
JDK 1.4 Tutorial

jdk.book Page i Monday, March 11, 2002 3:38 PM

jdk.book Page ii Monday, March 11, 2002 3:38 PM

jdk.book Page iii Monday, March 11, 2002 3:38 PM
JDK 1.4 Tutorial
GREG M. TRAVIS

MANN I NG

Greenwich
(74° w. long.)

jdk.book Page iv Monday, March 11, 2002 3:38 PM
For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Library of Congress Cataloging-in-Publication Data
Travis, Greg

Book Title /Bill J. Author.
p. cm.

Includes bibliographical references and index.
ISBN ?-??????-??-? (alk. paper)
1. Java (Computer program language). 2. Title.

????????????? 1998
?????????—???? ??-?????

CIP

Manning Publications Co. Copyeditor: Andy Carroll
209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-66-9

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

jdk.book Page v Monday, March 11, 2002 3:38 PM
 To Susan

jdk.book Page vi Monday, March 11, 2002 3:38 PM

contents

jdk.book Page vii Monday, March 11, 2002 3:38 PM
preface xv
acknowledgments xvii
about this book xix
author online xxvii
about the cover illustration xxix

1 Basic NIO (New Input/Output) 1
1.1 Doing I/O with channels and buffers 2

Getting a channel from a stream 3 � Creating a buffer
revision 4 � Reading from a channel 4 � Writing to a
channel 5 � Reading and writing together 6

1.2 Understanding buffers 7
Creating buffers 7 � get() and put() 7 � Buffer state values 9
flip() and clear() 10 � slice() and subbuffers 12 � Buffers of
other types 13 � Reading and writing other types from a
ByteBuffer 14 � Direct buffers 16 � Example: TCP/IP
forwarding 17 � Doing I/O with channels and buffers 27

1.3 The File Locking facility 28
Types of locks 28 � Using locks 29 � Acquiring locks 30
Portability issues 31 � Example: a simple database 32

1.4 Summary 36
vii

viii CONTENTS

jdk.book Page viii Monday, March 11, 2002 3:38 PM
2 Advanced NIO (New Input/Output) 37
2.1 Reading and writing with MappedByteBuffers 38

Advantages of MappedByteBuffers 38 � Disadvantages of
MappedByteBuffers 40 � Using MappedByteBuffers 40
Example: checksumming 41

2.2 Nonblocking I/O 42
The multithreaded approach 43 � The really bad single-
threaded approach 44 � Polling 44 � Example: a polling chat
server 46 � Multiplexing with select() 49

2.3 Encoding and decoding with Charsets 58
Decoding and encoding 59 � Finding available Charsets 59
Using encoders and decoders 61

2.4 Network interfaces 63
When to use a network interface 64 � Getting a list of
NetworkInterfaces 64 � Reporting on NetworkInterfaces 64
Getting a list of InetAddresses 66 � Getting a
NetworkInterface by InetAddress 66 � Getting a
NetworkInterface by name 67 � Listening on a
 particular address 67

2.5 Summary 73

3 Java2D 75
3.1 The Print Service API 76

Print Service packages 76 � Document flavors 77 � Printer
discovery 77 � Printer attributes 79 � The SimpleDoc class 80
The DocPrintJob interface 81 � Example: printing an
image 81 � Example: a custom print dialog box 83

3.2 Reading and writing images with the Image I/O API 88
The plug-in model 89 � Simple reading 89 � Simple
writing 90 � The ImageIO class 90 � Discovering available
formats 90 � Example: reading and displaying an image 92
Example: writing an image 92 � The ImageReader class 93
The ImageWriter class 95 � Customizing the reading
process 97 � Listeners 99 � Example: generating a graph 102

CONTENTS ix

jdk.book Page ix Monday, March 11, 2002 3:38 PM
3.3 Summary 105

4 Java Web Start (JAWS) 107
4.1 Understanding the JAWS execution model 108

Client, server, and application 109 � The sandbox 110
Consider the possibilities 110

4.2 Building and deploying a JAWS application 111
JAR files 111 � The JNLP file 111
Configuring the web server 113

4.3 Using the sandbox: services 113
Using the sandbox: resources 114

4.4 Bypassing the sandbox 115

4.5 Example: a simple drawing program 117
PicoDraw.java 118 � DrawCanvas.java 131
TransferableImage.java 135

4.6 Summary 136

5 Logging 137
5.1 Logging overview 138

Log message format 139 � Logging levels 139 � Logger
names and the logger hierarchy 140 � Logging methods 141
The LogRecord class 141 � Handlers 142 � Filters 143
Formatters 143 � Logging efficiency 144
The philosophy of logging 144

5.2 Configuring the Logging system 145
Configuring handlers 145 � Configuration values for
standard handlers 146 � Configuring loggers 148
Global handlers 149

5.3 Using logging in a program 149

5.4 Writing a custom handler 155

5.5 Writing a custom formatter 165

5.6 Summary 168

x CONTENTS

jdk.book Page x Monday, March 11, 2002 3:38 PM
6 Assertion facility 171
6.1 Assertion basics 172

Why use assertions? 172 � Assertions vs. other error code 173
Designing by contract 174

6.2 Working with assertions 174
Assertion syntax 175 � Compiling with assertions 177
Controlling assertions from the command line 178
Controlling assertions programmatically 181 � Removing
assertions completely 182 � Determining if assertions are
enabled 183 � Catching an assertion failure 184
Assertions and class initialization 185

6.3 Assertion examples 187
Avoiding inconsistent states 187 � Narrowing the range
of states 189 � Ensuring consistency between container
objects and contained objects 189 � More complicated
consistency checks 192

6.4 Knowing when to use assertions 193
Rules of use 193 � What to check for 197
Miscellaneous rules 202

6.5 Summary 204

7 Exceptions 205
7.1 Chained exceptions 206

7.2 StackTraceElements 208
What is a stack trace? 208 � Using StackTraceElements 210
Writing a custom stack trace dumper 210
Synthesizing a stack trace 215

7.3 Summary 228

CONTENTS xi

jdk.book Page xi Monday, March 11, 2002 3:38 PM
8 Collections 229
8.1 Utilities 230

Rotating list elements 230 � Replacing list elements 232
Finding sublists within lists 232 � Swapping list elements 233
Converting enumerations to lists 233

8.2 LinkedHashMap and LinkedHashSet 235
Using LinkedHashMap 235 � Using LinkedHashSet 238
Efficiency of LinkedHashMap and LinkedHashSet 240
Example: searching a file path 241

8.3 IdentityHashMap 246
Object equality 246 � Hashing and equality 247
Example: using the IdentityHashMap 247

8.4 The RandomAccess interface 252

8.5 Summary 255

9 Regular Expressions 257
9.1 Overview of regular expressions 258

Literals 259 � The . wildcard 259 � Quantifiers: * and + 259
Grouping with () 260 � Character classes 260 � Predefined
character classes 261 � Sequencing and alternation 263
Boundary matchers 263 � Reluctant (non-greedy)
matching 264 � Other features 265

9.2 Pattern and Matcher 265
Capturing groups 267 � Find and replace 268 � Flags 269

9.3 Transitioning from Perl to Java 270
Finding the longest word in a line 270 � Parsing a tab-
delimited file 273 � A command-line processor 276
Parsing and modifying names 280

9.4 Example: HTML templating system 285

9.5 Example: a lexical analyzer 288

9.6 Summary 296

xii CONTENTS

jdk.book Page xii Monday, March 11, 2002 3:38 PM
10 The Preferences API 297
10.1 What the Preferences API is for 298

Simple Preferences API example 298 � Appropriate

applications of the Preferences API 299 � Design goals

of the Preferences API 301

10.2 Knowing when to use the Preferences API 304
Comparison with java.util.Properties 304

Comparison with JNDI 305

10.3 Understanding the data hierarchy 305
Tree-like structure 305 � Key/value pairs 305 � System vs.

user 306 � Definition of a user 306 � Pathnames 307

Per-package subtrees 308

10.4 Using the API 308
Traversing the data hierarchy 308 � Reading and writing

values 311 � Allowable types 311 � Allowable keys 312

Allowable values 312 � Allowable node names 313

Default values 313 � Removing values 314 � Iterating through

the values in a node 314 � Distinguishing between user and

system nodes 314 � Node names and paths 315 � Getting

parent and child nodes 316 � Determining the presence of

nodes 316 � Removing nodes 317 � Flushing 318

Syncing 318 � Example: storing GUI configuration 319

10.5 Change listeners 324
Preference change listeners 325 � Node change listeners 325

Example: listening for a GUI change request 326

Example: changing server ports on the fly 329

10.6 Stored defaults 335

10.7 Importing and exporting 335

10.8 Summary 337

CONTENTS xiii

jdk.book Page xiii Monday, March 11, 2002 3:38 PM
11 The Java Secure Socket Extension (JSSE) 339
11.1 Cryptographic terminology 340

11.2 SSL—the Secure Sockets Layer 342
Components of the default implementation 342

SSL handshaking 343

11.3 Managing keys 343
Creating keys with keytool 344 � Store keys in a KeyStore 344

Creating a KeyManagerFactory 344 � Creating a

TrustManagerFactory 345 � Creating an SSLContext 345

11.4 Example: a trivial secure web server 346
The authentication model 346 � Generating the key 347

The configuration file 348 � The code 349

11.5 Example: a secure credit card authorization system 359
The authentication model 359 � Generating the keys 360

The code 362

11.6 Summary 370

index 371

jdk.book Page xiv Monday, March 11, 2002 3:38 PM

jdk.book Page xv Monday, March 11, 2002 3:38 PM
preface
In the summer of 1995, I moved to New York City to work at a web start-up.
On my first day of work, I saw Netscape for the first time; by the end of the day,
I had written my first applet, a trivial graphics program I called Thingy.

 Thingy just drew a bunch of lines from
the cursor to the edge of the screen. You
moved the cursor, and the vortex moved
along with it. Interactive! I announced the
creation of Thingy at the company meeting,
and, to my surprise, everyone cheered. I had
no idea what the big deal was. I had never
used the web before that day, and I didn’t
know why it was exciting, or why it was bor-
ing enough that a program like this could
enliven it. Apparently, being able to run a
program inside a browser was a big deal. A
very big deal.

 For a while, that was what Java was all about—putting moving images inside
pages in a fairly static medium. Java competed against other enlivening technolo-
gies, trading moderate complexity for generality, and becoming a very hot
resume item in the process.

 However, our start-up had realized at an early point that Java wasn’t just for
the client side. Java was also an excellent server-side language—an application
xv

xvi PREFACE

jdk.book Page xvi Monday, March 11, 2002 3:38 PM
language. For all its flaws, Java seemed to be exceedingly well designed. It felt a
lot like C++, but less. I had come close to being a C++ evangelist at my previous
job, but even I had to admit that I got a headache every time I tried to write C++
code. Java, on the other hand, almost never gave me a headache. On the con-
trary—it was eerily fun.

 We heard that the designers (James Gosling and his team) had used a simple
design rule: if you don’t know how to do something really nicely, leave it out. What
an excellent rule! Play to your strengths. Why do lots of things badly when you
can do a few things nicely? Quality isn’t just including good stuff; it’s also know-
ing when to cut the bad stuff.

 Java benefited from the fact that it ran in a place where no programs had run
before—inside the browser window. The novelty of this made up for the fact that
it was slow and used a lot of memory. It didn’t allow for the time and space opti-
mizations that C and C++ allowed. But that was okay—it was a different class of
language. It occupied a special niche, one that had been sought by other truly
high-level languages with commercial pretensions, such as SmallTalk and Eiffel.

 And so Java thrived. Easy to use, portable (except maybe the GUI stuff), good
for beginners and experts alike. It became a very famous language. Relatives of
mine who had never touched a computer asked me if I knew Java and were
pleased when I said that I did. Eat your heart out, SmallTalk! Take that, Eiffel!

 Once Java was firmly ensconced in the canon of programming languages, its
designers increasingly turned their attention to speed. It had gained popularity
because of its simplicity, and that simplicity had brought a certain amount of
sluggishness; now it was time to make up for that.

 The last few versions of the JDK have focused on making Java more complete,
faster, and—let’s not be shy—less simple. The simple stuff is still there, but more
sophisticated elements are falling into place. They might be harder to use, but it’s
worth it if they improve performance. Java always had a nice learning curve, and
the curve has retained its gentle slope. You can start with the basics and move on
to the more complex stuff when your projects demand it.

 JDK 1.4 is another step on this path. It includes a variety of new features,
some of which have been available in prototype form, but all of which are now
firmly part of the Java platform. These features are not yet available in most
browsers, but if you use Java for true application development, you’ll want to
learn how to use them right away.

jdk.book Page xvii Monday, March 11, 2002 3:38 PM
acknowledgments
This is my first book. Not surprisingly, it was a lot harder than I thought it would
be, even though I had thought I was prepared for it to be harder than I thought
it would be. However, I was fortunate to be surrounded by the extreme compe-
tence of the folks at Manning Publications. Many thanks to Marjan Bace, the
publisher, for approving the book and helping to define its goals; similarly, hearty
thanks to my first contact at Manning, Dan Barthel, for his help both during and
after his formal association with Manning.

 Particular thanks to Alex Garrett, who with endless patience shepherded the
book, and its accompanying code, through a brutally accelerated development
and revision process. Thanks also to Lianna Wlasiuk, who served excellently as
interim editor early in the project.

 Thanks, in fact, to everyone at Manning who answered my questions, pointed
out my typos, corrected my spelling, marshaled my reviewers, refined my think-
ing, or, in fact, actually edited, re-edited, copyedited, revised, read, reread,
proofread, typeset, designed, marketed, produced, or otherwise created my
book: Syd Brown, Susan Capparelle, Andy Carroll, Lee Fitzpatrick, Leslie
Haimes, Chris Hillman, Ted Kennedy, Elizabeth Martin, Mary Piergies, Sherry
Roberts, Tony Roberts, and Helen Trimes. Double thanks for doing everything
on a very tight schedule. If I’ve left out anyone, either through accident or omis-
sion, please accept my apologies.

 Heartfelt thanks to those who read and reviewed the book independently,
serving both as expert witnesses and test subjects: Brian Doyle, Al Giacomucci,
xvii

xviii ACKNOWLEDGMENTS

jdk.book Page xviii Monday, March 11, 2002 3:38 PM
Ian Griffiths, Jasen Halmes, David M. Karr, Stephen Kelvin, Carl Muckenhoupt,
Andrew Silis, Jon Skeet, and Itai Zukerman. I would particularly like to thank
Ian Griffiths, who went over the book with a fine-toothed comb, lending an
expert’s brain and a proofreader’s eye.

 Outside the world of book publishing, I would like to thank Kieron Murphy
for commissioning many technical articles from me, effectively jump-starting my
writing career. Thanks to Jim Blandy, Bob Geitz, Chris Gernon, Steve Hawley,
Chris Koch, Tom McHugh, and Rich Salter for teaching me computer science.
Thanks to Mark Cline, wherever you are, for teaching me to program in the first
place.

 Thanks and apologies to friends and family who found me scarce during this
project.

 Finally, endless thanks to Susan E. Beal, Esq., for her love and patience (and
even a bit of proofreading) throughout the writing of this book, and more
thanks to Hume Beal for his purring and enthusiasm.

jdk.book Page xix Monday, March 11, 2002 3:38 PM
about this book
The JDK 1.4 release of the Java programming language from Sun Microsystems
represents a substantial step in Java’s progress. Some of the new features are
packages that have been in use for some time but have not yet been part of the
core Java platform; other features are completely new.

 Whatever their origin, these features extend Java’s capabilities, encapsulating
complex functionality behind simple abstractions. Some of the features help inte-
grate Java further into the host operating system, providing direct access to ser-
vices that had previously only been accessible to native code.

 This book is decidedly code-centric. The central feature of each chapter is a
program or set of programs that demonstrate the subject of the chapter within a
complete, real-world program. Although each chapter starts with an overview of
its topic and outlines the main classes and methods of the crucial packages, it
does not duplicate information that can easily be found in the Java documenta-
tion. Thus, this book should be considered a by-example companion to the com-
prehensive documentation.

 As you peruse the chapter descriptions that follow, you may notice that this
book does not rigorously cover all topics. I consider a number of topics too broad
to be covered in any useful way in a book of this kind; such topics generally need
their own book. These include CORBA (including the new Portable Object
Adapter (POA) Object Request Broker (ORB)), XML, the Java Cryptography
Extension (JCE), and the Java Authentication and Authorization Service (JAAS).
xix

xx ABOUT THIS BOOK

jdk.book Page xx Monday, March 11, 2002 3:38 PM
 At the time this book was being prepared, it did not seem possible to acquire
a driver that supported enough JDBC 3.0 features to make testing possible.
Rather than write from a position of ignorance, and include possibly spurious
code listings, I decided not to include a chapter on this important topic.

 Sadly, the Generics (parameterized types) feature was, in the end, not
included with JDK 1.4 as originally promised. This controversial addition to the
language looks like it will be included in JDK 1.5 for sure, and you can download
an early-access version of it from Sun. However, since it requires a change to the
compiler, it can’t really be said to be a part of JDK 1.4 and so is not discussed in
this book.

Who should read this book
The ideal reader of this book is an intermediate or expert Java programmer who
needs to use the new features of JDK 1.4. I’ve tried to include enough introduc-
tory material that beginners will also find this book useful; however, this book
will not teach you to program—it assumes you already know how.

 This book is intended to guide the reader through the essentials of most of
the new packages, libraries, and features in the JDK 1.4 release of the Java pro-
gramming language from Sun Microsystems. It is intended to be comprehensive,
but not necessarily complete. I’m assuming that once you’ve learned how to use
an API, you will be comfortable digging into the documentation supplied by
Sun, and that you can explore some of the more obscure features of these new
APIs on your own.

How this book is organized
Each topic is given its own chapter, except for the New Input/Output (NIO)
library, which is given two chapters. Some of the chapters provide a comprehen-
sive review of an entire package because that package has been added to the core
Java distribution for the first time. For these topics, the chapter begins with a
conceptual overview that describes the classes and the intentions behind their
design. Then, each major feature of the package is discussed in its own section.

 Other chapters touch on the new features of an already-familiar package. In
these cases, little time is spent explaining the package as a whole. Rather, each
new feature is given its own section, which serves as a kind of “mini-chapter.”

 Each chapter (or “mini-chapter,” in the case of chapters covering familiar
packages) can be read on its own. It is assumed that you will read the book in any

ABOUT THIS BOOK xxi

jdk.book Page xxi Monday, March 11, 2002 3:38 PM
order, and dependencies between the chapters have been minimized. Cross-
references have been provided where necessary.

 Particular emphasis has been placed on the creation of quality code examples.
The sample programs in this book are intended to be useful, self-contained, and
reusable; they are designed to fully exercise and illustrate a new feature, set of
features, or API. Some of them might seem a bit overlong, but I felt that it
would be better for the programs to be complete and useful than to be concise.
You don’t have to read every line of every program—only the parts that strike
your fancy. Use the annotations to find your way around the code, and remem-
ber, you won’t have to type the programs in—you can download them. (More
about that shortly.)

 A chapter-by-chapter outline of the contents of the book follows.

Chapters 1 and 2—Basic and Advanced NIO
NIO, or the New Input/Output API, presents the concept of the channel as an
alternative to the stream. Channels allow for efficient, buffer-based input and
output—buffers are used to read data from, and write data to, channels. Direct
buffers provide direct access to system input and output buffers and thus offer
the potential for transferring data from one channel to another with a minimum
of data copying.

 NIO makes it possible to circumvent the potential inefficiencies of Java’s
stream I/O architecture, with the possibility of great gains in speed. The channel
paradigm is not as simple to use as the stream paradigm, but judicious use of it in
cases where I/O speed is essential can help Java applications achieve the through-
put of applications written using native low-level I/O APIs.

 NIO also offers asynchronous I/O via selectable channels, fashioned after the
select Unix system call. Select is a powerful way to perform asynchronous I/O,
allowing you to handle a large number of connections at a single time. This goes
a long way in making Java the language of choice for creating high-end Internet
servers.

 This topic is divided into two chapters. Chapter 1, “Basic NIO,” covers the
fundamental classes used in the NIO system: channels and buffers. It also has a
section on file locking. Chapter 2, “Advanced NIO,” discusses powerful features
based on the basic classes, including memory-mapped files, asynchronous I/O,
charset translation, and network interfaces.

 As examples, these chapters contain a simple channel-based TCP/IP forwarder
and a select-based implementation of a chat (instant messaging) system.

xxii ABOUT THIS BOOK

jdk.book Page xxii Monday, March 11, 2002 3:38 PM
Chapter 3—Java2D
Two new Java2D-related features are described in this book: the Print Service
API and a new Image I /O Framework.

 The Print Service API gives your application full access to the set of printers
available on a computer, as well as the full range of printing options available on
each printer. It is intended to supersede the java.awt.print package. Docu-
ment classes allow you to create printable objects in a variety of formats and
submit those documents to printers that support these formats. Listeners allow
your application to track the progress of the print job so you can report back to
the user.

 The Image I /O Framework takes Java another step away from the Web-
centeredness it started with. It used to be difficult to load and save images; with
the new API, this is easy. Images can be saved and loaded in a variety of formats,
and there’s no need to mess with annoying MediaTracker objects.

 This chapter includes an example implementation of a print dialog box, and
a program for generating professional-looking graphs for displaying web server
statistics.

Chapter 4—Java Web Start (JAWS)
You may have found yourself envying programmers who have created applica-
tions that automatically update themselves when new releases are available. With
Java Web Start (JAWS), you can stop being envious. JAWS is not just an API, but
also a system for automatic download and installation of Java applications. Each
time a JAWS application is executed, the JAWS runtime checks the application’s
web server and downloads any new code or data resources automatically.
Although existing Java applications can run inside JAWS without modification,
the JAWS API provides mechanisms for controlling the way the JAWS runtime
behaves, as well as special secure methods for accessing system resources, such as
the local disk and the system clipboard.

 When Java was first released, one of the exciting ideas was the possibility of
being able to deploy complex, full-featured applications via the Web. Browser
security models prevented applets from saving themselves to disk, though, and
this idea fell out of favor. Now JAWS can be integrated into popular browsers via
the Java Web Start plug-in. This allows a user to download and install a complete
application with a single click. Downloaded applications are saved between invo-
cations. A comprehensive security model completes the picture.

ABOUT THIS BOOK xxiii

jdk.book Page xxiii Monday, March 11, 2002 3:38 PM
 This chapter comes complete with a simple drawing program that makes
comprehensive use of the JAWS system, including accessing the local disk, print-
ing, controlling the browser, and accessing the system clipboard. The Java Net-
work Launching Protocol & API (JNLP), which is the technology underlying
JAWS, is also discussed.

Chapter 5—Logging
The Logging API provides a mechanism for programs to report about their
behavior. More importantly, it provides a way to turn logging messages on and
off after an application has been deployed in the field, greatly aiding in applica-
tion maintenance.

 Logging is hardly a new feature—in fact, many logging systems have been
created for Java. However, the JDK 1.4 release standardizes this API in order to
provide a consistent and reliable mechanism. Widespread use of the Logging API
will mean that it will become much easier for applications to be maintained and
debugged after they have been deployed.

 The example programs in this chapter demonstrate the ability to customize the
logging system. A custom handler redirects logging messages to a logging win-
dow (complete with a central control window), and a custom formatter provides
an alternative logging format that takes up less space than the default format.

Chapter 6—Assertion facility
The new Assertion facility provides a way for a programmer to litter the code
with “sanity checks.” Assertions are like error checks, except they can be turned
completely off, and they have a simpler syntax. Because they are so brief, they are
very convenient, and there’s no reason not to use them liberally.

 Assertions can be turned on and off even after the software has been released.
When assertions are off, they don’t use system resources, but they can be turned
on whenever the software seems to have a problem. With assertions turned on,
the software is much more likely to find, and report on, its own bugs.

 Assertions are important enough that the developers of Java felt it was worth
adding new syntax to the language. For large-scale applications, assertions are
crucial to maintaining software throughout its release cycle.

Chapter 7—Exceptions
While we’re on the subject of errors, there are a couple of nice surprises in JDK
1.4 in the area of Exceptions.

xxiv ABOUT THIS BOOK

jdk.book Page xxiv Monday, March 11, 2002 3:38 PM
 The new StackTraceElement object allows a program to access each stack
frame of an exception’s stack trace, giving you access to the source file, method,
and line number of each frame in the stack trace. Previously, you had to parse the
stack trace output; now you can get at this information directly. You can even
synthesize your own stack frames in special circumstances.

 Chained exceptions allow for the fact that it is common for one exception to
trigger another. In these cases, the initial exception was lost, unless the program-
mer took pains to stuff the old one inside the new one. This stuffing procedure
has been formalized, since it has proven to be so common. Each Throwable can
now have a cause, which is another Throwable.

 The sample program in this chapter uses StackTraceElements to provide a
more detailed stack trace—one that lists the source-code context of each frame in
the stack trace.

Chapter 8—Collections
The Collections Framework has a number of useful new features. Besides some
list-manipulation utilities in the Collections class, we find implementations of
Map and Set that remember the order of their elements, unlike regular Maps and
Sets. Additionally, the new IdentityHashMap class presents a way to circum-
vent an object’s idea of equality, which can be very useful when, for example, tra-
versing a graph of objects.

 The ordered Map and Set classes are demonstrated by a program that
searches for files in a file path, and IdentityHashMap is illustrated in a program
that traverses an object graph.

Chapter 9—Regular expressions
The Regular Expression, or regex, facility, brings an incredibly useful feature to
Java. Common in Unix tools, and vastly popularized by Perl, regular expressions
are considered by many programmers to be an indispensable part of their tool-
boxes. Programmers accustomed to regular expressions, as well as the increas-
ingly common split and join functions, will be happy to see that Java now has
them as well.

 To illustrate regular expressions, this chapter includes an HTML templating
system and a simple lexical analyzer.

ABOUT THIS BOOK xxv

jdk.book Page xxv Monday, March 11, 2002 3:38 PM
Chapter 10—The Preferences API
The new Preferences API provides a standard way for Java applications to store
and retrieve preference information. Preference information generally consists of
customizations and settings, often user-specific, that are useful but not essential
to the execution of the application.

 The Preferences API interfaces with any preferences facility that exists within
the underlying operating system. In particular, some implementations store pref-
erence data in the Windows Registry. (Later implementations will presumably
store it in Application Data directories.)

 This chapter presents an example program called PersistentWindows,
which uses the Preferences API to automatically track a user’s changes to its win-
dow layout.

Chapter 11—The Java Secure Socket Extension (JSSE)
The Java Secure Socket Extension (JSSE) complements the already formidable Java
cryptography architecture with a full implementation of the SSL suite of proto-
cols. The JSSE framework is a generalized framework for secure socket communi-
cations over any protocol, while the SunJSSE security provider implements the
algorithms and protocols for standard SSL communications.

 There have been SSL libraries for Java for a while, but SSL is now a compo-
nent of the main Java platform. This makes it easy to create programs that com-
municate with SSL-enabled systems such as secure web servers; it also makes it
easy to create complete client/server systems that can communicate with com-
plete secrecy. Tools and APIs for the creation and manipulation of encryption
keys round out the picture.

 To illustrate secure communications, this chapter includes a simple secure
web server and a secure client/server system for credit card verification.

Typographic conventions
Code is displayed in courier font. Annotations are placed off to the side and
are sometimes continued below the code.

public void hello() {
 System.out.println("Hello.");
}

b
Here’s where we
 print “Hello.”

xxvi ABOUT THIS BOOK

jdk.book Page xxvi Monday, March 11, 2002 3:38 PM
b Here’s some more information about the printing of “Hello.” Printing “Hello.”
might seem trivial, but it’s very important to do this.

By code we mean any textual material that is (or could be) the actual input to, or
output from, a computer program. This also includes names of classes and inter-
faces such as FilterOutputStream and Preferences, methods such as Sys-
tem.out.println() and hello(), variables such as i and nextValue, and, in
general, any short piece of text that is created by machine production or meant
for machine consumption.

 Italics are used to emphasize a new term the first time it is used, and also for
emphasis. Callouts are used for particular emphasis:

WARNING This is a callout. It might be a Warning, a Note, a Definition, or some-
thing else. It’s meant to grab your attention.

Source code downloads
Most of the programs are too long to be conveniently entered by hand; the
book’s web site, at http://www.manning.com/travis/, has all of the code available
for download.

jdk.book Page xxvii Monday, March 11, 2002 3:38 PM
author online
When you purchase JDK 1.4 Tutorial, you also get free access to a private web
forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other
readers.

 To access the forum and subscribe to it, point your web browser to http://
www.manning.com/travis/. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of
conduct on the forum.

 Manning’s commitment to readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part
of the author, whose contribution to the Author Online forum remains volun-
tary (and unpaid). We suggest you try asking the author some challenging ques-
tions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.
xxvii

jdk.book Page xxviii Monday, March 11, 2002 3:38 PM

jdk.book Page xxix Monday, March 11, 2002 3:38 PM
about the cover illustration
The figure on the cover of JDK 1.4 Tutorial is a woman of late eighteenth cen-
tury Armenia, attired in an ornate and beautiful dress. While the details of her life
and position are for us lost in historical fog, there is no doubt that we are looking
at a woman of wealth and high social standing. The illustration is taken from a
Spanish compendium of regional dress customs first published in Madrid in
1799. The book’s title page states:

 Coleccion general de los Trages que usan actualmente todas las Nacio-
nas del Mundo desubierto, dibujados y grabados con la mayor exacti-
tud por R.M.V.A.R. Obra muy util y en special para los que tienen la
del viajero universal

 which we translate, as literally as possible, thus:
 General collection of costumes currently used in the nations of the
known world, designed and printed with great exactitude by
R.M.V.A.R. This work is very useful especially for those who hold them-
selves to be universal travelers

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the “exactitude” of their execution is evident in
this drawing. The Armenian woman is just one of many figures in this colorful
collection. Their diversity speaks vividly of the uniqueness and individuality of
the world’s cultures and regions just 200 years ago. This was a time when the
dress codes of two regions separated by a few dozen miles identified people
uniquely as belonging to one or the other. The collection brings to life the sense
xxix

xxx ABOUT THE COVER ILLUSTRATION

jdk.book Page xxx Monday, March 11, 2002 3:38 PM
of isolation and distance of that period—and of every other historic period
except our own hyperkinetic present.

 Dress codes have changed since then, and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life of
two centuries ago‚ brought back to life by the pictures from this collection.

jdk.book Page 1 Monday, March 11, 2002 3:38 PM
1Basic NIO
(New Input/Output)
This chapter covers
� The New I/O system

� Doing I/O with channels and buffers

� File locking
1

2 CHAPTER 1

Basic NIO

jdk.book Page 2 Monday, March 11, 2002 3:38 PM
The New I/O (NIO) API introduced in JDK 1.4 provides a completely new model of
low-level I/O. Unlike the original I/O libraries in the java.io package, which were
strongly stream-oriented, the New I/O API in the java.nio package is block-
oriented. This means that I/O operations, wherever possible, are performed on large
blocks of data in a single step, rather than on one byte or character at a time.

 The New I/O API libraries are elegant and well designed, but their very nature
represents a trade-off: some simplicity has been sacrificed for potentially enormous
gains in speed. One of the major sources of speed improvement is the introduction
of direct buffers. Where possible, data in these buffers is not copied to and from
intermediate Java buffers; instead, system-level operations are performed on them
directly. Although the implementation necessarily differs from platform to platform,
these direct buffers can potentially permit Java programs to have I/O performance
at or near that of programs written in C or C++.

 The New I/O API also offers a platform-independent form of nonblocking I/O.
This simplifies multithreaded I/O programming and can enable programs to effi-
ciently handle a large number of connections to data sources and sinks.

 The New I/O API model coexists peacefully with the original I/O libraries from
the java.io package. In fact, to a substantial degree, the original I/O libraries have
been rewritten to take advantage of the New I/O API.

 Application programmers will not be forced to rewrite any of their code—exist-
ing applications written against the original APIs will continue to work as before.
However, you might consider using some of the new features of the New I/O API to
speed up any performance bottlenecks you find in your programs. Mixing old- and
new-style I/O code is not trivial, but it is possible to do cleanly and effectively.

 This book divides its NIO coverage into two chapters—chapter 1, “Basic NIO,”
and chapter 2, “Advanced NIO.” Chapter 1 covers channels and buffers, as well as
file locking. These should give you a good understanding of the basic classes used
throughout the NIO system. Chapter 2 introduces you to the more advanced fea-
tures, such as multiplexed I/O; these make use of the ideas presented in this chapter.

1.1 Doing I/O with channels and buffers

Channels and buffers represent the two basic abstractions within the New I/O API.
Channels correspond roughly to input and output streams: they are sources and
sinks for sequential data. However, whereas input and output streams deal most
directly with single bytes, channels read and write data in chunks. Additionally, a
channel can be bidirectional, in which case it corresponds to both an input stream
and an output stream.

Doing I/O with channels and buffers 3

jdk.book Page 3 Monday, March 11, 2002 3:38 PM
 The chunks of data that are written to and read from channels are contained in
objects called buffers. A buffer is an array of data enclosed in an abstraction that
makes reading from, and writing to, channels easy and convenient. Buffers are often
large, reflecting the fact that the I/O paradigm used in the New I/O API is oriented
toward transferring large amounts of data quickly.

 Most of the input and output streams in the original I/O libraries have been re-
implemented to use channels as their underlying mechanism. This means that when
you do old-style I/O programming using these stream classes, you’re using channels
without realizing it. Since programming with streams is conceptually simpler than
programming with channels, you can continue to use streams if you find that your
program is fast enough. However, channels provide the opportunity for great speed
improvements, and some applications are actually easier to write using channels.

 In this section, we’ll learn how channels and buffers work, and how they differ
from streams.

1.1.1 Getting a channel from a stream
As mentioned previously, many of the streams in the java.io package have been re-
implemented using channels. It’s easy to get the underlying channel that imple-
ments a stream, using the getChannel() method:

FileInputStream fin = new FileInputStream(infile);

FileChannel inc = fin.getChannel();

If you examine the documentation for the original java.io.* classes, you’ll see that
a number of the classes have been augmented with a getChannel() method:

� java.io.FileInputStream

� java.io.FileOutputStream

� java.io.RandomAccessFile

� java.net.Socket

� java.net.ServerSocket

� java.net.DatagramSocket

� java.net.MulticastSocket

� java.net.SocketInputStream (private)
� java.net.SocketOutputStream (private)

You’ll notice that InputStream and OutputStream do not have getChannel() meth-
ods. This is because streams in general do not have to be implemented in terms of
an underlying channel object. Streams that are directly associated with operating

4 CHAPTER 1

Basic NIO

jdk.book Page 4 Monday, March 11, 2002 3:38 PM
system features like files and sockets generally are implemented as channels, while
pure-Java streams such as ByteArrayOutputStream and FilterInputStream are not.

1.1.2 Creating a buffer revision
Before you can do any kind of I/O on a channel, you need to have a buffer to do it
with. A buffer is an object that contains an array of data, and allows that data to be
used for reading from, and writing to, channels.

 Creating a buffer is easy. Here’s how you create a ByteBuffer:

ByteBuffer buffer = ByteBuffer.allocate(1024);

This method takes a single argument—the size of the underlying array. This value is
called the buffer’s capacity. Once a buffer is created, the capacity never changes.
The best size for a buffer depends on the application. A larger buffer can allow for
faster throughput, but takes up more memory, while a smaller one may degrade
performance slightly, but uses less memory.

 You’ll notice that we didn’t use a traditional constructor here. This is true in gen-
eral: buffers are either allocated using the static allocate() method, or created from
an existing byte array using wrap(). They are never constructed directly by the user.

 You’ll also notice that we’ve created a ByteBuffer. The java.nio package also
contains IntBuffer, ShortBuffer, FloatBuffer, and so on. There are, in fact, buffer
types for each of Java’s primitive types. There is a class called Buffer, but it is
abstract—you can’t create one. (Buffer is the abstract superclass of all the buffer
classes.) A buffer is always a buffer of something. In the following sections, we’ll use
this ByteBuffer to illustrate how to do basic channel I/O. In section 1.2.6 we’ll
learn how to use the other types of buffers.

NOTE Since the ByteBuffer is by far the most common, and most important, of the
buffer classes, we will assume that any buffer we are talking about is a Byte-
Buffer unless otherwise specified.

1.1.3 Reading from a channel
Now that we’ve seen how to create a buffer, we’ll see how we can read from a chan-
nel into a buffer. In many ways, reading from a channel into a buffer is like reading
from an InputStream into an array, using one of the bulk-read methods in the old
java.io package.

 The old read() method looked like this:

public int read(byte[] b, int off, int len);

Doing I/O with channels and buffers 5

jdk.book Page 5 Monday, March 11, 2002 3:38 PM
This variant on the InputStream.read() method allowed you to read a number of
bytes into an array all at once. In a sense, this approach to using streams is the pre-
cursor to the channel-oriented method of the New I/O API.

 Here’s the method we use in the new API:

public int read(ByteBuffer dst);

You’ll note that there’s only a single argument to this method. This is because the
three arguments from the old-style read() call, as well as a number of other things,
are all wrapped up inside the ByteBuffer object.

 You’ll also note that this new read() method returns an integer, just like the old
one. The meaning of this value hasn’t changed: it’s the number of bytes that were
successfully read. In both cases, this value is limited, because the read() method
will only read as many bytes as can fit in the available space. In the old method, the
available space was len-off; in the new method, the available space is equal to
buffer.remaining(). (More about this in section 1.2.3.)

 Note that if you read from a channel that is only open for writing, a NonRead-
ableChannelException will be thrown.

1.1.4 Writing to a channel
Now that we’ve read some data from a channel into a buffer, we can write that data
out to another channel. This is done—surprise!—via the write() method of a chan-
nel. And, as with reading, writing a buffer is similar to doing a bulk-write from the
old java.io classes. Here is the old write() method:

public void write(byte[] b, int off, int len);

Again, the three arguments to the old-style write are replaced by a single argument,
which is a buffer, in the new write() method:

public int write(ByteBuffer src);

In this new method, you’ll see an important difference that you don’t see with the
read() methods: the new write() method returns an int. The old write() call was
guaranteed to write all the data or throw an exception. There were no valid condi-
tions under which it would write only part of the data and return. This is not the
case with the new write() method. It returns the number of bytes that were written.

 And as with reading, if you write to a channel that is only open for reading, a
NonWritableChannelException will be thrown.

6 CHAPTER 1

Basic NIO

jdk.book Page 6 Monday, March 11, 2002 3:38 PM
1.1.5 Reading and writing together
The CopyFile program (see listing 1.1) illustrates the entire process of copying all
the data from an input channel to an output channel.

 Watch out for a couple of new methods—flip() and clear(). These methods
are used any time a buffer is both written to and read from—which is almost all of
the time. After reading from a channel into a buffer, you call buffer.flip() to pre-
pare the buffer for being written to another channel. Likewise, once you’ve finished
writing the contents of a buffer to one channel, you call buffer.clear() to prepare
it for being read into again. More about this in section 1.2.4.

 Make sure not to confuse reading from a buffer with reading from a channel:
reading from a channel means reading data from the channel, and putting it into the
buffer. Likewise, writing data to a channel means getting data from a buffer, and
writing it to a channel. See section 1.2.2 for more details.

(see \Chapter1 \CopyFile.java)
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class CopyFile
{
 static public void main(String args[]) throws Exception {
 String infile = args[0], outfile = args[1];
 FileInputStream fin = new FileInputStream(infile);
 FileOutputStream fout = new FileOutputStream(outfile);

 FileChannel inc = fin.getChannel();
 FileChannel outc = fout.getChannel();

 ByteBuffer buffer = ByteBuffer.allocate(1024);

 while (true) {
 int ret = inc.read(buffer);
 if (ret==-1) // nothing left to read
 break;
 buffer.flip();
 outc.write(buffer);
 buffer.clear(); // Make room for the next read
 }
 }
}

Listing 1.1 CopyFile.java

Understanding buffers 7

jdk.book Page 7 Monday, March 11, 2002 3:38 PM
A full understanding of this program—including an understanding of the flip()
and clear() methods—requires that we learn more about buffers. The next section
will describe how buffers work, and how they are used in practice.

1.2 Understanding buffers

Under the original I/O API, the read() and write() methods of the stream classes
took primitive Java types—ints, floats, and so on, as well as arrays of ints, floats,
and so on—as arguments. The management of these variables and buffers was up
to the programmer.

 In the New I/O API, these primitive types are never written directly to channels.
Buffers are always used as the intermediaries. Buffers can also handle many of the
tasks that used to have to be done by hand—keeping track of how much data has
been read, making sure there’s enough room in an array for the data to be read
into, and so on. And buffers themselves have an I/O interface, because data must be
put into and taken out of buffers.

 This section will go over the details of how buffers store data and how they are
used to transfer data to and from channels.

1.2.1 Creating buffers
As mentioned in section 1.1.2, buffers are never created using constructors. There
are two ways of making a ByteBuffer: via the allocate() methods, and via the
wrap() methods.

 allocate() creates a fresh ByteBuffer and allocates the memory required to store
the data. allocateDirect() does the same thing, but it attempts to allocate the
required data area as direct memory. (See section 1.2.8 for more about direct buffers.)

 The two wrap() methods create a new buffer by wrapping an existing array—or
a portion of an existing array—in a Buffer object. Note that that this doesn’t make
a copy of the data—the data in the buffer and the data in the array are the same data.
Any modifications to the buffer will show up in the array, and vice versa.

1.2.2 get() and put()
Generally, buffers are used to transfer data from one channel to another. The
read() method of one channel puts data into a buffer, and the write() method of
the other channel takes the data out of the buffer. However, buffers also have meth-
ods that can be used to fill and drain them “by hand.” These are used when you
want to put particular pieces of data into a buffer, or to extract the data and use it
for something. These methods are called get() and put().

8 CHAPTER 1

Basic NIO

jdk.book Page 8 Monday, March 11, 2002 3:38 PM
 It can be confusing to consider the buffer get() and put() methods along with
the channel read() and write() methods, because they are backwards: when data is
read from a channel, it is written to a buffer. Likewise, when data is written to a
channel, it is read from a buffer. You read from a buffer using the buffer’s get()
methods, and you write to a buffer using the buffer’s put() methods.

 There are two kinds of get() and put() methods: relative and absolute. Absolute
methods take an index parameter, which lets you choose the position in the under-
lying array at which you want to read or write. In contrast, relative methods do not
need an index parameter—they use the next value or values in the array after the
last one that was used. Relative methods are more commonly used, since they can
be used to fill or drain a buffer sequentially.

 There are five basic put() methods. The methods listed here are for ByteBuffer,
but each of the Buffer classes has these methods. Of course, the arguments to the
corresponding methods of DoubleBuffer are double-based, rather than byte-based,
but otherwise they are the same.

� put(byte b)—Put a byte into this buffer
� put(byte src[])—Put the bytes from an array into this buffer
� put(byte src[], int offset, int length)—Put a portion of the bytes from

an array into this buffer
� put(ByteBuffer src)—Copy the contents of another buffer into this buffer
� put(int index, byte b)—Put a byte at array offset index (starting from zero)

Of these five methods, the first four are relative, and the last one is absolute.
 There are four get() methods:

� get()—Get a single byte from this buffer
� get(byte array[])—Fill an array of bytes with bytes from this buffer
� get(byte array[], int offset, int length)—Fill a portion of an array of

bytes with bytes from this buffer
� get(int index)—Get the byte at array offset index (starting from zero)

Of these four methods, the first three are relative, and the last one is absolute. Note
that there is no get(ByteBuffer) method. You can accomplish the same thing
with put(ByteBuffer).

 In addition to these methods, ByteBuffer also contains a set of methods for
reading and writing other primitive Java types. In each case, a call to one of these
methods can be considered equivalent to calling the single-byte get() and put()

Understanding buffers 9

jdk.book Page 9 Monday, March 11, 2002 3:38 PM
methods one or more times, with the bytes involved making up the value of the
primitive type. More on this in section 1.2.7.

1.2.3 Buffer state values
In the previous sections, we saw how to read from and write to a buffer, but we
never really found out what was going on inside the buffer. If you’ll recall, the inner
loop of the CopyFile program listed in section 1.1.5 was, schematically, something
like this:

inc.read(buffer);
buffer.flip();
outc.write(buffer);
buffer.clear();

What’s noteworthy about this is that our code doesn’t seem to have to keep track of
how many bytes were read and written each time. This is something the buffer does
for us automatically.

 Buffers take care of such things using a number of buffer state values. These are
values that reflect the current state of the buffer as it is used for various reading and
writing tasks. They keep track of how many bytes have been read or written, how
many more can be read, how much room there is to read more, and so on. These are
summarized in table 1.1 and are explained in further detail in the following sections.

Buffer position
The buffer position specifies the next entry in the array that will be used for reading
or writing:

� If the buffer is being written to (which means that it is being used for a chan-
nel read), the buffer position points to the location where the next byte will
be stored.

Table 1.1 The state of each buffer is represented by three values. These values change as the buffer is
read from, or written to, indicating progress through the buffer. In this way, a buffer keeps
track of the reading or writing process.

State value name What it is

position The index into the underlying array of the next read (or write)

limit The index into the underlying array of the first element that should not be read
(or written)

capacity The size of the underlying array

10 CHAPTER 1

Basic NIO

jdk.book Page 10 Monday, March 11, 2002 3:38 PM
� If the buffer is being read from (which means that it is being used for a chan-
nel write), the buffer position points to the next byte to be read.

In both cases, each time a byte is read or written, the value of the buffer position
increases by the length of the item written. The position cannot become greater
than the value of the buffer limit. If the code tries to execute a read or write that
would make the position greater than the limit, a java.nio.BufferUnderflowEx-
ception or java.nio.BufferOverflowException, respectively, is thrown.

Buffer limit
The buffer limit is the amount of data in the array. It defines the first array slot that
should not be used for reading and writing. It is different from the capacity: the
capacity of an array specifies how much data could be put in it—that is, how much
could potentially fit. The limit specifies how much has actually been put in the array.

 If the buffer is being written to, the limit specifies the array element after the last
array element that can accept a value. In this case, the limit is generally set to be
equal to the capacity of the buffer, so that the entirety of the underlying array will
be used.

 If the buffer is being read from, the limit specifies the array element after the last
array element that can be read. The buffer limit might be equal to the buffer capac-
ity, which means that the buffer was filled with data before reading started. The
buffer limit might also be less than the capacity, which means the buffer was only
partially filled when reading started.

Buffer capacity
The buffer capacity is equal to the size of the underlying array. Even if the array is
only partially filled with data, the capacity refers to the entire array, including both
the used and unused portions. The capacity of a buffer never changes.

NOTE Each buffer has a method called remaining(), which returns the num-
ber of slots left that can be read or written. This value is equal to limit()
- position().

1.2.4 flip() and clear()
Buffers are commonly used to read data from one channel and then to write that
same data out to another channel. In this case, the buffer alternates between being
written to and being read from. The flip() and clear() methods are called between
these reads and writes, in order to prepare the buffer for each new phase in the

Understanding buffers 11

jdk.book Page 11 Monday, March 11, 2002 3:38 PM
process. The following sequence
describes the process in detail.

 At the beginning, the buffer is
brand new. Its limit is set to its
capacity, and its position is set to 0
(as shown in figure 1.1).

 In figure 1.1, the underlying
array has a length of 8. The position
is set to 0, while the limit and
capacity values are set to 8. The
limit looks like it is too large, since,
technically, it points past the end of
the usable area of the array. But if
you’ll recall, the definition of the
limit is that it is the first slot that
shouldn’t be written to.

 The read() method of the
source channel is then called, and it
places some data in the buffer. This
data may or may not fill the buffer.
The limit is still set to the capacity,
while the position has advanced (see
figure 1.2).

 Some more data is read from the
channel and placed into the buffer.
The buffer position advances fur-
ther (see figure 1.3).

 The writing phase is now over.
buffer.flip() is called to prepare
the buffer to have its data read (see
figure 1.4). (You can think of the flip() method as flipping a switch between read-
ing and writing modes. Buffers don’t actually have reading and writing modes—
you can mix read() and write() calls freely. However, it is very common to use a
buffer in the way we are using it here—you do some reading, flip the buffer, and do
some writing.)

 In order to prepare for reading, the value of limit must be changed. Before the
call to flip(), the buffer was being used as an empty area into which data could be
put; the limit value specified the end of this empty area. Now that flip() has been
called, the buffer is being used as a source of data, and the limit value now specifies

Limit

Capacity

Position

Figure 1.1 When the buffer is initialized, its
position is set to 0, and its limit and capacity are
set to the length of the array.

Limit

Capacity

Position

Figure 1.2 After writing some data, the position
has advanced, while the limit and capacity are
unchanged.

Limit

Capacity

Position

Figure 1.3 After writing more data, the position
has advanced further.

12 CHAPTER 1

Basic NIO

jdk.book Page 12 Monday, March 11, 2002 3:38 PM
the end of this valid data. This limit
value is equal to the value that posi-
tion had before flip() was called.

 Next, the buffer is passed to the
write() method of the destination
channel, which in turn reads some
data f r om the bu f f e r (s e e
figure 1.5).

 The reading process continues
until the position reaches the limit,
at which point there is no more
data in the buffer (see figure 1.6).

 The reading phase is now over.
At this point, the clear() method
is called (see figure 1.7).

 The position is set to 0, while
the limit is set to the capacity, leav-
ing as large a space as possible for
use in the next writing phase.

1.2.5 slice() and subbuffers
The slice() method allows you to
create a subbuffer of a given buffer.
A subbuffer is just another buffer
that happens to share its data with a
portion of the data in the buffer it
was created from. It is, neverthe-
less, a separate buffer with its own
position, limit, and capacity. The
subbuffer does not have to start at
the first element of the original
buffer.

 When slice() is called, it takes
the current position and limit val-
ues and uses them to define the
new subbuffer. The capacity and
limit of the subbuffer are set to be
the limit of the original buffer, and
the first element of the subbuffer

LimitPosition

Capacity

Figure 1.4 After calling flip(), the limit is set
to the old value of position, and the position is set
to 0.

Limit

Capacity

Position

Figure 1.5 The reading process begins—as bytes
are read, the position advances.

Capacity

Limit

Position

Figure 1.6 All of the data has been read, making
position=limit.

Limit

Capacity

Position

Figure 1.7 After clear() is called, position is set
to 0 and limit is set to capacity.

Understanding buffers 13

jdk.book Page 13 Monday, March 11, 2002 3:38 PM
corresponds to the element at value position within the original buffer (see
figure 1.8).

 In figure 1.8, the subbuffer corresponds to the second through fifth elements of
the original buffer, inclusive. This corresponds to the following code:

ByteBuffer original = ByteBuffer.allocate(8);
original.position(2);
original.limit(6);
ByteBuffer slice = original.slice();

The individual data elements pointed to by the two buffers are in fact the same
data. Thus, any change to the shared data in one buffer will be immediately
reflected in the other.

1.2.6 Buffers of other types
ByteBuffers are the most basic form of buffer, and it is used throughout the New
I/O API. However, it is possible to have buffers of other types. In fact, there is a type
of buffer for each primitive Java type. Each of these types is a subclass of Buffer.

 A buffer of a non-byte type stores values of that type, the way that a ByteBuffer
stores bytes. Each buffer type has five put() methods and four get() methods, just
like a ByteBuffer (see section 1.2.2), except that these methods work with their
particular type rather than on bytes.

Limit

Capacity

Position

Position Limit Capacity

Original
buffer

Slice
buffer

Figure 1.8 A slice buffer shares a subsequence of the original buffer. It has its own position, limit,
and capacity values and does not have to start at the same position as the original buffer.

14 CHAPTER 1

Basic NIO

jdk.book Page 14 Monday, March 11, 2002 3:38 PM
 Underlying each typed buffer is
a ByteBuffer that contains the raw
bytes from which the values are
built. The float values and the byte
values are merely different views
onto the same stream of bytes, as
shown in figure 1.9.

 Creating a typed buffer is easy.
For example, to create a FloatBuffer, you call the asFloatBuffer() method of
ByteBuffer:

ByteBuffer buffer = ByteBuffer.allocate(size);
FloatBuffer floatBuffer = buffer.asFloatBuffer();

 Since you have access to both buffer and floatBuffer, you can access this data
as bytes or as floats. Note that you have two buffers here, each with its own posi-
tion, limit, and capacity values.

 Suppose, for example, you wanted to read a series of floating-point values from a
channel: you could read from the channel into the ByteBuffer, and then read the
floats from the FloatBuffer. Since these two buffers point to the same data, the float-
ing-point values in the FloatBuffer are made up of the bytes in the ByteBuffer.

float floatArray[] = new float[floatArraySize];

FileInputStream fin = new FileInputStream(file);
FileChannel fch = fin.getChannel();

ByteBuffer buffer = ByteBuffer.allocate(floatArray.length*4);
FloatBuffer floatBuffer = buffer.asFloatBuffer();

fch.read(buffer);

for (int i=0; i<floatArray.length; ++i) {
 floatArray[i] = floatBuffer.get();
 System.out.print(floatArray[i]+" ");
}

It’s important to remember that the position and limit values of the two buffers are
independent of each other. This means, for example, that although the FloatBuffer
might be exhausted by the reading process, the ByteBuffer is still ready to read
from the beginning—its position value is still 0.

1.2.7 Reading and writing other types from a ByteBuffer
There is another way to read floating-point values from a stream of bytes. Byte-
Buffer has a number of convenience methods that allow you to read values of other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180 19

0 1 2 3 4

byte

float

Viewed as ByteBuffer

Viewed as FloatBuffer

Figure 1.9 The same underlying data can be viewed
as a ByteBuffer and as a FloatBuffer.

Understanding buffers 15

jdk.book Page 15 Monday, March 11, 2002 3:38 PM
types—floats, shorts, and so on—directly from a ByteBuffer. This is particularly
useful if you want to read a set of mixed-type values from a buffer.

 Figure 1.10 illustrates a series of mixed-type values packed into a single ByteBuffer.

 The code that reads this series of values is as follows:

FileInputStream fin = new FileInputStream(filename);
FileChannel fch = fin.getChannel();
ByteBuffer bb = ByteBuffer.allocate(32);
fch.read(bb);
bb.flip();
byte b0 = bb.get();
short s0 = bb.getShort();
byte b1 = bb.get();
float f0 = bb.getFloat();

The choice of whether to use typed buffers, such as FloatBuffer, or the typed
accessor methods, such as ByteBuffer.getFloat() and ByteBuffer.putFloat(),
depends on the homogeneity of the data involved. A FloatBuffer consists entirely
of floats, and so is good for reading banks of uninterrupted floating-point data. A
ByteBuffer, on the other hand, might be ideal for reading file headers that contain
data of different types.

WARNING The default byte order of a ByteBuffer is big-endian*, but this can be
changed using the ByteBuffer’s order(ByteOrder) method. The or-
der() method can be used to find out the ByteBuffer’s current byte order.
You can find out the platform’s native byte order with the Byte-
Order.nativeOrder() static method.

*The terms big-endian and little-endian, borrowed from Jonathan Swift, refer to two different
methods for ordering bytes within a multi-byte value. The big-endian methods puts the most
significant byte first and the least significant byte last; thus, the 32-bit hexadecimal value AAB-
BCCDD is stored with the AA byte first and the DD byte last. In contrast, the little-endian
method would store the DD byte first and the AA byte last.

byte short floatbyte

Figure 1.10 A series of mixed-type values packed into a single ByteBuffer

16 CHAPTER 1

Basic NIO

jdk.book Page 16 Monday, March 11, 2002 3:38 PM
1.2.8 Direct buffers
Direct buffers are buffers whose
underlying data arrays are allo-
cated in such a way that I/O oper-
a t ions can be pe r fo r med
considerably faster. Typically, data
tha t c r o s se s the boundar y
be tween the J av a V i r tua l
Machine (JVM) and the underly-
ing operating system has to be
copied to or from a Java array to
an array within the JVM before it
can be passed to the operating
system (see figure 1.11).

 Direct buffers, however, allo-
cate their data directly in the run-
time environment memory (see
figure 1.12).

 Although the actual imple-
mentation of direct buffers differs
from platform to platform, it is
expected that any reasonable
implementation will take pains to
reduce copying of data in direct
buf fers. These buf fers should
reside as close to the operating
system as possible, to reduce the number of copying steps as much as possible.

 You might be tempted to allocate all buffers as direct buffers, but this would be
a bad idea. Direct buffers should only be used for buffers that will actually benefit
from the speed increase. Direct buffers generally cost more to allocate, and may
require more system resources during their lifetimes. Again, this depends on the
implementation.

NOTE Direct buffers do not contain faster memory. They simply contain memory
that can be accessed directly by the runtime system and/or the underlying
operating system, so that data that is passed in and out of the JVM will not
have to be copied, thus saving time.

Java Virtual Machine Operating system

Copy
Network

Java
array

System
buffer

Read/write

Hard
drive

Figure 1.11 When writing from an array or nondirect
Buffer, data must be copied to an intermediate
buffer before it can be written to disk. Depending on
the operation, even more copying steps may be
required.

Java Virtual Machine Operating system

NetworkRead/write

Hard
drive

Direct
buffer

Figure 1.12 Direct buffers use system buffers for their
underlying storage. In some operating systems, this
means that no copying is necessary for reading and
writing data—the data is transferred directly to and
from the disk.

Understanding buffers 17

jdk.book Page 17 Monday, March 11, 2002 3:38 PM
Allocating a direct buffer is trivial. Instead of calling

ByteBuffer buffer = ByteBuffer.allocate(1024);

you call

ByteBuffer buffer = ByteBuffer.allocateDirect(1024);

This is the only way you can create a direct buffer. Note that you clearly can’t use
the wrap() methods, because they explicitly construct a buffer using an array that is
within the JVM—a Java array. Similarly, the array() method, which returns the
underlying Java array of a Buffer, if any, will not work for a direct buffer, since there
is no underlying Java array.

 To demonstrate the speed advantage of direct buffers, let’s try modifying the
CopyFile program from section 1.1.5 (listing 1.1) to use a direct buffer instead of a
regular buffer. The modification is shown in listing 1.2.

(see \Chapter1 \FastCopyFile.java)
FileChannel inc = fin.getChannel();
FileChannel outc = fout.getChannel();

ByteBuffer buffer = ByteBuffer.allocateDirect(1024);

while (true) {
 int ret = inc.read(buffer);
 if (ret==-1)
 break;
 buffer.flip();
 outc.write(buffer);
 buffer.clear();
}

On the system used to test the code, copying a 16-MB file with CopyFile took nine
seconds, while copying it with FastCopyFile took about 4.5 seconds—a 50% savings!

1.2.9 Example: TCP/IP forwarding
Let’s take a look at buffers in action in a program that does TCP/IP forwarding.
This is a perfect application for buffers, because it’s mostly about transferring data,
rather than processing it.

Listing 1.2 from FastCopyFile.java

18 CHAPTER 1

Basic NIO

jdk.book Page 18 Monday, March 11, 2002 3:38 PM
TCP/IP forwarding
Forwarder is a simple TCP/IP for-
warding program. It for wards
TCP/IP connections coming into
the forwarding machine to any of a
number of destination machines.
Data that is sent from the source
mach ine to the fo r wa rd ing
machine is forwarded to the desti-
nation machine. Response data from the destination machine is sent back to the
corresponding source machine (see figure 1.13).

 The idea here is to simulate a connection that does direction from the source
machine to the destination machine. The forwarding machine acts as an intermedi-
ary. It forwards the data between
the machines and tries not to inter-
fere otherwise, much as an Inter-
net router does (see figure 1.14).

 It’s important to understand
that this is a TCP/IP forwarder, not
an IP forwarder. That is, the for-
warding is happening at the level
of TCP virtual circuits, rather than at the IP packet level. This means that the for-
warder cannot act as transparently as an Internet router. For example, data arriving
at the destination machine is marked as having come from the forwarding machine,
not from the source machine. Some connections will have a problem with being
forwarded in this way, but many will work fine.

 One use for a program like this is as a simple firewall. The forwarding machine is
set up as the only machine that is accessible from the Internet. A set of other
machines are connected to the firewall; these are said to be “behind” the firewall
because external machines can only reach them by crossing through the forwarder
firewall (see figure 1.15). The forwarder can completely control which connections
will be accepted and which destination machines they will be forwarded to.

Configuring the forwarder
A configuration file is used to define what ports will accept connections, what desti-
nation machines they will be forwarded to, and which source machines they will be
accepted from. The configuration file looks like this:

Source
machine

Forwarding
machine

Destination
machine

Figure 1.13 Packages from the source machine are
forwarded to the destination machine by the forwarding
machine. Response data from the destination machine
is likewise forwarded, sent back to the source
machine.

Forwarding
machine

Source
machine

Destination
machine

Figure 1.14 The forwarding machine seeks to
simulate a direct connection between the source and
destination machines. It forwards the data but does
not modify it in any way.

Understanding buffers 19

jdk.book Page 19 Monday, March 11, 2002 3:38 PM
100 panix.com 80
110 panix.com 23
5555 www.w3c.org 80

The configuration file is defined more completely in the notes following listing 1.3.
 To use this program, you must specify the name of the configuration file on the

command line, as follows:

java Forwarder forwarder.cfg

Source code
Let’s take a look at the source in listing 1.3.

(See \Chapter1 \Forwarder.java)
import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;
import java.util.regex.*;

public class Forwarder
{
 static private final int bufferSize = 0x4000; //BUFFER_SIZE

 // Defines the format of the config file lines
 private static final int LOCAL_PORT_POS = 0;
 private static final int HOSTNAME_POS = 1;
 private static final int PORT_POS = 2;
 private static final int SOURCES_POS = 3;

Listing 1.3 Forwarder.java

Forwarding
machine

Destination
machine

Internet

Destination
machine

Destination
machine

Destination
machine

Figure 1.15 The forwarder can be used as a firewall, protecting machines hidden behind the forwarding
machine from direct Internet access. Connections to the destination machines must be explicitly allowed
by the forwarder.

20 CHAPTER 1

Basic NIO

jdk.book Page 20 Monday, March 11, 2002 3:38 PM
 public Forwarder() {
 }

 public void readConfig(String configFilename)
 throws IOException {
 FileReader fr = new FileReader(configFilename);
 LineNumberReader lnr = new LineNumberReader(fr);
 while (true) {
 String line = lnr.readLine();
 if (line==null)
 break;
 Pattern pattern = Pattern.compile("\\s+");
 String strings[] = pattern.split(line);
 if (strings.length < SOURCES_POS) {
 System.err.println("Config file syntax error at "+
 configFilename+":"+
 lnr.getLineNumber());
 System.exit(1); // Any syntax error and we quit
 }

 // First, the local forwarding port
 int forwardingPort = Integer.parseInt(strings[LOCAL_PORT_POS]);

 // Then the destination address
 InetAddress destAddress =
 InetAddress.getByName(strings[HOSTNAME_POS]);

 // Then the destination port
 int destPort = Integer.parseInt(strings[PORT_POS]);

 // Finally, zero or more permitted sources
 InetAddress sources[] = new InetAddress[strings.length-SOURCES_POS];
 for (int i=SOURCES_POS; i<strings.length; ++i) {
 sources[i-SOURCES_POS] = InetAddress.getByName(strings[i]);
 }
 AddressSet allowedSources = new AddressSet(sources);

 addForward(forwardingPort, destAddress,
 destPort, allowedSources);
 }
 }

 public void addForward(int forwardingPort,
 InetAddress destAddress,
 int destPort,
 AddressSet allowedSources) {
 InetSocketAddress destSocketAddress =
 new InetSocketAddress(destAddress, destPort);
 ForwarderListenerThread flt =
 new ForwarderListenerThread(forwardingPort,
 destSocketAddress,
 allowedSources);

B Parse the
configuration file

C Use regular
expressions to parse

D Add a forward for
each config line

E Set up a forward

Understanding buffers 21

jdk.book Page 21 Monday, March 11, 2002 3:38 PM
 flt.start();
 }

 class ForwarderListenerThread extends Thread
 {
 private int forwardingPort;
 private SocketAddress destAddress;
 private AddressSet allowedSources;
 private HashSet forwardsConnections = new HashSet();

 // Used to prevent shutdown while listening is
 // in progress.
 private Object connectionsLock = new Object();

 // Have we already shut down?
 private boolean shutdown = false;
 private ServerSocketChannel ssc;

 public ForwarderListenerThread(int forwardingPort,
 SocketAddress destAddress,
 AddressSet allowedSources) {
 this.forwardingPort = forwardingPort;
 this.destAddress = destAddress;
 this.allowedSources = allowedSources;
 }

 public void run() {
 try {
 ssc = ServerSocketChannel.open();
 ssc.configureBlocking(true);
 ServerSocket ss = ssc.socket();
 byte anyIP[] = { 0, 0, 0, 0 };
 InetAddress forwardingHost =
 InetAddress.getByAddress(anyIP);
 InetSocketAddress isa =
 new InetSocketAddress(forwardingHost, forwardingPort);
 ss.bind(isa);
 synchronized(connectionsLock) {
 System.out.println("Listening on "+isa);
 while (true) {
 SocketChannel source = ssc.accept();
 InetAddress connectingAddress =
 source.socket().getInetAddress();
 // Check to see if incoming connection is from
 // an approved host
 if (allowedSources.contains(connectingAddress)) {
 SocketChannel dest = SocketChannel.open();
 source.configureBlocking(true);
 dest.configureBlocking(true);
 dest.connect(destAddress);
 ForwarderThread forwards =
 new ForwarderThread(this, source, dest);
 ForwarderThread backwards =

F Handle a forward

Listen on the
forwarding port

G

o Accept an
incoming
connection

H

Set up
forwarders
for the new
connection

22 CHAPTER 1

Basic NIO

jdk.book Page 22 Monday, March 11, 2002 3:38 PM
 new ForwarderThread(this, dest, source);
 forwards.start();
 backwards.start();
 forwardsConnections.add(forwards);
 } else {
 System.out.println("Connection from "+
 connectingAddress+
 " refused");
 try {
 source.close();
 } catch(IOException ie) {
 System.err.println("Problem disconnecting "+
 "rejected connection from "+
 connectingAddress);
 ie.printStackTrace();
 }
 }
 }
 }
 } catch(AsynchronousCloseException ace) {
 System.err.println("Closed forward "+this);
 // We don't call shutdown here, because this
 // exception is triggered by the close() call
 // inside shutdown -- this exception is a *result*
 // of shutting down, not an instigation to do so.
 } catch(IOException ie) {
 System.err.println("Exception forwarding "+this+": "+ie);
 ie.printStackTrace();
 shutdown();
 }
 }

 synchronized public void shutdown() {
 if (shutdown)
 return;

 try {
 System.out.println("Closing "+ssc);
 ssc.close();
 } catch(IOException ie) {
 System.err.println("Error closing "+ssc);
 ie.printStackTrace();
 }

 synchronized(connectionsLock) {
 for (Iterator it = forwardsConnections.iterator();
 it.hasNext();) {
 ForwarderThread ft = (ForwarderThread)it.next();
 System.out.println("Closing "+ft);
 ft.shutdown();
 }
 }

H
Set up
forwarders
for the new
connection

o Shut down this
ForwarderListenerThread

o Close the ServerSocketChannel

I
Close all
Forwarder-
Threads for
this port

Understanding buffers 23

jdk.book Page 23 Monday, March 11, 2002 3:38 PM
 shutdown = true;
 }

 public void remove(ForwarderThread ft) {
 if (forwardsConnections.contains(ft))
 forwardsConnections.remove(ft);
 }

 public String toString() {
 return forwardingPort+"-->"+destAddress;
 }
 }

 static class ForwarderThread extends Thread {
 private ForwarderListenerThread flt;
 private String description;
 private SocketChannel from;
 private SocketChannel to;
 private boolean shutdown = false;

 public ForwarderThread(ForwarderListenerThread flt,
 SocketChannel from, SocketChannel to) {
 this.flt = flt;
 this.from = from;
 this.to = to;

 Socket fromSocket = from.socket();
 Socket toSocket = to.socket();
 description =
 fromSocket.getInetAddress()+":"+fromSocket.getPort()+
 "-->"+
 toSocket.getInetAddress()+":"+toSocket.getPort();
 }

 public void run() {
 try {
 ByteBuffer buffer = ByteBuffer.allocateDirect(bufferSize);
 while (true) {
 from.read(buffer);
 if (buffer.position()==0) {
 System.out.println("Closing on zero read: "+this);
 break;
 }
 System.out.println(this+" read "+buffer.position());
 buffer.flip();
 while (buffer.remaining()>0) {
 int r = to.write(buffer);
 System.out.println(this+" wrote "+r+", remaining "+
 buffer.remaining());
 }
 buffer.clear();
 }
 shutdown();

J Remove a dead
ForwarderThread

1) Handle a
forwarded connection

Copy bytes from one end of
the connection to the other 1!

24 CHAPTER 1

Basic NIO

jdk.book Page 24 Monday, March 11, 2002 3:38 PM
 } catch(AsynchronousCloseException ace) {
 System.err.println("Closed forward "+this+": "+ace);
 shutdown();
 } catch(IOException ie) {
 System.err.println("Exception forwarding "+this+": "+ie);
 ie.printStackTrace();
 shutdown();
 }
 }

 public void shutdown() {
 if (shutdown)
 return;

 try {
 from.close();
 } catch(IOException ie) {
 System.err.println("Error closing from of "+this);
 ie.printStackTrace();
 }

 try {
 to.close();
 } catch(IOException ie) {
 System.err.println("Error closing to of "+this);
 ie.printStackTrace();
 }

 shutdown = true;
 flt.remove(this);
 System.err.println("Closed forward "+this);
 }

 public String toString() {
 return description;
 }
 }

 static class AddressSet {
 private Set addresses = new HashSet();

 public AddressSet(InetAddress ias[]) {
 for (int i=0; i<ias.length; ++i) {
 System.out.println("as "+ias[i]);
 addresses.add(ias[i]);
 }
 System.out.println("address set size "+addresses.size());
 }

 public boolean contains(InetAddress ia) {
 if (addresses.size()==0)
 return true;
 return addresses.contains(ia);
 }

o Shut down this
ForwarderThread

1@ Close both ends of the forward

1@ Close both ends of the forward

o Remove this Forwarder-
Thread from the parent
ForwarderListening-
Thread

1# Represent a set of hosts

Understanding buffers 25

jdk.book Page 25 Monday, March 11, 2002 3:38 PM
 }

 static public void main(String args[]) throws IOException {
 String configFilename = args[0];

 Forwarder forwarder = new Forwarder();
 forwarder.readConfig(configFilename);
 }
}

B The configuration file specifies each local port that will be forwarded. For each local
port, it defines the remote hostname and port that the local port will be forwarded
to.

C Here, we use the regular expression facility in the java.util.regex package. The
Pattern object represents a string pattern to look for—in this case, we are looking
for any white space. The split() method searches the string for every occurrence
of the pattern and divides the string in those locations, producing a set of smaller
strings. The white space is not included in the smaller strings.

D A forward is created for each line in the configuration file. As an example, the fol-
lowing line forwards port 5555 on the local machine to the web server at
www.w3c.org:

5555 www.w3c.org 80

This results in the con-
figuration shown in
figure 1.16.

Optionally, you can
specify a list of hosts at
the end of the line. Only
hosts from this list can connect to the forwarding port; all others will be rejected:

5555 www.w3c.org 80 192.168.0.1 127.0.0.1

Here, 192.168.0.1 is an address on our local network; 127.0.0.1 is the loopback
address, referring to the same machine on which the forwarder is running. If you
do not specify any hosts at the end of the line, all hosts will be accepted.

E addForward() sets up a forward from a local port to a remote host and port. A For-
wardListenerThread is created for each forward; this thread runs in the back-
ground, listening on the specified local port for an incoming connection. If this
incoming connection is allowed, a pair of ForwarderThreads will be created to han-
dle the connection.

5555
Source

machine
Forwarding

machine
www.w3c.org80

Figure 1.16 The forwarder is configured to forward traffic on local
port 5555 to port 80 at remote machine, www.w3c.org.

26 CHAPTER 1

Basic NIO

jdk.book Page 26 Monday, March 11, 2002 3:38 PM
F A ForwarderListenerThread handles a single forwarded port. Each port that is for-
warded by the forwarder has its own ForwarderListenerThread. This object is
responsible for listening on the local port and accepting incoming connections to
that port. Each time a connection comes in, the ForwarderListenerThread creates a
pair of ForwarderThreads to handle the connection—one for each direction of the
communication. When a ForwarderListenerThread is shut down, it shuts down all
the ForwarderThreads that it has created.

G The ForwarderListenerThread listens on the address 0.0.0.0, which is the any
address. This means that an incoming source connection can be made against any
IP address assigned to this machine.

H Each connection is handled by a pair of ForwarderThread objects—one for the for-
ward direction and one for the backward direction. The forward direction goes
from the source machine to the destination machine, while the backward direction
goes from the destination machine to the source machine.

I This method can be called either by this class or by another class. Shutting down a
ForwarderListenerThread means closing the socket used for accepting new con-
nections, but it also means removing all existing connections that are currently
being forwarded through this port.

J Calling this method removes the ForwarderThread from the set of currently open
threads. This method is called by a ForwarderThread when it terminates on its own.
This happens when either the source or destination hosts close the connection.
Generally, both ForwarderThreads in a pair are shut down at the same time.

1) Each forwarded connection is handled by a pair of ForwarderThreads, one for each
direction of the forwarded connection.

1! Inside the ForwarderThread, data is copied from one end of the forwarded connec-
tion to the other using a ByteBuffer. In each step, from.read() is called to read as
much data as possible into the ByteBuffer. This amount is limited by the amount of
available data and by the size of the ByteBuffer. The ByteBuffer is passed to
to.write(), which writes all of the data to the outgoing connection, either in one
step or in a series of steps inside the while() loop. (Multiple steps might be
required since this is a network connection, and limits on the size of network buff-
ers can cause a partial write. In contrast, our CopyFile program in section 1.1.5
(listing 1.1) can safely assume that every write will block until all the data is written,
or an exception will be thrown.) Note that flip() is used after the read(), and
clear() is used after the write(), as described previously in section 1.2.4.

The advantage of using a ByteBuffer over a simple byte array is that a Byte-
Buffer keeps track of how much has been read or written during each phase of the
transfer. It respects the capacities of the underlying arrays, taking care never to try

Understanding buffers 27

jdk.book Page 27 Monday, March 11, 2002 3:38 PM
to read more than can fit, or to write more than there is to write. In short, it takes
care of the housekeeping that we normally have to take care of ourselves, and since
the Buffer code has been extensively tested, it’s more likely to work the first time.

1@ shutdown() handles shutting down a ForwarderThread. Both the from and to Sock-
etChannels are closed, for good measure. Generally, when one of a pair of Forward-
erThreads is shut down, the other shuts down automatically, as well, because the
SocketChannels have both had their close() methods called.

1# An AddressSet represents a set of hosts. In this program, it is used to specify the set
of hosts from which a source connection will be accepted. An empty AddressSet
accepts all hosts.

1.2.10 Doing I/O with channels and buffers
The channel-and-buffer approach to doing I/O is different than the stream-
oriented approach that has been the mainstay of Java programming since the
beginning of Java.

 The stream-oriented approach provides flexibility and convenience. All streams
have, more or less, the same interface. Creating a subclass of an InputStream or
OutputStream can be as simple as overriding a single method—read() or write(),
respectively. Filters allow for arbitrary transformations on the data passing through
a stream without complicating the situation for the source of the data, or for its des-
tination. Streams count on the fact that all data is, at the lowest level, built from
chains of bytes.

 The channel-and-buffer approach has a different focus. Channels and buffers
deal in bulk data. Here, bulk means that the data is dealt with in large pieces, and
data, as opposed to actual Java bytes, means that the low-level data isn’t manifest.
This approach encourages the use of behind-the-scenes trickery to greatly speed up
data transfers. And that’s really the whole point of the bulk data approach. In par-
ticular, raw data does not have to be stored in actual Java byte arrays; it can be
stored in low-level memory buffers. Here, low-level can simply mean that the buff-
ers are allocated from the user-space heap within the JVM process, or, in some cases,
the buffers can be system-level buffers that are shared between kernel and user pro-
cesses using memory-paging techniques. In any case, allowing the implementation
to use special buffering methods allows for optimizations that would not be possi-
ble if the data was stored in regular Java arrays.

 However, this bulk data approach also means that the data must truly be hidden
behind a complete abstraction barrier. Since every implementation can implement
the buffers differently, the data cannot be manifest—it cannot be accessible directly
as data. It can only be accessed through methods—get() and put()—which transfer

28 CHAPTER 1

Basic NIO

jdk.book Page 28 Monday, March 11, 2002 3:38 PM
data between the hidden behind-the-scenes implementation and a manifest Java vari-
able or array. (It’s true that non-direct buffers can reveal their underlying Java arrays
via the array() method, but since this method is only available for non-direct buff-
ers, it should be considered as something of an optional feature, at least as far as the
core metaphor is concerned.)

 Thus, the channel-and-buffer abstraction represents a broadening of the hidden
portion of the I/O process. More computation is put behind the abstraction barrier
so that more of it can be optimized on a per-platform basis. This means, potentially,
more work for the implementers, but the payoff is clear: Java programmers now
have access to an I/O system that can provide as much throughput as the underlying
operating system and JVM will allow; at the same time, the system has a safe and
complete abstraction barrier—any code written against the NIO library is going to
be portable, at least to the extent that underlying implementations are correct. Cus-
tom JVMs, built to take advantage of special operating system features—or even
hardware features—are conceivable; the most demanding I/O systems can now con-
ceivably be written in Java, given the right system support.

 Of course, the NIO libraries are compatible with the old I/O libraries. In fact,
they are more than compatible—the old libraries have been re-engineered to use
the NIO abstractions in places where this is appropriate. Let’s face it—channels and
buffers are cool, but they don’t have the same brilliant elegance as the stream meta-
phor. However, you can freely mix stream-oriented and buffer-oriented I/O in the
same program.

 As we continue through this chapter (and the next), keep in mind that many of
these I/O innovations are intended to integrate the Java I/O systems more fully with
common operating system features. Next, we’ll take a look at file locking.

1.3 The File Locking facility

File locking makes it possible to lock entire files, or regions of files, in order to pre-
vent other threads or processes from accessing those files. If the underlying operat-
ing system has native file-locking capabilities, then the Java implementation will use
them. As a result, the behavior of the File Locking facility is platform-dependent.
However, it is possible to use the facility in such a way that the behavior will be the
same on all platforms.

1.3.1 Types of locks
It’s important to understand that file locking doesn’t necessarily prevent the file—
or the portion thereof—from being accessed. A lock that does so is called a manda-
tory lock. There are also advisory locks, which do not prevent the region from being

The File Locking facility 29

jdk.book Page 29 Monday, March 11, 2002 3:38 PM
accessed. Instead, advisory locks prevent other locks from being acquired on the
same region. These terms are not Java-specific.

 It might seem that only mandatory locks would be useful, but in fact advisory
locks serve nearly the same purpose. If all programs that access a particular file agree
to acquire a lock on a region of a file before changing it, then advisory locks are
enough, because only one such lock can be had at a given time. Using this kind of
lock is rather like using the synchronized keyword in Java: synchronizing on an
object means acquiring an advisory lock on that object. Such a lock doesn’t prevent
other threads from modifying the fields of the object; it only prevents other threads
from acquiring locks. (This is the definition of advisory lock.)

 The File Locking facility also supports two varieties of lock called exclusive and
shared. Exclusive locks are like the locks provided by the synchronized keyword:
they prevent other threads from acquiring a similar lock. Shared locks, on the other
hand, do not. Multiple shared locks can be acquired at the same time, but they pre-
vent exclusive locks from being acquired.

TIP It is a common practice to use shared locks for reading from a file region, be-
cause multiple threads can safely read the same region without interfering
with each other. Likewise, it is common practice to use exclusive locks for
writing to a file region, because multiple threads cannot safely write to the
same region without interfering with each other.

The fact that shared locks prevent the acquisition of exclusive locks fits in
with this: while threads are reading from a region, no other threads can write
to it.

The exclusive versus shared distinction is completely separate from the mandatory
versus advisory distinction—they are orthogonal distinctions. Thus, a mandatory
lock can be exclusive or shared, and so can an advisory lock.

1.3.2 Using locks
File locks cover a contiguous region of a file. This region can be the entire file, as
shown in figure 1.17.

30 CHAPTER 1

Basic NIO

jdk.book Page 30 Monday, March 11, 2002 3:38 PM
 Or it can be a portion of a file, as shown in figure 1.18.

 It’s possible for multiple regions of a file to be locked. If they are exclusive locks,
they must not overlap; attempting to create overlapping exclusive locks within the
same JVM will throw an OverlappingFileLockException (see figure 1.19).

 Shared locks can overlap with other shared locks, but not with exclusive locks.
Attempting to create an exclusive lock and a shared lock that overlap throws an
OverlappingFileLockException (see figure 1.20).

Some operating systems do not support shared locks. In such cases, it is not an
error to request a shared lock, but the lock that is returned will be an exclusive lock.
The type of a lock can be determined using its isShared() method.

1.3.3 Acquiring locks
To create a lock, you need a FileChannel object. Once you have one, there are two
ways to acquire a lock: the lock() methods will block until the lock is acquired, and
the tryLock() methods will return null if the lock cannot immediately be acquired.
Otherwise, the lock() and tryLock() methods are identical. For simplicity, only the
lock() methods will be discussed.

 The lock() method takes three arguments: a starting position (measured in
bytes from the start of the file), a length (measured in bytes), and a boolean telling
whether the lock should be shared (true) or exclusive (false):

FileOutputStream fout = new FileOutputStream("abc.txt");
FileChannel fc = fout.getChannel();
FileLock fl = fc.lock(20, 20, false);

Figure 1.17 A lock can be acquired over
the entire region of a file.

Locking an entire file

Locking a
portion of

a file

Figure 1.18 A lock can be acquired over
a portion of a file. This portion must be
contiguous.

Exclusive

Exclusive

Figure 1.19 Multiple exclusive locks can
be acquired within the same file, but they
must not overlap.

Exclusive Shared

Shared

Figure 1.20 Shared locks can overlap
with other shared locks, but they cannot
overlap with exclusive locks.

The File Locking facility 31

jdk.book Page 31 Monday, March 11, 2002 3:38 PM
There is also an argument-free convenience method that locks an entire file. The
following two code fragments are equivalent:

FileOutputStream fout = new FileOutputStream("abc.txt");
FileChannel fc = fout.getChannel();
FileLock fl = fc.lock();

FileOutputStream fout = new FileOutputStream("abc.txt");
FileChannel fc = fout.getChannel();
FileLock fl = fc.lock(0L, Long.MAX_VALUE, false);

Locks can be released in two ways: via the release() method, or by closing the
FileChannel associated with the file. Once a lock is released, exclusive locks that
overlap the region can be safely acquired.

1.3.4 Portability issues
Locks created in one process may or may not interfere with locks created in another
process—this depends on the implementation and the nature of the locking facility
of the underlying operating system. In some cases, two processes can lock the same
region of the same file; in other cases, the thread attempting to acquire the second
lock will block until the first lock is released. If the operating system does, in fact,
support inter-process file locking, then locks created in a Java process can interact
with locks created by a program in some other language; operating system–based
locks are generally language-neutral.

 Although there are a number of variables that depend heavily on the underlying
implementation and on the underlying operating system, it is possible to use the
File Locking facility in such a way that it is portable across all platforms. The follow-
ing rules will ensure portability:

� Use only exclusive locks
� Treat all locks as advisory—assume that acquiring a lock on a region of a file

does not prevent that region from being accessed in any way

� Assume locks only affect other threads within the same process

Although these restrictions prevent the use of many of the features of the File Lock-
ing API, they should be sufficient for many purposes. Locks used under this discipline
are not unlike the locks used by the synchronized keyword—exclusive, advisory locks
that only work inside a single Java process. Such locks have proven sufficient for most
purposes and can be used to build more sophisticated locking mechanisms.

32 CHAPTER 1

Basic NIO

jdk.book Page 32 Monday, March 11, 2002 3:38 PM
1.3.5 Example: a simple database
This section describes a program called SimpleDatabase. SimpleDatabase is a tiny
API for storing fixed-length blocks of data, called slots, indexed by number in a flat
file (see figure 1.21).

 A SimpleDatabase has a get() method and a put() method, each one taking a
slot number as an argument:

public void get(int slot, byte data[])
public void put(int slot, byte data[])

The idea is that multiple SimpleDatabase objects will be in use at the same time in
separate JVMs. The only concurrency guarantee provided by SimpleDatabase is that
each get() and put() operation be atomic. That is, each time a slot is written, it is
written completely before any other thread or process can read or write it. It is possi-
ble that one thread or process will immediately overwrite the data that was just
written by another thread or process, but at no time will a slot contain data from
one data block and data from another data block at the same time.

 To test this, the SimpleDatabase pro-
gram contains an inner class called Sim-
pleDatabaseTester, which reads and
writes data blocks very quickly to the
slots of a SimpleDatabase. Each data
block consists of a single byte repeated
over and over, which makes it very easy
to tell if a slot has been corrupted by an
incomplete write. After each read, the SimpleDatabaseTester checks to make sure
there has been no data corruption.

 You can specify the number of slots in the database, and the size of each slot, by
changing the constants in the source code, which is presented in listing 1.4.

(See \Chapter1 \SimpleDatabase.java)
import java.io.*;
import java.nio.channels.*;
import java.util.*;

public class SimpleDatabase
{
 static public final int NUMSLOTS = 64;
 static public final int SLOTSIZE = 1024;
 private RandomAccessFile raf;
 private FileChannel fc;

Listing 1.4 SimpleDatabase.java

1 2 3 4 5 6 7

SimpleDatabase

Figure 1.21 A SimpleDatabase is a flat file
containing a set of fixed-length data slots.

The File Locking facility 33

jdk.book Page 33 Monday, March 11, 2002 3:38 PM
 public SimpleDatabase(String filename) throws IOException {
 File file = new File(filename);
 boolean exists = file.exists();
 raf = new RandomAccessFile(file, "rw");
 fc = raf.getChannel();

 if (!exists) {
 byte b[] = new byte[SLOTSIZE];
 for (int i=0; i<NUMSLOTS; ++i)
 put(i, b);
 }
 }

 private FileLock getLock(int slot, boolean shared)
 throws IOException {
 long position = slot*SLOTSIZE;
 long size = SLOTSIZE;

 FileLock lock = fc.lock(position, size, shared);
 return lock;
 }

 public void put(int slot, byte data[]) throws IOException {
 try {
 if (data.length != slotSize)
 throw new IllegalArgumentException("Data wrong size: "+
 data.length);
 FileLock fl = getLock(slot, false);
 synchronized(raf) {
 raf.seek(slot*slotSize);
 raf.write(data, 0, slotSize/2);
 Thread.yield();
 raf.seek(slot*slotSize+(slotSize/2));
 raf.write(data, slotSize/2, slotSize/2);
 raf.getFD().sync();
 Thread.yield();
 }
 } finally {
 fl.release();
 }
 }

 public void get(int slot, byte data[]) throws IOException {
 try {
 if (data.length != slotSize)
 throw new IllegalArgumentException("Data wrong size: "+
 data.length);
 FileLock fl = getLock(slot, true);
 synchronized(raf) {
 raf.seek(slot*slotSize);
 raf.read(data);
 }
 } finally {

o Open the file for read/write
and get the file's Channel

B If the file is new,
clean it out

C Create a lock for
the given slot

D Lock a slot and
 write data to it

E Lock a
slot and
read data
from it

34 CHAPTER 1

Basic NIO

jdk.book Page 34 Monday, March 11, 2002 3:38 PM
 fl.release();
 }
 }

 public void close() throws IOException {
 raf.close();
 }

 static public class SimpleDatabaseTester
 {
 private Random rand = new Random();
 private final int NUMSLOTS = SimpleDatabase.NUMSLOTS;
 private final int SLOTSIZE = SimpleDatabase.SLOTSIZE;
 private SimpleDatabase sd;

 public SimpleDatabaseTester(SimpleDatabase sd) {
 this.sd = sd;
 }

 public void test() throws IOException {
 byte buffer[] = new byte[SLOTSIZE];
 int numOps = 0;
 while (true) {
 if (rand.nextInt(100)<50) {
 int slot = rand.nextInt(NUMSLOTS);
 generateConstantBuffer(buffer);
 sd.put(slot, buffer);
 } else {
 int slot = rand.nextInt(NUMSLOTS);
 sd.get(slot, buffer);
 confirmConstantBuffer(slot, buffer);
 }
 if (((++numOps)%50)==0) {
 System.out.println(numOps+" operations");
 }
 }
 }

 private void generateConstantBuffer(byte buffer[]) {
 byte b = (byte)rand.nextInt(256);
 for (int i=0; i<buffer.length; ++i)
 buffer[i] = b;
 }

 private void confirmConstantBuffer(int slot, byte buffer[]) {
 int b = buffer[0];
 for (int i=1; i<buffer.length; ++i) {
 if (b != buffer[i]) {
 throw new RuntimeException("Corrupted slot "+slot);
 }
 }
 }
 }

o Test program

F Flip a coin and
either read or
write data

o Fill a buffer
with a single,
repeated byte

o

Check a buffer
to see if it is
filled with a

single,
repeated byte

The File Locking facility 35

jdk.book Page 35 Monday, March 11, 2002 3:38 PM
 static public void main(String args[]) throws IOException {
 if (args.length != 1) {
 System.err.println("Usage: java SimpleDatabase <filename>");
 System.exit(1);
 }
 String filename = args[0];

 SimpleDatabase sd = new SimpleDatabase(filename);
 SimpleDatabaseTester sdt = new SimpleDatabaseTester(sd);
 sdt.test();
 }
}

B If the file doesn’t exist, it is created as a RandomAccessFile. If the file is read from
before it is written to, it may or may not contain garbage, depending on the under-
lying operating system implementation. To ensure that the file contains homoge-
neous slots, we write the contents of a newly allocated array, which must contains
zeros, to each slot in the file.

C getLock() is used by both get() and put() to lock a slot before reading from it or
writing to it. Each slot is locked independently. A lock can be shared or exclusive;
this is specified by the second parameter. Once a lock is acquired using this call, the
caller is responsible for releasing it.

D The first line of this section acquires an exclusive lock by calling getLock(). The last
line of this section releases the lock. In between, the data is written to the slot.
You’ll notice that the data is written in two pieces, and there is a call to
Thread.yield() between these writes. This is to ensure that there is some chance
that other threads and processes will get to run during this write.

If you comment-out the first and last lines, you remove the protection this pro-
gram has provided against data corruption—it becomes possible for two different
threads or processes to write to the same slot at the same time. However, unless the
data files are huge, the chances of this happening are very low. (We still need the
locking. Saying a piece of software has a “very low chance” of data corruption is
simply not sufficient.)

In any case, writing the data in two steps, with a call to Thread.yield() between
them, greatly increases the chances of file corruption—which allows you to experi-
ment with this program and make a useful comparison between the safe and unsafe
modes of operation.

Note that we release the lock in a finally block—this is because we want to
make sure that we release the lock no matter what. Regardless of any kind of excep-
tion that might be thrown inside the try block, we’ll still release the lock.

36 CHAPTER 1

Basic NIO

jdk.book Page 36 Monday, March 11, 2002 3:38 PM
E The get() method gets a shared lock instead of an exclusive lock because it is read-
ing, not writing, the data. It is safe for multiple threads or processes to read the
same slot at the same time.

F Flip a coin using Random.nextInt(). On the basis of that coin flip, either read a slot
or write a slot. In both cases, pick the slot randomly.

1.4 Summary

The New I/O API likely is not a replacement for the stream-based java.io package.
The stream metaphor is extremely elegant and flexible, and efficient enough for
many purposes. The NIO package does, however, provide a lower level at which to
write I/O code, for situations where efficiency is important. In the current release,
the old system has been cleanly re-implemented on top of the new API, where
appropriate.

 The New I/O API provides a completely new paradigm for doing efficient I/O.
By taking over the control not only of data sources and sinks (Channels), but also of
buffers that hold the data (Buffers), the new API can provide tremendous speed
improvements while also providing more powerful features, including simple data-
type conversion, nonblocking I/O, multiplexed I/O, and integrated support for
character set encodings (Charsets). These topics are discussed in depth in chapter 2,
“Advanced NIO.”

jdk.book Page 37 Monday, March 11, 2002 3:38 PM
2Advanced NIO
(New Input/Output)
This chapter covers
� Reading and writing data with

MappedByteBuffers

� Optimizing network communication using
nonblocking I/O

� Encoding and decoding with Charsets

� Discovering and using NetworkInterfaces
37

38 CHAPTER 2

Advanced NIO

jdk.book Page 38 Monday, March 11, 2002 3:38 PM
This chapter covers the more advanced features of the NIO (New Input/Output)
system, such as multiplexed I/O and nonblocking I/O. All of these features make use
of the channel and buffer objects from the java.nio package that are described in
detail in chapter 1, “Basic NIO.” It is not necessary to read chapter 1 in its entirety
before attempting this chapter; however, a perusal of sections 1.1 and 1.2 of that
chapter will provide the basics required to understand the topics discussed here.

 The features discussed in this chapter rely on the new concepts and classes of the
NIO system; they are some of the main features that motivated the development of
the NIO system. In this chapter, you’ll find out about techniques that can go a long
way toward making your Java application ready for heavy, real-world use.

2.1 Reading and writing with MappedByteBuffers

A MappedByteBuffer allows you to map a portion of a file into a memory buffer. The
contents of the file are presented to the program as Buffer, which can be read from
and written to like any other buffer. Changes made to the buffer are automatically
propagated to the file by the underlying implementation of MappedByteBuffer.

 File mapping provides an I/O metaphor that’s entirely different from the kinds
traditionally used to read and write files. Instead of treating the file as a kind of
random-access stream, the file is treated like a gigantic array. This can make certain
operations much easier to perform, but the main advantage is speed—data is retained
in buffers at the operating system (OS) level, rather than being copied into user-
space memory for each read() and out of user-space memory for each write().

 Of course, reading an entire file into memory would serve the same purpose,
but, in general, files can be too large to read into memory. Some applications take
the trouble to read in only those portions that are needed, but this is more compli-
cated. MappedByteBuffers have the same interface as regular ByteBuffers, and so
are easy to use.

 A MappedByteBuffer uses loading-on-demand—that is, it loads into memory
only the data that is being accessed. Thus, it is possible to create a 100-MB Mapped-
ByteBuffer that maps to a 100-MB file, and change an arbitrary byte in the file by
using the put() method of the MappedByteBuffer. This will only cause the small
portion around the changed byte to be loaded into memory. The blocks that aren’t
loaded don’t take up any memory.

2.1.1 Advantages of MappedByteBuffers
The primary advantage of a memory-mapped file is speed. The underlying imple-
mentation is operating system–dependent, but under some implementations, a
mapped byte buffer gives you direct access to the operating system–level buffers.

Reading and writing with MappedByteBuffers 39

jdk.book Page 39 Monday, March 11, 2002 3:38 PM
This means that it can be possible for you to access your file without any copying—
the fastest access possible.

 Because memory-mapped files are tied so directly to operating system details,
the design of the operating system can influence the way that the mapped buffers
operate. Generally speaking, for the sake of efficiency, file I/O is performed in units
called blocks, rather than on a byte-by-byte basis. The size of the blocks varies but is
usually in the range of a few kilobytes.

 Memory that is demand-loaded is therefore loaded in blocks. The MappedByte-
Buffer will only load those blocks containing a byte that has been read from, or writ-
ten to. The operating system can also remove a block from memory—this generally
happens only if the block hasn’t been used in a while. In either case, the operating sys-
tem maintains a set of blocks in memory that reflect a subset of the file data on disk.

 Figure 2.1 shows what a
MappedByteBuffer might look
like after it has been in use for
a while. In the MappedByte-
Buffer, the gray blocks cur-
rently reside in memory, while
the clear blocks do not.

 Under some operating sys-
tems, files are always read by
mapp ing the i r da t a in to
blocks of memory, and these
blocks are shared by all processes that access that file. An implementation of the
MappedByteBuffer can take advantage of this by using these low-level blocks
directly. One side effect of this technique is that changes made to the contents of
the MappedByteBuffer are seen instantly by other programs that are reading the file.
Likewise, changes made to the file by other programs are seen instantly within the
content of the MappedByteBuffer.

WARNING The propagation of changes between different programs accessing the same
file is operating system–dependent. Changes made at one point in one pro-
gram may or may not be seen at another point in another program. The only
consistency guarantee provided by the New I/O API is that multiple instances
of MappedByteBuffer in the same program will be consistent with each
other.

Huge file

MappedByteBuffer

Figure 2.1 A MappedByteBuffer only loads the blocks
that have been accessed. The gray blocks within the
MappedByteBuffer have been loaded from the file, while
the clear ones have not. The clear blocks do not take up any
memory at all, which allows very large files to be handled
without running out of RAM.

40 CHAPTER 2

Advanced NIO

jdk.book Page 40 Monday, March 11, 2002 3:38 PM
2.1.2 Disadvantages of MappedByteBuffers
A MappedByteBuffer is not the most usual way to access a file—streams are used
more often for day-to-day file I/O. However, memory-mapped I/O has become
common on modern operating systems because it fits in so well with the underlying
paging system, and it is used by the OS itself, as well as by high-performance appli-
cations like database engines.

 Reading and writing data via a MappedByteBuffer takes some getting used to.
Generally, when we modify an array, we know that the modified data won’t be saved
until we actually write it to a file. This is not the case for MappedByteBuffers—the
changes are made directly to the file itself (but see the discussion of copy-on-write
semantics in annotation 1 of listing 2.1). This means we must take great care when
modifying the data in a MappedByteBuffer in order to avoid leaving the file in a cor-
rupted state. We’re used to modifying data structures such as arrays or buffers, and
then writing them out when our modifications are done. With a MappedByteBuffer,
each tiny change is instantly saved to the filesystem.

2.1.3 Using MappedByteBuffers
A few utility methods can help you make better use of MappedByteBuffers:

� force()—After calling this method, any changes made to any portion of this
MappedByteBuffer will be flushed out to the underlying storage device, usually
a disk. Generally, the operating system does this automatically, but not imme-
diately, after any write. Instead of letting the operating system take care of this
at its own discretion, you can call force() after every write() to ensure that
the data is in fact safely stored on the hard drive, but this is much slower.

� load()—As mentioned previously, reading or writing any byte of a block will
cause that block to be loaded into memory. You can also cause an explicit
load of all the blocks in a MappedByteBuffer by calling load().

� isLoaded()—Calling this method allows you to find out whether all the data
in the MappedByteBuffer has been loaded into RAM. This is only a hint, not a
guarantee, because the underlying operating system is free to page data in
and out of virtual memory at any time.

WARNING Calling force() on a MappedByteBuffer that corresponds to a remote stor-
age device does not guarantee that all changes that have been made to the
data have been flushed to that storage device. The consistency guarantee only
applies to local storage devices.

Reading and writing with MappedByteBuffers 41

jdk.book Page 41 Monday, March 11, 2002 3:38 PM
2.1.4 Example: checksumming
FastChecksum (see listing 2.1) illustrates the technique of reading a file using a
MappedByteBuffer. This program maps a portion of a file into memory and does a
crude checksum on it (really, just a sum of all the bytes). Taking checksums of files is
a quick way of comparing them. If the checksums differ, then the files differ; if the
checksums are the same, then the files are probably, but not necessarily, the same.

(see \Chapter2 \FastChecksum.java)
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class FastChecksum
{
 static public void main(String args[]) throws Exception {
 if (args.length != 3) {
 System.err.println("Usage: java FastChecksum "+
 "<filename> <start pos> <# bytes>");
 System.exit(1);
 }
 String filename = args[0];
 int start = Integer.parseInt(args[1]);
 int length = Integer.parseInt(args[2]);

 long fileLength = new File(filename).length();

 if (length < start) {
 throw new IllegalArgumentException("length < start");
 }

 if (length < 0) {
 throw new IllegalArgumentException("length < 0");
 }

 if (start+length > fileLength) {
 throw new IllegalArgumentException("start+length > fileLength");
 }

 FileInputStream fin = new FileInputStream(filename);
 FileChannel finc = fin.getChannel();
 MappedByteBuffer mbb =
 finc.map(FileChannel.MapMode.READ_ONLY, start, length);

 long sum = 0;
 for (int i=0; i<length; ++i) {
 sum += mbb.get(i);
 }

Listing 2.1 FastChecksum.java

B Map the
requested
portion of
the file
into
memory

o Sum the bytes in
this portion

42 CHAPTER 2

Advanced NIO

jdk.book Page 42 Monday, March 11, 2002 3:38 PM
 fin.close();

 System.out.println("Sum: "+sum);
 }
}

B FileChannel.MapMode is a typesafe enumeration for the different modes of access
allowed by the map() method. There are three modes available:

� READ_ONLY—The buffer can be read from, but not written to
� READ_WRITE—The buffer can be read from and written to

� PRIVATE—The buffer can be read from and written to, but writing is done
using copy-on-write semantics. This means that any changes that are made to
the buffer are made to a private copy; they are never propagated to the under-
lying file. Generally, in order to save memory, this private copy is made on
demand, and is generally done in small pieces, rather than all at once

This program should run faster than its counterpart that uses traditional I/O. How-
ever, if the command-line arguments specify that the entire file should be check-
summed, then the program will in fact have to load the entire file into memory.

WARNING There is no unmap method. If there were, the memory released by such a
method could be reallocated to another MappedByteBuffer, at which
point there would be two such buffers, both of which pointed to the same
file data. This would introduce the possibility of data corruption.

As a result, the mapping only becomes invalidated when the MappedByte-
Buffer object is garbage-collected.

2.2 Nonblocking I/O

One of the biggest complaints about the original java.io classes is that they don’t
support nonblocking I/O. The New I/O API has included full support, and it’s one
of the most important of the new features.

 Nonblocking I/O is a method of carrying out read and write operations (as well as
other, less-common operations) without blocking on the method calls that carry them
out. To block on a method call means to be forced to wait until it is finished before
returning. Thus, a nonblocking I/O operation is one that doesn’t need to wait until
the operation is finished before it returns. This can greatly decrease the overhead of
managing many I/O connections, especially in a client/server environment.

Nonblocking I/O 43

jdk.book Page 43 Monday, March 11, 2002 3:38 PM
 This section will describe the new nonblocking I/O features in the New I/O API.
We’ll concentrate on using this feature to write client/server programs that can
handle a great number of connections efficiently. Specifically, we’ll look at two dif-
ferent implementations of a very simple chat system—one using polling and one
using multiplexing. First, though, we’ll explore some naive implementations—both
single- and multithreaded. We’ll be looking closely at the server side of this chat sys-
tem. The client is rather trivial, and doesn’t enlighten the discussions in this chap-
ter—it can be downloaded from the book’s web site.

2.2.1 The multithreaded approach
In the early days of Java, it was very easy to write a chat server, but it was hard to
write a chat server that could handle many connections at once. This is because it
was very common to create a thread for every connection. This meant that each cli-
ent had its own thread on the server, so a server with many clients had many threads.

 These early versions of Java could not handle a tremendous number of threads.
There was a certain overhead for each thread, and even if few of the clients were
chatting, the server would grind to a halt. These days, JVMs can handle more and
more threads each year. But in many implementations, it’s still the case that thread-
ing carries an undesirable overhead. It’s hard enough dealing with a lot of I/O with-
out having to deal with a lot of threads at the same time.

 To really understand the multithreaded approach, and why it failed, it’s impor-
tant to understand why it was so desirable. Here’s a hypothetical version of the
server-side pseudocode that handled a single client:

while (true) {
 ChatMessage cm = client.rcvMessage();
 for (client2 in clients) {
 client2.sendMessage(cm);
 }
}

This code fragment reads a single message from a single client and then sends that
message out to all the other clients in the system. Simple, right? That’s the beauty
of the multithreaded model: each client has its own thread, and inside that thread is
a very simple read/write loop.

 The call to client.rcvMessage() is a blocking call. This means that the call waits
until a message comes in from the client. If the client is sending lots of data, this
wait might be short. But sometimes a user gets up for a few minutes, or even goes
to lunch. This call can take minutes, or hours, or more, before it returns. This is
another reason why having one thread per client is so desirable—no matter how

44 CHAPTER 2

Advanced NIO

jdk.book Page 44 Monday, March 11, 2002 3:38 PM
long this thread blocks on this call, the other clients are being handled by the other
threads. No one client can bring the system to a halt.

 This is the essence of blocking I/O—whatever operation you’re doing, you can’t
be doing something else in the same thread. Whatever this thread is doing for one
client, it’s not doing anything for any other clients. Having one thread per client
takes care of this problem, but it means having too many threads.

2.2.2 The really bad single-threaded approach
Given the problems of using too many threads, you might have briefly considered
the option of using a single thread. Here’s one way you can do this, expressed as
pseudocode:

while (true) {
 for (client in clients) {
 ChatMessage cm = client.rcvMessage();
 for (client2 in clients) {
 client2.sendMessage(cm);
 }
 }
}

The idea here is to deal with each client in turn—you get a message from the first
client and send it out to everyone. Then you get a message from the second client
and send it out to everyone. And it all works inside a single thread!

 Unfortunately, this is even worse. If the first client doesn’t send any data for a
while, the second client never gets any attention, even if it’s sending lots of data.
Even if the first client only delays a tiny bit, that delay is still time wasted—it’s time
spent waiting and doing nothing else. That’s the worst thing you can have in a server.

 There are refinements of this scheme—splitting the clients across, say, twenty
threads, or sorting the clients based on how much time they spend not sending
data, but all of these waste time, and all of them will eventually get bogged down.

 There must be a better way.

2.2.3 Polling
One better way to do the I/O is through polling. Polling means checking each con-
nection to see if it has any data. If it does, you deal with it, and if not, you don’t waste
any time waiting for it to have some. You poll all of the clients, deal with any data that
has come in, and then wait a tenth of a second. Then you start the process over.

 Polling isn’t perfect, mainly because of that tenth of a second. That might not
seem like a long time, but a high-powered server has to provide response times far
smaller than that. The delay can be shortened to a twentieth of a second, or a
fiftieth, or even less, but a smaller delay between polling rounds means greater

Nonblocking I/O 45

jdk.book Page 45 Monday, March 11, 2002 3:38 PM
overhead. You’re spending so much time checking the clients that you don’t have
as much time to actually deal with the input as it comes in.

 Polling, in fact, doesn’t require the New I/O API because it’s always been possi-
ble in Java, even using only the java.io package. However, the New I/O API has
direct support for nonblocking I/O, which makes polling cleaner.

 Since the nonblocking I/O method of polling uses the New I/O API, it therefore
uses channels rather than streams. The following code does a blocking read from a
network socket:

ByteBuffer buffer = ByteBuffer.allocate(bufferSize);
Socket newSocket = ss.accept();
SocketChannel sch = socket.getChannel();
buffer.clear();
sch.read(buffer);

According to the documentation, a socket channel that is in blocking mode will
block on the call to read(). Specifically, it will wait until at least one byte has come
in. The read might get lots of data, or it might only get one byte, but buffer will
never be empty after this call.

 Here’s the nonblocking version:

ByteBuffer buffer = ByteBuffer.allocate(bufferSize);
Socket newSocket = ss.accept();
newSocket.configureBlocking(false);
SocketChannel sch = socket.getChannel();
buffer.clear();
sch.read(buffer);

This call to read() will return an empty buffer if there is nothing to read, because of
the call to configureBlocking(), which sets the channel to be in nonblocking mode.

 The server inner loop at the start of section 2.2.2 contained a call to another
method called rcvMessage(). Using polling, this method can be rewritten to
optionally return null when there’s no input:

while (true) {
 for (client in clients) {
 ChatMessage cm = client2.rcvMessage();
 if (cm != null) {
 for (client2 in clients) {
 client2.sendMessage(cm);
 }
 }
 }
}

In this case, we only send the message out if we actually got one, and it all runs
inside a single thread!

46 CHAPTER 2

Advanced NIO

jdk.book Page 46 Monday, March 11, 2002 3:38 PM
 In the next section, we’ll take a close look at a chat server that uses polling.

2.2.4 Example: a polling chat server
In this section, we’ll take a look at a complete chat server program that uses polling
to carry out all of its I/O operations in a single thread. Not only does it use polling
to read data from clients, but it uses polling to actually accept new client connec-
tions. It has to do this; otherwise, the main thread would be blocked by the call to
ServerSocket.accept().

 The central loop of the PollingChatServer program can be represented by the
following pseudocode:

while (true) {
 if (there are new connections to the server socket) {
 add those connections to the list of active sockets
 }

 for each socket in (the list of active sockets) {
 if (there is data coming into that socket) {
 echo that data back to all clients
 }
 }

 if (any sockets have been closed) {
 remove those sockets from the active list
 }
}

To start the server, you must select a port for it to listen on. 5555 is a good one to
try:

java PollingChatServer 5555

To connect to the PollingChatServer, you can use the client applet contained in
ChatClient.java and ChatClientApplet.java, using the HTML template con-
tained in client.html. This can be done using the following command:

appletviewer ChatClientApplet

client.html must be modified to use the same port number that the server is lis-
tening on. Here are the complete contents of client.html:

<applet code="ChatClientApplet.class" width=500 height=300>
<param name="host" value="hostname">
<param name="port" value="5555">
</applet>

Nonblocking I/O 47

jdk.book Page 47 Monday, March 11, 2002 3:38 PM
PollingChatServer itself is shown in listing 2.2.

(see \Chapter2 \PollingChatServer.java)
import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;

public class PollingChatServer implements Runnable
{
 static private final int sleepTime = 100; //SLEEP_TIME
 private int port;
 private Vector sockets = new Vector();
 private Set closedSockets = new HashSet();

 public PollingChatServer(int port) {
 this.port = port;
 Thread t = new Thread(this, "PollingChatServer");
 t.start();
 }

 public void run() {
 try {
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.configureBlocking(false);
 ServerSocket ss = ssc.socket();
 InetSocketAddress isa = new InetSocketAddress(port);
 ss.bind(isa);

 ByteBuffer buffer = ByteBuffer.allocate(4096);

 System.out.println("Listening on port "+port);

 while (true) {
 SocketChannel sc = ssc.accept();

 if (sc != null) {
 Socket newSocket = sc.socket();
 System.out.println("Connection from "+newSocket);
 newSocket.getChannel().configureBlocking(false);
 sockets.addElement(newSocket);
 }

 for (Enumeration e = sockets.elements();
 e.hasMoreElements();) {
 Socket socket = null;
 try {

Listing 2.2 PollingChatServer.java

B Open a
nonblocking
server socket

C A new
connection
comes in on
the server
socket

48 CHAPTER 2

Advanced NIO

jdk.book Page 48 Monday, March 11, 2002 3:38 PM
 socket = (Socket)e.nextElement();
 SocketChannel sch = socket.getChannel();
 buffer.clear();
 sch.read(buffer);
 if (buffer.position() > 0) {
 buffer.flip();
 System.out.println("Read "+buffer.limit()+
 " bytes from "+sch.socket());
 sendToAll(buffer);
 }
 } catch(IOException ie) {
 closedSockets.add(socket);
 }
 }

 removeClosedSockets();

 try {
 Thread.sleep(sleepTime);
 } catch(InterruptedException ie) {}
 }
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 private void sendToAll(ByteBuffer bb) {
 for (Enumeration e=sockets.elements();
 e.hasMoreElements();) {
 Socket socket = null;
 try {
 socket = (Socket)e.nextElement();
 SocketChannel sc = socket.getChannel();
 bb.rewind();
 while (bb.remaining()>0) {
 sc.write(bb);
 }
 } catch(IOException ie) {
 closedSockets.add(socket);
 }
 }
 }

 private void removeClosedSockets() {
 for (Iterator it=closedSockets.iterator(); it.hasNext();) {
 Socket socket = (Socket)it.next();
 sockets.remove(socket);
 System.out.println("Removed "+socket);
 }
 closedSockets.clear();
 }

D Data is
read on
one of
the
client
sockets

E Data is written to each
of the client sockets

Dead sockets are
removed in a

separate phase
F

Nonblocking I/O 49

jdk.book Page 49 Monday, March 11, 2002 3:38 PM
 static public void main(String args[]) throws Exception {
 int port = Integer.parseInt(args[0]);
 new PollingChatServer(port);
 }
}

B Instead of using the normal method of calling new ServerSocket(port), we create
a ServerSocketChannel and put it in nonblocking mode using configureBlock-
ing(). We call the ServerSocketChannel’s socket() method to get access to the
ServerSocket object. We bind the server socket to the user-specified port using the
ServerSocket’s bind() method.

The ServerSocket object and the ServerSocketChannel should be thought of as
two objects referring to the same underlying operating system resource. More pre-
cisely, the ServerSocket is built on top of the ServerSocketChannel.

C Here, we poll for any incoming connections to our server socket. Since it has been
placed in nonblocking mode, a call to accept() will return null if there are no
incoming connections. If there is an incoming connection, we place it in sockets,
the list of currently active sockets.

D We check each open socket to see if any data is coming in. The sockets are all in
nonblocking mode; this means that if a socket has no data coming in to it, we’ll get
an empty buffer back. If we get a buffer that isn’t empty, we send that data to all of
the clients using the sendToAll() method.

E sendToAll() sends the contents of a buffer to each of the currently open sockets. It
calls rewind() before each send to make sure the buffer’s position value is pointing
to the beginning of the buffer, so that everything gets written.

F Any time a write() to a socket fails, we take that socket to be closed, and add it to
a list of dead sockets called closedSockets. The removeClosedSockets() method
takes all of the closed sockets and removes them from the main socket list, sockets.

This is done as a separate step because removing the dead sockets while we are
iterating through them is dangerous—the data structures can get confused, causing
some sockets to be skipped during the reading or writing process.

All things considered, polling isn’t a bad method of doing lots of I/O in a single
thread. But the fact is that it does waste some CPU cycles, and it does cause small
but perceptible delays in throughput. To get the tightest response possible, you
need to use multiplexed nonblocking I/O. This will be discussed in the next section.

2.2.5 Multiplexing with select()
Polling isn’t really the best way to do multiplexed I/O, although, for a long time, it
was the only way to do it in Java. JDK 1.4 brings us a better solution—the selector.

50 CHAPTER 2

Advanced NIO

jdk.book Page 50 Monday, March 11, 2002 3:38 PM
The Selector
Multiplexing centers around the use of an object called a Selector. This object
watches a set of channels of various kinds and alerts you when one of them has
received some input. Instead of having to check each of the channels periodically,
like you do when you’re polling, you can call a single method, Selector.select(),
which will block until one or more of the channels is ready. You then deal with
whatever information has come in, and then you call select() again. You can see
how simple the main loop is in the following schematic listing:

while (true) {
 selector.select();

 // deal with new input ...
}

The advantage of using selectors is tremendous. If you’ll recall from section 2.2.2,
the naive approach was to wait for input from one of the clients, which meant we
were ignoring all of the other clients while we were waiting. The beauty of
select() is that you can wait for input from all of the clients at once.

 The select() method treats server sockets and regular sockets in the same way.
Server sockets receive new connections, while regular sockets receive bytes. The
select() call treats them both as a kind of I/O event.

 Note that select() only works with selectable channels—that is, Channels that
implement the SelectableChannel interface. Both Socket and ServerSocket imple-
ment SelectableChannel. In the base implementation, only five classes are
selectable: DatagramChannel, Pipe.SinkChannel, Pipe.SourceChannel, Server-
SocketChannel, and SocketChannel.

 select() is very efficient. The Java version of select(), in fact, seems to be
based on the Unix system call of the same name. The purpose of select() is to
make available to the user the fundamentally asynchronous, multiplexed nature of
I/O that you find at the operating system level. While the select() approach is
slightly more complicated to understand than the elegant stream approach, the dif-
ficulties are justified by the increase in speed and flexibility.

Listening and reading with select()
In this section, we will re-implement the chat server of section 2.2.4 using
select(). As before, our server will consist of a server socket that is listening for
connections, and a set of client sockets, each of which is connected to a chat client
at the other end. And, as in the polling version, we’ll do everything in a single
thread. Our new implementation, MultiplexingChatServer, will be much more effi-
cient than PollingChatServer because it won’t spend any time polling, or waiting
between polls.

Nonblocking I/O 51

jdk.book Page 51 Monday, March 11, 2002 3:38 PM
 The first thing we need to do is create a Selector. This object is the center of
the process: it is the object that alerts us to the presence of incoming input.

import java.nio.channels.*;

Selector selector = Selector.open();

The static open() call creates a new Selector object. Now that we have a selector,
we can create some channels to register with it. These channels will be the channels
that the selector watches for I/O activity.

 Since this is a standard chat server, we’ll create a server socket, just like we did in
the PollingChatServer.

ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking(false);
ServerSocket ss = ssc.socket();
InetSocketAddress isa = new InetSocketAddress(port);
ss.bind(isa);

Note that we create the server socket by creating a ServerSocketChannel first, and
then calling its socket() method to get access to the ServerSocket object. We do
this mainly because we need to configure it as a nonblocking socket by calling the
configureBlocking() method of its channel.

NOTE A ServerSocket will have a ServerSocketChannel if and only if the channel
was created first using ServerSocketChannel.open().

Normally, the first thing we’d do after creating a server socket would be to call its
accept() method to listen for an incoming connection. Because we’re multiplex-
ing, we’re not going to do that. Instead, we register the server socket by calling the
register() method of the ServerSocketChannel object:

ssc.register(selector, SelectionKey.OP_ACCEPT);

The second argument to this method describes the set of I/O operations we would
like to listen for. Although they are called operations, they really should be thought
of as events. There are four kinds of I/O events that a Selector can listen for:

� OP_READ—This event is triggered when it becomes possible for the channel to
have data read from it. In a networking context, if even a single byte comes in
from the remote side of a connection, this event will be triggered. This event
is valid for regular sockets, but not for server sockets.

� OP_WRITE—This event is triggered when it becomes possible to write to a
channel. In a system without much I/O load, a socket will always be ready to

52 CHAPTER 2

Advanced NIO

jdk.book Page 52 Monday, March 11, 2002 3:38 PM
have data written to it. However, socket buffers are finite, and a heavily
loaded server will sometimes have a bottleneck at the outgoing socket buff-
ers. In this case, it is possible that a simple write to a socket will block until
the buffers have enough room for the data to be written. This event is valid
for regular sockets, but not for server sockets.

� OP_CONNECT—This event is triggered when a regular socket is ready to com-
plete its connection to a remote server. This event is valid for regular sockets,
but not for server sockets.

� OP_ACCEPT—This event is triggered when one or more incoming connections
have arrived at the server socket. This event is valid for server sockets, but not
for regular sockets.

NOTE You can find out what selection operations are valid for a particular Select-
ableChannel by calling its validOps() method.

Table 2.1 shows which operations are valid with each kind of socket.

These operations can be or’ed together, allowing you to specify more than one
operation at a time. For example, to register a regular socket for reading and writ-
ing, you could use the following line of code:

sc.register(selector,
 SelectionKey.OP_READ |
 SelectionKey.OP_WRITE);

Although we’ve been ignoring it so far, the call to register() returns an object
called a SelectionKey. This object represents the registration of the channel and has
a number of purposes. You can unregister a channel by calling the SelectionKey’s
cancel() method. Also, if a channel has been registered for a number of different

Table 2.1 Valid operations for each kind of socket. Each operation is
only valid for one of the two kinds of socket.

Operation Socket ServerSocket

OP_READ ✔

OP_WRITE ✔

OP_CONNECT ✔

OP_ACCEPT ✔

Nonblocking I/O 53

jdk.book Page 53 Monday, March 11, 2002 3:38 PM
events, and one is triggered, you can use the SelectionKey to find out which ones
were triggered. You can get the selection key like this:

SelectionKey sk = sc.register(selector, ops);

Now that we’ve registered our server socket with our selector, we’re ready to start
waiting for incoming connections. In our main loop, we call select():

int numKeys = selector.select();

We are now waiting for any of the registered channels to have some event come in. At
some point, one or more clients will try to connect, and when this happens, select()
will return. The value it returns is the number of events that have been triggered.

The selected set
When one or more events have been triggered on one or more channels, the selec-
tion keys corresponding to these channels are put into a set called the selected set.
You can get access to this set by calling the selector’s selectedKeys() method.

Set skeys = selector.selectedKeys();

Using this set, you can iterate through the selection keys and process each one:

Iterator it = skeys.iterator();
while (it.hasNext()) {
 SelectionKey rsk = (SelectionKey)it.next();
 // process selection key
}

In our chat server, we’re listening for two kinds of events: incoming connections to
the server socket, and incoming data to the regular sockets. Each selection key rep-
resents a channel that has had an event, so our first task is to find out what kind of
channel it was, and what kind of event it received.

SelectionKey rsk = (SelectionKey)it.next();
int rskOps = rsk.readyOps();
// The following line checks to see if the 'SelectionKey.OP_ACCEPT'
// bit is set within 'rskOps'
if ((rskOps & SelectionKey.OP_ACCEPT) == SelectionKey.OP_ACCEPT) {
 // it's an incoming connection; add it to the list of connections
} else {
 // it's data arriving at a regular socket; process it
}

In the preceding code, we check the selection key to find out what kind of event
(operation) was triggered. If it was an accept operation, then we know that this
must be the server socket accepting a new connection. Otherwise, we know that it
must be regular data arriving at a regular socket.

54 CHAPTER 2

Advanced NIO

jdk.book Page 54 Monday, March 11, 2002 3:38 PM
 Note that the selector doesn’t carry out the operation in question—it only tells
us that the operation is ready to be carried out. If it’s an accept operation, we need
to perform the actual accept:

Socket socket = serverSocket.accept();

If, instead, we’ve just had some data coming in to a SocketChannel, we need to read
the data and process it:

buffer.clear();
// The selection key contains a reference to its SocketChannel
SocketChannel ch = (SocketChannel)rsk.channel();
ch.read(buffer);
buffer.flip();
sendToAll(buffer);

If we’ve just gotten a new connection, we also have to add the new channel to the
selector, so that the selector is listening for incoming data on it. We’ll register this
SocketChannel just like we registered the ServerSocketChannel, only we’ll register
it for OP_READ rather than for OP_ACCEPT.

SocketChannel sc = socket.getChannel();
sc.configureBlocking(false);
sc.register(selector, SelectionKey.OP_READ);

NOTE The arrival of data isn’t the only thing that will trigger an OP_READ event. This
event will also be triggered if the connection is closed or if there is an error of
some kind. This is true of all four types of events. The rationale behind this is
that if you are waiting for data to arrive, you want to know when it arrives,
but you also want to know when there is a fatal error preventing its arrival.

Once we’ve dealt with incoming data or new incoming connections, we’re nearly
done with our inner loop. Before we can go back to processing events, we have to
make sure that we tell the selector that we’ve just processed a channel. We do this
by removing the channel’s SelectionKey from the selected set:

selector.selectedKeys().remove(selectionKey);

NOTE Once a SelectionKey has been added to a selector’s selected set, it must be re-
moved explicitly. If you do not remove it from the selected set, it will still be in
the selected set the next time an event comes in, making it seem like the event
has been triggered again. Failure to remove a SelectionKey from the selected
set can result in a bug in which an event seems to be triggered repeatedly.

Nonblocking I/O 55

jdk.book Page 55 Monday, March 11, 2002 3:38 PM
The big view
Figure 2.2 gives an overview of the flow of events in the chat server’s main thread:

 The steps in figure 2.2 are described in more detail here:

1 A new ServerSocketChannel is created. This will be used to listen for new
connections.

2 The ServerSocketChannel is registered with the Selector. We will be able to
receive notice of I/O events for the ServerSocketChannel by calling this
Selector’s select() method. The call to register() returns a SelectionKey.

3 select() waits until one or more registered channels have I/O events.

4 selectedKeys() is used to find out which channels have I/O events. Specifi-
cally, it returns a Set containing SelectionKeys. Each SelectionKey can be
used to get access to the underlying Channel.

5 If a new connection has come in, ServerSocketChannel.accept() is called
to get the new SocketChannel.

6 The new SocketChannel is registered with the Selector, just as the Server-
SocketChannel was. Whereas the ServerSocketChannel is being watched
for new incoming connections, the new SocketChannel is being watched
for incoming chat data.

7 Incoming chat data is processed. In our simple chat system, this means it is
sent out to all other connections.

1: New ServerSocketChannel()

5: serverSocketChannel.accept()

7: Process chat data

2: register(serverSocketChannel

6: register(socketChannel)

3: select()

4: selectedKeys()

ServerSocketChannel

SocketChannel

Main
thread Selector

Figure 2.2 The flow of events in the main thread of the chat server

56 CHAPTER 2

Advanced NIO

jdk.book Page 56 Monday, March 11, 2002 3:38 PM
The source
In the preceding sections, we’ve gone through the essential elements of our chat
server’s inner loop. Listing 2.3 shows the complete program.

(see \Chapter2 \MultiplexingChatServer.java)
import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;

public class MultiplexingChatServer implements Runnable
{
 private int port;
 private Vector sockets = new Vector();
 private Set closedSockets = new HashSet();

 public MultiplexingChatServer(int port) {
 this.port = port;
 Thread t = new Thread(this, "MultiplexingChatServer");
 t.start();
 }

 public void run() {
 try {
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.configureBlocking(false);
 ServerSocket ss = ssc.socket();
 InetSocketAddress isa = new InetSocketAddress(port);
 ss.bind(isa);

 Selector selector = Selector.open();
 ssc.register(selector, SelectionKey.OP_ACCEPT);
 System.out.println("Listening on port "+port);

 ByteBuffer buffer = ByteBuffer.allocate(4096);

 while (true) {
 int numKeys = selector.select();
 if (numKeys>0) {
 Set skeys = selector.selectedKeys();
 Iterator it = skeys.iterator();
 while (it.hasNext()) {
 SelectionKey rsk = (SelectionKey)it.next();
 int rskOps = rsk.readyOps();
 if ((rskOps & SelectionKey.OP_ACCEPT) ==
 SelectionKey.OP_ACCEPT) {
 Socket socket = ss.accept();
 System.out.println("Connection from "+socket);
 sockets.addElement(socket);

Listing 2.3 MultiplexingChatServer.java

o Prepare a
nonblocking
ServerSocket

o Add the
ServerSocket to
the selector

o Wait for an I/O event

o

Deal with
a new
incoming
connection

Nonblocking I/O 57

jdk.book Page 57 Monday, March 11, 2002 3:38 PM
 SocketChannel sc = socket.getChannel();
 sc.configureBlocking(false);
 sc.register(selector, SelectionKey.OP_READ);
 selector.selectedKeys().remove(rsk);
 } else if ((rskOps & SelectionKey.OP_READ) ==
 SelectionKey.OP_READ) {
 SocketChannel ch = (SocketChannel)rsk.channel();
 selector.selectedKeys().remove(rsk);
 buffer.clear();
 ch.read(buffer);
 buffer.flip();
 System.out.println("Read "+buffer.limit()+
 " bytes from "+ch.socket());
 if (buffer.limit()==0) {
 System.out.println("closing on 0 read");
 rsk.cancel();
 Socket socket = ch.socket();
 close(socket);
 } else {
 sendToAll(buffer);
 }
 }
 }

 removeClosedSockets();
 }
 }
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 // This method is identical to
 // PollingChatServer.sendToAll()
 private void sendToAll(ByteBuffer bb) {
 for (Enumeration e=sockets.elements();
 e.hasMoreElements();) {
 Socket socket = null;
 try {
 socket = (Socket)e.nextElement();
 SocketChannel sc = socket.getChannel();
 bb.rewind();
 while (bb.remaining()>0) {
 sc.write(bb);
 }
 } catch(IOException ie) {
 closedSockets.add(socket);
 }
 }
 }

o Deal with
the arrival
of chat

o Send a buffer of
data to all clients

58 CHAPTER 2

Advanced NIO

jdk.book Page 58 Monday, March 11, 2002 3:38 PM
 private void close(Socket socket) {
 closedSockets.add(socket);
 }

 // This method is identical to
 // PollingChatServer.removeClosedSockets()
 private void removeClosedSockets() {
 for (Iterator it=closedSockets.iterator(); it.hasNext();) {
 Socket socket = (Socket)it.next();
 sockets.remove(socket);
 System.out.println("Removed "+socket);
 }
 closedSockets.clear();
 }

 static public void main(String args[]) throws Exception {
 int port = Integer.parseInt(args[0]);
 new MultiplexingChatServer(port);
 }
}

Although the MultiplexingChatServer doesn’t cover every valid use of selectors, it
covers the ones you’ll use in most of your servers—accepting new connections and
processing the data coming from them.

 Even though this technique can be done in a single thread, you’ll probably want
to use multiple threads in practice, to take advantage of any parallelism within the
underlying operating system or hardware. Additionally, any time-consuming data
processing should probably be moved to other threads, if only so that thread prior-
ities can be used to fine-tune the amount of time spent on I/O and the amount of
time spent on data processing.

2.3 Encoding and decoding with Charsets

Since its release, Java has used Unicode characters throughout. However, because
most operating systems are not fully Unicode-compliant, most Java programs are
still effectively using 8-bit characters. Although a great deal of support for transi-
tioning between 8-bit ASCII and 16-bit Unicode has been available within the Java
API, it is generally circumvented.

 Charsets integrate Unicode characters with the New I/O API by providing
methods for converting ByteBuffers to CharBuffers, and back again. Precisely
defined, a Charset is a particular mapping between bytes and Unicode characters.
There are many different ways of performing this mapping—some optimized for
space, others optimized for completeness of encoding. The Charset facility within
the New I/O API allows multiple mappings to coexist peacefully, since each Charset

o Put the socket
on the to-close list

o

Remove dead sockets
from active list

Encoding and decoding with Charsets 59

jdk.book Page 59 Monday, March 11, 2002 3:38 PM
object can represent a different mapping, and each one can encode and decode
characters separately.

2.3.1 Decoding and encoding
Converting bytes to chars is called decoding. This might seem backwards, but it
makes sense. Before Unicode adoption, a char was considered to be nothing more
than a byte with an interpretation attached. Java chars, however, are their own enti-
ties, and should not be considered equivalent to any particular byte-encoding. In
particular, a char can be encoded by any number of bytes. As a result, there is no
definitive mapping that turns a char into one or more bytes. Instead, there are mul-
tiple mappings. Each one can be represented by a different Charset object.

 A Charset is created using the Charset.forName() method. The single argu-
ment to the method is a string providing the name of the Charset.

String charsetName = "ISO-8859-1";
Charset charset = Charset.forName(charsetName);

While the available Charsets differ from system to system, the ones listed in
Table 2.2 are available in any Java installation.

2.3.2 Finding available Charsets
You can find out what Charsets are available on your system by using ListCharsets
(see listing 2.4). It lists each Charset, followed by a sublist of the aliases of that
Charset. An alias is another name for the same Charset.

Table 2.2 These Charsets are available in every Java installation. Other Charsets
may also be available.

Name Definition

US-ASCII Traditional 7-bit ASCII

ISO-8859-1 ISO Latin alphabet 1; also known as ISO-LATIN-1

UTF-8 8-bit UCS Translation Format

UTF-16BE 16-bit UCS Transformation Format (big-endian)

UTF-16LE 16-bit UCS Transformation Format (little-endian)

UTF-16 16-bit UCS Transformation Format (byte order determined by
optional byte-order mark)

60 CHAPTER 2

Advanced NIO

jdk.book Page 60 Monday, March 11, 2002 3:38 PM
(see \Chapter2 \ListCharsets.java)
import java.util.*;
import java.nio.charset.*;

public class ListCharsets
{
 static public void main(String args[]) throws Exception {
 SortedMap charsets = Charset.availableCharsets();
 Set names = charsets.keySet();
 for (Iterator e=names.iterator(); e.hasNext();) {
 String name = (String)e.next();
 Charset charset = (Charset)charsets.get(name);
 System.out.println(charset);
 Set aliases = charset.aliases();
 for (Iterator ee=aliases.iterator(); ee.hasNext();) {
 System.out.println(" "+ee.next());
 }
 }
 }
}

Here is some sample output from this program, showing the variety of Charsets
and their aliases:

ISO-8859-1
 latin1
 ISO8859-1
 IBM819
US-ASCII
 us
 ISO_646.irv:1991
UTF-16
 utf_16
UTF-16BE
 iso-10646-ucs-2
 utf_16be
UTF-16LE
 utf_16le
UTF-8
 UTF8
windows-1252
 Cp1252

This is only a partial listing. You’ll notice that most Charsets have a large number of
aliases.

Listing 2.4 ListCharsets.java

Encoding and decoding with Charsets 61

jdk.book Page 61 Monday, March 11, 2002 3:38 PM
2.3.3 Using encoders and decoders
Once you have acquired a Charset object, you can use it to convert a ByteBuffer to
a CharBuffer, and vice versa. To do this, you must first create a CharsetEncoder or
a CharsetDecoder using the newEncoder() and newDecoder() methods. When you
have an instance of a CharsetEncoder or CharsetDecoder, you can carry out a con-
version using either the encode() or decode() method, respectively.

 The following code fragment demonstrates the process of converting a Byte-
Buffer to a CharBuffer using a Charset:

Charset charset = Charset.forName(charsetName);
CharsetDecoder decoder = charset.newDecoder();
CharBuffer charBuffer = decoder.decode(byteBuffer);

Likewise, you can convert a CharBuffer to a ByteBuffer as follows:

Charset charset = Charset.forName(charsetName);
CharsetEncoder encoder = charset.newEncoder();
ByteBuffer byteBuffer = encoder.encode(charBuffer);

The decoding process involves reading bytes, one at a time, from the input Byte-
Buffer. Many Charsets deal with characters that use more than one byte per charac-
ter; in these cases, multiple bytes have to be read to produce a single character. Each
time the decoder reads enough bytes to produce a character, this character is writ-
ten to the CharBuffer. The decoder makes sure not to write more characters than
can fit in the CharBuffer, or to read more bytes than are available in the Byte-
Buffer. In the preceding example, the CharBuffer is created by the CharsetDe-
coder, so it won’t overrun; however, there are variants of decode() and encode()
that take a destination buffer as an argument, and these buffers might not be large
enough.

 The encoding process can also generate more than one byte per character. It
reads characters, one at a time, from the CharBuffer. For each character, it writes
one or more bytes to the ByteBuffer. The capacities of the buffers are likewise
respected.

 The preceding description is accurate for most CharsetDecoders, but it is by no
means a requirement—a CharsetDecoder could, if it wanted to, process the charac-
ters in a strange order, or copy data into other buffers. However, it must preserve
the ordering of the characters and properly maintain the buffers’ limit and position
values.

 You can combine the previous code fragments to convert a piece of text from
one encoding to another by converting it first to a CharBuffer using one Charset,
and then converting it back to a ByteBuffer using another Charset.

62 CHAPTER 2

Advanced NIO

jdk.book Page 62 Monday, March 11, 2002 3:38 PM
Charset charsetA = Charset.forName(charsetName);
CharsetDecoder decoderA = charsetA.newDecoder();
Charset charsetB = Charset.forName(charsetName);
CharsetEncoder encoderB = charsetB.newEncoder();

CharBuffer charBuffer = decoderA.decode(byteBuffer);
ByteBuffer newByteBuffer = encoderB.encode(charBuffer);

The TranslateCharset program (see listing 2.5) can be used to convert a file from
one encoding to another. You specify the source file and the destination file, along
with the names of the old and new Charsets, on the command line. For example,
the following command-line command would use TranslateCharset to convert the
plaintext file old.txt to be the 16-bit Unicode file new.txt:

java TranslateCharset old.txt ISO-8859-1 new.txt UTF-16BE

(see \Chapter2 \TranslateCharset.java)
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;

public class TranslateCharset
{
 static public void main(String args[]) throws Exception {
 if (args.length != 4) {
 System.err.println(
 "Usage: java TranslateCharset <infile> <incharset> "+
 "<outfile> <outcharset>");
 System.exit(1);
 }

 String inFilename = args[0];
 String inFileCharsetName = args[1];
 String outFilename = args[2];
 String outFileCharsetName = args[3];

 File infile = new File(inFilename);
 File outfile = new File(outFilename);

 RandomAccessFile inraf =
 new RandomAccessFile(infile, "r");
 RandomAccessFile outraf =
 new RandomAccessFile(outfile, "rw");

 FileChannel finc = inraf.getChannel();
 FileChannel foutc = outraf.getChannel();

 MappedByteBuffer inmbb =
 finc.map(FileChannel.MapMode.READ_ONLY, 0, (int)infile.length());

Listing 2.5 TranslateCharset.java

Network interfaces 63

jdk.book Page 63 Monday, March 11, 2002 3:38 PM
 Charset inCharset = Charset.forName(inFileCharsetName);
 Charset outCharset = Charset.forName(outFileCharsetName);

 CharsetDecoder inDecoder = inCharset.newDecoder();
 CharsetEncoder outEncoder = outCharset.newEncoder();

 CharBuffer cb = inDecoder.decode(inmbb);
 ByteBuffer outbb = outEncoder.encode(cb);

 foutc.write(outbb);

 inraf.close();
 outraf.close();
 }
}

For most applications, you won’t have to worry about Charsets. Many of the sim-
ple text-processing facilities in Java (such as System.out.println()) will take care
of the details for you, using reasonable defaults. However, if you intend to create an
application that uses text in a substantial way, Charsets are an elegant and efficient
way to deal with Unicode encodings.

2.4 Network interfaces

The new NetworkInterface object provides access to the operating system–level
objects that represent the interfaces on which network communications can hap-
pen. Some high-end servers come equipped with multiple network cards, and there
are several reasons why this might be done. For example, having multiple network
cards can allow a machine to engage in network communications at a much higher
rate. To the extent that network I/O is bound by the network interface cards, multi-
ple cards can parallelize communications, increasing throughput.

 Having multiple interface cards can also be a physical strategy for securing a
machine. For example, access to certain services might be restricted to connections
coming through a particular interface that only certain users have access to. A server
could have one network interface card for connections originating within the same
office, and another network interface card for connections coming from the wider
Internet. Multiple cards also provide redundancy in the face of hardware failure.

 Network interfaces don’t necessarily have to be physical devices. Most machines
have a loopback interface that allows the machine to connect to itself. While this
does not require special hardware to implement, the interface nevertheless has sta-
tus as a network interface.

o Create
the
encoder
and
decoder

o Convert from one
encoding to another

64 CHAPTER 2

Advanced NIO

jdk.book Page 64 Monday, March 11, 2002 3:38 PM
 Each NetworkInterface object represents one of the network interfaces on your
machine. Each one of these objects can be used to gather information about that
interface. You can also get a list of InetAddress objects from an interface, which
allows you to create a ServerSocket that only listens on a particular address.

 We’ll be seeing example output from some programs and program fragments in
this section. The output was generated by running the programs on two different
systems—Windows 95 and a Linux/GNU system.

2.4.1 When to use a network interface
Generally, you don’t need to think about network interfaces. In most configura-
tions, a machine has a default interface that is used for all IP communications. This
means that socket programming can be done without reference to the particular
interface that is being used. If you don’t know what a network interface is, then you
probably don’t need to use one.

 However, as mentioned previously, there are times when you need to access a
particular interface. Or, to put it another way, there are times when you need to
override the default network interface. With the arrival of JDK 1.4, you can now do
this using the NetworkInterface class.

2.4.2 Getting a list of NetworkInterfaces
NetworkInterface provides a static method called getNetworkInterfaces(). This
method provides an Enumeration of the NetworkInterface objects available.

 Here is an example of its use:

Enumeration interfaces = NetworkInterface.getNetworkInterfaces();
while (interfaces.hasMoreElements()) {
 NetworkInterface ni = (NetworkInterface)interfaces.nextElement();
 // ...
}

This fragment iterates through all of the network interfaces on the system.

2.4.3 Reporting on NetworkInterfaces
You can pass a NetworkInterface to System.out.println to see what information is
available on your system (see listing 2.6).

Network interfaces 65

jdk.book Page 65 Monday, March 11, 2002 3:38 PM
(see \Chapter2 \ListNetworkInterfaces.java)

Enumeration interfaces = NetworkInterface.getNetworkInterfaces();
while (interfaces.hasMoreElements()) {
 NetworkInterface ni = (NetworkInterface)interfaces.nextElement();
 System.out.println(ni);
}

Under Linux, this results in the following output:
name:ppp0 (ppp0) index: 115 addresses:
/111.222.33.44;

name:eth0 (eth0) index: 2 addresses:
/192.168.0.1;

name:lo (lo) index: 1 addresses:
/127.0.0.1;

Under Windows, we get the following:

name:lo0 (localhost) index: 2 addresses:
/127.0.0.1;

name:lan0 (3Com EtherLink III ISA (3C509/3C509b) in ISA mode) index: 1
addresses:

/192.168.0.2;

Each paragraph represents a different network interface. There are a number of
pieces of information in each entry, as shown in figure 2.3.

� interface name—The short name of the network interface. On Unix systems,
this string is used by the ifconfig command, which can be used to configure
the system to use a particular IP address for a particular network interface.

� interface full name—A longer, more descriptive name for the network
interface. This string is probably not used in any official capacity, but rather
exists to provide a more user-friendly description of the interface. A program
for selecting a network interface might display this string in the user interface.

Listing 2.6 from ListNetworkInterfaces.java

name:lan0 (3Com EtherLink III ISA (3C509/3C509b) in ISA mode) index: 1 addresses:
/192.168.0.2;

Interface name

Index within internal list
IP address

Interface full name

Figure 2.3 These are the parts of a NetworkInterface report. This report is
generated by the toString() method of the NetworkInterface object.

66 CHAPTER 2

Advanced NIO

jdk.book Page 66 Monday, March 11, 2002 3:38 PM
� index—This is the index of this interface within an internal table.

� IP address—A list of all the Internet addresses bound to this interface.

2.4.4 Getting a list of InetAddresses
Although the output in section 2.4.3 provides a list of addresses, they are inconve-
niently imbedded within a block of text. However, it’s easy to get a list of InetAddress
objects belonging to a given interface by using the getInetAddresses() method.

NetworkInterface ni = ...;
Enumeration e = ni.getInetAddresses();
while (e.hasMoreElements()) {
 InetAddress ia = (InetAddress)e.nextElement();
 System.out.println(ia);
}

Most network interfaces have a single address; for the ones that don’t, the preced-
ing code will list the addresses.

2.4.5 Getting a NetworkInterface by InetAddress
Given that there may be several network interfaces on a given system, how do you
pick one to use? One way is to pick the interface based on an address that is bound
to it. NetworkInterface provides a static method called getByInetAddress(), which
allows you to get the NetworkInterface object corresponding to a particular Inet-
Address object.

 ReportByAddress (see listing 2.7) looks up a network interface based on an
address provided on the command line. It then prints out some information about
this interface.

(see \Chapter2 \ReportByAddress.java)
import java.net.*;

public class ReportByAddress
{
 static public void main(String args[]) throws Exception {
 InetAddress ia = InetAddress.getByName(args[0]);
 NetworkInterface ni = NetworkInterface.getByInetAddress(ia);
 System.out.println(ni);
 }
}

Listing 2.7 ReportByAddress.java

Network interfaces 67

jdk.book Page 67 Monday, March 11, 2002 3:38 PM
 Here’s an example of this program in action under Windows:

java ReportByAddress 192.168.0.2

name:lan0 (3Com EtherLink III ISA (3C509/3C509b) in ISA mode) index: 1
addresses:

/192.168.0.2;

Note that the address used to find this interface is listed in the addresses: section
of the output.

2.4.6 Getting a NetworkInterface by name
You can also access a NetworkInterface given only its short device name, such as
lan0 or ppp0. This is done by using the getByName() method.

 ReportByName (see listing 2.8) looks up a network interface based on a name
provided on the command line. It then prints out some information about this
interface.

(see \Chapter2 \ReportByName.java)
import java.net.*;

public class ReportByName
{
 static public void main(String args[]) throws Exception {
 NetworkInterface ni = NetworkInterface.getByName(args[0]);
 System.out.println(ni);
 }
}

Here’s the output of this program under Linux:

java ReportByName eth0

name:eth0 (eth0) index: 2 addresses:
/192.168.0.1;

This program can be used to find the IP address corresponding to a particular inter-
face name.

2.4.7 Listening on a particular address
As was mentioned at the beginning of this section, one practical reason why you’d
need to use NetworkInterface objects is to create server sockets that only listen on
a particular address. This can be useful if you are hosting multiple Internet
addresses on the same machine.

Listing 2.8 ReportByName.java

68 CHAPTER 2

Advanced NIO

jdk.book Page 68 Monday, March 11, 2002 3:38 PM
 In order to understand how this works, we need to understand a little bit more
about what it means to listen on a socket.

Listening on the default address
If you’ve written socket code in Java before, you know that you don’t need to think
about network interfaces to listen on a socket. This is because most machines are
configured to have a default address to listen on, if none is specified.

 This default address is generally 0.0.0.0, which isn’t really an address at all. It’s
more like a placeholder that says, “listening on this address means listening on all
addresses at once.” This means that if a connection comes in for the specified port,
on any interface, then that is considered a connection.

 To illustrate this, we’ll try out some code. The following piece of code does the
following:

� Listens for a connection on a particular port number
� Gets one incoming connection on that port

� Prints out information about that connection

int port = 5555;
ServerSocket ss = new ServerSocket(port);
Socket s = ss.accept();
System.out.println(s);

If you execute this program, it won’t quit right away. It will sit there waiting for an
incoming connection. By using the netstat command under Linux, we can see
that the program is waiting on a connection. The output in figure 2.4 shows that
something is listening on 0.0.0.0:5555, which means it’s listening on port 5555,
on all addresses.

Getting the first address of an interface
Before we get into the mechanics of listening on particular interfaces, we need to
define a helper method called getAddress().

netstat -an | grep 5555
tcp 0 0 0.0.0.0:5555 0.0.0.0:* LISTEN

netstat command

Socket
type

(TCP or
UDP)

Local
address

Allowed
remote

addresses

Socket
state

Local
port

Figure 2.4
Output from the netstat command. netstat lists all
open sockets, along with information about them. This
listing shows the information for a socket listening for
new connections on port 5555.

Network interfaces 69

jdk.book Page 69 Monday, March 11, 2002 3:38 PM
 A NetworkInterface object can have multiple addresses bound to it. However, it
is often the case that each NetworkInterface in the system has only one address
bound to it. For convenience’s sake, we’re going to assume that is the case.

 The NetworkInterface class does not include a method called getInetAddress or
getSingleInetAddress. It only provides getInetAddresses(), which returns an Enu-
meration. To simplify matters, we’ve created a helper function that grabs the first
address in the Enumeration and returns it. It is also possible for a NetworkInterface
to have no addresses; in this case, an empty Enumeration is returned.

static private InetAddress getAddress(NetworkInterface ni) {
 Enumeration e = ni.getInetAddresses();
 if (!e.hasMoreElements())
 return null;
 InetAddress ia = (InetAddress)e.nextElement();
 return ia;
}

It is common to assume that the first address for an interface is sufficient; more
sophisticated programs can provide a configuration interface to specify a different
address.

Listening on an address
Listening for a connection on a particular address is a lot like accepting letters only
if they are addressed to you personally. Listening on all addresses, then, is like
accepting any letter that shows up at your door.

 As mentioned previously, being particular about what address you listen on can
let you multiplex the connections that are coming in. This is analogous to having
roommates, each of whom receives letters at the same address. When the mail
comes in, it is sorted by recipient before it is handed over.

NOTE Technically, a program listens on an address, not an interface. However, if an
interface has a single address bound to it, then it is reasonable to say that a
program listening on that address is also listening on that interface.

Now we’re going to find out how to listen for connections on a particular interface.
The Accept program will do this for us (see listing 2.9). Accept listens on an inter-
face and listens for a single incoming connection. It won’t do anything with this
incoming connection—Accept just listens. We can examine the state of this listening
process by running netstat at the same time. netstat shows the states of all ports
that are being listened on—we can use it to get direct feedback about what ports,
and what network interfaces, are being listened on.

70 CHAPTER 2

Advanced NIO

jdk.book Page 70 Monday, March 11, 2002 3:38 PM
(see \Chapter2 \Accept.java)
import java.net.*;
import java.util.*;

public class Accept
{
 static private InetAddress getAddress(NetworkInterface ni) {
 Enumeration e = ni.getInetAddresses();
 InetAddress ia = (InetAddress)e.nextElement();
 return ia;
 }

 static public void main(String args[]) throws Exception {
 int port = Integer.parseInt(args[0]);
 String interf = args.length > 1 ? args[1] : null;

 if (interf != null) {
 NetworkInterface ni = NetworkInterface.getByName(interf);
 InetAddress ia = getAddress(ni);
 ServerSocket ss = new ServerSocket(port, 20, ia);
 System.out.println("Listening");
 Socket s = ss.accept();
 System.out.println(s);
 } else {
 ServerSocket ss = new ServerSocket(port);
 System.out.println("Listening");
 Socket s = ss.accept();
 System.out.println(s);
 }
 }
}

The first argument to this program is the number of the port to listen on, and is
required. The second argument is the name of the interface to listen on, and is
optional. If it is omitted, then the program listens on 0.0.0.0; that is, it listens on
all interfaces at once.

 Let’s now take a look at the results of running this program. In each case, we’ll
run the program and then use the Unix command netstat to find out what’s going
on.

 First, we’ll run Accept and listen on all sockets:

java Accept 5555

Note that we’re using port 5555. This choice is arbitrary—you can use any port on
your system that you have permission to use, and which isn’t already being used by

Listing 2.9 Accept.java

o Return
the first
address of
a network
interface

Network interfaces 71

jdk.book Page 71 Monday, March 11, 2002 3:38 PM
something else. Generally, a nonprivileged user has permission to use any port
greater than 1023.

 Now that we’ve run Accept, it is listening on port 5555. We can use netstat to
verify this. The exact Unix command we are using is netstat –an | grep 5555,
which can be translated as “list all network sockets in use, but only report those
mentioning ‘5555’.”

netstat -an | grep 5555
tcp 0 0 0.0.0.0:5555 0.0.0.0:* LISTEN

The output tells us that someone is listening on port 5555 on address 0.0.0.0, that
is, on every address. This is just like our earlier example.

 We can verify that this is working by trying to connect to this address. The sim-
plest way to do this is with the telnet program, which is available under most
operating systems, including Windows and Linux. Under Unix and most versions
of Microsoft Windows, you can simply telnet at the command line:

telnet localhost 5555

Since there is a program listening on port 5555, this connection request will suc-
ceed, and you’ll see something like this:

Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is '^]'.
Connection closed by foreign host.

If there hadn’t been a program listening on port 5555, then you would have seen
something like this:

telnet localhost 5555

Trying 127.0.0.1...
telnet: Unable to connect to remote host: Connection refused

 Now, we’ll try listening on a particular interface. We learned earlier that our
Linux system had three interfaces: ppp0, eth0, and lo. Let’s run Accept again and
try listening on eth0. Then we’ll run netstat again:

java Accept 5555 eth0

netstat -an | grep 5555
tcp 0 0 192.168.0.1:5555 0.0.0.0:* LISTEN

Note the change. Again, we see that there is a program listening on port 5555.
However, this time it’s not listening on the default address, 0.0.0.0, but rather on
192.168.0.1. This is the local IP address assigned to our Linux box on its LAN, so it
makes sense that we’d see that address here.

72 CHAPTER 2

Advanced NIO

jdk.book Page 72 Monday, March 11, 2002 3:38 PM
 If you use telnet to verify this, you’ll find that the behavior is slightly different.
In our previous example, we used telnet to connect to localhost:5555. localhost
is actually an alias for the address 127.0.0.1, which is an address that generally
refers to the local machine.

 If you try to connect to this address now, you’ll find that it doesn’t work. That’s
because our listening program is only listening on 192.168.0.1. Previously, we were
listening on all addresses, so localhost was valid, but now we are only listening on
a single address, and if you want to connect, you have to use that address. If you use
telnet to connect to 192.168.0.1, you’ll find that it works.

 We can try listening on the lo0 interface:

java Accept 5555 lo0

netstat -an | grep 5555
tcp 0 0 127.0.0.1:5555 0.0.0.0:* LISTEN

You can see that the program is now listening on 127.0.0.1, also known as local-
host. Telnetting to 192.168.0.1 fails, as we see here:

telnet 192.168.0.1 5555
Trying 192.168.0.1...
telnet: Unable to connect to remote host: Connection refused

Meanwhile, telnetting to 127.0.0.1 succeeds, as we see here:

telnet 127.0.0.1 5555
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Connection closed by foreign host.

Just to verify that we can do it, let’s try running several servers at once on different
interfaces. This is what you would do if you were configuring a machine to serve
multiple web sites by using a different network interface card for each site.

 Before we try this experiment, we’ll do the control test. We’ll create a server lis-
tening on all interfaces, and then try to run another server listening on all inter-
faces. The first one works fine, but the second one throws an exception:

java Accept 5555
Exception in thread "main" java.net.BindException: Address already in use
 at java.net.PlainSocketImpl.socketBind(Native Method)
 at java.net.PlainSocketImpl.bind(PlainSocketImpl.java:322)
 at java.net.ServerSocket.bind(ServerSocket.java:311)
 at java.net.ServerSocket.bind(ServerSocket.java:269)
 at java.net.ServerSocket.<init>(ServerSocket.java:185)
 at java.net.ServerSocket.<init>(ServerSocket.java:97)
 at Accept.main(Accept.java:23)

Summary 73

jdk.book Page 73 Monday, March 11, 2002 3:38 PM
This makes sense—you can’t have two programs listening at the same time on the
same port and address.

 Now, let’s see what happens when we try listening on two different addresses.
First, in one window we use Accept to listen on one interface:

java Accept 5555 eth0
Listening

Then we run another listener on another interface:

java Accept 5555 lo
Listening

Since no exception was thrown, we can conclude that both programs are listening
happily and have not come into conflict with each other. But, to be sure, let’s check
out netstat to see what’s really going on:

netstat -an | grep 5555
tcp 0 0 127.0.0.1:5555 0.0.0.0:* LISTEN
tcp 0 0 192.168.0.1:5555 0.0.0.0:* LISTEN

As you can see, we’ve got both servers listening at the same time, each one on a dif-
ferent interface.

2.5 Summary

The New I/O API strives to provide Java APIs for a number of operating system fea-
tures that have become standard in modern operating systems, such as file locking,
nonblocking I/O, and multiplexed I/O. In these cases, the Java API provides a por-
tion that is portable across all Java installations, and a portion that may not work in
all installations but that can make use of the more advanced features found in some
operating systems.

 The advantages provided by these features are a large part of what motivated the
NIO in the first place. Efficiency is a primary motivation, because while Java is an
excellent language for developing server-side programs, it has never been able to
compete with languages like C and C++ in terms of raw speed. The new features
described in this chapter—and the operating system features they expose—go a
long way toward remedying this.

jdk.book Page 74 Monday, March 11, 2002 3:38 PM

jdk.book Page 75 Monday, March 11, 2002 3:38 PM
3Java2D
This chapter covers
� Discovering print services

� Initiating and tracking print jobs

� Creating a custom print dialog box

� Reading and writing images of different formats

� Reading and writing animated images
75

76 CHAPTER 3

Java2D

jdk.book Page 76 Monday, March 11, 2002 3:38 PM
Java2D is described by Sun Microsystems as “a powerful, flexible framework for
device- and resolution-independent 2D graphics.” It was added to the main Java
distribution in version 1.2, and version 1.4 adds a number of new features. The two
most significant are the Print Service API, in the javax.print package (and its sub-
packages), which allows for greater control over printing and spooling, and the
Image I/O API, in the javax.imageio package, which is a simpler and more power-
ful library for saving and loading images in various formats.

3.1 The Print Service API

The Print Service API provides a comprehensive facility for discovering printers and
print services based on their attributes, and for printing to these services. While
facilities for printing existed prior to the Print Service API, the facilities for handling
the actual print services themselves were minimal.

 The Print Service API enables you to do the following:

� Discover all printers on a system
� Discover all printers with a certain set of attributes
� Discover the default printer

� Create printable document objects (called docs) based on in-memory data
� Create docs based on on-disk data
� Create multidocs—document objects containing multiple docs, often of dif-

fering types
� Create print jobs
� Track print jobs as they are processed

� Receive notification of print events such as job completion, job failure, job
cancellation, and the need for user intervention

� Install new lookup services that provide print services to clients calling the
Print Service lookup methods

This section will cover the highlights of the Print Service facility, and provide exam-
ples of working code for printing data.

3.1.1 Print Service packages
The Print Service API consists of the following packages:

The Print Service API 77

jdk.book Page 77 Monday, March 11, 2002 3:38 PM
� javax.print—Contains the main Print Service classes and interfaces for
defining print jobs, discovering printers and print services, and creating docu-
ment objects

� javax.print.attribute—Contains classes that allow for the definition of
printer and print service attributes

� javax.print.attribute.standard—Contains classes for the specification of a
wide variety of printer attributes, such as page size, printer speed, color capa-
bilities, resolution, and so on

� javax.print.event—Contains event objects and listener interfaces that allow
programs to track the progress of print jobs and listen for changes in the
attributes of print jobs and print services

3.1.2 Document flavors
Since the concept of the printable document is a very general one, the DocFlavor
class (and related classes and interfaces) are very general.

 A document flavor is defined as a pair of items:

� A MIME type for the data
� The class of an object from which the data will be drawn

The implementation of each print service is capable of printing some kinds of data,
and not other kinds. Additionally, an implementation is either willing or unwilling
to draw the data from a particular data source.

 For example, a document flavor might specify that it is formatted as plain text
and comes from a String object. Another document flavor might specify that it is
formatted as HTML and comes from a byte array. Yet another document type might
be formatted as GIF data and come from an input stream.

 When a document is printed to a particular print service, that service is queried
to find out if the print service in question has the document’s flavor—that is, if it
contains data in a known format, and if it comes from an object that can be used by
this print service. If not, an exception is thrown.

3.1.3 Printer discovery
Printer discovery is the process of acquiring a list of printers and print services avail-
able through a computer. These services include local printers and network print-
ers—indeed, anything that the underlying operating system regards as a print
service of some kind.

 Printer discovery operates through the PrintServiceLookup class. This class pro-
vides a number of static methods that allow for printer discovery:

78 CHAPTER 3

Java2D

jdk.book Page 78 Monday, March 11, 2002 3:38 PM
� PrintService[] lookupPrintServices(DocFlavor, AttributeSet)—Finds
any print services that are capable of printing documents of the specified doc-
ument flavor, and that have the attributes specified in the given attribute set

� MultiDocPrintService[] lookupMultiDocPrintServices(DocFlavor[],

AttributeSet)—Finds any print services that are capable of printing docu-
ments of every flavor in the specified list of document flavors, and that have
the attributes specified in the given attribute set

� PrintService lookupDefaultPrintService()—Finds the print service
defined by the operating system (and the installed lookup services) as the
default service

As an example of how these methods can be used, the ListPrintServices program
demonstrates a search for print services that specifies no constraints (see listing 3.1).
As a result, it should find every print service on the system. For each print service, it
prints out some useful information about that service.

(see \Chapter3 \ListPrintServices.java)
import javax.print.*;
import javax.print.attribute.*;
import javax.print.attribute.standard.*;

public class ListPrintServices
{
 public ListPrintServices() {
 PrintService pss[] =
 PrintServiceLookup.lookupPrintServices(null, null);

 for (int i=0; i<pss.length; ++i) {
 System.out.println(pss[i]);
 PrintService ps = pss[i];

 PrintServiceAttributeSet psas = ps.getAttributes();
 Attribute attributes[] = psas.toArray();
 for (int j=0; j<attributes.length; ++j) {
 Attribute attribute = attributes[j];
 System.out.println(" attribute: "+attribute.getName());

 if (attribute instanceof PrinterName) {
 PrinterName pn = (PrinterName)attribute;
 System.out.println(" printer name: "+pn.getValue());
 }
 }

 DocFlavor supportedFlavors[] = ps.getSupportedDocFlavors();
 for (int j=0; j<supportedFlavors.length; ++j) {
 System.out.println(" flavor: "+supportedFlavors[j]);

Listing 3.1 ListPrintServices.java

The Print Service API 79

jdk.book Page 79 Monday, March 11, 2002 3:38 PM
 }
 }
 }

 static public void main(String args[]) throws Exception {
 new ListPrintServices();
 }
}

Here’s an example of the output from this ListPrintServices:

Win32 Printer : HP LaserJet 1100
 attribute: printer-is-accepting-jobs
 attribute: color-supported
 attribute: printer-name
 printer name: HP LaserJet 1100
 attribute: queued-job-count
 flavor: image/gif; class="[B"
 flavor: image/gif; class="java.io.InputStream"
 flavor: image/gif; class="java.net.URL"
 flavor: image/jpeg; class="[B"
 flavor: image/jpeg; class="java.io.InputStream"
 flavor: image/jpeg; class="java.net.URL"
 flavor: image/png; class="[B"

 (more flavors omitted)

Win32 Printer : HP LaserJet 1100 real
 attribute: printer-is-accepting-jobs
 attribute: color-supported
 attribute: printer-name
 printer name: HP LaserJet 1100 real
 attribute: queued-job-count
 flavor: image/gif; class="[B"
 flavor: image/gif; class="java.io.InputStream"
 flavor: image/gif; class="java.net.URL"
 flavor: image/jpeg; class="[B"
 flavor: image/jpeg; class="java.io.InputStream"
 flavor: image/jpeg; class="java.net.URL"
 flavor: image/png; class="[B"

 (more flavors omitted)
 The preceding output shows the attribute and document flavors for two printers

(which are actually the same printer).

3.1.4 Printer attributes
Each of the attributes in the output listing in the previous section is represented by
a class in the javax.print.attribute.standard package. Every possible attribute is
represented by a different class. New classes can be added to the system to support

80 CHAPTER 3

Java2D

jdk.book Page 80 Monday, March 11, 2002 3:38 PM
new printer types, and as part of the implementation of new lookup services.
Table 3.1 describes this correspondence of attributes and classes.

Each of the attribute classes can have additional methods that provide more in-
formation. For example, the printer-name attribute, corresponding to the Print-
erName class, has a getValue() method, because PrinterName implements the
javax.print.attribute.TextSyntax interface. (See the documentation for each in-
dividual class to find out what informational methods it provides.) Here’s how you
get access to the print service’s name:

Attribute attribute = attributes[index];
if (attribute instanceof PrinterName) {
 PrinterName pn = (PrinterName)attribute;
 System.out.println("printer name: "+pn.getValue());
}

Since each kind of attribute is a different class, each one can provide different infor-
mation, and so each one can have a unique set of methods.

3.1.5 The SimpleDoc class
To print something, you must supply an object that implements the Doc interface.
You can create this class yourself, but in many cases, you can use the SimpleDoc class
to take care of this for you.

 The constructor for SimpleDoc takes three arguments:

� A DocFlavor object specifying the MIME type and the data-source type
� An object from which the data will be drawn
� A DocAttributeSet object containing attributes describing how the docu-

ment should be printed

Table 3.1 Each attribute has its own class in the javax.print.attribute.standard package.
This allows new attributes to be added to the system without having to modify the original
installed codebase.

Value of attribute.getName() Class of attribute

printer-is-accepting-jobs javax.print.attribute.standard.PrinterIs-
AcceptingJobs

color-supported javax.print.attribute.standard.ColorSupported

printer-name javax.print.attribute.standard.PrinterName

The Print Service API 81

jdk.book Page 81 Monday, March 11, 2002 3:38 PM
The object from which the data will be drawn must match the type specified in the
DocFlavor object. For example, if the DocFlavor object specifies that the data will
be drawn from an InputStream, then the object passed to this constructor must be
some kind of InputStream.

3.1.6 The DocPrintJob interface
To print to a print service, you must first ask the print service to provide a print-job
object. The class of this object is implementation-specific, but it must implement
the DocPrintJob interface. This interface specifies methods regarding the print job,
including methods to do the following:

� Print a document
� Install an event listener that listens for events such as these:

�Job completed
�Job canceled

�Job failed
�Job requires human intervention

Once you have a DocPrintJob object, you must turn your data into a Doc object.
This allows you to call the print() method on the DocPrintJob object:

DocPrintJob job = printService.createPrintJob();
FileInputStream fin = new FileInputStream("image.gif");
Doc doc = new SimpleDoc(fin, DocFlavor.INPUT_STREAM.GIF, null);
job.print(doc, null);
fin.close();

This prints the GIF file to the specified PrintService.

3.1.7 Example: printing an image
Listing 3.2 shows the PrintImage program, which prints an Image to a PrintSer-
vice. The image name is specified on the command line. (Different systems support
printing different formats, but most systems support JPEG and GIF images.)

82 CHAPTER 3

Java2D

jdk.book Page 82 Monday, March 11, 2002 3:38 PM
(see \Chapter3 \PrintImage.java)
import java.io.*;
import javax.print.*;
import javax.print.attribute.*;
import javax.print.attribute.standard.*;

public class PrintImage
{
 public PrintImage(String filename) {
 try {
 PrintRequestAttributeSet pras =
 new HashPrintRequestAttributeSet();
 pras.add(new Copies(1));

 PrintService pss[] =
 PrintServiceLookup.lookupPrintServices(
 DocFlavor.INPUT_STREAM.GIF, pras);

 if (pss.length==0)
 throw new RuntimeException(
 "No printer services available.");

 PrintService ps = pss[0];
 System.out.println("Printing to "+ps);

 DocPrintJob job = ps.createPrintJob();

 FileInputStream fin = new FileInputStream(filename);
 Doc doc = new SimpleDoc(fin,
 DocFlavor.INPUT_STREAM.GIF, null);

 job.print(doc, pras);

 fin.close();
 } catch(IOException ie) {
 ie.printStackTrace();
 } catch(PrintException pe) {
 pe.printStackTrace();
 }
 }

 static public void main(String args[]) throws Exception {
 if (args.length < 1) {
 System.err.println("Usage: java PrintImage <image name>");
 System.exit(1);
 }

 new PrintImage(args[0]);
 }
}

Listing 3.2 PrintImage.java

o
Select a
PrintService

Create and
print the job

o

The Print Service API 83

jdk.book Page 83 Monday, March 11, 2002 3:38 PM
This program selects a PrintService based on a number of criteria, and then prints
the specified image to that PrintService.

3.1.8 Example: a custom print dialog box
Now we’ll look at a custom print dialog box, which will serve to tie together the
things we’ve learned in previous sections about the Print Service API. Of course,
you can get a standard print dialog box by using the ServiceUI.printDialog()
static method, but we’re going to create our own. This simple dialog box allows the
user to select a printer to print a GIF image to. The image is displayed in the dialog
box itself, next to a list of printers. Below the printers is a status window that dis-
plays the status of a print job (see figure 3.1).

ImagePrinter (see listing 3.3) installs a PrintJobListener object to track the status
of a print job after the Print button is clicked. Each method of PrintJobListener
corresponds to a different status update, and each one (except for printJobNo-
MoreEvents()) prints a message to the status window.

(See \Chapter3 \ImagePrinter.java)
import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.io.*;
import javax.imageio.*;
import javax.print.*;
import javax.print.attribute.*;
import javax.print.attribute.standard.*;
import javax.print.event.*;
import javax.swing.*;
import javax.swing.event.*;

Listing 3.3 ImagePrinter.java

Image
window

Status
log

Printer
list

Print
button

Figure 3.1 The dialog box generated by ImagePrinter. It allows you to select a printer from the printer
list and print an image to it. The status log at the bottom displays the status of the print job.

84 CHAPTER 3

Java2D

jdk.book Page 84 Monday, March 11, 2002 3:38 PM
public class ImagePrinter extends JFrame
{
 private String filename;
 private BufferedImage image;
 private JTextArea statusTA;
 private PrintService printServices[];
 private PrintRequestAttributeSet attributeSet;

 public ImagePrinter(String filename) throws IOException {
 super("ImagePrinter");
 this.filename = filename;

 setupAttributeSet();
 findPrinters();
 loadImage(filename);
 setupGUI();

 showStatus("Ready.");
 }

 private void setupAttributeSet() {
 // The required attributes of the printer(s) we
 // will display in the printer list
 attributeSet = new HashPrintRequestAttributeSet();
 attributeSet.add(new Copies(1));
}

 private void doPrint(int service) {
 try {
 PrintService ps = printServices[service];

 DocPrintJob job = ps.createPrintJob();

 job.addPrintJobListener(new PrintJobListener() {
 public void printDataTransferCompleted(
 PrintJobEvent pje) {
 showStatus("Transfer Completed.");
 }
 public void printJobCanceled(PrintJobEvent pje) {
 showStatus("Print Job Canceled.");
 }
 public void printJobCompleted(PrintJobEvent pje) {
 showStatus("Print Job Completed.");
 }
 public void printJobFailed(PrintJobEvent pje) {
 showStatus("Print Job Failed.");
 }
 public void printJobNoMoreEvents(PrintJobEvent pje) {
 }
 public void printJobRequiresAttention(PrintJobEvent pje) {
 showStatus("Print Job Requires Attention.");
 }
 });

o
Print a document to the
specified printer

The Print Service API 85

jdk.book Page 85 Monday, March 11, 2002 3:38 PM
 FileInputStream fin = new FileInputStream(filename);
 Doc doc = new SimpleDoc(fin,
 DocFlavor.INPUT_STREAM.GIF, null);

 job.print(doc, attributeSet);

 fin.close();
 } catch(IOException ie) {
 ie.printStackTrace();
 } catch(PrintException pe) {
 pe.printStackTrace();
 }
 }

 private void findPrinters() {
 printServices =
 PrintServiceLookup.lookupPrintServices(
 DocFlavor.INPUT_STREAM.GIF, attributeSet);

 if (printServices.length==0)
 throw new RuntimeException(
 "No printer services available.");
 }

 private void loadImage(String filename) throws IOException {
 image = ImageIO.read(new File(filename));
 }

 private void setupGUI() {
 setBackground(Color.white);
 JPanel panel0 = new JPanel();
 panel0.setBorder(
 BorderFactory.createEmptyBorder(10, 10, 10, 10));
 panel0.setLayout(new BorderLayout());

 JPanel printerPanel = new JPanel();
 printerPanel.setLayout(new BorderLayout());
 printerPanel.setBorder(
 BorderFactory.createTitledBorder(
 BorderFactory.createLineBorder(Color.black),
 "Select Printer"));

 String printServiceNames[] = new String[printServices.length];
 for (int i=0; i<printServices.length; ++i) {
 printServiceNames[i] = printServices[i].getName();
 }
 final JList printerList = new JList(printServiceNames);
 printerList.addListSelectionListener(
 new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent lse) {
 if (!lse.getValueIsAdjusting()) {
 int ind = printerList.getSelectedIndex();
 if (ind==-1) {
 showStatus("No printer selected.");

B
Select printers that
can print GIF files
and that match the
specified attributes

o
Set up the interface, including
the printer list, image
window, and status log

86 CHAPTER 3

Java2D

jdk.book Page 86 Monday, March 11, 2002 3:38 PM
 } else {
 String printerName = printServices[ind].getName();
 showStatus(printerName+" selected.");
 }
 }
 }
 });
 printerList.setSelectionMode(
 ListSelectionModel.SINGLE_SELECTION);
 printerList.setPreferredSize(new Dimension(20, 80));

 printerPanel.add(printerList, BorderLayout.CENTER);

 JButton printButton = new JButton("Print");
 JPanel buttonPanel = new JPanel();
 buttonPanel.setBorder(
 BorderFactory.createEmptyBorder(5, 5, 5, 5));
 buttonPanel.setLayout(new BorderLayout());
 printButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 int ind = printerList.getSelectedIndex();
 if (ind==-1) {
 showStatus("No printer selected.");
 } else {
 doPrint(ind);
 }
 }
 });
 buttonPanel.add(printButton, BorderLayout.CENTER);

 JPanel rightPanel = new JPanel();
 rightPanel.setLayout(new BorderLayout());
 rightPanel.add(printerPanel, BorderLayout.CENTER);
 rightPanel.add(buttonPanel, BorderLayout.SOUTH);

 JPanel imagePanel = new JPanel();
 imagePanel.setLayout(new BorderLayout());
 imagePanel.setBorder(
 BorderFactory.createTitledBorder(
 BorderFactory.createLineBorder(Color.black),
 "Image"));

 ImageCanvas imageCanvas = new ImageCanvas(image);
 imageCanvas.setPreferredSize(new Dimension(140, 80));
 imageCanvas.setMinimumSize(new Dimension(140, 80));
 imagePanel.add(imageCanvas, BorderLayout.CENTER);

 JPanel panel1 = new JPanel();
 panel1.setLayout(new BoxLayout(panel1, BoxLayout.X_AXIS));
 panel1.add(imagePanel);
 panel1.add(rightPanel);

 JPanel statusPanel = new JPanel();
 statusPanel.setLayout(new BorderLayout());

The Print Service API 87

jdk.book Page 87 Monday, March 11, 2002 3:38 PM
 statusPanel.setBorder(
 BorderFactory.createTitledBorder(
 BorderFactory.createLineBorder(Color.black),
 "Status"));

 statusTA = new JTextArea(6, 80);
 statusTA.setEditable(false);
 JScrollPane statusSP = new JScrollPane(statusTA,
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
 statusPanel.add(statusSP, BorderLayout.CENTER);
 panel0.add(statusPanel, BorderLayout.SOUTH);

 panel0.add(panel1, BorderLayout.CENTER);

 getContentPane().setBackground(Color.white);
 getContentPane().add(panel0, BorderLayout.CENTER);

 setSize(450, 350);

 addWindowListener(new WindowListener() {
 public void windowActivated(WindowEvent we) {
 }
 public void windowClosed(WindowEvent we) {
 }
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
 public void windowDeactivated(WindowEvent we) {
 }
 public void windowDeiconified(WindowEvent we) {
 }
 public void windowIconified(WindowEvent we) {
 }
 public void windowOpened(WindowEvent we) {
 }
 });
 }

 private void showStatus(String status) {
 statusTA.setText(statusTA.getText()+status+"\n");
 }

 static class ImageCanvas extends JPanel
 {
 private BufferedImage image;
 public ImageCanvas(BufferedImage image) {
 this.image = image;
 }
 public void paintComponent(Graphics g) {
 int width = getWidth();
 int height = getHeight();
 g.drawImage(image, 0, 0, width, height, null);
 }

o

Print a message
to the status log

o Display an image

88 CHAPTER 3

Java2D

jdk.book Page 88 Monday, March 11, 2002 3:38 PM
 }

 static public void main(String args[]) throws IOException {
 if (args.length != 1) {
 System.err.println(
 "Usage: java ImagePrinter <image filename>");
 System.exit(1);
 }

 String filename = args[0];
 if (!filename.toLowerCase().endsWith(".gif"))
 throw new RuntimeException(
 "Image must be a gif: "+filename);

 ImagePrinter ip = new ImagePrinter(filename);
 ip.setVisible(true);
 }
}

B This AttributeSet object is used for two purposes: to get a list of printers and to
print the document. In the former case, it is used to select only those printers that
support the attributes; in the latter case, it is used to request those attributes of
the printer.

Note that the messages shown in the status window will differ from system to sys-
tem, and on the structure of any network you might be printing over. In some
cases, situations like a canceled print job do not trigger the appropriate method in
the PrintJobListener.

3.2 Reading and writing images with the Image I/O API

One of the most irritating things about the original Abstract Windowing Toolkit
(AWT) design was that its image implementation was unnecessarily web-specific. It
assumed that images would be decoded via the web browser’s built-in image-
decoding facilities; that images would be loaded asynchronously by default; and
that only a few browser-specific formats would be required. It did not provide
straightforward support for loading images from disk or from in-memory arrays,
and it provided even less support for encoding and writing images, forcing some
programmers to make use of undocumented sun.* classes for this purpose.

 The image-loading architecture was also burdened with a peculiar model of
image downloading that was directly tied into the AWT, and that didn’t require
explicit use of multithreaded techniques. While this made it quite easy to display par-
tial images while they were downloading, it made most other things more difficult.

 The Image I/O (IIO) API—consisting of classes from the javax.imageio pack-
ages—seeks to remedy these inconsistencies and omissions. It provides a uniform

Reading and writing images with the Image I/O API 89

jdk.book Page 89 Monday, March 11, 2002 3:38 PM
way to read and write images regardless of execution context. It can read and write
to arbitrary streams. It is written in pure Java, so its capabilities will not depend on
the platform or execution context.

 Image formats are handled by a pluggable architecture, which allows new
decoders and encoders to be added to the system simply by adding the properly for-
matted JAR file to the classpath. Properly written software can make use of plug-ins
added after the software was written, which means that software developers do not
need to worry about the details of any particular format when writing their code.
Nevertheless, support for format-specific information, including image metadata
and thumbnail images, is provided.

 These new methods of reading and writing images go hand-in-hand with the
new immediate image model embodied in the java.awt.BufferedImage and
java.awt.Raster classes. This model emerged with the introduction and integra-
tion of the Java2D packages. Unlike the original push model, the immediate model
does not require the use of ImageConsumer and ImageProducer classes. (It doesn’t
even require you to pass null in for these parameters at every function call site!) All
of this greatly reduces the conceptual overhead of using images in Java.

3.2.1 The plug-in model
The plug-in model of the Image I/O API allows it to be extensible to new image
formats—even image formats that were created after the Image I/O API was cre-
ated. Each new format is implemented for reading or writing by a set of classes
installed somewhere in the runtime environment’s classpath.

 Each time an image is read or written, each plug-in is queried as to whether it
can handle the given task. This decision can be based on the suffix of a filename, or
it can be based on inspection of the actual data coming from some data source.
(The first four bytes, often called the magic number, are enough to identify most
image formats.)

 The first plug-in that accepts the task is given the responsibility of finishing the
operation. How a plug-in decides whether or not it can handle a particular task is
up to that plug-in.

3.2.2 Simple reading
The following code fragment shows how easy it can be to load an image using the
Image I/O API. The ImageIO class provides a static method called read(), which
allows for easy image reading:

String filename = "image.jpg";
image = ImageIO.read(new File(filename));

90 CHAPTER 3

Java2D

jdk.book Page 90 Monday, March 11, 2002 3:38 PM
The read() method can also take a stream as an argument:

image = ImageIO.read(someInputStream);

URLs are also supported, allowing this new API to do what the older APIs could
easily do—load an image from a remote web server:

URL url = new URL(http://www.schaik.com/pngsuite/ccwn2c08.png);
image = ImageIO.read(url);

Reading images from URLs was already easy to accomplish using the older API, but
it has been included in the new API for completeness.

3.2.3 Simple writing
In addition to the read() method, ImageIO supplies the complementary method
called write() that allows for one-line writing of images:

String filename = "image.png";
ImageIO.write(image, "png", new File(filename));

Note that the second argument specifies the image format. In section 3.2.8 we’ll
see how this can be derived from the filename.

3.2.4 The ImageIO class
The read() and write() methods described in the preceding sections are both
static methods of the ImageIO class. This class provides a number of static methods
for the following purposes:

� Simplified reading and writing of images
� Configuring a memory or disk cache to use for aiding in reading and writing
� Getting information about what formats are supported for reading and writing

3.2.5 Discovering available formats
Since the Image I/O API is a pluggable API, it does not handle any image formats
intrinsically. Each supported format comes in the form of a bundle of classes that
are installed into the runtime system, either as part of the runtime environment or
as part of a particular application. (The Image I/O API comes, by default, with a set
of standard image types, but this set is not formally specified anywhere in the docu-
mentation—it seems to consist of the JPEG, GIF, and PNG image formats.) Since no
particular formats are absolutely inherent in the Image I/O API, it is important to be
able to find out at runtime what formats are available.

 Each format is available either as a reader, a writer, or both. There are separate
methods for discovering readers and writers, called ImageIO.getReaderFormat-

Reading and writing images with the Image I/O API 91

jdk.book Page 91 Monday, March 11, 2002 3:38 PM
Names() and ImageIO.getWriterFormatNames(). Each of these methods returns an
array of strings; each string represents an image format. The ShowImageIOInfo
program illustrates their use (see listing 3.4).

(see \Chapter3 \ShowImageIOInfo.java)
import javax.imageio.*;

public class ShowImageIOInfo
{
 public ShowImageIOInfo() {
 String names[] = ImageIO.getReaderFormatNames();
 for (int i=0; i<names.length; ++i) {
 System.out.println("reader "+names[i]);
 }

 names = ImageIO.getWriterFormatNames();
 for (int i=0; i<names.length; ++i) {
 System.out.println("writer "+names[i]);
 }
 }
static public void main(String args[]) throws Exception {
 new ShowImageIOInfo();
 }
}

Here’s an example of the output of this program:

reader png
reader jpeg
reader JPEG
reader gif
reader jpg
reader JPG
writer PNG
writer png
writer jpeg
writer JPEG
writer jpg
writer JPG

You’ll notice that some of the formats are entered multiple times. This is in recogni-
tion of the fact that some formats, such as JPEG, often have different extensions and
are often written differently. The entries for “jpg”, “JPG”, “jpeg”, and “JPEG” all
map to the same plug-in.

 You’ll also notice that the GIF format does not support writing—presumably
because the GIF format is surrounded by licensing issues.

Listing 3.4 ShowImageIOInfo.java

92 CHAPTER 3

Java2D

jdk.book Page 92 Monday, March 11, 2002 3:38 PM
3.2.6 Example: reading and displaying an image
The ShowImage program shows the use of the ImageIO.read() method in context
(see listing 3.5). This program displays the image specified on the command line in
a window.

(see \Chapter3 \ShowImage.java)
private BufferedImage image;

public ShowImage(String filename) {
 try {
 image = ImageIO.read(new File(filename));
 } catch(IOException ie) {
 ie.printStackTrace();
 }
}

public void paint(Graphics g) {
 g.drawImage(image, 0, 0, null);
}

Note that ImageIO.read() returns a BufferedImage. This is in keeping with the
notion that the Image I/O API is strongly connected with the immediate image
model, whose flagship class is BufferedImage. Since BufferedImage is, of course, a
subclass of Image, you can use this object anywhere you use an Image; however,
treating it as a BufferedImage allows you to make use of the powerful features in
the Java2D library.

3.2.7 Example: writing an image
One of the very useful things that the Image I/O API can do is generate images.
This can be very useful on the server side of a web application that needs to gener-
ate custom images for user-specific web pages. The WriteImageType program illus-
trates this technique (the relevant section of code is shown in listing 3.6). The
graphics themselves are generated using standard Java2D drawing routines. The
resulting image is then written to a file in a format specified on the command line.
As mentioned in section 3.2.5, the API doesn’t come, by default, with the ability to
write GIF images.

Listing 3.5 from ShowImage.java

Reading and writing images with the Image I/O API 93

jdk.book Page 93 Monday, March 11, 2002 3:38 PM
(see \Chapter3 \WriteImageType.java)

public WriteImageType(String filename, String type) {
 try {
 int width = 200, height = 200;
 int x0 = 20, y0 = 20, x1 = width-20, y1 = width-20;

 // TYPE_INT_ARGB specifies the image format: 8-bit RGBA packed
 // into integer pixels
 BufferedImage bi = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);

 Graphics2D g2 = bi.createGraphics();

 // ... draw some stuff to the image

 ImageIO.write(bi, type, new File(filename));
 } catch(IOException ie) {
 ie.printStackTrace();
 }
}

The drawing is done the same way it is for on-screen drawing: using a Graphics2D
object. But this Graphics2D object belongs to the image, rather than to the on-
screen window.

3.2.8 The ImageReader class
The ImageIO.read() and ImageIO.write() methods are really convenience meth-
ods. They handle the most common cases, namely reading or writing single images;
ImageIO.read() derives the image type from the data itself. Using the ImageReader
and ImageWriter classes directly allows you to have more control over the reading
and writing processes.

 An ImageReader is a source of images. By calling its read() method, you can
load one or more images from a source of image data. This source may be a file, a
URL defining an image on a remote machine, or a stream that supplies the image
data (the stream being, perhaps, wrapped around an in-memory image source).

 The ShowImageIR program (see listing 3.7) takes responsibility for finding and
instantiating the correct kind of ImageReader for a particular file suffix. It also
explicitly creates an InputImageStream, which is a wrapper around a regular input
stream that allows the stream to be used by an ImageReader.

 Because this approach makes it possible to read multiple images from a multi-
image file format such as the GIF format, the program listed here also serves as a

Listing 3.6 from WriteImageType.java

94 CHAPTER 3

Java2D

jdk.book Page 94 Monday, March 11, 2002 3:38 PM
simple animation player. It reads the entire set of images from a multi-image file
and animates them in a window.

(see \Chapter3 \ShowImageIR.java)
import java.awt.*;
import java.awt.image.*;
import java.awt.geom.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import javax.imageio.*;
import javax.imageio.stream.*;
import javax.swing.*;

public class ShowImageIR extends Panel implements Runnable
{
 private BufferedImage images[];
 private int imageIndex=0;

 public ShowImageIR(String filename) {
 try {
 FileInputStream fin = new FileInputStream(filename);
 String suffix =
 filename.substring(filename.lastIndexOf('.')+1);
 System.out.println("suf "+suffix);
 Iterator readers = ImageIO.getImageReadersBySuffix(suffix);
 ImageReader imageReader = (ImageReader)readers.next();
 ImageInputStream iis = ImageIO.createImageInputStream(fin);
 imageReader.setInput(iis, false);
 int num = imageReader.getNumImages(true);
 System.out.println("Found "+num+" images");
 images = new BufferedImage[num];
 for (int i=0; i<num; ++i) {
 images[i] = imageReader.read(i);
 }
 fin.close();
 } catch(IOException ie) {
 ie.printStackTrace();
 }

 new Thread(this).start();
 }

 public void paint(Graphics g) {
 if (images==null)
 return;
 g.drawImage(images[imageIndex], 0, 0, null);
 imageIndex = (imageIndex+1)%images.length;
 }

Listing 3.7 ShowImageIR.java

Read the
 images

o

Reading and writing images with the Image I/O API 95

jdk.book Page 95 Monday, March 11, 2002 3:38 PM
 public void run() {
 while (true) {
 try {
 Thread.sleep(100);
 repaint();
 } catch(InterruptedException ie) {}
 }
 }

 static public void main(String args[]) throws Exception {
 JFrame frame = new JFrame("ShowImageIR.java");
 Panel panel = new ShowImageIR(args[0]);
 frame.getContentPane().add(panel);
 frame.setSize(400, 400);

 // Listener: quit on window close
 frame.addWindowListener(new WindowListener() {
 public void windowActivated(WindowEvent we) {
 }
 public void windowClosed(WindowEvent we) {
 }
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
 public void windowDeactivated(WindowEvent we) {
 }
 public void windowDeiconified(WindowEvent we) {
 }
 public void windowIconified(WindowEvent we) {
 }
 public void windowOpened(WindowEvent we) {
 }
 });

 frame.setVisible(true);
 }
}

This program uses a background thread to animate the multiple images.

3.2.9 The ImageWriter class
Just as there is an ImageReader class, there is an ImageWriter class that allows you
to have explicit control over the writing process. Using the ImageWriter class
directly, you can select an ImageWriter for a particular format and explicitly
assign an output data sink for the data to be written to.

o
Animate the
images

96 CHAPTER 3

Java2D

jdk.book Page 96 Monday, March 11, 2002 3:38 PM
 The example shown in listing 3.8 duplicates the program in listing 3.6, but uses
an ImageWriter explicitly rather than using ImageIO.write() to hide the details.

(see \Chapter3 \WriteImageIW.java)
public WriteImageIW(String filename, String type) {
 try {
 int width = 200, height = 200;
 int x0 = 20, y0 = 20, x1 = width-20, y1 = width-20;

 BufferedImage bi = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);

 Graphics2D ig2 = bi.createGraphics();

 GradientPaint paint =
 new GradientPaint(x0, y0, Color.white, x1, y1, Color.black);
 ig2.setPaint(paint);
 ig2.fillRect(0, 0, width-1, height-1);

 BasicStroke stroke = new BasicStroke(10, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_ROUND);
 ig2.setPaint(Color.lightGray);
 ig2.setStroke(stroke);
 ig2.draw(new Ellipse2D.Double(x0, y0, x1-x0, y1-y0));

 Font font = new Font("TimesRoman", Font.BOLD, 20);
 ig2.setFont(font);
 String message = "Java2D!";
 FontMetrics fontMetrics = ig2.getFontMetrics();
 int stringWidth = fontMetrics.stringWidth(message);
 int stringHeight = fontMetrics.getAscent();
 ig2.setPaint(Color.black);
 ig2.drawString(message, (width-stringWidth)/2,
 height/2+stringHeight/4);

 Iterator imageWriters =
 ImageIO.getImageWritersByFormatName(type);
 ImageWriter imageWriter = (ImageWriter)imageWriters.next();
 File file = new File(filename);
 ImageOutputStream ios =
 ImageIO.createImageOutputStream(file);
 imageWriter.setOutput(ios);
 imageWriter.write(bi);
 } catch(IOException ie) {
 ie.printStackTrace();
 }
}

Listing 3.8 from WriteImageIW.java

Reading and writing images with the Image I/O API 97

jdk.book Page 97 Monday, March 11, 2002 3:38 PM
Because the file is being created, the type of the file must be specified on the com-
mand line.

3.2.10 Customizing the reading process
We’ve seen that using ImageReaders and ImageWriters allows for—and in fact
requires—greater explicit control over the reading or writing process. So far, this
has only resulted in more steps being taken to do the same thing. In this section,
we’ll see how we can exert more control over the reading process.

 The CreateImageStrip program (see listing 3.9) takes a multi-frame file (such as
an animated GIF) and loads the frames into a single image—an image strip. This
could be easily done by loading each image separately and then copying the images
into a separate strip image. But we’re going to load the images directly into the
strip by providing the ImageReader with a new destination image before each
image is read. These destination images will be subimages of the strip image—one
for each frame.

 CreateImageStrip uses the ImageReadParam class. This class allows you to define
settings for the loading process. In this example, we call its setDestination()
method, which allows you to define where the pixels go when they are read.

(see \Chapter3 \CreateImageStrip.java)
import java.awt.*;
import java.awt.image.*;
import java.awt.geom.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import javax.imageio.*;
import javax.imageio.stream.*;
import javax.swing.*;

public class CreateImageStrip extends Panel
{
 private BufferedImage image;
 private int imageWidth, imageHeight;

 public CreateImageStrip(String filename) {
 try {
 FileInputStream fin = new FileInputStream(filename);
 String suffix =
 filename.substring(filename.lastIndexOf('.')+1);

Listing 3.9 CreateImageStrip.java

98 CHAPTER 3

Java2D

jdk.book Page 98 Monday, March 11, 2002 3:38 PM
 Iterator readers = ImageIO.getImageReadersBySuffix(suffix);
 ImageReader imageReader = (ImageReader)readers.next();
 ImageInputStream iis = ImageIO.createImageInputStream(fin);
 imageReader.setInput(iis, false);
 int num = imageReader.getNumImages(true);
 System.out.println("Found "+num+" images");

 int totalHeight = 0;
 int maxWidth = 0;
 for (int i=0; i<num; ++i) {
 totalHeight += imageReader.getHeight(i);
 int w = imageReader.getWidth(i);
 if (w>maxWidth)
 maxWidth = w;
 }

 imageWidth = maxWidth;
 imageHeight = totalHeight;

 ImageTypeSpecifier its =
 (ImageTypeSpecifier)imageReader.getImageTypes(0).next();
 image = its.createBufferedImage(imageWidth, imageHeight);

 int currentY = 0;
 for (int i=0; i<num; ++i) {
 int wd = imageReader.getWidth(i);
 int ht = imageReader.getHeight(i);
 ImageReadParam irp = imageReader.getDefaultReadParam();
 BufferedImage subImage =
 image.getSubimage(0, currentY, wd, ht);
 irp.setDestination(subImage);
 imageReader.read(i, irp);
 currentY += ht;
 }

 fin.close();
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 public void paint(Graphics g) {
 g.drawImage(image, 0, 0, null);
 }

 static public void main(String args[]) throws Exception {
 // ... omitted
 }
}

o

Prepare
the
Image-
Reader

o
Find the total
height and the
maximum length

o
Read
the
images

Reading and writing images with the Image I/O API 99

jdk.book Page 99 Monday, March 11, 2002 3:38 PM
Each subimage is really a region of the larger strip image. Writing to each subimage,
in turn, results in the images being drawn one-by-one down the length of the strip
image.

3.2.11 Listeners
As mentioned previously, unlike the original image architecture in the AWT, the
Image I/O API is not inherently asynchronous. This means, effectively, that when
you load an image or a set of images, they are loaded then and there, in the current
thread. Of course, this doesn’t mean you can’t write programs that load images in
the background—it’s just that you must explicitly create background threads to do
so.

 You can avoid having to create background threads in some instances by using
event listeners. These allow you to install callbacks that are triggered when certain
events happen. Five listeners are defined in the javax.imageio.event package:

� IIOReadProgressListener
� IIOReadUpdateListener

� IIOReadWarningListener
� IIOWriteProgressListener
� IIOWriteWarningListener

The progress listeners are used to listen for events that occur during normal reading
and writing, including periodic updates as to how much of the data has been
loaded. These can be used, for example, to update an on-screen progress bar. The
warning listeners provide information on problems or glitches with the transmission
that are not severe enough to cause an exception to be thrown, but that might be of
interest to an application. The IIOReadUpdateListener is used to supply informa-
tion about loading progressive images, or images with thumbnails, such as TIFF
images. Within the loading process of such images, there are multiple points at
which it would be reasonable to refresh the image in a graphical program, and this
listener provides notification of these points.

 The ChangeFormat program (see listing 3.10) demonstrates a listener that sim-
ply prints a report about each method that is called. The program itself is an image
file-format conversion program. You give it two filenames on the command line—
the first being the actual name of the file, and the second reflecting the desired
format. It then converts the file from the current format to the desired format. For
example, to convert a file called image.jpg to the PNG format, you would use this
command:

java image.jpg image.png

100 CHAPTER 3

Java2D

jdk.book Page 100 Monday, March 11, 2002 3:38 PM
The program installs an IIOReadProgressListener into the ImageReader before
loading begins.

(see \Chapter3 \ChangeFormat.java)
import java.awt.*;
import java.awt.image.*;
import java.io.*;
import java.util.*;
import javax.imageio.*;
import javax.imageio.event.*;
import javax.imageio.stream.*;

public class ChangeFormat
{
 static public void main(String args[]) throws Exception {
 if (args.length < 2) {
 System.err.println(
 "Usage: java PrintImage <infile> <outfile>");
 System.exit(1);
 }
 String infile = args[0], outfile = args[1];

 FileInputStream fin = new FileInputStream(infile);
 String suffix = infile.substring(infile.lastIndexOf('.')+1);
 Iterator readers = ImageIO.getImageReadersBySuffix(suffix);
 ImageReader imageReader = (ImageReader)readers.next();
 ImageInputStream iis = ImageIO.createImageInputStream(fin);
 imageReader.setInput(iis, false);

 imageReader.addIIOReadProgressListener(
 new IIOReadProgressListener() {
 public void imageComplete(ImageReader source) {
 System.out.println("image complete "+source);
 }
 public void imageProgress(ImageReader source,
 float percentageDone) {
 System.out.println("image progress "+source+": "+
 percentageDone+"%");
 }
 public void imageStarted(ImageReader source,
 int imageIndex) {
 System.out.println("image #"+imageIndex+" started "+
 source);
 }
 public void readAborted(ImageReader source) {
 System.out.println("read aborted "+source);
 }
 public void sequenceComplete(ImageReader source) {
 System.out.println("sequence complete "+source);

Listing 3.10 ChangeFormat.java

o Install the listener

Reading and writing images with the Image I/O API 101

jdk.book Page 101 Monday, March 11, 2002 3:38 PM
 }
 public void sequenceStarted(ImageReader source,
 int minIndex) {
 System.out.println("sequence started "+source+": "+
 minIndex);
 }
 public void thumbnailComplete(ImageReader source) {
 System.out.println("thumbnail complete "+source);
 }
 public void thumbnailProgress(ImageReader source,
 float percentageDone) {
 System.out.println("thumbnail started "+source+": "+
 percentageDone+"%");
 }
 public void thumbnailStarted(ImageReader source,
 int imageIndex,
 int thumbnailIndex) {
 System.out.println("thumbnail progress "+source+", "+
 thumbnailIndex+" of "+imageIndex);
 }
 });

 BufferedImage image = imageReader.read(0);

 suffix = outfile.substring(outfile.lastIndexOf('.')+1);
 Iterator imageWriters =
 ImageIO.getImageWritersBySuffix(suffix);
 ImageWriter imageWriter = (ImageWriter)imageWriters.next();
 File file = new File(outfile);
 ImageOutputStream ios = ImageIO.createImageOutputStream(file);
 imageWriter.setOutput(ios);
 imageWriter.write(image);
 }
}

Here’s the output of the program:

image #0 started com.sun.imageio.plugins.gif.GIFImageReader@c39a2d
image progress com.sun.imageio.plugins.gif.GIFImageReader@c39a2d: 2.0%
image progress com.sun.imageio.plugins.gif.GIFImageReader@c39a2d: 4.0%
image progress com.sun.imageio.plugins.gif.GIFImageReader@c39a2d: 6.0%
image progress com.sun.imageio.plugins.gif.GIFImageReader@c39a2d: 8.0%
[... omitted ...]
image progress com.sun.imageio.plugins.gif.GIFImageReader@c39a2d: 94.0%
image progress com.sun.imageio.plugins.gif.GIFImageReader@c39a2d: 96.0%
image progress com.sun.imageio.plugins.gif.GIFImageReader@c39a2d: 98.0%
image progress com.sun.imageio.plugins.gif.GIFImageReader@c39a2d: 100.0%
image complete com.sun.imageio.plugins.gif.GIFImageReader@c39a2d

Read the image in
one format, and

write it in another

o

102 CHAPTER 3

Java2D

jdk.book Page 102 Monday, March 11, 2002 3:38 PM
Note that the relatively simply GIF format only triggers three of the methods in this
interface: imageStarted(), imageProgress(), and imageComplete().

3.2.12 Example: generating a graph
Let’s put the techniques of the previous sections to a real-world test. Listing 3.11
shows a class called Graph, which allows you to generate a simple graph for some
month-by-month data, such as log data from a web server (see figure 3.2).

 The data is supplied to the Graph class in the form of an array of doubles—one
value for each month. The line is rendered using anti-aliasing to make it look as
smooth as possible.

(See \Chapter3 \Graph.java)
import java.awt.*;
import java.awt.image.*;
import java.io.*;
import java.util.*;
import javax.imageio.*;
import javax.imageio.stream.*;

public class Graph
{
 // A blank border around the graph
 static private final int border = 25;

 private BufferedImage image;

 // The graph data
 private double data[];

Listing 3.11 Graph.java

Figure 3.2 Graphs generated by Graph.java

Reading and writing images with the Image I/O API 103

jdk.book Page 103 Monday, March 11, 2002 3:38 PM
 private int width, height;

 // The background grid
 static private final int gridWidth=12, gridHeight=10;

 static private final String months[] = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
 "Oct", "Nov", "Dec" };

 public Graph(double data[], int width, int height) {
 this.data = data;
 this.width = width;
 this.height = height;
 }

 private void generateImage() {
 image = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);
 Graphics2D g2 = image.createGraphics();
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 GradientPaint paint =
 new GradientPaint(0, 0, Color.white, width, height,
 Color.lightGray);
 g2.setPaint(paint);
 g2.fillRect(0, 0, width-1, height-1);

 g2.setPaint(Color.black);

 BasicStroke veryThin = new BasicStroke(1,
 BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_ROUND);
 BasicStroke thin = new BasicStroke(3, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_ROUND);
 BasicStroke thick = new BasicStroke(7, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_ROUND);
 g2.setStroke(thin);
 g2.setPaint(new Color(155, 155, 155));

 for (int i=0; i<gridWidth; ++i) {
 int x = border+(i*(width-2*border))/(gridWidth-1);
 g2.drawLine(x, border, x, height-border);
 }
 for (int i=0; i<gridHeight; ++i) {
 int y = border+(i*(height-2*border))/(gridHeight-1);
 g2.drawLine(border, y, width-border, y);
 }

 g2.setStroke(thick);
 g2.setPaint(Color.black);

 for (int i=1; i<data.length; ++i) {
 int x0 = border+
 (int)(((width-2*border)*(i-1))/(gridWidth-1));

o

Generate the image from the
raw data using Graphics2D
drawing methods

o
Draw the
background

o Draw
the grid

o
Draw
the data

104 CHAPTER 3

Java2D

jdk.book Page 104 Monday, March 11, 2002 3:38 PM
 int y0 = border+
 (int)(((height-2*border)*data[i-1])/(gridHeight-1));
 int x1 = border+
 (int)(((width-2*border)*i)/(gridWidth-1));
 int y1 = border+
 (int)(((height-2*border)*data[i])/(gridHeight-1));
 y0 = height-1-y0;
 y1 = height-1-y1;

 g2.drawLine(x0, y0, x1, y1);
 }

 g2.setStroke(veryThin);
 g2.setPaint(Color.darkGray);

 Font font = new Font("Courier", Font.BOLD, 12);
 g2.setFont(font);
 for (int i=0; i<12; ++i) {
 String month = months[i];
 FontMetrics fontMetrics = g2.getFontMetrics();
 int stringWidth = fontMetrics.stringWidth(month);
 int stringHeight = fontMetrics.getAscent();
 int x = border+
 (int)(((width-2*border)*(i))/(gridWidth-1)) - stringWidth/2;
 int y = height-border+stringHeight;
 g2.drawString(month, x, y);
 }
 }

 public void write(String filename) throws IOException {
 // Generate the image if we haven't already
 if (image == null)
 generateImage();

 // Find an ImageWriter that can write the file type
 // specified by the filename
 String suffix =
 filename.substring(filename.lastIndexOf('.')+1);
 Iterator imageWriters =
 ImageIO.getImageWritersBySuffix(suffix);
 ImageWriter imageWriter = (ImageWriter)imageWriters.next();
 if (imageWriter==null)
 throw new RuntimeException("Format for "+filename+
 " not supported");

 File file = new File(filename);
 ImageOutputStream ios =
 ImageIO.createImageOutputStream(file);
 imageWriter.setOutput(ios);
 imageWriter.write(image);
 }

o
Draw
the data

Draw the
month names

o

o
Write the
image to
the file

Summary 105

jdk.book Page 105 Monday, March 11, 2002 3:38 PM
 static public void main(String args[]) throws IOException {
 // Some sample data
 double data0[] = { 4.2, 4.3, 5.3, 6.5, 9.0, 8.5, 0.2, 0.4,
 1.3, 4.3, 2.6, 7.8 };
 Graph graph0 = new Graph(data0, 400, 250);
 graph0.write("graph0.png");

 // Some more sample data
 double data1[] = { 0, 3.3, 1.2, 6.6, 2.5, 8.3, 4.9, 5,
 4.7, 3.9, 2.6, 1.1 };
 Graph graph1 = new Graph(data1, 400, 250);
 graph1.write("graph1.png");
 }
}

Code like this could very easily be built into a servlet, allowing a site to generate
custom log graphs for its administrators without having to worry about calling
external graphing software. You can generate the images on the fly for each request,
or cache them in the filesystem to save processing power.

3.3 Summary

This chapter has surveyed the two most important new features that JDK 1.4 adds
to the Java2D package: the new Print Service API and the new Image I/O API. Both
of these features supplement an existing facility by adding new features, and, in the
case of the ImageIO framework, making easy what was once unnecessarily difficult.

 The original printing API provided a minimal amount of control over printing
and printer jobs. The Print Service API is designed to meet the standards of printing
interfaces that have been established by common desktop operating systems. Thus,
it supports the full range of printer options and allows for the addition of new
options as needed. It also adds full control over the printing, canceling, and query-
ing of print jobs, so that a Java application can make itself responsible for all aspects
of printing. This is a major step toward making Java a viable platform for applica-
tions development.

 The Image I/O API also increases Java’s status as an excellent application lan-
guage by providing support for reading and writing standard image formats. Unlike
the previous API, which was specialized for browsers, this API does not favor any
particular image format or image delivery mechanism. It allows the full power of
the stream classes in the java.io package to be leveraged, meaning that any data
source or sink that can be exposed as a stream can be used to save and load images.
It’s also a great deal more convenient.

jdk.book Page 106 Monday, March 11, 2002 3:38 PM

jdk.book Page 107 Monday, March 11, 2002 3:38 PM
4Java Web Start (JAWS)
This chapter covers
� The Java Web Start execution model

� Server-side configuration

� The JNLP configuration file

� Using or bypassing the JAWS sandbox

� Accessing the local disk
107

108 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 108 Monday, March 11, 2002 3:38 PM
Java Web Start (JAWS) is a new application deployment system. It allows you to
install software with a single click within a web browser that has been enhanced
with the Java Web Start plug-in. It transparently handles complex installation proce-
dures, and it caches software on the local hard drive so that successive executions of
the program are as fast as possible. It can even use different versions of the JDK for
different applications, and will download new versions if that is required by the
applications.

 Java Web Start does not require that any special modifications be made to an
application before it can be used within the system. JAWS does, however, execute
applications within a sandbox, for security reasons. This security barrier can be
bypassed by trusted applications—that is, applications that have been digitally
signed by a trusted party. Untrusted applications are provided with limited system
access via the javax.jnlp package.

 JAWS is based on the Java Network Launching Protocol & API—or JNLP. JNLP
is the underlying technology that defines the underlying abstractions; JAWS is the
reference implementation.

 This chapter will provide an overview of JAWS, and will illustrate the process of
creating and deploying a JAWS program with a simple but complete drawing appli-
cation called PicoDraw.

4.1 Understanding the JAWS execution model

An application does not need to be modified to be run within JAWS. Although
applications will generally want to make use of the javax.jnlp package for getting
access to the local system, this is not a requirement. A JAWS application is a set of
Java classes, along with any necessary data, just like a regular application. And, just
like a regular application, a JAWS application starts from its main() method.

 The application files—data and Java classes—are placed on the web server along
with a special launch file, also called a JNLP file after the Java Network Launching
Protocol & API, which is the technology on which Java Web Start is based. This file
is described in section 4.2.2.

 When a JAWS application is launched, it is downloaded from the web server,
unless it has already been downloaded. The exact way the user initiates the applica-
tion depends on the operating system, but for all platforms, there is a central client
program called the Application Manager. This program displays a list of JAWS appli-
cations that it knows about, including those that were first launched via a link in a
web browser.

Understanding the JAWS execution model 109

jdk.book Page 109 Monday, March 11, 2002 3:38 PM
 JAWS applications can also be run in offline mode. If a JAWS application is fully
downloaded and does not itself require network access, then it can be run without
access to the server from which it was downloaded.

4.1.1 Client, server, and application
Like an applet, a JAWS application is downloaded from a remote web server. Unlike
an applet, a JAWS application is always cached on the local machine, and the cache is
continuously updated by the JAWS runtime system. Before a JAWS application is
launched, the JAWS environment compares the cache against the software stored on
the server and downloads anything that is new.

 If the application contains any data files, these data files are downloaded to the
local machine along with the class files. The JAWS application has access to these
files, but they are not treated as regular files. A JAWS application may or may not
have access to the local filesystem, but it always has access to any data that was
downloaded along with the classes.

 This data isn’t really server-side data because it is never accessed directly from the
server. It also isn’t exactly client-side data, since the JAWS application may or may
not have access to the files of the client. Instead, we must make a third category:
application-side. This third “side” consists of the application data that has been
downloaded into the local cache.

 The JAWS model is illustrated in figure 4.1.
 As we will see in section 4.3.1, application-side data is accessed via the Class-

Loader.getResource() methods. Thus, the local cache is not visible to the applica-
tion via the traditional File, InputStream, and OutputStream classes. However,

Application
data

(application side)

Local
files

(client side)

Application
data

(server side)

Local machine Remote server

JAWS
application

JAWS environment Web server

Figure 4.1 The JAWS model adds a third term to the client/server paradigm, called here the
application side. Application-side data is automatically copied into the local cache by the JAWS
environment and can always be accessed by the application, even if local filesystem access is
prohibited.

110 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 110 Monday, March 11, 2002 3:38 PM
some control over the caching process is available through the javax.jnlp.Down-
loadService class.

4.1.2 The sandbox
JAWS applications, like applets, do not have the run of the local machine the way
regular applications do. Instead, they are run within a sandbox, which is a security
wrapper that controls which system resources can be used and which can’t. The
sandbox can be bypassed by a trusted application—this is described in section 4.4.

 Despite these limitations, a JAWS application can make restricted use of some sys-
tem resources through the javax.jnlp package. This package provides a number of
services that can be offered by the client system. These services provide controlled
access to system resources. For example, a JAWS application can write to a file, but
the saving process always uses a dialog box; this means that the user must authorize
each write.

 Thus, Java Web Start provides two separate mechanisms for access to the local
system: sandbox and direct. Sandbox access uses the javax.jnlp package for
restricted access, while direct access uses digital code signing for unrestricted access.
Sandbox access will be described in detail in section 4.3, and code signing will be
outlined in section 4.4.

4.1.3 Consider the possibilities
Think about how the JAWS architecture fits into the scheme of things. It represents
a bridge between applets and full-fledged applications, combining, as much as pos-
sible, the best features of both. It might make possible an application or deploy-
ment that you’ve considered in the past, but rejected either because it was too small
to warrant a complex installation process, or too large to download on demand.

 The difference between applets and applications isn’t just technical—it’s also psy-
chological. An applet is something a user gets automatically—and without hassle—
on a web page, while an application is something that a user does, or does not,
choose to include on her system. Application-side caching changes many of the
rules about applets, breaking down old file-size and download-time barriers. Would
you like to place a complicated application on your web page and treat it like an
applet? If the initial download is small, maybe you can.

 Java Web Start also presents challenges. An application is usually a single bun-
dle, installed by an installer program, but a JAWS application can come in pieces—
and it should, if you don’t want your users waiting through long downloads. This
might mean refactoring your code, adding interface boundaries so that unused
components don’t need to be downloaded. The same thing goes for data. And
because JAWS applications don’t have an interactive installation step, there may be

Building and deploying a JAWS application 111

jdk.book Page 111 Monday, March 11, 2002 3:38 PM
configuration issues you need to address within the application itself, rather than at
installation time.

 In the next section, we’ll look in detail at the process of deploying a JAWS
application.

4.2 Building and deploying a JAWS application

JAWS applications are deployed from a web server. JAWS does not require a special
web server, or any kind of server-side module. The only required change is that
the web server must be made to understand the application/x-java-jnlp-file
MIME type.

 Remember that the client web browser must have the Java Web Start plug-in
installed.

4.2.1 JAR files
All application code and data must be packaged as JAR files. These files can be cre-
ated with the jar tool provided with the JDK 1.4 distribution. Here’s an example of
its use:

jar cvf program.jar Program*.class data.txt images/image*.gif

You can package your program as a single JAR file, or break it up into multiple JAR
files. The advantage of using multiple JAR files is that it means that the JAWS run-
time doesn’t have to download the entire application before it starts executing.

 By default, all JAR files are downloaded, but you can set particular JAR files to be
lazy, which means they aren’t downloaded until they are needed. You can also use
the DownloadService from the JNLP API to request that particular JAR files be
downloaded.

4.2.2 The JNLP file
The JNLP is the starting point for the execution of a JAWS application. When the
user clicks on a link pointing to a JNLP file, the browser downloads the JNLP file.
This file instructs the JAWS system to download and launch the application.

 The main function of the JNLP is to list the JAR file resources that make up the
program. The first time a JAWS application is run, these JAR files are downloaded,
and before each successive run, the JAWS environment downloads any JAR files that
have changed on the server. Thus, the application is kept as up-to-date as possible
on the local machine.

112 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 112 Monday, March 11, 2002 3:38 PM
 The easiest way to create a JNLP file is to copy an existing one and modify it for
your application. Listing 4.1 shows a JNLP file containing most of the tags you need
for regular operation.

(See \Chapter4 \PicoDraw.jnlp)
<?xml version="1.0" encoding="utf-8"?>
<jnlp

 <!-- The JNLP version this file is compatible with -->
 spec="1.0+"

 <!-- The codebase of the application. Each relative
 URL in this file is relative to this URL -->
 codebase="http://server/PicoDraw/"

 <!-- The relative URL of this file -->
 href="PicoDraw.jnlp">

 <information>

 <!-- The title of the application -->
 <title>PicoDraw</title>

 <!-- The vendor of the application -->
 <vendor>Manning Publications</vendor>

 <!-- A web page containing more information about the
 application. This URL will be displayed in
 the JAWS Application Manager -->
 <homepage href="http://www.manning.com/"/>

 <!-- Description elements are displayed in various places
 in the Application Manager -->
 <description>PicoDraw</description>
 <description kind="short">
 A *very* tiny draw program</description>

 <!-- A URL pointing at a GIF or JPG icon file -->
 <icon href="images/picodraw.jpg"/>

 <!-- Declares that the application can run without
 access to the server it was downloaded from -->
 <offline-allowed/>

 </information>

 <security>
 <!-- Request that the application be given full
 access to the local (executing) machine,
 as if it were a regular Java application.
 Requires that all JAR files be signed
 by a trusted party -->

Listing 4.1 PicoDraw.jnlp

o
The outermost tag, containing
the entire specification

o Provide information about the program

B
Request access to the local machine

Using the sandbox: services 113

jdk.book Page 113 Monday, March 11, 2002 3:38 PM
 <all-permissions/>

 </security>

 <resources>

 <!-- Specify the versions of the Java Runtime Environment
 (JRE) that are supported by the application.
 Multiple entries of this kind are allowed, in which
 case they are considered to be in order of preference -->
 <j2se version="1.4"/>

 <!-- Specify the relative URL of a JAR file containing
 code or data. Specifying lazy tells the JAWS system
 that the file does not need to be downloaded before
 the application can be run -->
 <jar href="lib/classes.jar"/>
 <jar href="lib/backgrounds.jar"/>

 </resources>

 <application-desc main-class="PicoDraw"/>
</jnlp>

B If you do leave out all-permissions, you are stating that the application is
untrusted, which means that it will have restricted access to the local machine on
which it executes. Including this declares that it is trusted, and thus will have access
to the local machine. However, declaring it trusted is not enough—the applet must
also be digitally signed by a trusted party.

4.2.3 Configuring the web server
As mentioned previously, Java Web Start does not require a special web server. The
only requirement is that the web server recognize the application/x-java-jnlp-
file MIME type. When the web server is asked for a JNLP file, it must send the file
as this type.

 See your web server documentation (or your system administrator) for instruc-
tions on adding a MIME type to your web server installation.

4.3 Using the sandbox: services

The sandbox offers the JAWS application restricted access to system resources via
the javax.jnlp package. For example, it is possible for the application to read and
write files, but each time a file is opened for reading or writing, the user must
explicitly approve this through a Load or Save dialog box. This feature is intended
to allow applications to load or save documents, rather than to allow free access to
any files on the system.

o Declare the application’s server-side JAR files

o
Declare the class
containing main()

114 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 114 Monday, March 11, 2002 3:38 PM
 Each form of access is represented by a different service class. The following ser-
vices are provided by Java Web Start:

� BasicService—Interacts with the browser in online mode
� ClipboardService—Enables clipboard objects to be passed to and from the

system clipboard, allowing cutting and pasting between a JAWS application
and other applications

� DownloadService—Provides control over the application-side file cache

� FileOpenService—Allows user-authorized file reads
� FileSaveService—Allows user-authorized file writes
� PersistenceService—Provides a cookie-like persistence mechanism for stor-

ing small pieces of data
� PrintService—Enables printing

Using a service requires that you acquire a server object from the ServiceManager
class, via the lookup() method:

try {
 PrintService ps =
 (PrintService)
 ServiceManager.lookup("javax.jnlp.PrintService");
} catch(UnavailableServiceException use) {
 use.printStackTrace();
}

Each individual service class has its own API, described in the documentation
included with the Java Web Start system (and thus with JDK 1.4).

 To compile a program that uses the javax.jnlp package, you must explicitly add
the JNLP JAR file to the classpath:

javac -classpath [path to JNLP jarfile] *.java

The PicoDraw example program in section 4.5 will illustrate the use of Clip-
boardService, FileOpenService, FileSaveService, PrintService, and
BasicService.

4.3.1 Using the sandbox: resources
One of the most important services offered by the sandbox is the ability to access
application data. The JAWS sandbox allows an application to load resources via its
ClassLoader. This method does not use the javax.jnlp package—the JAWS run-
time environment makes use of a special ClassLoader object that redirects resource

Bypassing the sandbox 115

jdk.book Page 115 Monday, March 11, 2002 3:38 PM
requests to the application-side file cache. Specifically, the ClassLoader.getRe-
source() method returns a URL pointing directly to a file within the cache. You can
also use ClassLoader.getResourceAsStream() to open this URL as an InputStream.

 Here’s what the process looks like for loading an image:

ClassLoader cl = getClass().getClassLoader();
URL imageURL = cl.getResource(backgroundDirectory+"/"+name);

ImageIcon icon = new ImageIcon(imageURL);
drawCanvas.setBackgroundImage(icon.getImage());

This process will be described in greater detail in section 4.5.

4.4 Bypassing the sandbox

It is possible to bypass the sandbox entirely. While the security measures offered by
the sandbox are crucial for casual use of JAWS programs from untrusted sources,
deployment of fully functional applications can be hindered by the restrictions.

 You can use digital code signing to verify the authenticity of your application’s
JAR files. Once a user has verified that an application comes from a trusted source,
she can instruct the application to run with full privileges. While the full details of
digital code signing and the use of authentication servers is beyond the scope of this
chapter, we’ll cover the basics of code signing here. We’ll create a self-signed test
certificate, which is fine for testing and for deployment within an enterprise, where
the server and client machines trust each other. (For public configurations, where
the client and server do not trust each other, a third-party trust source, such as Veri-
Sign, can be used to sign the application’s JAR files.)

 The keytool program allows for the generation of an authentication key:

keytool -genkey -keystore myKeystore -alias myself

This program will prompt you for information about the key, and the information
will then be provided to end users when they are considering whether or not to
trust your application. The key is stored in the file myKeyStore, under the alias
myself.

 Once you have a key safely tucked away in a keystore, you can use it to sign a
JAR file with the jarsigner program. The following command signs test.jar—that is,
it replaces test.jar with a signed version of itself:

jarsigner -keystore myKeystore test.jar myself

Place this signed version of test.jar on your web server in place of the unsigned
version.

116 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 116 Monday, March 11, 2002 3:38 PM
 Finally, you must modify the JNLP to request full access to the local machine by
adding a security tag as a child of the jnlp tag:

<?xml version="1.0" encoding="utf-8"?>
<jnlp
 spec="1.0+"
 codebase="http://server/PicoDraw/"
 href="PicoDraw.jnlp">
 <information>
 <!-- ... -->
 </information>
 <security>
 <all-permissions/>
 </security>
 <resources>
 <!-- ... -->
 </resources>
 <application-desc main-class="PicoDraw"/>
</jnlp>

When users execute this program by clicking on the JNLP link, they will be pre-
sented with a dialog box, as shown in figure 4.2.

 The Details button allows the user to inspect the security certificate in detail
before executing the program.

Figure 4.2 The JAWS environment asks the user’s permission before the
signed application is allowed to execute.

Example: a simple drawing program 117

jdk.book Page 117 Monday, March 11, 2002 3:38 PM
4.5 Example: a simple drawing program

This section contains a detailed example application that runs within the JAWS envi-
ronment. It is a simple drawing program called PicoDraw. It is, in fact, very sim-
ple—all you can do, drawing-wise, is draw lines with the mouse, as shown in
figure 4.3. (You can’t even erase them.)

 Despite the program’s simplicity, in addition to drawing, you can save and load,
print, load application-side data, bring up a web page in a browser window, and
copy the drawing to the system clipboard. PicoDraw attempts to access the local
disk directly; if it is not digitally signed, this will fail, and it will use the FileOpen-
Service and FileSaveService services to perform loading and saving. Table 4.1
describes the features of PicoDraw, along with the services these features use.

Figure 4.3 PicoDraw—a simple drawing program. This program
demonstrates how a JAWS application interacts with the local machine
for saving, loading, printing, and the like.

118 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 118 Monday, March 11, 2002 3:38 PM
The following sections describe the three classes: PicoDraw.java, DrawCan-
vas.java, and TransferableImage.java. The bulk of the interesting code is in the
first class, PicoDraw.java. This is a rather large example, but that is necessary, since
this program demonstrates how the full application is integrated into the JAWS
runtime system.

 The server-side files for this example are contained in \Chapter4\server-signed.zip
and \Chapter4\server-unsigned.zip. The buildsignedjars.sh and buildun-
signedjars.sh scripts can be used to build (and possibly sign) the JAR files.

4.5.1 PicoDraw.java
PicoDraw, shown in listing 4.2, is the main class of the PicoDraw program. It han-
dles the basic user interface and deals with things like saving, loading, and printing.
It does not, however, handle the actual drawing—that’s done in DrawCanvas.

(See \Chapter4 \PicoDraw.java)
import java.awt.*;
import java.awt.datatransfer.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.image.*;
import java.awt.print.*;
import java.io.*;

Table 4.1 PicoDraw demonstrates a number of different services from the javax.jnlp package. The
different menu items each use a different service.

Menu Menu item Service What it does

File Load FileOpenService Load a drawing from the local
disk

File Save FileSaveService Save a drawing to the local
disk

File Print PrintService Print the drawing to a printer

Background bg<n>.gif (Doesn’t use a service—loads
image data through the
ClassLoader)

Load image file bg<n>.gif

Action Image to Clipboard ClipboardService Copy drawing, as an image,
to the system clipboard

Action Show Instructions BasicService Instruct the browser to show
a remote web page

Listing 4.2 PicoDraw.javatt

Example: a simple drawing program 119

jdk.book Page 119 Monday, March 11, 2002 3:38 PM
import java.net.*;
import java.util.*;
import javax.swing.*;
import javax.jnlp.*;

public class PicoDraw extends JFrame
{
 // Application directory containing images
 static private final String backgroundDirectory = "backgrounds";

 // Application file containing list of background images
 static private final String backgroundList = "backgrounds.txt";

 // Local default directory for saving files
 static private final String savefileDirectory = "c:\\";

 // URL for web page showing instructions. Change
 // this to point to the instructions file on your server
 static private final String instructionsURL =
 "http://serverhostname/jaws/PicoDraw/instructions.html";

 // Drawing field
 private DrawCanvas drawCanvas;

 // The last file we saved to
 private String lastFilename;

 // The last directory we saved to
 private File choosingDirectory;

 // Are we running inside a JAWS sandbox?
 private boolean useSandbox = false;

 /**
 * Constructor: set up the user interface
 */
 public PicoDraw() {
 super("PicoDraw");

 setupGUI();
 addListeners();
 }

 /**
 * Set up the user interface
 */
 private void setupGUI() {
 Container cp = getContentPane();

 JMenuBar mb = new JMenuBar();
 setJMenuBar(mb);

 JMenu fileMenu = new JMenu("File");
 fileMenu.setMnemonic(KeyEvent.VK_F);
 mb.add(fileMenu);

B
Build the user interface in
the constructor

120 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 120 Monday, March 11, 2002 3:38 PM
 JMenuItem loadMI = new JMenuItem("Load", KeyEvent.VK_X);
 loadMI.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 load();
 }
 });
 fileMenu.add(loadMI);

 JMenuItem saveMI = new JMenuItem("Save", KeyEvent.VK_X);
 saveMI.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 save();
 }
 });
 fileMenu.add(saveMI);

 JMenuItem printMI = new JMenuItem("Print", KeyEvent.VK_X);
 printMI.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 print();
 }
 });
 fileMenu.add(printMI);

 JMenuItem exitMI = new JMenuItem("Exit", KeyEvent.VK_X);
 exitMI.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 exit();
 }
 });
 fileMenu.add(exitMI);

 JMenu backgroundMenu = new JMenu("Background");
 backgroundMenu.setMnemonic(KeyEvent.VK_B);
 mb.add(backgroundMenu);
 String backgrounds[] = getBackgrounds();
 for (int i=0; i<backgrounds.length; ++i) {
 final String bgname = backgrounds[i];
 JMenuItem mi = new JMenuItem(bgname);
 mi.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 loadBackground(bgname);
 }
 });
 backgroundMenu.add(mi);
 }

 JMenu actionMenu = new JMenu("Action");
 actionMenu.setMnemonic(KeyEvent.VK_A);
 mb.add(actionMenu);

 JMenuItem toClipboardMI = new JMenuItem("Image to Clipboard");
 toClipboardMI.addActionListener(new ActionListener() {

C
Add a menu item
for each
background
image

Example: a simple drawing program 121

jdk.book Page 121 Monday, March 11, 2002 3:38 PM
 public void actionPerformed(ActionEvent ae) {
 imageToClipboard();
 }
 });
 actionMenu.add(toClipboardMI);

 JMenuItem instructionsMI = new JMenuItem("Show Instructions");
 instructionsMI.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 showInstructions();
 }
 });
 actionMenu.add(instructionsMI);

 cp.setLayout(new BorderLayout());
 drawCanvas = new DrawCanvas();
 cp.add(drawCanvas, BorderLayout.CENTER);

 setSize(400, 300);
 setLocation(40, 40);
 setVisible(true);
 }

 /**
 * Exit cleanly if window is closed
 */
 private void addListeners() {
 addWindowListener(new WindowListener() {
 public void windowActivated(WindowEvent we) {
 }
 public void windowClosed(WindowEvent we) {
 }
 public void windowClosing(WindowEvent we) {
 exit();
 }
 public void windowDeactivated(WindowEvent we) {
 }
 public void windowDeiconified(WindowEvent we) {
 }
 public void windowIconified(WindowEvent we) {
 }
 public void windowOpened(WindowEvent we) {
 }
 });
 }

 /**
 * Load a list of backgrounds from a list within the application
 */
 private String[] getBackgrounds() {
 try {
 // List of backgrounds
 Vector vec = new Vector();

122 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 122 Monday, March 11, 2002 3:38 PM
 // Read file from resource
 ClassLoader cl = getClass().getClassLoader();
 InputStream in = cl.getResourceAsStream(backgroundList);
 InputStreamReader isr = new InputStreamReader(in);
 BufferedReader br = new BufferedReader(isr);

 while (true) {
 String line = br.readLine();
 // null line means end of stream
 if (line==null)
 break;

 vec.addElement(line);
 }
 in.close();

 // Turn Vector into array of Strings
 String dummy[] = new String[0];
 return (String[])vec.toArray(dummy);

 } catch(IOException ie) {

 System.err.println("Failed to load background list.");
 ie.printStackTrace();

 // Return empty background list
 return new String[0];
 }
 }

 /**
 * Exit cleanly
 */
 private void exit() {
 setVisible(false);

 // Dispose of JFrame resources
 dispose();

 System.exit(0);
 }

 /**
 * Write to an output stream: wrap a DataOutputStream
 * around it
 */
 private void write(OutputStream out) throws IOException {
 write(new DataOutputStream(out));
 }

 /**
 * Write document to DataOutputStream
 */
 private void write(DataOutputStream dout) throws IOException {
 Vector lines = drawCanvas.lines();

Read a list of
background

filenames from
the application-

side pool

d

Write the
document to a

DataOutputStream
E

Example: a simple drawing program 123

jdk.book Page 123 Monday, March 11, 2002 3:38 PM

 // Write # of lines
 int nlines = lines.size();
 dout.writeInt(nlines);

 // Write endpoints of each line
 for (int i=0; i<nlines; ++i) {
 Line2D line = (Line2D)lines.elementAt(i);
 dout.writeDouble(line.getX1());
 dout.writeDouble(line.getY1());
 dout.writeDouble(line.getX2());
 dout.writeDouble(line.getY2());
 }
 }

 /**
 * Read from an input stream: wrap a DataInputStream
 * around it
 */
 private void read(InputStream in) throws IOException {
 read(new DataInputStream(in));
 }

 /**
 * Read document from a DataInputStream
 */
 private void read(DataInputStream din) throws IOException {
 Vector lines = drawCanvas.lines();

 // Remove all existing lines -- loading a document
 // means erasing the existing document, if any
 lines.removeAllElements();

 // Read the # of lines
 int nlines = din.readInt();

 // Read the endpoints of each line
 for (int i=0; i<nlines; ++i) {
 double x1 = din.readDouble();
 double y1 = din.readDouble();
 double x2 = din.readDouble();
 double y2 = din.readDouble();
 Line2D.Double line = new Line2D.Double(x1, y1, x2, y2);
 lines.addElement(line);
 }
 }

 /**
 * Load, either directly or via the sandbox method
 */
 private void load() {
 if (useSandbox) {

Read the
document from a
DataInputStream

F

G Loading and saving is
either direct, or via the
sandbox method

124 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 124 Monday, March 11, 2002 3:38 PM
 loadSandbox();
 } else {
 loadDirect();
 }
 }

 /**
 * Save, either directly or via the sandbox method
 */
 private void save() {
 if (useSandbox) {
 saveSandbox();
 } else {
 saveDirect();
 }
 }

 /**
 * Load directly from the filesystem. If it fails,
 * switch to sandbox mode and try again
 */
 private void loadDirect() {
 try {
 // Let the user pick a file
 File file = chooseFile(this, false);

 FileInputStream fin = new FileInputStream(file);
 read(fin);
 fin.close();
 } catch(SecurityException se) {
 System.err.println("Failed to do direct read; "+
 "using sandbox method....");

 // Switch to sandbox mode and try again
 useSandbox = true;
 load();
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 /**
 * Save directly to the filesystem. If it fails,
 * switch to sandbox mode and try again
 */
 private void saveDirect() {
 try {
 // Let the user pick a file
 File file = chooseFile(this, true);

 FileOutputStream fout = new FileOutputStream(file);
 write(fout);
 fout.close();

G
Loading and saving is
either direct, or via the
sandbox method

G
Loading and saving is
either direct, or via the
sandbox method

H Load a file directly from the filesystem

I Save a file directly to the filesystem

Example: a simple drawing program 125

jdk.book Page 125 Monday, March 11, 2002 3:38 PM
 } catch(SecurityException se) {
 System.err.println("Failed to do direct write; "+
 "using sandbox method....");

 // Switch to sandbox mode and try again
 useSandbox = true;
 save();
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 /**
 * Load via the sandbox method
 */
 private void loadSandbox() {
 try {
 FileOpenService fos =
 (FileOpenService)ServiceManager.lookup(
 "javax.jnlp.FileOpenService");

 FileContents fc = fos.openFileDialog(null, null);

 if (fc!=null) {
 InputStream in = fc.getInputStream();
 read(in);

 // Remember what name we used
 lastFilename = fc.getName();
 } else {
 System.err.println("Open aborted");
 }

 // We've loaded new data -- draw it
 repaint();
 } catch(UnavailableServiceException use) {
 use.printStackTrace();
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 /**
 * Save via the sandbox method. Use background thread to
 * write to one end of a pipe; the FileSaveService reads
 * from the other end
 */
 private void saveSandbox() {
 try {
 FileSaveService fss =
 (FileSaveService)ServiceManager.lookup(
 "javax.jnlp.FileSaveService");

J Load a file using the sandbox method

1) Save a file using the sandbox method

o Get a FileSaveService
object from the
ServiceManager

126 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 126 Monday, March 11, 2002 3:38 PM
 // Use the filename we last loaded from
 String filename = lastFilename;
 if (lastFilename==null)
 lastFilename = "data.pd";

 PipedInputStream pin = new PipedInputStream();
 final PipedOutputStream pout = new PipedOutputStream(pin);

 Thread writeThread = new Thread(new Runnable() {
 public void run() {
 try {
 write(pout);
 System.out.println("Background write done.");
 } catch(IOException ie) {
 System.err.println("Background write failed!");
 ie.printStackTrace();
 } finally {
 try {
 pout.close();
 } catch(IOException ie) {
 System.err.println(
 "Background write failed to close!");
 ie.printStackTrace();
 }
 }
 }
 });
 writeThread.start();

 FileContents fc = fss.saveFileDialog(savefileDirectory,
 null, pin, filename);

 // Remember what name we used
 if (fc != null)
 lastFilename = fc.getName();
 } catch(UnavailableServiceException use) {
 use.printStackTrace();
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 /**
 * Show a generic file chooser for saving and loading.
 */
 public File chooseFile(Component comp, boolean savep) {
 if (choosingDirectory == null) {
 choosingDirectory =
 new File(System.getProperty("user.dir"));
 }

Create a pipe

o

o

Background
thread
writes to
pipe

FileSaveService
reads from pipe

o

Example: a simple drawing program 127

jdk.book Page 127 Monday, March 11, 2002 3:38 PM
 JFileChooser jfc = new JFileChooser(choosingDirectory);

 int ret = savep ? jfc.showSaveDialog(comp)
 : jfc.showOpenDialog(comp);
 if (ret == JFileChooser.APPROVE_OPTION) {
 File file = jfc.getSelectedFile();
 String name = file.getPath();
 choosingDirectory = jfc.getCurrentDirectory();
 file = new File(name);
 return file;
 }
 return null;
 }

 /**
 * Load a background, given its application-side filename
 */
 private void loadBackground(String name) {
 // Read image from resource
 ClassLoader cl = getClass().getClassLoader();
 URL imageURL = cl.getResource(backgroundDirectory+"/"+name);

 ImageIcon icon = new ImageIcon(imageURL);
 drawCanvas.setBackgroundImage(icon.getImage());
 }

 /**
 * Print drawing to a printer
 */
 private void print() {
 try {
 PrintService ps =
 (PrintService)ServiceManager.lookup(
 "javax.jnlp.PrintService");

 boolean ok = ps.print(drawCanvas);

 if (!ok)
 System.err.println("Unable to print!");
 } catch(UnavailableServiceException use) {
 use.printStackTrace();
 }
 }

 /**
 * Bring up instructions in the web browser
 */
 private void showInstructions() {
 boolean ok = true;
 Exception exception = null;

 try {
 BasicService bs = (BasicService)
 ServiceManager.lookup("javax.jnlp.BasicService");

o
Read a background
image from the
application-side pool

1! Print the drawing to a printer

1@ PrintService.print() prints a
document; drawCanvas
implements Printable

1# Display a web page in the web

128 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 128 Monday, March 11, 2002 3:38 PM
 URL url = new URL(instructionsURL);

 ok = bs.showDocument(url);
 } catch(UnavailableServiceException use) {
 exception = use;
 ok = false;
 } catch(MalformedURLException mue) {
 exception = mue;
 ok = false;
 }

 // Handle either Exception here
 if (!ok) {
 System.err.println("Couldn't show instructions.\n"+
 "Please direct your browser to "+
 instructionsURL+".");
 if (exception != null)
 exception.printStackTrace();
 }
 }

 /**
 * Copy image to system clipboard
 */
 private void imageToClipboard() {
 Image image = drawCanvas.getImage();
 TransferableImage ti = new TransferableImage(image);

 try {
 ClipboardService cs =
 (ClipboardService)ServiceManager.lookup(
 "javax.jnlp.ClipboardService");

 cs.setContents(ti);

 } catch(UnavailableServiceException use) {
 System.err.println("Can't get access to clipboard");
 use.printStackTrace();
 }
 }

 static public void main(String args[]) {
 new PicoDraw();
 }
}

b The constructor builds the user interface and sets up any necessary event listeners.
The PicoDraw object itself is a JFrame—it must create, and make visible, its own
window. In both of these ways, a JAWS program is more like a regular Java applica-
tion than an applet.

1$ Copy the drawing to
the system clipboard

Example: a simple drawing program 129

jdk.book Page 129 Monday, March 11, 2002 3:38 PM
c The Background menu contains one entry for each background image that is avail-
able to the program. This list is read from the application-side data via the getBack-
grounds() method.

d The file backgrounds.txt contains a list of filenames—each one corresponds to one
of the background images in the application-side backgrounds/ directory.

To read this application-side file, we use the ClassLoader resource facility. This
facility allows each custom ClassLoader to provide data resources in its own way.
The JAWS ClassLoader provides access to the application side stored within the
JAWS cache.

The code here calls ClassLoader.getResourceAsStream(), but if you were to call
ClassLoader.getResource(), you’d get a URL pointing to a file in the cache. The
URL would look something like this:

jar:file:/C:/PROGRAM FILES/JAVA WEB START/.javaws/cache/http/
 D192.168.0.1/P80/DMjaws/DMPicoDraw/DMlib/RMPicoDraw.jar!/
 backgrounds.txt

Each application-side resource can be identified by a unique URL of this kind, and
these URLs are used by the ClassLoader resource facility to offer application-side
data to the application.

e f As we see in the comment for G, there are two different ways that our application
can gain access to the local hard drive in order to save and load documents. How-
ever, both methods require that we write our data to, and read it from, a stream.

The code in these two sections takes care of reading and writing our custom doc-
ument savefile format. We use DataInputStream and DataOutputStream objects so
that we have a fully portable format.

g JAWS applications run inside a sandbox. This means that we don’t have free access
to the local filesystem as we would in a regular Java application. However, as we
saw in sections 4.3 and 4.4, there are two secure methods for accessing the local
filesystem—direct and sandbox. In PicoDraw, we attempt to use the direct
method, and if it fails, we try the sandbox method. This applies to both loading
and saving.

For this particular application, there actually isn’t much point in providing two
methods—the sandbox method suffices, and it is always available. However, in gen-
eral, applications may strongly prefer to use the direct method, since it allows for
uninhibited filesystem access, while the sandbox method only allows access to files
selected directly by the user within a file-selection dialog box.

The best thing to do, then, is to use the direct method when possible, and to use
the sandbox method if the direct method doesn’t work. The sandbox method may
require a reduction in program functionality; if so, this should be made very clear to
the user.

130 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 130 Monday, March 11, 2002 3:38 PM
In PicoDraw, we keep a boolean called useSandbox. This is set whenever we dis-
cover that we cannot use the direct method of filesystem access. Once it is set, we
never try the direct method again, because it will not succeed. (In the current
implementation, the availability of direct access is not going to change while the
application is running.)

h i Using the direct method, we ask the user to select a file using a regular JFile-
Chooser. We read from, or write to, this file using the read() and write() meth-
ods described previously.

j Using the sandbox methods, we gain access to files only through dialog boxes that
let the user explicitly pick a file. We acquire a FileOpenService object from the Ser-
viceManager; this service allows us to open a dialog box to ask the user to select a
file. This file is provided to the application in the form of a FileContents object,
which can be read from or written to via its getInputStream() and getOutput-
Stream() methods.

Once we’ve acquired an InputStream, we can pass it to read() (described previ-
ously) to load our document.

1) Saving via the sandbox method requires certain formalities, just as loading via the
sandbox did. We gain access to the filesystem by creating a FileSaveService object,
and using it to write the file.

However, it is more complicated in this case. FileSaveService.saveFileDialog()
takes an InputStream object. It reads the data from this InputStream and writes it to
the file selected by the user. The writing process takes its data from a stream.*

The best way to do this is to use a pipe—a PipedInputStream/PipedOutput-
Stream pair. Our application writes to one end of the pipe, using the write()
method, and FileSaveService reads the data from the other end, and writes it to
the local file.

In order to write the data to this pipe, we need to use a background thread to do
the write. It’s tempting to write the data in the main thread, but this could be a ter-
rible mistake. We have no idea how much data there might be, and the internal
buffer used by a pipe has a finite capacity. If this buffer were to fill, the write would
block the main thread; the save would never happen.

A finite buffer is also why we don’t want to write to an internal buffer using
ByteArrayOutputStream/ByteArrayInputStream. Using a pipe means that the writ-
ing process can write arbitrary amounts of data, and take arbitrarily long to write
it—just as you would if you were writing directly to the filesystem.

*In theory, one should be able to write to a file using the FileOpenService; however, that did not
work on the system used to develop the code for this book.

Example: a simple drawing program 131

jdk.book Page 131 Monday, March 11, 2002 3:38 PM
1! 1@ The javax.jnlp.PrintService allows a JAWS application to print to a printer. Any
object that implements the java.awt.print.Printable interface (or the
java.awt.print.Pageable interface) can be passed to PrintService.print().

1# The javax.jnlp.BasicService class allows a JAWS application to cause the host
browser to bring up a particular web page. BasicService.isWebBrowserSup-
ported() can be used to determine whether or not BasicService is capable of
bringing up a web page in a browser.

1$ Here, we wrap the image in a TransferableImage, which implements the
java.awt.datatransfer.Transferable interface. This allows the data to be trans-
ferred to the system clipboard. The system clipboard is the clipboard, if any, that
can be used by other programs, whether they are written in Java or not.

4.5.2 DrawCanvas.java
The DrawCanvas class (shown in listing 4.3) handles the actual drawing of the pro-
gram. As mentioned previously, there’s only one thing you can do: draw lines with the
mouse. DrawCanvas also deals with rendering the drawing as an Image object, and it
deals with printing by implementing the java.awt.print.Printable interface.

(See \Chapter4 \DrawCanvas.java)
import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.awt.geom.*;
import java.awt.print.*;
import java.util.*;
import javax.swing.*;

/**
 * A Canvas you can draw lines in. Also knows how to
 * print itself, via the Printable interface
 */
public class DrawCanvas extends JPanel implements Printable
{
 // A list of java.awt.geom.Line2D that have been drawn
 private Vector lines = new Vector();

 // Background image
 private Image backgroundImage;

 // The index of the line that is currently being drawn
 private int newLine = -1;

 // Draw a thick line
 private BasicStroke stroke =

Listing 4.3 DrawCanvas.java

b

DrawCanvas is the
program’s drawing
surface

132 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 132 Monday, March 11, 2002 3:38 PM
 new BasicStroke(5, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_ROUND);

 /**
 * Constructor: add listeners
 */
 public DrawCanvas() {
 addListeners();
 }

 /**
 * Return the list of lines
 */
 public Vector lines() {
 return lines;
 }

 /**
 * Install a background image
 */
 public void setBackgroundImage(Image backgroundImage) {
 this.backgroundImage = backgroundImage;
 repaint();
 }

 /**
 * Draw the lines and background
 */
 public void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;

 g2.setStroke(stroke);

 int width = getWidth();
 int height = getHeight();

 // Draw the background
 if (backgroundImage!=null) {
 // Draw a background image
 g2.drawImage(backgroundImage, 0, 0, width, height, null);
 } else {
 // Draw a blank rectangle
 g2.setColor(Color.black);
 g2.fillRect(0, 0, width-1, height-1);
 }

 // Draw the lines
 g2.setColor(Color.white);
 for (Enumeration e = lines.elements(); e.hasMoreElements();) {
 Line2D line = (Line2D)e.nextElement();
 g2.draw(line);
 }
 }

O
paintComponent() is for screen
rendering, printing, and
offscreen image rendering

Example: a simple drawing program 133

jdk.book Page 133 Monday, March 11, 2002 3:38 PM
 /**
 * Add a new line to the list
 */
 private void startDrawingLine(int x, int y) {
 Line2D line = new Line2D.Double(x, y, x, y);
 lines.addElement(line);

 // Remember the index, within the list,
 // of the new line
 newLine = lines.size()-1;

 repaint();
 }

 /**
 * We're still drawing the line: endpoint of the line
 * tracks the mouse cursor
 */
 private void updateDrawingLine(int x, int y) {
 // We must be in the middle of drawing the new line
 if (newLine==-1)
 return;

 Line2D line = (Line2D)lines.elementAt(newLine);
 line.setLine(line.getX1(), line.getY1(), x, y);
 repaint();
 }

 /**
 * Done drawing the line
 */
 private void endDrawingLine() {
 newLine = -1;
 }

 /**
 * Render the document as an Image
 */
 public Image getImage() {
 int width = getWidth();
 int height = getHeight();
 BufferedImage bi = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);
 Graphics2D g2 = (Graphics2D)bi.getGraphics();
 paintComponent(g2);
 return bi;
 }

 /**
 * Event listeners for drawing lines
 */
 private void addListeners() {
 addMouseListener(new MouseListener() {
 public void mousePressed(MouseEvent me) {

O
getImage() renders the
drawing as an Image object

134 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 134 Monday, March 11, 2002 3:38 PM
 startDrawingLine(me.getX(), me.getY());
 }
 public void mouseEntered(MouseEvent me) {
 }
 public void mouseExited(MouseEvent me) {
 }
 public void mouseReleased(MouseEvent me) {
 endDrawingLine();
 }
 public void mouseClicked(MouseEvent me) {
 }
 });

 addMouseMotionListener(new MouseMotionListener() {
 public void mouseDragged(MouseEvent me) {
 updateDrawingLine(me.getX(), me.getY());
 }
 public void mouseMoved(MouseEvent me) {
 }
 });
 }

 /**
 * Render printable image
 */
 public int print(Graphics graphics, PageFormat pageFormat,
 int pageIndex) throws PrinterException {
 paintComponent(graphics);
 return Printable.PAGE_EXISTS;
 }
}

b DrawCanvas is the program’s drawing surface. The user clicks and drags within this
Component to draw lines.

Like any on-screen Component, DrawCanvas has a paintComponent() method, which
is used to render it to the screen. However, this method is also used for printing and
for rendering the drawing as an Image object.

 Printing is possible because DrawCanvas implements the java.awt.print.Print-
able interface. Specifically, the DrawCanvas.print() method implements the Print-
able.print() method. paint() calls paintComponent() on the supplied Graphics
object.

 DrawCanvas can also render its contents as an Image object. This Image can be
stored in the system clipboard, allowing the drawing to be pasted into other programs.

print() lets
DrawCanvas

implement the

o

Example: a simple drawing program 135

jdk.book Page 135 Monday, March 11, 2002 3:38 PM
4.5.3 TransferableImage.java
The TransferableImage class (see listing 4.4) is used to wrap an Image of the user’s
drawing so that it can be copied into the system clipboard. It does this by imple-
menting the java.awt.datatransfer.Transferable interface. Each kind of data
that can be transferred to the system clipboard corresponds to a different instance
of DataFlavor; in this case, we use DataFlavor.imageFlavor.

 We pass this Transferable to the clipboard system via the ClipboardSer-
vice.setContents() method; the clipboard system then calls getTransferData(),
which responds by returning the Image object wrapped inside the Transferable.

(See \Chapter4 \TransferableImage.java)
import java.awt.*;
import java.awt.datatransfer.*;

/**
 * Wrapper class for copying image to system clipboard
 */
public class TransferableImage implements Transferable
{
 private Image image;

 public TransferableImage(Image image) {
 this.image = image;
 }

 public DataFlavor[] getTransferDataFlavors() {
 return new DataFlavor[] { DataFlavor.imageFlavor };
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 return DataFlavor.imageFlavor.equals(flavor);
 }

 public Object getTransferData(DataFlavor flavor)
 throws UnsupportedFlavorException {
 if (!isDataFlavorSupported(flavor))
 throw new UnsupportedFlavorException(flavor);

 return image;
 }
}

See the documentation for the java.awt.Transferable package for more informa-
tion on using Transferable objects.

Listing 4.4 TransferableImage.java

This Transferable
object only supports
the imageFlavor
flavor

o

O Return the Image when
the system requests it

136 CHAPTER 4

Java Web Start (JAWS)

jdk.book Page 136 Monday, March 11, 2002 3:38 PM
4.6 Summary

Java Web Start solves a number of problems that have plagued Java and kept it
from being recognized as a language for real-world application development.
Deploying software using JAWS is just as easy—if not easier—than deploying native
applications. Software updates are made transparent and trivial. An enterprise can
use Java Web Start to deploy an entire suite of custom and prepackaged applica-
tions with a minimum of intervention on the part of the IT support staff. Once the
JAWS client is installed, everything else can be handled from a central location;
updates are automatic.

 Java Web Start also solves the security dilemma posed by the Web, which demands
that we choose between security and functionality. JAWS solves this by allowing both:
applications are run inside a sandbox, which protects the local host; applications can
also be authenticated through a trusted party, and then allowed to access the
resources of the machine with the freedom of a locally installed application.

 The most important feature of Java Web Start is the convenience for end users:
once the JAWS client is installed, a single click brings them a complete application.
The only real drawback is the initial installation—JAWS is about a megabyte and
requires an explicit installation step.

 JAWS is an excellent solution for enterprise-wide software deployment. Explicit
installation and upgrades can become a thing of the past because JAWS deals with
keeping track of code versions, automatically downloading necessary resources. JAWS
can even use multiple installed JDKs, and download new ones as they are required.

jdk.book Page 137 Monday, March 11, 2002 3:38 PM
5Logging
This chapter covers
� Logging methods

� Configuring logging

� Custom handlers

� Custom filters

� Custom formatters

� Logging efficiency
137

138 CHAPTER 5

Logging

jdk.book Page 138 Monday, March 11, 2002 3:38 PM
Over the years that Java has been in widespread commercial use, a number of logging
solutions have been created. Smaller projects sometimes use freely available libraries,
while larger projects have been known to have their own built-in logging systems.

 The Logging API within JDK 1.4, in the java.util.logging package, provides a
flexible and powerful system for logging messages, and—just as important—for turn-
ing these messages on and off, without the need for recompiling. This means that log-
ging messages can be turned on by the end user, long after the software has shipped.

 This is perhaps the greatest benefit, since it means that even post-release soft-
ware can provide detailed debugging information in the event of a problem. This
doesn’t just mean being able to find bugs in the software—logging messages can
help debug problems with other software, or problems caused by unforeseen inter-
actions between software. For example, a DSL dial-up system written in Java might
be able to help debug problems with DSL hardware—the logging messages can
contain detailed information about the dial-up process, which in turn can help pin-
point where the hardware fails.

 The Logging API uses a system-wide configuration file to define default settings,
and additional configuration files can be used to provide greater control. Program-
matic control is also available—you can configure the logging system directly from
your program.

 The structure of the logging system is outlined in section 5.1, and configuration
is described in section 5.2. The logging system is demonstrated in a program in
section 5.3. Section 5.4 describes the implementation of a custom log Handler, and
section 5.5 demonstrates a custom log Formatter.

5.1 Logging overview

The simplest way to log a message is as follows:

Logger.global.info("hi");

This results, under the default JDK configuration, in the following output:

Dec 19, 2001 2:41:13 PM MyProgram main
INFO: hi

The object Logger.global is a global Logger object; however, Logger.global is
only for casual use of the logging system. Here’s the right way to do it:

Logger logger = Logger.getLogger("current.package");
logger.info("hi");

As we’ll see in section 5.1.3, the argument to getLogger()—the logger’s name—is
generally, but not always, a package name.

Logging overview 139

jdk.book Page 139 Monday, March 11, 2002 3:38 PM
5.1.1 Log message format
Although the format used by the logging system is variable and customizable, it
does have a default format, as detailed in figure 5.1.

5.1.2 Logging levels
A logging level is a measure of severity for a message. The logging system can be
tuned to only display messages of a certain severity, or higher. The info() method
shown in the previous section corresponds to the INFO logging level, which is the
default level in the standard configuration.

 The following logging levels are available:

� SEVERE—Used for catastrophic errors—conditions from which the program
may not recover, and which, in any case, require immediate attention.

� WARNING—Used for serious problems that may or may not be catastrophic.
These do not necessarily require immediate attention, but they should defi-
nitely be noted.

� INFO—Used for run-of-the-mill messages. The INFO level is the default, and
so messages logged at the INFO level are seen during normal runs.

� CONFIG—Used for logging configuration settings, generally at startup.

� FINE, FINER, FINEST—Used for detailed logging. This information is generally
logged for debugging. The finer the level, the more information is logged at
that level. This makes a great deal of information available, but the user
doesn’t need to wade through it unless she wants to.

Dec 19, 2001 2:41:13 PM MyProgram main
INFO: hi

Timestamp Class Method

Logging
level

Message

Figure 5.1 The default format used by the Logging API. Each log message takes up two lines.
The first line shows the date and time, as well as the class and method from which the log was
posted. The second line shows the logging level and the log message itself.

140 CHAPTER 5

Logging

jdk.book Page 140 Monday, March 11, 2002 3:38 PM
5.1.3 Logger names and the logger hierarchy
To log a message, you need a Logger object, and Logger objects are provided by the
Logger.getLogger() factory methods. getLogger() either creates a new Logger or
returns an existing one.

 The argument to getLogger() is generally the name of the package from which
it is called. This way, each package uses its own Logger object, which allows each
package to have its log messages turned on and off independently.

 It is not a requirement, however, that the argument to getLogger() be a package
name—it can, in fact, be any string. You can use this freedom to partition logging
messages in different ways; for example, you might subdivide the my.package logger
name into my.package.io and my.package.net, allowing you to control I/O-related
log messages and network-related log messages separately. Generally, however, it is
best to follow the package hierarchy, since that is what the end user will expect.

 A logger’s name places it within a hierarchy analogous to the package hierarchy,
as shown in figure 5.2.

 You’ll notice that the root of the hierarchy tree is a logger called the root logger,
which has the empty string as its name.

 The parent-child relationship is more than just cosmetic—a Logger inherits the
following properties from its parents:

� Level—If a logger does not have its logging level explicitly set, or if it is set to
null, it uses the logging level of its parent

� Handlers—If a logger chooses to publish a log message to its own handlers, it
will also be published to its parent’s handlers

""

package.sub package.sub2

package.sub.sub

another.packagepackage

another.package.sub

(Root logger)

Figure 5.2 Each logger is placed within a hierarchical namespace based on its name. The names are
generally, but not necessarily, package names. Setting the logging level of a logger also sets the
logging level of its children. At the root of the tree is a logger whose name is the empty string—this
is the root logger.

Logging overview 141

jdk.book Page 141 Monday, March 11, 2002 3:38 PM
� ResourceBundles—If a logger does not have its own ResourceBundle (for use
in localizing logging messages), then it will inherit its parent’s ResourceBundle

5.1.4 Logging methods
Each logger has a number of methods used for logging. The most general methods
allow you to specify the logging level, the message string, a list of argument objects,
the source class, the source method, and even a Throwable. Other methods take
fewer arguments, and are thus more convenient, if less general.

 The methods can be divided into four categories:

� log()—Allows you to specify a log level, a message string, and either a
Throwable or a list of argument objects.

� logp()—Like log(), but also allows you to specify the source class and source
method. Short for “log precise.”

� logrb()—Like logp(), but also allows you to specify a ResourceBundle to be
used for localizing the raw message string. Short for “log with resource bundle.”

� severe(), info(), warning(), fine(), etc.—These convenience methods take
only a message string; the logging level is implicit in the name of the method.

5.1.5 The LogRecord class
A LogRecord object encapsulates a message sent to the logging system. Most of the
Logger.log() methods take a String as an argument, but this string is encapsulated
by the logger within a LogRecord.

 A LogRecord contains the following elements:

� The raw message string
� A logging level

� The logger’s name
� A timestamp
� Optional argument objects

� An optional ResourceBundle
� The source class and method
� A unique sequence number

� An optional Throwable
� The thread ID of the Thread that generated the LogRecord

142 CHAPTER 5

Logging

jdk.book Page 142 Monday, March 11, 2002 3:38 PM
5.1.6 Handlers
Each logger is assigned one or more Handlers. A logger is assigned a handler by
using its addHandler() method. A handler takes a LogRecord and sends it some-
where—the destination depends on the handler (see figure 5.2). Each logger can
have any number of handlers installed. Remember, also, that after a logger passes
a LogRecord to its handlers, the logger then hands the LogRecord off to its parent
so that the parent can send the LogRecord to its handlers. (This action can be
enabled and disabled using the logger’s setUseParentHandlers() method.) Addi-
tionally, there is a set of global handlers that are used for any LogRecords logged by
the root handler.

The following five handlers are included in the java.util.logging package:

� FileHandler—Writes log messages to a particular file
� ConsoleHandler—Writes log messages to the console (or command-line

shell)
� MemoryHandler—Writes log messages to a circular buffer; can dump recent

messages, on command, to another handler

� SocketHandler—Writes log messages to a server listening on a particular host
and port

� StreamHandler—Writes log messages to a particular stream

We’ll learn how to build a custom handler in section 5.4.
 It is possible that a handler will have some kind of internal problem. Since these

errors are not interesting or relevant to the main application code, the Log-
ger.log() methods do not throw exceptions. Instead, errors in handler code
should be passed to Handler.reportError(), which in turn will pass them to an

LoggerLogRecord

Handler

Handler

Handler

File

Console

Window

Figure 5.3 Each Logger can have multiple Handlers installed. Each Handler sends the
LogRecords it receives to a different destination.

Logging overview 143

jdk.book Page 143 Monday, March 11, 2002 3:38 PM
object called an ErrorManager. An ErrorManager has a single method, error(),
which looks like this:

public void error(String msg, Exception ex, int code);

The default ErrorManager only reports the first error that occurs; all others are
silently ignored. You can change this policy by installing your own ErrorManager:
simply subclass ErrorManager and replace the implementation of error() with
your own.

5.1.7 Filters
Setting the logging level of a logger provides some measure of control over what
is logged; filters provide even more control. Filter is an interface containing a
single method:

public boolean isLoggable(LogRecord record);

A Filter can make a decision about each individual log message that passes
through the logger it is installed on. These decisions can be based on anything you
like—some information contained in the message, the class or method the message
was generated from, the Thread it was created in, and so on. This can greatly reduce
the number of messages, which is useful if you have a lot coming out of your code;
it can also help hone the information, making it easier to read and therefore more
useful for debugging.

 Filters can be assigned to both loggers and handlers via their respective set-
Filter() methods. Before a logger passes a LogRecord on to its handlers, it calls the
isLoggable() method of its Filter (if any is assigned), and only passes the
LogRecord on if isLoggable() returns true. Likewise, a handler uses its Filter’s
isLoggable() method to determine whether or not it should send the message to
its destination.

5.1.8 Formatters
A Formatter is used by a Handler to turn a LogRecord into a String so that it can be
displayed or stored in some way. There are two Formatters in the java.util.log-
ging package:

� SimpleFormatter—Produces the default format seen in section 5.1.1
� XMLFormatter—Transforms a LogRecord into a standard XML format

The bulk of the Formatter’s work is done by the format() method:

public abstract String format(LogRecord record);

144 CHAPTER 5

Logging

jdk.book Page 144 Monday, March 11, 2002 3:38 PM
This method turns a LogRecord into a String. Subclasses of Formatter override this
method.

 format() generally calls formatMessage() to turn the raw LogRecord message
into a String. formatMessage() takes care of the details of localization and gener-
ally does not need to be overridden.

5.1.9 Logging efficiency
Although logging can be useful, it can also use up a substantial portion of a
machine’s CPU power, especially if a module’s logging level is set very low. There
are times when copious logging, caused by a low logging level setting, can even
make a bug temporarily disappear. This is particularly frustrating when the bug in
question is the reason you turned the logging level down in the first place.

 You should also note that each call to a log method takes some CPU power, even
if the method in question returns immediately without logging anything. Also,
watch out for the arguments that you pass into the log method—if you’re building
strings, or, worse, calling methods, to create these arguments, then this code is
being run every time, even if the log messages are being thrown away.

 As with all optimization, you should be most concerned about this in tight inner
loops. In the tightest of inner loops, it might make sense to put an extra conditional
around the calls to the logger—only use the logger if a verbosity flag is set, which
should only be under special development conditions. Unfortunately, this verbosity
flag won’t be under the control of the logging configuration file, so these log mes-
sages won’t be available to end users.*

5.1.10 The philosophy of logging
Log messages are created during development, but they must serve the software
throughout its lifetime. It’s important to keep this in mind when choosing what to
log and what to leave out. Logging is more than just a debug mode that ends when
the software is shipped—or even when the software is made obsolete by a new ver-
sion. Logging lives and dies with the software itself.

 The logging messages created during development are the only way an applica-
tion can communicate with the outside world beyond its regular functioning. If
technical support isn’t readily available, log messages are the last resort of the
systems integrator. Keep these things in mind when writing your code. Plan your
logging. Use it to report information that might help someone fix a bug, correct an

* It’s possible that some future JVM or JIT will have the capability to remove Logger calls, which
could solve this problem.

Configuring the Logging system 145

jdk.book Page 145 Monday, March 11, 2002 3:38 PM
installation, debug a configuration, and so on. The problem may not be in your
software, but it may involve your software, and your log messages may well go a
long way toward fixing a bug in something else.

5.2 Configuring the Logging system

The Logging API allows for sophisticated and flexible configuration. All loggers are
defined within the context of a LogManager. While it is possible to override the
default LogManager, this is rarely done—most customization can be done by creat-
ing custom handlers and formatters.

 The default LogManager reads its configuration from jre/lib/logging.properties,
formatted as a properties file, within the JDK installation director y. The
java.util.logging.config.file system property allows a different file to be speci-
fied, while the java.util.logging.config.class system property allows another
class to be used to carry out the configuration process. The LogManager.readCon-
figuration() methods tell the LogManager to read or reread the standard configu-
ration file, or to read configuration data from a supplied InputStream.

5.2.1 Configuring handlers
The configuration file allows properties of each handler to be set, as the following
examples show:

java.util.logging.FileHandler.pattern = %h/java%u.log
java.util.logging.FileHandler.limit = 50000
java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter

Let’s take a look at the parts of one of these configuration lines—see figure 5.4.

 The handler values set in the configuration file are available through the LogMan-
ager.getProperty() method. These values are identical across all instantiations of a
particular Handler class.

java.util.logging.FileHandler.pattern = %h/java%u.log

Fully qualified class name Variable valueVariable name

Figure 5.4 The format of a handler configuration line from the logging.properties file. Each variable is
qualified by the package and class names of the handler being configured; this means that each handler
can have its own set of configuration values.

146 CHAPTER 5

Logging

jdk.book Page 146 Monday, March 11, 2002 3:38 PM
 In section 5.4, we’ll take a look at a custom handler whose fully qualified class
name is org.jdk14tut.logging.WindowHandler. It has two properties, width and
height, which are set in the configuration file like this:

org.jdk14tut.logging.WindowHandler.width=800
org.jdk14tut.logging.WindowHandler.height=100

5.2.2 Configuration values for standard handlers
As mentioned previously in section 5.1.6, there are five standard handlers included
in the java.util.logging package. Each can be configured separately; some vari-
ables are recognized by all five, while others are used only by specific handlers:

� The level and filter variables (described in table 5.1) are common to all
five handlers.

� The formatter and encoding variables (described in table 5.2) are used in all
handlers except for MemoryHandler. MemoryHandler doesn’t actually turn
LogRecords into text output, so it doesn’t need those variables.

� FileHandler has configuration variables relating to output filenames and log
rotation (see table 5.3).

Note that a handler’s Formatter and Filter can be set using the handler’s setFor-
matter() and setFilter() methods, respectively.

Table 5.1 These configuration variables are available for all five standard handlers.

Variable What it is Default value

level The logging level Level.INFO or Level.ALL, depending on the handler

filter An optional Filter
to filter log mes-
sages

No filter

Table 5.2 These configuration variables are available for ConsoleHandler, FileHandler,
StreamHandler, and SocketHandler—that is, all of the standard handlers except for
MemoryHandler.

Variable What it is Default value

formatter A Formatter object to
format LogRecords
before output.

java.util.logging.SimpleFormatter or
java.util.logging.XMLFormatter, depending
on the handler

encoding The character set
encoding to use

The default platform encoding

Configuring the Logging system 147

jdk.book Page 147 Monday, March 11, 2002 3:38 PM
The pattern variable merits special attention. This string is used to construct the
filename used when writing log messages to disk. Each of the %-constructs is
replaced at runtime with the appropriate value—the pattern value is a kind of file-
name template. For example, the string %h/java%u.log uses the %h construct, which
denotes the value of the user.home system property, and the %u construct, which
resolves to a unique number. If the user.home property is /home/mito and the
unique number is 12345, the resulting filename would be /home/mito/
java12345.log. All of the constructs begin with a % character, except for the single-
character construct /, which denotes the pathname separator character for the local
platform. Table 5.4 shows the constructs that can be used for the pattern value.

As mentioned previously, MemoryHandler maintains a circular buffer of recent mes-
sages; when triggered, the MemoryHandler will push the most recent messages to

Table 5.3 These configuration variables are available for FileHandler.

Variable What it is Default value

limit The maximum number of bytes to write to any one
file, or zero for no limit

No limit

count The number of output files to cycle through for log
rotation

1

pattern A pattern specifying the format of the log filename %h/java%u.log

append Whether the logger should append to the file (as
opposed to overwriting)

false

Table 5.4 These constructs are used in the value of the pattern configuration variable for
FileHandler. They are replaced at runtime with the value described in the right-hand
column.

Construct Meaning

/ The pathname separator character for the local platform.

%t The system temporary directory.

%h The value of the user.home system property.

%g The generation number to distinguish rotated logs. Each time a log is rotated, the gener-
ation number is increased by one so that the new log does not overwrite the old log. This
value reaches a maximum of count-1 before it cycles back to 0.

%u A unique number generated to distinguish the file from files already in use on disk.

%% Represents a single % sign.

148 CHAPTER 5

Logging

jdk.book Page 148 Monday, March 11, 2002 3:38 PM
another handler, such as a FileHandler. The variables listed in table 5.5 are
available.

 A SocketHandler writes messages to a remote server. By default, it uses the XML-
Formatter. It has the configuration variables listed in table 5.6.

5.2.3 Configuring loggers
In addition to containing the handler configuration values described in the previous
section, the configuration file permits the log level of a particular Logger to be set.
Since a Logger corresponds to a package within the larger application, this allows
you to configure your application’s logging on a package-by-package basis.

 The following line sets the logging level for the package com.xyz.myapp:

com.xyz.myapp.level = SEVERE

This value is inherited by any subpackages of the main package, so if our application
had two subpackages called io and net, these would inherit the value of SEVERE.
However, these logging levels can also be configured separately:

com.xyz.myapp.level = SEVERE
com.xyz.myapp.io.level = INFO
com.xyz.myapp.net.level = WARNING

A logger’s level can be set at runtime using the Logger.setLevel() method.

Table 5.5 The following configuration variables are available for MemoryHandler.

Variable What it is Default value

size The size of the memory buffer, measured in num-
ber of log messages.

1000

push The push level. An incoming message of this level,
or greater, will trigger a push.

Level.SEVERE

target The class name of a handler for this Memory-
Handler to push to.

(no default)

Table 5.6 These configuration variables are available for SocketHandler.

Variable What it is Default value

host The hostname of the server to connect to (no default)

port The port number to connect to on the host (no default)

Using logging in a program 149

jdk.book Page 149 Monday, March 11, 2002 3:38 PM
 You also can provide a default setting for all loggers, by using the empty string as
the package name, as follows:

.level= ALL

5.2.4 Global handlers
The default configuration in the JDK sends logging messages only to the console
(also known as the command line). This is defined by the following line in the log-
ging.properties file:

handlers= java.util.logging.ConsoleHandler

This line specifies that a ConsoleHandler will be created on startup, and that all log-
gers will send to this handler by default.

 The logging.properties that comes with the JDK also contains a line, com-
mented out with a #, which, when uncommented, will also send messages to a log
file in the user’s home directory:

#handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

5.3 Using logging in a program

To show logging in action, we’ll take a program we already saw in chapter 2—the
MultiplexingChatServer (refer to listing 5.3). The most important thing about this
example is noticing what information is logged at what logging levels. Properly
choosing logging levels is crucial for making logging usable.

 The following logging levels are used in the revised MultiplexingChatServer (see
listing 5.1), from highest priority to lowest priority:

� SEVERE—Used for all errors. The SEVERE level is likely to be included in any
log file or console, and we want to make sure that any unintended situation is
seen in every log.

� INFO—Used for information we want to see as a matter of course. INFO is the
default level for loggers and handlers, so information logged at this level will
be seen during a normal run.

� CONFIG—Used for configuration information, usually shown at startup. This
logging level is generally used to show what the program intends to do, and
how it will do it, rather than what it is actually doing.

� FINE—Used for information we only want if we need a lot of detail—for
example, during debugging.

150 CHAPTER 5

Logging

jdk.book Page 150 Monday, March 11, 2002 3:38 PM
� FINER—Used for very detailed information. Generally, there is so much of
this stuff that we don’t log it unless it’s absolutely necessary—say, for debug-
ging a particularly thorny problem.

Note that the version of MultiplexingChatServer shown in listing 5.1 has been
modified to be placed in package org.jdk14tut.chat, which has been created just
for this example. This package also contains the corresponding ChatClient and
ChatClientApplet classes, and a client.html file for use with appletviewer.

 In listing 5.1, each line that logs data to the logger is marked in boldface.

(See \Chapter5 \org\jdk14tut\chat\MultiplexingChatServer.java)
(See also \Chapter5 \org\jdk14tut\chat\MultiplexingChatClient.java,
\Chapter5 \org\jdk14tut\chat\MultiplexingChatClientApplet.java
\Chapter5 \client.html)
package org.jdk14tut.chat;

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;
import java.util.logging.*;
import org.jdk14tut.logging.*;

public class MultiplexingChatServer implements Runnable
{
 private int port;
 private Vector sockets = new Vector();
 private Set closedSockets = new HashSet();
 static private Logger logger;

 static {
 logger = Logger.getLogger("org.jdk14tut.chat");
 //logger.setLevel(Level.ALL);
 }

 public MultiplexingChatServer(int port) {
 new LoggerGUI();

 this.port = port;
 logger.config("Will listen on port "+port);

 Thread t = new Thread(this, "MultiplexingChatServer");
 t.start();
 logger.fine("Started background I/O thread");
 }

Listing 5.1 MultiplexingChatServer.java

B
Create the logger

C Set the log level

D
CONFIG level is used to
show settings

E
Log the creation of
background thread at
level FINE

Using logging in a program 151

jdk.book Page 151 Monday, March 11, 2002 3:38 PM
 public void run() {
 logger.fine("Background thread started");
 try {
 ServerSocketChannel ssc = ServerSocketChannel.open();
 logger.finer("Opened server socket channel");
 ssc.configureBlocking(false);
 ServerSocket ss = ssc.socket();
 InetSocketAddress isa = new InetSocketAddress(port);
 ss.bind(isa);
 logger.finer("server socket channel bound to "+isa);

 Selector selector = Selector.open();
 ssc.register(selector, SelectionKey.OP_ACCEPT);
 logger.finer("Registered "+ssc+" with selector");

 logger.info("Listening on port "+port);

 ByteBuffer buffer = ByteBuffer.allocate(4096);
 logger.finer("Allocated buffer, "+
 "capacity="+buffer.capacity());

 while (true) {
 logger.finer("Going into select()");
 int numKeys = selector.select();
 logger.finer("Returned from select()");
 if (numKeys>0) {
 Set skeys = selector.selectedKeys();
 logger.finer("select() returned with "+skeys.size()+
 " keys in selected set");
 Iterator it = skeys.iterator();
 while (it.hasNext()) {
 SelectionKey rsk = (SelectionKey)it.next();
 logger.finer("Selection key: "+rsk);
 int rskOps = rsk.readyOps();
 if ((rskOps & SelectionKey.OP_ACCEPT) ==
 SelectionKey.OP_ACCEPT) {
 logger.finer("Selection key is ACCEPT type");
 Socket socket = ss.accept();
 logger.info("Connection from "+socket);
 sockets.addElement(socket);
 SocketChannel sc = socket.getChannel();
 sc.configureBlocking(false);
 sc.register(selector, SelectionKey.OP_READ);
 logger.finer("Registered "+sc+" with selector");
 selector.selectedKeys().remove(rsk);
 } else if ((rskOps & SelectionKey.OP_READ) ==
 SelectionKey.OP_READ) {
 logger.finer("Selection key is READ type");
 SocketChannel ch = (SocketChannel)rsk.channel();
 selector.selectedKeys().remove(rsk);
 buffer.clear();

F
Log the start of the back-
ground thread at level FINE

G FINER and FINEST
levels are used for
even more
detailed messages
about inner
workings

H Log the port we’re
listening on, at level INFO

I
Log each incoming
connection

152 CHAPTER 5

Logging

jdk.book Page 152 Monday, March 11, 2002 3:38 PM
 ch.read(buffer);
 buffer.flip();
 logger.finer("Read "+buffer.limit()+
 " bytes from "+ch.socket());
 if (buffer.limit()==0) {
 logger.info("closing on 0 read");
 rsk.cancel();
 Socket socket = ch.socket();
 close(socket);
 } else {
 sendToAll(buffer);
 }
 }
 }

 removeClosedSockets();
 }
 }
 } catch(IOException ie) {
 logger.info("Error in main I/o loop: "+ie);
 }
 }

 private void sendToAll(ByteBuffer bb) {
 logger.finer("Sending buffer, "+bb.limit()+" bytes");
 for (Enumeration e=sockets.elements();
 e.hasMoreElements();) {
 Socket socket = null;
 try {
 socket = (Socket)e.nextElement();
 logger.fine("Sending to "+socket);
 SocketChannel sc = socket.getChannel();
 logger.finer("Starting write to "+socket);
 bb.rewind();
 while (bb.remaining()>0) {
 sc.write(bb);
 }
 logger.finer("Finished write to "+socket);
 } catch(IOException ie) {
 logger.info("closing on write exception");
 closedSockets.add(socket);
 }
 }
 }

 private void close(Socket socket) {
 closedSockets.add(socket);
 }

 private void removeClosedSockets() {
 for (Iterator it=closedSockets.iterator(); it.hasNext();) {
 Socket socket = (Socket)it.next();

j

Log all reads and
writes at level FINER

1) Log each close

o
Log all reads
and writes at
level FINER

o Log each close

Using logging in a program 153

jdk.book Page 153 Monday, March 11, 2002 3:38 PM
 sockets.remove(socket);
 logger.fine("Removed closed socket "+socket);
 }
 closedSockets.clear();
 }

 static public void main(String args[]) throws Exception {
 int port = Integer.parseInt(args[0]);
 new MultiplexingChatServer(port);
 }
}

B The rule of thumb is to use the package name as the logger name, and that’s what
we’re doing here. Any other classes in this package should also use this logger
name.

C This line is commented out because it generates a great deal of logging output—
turn it on to see all messages.

Note also that the logging configuration file generally assigns a default level of
INFO to all loggers and handlers; uncommenting this line of code will not necessarily
produce any more messages unless the configuration file is also modified to set the
default handlers to level ALL.

D The CONFIG level is generally used to show the values of configuration settings.
Thus, we use it to display the port we intend to listen on. When we actually set out
to begin listening on the port, we’ll log that too, but that will be at level INFO.

E The FINE, FINER, and FINEST levels are used to log information about the inner
workings of the program. Three levels are provided to allow greater control over
the amount of data being logged.

Here, we’ve logged the creation of a background thread for doing the multi-
plexed I/O. While the existence of the background thread is crucial to the internal
workings of the program, it is meant to be forgotten about when the code is work-
ing properly. During debugging, however, we’d like to know about it.

F We log the start of the background thread at the FINE level for the same reason we
log its creation. There are some subtle portability bugs caused by race conditions
involving thread startup; to find such bugs, it is useful to know when every thread
starts and stops.

G The FINER and FINEST levels should be used for messages that you might want to
turn off, even if you are interested in some detailed messages.

In this program, the FINER level is used to log actions that generally work per-
fectly, so we usually don’t need to worry about them happening.

154 CHAPTER 5

Logging

jdk.book Page 154 Monday, March 11, 2002 3:38 PM
H The INFO level is good for messages we would like to have printed out in most situ-
ations. The configuration file sets the default level for both loggers and global han-
dlers to INFO, so such messages will show up in the console.

I 1) We log connections and disconnections at level INFO, because we generally want to
see these—they give an indication of the basic behavior of the program, and, in this
case, the usage of the program by its clients. This is the kind of information we want
to see in most circumstances.

J We log individual data reads and writes at the FINER level because we don’t want to
see them, even if we have turned on FINE logging. For a deployed chat server, these
messages would be so numerous they would drown out all other logging, and may
in fact degrade the performance of the server significantly. However, they are avail-
able if we really need them.

Listing 5.2 shows the output of the logging messages in this logging-enabled ver-
sion of MultiplexingChatServer.

(See \Chapter5 \org\jdk14tut\chat\chatoutput.txt)

Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer
CONFIG: Will listen on port 5555
Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer
FINE: Started background I/O thread
Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer run
FINE: Background thread started
Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Opened server socket channel
Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: server socket channel bound to 0.0.0.0/0.0.0.0:5555
Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Registered sun.nio.ch.ServerSocketChannelImpl[/0.0.0.0:50....

Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer run
INFO: Listening on port 5555
Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Allocated buffer, capacity=4096
Jan 3, 2002 4:30:50 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Going into select()
Jan 3, 2002 4:31:37 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Returned from select()
Jan 3, 2002 4:31:37 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: select() returned with 1 keys in selected set

Listing 5.2 chatoutput.txt

Initialize

o

Accept an incomming
connection

o

Writing a custom handler 155

jdk.book Page 155 Monday, March 11, 2002 3:38 PM
Jan 3, 2002 4:31:37 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Selection key: sun.nio.ch.SelectionKeyImpl@72e449
Jan 3, 2002 4:31:37 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Selection key is ACCEPT type
Jan 3, 2002 4:31:37 PM org.jdk14tut.chat.MultiplexingChatServer run
INFO: Connection from Socket[addr=/192.168.0.2,port=3795,localpo....
Jan 3, 2002 4:31:37 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Registered java.nio.channels.SocketChannel[connected loca....

Jan 3, 2002 4:31:37 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Going into select()
Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Returned from select()
Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: select() returned with 1 keys in selected set
Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Selection key: sun.nio.ch.SelectionKeyImpl@1d332b
Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Selection key is READ type
Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Read 4 bytes from Socket[addr=/192.168.0.2,port=3795,loca....

Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer
FINER: Sending buffer, 4 bytes
Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer
FINE: Sending to Socket[addr=/192.168.0.2,port=3795,localport=5555]
Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer
FINER: Starting write to Socket[addr=/192.168.0.2,port=3795,loca....
Jan 3, 2002 4:31:40 PM org.jdk14tut.chat.MultiplexingChatServer
FINER: Finished write to Socket[addr=/192.168.0.2,port=3795,loca....

By building this logging version of MultiplexingChatServer, you can see what the
log messages look like on your system, and modify the logging configuration file to
control which log messages you see. In the next section, we’ll take a look at another
way to view the output of a logger.

5.4 Writing a custom handler

In this section, we’ll examine another way to view log messages. We’ll create a class
called LoggerGUI, which allows the user to view log messages in a window. The

Read a chat message
from a client

o

Send the chat
message to the client

o

156 CHAPTER 5

Logging

jdk.book Page 156 Monday, March 11, 2002 3:38 PM
main window displays a list of loggers that are currently instantiated within the Log-
ging system (see figure 5.5).

 Selecting one of the loggers listed in the main window and clicking the show
button will bring up a logging window that displays the messages sent to that log-
ger (see figure 5.6).

 Using this system, it is possible to open several windows, each showing the out-
put of a different package within your program. This can help control the amount
of information you have to wade through.

Implementing LoggerGUI
The LoggerGUI system is implemented via a custom handler called WindowHan-
dler. This handler is installed the same way that a ConsoleHandler or FileHan-
dler is installed, but instead of sending data to the console or a file, it sends data
to a window.

 The system actually consists of a number of classes:

� LoggerGUI—The main window for the system (see listing 5.3). Clicking on a
logger listed in this window opens a new WindowHandler for that logger.

� WindowHandler—A handler that displays log information in a window (see
listing 5.4). This handler uses a StreamWindow to display the information.

� StreamWindow—A window that has an OutputStream (see listing 5.5). Any
data written to this OutputStream is appended to the text in the window.

Using this system in a program is very simple:

new LoggerGUI();

Figure 5.5 The main window of LoggerGUI. This window shows
a list of the loggers currently instantiated within the logging
system. Selecting one of them and clicking show brings up a
logging window for that logger.

Writing a custom handler 157

jdk.book Page 157 Monday, March 11, 2002 3:38 PM
This will create a main window listing the loggers that are currently instantiated
within the logging system. The size of this window can be configured through set-
tings in the logging.properties file, like this:

org.jdk14tut.logging.WindowHandler.width=800
org.jdk14tut.logging.WindowHandler.height=100

To show this custom handler off, we can use LoggerGUI within our log-enabled
MultiplexingChatServer. Here’s the constructor:

public MultiplexingChatServer(int port) {
 new LoggerGUI();

 this.port = port;
 logger.config("Will listen on port "+port);

 Thread t = new Thread(this, "MultiplexingChatServer");
 t.start();
 logger.fine("Started background I/O thread");
}

Note that this should be done late, after you’ve created all your loggers. That way,
the LoggerGUI window will list all the loggers you’ve created—it won’t show log-
gers that were created after it was created.

Figure 5.6 This logging window from LoggerGUI shows the information logged to a single logger.

158 CHAPTER 5

Logging

jdk.book Page 158 Monday, March 11, 2002 3:38 PM
(See \Chapter5 \org\jdk14tut\chat\LoggerGUI.java)
package org.jdk14tut.logging;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.util.*;
import java.util.logging.*;

/**
 * Main GUI window for logging-window system
 */
public class LoggerGUI extends JFrame
{
 // List displaying the currently-instantiated loggers
 private JList loggerList;

 /**
 * Set up the interface and make visible
 */
 public LoggerGUI() {
 super("Logging");

 setupGUI();
 addListeners();
 populateList();

 setVisible(true);
 }

 /**
 * Set up the interface
 */
 private void setupGUI() {
 Container cp = getContentPane();

 loggerList = new JList();
 loggerList.setSelectionMode(
 ListSelectionModel.SINGLE_SELECTION);

 cp.setLayout(new BorderLayout());
 cp.add(loggerList, BorderLayout.CENTER);

 JButton showButton = new JButton("show");
 cp.add(showButton, BorderLayout.SOUTH);
 showButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 String name = (String)loggerList.getSelectedValue();
 if (name != null && !name.equals("")) {
 openWindow(name);
 }

Listing 5.3 LoggerGUI.java

B Display loggers in JList

Writing a custom handler 159

jdk.book Page 159 Monday, March 11, 2002 3:38 PM
 }
 });

 setLocation(40, 40);
 setSize(200, 200);
 }

 /**
 * List the currently-instantiated Loggers
 */
 private void populateList() {
 // Get the names of the currently-instantiated loggers
 LogManager logManager = LogManager.getLogManager();
 Enumeration e = logManager.getLoggerNames();

 // Build a Vector of the names
 Vector names = new Vector();
 while (e.hasMoreElements()) {
 String name = (String)e.nextElement();
 names.addElement(name);
 }

 // Display the names in the JList
 loggerList.setListData(names);
 }

 /**
 * Add listener to properly close window when
 * close-button is pressed
 */
 private void addListeners() {
 addWindowListener(new WindowListener() {
 public void windowActivated(WindowEvent we) {
 }
 public void windowClosed(WindowEvent we) {
 }
 public void windowClosing(WindowEvent we) {
 // Remove window if the close-button is pressed
 closeWindow();
 }
 public void windowDeactivated(WindowEvent we) {
 }
 public void windowDeiconified(WindowEvent we) {
 }
 public void windowIconified(WindowEvent we) {
 }
 public void windowOpened(WindowEvent we) {
 }
 });
 }

 /**
 * Open a Logger Window for a given Logger

o

Find out what loggers
exist and show them

160 CHAPTER 5

Logging

jdk.book Page 160 Monday, March 11, 2002 3:38 PM
 */
 private void openWindow(String loggerName) {
 Logger logger = Logger.getLogger(loggerName);

 // Create a WindowHandler
 WindowHandler windowHandler = new WindowHandler(loggerName);

 // Install it as a handler for the logger
 logger.addHandler(windowHandler);
 }

 /**
 * Hide and dispose of the window
 */
 private void closeWindow() {
 setVisible(false);
 dispose();
 }
}

B At any given moment, there are a number of loggers that have been instantiated
and installed in the system. Generally, these correspond to packages, although they
don’t have to. Each one has a name, which is usually the package name. We list
these names in a JList.

C When the show button is clicked, a WindowHandler is created for the selected logger.
This WindowHandler displays everything logged to that logger.

(See \Chapter5 \org\jdk14tut\chat\WindowHandler.java)
package org.jdk14tut.logging;

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.logging.*;

/**
 * Log Handler that sends its output to a window
 */
public class WindowHandler extends StreamHandler
{
 // The default width and height for a logging window;
 // these can be overridden in the logging.properties file
 static private final int defaultWidth = 400;
 static private final int defaultHeight = 500;

 // The logger being displayed in this window
 private Logger logger;

Listing 5.4 WindowHandler.java

C

Create a WindowHandler
for a given logger

Writing a custom handler 161

jdk.book Page 161 Monday, March 11, 2002 3:38 PM
 /**
 * Set up the connection between the stream
 * handler and the stream window: log data
 * written to the handler goes to the window
 */
 public WindowHandler(String loggerName) {
 logger = Logger.getLogger(loggerName);

 // Get the output stream that feeds the window
 // and install it in the Stream handler
 WindowHandlerWindow whw =
 new WindowHandlerWindow(loggerName);
 OutputStream out = whw.getOutputStream();
 setOutputStream(out);

 setLevel(Level.ALL);
 }

 /**
 * Log a LogRecord. We flush after every log
 * because we want to see log messages as soon as
 * they arrive
 */
 public void publish(LogRecord lr) {
 // Check any filter, and possibly other criteria,
 // before publishing
 if (!isLoggable(lr))
 return;

 super.publish(lr);
 flush();
 }

 /**
 * De-install this Handler from its Logger
 */
 private void removeHandler() {
 logger.removeHandler(this);
 }

 /**
 * Inner class: WindowHandlerWindow is a StreamWindow.
 * We need to override closeWindow() so that we
 * can de-install the handler when the window is
 * closed
 */
 class WindowHandlerWindow extends StreamWindow
 {
 public WindowHandlerWindow(String name) {
 super("Logger for "+name);

 // Assume the defaults, initially
 int width = defaultWidth;
 int height = defaultHeight;

B
Connect the
StreamWindow to the
StreamHandler

C
Check Filter (and
other criteria) first

D Flush after
every log

o This is called on window close

Get window width and
height values from the
logging.properties file

o

162 CHAPTER 5

Logging

jdk.book Page 162 Monday, March 11, 2002 3:38 PM
 LogManager manager = LogManager.getLogManager();

 // We need the fully-qualified class name to access
 // the properties
 String className = WindowHandler.class.getName();

 String widthString = manager.getProperty(className+".width");
 if (widthString != null) {
 width = Integer.parseInt(widthString);
 }

 String heightString = manager.getProperty(className+".height");
 if (heightString != null) {
 height = Integer.parseInt(heightString);
 }

 setSize(width, height);
 }

 protected void closeWindow() {
 removeHandler();
 super.closeWindow();
 }
 }
}

B The StreamWindow displays anything written to its stream. The StreamHandler is a
log handler that writes log data to a stream. Connecting these two, we get a Win-
dowHandler—a log handler that writes its data to a window.

C Before we publish a LogRecord, we want to check to make sure that our Filter, if we
have one installed, approves. The default implementation of Handler.isLoggable()
calls filter.isLoggable(), if a Filter is installed. Additionally, subclasses of Han-
dler may add other checks to this method by overriding it; however, overridden
versions of Handler.isLoggable() are obliged to call super.isLoggable() to ensure
that any checks inherited from superclasses are carried out.

D When logging to a file, we generally want to use buffering so that we can efficiently
handle lots of log data. However, when logging to a window, we generally want to
see the data as soon as it comes in, so we override the buffering by calling flush()
after every log.

(See \Chapter5 \org\jdk14tut\chat\StreamWindow.java)
package org.jdk14tut.logging;

import java.io.*;
import java.awt.*;

Listing 5.5 StreamWindow.java

Get window width and
height values from the
logging.properties file

o

Writing a custom handler 163

jdk.book Page 163 Monday, March 11, 2002 3:38 PM
import java.awt.event.*;
import javax.swing.*;

public class StreamWindow extends JFrame
{
 // The text area in which we display incoming text
 private TextArea textArea;

 // Data written to this stream is appended to the
 // text area
 private StreamWindowStream out;

 /**
 * Create a new StreamWindow -- set up the interface
 * and install listeners. Make the window visible
 * after everything else is done
 */
 public StreamWindow(String name) {
 super(name);

 out = new StreamWindowStream();

 setupGUI();
 addListeners();

 setVisible(true);
 }

 /**
 * Add the text area to the window, and set the window
 * size
 */
 private void setupGUI() {
 Container cp = getContentPane();

 textArea = new TextArea();

 cp.setLayout(new BorderLayout());
 cp.add(textArea, BorderLayout.CENTER);

 setLocation(100, 100);
 setSize(100, 100);
 }

 /**
 * Close the window properly if the close-button is
 * pressed
 */
 private void addListeners() {
 addWindowListener(new WindowListener() {
 public void windowActivated(WindowEvent we) {
 }
 public void windowClosed(WindowEvent we) {
 }
 public void windowClosing(WindowEvent we) {

B
Each StreamWindow has
a single OutputStream

164 CHAPTER 5

Logging

jdk.book Page 164 Monday, March 11, 2002 3:38 PM
 // Remove window if the close-button is pressed
 closeWindow();
 }
 public void windowDeactivated(WindowEvent we) {
 }
 public void windowDeiconified(WindowEvent we) {
 }
 public void windowIconified(WindowEvent we) {
 }
 public void windowOpened(WindowEvent we) {
 }
 });
 }

 /**
 * Return the output stream that is connected
 * to this window
 */
 public OutputStream getOutputStream() {
 return out;
 }

 /**
 * Close the window, and dispose of it
 */
 protected void closeWindow() {
 setVisible(false);
 dispose();
 }

 /**
 * Add text to the end of the text showing in the
 * text area
 */
 private void appendText(String string) {
 textArea.append(string);
 }

 /**
 * Inner class: an output stream. Writing to
 * this stream sends the data to the window
 */
 class StreamWindowStream extends OutputStream
 {
 // This is used to write a single byte. We
 // pre-allocate it to save time
 private byte tinyBuffer[] = new byte[1];

 /**
 * Closing the stream closes the window
 */
 public void close() throws IOException {
 closeWindow();

C Inner class: connected
to a window

Writing a custom formatter 165

jdk.book Page 165 Monday, March 11, 2002 3:38 PM
 }

 /**
 * Write a single byte
 */
 public void write(int b) throws IOException {
 // Store the single byte in the array and
 // write the array
 tinyBuffer[0] = (byte)b;
 write(tinyBuffer);
 }

 /**
 * Write an array of bytes
 */
 public void write(byte b[]) throws IOException {
 // Convert the bytes to a string and append
 String s = new String(b);
 appendText(s);
 }

 /**
 * Write a sub-array of bytes
 */
 public void write(byte b[], int off, int len)
 throws IOException {
 // Convert the bytes to a string and append
 String s = new String(b, off, len);
 appendText(s);
 }
 }
}

B Data written to this stream is appended to the text in the window.

C StreamWindowStream is an inner class of the StreamWindow because it needs access to
the StreamWindow in order to write text to the window, and to close the window
when the stream is closed.

5.5 Writing a custom formatter

It’s hard to keep track of log data as it is sent to a WindowHandler window. In this
section, we’ll create a custom Formatter called BriefFormatter, which uses a con-
siderably briefer format for logging LogRecords. The regular, long format is good
for log files and the console, but BriefFormatter is ideal for the LoggerGUI system.

 Using BriefFormatter is simple—just install it into your handler using Han-
dler.setFormatter(). Here’s the constructor for WindowHandler, modified to use
BriefFormatter:

166 CHAPTER 5

Logging

jdk.book Page 166 Monday, March 11, 2002 3:38 PM
public WindowHandler(String loggerName) {
 logger = Logger.getLogger(loggerName);

 // Get the output stream that feeds the window
 // and install it in the Stream handler
 WindowHandlerWindow whw =
 new WindowHandlerWindow(loggerName);
 OutputStream out = whw.getOutputStream();
 setOutputStream(out);

 // Use a BriefFormatter to format data
 setFormatter(new BriefFormatter());

 setLevel(Level.ALL);
}

BriefFormatter is similar to SimpleFormatter, which is the default Formatter used
by the logging system. SimpleFormatter displays the full date and time, followed by
the class and method. On the next line, it displays the logging level and the log
message itself:

Dec 19, 2001 1:40:23 PM org.jdk14tut.chat.MultiplexingChatServer run
FINER: Returned from select()

BriefFormatter, in contrast, displays only the time and log message, on a single
line, which makes it much more appropriate for display in a window, as shown in
figure 5.7.

Figure 5.7 Logger window using BriefFormatter instead of the default SimpleFormatter.
BriefFormatter displays less information and only uses a single line, which makes it more
appropriate for a window.

Writing a custom formatter 167

jdk.book Page 167 Monday, March 11, 2002 3:38 PM
 Implementing a Formatter means subclassing the Formatter class. You generally
only need to override the format() method. Optionally, you can override the for-
matMessage() method, which is called by format(), and which is responsible for
formatting and localizing the message contained within the LogRecord; however,
the default implementation suffices for most applications, so you don’t generally
need to override formatMessage(). That is what we do in listing 5.6.

(See \Chapter5 \org\jdk14tut\chat\BriefFormatter.java)
package org.jdk14tut.logging;

import java.text.*;
import java.util.Date;
import java.util.logging.*;

public class BriefFormatter extends Formatter
{
 // Buffer for formatting a LogRecord
 private StringBuffer stringBuffer = new StringBuffer();

 // Buffer for formatting the time
 private StringBuffer dateBuffer = new StringBuffer();

 // Pre-allocate these to save time
 private Date date = new Date();
 Object args[] = { date };

 // MessageFormat for formatting the time like this:
 // 4:51:13 PM
 static private final String FORMATSTRING = "{0,time,medium}";
 private MessageFormat format = new MessageFormat(FORMATSTRING);

 // The character that is used to separate lines.
 // It's best to use this value instead of assuming that \n is
 // the line separator
 private String lineSeparator =
 (String)java.security.AccessController.doPrivileged(
 new sun.security.action.GetPropertyAction("line.separator"));

 // Synchronized because the StringBuffers are shared
 synchronized public String format(LogRecord record) {
 // Initialize the buffers
 stringBuffer.setLength(0);
 dateBuffer.setLength(0);

 // Format the time into dateBuffer
 date.setTime(record.getMillis());
 format.format(args, dateBuffer, null);

 // Append the date

Listing 5.6 BriefFormatter.java

B Preallocate
StringBuffers to
save time

C Preallocate date stuff
to save time

o
Format a
LogRecord

o Re-initialize the
StringBuffers

o
Format the record by
appending to stringBuffer

168 CHAPTER 5

Logging

jdk.book Page 168 Monday, March 11, 2002 3:38 PM
 stringBuffer.append(dateBuffer);

 // Append a space
 stringBuffer.append(" ");

 // Append the log message -- call formatMessage()
 // to format the message itself
 String message = formatMessage(record);
 stringBuffer.append(message);

 // Add a newline
 stringBuffer.append(lineSeparator);

 return stringBuffer.toString();
 }
}

B When building up a formatted string, it’s faster to use a StringBuffer than it is to
use a String. However, we can save even more time by preallocating StringBuffers
and using them for formatting. This requires that we make format() synchronized,
since each call to format() uses the same pair of StringBuffers.

C When formatting the date, we can save time by preallocating a Date object, and the
single-element array used to hold the Date when it is passed to MessageFormat.for-
mat() (not to be confused with BriefFormatter.format(), which does our log
message formatting).

You’ll notice in the listing that some care has been taken, wherever possible, to
avoid allocating objects inside format(). Logging is something that needs to be
optimized to some degree. Most of the time, loggers are set to a relatively high
level, and there isn’t too much log data. However, during debugging, it is common
to generate a lot more log data by lowering the logging level. In some cases, an
incredible amount of logging data can be generated. This logging can easily take up
a substantial portion of the processing power allocated to the program, which can
alter its behavior—sometimes enough to make a bug go away, which is very frus-
trating. This is why it is important to take some care that the format() routine isn’t
wasting memory or CPU power.

5.6 Summary

Logging isn’t as simple as it seems. The larger a program is, the more data is
logged, and sifting through that data can become impossible. Logging systems pro-
vide methods to turn log messages on and off, individually and in groups, but this
generally introduces complexity to the system.

o
Format the record by
appending to stringBuffer

o formatMessage()
formats the log
message itself

Summary 169

jdk.book Page 169 Monday, March 11, 2002 3:38 PM
 The complexity of a logging system is a drawback in two ways—it drains
resources that would otherwise be used by the program, and it inhibits program-
mers from using it wherever it is useful and necessary.

 The Logging API in JDK 1.4 strikes a balance between these competing require-
ments. It allows for a swift implementation, and yet provides a hierarchy of verbos-
ity levels. Logging is compartmentalized by package, which allows you to turn
logging on and off for individual packages. Proper use of configuration files makes
detailed control very easy.

 All of these contribute to a system that can allow you to enhance even the larg-
est, most complex programs with an enormous amount of self-description, which
can greatly aid maintenance down the line.

jdk.book Page 170 Monday, March 11, 2002 3:38 PM

jdk.book Page 171 Monday, March 11, 2002 3:38 PM
6Assertion facilit
y

This chapter covers
� Using assertions

� Controlling assertions from the command line

� Controlling assertions from code

� Knowing when to use assertions
171

172 CHAPTER 6

Assertion facility

jdk.book Page 172 Monday, March 11, 2002 3:38 PM
The assertion facility provides a mechanism for adding optional “sanity checks” to
your code. These checks are used during the development and testing phases, but
are turned off when the software is deployed. This allows the programmer to insert
debugging checks that might be too slow or memory-intensive to use in a real con-
text, but that help during development. In a sense, assertions are a lot like error
checks, except that they are turned off for deployment.

 Assertions generally are implemented in such a way that they can be compiled
out; in languages like C and C++, this means using the preprocessor. Since Java
doesn’t have macro facilities, features that otherwise might be created by the pro-
grammer must be built into the language themselves. As a result, assertions have
not been used widely in Java. The 1.4 release of the JDK corrects this.

 One of the most important features of this facility is that these checks can be
turned on and off at runtime, which means that you don’t have to decide during
development whether or not these checks should remain in the code or be removed
before deployment.

6.1 Assertion basics

An assertion is a conditional expression that should evaluate to true if and only if
your code is working correctly. If the expression evaluates to false, an error is sig-
naled.

 Here is an example of an assertion (shown in bold):

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 assert foo != null;
 }
}

This asserts that foo is not null. If foo is in fact null, an AssertionError is thrown.
Any code that executes after this line can safely assume that foo is not null.

 Assertions are very simple, but we’ll be looking at their usage in detail because
assertions are very important in the quest for robust code. In this chapter, we’ll
learn not only how to use assertions, but when and where to use them.

6.1.1 Why use assertions?
It is widely acknowledged in programming circles that software isn’t stable enough.
We all know we’re not doing enough error-checking. It is also acknowledged that

Assertion basics 173

jdk.book Page 173 Monday, March 11, 2002 3:38 PM
error-handling comprises a substantial amount of programming effort and a sub-
stantial portion of the resulting code. Error-handling code is also relatively dull to
write, especially compared with the main algorithm whose errors are being handled.

 Furthermore, dealing with errors can sometimes force you to consider design
questions that you may be trying to avoid. In such situations, programmers gener-
ally just ignore the possibility of error, mostly because they don’t want to lose their
train of thought.

 As programmers, we need to do more error-checking, and assertions are an
important step in this direction. Assertions can be used to catch conditions that we
don’t expect to happen. This may sound paradoxical, but given that we rarely check
for enough errors, it makes a certain sense. For every error we think of while pro-
gramming, there are a whole bunch more that never occur to us. It’s not possible to
eliminate all errors, but we can plan ahead for the unexpected.

6.1.2 Assertions vs. other error code
The programmer’s decision to use an assertion instead of other error-handling code
is often based on a general rule of programming psychology: the less likely a pro-
grammer thinks an error is, the less code she will write to deal with it. An assertion is
easier to write than a RuntimeException; a RuntimeException is easier to write than a
regular Exception. Since assertions are easy and quick to use, getting into the habit
of using them means you will catch more errors before they cause you trouble.

 The choice between these different methods of dealing with an exceptional case
really depends on how “exceptional” the exception really is. Is it something that
should never happen? Something that should only happen due to the error of
another programmer? Of the end user? Of the system administrator who configured
the server? Of the person who configured the client machine? Is it something that
will never happen after the software is released? Is it something that can be tolerated
in the field? What damage can result if this exceptional case happens even once in a
real-life situation?

 All of these questions are relevant. A good rule of thumb is that you should use
an assertion for exceptional cases that you would like to forget about. An assertion
is the quickest way to deal with, and forget, a condition or state that you don’t
expect to have to deal with. For example, an application might have a hidden con-
figuration file that it never deletes. Since it’s possible, but unlikely, that the user will
ever delete this hidden configuration file, it might be a good idea, after trying to
open the file, to assert that the open worked. It almost certainly will, but it’s a good
idea to check.

 Just about any computer programmer—or any computer user—can tell you that
software isn’t stable enough. Some software bugs are routine, and most of them

174 CHAPTER 6

Assertion facility

jdk.book Page 174 Monday, March 11, 2002 3:38 PM
come without a hint of explanation. You have likely encountered some, if not all, of
these problems:

� Printer drivers not printing, and not giving a warning
� Files not showing up on an FTP site after upload

� Web servers returning empty pages
� Hardware devices not being recognized
� System configuration differing after each reboot

� Programs crashing because of corrupted input
� Programs simply not running, or failing unexpectedly

Buried under each of these bugs, many levels down the chain of inter-program
communication, is an exceptional condition that some programmer, somewhere,
forgot to handle. Handling these errors gracefully is the best possible approach, but
it’s not possible to handle everything in a complete fashion. Think of an assertion as
the smallest (and easiest) way to handle an exceptional case.

6.1.3 Designing by contract
If you are familiar with the design-by-contract programming methodology, then you
can think of assertions as a good way of ensuring preconditions, postconditions, and
invariants. Preconditions are contractual guarantees that must be true at the start
of a method, and postconditions are the same, except they are in effect at the end of
a method. Assertions can be good for ensuring preconditions if, and only if, the
method is not a public method. (Public methods should make an explicit check and
throw an exception—see section 6.4.2 for more on this.) Assertions are always
good for postconditions.

 Invariants, broadly defined, are conditions that should always be true. They are
often checked before and after a computation. Since they should always be true,
assertions are an excellent way to implement them.

6.2 Working with assertions

An assertion is a convenient syntax for checking for an error. In a sense, it’s really
just a shorthand for a full error check. In this section, we’ll examine the syntax used
for assertions and look at the equivalent expression from pre-assertion Java. We’ll
also examine the command-line and programmatic interfaces that can be used to
enable and disable assertions at runtime.

Working with assertions 175

jdk.book Page 175 Monday, March 11, 2002 3:38 PM
6.2.1 Assertion syntax
An assertion is a conditional error; operationally, assertions are very simple. There
are two distinct flavors of assertion: simple and complex.

Flavor 1 (simple)
Using the simpler syntax, an assertion consists of the keyword assert, followed by
an expression:

assert expression;

This should be read as, “if expression isn’t true, that’s very bad, so throw an error
immediately.”

 Here is the assertion example from section 6.1. This uses the simple syntax:

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 assert foo != null;
 }
}

Again, operationally, this is roughly equivalent to the following:

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 if (!(foo != null)) {
 throw new AssertionError();
 }
 }
}

Flavor 2 (complex)
The more complex syntax goes as follows:

assert expression_1 : expression_2;

This should be read as, “if expression_1 isn’t true, throw an error containing the
value of expression_2.”

176 CHAPTER 6

Assertion facility

jdk.book Page 176 Monday, March 11, 2002 3:38 PM
NOTE The second expression must be a valid argument to the constructor of the
AssertionError object.

Here’s the example from the previous section, but this time using the complex syntax:

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 assert foo != null : "Can't get a Foo, argument="+argument;
 }
}

This is roughly equivalent to the following:

public class aClass {
 public void aMethod(int argument) {
 Foo foo = null;

 // ... somehow get a Foo object

 // Now check to make sure we've managed to get one:
 if (!(foo != null)) {
 throw new AssertionError(
 "Can't get a Foo, argument="+argument);
 }
 }
}

As mentioned in the previous note, the second expression in the complex version of
assert must be a valid argument to the constructor of the AssertionError object.
AssertionError has constructors that take any of the following types:

� object
� boolean

� char
� int
� long

� float
� double

Working with assertions 177

jdk.book Page 177 Monday, March 11, 2002 3:38 PM
This allows the second expression of an assertion to have any kind of data type as an
argument, making assertions as easy to use as System.out and System.err. This is
intended to encourage the use of assertions over print statements.

Choosing a flavor
The choice of whether to use the simple syntax or the complex syntax comes down
to how much information you want to provide the person running the program. In
some cases, it’s enough to tell the person where the error occurred; in others, it’s
important to print out certain values so that the bug can be repaired. If you can’t
decide, a good rule of thumb is to use the simple syntax. If, at some later point, you
want the assertion to provide more information, you can easily change it to use the
complex syntax.

6.2.2 Compiling with assertions
Assertions require a change to Java’s syntax, so there is a slight issue with backward-
compatibility. Once assert is a keyword, it can no longer be a variable or method
name, and code like this is not compatible with the new syntax:

public void method() {
 int assert = getAssert();
}

Because of the dangerous possibility of breaking seven years’ worth of Java code,
the JDK 1.4 from Sun Microsystems allows you to select whether you want the new
syntax or not.

 To use the old syntax, and thus allow the word “assert” to be used as a keyword,
you must execute the compiler using the –source 1.3 option. At the command
line, you would type this:

javac -source 1.3

To use the new syntax, and thus enable assertions, you would use this command on
the command line:

javac -source 1.4

If unspecified, -source 1.3 is assumed, so that existing code will compile normally
even if it uses assert as a regular identifier. It is expected that all code will eventu-
ally compile under the new syntax; the older syntax is provided for those cases
where the keyword assert was used as a variable or class name.

 If you use assertions in your code, it will be incompatible with versions of the
JRE prior to 1.4 because assertions need methods and fields from the Class and

178 CHAPTER 6

Assertion facility

jdk.book Page 178 Monday, March 11, 2002 3:38 PM
ClassLoader classes. This is true even if you don’t use the programmatic enable and
disable methods mentioned in section 6.2.4.

 This shouldn’t be cause for alarm—using any new feature of a new release of
Java will make the resulting class files incompatible with earlier versions of the JRE.
Note that this incompatibility is purely a library incompatibility—there is no com-
patibility problem at the JVM level.

6.2.3 Controlling assertions from the command line
One of the most useful features of assertions is that they can be turned off during
normal usage, so that they don’t incur any speed penalty. By the same token, they
need to be turned on when a problem arises. Assertions are off by default.

 Although the assertion specification does not require a particular technique for
enabling or disabling assertions, it does strongly recommend that such a technique
exist for any implementation of the Java language. The implementation described
here is that of the release of JDK 1.4 from Sun Microsystems. It is likely that most
other implementations will closely follow this model.

 Assertions are enabled on the command line via the -ea switch, which is an
abbreviation for the -enableassertions switch. The following two commands are
equivalent:

java -ea myPackage.myProgram
java -enableassertions myPackage.myProgram

Assertions are similarly disabled with either the -da or -disableassertions com-
mands:

java -da myPackage.myProgram
java -disableassertions myPackage.myProgram

Assertions can be enabled or disabled for specific packages or classes. To specify a
class, use the class name. To specify a package, use the package name followed by
“...”:

java -ea:<class> myPackage.myProgram
java -da:<package>... myPackage.myProgram

Note that each enable or disable modifies the one before it, so that you can, for
example, enable assertions in general, but disable them in a particular package.

java -ea -da:<package>... myPackage.myProgram

Finally, you can enable or disable assertions in the unnamed root package (the one
in the current directory) using the following commands:

java -ea:... myPackage.myProgram
java -da:... myPackage.myProgram

Working with assertions 179

jdk.book Page 179 Monday, March 11, 2002 3:38 PM
Note that assertions within system classes that come installed with your JVM can be
enabled and disabled separately using the -esa and -dsa switches, which are abbrevi-
ations for -enablesystemassertions and -disablesystemassertions, respectively.
The various command-line switches for using assertions are listed in table 6.1.

Command-line examples
Let’s take a look at some examples of these options in action. In these examples, we
have an application called AssertPackageTest that creates an instance of each of
three classes, each one in a different package. These instances will print a message if
assertions are turned on for them:

import pkg0.Class0;
import pkg0.subpkg0.Class2;
import pkg1.Class1;

public class AssertPackageTest
{
 static public void main(String args[]) {
 new Class0();
 new Class1();
 new Class2();

Table 6.1 Command-line switches for enabling and disabling assertions. These options are taken from
JDK 1.4 from Sun Microsystems; other implementations may have other techniques for
turning assertions on and off.

Switch Example Meaning

-ea Java -ea Enable assertions by default

-da Java -da Disable assertions by default

-ea:<classname> Java -ea:AssertPackageTest Enable assertions in class
AssertPackageTest

-da:<classname> Java -da:AssertPackageTest Disable assertions in class
AssertPackageTest

-ea:<packagename>... Java –ea:pkg0... Enable assertions in package
pkg0

-da:<packagename>... Java –da:pkg0... Disable assertions in package
pkg0

-esa Java –esa Enable assertions in system
classes

-dsa Java -dsa Disable assertions in system
classes

180 CHAPTER 6

Assertion facility

jdk.book Page 180 Monday, March 11, 2002 3:38 PM
 }
}

The following examples of running AssertPackageTest first state what is being
done, and then show the command that runs the program and the output it pro-
duces (if any).

Leave assertions off by default:
java AssertPackageTest

(No output)

Turn assertions on for all non-system classes:
java -ea AssertPackageTest
Assertions enabled in AssertPackageTest
Assertions enabled in pkg0.Class0
Assertions enabled in pkg1.Class1
Assertions enabled in pkg0.subpkg0.Class2

Turn assertions on for a single package:
java -ea:pkg0... AssertPackageTest
Assertions enabled in pkg0.Class0
Assertions enabled in pkg0.subpkg0.Class2

Forget the “...” after a package name:
java -ea:pkg0 AssertPackageTest

(No output)

Turn assertions on for a single class:
java -ea:pkg0.Class0 AssertPackageTest
Assertions enabled in pkg0.Class0

Turn assertions on for a different class:
java -ea:pkg0.subpkg0.Class2 AssertPackageTest
Assertions enabled in pkg0.subpkg0.Class2

Turn assertions on for a subpackage:
java -ea:pkg0.subpkg0... AssertPackageTest
Assertions enabled in pkg0.subpkg0.Class2

Turn assertions on in general, but off for a package:
java -ea -da:pkg1... AssertPackageTest
Assertions enabled in AssertPackageTest
Assertions enabled in pkg0.Class0
Assertions enabled in pkg0.subpkg0.Class2

Turn assertions on for a package, but off for a subpackage of that package:
java -ea:pkg0... -da:pkg0.subpkg0... AssertPackageTest
Assertions enabled in pkg0.Class0

Turn assertions on only in the unnamed default package:
java -ea:... -da:pkg0... -da:pgk1... AssertPackageTest

Working with assertions 181

jdk.book Page 181 Monday, March 11, 2002 3:38 PM
Assertions enabled in AssertPackageTest

Turn assertions on in general, but off in the unnamed default package:
java -ea -da:... AssertPackageTest
Assertions enabled in pkg0.Class0
Assertions enabled in pkg1.Class1
Assertions enabled in pkg0.subpkg0.Class2

6.2.4 Controlling assertions programmatically
It is also possible to enable or disable assertions from the program itself. In general,
this is something you won’t need to do unless you are writing a debugger or some
other kind of program whose purpose is to manage a Java program running in the
same JVM.

 Each class contains an “assertion status” flag that tells the system whether asser-
tions are enabled for that class. Each time an assert line is reached, the containing
class is checked for the value of this flag, to see if the assertion should be processed
or skipped.

 This flag can be set via the class’s ClassLoader, using the following approach:

public void setClassAssertionStatus(String className,
 boolean enabled);

The arguments are as follows:

� className—The name of the class whose assertion status is to be set
� enabled—Whether assertions should be on or off

This flag can also be turned on for an entire package using another method of
ClassLoader:

public void setPackageAssertionStatus(String packageName,
 boolean enabled);

The arguments are as follows:

� packageName—The name of the package whose classes are to have their asser-
tion status set

� enabled—Whether assertions should be on or off

Note that this method applies not just to the specified package, but to all subpack-
ages within it.

 A ClassLoader also has a default assertion status that is passed to any class
loaded through it. The default can be set with the following method of Class-
Loader:

public void setDefaultAssertionStatus(boolean enabled);

182 CHAPTER 6

Assertion facility

jdk.book Page 182 Monday, March 11, 2002 3:38 PM
The argument is as follows:

� enabled—Whether assertions should be on or off by default

Finally, ClassLoader has a method that lets you clear all the assertion settings that
have gone before. This not only clears the default assertion status (thus turning
assertions off by default), it also removes any per-class and per-package settings that
have been made against this ClassLoader:

public void clearAssertionStatus();

Another method, Class.desiredAssertionStatus(), will be discussed in
section 6.2.8.

NOTE The assertion status flags set by these methods do not affect classes already
loaded and initialized by the ClassLoader—they only affect classes that are
loaded and initialized subsequently. Remember to set these flags before load-
ing the classes that you want to be affected by them.

6.2.5 Removing assertions completely
Even if you run your code with assertions disabled, they are still in the class files.
Although this depends completely on the particular implementation of the Java
platform you are using, it is quite likely that the assertions will be taking up some
space, as well as some time, in your running program.

 If this is a problem, you can apply the standard technique for removing code
without actually removing it:

static final boolean doAsserts = false;

public void method() {
 if (doAsserts) assert expression;
}

Because doAsserts is final, the Java compiler is required to remove this line of code
from the execution, resulting in savings in both time and space.

WARNING Removing assertions is strongly discouraged unless there is good reason, such
as the need to run with a very small memory footprint. Assertions are most
useful if they can be turned on at any time, even long after the release of the
software.

Working with assertions 183

jdk.book Page 183 Monday, March 11, 2002 3:38 PM
6.2.6 Determining if assertions are enabled
There are times when you might need to determine whether assertions are enabled.
For example, your assertions might need to do extra calculations in order to prop-
erly check your code, and you might want to avoid doing those calculations if asser-
tions are disabled.

 The following fragment of code tests to see whether assertions are enabled or
not:

public void method() {
 boolean assertionsAreEnabled = false;

 assert (assertionsAreEnabled = true);

 if (assertionsAreEnabled) {
 System.out.println("Assertions are enabled!");
 } else {
 System.out.println("Assertions are disabled!");
 }
}

Note the trickiness here—that’s a single equals sign inside the assertion expression,
so it’s an assignment rather than a comparison. Instead of checking whether asser-
tionsAreEnabled is true, it actually sets assertionsAreEnabled to be true.

 It is, in general, a bad idea to put any kind of side effects inside an assert
expression, because you don’t know if the expression will even get executed—that
depends on whether assertions are enabled. This case is an exception, though—not
only is the side effect localized to this fragment, but it is in fact the point of the con-
struction. We allow the assertion status to have a side effect because we want to
know if assertions are enabled.

 One thing you might want to do in very critical applications is to refuse to run
without assertions. This is somewhat nonstandard, since assertions, by their very
nature, are supposed to be enabled at the whim of the person running the program,
rather than at the whim of the programmer. However, if it is important to ensure
that they are on, the following can be done:

public void method() {
 boolean assertionsAreEnabled = false;

 assert (assertionsAreEnabled = true);

 if (!assertionsAreEnabled) {
 throw new RuntimeException("Assertions must be enabled!");
 }
}

184 CHAPTER 6

Assertion facility

jdk.book Page 184 Monday, March 11, 2002 3:38 PM
Be careful not to fall into the trap of using an assertion to do this check. The fol-
lowing code won’t work if assertions are turned off, and thus misses the whole
point:

public void method() {
 boolean assertionsAreEnabled = false;

 assert (assertionsAreEnabled = true);

 assert assertionsAreEnabled;
}

6.2.7 Catching an assertion failure
Since assertions fail by throwing an error, it’s possible to catch an assertion failure.
Under normal circumstances, you should rethrow the error, because it is crucial
that assertion failures come to the attention of the operator of the program as soon
as possible.

 However, there are times when you might want to catch an AssertionError, do
something, and then rethrow the error. If your application has a network console,
you might want to send the assertion failure across the network to the console
before quitting.

 If you do catch an assertion failure, make sure to rethrow it! It’s okay to catch an
exception, because exceptions are designed to be caught. But an assertion failure
generally implies a really unexpected failure—something that deserves immediate
attention.

 In the example in listing 6.1, we trap the AssertionError in order to get stack
trace information. We then rethrow the AssertionError from within the catch block.

public void method() {
 AssertionError ae = null;

 try {

 int a = anotherMethod();

 // ...

 assert i==10;

 // ...

 } catch(AssertionError ae2) {

 ae = ae2;

 StackTraceElement stes[] = ae.getStackTrace();

Listing 6.1

o The assertion

o Trapping the assertion failure

Working with assertions 185

jdk.book Page 185 Monday, March 11, 2002 3:38 PM
 if (stes.length>0) {
 StackTraceElement first = stes[0];
 System.out.println("NOTE: Assertion failure in "+
 first.getFileName()+" at line "+first.getLineNumber());
 } else {
 System.out.println("NOTE: No info available.");
 }

 throw ae;
 }
}

6.2.8 Assertions and class initialization
According to the assertion specifications, whether or not assertions are turned on
for a class is determined during the initialization process. In most circumstances, a
class cannot be used before it has been initialized. But there are some cases in which
this is not true, which presents an ambiguity: if a class is not yet initialized, are asser-
tions on or off?

 Listing 6.2 presents an example of how code in a class can be run before it is fin-
ished initializing. It makes use of a certain paradoxical relationship between two
classes, CircularA and CircularB.

public class CircularA
{
 static {
 CircularB.report();
 }
}

public class CircularB extends CircularA
{
 static public void report() {
 boolean assertionsOn = false;
 assert assertionsOn=true;
 System.out.println("Assertions are "+
 (assertionsOn?"on":"off"));
 }

 static public void main(String args[]) {
 report();
 }
}

Listing 6.2

o Rethrowing the assertion failure

186 CHAPTER 6

Assertion facility

jdk.book Page 186 Monday, March 11, 2002 3:38 PM
Here’s the problem: CircularB must be initialized before its main() method can
run, and CircularB is a subclass of CircularA, so CircularA must be initialized
before CircularB can be initialized. However, CircularA has a static initializer that
makes a call to CircularB, so CircularB.report() gets called before CircularB is
fully initialized.

 By running CircularA with assertions fully disabled, you can see that assertions
are nevertheless enabled during initialization:

java -da -dsa CircularB
Assertions are on
Assertions are off

The assertion specification requires that assertions be enabled within a class during
its initialization period, regardless of any other command-line settings or Class-
Loader settings that have been (or will be) put into effect. This is the reason that the
first call to report() states that assertions are on. Because of this, if a class checks,
using the usual methods, to see if assertions are on, it will get a false positive during
the initialization process.

 The following method allows you to find out whether assertions will be enabled
or not after initialization is complete. This is a method of Class.

public boolean desiredAssertionStatus();

In the few cases where you might validly make an execution decision based on
whether assertions are enabled or not, this method can help you find this out dur-
ing the initialization process.

 Let’s take a look at CircularA again. It was shown originally in listing 6.2, but in
listing 6.3 it has been modified to check the real assertion status using desired-
AssertionStatus():

public class CircularA
{
 static {
 CircularB.report();
 }
}

public class CircularB extends CircularA
{
 static public void report() {
 boolean assertionsOn = false;
 assert assertionsOn=true;
 boolean assertionsWillBeOn =
 new CircularA().getClass().desiredAssertionStatus();

Listing 6.3

Assertion examples 187

jdk.book Page 187 Monday, March 11, 2002 3:38 PM
 System.out.println(
 "Assertions in CircularA: current="+assertionsOn+
 " desired="+assertionsWillBeOn);
 }

 static public void main(String args[]) {
 report();
 }
}

Here’s the output:

java -da -dsa CircularB
Assertions in CircularA: current=true desired=false
Assertions in CircularA: current=false desired=false

As you can see, the desired assertion status is always false, even though assertions
are temporarily on during initialization.

6.3 Assertion examples

This section presents examples of the kinds of conditions you might check for inside
an assertion. We’ll use both flavors of assertions so that you get a feel for each one.

6.3.1 Avoiding inconsistent states
The most common application of assertions is to ensure that the program remains
in a consistent state.

JARGON A consistent state is any configuration of your program that makes sense ac-
cording to the logic you’ve defined for it. An inconsistent state is any configu-
ration that should never be reached.

Here’s an example that checks for an inconsistent state. Let’s say your program
makes use of a PipedInputStream/PipedOutputStream pair.

import java.io.*;

public class Example
{
 private PipedInputStream pin;
 private PipedOutputStream pout;

 private void initializePipe() throws IOException {
 pin = new PipedInputStream();
 pout = new PipedOutputStream(pin);
 }
}

188 CHAPTER 6

Assertion facility

jdk.book Page 188 Monday, March 11, 2002 3:38 PM
When the program starts, it has not yet created these objects, so it is in the state
shown in table 6.2. Although the pipe cannot be used (because it is not there), this
is nevertheless a consistent state, because it is intentional: before we’ve created our
pipe, these variables must necessarily be null.

Later on, we create the pipe by calling initializePipe(), at which point the state
of our variables has changed, as shown in table 6.3. We’re still in a consistent state,
because here we define consistency to mean a state in which we have both ends of
the pipe available to us.

Still later, our program closes the pipe and sets both variables to null, as shown in
table 6.4. This is again a consistent state, representing the fact that we’re done with
the pipe.

When our code has become much more complicated, however, we find that we have
a bug in which, for some complicated reason, pin was set to null while pout was still
pointing to an object (see table 6.5). This is an inconsistent state. As the designers of
the code, we know that this state should never be entered. It represents no concep-
tual state that we could name. It does not represent the state in which we haven’t
started using the pipe, nor the state in which we are in the middle of using the pipe.

Table 6.2 Before the pipe is created, the variables must be null.

Variable Value

pin null

pout null

Table 6.3 After the pipe is created, the state of the variables changes.

Variable Value

pin java.io.PipedInputStream@3fbdb0

pout java.io.PipedOutputStream@3e86d0

Table 6.4 When the pipe is closed, the state of the variables is set to null.

Variable Value

pin null

pout null

Assertion examples 189

jdk.book Page 189 Monday, March 11, 2002 3:38 PM
Realizing this, we decide to add assertions in various places to check for this incon-
sistent state. We want to make sure that both objects are null at the same time.

public void someMethod() {
 assert (pin==null) == (pout==null) :
 "Warning: pipe is inconsistent");
}

We can sprinkle this assertion all over the code, as necessary.

6.3.2 Narrowing the range of states
There are times when we need to restrict the set of states that our program can be
in, but we wouldn’t really call it an issue of consistency. Generally this is as simple as
trying to ensure that a particular variable contains a value within a certain subrange
of possible values.

 Let’s say that our program is a little physics simulation, and our math should
ensure that the velocities of our objects don’t get out of control. Let’s make sure:

public void runSimulation() {
 // ...

 assert
 Math.abs(velocity) < 2000 :
 "Object way too fast! velocity="+velocity;
}

This example ensures that velocity never gets to be 2,000 or greater.

6.3.3 Ensuring consistency between container objects and contained
objects
We’ll use a somewhat more complex program to give a sense of what it means for a
program to be in an inconsistent state and demonstrate the use of assertions. Our
example will be an excerpt from a hypothetical chat server.

 The ChatServer object maintains two lists of Connection objects. Each Connec-
tion object represents the connection to a Client and can be in one of two states:
active or suspended. A suspended Client is one whose user has left his computer for
a while.

Table 6.5 A bug causes one variable to be non-null.

Variable Value

pin null

pout java.io.PipedOutputStream@3e86d0

190 CHAPTER 6

Assertion facility

jdk.book Page 190 Monday, March 11, 2002 3:38 PM
 The ChatServer object also has two methods for sending out messages to con-
nected clients:

� sendMessage() sends a message to a particular connection
� sendMessageToAll() iterates through all of the active connections and calls

sendMessage() on each one to send it a message

The problem is to make sure that the active list only contains active clients, and that
the suspended list only contains suspended clients. To this end, we create a couple
of methods, setActive() and setSuspended(). These set the state of a connection
and also move it to the correct list:

import java.io.*;
import java.net.*;

public class ChatServer
{
 private List activeConnections;
 private List suspendedConnections;

 // ...

 synchronized void setActive(Connection connection) {
 connection.setActive();
 suspendedConnections.remove(connection);
 activeConnections.add(connection);
 }

 synchronized void setSuspended(Connection connection) {
 connection.setSuspended();
 passiveConnections.remove(connection);
 suspendedConnections.add(connection);
 }

 synchronized private void sendMessageToAll(Message message) {
 for (Iterator iter=activeConnections.iterator();
 iter.hasNext();) {
 Connection connection = (Connection)iter.next();
 sendMessage(connection, message);
 }
 }

 synchronized private void sendMessage(Connection connection,
 Message message) {
 // ... send the message out to a particular connection
 }
}

Creating methods to perform list maintenance doesn’t solve the problem entirely.
Other code in our class, not seen here, might modify the activeConnections and
suspendedConnections lists. Sometimes this happens on behalf of code we don’t

Assertion examples 191

jdk.book Page 191 Monday, March 11, 2002 3:38 PM
have control over (or even have source code for). Even when we do control the
code entirely, we still might make a mistake and fail to maintain the lists properly.

 This is a perfect job for assertions:

import java.io.*;
import java.net.*;

public class ChatServer
{
 private List activeConnections;
 private List suspendedConnections;

 // ...

 synchronized void setActive(Connection connection) {
 connection.setActive();
 suspendedConnections.remove(connection);
 activeConnections.add(connection);
 }

 synchronized void setSuspended(Connection connection) {
 connection.setSuspended();
 passiveConnections.remove(connection);
 suspendedConnections.add(connection);
 }

 synchronized private void sendMessageToAll(Message message) {
 for (Iterator iter=activeConnections.iterator();
 iter.hasNext();) {
 Connection connection = (Connection)iter.next();
 assert connection.isActive();
 sendMessage(connection, message);
 }
 }

 synchronized private void sendMessage(Connection connection,
 Message message) {
 assert activeConnections.contains(connection);
 // ... send the message out to a particular connection
 }
}

You might have noticed that there is some redundancy to the assertions. sendMes-
sageToAll() iterates through the connections, and then calls sendMessage() for each
connection. Both methods use assertions to make sure messages are never sent to a
suspended connection. We’re really getting two assertions per connection, which
isn’t necessary unless we suspect that the status of a connection can be changing at
any time, and it probably can’t because we’re using proper synchronization.

 If the preceding code were the only code in the class, we might consider taking
out the second assertion, because it isn’t necessary. But we might have other places

192 CHAPTER 6

Assertion facility

jdk.book Page 192 Monday, March 11, 2002 3:38 PM
in our code that call sendMessage() directly, so we want to make sure we have an
assertion happening in that case.

TIP We don’t need to worry so much about the efficiency of assertions, because,
in real usage, the assertions don’t even get run. They only get run in a devel-
opmental context, where we don’t mind wasting a few CPU cycles if it means
our code is more stable.

6.3.4 More complicated consistency checks
Sometimes, there are consistency checks that are just too complicated to easily fit
inside a single expression on a single line. In such cases, we can make a helper
method that does the consistency check, and use an assertion to call it.

 For example, suppose we have a class called EmployeeDatabase that contains a
number of interlocking maps, lists, and sets. If you’re not careful, it’s easy to get
some of the relationships between these objects into an inconsistent state.

 At the same time, checking for consistency involves traversing the lists, keeping
track of which things are on which lists, comparing sets of membership states, and
so on. Often, consistency checking for such data structures involves building up a
subset of the relationship from scratch while making sure it is consistent.

 Since an assertion is an assertion of a single expression, it can be awkward, or
even impossible, to put a complicated calculation right inside the assert expression,
so we move it out to a helper method:

public class EmployeeDatabase()
{
 private Set employees;
 private Map employeeGroups;
 private SortedMap employeeTitles;
 private Set groups;
 private Map groupMemberships;
 private Set projects;
 private List groupDeadlines;

 public void doSomething() {

 // ...
 assert isConsistent() : "Error: inconsistent state!";
 }

 private boolean isConsistent() {

 // check lots and lots of stuff here
 // ...
 }
}

Knowing when to use assertions 193

jdk.book Page 193 Monday, March 11, 2002 3:38 PM
Setting things up this way can make code a lot easier to read, since the safety checks
are all in one place. It also helps avoid having multiple copies of the safety checks in
several places in the code, thus reducing code size and eliminating redundancy.

6.4 Knowing when to use assertions

The trickiest thing about assertions isn’t knowing how to use them—it’s knowing
when and where to use them. This section outlines a number of guidelines, summa-
rized in table 6.6, which should help you understand what assertions are appropri-
ate for, and what they are not appropriate for.

6.4.1 Rules of use
An assertion is not just a concise way to say if (expression) then. Rather, it is the
basis of a discipline for making programs more robust.

Table 6.6 Assertions are often confused with regular conditionals. Follow these rules to distinguish
what your particular situation calls for.

Assertion do’s Assertion don’ts

Do use to enforce internal assumptions about
aspects of data structures

Don’t use to enforce command-line usage

Do use to enforce constraints on arguments to
private methods

Don’t use to enforce constraints on arguments to
public methods

Do use to check conditions at the end of any kind
of method

Don’t use to enforce public usage patterns or proto-
cols

Do use to check for conditional cases that should
never happen

Don’t use to enforce a property of a piece of user-
supplied information

Do use to check for conditional cases that should
never happen, even if you’re really sure they can
never happen

Don’t use as a shorthand for if (something)
error();

Do use to check related conditions at the start of
any method

Don’t use as an externally controllable conditional

Do use to check things in the middle of a long-
lived loop

Don’t use as a check on the correctness of your com-
piler, operating system, or hardware, unless you have
a specific reason to believe there is something wrong
with it and are in the process of debugging it

Do use in lieu of nothing

194 CHAPTER 6

Assertion facility

jdk.book Page 194 Monday, March 11, 2002 3:38 PM
 It is very important to distinguish between situations where an assertion is
needed and situations where a regular conditional is needed. The following rules
should give you an idea of when assertions are appropriate, and when they are not.

Rule: do not use assertions to enforce command-line usage
Programs that use command-line arguments should always check the validity of the
arguments, but this should be done with a regular conditional. The following
example is an inappropriate use of an assertion:
public class Application
{
 static public void main(String args[]) {
 // BAD!!
 assert args.length == 3;

 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int c = Integer.parseInt(args[2]);
 }
}

It may be true that your program simply cannot run unless it is supplied with three
arguments on the command line, but in this case it would be better to throw a
proper RuntimeException:

public class App
{
 static public void main(String args[]) {
 if (args.length != 3)
 throw new RuntimeException("Usage: <progname> a b c");

 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int c = Integer.parseInt(args[2]);
 }
}

Assertions are meant to require that the program be consistent with itself, not that
the user be consistent with the program.

Rule: use assertions to enforce constraints on arguments to private methods
The following private method takes two arguments; one is required, and one is
optional:

private void method(Object required, Object optional) {
 assert(required != null) : "method(): required=null";
}

Knowing when to use assertions 195

jdk.book Page 195 Monday, March 11, 2002 3:38 PM
In general, private methods are probably being called by code we have control
over, and which we expect are written correctly and consistently. As a result, we
would like to think that all calls to our method are correct. We enforce this assump-
tion with an assertion.

 The same reasoning may apply to protected and package-protected methods.

Rule: do not use assertions to enforce constraints on arguments to public
methods
The following public method takes two arguments: a source and a sink that are con-
nected. Before disconnecting them, we’d like to ensure that they are connected to
begin with:

public void disconnect(Source source, sink sink) {
 // BAD!!
 assert source.isConnected(sink) :
 "disconnect(): not connected "+source+","+sink;
}

In this example, disconnect() can only remove a connection between a Source and
a Sink if they are in fact connected. However, because this method is public, the
code that calls it might not be under your control.

 More importantly, a public method guarantees that it will enforce the require-
ments of its specified interface in all situations. Assertions, on the other hand, are
not guaranteed to run—they will only enforce their constraints if assertions are
enabled in the runtime environment. This violates the promises made by the public
method.

 In this case, you should assume that the calling code might be in error, and
throw a proper exception:

public void disconnect(Source source, sink sink) throws IOException
{
 if (!source.isConnected(sink)) {
 throw new IOException(
 "disconnect(): not connected "+source+","+sink);
 }
}

This exception will be thrown regardless of whether assertions are on or off.

Rule: do not use assertions to enforce public usage patterns or protocols
The following public class can be in one of two states: open or closed. It is an error
to open a Connection that is already open, or to close one that is already closed.
However, we would not use an assertion to ensure that these mistakes are not made:

196 CHAPTER 6

Assertion facility

jdk.book Page 196 Monday, March 11, 2002 3:38 PM
public class Connection
{
 private boolean isOpen = false;

 public void open() {
 // ...
 isOpen = true;
 }

 public void close() {
 // BAD!!
 assert isOpen : "Cannot close a connection that is not open!";
 // ...
 }
}

The programmer has attempted to enforce the requirement that a Connection can
only be closed if it is already open.

 This usage is valid if and only if the Connection class were a private class, or
were otherwise guaranteed to be invisible to the outside, and if we were willing to
ensure and assume that any code that uses this class is written correctly. In this case,
it would be legitimate to enforce this assumption with an assertion.

 However, if the Connection class is used publicly, it would not be surprising to
find a bug in which someone tried to close a Connection that wasn’t open in the
first place. In this case, a regular exception would be better:

public class Connection
{
 private boolean isOpen = false;

 public void open() {
 // ...
 isOpen = true;
 }

 public void close() throws ConnectionException {
 if (!isOpen) {
 throw new ConnectionException(
 "Cannot close a connection that is not open!");
 }

 // ...
 }
}

If you go the other route, and attempt to ensure that this code is only called from
call sites you control, think twice. Any code you write now may be used or reused
later in a different configuration. Anything can happen after the initial revision, so
it’s best to be on the safe side. Using an explicit exception provides the most infor-
mation to a frustrated programmer down the line.

Knowing when to use assertions 197

jdk.book Page 197 Monday, March 11, 2002 3:38 PM
Rule: do not use assertions to enforce a property of a piece of user-supplied
information
In the following code fragment, the programmer has used an assertion to make sure
that a ZIP code has either five or nine digits:

public void processZipCode(String zipCode) {
 if (zipCode.length() == 5) {
 // ...
 } else if (zipCode.length() == 9) {
 // ...
 } else {
 // BAD!!
 assert false : "Only 5- and 9-digit zip codes supported";
 }
}

Assertions should be used to enforce internal consistency, not correct input. The
preceding code would be better served by using an explicit exception:

public void processZipCode(String zipCode)
 throws ZipCodeException {
 if (zipCode.length() == 5) {
 // ...
 } else if (zipCode.length() == 9) {
 // ...
 } else {
 throw new ZipCodeException(
 "Only 5- and 9-digit zip codes supported");
 }
}

6.4.2 What to check for
Once you know where assertions should be used, you have to decide what to check
and what not to check. Assertions are often used to check for things that are usually
neglected, so keep the following rules in mind when you are deciding where to use
assertions.

Rule: use assertions to enforce internal assumptions about aspects of data
structures
The following private method takes an array of three integers. We use an assertion
to make sure that the array is of the correct length:

private void showDate(int array[]) {
 assert(array.length==3);
}

198 CHAPTER 6

Assertion facility

jdk.book Page 198 Monday, March 11, 2002 3:38 PM
We expect calls to this code to be written properly, and thus to only supply arrays of
length three. This assertion merely enforces this assumption.

 Java does have bounds-checked arrays, which means that this assertion isn’t
quite as crucial as it would be in a language like C or C++. However, this does not
mean that using an assertion here isn’t a good idea.

Rule: use assertions to check conditions at the end of any kind of method
Let’s enhance the previous example with a few postconditions—that is, conditions
checked after the body of a method, just before returning:

public class Connection
{
 private boolean isOpen = false;

 public void open() {
 // ...

 isOpen = true;

 // ...

 assert isOpen;
 }

 public void close() throws ConnectionException {
 if (!isOpen) {
 throw new ConnectionException(
 "Cannot close a connection that is not open!");
 }

 // ...

 isOpen = false;

 // ...

 assert !isOpen;
 }
}

These assertions might seem redundant, but there’s no telling what might come
between the line where isOpen is set to true, and the line where isOpen is asserted
to be true.

 The assignment might eventually be put inside a conditional, removing the
direct redundancy. Someone might forget to throw an exception, causing the asser-
tion to be reached when it should have been skipped. The method might grow to
be much larger, and get factored into several methods for readability. There’s no
telling what might happen to your code.

Knowing when to use assertions 199

jdk.book Page 199 Monday, March 11, 2002 3:38 PM
Rule: use assertions to check for conditional cases that should never happen
In the following code, the assertion checks for a conditional case that can’t happen:

private int getValue() {
 if (/* something */) {
 return 0;
 } else if (/* something else */) {
 return 1;
 } else {
 return 2;
 }
}

public void method() {
 int a = getValue(); // returns 0, 1, or 2

 if (a==0) {
 // deal with 0 ...
 } else if (a==1) {
 // deal with 1 ...
 } else if (a==2) {
 // deal with 2 ...
 } else {
 assert false : "Impossible: a is out of range";
 }
}

In this example, we are receiving a value that we believe can only be in a certain
range. It is valid in this case to use an assertion because method() makes no prom-
ises about handling values other than 0, 1, or 2.

 Here is another way to write the code for method():

public void method() {
 int a = getValue(); // returns 0, 1, or 2

 if (a==0) {
 // deal with 0 ...
 } else if (a==1) {
 // deal with 1 ...
 } else {
 assert a==2 : "Impossible: a is out of range";
 // deal with 2 ...
 }
}

This code is semantically equivalent to the original version.
 Here is yet another equivalent implementation of the same method:

200 CHAPTER 6

Assertion facility

jdk.book Page 200 Monday, March 11, 2002 3:38 PM
public void method() {
 int a = getValue(); // returns 0, 1, or 2

 switch(a) {
 case 0:
 // deal with 0 ...
 break;
 case 1:
 // deal with 1 ...
 break;
 case 2:
 // deal with 2 ...
 break;
 default:
 assert false : "Impossible: a is out of range";
 break;
 }
}

Rule: use assertions to check for conditional cases that should never hap-
pen, even if you’re really sure they can never happen
This next example might seem overly cautious:

public void method() {
 int a = getValue(); // returns 0, 1, or 2

 assert a>=0 && a<=2 : "Impossible: a is out of range";

 // ...

 if (a==0) {
 // deal with 0 ...
 } else if (a==1) {
 // deal with 1 ...
 } else {
 assert a==2;
 // deal with 2 ...
 }
}

In the preceding code fragment, it looks like we’ve checked twice for the same exact
condition. As written, the assertions are redundant, because the value doesn’t
change between the first and second assertions. But let’s take a look at the same
code two releases later:

public void method() {
 int a = getValue(); // returns 0, 1, or 2

Knowing when to use assertions 201

jdk.book Page 201 Monday, March 11, 2002 3:38 PM
 assert a>=0 && a<=2 : "Impossible: a is out of range";

 // ...

 boolean shouldPromote = shouldPromote(b, c, d);
 if (shouldPromote && somethingElse)
 a++;
 a = modifyMaybe(a);

 // ...

 if (a==0) {
 // deal with 0 ...
 } else if (a==1) {
 // deal with 1 ...
 } else {
 assert a==2;
 // deal with 2 ...
 }
}

See? Without intending to complicate the invariants of your code, you or someone
else has made the situation rather more complicated. Someone has inserted code
between the first assertion and the second assertion that changes the value of the
variable being checked. The second assertion is no longer redundant.

TIP It is good programming discipline to always have a final else {} case for any
conditional. If you add one, but you know that it should never be reached,
add an assert false;.

Rule: use assertions to check related conditions at the start of any method
In this example, the method processZipCode() wants to make sure that the pro-
gram has already loaded a valid ZIP code map before it can process a ZIP code:

public void processZipCode(String zipCode) {
 assert zipCodeMapIsValid();

 // ...
}

It is a fine idea to check related data structures in select locations, just in case. The
idea here is to catch bugs early and often.

Rule: use assertions to check things in the middle of a long-lived loop
The Server class shown in listing 6.4 contains an inner loop that listens for network
connections. This code might run for hours or days.

202 CHAPTER 6

Assertion facility

jdk.book Page 202 Monday, March 11, 2002 3:38 PM
public class Server
{
 private ServerSocket serverSocket;

 public void acceptConnections() {
 while (true) {
 Socket socket = serverSocket.accept();

 assert socketListIsValid();

 // deal with new connection ...
 }
 }
}

A check placed in the middle of the long-lived loop ensures that assumptions that
were made at the start of the loop continue to hold after time has passed.

6.4.3 Miscellaneous rules
This section highlights a few rules that don’t fit into either of the previous two cat-
egories. Many of them serve to prevent the use of assertions where a stronger form
of error-checking is preferable.

Rule: do not use an assertion as a shorthand for “if (something) error();”
Here, we incorrectly use an assertion to make sure that a port number is 1024 or
greater:

public class Server
{
 private int port;

 public void listen() {
 // BAD!!
 assert port >= 1024 : "No permission to listen on port "+port;

 // ...
 }
}

In the preceding code, the programmer has been a little bit lazy, using an assertion
for a valid, exceptional condition. Apparently he has forgotten that assertions gener-
ally do not run outside the development process. This should be an exception:

public class Server
{
 private int port;

Listing 6.4

o Long pause here

o It’s good to check some stuff

Knowing when to use assertions 203

jdk.book Page 203 Monday, March 11, 2002 3:38 PM
 public void listen() {
 if (port < 1024) {
 throw new RuntimeException(
 "No permission to listen on port "+port);
 }

 // ...
 }
}

This version of the code ensures that the port number will be checked even when
assertions are not enabled.

Rule: do not use an assertion as an externally controllable conditional
Here’s a clever trick you might be tempted to do:

public class Application
{

 static private boolean turnLoggingOn() {
 // Turn logging on
 // ...

 return true;
 }

 static public void main(String args[]) throws Exception {
 // ...

 // BAD!!
 assert turnLoggingOn();
 }
}

java -da Application

java -ea Application

As we saw in section 6.2.3, you can enable or disable assertions from the command
line. You could use this ability to enable or disable something else by invoking that
something else from within an assertion.

 As clever as this is, it’s bad idea, because it changes the semantics of the -ea and
-da switches, and hijacks this facility for another purpose. End users should be able
to enable or disable assertions purely on the basis of how vigilant they want the soft-
ware to be during its execution; they should not have to worry about otherwise
changing the semantics of the program.

WARNING Assertions should never have side effects, because the semantics of your pro-
gram would be subject to whether assertions are enabled are not.

204 CHAPTER 6

Assertion facility

jdk.book Page 204 Monday, March 11, 2002 3:38 PM
Rule: do not use assertions to check the correctness of your compiler, oper-
ating system, or hardware, unless you are debugging it
This code is clearly redundant:

public void method() {
 int a = 10;

 // REDUNDANT!!
 assert a==10;
}

As written, this assertion cannot possibly be triggered without a serious problem
with your system at some level. A compiler bug might cause this assertion to trig-
ger, and if you suspect that your compiler has a bug, this is a perfectly valid thing to
do. However, putting such things in your code as a matter of course can confuse
someone who might read it down the line, causing them to spend a good deal of
time trying to figure out why the assertion was added in the first place.

Final rule: any assertion is better than nothing
As we saw at the beginning of the chapter, assertions are meant, above all, to be
convenient enough to be added as an afterthought. Any time you suspect that you
might be making an assumption that might not be true, and it makes you at all ner-
vous, add an assertion. An assertion that is never triggered is far better than one
that would have been triggered but isn’t there.

6.5 Summary

In the computer science community, assertions are widely understood to be a pow-
erful and flexible way to allow code to check itself for errors. It is designed to be as
convenient as possible so that programmers can use it during development without
distracting themselves from the task at hand.

 In this sense, assertions have a psychological design as much as they have a tech-
nological design. Assertions are relatively cheap to implement, and while the imple-
mentation can differ from platform to platform, it is safe to assume that assertions
can be used freely without a loss of program speed. The result will be better, more
reliable code.

jdk.book Page 205 Monday, March 11, 2002 3:38 PM
7Exception
s

This chapter covers
� Chained exceptions

� StackTraceElements

� Creating a custom stack trace dumper

� Synthesizing a stack trace
205

206 CHAPTER 7

Exceptions

jdk.book Page 206 Monday, March 11, 2002 3:38 PM
JDK 1.4 includes a couple of new features related to exceptions. One is a mecha-
nism called chained exceptions. When a piece of code catches one exception, only
to throw another exception, the first exception can be thought of as the cause of the
second one. The chained exception feature provides a formal recognition of this
programming pattern.

 Additionally, JDK 1.4 has provided a new Exceptions API which adds a program-
matic interface to the stack trace contained within an exception. This allows you to
create your own thread dumps, or to otherwise examine the stack corresponding to
the creation point of an Exception (or other Throwable).

7.1 Chained exceptions

It is a common programming practice to catch one exception only to throw another
one. This is generally done in a context where an exception of one type must be
converted to another type in order to satisfy the throws clause of the method,
which requires that the method only throw certain exceptions.

 The following example is taken from a hypothetical implementation of an out-
put stream:

public void write(byte b[]) throws IOException {
 // ...
 try {
 // ...
 } catch(SomeInternalException e) {
 throw new IOException(e.toString());
 }
}

The code inside the try block potentially throws a SomeInternalException, but the
write() method can only throw an IOException (or a subclass thereof). Thus, we
throw a new IOException, passing into its constructor the string representation of
the old SomeInternalException. When this exception is printed out, it shows the
types of both of the exceptions:

java.io.IOException: SomeInternalException: message
 at MyOutputStream.write(MyOutputStream.java:43);

This has a couple of disadvantages. The original exception is not retrievable, so any
specialized code (such as is found in a debugger or runtime analyzer) that might
want to examine the exception will not be able to get access to the original excep-
tion. Also, there is no consistent convention for how such an exception should be
formatted. We used the return value of the toString() method of the old exception
as an argument to the constructor for the new exception, but this is by no means
the only way to do it.

Chained exceptions 207

jdk.book Page 207 Monday, March 11, 2002 3:38 PM
 In order to formalize this technique and achieve consistency in the way that
these things are handled and displayed, every Throwable now officially has a cause,
which itself is another Throwable.

 The value of a Throwable’s cause can be set in its constructor:

new Exception("message", oldException);

Or it can be set using its initCause() method:

Exception e = new Exception("message");
e.initCause(oldException);

Actually, you can only use the constructor form if the class actually provides such a
constructor, as do some of the basic ones, including Exception, RuntimeException,
Error, and Throwable.

 You can get the cause of an exception by calling its getCause() method:

Throwable originalException = exception.getCause();
System.out.println("Original Exception:\n"+originalException);

Listing 7.1 shows a program, TraverseExceptionChain, that will print out an entire
cause chain.

(See \Chapter7 \TraverseExceptionChain.java)
public class TraverseExceptionChain
{
 /**
 * Traverse a chain of exceptions and print each one out
 */
 static public void traverseExceptionChain(Throwable t) {
 while (t != null) {
 System.out.println(t);
 t = t.getCause();
 }
 }

 /**
 * Test routine: synthesize a nice chain of exceptions
 * and traverse it
 */
 static public void main(String args[]) {
 int array[] = new int[10];
 try {
 // out-of-bounds access
 array[500] = 1;
 } catch(Exception e) {
 Exception e2 = new Exception("Two", e);
 Exception e3 = new Exception("Three", e2);

Listing 7.1 TraverseExceptionChain.java

o
Traverse by repeatedly
calling getCause()

B
Add a couple of links
to the chain

208 CHAPTER 7

Exceptions

jdk.book Page 208 Monday, March 11, 2002 3:38 PM
 traverseExceptionChain(e3);
 }
 }
}

B The first exception was an ArrayIndexOutOfBoundsException. These lines add a
couple more links to the exception chain just to give traverseExceptionChain()
something substantial to work with.

 The output looks like this:

java.lang.Exception: Three
java.lang.Exception: Two
java.lang.ArrayIndexOutOfBoundsException

The exceptions in the chain run from newest to oldest; the original exception is the
last in the chain.

7.2 StackTraceElements

Prior to JDK 1.4, the only way you could get a stack trace was by printing it to an
output stream. This produced a textual, human-readable dump of the stack trace.
While very useful for programmers, this wasn’t easily usable by programs them-
selves. If a program wanted access to stack trace information, it would have to parse
the stack data. Most programmers chose to avoid the issue entirely.

 With the new release, however, you get easy access to the stack trace through the
new Exception API. You can use this in a number of ways. In some situations, you
might decide how to handle an exception based on where it was thrown from, and
you can find this out from the stack trace. You can even use this mechanism to pro-
vide your own method for dumping the stack trace in a human-readable form. We’ll
see an example of this in section 7.2.3, where we’ll augment a traditional stack trace
with snippets of the source code it pertains to.

7.2.1 What is a stack trace?
The call stack is the set of methods that are currently in progress in a given thread—
the one currently executing, the method that called it, the method that called that,
and so on. A stack trace is a description of the state of the call stack at a given
moment in time (see figure 7.1). Each method that calls another method adds
another line to the call stack, describing the exact point at which the call was made.

DEFINITION A stack frame is a single line of the call stack, and it refers to the point at
which one method called another.

StackTraceElements 209

jdk.book Page 209 Monday, March 11, 2002 3:38 PM
NOTE Stack frames are numbered from least recent to most recent, but are gener-
ally listed in reverse order. Thus, the last stack frame of the stack trace,
which corresponds to the most-recently called method, is listed first, fol-
lowed by the second-to-last, and so on, until the first stack frame is
reached.

It’s easy to get a stack trace, because there is one contained in every exception. You
can create an exception just to see what the stack trace is:

public void bar()
{
 // do stuff ...
 throw new RuntimeException("hi");
 // do more stuff ...
}

NOTE Although it’s rarely done, you don’t have to throw an exception—you can
just create it, inspect it, and then discard it.

In the example shown in figure 7.1, we have a main() method that creates a new
object and calls its foo() method, which calls bar(), which throws an exception.

java.lang.RuntimeException:
 at Figure5.bar(Figure5.java:22)
 at Figure5.foo(Figure5.java:15)
 at Figure5.main(Figure5.java:7)
Exception in thread "main"

public void foo()
{
 // do stuff ...
 bar();
 // do more stuff ...
}

public void bar()
{
 // Exception thrown
here!!!
}

static public void main(String args[])
{
 // do stuff ...
 obj.foo();
 // do more stuff ...
} Stack trace

Figure 7.1 A stack trace shows each method in the call stack, which is the list of methods currently
executing within this thread. Each method that calls another method adds another line to the call
stack describing the exact point at which the call was made.

210 CHAPTER 7

Exceptions

jdk.book Page 210 Monday, March 11, 2002 3:38 PM
Note that each line of the exception corresponds to a different point in the exe-
cution. Each line of the stack trace, except for the first one, shows the name of a
class and a method. It also shows the name of a source code filename and a line
number within that file—this helps the programmer fix the bug by allowing her
to seek out this location in the code.

 Each of these pieces of information—the filename, the method name, and so
on—is available from the StackTraceElement class, as we’ll see in the next section.

7.2.2 Using StackTraceElements
Each Exception—each Throwable, in fact—now has a method called getStack-
Trace(). This method returns an array of StackTraceElements:

public StackTraceElement[] getStackTrace()

Each StackTraceElement allows you to get the following pieces of information
about it:

� Method name
� Class name

� Source code filename
� Line number within the source code file

� Whether or not the method is native code

It is also possible to set the stack frame using the setStackTrace() method. This
is only done in exceptional circumstances—for example, exceptions that are
thrown on a remote server while using remote procedure calls (RPCs) are often
brought over to the local side. An exception is synthesized on the local side at the
site of the local call, and it is filled out with the stack trace information from the
remote side, using the setStackTrace() method. See section 7.2.4 for an exam-
ple of this.

 Note that there is no public constructor for StackTraceElement. According to
the source code for the StackTraceElement class, these objects are created only
by the JVM. This prevents the creation of false stack frames, but it does allow
StackFrameElement objects from another thread (or even from another program
entirely, such as an RPC server) to be inserted into a different exception.

7.2.3 Writing a custom stack trace dumper
Java is a fairly introspective language, and it makes sense that it would allow the
inspection of stack traces. Stack traces are a basic part of the language, and

StackTraceElements 211

jdk.book Page 211 Monday, March 11, 2002 3:38 PM
explicit stack information is already a part of the language. Providing explicit access
to this information doesn’t slow down the implementation at all, or use any more
memory. It was an excellent call on the part of the designers.

 In this section, we’ll build a better stack trace dumper. Each line of our stack
trace will show a bit of the source code corresponding to that point in the code.
This augmented stack trace will be generated by a class called ContextStack-
Dump—named thus because it shows the source code context of each line in the
stack dump.

 A ContextStackDump object is created from an Exception (or, really, any Throw-
able). Once it’s created, you can call its printStackTrace() method just as you
would call that method directly on the exception. That is, you would replace this:

try {
 // ...
} catch(SomeException se) {
 se.printStackTrace();
}

with this:

try {
 // ...
} catch(SomeException se) {
 ContextStackDump csd = new ContextStackDump(se);
 csd.printStackTrace();
}

The code for ContextStackDump is shown in listing 7.2.

(see \Chapter7 \ContextStackDump.java)
import java.io.*;

public class ContextStackDump
{
 static private final int numContextLines = 2;
 private Throwable throwable;

 public ContextStackDump(Throwable throwable) {
 this.throwable = throwable;
 }

 public void printStackTrace() {
 System.err.print(getDump());
 }

 public String getDump() {
 return generateDump(throwable);

Listing 7.2 ContextStackDump.java

o
Takes a Throwable in
the constructor

212 CHAPTER 7

Exceptions

Generate the text in

jdk.book Page 212 Monday, March 11, 2002 3:38 PM
 }

 private String generateDump(Throwable e) {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 OutputStreamWriter osw = new OutputStreamWriter(baos);
 PrintWriter out = new PrintWriter(osw);

 out.println(e);

 StackTraceElement stes[] = e.getStackTrace();
 for (int i=0; i<stes.length; ++i) {
 StackTraceElement ste = stes[i];
 String filename = ste.getFileName();
 int lineNumber = ste.getLineNumber();
 out.println("\t"+ste);
 try {
 out.println(getContext(filename, lineNumber));
 } catch(IOException ie) {
 out.println("\t (No source information available)");
 }
 }
 out.flush();

 String dump = new String(baos.toByteArray());
 Throwable cause = e.getCause();
 if (cause != null) {
 dump += "Caused by: ";
 dump += generateDump(cause);
 }
 return dump;
 }

 private String getContext(String filename, int line)
 throws IOException {
 int start = line-numContextLines;
 int end = line+numContextLines+1;
 String context = "";

 FileInputStream fin = new FileInputStream(filename);
 InputStreamReader isr = new InputStreamReader(fin);
 LineNumberReader lnr = new LineNumberReader(isr);
 for (int i=1; i<start; ++i) {
 lnr.readLine();
 }
 for (int i=start; i<end; ++i) {
 String lineText = lnr.readLine();
 lineText = "\t "+i+":"+
 (i==line?"->":" ")+lineText;
 context += lineText;
 if (i!=end-1)
 context += "\n";
 }
 fin.close();

memory so it can be
returned as a String

o

Generate information
for each

StackTraceElement
o

o
If there is a cause
exception, dump
it too

o Load the source
context

StackTraceElements 213

jdk.book Page 213 Monday, March 11, 2002 3:38 PM
 return context;
 }
}

This implementation of ContextStackDump doesn’t try very hard to find source
files—it only looks in the current directory. It won’t find files elsewhere in your
classpath. It won’t even find files in a subdirectory of the current directory, which
means it won’t find files in package directories.

 Ideally, this program would search the entire classpath—or a source path speci-
fied in some other way—and search it, carefully using fully qualified class names and
making sure to look inside JAR files.

 As mentioned previously, you can use ContextStackDump by creating an instance
and calling its printStackTrace() method. You can also automate this somewhat:
listing 7.3 shows a specialized subclass of Thread called CSDThread. Any exception
thrown inside this thread—if it isn’t caught—will be dumped to System.err as a
ContextStackDump, rather than in the normal format.

 The CSDThread object catches all uncaught exceptions and prints out a Context-
StackDump before quitting. Since dumping and quitting is the default behavior for
uncaught exceptions, this thread provides the default behavior, but augmented with
a better kind of stack dump.

 If you find that you like this kind of dump, you can use CSDThreads wherever
you use regular Threads.

NOTE You can’t directly change your main thread to be a CSDThread, but you can
spawn a new CSDThread and have it call your main() routine. However, make
sure your main thread knows not to repeat this process and create another
CSDThread—avoid getting into an infinite loop!

214 CHAPTER 7

Exceptions

jdk.book Page 214 Monday, March 11, 2002 3:38 PM
(see \Chapter7 \CSDThread.java)
import java.io.*;

public class CSDThread extends Thread
{
 public CSDThread(Runnable runnable) {
 super(runnable);
 }

 public void run() {
 try {
 super.run();
 } catch(Throwable e) {
 ContextStackDump csd = new ContextStackDump(e);
 csd.printStackTrace();
 System.exit(1);
 }
 }

 static class CSDTest implements Runnable
 {
 public CSDTest() {
 Thread thread = new CSDThread(this);
 thread.start();
 }

 public void run() {
 run0();
 }

 public void run0() {
 run1();
 }

 public void run1() {
 throw new RuntimeException("Bang!");
 }
 }

 static public void main(String args[]) {
 new CSDTest();
 }
}

Note that you shouldn’t subclass CSDThread because your subclass’s run() method
will override the run() method of CSDThread. Since CSDThread.run() is where the
action is, this will cause the CSDThread to cease to function. Instead of subclassing
CSDThread, create a Runnable and pass it to the constructor of CSDThread.

 Listing 7.4 shows the output of running the test inside CSDThread.

Listing 7.3 CSDThread.java

Catch uncaught exceptions
and print a

ContextStackDump o

o Test program

o Throw an exception

StackTraceElements 215

jdk.book Page 215 Monday, March 11, 2002 3:38 PM
java.lang.RuntimeException: Bang! |#0.1
 CSDThread$CSDTest.run1(CSDThread.java:35)
 33:
 34: public void run1() {
 35:-> throw new RuntimeException("Bang!");
 36: }
 37: }
 CSDThread$CSDTest.run0(CSDThread.java:31)
 29:
 30: public void run0() {
 31:-> run1();
 32: }
 33:
 CSDThread$CSDTest.run(CSDThread.java:27)
 25:
 26: public void run() {
 27:-> run0();
 28: }
 29:
 java.lang.Thread.run(Thread.java:539)
 (No source information available)
 CSDThread.run(CSDThread.java:11)
 9: public void run() {
 10: try {
 11:-> super.run();
 12: } catch(Throwable e) {
 13: ContextStackDump csd = new ContextStackDump(e);

B The exception occurred on line 35 of CSDThread.java, so the beginning of this line
of code is marked with a “->” in the output. Two lines of context are shown before
and after this line.

In this expanded stack dump, each stack frame is shown, followed by a short snippet
of source code showing the location in the source that the stack frame corresponds
to. The exact line in the source itself is marked with an arrow (->), and two lines
before and after the line are also shown, to provide some context. Line numbers are
included at the left to help the reader in looking through the source code.

7.2.4 Synthesizing a stack trace
The new Exception API also allows you to set the values of a stack trace, using the
Throwable.setStackTrace() method. This permits you to synthesize a stack trace
to better inform the user. For the most part, you don’t want to mess with stack
traces, because the accuracy of a stack trace is crucial to debugging. A stack trace

Listing 7.4 Output of CSDThread.java

B
The last stack
frame of the
stack trace

o
The source for this
class wasn’t found

The first stack
frame of the stack

trace
o

216 CHAPTER 7

Exceptions

jdk.book Page 216 Monday, March 11, 2002 3:38 PM
that doesn’t faithfully reflect the status of the actual stack can make debugging
much harder.

NOTE Since StackTraceElement doesn’t have any public constructors, you can’t ac-
tually create one.* So you can’t just make a stack trace up from scratch, which
is probably good. Creating entirely fictional stack traces isn’t useful.

Reasons for synthesizing
Synthesizing a stack trace is justified when it is done to include stack trace informa-
tion that might otherwise be out of reach. The setStackTrace() documentation
states that the method is intended for use in remote procedure call (RPC) and
related systems. (Java’s remote method invocation (RMI) facility uses exception
chaining rather than exception synthesis; however, exception synthesis would be a
reasonable alternative.)

 Since an RPC method call executes on a remote
system, any exceptions that are thrown are thrown
on the remote system, not the local system. The
local system, thus, does not have direct access to the
exception, as shown in figure 7.2.

 A simple way of dealing with this would be to
simply throw another exception on the local side,
but this exception wouldn’t have all the stack trace
information from the remote exception, as shown
in figure 7.3. The information in the remote pro-
cess is lost—the stack trace of the remote exception
is completely different from the stack trace of the
local exception.

A task system
In this section, we’ll take a look at—and solve—a problem similar to the RMI
problem discussed in the previous section. Suppose we have an object called a Task
that represents a piece of computation to perform. When a Task is executed, it is
executed in a worker thread taken from a special thread pool instead of in the main
threads of the program. Using a fixed-sized pool of worker threads lets us control
the amount of processing power that is spent on a particular category of

* You can’t create one without resorting to unpalatable serialization trickery, that is.

Exception

T
h

ro
w

s

Local
stub

Remote
body

Calls

Local side Remote side

Figure 7.2 An exception
thrown on the remote side of
an RPC is not accessible to the
local program.

StackTraceElements 217

jdk.book Page 217 Monday, March 11, 2002 3:38 PM
computation, but it also frees us from having to worry about how many threads
we use for the main processing.

 Let’s assume that our application has approximately 100 main threads going at
one time, and that each of these threads, from time to time, carries out a particular
CPU-intensive task. We’re worried that the CPU will be overloaded, so we decide to
make sure that only five threads are carrying out this task at any given time. To do
so, we create a pool of five worker threads. The CPU-intensive task is turned into a
Task object, and when a main thread executes a Task, the Task is handed off to one
of the five worker threads.

 We know that, at most, five threads will be carrying out this particular computa-
tion at any given time. Even if the number of main threads later grows to become
200, the number of worker threads is still set to be five, so the number of threads car-
rying out this computation is still fixed at five, keeping the situation under control.

 Additionally, the worker threads in this pool can be given a priority appropriate
to the tasks being executed in it. Thus, different pieces of the computation can be
given different priorities even though, semantically, they seem to be running the
same main threads.

Main threads and worker threads
Each Task object has a run() method, which contains the computation to be done. It
also has a carryOut() method, which instructs the task system to execute the run()
method in a separate worker thread. Calling carryOut() in the main thread causes the
Task’s run() method to be executed in a worker thread, as shown in figure 7.4.

 carryOut() is the method used by the calling code to actually carry out the work
of the Task. Semantically, we are hiding the fact that run() executes in a different
thread. Thus, the implementation of this carryOut() is semantically, but not actu-
ally, equivalent to this:

public void carryOut() {
 run();
}

Exception

T
h

ro
w

s

Local
stub

Remote
body

Calls

Local side Remote side

Exception
T

h
ro

w
s

Figure 7.3
One way of dealing with the inaccessibility of the remote
exception is to create a new exception on the local side.
However, this local exception lacks the stack trace information
of the remote exception.

218 CHAPTER 7

Exceptions

jdk.book Page 218 Monday, March 11, 2002 3:38 PM
Secretly, the work is moved over to a worker thread. This method blocks until the
work is done.

 The sequence diagram in figure 7.5 demonstrates the flow of control between
the call to carryOut() and the call to run(). Threading is represented in this dia-
gram using different shades of gray on the activation bars—the main thread is rep-
resented by a white bar, while the worker thread is represented by a gray bar.

 The classes used in this system are shown in figure 7.6 and are listed here:

� Task—A unit of work; its run() method is executed in a worker thread.
� TaskQueue—Stores a list of Tasks to be executed; worker threads get Tasks to

carry out from here.
� TaskManager—Handles the TaskQueue and the set of worker threads. This is

not actually a separate class, but rather is implemented as static methods
within the Task class.

� TaskThread—A worker thread.

This Task example is similar to the RPC system, because a piece of computation is
being executed on behalf of the main thread by another thread. Unlike RPC, however,
this thread is inside the same process space.

 Nevertheless, we have the same problem. Since the task executes in one thread,
but the code that created the task executes in another thread, the entire process is
spread across two threads. If an exception should be thrown in the worker thread,
this exception will only include stack information from the worker thread. Likewise,
if we choose to create an exception inside the main thread, this exception will only
contain information from within the main thread.

method0()

Main thread Worker thread

Calls

Calls

method1()

carryOut()

run()

Calls

Calls

method2()

method3()

Figure 7.4
The main thread of the program calls on the Task’s carryOut()
method. This causes the Task’s run() method to be executed in
a worker thread.

StackTraceElements 219

jdk.book Page 219 Monday, March 11, 2002 3:38 PM
10: (done)

7: run()

6: return task

5: get()4: put()3: put()

2: carryOut()

1: new

9: signalDone()

8: (done)

Main thread Worker thread

Main

Task

TaskManager TaskQueue TaskThread

Figure 7.5 Sequence diagram of the process of carrying out a Task. The process is spread between the
main and worker threads, represented by white and gray bars, respectively.

m 1n 1
TaskManager

TaskQueue

Task TaskThread

put(): void
get(): Task

tasks: TaskQueue

put(): void
get(): Task

carryOut()
run()

n

1

1

1

Figure 7.6 Classes used in the Task system. A Task is a unit of work that gets exectued by the worker
thread on behalf of the main thread. Tasks are placed on a TaskQueue by the TaskManager;
TaskThreads, which are the worker threads, get Tasks from the TaskManager and execute them.

220 CHAPTER 7

Exceptions

jdk.book Page 220 Monday, March 11, 2002 3:38 PM
Chained exceptions for tasks
We could use chained exceptions to connect these two threads together. The result-
ing stack dump might look like this:

java.lang.RuntimeException: Exception while sleeping for 2
 at Task.carryOut(Task.java:38)
 at TaskTest.method1(TaskTest.java:47)
 at TaskTest.method0(TaskTest.java:43)
 at TaskTest.run(TaskTest.java:38)
 at java.lang.Thread.run(Thread.java:539)
Caused by: java.lang.RuntimeException: Exception while sleeping for 2
 at TaskTest$1.method3(TaskTest.java:32)
 at TaskTest$1.method2(TaskTest.java:21)
 at TaskTest$1.run(TaskTest.java:17)
 at Task$TaskThread.run(Task.java:86)

This stack dump shows two exceptions—the top half comes from the main thread,
while the bottom half comes from the worker thread, as shown in figure 7.7.

 To solve this problem, we’re going to use setStackTrace() to synthesize an
exception that unifies these two sets of StackFrameElements. In doing so, we’ll
strive to hide the fact that Tasks are run in a separate thread. This allows the Task to
seem like it is being run in the main thread, which helps give the Task object single-

method0()

Main thread Worker thread

Calls

Calls

method1()

carryOut()

run()

Calls

Calls

method2()

method3()

 at Task.carryOut(Task.java:38)
 at TaskTest.method1(TaskTest.java:47)
 at TaskTest.method0(TaskTest.java:43)
 at TaskTest.run(TaskTest.java:38)
 at java.lang.Thread.run(Thread.java:539)

Th
ro

w
s

Throw
s

 at TaskTest$1.method3(TaskTest.java:32)
 at TaskTest$1.method2(TaskTest.java:21)
 at TaskTest$1.run(TaskTest.java:17)
 at Task$TaskThread.run(Task.java:86)

Figure 7.7 If an exception is thrown in the worker thread, this exception only knows about stack
frames in the worker thread. Likewise, the exception thrown in the main thread only knows about stack
frames in the main thread.

StackTraceElements 221

jdk.book Page 221 Monday, March 11, 2002 3:38 PM
thread semantics. We want to hide the use of background threads—they are only
there to help control CPU usage and task priorities, not to provide multithreaded
semantics. (In debugging, especially debugging the Task system itself, it is useful to
turn off the exception synthesis so that you can really see what is going on. This can
be done by changing the value of the static boolean Task.synthesizing.)

 All of the logic that handles the background threads and exception synthesis is
contained within the code for Task, presented in listing 7.5.

(see \Chapter7 \Task.java)

import java.util.*;

abstract public class Task
{
 static private TaskQueue tasks = new TaskQueue();
 static private final int numTaskThreads = 5;
 static private boolean initialized = false;
 private Exception exception;

 // Set this to false to turn off synthesizing, for
 // debugging the Task system
 static private final boolean synthesizing = true;

 /**
 * Accessor method for exception
 */
 Exception exception() {
 return exception;
 }

 /**
 * Accessor method for exception
 */
 void exception(Exception exception) {
 this.exception = exception;
 }

 /**
 * Start up the background task threads
 */
 synchronized static private void init() {
 if (initialized)
 return;
 for (int i=0; i<numTaskThreads; ++i) {
 TaskThread tt = new TaskThread("task thread "+i);
 tt.start();
 }
 initialized = true;

Listing 7.5 Task.java

B
Get and set methods for
Task’s exception

C
Create the
background
worker threads

222 CHAPTER 7

Exceptions

jdk.book Page 222 Monday, March 11, 2002 3:38 PM
 }

 /**
 * Initiate the execution of a task by putting it in
 * the task queue
 */
 public void carryOut() throws Exception {
 try {
 init();
 // synchronize on 'this' so that we don't get our
 // done-signal before we start waiting for it
 synchronized(this) {
 // Note that "tasks" has class scope
 tasks.put(this);
 waitTilDone();
 }
 } catch(Exception e) {
 if (synthesizing)
 throw synthesizeException(e);
 else
 throw e;
 }
 }

 /**
 * Synthesize an exception that combines info from a task's
 * main thread and the worker thread in which the Task
 * was running
 */
 private Exception synthesizeException(Exception remote) {
 Exception local = new Exception();
 StackTraceElement remoteSTEs[] = remote.getStackTrace();
 int remoteLen = remoteSTEs.length;
 StackTraceElement localSTEs[] = local.getStackTrace();
 int localLen = localSTEs.length;
 StackTraceElement synthSTEs[] =
 new StackTraceElement[remoteLen+localLen-2];
 for (int i=0; i<remoteLen-1; ++i)
 synthSTEs[i] = remoteSTEs[i];
 for (int i=1; i<localLen; ++i)
 synthSTEs[i+remoteLen-2] = localSTEs[i];
 Exception synth = new Exception(remote.getMessage());
 synth.setStackTrace(synthSTEs);
 return synth;
 }

 /**
 * Main thread calls this to wait for the worker
 * thread to finish executing the Task
 */
 private void waitTilDone() throws Exception {
 synchronized(this) {

D Trigger background processing

E
Synthesize an
exception

F carryOut() calls this
to wait

StackTraceElements 223

jdk.book Page 223 Monday, March 11, 2002 3:38 PM
 try {
 wait();
 } catch(InterruptedException ie) {}
 if (exception!=null) {
 Exception exception2 = exception;
 exception = null;
 throw exception2;
 }
 }
 }

 /**
 * Worker thread calls this to signal the main thread
 * that it is done executing the Task
 * synchronize on 'this' so that we don't get our
 * done-signal before we start waiting for it
 */
 void signalDone() {
 synchronized(this) {
 notify();
 }
 }

 /**
 * Override this with the code that the Task will
 * run in the worker thread
 */
 abstract public void run() throws Exception ;

 /**
 * Worker thread calls this to get the next Task from the
 * queue
 */
 static Task getNextTask() {
 return tasks.get();
 }
}

/**
 * Worker thread
 */
class TaskThread extends Thread {
 public TaskThread(String name) {
 super(name);
 setDaemon(true);
 }

 public void run() {
 while (true) {
 Task task = Task.getNextTask();
 try {
 task.run();
 } catch(Exception e) {

G
Worker thread calls this
to signal main thread

H Stub for subclasses

I Queue for
Task objects

j
A TaskThread is a
worker thread

1) Get a Task, run
it, repeat

224 CHAPTER 7

Exceptions

jdk.book Page 224 Monday, March 11, 2002 3:38 PM
 task.exception(e);
 }
 task.signalDone();
 }
 }
}

/**
 * Queue for holding tasks until it's time to
 * execute them
 */
class TaskQueue
{
 private Vector vec = new Vector();

 synchronized public void put(Task task) {
 vec.addElement(task);
 notifyAll();
 }

 synchronized public Task get() {
 while (true) {
 if (vec.size()>0) {
 Task task = (Task)vec.elementAt(0);
 vec.removeElementAt(0);
 return task;
 } else {
 try { wait(); } catch(InterruptedException ie) {}
 }
 }
 }
}

B The processing of a Task may throw an exception inside the worker thread. If it does,
this exception is “passed” to the main thread by putting it in the variable exception.

c The background worker threads take over for the calling threads at the point at which
Task.run() is called. The number of worker threads in this pool determines the por-
tion of processing power that is allocated to the execution of Tasks; likewise, the pri-
ority of these threads determines the priority with which these Tasks will be executed.

d The main thread calls carryOut(), which places the Task on a queue. Once the
main thread has done this, it has to wait until the Task is completed by a worker
thread. It performs this wait by calling waitTilDone().

When an exception is thrown in the worker thread, it is used to synthesize a new
exception that seems to have occurred in the main thread.

1)
Get a Task, run
it, repeat

StackTraceElements 225

jdk.book Page 225 Monday, March 11, 2002 3:38 PM
e synthesizeException() takes an Exception as an argument. This Exception was
thrown in another thread, but we want it to seem as if it came from here, running in
the main thread. To do this, we create a new Exception in the main thread.

The exception from the worker thread looks something like this:

java.lang.RuntimeException: Exception while sleeping for 2
 at TaskTest$1.method3(TaskTest.java:32)
 at TaskTest$1.method2(TaskTest.java:21)
 at TaskTest$1.run(TaskTest.java:17)
 at Task$TaskThread.run(Task.java:86)

The exception created here in the worker thread, inside synthesizeException(),
looks like this:

java.lang.RuntimeException
 at Task.synthesizeException(Task.java:42)
 at Task.carryOut(Task.java:37)
 at TaskTest.method1(TaskTest.java:47)
 at TaskTest.method0(TaskTest.java:43)
 at TaskTest.run(TaskTest.java:38)
 at java.lang.Thread.run(Thread.java:539)

The synthesized exception merges the two and removes the lines for Task$Task-
Thread.run and Task.synthesizeException. The call stacks of the two exceptions
are sutured together between the two boldfaced lines in the following code:

java.lang.RuntimeException: Exception while sleeping for 2
 at TaskTest$1.method3(TaskTest.java:32)
 at TaskTest$1.method2(TaskTest.java:21)
 at TaskTest$1.run(TaskTest.java:17)
 at Task.carryOut(Task.java:37)
 at TaskTest.method1(TaskTest.java:47)
 at TaskTest.method0(TaskTest.java:43)
 at TaskTest.run(TaskTest.java:38)
 at java.lang.Thread.run(Thread.java:539)

F All the carryOut() method does is place the Task into a queue. Once carryOut()
does this, it needs to go to sleep until the worker threads run the Task. It does this
here in waitTilDone(). If an exception was thrown in the worker thread, it will be
waiting for us in rte, so we throw it if it’s there.

g Once a worker thread has finished running a Task, it calls signalDone() to tell the
main thread that the task is finished.

h The calling code makes a subclass of Task and provides an implementation of the
run() method. This is where the actual work of the Task is placed.

i This class is a simple blocking queue specialized to return Task objects.

226 CHAPTER 7

Exceptions

jdk.book Page 226 Monday, March 11, 2002 3:38 PM
j TaskThread is a Thread, and not a Runnable, because we want to use its implementa-
tion of run().

1) The duty of the TaskThread is simple: get a Task object from the queue and call its
run() method. When this is done, get another one and do it again. And so on.

Now that we’ve created Task, we need a program to test this system, and we have
one: TaskTest.java (see listing 7.6), which produced the synthesized stack dump
listing seen in the preceding note #4. TaskTest starts up 20 main threads, and each
main thread creates a Task that consists of pausing for a brief period. Once this task
is completed, it creates another Task, and the cycle continues. In order to demon-
strate the synthesized exceptions, each thread has a chance of throwing an excep-
tion after each pause.

(see \Chapter7 \TaskTest.java)
import java.util.*;

public class TaskTest implements Runnable
{
 static private Random rand = new Random();

 /**
 * Start background thread
 */
 public TaskTest() {
 Thread t = new Thread(this);
 t.start();
 }

 /**
 * Holds the work to be done by the Task.
 * TaskTestTask just sleeps for a little while
 */
 public void run() {
 while (true) {
 try {
 final int delay = rand.nextInt(5);

 TaskTestTask ttt = new TaskTestTask(delay);

 method0(ttt);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }

Listing 7.6 TaskTest.java

b Each thread pauses
over and over

c A new Task is
created each time
through the loop

StackTraceElements 227

jdk.book Page 227 Monday, March 11, 2002 3:38 PM
 /**
 * Dummy method to make the stack trace longer
 */
 private void method0(Task task) throws Exception {
 method1(task);
 }

 /**
 * Dummy method to make the stack trace longer
 */
 private void method1(Task task) throws Exception {
 task.carryOut();
 }

 /**
 * Start up a bunch of testers
 */
 static public void main(String args[]) {
 for (int i=0; i<20; ++i) {
 new TaskTest();
 }
 }
}

 /**
 * A Task to test the Task system with.
 * TaskTestTask just sleeps for a little while
 */
class TaskTestTask extends Task
{
 private int delay;
 static private Random rand = new Random();

 public TaskTestTask(int delay) {
 this.delay = delay;
 }

 public void run() throws Exception {
 method2();
 }

 private void method2() {
 method3();
 }

 private void method3() {
 Thread workerThread = Thread.currentThread();
 try {
 Thread.sleep(delay * 1000);
 System.out.println("Slept for "+delay);
 } catch(InterruptedException ie) {}

o
The main()
routine starts up
20 main threads

228 CHAPTER 7

Exceptions

jdk.book Page 228 Monday, March 11, 2002 3:38 PM
 if (rand.nextInt(100)<50) {
 throw new RuntimeException(
 "Exception while sleeping for "+delay);
 }
 }
}

b Each background thread runs indefinitely. It creates a pausing Task, carries out the
task, creates another pausing Task, carries it out, and so on.

c The Task’s run() method does not call Thread.sleep() directly; it calls an interme-
diate method method2(), which calls method3(), which then calls Thread.sleep().
All these calls are necessary to provide a deep stack trace to better illustrate stack
trace synthesis.

When TaskTest is run, the 20 main threads compete for the “attention” of the 5
worker threads. The 20 main threads place their Tasks on the task queue, and the 5
worker threads take Tasks from this queue and execute them. Most of the time, all
20 main threads are blocked inside the carryout() method of their current Tasks;
meanwhile, 5 of them are actually being executed by the worker threads. With
proper prioritization of the threads within the pool, this allows for flexible control
over the use of the CPU.

7.3 Summary

The new exceptions features of JDK 1.4 make it a lot easier to do things that were
previously possible, but which hadn’t been standardized. Many programmers had
created their own exception chaining facility, but JDK 1.4 standardizes this and inte-
grates into the JVM in such a way that exception chains are displayed in the regular
stack traces.

 The new release also allows for programmatic inspection—and modification—of
stack traces. These are features that are likely to be used by debuggers or low-level
execution subsystems, such as RPC, as well as having useful day-to-day applications,
as we saw in sections 7.2.3 and 7.2.4. All in all, there aren’t a whole lot of reasons
to mess with stack traces, but if you need to do so, the functionality is there.

o Sometimes, randomly,
an exception is thrown

jdk.book Page 229 Monday, March 11, 2002 3:38 PM
8Collection
s

This chapter covers
� New methods in the Collections class

� LinkedHashMap and LinkedHashSet

� IdentityHashMap

� The RandomAccess interface
229

230 CHAPTER 8

Collections

jdk.book Page 230 Monday, March 11, 2002 3:38 PM
The release of JDK 1.4 adds a few minor features to the Collections Framework in
the java.util package. A number of utility methods have been added to the Col-
lections class; each of these deals with Lists in some way.

 There are three new classes discussed in this chapter: LinkedHashMap,
LinkedHashSet, and IdentityHashMap. The first two are variations on the HashMap
and HashSet classes (respectively), and they preserve the order in which objects are
added to them. The third, IdentityHashMap, is a Map that overrides the hashCode()
methods of its keys, allowing objects to be differentiated based on identity rather
than on content.

 There is also a new marker interface*, RandomAccess, which allows a class to
declare that it is suitable for fast random access. More precisely, this means that it
has efficient implementations of the get() and set() methods.

8.1 Utilities

A number of utility methods have been added as static methods in the Collections
class. These utilities provide a number of simple but commonly used routines. If
you’ve used the Collections Framework a lot, you’ve probably written some of
these utilities yourself; now they are available as part of the library.

 For some of these, the documentation claims that the implementation is faster
than “the naive implementation.” Being part of the Collections Framework proba-
bly helps these methods use private information to make themselves faster. As a
result, these routines should be preferred over hand-rolled implementations.

8.1.1 Rotating list elements
The Collections.rotate() method rotates the elements of a list, which means that
it advances each element a certain number of steps. Elements that are advanced off
the end of the list are wrapped around to the beginning of the list, which is why this
is called rotate() and not shift(). Rotation can go in the negative direction as
well, which means that each element can be moved backward, and elements that fall
off the front of the list are wrapped around to the end.

 This is the type signature of the rotate() method:

Collections.rotate(List list, int distance);

The distance value specifies the number of steps to rotate. This value can be negative.

*A marker interface is an interface that doesn’t contain any methods; a class implements such an
interface merely to signal that it has a certain property.

Utilities 231

jdk.book Page 231 Monday, March 11, 2002 3:38 PM
 Figure 8.1 shows a rotation of 1. Each element in the list is moved forward by
one step, as shown by the arrows on top. The element at the end cannot be moved
forward, so it wraps around to the front of the list, occupying the first slot in the list.

 It is also possible to rotate a sublist of a larger list. The elements of the sublist are
aliases for the elements of the containing list, which means that changes made to
the sublist are reflected in the containing list. Thus, a rotation of the elements of a
sublist affects the selected elements of the containing list. This can be very useful,
since it allows you to rotate an arbitrary contiguous portion of a list.

 As an example, we’ll use a list of 10 elements, and we’ll choose from that list a
sublist of five elements, ranging from element two to element six, inclusive. This
sublist is taken from the larger list using the subList() method (see figure 8.2).

By calling rotate() on this sublist, we rotate the elements of the sublist as if the
sublist were its own list. Elements that are in the larger list, but are outside the sub-
list, are not affected (see figure 8.3).

Rotate by 1

Figure 8.1 A rotation by 1. Each element is moved forward by one step. The last element of the list
must wrap around to the beginning of the list.

subList(2, 7)

1 2 3 4 5 6 7 8 90

1 2 3 40

b c d e f g h i ja

c d e f g

Figure 8.2 A sublist of a larger list. This sublist is created by a call to the subList() method. The
elements of this sublist are aliases for the elements of the containing list, so any modifications that we
make to the sublist are reflected in the containing list.

232 CHAPTER 8

Collections

jdk.book Page 232 Monday, March 11, 2002 3:38 PM
8.1.2 Replacing list elements
The Collections.replaceAll() method replaces each occurrence of a particular
element with another element. The signature of this method looks like this:

Collections.replaceAll(List list, Object oldVal, Object newVal);

Each occurrence of the value oldVal within the list, list, is replaced with newVal.

8.1.3 Finding sublists within lists
The Collections.indexOfSubList() method finds the first occurrence of a particu-
lar sublist within a containing list. It’s rather like the indexOf() method, but it takes
a List, rather than an Object, as the target to look for:

int Collections.indexOfSubList(List source, List target);

The value returned is the index, within the containing array, of the first element of
the target list.

 For example, let’s look for the list { 1, 2 } within a larger list of random-looking
digits. This list might occur multiple times, but indexOfSubList() only returns the
first occurrence (see figure 8.4). In this example, the sublist { 1, 2 } occurs three

Rotate 1

1 2 3 4 5 6 7 8 90

b g c d e f h i ja

Figure 8.3 A rotation of the elements of a sublist. Each element in the sublist is moved forward by one;
the final element wraps around to the front of the sublist. If we confine our view to the sublist, this is a
normal rotation.

1 0 1 2 0 1 3 0 10 2 1 0 1 23

1 2

Figure 8.4 A sublist might be found multiple times within the containing list. indexOfSubList()
returns the first of these occurrences.

Utilities 233

jdk.book Page 233 Monday, March 11, 2002 3:38 PM
times within the containing list, at offsets 3, 9, and 14, but indexOfSubList() only
returns the value 3.

 Collections.lastIndexOfSubList() finds the last occurrence of the target list
within the containing list (see figure 8.5). In this example, lastIndexOfSubList()
would return 14.

 Both methods return -1 if the target list is not found within the containing list.

8.1.4 Swapping list elements
The Collections.swap() utility method swaps two elements of a list. These ele-
ments are specified by two integers, which serve as indices into the list. Figure 8.6
shows a swap of elements c and g within a 10-element list:

In code, it looks like this:

Collections.swap(list, 2, 6);

8.1.5 Converting enumerations to lists
The Collections.list() method converts an Enumeration to a List. The signature
of this method is as follows:

Collections.list(Enumeration e);

list() achieves this conversion by running through all the elements of the Enumer-
ation and adding them onto a list. The following is the equivalent of this method:

1 0 1 2 0 1 3 0 10 2 1 0 1 23

1 2

Figure 8.5 lastIndexOfSubList() returns the index of the last occurrence of the sublist within
the containing list.

c g

Figure 8.6 swap() swaps the position of elements c and g within a 10-element list.

234 CHAPTER 8

Collections

jdk.book Page 234 Monday, March 11, 2002 3:38 PM
Enumeration e;

List list = new ArrayList();
while (e.hasMoreElements()) {
 list.add(e.nextElement());
}

Most Enumerations are created from arrays or lists that are contained entirely within
RAM. However, it is possible to create an Enumeration that “contains” more objects
than could possibly fit in RAM. This is possible because it is not required that all of
the elements of an Enumeration be in RAM at the same time—only that they be
available, one at a time.

 It’s even possible to create an Enumeration that never ends. The Enumeration in
listing 8.1 returns the prime numbers in order, starting at 2.

(See \Chapter8 \EndlessEnumeration.java)
import java.util.*;

public class EndlessEnumeration implements Enumeration
{
 // The last prime we returned
 // initialize it to be before the first prime
 private int lastPrime = 1;

 // There are always more primes
 public boolean hasMoreElements() {
 return true;
 }

 public Object nextElement() {
 // Start searching from after the last one we found
 int n = lastPrime+1;
 while (true) {
 if (isPrime(n)) {
 lastPrime = n;
 return new Integer(n);
 } else {
 n++;
 }
 }
 }

 private boolean isPrime(int n) {
 // 2 is the lowest possible factor
 // n/2 is the highest possible factor
 for (int i=2; i<=n/2; ++i) {
 // If n is divisible by i, then it's not prime
 if ((n%i)==0) {

Listing 8.1 EndlessEnumeration.java

o

Check each integer until we
find the next prime

o

Divide by every possible factor
to find out if it’s prime

LinkedHashMap and LinkedHashSet 235

jdk.book Page 235 Monday, March 11, 2002 3:38 PM
 return false;
 }
 }
 return true;
 }

 static public void main(String args[]) throws Exception {
 Enumeration e = new EndlessEnumeration();
 for (int i=0; i<20; ++i)
 System.out.println(e.nextElement());
 }
}

The hasMoreElements() method always returns true, because this Enumeration
always has more elements. If you pass an object of this class to Collections.list(),
it will just run and run and run, generating primes endlessly, never returning from
the call to Collections.list(). (Since the prime generation algorithm is pretty slow,
the machine will probably fail before it runs out of memory to store the primes.)

8.2 LinkedHashMap and LinkedHashSet

The LinkedHashMap and LinkedHashSet classes are much like their unlinked coun-
terparts, HashMap and HashSet, respectively. They differ in that each of these
classes remembers the order in which entries were inserted. Iterating over the ele-
ments of these collections will produce the elements in the same order in which
they were inserted.

8.2.1 Using LinkedHashMap
As an example, we’ll create a LinkedHashMap as shown in figure 8.7 using the fol-
lowing code:

LinkedHashMap lhm = new LinkedHashMap();
lhm.put("a", "Albert");
lhm.put("b", "Barbara");
lhm.put("c", "Chuck");

a

Albert

b

Barbara

c

Chuck

Figure 8.7 A mapping from single-character strings to names

236 CHAPTER 8

Collections

jdk.book Page 236 Monday, March 11, 2002 3:38 PM
We can iterate through the entries of this mapping as follows:

for (Iterator it = lhm.entrySet().iterator(); it.hasNext();) {
 Map.Entry me = (Map.Entry)it.next();
 System.out.println(me.getKey()+" --> "+me.getValue());
}

The preceding code produces the following output:

a --> Albert
b --> Barbara
c --> Chuck

Since we used a LinkedHashMap, the entries of the map come out in the same order
in which they were inserted. This is because a set of links are maintained inside the
LinkedHashMap that form a kind of hidden linked list (as shown in figure 8.8).*

Inserting vs. updating
Note that the LinkedHashMap maintains the order in which the entries were inserted.
If the entry is updated, the ordering doesn’t change. (In this context, we define an
update as a call to put(), which uses a key that already exists in the mapping.) For
example, we’ll overwrite the value Barbara with the value Bernie:

LinkedHashMap lhm = new LinkedHashMap();
lhm.put("a", "Albert");
lhm.put("b", "Barbara");
lhm.put("c", "Chuck");
lhm.put("b", "Bernie");

The output of the preceding code shows that the value of the second entry has
changed, but the order is the same as it was before:

a --> Albert
b --> Bernie
c --> Chuck

* Actually, it is a doubly linked list, which allows traversal to proceed in either direction.

a

Albert

b

Bernie

c

Chuck

0 1 2

Figure 8.8 The mapping is augmented by a hidden linked list, which specifies an order of the entries.

LinkedHashMap and LinkedHashSet 237

jdk.book Page 237 Monday, March 11, 2002 3:38 PM
Once an entry has been inserted into the hidden linked list, it is not moved, as
shown in figure 8.9.

Reinserting
In a LinkedHashMap, removing an old value and inserting a new value in its place has
a different effect on the ordering than simply overwriting the old value with the
new value. If you remove the value in question before reinserting it, as we do in the
following code fragment, the ordering is changed:

LinkedHashMap lhm = new LinkedHashMap();
lhm.put("a", "Albert");
lhm.put("b", "Barbara");
lhm.put("c", "Chuck");
lhm.remove("b");
lhm.put("b", "Bernie");

The output shows that the ordering has changed this time:

a --> Albert
c --> Chuck
b --> Bernie

What is different about this case? The removal doesn’t just remove the entry from
the mapping; it removes it from the hidden linked list. The removed entry had a
fixed position within the ordering defined by the hidden linked list, but that posi-
tion is lost when the entry is removed (see figure 8.10). Adding the entry back into
the LinkedHashMap (albeit with a different value) causes it to be put at the end of

a

Albert

b

Bernie

c

Chuck

0 1 2

Figure 8.9 Putting a new value into a slot that already exists doesn’t change the ordering of the
entries. Here, the value of Barbara has been replaced with Bernie, but the ordering is the same.

a

Albert

c

Chuck

0 1

Figure 8.10 Removing an entry from the LinkedHashMap also removes it from the hidden linked list.
Whatever position the removed entry may have had in the ordering of the entries is lost.

238 CHAPTER 8

Collections

jdk.book Page 238 Monday, March 11, 2002 3:38 PM
the hidden linked list. In this sense, it is as if the entry has been added for the first
time (see figure 8.11).

Removing any element from the LinkedHashMap removes any information about its
position within the insertion order.

8.2.2 Using LinkedHashSet
A LinkedHashSet is rather like a LinkedHashMap, except that it is a Set rather than a
Map. Like a LinkedHashMap, a LinkedHashSet remembers the order in which objects
are inserted. When you iterate over the objects, the elements of the set are pro-
duced in the same order in which they were inserted.

 The following code illustrates this:

LinkedHashSet lhs = new LinkedHashSet();
lhs.add("Albert");
lhs.add("Barbara");
lhs.add("Chuck");

Iterating over the elements goes like this:

for (Iterator it = lhs.iterator(); it.hasNext();) {
 System.out.println(it.next());
}

The preceding code produces the following output:

Albert
Barbara
Chuck

The insertion order is maintained using a linked list, as shown in figure 8.12.

a

Albert

b

Bernie

c

Chuck

0 1 2

Figure 8.11 Putting the entry back in after removing it causes it to be put at the end of the hidden linked
list.

Albert Bernie Chuck

0 1 2

Figure 8.12 The set is augmented by a hidden linked list that specifies an order of the entries.

LinkedHashMap and LinkedHashSet 239

jdk.book Page 239 Monday, March 11, 2002 3:38 PM
Adding a value more than once doesn’t change the set, and it doesn’t change the
ordering either:

LinkedHashSet lhs = new LinkedHashSet();
lhs.add("Albert");
lhs.add("Barbara");
lhs.add("Chuck");
lhs.add("Barbara");
lhs.add("Albert");

The preceding code produces identical output to the earlier code, with the elements
in the same order as before:

Albert
Barbara
Chuck

However, like the LinkedHashMap, removing and reinserting an element does
change the order:

LinkedHashSet lhs = new LinkedHashSet();
lhs.add("Albert");
lhs.add("Barbara");
lhs.add("Chuck");
lhs.remove("Barbara");
lhs.add("Barbara");

Because Barbara was removed and reinserted in the preceding code, it moves to the
end of the list:

Albert
Chuck
Barbara

This is because insertion-order information isn’t maintained for elements that have
been removed (see figure 8.13).

Albert Chuck Barbara

0 1 2

Figure 8.13 After removing Barbara and putting it back, it is put at the end of the hidden linked list.
Ordering information is not maintained for removed elements.

240 CHAPTER 8

Collections

jdk.book Page 240 Monday, March 11, 2002 3:38 PM
8.2.3 Efficiency of LinkedHashMap and LinkedHashSet
LinkedHashMaps and LinkedHashSets have an efficiency roughly equal to that of
HashMaps and HashSets, respectively. The operation of adding or removing an ele-
ment is slightly slower, since the hidden linked lists must be maintained.

 Strangely enough, however, iterating over the elements of a LinkedHashMap or
LinkedHashSet is faster than it is for the unlinked varieties. To understand this, it is
necessary to understand the way these classes are implemented. Since LinkedHash-
Set is implemented using a LinkedHashMap, we will not need to discuss it separately.

 LinkedHashMap and HashMap are both implemented as an array of linked lists.
Each array slot corresponds to a hash bin. A full discussion of hashing and hashing
techniques is beyond the scope of this chapter; suffice it to say that, internally, these
two classes are represented as an array of linked lists (see figure 8.14).

 The arrays are sparse, which means that a significant number of the slots are
empty. (The average, based on the default settings, is one-quarter empty.) Travers-
ing this array, then, incurs a certain waste of time, since the traversal must visit each
slot in the array whether it is empty or not (see figure 8.15).

Albert Chuck

Bernie

HashMap

a

b

c

Figure 8.14 HashMap and LinkedHashMap are both implemented as an array of linked lists.
Individual elements are stored in the linked lists; the head of each list occupies one of the slots of the
array. The arrays are sparse, meaning that a significant number of the slots are empty.

Figure 8.15 Traversing the elements of a HashMap requires traversing the entire array, which
includes a significant number of elements that are empty.

LinkedHashMap and LinkedHashSet 241

jdk.book Page 241 Monday, March 11, 2002 3:38 PM
A LinkedHashMap, on the other hand, has the added benefit of another linked list
forming yet another chain through the elements. Traversing this list doesn’t require
traversing empty slots, because there are no empty slots in the linked list (see
figure 8.16).

It’s important to understand that this extra efficiency doesn’t come for free. It’s the
very act of maintaining the linked list that provides this speed boost during itera-
tion, and this maintenance adds a bit of overhead to every operation that adds or
removes an entry. A LinkedHashMap (or LinkedHashSet) might be faster for your
application, but it might not—it all depends on how much time is spent building
and modifying the hash table, and how much time is spent traversing it. A
LinkedHashMap entry also uses a bit more memory.

8.2.4 Example: searching a file path
A file path—such as the Java classpath—is a perfect example of an ordered collec-
tion. It consists of a list of directories with a fixed order. To look for a file in a path
means to look for a file in that collection of directories, respecting the order of the
directories in the path.

 As an example, we’ll create a Path object that represents such a file path. You
build a Path object by adding a series of directories to it, and then call its find-
File() method to locate a file somewhere in the path.

 This Path object also allows you to make a directory inactive in path—and make
it active again—using the setActive() method. To this end, each directory in the
Path has a name that can be used as a handle for making that directory active or inac-
tive. This can be very useful if you are developing multiple projects with multiple
tools. You might need to use different versions of a compiler for different projects
(or for different parts of the same project!). Using a path-generation system can be a
lot easier than editing configuration scripts and restarting your shell over and over.

 The Path class also includes a formatAsPath() method, which formats the path
in traditional classpath format.

a

Albert

b

Bernie

c

Chuck

Figure 8.16 Traversing the elements of a LinkedHashMap only requires traversing the elements
themselves. There are no empty slots in the linked list to waste time on.

242 CHAPTER 8

Collections

jdk.book Page 242 Monday, March 11, 2002 3:38 PM
 The following is the listing of a test program that uses the Path class. It assumes
the existence of two directories, “a” and “b”, each of which contains a file called
Test.java as well as some other .java files:

0 drwxr-xr-x 4 mito 100 0 Dec 3 16:38 .
0 drwxr-xr-x 2 mito 100 0 Dec 3 16:39 ./a
1 -rw-r--r-- 1 mito 100 10 Dec 3 16:39 ./a/Test.java
1 -rw-r--r-- 1 mito 100 10 Dec 3 16:51 ./a/Foo.java
0 drwxr-xr-x 2 mito 100 0 Dec 3 16:39 ./b
1 -rw-r--r-- 1 mito 100 10 Dec 3 16:39 ./b/Test.java
1 -rw-r--r-- 1 mito 100 10 Dec 3 16:51 ./b/Bar.java

We will create Path objects to search for instances of Test.java in these directories.
The program is shown in listing 8.2, and it is interleaved with the output it pro-
duces, shown in bold italic.

(See \Chapter8 \PathTest.java)
public class PathTest
{
 static public void main(String args[]) {
 Path path = null;

 path = new Path();
 path.add("a", ".\\pathtest\\a\\");
 path.add("b", ".\\pathtest\\b\\");
 System.out.println(path.formatAsPath());

// .\pathtest\a;.\pathtest\b

 path = new Path();
 path.add("b", ".\\pathtest\\b\\");
 path.add("a", ".\\pathtest\\a\\");
 System.out.println(path.formatAsPath());

// .\pathtest\b;.\pathtest\a

 path = new Path();
 path.add("a", ".\\pathtest\\a\\");
 path.add("b", ".\\pathtest\\b\\");
 System.out.println(path.findFile("Test.java"));

// .\pathtest\a\Test.java

 path.setActive("a", false);
 System.out.println(path.findFile("Test.java"));

// .\pathtest\b\Test.java

 }
}

Listing 8.2 PathTest.java

b Directory "a" followed by directory "b"

c Directory "b" followed by directory "a"

d Test.java found in directory "a"

e Test.java found in directory "b" because
directory "a" was made inactive

LinkedHashMap and LinkedHashSet 243

jdk.book Page 243 Monday, March 11, 2002 3:38 PM
b c Note that the order of the directories of a path matches precisely the order in which
the directories were added to the Path object.

d Both “a” and “b” contain a file called Test.java. Since the search looks in “a” before
“b”, it finds the a\Test.java file first.

e The same path was searched as in #3, except that, this time, directory “a” was deac-
tivated. As a result, b\Test.java is found.

The source for Path is shown in listing 8.3.

(See \Chapter8 \Path.java)

import java.io.*;
import java.util.*;
import java.util.regex.*;

public class Path
{
 private LinkedHashMap directories = new LinkedHashMap();

 public Path() {
 }

 public void add(String name, String directory) {
 add(name, new File(directory));
 }

 public void add(String name, File directory) {
 Entry entry = new Entry(directory);
 directories.put(name, entry);
 }

 public void remove(String name) {
 directories.remove(name);
 }

 public void setActive(String name, boolean active) {
 Entry entry = (Entry)directories.get(name);
 if (entry == null)
 throw new NoSuchElementException(
 "No element "+name+" in "+this);
 entry.active(active);
 }

 public File findFile(String target) {
 final File targetFile = new File(target);
 FileFilter filter = new FileFilter() {
 public boolean accept(File pathname) {
 // This filter accepts files matching the target file
 return targetFile.getName().equals(pathname.getName());

Listing 8.3 Path.java

b
Store the
ordered set of
directories

c
Add a new
directory to
the path

d Activate or
deactivate a
directory

e
Find a file somewhere
in the path

244 CHAPTER 8

Collections

jdk.book Page 244 Monday, March 11, 2002 3:38 PM
 }
 }; // end of anonymous inner class

 // Check each directory of the path in turn
 for (Iterator it=directories.keySet().iterator();
 it.hasNext();) {
 String name = (String)it.next();
 Entry entry = (Entry)directories.get(name);

 // If this directory has been de-activated,
 // don't look in it
 if (!entry.active())
 continue;

// Search the directory with the filter
 File dir = entry.directory();
 File files[] = dir.listFiles(filter);

 if (files != null && files.length>0) {
 // listFiles() should only return one file
 return files[0];
 }
 }
 return null;
 }

 public String formatAsPath() {
 String s = "";
 for (Iterator it=directories.keySet().iterator();
 it.hasNext();) {
 String name = (String)it.next();
 Entry entry = (Entry)directories.get(name);
 File dir = entry.directory();
 s += dir;
 if (it.hasNext()) {
 s += File.pathSeparator;
 }
 }
 return s;
 }
}

class Entry
{
 private File directory;
 private boolean active;

 public Entry(String name) {
 this(new File(name));
 }

 public Entry(File directory) {
 this.directory = directory;
 active = true;

LinkedHashMap and LinkedHashSet 245

jdk.book Page 245 Monday, March 11, 2002 3:38 PM
 }

 public boolean active() {
 return active;
 }

 public void active(boolean active) {
 this.active = active;
 }

 public File directory() {
 return directory;
 }
}

b LinkedHashMap has two axes of organization: the hash axis, on which we map direc-
tory names to directories; and the order axis, on which we store the ordering of the
elements. The ordering matches the order in which the elements were added to the
Path.

c add() and remove() simply call the respective add() and remove() methods of the
directories LinkedHashMap, and so the order in which directories are added is pre-
served.

d setActive() lets you selectively turn various directories of the path on and off. This
is easier than adding and removing them, because adding and removing have the
side effect of changing the order of the directories. setActive() can disable a direc-
tory without changing its location in the overall order.

e findFile() traverses the list of directories in order, looking in each one to see if the
file in question is there. It uses a FileFilter object to search each directory. If
findFile() finds a file in a directory, it returns it immediately.

Note that we needed a LinkedHashMap for this program because the Path object
needed to satisfy the following requirements:

� Sequential access—The directories must be traversed in a particular order
� Random access—It must be possible to activate and deactivate the directories

individually

If we only had the first requirement, a List would have been sufficient. If we only
had the second requirement, a HashMap would have been sufficient. However, to
satisfy both, we need a LinkedHashMap.

246 CHAPTER 8

Collections

jdk.book Page 246 Monday, March 11, 2002 3:38 PM
8.3 IdentityHashMap

A regular HashMap considers two objects to be equal if

object0.equals(object 1)

An IdentityHashMap, on the other hand, doesn’t use the equals() method. It only
considers two objects to be equal if

object0 == object1

This alteration in the behavior of the hashing method has subtle but important
effects on the way IdentityHashMap behaves.

8.3.1 Object equality
Every Java object has a method called equals(), which is used to compare objects.
The default implementation from Object compares objects using their identities,
which means that two objects are equal if and only if they have the same reference.
Object.equals() is implemented as follows:

public boolean equals(Object obj) {
 return (this == obj);
}

Many objects override the equals() method because they wish to have a definition
of equality that is based on the semantics of the object rather than its reference. For
example, two separate Integer object references are equal if they have the same
value, even if they are separate objects:

Integer i0 = new Integer(40);
Integer i1 = new Integer(40);
System.out.println("i0 == i1: "+(i0==i1));
System.out.println("i0.equals(i1): "+i0.equals(i1));

The preceding code results in the following output:

i0 == i1: false
i0.equals(i1): true

Clearly, these are separate objects, since they are created separately by two different
calls to new Integer() and thus have different references. This is reflected in the fact
that the == operator returns false. However, the equals() method returns true
because it overrides the implementation in Object with another version that only
returns true if the two Integer objects have the same value, regardless of whether
they are the same object or not.

IdentityHashMap 247

jdk.book Page 247 Monday, March 11, 2002 3:38 PM
8.3.2 Hashing and equality
The exact implementation of equality is very important to the behavior of a hash
table. When a key/value pair is inserted for a key that already exists in the table, the
new value replaces the old value. Hash tables use the equals() method to deter-
mine if the key is already in the table.

 Continuing to use Integer as an example, let’s take a look at what happens
when we insert two pairs that use the same exact Integer object:

Integer i0 = new Integer(40);

HashMap hm = new HashMap();
hm.put(i0, "first");
hm.put(i0, "second");

for (Iterator it = hm.entrySet().iterator(); it.hasNext();) {
 Map.Entry me = (Map.Entry)it.next();
 System.out.println(me.getKey()+" --> "+me.getValue());
}

In this example, a key is used for two different values. Because the exact same object
is used, the second value overwrites the first value, and so there is only a single value
in the HashMap afterwards:

40 --> second

IdentityHashMap can help you avoid this overwriting. It treats two distinct Integer
objects as different objects, even if they both contain the same integer value.

 In table 8.1, we’ve used both HashMap and IdentityHashMap to try this out. For
each class, we’ve tried two variations: one where we use the same Integer object as
the key for both values, and one where we use two different Integer objects as keys.
As you can see from the results in table 8.1, the only case in which the keys are
treated as different objects is the last one, where we used an IdentityHashMap, and
where we used two different Integer objects as keys.

 Don’t be fooled by the fact that these keys look identical. It’s not possible for a
HashMap to contain two different pairs with the same key. These two keys are Inte-
gers that have the same value and that have the same printed representation (as
generated by their toString() methods), but they are separate objects and are
treated as such by the IdentityHashMap.

8.3.3 Example: using the IdentityHashMap
Technically speaking, the IdentityHashMap violates one of the general principles of
the Map interface, which is that equals() is always used to compare objects.
IdentityHashMap should not be used frivolously, but there are situations when it is
definitely called for.

248 CHAPTER 8

Collections

jdk.book Page 248 Monday, March 11, 2002 3:38 PM
 The following program, DumpableGraph (see listing 8.4), contains a simple
implementation of a graph. It contains an inner class called Node. Each node has a
content string that can be thought of as the name of the node, and each node also
has a set of children. A node has a value and zero or more children. If a node has no
children, it’s a leaf; otherwise, it’s a branch. A graph is one or more nodes con-
nected to each other by the parent-child relation. (We would call it a tree, but it’s
really a graph because we are permitting back-references and cycles.)

 DumpableGraph is dumpable because it has a method called dump(), which
traverses the graph, printing out its contents. In this implementation, it is possible
for a node to be its own ancestor, and so it is possible that the graph will contain a
cycle. As a result, the dump() method has to be careful not to get caught in a loop as
it traverses the graph; to do this, it uses a Map to keep track of the nodes that it has
already dumped, thus avoiding an infinite loop.

 Initially, we’ll use a regular HashMap to keep track of the nodes, and we’ll find
that it doesn’t work correctly. The bug is caused by the fact that our graph can have
distinct nodes with the same content string. Once we’ve visited a node with the
string “a”, we won’t visit any other nodes that also have the string “a”, because
we’ll assume that these are the same node, even though they might not be. As we’ll
see, the solution is to use an IdentityHashMap instead of a regular HashMap.

Table 8.1 Comparison of HashMap and IdentityHashMap. They behave differently when given two
separate Integer objects that have the same value—IdentityHashMap treats them as
separate objects, while HashMap does not.

Hash table Code Results

HashMap Integer i0 = new Integer(40);
hm.put(i0, "first");
hm.put(i0, "second");

40 --> second

HashMap Integer i0 = new Integer(40);
Integer i1 = new Integer(40);
hm.put(i0, "first");
hm.put(i1, "second");

40 --> second

IdentityHashMap Integer i0 = new Integer(40);
Integer i1 = new Integer(40);
ihm.put(i0, "first");
ihm.put(i0, "second");

40 --> second

IdentityHashMap Integer i0 = new Integer(40);
Integer i1 = new Integer(40);
ihm.put(i0, "first");
ihm.put(i1, "second");

40 --> first
40 --> second

IdentityHashMap 249

jdk.book Page 249 Monday, March 11, 2002 3:38 PM
 But first, the flawed implementation is shown in listing 8.4.

(see \Chapter8 \DumpableGraph.java)
import java.io.*;
import java.util.*;

public class DumpableGraph
{
 public static class Node {
 private Object obj;
 private List children = new ArrayList();

 public Node(Object obj) {
 this.obj = obj;
 }

 public void addChild(Node node) {
 children.add(node);
 }

 public boolean equals(Object node) {
 return obj.equals(((Node)node).obj);
 }

 public int hashCode() {
 return obj.hashCode();
 }

 public String toString() {
 return obj.toString();
 }

 public void dump() {
 // Start the dumping process with an empty
 // seen-set
 dump("", new HashMap());
 }

 private void dump(String prefix, Map seen) {
 // Print out information about this node
 System.out.println(prefix+"Node: "+obj+
 " ["+System.identityHashCode(obj)+"/"+
 obj.hashCode()+"]");
 if (children.size()==0) {

 // If there are no children, we've reached a leaf,
 // so we're done
 System.out.println(prefix+" (no children)");
 } else {

 // We only visit the children of this node if we
 // haven't already done so -- if we're not in the

Listing 8.4 DumpableGraph.java

o Inner class Node

o
Implement custom
equality/hashing

o Use a regular Map

o
dump() traverses
the node graph...

250 CHAPTER 8

Collections

jdk.book Page 250 Monday, March 11, 2002 3:38 PM
 // seen-set
 if (!seen.containsKey(this)) {

 // Remember that we've processed this node by
 // putting it in the seen-set
 seen.put(this, null);

 // Dump all the children of this node
 for (Iterator it=children.iterator(); it.hasNext();) {
 Node node = (Node)it.next();

 // Indent the prefix by two spaces
 node.dump(prefix+" ", seen);
 }
 } else {
 System.out.println(prefix+" (loop)");
 }
 }
 }
 }

 static public void main(String args[]) {
 Node a = new Node("a");
 Node b = new Node("b");
 Node c = new Node("c");
 Node d = new Node("d");
 Node a2 = new Node("a");
 Node b2 = new Node("b");
 Node e = new Node("e");
 a.addChild(b);
 a.addChild(c);
 c.addChild(d);
 c.addChild(a);
 c.addChild(a2);
 a2.addChild(b2);
 a2.addChild(e);
 a.dump();
 }
}

Let’s take a look at the program in action. Figure 8.17 shows an example graph.
Each node is represented by a letter in a black circle, and the arrows point from par-
ents to their children. The variable from the main() method in Listing 8.4 that holds
the Node object is next to the black circle. Note that there are two nodes that have
the same content string—nodes “a” and “a2” both have the content string “a”.

 When we run DumpableGraph, the output shows that we have a problem:

Node: a [9751148/97]
 Node: b [7947172/98]
 (no children)

o
...taking care not to
visit a node twice

o Build the graph

IdentityHashMap 251

jdk.book Page 251 Monday, March 11, 2002 3:38 PM
 Node: c [4719703/99]
 Node: d [1375836/100]
 (no children)
 Node: a [9751148/97]
 (loop)
 Node: a [9751148/97]
 (loop)

The first boldfaced line shows that the top node “a” is a child of node “c”. This cor-
responds to the curved arrow in figure 8.17. The dump() routine stops here because
we don’t want to get caught in a loop. But the second boldfaced line shows that
there’s another node called “a” that is a child of “c”—this is the node marked “a2”
in the figure. This node has not yet been visited, and yet our dump() routine gives
up and refuses to follow the arrow to that node.

 The problem here is that we have two nodes with the content string “a”. What’s
more, our dump() routine uses a regular old HashMap to keep track of the nodes
we’ve already seen. As far as HashMap is concerned, these two nodes with the same
content string are the same node. The equals() method would say that they are the
same, and the hashCode() method would return the same value for both of them.

 This is definitely a job for IdentityHashMap, which would be able to distinguish
between the two nodes with the same content string. Let’s update our code to use
IdentityHashMap instead of HashMap:

public void dump() {
 dump("", new IdentityHashMap());
}

a

ad

e

b

b

c

a

b
c

d
a2

eb2

Figure 8.17 A graph composed of DumpableGraph.Node objects. Each node has a content string,
shown inside the circle. The variable names next to the circles show the variables from listing 8.4 that
contain the nodes. Note that node “c” has two children that are completely different Node objects, but
which have the same content string of “a”.

252 CHAPTER 8

Collections

jdk.book Page 252 Monday, March 11, 2002 3:38 PM
Because IdentityHashMap treats these two nodes as separate nodes, it actually
dumps the last node out instead of mistaking it for the other node with the same
content string. Here’s the output from the updated program:

Node: a [7704795/97]
 Node: b [1375836/98]
 (no children)
 Node: c [4687246/99]
 Node: d [2866566/100]
 (no children)
 Node: a [7704795/97]
 (loop)
 Node: a [7704795/97]
 Node: b [1375836/98]
 (no children)
 Node: e [15805518/101]
 (no children)

This is one of the rare times when you need an IdentityHashMap instead of a regu-
lar HashMap. Generally speaking, you’ll use an IdentityHashMap when you are deal-
ing with objects as abstract Objects rather than as the things they are intended to
be. In this example, the Node objects could be used for just about anything—parsing
the code of a programming language, representing computers in a network, and so
on. In that capacity, two Node objects containing the string “a” might be the same.
But as pure Objects they are definitely different objects, and our dump() routine
must treat them as such.

 Before the arrival of JDK 1.4 and IdentityHashMap, you could have solved this
by changing your definition of Node.equals() to distinguish between nodes with
the same content string. (You’ll note that the constructor Node actually takes a con-
tent Object as its argument, rather than requiring that it be a String. This object
can be anything you wish to put inside a graph, and it can have any implementation
of equals() and hashCode() that you want.)

 However, you might have good reasons for using your particular implementa-
tion of equals(), and you may not want to change it. In this case, System.identi-
tyHashCode() can be used to distinguish between two separate objects that have the
same hash code, and == can be used instead of equals(). In fact, we’re doing this
very thing, indirectly, when we use IdentityHashMap, because IdentityHashMap
uses System.identifyHashCode() to distinguish between objects.

8.4 The RandomAccess interface

The RandomAccess interface is a marker interface, which means that it exists only to
mark a class as having a certain property. As such, it is an empty interface—it has no

The RandomAccess interface 253

jdk.book Page 253 Monday, March 11, 2002 3:38 PM
methods. A class implements such an interface merely to advertise that it has a cer-
tain property. In this case, a List implementing RandomAccess advertises that the
list supports efficient random access.

 Here, random access means the use of get() and set() methods, in contrast to
using the list’s Iterator. In general, an Iterator is supposed to iterate through a list
using the fastest possible method, while the get() and set() methods may or may
not be efficient. If they are efficient, then the list should implement RandomAccess.

 Code that does list processing and that would benefit from the list supporting
fast random access should check the list first to see if it does in fact implement the
RandomAccess interface:

if (!(list instanceof RandomAccess)) {
}

If the list does not implement RandomAccess, the code may have to use an alterna-
tive algorithm to process the list.

 Here’s an example of this in action. In listing 8.5, the ListTransform interface
specifies a generic list-transforming routine that rearranges the elements within a list.
RandomTransform is an example class that implements ListTransform; what it does is
take a list and randomly swap its elements in order to randomize it (much like the
shuffle() method in the Collections class). This is just a simple example trans-
form—all that matters is that the transform require random access to be efficient.

 The RandomAccessifier class simply applies a ListTransform to a List—but
with an added bit of cleverness. If the List doesn’t implement RandomAccess, it is
first copied into a List that does. The transform is then applied, and the data is
then copied back into the original list. If the List does implement RandomAccess,
then the list is transformed in-place.

(see \Chapter8 \RandomAccessifier.java)
import java.util.*;

public class RandomAccessifier
{
 interface ListTransform
 {
 public void transform(List list);
 }

 static class RandomTransform implements ListTransform
 {
 private int count;
 private Random rand = new Random();

Listing 8.5 RandomAccessifier.java

o
Interface for a
list-transformer

o ListTransform
randomly rearranges
elements

254 CHAPTER 8

Collections

jdk.book Page 254 Monday, March 11, 2002 3:38 PM
 public RandomTransform(int count) {
 this.count = count;
 }

 public void transform(List list) {
 for (int i=0; i<count; ++i) {
 int ai = rand.nextInt(list.size());
 int bi = rand.nextInt(list.size());
 Collections.swap(list, ai, bi);
 }
 }
 }

 public static void transform(List list,
 ListTransform transform) {
 List origList = list;
 boolean ra = (list instanceof RandomAccess);
 if (!ra) {
 System.out.println("Converting to RA");
 list = new ArrayList(origList.size());
 for (Iterator it=origList.iterator(); it.hasNext();) {
 list.add(it.next());
 }
 }
 transform.transform(list);
 if (!ra) {
 origList.clear();
 int size = list.size();
 for (Iterator it=list.iterator(); it.hasNext();) {
 origList.add(it.next());
 }
 }
 }

 static public void main(String args[]) {
 List list = new LinkedList();
 for (int i=0; i<100; ++i) {
 list.add(new Integer(i));
 }

 RandomTransform rt = new RandomTransform(10000000);
 transform(list, rt);

 for (Iterator it=list.iterator(); it.hasNext();) {
 System.out.print(it.next()+" ");
 }
 System.out.println("");
 }
}

Move the
elements into a

RandomAccess list

b

c

Copy into an
ArrayList

d
Move the
elements
back into the
original list

Summary 255

jdk.book Page 255 Monday, March 11, 2002 3:38 PM
b d Note that we avoid using the get() and set() methods when copying out of the
original array, and when copying back into it. This is for the very same reason we
are doing the copy in the first place: these methods aren’t very efficient.

 Instead, we use an Iterator to copy the elements out of the array. To copy the
elements back in, we actually empty the array with the clear() method, and then
add() the elements back in one-by-one.

c ArrayList is one of the two classes in JDK 1.4 that implements the RandomAccess
interface, the other being Vector. It can safely be assumed that future releases of the
JDK will take care to follow the convention of implementing the RandomAccess
interface in classes for which it is appropriate.
The main() routine in the preceding example applies the RandomTransform to a
LinkedList, which does not implement the RandomAccess interface. Using the Ran-
domAccessifier to speed things up results in a significant speed improvement.

8.5 Summary

There’s not a whole lot going on in the Collections Framework in this release,
mostly because the Collections Framework is already so powerful. The new features
added in this release could probably be written by applications programmers them-
selves, but having the implementations built into the core release standardizes their
properties and allows for extra optimizations.

 The addition of the RandomAccess marker interfaces heralds the addition of sim-
ilar markers in the future—markers such as these will permit customization and spe-
cialization of standard collection operations that will allow for incremental increases
in efficiency even as the core contracts of the Collections Framework classes are
maintained.

jdk.book Page 256 Monday, March 11, 2002 3:38 PM

jdk.book Page 257 Monday, March 11, 2002 3:38 PM
9Regular Expression
s

This chapter covers
� Basic regular expression techniques

� The Java implementation of regular expressions

� Java equivalents of common Perl idioms

� Capturing groups

� Finding and replacing
257

258 CHAPTER 9

Regular Expressions

jdk.book Page 258 Monday, March 11, 2002 3:38 PM
Regular expressions (regexes) are a powerful tool for parsing strings and have been
around for a long time. They have gained popularity in recent years, most particu-
larly because of the rise of Perl as a language for systems programming and web
development. Unix uses text files internally for much of its configuration and
housekeeping, and web development in general is text-based, since it uses a human-
readable data format (HTML). XML also promises to make text-based data increas-
ingly common.

 Since JDK 1.4, Java now includes regexes as part of the core platform, in the
java.util.regex package. This chapter will provide a brief overview of regular
expressions, and then consider the details of the Java implementation in the
java.util.regex package. Section 9.3 compares some common Perl idioms to
their Java equivalents, which should be useful for readers well-versed in Perl regu-
lar expressions.

9.1 Overview of regular expressions

A regular expression, or regex, is an expression that defines a subset of the space of
all possible text strings. A regex is said to match a string if the string is within that
subset. Thus, a regular expression is a criterion that can be applied to any string—it
can match, or not match, the string.

 A regex can be used to define a syntax for textual material, although regular
expressions are not as powerful as full grammars, such as those used to define pro-
gramming languages.* Regexes can be used to distinguish correct input from incor-
rect input, or to look for particular kinds of text within a larger body of text.

 The most precise definition of regexes requires that we define our character
space. While Java provides Unicode support in its regex implementation, this sec-
tion will examine regexes using the familiar ASCII character set.

 In the next few subsections, we’ll take a look at different components of regular
expressions and see what they do. In considering each regex, we’ll answer the ques-
tion, what, within the example string, does this regex match? We’re only concerned
with what it matches within the example string shown in the middle column of the
example tables.

* Regular expressions correspond to the lowest level in what’s known as the Chomsky Hierarchy of
Languages, the next three levels being context-free grammars, context-sensitive grammars, and fi-
nally, all formal grammars (Turing machine). A regular expression can recognize, for example,
three “a” characters followed by three “b” characters, but it cannot recognize n “a” characters fol-
lowed by n “b” characters. To match such a string, you would need to remember the number of
“a” characters long enough to compare it with the number of “b” characters, which requires the
recording of state. A regular expression cannot do this—you would need a context-free grammar.

Overview of regular expressions 259

jdk.book Page 259 Monday, March 11, 2002 3:38 PM
WARNING In each of these examples, unless otherwise specified, we are assuming that
matching is happening from left to right. That is, we find the first match that
occurs in the string and ignore any other substrings that might match.

9.1.1 Literals
A literal is any character from the character set that doesn’t have a special meaning
within a regex. A literal in a regular expression matches only itself.

Note that the regex does not necessarily have to match the entirety of a string.

9.1.2 The . wildcard
The . character matches any single character, except newline. Newlines are also rec-
ognized if the DOTALL flag is specified.

9.1.3 Quantifiers: * and +
The + character, when placed after a regular expression, matches one or more copies
of that expression. The * character is like the + character, except that it can also

Table 9.1 Literal characters match themselves.

Regular
expression

Example
string

What, within the example
string, does it match?

a a a (the entire string)

b b b (the entire string)

a b nothing

a ab only the a

Table 9.2 The . character matches any single character of the input.

Regular
expression

Example
string

What, within the example string, does it match?

. a a

. ab a (or b if parsing happens from right to left)

.. abcd ab (or cd if parsing happens from right to left)

260 CHAPTER 9

Regular Expressions

jdk.book Page 260 Monday, March 11, 2002 3:38 PM
match no instances of the expression—that is, it can match the empty string. These
characters are called quantifiers.

9.1.4 Grouping with ()
Parentheses can be placed around any regular expression in order to treat it as a
unit. This does not change what it matches, but it does allow modifiers (such as the
quantifiers, above) to affect an entire expression, rather than a single character (see
table 9.4). So, for example, just as g* means zero or more occurrences of g, (gh)*
means zero or more occurrences of gh.

9.1.5 Character classes
A character class defines a set of individual characters. For example, the regex [abc]
matches an a, a b, or a c; the regex [abc]+ matches one or more characters, each of
which is an a, b, or c. You can also use the notation a-z to specify, in this case, all
the characters between a and z.

Table 9.3 Quantifiers allow you to specify a repeated pattern.

Regular
expression

Example string What, within the example string, does it match?

a* aaa aaa

a*b* aaabb aaabb

.* m m

.* "" (empty string) "" (empty string)

.* mnopq mnopq

.+ mnopq mnopq

Table 9.4 Parentheses group characters, allowing them to be treated as a unit by other regex
characters.

Regular
expression

Example string What, within the example string, does it match?

(gh)* ghghghgh ghghghgh

(a(bc)*)* abcbcabcbc abcbcabcbc

Overview of regular expressions 261

jdk.book Page 261 Monday, March 11, 2002 3:38 PM
 The last example in table 9.5 deserves mention. The first part of the regex, [a-
zA-Z_], matches any alphabetic character, or the underscore (_) character. The sec-
ond part, [a-zA-Z0-9_]*, matches a sequence of alphabetic, numerical, or under-
score characters. This is the syntactical definition of a Java identifier: it must be
made of alphanumeric characters, and must not start with a number.

 Putting a caret (^) at the start of such an expression negates the category, which
means the expression matches only characters that are not in the set. Thus, the
regex [^abc] matches any character which is not an a, b, or c.

9.1.6 Predefined character classes
There are shorthand expressions for certain character classes. \d, for example,
matches any digit, while \D matches any non-digit. \d is thus a shorthand for [0-9],
while \D is a shorthand for [^0-9]. Likewise, \s matches any white space, while \S
matches any non-white space.

Table 9.5 A character class specifies a set of characters and matches any character from that set.

Regular expression Example string
What, within the example string,

does it match?

[abc] a a

[a-d]* abcdef abcd

[a-zA-Z_][a-zA-Z0-9_]* aJavaIdentifier20 aJavaIdentifier20

Table 9.6 A caret (^) at the start of a character class negates the class. The
expression only matches characters that are not in the class.

Regular
expression

Example string
What, within the example string,

does it match?

[a-d]* abcdefgh abcd

[^a-d]* abcdefgh efgh

262 CHAPTER 9

Regular Expressions

jdk.book Page 262 Monday, March 11, 2002 3:38 PM
Table 9.8 lists all of the predefined character classes.

There is also a set of POSIX character classes. These are like predefined character
classes, but they are taken from the POSIX specification for regular expressions.
Table 9.9 shows a couple of them; see the documentation for the rest.

Table 9.7 Some character classes are given shorthand expressions. You can use one of these
characters instead of writing out the full definition of the class.

Regular
expression

Example
string

What, within the example
string, does it match?

\d 0 0

\d\D\d 0A0 0A0

A\sA A A A A

\S\s\S A A A A

Table 9.8 Predefined character classes. These are one- or two-character shorthand expressions for
some common character classes.

Predefined
character class

What it matches Equivalent expression

. Any character none

\d Any decimal digit [0-9]

\D Any character except a decimal digit [^0-9]

\s Any white space character [\t\n\x0B\f\r]

\S Any character except a white space character [^ \t\n\x0B\f\r]

\w Any word character [a-zA-Z_0-9]

\W Any character except a word character [^a-zA-Z_0-9]

Table 9.9 Some POSIX character classes. These are like predefined character classes, but they are
taken from the POSIX specification for regular expressions.

Predefined character
class

What it matches
Equivalent
expression

\p{Lower} Any lowercase letter [a-z]

\p{Digit} Any decimal digit [0-9]

Overview of regular expressions 263

jdk.book Page 263 Monday, March 11, 2002 3:38 PM
9.1.7 Sequencing and alternation
Concatenating two regular expressions creates a compound expression. To match
this compound expression, the string must match the first expression, and then
immediately the second expression, with no intervening characters.

You can also or two subexpressions together with the | symbol. To match, a string
must match either of the subexpressions.

Using the | character is also called alternation; the different expressions that are
or’ed together are called alternatives.

9.1.8 Boundary matchers
The special symbols ^ and $ do not match particular characters—they match posi-
tions in relation to the line of text being considered. ^ matches the start of a line.
Thus, while abc matches the central three characters in the string yyyabcyyy, ^abc
does not, because ^abc requires that the string occur at the start of a line. Likewise,
the $ matches the end of a line.

 Table 9.12 includes some of the boundary matchers supported by the Pattern
class.

Table 9.10 If two regular expressions match two strings, respectively, then the concatenation of the
two regular expressions matches the concatenation of the two strings.

Regular
expression

Example string
What, within the example

string, does it match?

(ab)* abab abab

(cd)* cdcd cdcd

(ab)*(cd)* ababcdcd ababcdcd

Table 9.11 A compound expression using the | character matches either the expression before the |
or the expression after the |.

Regular expression Example string What, within the example string, does it match?

((ab)|(cd))* abcdabcdcdab abcdabcdcdab

264 CHAPTER 9

Regular Expressions

jdk.book Page 264 Monday, March 11, 2002 3:38 PM
Note that the definition of line depends on the definition of the newline charac-
ter(s), which in turn is affected by the UNIX_LINES option (see section 9.2.3).

9.1.9 Reluctant (non-greedy) matching
All of the expressions we’ve looked at so far have been greedy—that is, they match as
much as they can, going from left to right. For example, a* matches as many a char-
acters as it can. (Many expressions, such as asdf, only match a single string, but
these can be thought of as being greedy in a degenerate sense.) By default, each
subexpression within a regular expression will match as long a string as it can, as
long as such a match does not cause the entire expression to fail.

 It is also possible to specify that certain quantifiers are to operate in a non-greedy,
or reluctant, mode. This means that they will match the shortest possible string.

 Here’s an example. The regular expression (a+)(.+) separates a string into two
parts—a sequence of a characters, matched by (a+), followed by a sequence of char-
acters of any kind, matched by (.+). (See section 9.2.1 for details about using the
() characters to extract parts of a matched string.)

 Our input string is aaaabbbb. If we use our regex as-is, the match works out as
shown in figure 9.1. However, if we change the first + to be +?, it becomes reluc-
tant, in which case it matches as few a characters as possible, as shown in figure 9.2.

Table 9.12 Boundary matchers. These special symbols do not match particular characters—they
match positions in relation to the line of text being considered.

Regular
expression

What it matches

^ The start of a the line

$ The end of the line

\b A word boundary

\B A non-word boundary

\z The end of the input

(a+)

a a a a b b b b

(.+)

Figure 9.1 + is a regular greedy quantifier. The sub-regex (a+) matches as
many a characters as possible—in this case, four of them.

Pattern and Matcher 265

jdk.book Page 265 Monday, March 11, 2002 3:38 PM
Of course, the regex shown in figure 9.2 could be simpler. We could do the same
thing with the regex (a)(.+) and it would match in exactly the same way—the
(a+?) acts just like (a) in this instance, only matching the initial a. But if we change
the (.+) to be (b+), we find that (a+?) matches aaaa (see figure 9.3).

 Both greedy and reluctant quantifiers want the entire match to succeed. A
greedy quantifier will match as many characters as it can, as long as this doesn’t
cause the entire match to fail. Likewise, a reluctant quantifier will match as few as it
can, as long as this doesn’t cause the entire match to fail.

 Putting a ? character after any quantifier makes it reluctant.

9.1.10 Other features
We’ve only looked at a few of the elements of regular expressions—there are a great
deal more. Different implementations, in different languages, support different reg-
ular expression features. The Java implementation is very close to the Perl 5.0
implementation—see the documentation for java.util.regex.Pattern for a com-
plete listing of valid regular expression elements.

9.2 Pattern and Matcher

The regex facility in java.util.regex is defined by only three classes:

� Pattern—Represents a regular expression
� Matcher—Matches a Pattern against a string

� PatternSyntaxExpression—Exception thrown while attempting to compile a
regular expression

 As in Perl, regexes are compiled before they are used. What this means is
implementation dependent, but, generally speaking, it means that work is done on
the regular expression to make matching faster.

(a+?)

a a a a b b b b

(.+)
Figure 9.2 +? is a reluctant quantifier. The sub-regex (a+?) matches as few
a characters as possible—in this case, just one. The second half of the regex,
(.+), matches the rest.

(a+?)

a a a a b b b b

(b+)
Figure 9.3 Even though (a+?) is reluctant, rather than greedy, it must
match aaaa in order for the entire expression to match. That is, even though
it wants to match as few characters as possible, it is willing to match more,
so it matches all four in order for the entire match to succeed.

266 CHAPTER 9

Regular Expressions

jdk.book Page 266 Monday, March 11, 2002 3:38 PM
 Because regex compilation is slow, it is generally done only once. Java allows for
explicit control over this, because it separates the compilation process from the
matching process by having the two classes, Pattern and Matcher. Creating a Pattern
object compiles the regex, while the Matcher object does the actual matching.

 Creating a Pattern object is simple:

Pattern pattern = Pattern.compile("\\S+\\s+\\S+");

This regex matches two words (made of any non-white space characters) separated
by some white space.

 Once you have a Pattern object, you create a Matcher object for a particular
input string:

Matcher matcher = pattern.matcher("hey there");

Note that the argument to Pattern.matcher() does not have to be a String—it has
to be an object that implements the java.lang.CharSequence interface. The follow-
ing classes implement CharSequence:

� java.lang.String
� java.lang.StringBuffer

� java.nio.CharBuffer

However, in the following text, we’ll refer to the input to a Matcher as the input
string, for the sake of simplicity.

 Matcher.matches() will tell you if the entire string is matched by the regex:

if (matcher.matches()) {
 // ...
}

You can also use Matcher to find substrings of the input string. Matcher.lookingAt()
is like matches(), except that the matched portion doesn’t have to cover the entire
string—it only has to start at the beginning of the string.

 The find() method will tell the Matcher to look for the first substring that
matches the regex. Each successive call looks for another match after the previous
match.

 For all three methods (matches(), lookingAt(), and find()), you can find out
what substring of the input string was matched, using the start() and end() methods:

Pattern pattern = Pattern.compile("\\S+\\s+\\S+");
String inputString = "well, hey there feller";
Matcher matcher = pattern.matcher(inputString);
if (matcher.find()) {
 int start = matcher.start();
 int end = matcher.end();

Pattern and Matcher 267

jdk.book Page 267 Monday, March 11, 2002 3:38 PM
 String matched = inputString.substring(start, end);
 System.out.println(matched);
}

This produces the following output:

well, hey

Matcher also provides a convenience method called group(), which performs the
same actions as the previous boldfaced section:

Pattern pattern = Pattern.compile("\\S+\\s+\\S+");
String inputString = "well, hey there feller";
Matcher matcher = pattern.matcher(inputString);
if (matcher.find()) {
 String matched = matcher.group();
 System.out.println(matched);
}

9.2.1 Capturing groups
Pattern and Matcher also provide for capturing groups. A capturing group is a sub-
expression within a larger regular expression, enclosed in parentheses, as shown in
figure 9.4. Just as you can get the start and end points of the substring matched by
the regular expression, you can also get the start and end points matched by the
capturing group. You can use the start() and end() methods, this time passing in a
capturing group index, to find the endpoints of the specified capturing group.

 The regex in figure 9.4 matches a three-word sequence; the following code frag-
ment will print out the middle word:

Pattern pattern = Pattern.compile("\\S+\\s+(\\S+)\\s+\\S+");
String inputString = "well hello again";
Matcher matcher = pattern.matcher(inputString);
if (matcher.find()) {
 int start = matcher.start(1);
 int end = matcher.end(1);

Regular expression

Capturing group

\S+\s+(\S+)\s+\S+

Figure 9.4 A capturing group is a subexpression within a regular expression. It is possible to find the
start and end points of the substring matched by the capturing group, just as it is possible to find the
start and end points of the string matched by the entire regular expression.

268 CHAPTER 9

Regular Expressions

jdk.book Page 268 Monday, March 11, 2002 3:38 PM
 String middleWord = inputString.substring(start, end);
 System.out.println(middleWord);
}

The following code fragment does the same thing, but uses the group() method to
extract the string:

Pattern pattern = Pattern.compile("\\S+\\s+(\\S+)\\s+\\S+");
String inputString = "well hello again";
Matcher matcher = pattern.matcher(inputString);
if (matcher.find()) {
 String middleWord = matcher.group(1);
 System.out.println(middleWord);
}

9.2.2 Find and replace
The Matcher class also provides a couple of ways to do find-and-replace. The easiest
way is with the replaceAll() method:

Pattern pattern = Pattern.compile("\\S+");
String inputString = "well hello again";
Matcher matcher = pattern.matcher(inputString);
String newString = matcher.replaceAll("word");
System.out.println(newString);

The output of this program is the string word word word. Each substring of the input
string that matches the regex \S+ is replaced with word.

 Another, more sophisticated, method uses appendReplacement() and
appendTail(). After each find() within a string, appendReplacement() replaces the
found string with the replacement string, and appends the replacement string to a
StringBuffer. The characters between the matches aren’t ignored—they are also
copied to the StringBuffer, placed properly between the replacement strings.
appendTail() is used at the end to copy any non-matched characters at the end of
the string.*

 One of the advantages of this method is that you can refer back to capturing
groups from within the replacement string. In the following example, we will
replace parentheses with square brackets. The characters between the parentheses
are matched by a capturing group:

Pattern pattern = Pattern.compile("\\((.*)\\)");

The string $1 refers to the first capturing group. If we replace it with the string
[$1], the contents of the capturing group are inserted between the square brackets.

* For a more precise definition of this process, see the documentation for Matcher.

Pattern and Matcher 269

jdk.book Page 269 Monday, March 11, 2002 3:38 PM
(You can think of this as a kind of context-sensitive find-and-replace.) Here’s the full
listing:

Pattern pattern = Pattern.compile("\\((.*)\\)");
String inputString = "These should be (square brackets).";
StringBuffer sb = new StringBuffer();
Matcher matcher = pattern.matcher(inputString);
while (true) {
 if (!matcher.find())
 break;

 matcher.appendReplacement(sb, "[$1]");
}
matcher.appendTail(sb);

String newString = sb.toString();

System.out.println(newString);

This produces the following output:

These should be [square brackets].

Because this process uses a StringBuffer for each step, it can be a very efficient way
to process a lot of text, while still giving you the flexibility to make decisions at each
step of the process.

9.2.3 Flags
The constructor for Pattern can take a second parameter, which is a set of flags that
have been or’ed together. These flags modify the way that the regular expression
matches. Table 9.13 lists the flags that are supported.

Table 9.13 These flags are supported by the Java regex package.

Flag Meaning

Pattern.UNIX_LINES Only the \n character is recognized as a newline character.
Affects ., ^, and $

Pattern.CASE_INSENSITIVE Uppercase and lowercase characters are considered the same—
for the US-ASCII character set only

Pattern.UNICODE_CASE Uppercase and lowercase characters are considered the same—
as specified by the Unicode standard

Pattern.COMMENTS White space is ignored; comments starting with a # and going to
the end of the line are ignored

Pattern.MULTILINE ^ and $ characters match line terminators within a line, rather
than only matching the start and end of the entire input

270 CHAPTER 9

Regular Expressions

jdk.book Page 270 Monday, March 11, 2002 3:38 PM
These flags, and their Perl equivalents, are used in the examples in the next section.

9.3 Transitioning from Perl to Java

Regular expressions have been around for a long time, but they came into truly
widespread use with the emergence of Perl as one of the main languages of the web.
While many languages support regexes through libraries, Perl integrates them fully
into the syntax of the language. This fact might well be the strongest reason for the
popularity of Perl.

 Java supports regexes through a library rather than a specialized syntax, which is
a feature or a bug, depending on who you talk to. Other than this, however, Java’s
regex support is quite strong.

 In this section, we’ll consider four simple Perl programs that use regexes, and
we’ll translate them into Java. In doing so, we’ll note crucial differences in usage
and syntax that may trip up the unwary Perl programmer. Each of the four pro-
grams is of the “read the input and parse each line as you go” variety; we’ll look at
some more sophisticated uses of regexes in later sections.

9.3.1 Finding the longest word in a line
longestword.pl (see listing 9.1) scans a series of colon-delimited lines and prints
out the longest word from each line.

(See \Chapter9 \ longestword.input.pl)
what:is:the:longest
whitespace : is : ignored
this:one : is : supercalifragilistically:easy

Listing 9.2 shows the output of the program. Running either the Java version or
the Perl version of this program should produce the same output. The output of
these programs should be the same, since the programs were written to do the exact

Pattern.DOTALL . matches line terminators as well

Pattern.CANON_EQ Specifies that two characters match only if their canonical
decompositions match

Listing 9.1 longestword.input.pl

Table 9.13 These flags are supported by the Java regex package. (continued)

Flag Meaning

Transitioning from Perl to Java 271

jdk.book Page 271 Monday, March 11, 2002 3:38 PM
same things. However, due to differences in the way that certain operating systems
deal with newline characters (and due to differences in the ways that Perl and Java
cope with these differences), your output may be different from what is shown
here. However, the differences should only consist of differences in the representa-
tions of newlines.

(See \Chapter9 \ longestword.output.pl)
longest
whitespace
supercalifragilistically

The Perl code for this program is shown in listing 9.3.

(See \Chapter9 \ longestword.pl)

#!perl -w

while(<>) {
 chop;

 @words = split(/\s*:\s*/);

-1 means we haven't found a word yet
 my $longest = -1;
 my $longestLength = 0;
 for ($i=0; $i<@words; ++$i) {
 my $length = length $words[$i];
 if ($length > $longestLength) {
 $longest = $i;
 $longestLength = $length;
 }
 }

 print "$words[$longest]\n";
}

b while(<>) is the Perl idiom for reading from standard input (as well as from any
files listed on the command line). chop is used to remove the trailing newline at the
end of the line.

c The regex here is \s*:\s*. If all we wanted to do was split the line by colons, we
could use the regex :. However, we also want to ignore any white space around the

Listing 9.2 longestword.output.pl

Listing 9.3 longestword.pl

b Perl idiom for iterating through
all the lines of the input

c Break the line into words using a regex, and
assign the list of words to array “words”

o Find the longest
word in the line

272 CHAPTER 9

Regular Expressions

jdk.book Page 272 Monday, March 11, 2002 3:38 PM
colon, so we allow for this by adding \s* before and after the colon. \s* means
“zero or more white space characters.”

split returns an array value, which is assigned to the variables words.

The corresponding Java code is shown in listing 9.4.

(See \Chapter9 \ LongestWord.java)
import java.io.*;
import java.util.regex.*;

public class LongestWord
{
 static public void main(String args[]) throws IOException {
 // BufferedReader lets us read line-by-line
 Reader r = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(r);

 Pattern pattern = Pattern.compile("\\s*:\\s*");

 while (true) {
 String line = br.readLine();

 // Null line means input is exhausted
 if (line==null)
 break;

 String words[] = pattern.split(line);

 // -1 means we haven't found a word yet
 int longest=-1;
 int longestLength=0;
 for (int i=0; i<words.length; ++i) {
 if (words[i].length() > longestLength) {
 longest = i;
 longestLength = words[i].length();
 }
 }

 System.out.println(words[longest]);
 }
 }
}

b In Java, the best way to read the input as text, a line at a time, is to use a Buffered-
Reader, which features the readLine() method.

c In Java, the regex is identical to what it was in Perl—this is because the regex lan-
guage is really a separate language from the language that uses it. Java uses a regular
String to encode the regex, and so the normal escaping rules apply. In this case, we

Listing 9.4 LongestWord.java

b

Java construct
for iterating
through all the
lines of the
input

c
Break the line into words using
a regex. Assign the list of
words to array “words”

o
Find the longest
word in the line

Transitioning from Perl to Java 273

jdk.book Page 273 Monday, March 11, 2002 3:38 PM
need to escape each \ character with another \ character—that is, to encode a \, we
need to use \\. Pattern.split() returns an array reference, which we can assign to
the array variable words.

The most important thing to take away from this example—aside from the obvious
fact that Perl is more concise, if a bit more cryptic—is that certain characters in
regexes need to be escaped in Java source code. Java, like most languages that sup-
port regexes in some way, encodes regexes as strings. Some characters inside double
quotes, such as \ and single and double quotes, need to be escaped. In Perl, regexes
fall into their own syntactic category, and the miraculous Perl parser is able to treat
them separately, requiring little in the way of escape sequences. The parser in the
Java compiler, however, requires that regex string constants must follow all the
same escaping rules as regular strings—there is no special parsing for regexes.

9.3.2 Parsing a tab-delimited file
The tab-delimited file is a kind of cheap, lowest-common-denominator database.
Spreadsheet programs and database engines often allow for exporting their data as
tab-delimited files.

 A tab-delimited file encodes each database record (or spreadsheet row) as a sin-
gle line. Each field is stored as text, and the fields are separated by tab (\t) charac-
ters. For the purposes of this section, we’ll add the stipulation that a tab character
preceded by a backslash is considered part of the enclosing field, rather than as a
field separator.

 In this section, we’ll consider the problem of reading a tab-delimited file into
memory. When working with tab-delimited files, this is often the first thing you do.
Admittedly, huge files shouldn’t be read entirely into memory before processing
starts, but the programs listed here can easily be modified to process their data
while they are reading, rather than after reading everything.

 Listing 9.5 shows the sample input we’ll be using—an excerpt from a telephone
database. Visually, tabs are indistinguishable from spaces, but in listing 9.5, there
are only tabs, no spaces of any kind. Any white space you see inside a line is a tab
character. (Grab the file from the web site if you want a better look.)

(See \Chapter9 \ tabdelimited.input.txt)
212-555-1212 information 6:30 15:30
818-222-3333 thingy 12:00 1:00
917-999-8888 cell\ phone 1:00 9:00

Listing 9.5 tabdelimited.input.txt

274 CHAPTER 9

Regular Expressions

jdk.book Page 274 Monday, March 11, 2002 3:38 PM
Note especially the sequence between cell and phone—this is an escaped tab—that
is, a tab character immediately preceded by a backslash. This tells the reader code to
treat this tab as part of the field cell phone, rather than as a field separator.

 Listing 9.6 shows the output.

(See \Chapter9 \ tabdelimited.output.txt)
Record 0
 212-555-1212
 information
 6:30
 15:30
Record 1
 818-222-3333
 thingy
 12:00
 1:00
Record 2
 917-999-8888
 cell\ phone
 1:00
 9:00

Listing 9.7 shows the program in Perl.

(See \Chapter9 \ tabdelimited.pl)
#!perl -w

my @vec = ();

while(<>) {
 chop;

 @words = split(/(?<!\\)\t/);

 push @vec, [@words];
}

my $i=0;
foreach $words (@vec) {
 print "Record $i\n";
 $i++;
 foreach $word (@$words) {
 print " $word\n";
 }
}

Listing 9.6 tabdelimited.output.txt

Listing 9.7 tabdelimited.pl

b
Escaped tab
included in field

b

Split on tabs, except
those that are escaped

c Put the data into a
two-dimensional array

Transitioning from Perl to Java 275

jdk.book Page 275 Monday, March 11, 2002 3:38 PM
b If we only wanted to split on tabs, the regex would be simple: \t. However, we also
want to skip escaped tabs. You might think that it would be enough to use the
regex [^\\]\t, which is translated as “match a non-backslash followed by a tab,”
but this isn’t quite what we want. For example, when scanning the first field separa-
tor on the first line of the input file, it would match 2\t, which would remove the
trailing 2 from the previous field, leaving it as 212-555-121.

Instead, we use something called a zero-width negative lookbehind, which allows
us to specify a preceding backslash without including it in the match. A zero-width
negative lookbehind looks like (?<!X), where X is the regular expression in ques-
tion. Thus, we use (?<!\\)\t, which can be translated as “match a tab, but only if
the tab doesn’t have a backslash before it; in either case, don’t include the preced-
ing character in the match.”

c Since a tab-delimited file is, in a sense, a representation of a grid of data, we need to
store the information in a two-dimensional array—or in what passes for a two-
dimensional array in Perl, namely an array of array references.

Listing 9.8 shows the translation into Java.

(See \Chapter9 \ TabDelimited.java)
import java.io.*;
import java.util.regex.*;
import java.util.*;

public class TabDelimited
{
 static public void main(String args[]) throws IOException {
 // BufferedReader lets us read line-by-line
 Reader r = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(r);

 // We'll store the data in a vector of arrays
 Vector vec = new Vector();

 Pattern pattern = Pattern.compile("(?<!\\\\)\\t"); |#1

 while (true) {
 String line = br.readLine();
 if (line==null)
 break;

 String words[] = pattern.split(line);

 vec.addElement(words.clone());
 }

 int ri=0;
 for (Enumeration e=vec.elements(); e.hasMoreElements();) {

Listing 9.8 TabDelimited.java

b

Split on tabs, except
those that are escaped

o Put the data into a
vector of arrays

276 CHAPTER 9

Regular Expressions

jdk.book Page 276 Monday, March 11, 2002 3:38 PM
 String words[] = (String[])e.nextElement();
 System.out.println("Record "+ri);
 ri++;
 for (int i=0; i<words.length; ++i) {
 System.out.println(" "+words[i]);
 }
 }
 }
}

b Again, we see that the regex is the same in Java as it is in Perl but for the need to
escape the \ characters as \\.

This program uses a lookbehind construct, which is a rather more obscure regex
feature than is used in most applications. It’s important to carefully study the docu-
mentation for both Perl and Java regexes to see which of the more complex and
unusual features are supported. Both implementations support many of the more
esoteric constructs, but the two implementations are by no means identical. How-
ever, for 95% of day-to-day applications, they are the same.

9.3.3 A command-line processor
This section describes implementations of a simple command-line processor. This
program takes a series of commands—either from the command line or from a
file—and treats it like a command. The first word on each line is considered to be
the command keyword itself, and the following words are treated like arguments to
the command. A large conditional statement then executes the command, depend-
ing on which command it was.

 As an example, we’ll consider a hypothetical drawing language with commands
like “moveto” and “setbounds”. Listing 9.9 shows the example input file—this can
be considered a simple script.

(See \Chapter9 \ commandprocessor.input.txt)
setname horace
moveto 10 10
moveto 20 20
setbounds 10 10 50 50
moveto 10 10

The last line of listing 9.9, shown in boldface, contains the command moveto fol-
lowed by two arguments, 10 and 10.

Listing 9.9 commandprocessor.input.txt

Transitioning from Perl to Java 277

jdk.book Page 277 Monday, March 11, 2002 3:38 PM
 Naturally, we aren’t interested in the implementation of the hypothetical draw-
ing language, so in our implementation each command just prints itself out—the
command name, followed by the arguments. Listing 9.10 shows the output pro-
duced from the input in listing 9.9.

(See \Chapter9 \ commandprocessor.output.txt)
- setName horace
- moveTo 10 10
- moveTo 20 20
- setBounds 10 10 50 50
- moveTo 10 10

The output looks rather like the input, since each line shows the command and its
arguments.

 Listing 9.11 shows the Perl that implements this.

(See \Chapter9 \ commandprocessor.pl)
#!perl -w

my @vec = ();

while(<>) {
 chop;

 @words = split(/\s+/);

 if ($words[0] eq "moveto") {
 # Grab the arguments from the word list
 my $x = $words[1];
 my $y = $words[2];

 # Call the routine that implements the command
 &moveTo($x, $y);
 } elsif ($words[0] eq "setname") {
 # Grab the arguments from the word list
 my $name = $words[1];

 # Call the routine that implements the command
 &setName($name);
 } elsif ($words[0] eq "setbounds") {
 # Grab the arguments from the word list
 my $x = $words[1];
 my $y = $words[2];
 my $w = $words[3];
 my $h = $words[4];

Listing 9.10 commandprocessor.output.txt

Listing 9.11 commandprocessor.pl

o
Split on white space

o
Select command based on first word

b Process the
command

278 CHAPTER 9

Regular Expressions

jdk.book Page 278 Monday, March 11, 2002 3:38 PM
 # Call the routine that implements the command
 &setBounds($x, $y, $w, $h);
 } else {
 # Any unknown command, and we quit
 die "Error: $_";
 }
}

sub moveTo {
 my ($x, $y) = @_;
 print "- moveTo $x $y\n";

}

sub setName {
 my ($name) = @_;
 print "- setName $name\n";
}

sub setBounds {
 my ($x, $y, $w, $h) = @_;
 print "- setBounds $x $y $w $h\n";
}

b To process each command, we need to first extract the arguments. Extracting each
one into a well-named variable is good practice because it’s easier to read. We could
check the values to make sure they are the correct type, but since it’s Perl, we won’t
bother.

Listing 9.12 shows the Java version.

(See \Chapter9 \ CommandProcessor.java)
import java.io.*;
import java.util.regex.*;
import java.util.*;

public class CommandProcessor
{
 public CommandProcessor() {
 }

 public void processCommands(InputStream in) throws IOException {
 // BufferedReader lets us read line-by-line
 Reader r = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(r);

 Pattern pattern = Pattern.compile("\\s+");

 while (true) {
 String line = br.readLine();
 if (line==null)

Listing 9.12 CommandProcessor.java

b Process the
command

o Implement
each command

o Split on white space

Transitioning from Perl to Java 279

jdk.book Page 279 Monday, March 11, 2002 3:38 PM
 break;

 String words[] = pattern.split(line);

 if (words[0].equals("moveto")) {
 int x = Integer.parseInt(words[1]);
 int y = Integer.parseInt(words[2]);
 moveTo(x, y);
 } else if (words[0].equals("setname")) {
 String name = words[1];
 setName(name);
 } else if (words[0].equals("setbounds")) {
 int x = Integer.parseInt(words[1]);
 int y = Integer.parseInt(words[2]);
 int w = Integer.parseInt(words[3]);
 int h = Integer.parseInt(words[4]);
 setBounds(x, y, w, h);
 } else {
 System.out.println("Error: "+line);
 }
 }
 }

 public void moveTo(int x, int y) {
 System.out.println("- moveTo "+x+" "+y);
 }

 public void setName(String name) {
 System.out.println("- setName "+name);
 }

 public void setBounds(int x, int y, int w, int h) {
 System.out.println("- setBounds "+x+" "+y+" "+w+" "+h);
 }

 static public void main(String args[]) throws IOException {
 CommandProcessor cp = new CommandProcessor();
 cp.processCommands(System.in);
 }
}

b We extract the arguments here like we did in the Perl version, but it’s convenient to
check the types of the values. This check is implicit in the attempt to convert, in this
example, the string to an integer.

The three examples we’ve seen so far use the split construct. In our next example,
we’ll take a look at some more sophisticated matching.

o

Select command based
on first word

b Process the
command

o Implement
each
command

280 CHAPTER 9

Regular Expressions

jdk.book Page 280 Monday, March 11, 2002 3:38 PM
9.3.4 Parsing and modifying names
This example is a bit more complicated. We’ll write a program that parses a list of
names. Each name is checked to make sure that it is well formed, using a very nar-
row definition of name—it must have a title (Ms., Mr., or Mrs.), a first name, and a
last name. We’ll also use the find-and-replace features of the Pattern object to con-
vert Mrs. to Ms., contrasting this feature with the Perl s/// construct.

 Listing 9.13 shows our input file, and listing 9.14 shows the output we desire.
You’ll notice that the names with a first name and a last name are parsed properly,
but that names with just a single name (Mr. Wiggles) or with three names (Joe Don
Baker) are rejected. You’ll also notice, in the boldfaced output line, that we’ve con-
verted Mrs. to Ms.

(See \Chapter9 \ parsename.input.txt)
mr. Greg Travis
Ms. Susan Beal
Mr. Chiaki Sugai
Mr. Wiggles
Mrs. Joan Allen
mrs. Hawiggins
Mr. Joe Don Baker

(See \Chapter9 \ parsename.output.txt)
mr. Greg Travis
 Title: mr.
 First Name: Greg
 Last Name: Travis
Ms. Susan Beal
 Title: Ms.
 First Name: Susan
 Last Name: Beal
Mr. Chiaki Sugai
 Title: Mr.
 First Name: Chiaki
 Last Name: Sugai
Mr. Wiggles
 (Doesn't match!)
Mrs. Joan Allen
 Title: Mrs.
 First Name: Joan
 Last Name: Allen
 Modernized: Ms. Joan Allen

Listing 9.13 parsename.input.txt

Listing 9.14 parsename.output.txt

Transitioning from Perl to Java 281

jdk.book Page 281 Monday, March 11, 2002 3:38 PM
mrs. Hawiggins
 (Doesn't match!)
Mr. Joe Don Baker
 (Doesn't match!)

More complicated regexes
To parse these names, we’re going to make use of a few new features.

 To begin with, our regular expression is going to be rather more complicated
than some of the expressions we’ve been using in previous sections. Expressed the
regular way, it looks like this:

/^\s*(M(s|r|rs)\.)\s+(\S+)\s+(\S+)\s*$/i

Regexes can get pretty nasty, as you can see. Fortunately, both Java and Perl
allow you to put white space and comments into your regexes, to make them eas-
ier to read:

 /^\s* # Ignore any whitespace at
 # the start of the line
 (M(s|r|rs)\.) # Match Ms., Mrs., and Mr. (titles)
 \s+ # Space between title and first name
 (\S+) # First name
 \s+ # Space between first name and last name
 (\S+) # Last name
 \s*$ # Allow whitespace, but nothing else,
 # after name
 /ix

To ensure that adding comments and white space doesn’t change the semantics of
your regex, you have to tell Java and Perl that you want to use them, and that they
should be ignored. You’ll see how this is done in listings 9.15 and 9.16.

 We’re also going to make use of capturing groups to divide each name into its
component parts: title, first name, and last name.

 Finally, we’re going to use find-and-replace features of the two languages to
replace Mrs. with Ms.

 Listing 9.15 shows the code in Perl.

282 CHAPTER 9

Regular Expressions

jdk.book Page 282 Monday, March 11, 2002 3:38 PM
(See \Chapter9 \ parsename.pl)
#!perl -w

while(<>) {
 print;
 chop;

 # Save this for later
 my $line = $_;

 if (/^\s* # Ignore any whitespace at
 # the start of the line
 (M(s|r|rs)\.) # Match Ms., Mrs., and Mr. (titles)
 \s+ # Space between title and first name
 (\S+) # First name
 \s+ # Space between first name and last name
 (\S+) # Last name
 \s*$ # Allow whitespace, but nothing else,
 # after name
 /ix) {

 my $title = $1;
 my $firstName = $3;
 my $lastName = $4;

 print " Title: $title\n";
 print " First Name: $firstName\n";
 print " Last Name: $lastName\n";

 my $modernLine = &modernize($line);
 if ($modernLine ne $line) {
 print " Modernized: $modernLine\n";
 }
 } else {
 print " (Doesn't match!)\n";
 }
}

sub modernize {
 my ($line) = @_;

 $line =~ s/(?<=m)rs\./s./i;

 return $line;
}

Listing 9.15 parsename.pl

Regex to parse the
name, with comments

and white space

bc
Conditional:
did it match?

d
Capturing
groups

e 'x' flag to allow comments and white
space, 'i' flag for case-insensitivity

o
Get the substrings matched by
the capturing groups

o
Modernize the
name, if possible

f Regex to replace Mrs. with Ms.

Transitioning from Perl to Java 283

jdk.book Page 283 Monday, March 11, 2002 3:38 PM
b This regex has been annotated with comments, and white space has been added to
make the formatting clearer. This feature requires the x flag at the end of the regu-
lar expression, as we see at #4.

c Not every match succeeds; the /<regex>/ construct returns a boolean telling
whether it did or not, and we can use this to determine whether to proceed or to
signal an error.

d The title, first name, and last name are each matched by a regex in a capturing
group. This allows us to pull these substrings out of the matched string.

e In Perl, regex options such as “allow comments and whitespace” are single charac-
ters placed at the end of the regex, after the closing / character. This particular
option uses the x character.

f Here, we use the s/// construct, which performs find-and-replace, rather than the
// construct, which only performs find. We are using the i option for this match,
which specifies that it should be case-insensitive.

Note that although we want to find occurrences of Mrs., we only want to replace
the rs. part of any such occurrences—we want to respect the case of the M, so we
don’t want to replace it. To this end, we again use the zero-width positive lookbe-
hind construct, ?<=, which requires that there be an M before the rs., but which
doesn’t include the M in the match. (Contrast this with the zero-width negative
lookbehind construct, ?<!, which requires that a particular regex not be there, but
which also doesn’t include whatever is there in the match. See section 9.3.2 for an
example of this construct.)

In contrast, listing 9.16 shows the Java version. You’ll notice that the ability to
embed comments within the regex isn’t really as useful here as it was in Perl, since
the comments are actually #-style comments, and they are still terminated by \n"+ at
the end of each line.

(See \Chapter9 \ ParseName.java)
import java.io.*;
import java.util.regex.*;

public class ParseName
{
 static public void main(String args[]) throws IOException {
 // BufferedReader lets us read line-by-line
 Reader r = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(r);

Listing 9.16 ParseName.java

284 CHAPTER 9

Regular Expressions

jdk.book Page 284 Monday, March 11, 2002 3:38 PM
 String patternString =
 "^\\s* # Ignore any whitespace at\n"+
 " # the start of the line\n"+
 "(M(s|r|rs)\\.) # Match Ms., Mrs., and Mr. (titles)\n"+
 "\\s+ # Space between title and first name\n"+
 "(\\S+) # First name\n"+
 "\\s+ # Space between first name and last name\n"+
 "(\\S+) # Last name\n"+
 "\\s*$ # Allow whitespace, but nothing else,\n"+
 " # after name\n";

 int patternFlags = Pattern.CASE_INSENSITIVE|Pattern.COMMENTS;

 Pattern pattern =
 Pattern.compile(patternString, patternFlags);

 while (true) {
 String line = br.readLine();
 if (line==null)
 break;

 Matcher matcher = pattern.matcher(line);

 System.out.println(line);

 if (matcher.matches()) {
 String title = matcher.group(1);
 String firstName = matcher.group(3);
 String lastName = matcher.group(4);

 System.out.println(" Title: "+title);
 System.out.println(" First Name: "+firstName);
 System.out.println(" Last Name: "+lastName);

 String modernLine = modernize(line);

 if (!modernLine.equals(line)) {
 System.out.println(" Modernized: "+modernLine);
 }
 } else {
 System.out.println(" (Doesn't match!)");
 }
 }
 }

 static public String modernize(String name) {
 String patternString = "(?<=m)rs\\.";
 int patternFlags = Pattern.CASE_INSENSITIVE;

 Pattern pattern =
 Pattern.compile(patternString, patternFlags);

 Matcher matcher = pattern.matcher(name);

 // StringBuffer to accumulate output of find-and-replace
 StringBuffer sb = new StringBuffer();

Regex to parse the
name, with comments

and white space

o

Flags are not part of
the regex, but are

passed into compile()

b

c
Conditional: did it match?

o Get the substrings
matched by the
capturing groups

o
Modernize
the name, if
possible

o Regex to replace Mrs.

d

Flags are not part
of the regex, but
are passed into
compile()

Example: HTML templating system 285

jdk.book Page 285 Monday, March 11, 2002 3:38 PM
 // Find first occurrence of target string
 boolean result = matcher.find();
 while(result) {
 // Replace target string with replacement string
 matcher.appendReplacement(sb, "s.");

 // Find next occurrence of target string
 result = matcher.find();
 }

 // Append unmatched remainder of string
 matcher.appendTail(sb);

 return sb.toString();
 }
}

b In Java, regex options are bit-fields that can be or’ed together. The resulting value is
passed in as the second argument to compile().

c Not every match succeeds; Matcher.matches() returns a boolean telling whether or
not the pattern matches the input sequence. Note that the entire input sequence
must be matched for matcher() to return true.

d To carry out the find-and-replace, we use Matcher.appendReplace() and Matcher.
appendTail(). After each call to find(), we call appendReplacement(), which
replaces the matched text and appends it to the StringBuffer. appendReplacement()
also appends any text between the current match and the last one, so that the
StringBuffer gets the entire string, not just the parts that have been replaced. At the
end, we call appendTail() to append any remaining characters after the last match.

In this section, we’ve looked at Java translations of a few common Perl idioms. Next
we’ll take a look at some programs that have been designed entirely from a Java
point of view.

9.4 Example: HTML templating system

In this section we’ll take a look at a simple HTML templating system. This system
allows you to populate a page of HTML with variables; the variable names are
replaced with values before the page is sent to the user’s browser.

 A template looks like this:

<title> $title </title>
<h1><center>$title</center></h1>
<h2>$subtitle</h2>
$text

286 CHAPTER 9

Regular Expressions

jdk.book Page 286 Monday, March 11, 2002 3:38 PM
Table 9.14 shows a sample set of variable bindings for the variables in the preced-
ing template.

If we replace the variable references with the values, we get the following HTML:

<title> Template Test </title>
<h1><center>Template Test</center></h1>
<h2>An easier way to generate a page</h2>
Using a templating system is much easier than generating each page completely

from code.

We do this all with a class called Template. A Template object holds the entire con-
tents of a template file, and can be instantiated via the instantiate() method,
which takes a HashMap as an argument. This HashMap contains the variable bindings
that are to be used when instantiating the template.

 Listing 9.17 shows the Template class.

(See \Chapter9 \ Template.java)
import java.io.*;
import java.util.*;
import java.util.regex.*;

public class Template
{
 private String content;

 public Template(File file) throws IOException {
 // Read the entire file into memory
 FileInputStream fin = new FileInputStream(file);
 byte raw[] = new byte[(int)file.length()];
 int r = fin.read(raw);
 if (r != file.length()) {
 throw new IOException("Can't fully read "+file);
 }
 fin.close();

Table 9.14 A set of variable bindings for the instantiation of a template. Each variable on the left,
when prefixed with a dollar sign ($), is replaced with the corresponding value on the right.

Name Value

title Template Test

subtitle An easier way to generate a page

text Using a templating system is much easier than generating each page com-
pletely from code.

Listing 9.17 Template.java

o
The constructor reads
the entire template file
into a string

Example: HTML templating system 287

jdk.book Page 287 Monday, March 11, 2002 3:38 PM
 // Convert the raw data to a string
 content = new String(raw);
 }

 public String instantiate(HashMap mapping) {
 String instantiation = content;

 for (Iterator it=mapping.keySet().iterator(); it.hasNext();) {
 String var = (String)it.next();
 String value = (String)mapping.get(var);

 Pattern pattern = Pattern.compile("\\$"+var);
 Matcher matcher = pattern.matcher(instantiation);
 instantiation = matcher.replaceAll(value);
 }

 return instantiation;
 }
}

Listing 9.18 contains a test program that uses Template. It reads a template file
called test.thtml and instantiates the variable bindings from table 9.14.

(See \Chapter9 \ TemplateTest.java)
import java.io.*;
import java.util.*;

public class TemplateTest
{
 static private final String templateFile = "test.thtml";
 static private final String htmlFile = "test.html";

 static public void main(String args[]) throws IOException {
 Template template = new Template(new File(templateFile));

 HashMap mapping = new HashMap();
 mapping.put("title", "Template Test");
 mapping.put("subtitle", "An easier way to generate a page");
 mapping.put("text", "Using a templating system is much "+
 "easier than generating each page completely "+
 "from code.");

 String instantiation = template.instantiate(mapping);

Listing 9.18 TemplateTest.java

o

The HashMap argument
contains the variable
bindings

Apply each variable
mapping in turn

o

o

Create the
Template
object

Create a set of variable
mappings

o

o
 Instantiate the
template using
the mappings

288 CHAPTER 9

Regular Expressions

jdk.book Page 288 Monday, March 11, 2002 3:38 PM
 FileOutputStream fout = new FileOutputStream(htmlFile);
 PrintWriter out = new PrintWriter(fout);
 out.println(instantiation);
 out.flush();
 fout.close();
 }
}

In this example, we use the simple Matcher.replaceAll() method to do the finding
and replacing, rather than the more cumbersome Matcher.appendReplacement()/
Matcher.appendTail() method, because our application is simple. We want to
replace every occurrence of the variable name with the variable value, and we don’t
need to do any special processing or evaluation between replacements.

9.5 Example: a lexical analyzer

Now we’ll consider a program that does lexical analysis. A lexical analyzer (or lexer)
is the low-level portion of a parser, which breaks an incoming stream of characters
into tokens. Each token is a basic lexical unit of the language being parsed.

 A lexical unit is a unit of a language specification larger than a single character,
but smaller than an expression. In Java, lexical units include identifiers (any contig-
uous sequence of letters and digits, with a non-number at the start), integers (any
sequence of digits), {, ++, and so on.

 In the Unix world, the tools lex and flex have long been used to create lexers.
Such tools read the specification for a lexer and generate a C program that carries
out the lexical analysis. Thus, lex and flex are lexical analyzer generators. In this sec-
tion, we will not be creating a lexical analyzer generator, but rather just a lexical
analyzer. Such a program reads a specification and a file to analyze, and produces
the analysis.

 Our lexer uses a specification file that looks like the one in listing 9.19.

(See \Chapter9 \ example.lx)
whitespace \s+
whitespace (^$)
ident [a-zA-Z][a-zA-Z0-9]+
lparen \(
rparen \)
lcbrace \{
rcbrace \}
semicolon ;
comma ,

Listing 9.19 example.lx

o Write the
result to
a file

Example: a lexical analyzer 289

jdk.book Page 289 Monday, March 11, 2002 3:38 PM
period \.
equals =

Each line represents a single rule of the lexical analyzer, and contains two elements.
The second element of the rule is a regex defining a category of token. The first ele-
ment of the rule is the name of that category. Thus, any substring of the input that
matches the regex [a-zA-Z][a-zA-Z0-9]+ is a token of type ident.

 Actually, not just any substring will be matched thusly. The analysis proceeds
from the start of the file, and at each step, the lexer attempts to match each of the
regexes to the current string. The regex that matches the longest substring is taken
as the correct match, and the matched substring becomes the next token. This
continues until the file is exhausted. If, at any point, none of the regexes match the
input, this is considered a syntax error, and the analysis is halted.

 The configuration file in listing 9.19 is a portion of a simple lexer for Java.
Listing 9.20 shows some sample input—nothing too fancy, because our lexer is
incomplete.

(See \Chapter9 \ input.txt)
public LexerRule rule() {
 return rule;
}

Let’s see what our lexer does with this. The Lexer class has a main() routine that
can be used to do a quick lexical analysis of a file. It takes two arguments—the spec-
ification file, and the file to be processed:

java Lexer example.lx input.txt

The main() routine just zips through the file, breaking it into tokens, and printing
the tokens to System.out, as shown in listing 9.21.

(See \Chapter9 \ output.txt)
Parsed example.lx
["public" at line 1, column 1, rule:[ident [a-zA-Z][a-zA-Z0-9]+]]
[" " at line 1, column 7, rule:[whitespace \s+]]
["LexerRule" at line 1, column 8, rule:[ident [a-zA-Z][a-zA-Z0-9]+]]
[" " at line 1, column 17, rule:[whitespace \s+]]
["rule" at line 1, column 18, rule:[ident [a-zA-Z][a-zA-Z0-9]+]]
["(" at line 1, column 22, rule:[lparen \(]]

Listing 9.20 input.txt

Listing 9.21 output.txt

290 CHAPTER 9

Regular Expressions

jdk.book Page 290 Monday, March 11, 2002 3:38 PM
[")" at line 1, column 23, rule:[rparen \)]]
[" " at line 1, column 24, rule:[whitespace \s+]]
["{" at line 1, column 25, rule:[lcbrace \{]]
[" " at line 2, column 1, rule:[whitespace \s+]]
["return" at line 2, column 3, rule:[ident [a-zA-Z][a-zA-Z0-9]+]]
[" " at line 2, column 9, rule:[whitespace \s+]]
["rule" at line 2, column 10, rule:[ident [a-zA-Z][a-zA-Z0-9]+]]
[";" at line 2, column 14, rule:[semicolon ;]]
["}" at line 3, column 1, rule:[rcbrace \}]]

Each line of the output shows a number of things. First, we have the actual sub-
string of the input file. For example, on the first (boldfaced) line, we have public.
This is followed by the location of this string as a line number and a column num-
ber within that line. Finally, we have the rule, including the regex that defines it.

 Note that the strings at the start of each line contain every character in the file—
nothing is left out. Any character that didn’t fit into a string matched by one of the
lexical rules would be a syntax error, and the lexer never would have gotten past
it—the lexer would have reported the error and halted.

 It is common in many lexers to ignore white space tokens, but our lexer is rela-
tively simple—we have added a provision for a rule that should be ignored, so the
white space is included in the output.

 Let’s take a look at the source for our lexer. It is made up of three classes:

� LexerRule—A single rule of the lexer (see listing 9.22)
� LexerToken—A single token from an input stream, matched by a LexerRule

(see listing 9.23)

� Lexer—The main program that parses the specification file and performs the
lexical analysis (see listing 9.24)

(See \Chapter9 \ LexerRule.java)
import java.util.regex.*;

class LexerRule {
 // The name of the lexical category that this rule matches
 private String name;

 // The regex used for matching
 private String regex;

 // A pre-compiled Pattern object, kept to save time
 private Pattern pattern;

Listing 9.22 LexerRule.java

Example: a lexical analyzer 291

jdk.book Page 291 Monday, March 11, 2002 3:38 PM
 /**
 * Create a LexerRule
 */
 public LexerRule(String name, String regex) {
 this.name = name;
 this.regex = regex;
 }

 /**
 * Return the category name
 */
 public String name() {
 return name;
 }

 /**
 * Return the regex defining the rule
 */
 public String regex() {
 return regex;
 }

 /**
 * Return the Pattern object. Create one if
 * it hasn't been created already
 */
 public Pattern pattern() {
 if (pattern == null) {
 pattern = Pattern.compile(regex);
 }
 return pattern;
 }

 /**
 * Return a string representation of the rule
 */
 public String toString() {
 return "["+name+" "+regex+"]";
 }
}

(See \Chapter9 \ LexerToken.java)
public class LexerToken {
 private LexerRule rule;
 private String text;
 private int line;
 private int column;

 /**

Listing 9.23 LexerToken.java

o
A LexerRule combines the
category name and the
regex that defines it

o
Only compile the
pattern object once,
and keep it around

292 CHAPTER 9

Regular Expressions

jdk.book Page 292 Monday, March 11, 2002 3:38 PM
 * Create a LexerToken
 */
 public LexerToken(LexerRule rule, String text,
 int line, int column) {
 this.rule = rule;
 this.text = text;
 this.line = line;
 this.column = column;
 }

 /**
 * Return the rule that matched this token
 */
 public LexerRule rule() {
 return rule;
 }

 /**
 * Return the text matched by this token
 */
 public String text() {
 return text;
 }

 /**
 * Return a string representation of the token
 */
 public String toString() {
 return "["+"\""+text+"\""+" at line "+line+", column "+column+",

rule:"+rule+"]";
 }

(See \Chapter9 \ Lexer.java)
import java.io.*;
import java.util.*;
import java.util.regex.*;

public class Lexer
{
 static private final String lxRuleString =
 "^\\s*(\\S+)\\s+(\\S+)\\s*$";

 // Set of rules for this lexer
 private LexerRule rules[] = new LexerRule[0];

 // The current input
 private FileInputStream currentInputStream;
 private LineNumberReader currentReader;
 private String currentFilename;
 private String currentLine;
 private int currentColumn;

Listing 9.24 Lexer.java

o

The LexerToken
contains the rule, the
text, and the location
of the text in the file

o
Regex for parsing the
specification file

o
Keep track of our
position within the
input file

Example: a lexical analyzer 293

jdk.book Page 293 Monday, March 11, 2002 3:38 PM
 public Lexer(String specfile) throws IOException {
 loadSpecification(specfile);
 }

 private void loadSpecification(String specfile)
 throws IOException {
 // Read the specification file line-by-line
 FileInputStream fin = new FileInputStream(specfile);
 InputStreamReader isr = new InputStreamReader(fin);
 LineNumberReader lnr = new LineNumberReader(isr);

 // Pattern for "parsing" each line of the spec file
 Pattern lxRule = Pattern.compile(lxRuleString);

 // Temporarily stores the lists we find
 ArrayList rulesAL = new ArrayList();

 while (true) {
 String line = lnr.readLine();

 // Read until file is exhausted
 if (line==null)
 break;

 Matcher matcher = lxRule.matcher(line);
 if (matcher.matches()) {
 // Add rule to the list of rules
 String name = matcher.group(1);
 String regex = matcher.group(2);
 LexerRule lr = new LexerRule(name, regex);
 rulesAL.add(lr);
 } else {
 // Syntax error in the specification file
 System.err.println("Syntax error in "+specfile+" line "+
 lnr.getLineNumber()+": ");
 System.err.println(" "+line);
 System.exit(1);
 }
 }

 // Don't forget to close the file
 fin.close();

 // Convert the list of rules to an array, and save it
 rules = (LexerRule[])rulesAL.toArray(rules);

 System.out.println("Parsed "+specfile);
 }

 public void setSource(String filename) throws IOException {
 currentInputStream = new FileInputStream(filename);
 InputStreamReader isr =
 new InputStreamReader(currentInputStream);
 currentReader = new LineNumberReader(isr);

o
Load rules from the
specification file

o
Each rule is made of
a lexical category
name and a regex

o

Tell the
Lexer
where to
get input
from

294 CHAPTER 9

Regular Expressions

jdk.book Page 294 Monday, March 11, 2002 3:38 PM
 currentFilename = filename;

 // Position within the file
 currentLine = null;
 currentColumn = 1;
 }

 public LexerToken getNextToken() throws IOException {
 if (currentLine==null || currentLine.length()==0) {
 // If the current line is exhausted, read the next one
 currentLine = currentReader.readLine();

 if (currentLine==null) {
 // If there are no more lines, we're done
 currentInputStream.close();
 currentReader = null;
 currentFilename = null;
 return null;
 }

 currentColumn = 1;
 }

 // Match the next token
 LexerToken token = null;

 // The end of the next token, within the line
 int tokenEnd = -1;

 // The length of the rule that matches the most characters
 // from the input
 int longestMatchLength=-1;

 for (int i=0; i<rules.length; ++i) {
 LexerRule rule = rules[i];

 // The pattern for this rule
 Pattern pattern = rule.pattern();
 Matcher matcher = pattern.matcher(currentLine);

 if (matcher.lookingAt()) {
 int matchLength = matcher.end();
 if (matchLength > longestMatchLength) {
 // This match is the longest so far; save info about it
 longestMatchLength = matchLength;
 String text = matcher.group(0);
 int lineNumber = currentReader.getLineNumber();
 token = new LexerToken(rule, text,
 lineNumber, currentColumn);
 tokenEnd = matchLength;
 }
 }
 }
 // If we didn't match anything, it's an error

o
Return the next
token from the
input stream

Scan the file line-by-
line, and quit when no

more lines are left

o

Find the rule that
matches the

longest substring
of the input

b

Example: a lexical analyzer 295

jdk.book Page 295 Monday, March 11, 2002 3:38 PM
 if (token == null) {
 System.err.println("Syntax error in "+currentFilename+
 " line "+currentReader.getLineNumber()+
 ", column "+currentColumn+": ");
 System.out.println(" "+currentLine);
 System.exit(1);

 // Never reached
 assert false;

 // For the compiler
 return null;
 } else {
 // We matched something, so we'll return a token.

 // But first, skip past the current token so we're
 // ready to scan for the next one
 currentColumn += tokenEnd;
 currentLine = currentLine.substring(tokenEnd);

 // Now, return the token
 return token;
 }
 }

 static public void main(String args[]) throws IOException {
 if (args.length != 2) {
 System.err.println("Usage: Lexer <lxfile> <input>");
 System.exit(1);
 }

 String specfile = args[0];
 String inputfile = args[1];

 Lexer lexer = new Lexer(specfile);
 lexer.setSource(inputfile);

 while (true) {
 LexerToken token = lexer.getNextToken();
 if (token == null)
 break;

 System.out.println(token);
 }
 }
}

b We don’t just want to find a rule that matches the next characters of the input; we
want to match the longest substring of the input that we can. This is called greedy
lexical analysis, and this is generally how it is done.

To find the longest match, we try every rule against the input. For each match,
we note the length, and if it’s longer than the previous longest match, we record

o

Skip past the token
we just matched,
getting ready for
the next match

o Return the token we found

296 CHAPTER 9

Regular Expressions

jdk.book Page 296 Monday, March 11, 2002 3:38 PM
this one as the longest match. When we’re done, we have either the longest match
or no match at all.

The Lexer program makes use of regexes in a way the previous examples didn’t—
the regexes are not constants built into the program but are constructed at runtime
from strings read from a file. Data-driven parsing is very powerful technique.

 This Lexer could easily be combined with a Java-based parser to provide a lexer/
parser suite not unlike those used under Unix—lex and yacc (or flex and bison).

9.6 Summary

The rise of the Web has created a greater demand for systems based on text process-
ing, and regular expressions have become an incredibly important tool. Most large
software projects have their own regex system, or make use of a freely available
library. With the addition of regexes to the core Java platform, Java programmers
should make use of this valuable tool.

jdk.book Page 297 Monday, March 11, 2002 3:38 PM
10The Preferences AP
I

This chapter covers
� Purpose and scope of the API

� Comparison with other persistence mechanisms

� Reading and writing data

� Change listeners
297

298 CHAPTER 10

The Preferences API

jdk.book Page 298 Monday, March 11, 2002 3:38 PM
The Preferences API, in the java.util.prefs package, gives the programmer a con-
venient way to save and recall configuration information. This information can be
saved during one invocation of a program and recalled during a later invocation—
that is, the information is persistent across invocations. Additionally, this informa-
tion can be shared between invocations, if desired.

 In a sense, the Preferences API could be considered to be misnamed, since it can
be used to store any kind of information, not just preference data. However,
because of size limitations, and because the Preferences API makes no claims of effi-
ciency, it should not be used as a general database. It is best used for configuration
information—small pieces of information that are read and written one or a few
times per program invocation, and which need to be saved between invocations.
Generally, data stored in the Preferences API consists of a few values that describe
the configuration of the program as customized explicitly or implicitly by the user,
or the configuration of the software installation itself.

10.1 What the Preferences API is for

Looked at abstractly, the Preferences API is just another way to store data. Java
already has a number of ways of doing this, and more are being added all the time.
It’s important to be clear about what the Preferences API is good for, and what it is
not good for.

10.1.1 Simple Preferences API example
Suppose you’ve written a program that has a number of independent windows, and
you want to save their locations on screen as a convenience to the user. That way,
once he has arranged the windows the way he likes them, they will be displayed that
way the next time he runs the program.

 Here is how this can be done with the Preferences API:

import java.util.prefs.*;

// ...

Preferences prefs = Preferences.userNodeForPackage(getClass());
prefs.putInt("main window x", mainWindowX);
prefs.putInt("main window y", mainWindowY);
prefs.putInt("listing window x", listingWindowX);
prefs.putInt("listing window y", listingWindowY);

And here is how these values can be retrieved during a later invocation:

Preferences prefs = Preferences.userNodeForPackage(getClass());
mainWindowX = prefs.getInt("main window x", 200);
mainWindowY = prefs.getInt("main window y", 200);

What the Preferences API is for 299

jdk.book Page 299 Monday, March 11, 2002 3:38 PM
listingWindowX = prefs.getInt("listing window x", 400);
listingWindowY = prefs.getInt("listing window y", 400);

Note that the names of the preference values can have spaces—this is a signal that
these names should be thought of as human-readable, and even user-friendly. The
Preferences API is to be used for this kind of data.

10.1.2 Appropriate applications of the Preferences API
As mentioned previously, the Preferences API can store just about any kind of data.
However, it isn’t intended for all possible data storage purposes. Data that is being
managed using the Preferences API should meet the following criteria:

� The data should be small.
� The data should apply to a single user, or to a single installation.
� The data should need to be stored between invocations.
� The data should only be accessed occasionally.

� The data should not be critical.
� The data should not be essential to the functioning of the application.

Data that meets these criteria is often called preference data. This is in contrast to
application data, which is defined as data that is central to the operation of an appli-
cation, or that is created or generated by the user in the normal operation of the
application.

 These criteria are important enough that some elaboration is in order:

The data should be small
This is an intentionally vague statement. The Preferences API specifies a maximum
size of 8,192 bytes per value, and so there is a hard limit to what can be stored in a
single slot. In addition to this, good judgment should be used. For example, in a
word processing program, the Preferences API would be used to store the user’s
preferred font, but it would not be used to store the contents of a document that is
created.

 The amount of data should not vary widely during the use of the program. In
theory, you could, for example, use the Preferences API to store telephone numbers
in a Rolodex-style application. But this data could consist of 20 phone numbers, or
it could consist of 20 million phone numbers. No existing implementation of this
API is capable of dealing efficiently with that much data.

300 CHAPTER 10

The Preferences API

jdk.book Page 300 Monday, March 11, 2002 3:38 PM
The data should apply to a single user, or to a single installation
The Preferences API is intended to store information that pertains to a particular
user, such as changes a user has made to the configuration settings of the program.
Thus, in a multiwindow chat program, the positions of the windows might be
stored using the Preferences API, but global server log data would be stored in the
filesystem.

The data should need to be stored between invocations
This is, in a sense, the whole point. While the API could be used to store data dur-
ing a single invocation of the program, this would be overkill, since such data could
be stored more easily in variables.

 It is very common to reach for the Preferences API precisely because you’ve real-
ized that a particular piece of data, which previously was a regular program variable,
needs to be remembered between invocations.

 As an example, a game server would not use the Preferences API to store the
current scores of players as they are playing the game, but it might store the high-
score lists.

The data should only be accessed occasionally
This is another intentionally vague statement. There is, of course, no limit to how
often you can access data stored via the Preferences API. However, the API is not
intended primarily to be fast. It is only intended to store its data reliably.

 It would be common for an application to read configuration data via the Prefer-
ences API during startup and never use the API again. Just as commonly, a program
might write out changes to configuration values either at shutdown or at the
moment the user requests the changes. Some applications, such as servers, might be
instructed to reread configuration data from time to time, allowing the applications
to be reconfigured without having to shut down and start up again. In other appli-
cations, configuration data might be read or written once in a while, such as every
time a user connects to the system.

 The Preferences API is not intended to store data that is updated thousands of
times a second. While a fast enough computer could possibly handle it, such data is
really best served by a dedicated database engine or a very fast filesystem.

 As an example, a sophisticated web-server logging module might use the Prefer-
ences API to store the configuration determining which data should be logged, but
it should not use the API to store the actual log data.

What the Preferences API is for 301

jdk.book Page 301 Monday, March 11, 2002 3:38 PM
The data should not be critical
Applications that store data in the filesystem, or in a database, should continue to
do so. These are the places where users and system administrators expect to find
data, and the Preferences API is not meant to change that. Corrupted Preferences
data should be considered a loss of configuration data, not of application data.

 As an example, a program that is used to perform lengthy mathematical calcula-
tions might use the Preferences API to store the user’s choice of which of several
calculation methods to use, but the results of the calculations should be stored in
the filesystem, or in a database.

The data should not be essential to the functioning of the application
It is an explicit design goal of the Preferences API that it should not require access to
the underlying data store for it to function properly. Configuration information is
not considered essential to the functioning of an application. Often, it consists of
settings that are entered manually by the user and then remembered for conve-
nience. Such information can be entered again, if necessary. Thus, any data that is
central to the execution of the program should not be stored in the Preferences API.

 As an example, you might use the Preferences API to store a user’s address and
phone number if the application were a word processor or spreadsheet, but you
would not use it to store such information if the application were an address-and-
telephone database.

10.1.3 Design goals of the Preferences API
The following is a list of goals that inspired the design of the Preferences API. These
goals distinguish this API from other persistence mechanisms:

� The API should provide a hierarchical, tree-like data store.
� The API should store primitive data types.
� The API should guarantee back-end neutrality.
� There should be no need to remember locations of files.

� The API should not require explicit saving and loading of data.
� The API should be permitted to operate asynchronously.
� Data from different packages or applications should not interfere with each

other.
� The API should work in a multithreaded environment.
� The API should work in a multiprocess environment.

� The API should work in a multilanguage environment.

302 CHAPTER 10

The Preferences API

jdk.book Page 302 Monday, March 11, 2002 3:38 PM
� The API should provide only the minimum concurrency protection.

� The API should work even if the backing store is not available.
� The API should supply per-user data and system-wide data.

We’ll take a closer look at each of these goals, because they go a long way toward
clarifying when and how this API should be used:

The API should provide a hierarchical, tree-like data store
As we see in section 10.3, the data model used by the Preferences API is hierarchi-
cal, as opposed to relational or flat. This provides the programmer with the best
trade-off between simplicity and flexibility.

The API should store primitive data types
The API provides direct support for storing strings, numerical types (integers, floats,
doubles), booleans, and small byte-arrays. There is no support for serialized objects.

The API should guarantee back-end neutrality
It is an explicit and critical feature of the Preferences API that it can and should be
implemented differently on different systems. The implementation itself is divided
into a system-independent portion that is identical on all systems, and a system-
dependent back end.

 Unlike most database engines, the Preferences API should behave identically on
all systems. This means that any differences in the data-storage capabilities must be
hidden by the system-dependent layer. There are no optional methods (but see the
discussion of stored defaults in 10.6). Using the API’s import/export facility, it
should be possible to export a preferences database from one system and import it
cleanly into another system.

 The repository where the data is actually stored is called the backing store. This is
distinguished from the Preferences API, or front end, which enforces the structures
and procedures in a platform-independent way. The backing store might have com-
pletely different semantics from the Preferences API, in which case it is the responsi-
bility of the implementation to build the desired semantics on top of the semantics
of the back end.

There should be no need to remember locations of files
One of the disadvantages of the older java.util.Properties method of storing con-
figuration data is that the programmer was required to find and load the properties
files. This made it harder to share configuration data between applications, or to
establish conventions for configuration data, because there was no specification telling
the applications where the properties files were located.

What the Preferences API is for 303

jdk.book Page 303 Monday, March 11, 2002 3:38 PM
 The Preferences API deals with this by creating a global database whose location
is irrelevant to the programmer.

The API should not require explicit saving and loading of data
Using java.util.Properties, the programmer would use get and set methods to
access data values, and load and store methods to commit these values to disk. In
the Preferences API, only the get and set methods are needed—loading and storing
are taken care of automatically (although the API provides flush() and sync()
methods—see sections 10.4.15 and 10.4.16).

The API should be permitted to operate asynchronously
The implementation is allowed to defer the writing of data values. The actual API
writing calls can return immediately without the actual data being written to the
backing store. This allows for backing stores that are slow or only intermittently
available.

Data from different packages or applications should not interfere with each
other
The user is encouraged by the API to store configuration data separately for each
package. However, this is not enforced, which means that it is also easy to share
data between packages or applications.

The API should work in a multithreaded environment
The API should be thread-safe.

The API should work in a multiprocess environment
The API should work even if multiple instances of the Preferences API, within mul-
tiple JVMs, are accessing the same backing store.

The API should work in a multilanguage environment
The API should work even if programs written in other languages, using other
libraries, are accessing the same backing store.

The API should provide only the minimum concurrency protection
Despite the fact that the Preferences API must support the existence of multiple
writers to the same backing store, it is not intended to supply sophisticated
concurrency mechanisms. There is no support for transactions of any kind. Atom-
icity is at the level of the single key/value pair. There is no way to ensure that a
collection of multiple changes are committed either all together, or not at all.

304 CHAPTER 10

The Preferences API

jdk.book Page 304 Monday, March 11, 2002 3:38 PM
 Within a multithreaded Java program, a sequence of accesses in multiple threads
is defined as having the same semantics as they would if they were carried out in a
single thread—although the order of these accesses is not specified. This is really just
a fancy way of saying that no single access will be interrupted by any other single
access, even if the accesses are coming from threads that are active at the same time.

The API should work even if the backing store is not available
It is commonly understood that an application should continue to work even if its
configuration files are deleted. In such a situation, the application should run as best
it can using a default configuration. The Preferences API is designed to reflect this.

 The default implementations that come with the standard JDK packages will
likely be such that configuration data is always available to applications. However, it
is quite conceivable that the implementation for a small wireless device might store
configuration data on a central server. In the event that the device cannot reach the
central server, its applications should still be able to run.

The API should supply per-user data and system-wide data
The Preferences API recognizes that some configuration data is configuration for
the system, and some is for the user. Following this distinction, the preferences data-
base consists of a section for system data, and a section for user data. There is a sep-
arate user database for each user, and the selection between these is handled
automatically and invisibly by the API.

10.2 Knowing when to use the Preferences API

As mentioned earlier, there are many ways to save data in Java. The Preferences
API isn’t even the only way to save preference-style data. However, for most data
of this kind, the Preferences API is the new definitive method for storing such data.
In this section, we look at some competing methods and compare them with the
Preferences API.

10.2.1 Comparison with java.util.Properties
The Preferences API package is meant to replace “most common uses of Properties,”
according to the Preferences API Design FAQ. In general, you should think of the
java.util.prefs package as the new version of the java.util.Properties class.

 The main deficiencies of the Properties class, in relation to the Preferences API,
are as follows:

� Properties only deals with string data.

Understanding the data hierarchy 305

jdk.book Page 305 Monday, March 11, 2002 3:38 PM
� Properties requires the programmer to load and save the data to and from a
file or stream.

10.2.2 Comparison with JNDI
A thorough comparison between the Java Naming and Directory Interface (JNDI)
and the Preferences API package is beyond the scope of this book. Suffice it to say
that while JNDI can certainly help you accomplish the same goals as the Preferences
API, it does so with the conceptual and computational overhead of a sophisticated
system consisting of many classes spread through a number of packages. The Prefer-
ences API is intended to be available on any platform, no matter how small, and is
meant to be easy to use. It is also meant to be used in situations where it’s okay if
the data isn’t available—which may not be the case for your application.

10.3 Understanding the data hierarchy

The Preferences API provides a particular model for the data it stores. The model is
loosely based on a filesystem, but has names and values rather than filenames and file
contents. The API provides two separate trees of data—a system tree and a user tree.

10.3.1 Tree-like structure
The Preferences API provides a tree-like data model. This is in contrast to other
common database structures, such as relational and flat-file. The database itself is
structured as a set of nodes, and each node can contain a set of key/value pairs. A
node can contain other nodes—a node that contains another node is called the par-
ent of that node, and the contained node is called the child of the parent node.

 As we’ll see in section 10.3.3, there are two distinct trees—a user tree and a sys-
tem tree.

10.3.2 Key/value pairs
Each key/value pair is an association between the name (the key) and the value. You
can store a value under a name, and then use that name later to retrieve the stored
value.

 A name must meet the following requirements:

� It must be a primitive Java string
� It cannot be the null string
� It cannot contain the character “/”

306 CHAPTER 10

The Preferences API

jdk.book Page 306 Monday, March 11, 2002 3:38 PM
A value must be one of the following primitive Java types:

� string (String)
� boolean (boolean)
� integer (int)

� long integer (long)
� floating-point (float)
� double-precision floating-point (double)

� byte array (byte[])

Furthermore, any value that has the potential to be large, such as a string or byte
array, must be less than Preferences.MAX_VALUE_LENGTH (8,192) bytes in size.

10.3.3 System vs. user
As was mentioned previously, the preferences database is divided into two main
sections. The user tree is used to store configuration data on a per-user basis,
while the system tree is used to store configuration data on a per-system (or per-
installation) basis.

 What this means in practice is that a program has access during its execution to
two distinct data trees. These trees are functionally identical, with identical APIs.
They differ in the kind of data that is stored in them, and in the way they are made
available to a particular user.

 There is a user tree for every single user on the system. A running program only
has access to one of these user trees at a time—the user tree corresponding to the
current user. At the same time, the program has access to the system tree. There is
only one system tree, and it is shared among all running applications in the system.

 It is important to note that the system tree is in no way protected from modifi-
cation. The user/system distinction does not provide any form of security.

10.3.4 Definition of a user
The Preferences API does not specify any kind of formal definition of what a user is,
nor does it involve itself with any kind of user authentication. It does not even
require that a user have a name. All that is required is that the userNodeForPack-
age() and userRoot() methods be defined.

 It is assumed that “user” will be defined in a system-dependent way, and that
there is a way of determining the user at runtime. There are no security protections
for this determination except as supplied by the underlying implementation.

Understanding the data hierarchy 307

jdk.book Page 307 Monday, March 11, 2002 3:38 PM
10.3.5 Pathnames
As mentioned previously, both the user and system halves of the preferences data-
base are structured like trees, with nodes that can contain key/value pairs and other
nodes. This structure is designed to resemble that of a filesystem, and like a filesys-
tem, each element in a tree has an absolute pathname, which specifies its precise
location within the tree. A node or key/value pair can also have a relative pathname,
which specifies its location in relation to another node within the same tree.

 Figure 10.1 shows an example configuration of nodes and key/value pairs. These
nodes and values have the absolute pathnames listed in table 10.1.

Relative to child1, the nodes and values have the relative pathnames listed in
table 10.2.

Table 10.1 Each node in figure 10.1 has an absolute pathname. This
pathname describes the location of the node in relation to the
root of the preferences tree.

Node Absolute pathname

root /

child0 /child0

child1 /child1

grandchild0 /child1/grandchild0

root

child0 child1

grandchild0

key0 = value0

key2 = value2

key1 = value1

Figure 10.1 An example configuration of nodes and
key/value pairs. Nodes are shown as ovals, while
key/value pairs are shown as rectangles.

308 CHAPTER 10

The Preferences API

jdk.book Page 308 Monday, March 11, 2002 3:38 PM
Note that there is no equivalent to the “..” found in some operating systems. All
relative pathnames go toward the leaves of the tree.

10.3.6 Per-package subtrees
The Preferences API encourages the programmer to subdivide the preference trees
by package. This helps keep the data for different programs from interfering with
each other.

 Each package name can be turned into an absolute pathname by changing each
“.” to a “/” and adding a “/” at the front of the string. For example,
java.awt.font becomes /java/awt/font. Code within the java.awt.font package
would then store its subnodes and key/value pairs underneath this node. This is
described in more detail in the next section.

 Note that this naming convention is just that—a convention. However, as we’ll
see, this convention is employed by the Preferences API itself, in methods like user-
NodeForPackage() and systemNodeForPackage(), so you should stick to it unless
you have a good reason not to.

10.4 Using the API

In this section, we’ll take a look at the basic usage of the Preferences API. For the
most part, the examples in the following sections use the user preferences tree.
Unless otherwise noted, the examples work identically when used with nodes from
the system tree.

10.4.1 Traversing the data hierarchy
Before you can read or write any data using the Preferences API, you must get your
hands on a Preferences object. This object corresponds to a single node in a pref-
erences tree, and it gives you direct access to the key/value pairs within that node. It
also allows you to acquire Preferences objects for other nodes, particularly the
node’s children.

Table 10.2 Nodes also have relative pathnames, which show their
relationship to other nodes, rather than to the root of the tree.

Node Relative pathname

child1 ""

grandchild0 grandchild0

Using the API 309

jdk.book Page 309 Monday, March 11, 2002 3:38 PM
 Once you have access to a preferences node, you can read and write values, and
use it to get access to children, grandchildren, and so on. Remember that the Pref-
erences API data hierarchy is a lot like a filesystem. When using a filesystem, your
application is free to create subdirectories, subsubdirectories, and so on, and to store
any data in these directories, using any filenames. Analogously, with the Preferences
API, your application is free to create child nodes, grandchild nodes, and so on, and
to store any values in these nodes, using any keys. Remember, however, that the
Preferences API provides two separate data hierarchies—a user hierarchy and a sys-
tem hierarchy. The former is used for user-specific data, while the latter is used for
non-user-specific (or system- or application-wide) data. In this section, we’ll take a
look at the methods used to get access to different nodes in the data hierarchy.

 There are a number of ways of getting a Preferences object. The simplest way is
to use the userRoot() method, which provides access to the root of the user prefer-
ences tree. We’ll look at other methods for getting access to a node later in this sec-
tion. (All of these methods have analogous system methods.)

Preferences root = Preferences.userRoot();

This Preferences object corresponds to the path "/".
 Once you have your hands on the Preferences object for a particular node, you

can use it to gain access to descendants of that node. This is done using the node()
method, which takes a relative or absolute pathname and returns a Preferences
object.

Preferences child0 = root.node("child0");

Since root corresponds to the path “/”, child0 corresponds to the path “/child0”.
The following line has the same result as the preceding line:

Preferences child0 = root.node("/child0");

You can call the node() method from any Preferences object, not just root. By
doing this you can use any Preferences object to get access to one of its children:

Preferences child1 = root.node("child1");
Preferences grandchild0 = child1.node("grandchild0");

The object grandchild0 corresponds to the absolute path “/child1/grandchild0”.
 Note that when you use an absolute path, the path of the old object does not

matter. The following four lines are equivalent:

310 CHAPTER 10

The Preferences API

jdk.book Page 310 Monday, March 11, 2002 3:38 PM
Preferences grandchild0 = child1.node("grandchild0");

Preferences grandchild0 = child1.node("/child1/grandchild0");

Preferences grandchild0 = root.node("/child1/grandchild0");

Preferences grandchild0 = grandchild0.node("/child1/grandchild0");

Each package is given its own subtree within the data hierarchy. The most common
place for Java code to store its data is in the subtree corresponding to its package,
and you can get access to a package’s node using the userNodeForPackage()
method, which is a static method of Preferences:

Preferences prefs = Preferences.userNodeForPackage(getClass());

Note that you must supply a class to this method. userNodeForPackage() gets the
package name of the supplied class and turns this into an absolute pathname. This
pathname is then used to get access to the preferences node. Thus, the following
two code fragments are equivalent:

Preferences prefs = Preferences.userRoot().node("/java/util/prefs");

package java.util.prefs;
//...
Preferences prefs = Preferences.userNodeForPackage(getClass());

In the second of the preceding code fragments, we use the getClass() method
(shown in boldface) to get the Class object corresponding to the class containing
this code. This is passed to the userNodeForPackage() method in order to get the
Preferences node corresponding to the package containing this class.

 However, you can’t use the getClass() method if you’re writing a static
method; in this case, you can use the <Classname>.class syntax to get the Class
object associated with a static method:

public class MyClass
{
 static private void method() {
 Preferences prefs = Preferences.userNodeForPackage(MyClass.class);
 System.out.println(prefs);
 }
}

Just as you can get the user node for a particular package, you can get the system
node for that package using systemNodeForPackage():

Preferences prefs = Preferences.systemNodeForPackage(getClass());

As mentioned earlier, the system node for a package can be used in the same way as
the user node, but it is meant for data that is not user-specific.

Using the API 311

jdk.book Page 311 Monday, March 11, 2002 3:38 PM
 In Java, code that is not assigned to a particular package is placed in the
default package. Within the Preferences API, the absolute pathname for this pack-
age is “/<unnamed>”.

10.4.2 Reading and writing values
Once you have a Preferences object, you can use it to read and write values. The
following fragment writes an integer to the Preferences node for the current class
package:

int windowX = 250;
Preferences prefs = Preferences.userNodeForPackage(this);
prefs.putInt("window x", windowX);

Getting the value back out later is done as follows:

Preferences prefs = Preferences.userNodeForPackage(this);
int windowX = prefs.getInt("window x", 300);

Note that getInt() takes a second argument—this is a default value, which will be
returned from getInt() if there isn’t a value for window x. Default values are always
used in any get() call. (See section 10.4.7 for more information.)

 The same thing can be done with other types:

boolean showGrid = false;
Preferences prefs = Preferences.userNodeForPackage(this);
prefs.putBoolean("show grid", showGrid);

Preferences prefs = Preferences.userNodeForPackage(this);
float gravity = prefs.getFloat("gravity", 9.8);

There is a get() method for each basic type. Note that the values are always stored
as strings and that type checking is not performed. Values that are the wrong type,
and that therefore cannot be parsed, will trigger the appropriate format exception.

10.4.3 Allowable types
Table 10.3 shows the types that are directly supported by the Preferences API, along
with the methods that read and write them. Note that all of the types are primitive
Java types except for strings (which are objects) and byte arrays (which are arrays).

312 CHAPTER 10

The Preferences API

jdk.book Page 312 Monday, March 11, 2002 3:38 PM
10.4.4 Allowable keys
You aren’t required to take your key string from the name of the variables being
written. The following lines of code are all valid:

int windowX = 250;
Preferences prefs = Preferences.userNodeForPackage(this);

prefs.putInt("windowX", windowX);

prefs.putInt("window x", windowX);
prefs.putInt("quiet please", windowX);

All that matters is that your application use the same key for reading and writing. A
key can be any valid Java String with a length less than Preferences.MAX_KEY_-
LENGTH, which is 80.

10.4.5 Allowable values
For the primitive Java types, any value is valid. String and byte array values must not
be null.

 In some key/value storage systems, storing a particular value is equivalent to
removing that value entirely. This is not the case for the Preferences API. In keeping
with the semantics of the java.util.Hashtable class, storing a value of null to a
node will throw a NullPointerException.

 Values must be smaller than Preferences.MAX_VALUE_LENGTH (8,192 bytes) in
their stored representations. It can safely be assumed that the primitive types
(int, boolean, float, double, and long) always have representations within this
limit. String values can be compared against this limit using their length()

Table 10.3 The Preferences API has get() and put() methods for each of the basic types, as well as
for string and byte array types.

Type Java name Reader method Writer method

string String get() put()

byte array byte[] getByteArray() putByteArray()

boolean boolean getBoolean() putBoolean()

floating-point float getFloat() putFloat()

double-precision floating-point double getDouble() putDouble()

integer int getInt() putInt()

long integer long getLong() putLong()

Using the API 313

jdk.book Page 313 Monday, March 11, 2002 3:38 PM
method, but remember that a Unicode character can require more than a single
byte for its encoding.

 Byte array values are encoded using the Base64 encoding as specified in RFC
2045, section 6.8, with one change. In practice, this means that the encoding of the
byte array will be longer than the length of the byte array, as given by the expression
array.length. According to the documentation, a byte array must be less than, or
equal to, three-fourths of the value of MAX_VALUE_LENGTH. To determine whether a
byte array is too long, use the following fragment:

if (array.length >= (MAX_VALUE_LENGTH*3/4)) {
 // ...
} else {
 // ...
}

Attempting to store a value that will not fit causes an IllegalArgumentException to
be thrown.

10.4.6 Allowable node names
Node names must be smaller than Preferences.MAX_NAME_LENGTH (80 bytes) and
cannot contain a “/” character. The node name of the root node is the empty
string; no other node can have the empty string as a node name. These are the only
restrictions on node names.

10.4.7 Default values
Each get() method takes a default value as the second argument. If the preferences
database does not contain a value corresponding to the given key, or if the prefer-
ences database is not available, the default value is returned.

 In the following example, we assume that the database does not contain a value
corresponding to the key “window x”:

Preferences prefs = Preferences.userNodeForPackage(this);
int windowX = prefs.getInt("window x", 200);

This code will result in the variable windowX containing the value 200.
 Default values are mandatory for every get() method. This is done to strongly

encourage programmers not to assume that preferences will be available, and to
ensure that their program works properly in such situations. The burden of creating
reasonable defaults is placed on the programmer.

314 CHAPTER 10

The Preferences API

jdk.book Page 314 Monday, March 11, 2002 3:38 PM
10.4.8 Removing values
Values can be removed entirely from the nodes that contain them by using the
remove() method:

Preferences prefs = Preferences.userNodeForPackage(this);
prefs.putInt("window x", 200);
int windowX = prefs.getInt("window x", 300);
prefs.remove("window x");
int windowX = prefs.getInt("window x", 300);

Removing a value is not the same as putting an empty string or zero-valued integer
there. Attempting to store a value of null to a preferences object will throw a
NullPointerException.

 The Preferences API also provides the clear() method. Calling this method is
equivalent to calling remove() on all of the keys currently existing in the node:

Preferences prefs = Preferences.userNodeForPackage(this);
prefs.putInt("window x", 200);
int windowX = prefs.getInt("window x", 300);
prefs.clear();
int windowX = prefs.getInt("window x", 300);

Note that you do not need to specify the type of the value you are removing—the
remove() method removes the value regardless of the type that was stored there.

10.4.9 Iterating through the values in a node
The method keys() returns an array containing the keys of all the key/value pairs in
the node. This method can be used to iterate through the contents of a node:

Preferences uroot = Preferences.userRoot();
String keys[] = uroot.keys();
for (int i=0; i<keys.length; ++i) {
 System.out.println(keys[i]+" "+uroot.get(keys[i], ""));
}

Even though a node can contain both key/value pairs and child nodes, the keys()
method only returns keys of key/value pairs. It does not return node names of child
nodes.

10.4.10 Distinguishing between user and system nodes
As was mentioned in section 10.3.3, user and system nodes store information in the
same way, and differ only in what they are used for and how they are accessible to
different users. In fact, in most implementations, it’s safe to assume that both kinds
of nodes are implemented by the same Java class, which means you can’t necessarily
tell them apart by finding out what classes they are implemented by.

Using the API 315

jdk.book Page 315 Monday, March 11, 2002 3:38 PM
 As a result, the Preferences API contains a method that allows you to distinguish
between user and system nodes. This method is called isUserNode(), and it returns
a boolean.

 Here is an example of its use:

Preferences prefs = Preferences.userNodeForPackage(this);
if (prefs.isUserNode()) {
 // ...
} else {
 // ...
}

In this example, it is already obvious that the node is a user node, because of the call
to userNodeForPackage. This will not always be the case, however—there will be
some times when a node has been stored or passed to a method that does not know
whether the node is a user node or a system node.

 There aren’t many situations where you would care what kind of node you
had—and fewer still where, if you did care, you wouldn’t know. You might care if
you were writing utility code that dealt with preference data in some way, rather
than just reading and writing preference data—such code might take a node as an
argument to a method. If, for example, you wanted to impose a policy of only mod-
ifying values in user nodes, and treating system nodes as read-only, then you’d need
to check the type before you wrote any data.

10.4.11 Node names and paths
Every node corresponds to an absolute path. This path can be accessed using the
absolutePath() method. Each node also has a node name that corresponds to the last
element in that node’s absolute path, and that can be accessed via the name() method.
(In the following code fragment, the output of each System.out.println() line is
shown in bold italic following that line.)

Preferences root = Preferences.userRoot();
Preferences child1 = root.node("child1");
String child1Path = child1.absolutePath();
System.out.println(child1Path);
 // prints out: /child1
String child1Name = child1.name();
System.out.println(child1Name);
 // prints out: child1

The name and path values are meant to be reminiscent of a filesystem.

316 CHAPTER 10

The Preferences API

jdk.book Page 316 Monday, March 11, 2002 3:38 PM
10.4.12 Getting parent and child nodes
A node that contains another node is called the parent of the contained node. The
contained node is called the child of the containing node. For example, the relation-
ship between parent and child nodes from figure 10.1 can be seen in table 10.4.

The Preferences API provides the parent() and childrenNames() methods to allow
you to get the parent or children of a given node.

 Every node has exactly one parent, which is returned by the parent() method:

package a.b.c;
// ...
Preferences prefs = Preferences.userNodeForPackage(this);
Preferences parent = prefs.parent();
Preferences grandParent = parent.parent();
Preferences greatGrandParent = grandParent.parent();
Preferences greatGreatGrandParent = greatGrandParent.parent();

Actually, there’s one exception: calling parent() on the root node returns null.
 A node can have any number of children, and these children can be discovered

via the childrenNames() method. A node that has no children will return a zero-
length array (as opposed to null).

 The following code fragment produces the array { "child0", "child1" }:

Preferences prefs = Preferences.userRoot();
String childrenNames[] = prefs.childrenNames();

In contrast, the following code fragment produces the zero-length array {}:

Preferences prefs = Preferences.userRoot().node("child0");
String childrenNames[] = prefs.childrenNames();

10.4.13 Determining the presence of nodes
You can determine whether a node is present within a preferences tree with the
nodeExists() method. This method takes a string representing a path, which can
be absolute or relative.

Table 10.4 Every node except the root node has a parent.

Parent Child

/ /child0

/ /child1

/child1 /child1/grandchild0

Using the API 317

jdk.book Page 317 Monday, March 11, 2002 3:38 PM
 In the following code, calls to nodeExists() that return true are shown in bold-
face; those that return false are shown in italics.

Preferences uroot = Preferences.userRoot();
boolean b = uroot.nodeExists("child1");
b = uroot.nodeExists("/child1");
Preferences child1 = uroot.node("child1");
Preferences grandchild0 = child1.node("grandchild0");
b = child1.nodeExists("grandchild0");
b = child1.nodeExists("child1");
b = child1.nodeExists("/child1");
b = grandchild0.nodeExists("child1");
b = grandchild0.nodeExists("/child1");

nodeExists() takes a single argument, which is an relative or absolute path. If the
path is a relative path, the system attempts to locate the node relative to the given
node. If the path is absolute, the system attempts to locate the node relative to the
root of the given node; in this case, the only requirement for the node whose node-
Exists() method is being called is that it be in the same preferences tree as the
node in question.

10.4.14 Removing nodes
Child nodes can be removed from parent nodes by using the removeNode()
method. The object that this method is called on is removed from the preferences
tree, along with all of its descendants.

Preferences uroot = Preferences.userRoot();
Preferences child1 = uroot.node("child1");
child1.removeNode();

Note that after you’ve called the removeNode() method, you still have a reference to
the object in question, which would allow you to continue to call methods on it, or
any of its children. Calling any Preferences method on these objects, other than
name(), nodeExists(), flush(), isUserNode(), or absolutePath() will result in an
IllegalStateException. The code shown here in boldface is incorrect, and will
throw an IllegalStateException:

Preferences uroot = Preferences.userRoot();
Preferences child1 = uroot.node("child1");
child1.removeNode();
// BAD! Node has already been removed!
int windowX = child1.get("window x", 200);
// BAD! Node has already been removed!
Preferences grandchild0 = child1.node("grandchild0");

It is impossible to remove the root node of a tree. Attempting to do so results in an
UnsupportedOperationException.

318 CHAPTER 10

The Preferences API

jdk.book Page 318 Monday, March 11, 2002 3:38 PM
10.4.15 Flushing
As mentioned in section 10.1.3, an implementation of the Preferences API is not
required to write its data to the backing store immediately. Rather, it is allowed to
simply make note of the write request, and then schedule a background process to
do the writing at some later date.

 In order to give the programmer some control over this mechanism, the Prefer-
ences API provides the flush() method:

int windowX = 250;
Preferences prefs = Preferences.userNodeForPackage(this);
prefs.putInt("window x", windowX);
// ... changes are not permanent yet
prefs.flush();
// ... changes are now permanent

It’s very important to understand that flush() only affects the backing store. The
API itself, from the point of view of a Java program, will see any changes immedi-
ately after they are made. Flushing simply ensures that these changes have been
safely saved to whatever medium is holding the permanent representation of the
database. This medium is usually the local disk, but could also be a remote server or
an intermittently available repository.

 For the purposes of flushing, the addition and removal of nodes are considered
regular changes—they do not become permanent until they are flushed.

 Note that an implementation is not required to operate asynchronously. An
implementation can choose to flush changes to the backing store after every single
write, after only some writes, or at any other time. A program is not required to call
flush() before program termination. This is taken care of automatically by the
implementation.

10.4.16 Syncing
As mentioned in section 10.1.3, the Preferences API is intended to work in an envi-
ronment where multiple agents are modifying the same backing store. These agents
can be multiple threads within a Java Virtual Machine (JVM), or multiple JVMs, or
programs written in different languages running on the same system.

 Because of this, it is possible that changes made to the backing store by one
thread or program will not be visible to another program. However, this other pro-
gram can remedy the situation by calling the sync() method. This method ensures
that the given node, and any of its descendants, are up to date with respect to the
backing store. Any changes that have occurred to this node within the backing store
will be reflected in this node after sync() returns.

Using the API 319

jdk.book Page 319 Monday, March 11, 2002 3:38 PM
 The following example demonstrates the interaction between two threads or
programs reading from and writing to the same backing store:

Preferences prefs = Preferences.userNodeForPackage(this);
prefs.putInt("window x", 300);
int windowX = prefs.getInt("window x", 250); // returns 300
// .. Long pause during which another thread or program
// sets this value to 500 in the backing store
windowX = prefs.getInt("window x", 250); // still returns 300
prefs.sync();
windowX = prefs.getInt("window x", 250); // returns 500

Note that sync() also ensures that any unflushed changes to this node within this
JVM are flushed to the backing store. That is, sync() calls flush() before return-
ing. It’s not clear from the documentation which happens first—the sync() or the
flush().

10.4.17 Example: storing GUI configuration
A perfect use for the Preferences API is to store user customizations to the GUI of
an application. In this example we’ll look at the bare bones of the GUI for an inte-
grated development environment (IDE). The interface of our hypothetical IDE has
six windows.

 IDEs generally have a very crowded interface. Because the interface is so
crowded, users generally want to rearrange the windows to suit their needs
(figure 10.2 shows two possible window arrangements for the IDE interface). These
rearrangements should be saved, because it is very annoying for a user to have to set
things up from scratch every time she runs the software.

Figure 10.2 Two configurations of the interface to a hypothetical IDE application. Users generally
need to customize the layout of such applications because there is so much information to see. The
Preferences API is a perfect method for storing this customization data.

320 CHAPTER 10

The Preferences API

jdk.book Page 320 Monday, March 11, 2002 3:38 PM
 Listing 10.1 contains a class called PersistentWindow, which knows how to store
and retrieve its location and size information using the Preferences API. When a
PersistentWindow is closed via its remove() method, or by clicking its close button,
it saves its current state so that it can be restored when it is created again.

 The PersistentWindows class creates all six windows and maintains a list of
them. When the program is quit, the windows’ remove() methods are called so that
the state of the entire configuration is saved.

(See \Chapter10 \org\jdk14tut\app\PersistentWindows.java)
package org.jdk14tut.app;

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.util.prefs.*;
import javax.swing.*;

public class PersistentWindows
{
 private Set windows = new HashSet();
 private Preferences prefs =
 Preferences.userNodeForPackage(getClass());
 static private final String NAMES[] = {
 "Main", "Source", "Assembly", "Classes", "Watch", "Project" };

 // Default positions of the windows
 static final private Rectangle DEFAULTS[] = {
 new Rectangle(39, 2, 728, 81),
 new Rectangle(218, 83, 548, 312),
 new Rectangle(218, 396, 547, 125),
 new Rectangle(39, 244, 179, 277),
 new Rectangle(38, 522, 726, 85),
 new Rectangle(39, 83, 179, 161),
 };

 public PersistentWindows() {
 setupGUI();
 }

 private void setupGUI() {
 PersistentWindow pw = null;

 pw = addWindow(0);
 pw.getContentPane().setLayout(new BorderLayout());
 pw.getContentPane().add(new JTextArea(), BorderLayout.CENTER);
 JMenuBar mb = new JMenuBar();
 pw.setJMenuBar(mb);
 JMenu fileMenu = new JMenu("File");

Listing 10.1 PersistentWindows.java

b Set up the windows

Using the API 321

jdk.book Page 321 Monday, March 11, 2002 3:38 PM
 fileMenu.setMnemonic(KeyEvent.VK_F);
 mb.add(fileMenu);
 JMenuItem exitMI = new JMenuItem("Exit", KeyEvent.VK_X);
 exitMI.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 removeWindows();
 System.exit(0);
 }
 });
 fileMenu.add(exitMI);
 pw.setVisible(true);

 pw = addWindow(1);
 pw.getContentPane().setLayout(new BorderLayout());
 pw.getContentPane().add(new JTextArea(), BorderLayout.CENTER);
 pw.setVisible(true);

 pw = addWindow(2);
 pw.getContentPane().setLayout(new BorderLayout());
 pw.getContentPane().add(new JTextArea(), BorderLayout.CENTER);
 pw.setVisible(true);

 pw = addWindow(3);
 pw.getContentPane().setLayout(new BorderLayout());
 pw.getContentPane().add(new JTextArea(), BorderLayout.CENTER);
 pw.setVisible(true);

 pw = addWindow(4);
 pw.getContentPane().setLayout(new BorderLayout());
 pw.getContentPane().add(new JTextArea(), BorderLayout.CENTER);
 pw.setVisible(true);

 pw = addWindow(5);
 pw.getContentPane().setLayout(new BorderLayout());
 pw.getContentPane().add(new JTextArea(), BorderLayout.CENTER);
 pw.setVisible(true);
 }

 // Return the window with the given name
 private PersistentWindow getWindow(String name) {
 for (Iterator it=windows.iterator(); it.hasNext();) {
 PersistentWindow pw = (PersistentWindow)it.next();
 if (pw.name().equals(name))
 return pw;
 }
 return null;
 }

 private PersistentWindow addWindow(int windowNum) {
 PersistentWindow pw =
 new PersistentWindow(NAMES[windowNum], DEFAULTS[windowNum]);

c
Add a window,
getting its location
from Preferences

322 CHAPTER 10

The Preferences API

jdk.book Page 322 Monday, March 11, 2002 3:38 PM
 windows.add(pw);

 return pw;
 }

 private void removeWindow(PersistentWindow pw) {
 windows.remove(pw);

 // If there are no more windows left, quit
 if (windows.size()==0) {
 System.exit(0);
 }
 }

 private void removeWindows() {
 Object ws[] = windows.toArray();
 for (int i=0; i<ws.length; ++i) {
 ((PersistentWindow)ws[i]).remove();
 }
 }

 /**
 * Inner class: PersistentWindow is a JFrame
 * whose position is managed by PersistentWindows
 * class.
 */
 class PersistentWindow extends JFrame {
 private String name;

 public PersistentWindow(String name, Rectangle defaults) {
 super(name);
 this.name = name;
 setLocation(defaults);
 addListeners();
 }

 public String name() { return name; }

 public void setLocation(Rectangle defaults) {
 int x = prefs.getInt(name+"_x", defaults.x);
 int y = prefs.getInt(name+"_y", defaults.y);
 int width = prefs.getInt(name+"_width", defaults.width);
 int height = prefs.getInt(name+"_height", defaults.height);
 setLocation(x, y);
 setSize(width, height);
 }

 private void saveLocation() {
 int x = getLocation().x;
 int y = getLocation().y;
 int width = getSize().width;
 int height = getSize().height;
 prefs.putInt(name+"_x", x);
 prefs.putInt(name+"_y", y);

d
Remove a
window

e
Remove all
windows

f
PersistentWindow
represents a single
window

g
Get location info from
Preferences

o
Save location info to
Preferences

Using the API 323

jdk.book Page 323 Monday, March 11, 2002 3:38 PM
 prefs.putInt(name+"_width", width);
 prefs.putInt(name+"_height", height);
 }

 private void remove() {
 saveLocation();
 setVisible(false);

 // Remove this window from the parent
 // object's list
 removeWindow(PersistentWindow.this);
 }

 private void addListeners() {
 addWindowListener(new WindowListener() {
 public void windowActivated(WindowEvent we) {
 }
 public void windowClosed(WindowEvent we) {
 }
 public void windowClosing(WindowEvent we) {
 // Remove window if the close-button is pressed
 remove();
 }
 public void windowDeactivated(WindowEvent we) {
 }
 public void windowDeiconified(WindowEvent we) {
 }
 public void windowIconified(WindowEvent we) {
 }
 public void windowOpened(WindowEvent we) {
 }
 });
 }
 }

 static public void main(String args[]) {
 new PersistentWindows();
 }
}

b Each window is initially created using addWindow(), which creates a PersistentWin-
dow. Then each window is decorated with GUI components.

c addWindow() creates a PersistentWindow and adds it to the list of windows. This list
is maintained so that the program knows when all the windows have been closed, at
which point the program can exit.

The windows are indexed by an integer ranging from 0 to 5; this value serves as
an index into the names array, which stores the name of each window, as well as into
the table of default locations.

h
Remove the
window

324 CHAPTER 10

The Preferences API

jdk.book Page 324 Monday, March 11, 2002 3:38 PM
d removeWindow() maintains the windows list. When there are no more windows, the
program can quit.

e removeWindows() calls the remove() method of each window. It must call remove()
to ensure that the window saves its location information to the Preferences API.

f PersistentWindow is a subclass of JFrame so that it can easily be used any place a
JFrame is used. This makes it easy to use PersistentWindows throughout your appli-
cation. Instead of having to explicitly remember the location of every window in
your GUI, you can just remember to use a PersistentWindow for each window.

g setLocation() attempts to load location and size information from the Preferences
API. In the event that the preferences database is not available, it gets this info from
the defaults object.

h remove() calls saveLocation() before closing the window. After it closes the win-
dow, it calls the removeWindow() method of the parent object to make sure it gets
removed from the list of windows.

This program illustrates a powerful technique: if each component can be responsi-
ble for its own customization information, it becomes easier to add such persistence
to an application on an incremental basis. Programmers often avoid saving such cus-
tomization data because it requires advance planning of a kind that generally isn’t
given a high priority. The Preferences API makes it very easy to make customiza-
tions persistent because it is globally available to all modules in an application, and
does not require the assistance of the application’s main module.

10.5 Change listeners

As was mentioned in section 10.1.3, multiple threads or programs can modify the
same backing store, either through the Preferences API inside another JVM, or
through another program written in another language, using a completely unre-
lated interface.

 Because multiple agents can write to the same data store, it is desirable that a
program be able to receive notice when data values change, and when values or
nodes appear and disappear. To this end, the Preferences API provides change listen-
ers. These allow your program to register its interest in receiving notice that certain
changes have been made to the preferences database.

 Note that agents outside the current JVM do not necessarily provide notice of
changes they make. Because of the difficulty of implementing such a feature in a
platform-independent way, an implementation of the Preferences API is only
required to provide updates to changes that originate within the same API as the lis-

Change listeners 325

jdk.book Page 325 Monday, March 11, 2002 3:38 PM
tener. However, implementations are encouraged to provide updates from other
sources if possible.

 A node can have any number of listeners attached to it.

10.5.1 Preference change listeners
A PreferenceChangeListener is an object that wants to receive notification when
preference values are added, removed, or changed. Listeners are registered on a per-
node basis, which means that a registration only ensures that the listener will receive
notice of changes to that particular node.

 The PreferenceChangeListener interface has a single method, prefer-
enceChange(), which receives an object of type PreferenceChangeEvent:

Preferences prefs = Preferences.userNodeForPackage(this);

prefs.addPreferenceChangeListener(new PreferenceChangeListener() {
 public void preferenceChange(PreferenceChangeEvent pce) {
 System.out.println(pce.getKey()+" <-- "+pce.getNewValue());
 }
});
prefs.putInt("integer", 10);
prefs.putInt("integer", 20);
prefs.remove("integer");

The preceding code in boldface produces the following output:

integer <-- 10
integer <-- 20
integer <-- null

Note the use of the getNewValue() method of the PreferenceChangeEvent. This
method returns the new value of the preference node in question.

10.5.2 Node change listeners
A NodeChangeListener is like a PreferenceChangeListener, except that it is inter-
ested in changes to the node structure, rather than changes to the contents of
nodes. Each time a child is added or removed from a node that has a listener, that
listener is informed of the event via a NodeChangeEvent object.

Preferences prefs = Preferences.userNodeForPackage(this);
prefs.addNodeChangeListener(new NodeChangeListener() {
 public void childAdded(NodeChangeEvent nce) {
 System.out.println("Node added:\n\tparent="+nce.getParent()
 +"\n\tchild="+
 nce.getChild());
 }
 public void childRemoved(NodeChangeEvent nce) {
 System.out.println("Node removed:\n\tparent="+nce.getParent()

326 CHAPTER 10

The Preferences API

jdk.book Page 326 Monday, March 11, 2002 3:38 PM
 +"\n\tchild="+
 nce.getChild());
 }
});
Preferences abc = prefs.node("a/b/c");
Preferences a = prefs.node("a");
a.removeNode();

The preceding code in boldface produces the following output:

Node added:
 parent=User Preference Node: /<unnamed>
 child=User Preference Node: /<unnamed>/a
Node removed:
 parent=User Preference Node: /<unnamed>
 child=User Preference Node: /<unnamed>/a

Note that we don’t get “node added” messages for nodes b and c—we haven’t
installed listeners on the parents of these nodes, so we don’t know when they are
added.

 NodeChangeEvent provides getParent() and getChild() methods. These return
the parent and child nodes of the operation that has occurred.

10.5.3 Example: listening for a GUI change request
Using listeners to respond to updates in the preference values is an excellent way to
communicate customizations to different parts of a program. Normally, when a
user customizes some aspect of an application, this change needs to be reflected
immediately, and it needs to be reflected in all parts of the program that are
affected by the change.

 Taking care do this right can be tricky; doing it in full often inspires a listener-
like system, so that it can be easy for any part of a program to listen for customiza-
tions. But why create your own listener-like system, when the Preferences API pro-
vides one? In this section, we’ll consider a simple example of customization, and
we’ll use Preferences listeners to implement it.

 The interface for our example program is simple. There are two windows. In the
main window, there are two buttons that allow you to set the orientation of the sec-
ondary window. The two orientations are shown in figure 10.3.

 When one of the buttons is clicked, it causes the secondary window to change its
position and shape. However, it doesn’t do this directly—it does this by setting a
preference value. Meanwhile, the program has also registered a listener that listens
for changes to this value. When the value change triggers the listener, the listener
moves the window.

Change listeners 327

jdk.book Page 327 Monday, March 11, 2002 3:38 PM
 The advantage of this system
is that the code that changes the
preference value doesn’t have to
know which other objects or
modules care about the value.
Any module can watch for a value
change by registering a listener.
Additionally, changes made to
the preference values from any
other process trigger the same
results as a change made from
within the same process, allowing external tools to control your application.

 The code for this example is shown in listing 10.2.

(See \Chapter10 \org\jdk14tut\app\ListenerExample.java)
package org.jdk14tut.app;

import java.awt.*;
import java.awt.event.*;
import java.util.prefs.*;
import javax.swing.*;

public class ListenerExample
{
 private JFrame window;
 private Preferences prefs =
 Preferences.userNodeForPackage(getClass());
 static private final Rectangle horizontalOrientation =
 new Rectangle(40, 220, 200, 100);
 static private final Rectangle verticalOrientation =
 new Rectangle(220, 40, 80, 200);

 public ListenerExample() {
 addPrefsListener();
 setupGUI();
 setWindow();
 }

 private void addPrefsListener() {
 prefs.addPreferenceChangeListener(
 new PreferenceChangeListener() {
 public void preferenceChange(PreferenceChangeEvent pce) {
 System.out.println("Change: ("+pce.getNode()+") key="+
 pce.getKey()+" value="+
 pce.getNewValue());
 setWindow();

Listing 10.2 ListenerExample.java

Horizontal Vertical

Figure 10.3 The secondary window changes position
in response to clicking the buttons in the main window,
and it uses listeners to do so.

o
Listen for a change
to the value

328 CHAPTER 10

The Preferences API

jdk.book Page 328 Monday, March 11, 2002 3:38 PM
 }
 });
 }

 private void setupGUI() {
 JFrame controlFrame = new JFrame("Control");
 JButton horizontal = new JButton("Horizontal");
 JButton vertical = new JButton("Vertical");
 Container cp = controlFrame.getContentPane();
 cp.setLayout(new FlowLayout(FlowLayout.CENTER));
 cp.add(horizontal, BorderLayout.NORTH);
 cp.add(vertical, BorderLayout.SOUTH);

 controlFrame.setLocation(40, 40);
 controlFrame.setSize(120, 120);

 window = new JFrame("Window");
 cp = window.getContentPane();
 cp.setLayout(new BorderLayout());
 cp.add(new JTextArea(), BorderLayout.CENTER);

 horizontal.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 setHorizontal();
 }
 });

 vertical.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 setVertical();
 }
 });

 controlFrame.setVisible(true);
 window.setVisible(true);
 }

 private void setHorizontal() {
 prefs.putBoolean("horizontal", true);
 }

 private void setVertical() {
 prefs.putBoolean("horizontal", false);
 }

 private void setWindow() {
 boolean horizontal = prefs.getBoolean("horizontal", true);
 Rectangle rect = null;
 if (horizontal) {
 rect = horizontalOrientation;
 } else {
 rect = verticalOrientation;
 }

o Button clicks
trigger calls to
change
Preferences
value...

o ...here

o
Listener calls this method
to move the window

Change listeners 329

jdk.book Page 329 Monday, March 11, 2002 3:38 PM
 window.setVisible(false);
 window.setLocation(rect.getLocation());
 window.setSize(rect.getSize());
 window.doLayout();
 window.setVisible(true);
 }

 static public void main(String args[]) {
 new ListenerExample();
 }
}

10.5.4 Example: changing server ports on the fly
Simple servers and daemons need to be restarted when their configuration changes;
more sophisticated ones can change their configuration on the fly. This latter
approach is a better solution for critical applications because it increases flexibility
and reduces downtime—the less often you have to quit and restart, the better.

 The Preferences API provides an excellent way for a server to respond to config-
uration changes. Not only does it allow configuration values to be changed at any
time, it can potentially allow server administrators to use powerful tools to do so:
since the preferences values are stored in a system-wide repository, the administra-
tors can use available platform-specific tools to edit these values.

 The example in this section uses a simple server called Server that listens on a
port specified in preferences; additionally, changes to the preferences value cause
the server to automatically switch to another port. This all happens within the run-
ning server—it does not need to be shut down and restarted.

 As we’ve seen, this change of preference values can be initiated, on some plat-
forms, by another process. However, since this feature is not supported on all plat-
forms, Server uses a simple command-line shell, contained in the CommandLine and
ServerCommandLine classes. There is only one command supported by this shell,
which can be entered after you’ve started the program. The following fragment
shows how the user uses the command-line interface—user-entered commands are
in boldface:

java org.jdk14tut.app.Server
Listening on sun.nio.ch.ServerSocketChannelImpl[/0.0.0.0:5555]
port 5556
Change: (User Preference Node: /org/jdk14tut/app) key=port value=5556
Reopening....
Listening on sun.nio.ch.ServerSocketChannelImpl[/0.0.0.0:5556]

The second command, port 5556, tells the running server to switch from the cur-
rent port (5555) to port 5556, which it does.

330 CHAPTER 10

The Preferences API

jdk.book Page 330 Monday, March 11, 2002 3:38 PM
 As in the example in section 10.5.3, this program does not respond directly to
the user’s command. Instead, the user’s command sets a preference value, which
triggers a listener. This means that the change will happen regardless of whether the
preference value is changed from within this process, or, on platforms that support
it, from another process.

 Listing 10.3 shows the code for Server.java; listings 10.4 and 10.5 show Com-
mandLine and ServerCommandLine, respectively.

(See \Chapter10 \org\jdk14tut\app\Server.java)
package org.jdk14tut.app;

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.prefs.*;
import java.util.regex.*;

public class Server implements Runnable
{
 static private final int defaultPort = 5555;
 private int port;
 private Preferences prefs =
 Preferences.userNodeForPackage(getClass());
 private ServerSocketChannel ssc;

 public Server() {
 port = getPort();
 addPrefsListener();
 new Thread(this).start();
 }

 public Preferences prefs() {
 return prefs;
 }

 private int getPort() {
 int p = prefs.getInt("port", defaultPort);
 return p;
 }

 private void addPrefsListener() {
 prefs.addPreferenceChangeListener(
 new PreferenceChangeListener() {
 public void preferenceChange(PreferenceChangeEvent pce) {
 System.out.println("Change: ("+pce.getNode()+") key="+
 pce.getKey()+" value="+
 pce.getNewValue());

Listing 10.3 Server.java

b

Get port number
stored in Preferences

c

Listen for changes to
prefs node

Change listeners 331

jdk.book Page 331 Monday, March 11, 2002 3:38 PM
 if (pce.getKey().equals("port")) {
 try {
 updatePort();
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }
 }
 });
 }

 private void updatePort() throws IOException {
 int p = getPort();
 if (p != port) {
 changePort(p);
 }
 }

 private void changePort(int port) throws IOException {
 this.port = port;
 ssc.close();
 }

 public void run() {
 try {
 while (true) {
 // Listen on port <port>, all addresses
 ssc = ServerSocketChannel.open();
 ssc.configureBlocking(true);
 byte anyIP[] = { 0, 0, 0, 0 };
 InetAddress localhost = InetAddress.getByAddress(anyIP);
 InetSocketAddress isa =
 new InetSocketAddress(localhost, port);
 ssc.socket().bind(isa);

 // Accept connections
 while (true) {
 try {
 System.out.println("Listening on "+ssc);
 SocketChannel sc = ssc.accept();
 dealWithConnection(sc);

 } catch(AsynchronousCloseException ace) {
 System.out.println("Reopening....");
 break;
 }
 }
 }
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

d Respond to port change

e Close
ServerSocket
Channel
when port is
changed

f Listen for incoming
socket connections

g Process incoming
connection

H ServerSocketChannel
is closed when the
port is changed

332 CHAPTER 10

The Preferences API

jdk.book Page 332 Monday, March 11, 2002 3:38 PM
 protected void dealWithConnection(SocketChannel sc)
 throws IOException {
 System.out.println("Got connection "+sc);
 sc.close();
 }

 static public void main(String args[]) throws IOException {
 Server server = new Server();

 new ServerCommandLine(System.in, System.out);
 }
}

b The initial port number is read from the Preferences API. Of course, when reading
from Preferences, we need a default, which is what the defaultPort value (at the
beginning of the code) is for.

c We add a listener that listens to changes in preferences for this class. If a value
change occurs, and it is a change in the value of the key port, then we call update-
Port(), which will reconfigure the server.

d updatePort() finds out what the new port value is, and then calls changePort() to
reconfigure the server to the new value.

e changePort() triggers a reconfiguration of the server by closing the ServerSock-
etChannel prematurely.

f The run() method contains an infinite loop that does the traditional while-true-
accept server inner loop, but with a twist: if the ServerSocketChannel is closed pre-
maturely, this is taken as a signal to reopen on another port.

g When a connection comes in, pass it to dealWithConnection(), which, of course,
deals with it.

h If the ServerSocketChannel is closed prematurely, this is taken as a signal to reopen
on another port. This is done by simply exiting the inner while() loop, which sends
us back to the top of the outer while() loop, where we prepare a new ServerSock-
etChannel on the new port.

The server changes ports in response to a command; the other two classes, Com-
mandLine (see listing 10.4) and ServerCommandLine (see listing 10.5), implement
this command-line interface. CommandLine is a generic command-line processing
class, and ServerCommandLine is a subclass of CommandLine that knows how to set
the server’s port number.

Change listeners 333

jdk.book Page 333 Monday, March 11, 2002 3:38 PM
(See \Chapter10 \org\jdk14tut\app\CommandLine.java)
package org.jdk14tut.app;

import java.io.*;
import java.util.regex.*;

public abstract class CommandLine implements Runnable
{
 protected BufferedReader in;
 protected PrintWriter out;

 public CommandLine(InputStream in, OutputStream out) {
 this(new InputStreamReader(in),
 new OutputStreamWriter(out));
 }

 public CommandLine(Reader reader, Writer writer) {
 this(new BufferedReader(reader),
 new PrintWriter(writer));
 }

 public CommandLine(BufferedReader in, PrintWriter out) {
 this.in = in;
 this.out = out;
 new Thread(this).start();
 }

 public void run() {
 try {
 Pattern pattern = Pattern.compile("\\s+");
 while (true) {
 // Read each line and do simple parsing:
 // split the line on whitespace
 String line = in.readLine();
 if (line==null) {
 break;
 }

 String command[] = pattern.split(line);

 // Process each command
 boolean ok = processCommand(command);
 if (!ok) {
 System.out.println("Unknown command: "+line);
 }
 }
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 // Override this to implement commands
 abstract public boolean processCommand(String command[]);

Listing 10.4 CommandLine.java

o
CommandLine
processes
commands

o Start a background thread to read

o
Parse each input line
into white-space-
separated strings

o Pass the parsed
command to
processCommand()

334 CHAPTER 10

The Preferences API

jdk.book Page 334 Monday, March 11, 2002 3:38 PM
(See \Chapter10 \org\jdk14tut\app\ServerCommandLine.java)
package org.jdk14tut.app;

import java.io.*;
import java.util.prefs.*;

public class ServerCommandLine extends CommandLine
{
 private Preferences prefs =
 Preferences.userNodeForPackage(getClass());

 public ServerCommandLine(InputStream in, OutputStream out) {
 super(in, out);
 }

 public boolean processCommand(String command[]) {
 if (command[0].equalsIgnoreCase("port")) {
 int port = Integer.parseInt(command[1]);
 prefs.putInt("port", port);
 System.out.println("Set port to "+port);
 return true;
 } else {
 return false;
 }
 }

 static public void main(String args[]) throws IOException {
 new ServerCommandLine(System.in, System.out);
 }
}

b Server.main() starts a ServerCommandLine, which means that you can type port
commands at the server’s console. A port command looks like this:

port 5556

ServerCommandLine.main() also creates a ServerCommandLine, which means Serv-
erCommandLine can be used as a standalone port-setting tool, setting the port from a
separate JVM.

 As was mentioned previously, changes made to a preferences value from one
JVM might not trigger the PreferenceChangeListeners in another JVM; this
depends on the implementation. Thus, the standalone ServerCommandLine tool may
or may not trigger a running server to change ports—you’ll have to try it to find
out. If the standalone version doesn’t cause the server to change ports, it will still
store the new port value to the Preferences database.

Listing 10.5 ServerCommandLine.java

o

Use the same
Preferences node that
the server uses

o
Implement one
command, port, which
sets the port to the
supplied value

This class can be used
standalone

b

Importing and exporting 335

jdk.book Page 335 Monday, March 11, 2002 3:38 PM
 It is important to note that the approach used here assumes that you will only
want to run one copy of the server on your system. If you want to run multiple cop-
ies, then it makes sense to create Preferences nodes for each instance. The Prefer-
ences database then becomes a kind of instance storehouse, storing configuration
values for instances while they run, and also when they are not running.

10.6 Stored defaults

The stored defaults feature of the Preferences API provides for a mechanism to sup-
ply values for keys that haven’t been explicitly entered into the preferences database
through normal channels. This allows defaults to be specified on a system-wide
basis. These values will be present inside the preferences database, and will be
returned by calls to the get() methods.

 Note that the API does not provide methods for setting stored defaults; it is
assumed that the backing implementation has its own method for setting these val-
ues. For example, the Preferences API might be implemented on top of some
enterprise-wide directory service. In this case, the directory service itself must pro-
vide a way to set these values and expose them to the Java API as stored defaults.

 When a program writes a value that was previously covered by an existing stored
default, this default value is overridden by the new value. However, the stored default
itself is not changed—it is merely shadowed by the value that was explicitly added.

 When a key/value pair is removed for a key that has a stored default, this default
value is uncovered by this removal. This means that rather than disappearing, the
removed key takes on the value of the stored default. The behavior is the same for
the clear() method.

10.7 Importing and exporting

Since the Preferences API is intended to work with a variety of platform-dependent
backing stores, these backing stores will, in general, be incompatible with each
other. In order to support the transfer of Preferences data from one system to
another, the API provides exportNode(), exportSubtree(), and importPrefer-
ences() methods. These methods make use of an XML Document Type Definition
(DTD) for the Preferences API, located at http://java.sun.com/dtd/preferences.dtd.

336 CHAPTER 10

The Preferences API

jdk.book Page 336 Monday, March 11, 2002 3:38 PM
 The exportNode() method exports the key/value pairs contained in a single
node, but does not export any information about children of that node. exportSub-
tree() exports both the key/value pairs as well as information about child nodes.
These child nodes, as well, are exported. The process is recursive, so that all descen-
dants and their key/value pairs are exported at once.

 The importPreferences() method imports the contents of a properly formatted
XML file into the node it is called on. This file can contain any combination of key/
value pairs and/or child nodes.

 To give you an idea of what the preferences format looks like, here is code that
dumps the contents of the tree shown in figure 10.1:

Preferences uroot = Preferences.userRoot();
Preferences child0 = uroot.node("child0");
Preferences child1 = uroot.node("child1");
Preferences grandchild0 = child1.node("grandchild0");
uroot.putInt("integer", 10);
child1.put("name", "Greg");
uroot.exportNode(System.out);
uroot.exportSubtree(System.out);

exportNode() results in the output shown in listing 10.6; exportSubtree() results
in the output shown in listing 10.7.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE preferences SYSTEM 'http://java.sun.com/dtd/preferences.dtd'>

<preferences EXTERNAL_XML_VERSION="1.0">
 <root type="user">
 <map>
 <entry key="integer" value="10" />
 </map>
 </root>
</preferences>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE preferences SYSTEM 'http://java.sun.com/dtd/preferences.dtd'>

<preferences EXTERNAL_XML_VERSION="1.0">
 <root type="user">
 <map>
 <entry key="integer" value="10" />
 </map>
 <node name="child0">

Listing 10.6 Output of exportNode()

Listing 10.7 Output of exportSubtree()

o An integer is stored as a string

o An integer is stored as a string

Summary 337

jdk.book Page 337 Monday, March 11, 2002 3:38 PM
 <map />
 </node>
 <node name="child1">
 <map>
 <entry key="bytes" value="AgMEBQ==" />
 <entry key="name" value="Greg" />
 </map>
 <node name="grandchild0">
 <map />
 </node>
 </node>
 </root>
</preferences>

XML is an excellent format for importing and exporting, since it is subject to rigor-
ous standardization procedures and is ubiquitously supported.

10.8 Summary

The Preferences API is not just another way to sort small-scale data. It is a simple
and flexible library for storing preference data that integrates directly with any
system-wide preference system that may be available in the underlying operating
system. By allowing for easy use of multiple data types and the possibility of stored
defaults, the Preferences API is ideal for the kind of non-crucial data that applica-
tions need to store to enhance the user experience.

o

A byte array is stored as a
string in Base64 format

o
A string is stored
as a string

jdk.book Page 338 Monday, March 11, 2002 3:38 PM

jdk.book Page 339 Monday, March 11, 2002 3:38 PM
11The Java Secure
Socket Extension (JSSE)
This chapter covers
� The Java Secure Socket Extension

� SSL handshaking

� Using keystores and keytool

� Managing keys

� Authenticating clients and servers
339

340 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 340 Monday, March 11, 2002 3:38 PM
The Java Secure Socket Extension (JSSE) provides an abstraction for secure com-
munications using the Java socket and stream metaphors. JSSE resides in the
javax.net, javax.net.ssl, and javax.security.cert packages.

 The framework, on its own, can do nothing. Each step in the creation of a
secure socket requires the use of one or more security algorithms. These algorithms
are supplied by a security provider, which, in a sense, “fills out” the blanks in the
framework. The JDK 1.4 release comes with the SunJSSE security provider, which
supplies, among other things, an implementation of the Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) security protocols, as well as support for RSA
key generation and X.509 key management. The SunJSSE provider is used by
default, and allows for communications using standard SSL techniques. (According
to the documentation, the strength of the cipher suites included with the JSSE dis-
tribution in JDK 1.4 requires that it not be possible to change the implementation
of the SSLSocketFactory and SSLServerSocketFactory classes.)

 In a certain sense, secure sockets are extremely easy to use, because they work
just like regular Java sockets. It is the creation of the secure sockets that is compli-
cated, since it involves dealing with security providers and secret keys.

11.1 Cryptographic terminology

This section provides a very brief introduction to some of the ideas and terms used
later in the chapter.

� Cryptography is the practice of keeping data secure through encryption.
� Plaintext is any data in its original form. Plaintext is unencrypted data that is

readable by anyone.
� Ciphertext is data that has been encrypted by some cryptographic system. It

cannot be read directly; it must be decrypted—converted back to plaintext—
before it can be read. Only the intended recipient should be able to read it,
because only the intended recipient can convert it back to plaintext.

� Encryption is the process of converting plaintext to ciphertext in order to
ensure that only the intended recipient can read it.

� Decryption is the process of decoding encrypted data, converting ciphertext
back to plaintext.

� A key is a piece of data—usually small—used to encrypt or decrypt a piece of
user data. All but the most trivial encryption encodes data using keys. There
are different kinds of keys for different kinds of cryptography. Secure Sockets
Layer (SSL) uses both public-key cryptography and secret-key cryptography.

Cryptographic terminology 341

jdk.book Page 341 Monday, March 11, 2002 3:38 PM
� Public-key cryptography is cryptography that uses a public/private key pair.

� Secret-key cryptography is cryptography that uses a secret key. Secret-key cryp-
tography is also called symmetric cryptography.

� A public/private key pair is a pair of keys generated together. Data encrypted
by one can be decrypted by the other, and vice versa. The private key is kept
private and used only by the owner, while the public key can be given out
freely without compromising any data. Each key can be used to decrypt data
that has been encrypted by the other key. The private key cannot be derived
from the public key, so the fact that the public key may be widely known does
not threaten the privacy of the private key. If you encrypt data with your pri-
vate key, someone else can decrypt it using your public key. Since you are the
only person with your private key, a recipient can be sure that the data came
from you. If, on the other hand, you encrypt data with someone else’s public
key, then it can only be decrypted by that person, since only he has his private
key. This is how you encode data so that it can be read only by a particular
party.

� A digital signature is data appended to a message, which authenticates the
message and the sender. The signature is generally a digest, or summary, of
the message, encrypted with the sender’s private key.

� A secret key is a key that is used both for encryption and decryption. This is
the more traditional kind of code key; it is also called a shared secret. Unlike a
public/private key pair, a secret key allows you to decrypt data that has been
encrypted with that same key. This key must be kept secret to everyone
except the two parties involved in the communication, and it is often called a
symmetric key, because it is used for both encryption and subsequent decryp-
tion. The advantage of symmetric cryptography is that it is generally much
faster than public-key cryptography. A common technique is to use a slower
but more convenient public-key protocol at the start of a data-exchange ses-
sion to exchange newly generated secret keys, which are then used to encrypt
the rest of the data in a session. SSL uses public-key cryptography for authen-
tication and secret-key cryptography for privacy and data integrity.

� Authentication is the process of verifying that an entity is who it says it is. For
example, when you type your password into a computer, you are authenticat-
ing yourself to it. The computer can safely assume that you are really you,
because you haven’t told anyone else your password.*

* You haven’t, have you?

342 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 342 Monday, March 11, 2002 3:38 PM
� A certificate, or signed public key, is a public key that has been digitally signed
in order to prove that it is authentic. Sometimes an entity signs its own public
key; this is called a self-signed public key or self-signed certificate.

� A certification authority, or CA, is an entity considered to be trusted by all
parties participating in the communication. This entity is willing to sign the
public keys of other entities. For true security, it’s necessary to have your
public key signed by a CA—a public key that has been signed by itself isn’t
particularly convincing because all it tells you is that it was sent by the person
who owns that key. The certificate signed by a CA can be used by the origi-
nating parties as a kind of calling card, allowing them to prove that they are
who they say they are.

11.2 SSL—the Secure Sockets Layer

SSL is a standard for secure communication created by Netscape back in 1994.
Since then, the Internet Engineering Task Force (IETF) has taken over manage-
ment of the standard and renamed it Transport Layer Security (TLS). TLS should
really be thought of as the newest version of SSL. TLS version 1.0 is a slight modifi-
cation of SSL version 3.0.

11.2.1 Components of the default implementation
SSL is not the only form of secure socket communication, which is why JSSE is
implementation-neutral. However, SSL is one of the most prominent forms of secure
socket communication, so the default SunJSSE provider is basically an implementa-
tion of the SSL standard. By default, JSSE uses the standards listed in table 11.1.

Each of these aspects of secure socket communication can be implemented in dif-
ferent ways, and you can add new implementations to the system. In the default
implementation, keys are stored on disk using the JKS format, but other formats,
such as PKCS12, can be used; or the keys can be stored in a secure database or on a
central secure-key server.

Table 11.1 A list of the standard components used by the SunJSSE provider. Each of these components
can be replaced by an alternative implementation; JSSE itself is implementation-neutral.

The standard What purpose it serves

SSL/TLS The overarching structure

X.509 Key and trust management

JKS (Java Key Store) Filesystem storage of keys

Managing keys 343

jdk.book Page 343 Monday, March 11, 2002 3:38 PM
11.2.2 SSL handshaking
Once a SSLSocket (or SSLServerSocket) has connected and authenticated, it is used
like a regular socket. The authentication process—also called the handshake—is the
complicated part. Here are the main steps in this process:

1 Hello—The client and server agree on the version of SSL to use, as well as
what algorithms to use.

2 Server authentication—The server sends a signed public key, or certificate,
to the client, which checks it to make sure the server is who it says it is. This
step is technically optional, but it is almost always performed. (The certifi-
cate only provides a trusted declaration of the organization’s public key.
The server is only truly authenticated when it demonstrates knowledge of
its private key, which it does by using its private key—which only it knows—
to decrypt data that has been encrypted with its public key.)

3 Client authentication—This is optional, and not as common as server
authentication. In this step, the client authenticates itself by sending a cer-
tificate to the server. (Like the server, the client is only really authenticated
when it demonstrates knowledge of its private key.)

4 Client key exchange—The client generates information for creating a secret
key, and encrypts this information using the server’s public key. It then
sends this information to the server, at which point both the client and the
server use this information to derive the same secret key.

5 Data transfer—The client and server exchange data, encrypting it and veri-
fying its integrity with the secret key.

This process is taken care of automatically by the SSL code within JSSE and SunJSSE.
The main thing that the program has to deal with is generating and manipulating
the keys.

11.3 Managing keys

The term key management refers the process of creating keys, as well as the process
of using these keys to create secure sockets. This section will describe the process of
creating a Java secure socket, as well as the classes used.

344 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 344 Monday, March 11, 2002 3:38 PM
11.3.1 Creating keys with keytool
Java provides a standalone program called keytool, which allows the user to create
and manipulate keys on disk. For example, keytool lets you create a new public/pri-
vate key pair:

keytool -genkey -alias keyname -keystore filename -keyalg rsa

This command creates a new public/private key pair using the RSA algorithm. It
stores it in file filename, under the alias keyname. An alias is a name used to distin-
guish a key from other keys within the same keystore. By default, keytool generates
and manipulates files in the JKS format.

 keytool will also let you export a public-key certificate into a file:

keytool -export -alias keyname -keystore filename -file keyfile

This command exports the public key that we just created, and puts it in a file called
keyfile.

 keytool is not specific to JSSE, but rather is used with all facets of Java security.
It has a fairly complex set of options, and this section only describes enough for
basic use. See the documentation for more information.

11.3.2 Store keys in a KeyStore
The java.security.KeyStore class provides access to the keys created by keytool.
A KeyStore is created by calling KeyStore.getInstance(), passing in a string
describing the type of KeyStore, which in our case is JKS:

KeyStore ks = KeyStore.getInstance("JKS");

You can then load the contents of a JKS-formatted file, which is generally locked
with a password, into the KeyStore:

ks.load(inputStream, password)

The password parameter is used to check the integrity of the data, but data is left
encoded within the KeyStore. The password will be needed again later.

 KeyStore is not specific to JSSE or SSL; it is part of Java’s general security frame-
work, and it resides in the java.security package.

11.3.3 Creating a KeyManagerFactory
KeyManagerFactory is part of JSSE proper—it resides in the javax.net.ssl pack-
age. A KeyManagerFactory creates KeyManagers, which are used during the process
of authenticating this side of a secure connection to the other side of the secure
connection.

Managing keys 345

jdk.book Page 345 Monday, March 11, 2002 3:38 PM
 A KeyManagerFactory is created from some source of key material, usually a
password-protected KeyStore object. Here is how it is typically used:

KeyManagerFactory kmf =
 KeyManagerFactory.getInstance("SunX509");
kmf.init(keyStore, password)

The X.509 implementation is the one most commonly used for key management,
and it is currently the only one supported.

11.3.4 Creating a TrustManagerFactory
A TrustManager serves the inverse purpose of a KeyManager—it is used to authenti-
cate the other side of a secure connection by evaluating the keys that it sends to us.
In the case of SSL, the client side uses its TrustManagers to authenticate the public-
key certificate that has been sent to it by the server.

 A TrustManagerFactory creates TrustManagers; it itself is created much like a
KeyManagerFactory:

TrustManagerFactory tmf =
 TrustManagerFactory.getInstance("SunX509");
tmf.init(keyStore);

KeyManagerFactory and TrustManagerFactory generally use two different sets of
keys. They can be stored in the same KeyStore file, or in separate files. Trust keys
(managed by a TrustManagerFactory) are generally the public keys of other entities,
and so do not require much privacy. Authentication keys (managed by a KeyMan-
agerFactory), on the other hand, include private keys, and so should be kept very
secure.

11.3.5 Creating an SSLContext
Once you have a KeyManagerFactory and a TrustManagerFactory, you have all you
need. This information is combined into an SSLContext as follows:

SSLContext sslContext = SSLContext.getInstance("TLS");
sslContext.init(kmf.getKeyManagers(), tmf.getTrustManagers(),
 null)

The first line creates an SSLContext of type TLS. You could also use type SSL—both
of these refer to the same standard implementation. The init() method is used to
provide key and trust managers. An SSLContext has enough information to be able
to create a SocketFactory or a ServerSocketFactory:

ServerSocketFactory ssf = sslContext.getServerSocketFactory();
SocketFactory ssf = sslContext.getSocketFactory();

346 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 346 Monday, March 11, 2002 3:38 PM
These, of course, can be used to create SSLServerSockets and SSLSockets, respec-
tively:

ServerSocket serverSocket = ssf.createServerSocket(port);
Socket socket = sf.createSocket(hostname, port);

Once you have either of these objects, you can use them as you would a regular
Socket or ServerSocket, calling getInputStream() or getOutputStream() in the
case of a Socket, or accept() in the case of a ServerSocket.

 The steps outlined in this section are fairly complicated, and it’s best to see them
in context. The next two sections describe programs that use these classes to com-
municate securely. Each one is accompanied by instructions for creating the keys
necessary for the program, and should serve as a template for the process of creat-
ing secure applications.

11.4 Example: a trivial secure web server

This section presents a simple secure web server. A browser communicates with a
secure web server via HTTP, but the data passes through SSL sockets rather than
plain sockets. Any time you use your browser to access a URL starting with https:
rather than http:, you are using a secure web server.

 The web server considered in this section is called THTTPSD, which stands for
Trivial HTTP Secure Daemon. It knows how to serve HTML files, text files, and
directory listings.

11.4.1 The authentication model
The authentication model used in secure web browsing should be considered from
the point of view of the user and the browser. A user using her browser wants to
surf the Web, but she wants to make sure that the servers she browses are authen-
tic—that they are the sites that they say they are, run by the people who claim to
run them. This is especially the case when the user is passing sensitive information,
such as credit card information, to the server.

 Thus, the browser is trusted, while the web server is not trusted. When the
browser connects to a secure web server, it requires that the server authenticate
itself. As a regular part of the SSL handshake procedure, the server responds by
sending a certificate to the client. (This certificate provides an authoritative declara-
tion of the server’s public key. Later on in the connection process, the server will
demonstrate that it has the private key corresponding to this public key by using
that private key. Only then is the server truly authenticated.)

 If the server has a certificate that the browser trusts, as shown in figure 11.1,
everything is fine. Each browser comes with a small set of certificates installed from

Example: a trivial secure web server 347

jdk.book Page 347 Monday, March 11, 2002 3:38 PM
various CAs, such as VeriSign or Entrust; the server’s certificate must be signed with
one of these CAs, or the browser will not trust it.

 Figure 11.2 shows a browser rejecting the certificate sent by the server. In this
case, the browser might refuse to accept pages from the server, or it might present
the user with the option to use the server anyway, knowing that it might be unsafe.

 The THTTPSD web server does not have a key signed by a trusted third party,*
so some browsers might not be able to use it. However, newer browsers will allow
you to access the server in untrusted mode, or will let you add the certificate to its
collection of trusted certificates.

11.4.2 Generating the key
The authentication model described in the previous section only uses one key: an
authentication key that the server sends to the client, hoping that the client will
accept it. For this to work with most browsers, this key would need to be signed by

* Hey—signed keys cost money!

Trust keys Auth key

Browser THTTPSD

Figure 11.1 The browser has a set of certificates from trusted third parties. If the server has a
certificate that the browser trusts, the browser will trust the server.

Trust keys Auth key

Browser THTTPSD

Figure 11.2 The browser has a set of certificates from trusted third parties. If the server does not have
a certificate signed by one of these trusted third parties, the browser will refuse to authenticate it.

348 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 348 Monday, March 11, 2002 3:38 PM
a CA, but that is beyond the scope of this chapter. However, we do need to generate
the key in the first place, which we can do using keytool (the included scripts tht-
tpsdkeys.sh and thttpsdkeys.bat will generate this key file for you). The keytool
command is shown in figure 11.3.

 This command creates a public key/private key pair under the alias thttpsd,
using the RSA key-generation algorithm. The default is for keytool to use the DSA
algorithm, but many browsers (such as Netscape and Microsoft Internet Explorer)
require RSA keys. (keytool normally engages in a dialog with the user to gather
identity information, but the scripts take care of that for you by using command-
line arguments.)

 The key pair—which includes a certificate—has been placed in a JKS-formatted
keystore called thttpsd.auth. This keystore is used in the creation of the server’s
ServerSocketFactory in the getServerSocketFactory() method in listing 11.2 in
the next section.

11.4.3 The configuration file
THTTPSD uses a configuration file for most of its settings, including the name and
password for the keystore file. The configuration file also contains the port number
for the server to listen on. The standard port number for a secure web server is 443,
but you may not have permission to use that port on your machine, so you can set
it here.

 In the configuration file included with the source code (see listing 11.1), the
port is set to 5555. To access the server running on port 5555 on the machine
mymachine, use this URL: https://mymachine:5555/. This URL will give you a listing
of the directory defined by the document root in the configuration file.

keytool -genkey -alias thttpsd -keystore thttpsd.auth -keyalg rsa

Generate a key Store it in the file thttpsd.auth

The key is
called thttpsd

Command Use the RSA algorithm

Figure 11.3 The keytool command. This example generates a new key using the RSA algorithm and
stores it in a file called thttpsd.auth under the alias thttpsd.

Example: a trivial secure web server 349

jdk.book Page 349 Monday, March 11, 2002 3:38 PM
(See \Chapter11 \thttpsd.cfg)
port=5555
secure=true
docroot=c:/docroot
keyfile=thttpsd.auth
passphrase=thttpsd

Note that the docroot is set to c:/docroot—this means that a URL of https://myma-
chine:5555/hello/there.txt will bring up the document c:\docroot\hello\there.txt.

 On a Unix system, you would use something like docroot=/usr/local/html; the
URL shown previously would then correspond to the file /usr/local/html/hello/
there.txt.

11.4.4 The code
The code for THTTPSD is shown in listing 11.2. Pay special attention to the get-
ServerSocketFactory() method, which is where the key is loaded.

(See \Chapter11 \THTTPSD.java)
import java.io.*;
import java.net.*;
import java.security.*;
import java.util.*;
import java.util.regex.*;
import javax.net.*;
import javax.net.ssl.*;

public class THTTPSD
{
 // The port we will listen on
 private int port;

 // The document root of the server. All requested filenames
 // are relative to this directory
 private File docroot;

 // Are we running as a secure server or as a regular server?
 private boolean secure = false;

 // All configuration comes from this file
 static private final String configurationFile = "thttpsd.cfg";

 // Configuration variables read from 'configurationFile'
 private Properties properties;

Listing 11.1 thttpsd.cfg

Listing 11.2 THTTPSD.java

350 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 350 Monday, March 11, 2002 3:38 PM
 // Regex for parsing "GET" requests
 static private final String getParser =
 "^GET\\s+(.+)\\s+HTTP/[\\d\\.]+$";
 static private final Pattern getPattern =
 Pattern.compile(getParser);

 // Regex for parsing server config variable names
 static private final String serverVarParser =
 "^server\\.([^\\.]+)\\.([^\\.]+)$";
 static private final Pattern serverVarPattern =
 Pattern.compile(serverVarParser);

 // Size of buffer used to send file contents to a browser
 static private final int bufferLength = 1024;

 static private SecureRandom secureRandom;

 /**
 * Constructor:
 * Configure and start the server
 */
 public THTTPSD() throws IOException {
 readConfiguration();
 startServer();
 }

 /**
 * Read configuration values
 */
 private void readConfiguration() throws IOException {
 FileInputStream fin = new FileInputStream(configurationFile);
 properties = new Properties();
 properties.load(fin);
 fin.close();

 // Show the configuration values on the console
 System.out.println("Configuration: ");
 properties.list(System.out);

 // Get 'port', 'docroot', and 'secure' values from properties
 port = Integer.parseInt((String)properties.get("port"));
 docroot = new File((String)properties.get("docroot"));
 if (properties.get("secure") != null &&
 properties.get("secure").equals("true")) {
 secure = true;
 }
 }

 /**
 * Start the server: start a listener
 */
 private void startServer() {
 new Listener();
 }

o
Read the configuration and start a
background listening thread

o

Read configuration
variables from
thttpsd.cfg

b
Start a Listener, with a background thread,
to process incoming connections

Example: a trivial secure web server 351

jdk.book Page 351 Monday, March 11, 2002 3:38 PM
 /**
 * Deal with a new Socket: create a SocketHandler
 * to process the new connection
 */
 private void processSocket(Socket socket) {
 new SocketHandler(socket);
 }

 /**
 * Deal with a new connection: parse transaction
 * and respond to it
 */
 private void processTransaction(Socket socket,
 InputStream in,
 OutputStream out
 throws IOException {
 while (true) {
 String doc = getDocString(in);
 // getDocString() returns null when the connection is closed
 if (doc==null)
 break;

 // Show a log message
 System.out.println("Request for "+doc+" from "+
 socket.getInetAddress());

 // Send the requested document to the browser
 sendDoc(doc, out);
 }
 }

 /**
 * Send the requested document to the stream, based on
 * what kind of document it is
 */
 private void sendDoc(String docString, OutputStream out)
 throws IOException {
 // Derive the absolute pathname from the relative
 // pathname and the document root
 File doc = new File(docroot+docString);
 if (!doc.exists()) {

 // File doesn't exist
 sendFileNotFound(docString, out);
 } else if (doc.isDirectory()) {

 // File is really a directory
 sendDirectoryListing(doc, docString, out);
 } else if (doc.getName().toLowerCase().endsWith("html")) {

 // File is an HTML file
 sendWebPage(doc, out);
 } else {

c
processSocket() is called by
the Listener when a new
connection comes in

processTransaction() is
called by the
SocketHandler that is
handling a connection

d

Read request and
send response

o

o

Decide what
kind of
document is
being
requested,
and send it

352 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 352 Monday, March 11, 2002 3:38 PM
 // Default: send as a text page
 sendTextFile(doc, out);
 }
 }

 /**
 * Send a file-not-found message
 */
 private void sendFileNotFound(String url, OutputStream out)
 throws IOException {

 // Build the response message
 StringBuffer message = new StringBuffer();
 message.append("<!DOCTYPE HTML PUBLIC \"-//IETF//"+
 "DTD HTML 2.0//EN\">\r\n");
 message.append("<HTML><HEAD>\r\n");
 message.append("<TITLE>404 Not Found</TITLE>\r\n");
 message.append("</HEAD><BODY>\r\n");
 message.append("<H1>Not Found</H1>\r\n");
 message.append("The requested URL "+url+
 " was not found on this server.<P>\r\n");
 message.append("<HR>\r\n");
 message.append("<ADDRESS>THTTPSD/1.0</ADDRESS>\r\n");
 message.append("</BODY></HTML>\r\n");
 message.append("\r\n");

 // Send the header and the message
 // Mime type is 'text/html'
 PrintWriter pw = new PrintWriter(out);
 sendHeader(pw, "text/html", message.length());
 pw.print(message);

 // Make sure all the data gets there, especially because of
 // any buffering that might be used by the encryption
 pw.flush();
 }

 /**
 * Send directory listing
 */
 private void sendDirectoryListing(File directory, String url,
 OutputStream out)
 throws IOException {

 // Build the response message
 StringBuffer message = new StringBuffer();
 message.append("<!DOCTYPE HTML PUBLIC \"-//IETF//"+
 "DTD HTML 2.0//EN\">\r\n");
 message.append("<HTML><HEAD>\r\n");
 message.append("<TITLE>"+url+"</TITLE>\r\n");
 message.append("</HEAD><BODY>\r\n");
 message.append("<H1>Directory: "+url+"</H1>\r\n");

The file doesn’t exist—send an
error message

o

The file is a
directory—list the

contents

o

Example: a trivial secure web server 353

jdk.book Page 353 Monday, March 11, 2002 3:38 PM
 // Add a link for each file in the directory
 File files[] = directory.listFiles();
 for (int i=0; i<files.length; ++i) {
 File file = files[i];
 String name = file.getName();
 String newURL = url+name;
 if (file.isDirectory())
 newURL += "/";
 message.append(""+name+
 "
\r\n");
 }

 message.append("</BODY></HTML>\r\n");
 message.append("\r\n");

 // Send the header and the message
 // Mime type is 'text/html'
 PrintWriter pw = new PrintWriter(out);
 sendHeader(pw, "text/html", message.length());
 pw.print(message);

 // Make sure all the data gets there, especially because of
 // any buffering that might be used by the encryption
 pw.flush();
 }

 /**
 * Send HTML page
 */
 private void sendWebPage(File doc, OutputStream out)
 throws IOException {
 // Send the header and the contents of the file
 // Mime type is 'text/html'
 PrintWriter pw = new PrintWriter(out);
 sendHeader(pw, "text/html", (int)doc.length());
 sendFile(doc, out);
 }

 /**
 * Send text file
 */
 private void sendTextFile(File doc, OutputStream out)
 throws IOException {
 // Send the header and the contents of the file
 // Mime type is 'text/plain'
 PrintWriter pw = new PrintWriter(out);
 sendHeader(pw, "text/plain", (int)doc.length());
 sendFile(doc, out);
 }

 /**
 * Send HTTP header, including the MIME type and the
 * content-length

o
The file is an HTML
file—send it

o
The file is some
other file—send
it as text

354 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 354 Monday, March 11, 2002 3:38 PM
 */
 private void sendHeader(PrintWriter pw, String mimeType,
 int length)
 throws IOException {
 pw.print("HTTP/1.1 200 OK\r\n");
 pw.print("Content-Length: "+length+"\r\n");
 pw.print("Content-Type: "+mimeType+"\r\n");
 pw.print("\r\n");
 pw.flush();
 }

 /**
 * Send the contents of a file
 */
 private void sendFile(File doc, OutputStream out)
 throws IOException {
 byte buffer[] = new byte[bufferLength];
 FileInputStream fin = new FileInputStream(doc);
 while (true) {
 int r = fin.read(buffer);
 if (r==-1)
 break;
 out.write(buffer, 0, r);
 }

 out.flush();
 }

 /**
 * Parse the HTTP header of the incoming request.
 * Return the document that has been requested.
 * Only the GET method is handled
 */
 private String getDocString(InputStream in)
 throws IOException {
 // Create a BufferedReader to read the incoming
 // data one line at a time
 InputStreamReader isr = new InputStreamReader(in);
 BufferedReader br = new BufferedReader(isr);

 // Contains the first line of the request
 String firstLine = null;

 while (true) {
 String line = br.readLine();

 // The request is over if we get a null string,
 // or an empty line
 if (line==null) {
 return null;
 } else if (line.equals("")) {
 break;
 }

o

Utility
method—
send an HTTP
header

o
Utility method—send
the contents of a file

o

Parse an incoming HTTP
GET request and return
the relative pathname of
the requested document

Example: a trivial secure web server 355

jdk.book Page 355 Monday, March 11, 2002 3:38 PM
 // Save the first line of the request
 if (firstLine==null)
 firstLine = line;
 }

 if (firstLine != null) {
 // Use a regex to find the requested document
 // inside the first line

 Matcher matcher = getPattern.matcher(firstLine);
 if (matcher.matches()) {

 // Yes, we got it
 String doc = matcher.group(1);
 return doc;
 } else {

 // No: error, or wrong kind of request, or something
 throw new IOException("Badly formed request");
 }
 } else {

 // Return null if no more documents are being
 // requested by this client
 return null;
 }
 }

 /**
 * Return a ServerSocketFactory. Return an
 * SSLServerSocketFactory if we're in secure mode,
 * otherwise use the default ServerSocketFactory
 */
 private ServerSocketFactory getServerSocketFactory() {
 if (secure) {
 try {
 System.out.println("Running secure");

 String keyFile =
 (String)properties.get("keyfile");
 String passphrase =
 (String)properties.get("passphrase");

 // Read authentication keys. These are used to authenticate
 // ourselves to the client
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(keyFile),
 passphrase.toCharArray());

 // The KeyManagerFactory manages the authentication keys
 KeyManagerFactory kmf =
 KeyManagerFactory.getInstance("SunX509");
 kmf.init(ks, passphrase.toCharArray());

o
Create an
SSLServer-
SocketFactory

o
Get security properties
from the configuration
file

Read authentication
keys from

thttpsd.auth
o

356 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 356 Monday, March 11, 2002 3:38 PM
 // Create an SSLContext using our key manager
 SSLContext sslContext = SSLContext.getInstance("TLS");
 sslContext.init(kmf.getKeyManagers(), nul
 secureRandom);
 // Create a ServerSocketFactory
 ServerSocketFactory ssf =
 sslContext.getServerSocketFactory();

 return ssf;
 } catch(GeneralSecurityException gse) {

 System.err.println(gse);
 gse.printStackTrace();
 System.exit(1);

 // Should never reach this
 return null;
 } catch(IOException ie) {

 System.err.println(ie);
 ie.printStackTrace();
 System.exit(1);

 // Should never reach this
 return null;
 }
 } else {

 System.out.println("Running insecure");
 return ServerSocketFactory.getDefault();
 }
 }

 /**
 * INNER CLASS:
 * Listener listens for incoming connections
 */
 class Listener implements Runnable {

 /**
 * Constructor: start a background thread
 */
 public Listener() {
 Thread thread = new Thread(this);
 thread.start();
 }

 /**
 * Background thread: listen on a port and accept
 * new connections; The new connections are passed
 * to THTTPSD.processSocket().
 */
 public void run() {
 try {

Create an SSLContext
using the auth and

trust keys

o

o
Create a
ServerSocketFactory
from the SSLContext

e
Process incoming connections
by passing them to
THTTPSD.processSocket()

Example: a trivial secure web server 357

jdk.book Page 357 Monday, March 11, 2002 3:38 PM
 // Create a ServerSocket from the ServerSocketFactory
 ServerSocketFactory ssf = getServerSocketFactory();
 ServerSocket ss = ssf.createServerSocket(port);

 System.out.println("Listening on port "+port);

 // Accept connections and process them
 while (true) {
 try {
 Socket socket = ss.accept();
 System.out.println("Connection from "+
 socket.getInetAddress());
 processSocket(socket);
 } catch(IOException ie) {
 System.err.println("Listener exception: "+ie);
 ie.printStackTrace();
 }
 }
 } catch(IOException ie) {
 System.err.println("Listener exception: "+ie);
 ie.printStackTrace();
 }
 }
 }

 /**
 * INNER CLASS:
 * SocketHandler responds to an incoming socket
 */
 class SocketHandler implements Runnable {
 private Socket socket;

 /**
 * Constructor: start a background thread
 */
 public SocketHandler(Socket socket) {
 this.socket = socket;
 Thread thread = new Thread(this);
 thread.start();
 }

 /**
 * Background thread:
 * Call THTTPSD.processTransaction() to process
 * this socket in this background thread
 */
 public void run() {
 try {
 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();

 processTransaction(socket, in, out);
 } catch(IOException ie) {

f
Process client requests by
passing the socket to
THTTPSD.processTransaction()

358 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 358 Monday, March 11, 2002 3:38 PM
 }
 }
 }

 /**
 * Pre-initialize the SecureRandom so we can print
 * something about it to standard out
 */
 static private void initializeRandom() {
 System.out.print(
 "Please wait, initializing random numbers...");
 System.out.flush();
 secureRandom = new SecureRandom();
 secureRandom.nextInt();
 System.out.println("done");
 }

 static public void main(String args[]) {
 try {
 initializeRandom();
 new THTTPSD();
 } catch(IOException ie) {
 System.err.println(ie);
 ie.printStackTrace();
 }
 }
}

b c The main THTTPSD class creates a Listener, which starts a background thread to
accept incoming connections. Each time a connection comes in, the Listener
passes it to THTTPSD.processSocket(). processSocket() creates a SocketHandler,
which spawns a background thread to handle that connection. The SocketHandler,
in the background thread, calls THTTPSD.processTransaction() to handle the
requests for web pages.

Thus, separate objects, with their own threads, are spawned to handle listening and
client processing. However, these objects’ threads call back to methods in THTTPSD,
because only THTTPSD has the ability to carry out the tasks. Thus, multiple objects in
multiple threads make calls to the processSocket() and processTrans-
action() methods of a single THTTPSD. These methods are thread-safe.

g SecureRandom takes a long time to initialize. If you don’t create a SecureRandom
object yourself (and pass it into SSLContext.init()), one will be created for you
when the first client tries to connect. The initialization delay can give the impres-
sion that the connection is taking a really long time, so to avoid this, we initialize a
SecureRandom object at the start, and print out messages so that the user will know
what the delay is caused by.

g Pre-initialize a SecureRandom

o
Initialize the random
number generator and
start a server

d e
f

Example: a secure credit card authorization system 359

jdk.book Page 359 Monday, March 11, 2002 3:38 PM
11.5 Example: a secure credit card authorization system

The previous section presented THTTPSD, a trivial secure web server. A web server
is only half of the client/server equation, though. In this section, we’ll look at both
halves: the client and server for a credit card authentication system.

11.5.1 The authentication model
The authentication model for the secure web server was asymmetrical—the web
server was required to authenticate itself to the browser, but the browser did not
have to authenticate itself to the web server. It was also asymmetrical in the sense
that the web server is run by a party that is considered to be trusted, while the
browser can be run by anyone with a computer.

 In this section, we’ll consider a more symmetrical model: the client and server
components for a credit card authentication system. Unlike with THTTPSD, we
aren’t going to need to have any of our keys signed by a trusted third party. The
server and client components are considered to be prepared and installed by a single
agency (the IT staff of the company offering the service). They communicate via
secure sockets not because they might not trust each other, but rather because they
want to make sure that they are not dealing with an impostor.

 In this model, the client and the server each has its own public/private key pair.
Each one also has the public key (or, more precisely, a self-signed certificate) of the
other. The certificates verify the public key, but on their own they do not prove any-
thing about the client or the server. Both ends of the connection must demonstrate
that they know their own private key, which they do implicitly by using these keys
to decrypt information that has been encrypted by the corresponding public keys.

 During authentication, the server sends its certificate, and the client verifies this
certificate by comparing it to its own copy of the certificate (see figure 11.4). The

Trust key Auth key

CCClient CCServer

Figure 11.4 The server authenticates itself to the client by sending its certificate, or self-signed public
key, and the client verifies this by comparing it to its copy of the certificate.

360 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 360 Monday, March 11, 2002 3:38 PM
client then does the same thing—it sends its certificate to the server for authentica-
tion (see figure 11.5).

Once both ends are satisfied that they trust each other, the client then generates a
symmetric secret key and encrypts this key with the server’s public key. It then sends
the encrypted key to the server, which decrypts it using its private key. This use of
server’s private key completes the server’s authentication process—only the real
server knows this key (hopefully).

 The symmetric key that has just been sent is then ready to be used for fast
encryption and decryption of the socket data sent in both directions. (Technically,
the client doesn’t send the symmetric key directly. Rather, it sends information that
is used by both the client and server to generate the same symmetric key.)

11.5.2 Generating the keys
The process of key generation is somewhat more complicated than it was for
THTTPSD. The client has its public/private key pair stored in a file called
ccclient.auth, and the client sends this public key to the server. It also has a copy of
the server’s public key (no private key) in a file called ccclient.trust, which it uses to
verify the certificate sent by the server. Likewise, the server has two files:
ccserver.auth, containing the server’s key pair, and ccserver.trust, containing the cli-
ent’s public key.

Trust keyAuth key

CCClient CCServer

Figure 11.5 The client authenticates itself to the server by sending its certificate, or self-signed public
key, and the server verifies this by comparing it to its copy of the certificate.

Example: a secure credit card authorization system 361

jdk.book Page 361 Monday, March 11, 2002 3:38 PM
 This is all fairly confusing, so these keys are summarized in two tables. Table 11.2
lists the keys available to the client, and table 11.3 lists the keys available to the server.

It’s important that each side keep its own key pair separate from its copy of the
other side’s public key, for file-security reasons. Its key pair is extremely sensitive
information, since it contains the private key; the other side’s public key, on the
other hand, is expected to be widely known.

 To generate all these key files, we do the following. First, we generate a key pair
for the client, into ccclient.auth, which will be included with the client software:

keytool -genkey -alias ccclient -keystore ccclient.auth -keyalg rsa

Next, we extract the public-key certificate into a temporary file called ccclient.key:

keytool -export -alias ccclient -keystore ccclient.auth -file ccclient.key

Table 11.2 These keys are stored on the client side and are used in various ways in the authentication
process.

Key Stored in What the client uses it for

Client’s public key ccclient.auth Sent to the server as a certificate.

Client’s private key ccclient.auth Used to decrypt information sent by the server. Since
only the client knows this key, this effectively authenti-
cates the client.

Server’s public key
(certificate)

ccclient.trust Compared against the certificate sent by the server,
thereby authenticating the certificate. Also used to
encrypt a newly generated secret key, which is sent to
the server.

Table 11.3 These keys are stored on the server side and are used in various ways in the authentication
process.

Key Stored in What the server uses it for

Server’s public key ccserver.auth Sent to the client as a certificate.

Server’s private key ccserver.auth Used to decrypt information sent by the client. Since
only the server knows this key, this effectively
authenticates the server.

Client’s public key
(certificate)

ccserver.trust Compared against the certificate sent by the client,
thereby authenticating the certificate.

362 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 362 Monday, March 11, 2002 3:38 PM
Finally, we import this public key into ccserver.trust—this file will be included with
the server software:

keytool -import -alias ccserver -keystore ccserver.trust -file ccclient.key

The same process is used to create ccserver.auth and ccclient.trust. The included
scripts cckeys.sh and cckeys.bat will generate all of these key files for you.

11.5.3 The code
We’ll now look at the code. CCServer, the server, is shown in listing 11.3, while
CCClient, the client, is shown in listing 11.4. Again, pay special attention to the
getServerSocketFactory() method, which is where the key is loaded.

(See \Chapter11 \CCServer.java)
import java.io.*;
import java.net.*;
import java.security.*;
import javax.net.*;
import javax.net.ssl.*;

public class CCServer implements Runnable
{
 // The port number we will listen on
 private int port;

 // Passphrase for the authentication and trust keystores
 static private final String passphrase = "serverpass";

 // Secure random source
 static private SecureRandom secureRandom;

 /**
 * Constructor: start the server socket
 */
 public CCServer(int port) {
 this.port = port;

 Thread thread = new Thread(this);
 thread.start();
 }

 /**
 * Listen for incoming connections, and hand them off to
 * a SocketHandler
 */
 public void run() {
 try {
 // Prepare ServerSocket

Listing 11.3 CCServer.java

o The main background
thread listens for
incoming connections

Example: a secure credit card authorization system 363

jdk.book Page 363 Monday, March 11, 2002 3:38 PM
 ServerSocketFactory ssf = getServerSocketFactory();
 SSLServerSocket ss =
 (SSLServerSocket)ssf.createServerSocket(port);

 // Request client authorization
 ss.setNeedClientAuth(true);

 // Listen for incoming connections
 System.out.println("Listening on port "+port+"...");
 while (true) {
 Socket socket = ss.accept();
 System.out.println("Got connection from "+
 socket.getInetAddress());

 // Handle the socket in a separate thread
 new SocketHandler(socket);
 }
 } catch(GeneralSecurityException gse) {
 gse.printStackTrace();
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 /**
 * Handle a transaction: read credit card information,
 * verify it, and send the verification response code
 * back to the client. This method is called from
 * a SocketHandler object running in a separate thread
 */
 private void handleSocket(Socket socket) throws IOException {
 // Get the streams connected to the client
 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();
 DataInputStream din = new DataInputStream(in);
 DataOutputStream dout = new DataOutputStream(out);

 while (true) {
 // Read credit card info
 String ccnumber = din.readUTF();
 String ccexp = din.readUTF();

 // Verify credit card info
 boolean verified = checkCCDatabase(ccnumber, ccexp);

 // Send the verification response code back to
 // the client
 dout.writeBoolean(verified);
 dout.flush();

 // Print a log message
 String message = verified ? "Verified." : "Not verified.";
 System.out.println("Verify: "+ccnumber+" "+ccexp+": "+
 message);

b Create a
ServerSocket
from a Server-
SocketFactory

c Require the client to
authenticate itself

d
Handle incoming
connections in
their own threads

Read credit card
info, verify it, and

send back a

o
result

364 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 364 Monday, March 11, 2002 3:38 PM
 }
 }

 /**
 * Verify credit card information against some database.
 * This is just a demo, so we'll always return true.
 */
 private synchronized boolean checkCCDatabase(String ccnumber,
 String ccexp) {
 return true;
 }

 /**
 * Create secure ServerSocketFactory.
 * Read authentication and trust information from
 * keystore files in local directory
 */
 private ServerSocketFactory getServerSocketFactory()
 throws GeneralSecurityException, IOException {

 // Read authentication keys. These are used to authenticate
 // ourselves to the client
 KeyStore authKeyStore = KeyStore.getInstance("JKS");
 authKeyStore.load(new FileInputStream("ccserver.auth"),
 passphrase.toCharArray());

 // The KeyManagerFactory manages the authentication keys
 KeyManagerFactory kmf =
 KeyManagerFactory.getInstance("SunX509");
 kmf.init(authKeyStore, passphrase.toCharArray());

 // Read trust keys. These are used to verify the client's
 // attempt to authenticate itself with us
 KeyStore trustKeyStore = KeyStore.getInstance("JKS");
 trustKeyStore.load(new FileInputStream("ccserver.trust"),
 passphrase.toCharArray());

 // The TrustManagerFactory manages the trust keys
 TrustManagerFactory tmf =
 TrustManagerFactory.getInstance("SunX509");
 tmf.init(trustKeyStore);

 // Create an SSLContext using our key and trust managers
 SSLContext sslContext = SSLContext.getInstance("TLS");
 sslContext.init(kmf.getKeyManagers(),
 tmf.getTrustManagers(),
 secureRandom);

 // Create a ServerSocketFactory
 ServerSocketFactory ssf = sslContext.getServerSocketFactory();
 return ssf;
 }

checkCCDatabase() always
returns true—it’s just a demo

o

o

Create an
SSLServerSocket
Factory

o
Read

authentication
keys from

ccserver.auth

o

Read trust keys
from

ccserver.trust

o
Create an
SSLContext
using the
auth and
trust keys

Create a ServerSocketFactory
from the SSLContext

o

Example: a secure credit card authorization system 365

jdk.book Page 365 Monday, March 11, 2002 3:38 PM
 /**
 * INNER Class:
 * SocketHandler handles an incoming connection
 * in a separate thread
 */
 class SocketHandler implements Runnable {
 private Socket socket;

 /**
 * Constructor: start a background thread
 */
 public SocketHandler(Socket socket) {
 this.socket = socket;

 // Start a background thread
 Thread thread = new Thread(this);
 thread.start();
 }

 /**
 * Handle a series of transactions sent over the socket
 */
 public void run() {
 try {

 // Call back to CCServer.handleSocket
 handleSocket(socket);

 } catch(IOException ie) {
 } finally {
 try {
 socket.close();
 System.out.println("Closed "+socket.getInetAddress());
 } catch(IOException ie) {
 System.err.println("Problem closing socket: "+socket);
 ie.printStackTrace();
 }
 }
 }
 }

 /**
 * Pre-initialize the SecureRandom so we can print
 * something about it to standard out
 */
 static private void initializeRandom() {
 System.out.print(
 "Please wait, initializing random numbers...");
 System.out.flush();
 secureRandom = new SecureRandom();
 secureRandom.nextInt();
 System.out.println("done");
 }

d Create a ServerSocketFactory
from the SSLContext

e
Call back to
CCServer.handleSocket

o
Pre-initialize a
SecureRandom object

366 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 366 Monday, March 11, 2002 3:38 PM
 /**
 * Verify arguments, init the random number generator,
 * and start the server
 */
 static public void main(String args[]) {
 if (args.length != 1) {
 System.err.println("Usage: java CCServer <port>");
 System.exit(1);
 }

 int port = Integer.parseInt(args[0]);

 initializeRandom();

 new CCServer(port);
 }
}

b The ServerSocketFactory has been configured to create SSLServerSockets that do
their authentication using the keys in ccserver.auth and ccserver.trust.

c Normally, only the server is required to authenticate itself. This is because it is gen-
erally the server that is performing some sensitive action, such as taking a credit
card number, and the client can be anyone, anywhere on the Internet. This way of
distributing the burdens of authentication is appropriate for web browsers, FTP cli-
ents, and the like.

Our application, however, is a highly sensitive system. Additionally, we can
expect that the clients’ installations are under the control of the organization run-
ning the server, and so it is not unreasonable to expect that each client should go to
the trouble of acquiring the keys necessary for authentication. Thus, we require cli-
ent authentication.

 Of course, this is just a text example, and so we are using keys generated locally
and shared between the server and the client. No external authority is being used in
this process.

d e SocketHandler takes a Socket object and spawns a background thread to process
the transactions coming from it. The run() method of the SocketHandler just
repeatedly calls CCServer.handleSocket() to actually process each transaction com-
ing from this Socket.

Thus we have multiple SocketHandlers calling the handleSocket() method of a
single CCServer object. The reason we call back into the CCServer object from the
SocketHandler is because only CCServer knows how to authenticate; Sock-
etHandler is only here to spawn a background thread.

Example: a secure credit card authorization system 367

jdk.book Page 367 Monday, March 11, 2002 3:38 PM
(See \Chapter11 \CCClient.java)
import java.io.*;
import java.net.*;
import java.security.*;
import javax.net.*;
import javax.net.ssl.*;

/**
 * Client for secure credit card verification system
 */
public class CCClient
{
 // Hostname and port of the verification server
 private String hostname;
 private int port;

 // Streams connected to the server
 private DataInputStream din;
 private DataOutputStream dout;

 // Passphrase for the authentication and trust keystores
 static private final String passphrase = "clientpass";

 // Secure random source
 static private SecureRandom secureRandom;

 /**
 * Constructor: set up the connection, and start
 * reading credit card info from standard in
 */
 public CCClient(String hostname, int port) {
 this.hostname = hostname;
 this.port = port;
 }

 /**
 * Process a series of credit cards read from
 * the command-line
 */
 private void process() {
 setupConnection();
 verifyFromStandardIn();
 }

 /**
 * Make connection to server, and get
 * a stream pair to communicate with it
 */
 private void setupConnection() {

Listing 11.4 CCClient.java

368 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 368 Monday, March 11, 2002 3:38 PM
 try {
 SocketFactory sf = getSocketFactory();
 Socket socket = sf.createSocket(hostname, port);

 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();

 din = new DataInputStream(in);
 dout = new DataOutputStream(out);
 } catch(GeneralSecurityException gse) {
 gse.printStackTrace();
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 /**
 * Read credit card information from standard in,
 * and verify it via the server
 */
 private void verifyFromStandardIn() {
 try {
 // Get a BufferedReader for reading standard in one
 // line at a time
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);

 while (true) {
 // Read credit card number
 System.out.print("Enter CC number: ");
 System.out.flush();
 String ccnumber = br.readLine();

 // Read expiration date
 System.out.print("Enter CC expiration date: ");
 System.out.flush();
 String ccexp = br.readLine();

 // Verify on remote server
 boolean verified = verify(ccnumber, ccexp);

 String message = verified ? "Verified." : "Not verified.";
 System.out.println(message);
 }
 } catch(IOException ie) {
 ie.printStackTrace();
 }
 }

 /**
 * Send credit card info to server, and get
 * verification in response
 */

b
Create a Socket
from a
SocketFactory

o Get streams
connected to the
server

o
Read credit card info from standard
in, and verify it via the server

o
Read credit
card info from
standard in

o Verify credit card
info via the server

Example: a secure credit card authorization system 369

jdk.book Page 369 Monday, March 11, 2002 3:38 PM
 private boolean verify(String ccnumber, String ccexp)
 throws IOException {
 dout.writeUTF(ccnumber);
 dout.writeUTF(ccexp);
 dout.flush();
 boolean ok = din.readBoolean();
 return ok;
 }

 /**
 * Create secure SocketFactory.
 * Read authentication and trust information from
 * keystore files in local directory
 */
 private SocketFactory getSocketFactory()
 throws GeneralSecurityException, IOException {

 // Read authentication keys. These are used to authenticate
 // ourselves to the server
 KeyStore authKeyStore = KeyStore.getInstance("JKS");
 authKeyStore.load(new FileInputStream("ccclient.auth"),
 passphrase.toCharArray());

 // The KeyManagerFactory manages the authentication keys
 KeyManagerFactory kmf =
 KeyManagerFactory.getInstance("SunX509");
 kmf.init(authKeyStore, passphrase.toCharArray());

 // Read trust keys. These are used to verify the server's
 // attempt to authenticate itself with us
 KeyStore trustKeyStore = KeyStore.getInstance("JKS");
 trustKeyStore.load(new FileInputStream("ccclient.trust"),
 passphrase.toCharArray());

 // The TrustManagerFactory manages the trust keys
 TrustManagerFactory tmf =
 TrustManagerFactory.getInstance("SunX509");
 tmf.init(trustKeyStore);

 // Create an SSLContext using our key and trust managers
 SSLContext sslContext = SSLContext.getInstance("TLS");
 sslContext.init(kmf.getKeyManagers(),
 tmf.getTrustManagers(),
 secureRandom);

 // Create a SocketFactory
 SocketFactory ssf = sslContext.getSocketFactory();
 return ssf;
 }

 /**
 * Pre-initialize the SecureRandom so we can print
 * something about it to standard out
 */

o

Send the credit
card info, and
send back a
response

o Create an SSLSocketFactory

Read
authentication

keys from
ccclient.auth

o

Read trust keys from
ccclient.trust

o

o
Create an
SSLContext
using the
auth and
trust keys

o
Create a SocketFactory
from the SSLContext

370 CHAPTER 11

The Java Secure Socket Extension (JSSE)

jdk.book Page 370 Monday, March 11, 2002 3:38 PM
 static private void initializeRandom() {
 System.out.print(
 "Please wait, initializing random numbers...");
 System.out.flush();
 secureRandom = new SecureRandom();
 secureRandom.nextInt();
 System.out.println("done");
 }

 /**
 * Verify arguments, init the random number generator,
 * and start the client
 */
 static public void main(String args[]) {
 if (args.length != 2) {
 System.err.println(
 "Usage: java CCServer <hostname> <port>");
 System.exit(1);
 }

 String hostname = args[0];
 int port = Integer.parseInt(args[1]);

 initializeRandom();

 CCClient ccc = new CCClient(hostname, port);
 ccc.process();
 }
}

b The SocketFactory has been configured to create SSLSockets that do their authen-
tication using the keys in ccclient.auth and ccclient.trust.

11.6 Summary

The JSSE packages, along with the SunJSSE security provider, provide a complete
implementation of secure socket communication using the SSL/TLS standard. JSSE
makes it easy to communicate with other SSL-enabled entities, such as secure web
servers, as well as SSL-enabled versions of common Internet applications, such as FTP.

 JSSE uses the familiar socket and stream metaphors so familiar to Java program-
mers. These classes are used in exactly the same way as their regular, unencrypted ver-
sions. The difficult part of using JSSE is in managing security keys, but the complexity
of this is inherent to security practices in general. JSSE, along with keytool, supports
common key formats and is interoperable with existing SSL software and techniques.

o Pre-initialize a SecureRandom object

jdk.book Page 371 Monday, March 11, 2002 3:38 PM
index
A

anti-aliasing 102
array

wrapping buffers 7
ASCII 58
assertion 172

assertion status 181
catching and rethrowing 184
command-line

arguments 178
complicated 192
consistency 189
determining if assertions are

enabled 183
during class initialization 185
efficiency of 178, 192
inconsistent states 187
programmatic control 181
removing 182
requiring that assertions be

turned on 183
side effects inside 183
syntax 175, 177
to check compiler, operating

system, or hardware 204
what to check for 197

AssertionError 172, 184
constructors of 176

authentication 341
AWT 88

B

Base64 313

BasicService 114, 131
blocking vs. nonblocking 42
buffer

absolute reads and writes 8
accessing the underlying

array 17, 27
byte-order 15
capacity 4, 9–10
clear 6, 10
containing types other than

byte 13
creating 4, 7
creating from arrays 7
data sharing and 7
direct 2, 16

creating 7
endianness 15
flip 6, 10
limit 9–10
overflow 10
position 9
reading and writing types

other than byte 14
relative reads and writes 8
slice 12
state values 9
subbuffers 12

BufferedImage 89, 92
ByteBuffer 4

converting to CharBuffer 58

C

C (language) 172
C++ 172

call stack 208
capturing group 260
cause 207
certificate 342
chained exception 206

new constructor 207
channel

bidirectionality 2
reading and writing 6
reading from 4
selectable 50, 52
writing to 5

CharBuffer 4, 58, 266
converting to ByteBuffer 58

CharSequence 266
Charset 58

alias 59
availableCharsets() 59
decoding 59
encoding 59
forName() 59
standard Java charsets 59
translating 62

CharsetDecoder 61
decode() 61

CharsetEncoder 61
encode() 61

chat 149
chat (instant messaging) 43
checksum 41
ciphertext 340
ClassLoader

and assertions 177, 181
ClassLoader resources 129
ClassLoader.getResource() 114
classpath 241
371

372 INDEX

jdk.book Page 372 Monday, March 11, 2002 3:38 PM
clearAssertionStatus() 182
client/server 42
clipboard

accessing in Java Web
Start 114, 135

ClipboardService 114, 131
collection

efficiency 253
Collections 230

indexOfSubList() 232
lastIndexOfSubList() 232
list() 233
replaceAll() 232
rotate() 230–231
shuffle() 253

CONFIG 139
configuration data 299
configureBlocking() 45
consistency 197, 201
ConsoleHandler 142, 149
cookies, in Java Web Start 114
copy on write 40
cryptography 340

D

DataFlavor 135
debugging 138, 172
decryption 340
default address 68
default printer 77
design-by-contract 174
desiredAssertionStatus() 186
digital signature 115, 341
direct buffer 2
DocPrintJob 81
document attributes 79
document flavor 77
documents, printing 76–77,

80–81
DoubleBuffer 4
DownloadService 111, 114

E

encryption 340
encryption key 340
Enumeration 233
equals 246
error handling 172
ErrorManager 142

exception 209
cause of 207
remote 216
rethrowing 206

F

fault tolerance 172
file copying 6
file locking 28

advisory vs. manditory
locks 28

exclusive vs. shared 29–30
locking an entire file 31
multiple regions of a file 30
nonblocking lock

acquisition 30
overlapping locks 30
portability 31
portability tips 31
releasing a lock 31
visibility to other

processes 31
file path 241
FileHandler 142, 146
FileOpenService 114, 130
FileSaveService 114, 130

writing from a background
thread 130

Filter 143
Filter.isLoggable() 143
find-and-replace 268
FINE 139
FINER 139
FINEST 139
firewall (example program) 17
FloatBuffer 4
Formatter 143
Formatter.formatMessage()

144
overriding 167

G

getCause() 207
getStackTrace() 210
GIF 90

animated 93, 97
licensing issues 91

graph generation 102
Graphics2D 93

H

Handler 142
hash bin 240
HTML 285
https 346

I

I/O
blocking 43–44
block-oriented vs.

stream-oriented 2, 27
bulk reading and writing 4
image 76
memory-mapped 38
multiplexing 43
nonblocking 2

configuring 45
paged 38
performance 2, 27
polling 44, 49
throughput 63
with multiple channels 49

IdentityHashMap 246
IIOReadProgressListener 99
IIOReadUpdateListener 99
IIOReadWarningListener 99
IIOWriteProgressListener 99
IIOWriteWarningListener 99
image

animated 93
background loading 99
event listeners 99
extracting a portion of 97
format 89

conversion 99
discovering 90

plug-in model 89
progressive 99
reading 88–89
reading from URLs 90
reading multiple 93
streams 89–90
synchronous loading vs.

asynchronous
loading 88

thumbnail images 99
writing 88, 90, 102

image strip 97

INDEX 373

jdk.book Page 373 Monday, March 11, 2002 3:38 PM
ImageIO.getReaderFormatNames()
90

ImageIO.getWriterFormatNames()
90

ImageIO.read() 89, 92
ImageIO.write() 90, 92
ImageReader 93
ImageReadParam 97
ImageWriter 95
immediate image model 89
inconsistent states 187
InetAddress 66
INFO 139
initCause() 207
InputImageStream 93
insertion order,

maintaining 235
IntBuffer 4
invariant 174, 197, 201
ISO-8859-1 59
iteration speed 240
Iterator 233

J

jar (tool) 111
jar file 111
jarsigner 115
Java Network Launching

Protocol 108
Java Web Start 108

application home page 112
application information 112
application-side data 109
code signing 115
codebase 112
enterprise deployment 136
icon 112
JNLP file 111
lazy downloading 111
networking model 109
offline mode 109, 112
reading files 113
resources 113
sandbox 110, 113

bypassing 115
security 110, 112
trusted applications 113
untrusted applications 113
using multiple JRE

versions 113

web server
configuration 111, 113

writing files 113
java.awt.datatransfer 135
java.util.logging.config.class

system property 145
java.util.logging.config.file

system property 145
Java2D 76
JAWS 108
JNLP 108, 111
JNLP API 113, 117

compiling with 114
JPEG 90
JRE 113
JSSE 340

browser authentication 346
certifcation authority 346
certificate 342, 346, 359
client authentication 346,

359
HTTPSD 346
JKS 342
key alias 344, 347
key distribution 359
key generation 347, 360
key management 343
keytool 344, 347, 360
PKCS12 342
random numbers 358
RSA 340, 344
server authentication 346,

359
SSL 340, 342

authentication 343
handshaking 343
key exchange 343

SunJSSE security
provider 340, 342

TLS 340, 342
trusted server 359
X.509 key management 340,

345

K

key 340
KeyManager 344
KeyManagerFactory 344
KeyStore 344
keytool 115, 344

L

lexical analyzer 288
LinkedHashMap 235

efficiency 240
implementation 240

LinkedHashSet 238
efficiency 240
implementation 240

list
creating 233
creation 253
modifying 230, 232–233
searching 232

listening on a socket 46, 51, 54,
67, 69

loading on demand 38
logger 138

exceptions and 141
handler 142
resource bundle 141

Logger.getLogger() 140
Logger.global 138
Logger.log() 141
logging 138

calling parent’s handler 140,
142

configuration 145
default log message

format 139
displaying in a window 155
errors 142
filenames 145, 147
filter 143
formatter 143

creating a custom
formatter 165

global handlers 142, 149
global log level 149
handler

creating a custom
handler 155

throwing exceptions 142
handler configuration 145
handlers 140
inheriting parent’s log

level 140
inheriting parent’s resource

bundle 141
level 139–140

CONFIG 139

374 INDEX

jdk.book Page 374 Monday, March 11, 2002 3:38 PM
level (continued)
FINE 139
FINER 139
FINEST 139
INFO 139
SEVERE 139
WARNING 139

log rotation 147
logger configuration 148
logger hierarchy 140
optimizing for speed

143–144, 148, 153, 168
resource bundle 141

logging.properties file 145
LogRecord 141–143
LongBuffer 4
loopback interface 63

M

Map
efficiency 240
implementation 240
inserting 236
insertion speed 240
iteration 236
ordered 235
update speed 240
updating 236

MappedByteBuffer 38
force() 40
isLoaded() 40
load() 40
reading from 38
unmap(), lack of 42
writing to 38

marker interface 252
Matcher 265

appendReplacement() 268
appendTail() 268
end() 266–267
find() 266
group() 267
lookingAt() 266
matches() 266
start() 266–267

Matcher.replaceAll() 268
MediaTracker 88
MemoryHandler 142, 147
memory-mapped files

writing to 38

MIME type 77, 111, 113
multibyte chars 59
MultiDocPrintService 77
multiplexing 43

N

netstat 68, 71
network cards 63
network interface 63

default 64
getByInetAddress() 66
getByName() 67
getting the address of 66
listening on the address of 67
listening on the default

address 68
listing 64
reporting on 64

NetworkInterface 63
newline

in regex 264
NodeChangeEvent 325
NodeChangeListener 325
nonblocking accept() 46, 54
nonblocking I/O 2, 42
nonblocking read() 45, 54
nonblocking server socket 51
nonblocking socket 45

O

Object 246
object

comparison 247
equality 246, 251

object graph traversal 248
object identity 246, 251
Object.hashCode() 247
OP_ACCEPT 52
OP_CONNECT 52
OP_READ 51, 54
OP_WRITE 51

P

package name 140
packages 308
path 241
Pattern 265

compile() 266

matcher() 266
split() 273

Perl 270
persistence, data 298
PersistenceService 114
plaintext 340
PNG 90
polling 43–44, 49
POSIX 262
postcondition 174, 198
precondition 174, 194–195,

197, 201
PreferenceChangeEvent 325
PreferenceChangeListener 325
Preferences

exportNode() 335
exportSubtree() 335
flush() 318
importPreferences() 335
isUserNode() 314
node() 309
nodeExists() 317
systemNodeForPackage() 31

0, 314
userNodeForPackage() 310,

314
userRoot() 308

preferences 298
asynchronous writing 303,

318
back end 302, 318, 334
byte array encoding 313
change listener 324, 326,

329
child node 316
comparison with JNDI 305
comparison with

Properties 304
concurrency 303, 318
data model 305
data type 302, 306
default value 311, 313, 324
design 301
distributed 300
efficiency of 300
exporting 335
fault tolerance 301, 304
guidelines 299, 301
importing 335
iterating through a node 314
key 305, 312

INDEX 375

jdk.book Page 375 Monday, March 11, 2002 3:38 PM
preferences (continued)
language-independence 303
node name 307, 313, 315
package 308

default package 311
parent node 316
path name 307, 315
portability 302
reading a value 311
removing a node 317
removing a value 314
root 307
size limitations 299, 306,

312–313
stored defauls 335
storing null 312
user data vs. system data 304,

306, 314
value 305, 312
writing a value 311

prime numbers 234
print service 77
Printable 131
printing 76

configuration 76
default printer 76
document attributes 79
event listeners 81, 83
images, printing 76
in Java Web Start 114
print dialog 83
print jobs, tracking 76
printers, discovering 76–77
status messages 83

PrintService 77, 114, 131
PrintServiceLookup 77
printStackTrace() 211, 213
private key 341
progressive image 99
properties 145
public key 341

signed public key 342
public-key cryptography 340

R

RandomAccess 252
Raster 89
redundancy 63
regex 258

alternation 263

boundary 263
capturing group 260, 267,

281
character class 260

POSIX 262
predefined 261

comments 281
compilation 265
digit 261
efficiency 265
extended syntax 281
find-and-replace 268, 281,

285
flags 269

case insensitivity 281
extended sytnax 281
newline 264

greedy matching 264
grouping 260
Java vs. Perl 258, 265, 270
literal 259
lookbehind 275–276, 283
negation 261
newline 264
quantifier 259
reluctant matching 264
sequencing 263
white space 261, 281
wildcard 259
word boundary 261, 263,

270
zero-width 275–276, 283

regular expression 258
remote procedure call 216
resource bundle 141
robustness, code 172
root logger 140
RPC 216
RSA 340

S

sandbox 110
searching

for file 241
secret key 341
secret-key cryptography 340
Secure Sockets Layer 340
SecureRandom 358
security 63, 340
security provider 340

select() 42, 49
selectable channels 50
selected set 53
selectedKeys() 53
SelectionKey 52

cancel() 52
remove() 54

Selector 49
creating 51

self-signed key 342
ServerSocketChannel.register()

51
ServiceManager 114
ServiceManager.lookup() 114
Set

efficiency 240
implementation 240
insertion speed 240
ordered 238
update speed 240

setClassAssertionStatus() 181
setDefaultAssertionStatus()

181
setPackageAssertionStatus()

181
setStackTrace() 210, 215
ShortBuffer 4
SimpleDoc 80
SimpleFormatter 143
SocketHandler 142, 148
software deployment 172
software installation 108
source path 213
sparse array 240
SSL 340–341
SSLContext 345
SSLServerSocket 346
SSLSocket 346
stack frame 208

synthesis 220
stack trace 208
StackTraceElement 208, 210

lack of public
constructor 210

stored defaults 335
StreamHandler 142
streams

getting the underlying
channel 3

implemented on top of
channels 3, 28

376 INDEX

jdk.book Page 376 Monday, March 11, 2002 3:38 PM
string matching 258
StringBuffer 168, 266, 268
subimage 97
sublist 231–232
sun.* classes 88
symmetric key 341
syntax changes in JDK 1.4

175, 177
System.identityHashCode()

252

T

tab-delimited file 273
TCP/IP forwarding (example

program) 17
telnet 71
text processing 258, 270
thread pool 216
thread priority 217
threads

using too many 43

Throwable 206
TIFF 99
TLS 340
token 288
Transferable 135
Transport Layer Security 340
trusting code 115
TrustManager 345
TrustManagerFactory 345

U

uncaught exception 213
Unicode 58
URL, reading an image

from 90
US-ASCII 59
UTF-16 59
UTF-16BE 59
UTF-16LE 59
UTF-8 59

V

validOps() 52

W

WARNING 139
web log 102
Web Start 108
write caching 39

X

x-java-jnlp-file MIME type
111, 113

XML 143, 258, 336
XMLFormatter 143

jdk.book Page 377 Monday, March 11, 2002 3:38 PM

jdk.book Page 378 Monday, March 11, 2002 3:38 PM

	contents
	preface
	acknowledgments
	about this book
	author online
	about the cover illustration
	Basic NIO (New Input/Output)
	1.1 Doing I/O with channels and buffers
	1.1.1 Getting a channel from a stream
	1.1.2 Creating a buffer revision
	1.1.3 Reading from a channel
	1.1.4 Writing to a channel
	1.1.5 Reading and writing together

	1.2 Understanding buffers
	1.2.1 Creating buffers
	1.2.2 get() and put()
	1.2.3 Buffer state values
	1.2.4 flip() and clear()
	1.2.5 slice() and subbuffers
	1.2.6 Buffers of other types
	1.2.7 Reading and writing other types from a ByteBuffer
	1.2.8 Direct buffers
	1.2.9 Example: TCP/IP forwarding
	1.2.10 Doing I/O with channels and buffers

	1.3 The File Locking facility
	1.3.1 Types of locks
	1.3.2 Using locks
	1.3.3 Acquiring locks
	1.3.4 Portability issues
	1.3.5 Example: a simple database

	1.4 Summary

	Advanced NIO (New Input/Output)
	2.1 Reading and writing with MappedByteBuffers
	2.1.1 Advantages of MappedByteBuffers
	2.1.2 Disadvantages of MappedByteBuffers
	2.1.3 Using MappedByteBuffers
	2.1.4 Example: checksumming

	2.2 Nonblocking I/O
	2.2.1 The multithreaded approach
	2.2.2 The really bad single-threaded approach
	2.2.3 Polling
	2.2.4 Example: a polling chat server
	2.2.5 Multiplexing with select()

	2.3 Encoding and decoding with Charsets
	2.3.1 Decoding and encoding
	2.3.2 Finding available Charsets
	2.3.3 Using encoders and decoders

	2.4 Network interfaces
	2.4.1 When to use a network interface
	2.4.2 Getting a list of NetworkInterfaces
	2.4.3 Reporting on NetworkInterfaces
	2.4.4 Getting a list of InetAddresses
	2.4.5 Getting a NetworkInterface by InetAddress
	2.4.6 Getting a NetworkInterface by name
	2.4.7 Listening on a particular address

	2.5 Summary

	Java2D
	3.1 The Print Service API
	3.1.1 Print Service packages
	3.1.2 Document flavors
	3.1.3 Printer discovery
	3.1.4 Printer attributes
	3.1.5 The SimpleDoc class
	3.1.6 The DocPrintJob interface
	3.1.7 Example: printing an image
	3.1.8 Example: a custom print dialog box

	3.2 Reading and writing images with the Image I/O API
	3.2.1 The plug-in model
	3.2.2 Simple reading
	3.2.3 Simple writing
	3.2.4 The ImageIO class
	3.2.5 Discovering available formats
	3.2.6 Example: reading and displaying an image
	3.2.7 Example: writing an image
	3.2.8 The ImageReader class
	3.2.9 The ImageWriter class
	3.2.10 Customizing the reading process
	3.2.11 Listeners
	3.2.12 Example: generating a graph

	3.3 Summary

	Java Web Start (JAWS)
	4.1 Understanding the JAWS execution model
	4.1.1 Client, server, and application
	4.1.2 The sandbox
	4.1.3 Consider the possibilities

	4.2 Building and deploying a JAWS application
	4.2.1 JAR files
	4.2.2 The JNLP file
	4.2.3 Configuring the web server

	4.3 Using the sandbox: services
	4.3.1 Using the sandbox: resources

	4.4 Bypassing the sandbox
	4.5 Example: a simple drawing program
	4.5.1 PicoDraw.java
	4.5.2 DrawCanvas.java
	4.5.3 TransferableImage.java

	4.6 Summary

	Logging
	5.1 Logging overview
	5.1.1 Log message format
	5.1.2 Logging levels
	5.1.3 Logger names and the logger hierarchy
	5.1.4 Logging methods
	5.1.5 The LogRecord class
	5.1.6 Handlers
	5.1.7 Filters
	5.1.8 Formatters
	5.1.9 Logging efficiency
	5.1.10 The philosophy of logging

	5.2 Configuring the Logging system
	5.2.1 Configuring handlers
	5.2.2 Configuration values for standard handlers
	5.2.3 Configuring loggers
	5.2.4 Global handlers

	5.3 Using logging in a program
	5.4 Writing a custom handler
	5.5 Writing a custom formatter
	5.6 Summary

	Assertion facility
	6.1 Assertion basics
	6.1.1 Why use assertions?
	6.1.2 Assertions vs. other error code
	6.1.3 Designing by contract

	6.2 Working with assertions
	6.2.1 Assertion syntax
	6.2.2 Compiling with assertions
	6.2.3 Controlling assertions from the command line
	6.2.4 Controlling assertions programmatically
	6.2.5 Removing assertions completely
	6.2.6 Determining if assertions are enabled
	6.2.7 Catching an assertion failure
	6.2.8 Assertions and class initialization

	6.3 Assertion examples
	6.3.1 Avoiding inconsistent states
	6.3.2 Narrowing the range of states
	6.3.3 Ensuring consistency between container objects and contained objects
	6.3.4 More complicated consistency checks

	6.4 Knowing when to use assertions
	6.4.1 Rules of use
	6.4.2 What to check for
	6.4.3 Miscellaneous rules

	6.5 Summary

	Exceptions
	7.1 Chained exceptions
	7.2 StackTraceElements
	7.2.1 What is a stack trace?
	7.2.2 Using StackTraceElements
	7.2.3 Writing a custom stack trace dumper
	7.2.4 Synthesizing a stack trace

	7.3 Summary

	Collections
	8.1 Utilities
	8.1.1 Rotating list elements
	8.1.2 Replacing list elements
	8.1.3 Finding sublists within lists
	8.1.4 Swapping list elements
	8.1.5 Converting enumerations to lists

	8.2 LinkedHashMap and LinkedHashSet
	8.2.1 Using LinkedHashMap
	8.2.2 Using LinkedHashSet
	8.2.3 Efficiency of LinkedHashMap and LinkedHashSet
	8.2.4 Example: searching a file path

	8.3 IdentityHashMap
	8.3.1 Object equality
	8.3.2 Hashing and equality
	8.3.3 Example: using the IdentityHashMap

	8.4 The RandomAccess interface
	8.5 Summary

	Regular Expressions
	9.1 Overview of regular expressions
	9.1.1 Literals
	9.1.2 The . wildcard
	9.1.3 Quantifiers: * and +
	9.1.4 Grouping with ()
	9.1.5 Character classes
	9.1.6 Predefined character classes
	9.1.7 Sequencing and alternation
	9.1.8 Boundary matchers
	9.1.9 Reluctant (non-greedy) matching
	9.1.10 Other features

	9.2 Pattern and Matcher
	9.2.1 Capturing groups
	9.2.2 Find and replace
	9.2.3 Flags

	9.3 Transitioning from Perl to Java
	9.3.1 Finding the longest word in a line
	9.3.2 Parsing a tab-delimited file
	9.3.3 A command-line processor
	9.3.4 Parsing and modifying names

	9.4 Example: HTML templating system
	9.5 Example: a lexical analyzer
	9.6 Summary

	The Preferences API
	10.1 What the Preferences API is for
	10.1.1 Simple Preferences API example
	10.1.2 Appropriate applications of the Preferences API
	10.1.3 Design goals of the Preferences API

	10.2 Knowing when to use the Preferences API
	10.2.1 Comparison with java.util.Properties
	10.2.2 Comparison with JNDI

	10.3 Understanding the data hierarchy
	10.3.1 Tree-like structure
	10.3.2 Key/value pairs
	10.3.3 System vs. user
	10.3.4 Definition of a user
	10.3.5 Pathnames
	10.3.6 Per-package subtrees

	10.4 Using the API
	10.4.1 Traversing the data hierarchy
	10.4.2 Reading and writing values
	10.4.3 Allowable types
	10.4.4 Allowable keys
	10.4.5 Allowable values
	10.4.6 Allowable node names
	10.4.7 Default values
	10.4.8 Removing values
	10.4.9 Iterating through the values in a node
	10.4.10 Distinguishing between user and system nodes
	10.4.11 Node names and paths
	10.4.12 Getting parent and child nodes
	10.4.13 Determining the presence of nodes
	10.4.14 Removing nodes
	10.4.15 Flushing
	10.4.16 Syncing
	10.4.17 Example: storing GUI configuration

	10.5 Change listeners
	10.5.1 Preference change listeners
	10.5.2 Node change listeners
	10.5.3 Example: listening for a GUI change request
	10.5.4 Example: changing server ports on the fly

	10.6 Stored defaults
	10.7 Importing and exporting
	10.8 Summary

	The Java Secure Socket Extension (JSSE)
	11.1 Cryptographic terminology
	11.2 SSL—the Secure Sockets Layer
	11.2.1 Components of the default implementation
	11.2.2 SSL handshaking

	11.3 Managing keys
	11.3.1 Creating keys with keytool
	11.3.2 Store keys in a KeyStore
	11.3.3 Creating a KeyManagerFactory
	11.3.4 Creating a TrustManagerFactory
	11.3.5 Creating an SSLContext

	11.4 Example: a trivial secure web server
	11.4.1 The authentication model
	11.4.2 Generating the key
	11.4.3 The configuration file
	11.4.4 The code

	11.5 Example: a secure credit card authorization system
	11.5.1 The authentication model
	11.5.2 Generating the keys
	11.5.3 The code

	11.6 Summary

	index

