, we state that the library will also con-
tain the <iterate> tag, which requires the same parameters as the original <iter-
ate> tag, with the difference that the attribute type is now required.

IterateEJBTag in action
Let’s change the example given in listing 12.21 so that it takes advantage of our
new tag as described in listing 12.28.

…
<ejb:home id=”home”
 name=”ejb/catalogueEntry”
 type=”book.ejb.catalogue.CatalogueEntryHome”/>
<ejb:iterate id=”entry”
 type=”book.ejb.catalogue.CatalogueEntry”
 object=”<%=home.findByType(\”pda\”).iterator()%>”>
 <bean:show name=”entry”
 property=”serial”/>

</ejb:iterate>
…

Here, we first use the <home> tag to retrieve a home interface. We then use the new
<iterate> tag from the EJB tag library to iterate through the collection returned
by the home interface’s findByType() method. Every remote interface iterated,
will be narrowed before it is added to the page scope.

Final thoughts
From the listings it is clear that using tags to access the EJB layer is easily done and
allows us to write less code than if we were to use a servlet, or, if we were uncon-
cerned with using scriptlets. The complexity of the EJB as seen in this chapter is vir-
tually the tip of the EJB iceberg. If you are looking for a pervasive way to
incorporate EJBs into your JSP, tags are probably your only alternative.

 A common practice with EJBs is to write session EJBs that provide access meth-
ods to the various entities (and entity EJBs) that comprise your applications. This
approach makes it easy to add or change the sanctioned methods of retrieving these
entities. Such session EJBs usually include utility methods that perform functions,
such as returning all entities as a Collection, making it even easier for the develop-
ers to divide the application into separate layers and pare down still more of the
code required for the presentation.

 Note that the EJB tags we present could be even further optimized. For
instance, there are utility methods in the EJB home interface that find out the type

Listing 12.28 Using the EJB home interface with the EJB iterate tag

442 CHAPTER 12

Custom tags and J2EE
of the named EJB’s home and remote interfaces. With a little knowledge of EJB,
these tags can be enhanced so that the user has only to specify the name of the EJB,
and the tags will themselves find out what types to use for them. We have not taken
on this topic, as it would divert attention from tags to advanced EJB usage, which is
not the scope of this book.

12.7 Summary

EJBs are well poised to have a huge impact (beyond their already stunning accep-
tance) in coming years. In light of this, designing your tags from the ground up
with J2EE integration in mind will give your tag library a head start.

 As we illustrated, using resources such as database connections and JavaMail ses-
sions from within a J2EE-compliant container is easier and provides a much greater
flexibility than using them from within a plain-Jane servlet container. When using
J2EE managed resources, a major part of the extra code that we usually devote to
integration and configuration is handled by the container. Moreover, most (if not
all) J2EE capable application servers add additional, sometimes proprietary, capabil-
ities such as database connection pooling to their DataSources—another problem
that we, the component developers, are more than willing to pass to the middle-
ware vendor.

 We looked at EJBs in this chapter and developed tags that facilitate the use of
EJBs within a JSP. The EJB standard is a great addition to the enterprise Java arsenal
and more and more JSP files will directly access them. Yet, as we’ve seen, the EJB
programming model and APIs are somewhat complex. Hiding the gory details of
this complexity within custom tags helps lower the bar of using EJBs within your
JSP files.

 When dealing with a topic as daunting as J2EE, it is impossible to cover every-
thing without devoting an entire book to the subject. We did not cover the usage of
one of the more significant subtopics in J2EE, the JMS. With JMS, one can use a
message queue to bridge the gap between systems and build message-oriented Mid-
dleware (MOM)-based applications. J2EE-related issues associated with using JMS
are similar to the principles covered in other sections of this chapter, such as the dis-
cussion of J2EE JDBC.

 This concludes part III of the book. In the next two chapters, we showcase all of
the concepts introduced so far in two real-world applications that use custom tags.

Part IV

Case studies

We depart from the academic discussion of tag development of
the preceding chapters to look at real-world tag libraries in detail. The
two chapters in part IV build on the concepts covered thus far, illustrat-
ing them in two tag library case studies: a JDBC-driven web store and
an EJB-driven WAP store.

 13JDBC-driven WebStore
In this chapter
� A custom tag-driven ecommerce application
� The WebStore data model
� Utility tags for dynamic presentation
� Implementing the application with tags
445

446 CHAPTER 13

JDBC-driven WebStore
13.1 Introduction

In the hypothetical case study presented in this chapter we take a deeper look at tag
usage within a web application. We go through the requirements of a web store,
design it, and then look at the implementation of the solution. Throughout this
study, we make intense use of the tags developed in earlier chapters, so it is crucial
that you feel confident with them before beginning this adventure.

 The application is built as a Model-2 or MVC (model view controller) layered
solution, with emphasis on the view layer. The system is divided into the three layers
described in table 13.1. For more information about Model-2, see chapter 2.

The application we study throughout this chapter commits to the J2EE 1.2 standard
and should run on any application server that follows this standard. On the com-
panion web site (http://www.manning.com/shachor) you will find the full applica-
tion and two application servers that can be used to test it. Read appendix C for
more information about deploying the application.

13.1.1 Custom tags used

Throughout the application, we utilize the custom tags provided in table 13.2. In
the table, you will find the name of the tag, the tag library to which it belongs, and
a short description of its usage. The table also references the chapter wherein you
can brush up on a particular tag. The tags are ordered by the tag library to which
they belong.

 We will create two new tags in this chapter: <currency> and <nocache>.

Table 13.1 The three layers of Model-2.

Layer Description

Model Data storage, and any entities that represent data found in that storage. Entities will be
implemented as beans. These beans are normally initiated in the control layer, and then
used in the presentation layer.

View The user interfaces. These user interfaces are normally implemented as JSP pages,
called by the control layer, using beans representing the model to produce dynamic out-
put.

Controller All processing functions that our system will need. Controllers are normally implemented
as servlets. When a user requests information, a controller is called, performs control-
related actions (such as validating user, retrieving data from model, initializing beans,
etc.), and then calls an appropriate view to display the information.

Overview 447
13.2 Overview

Cosmetics, a small firm supplying retail chains with ecological beauty cosmetics, has
experienced an increased demand for its products. The company has three full-time
employees and is based in a garage owned by one of the founders. Accompanying
the increased demand for the products is a huge increase in paperwork. Cosmetics
must either hire a full-time employee for order handling, or find a solution that
makes order handling more efficient.

 Management decides it would be best to set up a small site wherein customers
can order online. If this is successful, Cosmetics employees can focus on filling
orders more quickly, rather than using time writing them down as customers call in,
then filling the order.

 Once the company is in better financial shape, management will probably want
to establish a full-scale online system. The delay may have a positive effect: manage-
ment can evaluate customers’ reactions before overinvesting in a new service.

Table 13.2 The custom tags used in the WebStore application

Tag Tag library Usage Chapter

<command> Bean-taglib Executes methods on objects 15

<show> Bean-taglib Shows bean properties 8

<with> Conditional-
taglib

Creates conditions that can be tested 9

<test> Conditional-
taglib

Tests conditions 9

<connection> Database-taglib Retrieves a database connection 11

<enum> Database-taglib Enumerates through the query results 11

<query> Database-taglib Defines an SQL query 11

<iterate> Iteration-taglib Iterates through collections 10

<currency> Locale-taglib Displays currency formatted with a certain locale 13

<message> Mail-taglib Defines messages for emails 7

<send> Mail-taglib Defines start, recipients, and senders for emails 7

<subject> Mail-taglib Defines subjects for emails 7

<nocache> Simple-taglib Prevents client-side caching of the page 13

<redirect> Simple-taglib Redirects the request to a given location 6

448 CHAPTER 13

JDBC-driven WebStore
 Cosmetics contacted us to set up the service as our prices are fair and we have a
good reputation in business. We agreed to analyze, design, and implement a solu-
tion that matches the company’s requirements.

 After an initial chat, in which we attempted to persuade them to accept a J2EE-
compliant EJB-based solution, we agreed that as a first step, the store would be
based upon JDBC.

13.3 Requirements

Cosmetics management listed fifteen development requirements for the system.
Based on the requirements, all of which will be discussed in this section, we will
design a solution and study its implementation.

General
The initial system will feature basic layout and design. Cosmetics will improve this
in-house over time. The presentation layer must be easy to manipulate by nontech-
nical people with limited knowledge of Java programming.

 Orders that are not confirmed by the user need not be committed to memory.

Users
The system must handle two different types of users—regular (those who are
logged on) and anonymous (those who are not logged on to the system). Unless
otherwise specified, user refers to those who are logged on, not anonymous users.

 All users should, at any time, be able to browse the products and reach the wel-
come page. A user should be able to, on demand, see a brief description of the cur-
rent order and be able to view all the order’s details, update the stored profile, add
products to the current order, and log off the system, becoming anonymous.

 The anonymous user must always be able to register a profile with the system. A
valid registration must be stored in the customer database. The anonymous user
should also be able to log on and, when doing so, the user’s profile should be
loaded from the storage, making them a regular user.

Existing data sources
Cosmetics has an existing customer database in a DBMS called hSQL in which the
company has stored product and category information. The new system may reuse
this data, although the tables will want to be expandable and editable as needed.

 The existing customer database (table 13.3) is currently primarily used for:
� Printing package delivery labels
� Call-backs to identify customers when taking orders
� Faxing receipts of orders

Requirements 449
To place an order, a user must have an existing profile in the customer database.
This provides Cosmetics an index of the number of its customers. Currently, no
record is kept on the number of orders a customer logs. Keeping track of this will
be part of the solution, but at the moment, only the total number of orders, not the
number of orders per customer, is of interest.

 The existing category data (table 13.4) is primarily used for grouping the prod-
ucts into their various lines. As understood by the table definition, Cosmetics’ cur-
rent system allows categories only in single-depth. No category tree is needed or
asked for in the new system.

The existing product information (table 13.5) is used with the product line infor-
mation for printing flyers and other merchandising.

Table 13.3 Existing customer data

Attribute name Data type Description

Id Integer The unique identifier of a customer.

Company Varchar The customer’s company name.

Name Varchar The customer’s name.

Address Varchar The customer’s address.

Phone Varchar The customer ’s phone number.

Fax Varchar The customer’s fax number.

Table 13.4 The existing category data

Attribute name Data type Description

Id Integer The unique identifier of the category.

Name Varchar The name of the category.

Table 13.5 The existing product data

Attribute name Data type Description

SKU Varchar Stock keeping unit, the unique identifier of the product.

Name Varchar The name of the product.

Price Decimal The product price.

CategoryId Integer The ID of the category to which the product belongs.

450 CHAPTER 13

JDBC-driven WebStore
As understood by the definition in table 13.4, every product belongs to only one
category. A category can be empty.

Welcome
Each user will be greeted with a welcome message which displays information about
Cosmetics and contact information. All information should be easy to redo without
editing the actual view.

Category list
Whenever a user chooses to list available product categories, the result will be dis-
played in a two-colored list containing the categories’ names. If a user chooses to
view a certain category, it will be displayed according to the requirements given in
the Product list. Cosmetics would like to introduce category images, so the presen-
tation of the category list must be prepared for that.

Product list
The company would like a list of products displayed whenever a user selects a cer-
tain category. Cosmetics wants this list to be two-colored, displaying product’s:

� SKU
� Name
� Price

No product description is needed because Cosmetics’ products are well known and
need no further presentation among the primary targeted customers.

 The price will be formatted for American dollars initially, although Cosmetics
requests that it be easy to change to any other currency without updating the
actual view.

 If the product list is presented to a customer, the user should be able to add a
given amount of a certain product to the current order.

Short order
A short list of items in the current order must be displayed at all times and con-
tain the SKU, name, and ordered quantity.

Full order
All details about the current order need to be accessible. The information to be dis-
played will be the SKU, name, price, quantity, and row total for every item in the
order, together with a total price.

 The user should be able to send the order to Cosmetics for processing from
this view.

Requirements 451
Order summary
When a user elects to send the current order to Cosmetics for processing, an order
summary view will be displayed. This view will display the order total price and the
user’s shipping address and give the user a chance to cancel before the order is sent
to Cosmetics for processing.

 If the user confirms the order, it should be processed and a confirmation dis-
played. If the user cancels the order, the full order view is to be displayed.

Order processing
Order processing involves storing the order in Cosmetics’ database then displaying
an order confirmation. As product descriptions and prices might change before an
order is delivered, all relevant information about the order is stored in the database.
For the same reasons, the customer’s name, company, and address at the time of
ordering must also be stored.

Order confirmation
After the system has processed an order, a confirmation message, containing an
order reference number, should be displayed and a receipt based on the processed
order is sent to the user.

 The user may continue to use the system, but the confirmed order should not be
accessible for further processing. Any items added to the current order need to go
into a new order.

Logon
When a user wants to log on, the system must ask for the username and password.
When the user submits the required information, a greeting should be displayed if a
matching profile is found. If no matching profile is found, the user is asked again
for the username and password.

Logoff
When a user wants to log off, a message will be displayed, welcoming the user back
at another time.

 Any current order not confirmed by the user needn’t be stored for future visits.

Update profile
A user ought to be able to update his profile at any time. If the changed data is
valid it should be committed to the database, and a confirmation message should
be displayed to the user. Otherwise, no changes need be committed, and the user
is prompted to retry.

452 CHAPTER 13

JDBC-driven WebStore
Registration
A user who is not logged on ought to be able to register his profile with the system.
If the supplied information is valid, the user information should be stored in a new
profile and a message displayed welcoming the user to the community. The user
would be considered logged on at this stage. If the supplied information is not
valid, the user is prompted to enter the requested information anew.

13.4 Design

We are now ready to design a solution to meet Cosmetics’ requirements. We will
keep to the MVC approach and focus on the views of the solution and how to
implement the requirements.

13.4.1 Model

Here is a summary of the data sources we will use and their representations as
beans. Figure 13.1 is an overview of the tables we will need.

StoreInfo
The StoreInfo (table 13.6) holds a number of messages to be displayed on the wel-
come page in the order described by a precedence value given to every message. To

Figure 13.1 Overview of tables

Design 453
make it easy for Cosmetics to insert new messages in the middle of existing ones, we
will define the precedence as a decimal number.

As the StoreInfo message does not need additional control or filtering, we will not
give it any bean representation. Instead, the page displaying the messages will fetch
them directly from the data source.

Customer
The Customer table will be extended to look like table 13.7. We have added an
email address for sending receipts, and a username and password so that users may
identify themselves to the system and retrieve their profiles. We will (with an agree-
ment from Cosmetics) switch the primary key from the ID to the username, in
order to make sure that no two users have the same username in the system. Of
course, this means that we take the full responsibility that the customer’s ID
remains unique.

The bean representation of the customer will have get/set methods for these values and
a utility method, isValid(), that tells us that information given during registration is

Table 13.6 The StoreInfo data table

Attribute name Data type Description

Precedence Decimal The sequence order for messages.

Message Varchar The message to display.

Table 13.7 The extended customer data

Attribute name Data type Description

Id Integer A unique ID for a customer.

Username Varchar The unique identifier of a customer.

Password Varchar The password to the customer’s profile.

Company Varchar The customer company name.

Name Varchar The customer’s name.

Address Varchar The customer’s address.

Email Varchar The customer’s email address.

Phone Varchar The customer’s phone number.

Fax Varchar The customer’s fax number.

454 CHAPTER 13

JDBC-driven WebStore
considered valid. At this time, we will only check that the obligatory values are not null
or empty. We will also add a utility method, named isLoggedOn(), to check whether or
not the current customer is logged on.

 The bean will be held in the session scope throughout the user’s visit to the system.

Category
We will extend the existing category data with a field that can hold an image URL,
so that the category data appears as in table 13.8.

Because we need only one presentation of the category list, and all categories should
be displayed in that view (no processing), and we have a nice set of database-related
tags, we need not make a bean representation of the categories. Instead we will let
the views retrieve and display the category information straight from the tables.

Product
We will not extend the existing product data in any way, but let it remain as is
(table 13.9). In the future, Cosmetics will likely want a separate presentation of
each product, and at that time we should probably have to add descriptions to the
product data. But that is not what we are doing now.

As with the category data, we will not provide it with a bean representation, but will
fetch the data directly from the data source.

Table 13.8 The extended category data

Attribute name Data type Description

Id Integer The unique identifier of the category.

Name Varchar The name of the category.

Image Varchar An optional image URL.

Table 13.9 The existing product data

Attribute name Data type Description

SKU Varchar Stock keeping unit, the unique identifier of the product.

Name Varchar The name of the product.

Price Decimal The product price.

CategoryId Integer The ID of the category to which the product belongs.

Design 455
Order
We create a table to store completed orders (table 13.10). Notice that an order will
have an ID reference to the customer placing the order, but will store a copy of the
customer’s address information at the time of ordering.

This is something you would probably not want to try at home. Having the order
reference number as an incrementing number provides any ordering customer the
exact number of orders received by the company so far. But Cosmetics management
was unconcerned as they could always add a dummy order with a very high number
into the table to obscure the real number of orders sent up to then. We let it stay an
incrementing number, knowing that we can always change it when our customer
has gained experience of online ordering. At that time, we can easily create a unique
hash key for the customer as a reference order ID.

 The order data will have a bean representation with get/set methods for id. It will
also hold a number of OrderItems in a collection that can be retrieved by get-
Entries(). In order to add and remove OrderItems from this collection, addEntry()
and removeEntry()will be available.

 The bean will also hold a utility method that allows us to check if the order is empty,
called isEmpty(). getTotalPrice() will return the order’s total price.

Table 13.10 The new Orders data

Attribute name Data type Description

ID Integer The unique identifier of the order and also the order reference number.

Sent Timestamp The time the order was sent in.

Status Char ‘S’ for sent.

CustomerID Integer The ID of the customer.

Name Varchar The name of the customer.

Company Varchar The customer’s company.

Address Varchar The address of the customer.

Locale Varchar The locale used for currency when the order was sent.

456 CHAPTER 13

JDBC-driven WebStore
OrderItem
We will add a table to hold the items that comprise the order, consisting of the data dis-
played in table 13.11. The table needs its own unique ID, as well as a reference to the order
of which it is a part. These two IDs will be used to identify a unique row in this table.

We will store the name of the product so that we do not lose this information if the
product description is changed or the product is removed. We will store the price of
the product at the time of ordering, so that future changes upon the product won’t
affect the stored order.

 The OrderItem data will have a bean representation with get/set methods for SKU,
name, quantity, and price. At this time, neither the ID nor the OrderId need be avail-
able, since this information is only of interest after the order has been sent. In the
future, we might want to include get/set methods for this data, too.

 We will add a utility method called getTotalPrice() that will return the Order-
Items’ total price. The order bean will use this method to calculate the order total price.

13.4.2 View

We will implement a number of views and let some act also as controllers, in the
sense that they both retrieve and present data.

General
As most views will display a short list of the user’s current order and the available
options, this will be implemented as two separate views that will be included in others
by the use of the standard JSP tag <include>.

 In order to ensure that pages holding user-specific dynamic content will not be
cached by the user’s browser, we need to create a <nocache> tag.

 We will configure the database access settings in context parameters described in the
web.xml file, so that we only have to change settings at one place. All <connection>

Table 13.11 The new OrderItem data

Attribute name Data type Description

ID Integer The unique identifier of the OrderItem row, part of unique key.

OrderId Timestamp The order ID, part of unique key.

SKU Varchar The item’s SKU.

Name Varchar The name of the item at the time of ordering.

Quantity Integer The ordered quantity.

Price Decimal The item price at the time of ordering.

Design 457
tags will then be used without giving these parameters, so that the tag will instead look
in the Context for them. Likewise, we will configure our mail settings in the same loca-
tion for the same reason.

Welcome
This view welcomes the user by displaying a number of messages from the Store-
Info table. This page will also serve as the first displayed page of the system.

 We will use the <connection> tag for creating a connection to the data source, and
then use the <query> tag for creating and running a query that should give us all mes-
sages from the StoreInfo table ordered by precedence. We will output the result with
the use of the <enum> tag .

Menu
The menu view displays options available to the current user, as well as ensuring that
there are Customer and Order objects available for manipulation at all times.

 We will use the <with> and <test> tags to display menu choices for all users, as well
as for checking whether or not the user has a current order.

 We use the <show> tag to get the application’s ContextPath from the Request
object to ensure that we have an absolute path to our image directory, wherein Cosmet-
ics’ logotype shall be stored.

Short order
The short order view displays a short list of all items in a user’s current order.

 We will use the <with> and <test> tags to check whether the user has a current
order. If a current order exists, the <iterate> tag will display all of the rows currently
in the user’s order. The <show> tag will be used to retrieve the SKU, name, and quan-
tity of each item in the order.

Category list
The category list view displays a selectable list of all available categories to the user.

 Normally, there would be a controller collecting the data from the data source,
turning it into a bean representation of this data, and sending these beans to a JSP
page that would represent the category list. But as Cosmetics has only a single cate-
gory depth, and no processing of the data is needed before it is displayed, we
decided to let the view handle the data retrieval, thereby eliminating the need for
beans to represent the data. If the information requires further processing before it
is displayed, we can insert a controller to handle this.

 We use the <connection> tag for creating a connection to the data source. We will
then use the <query> tag for creating and running a query that should give us all catego-
ries currently in the category table. We output the result with the use of the <enum> tag.

458 CHAPTER 13

JDBC-driven WebStore
 We use the <with> and <test> tags for checking whether or not a category image
should be displayed, as well as switching between background colors to achieve aa two-
color list.

Product list
The product list view displays a list of all available products in a given category. As
with the category list, the view will retrieve and display the information needed.

 The <connection> tag will serve for creating a connection to the data source and a
<query> tag for creating and running a query that tells us all products currently avail-
able in the selected category. The result will be output with the use of the <enum> tag of
the database tag library. We will use the same tags to receive the name of the currently
selected category.

 The <with> and <test> tags shall check whether or not a category image is to be
displayed. These tags are also used to switch between background colors to achieve a
two-color list. These tags will also serve to decide whether or not the current user should
be able to order the listed products, depending upon whether the user is logged on.

 A <currency> tag will need to be created for displaying the product prices with the
local currency. The tag should be able to fetch the currency in the form of a string rep-
resenting a locale from the servlet Context, so that we don’t have to specify the locale
in each view needing currency formatting.

Registration
This is the view wherein a user may supply information needed for registering a pro-
file with the system. Upon submitting this page, RegistrationHandler is called.

 We will use <with> and <test> tags to check whether the user is logged on. If so,
we will redirect them, using the <redirect> tag, to the profile view.

 The <show> tag will be used to display the data currently held in the customer bean.

Registration successful
The registration successful view displays a message welcoming the user to the Cos-
metics community. The page is displayed after a user has successfully registered.

 The <with> and <test> tags will check whether the user is logged on. If the user is
not logged on, we will redirect him, using the <redirect> tag, to the logon form.

 The <show> tag will display the user’s name.

Logon
The logon view displays a form wherein the user identifies himself to the system
with a username and password. The form will be submitted to the logon handler
for processing.

Design 459
Logon successful
The logon successful view displays a message that welcomes the user back.

 We will use the <show> tag to display the user’s name.

Full order
The full order view displays all items in a user’s current order together with price
information and the option to remove items from the order. The user should also
be able to submit an order from this view (see order summary view).

 First, we will check whether the current user is logged on with our <with> and
<test> tags. If the current user is not logged on, we use the <redirect> tag to redi-
rect the user to the logon view.

 We then need to check if the user’s order holds any items. For this, we will use the
conditional tags with the order bean’s isEmpty() method. If the order is empty, we
display a message saying so; otherwise, we display the full order.

 To format the order’s total price with the local currency, we use the <currency> tag
with the locale specified in the servlet Context. This will also be used to format all
order item prices.

 We will use the <iterate> tag to pass through the order items to display all of them.
 For every order item, we will use the <show> tag to display its details, and also to get

the key (SKU) for removing the item from the order (by calling the remove item handler).

Order summary
This view displays the order’s total price and the address to which the order will be
shipped. The user can then confirm the order, which calls the confirmation handler,
or cancel the action, which displays the full order view.

 We use the <with> and <test> tags to verify that the user is logged on. We then
verify that the user’s order is not empty. If so, we redirect the user to the full order view.
To format the order’s total price with the local currency, we use the <currency> tag
with the locale specified in the servlet Context.

Order confirmation
The order confirmation view displays an order reference number for a successfully
received order, and sends the user a receipt with the order details. The order will be
removed from the session scope by the confirmation handler, but a copy will be
available in the request scope.

 We use the <show> tag to display the order reference number and the <email> tags
to send a receipt to the customer. The <to> tag is set to the value of the email address in
the user’s profile. We then use the <subject> tag to set an appropriate subject for the
mail, and the <message> tag to set the body of the mail.

460 CHAPTER 13

JDBC-driven WebStore
 The <iterate> tag passes through the order and fills the mail body with informa-
tion about the order rows. For each row, we use the <currency> tag to display the cur-
rency of the locale specified in the servlet Context.

Order confirmation error
This view displays a message urging the user to try again if we are unable to success-
fully store the user’s sent order.

Profile
The profile view displays a form where a logged-on user might review and update his
stored profile. The user can submit any changes, which will go to the profile update.

 With the help of <with> and <test> tags, we verify whether the current user is logged
on and, if not, we use the <redirect> tag to redirect the user to the Logon form.

 After that, we display a form that includes the data from the user’s profile. This data
is retrieved with the <show> tag.

Profile updated successfully
This view displays a message to the user telling him that his profile was successfully
updated. This view will be called by the profile update handler.

 We use <with> and <test> tags to check if the current user is logged on, and then
display the message telling the user that the profile was updated.

Logoff
This view logs off the current user and makes sure that the session is invalidated. We
also display a message telling the user that we hope to see him or her again soon.

 We use the <command> tag to invalidate the current user’s session, and then display a
message welcoming the user back at another time.

Generic error
This view catches JSPTagExceptions that might be thrown, and displays a friendly
message to the user instead of a stack trace.

Mail error
This view catches any mail-related exceptions that might be thrown while sending
receipts to the customer, and displays a friendly message ensuring the user that the
order was received but that no receipt could be sent.

 To display the order reference number, we use the <show> tag.

Implementation 461
Number error
Sooner or later some user will try to add invalid amounts when ordering products. We
will use this view to display a message telling the user to use valid numeric data when
entering quantities.

13.4.3 Control

To carry this out, we will implement six controllers as servlets (table 13.12).

13.4.4 Utilities

Commonly used methods will be generalized into a database handler holding
generic methods for executing queries and updates against stored data, as well as a
method to set the properties of a given bean with the parameter values passed in by
the request.

13.5 Implementation

Now we look at the implementation of the different views of the system and how
these views utilize tags; and implement two new tags needed by our application.

 We will not look deeper at the model or control layers as this information is avail-
able in the form of source code and table definitions at http://www.manning.com/
shachor. In appendix C, there is information on deploying the application.

Table 13.12 The servlets making up the Control layer

Servlet name Description

RegistrationHandler Stores the user’s profile with the system.

LogonHandler Logs in the user, thereby adding the user’s stored profile as a
customer bean in the session scope.

AddItemHandler Adds a product to the user’s current order.

RemoveItemHandler Removes an item from the user’s current order.

OrderConfirmationHandler Stores the user’s current order in the database, then removes
this order from the session scope, so that it cannot be further
manipulated.

ProfileUpdateHandler Updates the user’s profile.

462 CHAPTER 13

JDBC-driven WebStore
13.5.1 Tags

The application will need to display local currency amounts and prevent dynamic
pages from being cached (table 13.13). As we have no tags with the necessary func-
tionality in our existing tag libraries, we need to implement them now.

DisableCacheTag
The goal of DisableCacheTag will be to prevent dynamic pages from being cached.
The user requires the option to decide whether this should be accomplished with the
use of header fields or with metatags. We have already looked at header fields in
chapter 1, so you are probably comfortable with these by now. Metatags are normally
inserted into the head part of an HTML page, and are treated in the same way as
header fields by most browsers. Depending on the usage of the tags, metatags or
header fields are preferred. Our new tag will accept the attributes listed in table 13.14.

Listing 13.1 shows the implementation of the tag, which will be part of the simple
tag library that we built in chapter 6.

package book.simpletasks;

import book.util.ExTagSupport;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;

public class DisableCacheTag extends ExTagSupport
{

Table 13.13 The new tags that we need to implement

Name Description

<nocache> Prevents dynamic pages from being cached.

<currency> Displays currency amounts formatted for a specified locale.

Table 13.14 The attributes for DisableCacheTag

Attribute name Use Setter/Getter Method

useHeaders Tells the tag to use header fields to prevent
pages from being cached.

setUseHeaders()

useMetaTags Tells the tag to use meta tags to prevent pages
from being cached.

SetUseMetaTags()

Listing 13.1 The DisableCacheTag

Implementation 463
 protected boolean useHeaders = true;
 protected boolean useMetaTags = true;

 public void setUseHeaders(String useHeaders) b
 {
 this.useHeaders = new Boolean(useHeaders).booleanValue();
 }

 public void setUseMetaTags(String useMetaTags) c
 {
 this.useMetaTags = new Boolean(useMetaTags).booleanValue();
 }

 public int doStartTag() throws JspException
 {
 try {
 if(useHeaders) {
 HttpServletResponse res =
 (HttpServletResponse)pageContext.getResponse();
 if(res.isCommitted()) { d
 throw new JspTagException(“RES_COMMITTED_ERROR”);
 }
 res.setHeader("Cache-Control", "no-cache");
 res.setHeader("Pragma", "no-cache");
 res.setDateHeader("Expires", 0);
 }
 if(useMetaTags) {
 JspWriter w = pageContext.getOut();
 w.print("<META HTTP-EQUIV=\"Cache-Control\"");
 w.print(" CONTENT=\"no-cache\">");
 w.newLine();
 w.print("<META HTTP-EQUIV=\"Pragma\"");
 w.print(" CONTENT=\"no-cache\">");
 w.newLine();
 w.print("<META HTTP-EQUIV=\"Expires\"");
 w.print(" CONTENT=\"-1\">");
 w.newLine();
 }
 }catch(java.io.IOException ioe) {
 throw new JspTagException("IO_ERROR");
 }
 return SKIP_BODY;
 }

 protected void clearProperties()
 {
 useHeaders = true;
 useMetaTags = true;
 super.clearProperties();
 }
}

e

f

464 CHAPTER 13

JDBC-driven WebStore
B Parameter to decide if header fields should be used If the user passes true to set-
UseHeaders(), the tag should output the necessary headers to prevent caching.

C Parameter to decide if metatags should be used If the user passes true to set-
UseMetaTags(), the tag should output the necessary metatags to prevent caching.

The default value for both parameters is true, so if no parameter is passed to the
tag, both headers and metatags will be used.

D Checks if response is committed doStartTag() checks whether header fields
should be used. If so, it makes sure that the response has not already been commit-
ted, as this would prevent it from writing the header fields.

E Sets cache preventing header fields As long as the response has not been commit-
ted, the tag sets the headers of the response to prevent the page from being cached.

F Outputs cache preventing meta tags The tag checks whether metatags should be
used. If so, the tag writes the needed metatags to the page.

In listing 13.1, we let the user specify if a new tag extends the ExTagSupport class.
The tag can receive two parameters, one for each cache-disabling technique that it
can handle.

The TLD for DisableCacheTag
The TLD for this tag is given in listing 13.2, and should be added to the tag library
descriptor we created for the simple tags in chapter 6.

 …
 <tag>
 <name>nocache</name>
 <tagclass>book.simpletasks.DisableCacheTag</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 Disable the browser cache
 </info>
 <attribute>
 <name>useMetaTags</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>useHeaders</name>
 <required>false</required>
 </attribute>
 </tag>
 …

Listing 13.2 DisableCacheTag entry

Implementation 465
As shown in listing 13.2, neither of the attributes is required; there is no obvious
reason to let the attribute allow runtime values.

Example usage of DisableCacheTag
Usage of DisableCacheTag would look something like in listing 13.3.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<HTML>
 <HEAD>
 <TITLE>A cache disabled page</TITLE>
 <simple:nocache useMetaTags="true"/>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <P>This page should not be cached!</P>
 </BODY>
</HTML>

In listing 13.3, we put the <nocache> tag in the head of the HTML page, as we
want to use metatags to prevent the page from being cached. If we are about to use
header fields instead, the placement of the tag is of less importance, although it is a
good rule to place them as early on in the page as possible.

LocaleTag
In order to implement the LocaleCurrencyTag that formats a given amount as cur-
rency using a specified Locale, we first need a way of looking up the Locale we
want. Other tags could take advantage of this ability to implement functionality for
formatting numbers, dates, and percentages. Considering this, it makes sense to
implement a basic tag that will then extend to format currencies.

 LocaleTag accepts the attribute listed in table 13.15.

The abstract LocaleTag that we will use as a base is listing 13.4.

Listing 13.3 DisableCacheTag usage

Table 13.15 The attribute for LocaleTag

Attribute name Use Setter/Getter Method

locale The locale to use for further formatting setLocale/getLocale()

466 CHAPTER 13

JDBC-driven WebStore
package book.locale;

import java.util.Hashtable;
import java.util.Locale;
import java.util.StringTokenizer;
import book.util.ExTagSupport;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

public abstract class LocaleTag extends ExTagSupport {
 static final Hashtable localesCache = new Hashtable();
 public static final String LOCAL_INIT_PARAM = "locale";
 protected Locale locale = null;

 public void setLocale(Object l)
 {
 if(l instanceof Locale) { b
 locale = (Locale)l;
 } else {
 locale = localeFromString(l.toString());
 }
 }

 protected Locale getLocale()
 {
 if(null != locale) {
 return locale;
 }
 Locale l = null;
 String localId = findInitParameter(LOCAL_INIT_PARAM); c
 if(null != localId) {
 l = localeFromString(localId);
 }
 if(null == l) {
 l = pageContext.getRequest().getLocale(); d
 }
 return l;
 }

 protected Locale localeFromString(String spec)
 {
 Locale rc = (Locale)localesCache.get(spec); e
 if(null != rc) {
 return rc;
 }
 StringTokenizer st = new StringTokenizer(spec.toString().trim(),
 "-_");
 String language = st.nextToken();
 String country = st.nextToken();
 rc = new Locale(language, country);
 if(null == rc) {

Listing 13.4 The LocaleTag

Implementation 467
 rc = Locale.getDefault();
 }
 localesCache.put(spec, rc); f
 return rc;
 }

 protected void clearProperties()
 {
 locale = null;
 super.clearProperties();
 }
}

B Checks if the object passed in is a Locale The first thing we do in listing 13.4 is to
check if the object passed in is a Locale. If it is not, we parse the string representing
a Locale with localeFromString().

C Gets the string representing a Locale from initialization parameters In getLocale()
we check if a Locale has been specified. If not, we load an initialization parameter
specifying a string representation of a Locale that we then pass in to localeFrom-
String().

D Gets user’s current Locale If no Locale was specified as an initialization parame-
ter, we will use the user’s current Locale from the Request.

E Gets the Locale from cache In localeFromString() used to parse a string and
find the Locale it represents, we first check if the string representation has already
been parsed and put into our cache. If it hasn’t, we use a Stringtokenizer to get
the country and language from the given string. We then use these values and try to
create a Locale from them. If this does not succeed, we use the system default
Locale instead. If that works, we store the Locale in the cache with the string rep-
resentation as key and return the Locale to the caller of the method.

F Stores Locale in cache.

Notice that this tag needs to be extended with some specific behavior before it will
be usable.

LocaleTagExtraInfo
We will now create a TagExtraInfo class that is primarily used to verify that any
specified string representation of a Locale passed in as a parameter to the Locale-
Tag is in the correct format. A correct string representation of a Locale is either in
the form “en_US”, where “en” is the language used and “US” is the country; or in
the form “en-US,” the form in which most browsers represent locales.

468 CHAPTER 13

JDBC-driven WebStore
 Other tags that will extend the LocaleTag to implement specialized behavior
can also take advantage of the LocaleTagExtraInfo in listing 13.5.

package book.locale;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

public class LocaleTagExtraInfo extends TagExtraInfo {
 public boolean isValid(TagData data)
 {
 Object o = data.getAttribute("locale");
 if((o != null) && (o != TagData.REQUEST_TIME_VALUE)) {
 String localSpec = (String)o;
 if(localSpec.length() != 5) {
 return false;
 }
 if(localSpec.charAt(2) != '-' && localSpec.charAt(2) != '_') {
 return false;
 }
 }
 return true;
 }
}

LocaleTagExtraInfo overrides the isValid() method of the TagExtraInfo class
which this TEI extends. In this method, it is verified that any string representation of a
Locale consists of a five-character string, with either an underline or a hyphen symbol.

LocaleNumberTag
We now have LocaleTag that retrieves a Locale and need a tag that uses that
Locale to format a given amount. As a third step, our LocaleCurrencyTag will
extend this tag to format the given amount as currency. LocaleNumberTag will
accept the attributes listed in table 13.16.

Listing 13.5 The LocaleTagExtraInfo

Table 13.16 The attributes for LocaleNumberTag

Attribute name Use Setter/Getter Method

locale The locale to use for further formatting.
Inherited from LocaleTag.

setLocale/getLocale()

amount The amount to format into a localized
number presentation.

SetAmount()

Implementation 469
 Listing 13.6 shows the implementation of LocaleNumberTag.

package book.locale;

import java.util.Hashtable;
import java.util.Locale;
import java.text.NumberFormat;
import book.util.ExTagSupport;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;

public class LocaleCurrencyTag
 extends LocaleNumberTag {

 static LocalStrings ls =
 LocalStrings.getLocalStrings(LocaleCurrencyTag.class);
 protected double amount = 0.0;

 public void setAmount(double amount) b
 {
 this.amount = amount;
 }

 public int doStartTag() throws javax.servlet.jsp.JspException
 {
 try {
 writeHtml(pageContext.getOut(),
 getNumberInstance().format(amount));
 } catch(java.io.IOException ioe) {
 throw new JspTagException(ls.getStr(Constants.IO_ERROR));
 }
 return SKIP_BODY;
 }

 protected NumberFormat getNumberInstance()
 {
 return NumberFormat.getInstance(getLocale()); d
 }

 protected void clearProperties()
 {
 amount = 0.0;
 super.clearProperties();
 }
}

B Sets the amount property The tag handles an amount property that will be sent in
as a parameter by the user.

Listing 13.6 LocaleNumberTag

c

470 CHAPTER 13

JDBC-driven WebStore
c Writes out the formatted number In doStartTag(), the tag writes out the format-
ted amount with the Locale inherited from the LocaleTag. To do so, the method
uses the NumberFormat class returned by getNumberInstance(). The NumberFor-
mat utility class will format the amount with the specified Locale.

d Gets a NumberFormat handler getNumberInstance() uses the Locale to get a suit-
able NumberFormat instance. The Locale to use is handled by the LocaleTag and can
be either specified by the user (as Locale or string), read from initialization parame-
ters, resolved from the user’s request or specified as the system default Locale.

The java.text.NumberFormat class provides three convenient methods for format-
ting numbers (table 13.17). For this tag, we used getInstance() to retrieve a Num-
berFormat instance for formatting numbers for the given Locale.

These three methods can also be used without specifying a Locale. The returned
format will then be for the system default Locale.

The TLD for LocaleNumberTag
The TLD for LocaleNumberTag (listing 13.7) is the start of a new tag library
descriptor that we will use to hold our Locale formatting tags. We will call this file
localetags.tld.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>locale</shortname>
 <uri> http://www.maning.com/jsptagsbook/locale-taglib </uri>
 <info>
 Locale tags library.
 </info>

Table 13.17 The three convenient NumberFormat methods

Method Description

getInstance(Locale) Returns a number format for the specified locale.

getCurrencyInstance(Locale) Returns a currency format for the specified locale.

getPercentInstance(Locale) Returns a percentage format for the specified locale.

Listing 13.7 LocaleNumberTag entry

Implementation 471
 <tag>
 <name>number</name>
 <tagclass>book.locale.LocaleNumberTag</tagclass>
 <teiclass>book.locale.LocaleTagExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Prints a certain amount based on a specified locale
 </info>
 <attribute>
 <name>amount</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>locale</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

The <number> tag uses LocaleTagExtraInfo to verify any string representation of a
Locale. The tag accepts two values, amount and locale, of which both can be run-
time expressions, but only locale is optional.

Example usage of LocaleNumberTag
In listing 13.8, LocaleNumberTag is used to format an amount expressed as a run-
time expression.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="locale" %>
<HTML>
 <HEAD>
 <TITLE>Displaying a formatted number</TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <P>Below we format the amount 13.547 for the system default Locale</P>

<P><locale:number amount=”13.547”/></P>
 </BODY>
</HTML>

Listing 13.8 LocaleNumberTag usage

472 CHAPTER 13

JDBC-driven WebStore
We used the <number> tag without specifying any Locale. As long as no application
default value is specified, the tag would use the system default Locale to format the
number. For example, if the system default Locale were “sv_SE” (Swedish), the
output of the <number> tag usage would be “13,547”.

LocaleCurrencyTag
With LocaleTag and LocaleNumberTag in place, it is now time to write LocaleCur-
rencyTag that will serve to format a given amount into a representation of a local
currency. This tag will accept the same attributes (table 13.18) as LocaleNumberTag.

Listing 13.9 shows the implementation of LocaleCurrencyTag.

package book.locale;

import java.util.Hashtable;
import java.util.Locale;
import java.text.NumberFormat;
import book.util.ExTagSupport;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;

public class LocaleCurrencyTag extends LocaleNumberTag {
 static final Hashtable currencyFormatCache = new Hashtable();

 protected NumberFormat getNumberInstance()
 {
 Locale l = getLocale();
 NumberFormat rc = (NumberFormat)currencyFormatCache.get(l);
 if(null == rc) {
 rc = NumberFormat.getCurrencyInstance(l);
 currencyFormatCache.put(l, rc);
 }
 return rc;
 }
}

Table 13.18 The attributes for LocaleCurrencyTag

Attribute name Use Setter/Getter Method

locale The locale to use for further formatting. Inherited from
LocaleTag.

setLocale/getLocale()

Amount The amount to format into a localized currency presen-
tation. Inherited from LocaleNumberTag.

SetAmount()

Listing 13.9 LocaleCurrencyTag

Implementation 473
In listing 13.9, we define a HashTable that acts as a cache of local currency format-
ted amounts. We then override getNumberInstance() of LocaleNumberTag. In this
method, we first query the cache for any preprocessed instances of NumberFormat
used for the given Locale. If no instance is found, we create one and add it to the
cache before returning it to the caller of this method.

The TLD for LocaleCurrencyTag
The TLD for LocaleCurrencyTag (listing 13.10) should be added to locale-taglib.

<tag>
 <name>currency</name>
 <tagclass>book.locale.LocaleCurrencyTag</tagclass>
 <teiclass>book.locale.LocaleTagExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Prints a certain amount based on a specified locale
 </info>
 <attribute>
 <name>amount</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>locale</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

The <currency> tag uses the same TEI class as the <number> tag. The tag accepts
the two values’ amounts and locales, both of which can be runtime expressions.
The locale attribute is optional, while both values can be runtime expressions.

Example usage of LocaleCurrencyTag
Listing 13.11 shows an example usage of LocaleCurrencyTag, wherein a given
amount is formatted into a local currency.

Listing 13.10 The LocaleCurrencyTag entry

474 CHAPTER 13

JDBC-driven WebStore
<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="locale" %>
<HTML>
 <HEAD>
 <TITLE>Displaying a number as currency</TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <P>Below we format the amount 23.512 as currency using
 the system default Locale</P>

<P><locale:currency amount=”23.512”/></P>
 </BODY>
</HTML>

In listing 13.11 we use the <currency> tag to format an amount using the system
default Locale. If the system default Locale were Swedish (“sv_SE”), the output of
the tag would be “23,51 kr”. If the system default Locale were American
(“en_US”), the output of the tag would instead be “$23.51”.

New tags summary
The <currency> and the previous <number> tags are extremely useful for localizing
content for an international market. But even if you wish only to display amounts
for a single given Locale, the tags could be useful as they handle the formatting
very skillfully.

 There are, of course, other tags that could be helpful in an international applica-
tion. For instance, a <date> tag would come in handy. At this stage it should be no
problem to extend the LocaleTag and produce a <date> tag if needed. If nothing
else, it could be good practice to produce such a tag.

 We have now created the last of the tags that our application will need, and can
thus continue with their usage. The next section describes how we take advantage
of the various tags in the implementation of the different views that we will need.

13.5.2 Views

Nineteen views make up the system. We will study them one by one, going through
all the details. The files found within the application are named in the listing titles.

Listing 13.11 LocaleCurrencyTag usage

Implementation 475
Welcome
Listing 13.12 shows the source for the welcome view. This file is index.jsp.
Figure 13.2 is the Welcome page.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/database-taglib"
 prefix="db" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<db:connection id="con"/> b
<db:query connection="con”
 id="store">
select message from storeinfo order by precedence
</db:query>
<simple:nocache useHeaders="true"/> d
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>

Listing 13.12 index.jsp

Figure 13.2
Welcome view

c

e

476 CHAPTER 13

JDBC-driven WebStore
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">
 Welcome!
 </TD>
 </TR>
 <TR>
 <TD WIDTH="400">
<db:enum query="store" id="i"> f
 <P ALIGN="justify">
 <$ MESSAGE $>
 </P>
</db:enum> h
 <P ALIGN="justify">
 Questions or suggestions can be sent to <A HREF="mailto:info@cosmet-

ics.com">info@cosmetics.com.
 </P>
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp" flush="true"/> i
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

B Creates a connection to the database By not passing in any parameters other than the
ID that we will use to refer to the connection, we force the <connection> tag to look
for the needed parameters in the servlet Context, in which they should be defined as
context parameters. In listing 13.13, which is a cutout from the web.xml file of our web
application, you can see what this configuration looks like.

C Creates a query using the previously defined connection After that, we define the
query that we want to run. This query will gather all the message fields from the stor-
einfo table.

D Makes sure that this page won’t get cached In order to make sure that the client’s
browser does not cache the page locally, we use the <nocache> tag with the option to
use headers.

E Includes the user menu view We use the <enum> tag to iterate through the message
fields returned by the previously defined query, and display these messages.

F Start of the enumeration of the result.

g

Implementation 477
G Displayed for every row in the result.

H End of the enumeration of the result.

I Includes the short order view We end the page by including the short order view.

In the JSP, we first tell the container that we will be using the database and Simple
Tag libraries. We then create a connection to our database.

…
<context-param>
 <param-name>con.db_driver</param-name>
 <param-value>org.hsql.jdbcDriver</param-value>
</context-param>
<context-param>
 <param-name>con.db_url</param-name>
 <param-value>jdbc:HypersonicSQL:store</param-value>
</context-param>
<context-param>
 <param-name>con.db_user</param-name>
 <param-value>sa</param-value>
</context-param>
<context-param>
 <param-name>con.db_pass</param-name>
 <param-value></param-value>
</context-param>
…

B Defines the database driver class to use.

C Defines the URL to the database.

D Defines the username to use when accessing the database.

E Defines the password to use when accessing the database.

The configuration in listing 13.13 tells the container the names and values of a number
of Context parameters that the <connection> tag will look for when these values are
not given as parameters.

Menu
Listing 13.14 provides the source code for the implementation of our menu view,
which most other views will include in order to display options available to the user.
The file is userMenu.jsp.

Listing 13.13 The configuration of the DB Connection in the web.xml file

b

c

d

e

478 CHAPTER 13

JDBC-driven WebStore
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<jsp:useBean id="customer"
 beanName="book.casestudy.cosmetics.bean.Customer"
 type="book.casestudy.cosmetics.bean.Customer"
 scope="session"/>
<jsp:useBean id="order"
 beanName="book.casestudy.cosmetics.bean.Order"
 type="book.casestudy.cosmetics.bean.Order"
 scope="session"/>
<TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0"
 WIDTH="100%">
 <TR>
 <TD ALIGN="center">
 <IMG SRC="<bean:show object="<%=request%>"
 property="contextPath"/>/images/logo.gif">
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 [HOME
 | CATALOGUE
 |
<cond:with name="customer"
 property="loggedOn"
 scope="session">
 <cond:test condition="eq true"> f
 <cond:with name="order"
 property="empty"
 scope="session">
 <cond:test condition="neq true"> h
 ORDER |
 </cond:test> i
 </cond:with> j
 PROFILE
 | LOGOFF
 </cond:test> 1)
 <cond:test condition="neq true"> 1!
 LOGON
 | REGISTER
 </cond:test> 1@
</cond:with> 1#
]

Listing 13.14 userMenu.jsp

b

c

d

e

g

Implementation 479

 </TD>
 </TR>
</TABLE>

B Adds Customer bean to session if not already there.

C Adds Order bean to session if not already there.

D Displays the full image URL We make sure that we get the full image URL when-
ever we display an image because we can’t be sure of the current document root
when the page is used. This might differ when the page is called from a servlet and
when locally referenced.

E Creates condition on Customer bean.

F Tests if user is logged in.

G Creates condition on Order bean.

H Tests if Order bean is not empty.

I Ends the testing of Order bean containing items.

J End of the condition on Order bean.

1) Ends the testing of user being logged in.

1! Tests if user is not logged in.

1@ Ends the testing of user not being logged in.

1# End of the condition on Customer bean.

In the JSP, we first make sure that there are a Customer and an Order bean in the
session. We then check if the user is logged in. If so, we check whether his order is
empty. We do this in order to display certain options to users, and others to custom-
ers with a current order.

 We needn’t worry about caching, as this page will always be included in a page
that handles that for us.

Short order
Listing 13.15 is the source code for the implementation of our short order view,
which most other views will include in order to display the user’s current order. The
file is shortOrder.jsp.

480 CHAPTER 13

JDBC-driven WebStore
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/iteration-taglib"
 prefix="iter" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<cond:with name="order"
 property="empty"
 scope="session">
 <cond:test condition="neq true"> c

<TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="1">
 <TR>
 <TD>

 Your current order

 </TD>
 </TR>
 <TR>
 <TD>
 <TABLE CELLSPACING="0"
 CELLPADDING="2"
 BORDER="0"
 WIDTH="100%">
 <TR>
 <TH ALIGN="LEFT">
 SKU
 </TH>
 <TH ALIGN="LEFT">
 Name
 </TH>
 <TH ALIGN="RIGHT">
 Quantity
 </TH>
 </TR>
 <iter:iterate id="item"
type="book.casestudy.cosmetics.bean.OrderItem"
 name="order"
 property="entries"
 scope="session">
 <TR>
 <TD>

Listing 13.15 shortOrder.jsp

b

d

Implementation 481
 <bean:show name="item"
 property="SKU"/>

 </TD>
 <TD>

 <bean:show name="item"
 property="name"/>

 </TD>
 <TD ALIGN="RIGHT">

 <bean:show name="item"
 property="quantity"/>

 </TD>
 </TR>
 </iter:iterate> h
 </TABLE>
 </TD>
 </TR>
</TABLE>
 </cond:test> i
</cond:with> j

B Creates a condition on Order.

C Tests if order is empty.

D Start of the iteration of the Order items.

E Displays the item’s SKU.

F Displays the item’s name.

G Displays the ordered quantity.

H End of the iteration of the Order items.

I End the testing of order being empty.

J End of the condition on Order.

In this JSP, we tell the container that we are going to use the Iteration, Conditions, and
Beans tag libraries, then test whether the user has a current order. If so, we create an
iteration of all the items in that order. For every item found, we display the SKU, name,
and quantity ordered with the help of the <show> tag. We then end the iteration block
and close the <test> and <with> tags. If we had wanted to display a message to the
user saying that he does not have a current order, we would have done so before closing
the <with> tag.

e

f

g

482 CHAPTER 13

JDBC-driven WebStore
 We needn’t worry about caching, as this page will always be included in another
page, and we’ll make sure that any page that includes this view will disable caching.

Category list
The category list view is implemented as displayed in listing 13.16. The file is cate-
goryList.jsp in our application. Figure 13.3 shows the results line by line.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/database-taglib"
 prefix="db" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>

<db:connection id="con"/> b
<db:query connection="con"
 id="categories">
select id,name,image from category d
</db:query> e
<simple:nocache useHeaders="true"/> f
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">

Listing 13.16 categoryList.jsp

Figure 13.3
Category list view

c

Implementation 483
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>Catalogue

 </TD>
 </TR>
 <TR>
 <TD>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0"
 WIDTH="100%">
 <TR BGCOLOR="#FF3900">
 <TH COLSPAN="2"
 ALIGN="LEFT">
 Line of products:
 </TH>
 </TR>
 <db:enum query="categories"
 id="i">
 <cond:with object="<%=(i.getRow()%2>0)%>"> i
 <cond:test condition="eq true"> j
 <TR BGCOLOR="#FFFFFF">
 </cond:test> 1)
 <cond:test condition="neq true"> 1!
 <TR BGCOLOR="#F9F05E">
 </cond:test> 1@
 </cond:with> 1#
 <TD>
 <cond:with object="<%=(i.getString(\"IMAGE\")!=null)%>"> 1$
 <cond:test condition="eq true"> 1%
 <A HREF="productList.jsp?id=<$ ID $>">
 <IMG SRC="<bean:show object="<%=request%>"
property="contextPath"/>/images/<$ IMAGE $>"
 BORDER="0">

 </cond:test> 1&
 </cond:with></TD> 1*
 <TD>
 <A HREF="productList.jsp?id=<$ ID $>">
 <$ NAME $>

g

h

1^

484 CHAPTER 13

JDBC-driven WebStore
 </TD>
 </TR>
 </db:enum> 1(
 </TABLE>
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

B Creates a connection to the database.

C Creates a query using the previously defined connection.

D The query to perform.

E The end of the query.

F Makes sure that this page won’t get cached.

G Includes the user menu view.

H Start of the enumeration of the result.

I Creates a condition on the row number.

J Tests if the row number is even For every line, we use the row number of the
ResultSet to decide what background color to use. For even row numbers we will set
the background to white; for odd row numbers we will set the background to yellow.

1) The end of the testing for an even row number.

1! Tests if the row number is odd.

1@ Ends the testing of an odd row number.

1# Ends the row number condition.

1$ Creates a condition on the category image.

1% Tests if the image is not null We test if the current category has an image. If so, we
display it.

1^ Displays the full image URL.

1& Ends the test if image is not null.

1* Ends the condition on the category image.

1(Ends the enumeration of the result.

2)

Implementation 485
2) Includes the user menu view At the end of the page, we include the short order
view, so that any items currently in the user’s order are displayed.

In the JSP, we first create a connection to our database. As before, the needed
parameters will be looked up in the Context. We then create a query for looking up
all available categories.

 After that, we include the user menu view to display the navigation for the user.
 With that, we iterate through the ResultSet from our query and display all cat-

egories, line by line as was shown in figure 13.3.

Product list
Listing 13.17 is the source code for the implementation of our product list view.
The file is productList.jsp (see figure 13.4).

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ page errorPage="categoryList.jsp" %> b
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/iteration-taglib"
 prefix="iter" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/database-taglib"

Listing 13.17 productList.jsp

Figure 13.4
Product list view, including
the short order view

486 CHAPTER 13

JDBC-driven WebStore
 prefix="db" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="local" %>
<db:connection id="con"/> c
<db:query connection="con"
 id="category">
select name from category
where id=<bean:show object="<%=request%>"
 property="parameter"
 index="id"/>
</db:query> f
<simple:nocache useHeaders="true"/> g
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>Catalogue:
<db:enum query="category"
 id="i">
 <$ NAME $>
</db:enum> J
<db:query connection="con"
 id="products">
select sku,name,price,categoryid from product
where categoryId=<bean:show object="<%=request%>"
 property="parameter"
 index="id"/>
</db:query> 1!

 </TD>
 </TR>
 <TR>
 <TD>
 <TABLE CELLSPACING="0"

d

e

h

i

1)

Implementation 487
 CELLPADDING="0"
 BORDER="0"
 WIDTH="100%">
 <TR BGCOLOR="#FF3900">
 <TH ALIGN="LEFT">
 SKU
 </TH>
 <TD>

 </TD>
 <TH ALIGN="LEFT">
 Name
 </TH>
 <TD>

 </TD>
 <TH ALIGN="RIGHT">
 Price
 </TH>
 <TD>

 </TD>
 <TD>

 </TD>
 </TR>
<db:enum query="products"
 id="i">
 <cond:with object="<%=(i.getRow()%2>0)%>"> 1#
 <cond:test condition="eq true"> 1$
 <TR BGCOLOR="#FFFFFF">
 </cond:test> 1%
 <cond:test condition="neq true"> 1^
 <TR BGCOLOR="#F9F05E">
 </cond:test> 1&
 </cond:with> 1*
 <TD>
 <code>
 <$ SKU $>
 </code>
 </TD>
 <TD>

 </TD>
 <TD>
 <$ NAME $>
 </TD>
 <TD>

 </TD>
 <TD ALIGN="RIGHT">

1@

488 CHAPTER 13

JDBC-driven WebStore
 <local:currency amount="<%=i.getDouble(\"PRICE\")%>"/> 1(
 </TD>
 <TD>

 </TD>
 <cond:with name="customer"
 property="loggedOn"
 scope="session">
 <cond:test condition="eq true"> 2!
 <FORM ACTION="addProduct">
 <TD ALIGN="RIGHT">

 <INPUT TYPE="hidden"
 NAME="id"
 VALUE="<$ CATEGORYID $>">
 <INPUT TYPE="hidden"
 NAME="sku"
 VALUE="<$ SKU $>">
 <INPUT TYPE="text"
 NAME="quantity"
 SIZE="2"
 MAXLENGTH="2"
 VALUE="1">
 <INPUT TYPE="image"
 SRC="<bean:show object="<%=request%>" 2@
property="contextPath"/>/images/order.gif"
 BORDER="0">
 </TD>
 </form>
 <TD>

 </TD>
 </cond:test> 2#
 </cond:with> 2$
 </TR>
</db:enum> 2%
 </TABLE>
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

2)

2^

Implementation 489
B Defines categoryList as error page We define that the page will use the category
list view as an error page, so if any exception is thrown, the category list view will be
displayed.

C Creates a connection to the database.

D Creates a query using the previously defined connection.

E The query to perform.

F The end of the query.

G Makes sure that this page won’t get cached.

H Includes the user menu view.

I Start of the enumeration of the result.

J End of the enumeration of the result The second query retrieves all products in the
currently selected category.

1) Creates a query using the previously defined connection.

1! The end of the new query.

1@ Start of the enumeration of the result.

1# Creates a condition on the row number.

1$ Tests if the row number is even For every product returned in the ResultSet, we
use the row number to decide what background color to use. For even row num-
bers we will set the background to white, and for odd row numbers we will set the
background to yellow, just as we did in the category list view.

1% The end of the testing for an even row number.

1^ Tests if the row number is odd.

1& Ends the testing of an odd row number.

1* Ends the row number condition.

1(Displays the locally formatted price For every product we show, we also display its
price. The tag will look for the locale in the Context, where we store the current one.
In listing 13.17 you can see how the Locale is configured inside the web application
for the <currency> tag to find it.

2) Creates condition on Customer.

2! Tests if user is logged on For every product displayed, we check whether the cur-
rent user is logged on. If so, we display an order button and a form where the user
can specify the quantity to order.

2@ Displays the full image URL.

2# Ends the test of whether user is logged on.

2$ Ends the condition on Customer.

490 CHAPTER 13

JDBC-driven WebStore
2% Ends the enumeration of the result.

2^ Includes the User menu view.

In this JSP page, we make two queries against the database. The first is to get and
display the name of the currently selected category. If no category ID was passed to
the page, an exception will be thrown.

…
<context-param>
 <param-name>locale</param-name> b
 <param-value>en_US</param-value> c
</context-param>
…

B Defines the name of the Context parameter.

C Defines the value of the Context parameter.

In listing 13.18 we define the name of the Context parameter to be locale, which is
the parameter name that the <currency> tag will look for in the Context. We set the
value of the parameter to be a string representing the locale, which the tag will then use
to construct a Locale.

 As you can see in the code, we will call the add item handler with the SKU and
the quantity specified whenever a user wants to put a product into an order.

Registration
Listing 13.19 is the source code for the implementation of our registration view.
The file name is registrationForm.jsp.

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<cond:with name="customer"
 property="loggedOn">
 <cond:test condition="eq true"> c
 <simple:redirect location="profileUpdateForm.jsp"/> d

Listing 13.18 An applicationwide Locale setting in the web.xml file

Listing 13.19 registrationForm.jsp

b

Implementation 491
 </cond:test> e
 <cond:test condition="neq true"> f
 <simple:nocache useHeaders="true"/> g
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <form action="registrationHandler" method="post">
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>Registration</P>
 <P>Fill in the form below to register.</P>
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0"
 WIDTH="100%">
 <TR>
 <TH ALIGN="LEFT">
 Username:
 </TH>
 <TD>
 <input type="text"
 name="username"
 value="<bean:show name="customer"
 property="username"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Password:
 </TH>
 <TD>
 <input type="password"
 name="password"

h

i

492 CHAPTER 13

JDBC-driven WebStore
 value="<bean:show name="customer"
 property="password"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Company:
 </TH>
 <TD>
 <input type="text"
 name="company"
 value="<bean:show name="customer"
 property="company"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Name:
 </TH>
 <TD>
 <input type="text"
 name="name"
 value="<bean:show name="customer"
 property="name"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT"
 VALIGN="top">
 Address:
 </TH>
 <TD>
 <textarea name="address"
 rows="4"
 cols="40"><bean:show name="customer"
property="address"/></textarea>
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Email:
 </TH>
 <TD>
 <input type="text"
 name="email"
 value="<bean:show name="customer"
 property="email"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">

j

1)

1!

1@

1#

Implementation 493
 Phone:
 </TH>
 <TD>
 <input type="text"
 name="phone"
 value="<bean:show name="customer"
 property="phone"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Fax:
 </TH>
 <TD>
 <input type="text"
 name="fax"
 value="<bean:show name="customer"
 property="fax"/>">
 </TD>
 </TR>
 </TABLE>

 If you don't want to register at this time, press Cancel below.

 <INPUT TYPE="image"
 SRC="<bean:show object="<%=request%>"
property="contextPath"/>/images/confirm.gif"
 BORDER="0"
 ALIGN="LEFT">

 <IMG SRC="<bean:show object="<%=request%>"
property="contextPath"/>/images/cancel.gif"
 BORDER="0"
 ALIGN="RIGHT">

 </TD>
 </TR>
 </TABLE>
 </form>
</CENTER>
</BODY>
</HTML>
 </cond:test> 1&
</cond:with> 1*

1$

1%

1^

1^

494 CHAPTER 13

JDBC-driven WebStore
B Creates a condition on the Customer.

C Tests if the user is not logged on.

D Redirects to the profile view.

E Ends the test if the user is not logged on.

F Tests if the user is logged on.

G Makes sure that this page won’t get cached.

h Includes the user menu view.

i Displays the username for editing.

j Displays the password for editing.

1) Displays the company name for editing.

1! Displays the name for editing.

1@ Displays the address for editing.

1# Displays the email address for editing.

1$ Displays the phone number for editing.

1% Displays the fax number for editing.

1^ Displays the full image URL.
1& Ends the test of whether the user is logged on.
1* Ends the condition on the Customer.

In this JSP we display a form for the user to fill out with profile information. We fill the
form with the data currently held by the user’s Customer bean and use the <show> tag
to fill in the form fields.

Registration successful
Listing 13.20 is the source code for the implementation of our registration success-
ful view. The file name is registrationConfirmation.jsp.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
 <cond:with name="customer"
 property="loggedOn"
 scope="session">

Listing 13.20 registrationConfirmation.jsp

b

Implementation 495
 <cond:test condition="neq true"> c
 <simple:redirect location="logonForm.jsp"/> d
 </cond:test> e
 <cond:test condition="eq true"> f
<simple:nocache useHeaders="true"/> g
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>

 Welcome to our community <bean:show name="customer"
 property="name"
 scope="session"/>
 !

 </P>
 <P>
 We hope that you will find many interesting
 products in our catalog.
 </P>
 <TD>
 </TR>
 </cond:test> j
</cond:with> 1)
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

h

i

1!

496 CHAPTER 13

JDBC-driven WebStore
B Creates a condition on the Customer.

c Tests if the user is not logged on.

d Redirects to the logon view.

e Ends the test if the user is not logged on.

f Tests if the user is logged on.

g Makes sure that this page won’t get cached.

h Includes the user menu view.

i Displays the user’s name.

j Ends the test whether the user is logged on.

1) Ends the condition on the Customer.

1! Includes the short order view.

We will use this JSP to display a message telling the user that his profile has been
successfully stored. Apart from checking that the user is logged on, all we do is dis-
play the message incorporating the user’s name.

Logon
Listing 13.21 is the source code for the implementation of our logon view. The file
name is logonForm.jsp. The logon view is illustrated in figure 13.5.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>

Listing 13.21 logonForm.jsp

Figure 13.5
Logon view

Implementation 497
<simple:nocache useHeaders="true"/> b
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>
 Please state your username and password:
 </P>
 </TD>
 </TR>
 <TR>
 <TD>
 <TABLE WIDTH="100%">
 <FORM ACTION="logonHandler"
 METHOD="post">
 <TR>
 <TD>
 Username:
 </TD>
 <TD>
 <INPUT TYPE="text"
 name="username">
 </TD>
 </TR>
 <TR>
 <TD>
 Password.
 </TD>
 <TD>
 <INPUT TYPE="password"
 name="password">
 </TD>
 </TR>
 <TR>
 <TD COLSPAN="2">
 <INPUT TYPE="image"
 SRC="<bean:show object="<%=request%>"
property="contextPath"/>/images/logon.gif"

c

d

498 CHAPTER 13

JDBC-driven WebStore
 BORDER="0"
 ALIGN="RIGHT">
 </TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

B Makes sure that this page won’t get cached.

c Includes the user menu view.

d Displays the full image URL.

e Includes the user menu view.

The JSP displays a form in which the user can specify the username and password,
which is sent to the logon handler. Apart from that, there is not much action going
on in that page, so we leave it at that, and continue with the next one.

Logon successful
Listing 13.22 is the source code for the implementation of our logon successful
view. The file name is logonConfirmation.jsp.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<cond:with name="customer"
 property="loggedOn"
 scope="session">
 <cond:test condition="neq true"> c

Listing 13.22 logonConfirmation.jsp

e

b

Implementation 499
 <simple:redirect location="logonForm.jsp"/> d
 </cond:test> e
 <cond:test condition="eq true"> f
<simple:nocache useHeaders="true"/> g
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>

 Welcome back <bean:show name="customer"
 property="name"
 scope="session"/>
 !

 </P>
 <P>
 We hope that you will find many interesting
 products in our catalog.
 </P>
 <TD>
 </TR>
 </cond:test> j
</cond:with> 1)
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

h

i

1!

500 CHAPTER 13

JDBC-driven WebStore
B Creates a condition on the Customer bean.

c Tests if the user is not logged on.

d Redirects to the logon view.

e Ends the test if the user is not logged on.

f Tests if the user is logged on.

g Makes sure that this page won’t get cached.

h Includes the user menu view.

i Displays the user’s name.

j Ends the test of whether the user is logged on.

1) Ends the condition on the Customer bean.

1! Includes the short order view.

In the JSP page we check whether the user is indeed logged on, and thereafter we
display a message, including the user’s name, with a welcome back.

Full order
Listing 13.23 is the source code for the implementation of our full order view. The
file name is fullOrder.jsp. The order view is illustrated in figure 13.6.

Figure 13.6
Full order view

Implementation 501
<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/iteration-taglib"
 prefix="iter" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="local" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<jsp:useBean id="order"
 beanName="book.casestudy.cosmetics.bean.Order"
 type="book.casestudy.cosmetics.bean.Order"
 scope="session"/>
<cond:with name="customer"
 property="loggedOn"
 scope="session">
 <cond:test condition="neq true"> d
 <simple:redirect location="logonForm.jsp"/> e
 </cond:test> f
 <cond:test condition="eq true"> g
<simple:nocache useHeaders="true"/> h
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>Your current order</P>
 <cond:with name="order"
 property="empty"
 scope="session">

Listing 13.23 The fullOrder.jsp

b

c

i

j

502 CHAPTER 13

JDBC-driven WebStore
 <cond:test condition="neq true"> 1)
 <P>Below you find the details about your current order.</P>
 </TD>
 </TR>
 <TR>
 <TD>
 <TABLE CELLSPACING="0"
 CELLPADDING="5"
 BORDER="0"
 WIDTH="100%">
 <TR>
 <TH ALIGN="LEFT">
 SKU
 </TH>
 <TH ALIGN="LEFT">
 Name
 </TH>
 <TH ALIGN="RIGHT">
 Price
 </TH>
 <TH ALIGN="center">
 Quantity
 </TH>
 <TH ALIGN="RIGHT">
 Total
 </TH>
 </TR>
 <TR>
 <TD COLSPAN="5">
 <HR SIZE="1">
 </TD>
 </TR>
 <iter:iterate id="item"
 type="book.casestudy.cosmetics.bean.OrderItem"
 name="order"
 property="entries"
 scope="session">
 <TR>
 <TD>
 <bean:show name="item"
 property="SKU"/>
 </TD>
 <TD>
 <bean:show name="item"
 property="name"/>
 </TD>
 <TD ALIGN="RIGHT">
 <local:currency amount="<%=item.getPrice()%>" /> 1$
 </TD>
 <TD ALIGN="center">
 <bean:show name="item"

1!

1@

1#

1%

Implementation 503
 property="quantity"/>
 </TD>
 <TD ALIGN="RIGHT">
 <local:currency amount="<%=item.getTotalPrice()%>"/> 1^
 </TD>
 <TD>
 <A HREF="removeProduct?sku=<bean:show name="item"
 property="SKU"/>">
 <IMG SRC="<bean:show object="<%=request%>"
property="contextPath"/>/images/remove.gif"
 BORDER="0"
 ALT="Remove">

 </TD>
 </TR>
 </iter:iterate> 1(
 <TR>
 <TD COLSPAN="5">
 <HR SIZE="1">
 </TD>
 </TR>
 <TR>
 <TH COLSPAN="4"
 ALIGN="LEFT">
 Total:
 </TH>
 <TH ALIGN="RIGHT">
 <local:currency amount="<%=order.getTotalPrice()%>"/> 2)
 </TH>
 </TR>
 <TR>
 <TD COLSPAN="5">
 <HR SIZE="1">
 </TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
 <TR>
 <TD>

 <IMG SRC="<bean:show object="<%=request%>"
 property="contextPath"/>/images/send.gif"
 BORDER="0">

 </TD>
 </TR>
 </cond:test> 2@
 <cond:test condition="eq true"> 2#
 <P>
 Your current order is empty

1&

1*

2!

504 CHAPTER 13

JDBC-driven WebStore
 </P>
 </cond:test> 2$
 </cond:with> 2%
 </cond:test> 2^
</cond:with> 2&
 </TABLE>
</CENTER>
</BODY>
</HTML>

B Adds the order to the page scope In the page, we first add the Order bean from the
session scope to the page scope, so that we can reference it easily from within other
tags. We need to do this so that we may pass the order total to the <currency> tag for
formatting.

c Creates a condition on Customer.

d Tests if user is not logged on If the user is not logged on, he should be redirected
to the logon view, as only logged on customers can order.

e Redirects to the logon view.

f Ends test of whether user is not logged on.

g Tests if user is logged on.

h Makes sure that this page won’t get cached.

i Includes the user menu view.

j Creates a new condition on order.

1) Tests if order is not empty.

1! Iterates through the order items We iterate through all the items in the order. For
every item, we display its information, including its price at the time it was added to
the order.

1@ Displays the item’s SKU.

1# Displays the item’s name.

1$ 1^ Displays the locally formatted item price We format the price using the <cur-
rency> tag, with the Context parameter Locale as the one to use for formatting.

1% Displays the ordered quantity of the item.

1^ Displays the locally formatted row total price.

1& Builds a link using the the item’s SKU.

1* Display the full URL of the image.

1(Ends the order item iteration.

2) Displays the locally formatted order total price As the <currency> tag takes an
amount as parameter and cannot look up any values from the session scope, we were

Implementation 505
forced to add the order to the page scope to allow passing in the total price as the
amount parameter to the tag.

2! Retrieves the application’s deployment path and uses it to display URL to image.

2@ Ends the test of whether the order is not empty.

2# Tests if the order is empty.

2$ Ends the test if order is empty.

2% Ends the condition on Order.

2^ Ends the test of whether user is logged on.

2& Ends the condition on Customer.

Order summary
Listing 13.24 is the source code for the implementation of our order summary view.
The file name is sendOrder.jsp. The order summary is illustrated in figure 13.7.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"

Listing 13.24 sendOrder.jsp

Figure 13.7
Order summary view

506 CHAPTER 13

JDBC-driven WebStore
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="local" %>
<jsp:useBean id="order"
 beanName="book.casestudy.cosmetics.bean.Order"
 type="book.casestudy.cosmetics.bean.Order"
 scope="session"/>
<cond:with name="customer"
 property="loggedOn"
 scope="session">
 <cond:test condition="neq true"> d
 <simple:redirect location="logonUser.jsp"/> e
 </cond:test> f
</cond:with> g
<cond:with name="order"
 property="empty"
 scope="session">
 <cond:test condition="eq true"> i
 <simple:redirect location="fullOrder.jsp"/> j
 </cond:test> 1)
</cond:with> 1!
<simple:nocache useHeaders="true"/> 1@
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>Order Confirmation</P>
 <P>
 Your order with a total sum of
 <local:currency amount="<%=order.getTotalPrice()%>" /> 1$
 will be sent to the following address:
 </P>
 <TABLE BORDER="1"
 CELLSPACING="0"
 CELLPADDING="0">
 <TR>
 <TD>

b

c

h

1#

Implementation 507

 <bean:show name="customer"
 property="company"
 scope="session"/>

 <bean:show name="customer"
 property="name"
 scope="session"/>

 <bean:show name="customer"
 property="address"
 scope="session"/>
 </TD>
 </TR>
 </TABLE>

 By confirming this order, the order will be sent to
 Cosmetics
for further processing. You will receive
 an order receipt at your
 email address
 (<bean:show name="customer"
 property="email"
 scope="session"/>
) as a confirmation.

 If you don't want to confirm the order at this time, press
 Cancel below.

 <IMG SRC="<bean:show object="<%=request%>"
 property="contextPath"/>/images/confirm.gif"
 BORDER="0"
 ALIGN="LEFT">

 <IMG SRC="<bean:show object="<%=request%>"
 property="contextPath"/>/images/cancel.gif"
 BORDER="0"
 ALIGN="RIGHT">

 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

1%

1^

1&

1*

1(

1(

508 CHAPTER 13

JDBC-driven WebStore
B Adds the order to the page scope.

c Creates a condition on Customer.

d Tests if user is not logged on.

e Redirects to the logon view.

f End of test if user is not logged on.

g Ends condition on customer.

h Creates a condition on order.

i Tests if order is empty.

j Redirects to the full order view.

1) End of test of whether order is empty.

1! Ends condition on order.

1@ Makes sure that this page won’t get cached.

1# Includes the user menu view.

1$ Displays the locally formated order total price As the <currency> tag takes an
amount as parameter and cannot look up any values from the session scope, we were
forced to add the Order to the page scope to pass in the total price as the amount
parameter to the tag.

1% Displays the user’s company name.

1^ Displays the user’s name.

1& Displays the user’s address.

1* Displays the user’s email.

1(Display the full image URL.

In the JSP file, we add the Order bean currently in the user’s session to the page
scope, so that we can use it inside other tags in this page. After that, we make sure
that the customer is logged on and that there are items in the order. We then dis-
play the total order price, using the currently defined currency. After that, we dis-
play the user’s address and email information to which we will send the receipt.

Implementation 509
Order confirmation
Listing 13.25 is the source code for the implementation of our order confirmation view.
The file name is orderConfirmation.jsp. The order confirmation is illustrated in
figure 13.8.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ page errorPage="mailException.jsp" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/email-taglib"
 prefix="mail" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/iteration-taglib"
 prefix="iter" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="local" %>
<jsp:useBean id="customer"
 type="book.casestudy.cosmetics.bean.Customer"
 scope="session"/>
<jsp:useBean id="order"
 type="book.casestudy.cosmetics.bean.Order"
 scope="request"/>
<simple:nocache useHeaders="true"/> d
<HTML>

Listing 13.25 orderConfirmation.jsp

Figure 13.8
Order confirmation view

b

c

510 CHAPTER 13

JDBC-driven WebStore
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 Order Received

 </TD>
 </TR>
 <TR>
 <TD>
 <P ALIGN="justify">
 Your order has been received by Cosmetics.
 </P>
 <P ALIGN="justify">
 Your order reference number is

 <bean:show name="order"
 property="id"
 scope="request"/>
 .
 </P>
<mail:send to="<%=customer.getEmail()%>"> g
 <mail:subject>Order <bean:show name="order"
 property="id"
 scope="request"/></mail:subject>
 <mail:message> i
ORDER CONFIRMATION
This email confirms that we have received your order
(reference number <bean:show name="order"
 property="id"
 scope="request"/>).
Consisting of the following items:

<iter:iterate id="item"
 type="book.casestudy.cosmetics.bean.OrderItem"
 name="order"
 property="entries"
 scope="request">

e

f

h

f

j

Implementation 511
<bean:show name="item"
 property="quantity"/> (
 <bean:show name="item"
 property="SKU"/>)
 <bean:show name="item"
 property="name"/> @
<local:currency amount="<%=item.getPrice()%>"/> 1#
</iter:iterate> 1$

Total: <local:currency amount="<%=order.getTotalPrice()%>"/> 1%

To be shipped to:
<bean:show name="customer"
 property="company"
 scope="session"/>
<bean:show name="customer"
 property="name"
 scope="session"/>
<bean:show name="customer"
 property="address"
 scope="session"/>
Thank you very much for your bringing us your business!
 </mail:message> 1(
</mail:send> 2)
 <P ALIGN="justify">
 A receipt has been sent to your email address
 (<bean:show name="customer"
 property="email"
 scope="session"/>).
 </P>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

B Adds the customer to the page scope.

c Adds the order to the page scope.

d Makes sure that this page won’t get cached.

E Includes the user menu view.

F Displays the order reference number.

G Defines the receiver of the mail message We define a mail message that we will send
to the user’s email address. As you can see in the code, we don’t give the <send> tag
any parameters such as which mail server to use, or the sender’s address. The <send>
tag will look for these in the Context, wherein they are defined for our application. We

1)

1!

1@

1^

1&

1*

2!

512 CHAPTER 13

JDBC-driven WebStore
have defined these parameters in listing 13.26 below. As we must supply the <send>
tag with an email address, and that email address is held by the customer object located
in the session scope, we had to add the customer to the page scope.

H Defines the subject of the mail message As subject of the mail message, we include
the order’s reference number. This will make it easy for frequent customers to find
and retrieve the correct order confirmation from their mail clients.

I–1(Body of mail message body We fill the mail message’s body with all the rows
that make up the order as well as the locally formatted order total. After that, the
customer address is added to the body of the message. Any blank row or blank
character included in the mail message body will be included in the mail sent, so be
careful to include only the blanks you want in the message. The source
(listing 13.25) has line wraps that you do not want in your actual source code.

j Iterates through the order items.

1) Includes the ordered quantity of the item.

1! Includes the item’s SKU.

1@ Includes the item’s name.

1# Includes the locally formatted item price.

1$ Ends the order item iteration.

1% Includes the locally formatted order total price.

1^ Includes the user’s company name.

1& Includes the user’s name.

1* Includes the user’s address.

1(End of the message body.

2) End of mail message.

2! Displays the customer’s email address The last thing we do is display a message
informing the user that a receipt has been sent to his mail address.

In the page, we do a number of nifty things. First, we define that if any runtime
exception is thrown in this page, the file mailException.jsp is to be displayed. After
that, we verify that we have an Order bean in the request scope (placed there by the
confirmation handler) and add it to the page scope (to use as part of parameter in
tags). We also add the Customer bean from the session scope to the page scope.

 We then display the order reference number to the user.

Implementation 513
…
<context-param>
 <param-name>from_sender</param-name> b
 <param-value>your.email@address.com</param-value> c
</context-param>
<context-param>
 <param-name>smtp_server_host</param-name> b
 <param-value>smtp.host.com</param-value> c
</context-param>
…

B Defines the name of the Context parameter.

C Defines the value of the Context parameter.

In listing 13.26 we define the names of the two Context parameters where our
<send> tag will look for the sender address and the SMTP server host to use for send-
ing the email.

Order confirmation error
Listing 13.27 is the source code for the implementation of our order confirmation
error view. The file name is confirmationError.jsp.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>

Listing 13.26 The configuration of the mail service in the web.xml file

Listing 13.27 confirmationError.jsp

b

514 CHAPTER 13

JDBC-driven WebStore
 <P>
 Comfirmation Error
 </P>
 <P>
 An error has occurred.
 </P>
 <P>
 Cosmetics could not process your order at this time.
 </P>
 <P>
 Please try again.
 </P>
 <P>
 If the problem persists, please contact the administrator.
 </P>

 <IMG SRC="<bean:show object="<%=request%>"
 property="contextPath"/>/images/back.gif"
 BORDER="0"
 ALIGN="RIGHT">

 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

b Includes the user menu view.

c Displays the full image URL.

d Includes the short order view.

The page informs the user that an error prevents the order from being processed
at this time, and that another attempt should be made or the user should contact
the administrator.

Profile
Listing 13.28 is the source code for the implementation of our profile view. The file
name is profileUpdateForm.jsp.

c

d

Implementation 515
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<cond:with name="customer"
 property="loggedOn">
 <cond:test condition="neq true"> c
 <simple:redirect location="logonForm.jsp"/> d
 </cond:test> e
 <cond:test condition="eq true"> f
<simple:nocache useHeaders="true"/> g
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <form action="profileHandler" method="post">
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp" h
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>Profile</P>
 <P>Below is your profile in our system.</P>
 <P>To change the profile, make the changes and press 'Commit'.</P>
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0"
 WIDTH="100%">
 <TR>
 <TH ALIGN="LEFT">
 Username:

Listing 13.28 profileUpdateForm.jsp

b

516 CHAPTER 13

JDBC-driven WebStore
 </TH>
 <TD>
 <bean:show name="customer"
 property="username"/>
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Company:
 </TH>
 <TD>
 <input type="text"
 name="company"
 value="<bean:show name="customer"
 property="company"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Name:
 </TH>
 <TD>
 <input type="text"
 name="name"
 value="<bean:show name="customer"
 property="name"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT"
 VALIGN="top">
 Address:
 </TH>
 <TD>
 <textarea name="address"
 rows="4"
 cols="40"><bean:show name="customer"
 property="address"/></textarea>
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Email:
 </TH>
 <TD>
 <input type="text"
 name="email"
 value="<bean:show name="customer"
 property="email"/>">
 </TD>
 </TR>

i

J

1)

1!

1@

Implementation 517
 <TR>
 <TH ALIGN="LEFT">
 Phone:
 </TH>
 <TD>
 <input type="text"
 name="phone"
 value="<bean:show name="customer"
 property="phone"/>">
 </TD>
 </TR>
 <TR>
 <TH ALIGN="LEFT">
 Fax:
 </TH>
 <TD>
 <input type="text"
 name="fax"
 value="<bean:show name="customer"
 property="fax"/>">
 </TD>
 </TR>
 </TABLE>

 If you don’t want to update your profile at this time, press Cancel

below.

 <INPUT TYPE="image"
 SRC="<bean:show object="<%=request%>"
 property="contextPath"/>/images/confirm.gif"
 BORDER="0"
 ALIGN="LEFT">

 <IMG SRC="<bean:show object="<%=request%>"
 property="contextPath"/>/images/cancel.gif"
 BORDER="0"
 ALIGN="RIGHT">

 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
 </form>

1#

1$

1%

1%

1^

518 CHAPTER 13

JDBC-driven WebStore
</CENTER>
</BODY>
</HTML>
 </cond:test> 1&
</cond:with> 1*

b Creates a condition on the customer.

c Tests if the user is not logged on.

d Redirects to the logon view.

e Ends the test of whether the user is not logged on.

f Tests if the user is logged on.

G Makes sure that this page won’t get cached.

H Includes the user menu view.

I Displays the user’s username.

j Displays the user’s company name for editing.

1) Displays the user’s name for editing.

1! Displays the user’s address for editing.

1@ Displays the user’s email address for editing.

1# Displays the user’s phone number for editing.

1$ Displays the user’s fax number for editing.

1% Displays the full image URL.

1^ Includes the short order view.

1& Ends the test on whether the user is logged on.

1* Ends the condition on the customer.

In the JSP file, we verify whether the user is logged on. If not, we redirect him to
the Logon view. After that, we show a number of input fields that we will fill out
with the data from the user’s profile.

Profile updated successfully
Listing 13.29 is the source code for the implementation of our profile updated suc-
cessfully view. The file name is profileUpdateConfirmation.jsp.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib

Listing 13.29 profileUpdateConfirmation.jsp

Implementation 519
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<cond:with name="customer"
 property="loggedOn"
 scope="session">
 <cond:test condition="neq true"> c
 <simple:redirect location="logonForm.jsp"/> d
 </cond:test> e
 <cond:test condition="eq true"> f
<simple:nocache useHeaders="true"/> g
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>

 Profile updated

 </P>
 <P>
 Your profile has been updated according to the information given by you.
 </P>
 <TD>
 </TR>
 </cond:test> I
</cond:with> j
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

b

h

1)

520 CHAPTER 13

JDBC-driven WebStore
b Creates a condition on the customer.

c Tests if the user is not logged on.

d Redirects to the logon view.

e Ends the test of whether the user is not logged on.

f Tests if the user is logged on.

g Makes sure that this page won’t get cached.

h Includes the user menu view.

i Ends the test of whether the user is logged on.

j Ends the condition on the customer.

1) Includes the short order view.

We make sure that the user is logged on, and display a message saying that the
requested changes to the user’s profile has been carried out.

Logoff
Listing 13.30 is the source code for the implementation of our logoff view. The file
name is logoffHandler.jsp.

<%@ page contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<simple:nocache useHeaders="true"/> b
<bean:command object="<%=session%>"
 command="invalidate"/>
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>

Listing 13.30 logoffHandler.jsp

c

d

Implementation 521
 <TR>
 <TD ALIGN="center">
 <P>
 Welcome back later!
 </P>
 <P>
 We at Cosmetics hope that you will soon return.
 </P>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

B Makes sure that this page won’t get cached.

c Invalidates the user’s session.

d Includes the user menu view.

In the rather small JSP page, we use the generic <command> tag to execute invali-
date()on the user’s current session object. By doing so, we ensure that the user’s Cus-
tomer and Order beans are removed. If any other page is requested, the user will be
given a fresh session and new beans.

Generic error
Listing 13.31 is the source code for the implementation of our generic error view. The
file name is jspException.jsp.

<%@ page isErrorPage="true" b
contentType="text/html;charset=UTF-8"%>

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>

Listing 13.31 jspException.jsp

522 CHAPTER 13

JDBC-driven WebStore
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>Error</P>
 <P>An error has occurred.</P>
 <P>
 <CODE>
 Message: <bean:show object="<%=exception%>"
 property="message"/>
 </CODE>
 </P>
 <P>If the problem persists, please contact the administrator.</P>

 <IMG SRC="<bean:show object="<%=request%>"
 property="contextPath"/>/images/back.gif"
 BORDER="0"
 ALIGN="RIGHT">

 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

b Defines this page as an error page.

c Includes the user menu view.

d Displays the exception message.

e Displays the full image URL.

f Includes the short order view.

We tell the container that this is an error page, and that it should be given any exception
thrown. We use <show> tag to display the exception message to the user.

 Notice that this view is defined as an error page in the web-applications configura-
tion file (web.xml) and does not need to be defined in any page that could throw a

c

d

e

f

Implementation 523
generic runtime exception. This configuration looks like listing 13.32, which is cut out
from the web.xml file of our web application.

…
<error-page>
 <exception-type>javax.servlet.jsp.JspException</exception-type>
 <location>jspException.jsp</location>
</error-page>
…

The configuration tells the container that whenever an uncaught JspException is
thrown, the file jspException.jsp should be invoked. Notice that any error page
defined for use within a page overrides the applicationwide setting.

Mail error
Listing 13.33 is the source code for the implementation of our mail error view. The
file name is mailException.jsp.

<%@ page isErrorPage="true" b
 contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<simple:nocache useHeaders="true"/> c
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 Order Received

Listing 13.32 The configuration of the JspException handler in the web.xml file.

Listing 13.33 mailException.jsp

d

524 CHAPTER 13

JDBC-driven WebStore
 </TD>
 </TR>
 <TR>
 <TD>
 <P ALIGN="justify">
 Your order has been received by Cosmetics.
 </P>
 <P ALIGN="justify">
 Your order reference number is

 <bean:show name="order"
 property="id"
 scope="request"/>
 .
 </P>
 <P ALIGN="justify">
 A receipt could not be sent to your email address
 (<bean:show name="customer"
 property="email"
 scope="session"/>),

 due to an internal error.</P>
 </P>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

b Defines this page as an error page.

c Makes sure that this page won’t get cached.

d Includes the user menu view.

e Displays the order reference number.

f Displays the user’s email address.

In this page, we inform the container that this is an error page, and that it should be
given the exception thrown. Notice that we never show this exception to the user.
Instead we assure the user by saying that the receipt could not be sent, but that the
order is received.

Number error view
Listing 13.34 is the source code for the implementation of our number error view.
The file name is numberformatException.jsp.

e

f

Implementation 525
<%@ page isErrorPage="true" b
 contentType="text/html;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<HTML>
<HEAD>
<TITLE>Cosmetics</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
 <TABLE CELLSPACING="0"
 CELLPADDING="0"
 BORDER="0">
 <TR>
 <TD>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 </TD>
 </TR>
 <TR>
 <TD>
 <P>Illegal value</P>
 <P>Please specify a valid numeric value.</P>
 <P>
 <CODE>
 Message:
 <bean:show object="<%=exception%>"
 property="message"/>
 </CODE>
 </P>

 <IMG SRC="<bean:show object="<%=request%>"
property="contextPath"/>/images/back.gif"
 BORDER="0"
 ALIGN="RIGHT">

 </TD>
 </TR>
 <TR>
 <TD ALIGN="center">

 <jsp:include page="shortOrder.jsp"
 flush="true"/>
 </TD>
 </TR>
 </TABLE>
</CENTER>
</BODY>
</HTML>

Listing 13.34 numberFormatException.jsp

c

d

e

f

526 CHAPTER 13

JDBC-driven WebStore
b Defines this page as an error page.

c Includes the user menu view.

d Displays the exception message.

e Displays the full image URL.

f Includes the short order view.

In the page, we tell the container that this is an error page, and that it should be
given the exception thrown. We then include the user menu view. After that, we dis-
play the message for the exception thrown. Finally, we include the short order view.

 As with the generic error view, this page is configured to act as an error page in
our web application’s configuration file.

13.6 Summary

After this in-depth look at tag usage within the scope of an application, you should
feel more comfortable with tags’ use in simplifying your development of web appli-
cations and how tag libraries can help you cut the time needed for development.

 Although we have tried to describe every tag throughout this application, we are
sure there is much that could bear further explanation. We recommend that you
deploy the application as described in appendix C so that you can step through the
application and gain a deeper understanding of how the tags are being used.

 A good way to gain a still deeper understanding of tags is to customize and
expand the application further. Table 13.19 lists examples of possible directions.

Table 13.19 Suggestions for expansion

Area Description

Product descriptions Adds product descriptions and product views.

Order history Adds views to display order history and details about historical orders.

Administration Adds a web application for administration of the shop.

Category tree Changes the flat category structure into a category tree.

Optimize tag usage Tag usage in this application is not near optimal. See if you can enhance it.

Shopping list Adds shopping lists/favorite product views.

One-click buying Adds banners with one-click buying.

Validation of profile Extends the validation of profile information.

 14EJB-driven WAPStor
e

In this chapter
� WebStore—the WAP way
� WebStore—the EJB way
� Using EJB tags
� Using EJBs as controllers and models
527

528 CHAPTER 14

EJB-driven WAPStore
14.1 Introduction

This case study will illustrate tag usage in an EJB-driven WAP application. We will
start by reviewing what WAP and EJB are, and then walk through the application
with our focus on tag usage. For information about the EJBs used, how to retrieve
the full source code from this book’s web site, and how to deploy the full applica-
tion, see appendix C.

 The application described in this chapter is tested on Orion (http://www.orion-
server.com), but should work just as well on any application server that commits to
the J2EE standard and supports the public draft of the EJB 2.0 specification. As a
client, the r320s browser that comes with the Ericsson’s WAP IDE 2.1 was used.

 There should be a number of application servers supporting EJB 2.0 from which
to choose.

14.1.1 Custom tags used

Throughout the application, we will utilize the custom tags given in table 14.1. The
table lists the chapter where you may get more information. The tags are ordered
by the tag library to which they belong.

Table 14.1 Custom tags used throughout this application

Tag Tag library Usage Chapter

<command> Bean-taglib Executes methods on objects. 15

<show> Bean-taglib Shows bean properties. 8

<with> Conditional-taglib Creates conditions that can be tested. 9

<test> Conditional-taglib Tests conditions. 9

<home> EJB-taglib Retrieves the home interface of an EJB. 12

<iterate> EJB-taglib Iterates through a collection of EJB remote inter-
faces.

12

<use> EJB-taglib Retrieves the remote interface of an EJB. 12

<message> J2EEMail-taglib Defines messages for emails. 12

<send> J2EEMail-taglib Defines start, recipients, and senders for emails. 12

<subject> J2EEMail-taglib Defines subjects for emails. 12

<currency> Locale-taglib Displays currency formatted with a certain Locale. 13

<nocache> Simple-taglib Prevents client-side caching of the page. 13

<redirect> Simple-taglib Redirects the request to a given location. 6

Overview 529
14.1.2 WAP

WAP, as you recall from chapter 1, is used to interact with online services from wire-
less devices such as cellular phones and PDAs. This chapter will present an applica-
tion for generating WAP content.

 Since some WAP devices do not support cookies, WML content must use URL
encoding techniques in order to maintain a session state. Adding the current Ses-
sion ID to any URL reference does this. In most cases our application server handles
this for us; the few occasions in which we have to do so manually are illustrated in
the JSP pages in this chapter.

 In the application for this case study, we have tried to minimize the number of
interactions between the client and the server, while still maintaining control of the
flow of events. The application features a rather rude interface in order to support
as many devices as possible. We have elected to develop the application for
WML 1.1, as this is commonly supported by a large number of devices.

14.1.3 EJB

Throughout this case study, we will use EJBs as a control layer and as the model
layer. Session beans will control the interaction between the user’s request and the
entities, and we will implement the entities as Entity beans. For more information
about EJB and J2EE, see chapter 12.

14.2 Overview

One month after we delivered the (hypothetical) online ordering system to Cos-
metics (see chapter 13), the company contacted us to reengineer its way of doing
business. Cosmetics, now known as Cosmetix, is selling its products door-to-door.
The salesmen are free agents, hence Cosmetix will deliver to the salesmen and
charge them for the product. The salesmen will deliver the goods and charge the
buyers, making a profit on the difference.

 As the salesmen are on the road most of the time, Cosmetix wants them to be
able to place their orders via cellular phones, making WAP the primary solution to
their problems.

 Cosmetix does not want to keep its old web solution, because too many orders
from phantom customers were placed. Instead, it wants us to view that solution as a
prototype for building a new one, a WAP-enabled solution.

530 CHAPTER 14

EJB-driven WAPStore
14.3 Implementation

In this section, we will cover the implementation of the WAP system built for Cos-
metix. As our focus is on the tag usage in this application, we will only briefly
describe the EJB Sessions and Entities our application utilizes. You’ll likely recog-
nize the names used for the parts of the application from the case study in
chapter 13.

14.3.1 Normal flow of events

The normal flow of events describes the most common interaction between a user
and the application. Figure 14.1 describes the normal flow of events for this appli-
cation in the form of an activity diagram.

1 The logon view is displayed, asking the user to identify himself. The user
does so.

2 The welcome view is displayed with a number of options. The user selects
to view the catalogue.

3 The category list is displayed. The user browses this and adds a number of
products to his order.

4 The products are added to the order. The user elects to view his current
order.

5 The full order view is displayed. The user elects to send his order.

1. Login 2. Welcome 3. Category List

4. Order
summary

5. Full order 4. Add product

8. Logout

Start

Finish

7. Order
Confirmation

Figure 14.1 The normal flow of events

Implementation 531
6 The order summary view is displayed. The user elects to confirm his order.

7 The order confirmation is displayed. The user selects to end his session by
logging out.

8 The user is logged out and the logon view is displayed anew.

Remember that what we describe is the normal flow of events. There are other
options that are not considered normal, which are listed among the others below.

14.3.2 Model

The model is implemented as a number of EJB Entities, as described in figure 14.2.

Figure 14.2 The remote interfaces for the EJB Entities and their internal relations

532 CHAPTER 14

EJB-driven WAPStore
 For more information about these entities’ actual implementation, download
the application as described in appendix C. There you will find the source code for
all the entities given in table 14.2.

14.3.3 View

Fifteen views make up the system. We will go through each in order to describe
their intended usage.

Logon view
The logon view is displayed each time a user tries to access the application without
being logged on. This is achieved by setting the access rights for the pages that
should allow only registered users, and by defining this page as the login form. All
of this is defined in the web.xml file. The view is made up of two different cards, in
which the first card loads the second card.

 Listing 14.1 is the source for the logon view. This file is called login.jsp inside the
application.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8" %> b
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<simple:nocache useHeaders="true"
 useMetaTags="false"/>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

Table 14.2 The Entity EJBs acting as model

EJB Description

Customer Represents the stored profile of a customer.

Category Represents a line of products. It has a name and contains a number of products.

Product Represents a product on sale. It has a stock keeping unit (SKU), name, and price.

Message Represents a line of text that should be displayed to the user on the welcome view.

Order Represents an order created by a user. It has a total price and contains a number of
OrderItems. It belongs to a customer.

OrderItem Represents a single row in an order. It holds the SKU, name, price, and ordered
quantity of a certain product.

Listing 14.1 login.jsp

c

Implementation 533
 <card id="image"
 ontimer="#login"
 title="Cosmetix">
 <timer value="100"/>
 <p>
 <img src="images/logo.wbmp"
 alt="Cosmetix"/>
 </p>
 </card>
 <card id="login"
 title="Cosmetix">
 <do type="options" label="Login">
<go href=
"j_security_check?j_username=$username&j_password=$passwd"/>
 </do>
 <p align="left">
 <input type="text"
 name="username"
 format="32A"
 title="Username:"/>
 <input maxlength="32"
 type="password"
 size="7"
 name="passwd"
 title="Password"/>
 </p>
 </card>
</wml>

b Sets the content type to WML We set the headers to show the
client that the content returned is in WML.

c Makes sure that this page won’t get cached We use the <nocache>
tag to set the headers that tell the client that this page should not
be cached locally. Notice that we use headers and not <META> tags
for this, as some WML clients do not recognize cache-preventing
<META> tags.

We then tell the client that this content is for XML version 1.0,
and where to find the DTD that defines it. After that, we state that
this WML file contains a Cosmetix card that will display an image
for ten seconds and then call the second card. This will look like
figure 14.3.

 The second card, the one called by the previous one, is also
titled Cosmetix. This card will prompt the user for username and
password.

d

Figure 14.3 The
Cosmetix card.

534 CHAPTER 14

EJB-driven WAPStore
d Calls the authentication handler The card will
also hold an option called Login, that calls the
application’s authentication handler with the
username and password that identify the user
to the system. This card wi l l look l ike
figure 14.4.

 When the user selects the login option, the
authentication handler will check the request
for a username and password, and try to
match these against the users in its principal
file. A principal file holds the name and pass-
word for users, as well as the user’s role in the
system. If the user is found, he will be authen-
ticated by the application server and can then access the protected pages.

 The security configuration of our web application looks like listing 14.2, which is
part of the web.xml file of our web application.

…
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Cosmetix</web-resource-name>
 <url-pattern>/index.jsp</url-pattern> b
 …
 <url-pattern>/userMenu.jsp</url-pattern> b
 <http-method>*</http-method> c
 </web-resource-collection>
 <auth-constraint>
 <role-name>users</role-name> d
 </auth-constraint>
</security-constraint>
<login-config>
 <auth-method>FORM</auth-method> e
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page> f
 <form-error-page>/login.jsp</form-error-page> g
 </form-login-config>
</login-config>
<security-role>
 <description>Cosmetix users</description>
 <role-name>users</role-name>
</security-role>
…

Listing 14.2 The application’s security configuration as defined in the web.xml file

Figure 14.4 The login card

Implementation 535
b The pages to protect We tell the container what pages to protect, in this case most
of the pages that makes up our application, except for the login view and the login
error view.

c The HTTP methods to protect (in this case all). We define the methods to protect,
which will be both POST and GET in this case.

d The role any user must have to access the protected pages. After that we define the
roles users must belong to in order to access the protected pages. In this case, we
tell the container that only users of the role “users” should have access to the pro-
tected pages.

e The authentication method to use (in this case a FORM). The authentication method
must also be defined. We define it as FORM authentication.

f The name of the page holding the FORM for authentication. As we are using FORM-
based authentication, we must tell the container what view will hold the form where
the user can specify his username and password.

g The name of the page holding the authentication error FORM. We must also tell the
container the view that should be used to handle any authentication errors.

For more information about the available authentication methods or the settings
for these, look at the servlet specification.

14.3.4 Welcome view

The welcome view (listing 14.3) will display a number of messages inside a single card
to the user. This file is called index.jsp inside our application.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8" %> b
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<simple:nocache useHeaders="true"
 useMetaTags="false"/>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

Listing 14.3 index.jsp

c

536 CHAPTER 14

EJB-driven WAPStore
 <card id="welcome"
 title="Welcome!">
<jsp:include page="userMenu.jsp"
 flush="true"/>
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.MessageHome"
 name="ejb/message"/>
<ejb:iterate id="msg"
 type="book.casestudy.cosmetix.ejb.Message"
 object="<%=home.findAll().iterator()%>">
 <p align="left">
 <bean:show name="msg"
 property="message"/>
 </p>
</ejb:iterate> h
 </card>
</wml>

b Sets the content type to WML We set the headers so that the client will understand
that the content returned is in WML.

c Makes sure that this page won’t get cached We use the <nocache> tag to set the head-
ers telling the client that this page should not be cached locally.

We then define that this WML file contains a card with the title “Welcome!” (nor-
mally displayed in the client display).

d Includes the user menu view The user menu view will set up a number of options for
the user.

e Gets the message EJB’s home interface With the help of the <home> tag, we procure
the home interface of the Message EJB by telling the tag the reference name of the
EJB and the interface that should be returned.

f Starts iterating through the message EJBs We use
the <iterate> tag to go through the remote
interfaces of the Message EJB that we receive by
calling findAll() on the Message EJB’s home
interface. The card will look like figure 14.5.

g Displays the message.

h Ends the iteration.

In order for any page inside a web application to
be able to access an EJB directly, an EJB reference
must be defined in the web application’s configu-
ration (listing 14.4).

d

e

f

g

Figure 14.5 Welcome card

Implementation 537
…
<ejb-ref>
 <description>Messages</description>
 <ejb-ref-name>ejb/message</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>book.casestudy.cosmetix.ejb.MessageHome</home>
 <remote>book.casestudy.cosmetix.ejb.Message</remote>
</ejb-ref>
…

We tell the container that our web application should be able to access the remote and
home interfaces of the Message EJB by using the name ejb/message.

User menu view
Most other pages will include the user menu view to define the options available.
This view will contain no card of its own. Listing 14.5 is the source for the user
menu view.

<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<jsp:useBean id="customer"
 type="book.casestudy.cosmetix.ejb.Customer"
 scope="session"/>
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.OrderManagerHome"
 name="ejb/orderManager"/>
<ejb:use id="orderManager"
 type="book.casestudy.cosmetix.ejb.OrderManager"
 instance="<%=home.create(customer)%>"/>
<ejb:use id="order"
 type="book.casestudy.cosmetix.ejb.Order"
 instance="<%=orderManager.getOrder()%>"/>
<do type="options" label="Catalogue" name=”catalogue”>
 <go href="categoryList.jsp"/>
</do>
<cond:with object="<%=(order.getItems().size()>0)%>"> f
 <cond:test condition="eq true"> g
<do type="options" label="Short Order" name=”shortOrder”>
 <go href="shortOrder.jsp"/>

Listing 14.4 An EJB reference defined in the web.xml file

Listing 14.5 userMenu.jsp

b

c

d

e

538 CHAPTER 14

EJB-driven WAPStore
</do>
<do type="options" label="Full Order" name=”fullOrder”>
 <go href="fullOrder.jsp"/>
</do>
<do type="options" label="Send Order" name=”sendOrder”>
 <go href="sendOrder.jsp"/>
</do>
 </cond:test> h
</cond:with> i
<do type="options" label="Your Profile" name=”yourProfile”>
 <go href="profile.jsp"/>
</do>
<do type="options" label="Logoff" name=”logoff”>
 <go href="logoffHandler.jsp"/>
</do>
<do type="options" label="Home" name=”home”>
 <go href="index.jsp"/>
</do>

b Gets the remote interface of the Customer EJB We first try to retrieve the remote
interface of the Customer EJB from the session scope. If this is not found, an
exception will be thrown and caught by the instantiation error view.

c Gets the home interface for the OrderManager EJB.

d Creates a remote interface for the OrderManager EJB We tr y to use the home
interface to create a remote interface to OrderManager. To do so we need to pass in
the Customer EJB as parameter.

e Retrieves the user’s current Order EJB We then use the remote interface of the
OrderManager to retrieve a remote interface for the user’s current Order EJB. After
that, we display options that all users should have.

f Creates a condition on the number of items in the
order g Tests if the number of items in the order
is more than 0 We use the <with> and <test>
tags to test whether the user’s current Order con-
tains any items. If so, we display options that
should only be available to users with a nonempty
Order. We end the test clause and display addi-
tional options that should be available to all users.
The result will look like figure 14.6.

h Ends the test.

i Ends the condition. Figure 14.6 Selecting options

Implementation 539
Short order view
The short order view displays a short list of the user’s current order in a single card.
This file is called shortOrder.jsp (listing 14.5).

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<jsp:useBean id="customer"
 type="book.casestudy.cosmetix.ejb.Customer"
 scope="session"/>
<simple:nocache useHeaders="true"
 useMetaTags="false"/>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.OrderManagerHome"
 name="ejb/orderManager"/>
<ejb:use id="orderManager"
 type="book.casestudy.cosmetix.ejb.OrderManager"
 instance="<%=home.create(customer)%>"/>
<ejb:use id="order"
 type="book.casestudy.cosmetix.ejb.Order"
 instance="<%=orderManager.getOrder()%>"/>
 <card id="shortOrder"
 title="Your Order">
<jsp:include page="userMenu.jsp"
 flush="true"/>
<cond:with object="<%=(order.getItems().size()>0)%>"> h
 <cond:test condition="eq true"> i
 <ejb:iterate id="item"
 type="book.casestudy.cosmetix.ejb.OrderItem"
 object="<%=order.getItems().iterator()%>">
 <p align="left">
 <bean:show name="item"
 property="quantity"/>
 <bean:show name="item"
 property="sku"/>

Listing 14.6 shortOrder.jsp

b

c

d

e

f

g

j

1)

1!

540 CHAPTER 14

EJB-driven WAPStore
 </p>
 </ejb:iterate> 1@
 </cond:test> 1#
 <cond:test condition="neq true"> 1$
 <p align="left">
 Is empty
 </p>
 </cond:test> 1%
</cond:with> 1^
 </card>
</wml>

b Retrieves the remote interface of the Customer EJB We try to retrieve the Customer
EJB from the session scope.

c Makes sure that this page won’t get cached We make sure that the client will not
cache this page locally.

d Adds a home interface for the OrderManager EJB We add an OrderManager home
interface to the page scope.

e Creates an remote interface for the OrderManager EJB We use the OrderManager
home interface to create an OrderManager remote interface with the Customer EJB as
parameter.

f Retrieves the user’s current Order EJB We use the remote interface of the Order-
Manager to retrieve the user’s current Order EJB. If it contains any OrderItems, we
iterate through this Order, displaying the ordered quantity and the SKU for all Order-
Items. If it does not hold any OrderItems, we display a message saying that the order is
empty. Either way, all content goes into a single card.

g Includes the user menu view.

h Creates a condition on the number of items in the current order.

i Tests if the number of items in the current order are more than none.

j Iterates through the order’s OrderItems.

1) Displays the ordered quantity of the OrderItem.

1! Displays the SKU of the OrderItem.

1@ Ends the Iteration.

1# Ends the test.

1$ Tests if the number of items in the current order are none.

1% Ends the test.

1^ Ends the condition.

Implementation 541
Category list view
The category list view displays Cosmetix’s product lines. To limit the number of
interactions a user has to perform to find the desired products, this view is used to
display both the categories and the products the categories contain. There will be
one card for showing the list of categories. These categories will each have separate
cards whereon their products are displayed. For every product, there will be a sepa-
rate card with the option to order. All cards except for the category list will be cre-
ated dynamically, in an amount that matches the actual number of currently existing
categories and products. This file is called categoryList.jsp, (listing 14.7).

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="local" %>
<simple:nocache useHeaders="true"
 useMetaTags="false"/>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <template>
 <do type="prev">
 <go href="#listCategories"/>
 </do>
<jsp:include page="userMenu.jsp"
 flush="true"/>
 </template>
 <card id="listCategories"
 title="Product Lines">
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.CatalogueManagerHome"
 name="ejb/catalogueManager"/>

Listing 14.7 categoryList.jsp

b

c

d

542 CHAPTER 14

EJB-driven WAPStore
<ejb:use id=”catalogueManager”
 type=”book.casestudy.cosmetix.ejb.CatalogueManager”
 instance=”<%=home.create()%>”/>
<ejb:iterate id="category"
 type="book.casestudy.cosmetix.ejb.Category"
 object="<%=catalogueManager.getCategories().iterator()%>">
 <p align="left">
 <a href="#cat<bean:show name="category"
 property="id"/>">
 <bean:show name="category"
 property="name"/>

 </p>
</ejb:iterate> i
 </card>
<ejb:iterate id="category"
 type="book.casestudy.cosmetix.ejb.Category"
 object="<%=catalogueManager.getCategories().iterator()%>">
 <card id="cat<bean:show name="category"
 property="id"/>"
 title="<bean:show name="category"
 property="name"/>">
 <ejb:iterate id="product"
 type="book.casestudy.cosmetix.ejb.Product"
 object="<%=category.getProducts().iterator()%>”>
 <p align="left">
 <a href="#prod<bean:show name="product"
 property="sku"/>">
 <bean:show name="product"
 property="name"/>

 </p>
 </ejb:iterate> 1%
 </card>
 </ejb:iterate> 1^
 <ejb:iterate id="product"
 type="book.casestudy.cosmetix.ejb.Product"
 object="<%=catalogueManager.getProducts().iterator()%>">
 <card id="prod<bean:show name="product"
 property="sku"/>"
 title="<bean:show name="product"
 property="name"/>">
 <do type="options" label="Add to order" name=”addToOrder”>
 <go href="itemAdder.jsp">
 <postfield name="sku"
 value="<bean:show name="product"
 property="sku"/>"/>
 <postfield name="quantity"
 value="$(quantity)"/>
 </go>
 </do>

e

f

g

h

j

1)

1!

1@

1#

1$

1&

1*

1(

2)

Implementation 543
 <p align="left">
 SKU: <bean:show name="product"
 property="sku"/>
 </p>
 <p align="left">
 Price: <![CDATA[<local:currency
 amount="<%=product.getPrice()%>" />]]>
 </p>
 <p align="left">
 <input maxlength="3"
 format="*N"
 size="2"
 name="quantity"
 title="Quantity:"/>
 </p>
 </card>
 </ejb:iterate> 2#
</wml>

b Makes sure that this page won’t get cached.

c Includes the user menu view in a template We include the user menu view in a
template card. By doing so, the user menu will be inherited by all cards of this deck,
making any options available in the template also appear in all cards.

d Add the home interface of the CatalogueManager.

e Creates a remote interface for the CatalogueManager We use the home interface of
the CatalogueManager to retrieve a remote interface for the same EJB.

f Iterates through the categories We use the <iter-
ate> tag of the EJB taglib to iterate through all
available Category EJBs. For each Category we
show a link that will go to a card defined in this deck.
The link will contain the keyword cat followed by
the current Category’s ID. For the visible part of the
link, we use the name of the Category. The resulting
card will look like figure 14.7

g Creates a link to a dynamically created card.

h Displays the link name using the category name.

i Ends the Iteration of categories.

j Iterates through the categories We iterate through
all Category EJBs again, and create one card per
Category, using the keyword cat and the Category’s ID as card ID.

1) For each category, adds a card.

2!

2@

Figure 14.7 Listing available
categories

544 CHAPTER 14

EJB-driven WAPStore
1! Sets the card’s name using the category name.

1@ Iterates through the products Inside each card, we
iterate through the current Category’s Product
EJBs and display a link built up of the keyword
prod. This we add the Product SKU to as a target
of the link, with the Product name as the name of
the link. Each such card will appear as in figure 14.8
when selected.

1# Creates a link to a dynamically created card.

1$ Displays the link name using the product name.

1% Ends the iteration of products.

1^ Ends the iteration of categories.

1& Iterates through the products. For every Product,
a card is created with its ID made up of the keyword
prod and the Product’s SKU. In each card an
option to add the Product to the user’s current
Order is available. Inside the card, the Product’s
SKU and price are listed together with an input field
wherein the user can specify the amount they wish
to order. The price is formatted for the currently
used locale. The result will look like in figure 14.9.

1* Adds a card for each product.

1(For each card, uses the product name as title.

2) Adds an option to add the product to the current order.

2! Displays the product’s SKU.

2@ Displays the product’s price. As the <currency> tag is used without any specified
locale, the tag will look in the context for it. Listing 14.8 shows a Locale setting in the
web.xml file.

2# Ends the iteration of products.

…
<context-param>

 <param-name>locale</param-name> b
 <param-value>en_US</param-value> c
</context-param>
…

Listing 14.8 An applicationwide available Locale setting in the web.xml file.

Figure 14.8 Viewing a category
card

Figure 14.9 Viewing a product
card

Implementation 545
b Defines the name of the Context parameter.

c Defines the value of the Context parameter.

In the listing we define the name of the Context parameter to be locale, which is the
parameter name that the <currency> tag will look for. We set the value of the parame-
ter to be a string representing the locale, which the tag will then use to construct a
Locale. As the dollar sign is used to define a variable in WML, we must be sure that we
will not run into problems when displaying prices such as $100 (which could be inter-
preted as referencing the variable defined with a name of 100). In Listing 14.7 and
other listings where we use the <currency> tag, we display all prices inside the CDATA
block, which tells the client that the information inside is character data and should not
be parsed.

Full order view
The full order view displays full information about the user’s current order,
together with an option to remove unwanted items. The name of this file is
fullOrder.jsp. The source of the page is in listing 14.9.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="local" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<jsp:useBean id="customer"
 type="book.casestudy.cosmetix.ejb.Customer"
 scope="session"/>
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.OrderManagerHome"
 name="ejb/orderManager"/>
<ejb:use id="orderManager"
 type="book.casestudy.cosmetix.ejb.OrderManager"
 instance="<%=home.create(customer)%>"/>
<ejb:use id="order"

Listing 14.9 fullOrder.jsp

b

c

d

546 CHAPTER 14

EJB-driven WAPStore
 type="book.casestudy.cosmetix.ejb.Order"
 instance="<%=orderManager.getOrder()%>"/>
<simple:nocache useHeaders="true"
 useMetaTags="false"/>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="fullOrder"
 title="Your Order">
<jsp:include page="userMenu.jsp"
 flush="true"/>
<cond:with object="<%=(order.getItems().size()>0)%>"> h
 <cond:test condition="eq true"> i
 <ejb:iterate id="item"
 type="book.casestudy.cosmetix.ejb.OrderItem"
 object="<%=order.getItems().iterator()%>">
 <p align="left">
 SKU: <bean:show name="item"
 property="sku"/>
 </p>
 <p align="left">
 NAME: <bean:show name="item"
 property="name"/>
 </p>
 <p align="left">
 PRICE: <![CDATA[<local:currency
 amount="<%=item.getPrice()%>" />]]>
 </p>
 <p align="left">
 QUANTITY: <bean:show name="item"
 property="quantity"/>
 </p>
 <p align="left">
 SUM: <![CDATA[<local:currency
 amount="<%=item.getTotal()%>" />
 </p>
 <p align="left">
 <%
 HttpServletResponse res=(HttpServletResponse)response;
 %>
 <a href="<%=res.encodeURL(
"itemRemover.jsp?sku="+item.getSku())%>">REMOVE
 </p>
 <p align="center">--</p>
 </ejb:iterate> 1&
 <p align="left">

 TOTAL: <![CDATA[<local:currency
 amount="<%=order.getTotal()%>" />]]>

e

f

g

j

1)

1!

1@

1#

1$

1%

1^

1*

Implementation 547
 </p>
 </cond:test> 1(
 <cond:test condition="neq true"> 2)
 <p>
 Is empty
 </p>
 </cond:test> 2!
</cond:with> 2@
 </card>
</wml>

b Gets the remote interface of the Customer EJB We add the remote interface of the
Customer EJB to the page scope.

c Adds the home interface of the OrderManager EJB We add the home interface of the
OrderManager to the page scope.

d Creates an OrderManager EJB We use the Customer EJB to retrieve a remote inter-
face of an OrderManager EJB from the home interface of the same EJB.

e Retrieves the user’s current Order EJB From the OrderManager EJB, we get the
user’s current Order EJB.

f Makes sure that this page won’t get cached.

g Includes the user menu view We define a card that displays the order within. Inside
the card, we include the options from the user menu view.

h Creates a condition on the number of items in the current order We check whether
the Order contains any OrderItems.

i Tests if the number of items in the current order is more than none.

j Iterates through the OrderItems If the order contains the remote interfaces of the
OrderItem, EJBs are iterated. For every OrderItem, the SKU, name, and price are dis-
played, together with the ordered quantity and the row sum.

1) Displays the SKU of the OrderItem.

1! Displays the name of the OrderItem.

1@ Displays the price for the OrderItem.

1# Displays the ordered quantity of the OrderItem.

1$ Displays the sum for the OrderItem.

1% Casts the ServletResponse into an HttpServletResponse We have to perform a
little trick to make sure that the application server will encode the URL that we display
as a link to remove an item from the Order. The application thinks that we are taking
full responsibility for the URL as we are building it up with dynamic content. Our trick

548 CHAPTER 14

EJB-driven WAPStore
is to cast the existing ServletResponse into an HttpServletResponse and manually
use the HttpServletResponse encodeURL() method to encode the URL.

1^ Encodes the URL using the HttpServletResponse.

1& Ends the iteration.

1* Displays the order total price As with all other
prices displayed, we use the currently defined locale
to display it in a correct way. As before, the <cur-
rency> tag looks for—and finds—a Locale in the
Context. The result will look figure 14.10.

1(Ends the test.

2) Tests if the number of items in the current order
are less than none If the Order EJB doesn’t con-
tain any OrderItem EJBs, we display a message tell-
ing the user that the order is empty.

2! Ends the test.

2@ Ends the condition.

Order summary view
The order summary view displays a single card holding a summary of the user’s cur-
rent order and the address to which the order will be sent. This view is used prima-
rily to solicit a confirmation from the user that the order and registered address are
correct, and that we are to ship the ordered items. This page is called sendOrder.jsp
inside our application, and looks like listing 14.10.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="local" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<jsp:useBean id="customer"

Listing 14.10 sendOrder.jsp

Figure 14.10 Full order card

Implementation 549
 type="book.casestudy.cosmetix.ejb.Customer"
 scope="session"/>
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.OrderManagerHome"
 name="ejb/orderManager"/>
<ejb:use id="orderManager"
 type="book.casestudy.cosmetix.ejb.OrderManager"
 instance="<%=home.create(customer)%>"/>
<ejb:use id="order"
 type="book.casestudy.cosmetix.ejb.Order"
 instance="<%=orderManager.getOrder()%>"/>
<cond:with object="<%=(order.getItems().size()>0)%>"> f
 <cond:test condition="neq true"> g
 <simple:redirect location="fullOrder.jsp"/> h
 </cond:test> i
</cond:with> j
<simple:nocache useHeaders="true"
 useMetaTags="false"/>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="sendOrder"
 title="Send Order">
 <do type="options" label="Confirm Order" name=”confirmOrder”>
 <go href="orderConfirmation.jsp"/>
 </do>
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 <p align="left">
 Your order with a total sum of
 <![CDATA[<local:currency
 amount="<%=order.getTotal()%>" />]]>
 will be sent to the following address:
 </p>
 <p align="left">
 <bean:show name="customer"
 property="company"/>
 </p>
 <p align="left">
 <bean:show name="customer"
 property="name"/>
 </p>
 <p align="left">
 <bean:show name="customer"
 property="address"/>
 </p>
 <p align="left">
 By confirming this order, the order will be sent to
 Cosmetix for further processing. You will receive
 a order receipt at your email address

b

c

d

e

1)

1!

1@

1#

1$

1%

550 CHAPTER 14

EJB-driven WAPStore
 (<bean:show name="customer"
 property="email"/>)
 as a confirmation.
 </p>
 <p align="left">
 To confirm the sending of the order,
 select 'Confirm Order' from the option list.
 </p>
 </card>
</wml>

b Gets the remote interface of the Customer EJB After retrieving the remote interface
of the Customer EJB from the session scope we add it to the page scope.

c Adds the home interface of the OrderManager EJB.

d Creates a remote interface of the OrderManager EJB We use the OrderManager
EJB’s home interface to get a remote interface for the OrderManager EJB, using the
Customer EJB as parameter.

e Retrieves the user’s current Order EJB We use the remote interface of the OrderMan-
ager to retrieve the remote interface of the user’s current Order EJB.

f Creates a condition on the number of items in the current Order.

g Tests whether the number of items in the current Order is less than 1.

h Redirects the user to the full order view I f th e
user’s current Order does not contain any Order-
Item EJBs, we redirect the user to the full order
view. Otherwise, we start building the card.

i Ends the test.

j Ends the condition.

1) Makes sure that this page will not be cached.

1! Includes the user menu view We include the user
menu view and add an additional option to con-
firm the order.

1@ Displays the order’s total price We display the
total price of the Order, using the <currency>
tag without specifying a locale, which will cause the tag to look in the Context for
any specified locale. There it will find the locale we have specified, and use it to for-
mat the total price.

1^

Figure 14.11 The order summary
card

Implementation 551
1# Displays the customer’s company name 1$ Displays the customer’s name 1% Dis-
plays the customer’s address 1^ Displays the customer’s email address Finally, we
display the address to which the order will be sent, and end the card. The resulting
card is illustrated in figure 14.11.

Order confirmation view
The order confirmation view is used to display an order confirmation to the user in
a single card, including the order reference number. The page is also used to send a
receipt to the user. This page is called orderConfirmation.jsp inside our application,
and looks like listing 14.11.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8"
 errorPage="mailException.jsp"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/locale-taglib"
 prefix="local" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/j2eemail-taglib"
 prefix="mail" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<jsp:useBean id="customer"
 type="book.casestudy.cosmetix.ejb.Customer"
 scope="session"/>
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.OrderManagerHome"
 name="ejb/orderManager"/>
<ejb:use id="orderManager"
 type="book.casestudy.cosmetix.ejb.OrderManager"
 instance="<%=home.create(customer)%>"/>
<ejb:use id="order"
 type="book.casestudy.cosmetix.ejb.Order"
 instance="<%=orderManager.confirmOrder()%>"/>
<cond:with object="<%=(order.getStatus()=='S')%>"> g
 <cond:test condition="neq true"> h
 <simple:redirect location="fullOrder.jsp"/> i

Listing 14.11 orderConfirmation.jsp

b

c

d

e

f

552 CHAPTER 14

EJB-driven WAPStore
 </cond:test> j
</cond:with> 1)
<simple:nocache useHeaders="true"
 useMetaTags="false"/>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="orderConfirmation"
 title="Confirmation">
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 <p align="left">

 Order Received

 </p>
 <p align="left">
 Your order reference number is

 <bean:show name="order"
 property="id"/>
 .
 </p>
 <% request.setAttribute("orderId",new Long(order.getId()));%> 1$
 <mail:send to="<%=customer.getEmail()%>"> 1%
 <mail:subject>Order <bean:show name="order"
 property="id"/></mail:subject>
 <mail:message> 1&
ORDER CONFIRMATION
This email confirms that we have received your order
 (reference number <bean:show name="order"
 property="id"/>).
Attached to this mail are your receipt and the delivery address.
Thank you very much for your bringing us your business!

 --
ORDER <bean:show name="order"
 property="id"/>
 --
<ejb:iterate id="item"
 type="book.casestudy.cosmetix.ejb.OrderItem"
 object="<%=order.getItems().iterator()%>">
<bean:show name="item"
 property="quantity"/>
(<bean:show name="item"
 property="sku"/>)
<bean:show name="item"
 property="name"/> @
<local:currency amount="<%=item.getPrice()%>" /> 2#
</ejb:iterate> 2$

1!

1@

1#

1^

1*

1*

1(

2)

2!

2@

Implementation 553
--
Total: <local:currency amount="<%=order.getTotal()%>" /> 2%
--
DELIVERY ADDDRESS FOR ORDER <bean:show name="order"
 property="id"/>
--
<bean:show name="customer"
 property="company"/>
<bean:show name="customer"
 property="name"/>
<bean:show name="customer"
 property="address"/>
--
</mail:message> 2(
 </mail:send> 3)
 <p align="left">
 A receipt has been sent to your email address
 (<bean:show name="customer"
 property="email"/>).
 </p>
 </card>
</wml>

b Defines the mail error view as error page We first declare that the mail exception view
should be used to handle any runtime exceptions thrown when this page is accessed.

c Gets the remote interface of the Customer EJB We retrieve the remote interface of
the Customer EJB from the session scope and add it to the page scope.

d Gets the home interface for the OrderManager EJB We add the OrderManager EJB’s
home interface to the page scope.

e Creates a remote interface for the OrderManager EJB We use the home interface of
the OrderManager EJB to create a remote interface of the OrderManager EJB using
the Customer EJB as parameter.

f Confirms the order We ask the OrderManager EJB to confirm the user’s current
Order. The OrderManager will then return the user’s current Order EJB.

g Creates a condition on the order’s status h Tests whether the status of the order is
not ‘s’ i Redirects the user to the full order view If the Order is not returned
with a status of ‘S’ (for sent), we redirect the user to the full order view.

j Ends the test.

1) Ends the condition.

1! Makes sure that this page will not be cached.

1@ Includes the user menu view Inside the card, we display the Order’s reference
number

1*

2^

2&

2*

3!

554 CHAPTER 14

EJB-driven WAPStore
1# Displays the Order ID.

1$ Stores the Order ID in the request This way we can access the reference number
from within an error page if anything goes wrong when sending the receipt.

1% Defines a new mail Defines a mail message with the Customer’s email address as
recipient, as we don’t specify any mail Session name in the <send> tag. The result
will be that the default mail Session will be used. (For more on configuring the
mail Session, see chapter 12.)

1^ Defines a subject containing the Order ID.

1& Start of message As content of the mail, we dis-
play a message containing the Order’s reference
number and all the OrderItem EJBs of the Order,
as well as the total price. All prices are formatted
using the Context-defined locale. This is done by
not telling the <currency> tag what locale to
use, which will make it look for a defined locale
in the Context.

1* Includes the Order ID in the attachment body.

1(Iterates through the OrderItems in the order.

2) Includes the ordered quantity of the OrderItem.

2! Includes the SKU of the OrderItem.

2@ Includes the name of the OrderItem.

2# Includes the price of the OrderItem.

2$ Ends the iteration.

2% Includes the order’s total price.

2^ Includes the customer’s company name 2&Includes the cusomer’s name 2*Includes
the customer’s address We include the delivery address of the Order. This informa-
tion is gathered from the user’s online profile stored in the Customer EJB.

2(End of message.

3) Ends the mail.

3! Displays the customer’s email address We display a message telling the user that a
receipt has been sent to his email address, and that’s the end of the card, which is
available in figure 14.12.

Profile view
The profile view displays the information contained in the online profile of the user.
This information is available from the Customer Entity EJB. This page contains a
single card and is called profile.jsp inside our application, and looks listing 14.12.

Figure 14.12 The order
confirmation card

Implementation 555
<%@ page contentType="text/vnd.wap.wml;charset=UTF-8" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<jsp:useBean id="customer"
 type="book.casestudy.cosmetix.ejb.Customer"
 scope="session"/>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="profile"
 title="Your Profile">
<jsp:include page="userMenu.jsp"
 flush="true"/>
 <p align="left">
 <bean:show name="customer"
 property="username"/>
 </p>
 <p align="left">
 <bean:show name="customer"
 property="company"/>
 </p>
 <p align="left">
 <bean:show name="customer"
 property="name"/>
 </p>
 <p align="left">
 <bean:show name="customer"
 property="address"/>
 </p>
 <p align="left">
 <bean:show name="customer"
 property="email"/>
 </p>
 <p align="left">
 <bean:show name="customer"
 property="phone"/>
 </p>
 <p align="left">
 <bean:show name="customer"
 property="fax"/>
 </p>
 </card>
</wml>

Listing 14.12 profile.jsp

b

c

d

e

f

g

h

i

j

556 CHAPTER 14

EJB-driven WAPStore
b Gets the remote interface of the Customer EJB.
c Includes the user menu view

d Displays the user’s username
e Displays the user’s company name
f Displays the user’s name
g Displays the user’s address
h Displays the user’s email address
i Displays the user’s phone number
j Displays the user’s fax number

We first retrieve the remote interface of the Customer EJB from the session scope and
add it to the page scope, after which we define a card that will display the data found in
the user’s profile (the Customer EJB). Notice that we do not disable caching of this
page, as the information presented is less liable to change over time.

Logoff view
The logoff view ends the user’s session with the system. This page is called logoff-
Handler.jsp inside our application, as in listing 14.13.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<bean:command object="<%=session%>"
 command="invalidate"/>
<simple:redirect location="index.jsp"/> c

b Asks for the user’s session to be invalidated.

c Redirects to the welcome view The user can select to log on anew.

Listing 14.13 logoffHandler.jsp

b

Implementation 557
Add item view
The add item view is used to add OrderItems to the user’s current Order. The page is
called itemAdder.jsp in our application and looks like listing 14.14.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<jsp:useBean id="customer"
 type="book.casestudy.cosmetix.ejb.Customer"
 scope="session"/>
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.OrderManagerHome"
 name="ejb/orderManager"/>
<ejb:use id="orderManager"
 type="book.casestudy.cosmetix.ejb.OrderManager"
 instance="<%=home.create(customer)%>"/>
<%
 orderManager.addItem(request.getParameter("sku"),
 new Integer(
 request.getParameter("quantity")).intValue());
%>
<simple:redirect location="categoryList.jsp"/>

b Gets the remote interface of the Customer EJB We retrieve the remote interface of
the Customer EJB from the session scope and add it to the page scope.

c Gets the home interface for the OrderManager EJB.

d Creates an OrderManager Session EJB We use the OrderManager EJB’s home
interface to create an OrderManager remote interface using the Customer EJB as
parameter.

e Adds the specified quantity of the specified product to the order We use the remote
interface of the OrderManager to add a specified quantity of a certain product as an
OrderItem to the users’ current Order. Then we redirect the user back to the cate-
gory list view.

Remove item view
The remove item view is used to add OrderItems to the user’s current order. The page
is called itemRemover.jsp in our application, and looks like listing 14.15.

Listing 14.14 itemAdder.jsp

b

c

d

e

558 CHAPTER 14

EJB-driven WAPStore
<%@ page contentType="text/vnd.wap.wml;charset=UTF-8"%>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>
<jsp:useBean id="customer"
 type="book.casestudy.cosmetix.ejb.Customer"
 scope="session"/>
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.OrderManagerHome"
 name="ejb/orderManager"/>
<ejb:use id="orderManager"
 type="book.casestudy.cosmetix.ejb.OrderManager"
 instance="<%=home.create(customer)%>"/>
<%
 orderManager.removeItem(request.getParameter("sku")); e
%>
<simple:redirect location="fullOrder.jsp"/>

b Gets the remote interface of the Customer EJB We retrieve the remote interface of
the Customer EJB from the session scope and add it to the page scope.

c Gets the home interface for the OrderManager EJB.

d Creates an OrderManager EJB Uses the Customer EJB as parameter.
e Removes the OrderItem with the specified SKU from the order.

Generic error view
The generic error view is a single card view used to catch any error thrown by any of
our JSP pages that does not explicitly name another error page. This page is called
jspException.jsp inside our application, as displayed in listing 14.16.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8"
 isErrorPage="true" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="welcome"

Listing 14.15 itemRemover.jsp

Listing 14.16 jspException.jsp

b

c

d

b

Implementation 559
 title="Cosmetix">
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 <p align="left">
 <bean:show object="<%=exception%>"
 property="message"/>
 </p>
 </card>
</wml>

b Defines this page as an error page.

c Includes the user menu view.

d Displays the exceptions message.

This view is defined as an error page in the web application’s configuration file
(web.xml) and does not therefore need to be defined in any page that could throw a
generic runtime exception. This configuration looks like listing 14.17, which is cut out
from the web.xml file of our web-application.

…
<error-page>
 <exception-type>javax.servlet.jsp.JspException</exception-type>
 <location>jspException.jsp</location>
</error-page>
…

The configuration tells the container that whenever an uncaught JspException is
thrown, jspException.jsp should be invoked. Any error page defined within a page over-
rides the applicationwide setting.

Instantiation error view
The instantiation error view is called when we try to access the Customer EJB from
the session scope but no such object exists. The page is called instantiationExcep-
tion.jsp in our application and looks like listing 14.18.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8"
 isErrorPage="true" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/ejb-taglib"
 prefix="ejb" %>

Listing 14.17 The configuration of the JspException handler in the web.xml file

Listing 14.18 instantiationException.jsp

c

d

b

560 CHAPTER 14

EJB-driven WAPStore
<ejb:home id="home"
 type="book.casestudy.cosmetix.ejb.CustomerManagerHome"
 name="ejb/customerManager"/>
<ejb:use id="customerManager"
 type="book.casestudy.cosmetix.ejb.CustomerManager"
 instance="<%=home.create()%>"/>
<ejb:use id="customer"
 type="book.casestudy.cosmetix.ejb.Customer"
 instance="<%=customerManager.getCustomer(
request.getUserPrincipal().getName())%>"/>
<%
 session.setAttribute("customer",customer); f
%>
<jsp:include page="userMenu.jsp"
 flush="true"/>

b Defines this page as an error page.

c Gets the home interface for the CustomerManager EJB.

d Creates a remote interface for the CustomerManager EJB.

e Retrieves the Customer EJB with the username of the user currently logged in The User’s
name is found in the request.

f Adds the Customer EJB to the session scope.

g Includes the user menu view This is normally the first page to request the existence of
the Customer EJB in the session scope.

Mail error view
The mail error view is an error page invoked if any exception is thrown from the
order confirmation view. It displays a single card alerting the user that the order has
been received, although no receipt could be sent. The page is called mailExcep-
tion.jsp in our application and looks like listing 14.19.

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8"
 isErrorPage="true" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/simple-taglib"
 prefix="simple" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/conditions-taglib"
 prefix="cond" %>
<%@ taglib
 uri="http://www.manning.com/jsptagsbook/beans-taglib"
 prefix="bean" %>
<?xml version="1.0"?>

Listing 14.19 mailException.jsp

c

d

e

g

b

Implementation 561
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="orderConfirmation"
 title="Confirmation">
 <jsp:include page="userMenu.jsp"
 flush="true"/>
 <p align="left">

 Order Received

 </p>
 <p align="left">
 Your order reference number is

 <%=request.getAttribute("orderId")%> d
 .
 </p>
 <p align="left">
 A receipt has not been sent to your email address
 (<bean:show name="customer"
 property="email"/>)
 , as we encountered delivery problems.
 </p>
 </card>
</wml>

b Defines this page as an error page.

c Includes the user menu view.

d Displays the value of the parameter ‘orderId’ in the request scope.

e Displays the user’s email address as stored in the Customer EJB in the session scope
We tell the user that the order has been received, but that we were unable to mail a
receipt to the user’s email address as it appears in the user’s profile (Customer EJB).
We don’t need to use the Customer EJB for anything but displaying its information,
so we never add it to the page scope.

14.3.5 Controller

The controllers are implemented as a number of Session EJBs. Figure 14.13 illus-
trates their remote interfaces and their relations to the entity EJBs described earlier.

c

e

562 CHAPTER 14

EJB-driven WAPStore
 There are three Session EJBs. For more information about their implementa-
tion, download the application as described in appendix C. Inside the application,
you will find the source code for all the EJBs listed in table 14.3.

Table 14.3 The Session EJBs acting as Controllers

EJB Description

CatalogueMan-
ager

Used to retrieve collections of remote interfaces for the Category and Prod-
uct Entity EJB in the form of Collections.

CustomerManager Used to retrieve the remote interface of the Customer Entity EJB. A username
must be passed as a string to the getCustomer() method of the Custom-
erManager.

OrderManager To create an OrderManager remote interface, a Customer Entity EJB has to
be passed in to the home interface of the OrderManager. The CustomerMan-
ager Session EJB is used to retrieve the user’s current order by calling the
getOrder() method. If there is no current order, a new order will be returned
instead. The OrderManager is used to add or remove items from the current
order and to confirm the user’s current order.

Figure 14.13 The Session EJBs acting as controllers in the application

Summary 563
14.4 Summary

It is a good idea to download the entire application from this book’s website, as
described in appendix C, so that you may go through the configuration files and
source code not covered in this chapter. If you feel as we do, that the best way to
learn the basics about a new technology is to incorporate your own changes to an
existing application, we’ve listed a number of ideas in table 14.4. You can use them
to extend the application or to try out your own knowledge of the tags in this book
and of WML.

Table 14.4 Ideas for improvements

Area Description

Scriptlets Some scriptlets have been left in the source code. Try to find tags that can substi-
tute the scriptlets or write new tags to handle these operations.

WML Scripting Implement WML script that will let the user add a number of products from the cata-
logue to his order all in one go.

Error pages Implement error pages that will handle FinderExceptions and CreateExcep-
tions in order to catch errors that could occur when trying to add or find users.

Administration Add an administration web application that will let an administrator add and remove
products, categories, and customers, in addition to processing orders received.

Part V

Design

C hapter 15 rounds out the book by emphasizing the dos and
don’ts of tag development and design. These should help you to avoid
common pitfalls while taking advantage of all the benefits of custom tag
development.

 15JSP tag libraries—
tips and trick
s

In this chapter
� Tag dos
� Tag development recommendations
� Tag don’ts
� Tag testing

567

568 CHAPTER 15

JSP tag libraries— tips and tricks
Like most complex component models, a complete book on JSP custom tags can
offer a thorough understanding of the subject without ever addressing all the possi-
ble pitfalls you might encounter. While developing a tag library, you’ll find it easy to
fall into one of the less obvious traps. For example, you might develop your library
on Tomcat only to find out that you could not find a tag-pooling and reuse-related
bug. Since Tomcat does not currently reuse tags, you’d be in trouble. In this chap-
ter, we’ll troubleshoot, suggesting techniques to avoid some common mistakes:

� Developing tags that can only run on a single web container
� Developing tags with the wrong functionality
� Developing tags that are not usable

We’ll also explore the necessity to know your tags’ intended user and the user’s
needs. While we won’t concentrate on actual design methodologies or patterns, we
will provide general hints regarding the development of tag libraries, and we’ll
make recommendations based on experience gained while developing tags.

15.1 The case for custom tags

Understanding the need for custom tags is crucial. To benefit from tag usage and
gain awareness of implicit design goals, you need to comprehend the reasons why
using custom tags is better than using the scriptlets and beans combination. For
example, if you know that tags should be part of the nonprogrammer’s arsenal, you
are more likely to do your best to improve the ease-of–use of your tags.

 Let’s look at a few primary reasons to use custom tags.

15.1.1 Tags and nonprogrammers

We are often confronted by Java developers who do not understand why they
need concern themselves with custom tags. The main arguments in their case
against tags are:

� Java is a comfortable, easy-to-use language. We already know its syntax, and
we can use it freely.

� We can place most of our application logic and data in a JavaBean component
and access it through scriptlets. In doing so, we minimize the number of
scriptlets in our applications.

� Custom tags will force us to learn a new proprietary syntax to achieve the
same development goals; so why should we use them?

The case for custom tags 569
Our answer is usually: If only your first argument were correct, you might, indeed,
have a case. However, Java is not an easy language, especially not for nonprogrammers.

 Java, like all programming languages, assumes that its user knows how to pro-
gram. It is full of strange syntactic elements such as: ;, ||, &&, ==, (), {, and so
forth. For example:

 What is the difference between <% if(x && y) { %> and <% if(x & y) { %>?
One is a Boolean “and” operator, and the other is a binary “and” operator. Would
you care to explain that to your nonprogrammer friend?

 We realize that some people will never understand how to program scriptlets in
any language although they can become productive when using the simpler custom
JSP tags.

 As we’ll see later in this chapter, a custom tag ideally provides documentation
geared toward the nonprogrammer user. Such documentation should explain how
and when to use the tag. Instead of learning a new general purpose programming
language, tag users can, instead, read a short document that illustrates how to use
the tag, and then develop their pages. In this way, nonprogrammers often gain a
productivity boost when using tags. Suddenly, they can send an email from a JSP
page with live database-driven data! And, given that tags are only tags, not Java
scripts, the nonprogrammer’s set of “normal” everyday editing tools can under-
stand the tags—or at least ignore them gracefully.

 This productivity improvement makes it possible for a relatively naïve developer
to accomplish complex tasks—tasks that he or she could never hope to achieve
without using tags. Letting the non-Java programmer perform complex operations
in JSP is one of the bigger selling points of tags. The overall lesson here is that cus-
tom tags often appeal more to the HTML developer than to the Java developer.

15.1.2 Reusing tags

Can you reuse your scriptlets? Doubtful. Can you reuse ten lines of JSP-embedded
Java that

� Set attributes into a send-mail bean
� Instruct the bean to send an email
� Catch exceptions
� Redirect the page (in some cases) to an error handler?

Copy-and paste is probably not going to serve you well on this one, as fixing a bug
in the original scriptlet is not going to update all its copies. Tags, however, are reus-
able components by definition. The lines of code and testing efforts that you invest
into developing a send-mail set of tags are ten times more useful than the ten-line,

570 CHAPTER 15

JSP tag libraries— tips and tricks
send-mail scriptlet. This also means that when developing new projects, you can
take advantage of tested assets developed for past projects.

 This reusability provides huge savings in development and testing time: one
more reason to use tags and one more consideration when developing tags. Always
develop your tags with reusability in mind.

15.1.3 Maintaining tags

Once you have finished developing your application, you need to maintain it. Roughly
speaking, application maintenance includes fixing business logic bugs and fixing/
updating the presentation. (The latter will be your major maintenance activity.)

 As long as you are not using scriptlets, fixing the presentation does not require
any Java skills. If you use scriptlets, however, any change to the presentation may
require a review by a Java programmer and maybe even a testing session. Using tags
frees you from this burden.

 On the business logic front, when you use tags instead of scriptlets, you needn’t
check out the JSP files. Fixing a bug becomes an issue of stepping through the Java
code; all JSP files can be left untouched.

 Clearly, in addition to reusability and improved productivity for the nonpro-
grammer, using tags also reduces your maintenance costs.

15.1.4 Tags and application performance

Many die-hard scriptlet coders complain to us that tags are slower than scriptlets
and using them renders JSP performance unacceptable. These are the same people
who insist, “Real programmers code in assembly.” In reality, the performance
impact (if any) of using tags is overshadowed by the savings in development time
and by pared down maintenance.

 Using tags may have a negative effect on performance. After all, we are creating
additional objects (the tag handler) and making more method calls (for attribute
setting and tag execution). Nonetheless, most new Java virtual machines (JVMs),
such as Hotspot, can handle small and short-lived objects as well as in-lining
method calls. This performance problem is thus diminished every day. Also, the JSP
container can employ object pooling on the tag handlers, thereby reducing the bur-
den on the garbage collector. Finally, the performance impact related to the custom
tags is negligible when compared to the impact of the work they perform. For exam-
ple, what is the impact of tag creation versus an SQL query to a database? Negligible.

 The effect that custom tags have on performance is not that much of an issue.
More crucial than performance and which methods perform better is the discussion
of the trade-offs between scriptlets and custom tags and a consideration of the long-
term costs of each development method. Yes, tags may cause some performance

Development considerations 571
degradation, but if this is critical, you can solve it by throwing money at the hard-
ware. In the end, this will be much cheaper than having to deal with scriptlets dur-
ing the development and maintenance phase.

15.2 Development considerations

When developing tags, you need to consider a few important dos and don’ts.

15.2.1 Tag development dos

If it is declarative it is probably a tag
If you’re wondering whether a particular action should become a tag, check to see if
the action is declarative, or can become declarative. If the answer is yes, making a
tag out of the action should be a breeze, and using the new tag should be easy.

 Remember, even if the action is not always declarative, you can check to see if an
interesting, simple instance of that action does exist that can become declarative.
For example, iterating arbitrarily over an array is not declarative, but moving on the
array one cell at a time can be.

A tag represents a single operation
Do not try to put too much into a single custom tag. A tag should implement a
basic, well-defined action; hopefully something that can be described in a single
sentence. Imagine an instance in which the tag foo sends email/queries a database
iterates on a database result—each of these alternative activities represents a reason-
able tag. If a description for your tag looks like “… the tag queries a database and
uses the data from the database to send an email …” then something will go wrong
with it. Perhaps you’ll find the tag is difficult to use (you need to specify both email
and database parameters in the same tag), or maybe the tag will not be as reusable
as two separate tags would be, or some other issue may arise. The point is, a tag that
performs both actions is not going to be as useful as the combination of two sim-
pler tags.

 Generally, when a tag does more than a single operation, four issues arise:

1 It is more difficult to explain the tags to the users, and, therefore, harder for
the users to use them.

2 Since the tags requires more input, understanding all the different input
parameters is a daunting task. Again, the tag is harder to use.

3 Integrating the tag along with other tags is more of a burden because it
already does some of their job.

4 It is harder to mix and match tags based on their quality.

572 CHAPTER 15

JSP tag libraries— tips and tricks
Having said that, life is stronger than any rule of thumb, and sometimes you will
want to forget the rule of one-tag single operation. For example,

� The iteration tags we developed in chapter 10 can also present the values of
certain fields in the iterator. This means that the tag implements two opera-
tions (iterating and printing), yet the ability to use the iteration tags to also
print the iterator values is so useful that we gave up.

� Suppose you need tags to connect two different tag libraries or families. For
example, you may wish to have a tag that reads a field out of a JDBC Result-
Set and sets it into a bean. Such a tag (like that presented in listing 15.1)
seems to perform two operations: reading the database field and setting the
bean value. Yet, performing these two operations is what lets the tag bind the
two tag libraries together, so we forget our rule of thumb.

package book.database;

import java.sql.ResultSet;
import java.sql.SQLException;
import java.lang.reflect.Method;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;

import book.util.LocalStrings;
import book.util.ExTagSupport;
import book.util.BeanUtil;

public class BeanSetterTag
 extends ExTagSupport {
 static LocalStrings ls =
 LocalStrings.getLocalStrings(BeanSetterTag.class);
 protected String query = null;
 protected String field = null;
 protected String bean = null;
 protected String property = null;
 protected Object o = null;

 public void setQuery(String query)
 {
 this.query = query;
 }

 public void setField(String field)
 {
 this.field = field;
 }

Listing 15.1 Source code for the BeanSetterTag handler class

Development considerations 573
 public void setObject(Object o)
 {
 this.o = o;
 }

 public void setBean(String bean)
 {
 this.bean = bean;
 }

 public int doStartTag()
 throws JspException
 {
 checkAttributes();
 ResultSet rs = null;
 try {

 rs = (ResultSet)pageContext.findAttribute(query);
 if(null != rs) {
 Object []p = new Object[]{rs.getString(field)};
 Method m =
 BeanUtil.getSetPropertyMethod(o, property);
 m.invoke(o, p);
 } else {
 throw new NullPointerException();
 }
 return SKIP_BODY;
 } catch(SQLException sqe) {
 // Throw a JspTagException
 } catch(java.lang.IllegalAccessException iae) {
 // Throw a JspTagException
 } catch(java.lang.NoSuchMethodException nme) {
 // Throw a JspTagException
 } catch(java.lang.reflect.InvocationTargetException ite) {
 // Throw a JspTagException
 } catch(java.beans.IntrospectionException ie) {
 // Throw a JspTagException
 }
 }

 protected void checkAttributes()
 throws JspException
 {
 if(null == field) {
 field = property;
 }
 if(null == o) {
 o = pageContext.findAttribute(bean);
 if(null == o) {
 throw new NullPointerException();
 }
 }

b

c

574 CHAPTER 15

JSP tag libraries— tips and tricks
 }

 protected void clearProperties()
 {
 query = null;
 field = null;
 property = null;
 bean = null;
 o = null;
 super.clearProperties();
 }
}

B Takes a column value out of the ResultSet. This is the first action performed by the tag.

c Sets the column value into a bean. This is the second action performed by the tag.

While it is important that a single tag perform one operation, this often isn’t the
most efficient approach. As with many rules in real life, we can sometimes ignore
this one (though we may sacrifice some advantages associated with obeying it).

Use TagExtraInfo
Supplying a TagExtraInfo implementation is not mandatory (unless you export
variables); but neglecting its implementation is not good, not good at all.

 If your tags have a complex set of attributes, with limits on the attribute values
and the relations between them (as we saw in the reflection case), you must provide
a TagExtraInfo implementation along with your tags. Even for tags with only
attribute values constraints, you will want to implement TagExtraInfo.

 The reason is, even if you have great tag documentation, errors will be associ-
ated with the tag attribute usage, due to copy-paste operations performed by the
tag’s user or, perhaps, innocent confusion. If TagExtraInfo implementation is not
provided, two problems will arise:

1 The JSP file will compile, but will throw runtime exceptions that the creator
of the JSP file does not follow. If I am the developer of the JSP file and I get
a NullPointerException from a tag (a missing attribute, actually), I will
immediately consider it a bug in the tag handler. The tag developer will
consider it a usage error.

2 Once the JSP file compiles and serves a request, the developer of the JSP file
assumes that tag usage in this file is correct, because the JSP file managed to
compile and serve a request. Yet, as we know, tags may stand inside frag-
ments of conditional JSP that your tests did not cover. Thus, you have usage
errors in JSP files that compile and run, and which you assume to be okay.

Development considerations 575
The only way to avoid these problems is to provide TagExtraInfo to validate the
attribute syntax. This solves the first problem since the JSP translator will generate
error messages while translating the file, and the messages will say, in effect, “There
is an error in the attributes values for tag foo”, which leaves no ambiguity in the
nature of the error. The second problem is resolved since the JSP translator covers
the entire JSP file without paying attention to conditional HTML (so the entire JSP
file is checked for errors).

 To summarize, as your tag will not be complete without a validating TagEx-
traInfo, create one.

Document your tags’ usage
Tag documentation is not composed of Javadocs. The users of your tags are not
intended to be Java programmers, and the Javadocs are not going to make any sense
for them.

 The tag’s documentation should be more akin to a reference manual, wherein
you explain the tag in terms of its functionality, usage, and attributes. For each tag
attribute you want to specify the attribute’s functionality—whether it is a required
attribute, whether it can accept runtime values, what the expected values are, and so
forth. Also specify other parameters affecting the tag, such as the application and
page-based configuration parameters and the J2EE environment values, and provide
a few tag usage samples.

 By reading this documentation, the HTML developer (remember, little or no
Java background) will know how to use your tag. Documentation that describes
advanced features that can only be understood by a fellow Java programmer should
be kept in a different document or labeled “advanced topics.”

 We are not professing that you should never Javadoc your tags, nor are we warn-
ing you to stay away from Javadoc, the tool. In fact, by developing a few custom
doclets (Javadoc extension components), you should be able to draw the user level
documentation you need using Javadoc.

Design your tags with usability in mind
The user of your tag is probably a veteran HTML coder who will feel comfortable
using tags; nevertheless, most users don’t like tags with too many attributes and
overly complex functionality. Imagine what would happen if you created a tag with
six or seven attributes and complex relationships between attributes. Most users can-
not overcome that many possible attribute value combinations. This means:

� Always consult the users of the tags (i.e., the HTML developers) to achieve a
high degree of usability.

576 CHAPTER 15

JSP tag libraries— tips and tricks
� When a certain action requires a number of input parameters, try to break the
action into several reasonable tags.

� Before adding an attribute to the tag, ask yourself if the attribute is absolutely
necessary.

By following these guidelines, the tags that you create are more likely to be usable.

15.2.2 Tag development don’ts

Tags are great at taking data from the business logic, embedding it into the page,
and replacing scriptlets; however, we want to avoid certain pitfalls when implement-
ing tags.

Do not mimic HTML tags with JSP custom tags
Many Java developers have a tendency to mimic HTML functionality with custom
JSP tags. We met a developer who said he is considering developing a set of tags to
provide “style” for the JSP files. He explained that he would hold a single style file
for the entire site and inject specific HTML tags using his custom JSP tags. We
pointed out that the Cascading Style Sheets (CSS) specification does exactly this,
only on the client side.

 This anecdote exposes an important issue, which is that you should not dupli-
cate HTML functionality using customs tags for several reasons:

� With advances in CSS, HTML4, and XHTML, it is a waste of time and CPU
power to mimic certain HTML tag configurations with JSP tags. You can
achieve better results by using standards-based techniques and placing the
burden on the client (instead on the server).

� Unless you are developing an editing tool that uses your tags, the page design-
ers will have a difficult time adding these tags to the content. For example,
since a simple browser or editor will not be able to show your JSP, the editing
will not be in a “what you see is what you get” (WYSIWYG) fashion.

� Tags that mimic HTML or any other markup language functionality will not
be useful for other presentation languages such as WML. All your document
developers’ know-how regarding these custom tags will be irrelevant as soon
as you are not working with the certain markup language, which means that
important knowledge is lost.

Our recommendation is to leave content formation to the document and have the
tags perform business logic and complex operations such as sending email and que-
rying a database.

Development considerations 577
NOTE A tendency exists to duplicate the functionality of the HTML form tag and
the HTML controls with a set of custom tags. In this case, the custom tags
can be responsible for the following actions: injecting the form-related
tags, injecting JavaScript code to run on the client’s machine and verify the
form’s content before submitting it, and putting default values in the con-
trol fields based on a bean value. This last case is “different” since the JSP
custom tags not only create the form tags but perform logic to set default
values and create automatic verification. Here you will have to judge for
yourself if the results justify the considerable effort related to creating all
the necessary custom tags.

Do not generate tagged content with JSP custom tags
Sometimes developers try to place markup in the result of the tag. For example, the
author of an exception writer tag may decide that surrounding the exception’s stack
trace with a pair of HTML <pre> </pre> tags will make a lot of sense.

 Putting even the smallest markup inside your tag’s output greatly limits the tag
usage. All the disadvantages discussed in the previous section apply in these cases
but, more than that, you are limiting the tag usage. What if you want to email the
stack trace to the system administrator using the JavaMail tag developed in chapter 7
and the exception writer tag? The <pre> </pre> markup is not going to help us in a
plain text email. Our recommendation, again, is to keep markup and presentation
issues out of your tags. Tags should perform logic, not create presentation.

Do not invent a programming language
Many developers make a nonobvious mistake and try to develop custom tags that
will allow their users to program explicitly in the JSP file. Look at the following JSP
fragment, which employs the tags <for> and <arrayaccess>:

<for low=”1” high=”10” step=”1” indexname=”i”>
 The value is <arrayaccess array=”myarrayname” index=”i”/>

</for>

This code fragment example is a piece of explicit programming. The tag developer
wants to write the first ten entries in the array into the response sent to the user.
Using the supplied tags, the developer needs to explicitly program everything, start-
ing with the for loop that walks over the array and ending with fetching the array
elements. This is not the declarative programming we discussed. To achieve some-
thing with this type of tags, a complete, tag-based programming language must be
defined—not something we want to do.

578 CHAPTER 15

JSP tag libraries— tips and tricks
 Inventing a tag-based programming language is going to be a colossal effort. In
addition, inventing such a programming language would force the learning of a
new programming language and miss the audience of custom tags—meaning the
HTML developers. We already have a programming language for JSP: Java (or
another language specified in the JSP language attribute). If you feel the urge to
use explicit programming, use Java.

15.3 Further development and testing

Tags are no cinch to develop and test. A normal code-compile-test-debug cycle for
a Java component can be done within a single integrated development environ-
ment. When developing a tag library, you need a servlet container to test your tags,
a JSP file to drive the tags, and a coding and debugging environment.

 Let’s look at a few key development and testing issues that may arise while devel-
oping tags.

15.3.1 Debugging tags

Debugging tags is a relatively complex operation: You need to create a JSP file and
deploy the tag library in a container, then make an HTTP request to this JSP file.
With all this trouble, many developers forget that all they need to debug is the tag
handler class and, although the test environment is strange, they can use a debugger
to step through their handler class code.

 Tag handlers are merely a piece of Java code. Run the servlet container inside
your favorite IDE and place breakpoints within the handler’s code. Some tags pre-
sented in this book were debugged using Tomcat inside an IDE. In fact, when using
an open source container such as Tomcat, one can even step in and out of the con-
tainer’s implementation source.

 The alternative to using a debugger is placing trace statements within the code.
While it is true that tracing has its virtues,1 it cannot fully replace a debugger.

15.3.2 Testing tags on more than one JSP container

JSP is a standard. Servers should pass the compatibility kit test, but nobody prohib-
its the containers from implementing value-added features into the container. This
phenomena implies that, when you develop your tags on a specific container, you
may find yourself relying (unconsciously) on a specific added value feature available
only in this specific container.

1 See The Practice of Programming by Brian W. Kernigan and Rob Pike.

Design recommendations 579
 Consider an example of such an added value feature and see what can result.
Let’s say that, while developing a tag, we needed it to take a Boolean runtime
expression attribute. This was okay, and we had our tag taking such attributes in no
time. This tag was used on the Orion application server with success. Life seems
good. The tag even managed to accept boolean runtime values (yes, boolean, the
primitive type; not Boolean, the object). Then we took the library and discovered
that it cannot accept boolean values on Tomcat because Tomcat blindly followed
the JSP specification and did not provide the needed translation from boolean to
Boolean. Guess what? We had to add yet another setter method.

 Let that be a lesson learned: Never test on a single JSP container.
 When developing tags it is predictable to conclude that tags are strange beasts

requiring a special development environment. This assumption is why many devel-
opers fail to use a debugger to test their code. It is even easier to decide that just
because a tag executes within a certain container it will execute on all containers.
Never assume. Test with several different containers.

15.4 Design recommendations

When developing a tag library (as opposed to developing a single tag), you may want
to invest extra effort into designing the library so that it better fits your target users.
Some of the more useful value-add options are presented in this section.

15.4.1 Opening library internals

Crosby, Stills, Nash, & Young sang, “…If you can’t be with the one you love, love
the one you’re with.” The problem with applying this attitude to the JSP world is
that loving the tag library you are with is not going to work if you cannot adapt it
to your needs.

 Even if you believe that your tag library is complete, it’s important to allow users
to extend its functionality and document the extension methods. For instance, we
can extend our iteration tags by supplying helper objects for the iteration and get-
ting the field values. By documenting this feature, we ensure that whoever pur-
chases our tags will be able to extend them to handle any new requirements that
come up.

 The same thing applies, of course, to the database library developed in this book.
In fact, one fault in our database library is that we execute only queries and do not
support updates. The solution to this shortcoming is easy if we open the library
interfaces. In this case, a third-party developer could take a database connection cre-
ated by a connection tag and use it inside an update tag to modify the database.

580 CHAPTER 15

JSP tag libraries— tips and tricks
 It is clear that opening the library for third-party changes may require a special
license. It may also require a change in the library price model. However, if you are
planning to sell the tags or use them in-house, the ability to modify the library will
provide users with a substantial advantage in the long run.

15.4.2 Generalizing your tags

There is good reason to assume that if you need a specific action, then, most likely,
that action is a specific case of a more generalized need. In chapter 6 we developed
a tag whose role is to flush the output stream that is connected to the user; but we
can generalize that. Flushing the output stream was a method call, but it was also a
command that we gave to the JspWriter object. Command objects are a known
design pattern2 that can be useful within the JSP programming environment.

 Command is a behavioral design pattern whose intent is to encapsulate a request
as an object—in everyday cases, this means a method call on an object. By encapsu-
lating a request as an object, you can bridge the differences between systems and
hide complex operations within an easy-to-use interface. (Additional uses for the
Command pattern exist, but we will not go into them here.)

A simple command pattern example
To make the Command pattern concrete, let’s take a look at a basic example. We
have a command class named SendMail whose job is to send email. SendMail has
three command parameters:

� to—the email’s receiving end
� subject—the email’s subject
� body—the email’s body

and has an execute method to send the email.
 Using the SendMail command from within a Java program looks like:

SendMail cmd = new SendMail();
cmd.setTo(“some@address”);
cmd.setSubject(“some subject”);
cmd.setBody(“Some body …”);
cmd.execute();

It is possible to implement the first four lines using the standard JSP <jsp:use-
Bean> and <jsp:setProperty/> tags presented in chapter 2. We can also instanti-
ate the command and set its parameters within a servlet and send the command to

2 For more information on design patterns, see Design Patterns Elements of Reusable Object-Oriented Soft-
ware by Erich Gamma, et. al.

Design recommendations 581
be executed within the JSP, but something is missing. Calling execute() is not pos-
sible from within any of the tags we have discussed thus far. If we want to use the
Command pattern from within our JSP files without using some scriptlet, we need
to remedy this problem.

A generalized tag: CommandTag
Forget for a moment that we are dealing with a design pattern and, instead, concen-
trate on what is keeping us from using the design pattern. Our problem is that we
cannot trigger the execution of the command object. We can’t trigger the com-
mand object because triggering involves calling a method, something that the stan-
dard bean tags (available as part of JSP) are not doing. Thus, we need a tag that
implements the logic to execute methods with a void parameter list. This solves this
issue, and, indeed, such a tag is available in listing 15.2.

 As you can see, CommandTag accepts three attributes:
� the name of the command method
� the command object instance (optional information, can be replaced by the

command object name)
� the command object name (optional information, can be replaced by the com-

mand object instance)

After collecting these attributes, CommandTag uses reflection to invoke the command
execution method on the command object.

package book.reflection;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

import book.util.LocalStrings;
import book.util.ExTagSupport;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;

public class CommandTag
 extends ExTagSupport {

 static final Class []emptyParamsType = new Class[0];
 static final Object[]emptyParamsValue = new Object[0];

 static LocalStrings ls =
 LocalStrings.getLocalStrings(CommandTag.class);

Listing 15.2 Source code for the CommandTag handler class

582 CHAPTER 15

JSP tag libraries— tips and tricks
 protected Object obj = null;
 protected String objName = null;
 protected String cmd = null;

 public void setObject(Object o)
 {
 this.obj = o;
 }

 public void setName(String name)
 {
 this.objName = name;
 }

 public void setCommand(String cmd)
 {
 this.cmd = cmd;
 }

 public int doStartTag()
 throws JspException
 {
 obj = getPointed();
 fireCommand();
 return SKIP_BODY;
 }

 protected Object getPointed()
 throws JspException
 {
 return (null == obj ?
 pageContext.findAttribute(objName) :
 obj);
 }

 protected void fireCommand()
 throws JspException
 {
 try {
 Method m = obj.getClass().getMethod(cmd, emptyParamsType); B
 m.invoke(obj, emptyParamsValue); C
 } catch(InvocationTargetException ite) {
 //Throw a JspTagException
 } catch(IllegalAccessException iae) {
 //Throw a JspTagException
 } catch(NoSuchMethodException nme) {
 //Throw a JspTagException
 }
 }

 protected void clearProperties()
 {
 obj = null;
 objName = null;

Design recommendations 583
 cmd = null;
 super.clearProperties();
 }
}

B Locates the command method to be invoked.

C Invokes the command method with an empty argument list.

Generalizing the problem here yielded an extremely useful tag, one we can utilize in
many other cases. For example, the following JSP fragment can send an email using
our new command tag:

<jsp:useBean id="mailer" scope="page" class="SendMail">
 <jsp:setProperty name=”mailer” property="to" value="john@doe.com" />
 <jsp:setProperty name=”mailer” property="subject" value="your email subject"

/>
 <jsp:setProperty name=”mailer” property="body" value="your email body" />
</jsp:useBean>
<jspx:cmd command=”execute” name=”mailer”/>

Sometimes, simple tags are only an indication of a more generalized problem wait-
ing to be solved. Don’t be shy about the generalized problem. Solving it will bene-
fit you.

15.4.3 Integration and the surrounding environment

Integration has been a key theme throughout this book. We have seen numerous
examples:

� We started with the application context parameters used by our tags (and this
way, those tags were integrated into the web application).

� We continued with the usage of the J2EE environment (the tags were inte-
grated into J2EE).

� We ended with opening the libraries to objects set by the application’s serv-
lets (the tags were tightly tied into the servlet’s implementation).

 We see two advantages for integration:

1 Ease of use: It is much easier to configure tags if they are integrated into
your application’s configuration infrastructure.

2 Usefulness: The ability to set objects from the application to the tags, and
vice-versa, increases the code’s usefulness.

584 CHAPTER 15

JSP tag libraries— tips and tricks
It is true that integrating your tags with the application requires coding that may
not be obvious. Why, you may wonder, do you need to place the database URL
inside the application deployment descriptor when you can hard-code it in the JSP?
Because the results help create a flexible and easy-to-use application. Switching
from one database to another, for example, will require a change to a single place.

15.4.4 Tags and general purpose libraries

Although the tag libraries developed throughout this book are general purpose,
not all tag libraries must be so. By general purpose, we mean that the libraries are
not part of a bigger program, but may stand alone as a set of components usable
in any application.

 Some tag libraries have meaning only within the context of a greater whole. Say
you are developing an online catalogue product, and you want to open it up for JSP.
One way to do so is to make the catalogue accessible through JavaBeans. This is an
acceptable option, but, as you might guess, we have a better idea: access the cata-
logue through JSP tags. That way, you can take advantage of all the custom tag
advantages described in this book.

 The tags developed in this book can contribute to almost any web application
because they perform common activities that virtually all web applications require.
A tag library that serves as a gateway to a specific catalogue contributes only to
applications that use the catalogue. This means fewer applications.

 To summarize, adding a tag interface to some proprietary product will improve
its usability and provide added value not possible before custom tags. Even an appli-
cation server vendor should consider adding tags to its server distribution to facili-
tate the creation of online server status reports.

15.5 Additional points to remember

This section lists bits of information, not easily categorized, that we feel are impor-
tant enough to review.

15.5.1 The tag life cycle

When the JSP runtime creates a tag, you cannot assume anything about its life cycle
other than what is specified by the tag API. More specifically, you cannot pass the tag
instance and store it anywhere once doEndTag() or release() are called. It is easy to
forget that tags can be recycled. Recently, the Duke Pet Store from Sun was known
to use tags after doEndTag() and release() were called, which made the applica-
tions behave strangely, at best, for application server vendors that reused the tags.

Additional points to remember 585
 The exact error that existed in Duke Pet Store can be explained using the fol-
lowing code fragment:

<sometag>
 <someothertag id=”a”>
 <someothertag id=”b”>
</sometag>

As you can see in this code fragment, we have the tag named sometag enclosing
two tags of type someothertag. In this instance, the JSP environment can employ
reuse techniques and use the tag instance created for someothertag-a, also in
someothertag-b. The bug in Duke Pet Store was that the implementation of
someothertag-a and someothertag-b added a reference to itself into sometag.
This reference broke down when the JSP environment recycled someothertag-a
and reused it to execute someothertag-b.

 Lesson learned. Remember the tag life cycle and follow it without regard to the
portion of the life cycle that the JSP environment implements. Do not pass around a
reference to the tag. Instead, use objects created in the tag just as we did in our
database library.

15.5.2 The case for scriptlets

Sometimes you do not have to get into the overhead of developing tags. If the
action performed by the scriptlet is short, does not repeat itself, and is not signifi-
cant to you, then there’s not much need to wrap the action with a tag.

 Note, however, that if the action repeats itself (even if slightly differently) in sev-
eral places, it should be wrapped (or a generalization of it) in a tag, even if the
action is small in size (say, <%= request.getAttribute(“somename”) %>).

15.5.3 Freeing allocated resources

The tags developed through this book use an automatic resource deallocation tech-
nique. All that is needed is to implement (clearServiceState() and clearProp-
erties() and your state is clean.

 In reality, many tags are developed without paying attention to resource deallo-
cation. Why? That’s a good question. Usually, the tags were not designed from the
ground up with resource management in mind but evolved into tags that allocated
a good deal of resources.

 When developing your tags, keep in mind that you will have to clean up both
your tag’s state and property values. Make sure that you are doing so. Failing to
clear your properties will yield bugs, and failing to free resources will bring the web
application down, due to resource leaking.

586 CHAPTER 15

JSP tag libraries— tips and tricks
15.5.4 Caching expensive results

Cache results of intermediate computations. An example of caching results is avail-
able in our BeanUtil class. BeanUtil introspects the classes of our beans and looks
for specific Method objects, which can take a lot of time. To improve performance,
we keep the results of our intermediate computations (Method objects) in a hash-
table, thus providing a considerable performance boost.

15.5.5 Supporting JSP1.1 and JSP1.2

JSP1.2 has been released in the form of a proposed final draft. It took more than a
year from the time of the JSP1.1 public draft until the majority of the application
servers and servlet containers implemented it in a supported release version. This
means that you will have to deal with a mixture of two JSP versions for a long time
to come.

 Luckily, the difference between your JSP1.1 and JSP1.2 tags should not be that
big. As we’ve shown throughout the book, you’ll find it easy to support the modi-
fied tag life cycle in your tag’s base class. A problem arises only when you want to
use the new IterationTag to implement efficient, copy-free iteration (as explained
in chapter 10). This feature is supported solely by JSP1.2, thus any tag that relies on
the IterationTag limits you to using JSP1.2-only containers.

 Our recommendation is to implement both versions of the iteration related tag,
one based on BodyTag, and the other based on IterationTag. This way your
library can work in both JSP versions (and, using the iteration framework presented
in chapter 10, you can easily implement the two tag versions).

15.6 Summary

Tags carry the promise of improved productivity for the nonprogrammer, simpler
code maintenance, and improved reusability. This is why you should consider using
them in the first place. Do your best to achieve all of the above with your tags (oth-
erwise, you’ll miss out on some benefits).

 Remember, ease of use is one of your main goals. Make your tags as uncompli-
cated as possible (if a tag is getting too involved, break it into two cooperating
tags), document their usage and provide, as many usage samples as possible. Always
keep in mind that the user of the tags may not be a programmer; so, do not assume
too many programming skills.

 You will want to make your tags as reusable as possible. For example, an iteration
tag that knows how to iterate over arrays, containers, enumerations, and the like is
going to be much more useful than several different iteration tags (one for array,
another for some container type, and so on).

Summary 587
 The reusability and ease of use offered by tags may cause small performance deg-
radation. Nonetheless, performance is not a silver bullet. As important as it is, per-
formance is just one more factor that affects the cost of deploying a software-based
solution. If achieving good performance renders your tags too complex (or inter-
feres with reusability), make a clear decision regarding which factor is going to cost
more—performance or lack of usability.

 Tags should not attempt to overachieve. A tag implementing a single, declarative
action and accompanied by a TagExtraInfo to validate its attribute input will be easi-
est to use. Tags also should not format their output. Putting markup and other forma-
tion decisions inside the tag locks them outside of the page designer’s reach, and locks
your tags to the specific markup—not really something you want to have happen.

 Try not implement low-level, programming languagelike functionality using tags
(unless absolutely necessary). Creating such tags is a colossal effort and is always
going to fall short of a task (and require programming know-how or a steep learning
curve). If you require a programming language for your JSP files, use scriptlets.

 Finally, many ways exist to improve your library; some more useful ones are the
integration options with the JSP environment, the generalization of the tags con-
tained in the library, and the ability to extend the library to support new require-
ments. You do not have to apply all these tools, yet each will greatly improve the
usefulness of your library.

 Having said all this, remember that a tag library does not have to be a general-
purpose library that can be used as a stand-alone product. A tag library can be part
of a greater product and used only to expose its capabilities in an easy and pervasive
manner and, so, provide added value to the product.

 AWhat is XML?
In this appendix
� XML vs HTML
� What is DTD
� XML pitfalls
� Using XML
589

590 APPENDIX A

What is XML?
Extensible Markup Language (XML) is a metalanguage used to describe documents
containing structured data. Because this generic definition can seem confusing, let’s
define our terms. A metalanguage is a higher-level language that describes lower-
level languages. As we’ll soon see, XML defines a basic syntax to use in creating your
own language for sharing data in documents. We often think of a document as a file
containing information. In XML, a document is not geared typically toward presen-
tation (as is an HTML document). On the contrary, an XML document is used for
data description, namely, holding structured data. This concept of structured data is
something that can be best explained through an example. Imagine that you want
to create a text file to save information about a new computer you’re buying. You
may decide to keep the information in an unorganized paragraph in which you list
all the features the computer will have. This paragraph is an example of unstruc-
tured data. Another option for describing your new computer might be to create a
table and place the features and specifications logically into columns within the
table. Now, the data is structured. XML provides a way to define markup languages
that describe such structured data.

 How do XML and its structured data apply to JSP custom tags? The TLDs that we
developed, as well as the web application deployment descriptor, are XML documents.
In fact, any J2EE deployment descriptors are also XML documents, as are the configu-
ration files for many popular application servers. Because XML is so widely used in the
arena of custom tags, understanding XML can help you avoid simple problems.

 Let us then begin with our XML tutorial.

A.1 XML vs HTML

XML is a markup language like HTML, meaning that you use tags to annotate your
data. The main differences between HTML and XML are:

� In HTML, both the syntax and semantics of the document are defined by the
HTML specification. You can use HTML alone to create a visible interface to
the user. XML, on the other hand, only allows you to define document syntax.

� In HTML, documents are not well-formed (i.e., they don’t adhere to strict
rules). Not all tags are closed with a matching tag, and occasionally users may
omit matching closing tags without creating a problem for most web brows-
ers. XML documents, on the other hand, are well-formed, easing parsing and
extending the content and syntax of the documents.

A.2 XML syntax

Let’s look at a sample XML document to get a feel for the syntax:

XML syntax 591
<?xml version="1.0"?> b
<!-- define a batch command with two parameters and a single
 processing point --> c
<batchoperation>
<parameter>
 <type>integer</type>
 <value>1</value>
 <name>copies</name>
</parameter>

<parameter>
 <type>string</type>
 <value>print</value>
 <name>command</name>
</parameter>

<process priority=”high”/> e
</batchoperation>

The sample XML document contains the following document parts:

b Declaring tht this is an XML file In the first line, a processing instruction <?xml ver-
sion="1.0"?> identifies the document as an XML document. The general structure
of an XML processing instruction (PI) is <?pi-name pi-value?>. The XML parser
should treat PIs as information passed from the XML author to the parser. In process-
ing the <?xml version=”1.0?”> tag, for example, the PI informs the parser of the
XML version. In the absence of this PI, the parser would have to guess the version.

c An XML comment A developer can place comments inside the XML document.
XML comments have a prefix of <-- and a suffix of -->. Everything in between
(other than --> or --) is considered part of the comment.

d A tag with a body Several XML elements (tags) form the majority of the markup in
the file. Most elements define something about their content. For example, the data
enclosed within a <parameter> element represents a parameter. Some elements
have content (such as the <parameter> tag). Each element with content has a start-
tag as well as an end-tag. Empty elements (e.g., the <process/> tag) have only a
start-tag, which must be terminated with a trailing “/>” sign as in the example.
These two conditions on elements’ markup are a crucial part of the “well formed-
ness” associated with XML.

e A bodyless tag Each XML start-tag can have a list of attributes. Each attribute in
that list is a name value pair that looks like name="value".

Because our sample XML fragment is well-formed, any standard XML parser can
parse it without a problem, even if we did not provide syntax information. This ease

d

592 APPENDIX A

What is XML?
of parsing is possible because our document obeys strict rules regarding its forma-
tion, and the parser relies on this adherence.

A.2.1 DTDs

Occasionally, you may wish to have the XML parser validate your file based on a syn-
tax definition supplied by you. To accomplish that, those syntax definitions must be
specified in a file called a document type declaration (DTD). Keep in mind that a
program may output or input XML without using a DTD. However, for situations
in which your program needs to validate the incoming XML to ensure its adherence
to a particular format, you need a DTD. A DTD tells the XML parser which syntax
rules to use while parsing an XML document. For example, a DTD can describe the
tag names for entities; the attributes that can be associated with each tag; the tags
that can have content (and what type of content); and so forth. Following this,
either embed the DTD directly in the document or–and this is more common–store
the DTD in another location and point to it by providing the parser with a reference
to the type declaration. Since the XML descriptors in use within J2EE simply refer-
ence the DTD as defined by the J2EE committees, we will only discuss referencing a
DTD from the document.

Referencing a DTD
You can refer the XML parser to an external DTD by using the <!DOCTYPE> directive
as we do in the following XML fragment:

<?xml version="1.0"?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

The general structure of a <!DOCTYPE> directive is rather complex . A version that
you will see frequently in J2EE descriptors is <!DOCTYPE Name ExternalID>,
wherein the Name represents the DTD (taglib in the example) and the Exter-
nalID references a DTD located outside the document (often on another server).
In the sample<!DOCTYPE> declaration above, the ExternalID has two parts:

1 PUBLIC “-//Sun Microsystems,Inc.//DTD JSP Tag Library 1.1//EN”

identified the document type as a public document with a public identifier.
The parser can look for a DTD based on only the public identifier. In our
case, the parser will look for a type declaration, or DTD, for "-//Sun
Microsystems, Inc.//DTD JSP Tag Library 1.1//EN".

2 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd" oper-
ates as a system identifier. The system identifier identifies a URI that points

XML pitfalls 593
to the location from which you can take the type definition (in our case the
URI points to a location in Sun’s website).

The <!DOCTYPE> directive must be the first thing the parser sees in the document
(or just after the initial <?xml?> PI) so that the parser is able to read it before pro-
cessing, and thus validating, the XML file.

Using a DTD
Now that we know how to refer the parser to a DTD, let’s get back to our batch
processing XML sample and add a DTD reference to it. We will not define a DTD
(that is a bit out of the scope of this tutorial). Instead, we will simply add a fictional
DTD reference to the batch processing example as in the next XML fragment:

<?xml version="1.0"?>
<!DOCTYPE bogus
 PUBLIC "-//Bogus batch processing//EN"
 "http://bogus.acme.com/bogus_batch.dtd">

<!-- define a batch command with two parameters and a single
 processing point -->
<batchoperation>
<parameter>
 <type>integer</type>
 <value>1</value>
 <name>copies</name>
</parameter>

<parameter>
 <type>string</type>
 <value>print</value>
 <name>command</name>
</parameter>

<process priority=”high”/>

</batchoperation>

Here we have added a DTD reference (boldface) to a bogus DTD that uses a public
identifier. With this DTD reference in place, an XML parser will now go beyond
reading and parsing the document; the parser will fetch the DTD from
bogus.acme.com, and use it to validate the XML document.

A.3 XML pitfalls

Most developers found out about XML after previous experiences with markup lan-
guages such as HTML and SGML. Yet, when we try to apply our previous markup

594 APPENDIX A

What is XML?
experience to XML, we find ourselves making errors. Why? Simply because of the
different (and stronger) syntax associated with XML.

 Unlike HTML, case does matter in XML. For example, <SOMETAG>, <sometag>,
and <SOMETAg> are three different markups in XML! When you add something to a
TLD file or a web application deployment descriptor, you will want to watch your
caps-lock key. The same rule applies, of course, to attribute names.

 Another problem occurs with nonempty entities and their start- and end-tags.
In XML, you must mark an element’s content with a start- and end-tag. No other
option exists. So, in XML, the following fragment

<parameter>
 <type>string
 <value>print
 <name>command
</parameter>

is not valid. And the fragment

<parameter>
 <type/>string
 <value/>print
 <name/>command
</parameter>

has a completely different meaning from this fragment:

<parameter>
 <type>string</type>
 <value>print</value>
 <name>command</name>
</parameter>

Another common error is typos in empty elements. A trailing “/>” should termi-
nate an empty element. However, a background in HTML (wherein
 does not
create a problem), coupled with an approaching deadline, can make us forget the
necessity for precision in XML. Typos are, of course, errors and, unfortunately, not
always easy to locate.

A.4 Why XML?

Now that we’ve explored basic XML, we need to consider why and for what, in par-
ticular, we might want to use XML. XML typically is used to share data in heteroge-
neous environments, from one system type to another.

 To illustrate this point, let’s imagine a fictional company, BuyAWreck.com,
which offers information about used cars for sale on its website. It wouldn’t make
sense for BuyAWreck’s internal systems, such as payroll, email, sales, and so forth,

Additional reading 595
to use XML to share data since the company has total control over what systems
(hardware and software) are being used. Software packages, such as Lotus Notes,
are designed to share information and data between multiple clients and servers
with common databases, and communication protocols and file formats. Changing
this data sharing so that it’s accomplished via XML would hardly be beneficial,
because XML parsing and transmission inflicts an unnecessary performance penalty.
This performance hit isn’t worth absorbing when your software client and server
are both under your control and can be configured to share data in the manner
intended by the software vendor. Car dealerships, however, which supply
BuyAWreck with information about vehicles, are outside the company’s control.
For them, it makes sense to define an XML language, using a DTD, that all the deal-
erships must speak if they wish to provide data to BuyAWreck. With this approach,
Bob’s Junk Heap can create a compliant XML file from its Paradox database, while
Old Joe’s Lemons can properly format its Oracle data, and Tim’s Jalopies can write
the file by hand (if so desired). When any of these XML files arrives at BuyAWreck, it
is validated against the pre-defined DTD and easily imported, despite the fact that
each file came from a different source.

 Data sharing such as this is the most tangible benefit of XML. This same logic
applies to why J2EE-compliant servers use XML, since each vendor may build their
application server in a slightly different way. By adhering to a DTD for TLDs,
deployment descriptors, and the like, one file can work in any vendor’s application
server environment.

A.5 Summary

Despite the hype and relative mystique surrounding it, XML is, in reality, no mys-
tery. It is basically a set of constructs that can be used to describe your own data lan-
guage. Already, thousands of DTDs are available for sharing XML data in every
industry imaginable—from medical to entertainment. By remembering that XML is
not HTML (especially when it comes to syntactic rules), you should be able to wrig-
gle out of any XML-related errors with no real difficulty.

A.6 Additional reading

XML is documented in many books as well as different locations throughout the
web. However, if you are an XML rookie, your first step would be the great tutorial
written by Norman Walsh. This tutorial is available at http://www.xml.com/pub/
98/10/guide1.html. When you have finished with the tutorial, you may want to
refer to the resources section at http://www.xml.com/pub/resourceguide/

596 APPENDIX A

What is XML?
index.html. Also, XSLT Quickly by Robert DuCharme (Manning Publications,
2001) provides an excellent guide for exploring Extensible Stylesheet Language
Transformation (XSLT), a language that allows the conversion of XML documents
into other XML documents, into HTML documents, or nearly any other type of
document you wish.

 BThe Tag Library Descriptor
In this appendix
� The TLD syntax
� TLD elements and their use
� A sample TLD
� TLD extensions in JSP1.2
597

598 APPENDIX B

The Tag Library Descriptor
TLD is an XML file that provides tag library-based information to the JSP parser and
various JSP editing tools. In general, the TLD is an XML file whose elements provide
two types of information:

� Basic information listing the version of the library and the JSP version on
which the library depends.

� A list of tags included in the library, as well as a list of implementing classes,
names, attributes, and so on.

The TLD needs to comply with basic XML guidelines (as seen in appendix A), yet also
needs to comply with a specific syntax defined for type library descriptor elements.

 This appendix will present the elements used within the TLD, their syntax, their
semantics, and so forth. We will also offer a few examples of TLDs.

B.1 TLD elements

Let’s look first at the elements in a TLD, starting with the topmost (taglib).

B.1.1 The taglib element

The root element of the TLD is the taglib element. Its purpose is only to sign the
tag library description portion and to enclose all the other TLD elements. Within
the taglib element, you can find a set of subelements, as presented in table B.1.

Table B.1 The top TLD elements and their meanings

Element Description Mandatory

tlibversion Specifies the version of the tag library. Development tools
can read this value and present it to the developer.

Yes

jspversion Specifies the JSP version that this tag library needs to work.
If not specified, the default value is 1.1.

No

shortname Provides a sample short name (prefixes the tags in the JSP)
that the developer can use.

Yes

uri Specifies a public URI that uniquely identifies this version of
the tag library. It is recommended that the URI be a URL to a
public location where people can find this TLD.

No

info Descriptive information about the tag library. No

tag Each tag library can contain one or more tags, and for each
you should have a TLD tag element. This element encloses
a definition of some tag.

Yes

TLD elements 599
The order of appearance of the taglib elements in the TLD matches the order of
appearance in table B.1 (i.e., the element tlibversion will precede the element
info, which precedes the tag elements). As noted in table B.1, the info and jsp-
version elements are optional, although we always recommend providing informa-
tion on your library through the info tag.

 Some elements in table B.1 have an obvious use. It is clear why we need ele-
ments of type tag and info, but why do we need the other elements? Why, for
instance, do we need an element such as shortname? A human reader of a TLD
should be able to come up with a reasonable shortname for the tags. Elements such
as shortname, uri, tlibversion, and the like are geared toward development and
component management tools. A component repository will find the uri element
extremely helpful—it provides an obvious repository key for the library—and an
authoring tool can use shortname to automatically generate <%@ taglib %> direc-
tives and let its user utilize the tags in the library.

 The TLD is more general than what many of us (tag developers) tend to think is
necessary. It holds many elements that we may never need, but those elements will
be used by other pieces in the development puzzle when the tags are finished.

B.1.2 The tag element

Now that we have seen all the top tags in the TLD, we may delve into the most
important element (for us), the tag element. The tag element is used to describe a
specific tag in the tag library. It has to provide information on issues such as the
classes implementing the tag, the tag's attributes, and the tag’s body behavior. The
elements used within the tag element are presented in table B.2.

Table B.2 The elements used to define a tag’s element and meaning

Element Description Mandatory

name Specifies the tag name. Together with the tag’s prefix, it will form
the tag name within the JSP file.

Yes

tagclass Specifies the class implementing the tag’s handler. This is the
class that the JSP runtime will instantiate to execute the tag.

Yes

teiclass Specifies the class implementing the tag’s TagExtraInfo
object. This is the class that the JSP runtime will instantiate to
validate the tag’s usage while transforming the page.

No

600 APPENDIX B

The Tag Library Descriptor
The elements presented in table B.2 are comprehensible once you know something
about tag development. Most of the tag information is used by the JSP runtime to
properly work with a tag. For example, the runtime will need the tagclass element
in order to instantiate the tag handler. Likewise, the teiclass element is used
(optimally) to instantiate the TagExtraInfo implementation class.

The attribute element
One element in table B.2 that differs from the others is attribute. The attribute
element describes, as you might guess, a tag attribute acceptable by the tag handler.
All the information about a particular tag attribute is made available to the JSP run-
time right from this attribute element. This information includes the attribute’s
name, whether or not that name is mandatory, and whether or not it can accept val-
ues taken from runtime expressions.

 To represent all this information, the attribute element encloses the elements
described in table B.3.

bodycontent Specifies how the tag uses its body. The JSP environment will use
this value to understand how the tag wants the runtime to handle
its body. The values that a bodycontent can have are: empty
(denotes that the tag should have an empty body), JSP (denotes
that the body includes JSP content), and tagdependent
(denotes that the body includes content the tag should interpret).

If the bodycontent element is not available, the default value
should be JSP.

No

info Descriptive information about the tag. No

attribute Each custom tag can have several attributes that the JSP devel-
oper can use to set parameters into the tag. Each attribute is
described by a TLD attribute element (that encloses more
elements that provide attribute information).

No

Table B.2 The elements used to define a tag’s element and meaning (continued)

Element Description Mandatory

TLD elements 601
Each attribute information piece is delivered in a different element wherein some of
the elements actually provide a boolean value of true/false.

B.1.3 Element Recap

Let's summarize this section by reviewing the elements that can be found in a TLD:
� The root taglib element encloses all the tag library information.
� Within the root taglib element we can find tag library-related information

described by elements presented in table B.1. These elements provide gen-
eral tag library-related information as well as a list of tags as implemented in
this library.

� Each library tag is defined using the elements presented in table B.2. These
elements provide tag-related information such as the tag’s name and imple-
menting classes, as well as a list of attributes.

� Each specific tag’s attributes are defined using the elements presented in
table B.3. These elements provide attribute related information, such as the
attribute’s name.

Now that we have presented the TLD elements, let's sharpen our knowledge with
a sample.

Table B.3 The elements used to define an attribute and its meaning

Element Description Mandatory

name Specifies the attribute’s name. The user will use this
name to specify values to this attribute.

The JSP runtime will use this name to introspect the
tag handler and to locate the setter method for this
attribute.

Yes

required Specifies whether the attribute is mandatory. The
user must assign values to mandatory attributes
when he uses the tag. Can accept the values true,
false, yes, and no.

If not available, the default is false.

No

rtexprvalue Specifies whether the attribute can accept values
extracted from a runtime expression as specified in
the JSP file. Can accept the values true, false,
yes, and no.

If not available, the default is false.

No

602 APPENDIX B

The Tag Library Descriptor
B.2 A sample TLD

Before you construct a TLD, the first thing to remember is that a TLD is also an
XML file. As an XML file the TLD requires XML information, such as a DTD refer-
ence to be specified, before we define any of our tags. Any JSP-compliant TLD that
you create should start with the following XML fragment:

<?xml version="1.0"?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

After putting this DTD reference into the new TLD file, you can start writing your
library description:

 Here is a sample library description file :

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- An XML comment in the tag library descriptor.
 Since the TLD is an XML file we can freely use XML comments
 -->

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>assert</shortname>
 <uri> http://www.maning.com/jsptagsbook/assert-taglib</uri>
 <info>
 This library contains tags to assert on various conditions.
 </info>

 <!-- This library has only a single tag in it -->
 <tag>
 <name>assert</name>
 <tagclass>book.assert.AssertTag</tagclass>
 <teiclass>book.assert.AssertExtraInfo</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 Asserts based on a configured condition
 </info>

 <!-- And the tag’s attributes. -->
 <attribute>
 <name>parameter</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>handler</name>

A sample TLD 603
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>exists</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>oneof</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
</taglib>

The sample shows the TLD developed for the assert tag library from chapter 7. The
first part of the tag library descriptor is the XML header, which includes the
<?xml?> processing instruction and a public reference to the taglib DTD. After
this header comes the main event, which is the definition of the library. A <taglib>
set of tags encloses the definition of the library. (The taglib, remember, is the root
element of the tag library description.) Within the taglib element for this TLD,
we can find

� A tlibversion element that informs the version of the library (1.0)
� A jspversion element telling us that this library requires JSP1.1
� A shortname element that recommends the name assert as the library’s prefix
� A uri element providing a unique URI to serve as a key to the library
� An info section that provides general information on the library
� A single tag description section describing the assert tag, the only tag in

this library.
Constructing the TLD above (or virtually any other TLD) is not difficult. All you
need to do is to follow the instructions in the previous section and fill in the values
that match your library needs.

604 APPENDIX B

The Tag Library Descriptor
NOTE Throughout the TLD you can use an XML comment (i.e., <!—this is a
comment--!>) to explain your steps. The XML parser employed by the JSP
runtime (as well as most editing tools) will ignore the values of these ele-
ments, so you can also comment out unwanted portions of the TLD.

B.3 JSP1.2 and the new TLD entries

One of the additions to JSP1.2 is an extended TLD structure that includes the
JSP1.1 elements and adds new elements to serve three goals:

� improved support for development and management tools
� support for new features in the servlet API2.3
� support for the extended verification phase added to JSP1.2.

Let’s look now at additions to the TLD structure, starting again with the root
taglib element and ending with the attribute element.

B.3.1 New taglib elements

The elements added beneath the taglib element are presented in table B.4.

As you can see in table B.4, three main additions to the global tags enclosed by the
taglib element exist:

1 The display-name, small-icon, and large-icon elements provide a bet-
ter way to present the library in development and documentation tools

Table B.4 New elements used beneath the taglib element.

Element Description Mandatory

display-name Short descriptive name to be used by
tools to represent the library.

No

small-icon Icon to be used by tools to represent the
library.

No

large-icon Icon to be used by tools to represent the
library.

No

validatorclass Tag library validator class that may walk
over and check the XML representation
of the JSP file.

No

listener Event listener that can listen to events
associated with the application or the
users sessions.

No. A tag library can have zero or
more event listeners associated
with the application events.

JSP1.2 and the new TLD entries 605
(think of display-name, small-icon, and large-icon as what you will
probably see in a toolbar representing the library).

2 The validatorclass lets you specify a JSP file validator able to work on an
XML representation of the JSP file and check whether the usage of the tags
contained by the library is correct.

3 The listener element allows you to specify listeners for events that happen
within the application, and therefore provide improved application integration.

B.3.2 New tag elements

The next modification to the TLD is in the content of the tag element. The added
elements are presented in table B.5:

Most of the new elements added to the tag element are for aesthetics, like the dis-
play-name, the small-icon, and the large-icon elements. Again, these elements
will typically serve development tools and the like. However, the tag element has a
new arrival—variable—whose job is radically new. It defines exported variables.
In JSP1.1, the only way to define variables was through the TagExtraInfo class,
allowing for a flexible and dynamic variable definition that was relatively difficult to
use because of the need to code the class.

The variable element
The variable elements describe exported variables, using the elements presented
in table B.6.

Table B.5 New elements used beneath the tag element.

Element Description Mandatory

display-name Short descriptive name used by tools to represent
the tag.

No

small-icon Icon used by tools to represent the tag. No

large-icon Icon used by tools to represent the tag. No

variable Provides static scripting variable information. No. A tag can have one or
more.

606 APPENDIX B

The Tag Library Descriptor
The variable we can define offers a great deal of flexibility. In many tags developed
for this book, we could use this variable definition and not develop a TagEx-
traInfo. For example, our database connection tag could use a variable definition
as we do in the following fragment:

<variable>
 <name-from-attribute>
 id
 </name-from-attribute>
 <class>
 book.database.DbConnectionWrapper
 <class>
 <scope>
 AT_BEGIN
 </scope>
</variable>

In JSP1.2 we need to declare a variable through a TagExtraInfo when we need to
perform proprietary logic to decide

� The number of exported variables
� The type of the variable (e.g., the ExportTagExtraInfo class developed in

chapter 8)
� The name of the variable (especially when a tag exports more than a single

variable)
� The scope of the variable.

Table B.6 Elements used in the new variable element.

Element Description Mandatory

name-given Assigns a name to the variable. Noa

name-from-attribute Assigns a name to the variable, based on the trans-
lation time value of the named attribute.

Noa

class Provides the name of the class for the exported
scripting variable. The default class value is String.

No

declare Informs the JSP runtime whether or not to declare
the exported variable. The default is true.

No

scope Defines the scope of the scripting variable (NESTED
by default).

No

a One of the name-given and name-from-attribute elements must be provided in order to
name the variable.

Summary 607
Most of the cases described above are rare. In the majority of instances, using the
variable tag will suffice.

B.3.3 New attribute elements

The last addition to the TLD is in the attribute element. In attributes that take
the value of a runtime expression, you can now specify a type for the value of the
runtime expression.

Note that, for attributes that do not take their value out of a runtime expression, the
new type element does not change anything (since their type must be a Java string).

B.4 Summary

The TLD is nothing more than an XML file with a specific DTD defined in the JSP
specification. When creating a TLD, think of the values that identify your library
and the tags that construct it, then use TLD elements to write them down in the
TLD file. If you think that you should document what you are doing in the TLD,
use an XML comment.

Table B.7 New element used beneath the attribute element.

Element Description Mandatory

type Specifies the type of a runtime expression attribute. No

 CUsing the code example
s

In this appendix
� Installing the samples
� Compiling the samples
� Installing the Cosmetics use case
� Installing the Cosmetix use case
608

Using the example tags 609
Each chapter in this book contains several example tags, and two case studies were
developed in chapters 13 and 14. In this appendix we explain how to use these
examples or compile them when necessary.

C.1 Using the example tags

As you will see, using example tags is relatively easy. Compiling the tags, however,
will require effort on your part.

C.1.1 Obtaining example tags

To obtain the example tags, you need only access the book’s website located at
http://www.manning.com/shachor and download the example’s .zip file.
This file contains the following directories:

When you have finished downloading, unzip the file into some directory (say,
jsp_tags). You can now start using the samples.

C.1.2 Using the example tags

The downloaded .zip file contains the compiled tags in the WEB-INF/classes direc-
tory. To use them, complete the following steps:

1 Add the contents of the WEB-INF/classes directory to the web application
where you want to use the tags. For Tomcat and Orion, copy the contents of
the classes directory into the classes directory of your web application.

2 Put the tag library descriptors (.tld files) under the WEB-INF directory of
your web application. For example, copy the tld files from the WEB-INF

Table C.1 Structure of the source distribution archive

Directory Description

src Contains full listing of all the example tags

WEB-INF/classes Contains the compiled samples

WEB-INF Contains the tag library descriptors for the tag libraries developed in the
book as well as the application deployment descriptors used

build Contains build scripts

jsp Contains the JSP files used through the chapters.
Most files are in the form listingXXX.jsp where XXX corresponds to the
actual listing in the book (e.g., listing10.1.jsp corresponds to listing 10.1).

610 APPENDIX C

Using the code examples
directory in the downloadable .zip file to the WEB-INF directory of your
web application.

3 Add a reference to the tag library descriptor from within the application’s
deployment descriptor. You can use the sample web application deployment
descriptors available in the .zip file as a starting point.

Now, just reference the tag libraries from the JSP files and use the tags.

C.1.3 Compiling the example tags

Building the examples is a complex operation and is usually not recommended
(since you already have a compiled version of the tags). Nevertheless, you may want
to compile the tags with minor additions of your own (e.g., additional tracing logs
to assist you in tracing the execution of the tag).

NOTE An obvious prerequisite for the compilation process is that you must have
installed a JDK (at least 1.2.2) in your environment, added the Java execut-
able into the path, and defined the environment variable JAVA_HOME to
point to the JDK’s root directory.

The samples’ .zip file contains a directory named build wherein you will find the
following files:

You will also need to download the packages in table C.3:

Table C.2 Required files for tag compilation

File Name Description

build.bat A script file that can be used to build the samples under the Windows operating
systems

build.sh A script file that can be used to build the samples under the UNIX operating sys-
tems

build.xml An XML file that instructs our build program (ant) how to build the samples

Using the case studies 611
When you finish downloading all packages:

1 Open a command shell

2 Change your location to the build directory

3 Make sure that all the needed environment variables are defined
(JAVA_HOME, ORION_HOME, ANT_HOME)

4 Execute the build script

When the build process is completed, you will see the file jsp_tags.jar in the build
directory. This contains the compiled tag libraries.

C.2 Using the case studies

Let’s look at how we can obtain, configure, and deploy the case studies presented in
this book.

C.2.1 The WebStore application

Here you will find instructions for obtaining, configuring, and deploying the case
study presented in chapter 13.

Table C.3 Required packages for tag compilation

Package Name Description

Ant This is a freely available Java-based build tool. You can download it from http://
jakarta.apache.org. After downloading ant’s binary version, unpack it into a directory,
and declare an environment variable named ANT_HOME to point to ant’s root direc-
tory.

Orion The build process requires many jar files that are part of J2EE. The easiest way to
get them all is to download and install a J2EE server. Since we already use Orion as
our case studies server, we also use it to build the samples (and then you can com-
pile the samples and use them in the same server with no need for double down-
loads). Just download the latest stable version of Orion from http://
www.orionserver.com, unpack it, and declare an environment variable named
ORION_HOME to point to Orion’s root directory.

Xerces Ant requires an XML parser, so download xerces (at least version 1.2) from http://
xml.apache.org , unpack it, and copy the file xerces.jar (located in the lib directory)
into our build directory.

612 APPENDIX C

Using the code examples
Obtaining the WebStore application
Getting the application is easy, all you need to do is to access the book’s web site
located at http://www.manning.com/shachor/ and download the cosmetics .zip
file. This file contains the following directories:

1 cosmetics-web contains the web application.

2 database contains the hSQL database files.

Setting up the application
Copy the directory cosmetics-web into your applications directory. For the Orion
application server, use the /orion/applications/ directory. For the Tomcat web
container, your applications directory will be the /TOMCAT_HOME/webapps/ directory.

 Edit the file cosmetics-web/WEB-INF/web.xml and change the mail settings to
reflect your environment regarding the SMTP host and the sender email address.
Look for the lines displayed below:

<context-param>
 <param-name>from_sender</param-name>
 <param-value>your.email@address.se</param-value>
 </context-param>
 <context-param>
 <param-name>smtp_server_host</param-name>
 <param-value>your.smtp.server</param-value>
 </context-param>

Change the value of from_sender and smtp_server_host to reflect your environment.
 Copy the files store.properties and store.script to the root directory of

your application server. If using Orion, the files should be copied to the /orion/
directory.

Deploying the application
Ways to deploy a web-application vary between different vendors. Tomcat auto-
deploys any web applications found in the TOMCAT_HOME/webapps/ directory. For
the Orion, you would:

1 Edit the file /orion/config/application.xml and add the line given
below:

<web-module id="cosmetics-web" path="../applications/cosmetics-web" />

2 Edit the file /orion/config/default-web-site.xml and add the line
given below:

<web-app application="default" name="cosmetics-web" root="/cosmetics" />

If it’s running, the application server should now deploy the web application.

Using the case studies 613
Testing the application
In a web browser, enter the URL http://localhost/cosmetics/. You should now
receive the Welcome page of the Cosmetics application. A default user has been set
up with the username “abc” and the password “123”. You can use these if you don’t
feel like registering your own username. Remember to update the default user’s
email address to your own in order to be able to receive receipts on any orders.

C.2.2 The WAPStore application
Below you will find instructions for obtaining, configuring, and deploying the case
study presented in chapter 14. The application is written for Orion and might need
some customization before it can be used in another application server, as some fea-
tures used are based on the public draft of the EJB 2.0 specification. The application
is set up to work on a default installation of the Orion application server. If you
have customized your Orion setup, you might have to reconfigure the application
to make it deploy and behave correctly.

Obtaining the WAPStore application
Getting the application is easy. Access the book’s website at http://www.man-
ning.com/shachor and download the cosmetix .zip file. This file contains a direc-
tory named cosmetix that holds the entire application.

Setting up the application

1 Copy the cosmetix directory into your /orion/applications/directory.
2 Set up a mail session in the file /orion/config/server.xml so that it

looks like:
<mail-session location="mail/mailSession" smtp-host="your.smtp.host">

<property name="mail.transport.protocol" value="smtp" />
<property name="mail.smtp.from" value="your.email@address.se" />
<property name="mail.from" value="your.name" />

</mail-session>

Replace the values of smtp-host, mail.smtp.from, and mail.from to
reflect your environment.

3 To receive receipts on your orders, edit the file /cosmetix/cosmetix-ejb/
META-INF/ejb-jar.xml. Look for the part listed below:

<env-entry>
 <description>The email address for the default user</description>
 <env-entry-name>default_user_email</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>your.email@address.se</env-entry-value>
</env-entry>

Replace the value of the default_user_email entry with your own email address.

614 APPENDIX C

Using the code examples
Deploying the application
In order to deploy the application on Orion:

1 Edit the file /orion/config/server.xml and add the following line:

<application name="cosmetix" path="../applications/cosmetix" />

2 Edit the file /orion/config/default-web-site.xml and add the follow-
ing line:

<web-app application="cosmetix" name="cosmetix-web" root="/cosmetix" />

 If the application server is running, it should now deploy the application.

Populating the application
Using a web browser, enter the URL http://localhost/cosmetix/admin/. You
should receive an HTML page with a button labeled “Populate.” Click it and the
application will be populated.

Testing the application
Using a WAP browser, enter the URL http://localhost/cosmetix/. You should
receive the login card of the Cosmetix application. A default user has been set up
with the username “abc” and the password “123”, enabling you to gain access to
the application.

references
Allaire Corporation. Quick Reference to CFML.
http://www.allaire.com.

DuCharme, Bob. XSLT Quickly. Greenwich, CT: Manning Publications, 2001.

Fields, Duane K., Mark A. Kolb. Web Development with JavaServer Pages. Green-
wich, CT: Manning Publications, 2000.

Enterprise Java Beans specification.
http://www.javasoft.com/products/ejb/index.html.

Enterprise Java Beans tutorial.

http://www.javasoft.com/products/ejb/.

eXtensible Markup Language (XML) 1.0 2nd Ed.
http://www.w3.org/TR/2000/REC-xml-20001006.

eXtensible StyleSheet Language Transformations (XSLT) 1.0.
http://www.w3.org/TR/xslt.html.

Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

HTTP (RFC2616). http://www.w3.org/Protocols/rfc2616/rfc2616.html.

Internet Mail Message Format (RFC822).
http://www.cis.ohio-state.edu/htbin/rfc/rfc822.html.

Internic. RFC 831 (the SMTP Standard). ftp://ds.internic.net/rfc/rfc822.txt

JavaBeans Activation Framework Specification.
java.sun.com/products/javabeans/glasgow/jaf.html.
615

616 REFERENCES
JavaBeans Specification. http://www.javasoft.com/products/javabeans/.

Java Database Connectivity Specification.
http://www.javasoft.com/products/jdbc/index.html.

JavaMail API Specification.
http://www.javasoft.com/products/javamail/index.html.

Java Naming and Directory Interface API Specification.
www.javasoft.com/products/jndi/index.html.

JavaServer Pages Specification. http://java.sun.com/products/jsp/.

Java Servlet API. http://www.javasoft.com.

JGuru. JavaMail FAQ.
http://www.jguru.com/jguru/faq/faqpage.jsp?name=JavaMail.

Orion application server. http://www.orionserver.com.

Reflection (tutorial).
http://java.sun.com/docs/books/tutorial/reflect/index.html.

Reflection overview.
http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html.

SMTP (RFC821). http://www.cis.ohio-state.edu/htbin/rfc/rfc821.html.

Tomcat. http://jakarta.apache.org.

WAP Forum. Technical Specifications. http://www.wapforum.org.

WAP Forum. WAP-190, Wireless Application Environment Specification.
http://www.wapforum.org/what/technical.htm.

WAP Forum. WAP-191, Wireless Markup Language Specification.
 http://www.wapforum.org/what/technical.htm.

XML from the inside out. http://www.xml.com.

index
Symbols

<@ taglib>. See taglib
<attribute> 141
<bodycontent> 78, 178
<context-param> 55, 175
<ejb-ref> 410
<ejb-ref-name> 410
<ejb-ref-type> 410
<env-entry> 409
<env-entry-name> 409
<env-entry-type> 409
<env-entry-value> 409
<home> 410
<init-param> 56, 175
<jsp

forward> 41
getProperty> 236
include> 41
plugin> 41
setProperty> 236
usebean> 236

<load-on-startup> 56
<param-name>

context configuration 55
servlet configuration 56

<param-value>
context configuration 55
servlet configuration 56

<remote> 410
<res-auth> 411
<resource-ref> 411, 419
<res-ref-name> 411
<res-ref-type> 411
<servlet-class> 56
<servlet-name> 56

<taglib> 110
in web.xml 114

<teiclass> 144

A

Active Server Pages. See server
pages

application
implicit variable 37
scope 161

application initialization
DBConnectionTag 359

Array
and reflection 318

ArrayIterationSupport 318
source code 318

ASP. See server pages
AssertExtraInfo 230

source code 230
Assertion interface

source code 225
assertions 224

and input validation 223
specifying conditions 224

AssertTag
design 225
implementation 226
in action 232
source code 226
TLD 231

attribute
and tags 59
TLD entry 141

B

Bean Managed Persistency 393
BeanInfo

JavaBeans introspection 248
BeanSetterTag 572
BeanUtil 252
BMP 393
body and tags 59
BodyContent 84, 86, 96, 100,

180, 181
flushing 138
source code 101

BodyJavaMailTag
in action 222
motivation 216
sending email using the tag’s

body 217
source code 217
TLD 221
Usage 510

BodyReaderTag 185
BodyRenderTag

source code 179
BodyTag 76, 85

and iterations 305
body manipulation 180
in JSP1.2 106
interface 84, 94
iteration performance

hazard 336
life cycle 97
source code 95
SQLQueryTag 366

BodyTagSupport 76, 84, 86, 99
buffer. See JSP directives
business logic 15
617

618 INDEX
C

CatalogueEntry EJB
Home interface 400, 433, 437
implementation 401, 405
remote interface 398

Category list view 482
CGI 10

drawbacks 10
Class

and reflection 238
CLASSPATH

compiling tags 67
clearBody() 86
CMP. See Contained Managed

Persistency
ColdFusion 17
Command

design patern 580
CommandTag 581

usage 520
Common Gateway Interface. See

CGI
compilation

of tags 68
complex conditions

with JavaBeans 300
condition language 299

drawbacks 300
condition tags

advanced condition tags 285
in action 297
simple condition tags 281,

283
tag library descriptor 296

conditions
complex conditions and

tags 299
config

implicit variable 37
Constructor

class 241
Container Managed

Persistency 393
containers

and J2EE 388
contentType. See JSP directives
context-param 175
controller servlet 51
CookieValueTag

source code 73

CookieValueTag (continued)
with new TLD file 74

custom tags
why use them 4

D

database
handling connectivety in

Model-2 343
presenting data with tags 343

Database tag library
design 352
implementation 357
information sharing 356
requirements 352
tag selection 354
using 373
using a controller servlet 380
using ViewRsTag 378

DataSource 413
methods 413

DbConnection 363
freeConnection() 364
getConnection() 364
resource leaking 364
source code 363
wrapper interface 357

DBConnectionTag 355, 358
TLD 362
Usage 476

DbConnectionTag
source code 359

DbConnectionWrapper 356,
358

DBQueryResult 367
freeResult() 370
resource leaking 370
source code 368

DbResultWrapper 356, 371
interface 357

deployment descriptor 55
configuring servlets 56
initialization parameters 55
web applications 53

design pattern 341, 580
directives 38
DisableCacheTag 462

Descriptor 464
Tag 462
usage 465

doAfterBody() 85, 96, 97, 102,
180

and iteration 306
doBodyInit()

and iteration 306
doCatch() 102, 191
doEndTag() 85, 90, 93
doFinally() 102, 191
doInitBody() 85, 96, 97
doStartTag() 67, 85, 88, 93

body evaluation 177

E

EJB 385, 396
and Servlet 395
benefits 396
client 404
container 388, 391
definition 390
entity 393
home interface 391
life cycle callbacks 404
primary key 391
remote interface 391
sample design 395
sample EJB 397
session 393
when to use 396

else
using tags 283

email tag 421
encodeRedirectURL() 157
encodeURL() 157
Enterprise Java Beans. See EJB
EnumerationIterationSupport

319
source code 319

EnumRsTag 355, 370
cleanup 372
exception handling 372
source code 370
TLD 373
usage 487
using with a controller

servet 380
errorPage. See JSP directives
EVAL_BODY_AGAIN 102, 106
EVAL_BODY_BUFFERED

102, 106

INDEX 619
EVAL_BODY_INCLUDE 89,
93, 106, 177

EVAL_BODY_TAG 95, 97, 177,
180

and iteration 306
in JSP1.2 103

EVAL_PAGE 93, 158
exception

implicit variable 37
ExportTag 270

in action 274
JSP driver 274
source code 271
TLD 274

ExportTagExtraInfo 272
source code 272

ExTagSupport 136
initializing parameter

handler 171
Extensible Markup

Language 590–596
vs HTML 590

Extensible Stylesheet Language
Transformation 596

F

field placement
why tag may be better 375

field substitution 327
design 328
in action 335

FieldGetter 329
and database iteration 345
source code 329
with IterationTagSupport 331

findAncestorWithClass() 188
findAttribute() 382
FlushWriterTag 138

source code 138
ForeachTag 306, 315

source code 307
ForeachTagExtraInfo 310

source code 310
forName(). See Class
FreeMarker 32
Full order view 500

G

Generic error view 521
Configuration 523

GenericServlet
class 29

getBodyContent() 180
getDeclaringClass(). See Method
getEnclosingWriter() 86, 101,

180
getException() 100
getExceptionTypes()

See Method
getInitParameter() 170
getInitParameterNames() 170
getModifiers(). See Method
getName(). See Method
getOut() 100
getParameterTypes(). See

Method
getParent() 85, 88
getReader() 86, 101
getRequest() 100
getResourceAsStream()

Class 169
ServletContext 169

getResponse() 100
getReturnType(). See Method
getServletConfig() 100
getServletContext() 100
getSession() 100
getString() 86, 101
getVariableInfo()

See TagExtraInfo

H

HelloWorldTag
JSP file to drive 71, 75
source code 66
TLD 68

HomeTag
source code 430
TEI 431
TLD 432

HTML 590–596
vs XML 590

HTTP 5
and WAP 19
connectionless 8
method 5
request 5
request body 7
request line 5
request URI 6

HTTP (continued)
response 7
response headers 7
sample session 9
status line 7

HTTPServlet
class 29

HttpServletRequest
interface 27

HttpServletResponse
interface 27

HttpSession
interface 28
session scope 161

HyperText Markup Language
 See HTML

HyperText Transfer Protocol
See HTTP

I

if-else-if
using tags 285

IfTag 281
source code 282

implicit variables 37
import

directive. See JSP directives
include

directive 38
IndexedPropertyDescriptor. See

Introspector
init-param 175
input validation

with assertions 223
Interception 404
Internet text messages

structure 196
InternetAddress 204
Introspection 237
Introspector

JavaBeans introspection 248
invoke(Object obj, Object[]

args). See Method
IOException

when printing to the user 137
ISAPI. See Web server API
isErrorPage. See JSP directives
IterateResultSetTag 345

in action 348
JSP file 348

620 INDEX
IterateResultTag
drawbacks 350

IterateTag
and database iteration 345
custom iterator syntax 327
design 317
field substitution 334
implementation 319
in action 323
iterate anything 317
source code 320
TLD 321
usage 502

IterateTagExtraInfo 321
iteration tags

generalization 311
iterations

using tags 305
IterationSupport

and database iteration 345
generic iteration 312

IterationTag 102, 336, 376
field placement 328

IterationTagSupport 312
EnumRsTag 370
field substitution 328, 331
inJSP1.2 337

IteratorIterationSupport 316

J

J2EE 386
configuration and services 406
deployment 389
EJB access from within

JSP 429
EJB Home tag 430
EJB Iterate tag 438
EJB references 407
EJB Use tag 434
Environment variables 407
Resource references 407
what is it 386

J2EEDbConnection 416
J2EEDbConnectionTag 414
JAAS 387
jar packaging tags 76
Java 2 Enterprise Edition

See J2EE
Java Database Connectivity

See JDBC

JAVA_HOME 64, 68
JavaBeans 235–276

and condition tags 300
and JSP 236
database data 341
indexed properties 246
introspection 247
Introspector 248
properties 244
properties coding

Conventions 247
read-only properties 246
read-write properties 246
standard JSP tags 41
utility class source code 252
write-only properties 246

JavaIDL 387
JavaMail 67, 199, 386, 421
JavaMailTag 208

improving on
SimpleJavaMailTag 207

improving usability 215
in action 212
source 208
TLD 211
web application deployment

descriptor 214
JavaScript 13
JavaServer Pages. See JSP
JavaWebServer 25
javax.rmi.PortableRemoteObject

406
javax.servlet.jsp.tagext 83
javax.servlet.jsp.tagext.BodyTag

See BodyTag
javax.servlet.jsp.tagext.Tag

See Tag
JAXP 387
JDBC 341, 387
JDBCFieldGetter 347
JDK 64
JMS 386, 442
JNDI 67, 386
JRun 31, 59
JSP 24, 32

access models 48
directives 38
implicit objects 150
implicit variables 37
page execution 43
printing content 35

JSP (continued)
scriptlets 34
syntax elements 33
translation phase 44

JSP attributes
exporting from a servlet 381

JSP environment
inter tag cooperation 367

JSP tags 40
benefits 62
usage in JSP 60
what are custom tags 59

JSP translation
sample 121

JSP1.2
additions to the Tag API 101

JspException 137
JspTagException 67, 137
JspWriter 132

buffering 137
clear() 132
clearBuffer() 132
flush() 132
flushing 137
getBufferSize() 132
isAutoFlush() 133
newLine() 132
print() 132
println() 132

JTS 386

L

LocaleCurrencyTag 472
descriptor 473
tag 472
usage 473

LocaleNumberTag 468
descriptor 470
tag 469
usage 471

LocaleTag 465
tag 466
TEI 467

logoff view 520
logon successful view 498
logon view 496
LogWriterTag

source code 186
LowerCaseTag

JSP file to drive 78

INDEX 621
LowerCaseTag (continued)
source code 77
TLD for enhanced tag 78

M

mail error view 523
mail service 421

attachments 423
defining 421
referencing 422
referencing the mail

service 422
using 422

MailTagExtraInfo
implementation 205
improved 208
JSP file 208
validating the email

address 204
making body aware 179
menu view 477
MessageBodyReaderTag 220

source code 220
usage 510

MessageSubjectReaderTag
source code 220
usage 510

META-INF
and tag packaging 76

method
class 239

MimeBodyPart 424
MimeMessage. See JavaMail
MimeMultipart 424
Model-1 48, 341
Model-2 48, 49, 343, 353, 354

controller 49
controller servlet 51
model object 49
view 50

Model-View-Controller 49, 341
separating presentation and

business logic 15
MOM 442

N

NSAPI. See Web server API
Number error view 524

O

operator
generalized validation inside

TestTagExtraInfo 295
implementation in

TestTag 293
order confirmation error

view 513
order confirmation view 509
order summary view 505
Orion application server 421
out

implicit variable 37

P

page
directive 39
implicit variable 37
scope 161

page initialization
DBConnectionTag 359

pageContext 37, 87, 99
accessing implicit JSP

objects 151
findAttribute() 163
getAttribute() 162
getException() 152
getOut() 133, 152
getPage() 152
getRequest() 151
getResponse() 152
getServletConfig() 152
getServletContext() 152
getSession() 152
page scope 162
property 92
removeAttribute() 162
setAttribute() 162

PHP. See server pages
presentation layer 15
product list view 485
profile updated successfully

view 518
profile view 514
PropertyDescriptor. See Intro-

spector

Q

QueryRequestTag
source code 241
using reflection 241

R

RedirectTag 155
causing exception 159
source code 156
TLD 158
usage 495

reflection 236
API 238
usage in

QueryRequestTag 241
what is it 237

ReflectionFieldGetter 329
ReflectionTag 256

source code 256
ReflectionTagExtraInfo 260

source code 260
Registration successful view 494
Registration view 490
release() 85, 94
request

implicit variable 37
scope 161

RequestDispatcher
interface 28
Model-2 controller 52

response
implicit variable 37

ResultSet 343
ResultSetIterationSupport 346
RFC821 196
RFC822 196, 199
RMI /IIOP 388
runtime expression

attributes 119

S

scripting variables
exporting from a tag 264
scopes 266

scriptlets 34
limitations 62
translation semantics 122

622 INDEX
separating business logic and
presentation 15

server pages 13
drawbacks 14

servlet 24, 25
and EJB 395
API 25, 26
engine 26
interface 26

servlet.jar 65
ServletConfig

interface 27
page scope configuration 170

ServletContext
application scope 161
application scoped

configuration 170
interface 27
logging 185

ServletException
class 29

ServletExec 31
ServletRequest

exporting JSP attributes 381
interface 27
request scope 161

ServletResponse
interface 27

session
directive. See JSP directives 39
implicit variable 37
scope 161

Session. See JavaMail 199
setBodyContent() 85, 96, 97
setPageContext() 85, 87
setParent() 85, 88
Shopping cart

JSP file 324, 325
methods exposed by

elements 323
short order view 479
ShowConfigTag 172

JSP file employing 173
source code 172
Web application descriptor for

JSP driver 174
ShowFormParamTag 133, 134,

152, 177, 179
error handling 149
JSP 133
making body aware 177

ShowFormParamTag (continued)
printing output to 133
sample page 154
source code 153
TLD 154

ShowObjectTag 163
JSP file employing 167
source code 163
TLD 166

ShowObjectTagExtraInfo 166
ShowTag 259

in action 262
JSP file 262
source code 260
TLD 261
usage 491

Simple Mail Transfer Protocol
See SMTP

SimpleForEachTag 307
SimpleForeachTag 306

JSP driver 310
SimpleJavaMailTag 200

application integration 206
limitations 206
TLD 203

SKIP_BODY 89, 97, 177, 180
and conditions 283

SKIP_PAGE 93, 158
SMTP 196

sample session 197
SMTPClient

sending email from Java 198
source code 307
SQLQueryTag 355, 365

getDbConnectionWrapper()
367

source code 365
TLD 367
usage 486
using the body to specify a

query 366
sun.net.smtp.SmtpClient

public interface 198
sending email with 199

T

Tag 66
and packaging 75
API 81
API definition 83

Tag (continued)
attribute setters 145
attribute TLD entries 140
attributes 139
body 176
case for 568
cleanup 189
configuration 169
cooperation 188
debugging 578
deploying 70
documentation 575
goals 82
interface 84
interface definition 87
interface source code 87
life cycle 81
life cycle diagram 91
logging 185
markup content

generation 577
nesting 88
parenthood 88
performance effect 570
testing 69, 578
translation semantics 122

Tag Library Descriptor
See TLD 61, 108

Tag life cycle 90
cleanup 93
initialization 92
instantiation 92
reuse 93
service 93

TagAttributeInfo 84, 86, 111
TagData 84, 86

getAttributeString() 145
TagExtraInfo 84, 86, 143, 574

attribute validation 142, 144
getVariableInfo() 143, 264
isValid() 143
setTagInfo() 143

TagInfo 84, 86, 111
taglib

directive 39, 112
in web.xml 114
prefix attribute

interpretation 112
sample usage 71
translation semantics 122
uri attribute

INDEX 623
taglib (continued)
interpretation 113

TagLibraryInfo 84, 86, 111
TagSupport 66, 84, 86, 99
TCP/IP

and HTTP 5
and WAP 19

teiclass
TLD entry 144

TestTag 286, 290, 294
usage 480

TestTagExtraInfo 294
TestTei

source code 267
TLD 61, 82, 108

advanced condition tags 296
creating 68
referencing from a JSP 112
role 110
tag body definition 178

Tomcat 31, 59, 64, 609, 612
TOMCAT_HOME 64, 68

and compilation 68
Translation phase

sample 121
Transport 199
TryCatchFinally 101

exception handling in
JSP1.2 191

TryFinally 372

U

UnavailableException
class 29

URL encoding 158
UseTag 434, 436

V

VariableInfo 84, 86, 265
methods and static fields 265

VBScript 14
ViewRsTag 355, 375

merits 376
source code 377

VoiceXML 22

W

WAP 19
architecture 19

WAR 52
archive structure 53
deployment descriptor 55
directory structure 54

web
container 388

web application 53
creating (in Tomcat) 70

web archive. See WAR
web container 25

native web servers 31
web server

and servlets 25

web server (continued)
integration with web

container 31
Web server API 12

drawbacks 12
web.xml 53

and taglib entries 114
defining initialization

parameters 174
webapps 65
WEB-INF. See WAR 53
WebLogic 59
WebMacro 32
welcome view 475
Wireless Application Protocol

 See WAP
Wireless Markup Language. See

WML
WithTag 286, 287

source code 287
usage 480
WithTagExtraInfo 289

WithTagExtraInfo 289
WML 20
WMLScript 20
writeHtml() 134
writeOut() 86, 101

X

XML. See Extensible Markup
Language 590

XSLT. See Extensible Stylesheet
Language Transformation

	brief contents
	contents
	preface
	acknowledgments
	about this book
	author online
	about the cover illustration
	The big picture
	1.1 The JSP custom tags solution
	1.2 HTTP review
	1.2.1 HTTP protocol

	1.3 Dynamic web servers
	1.3.1 Common Gateway Interface
	1.3.2 Web server APIs
	1.3.3 Server pages techniques
	1.3.4 Separating business and presentation logic

	1.4 Tag-based programming
	1.4.1 Benefits of a tag-based approach

	1.5 WAP, voice, and other alternative web clients
	1.6 Summary

	Web development with Java
	2.1 Java and dynamic web content
	2.2 Introduction to Java servlets
	2.2.1 The servlet API and programming model
	2.2.2 Servlets and non-Java web servers
	2.2.3 Servlet shortcomings

	2.3 Introduction to JavaServer Pages
	2.3.1 Basic JSP syntax elements
	2.3.2 A JSP example
	2.3.3 Scriptlets
	2.3.4 Implicit variables
	2.3.5 Directives
	2.3.6 Tags
	2.3.7 Tags for JavaBean manipulation
	2.3.8 Executing a JSP page

	2.4 Access models for business/presentation de-coupling
	2.4.1 Model-1
	2.4.2 Model-2

	2.5 Servlets, JSP, and application configuration
	2.5.1 The WAR file and its structure
	2.5.2 The application deployment descriptor

	2.6 Summary

	Developing your first tags
	3.1 What are JSP custom tags?
	3.1.1 Anatomy of a tag
	3.1.2 Using a tag in JSP
	3.1.3 The tag library descriptor

	3.2 Why tags?
	3.2.1 Comparisons of scriptlets and custom tags

	3.3 Setting up a development environment
	3.3.1 Installing the JDK
	3.3.2 Installing Tomcat
	3.3.3 Testing your Tomcat installation

	3.4 Hello World example
	3.4.1 Compiling the tag
	3.4.2 Creating a tag library descriptor (TLD)
	3.4.3 Testing HelloWorldTag
	3.4.4 Did it work?
	3.4.5 A tag with attributes
	3.4.6 Packaging tags for shipment

	3.5 A tag with a body
	3.5.1 LowerCaseTag handler

	3.6 Summary

	Custom JSP tag API and life cycle
	4.1 Requirements of custom tags
	4.2 Overview of the tag API
	4.2.1 Tag interface
	4.2.2 Tag life cycle

	4.3 The BodyTag interface and its life cycle
	4.3.1 BodyTag interface
	4.3.2 BodyTag life cycle

	4.4 Tag API classes
	4.4.1 TagSupport and BodyTagSupport
	4.4.2 PageContext class
	4.4.3 BodyContent class

	4.5 Tag-related features of JSP 1.2
	4.5.1 TryCatchFinally interface
	4.5.2 IterationTag interface
	4.5.3 EVAL_BODY_BUFFERED , EVAL_BODY_AGAIN return codes
	4.5.4 Updated Tag life cycle

	4.6 Summary

	Integrating custom tags with the JSP runtime
	5.1 Tag library descriptor in a nutshell
	5.1.1 The role of the TLD

	5.2 Referencing a tag library from a JSP
	5.2.1 The Taglib’s uri attribute

	5.3 How the JSP runtime works
	5.3.1 Send tag example
	5.3.2 Translating the JSP into a servlet

	5.4 Summary

	Tag development techniques
	6.1 Reusable tag programming techniques
	6.1.1 The techniques you'll use most

	6.2 Writing content back to the user
	6.2.1 Adding data to the output
	6.2.2 Exceptions and writing to the user
	6.2.3 Flushing the JspWriter’s internal buffer

	6.3 Setting tag attributes
	6.3.1 Specifying tag attributes in the TLD
	6.3.2 Providing validity checks at translation time
	6.3.3 Using the JavaBeans coding conventions

	6.4 Logging and messaging
	6.4.1 Logging
	6.4.2 Handling and throwing exceptions
	6.4.3 Improving logging

	6.5 Using the Servlet API
	6.5.1 Accessing the implicit JSP objects
	6.5.2 Accessing the JSP attributes

	6.6 Configuring tags and bundling resources
	6.6.1 Configuring a web application

	6.7 Working with the tag’s body
	6.7.1 Tag body evaluation
	6.7.2 Referencing your tag's body
	6.7.3 A BodyTag example–logging messages

	6.8 Tag cooperation through nesting
	6.9 Cleaning up
	6.9.1 Review of tag life cycle
	6.9.2 Exceptions and cleanup
	6.9.3 Improving our base classes to handle cleanup

	6.10 Summary

	Building a tag library for sending email
	7.1 Sending email from a Java program
	7.1.1 The Simple Mail Transfer Protocol
	7.1.2 Java-based email

	7.2 Our first email tag
	7.2.1 SimpleJavaMailTag example

	7.3 Integrating the tag with the application
	7.3.1 Specifying the SMTP server at the application level
	7.3.2 Using an existing mail session
	7.3.3 Specifying the sender’s address at the application level
	7.3.4 An enhanced SimpleJavaMailTag: JavaMailTag
	7.3.5 The JavaMailTag in action

	7.4 Collecting attributes from the tag’s body
	7.4.1 Implementing body processing
	7.4.2 Extending the email tag
	7.4.3 Creating tags for subject and message

	7.5 Adding assertions and input validation
	7.5.1 Performing validation using custom tags
	7.5.2 Creating a tag for the send mail tag library

	7.6 Summary

	Using JavaBeans with tags
	8.1 Java reflection
	8.1.1 What is reflection?
	8.1.2 The reflection API

	8.2 JavaBeans and reflection
	8.2.1 Tags and JavaBeans
	8.2.2 JavaBeans properties
	8.2.3 JavaBeans introspection
	8.2.4 Properties and introspection

	8.3 The Show tag
	8.3.1 Components of the tag

	8.4 Exporting bean values from tags
	8.4.1 Informing the runtime of exported scripting variables
	8.4.2 The ExportTag

	8.5 Summary

	Posing conditions with tags
	9.1 Evaluating conditions in JSPs
	9.2 IfTag—A simple condition tag
	9.2.1 Implementing IfTag
	9.2.2 The problem with IfTag

	9.3 The advanced condition tag family
	9.3.1 WithTag
	9.3.2 TestTag
	9.3.3 TLD for the advanced condition tags
	9.3.4 Our tag library in action

	9.4 Improving our advanced condition tags
	9.4.1 Supporting complex conditions with a condition language
	9.4.2 Supporting complex conditions with JavaBeans

	9.5 Summary

	Iterating with tags
	Iterating With Tags
	10.1 Iterating with tags 101
	10.1.1 Iteration example: SimpleForeachTag

	10.2 Generalized iterating tags
	10.2.1 A generic iteration interface
	10.2.2 IterationTagSupport

	10.3 IterateTag
	10.3.1 Design considerations for IterateTag
	10.3.2 Wrapping iterators
	10.3.3 Implementing IterateTag

	10.4 Look, Mom! No scriptlets—IterateTag in action
	10.4.1 Printing the shopping cart with scriptlets
	10.4.2 Printing the shopping cart with IterateTag

	10.5 Making it easier on the JSP author
	10.5.1 Building a better tag
	10.5.2 The design
	10.5.3 FieldGetter and ReflectionFieldGetter
	10.5.4 Integrating FieldGetter with IterationTagSupport
	10.5.5 Updating IterateTag to perform field substitution
	10.5.6 Field substitution in action

	10.6 JSP1.2 and IterationTag
	10.6.1 IterationTag

	10.7 Summary

	Database access with tags
	11.1 Choosing how to present database information
	11.1.1 Why not just wrap everything in a JavaBean?

	11.2 Designing our database presentation tag library
	11.2.1 Handling database connectivity and passing results
	11.2.2 Additional design considerations
	11.2.3 Implementation conclusions

	11.3 IterateResultSetTag
	11.3.1 ResultSetIterationSupport class
	11.3.2 JDBCFieldGetter class
	11.3.3 IterateResultSetTag in action

	11.4 Full JDBC connectivity through tags
	11.4.1 Improving our one-tag approach

	11.5 Database tag library design
	11.5.1 Requirements
	11.5.2 Choosing our tags

	11.6 Implementing the library
	11.6.1 DBConnectionTag
	11.6.2 SQLQueryTag
	11.6.3 EnumRsTag
	11.6.4 Using our library for the first time
	11.6.5 ViewRsTag

	11.7 Integrating a controller servlet with our new library
	11.7.1 The controller servlet
	11.7.2 The JSP

	11.8 Summary

	Custom tags and J2EE
	12.1 What is J2EE?
	12.1.1 J2EE server components and client access
	12.1.2 Deployment in J2EE
	12.1.3 Why custom tags and J2EE are a good fit

	12.2 What are EJBs, and why learn of them?
	12.2.1 EJBs—What are they?
	12.2.2 Types of EJB components
	12.2.3 EJBs and their functions
	12.2.4 Example: catalogue entry EJB
	12.2.5 Points to keep in mind

	12.3 Using and configuring J2EE services
	12.3.1 Getting services
	12.3.2 Tag and servlet API integration
	12.3.3 Setting environment entries
	12.3.4 Setting EJB reference entries
	12.3.5 Setting resource factory reference entries
	12.3.6 Wrap it up

	12.4 J2EE database connection tags
	12.4.1 DataSource
	12.4.2 Updating database tags to use J2EE conventions

	12.5 J2EE email tag
	12.5.1 Defining a mail service
	12.5.2 Referencing the mail service
	12.5.3 J2EE send tag

	12.6 Using EJBs from within JSP
	12.6.1 Writing custom tags for EJB access
	12.6.2 Retrieving the EJB home interface
	12.6.3 Using the EJB home interface

	12.7 Summary

	JDBC-driven WebStore
	13.1 Introduction
	13.1.1 Custom tags used

	13.2 Overview
	13.3 Requirements
	13.4 Design
	13.4.1 Model
	13.4.2 View
	13.4.3 Control
	13.4.4 Utilities

	13.5 Implementation
	13.5.1 Tags
	13.5.2 Views

	13.6 Summary

	EJB-driven WAPStore
	14.1 Introduction
	14.1.1 Custom tags used
	14.1.2 WAP
	14.1.3 EJB

	14.2 Overview
	14.3 Implementation
	14.3.1 Normal flow of events
	14.3.2 Model
	14.3.3 View
	14.3.4 Welcome view
	14.3.5 Controller

	14.4 Summary

	JSP tag libraries— tips and tricks
	15.1 The case for custom tags
	15.1.1 Tags and nonprogrammers
	15.1.2 Reusing tags
	15.1.3 Maintaining tags
	15.1.4 Tags and application performance

	15.2 Development considerations
	15.2.1 Tag development dos
	15.2.2 Tag development don’ts

	15.3 Further development and testing
	15.3.1 Debugging tags
	15.3.2 Testing tags on more than one JSP container

	15.4 Design recommendations
	15.4.1 Opening library internals
	15.4.2 Generalizing your tags
	15.4.3 Integration and the surrounding environment
	15.4.4 Tags and general purpose libraries

	15.5 Additional points to remember
	15.5.1 The tag life cycle
	15.5.2 The case for scriptlets
	15.5.3 Freeing allocated resources
	15.5.4 Caching expensive results
	15.5.5 Supporting JSP1.1 and JSP1.2

	15.6 Summary

	What is XML?
	A.1 XML vs HTML
	A.2 XML syntax
	A.2.1 DTDs

	A.3 XML pitfalls
	A.4 Why XML?
	A.5 Summary
	A.6 Additional reading

	The Tag Library Descriptor
	B.1 TLD elements
	B.1.1 The taglib element
	B.1.2 The tag element
	B.1.3 Element Recap

	B.2 A sample TLD
	B.3 JSP1.2 and the new TLD entries
	B.3.1 New taglib elements
	B.3.2 New tag elements
	B.3.3 New attribute elements

	B.4 Summary

	Using the code examples
	C.1 Using the example tags
	C.1.1 Obtaining example tags
	C.1.2 Using the example tags
	C.1.3 Compiling the example tags

	C.2 Using the case studies
	C.2.1 The WebStore application
	C.2.2 The WAPStore application

	references
	index

