JDK 1.4 Tutorial

JDK 14 Tutorial

GREG M. TRAVIS

MANNING

Greenwich
(74° w. long.)

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Andy Carroll
209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-66-9

Printed in the United States of America

12345678910 - VHG - 05 04 03 02

To Susan

CONLENLs

preface xv

acknowledgments xvii

about this book xix

author online xxvii

about the cover illustration xxix

Basic NIO (New Input/Output) 1

1.1

1.2

1.3

1.4

Doing I/0 with channels and buffers 2

Getting a channel from a stream 3 = Creating a buffer
revision 4 = Reading from a channel 4 = Writing to a
channel 5 = Reading and writing together 6
Understanding bufters 7

Creating buffers 7 = get() and put() 7 = Buffer state values 9
flip() and clear() 10 = slice() and subbuffers 12 = Buffers of
other types 13 = Reading and writing other types from o
ByteBuffer 14 = Direct buffers 16 = Example: TCP/IP
forwarding 17 = Doing 1/O with channels and buffers 27
The File Locking facility 28

Types of locks 28 = Using locks 29 = Acquiving locks 30
Portability issues 31 = Example: a simple database 32
Summary 36

vii

viii

‘ CONTENTS

2

Advanced NIO (New Input/Output) 37

2.1

2.2

2.3

24

2.5

Reading and writing with MappedByteBufters 38
Advantages of MappedByteBuffers 38 = Disadvantages of
MappedByteBuffers 40 = Using Mapped Byte Buffers 40
Example: checksumming 41

Nonblocking I/O 42

The multithreaded approach 43 = The really bad single-
threaded approach 44 = Polling 44 = Example: a polling chat
server 46 = Multiplexing with select() 49

Encoding and decoding with Charsets 58

Decoding and encoding 59 = Finding available Charsets 59
Using encoders and decoders 61

Network interfaces 63

When to use a network interface 64 = Getting a list of
NetworkInterfaces 64 = Reporting on NetworkInterfaces 64
Getting a list of InetAddresses 66 = Getting
NetworkInterfoce by InetAddress 66 = Getting o
NetworkInterface by name 67 = Listening on a

particular address 67

Summary 73

Java2D 75

3.1

3.2

The Print Service API 76

Print Service packages 76 = Document flavors 77 = Printer
discovery 77 = Printer attributes 79 = The SimpleDoc class 80
The DocPrint]ob interface 81 = Example: printing an

image 81 = Example: o custom print dialog box 83

Reading and writing images with the Image I/O API 88
The plug-in model 89 = Simple reading 89 = Simple

writing 90 = The ImagelO class 90 = Discovering available
formats 90 = Example: veading and displaying an image 92
Example: writing an image 92 = The ImageReader class 93
The ImageWriter class 95 = Customizing the reading

process 97 = Listeners 99 = Example: genevating a graph 102

3.3

CONTENTS ix

Summary 105

Java Web Start (JAWS) 107

4.1 Understanding the JAWS execution model 108
Client, server, and application 109 = The sandbox 110
Consider the possibilities 110

4.2 Building and deploying a JAWS application 111
JAR files 111 = The JNLP file 111
Configuring the web server 113

4.3 Using the sandbox: services 113
Using the sandbox: vesonrces 114

4.4 Bypassing the sandbox 115

4.5 Example: a simple drawing program 117
PicoDraw.java 118 = DrawCanvasjava 131
TransferableImage java 135

4.6 Summary 136

Logyging 137

5.1 Logging overview 138
Log message format 139 = Logging levels 139 = Logger
names and the logger bievarchy 140 = Logging methods 141
The LogRecord class 141 = Handlers 142 = Filters 143
Formatters 143 = Logging efficiency 144
The philosophy of logging 144

5.2 Configuring the Logging system 145
Configuring handlers 145 = Configuration values for
standard handlers 146 = Configuring loggers 148
Global handlers 149

5.3 Using logging in a program 149

5.4 Writing a custom handler 155

5.5 Writing a custom formatter 165

5.6 Summary 168

‘ CONTENTS

Assertion facility 171

6.1

6.2

6.3

6.4

6.5

Assertion basics 172

Why wuse assertions? 172 = Assertions vs. other evvor code 173
Designing by contract 174

Working with assertions 174

Assertion syntax 175 = Compiling with assertions 177
Controlling assertions from the command line 178
Controlling assertions programmatically 181 = Removing
assertions completely 182 = Determining if assertions are
enabled 183 = Catching an assertion failure 184
Assertions and class initinlization 185

Assertion examples 187

Avoiding inconsistent states 187 = Narrowing the range
of states 189 = Ensuring consistency between container
objects and contained objects 189 = More complicated
consistency checks 192

Knowing when to use assertions 193

Rules of use 193 = What to check for 197

Miscellaneous rules 202

Summary 204

7 Exceptions 205

7.1
7.2

7.3

Chained exceptions 2006
StackTraceElements 208

What is a stack trace? 208 = Using StackTraceElements 210
Writing a custom stack trace dumper 210

Synthesizing a stack trace 215

Summary 228

CONTENTS xi

Collections 229

8.1

8.2

8.3

8.4
8.5

Utilities 230

Rotating list elements 230 = Replacing list elements 232
Finding sublists within lists 232 = Swapping list elements 233
Converting enumerations to lists 233

LinkedHashMap and LinkedHashSet 235

Using LinkedHashMap 235 = Using Linked HashSet 238
Efficiency of Linked HashMap and Linked HashSet 240
Example: seavching o file path 241

IdentityHashMap 246

Obyject equality 246 = Hashing and equality 247
Example: using the IdentityHashMap 247

The RandomAccess interface 252

Summary 255

Regular Expressions 257

9.1

9.2

9.3

9.4
9.5
9.6

Overview of regular expressions 258

Literals 259 = The . wildcard 259 = Quantifiers: * and + 259
Grouping with () 260 = Character classes 260 = Predefined
character classes 261 = Sequencing and alternation 263
Boundary matchers 263 = Reluctant (non-greedy)
matching 264 = Other features 265

Pattern and Matcher 265

Capturing groups 267 = Find and rveplace 268 = Flags 269
Transitioning from Perl to Java 270

Finding the longest word in a line 270 = Parsing a tab-
delimited file 273 = A command-line processor 276
Parsing and modifying names 280

Example: HTML templating system 285

Example: a lexical analyzer 288

Summary 296

xii ‘ CONTENTS

1

The Preferences API 297

10.1

10.2

10.3

10.4

10.5

10.6
10.7
10.8

What the Preferences API is for 298

Simple Preferences API example 298 = Appropriate
applications of the Preferences API 299 = Design goals

of the Preferences API 301

Knowing when to use the Preferences API 304
Comparison with java.util. Properties 304

Comparison with JNDI 305

Understanding the data hierarchy 305

Tree-like structure 305 = Key/value pairs 305 = System vs.
user 306 = Definition of a user 306 = Pathnames 307
Per-package subtrees 308

Using the API 308

Traversing the data hierarchy 308 = Reading and writing
values 311 = Allowable types 311 = Allowable keys 312
Allowable values 312 = Allowable node names 313
Default values 313 = Removing values 314 = Iterating through
the values in a node 314 = Distinguishing between user and
system nodes 314 = Node names and paths 315 = Getting
parent and child nodes 316 = Determining the presence of
nodes 316 = Removing nodes 317 = Flushing 318
Syncing 318 = Example: storing GUI configuration 319
Change listeners 324

Preference change listeners 325 = Node change listeners 325
Example: listening for a GUI change request 326

Example: changing server ports on the fly 329

Stored defaults 335

Importing and exporting 335

Summary 337

CONTENTS xiii

1 The Java Secure Socket Extension (JSSE) 339
11.1 Cryptographic terminology 340

11.2 SSL—the Secure Sockets Layer 342
Components of the default implementation 342
SSL handshaking 343

11.3 Managing keys 343
Creating keys with keytool 344 = Store keys in a KeyStore 344
Creating a KeyManagerFactory 344 = Creating a
TrustManagerFactory 345 = Creating an SSLContext 345

11.4 Example: a trivial secure web server 346
The authentication model 346 = Generating the key 347
The configuration file 348 = The code 349

11.5 Example: a secure credit card authorization system 359
The authentication model 359 = Generating the keys 360
The code 362

11.6 Summary 370

index 371

preface

In the summer of 1995, I moved to New York City to work at a web start-up.
On my first day of work, I saw Netscape for the first time; by the end of the day,
I had written my first applet, a trivial graphics program I called Thingy.

Thingy just drew a bunch of lines from
the cursor to the edge of the screen. You [Applet Viewer: Thingy.class | /|
moved the cursor, and the vortex moved applet
along with it. Interactive! I announced the
creation of Thingy at the company meeting,
and, to my surprise, everyone cheered. I had
no idea what the big deal was. I had never
used the web before that day, and I didn’t
know why it was exciting, or why it was bor-
ing enough that a program like this could
enliven it. Apparently, being able to run a
program inside a browser was a big deal. A
very big deal.

For a while, that was what Java was all about—putting moving images inside
pages in a fairly static medium. Java competed against other enlivening technolo-
gies, trading moderate complexity for generality, and becoming a very hot
resume item in the process.

However, our start-up had realized at an early point that Java wasn’t just for
the client side. Java was also an excellent server-side language—an application

lapplet started.

xvi

PREFACE

language. For all its flaws, Java seemed to be exceedingly well designed. It felt a
lot like C++, but Jess. I had come close to being a C++ evangelist at my previous
job, but even I had to admit that I got a headache every time I tried to write C++
code. Java, on the other hand, almost never gave me a headache. On the con-
trary—it was eerily fun.

We heard that the designers (James Gosling and his team) had used a simple
design rule: if you don’t know how to do something really nicely, leave it out. What
an excellent rule! Play to your strengths. Why do lots of things badly when you
can do a few things nicely? Quality isn’t just including good stuft; it’s also know-
ing when to cut the bad stuft.

Java benefited from the fact that it ran in a place where no programs had run
before—inside the browser window. The novelty of this made up for the fact that
it was slow and used a lot of memory. It didn’t allow for the time and space opti-
mizations that C and C++ allowed. But that was okay—it was a different class of
language. It occupied a special niche, one that had been sought by other truly
high-level languages with commercial pretensions, such as SmallTalk and Eiffel.

And so Java thrived. Easy to use, portable (except maybe the GUI stuft), good
for beginners and experts alike. It became a very famous language. Relatives of
mine who had never touched a computer asked me if I knew Java and were
pleased when I said that I did. Eat your heart out, SmallTalk! Take that, Eiffel!

Once Java was firmly ensconced in the canon of programming languages, its
designers increasingly turned their attention to speed. It had gained popularity
because of its simplicity, and that simplicity had brought a certain amount of
sluggishness; now it was time to make up for that.

The last few versions of the JDK have focused on making Java more complete,
faster, and—Ilet’s not be shy—less simple. The simple stuff'is still there, but more
sophisticated elements are falling into place. They might be harder to use, but it’s
worth it if they improve performance. Java always had a nice learning curve, and
the curve has retained its gentle slope. You can start with the basics and move on
to the more complex stuff when your projects demand it.

JDK 1.4 is another step on this path. It includes a variety of new features,
some of which have been available in prototype form, but all of which are now
firmly part of the Java platform. These features are not yet available in most
browsers, but if you use Java for true application development, you’ll want to
learn how to use them right away.

acknowledgments

This is my first book. Not surprisingly, it was a lot harder than I thought it would
be, even though I had thought I was prepared for it to be harder than I thought
it would be. However, I was fortunate to be surrounded by the extreme compe-
tence of the folks at Manning Publications. Many thanks to Marjan Bace, the
publisher, for approving the book and helping to define its goals; similarly, hearty
thanks to my first contact at Manning, Dan Barthel, for his help both during and
after his formal association with Manning.

Particular thanks to Alex Garrett, who with endless patience shepherded the
book, and its accompanying code, through a brutally accelerated development
and revision process. Thanks also to Lianna Wlasiuk, who served excellently as
interim editor early in the project.

Thanks, in fact, to everyone at Manning who answered my questions, pointed
out my typos, corrected my spelling, marshaled my reviewers, refined my think-
ing, or, in fact, actually edited, re-edited, copyedited, revised, read, reread,
proofread, typeset, designed, marketed, produced, or otherwise created my
book: Syd Brown, Susan Capparelle, Andy Carroll, Lee Fitzpatrick, Leslie
Haimes, Chris Hillman, Ted Kennedy, Elizabeth Martin, Mary Piergies, Sherry
Roberts, Tony Roberts, and Helen Trimes. Double thanks for doing everything
on a very tight schedule. If I’ve left out anyone, either through accident or omis-
sion, please accept my apologies.

Heartfelt thanks to those who read and reviewed the book independently,
serving both as expert witnesses and test subjects: Brian Doyle, Al Giacomucci,

xviii

ACKNOWLEDGMENTS

Ian Griffiths, Jasen Halmes, David M. Karr, Stephen Kelvin, Carl Muckenhoupt,
Andrew Silis, Jon Skeet, and Itai Zukerman. I would particularly like to thank
Tan Griffiths, who went over the book with a fine-toothed comb, lending an
expert’s brain and a proofreader’s eye.

Outside the world of book publishing, I would like to thank Kieron Murphy
for commissioning many technical articles from me, effectively jump-starting my
writing career. Thanks to Jim Blandy, Bob Geitz, Chris Gernon, Steve Hawley,
Chris Koch, Tom McHugh, and Rich Salter for teaching me computer science.
Thanks to Mark Cline, wherever you are, for teaching me to program in the first
place.

Thanks and apologies to friends and family who found me scarce during this
project.

Finally, endless thanks to Susan E. Beal, Esq., for her love and patience (and
even a bit of proofreading) throughout the writing of this book, and more
thanks to Hume Beal for his purring and enthusiasm.

about this book

The JDK 1.4 release of the Java programming language from Sun Microsystems
represents a substantial step in Java’s progress. Some of the new features are
packages that have been in use for some time but have not yet been part of the
core Java platform; other features are completely new.

Whatever their origin, these features extend Java’s capabilities, encapsulating
complex functionality behind simple abstractions. Some of the features help inte-
grate Java further into the host operating system, providing direct access to ser-
vices that had previously only been accessible to native code.

This book is decidedly code-centric. The central feature of each chapter is a
program or set of programs that demonstrate the subject of the chapter within a
complete, real-world program. Although each chapter starts with an overview of
its topic and outlines the main classes and methods of the crucial packages, it
does not duplicate information that can easily be found in the Java documenta-
tion. Thus, this book should be considered a by-example companion to the com-
prehensive documentation.

As you peruse the chapter descriptions that follow, you may notice that this
book does not rigorously cover all topics. I consider a number of topics too broad
to be covered in any useful way in a book of this kind; such topics generally need
their own book. These include CORBA (including the new Portable Object
Adapter (POA) Object Request Broker (ORB)), XML, the Java Cryptography
Extension (JCE), and the Java Authentication and Authorization Service (JAAS).

Xix

XX

ABOUT THIS BOOK

At the time this book was being prepared, it did not seem possible to acquire
a driver that supported enough JDBC 3.0 features to make testing possible.
Rather than write from a position of ignorance, and include possibly spurious
code listings, I decided not to include a chapter on this important topic.

Sadly, the Generics (parameterized types) feature was, in the end, not
included with JDK 1.4 as originally promised. This controversial addition to the
language looks like it will be included in JDK 1.5 for sure, and you can download
an early-access version of it from Sun. However, since it requires a change to the
compiler, it can’t really be said to be a part of JDK 1.4 and so is not discussed in
this book.

Who should read this book

The ideal reader of this book is an intermediate or expert Java programmer who
needs to use the new features of JDK 1.4. I’ve tried to include enough introduc-
tory material that beginners will also find this book useful; however, this book
will not teach you to program—it assumes you already know how.

This book is intended to guide the reader through the essentials of most of
the new packages, libraries, and features in the JDK 1.4 release of the Java pro-
gramming language from Sun Microsystems. It is intended to be comprehensive,
but not necessarily complete. I’'m assuming that once you’ve learned how to use
an API, you will be comfortable digging into the documentation supplied by
Sun, and that you can explore some of the more obscure features of these new
APIs on your own.

How this book is organized

Each topic is given its own chapter, except for the New Input/Output (NIO)
library, which is given two chapters. Some of the chapters provide a comprehen-
sive review of an entire package because that package has been added to the core
Java distribution for the first time. For these topics, the chapter begins with a
conceptual overview that describes the classes and the intentions behind their
design. Then, each major feature of the package is discussed in its own section.
Other chapters touch on the new features of an already-familiar package. In
these cases, little time is spent explaining the package as a whole. Rather, each
new feature is given its own section, which serves as a kind of “mini-chapter.”
Each chapter (or “mini-chapter,” in the case of chapters covering familiar
packages) can be read on its own. It is assumed that you will read the book in any

ABOUT THIS BOOK xxi

order, and dependencies between the chapters have been minimized. Cross-
references have been provided where necessary.

Particular emphasis has been placed on the creation of quality code examples.
The sample programs in this book are intended to be useful, self-contained, and
reusable; they are designed to fully exercise and illustrate a new feature, set of
features, or API. Some of them might seem a bit overlong, but I felt that it
would be better for the programs to be complete and useful than to be concise.
You don’t have to read every line of every program—only the parts that strike
your fancy. Use the annotations to find your way around the code, and remem-
ber, you won’t have to type the programs in—you can download them. (More
about that shortly.)

A chapter-by-chapter outline of the contents of the book follows.

Chapters 1 and 2—Basic and Advanced NIO

NIO, or the New Input/ Output API, presents the concept of the channel as an
alternative to the stzeam. Channels allow for efficient, buffer-based input and
output—buffers are used to read data from, and write data to, channels. Direct
buffers provide direct access to system input and output buffers and thus offer
the potential for transferring data from one channel to another with a minimum
of data copying.

NIO makes it possible to circumvent the potential inefficiencies of Java’s
stream 1/O architecture, with the possibility of great gains in speed. The channel
paradigm is not as simple to use as the stream paradigm, but judicious use of it in
cases where I/O speed is essential can help Java applications achieve the through-
put of applications written using native low-level I/O APIs.

NIO also offers asynchronous I/O via selectable channels, fashioned after the
select Unix system call. Select is a powerful way to perform asynchronous /O,
allowing you to handle a large number of connections at a single time. This goes
a long way in making Java the language of choice for creating high-end Internet
servers.

This topic is divided into two chapters. Chapter 1, “Basic NIO,” covers the
fundamental classes used in the NIO system: channels and buffers. It also has a
section on file locking. Chapter 2, “Advanced NIO,” discusses powerful features
based on the basic classes, including memory-mapped files, asynchronous I/O,
charset translation, and network interfaces.

As examples, these chapters contain a simple channel-based TCP/IP forwarder
and a select-based implementation of a chat (instant messaging) system.

xxii

ABOUT THIS BOOK

Chapter 3—Java2D
Two new Java2D-related features are described in this book: the Print Service
API and a new Image 110 Framework.

The Print Service API gives your application full access to the set of printers
available on a computer, as well as the full range of printing options available on
each printer. It is intended to supersede the java.awt.print package. Docu-
ment classes allow you to create printable objects in a variety of formats and
submit those documents to printers that support these formats. Listeners allow
your application to track the progress of the print job so you can report back to
the user.

The Image 110 Framework takes Java another step away from the Web-
centeredness it started with. It used to be difficult to load and save images; with
the new API, this is easy. Images can be saved and loaded in a variety of formats,
and there’s no need to mess with annoying MediaTracker objects.

This chapter includes an example implementation of a print dialog box, and
a program for generating professional-looking graphs for displaying web server
statistics.

Chapter 4—Java Web Start (JAWS)

You may have found yourself envying programmers who have created applica-
tions that automatically update themselves when new releases are available. With
Java Web Start (JAWS), you can stop being envious. JAWS is not just an API, but
also a system for automatic download and installation of Java applications. Each
time a JAWS application is executed, the JAWS runtime checks the application’s
web server and downloads any new code or data resources automatically.
Although existing Java applications can run inside JAWS without modification,
the JAWS API provides mechanisms for controlling the way the JAWS runtime
behaves, as well as special secure methods for accessing system resources, such as
the local disk and the system clipboard.

When Java was first released, one of the exciting ideas was the possibility of
being able to deploy complex, full-featured applications via the Web. Browser
security models prevented applets from saving themselves to disk, though, and
this idea fell out of favor. Now JAWS can be integrated into popular browsers via
the Java Web Start plug-in. This allows a user to download and install a complete
application with a single click. Downloaded applications are saved between invo-
cations. A comprehensive security model completes the picture.

ABOUT THIS BOOK xxiii

This chapter comes complete with a simple drawing program that makes
comprehensive use of the JAWS system, including accessing the local disk, print-
ing, controlling the browser, and accessing the system clipboard. The Java Net-
work Launching Protocol & API (JNLP), which is the technology underlying
JAWS, is also discussed.

Chapter 5—Logging

The Logging API provides a mechanism for programs to report about their
behavior. More importantly, it provides a way to turn logging messages on and
off after an application has been deployed in the field, greatly aiding in applica-
tion maintenance.

Logging is hardly a new feature—in fact, many logging systems have been
created for Java. However, the JDK 1.4 release standardizes this API in order to
provide a consistent and reliable mechanism. Widespread use of the Logging API
will mean that it will become much easier for applications to be maintained and
debugged after they have been deployed.

The example programs in this chapter demonstrate the ability to customize the
logging system. A custom handler redirects logging messages to a logging win-
dow (complete with a central control window), and a custom formatter provides
an alternative logging format that takes up less space than the default format.

Chapter 6—Assertion facility

The new Assertion facility provides a way for a programmer to litter the code
with “sanity checks.” Assertions are like error checks, except they can be turned
completely off, and they have a simpler syntax. Because they are so brief, they are
very convenient, and there’s no reason not to use them liberally.

Assertions can be turned on and off even after the software has been released.
When assertions are off, they don’t use system resources, but they can be turned
on whenever the software seems to have a problem. With assertions turned on,
the software is much more likely to find, and report on, its own bugs.

Assertions are important enough that the developers of Java felt it was worth
adding new syntax to the language. For large-scale applications, assertions are
crucial to maintaining software throughout its release cycle.

Chapter 7—Exceptions
While we’re on the subject of errors, there are a couple of nice surprises in JDK
1.4 in the area of Exceptions.

XXiv

ABOUT THIS BOOK

The new StackTraceElement object allows a program to access each stack
frame of an exception’s stack trace, giving you access to the source file, method,
and line number of each frame in the stack trace. Previously, you had to parse the
stack trace output; now you can get at this information directly. You can even
synthesize your own stack frames in special circumstances.

Chained exceptions allow for the fact that it is common for one exception to
trigger another. In these cases, the initial exception was lost, unless the program-
mer took pains to stuff the old one inside the new one. This stuffing procedure
has been formalized, since it has proven to be so common. Each Throwable can
now have a cause, which is another Throwable.

The sample program in this chapter uses StackTraceElements to provide a
more detailed stack trace—one that lists the source-code context of each frame in
the stack trace.

Chapter 8—Collections
The Collections Framework has a number of useful new features. Besides some
list-manipulation utilities in the Collections class, we find implementations of
Map and Set that remember the order of their elements, unlike regular Maps and
Sets. Additionally, the new IdentityHashMap class presents a way to circum-
vent an object’s idea of equality, which can be very useful when, for example, tra-
versing a graph of objects.

The ordered Map and Set classes are demonstrated by a program that
searches for files in a file path, and IdentityHashMap is illustrated in a program
that traverses an object graph.

Chapter 9—Regular expressions
The Regular Expression, or regex, facility, brings an incredibly useful feature to
Java. Common in Unix tools, and vastly popularized by Perl, regular expressions
are considered by many programmers to be an indispensable part of their tool-
boxes. Programmers accustomed to regular expressions, as well as the increas-
ingly common split and join functions, will be happy to see that Java now has
them as well.

To illustrate regular expressions, this chapter includes an HTML templating
system and a simple lexical analyzer.

ABOUT THIS BOOK XXV

Chapter 10—The Preferences API

The new Preferences API provides a standard way for Java applications to store
and retrieve preference information. Preference information generally consists of
customizations and settings, often user-specific, that are useful but not essential
to the execution of the application.

The Preferences API interfaces with any preferences facility that exists within
the underlying operating system. In particular, some implementations store pref-
erence data in the Windows Registry. (Later implementations will presumably
store it in Application Data directories.)

This chapter presents an example program called PersistentWindows,
which uses the Preferences API to automatically track a user’s changes to its win-
dow layout.

Chapter 11—The Java Secure Socket Extension (JSSE)
The Java Secure Socket Extension (JSSE) complements the already formidable Java
cryptography architecture with a full implementation of the SSL suite of proto-
cols. The JSSE framework is a generalized framework for secure socket communi-
cations over any protocol, while the SunJSSE security provider implements the
algorithms and protocols for standard SSL communications.

There have been SSL libraries for Java for a while, but SSL is now a compo-
nent of the main Java platform. This makes it easy to create programs that com-
municate with SSL-enabled systems such as secure web servers; it also makes it
easy to create complete client/server systems that can communicate with com-
plete secrecy. Tools and APIs for the creation and manipulation of encryption
keys round out the picture.

To illustrate secure communications, this chapter includes a simple secure
web server and a secure client/server system for credit card verification.

Typographic conventions

Code is displayed in courier font. Annotations are placed off to the side and
are sometimes continued below the code.

public void hello() {
System.out.println("Hello."); o

}

Here’s where we
print “Hello.”

xxvi

ABOUT THIS BOOK

© Here’s some more information about the printing of “Hello.” Printing “Hello.”

might seem trivial, but it’s very important to do this.

By code we mean any textual material that is (or could be) the actual input to, or
output from, a computer program. This also includes names of classes and inter-
faces such as FilterOutputStream and Preferences, methods such as Sys-
tem.out.println() and hello(), variables such as i and nextvalue, and, in
general, any short piece of text that is created by machine production or meant
for machine consumption.

Italics are used to emphasize a new term the first time it is used, and also for
emphasis. Callouts are used for particular emphasis:

WARNING This is a callout. It might be a Warning, a Note, a Definition, or some-
thing else. It’s meant to grab your attention.

Source code downloads

Most of the programs are too long to be conveniently entered by hand; the
book’s web site, at http://www.manning.com/travis/, has all of the code available
for download.

author online

When you purchase JDK 1.4 Tutorial, you also get free access to a private web
forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other
readers.

To access the forum and subscribe to it, point your web browser to http://
www.manning.com/travis/. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of
conduct on the forum.

Manning’s commitment to readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part
of the author, whose contribution to the Author Online forum remains volun-
tary (and unpaid). We suggest you try asking the author some challenging ques-
tions, lest his interest stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

xxvii

about the cover illustration

The figure on the cover of JDK 1.4 Tutorialis a woman of late eighteenth cen-
tury Armenia, attired in an ornate and beautiful dress. While the details of her life
and position are for us lost in historical fog, there is no doubt that we are looking
at a woman of wealth and high social standing. The illustration is taken from a
Spanish compendium of regional dress customs first published in Madrid in
1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacio-
nas del Mundo desubierto, dibujados y grabados con la mayor exacti-
tud por R.M.V.A.R. Obra muy util y en special para los que tienen la
del viagero universal

which we translate, as literally as possible, thus:

General collection of costumes cuvvently used in the nations of the
known world, designed and printed with great exactitude by
R.M.V.A.R. This work is very useful especially for those who hold them-
selves to be universal travelers

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the “exactitude” of their execution is evident in
this drawing. The Armenian woman is just one of many figures in this colorful
collection. Their diversity speaks vividly of the uniqueness and individuality of
the world’s cultures and regions just 200 years ago. This was a time when the
dress codes of two regions separated by a few dozen miles identified people
uniquely as belonging to one or the other. The collection brings to life the sense

XXix

XXX

ABOUT THE COVER ILLUSTRATION

of isolation and distance of that period—and of every other historic period
except our own hyperkinetic present.

Dress codes have changed since then, and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life of
two centuries ago, brought back to life by the pictures from this collection.

Basic NIO

(New Input/Output)

1.1

CHAPTER 1
Basic NIO

The New I/O (NIO) APT introduced in JDK 1.4 provides a completely new model of
low-level I/O. Unlike the original I/O libraries in the java.io package, which were
strongly stream-oriented, the New I/O API in the java.nio package is block-
oriented. This means that I/O operations, wherever possible, are performed on large
blocks of data in a single step, rather than on one byte or character at a time.

The New I/O API libraries are elegant and well designed, but their very nature
represents a trade-off: some simplicity has been sacrificed for potentially enormous
gains in speed. One of the major sources of speed improvement is the introduction
of direct buffers. Where possible, data in these buffers is not copied to and from
intermediate Java buffers; instead, system-level operations are performed on them
directly. Although the implementation necessarily differs from platform to platform,
these direct buffers can potentially permit Java programs to have I/O performance
at or near that of programs written in C or C++.

The New I/0 API also offers a platform-independent form of nonblocking 1/0.
This simplifies multithreaded I/O programming and can enable programs to effi-
ciently handle a large number of connections to data sources and sinks.

The New I/O API model coexists peacefully with the original I/O libraries from
the java.io package. In fact, to a substantial degree, the original I/O libraries have
been rewritten to take advantage of the New I/0 API.

Application programmers will not be forced to rewrite any of their code—exist-
ing applications written against the original APIs will continue to work as before.
However, you might consider using some of the new features of the New I/O API to
speed up any performance bottlenecks you find in your programs. Mixing old- and
new-style I/O code is not trivial, but it is possible to do cleanly and effectively.

This book divides its NIO coverage into two chapters—chapter 1, “Basic NIO,”
and chapter 2, “Advanced NIO.” Chapter 1 covers channels and buftfers, as well as
file locking. These should give you a good understanding of the basic classes used
throughout the NIO system. Chapter 2 introduces you to the more advanced fea-
tures, such as multiplexed I/O; these make use of the ideas presented in this chapter.

Doing I/0 with channels and buffers

Channels and buffers represent the two basic abstractions within the New I/O APIL
Channels correspond roughly to input and output streams: they are sources and
sinks for sequential data. However, whereas input and output streams deal most
directly with single bytes, channels read and write data in chunks. Additionally, a
channel can be bidirectional, in which case it corresponds to both an input stream
and an output stream.

1.1.1

Doing 1I/O with channels and buffers 3

The chunks of data that are written to and read from channels are contained in
objects called buffers. A buffer is an array of data enclosed in an abstraction that
makes reading from, and writing to, channels easy and convenient. Buffers are often
large, reflecting the fact that the I/O paradigm used in the New I/O API is oriented
toward transferring large amounts of data quickly.

Most of the input and output streams in the original I/O libraries have been re-
implemented to use channels as their underlying mechanism. This means that when
you do old-style I/O programming using these stream classes, you’re using channels
without realizing it. Since programming with streams is conceptually simpler than
programming with channels, you can continue to use streams if you find that your
program is fast enough. However, channels provide the opportunity for great speed
improvements, and some applications are actually easier to write using channels.

In this section, we’ll learn how channels and buffers work, and how they differ
from streams.

Getting a channel from a stream

As mentioned previously, many of the streams in the java.io package have been re-
implemented using channels. It’s easy to get the underlying channel that imple-
ments a stream, using the getChannel () method:

FileInputStream fin = new FileInputStream(infile);

FileChannel inc = fin.getChannel() ;

If you examine the documentation for the original java.io.* classes, you’ll see that
a number of the classes have been augmented with a getChannel () method:

m java.io.FileInputStream
m java.io.FileOutputStream
m java.io.RandomAccessFile
m Jjava.net.Socket

m Jjava.net.ServerSocket

m java.net.DatagramSocket
m java.net.MulticastSocket

= java.net.SocketInputStream (private)
= java.net.SocketOutputStream (private)
You’ll notice that InputStream and OutputStream do not have getChannel () meth-

ods. This is because streams iz general do not have to be implemented in terms of
an underlying channel object. Streams that are directly associated with operating

1.1.2

1.1.3

CHAPTER 1
Basic NIO

system features like files and sockets generally are implemented as channels, while
pure-Java streams such as ByteArrayOutputStream and FilterInputStream are not.

Creating a buffer revision

Before you can do any kind of I/O on a channel, you need to have a buffer to do it
with. A buffer is an object that contains an array of data, and allows that data to be
used for reading from, and writing to, channels.

Creating a buffer is easy. Here’s how you create a ByteBuffer:

ByteBuffer buffer = ByteBuffer.allocate(1024);

This method takes a single argument—the size of the underlying array. This value is
called the buffer’s capacity. Once a buffer is created, the capacity never changes.
The best size for a buffer depends on the application. A larger buffer can allow for
faster throughput, but takes up more memory, while a smaller one may degrade
performance slightly, but uses less memory.

You’ll notice that we didn’t use a traditional constructor here. This is true in gen-
eral: buffers are either allocated using the static allocate () method, or created from
an existing byte array using wrap (). They are never constructed directly by the user.

You’ll also notice that we’ve created a ByteBuffer. The java.nio package also
contains IntBuffer, ShortBuffer, FloatBuffer, and so on. There are, in fact, buffer
types for each of Java’s primitive types. There is a class called Buffer, but it is
abstract—you can’t create one. (Buffer is the abstract superclass of all the buffer
classes.) A buffer is always a buffer of something. In the following sections, we’ll use
this ByteBuffer to illustrate how to do basic channel I/O. In section 1.2.6 we’ll
learn how to use the other types of buffers.

NOTE Since the ByteBuffer is by far the most common, and most important, of the
buffer classes, we will assume that any bufter we are talking about is a Byte-
Buffer unless otherwise specified.

Reading from a channel

Now that we’ve seen how to create a buffer, we’ll see how we can read from a chan-
nel into a buffer. In many ways, reading from a channel into a bufter is like reading
from an InputStream into an array, using one of the bulk-read methods in the old
java.io package.

The old read() method looked like this:

public int read(bytel]l b, int off, int len);

1.14

Doing 1I/O with channels and buffers 5

This variant on the InputStream.read() method allowed you to read a number of
bytes into an array all at once. In a sense, this approach to using streams is the pre-
cursor to the channel-oriented method of the New 1/0O API.

Here’s the method we use in the new API:

public int read(ByteBuffer dst);

You’ll note that there’s only a single argument to this method. This is because the
three arguments from the old-style read () call, as well as a number of other things,
are all wrapped up inside the ByteBuffer object.

You’ll also note that this new read() method returns an integer, just like the old
one. The meaning of this value hasn’t changed: it’s the number of bytes that were
successfully read. In both cases, this value is limited, because the read () method
will only read as many bytes as can fit in the available space. In the old method, the
available space was len-off; in the new method, the available space is equal to
buffer.remaining (). (More about this in section 1.2.3.)

Note that if you read from a channel that is only open for writing, a NonRead-
ableChannelException will be thrown.

Writing to a channel

Now that we’ve read some data from a channel into a buffer, we can write that data
out to another channel. This is done—surprise!—via the write () method of a chan-
nel. And, as with reading, writing a buffer is similar to doing a bulk-write from the
old java.io classes. Here is the old write () method:

public void write(bytel[] b, int off, int len);

Again, the three arguments to the old-style write are replaced by a single argument,
which is a buffer, in the new write () method:

public int write(ByteBuffer src);

In this new method, you’ll see an important difference that you don’t see with the
read () methods: the new write () method returns an int. The old write() call was
guaranteed to write all the data or throw an exception. There were no valid condi-
tions under which it would write only part of the data and return. This is not the
case with the new write () method. It returns the number of bytes that were written.

And as with reading, if you write to a channel that is only open for reading, a
NonWritableChannelException will be thrown.

6 CHAPTER 1
Basic NIO

1.1.5 Reading and writing together

The CopyFile program (see listing 1.1) illustrates the entire process of copying all
the data from an input channel to an output channel.

Watch out for a couple of new methods—£1ip() and clear (). These methods
are used any time a buffer is both written to and read from—which is almost all of
the time. After reading from a channel into a buffer, you call buffer.£flip() to pre-
pare the buffer for being written to another channel. Likewise, once you’ve finished
writing the contents of a buffer to one channel, you call buffer.clear () to prepare
it for being read into again. More about this in section 1.2.4.

Make sure not to confuse reading from a buffer with reading from a channel:
reading from a channel means reading data from the channel, and putting it znzo the
buffer. Likewise, writing data to a channel means getting data from a buffer, and
writing it o a channel. See section 1.2.2 for more details.

(see \Chapter 1\CopyFile.java)
import java.io.*;

import java.nio.*;

import java.nio.channels.*;

public class CopyFile

{

static public void main(String args[]) throws Exception {
String infile = args[0], outfile = args[1];
FileInputStream fin = new FileInputStream(infile);
FileOutputStream fout = new FileOutputStream(outfile);

FileChannel inc = fin.getChannel () ;
FileChannel outc = fout.getChannel () ;

ByteBuffer buffer = ByteBuffer.allocate(1024);

while (true) ({

int ret = inc.read(buffer);
if (ret==-1) // nothing left to read
break;

buffer.£flip() ;
outc.write(buffer);
buffer.clear(); // Make room for the next read

1.2

1.2.1

1.2.2

Understanding buffers 7

A full understanding of this program—including an understanding of the £1ip ()
and clear () methods—requires that we learn more about buffers. The next section
will describe how buffers work, and how they are used in practice.

Understanding buffers

Under the original I/O API, the read () and write () methods of the stream classes
took primitive Java types—ints, floats, and so on, as well as arrays of ints, floats,
and so on—as arguments. The management of these variables and buffers was up
to the programmer.

In the New /O API, these primitive types are never written directly to channels.
Buffers are always used as the intermediaries. Buffers can also handle many of the
tasks that used to have to be done by hand—keeping track of how much data has
been read, making sure there’s enough room in an array for the data to be read
into, and so on. And buffers themselves have an I/O interface, because data must be
put into and taken out of buffers.

This section will go over the details of how buffers store data and how they are
used to transfer data to and from channels.

Creating buffers

As mentioned in section 1.1.2, buffers are never created using constructors. There
are two ways of making a ByteBuffer: via the allocate() methods, and via the
wrap () methods.

allocate() creates a fresh ByteBuffer and allocates the memory required to store
the data. allocateDirect () does the same thing, but it attempts to allocate the
required data area as direct memory. (See section 1.2.8 for more about direct buffers.)

The two wrap () methods create a new buffer by wrapping an existing array—or
a portion of an existing array—in a Buffer object. Note that that this doesn’t make
a copy of the data—the data in the buffer and the data in the array are the same daza.
Any modifications to the buffer will show up in the array, and vice versa.

get() and put()

Generally, buffers are used to transfer data from one channel to another. The
read () method of one channel puts data into a buffer, and the write () method of
the other channel takes the data out of the buffer. However, buffers also have meth-
ods that can be used to fill and drain them “by hand.” These are used when you
want to put particular pieces of data into a buffer, or to extract the data and use it
for something. These methods are called get () and put ().

CHAPTER 1
Basic NIO

It can be confusing to consider the bufter get () and put () methods along with
the channel read() and write () methods, because they are backwards: when data is
read from a channel, it is written to a buffer. Likewise, when data is written to a
channel, it is 7ead from a buffer. You read from a buffer using the buffer’s get ()
methods, and you write to a buffer using the buffer’s put () methods.

There are two kinds of get () and put () methods: relative and absolute. Absolute
methods take an index parameter, which lets you choose the position in the under-
lying array at which you want to read or write. In contrast, relative methods do not
need an index parameter—they use the next value or values in the array after the
last one that was used. Relative methods are more commonly used, since they can
be used to fill or drain a buffer sequentially.

There are five basic put () methods. The methods listed here are for ByteBuffer,
but each of the Buffer classes has these methods. Of course, the arguments to the
corresponding methods of DoubleBuffer are double-based, rather than byte-based,
but otherwise they are the same.

= put (byte b)—Put a byte into this buffer

= put (byte src[])—DPut the bytes from an array into this buffer

» put(byte src[], int offset, int length)—Put a portion of the bytes from
an array into this buffer

= put (ByteBuffer src)—Copy the contents of another buffer into this buffer
» put(int index, byte b)—Put a byte at array offset index (starting from zero)

Of these five methods, the first four are relative, and the last one is absolute.
There are four get () methods:

= get ()—Get a single byte from this buffer
= get(byte array[])—Fill an array of bytes with bytes from this buffer

m get(byte array[], int offset, int length)—Fill a portion of an array of
bytes with bytes from this buffer

= get(int index)—QGet the byte at array offset index (starting from zero)

Of these four methods, the first three are relative, and the last one is absolute. Note
that there is no get (ByteBuffer) method. You can accomplish the same thing
with put (ByteBuffer).

In addition to these methods, ByteBuffer also contains a set of methods for
reading and writing other primitive Java types. In each case, a call to one of these
methods can be considered equivalent to calling the single-byte get () and put ()

1.2.3

Understanding buffers 9

methods one or more times, with the bytes involved making up the value of the
primitive type. More on this in section 1.2.7.

Buffer state values

In the previous sections, we saw how to read from and write to a buffer, but we
never really found out what was going on inside the buffer. If you’ll recall, the inner
loop of the CopyFile program listed in section 1.1.5 was, schematically, something

like this:

inc.read(buffer);
buffer.flip();
outc.write(buffer);
buffer.clear() ;

What’s noteworthy about this is that our code doesn’t seem to have to keep track of
how many bytes were read and written each time. This is something the buffer does
for us automatically.

Buffers take care of such things using a number of buffer state values. These are
values that reflect the current state of the buffer as it is used for various reading and
writing tasks. They keep track of how many bytes have been read or written, how
many more can be read, how much room there is to read more, and so on. These are
summarized in table 1.1 and are explained in further detail in the following sections.

Table 1.1 The state of each buffer is represented by three values. These values change as the buffer is
read from, or written to, indicating progress through the buffer. In this way, a buffer keeps
track of the reading or writing process.

State value name What it is
position The index into the underlying array of the next read (or write)
limit The index into the underlying array of the first element that should not be read

(or written)

capacity The size of the underlying array

Buffer position
The buffer position specifies the next entry in the array that will be used for reading
or writing:

= If the buffer is being written to (which means that it is being used for a chan-
nel read), the buffer position points to the location where the next byte will
be stored.

10

1.2.4

CHAPTER 1
Basic NIO

» If the bufter is being read from (which means that it is being used for a chan-
nel write), the buffer position points to the next byte to be read.

In both cases, each time a byte is read or written, the value of the buffer position
increases by the length of the item written. The position cannot become greater
than the value of the buffer limit. If the code tries to execute a read or write that
would make the position greater than the limit, a java.nio.BufferUnderflowEx-
ception or java.nio.BufferOverflowException, respectively, is thrown.

Buffer limit

The buffer limit is the amount of data in the array. It defines the first array slot that
should #ot be used for reading and writing. It is different from the capacity: the
capacity of an array specifies how much data couid be put in it—that is, how much
could potentially fit. The limit specifies how much has actually been put in the array.

If the buffer is being written to, the limit specifies the array element after the last
array element that can accept a value. In this case, the limit is generally set to be
equal to the capacity of the buffer, so that the entirety of the underlying array will
be used.

If the buffer is being read from, the limit specifies the array element after the last
array element that can be read. The buffer limit might be equal to the buffer capac-
ity, which means that the buffer was filled with data before reading started. The
buffer limit might also be less than the capacity, which means the buffer was only
partially filled when reading started.

Buffer capacity

The buffer capacity is equal to the size of the underlying array. Even if the array is
only partially filled with data, the capacity refers to the entire array, including both
the used and unused portions. The capacity of a buffer never changes.

NOTE Each buffer has a method called remaining (), which returns the num-
ber of slots left that can be read or written. This value is equal to limit ()
- position().

flip() and clear()

Buffers are commonly used to read data from one channel and then to write that
same data out to another channel. In this case, the buffer alternates between being
written to and being read from. The £1ip () and clear () methods are called between
these reads and writes, in order to prepare the buffer for each new phase in the

process. The following sequence
describes the process in detail.

At the beginning, the buffer is
brand new. Its limit is set to its
capacity, and its position is set to 0
(as shown in figure 1.1).

In figure 1.1, the underlying
array has a length of 8. The position
is set to 0, while the limit and
capacity values are set to 8. The
limit Jooks like it is too large, since,
technically, it points past the end of
the usable area of the array. But if
you’ll recall, the definition of the
limit is that it is the first slot that
shouldn’t be written to.

The read () method of the
source channel is then called, and it
places some data in the buffer. This
data may or may not fill the buffer.
The limit is still set to the capacity,
while the position has advanced (see
figure 1.2).

Some more data is read from the
channel and placed into the buffer.
The buffer position advances fur-
ther (see figure 1.3).

The writing phase is now over.
buffer.flip() is called to prepare
the buffer to have its data read (see

Understanding buffers 11

| I

Position Limit

Capacity

Figure 1.1 When the buffer is initialized, its
position is set to 0, and its limit and capacity are
set to the length of the array.

| I

Position Limit

Capacity

Figure 1.2 After writing some data, the position
has advanced, while the limit and capacity are
unchanged.

T

Position Limit

Capacity

Figure 1.3 After writing more data, the position
has advanced further.

figure 1.4). (You can think of the £1ip () method as flipping a switch between read-
ing and writing modes. Buffers don’t actually have reading and writing modes—
you can mix read() and write() calls freely. However, it is very common to use a
buffer in the way we are using it here—you do some reading, flip the bufter, and do

some writing.)

In order to prepare for reading, the value of limit must be changed. Before the
call to £1ip(), the buffer was being used as an empty area into which data could be
put; the limit value specified the end of this empty area. Now that £1ip() has been
called, the buffer is being used as a source of data, and the limit value now specifies

12

1.2.5

CHAPTER 1
Basic NIO

the end of this valid data. This limit
value is equal to the value that posi-
tion had before f1ip () was called.

Next, the buffer is passed to the
write () method of the destination
channel, which in turn reads some
data from the buffer (sece
figure 1.5).

The reading process continues
until the position reaches the limit,
at which point there is no more
data in the buffer (see figure 1.6).

The reading phase is now over.
At this point, the clear () method
is called (see figure 1.7).

The position is set to 0, while
the limit is set to the capacity, leav-
ing as large a space as possible for
use in the next writing phase.

slice() and subbuffers

The slice() method allows you to
create a subbuffer of a given buffer.
A subbuffer is just another buffer
that happens to share its data with a
portion of the data in the buffer it
was created from. It is, neverthe-
less, a separate buffer with its own
position, limit, and capacity. The
subbuffer does not have to start at
the first element of the original
buftfer.

When slice() is called, it takes
the current position and limit val-
ues and uses them to define the
new subbuffer. The capacity and
limit of the subbuffer are set to be
the limit of the original buffer, and
the first element of the subbuffer

|

Position Limit
Capacity

Figure 1.4 After calling £1ip (), the limit is set
to the old value of position, and the position is set
to 0.

L

Position Limit
Capacity

Figure 1.5 The reading process begins—as bytes
are read, the position advances.

T T

Limit

Position Capacity

Figure 1.6 All of the data has been read, making
position=limit.

| I

Position Limit

Capacity

Figure 1.7 After clear () is called, positionis set
to 0 and limit is set to capacity.

1.2.6

Understanding buffers 13

corresponds to the element at value position within the original buffer (see
figure 1.8).

In figure 1.8, the subbuffer corresponds to the second through fifth elements of
the original buffer, inclusive. This corresponds to the following code:
ByteBuffer original = ByteBuffer.allocate(8);
original.position(2);
original.limit(6);
ByteBuffer slice = original.slice() ;
The individual data elements pointed to by the two buffers are in fact the same
data. Thus, any change to the shared data in one buffer will be immediately
reflected in the other.

Buffers of other types

ByteBuffers are the most basic form of buffer, and it is used throughout the New
I/0 API. However, it is possible to have buffers of other types. In fact, there is a type
of buffer for each primitive Java type. Each of these types is a subclass of Buffer.

A butffer of a non-byte type stores values of that type, the way that a ByteBuffer
stores bytes. Each buffer type has five put () methods and four get () methods, just
like a ByteBuffer (see section 1.2.2), except that these methods work with their
particular type rather than on bytes.

Position Limit Capacity
origimal [| | [[[T T T ;
buffer .
sice [[[[[:
buffer .
Position Limit
Capacity

Figure 1.8 A slice buffer shares a subsequence of the original buffer. It has its own position, limit,
and capacity values and does not have to start at the same position as the original buffer.

14

1.2.7

CHAPTER 1
Basic NIO
Underlying each typed buffer is Viewed as ByteBuffer
a ByteBuffer that contains the raw
. byte 01 2 3 45 6 7 89 10 111213 1415 16 17 18 19
bytes from which the values are CITTITTIITTIIITTITITITITT]
built. The float values and the byte float 0 1 2 3 4
. . Viewed as FloatBuffer

values are merely different views
onto the same stream of bytes, as Figure 1.9 The same underlying data can be viewed
shown in figure 1.9. as a ByteBuffer and as a FloatBuffer.

Creating a typed buffer is easy.

For example, to create a FloatBuffer, you call the asFloatBuffer () method of
ByteBuffer:

ByteBuffer buffer = ByteBuffer.allocate(size);

FloatBuffer floatBuffer = buffer.asFloatBuffer();

Since you have access to both buffer and floatBuffer, you can access this data
as bytes or as floats. Note that you have two buffers here, each with its own posi-
tion, limit, and capacity values.

Suppose, for example, you wanted to read a series of floating-point values from a
channel: you could read from the channel into the ByteBuffer, and then read the
floats from the FloatBuffer. Since these two buffers point to the same data, the float-
ing-point values in the FloatBuffer are made up of the bytes in the ByteBuffer.

float floatArray[] = new float[floatArraySize];

FileInputStream fin = new FileInputStream(file);
FileChannel fch = fin.getChannel () ;

ByteBuffer buffer = ByteBuffer.allocate(floatArray.length*4);
FloatBuffer floatBuffer = buffer.asFloatBuffer();

fch.read (buffer);

for (int i=0; i<floatArray.length; ++1i) {
floatArray[i] = floatBuffer.get();
System.out .print (floatArray[il+" ");

}

It’s important to remember that the position and limit values of the two buffers are
independent of each other. This means, for example, that although the FloatBuffer
might be exhausted by the reading process, the ByteBuffer is still ready to read
from the beginning—its position value is still 0.

Reading and writing other types from a ByteBuffer

There is another way to read floating-point values from a stream of bytes. Byte-
Buffer has a number of convenience methods that allow you to read values of other

Understanding buffers 15

types—floats, shorts, and so on—directly from a ByteBuffer. This is particularly
useful if you want to read a set of mixed-type values from a buffer.
Figure 1.10 illustrates a series of mixed-type values packed into a single ByteBuffer.

byte short byte float

Figure 1.10 A series of mixed-type values packed into a single ByteBuffer

The code that reads this series of values is as follows:

FileInputStream fin = new FileInputStream(filename);
FileChannel fch = fin.getChannel () ;

ByteBuffer bb = ByteBuffer.allocate(32);

fch.read(bb) ;

bb.flip() ;
byte b0 = bb.get () ;

short s0 = bb.getShort () ;
byte bl = bb.get () ;

float f£0 = bb.getFloat () ;

The choice of whether to use typed buffers, such as FloatBuffer, or the typed
accessor methods, such as ByteBuffer.getFloat () and ByteBuffer.putFloat (),
depends on the homogeneity of the data involved. A FloatBuffer consists entirely
of floats, and so is good for reading banks of uninterrupted floating-point data. A
ByteBuffer, on the other hand, might be ideal for reading file headers that contain
data of different types.

WARNING The default byte order of a ByteBuffer is big-endian*, but this can be
changed using the ByteBuffer’s order (ByteOrder) method. The or-
der () method can be used to find out the ByteBuffer’s current byte order.
You can find out the platform’s native byte order with the Byte-
Order.nativeOrder () static method.

*The terms big-endian and lttle-endian, borrowed from Jonathan Swift, refer to two different
methods for ordering bytes within a multi-byte value. The big-endian methods puts the most
significant byte first and the least significant byte last; thus, the 32-bit hexadecimal value AAB-
BCCDD is stored with the AA byte first and the DD byte last. In contrast, the little-endian
method would store the DD byte first and the AA byte last.

16 C