
DevX Home Premier Club Search RFP Exchange eLearning Code Library Help Locator+ Shop DevX

 .NET
 Application Server
 ASP
 Careers
 C++
 Database Development
 DB2
 Delphi
 DHTML
 eLearning
 Enterprise
 Exchange & Outlook
 Java and JavaBeans
 NetMeeting
 Open Source
 Oracle
 Security
 Source Code
 SQL Server
 Tech Tips
 UML
 Visual Basic
 Web Dev and Design
 Wireless
 XML
 Partner Pavilions
 DevX MarketPlace
 Conferences
 Magazines
 Other Resources
 About DevX

Developing J2EE Applications with the UML and Rational Rose

Khawar Ahmed

Introduction
As businesses try to develop software faster and more predictably with higher quality, the
Java 2 Platform, Enterprise Edition (J2EE) is emerging as a popular standard for building
enterprise applications. Not only does J2EE provide a comprehensive paradigm for
developing enterprise applications, it also helps bring together a previously disjoint set of
diverse technologies.

Quite unsurprisingly, the keys to success with J2EE are the same as with any complex
software platform: effectively communicating requirements, making the right analysis and
design decisions, and identifying the best implementation choices.

Organizations that follow the industry accepted best practice of visual modeling are able to
develop their software faster and build better quality systems. The Unified Modeling
Language (UML) is the software industry's standard for such visual modeling.

In this white paper, we explore how you can effectively leverage the UML and Rational
Rose 2001a, the leading UML based software modeling and development tool for
developing J2EE based enterprise applications.

What is the Unified Modeling Language (UML)?

The Unified Modeling Language (UML), an OMG standard since late 1997, is a graphical
language for the modeling and development of software systems. It provides modeling and
visualization support for all phases of software development, from requirements analysis to

specification, to construction and deployment.

The central idea behind using the UML for visual modeling is to capture the significant details about a system such that the
requirements for the project are clearly understood, solution architecture is developed, and a chosen implementation is clearly
identified and constructed. A rich notation for visually modeling software systems is needed to accomplish this. The UML not only
provides the notation for the basic building blocks, it also provides for ways to express complex relationships among the basic
building blocks. Such relationships are captured in the form of UML diagrams.

Let's look at how the UML and Rational Rose can help in understanding, designing and implementing J2EE applications.

Understanding requirements
Projects often fail because the requirements were not well understood or communicated. This is not too surprising in light of the
fact that language, whether written or oral, is imprecise by nature and ambiguous.

You can apply UML use case modeling to develop a precise model of what is required of
the system, and then utilize the use cases as the basis for driving other aspects of your

Table of Contents

Introduction

What is the Unified Modeling
Language (UML)?

Understanding requirements

Designing a solution

Implementing the software

Working with the
implementation

More on the UML and J2EE

Summary

<< Return to Special Report:
Judging Java

页码: 1/3Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/default.asp

enterprise system development. In effect, a use case acts as the string that binds the
pearls of a necklace together. Use cases bridge the gap between the end user and the
requirements of the system. They can be used to establish traceability between functional
requirements and the system implementation itself. The use cases also serve as a
connection point to the use case document where the details of the requirements are
captured.

Figure 1 shows a partial use
case diagram for an online CD
store, derived by distilling the
written and verbal requirements
of the expected functionality
into use cases. In this case, it is
immediately obvious that the
shopper (represented by the
stick figure known as an actor
the UML) can use the system in
one of four ways (each shown
via the ellipse referred to as a

Use Case in the UML).

Each use case, in turn, is elaborated via one or more scenarios
typically via sequence diagrams. Of course, in this early phase of
requirements capture and analysis, the sequence diagrams, by
necessity, are relatively simple and may be incomplete. An example of
such a sequence diagram is shown in Figure 2. In Rational Rose, you
create such sequence diagrams that are tightly related to specific use
cases by selecting the use case in the browser and selecting
New>Sequence Diagram from the use case context menu.

Figure 1: A simple use case
diagram

Figure 2: A sequence diagram illustrating
checkout use case

 Designing a solution

 Introduction Working with the implementation

 Designing a solution More on the UML and J2EE

 Implementing the software

Sponsored Links

Microsoft Windows XP: Learn about the new version of Windows

You don't know Itanium until you've read our developer-only coverage!

What if you could "automagically" generate test harnesses and stubs for
component testing? Wow! Tell me more!

The code to your success is here. Oracle OpenWorld

Gain control of your projects without getting bogged down in paperwork

页码: 2/3Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/default.asp

Copyright Information/Privacy Statement

Microsoft Windows XP: Learn about the new version of
Windows You don't know Itanium until you've read our developer-only

coverage!

DevX Home | VB Zone | Java Zone | C++ Zone | Enterprise Zone | Get Help
.NET Guide | XML Zone | WebBuilder | Database Dev Zone | Wireless Zone

Visual Studio Magazine | Java Pro | XML Magazine | Exchange & Outlook | VBITS

MarketPlace | Knowledge Xchange | Newsletters | Tech Tips
Advertise | Help | Copyright | Privacy Statement

页码: 3/3Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/default.asp

DevX Home Premier Club Search RFP Exchange eLearning Code Library Help Locator+ Shop DevX

 .NET
 Application Server
 ASP
 Careers
 C++
 Database Development
 DB2
 Delphi
 DHTML
 eLearning
 Enterprise
 Exchange & Outlook
 Java and JavaBeans
 NetMeeting
 Open Source
 Oracle
 Security
 Source Code
 SQL Server
 Tech Tips
 UML
 Visual Basic
 Web Dev and Design
 Wireless
 XML
 Partner Pavilions
 DevX MarketPlace
 Conferences
 Magazines
 Other Resources
 About DevX

Developing J2EE Applications with the UML and Rational Rose

Designing a solution
The next stage, Use Case Analysis, provides an initial, high-level definition of how internal elements interact in order to satisfy
system's functional requirements, and how they are related to each other statically. This activity can involve much trial and error
before satisfactory solutions are created. "Analysis classes", for which behaviors often are described abstractly using natural
language, are a useful tool to use during this analysis. Analysis classes are usually not implemented in software, although they
can be. Rather, the analysis classes are refined later in the overall design process into precisely defined design classes and
subsystems.

This starts by elaborating the sequence diagrams such that they reveal the internal workings of the system and instead of
showing the interaction between actors and a monolithic system, the system is split into analysis level objects. The
responsibilities of the system are divided among the analysis level objects to achieve a finer grained sequence diagram. Three
kinds of analysis objects are used:

Boundary Objects

Boundary objects represent all interactions between the system's inner workings and its surroundings. These include
interaction with a user via graphical user interface, interactions with other actors (such as those representing other
systems), communications with devices, and so on. Boundary objects serve to isolate and shield the rest of the system
from external concerns. Generally speaking, each actor-use case interaction pair maps in a boundary object.

Entity Objects

Entity objects represent information of significance to the system. They are usually persistent and exist for an extended
duration. Their primary purpose is to represent and manage information within the system. Key concepts within a system
manifest themselves as entity objects in the model.

Control Objects

Control objects are used to model behavior within the system. Control objects do not necessarily implement the
behavior, but may instead work with other objects to achieve the behavior of the use case. The idea is to separate the
behavior from the underlying information associated with the model, making it easier to deal independently with changes
in either later on

The UML provides the notion of a stereotype, represented as text enclosed in double angle brackets, to distinguish between
different types of classes. In Rational Rose, you can easily create analysis classes by changing the class stereotype field to
<<boundary>>, <<entity>>, and <<control>> respectively. These can then be used as the basis for creating analysis level
diagrams.

An updated version of the sequence diagram for the checkout use case, this time with the system decomposed into analysis
objects, is shown below in Figure 3. The figure uses iconic representation for the boundary, control and entity objects (circle with
a T, circle with an arrow, and circle with a tangential line, respectively).

Of course, classes often participate in several use cases and it
is equally important to understand their static relationships to

页码: 1/3Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page2.asp

ensure consistency across the system. The UML class diagram
is useful for capturing the static relationships between different
structural elements.

As a first step, we identify and place all the classes that
participate in the use case on a class diagram. We have already
distributed the behavior of the use case to the objects so it is a
relatively simple exercise to create analysis operations for the
responsibilities assign to each. It is important to note that these
are analysis operations, meaning that these operations will most
likely need to evolve as we continue with our analysis and
design efforts.

Rational Rose allows you to easily define new operations on the
analysis class from sequence diagrams by selecting the existing
message and choosing <new operation> from the context menu
(as shown in Figure 3). If you have already defined operations
on a class, you can simply select the existing operation from the
list.

This is typical of the approach used in Rational Rose to improve user productivity and ensure consistency, and therefore quality,
across your entire model. Other similarly useful capabilities include the ability to query the model on which classes and messages
are unresolved (i.e. unmapped to actual classes or operations in the model).

Another aspect of fleshing out each individual class is to identify attributes for the class. Attributes represent information that may
be requested of the class by others or that may be required by the class itself to fulfill its responsibilities. At this stage in the
analysis, it is appropriate to identify attributes as generic types such as number, string, etc.

Identifying the relationships between the classes completes the class diagram for the use case. The relationships we are
specifically interested in at this stage are association, dependency, and inheritance.

Having analyzed all the use cases and having created the class diagrams for each use case, it is time to coalesce the various
analysis classes to arrive at a unified analysis model. This is an important activity, as we want to arrive at a minimal set of
classes and avoid unnecessary redundancy in the final analysis model.

The key task at this stage revolves around identifying classes that may
be duplicated across use cases or masquerading in slight variations.
For example, control classes that have similar behavior or represent
the same concept across use cases should be merged. Entity classes
that have the same attributes should also be merged, and their
behavior combined into a single class.

Figure 4 shows a preliminary analysis level class diagram for the use
cases identified in Figure 1. As we're primarily interested in the
relationships between the classes, we've used Rational Rose's display
filtering capabilities to filter out the details of the individual classes by
un-checking Format>Show all attributes and Format>Show all
operations.

Figure 3: Refined sequence diagram with analysis
objects

Figure 4: Preliminary analysis level class
diagram

Introduction Implementing the software

页码: 2/3Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page2.asp

Copyright Information/Privacy Statement

 Introduction Working with the implementation

 Designing a solution More on the UML and J2EE

 Implementing the software

Sponsored Links

Microsoft Windows XP: Learn about the new version of Windows

You don't know Itanium until you've read our developer-only coverage!

The Long, Surprising Journey of Rational Software

Gain control of your projects without getting bogged down in paperwork

What if you could "automagically" generate test harnesses and stubs for
component testing? Wow! Tell me more!

Microsoft Windows XP: Learn about the new version of
Windows You don't know Itanium until you've read our developer-only

coverage!

DevX Home | VB Zone | Java Zone | C++ Zone | Enterprise Zone | Get Help
.NET Guide | XML Zone | WebBuilder | Database Dev Zone | Wireless Zone

Visual Studio Magazine | Java Pro | XML Magazine | Exchange & Outlook | VBITS

MarketPlace | Knowledge Xchange | Newsletters | Tech Tips
Advertise | Help | Copyright | Privacy Statement

页码: 3/3Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page2.asp

DevX Home Premier Club Search RFP Exchange eLearning Code Library Help Locator+ Shop DevX

 .NET
 Application Server
 ASP
 Careers
 C++
 Database Development
 DB2
 Delphi
 DHTML
 eLearning
 Enterprise
 Exchange & Outlook
 Java and JavaBeans
 NetMeeting
 Open Source
 Oracle
 Security
 Source Code
 SQL Server
 Tech Tips
 UML
 Visual Basic
 Web Dev and Design
 Wireless
 XML
 Partner Pavilions
 DevX MarketPlace
 Conferences
 Magazines
 Other Resources
 About DevX

Developing J2EE Applications with the UML and Rational Rose

Implementing the software
While the analysis model can help you develop a solid foundation for solving a problem, it is still far from an implementation.
During design, you must take into account additional restrictions and requirements imposed upon your application by virtue of the
underlying technology, and try to map the solution to the optimal implementation. For instance, if you are building an online
application, which requires a client application, the technology you use may be different from the technology choices for a
functionally identical web based application.

For our example, let's assume we are building a web-based application.
Implementing such an application requires a well-thought out approach. The
analysis model helps here as it provides the starting point for determining
how the different J2EE technologies map to the solution. As it turns out, the
<<control>> classes map nicely to Java Servlets or to Enterprise JavaBean
(EJB) Session Beans. This approach lines up well with the J2EE tiered
implementation model and the Sun "Model 2" Reference Architecture.

Rational Rose provides a simplified interface for the development of servlets
as well as EJB Session Beans. Figure 5 shows the dialog for creating a
servlet.

Rational Rose provides a convenient interface for creating EJBs, even though
an EJB consists of multiple interfaces and classes. The dialog for EJB
creation is shown in Figure 6. In this specific case, the dialog shows the
setting required to create a stateless Session Bean.

The resulting Session EJB is
shown in Figure 7. This is
based on the UML modeling
for EJB profile being developed
in JSR-26 under the Sun Java
Community Process. This
shows relationships between
the various elements that make

up an EJB, specifically the home and remote interfaces and the EJB
implementation class. Since the EJB does not actually implement the home and
remote interfaces (these are implemented by objects auto-generated by the
deployment utility), the relationship is not a realization but <<EJBRealizeHome>>
and <<EJBRealizeRemote>> respectively. The dependency between the home
and remote interfaces shows that the home interface instantiates the remote
interface.

<<boundary>> classes roughly map to JSPs, HTML pages, and forms, or if you
are developing a traditional client based application, to a client application dialog.
We use the JSP as the builder of whatever is presented to the entities interacting
with the system. Since a JSP really has two aspects to it, namely client
presentation and server side behavior, it is modeled as consisting of a Client page

Figure 5: Servlet definition dialog

页码: 1/4Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page3.asp

and a Server Page, with a special stereotype <<build>> on the relationship. An
example is shown in Figure 8.

Creating a JSP is even simpler than an EJB and is done via the Web
Modeler>New>Server Page menu off the browser context menu, as shown in
Figure 9.

As
it
turns
out,
<<entity>>
classes
such
as
Catalog,
Order
and
Customer
are
good
candidates
for

Entity Beans. These are created using the dialog shown in Figure 6 for the creation
of Session Beans.

A common technique utilized in J2EE applications is the use of JavaBeans to pass
information between the servlets and the JSPs. This is easily accomplished in
Rational Rose by creating attributes on a Java class and setting the attributes to
properties via the attribute specification dialog shown in Figure 10 (note that this
can also be done on a global basis through a user setting).

Creating JSPs, servlets, JavaBeans and EJBs is most useful in
the context of an overall implementation model. Rational Rose
allows you to easily model the relationships and forward engineer
the basic details of not just JSPs, servlets, EJBs and JavaBeans,
but also HTML pages and Forms involved in the implementation.
These can then be handed off to the presentation developers for
further refinement, while still ensuring compatibility with your
application logic.

Figure
11
shows a partial class diagram showing the implementation with the
different technologies involved in the online CD store. The diagram is
semi-arranged to show classes and how they lineup with the
presentation, business logic and data tiers. Thus, the client pages are
on the left, the controller servlet is in the middle, and the Entity Beans
are on the right.

This diagram only
shows some of the
classes required for
the checkout and see
CD details use
cases. Let's try to

Figure 6: Creating an EJB Session
Bean

Figure 7: A stateless Session Bean

Figure 8: JSP as a server and client page

Figure 9: Creating a JavaServer Page in
Rational Rose

页码: 2/4Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page3.asp

"read" the diagram by
going through a

simple checkout scenario. Assume that you've just finished browsing and have
selected a few CDs you would like to purchase. You select the "checkout"
option on the Main page (top left). This invokes the MainServlet controller as
shown via the association stereotyped <<link>>. The MainServlet obtains the
order details from the Order EJB, constructs a Order JavaBean, sets it as an
attribute for the session, and forwards the request, as identified via the
<<forward&& stereotype, onto the Checkout JSP. The Checkout JSP uses the
Order JavaBean, as shown via the <<Use Bean>> stereotype on the
association between the JSP and the Order JavaBean, to construct the
Checkout_Client page and presents it to you.

Obviously, we
have neglected
some details. For
example, in a real
project, you would
probably use a
shopping cart to
keep track of
items; the control responsibilities may be more distributed rather than
reside with a single monolithic MainServlet; and so on. The main
point here is that the UML is a powerful tool for designing and
developing complex J2EE applications and hopefully that has been
successfully communicated via the example above.

Figure 10: Setting an attribute as
property

Figure 11: Partial Implementation model for the
online CD store

Designing a solution Working with the implementation

 Introduction Working with the implementation

 Designing a solution More on the UML and J2EE

 Implementing the software

Sponsored Links

Microsoft Windows XP: Learn about the new version of Windows

You don't know Itanium until you've read our developer-only coverage!

The code to your success is here. Oracle OpenWorld

The Long, Surprising Journey of Rational Software

Downloads, articles, tips, and training at Forte for Java Developer Resources.

页码: 3/4Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page3.asp

Copyright Information/Privacy Statement

Microsoft Windows XP: Learn about the new version of
Windows You don't know Itanium until you've read our developer-only

coverage!

DevX Home | VB Zone | Java Zone | C++ Zone | Enterprise Zone | Get Help
.NET Guide | XML Zone | WebBuilder | Database Dev Zone | Wireless Zone

Visual Studio Magazine | Java Pro | XML Magazine | Exchange & Outlook | VBITS

MarketPlace | Knowledge Xchange | Newsletters | Tech Tips
Advertise | Help | Copyright | Privacy Statement

页码: 4/4Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page3.asp

DevX Home Premier Club Search RFP Exchange eLearning Code Library Help Locator+ Shop DevX

 .NET
 Application Server
 ASP
 Careers
 C++
 Database Development
 DB2
 Delphi
 DHTML
 eLearning
 Enterprise
 Exchange & Outlook
 Java and JavaBeans
 NetMeeting
 Open Source
 Oracle
 Security
 Source Code
 SQL Server
 Tech Tips
 UML
 Visual Basic
 Web Dev and Design
 Wireless
 XML
 Partner Pavilions
 DevX MarketPlace
 Conferences
 Magazines
 Other Resources
 About DevX

Developing J2EE Applications with the UML and Rational Rose

Working with the implementation
Rational Rose lends a helping hand in all this by allowing you to generate JSP, JavaBean, HTML, Servlet, and EJB code directly
from this diagram. For instance, an <<include>> association between two JSPs (not shown on diagram) automatically results in:
<%@ include file="header.jsp" %> in the appropriate JSP. Similarly, the <<Use Bean>> stereotype results in: <jsp:useBean
id="cd" class="com.rational.cdshop.util.CD" scope="session"/> in the JSP using the CD JavaBean.

On the EJB side, aside from generating code for all three types of EJBs identified in EJB2.0 (as well as EJBs compliant to EJB
1.1), Rational Rose provides several features to simplify EJB development. For example, one of the tedious things in developing
EJBs is the need to code the methods in both the interface and the implementation class. Rational Rose provides a menu option,
which takes care of these details at the click of a button. It also provides a "check and repair" menu option that verifies that the
EJB you have defined is in fact legal (for example, the remote methods in the remote interface have matching counterparts in the
EJB implementation class) and if not, it offers to fix them for you.

Another powerful EJB related capability offered by Rational Rose is the Rational Quality Architect (RQA) for design testing of
EJBs. For instance, you can use RQA for unit testing EJBs. You can also use the sequence diagrams you defined in Rose to
drive the testing of multiple EJBs. As well, you can use RQA to generate stubs for those times when you have a dependency on
a software component that is not yet ready.

To ensure you can work with the implementation on your terms without worrying about changes to the UML model and vice
versa, Rational Rose provides a built in code editor, with user configurable synchronization options. For example, you can
choose to keep synchronization on all the time. In this case, the UML model in Rose will be automatically updated whenever you
update you source code and press save. Alternately, there may be times when you only want to experiment to see how things
might work out, but not impact your model. For such situations, you can turn synchronization off on a global or per-class basis.

Of course, there's no disputing the fact that when you are talking implementation and code, you need to work with an industrial
strength IDE such as Sun's Forte for Java or Borland JBuilder. Rational Rose 2001a provides deep integration and auto-
synchronization with the leading IDEs so you can continue to use your favorite one while taking full advantage of Rational Rose
for UML modeling and development for J2EE applications.

Implementing the software More on the UML and J2EE

 Introduction Working with the implementation

 Designing a solution More on the UML and J2EE

 Implementing the software

Sponsored Links

页码: 1/2Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page4.asp

Copyright Information/Privacy Statement

You don't know Itanium until you've read our developer-only coverage!

Gain control of your projects without getting bogged down in paperwork

Microsoft Windows XP: Learn about the new version of Windows

Downloads, articles, tips, and training at Forte for Java Developer Resources.

Tired of the quirks of your version control tool? Here's one that really works -- and
can go big when you do!

You don't know Itanium until you've read our developer-
only coverage! Gain control of your projects without getting bogged down

in paperwork

DevX Home | VB Zone | Java Zone | C++ Zone | Enterprise Zone | Get Help
.NET Guide | XML Zone | WebBuilder | Database Dev Zone | Wireless Zone

Visual Studio Magazine | Java Pro | XML Magazine | Exchange & Outlook | VBITS

MarketPlace | Knowledge Xchange | Newsletters | Tech Tips
Advertise | Help | Copyright | Privacy Statement

页码: 2/2Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page4.asp

DevX Home Premier Club Search RFP Exchange eLearning Code Library Help Locator+ Shop DevX

 .NET
 Application Server
 ASP
 Careers
 C++
 Database Development
 DB2
 Delphi
 DHTML
 eLearning
 Enterprise
 Exchange & Outlook
 Java and JavaBeans
 NetMeeting
 Open Source
 Oracle
 Security
 Source Code
 SQL Server
 Tech Tips
 UML
 Visual Basic
 Web Dev and Design
 Wireless
 XML
 Partner Pavilions
 DevX MarketPlace
 Conferences
 Magazines
 Other Resources
 About DevX

Developing J2EE Applications with the UML and Rational Rose

More on the UML and J2EE
We have only scratched the surface of using the UML for modeling and developing J2EE applications. For example, you can use
UML activity diagrams to model session management by the various entities involved in the session.

Another challenge is communicating the proper sequence of operation calls expected by a session EJB. A sequence diagram
can identify a single scenario but you need a lot of sequence diagrams to convey the entire range of scenarios supported by the
component (some try to use a sequence diagram with control and branch statements but that only leads to a complex and
convoluted sequence diagram). On the other hand, the UML statechart diagrams provide a powerful capability for modeling and
communicating this. You can then validate a sequence diagram against the statechart diagram by "walking" the sequence
diagram through it to see whether the component supports the way you are trying to use it.

Summary
There is a fine line between developing software that does the job and developing software that not does the job well today, but
also ready to face the requirements yet to come.

You can significantly improve your chances of developing scalable, easily maintainable, and long lasting software by using the
UML for understanding the requirements, doing proper analysis and design, and developing a solution built on proven principles
and implementation best practices.

Rational Rose 2001a Enterprise Edition helps you do all these and is the only UML modeling tool that also fully support the
modeling and round-trip engineering of J2EE applications using HTML pages, JSPs, Servlets, Java Beans, and EJBs in the
context of the Sun Model 2 Reference Architecture.

Working with the implementation Back to Introduction

 Introduction Working with the implementation

 Designing a solution More on the UML and J2EE

 Implementing the software

Sponsored Links

Tired of the quirks of your version control tool? Here's one that really works -- and
can go big when you do!

You don't know Itanium until you've read our developer-only coverage!

Microsoft Windows XP: Learn about the new version of Windows

页码: 1/2Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page5.asp

Copyright Information/Privacy Statement

Wait for .NET? *No!* And here are three reasons!

Grady Booch on how .NET will "fundamentally and radically" change your life as a
developer!

Tired of the quirks of your version control tool? Here's one that really
works -- and can go big when you do! You don't know Itanium until you've read our

developer-only coverage!

DevX Home | VB Zone | Java Zone | C++ Zone | Enterprise Zone | Get Help
.NET Guide | XML Zone | WebBuilder | Database Dev Zone | Wireless Zone

Visual Studio Magazine | Java Pro | XML Magazine | Exchange & Outlook | VBITS

MarketPlace | Knowledge Xchange | Newsletters | Tech Tips
Advertise | Help | Copyright | Privacy Statement

页码: 2/2Developing J2EE Applications with the UML and Rational Rose

01-10-24http://www.devx.com/judgingjava/whitepapers/rational/page5.asp

