
http://www.manning.com/gabrick/specialorder.html

Advance praise for this book

“… did a great job of illustrating how the various Java APIs work. I feel quite
confident now about trying out some of the techniques in a web process mon-
itoring web app I'm currently maintaining.”

 —Andrew Stevens, developer, Java-based open source projects

“A very good book … It will be most beneficial to those who are considering
implementing XML technologies and don't know what to use or how to get
started.”

 —Allen Hogan, CEO, KaPlop.com

“I was very excited … this is going to be a well-received book. Very nice job!”
 —Jason Weiss, Manager, Software Engineering, Sybase, Inc.

J2EE and XML
Development

KURT A. GABRICK
DAVID B. WEISS

M A N N I N G
Greenwich

(74° w. long.)

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Maarten Reilingh
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-30-8

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

http://www.manning.com

 To Maggie—
 For your love, patience, and poor taste in men

 KAG

 To My Family—
 You have given me an unlimited amount of support and strength.

 Thank you for everything.
 DBW

contents

preface xi
acknowledgments xii
about this book xiii
about the authors xvii
about the cover illustration xix
author online xxi

1 Getting started 1
1.1 Distributed systems overview 2

Distributed systems concepts 3 ■ N-tier application
architecture 12 ■ Overcoming common
challenges 14

1.2 The J2EE development process 22
J2EE and development methodologies 22
J2EE development tools 24

1.3 Testing and deployment in J2EE 29
Testing J2EE applications 29
Deploying J2EE applications 33

1.4 Summary 35
vii

viii CONTENTS

2 XML and Java 37
2.1 XML and its uses 38

XML validation technologies 41 ■ XML parsing
technologies 44 ■ XML translation technologies 46
Messaging technologies 48 ■ Data manipulation
and retrieval technologies 51 ■ Data storage
technologies 54

2.2 The Java APIs for XML 55
JAXP 57 ■ JDOM 66 ■ JAXB 69
Long Term JavaBeans Persistence 74
JAXM 76 ■ JAX-RPC 77 ■ JAXR 78

2.3 Summary 78

3 Application development 81
3.1 XML component interfaces 82

Using value objects 84 ■ Implementing XML value
objects 87 ■ When not to use XML interfaces 95

3.2 XML and persistent data 96
Querying XML data 97 ■ Storing XML data 103
When not to use XML persistence 110

3.3 Summary 110

4 Application integration 113
4.1 Integrating J2EE applications 114

Traditional approaches to systems integration 114
XML-based systems integration 122

4.2 A web services scenario 125

4.3 J2EE and SOAP 125
Creating a simple SOAP message 126

Using SOAP with Attachments 129
Using JAXM for SOAP Messaging 131

CONTENTS ix
4.4 Building web services in J2EE 138
What is a web service? 139 ■ Providing web services in
J2EE 140 ■ Implementing our example web
services 142 ■ Consuming web services in J2EE 153
J2EE web services and Microsoft .NET 153

4.5 Summary 154

5 User interface development 157
5.1 Creating a thin-client user interface 158

Serving different types of devices 159 ■ Serving
multiple locales 159 ■ An example to work
through 160

5.2 The pure J2EE approach 162
The J2EE presentation tool kit 163
Issues in J2EE MVC architecture 164
Building our example in J2EE 166
Analyzing the results 177

5.3 The J2EE/XML approach 177
Adding XSLT to the web process flow 177
Analyzing the results 185
Extending to binary formats 186

5.4 XML web publishing frameworks 195
Introduction to Cocoon architecture 196
Using Cocoon to render the watch list page 197
Analyzing the results 200

5.5 A word about client-side XSLT 201

5.6 Summary 201

6 Case study 203
6.1 Case study requirements 204

6.2 The application environment 206

x CONTENTS

6.3 The analysis phase 207
Services and data layer analysis 207 ■ Data storage
analysis 208 ■ Other necessary components 208

6.4 The design phase 210
Designing the application logic layer 210
Designing the user interface 212

6.5 Validating our design 213

6.6 The implementation phase 215
Building the controller servlet 215 ■ Building the
ApplicationMenu component 217 ■ Building the
ComponentLocator 218 ■ Building the
BugAccessorBean 221 ■ Building the
XSLTFilter 223

6.7 Structuring application data 224

6.8 The Amaya web service 225

6.9 Running the application 229
Installation 229 ■ Viewing the main menu 230
Viewing common system problems 231 ■ Viewing and
updating the Amaya problem list 231 ■ Inspecting the
web services SOAP messages 232

6.10 Summary 233

appendix A Design patterns for J2EE and XML 235
appendix B Distributed application security 243
appendix C The Ant build tool 249
resources 265
index 269

preface
Enterprise Java development and XML are two of the hottest topics in technol-
ogy today. Both riddled with acronyms and buzzwords, they are also two of the
most poorly understood and abused technologies around. The potential to build
platform-neutral, vendor-independent systems has created a flurry of develop-
ment and a host of new standards. It seems the list of APIs and specifications
grows longer and more complex every day.

 In early 2000, we decided the time was right to write a book about using
XML technology in enterprise Java applications. It occurred to us that many
books had been written on either XML or J2EE, but none of them really
addressed the subjects together. We also recognized a failing in the content of
existing books, which focus heavily on API details and “Hello, world!” examples
while skirting the more complex issues of architecture, design tradeoffs, and
effective techniques for developing distributed systems.

 This book is intended to fill the gap between books on J2EE and those on
XML. It demystifies the buzzwords, contains frank discussions on the capabilities
and appropriate use of various enterprise Java and XML tools, and provides a
logical context for deciding how to structure your XML-enabled J2EE applica-
tions. We hope you enjoy it.
xi

acknowledgments
There are a number of people without whom this book would not be possible.
We specifically acknowledge:

 Our clients past and present, for entrusting their enterprise development
efforts to our care and affording us the opportunity to road test the technologies
and techniques discussed in this book. There is no substitute for experience in
software development, and we thank you for the opportunity.

 The developers of the technologies and standards covered in this book, for
creating a wealth of patterns and tools to make distributed application develop-
ment and integration easier for all of us. We especially acknowledge those devel-
opers who dedicate their time and energy to open source development efforts
that benefit us all.

 Our publisher, Marjan Bace, for giving us the opportunity to write a unique
book on a complex subject, and our editors and reviewers, for their guidance
and encouragement along the way. The editorial and production staff at Man-
ning included Ted Kennedy, Alex Garrett, Maarten Reilingh, Syd Brown, Dot-
tie Marisco, and Mary Piergies. Our reviewers included Randy Akl, Russell
Gold, Owen Green, Berndt Hamboeck, Carson Hager, Lee Harding, Allen
Hogan, Evan Ireland, Andrew Stevens, David Tillotson, and Jason Weiss. Spe-
cial thanks to Scott Johnston who reviewed the book for technical accuracy
shortly before it went to press.

 Our friends and family, for lending all types of support to this effort. We espe-
cially thank Maggie Gabrick, who spent many hours translating between code
jockey and English during this process.
xii

about this book
This book is about building better applications with Java 2, Enterprise Edition
(J2EE) and XML technology. It teaches you how, where, and when to use XML
in your J2EE system. It categorizes and explains many recent Java and XML
technology developments and suggests ways in which a J2EE application can uti-
lize them.

 J2EE and XML are each substantial technologies in their own right. Applica-
tions that use them together can realize the benefits of both. J2EE enables the
creation of robust and flexible application logic. XML enables powerful data
storage, manipulation, and messaging. A J2EE application that makes proper use
of XML is one of the most robust component-based systems that you can build.

 Beyond identifying areas where XML can play a role in a J2EE application,
this book also discusses important tradeoffs to be considered when choosing to
build a J2EE application with XML over pure J2EE. The potential drawbacks of
using each proposed XML technology are compared with its benefits, allowing
you to make an informed decision about its use.

 You probably already own a book or two on the topics of J2EE and XML.
There are numerous books available to teach you the low level intricacies of
J2EE development. There are at least as many on XML and related technologies.
There are even a few on the subject of using Java and XML together. Why then
should you read this book?

 This book will add to what you know, not restate it. It is not a fifteen-hun-
dred-page tome on J2EE with the APIs listed at the back. It is not a detailed
xiii

xiv ABOUT THIS BOOK
reference on XML either. It is a targeted guide that builds on your existing
knowledge of J2EE application development and shows you how to enhance
your applications with XML. It will help you build distributed systems that are
more robust, manageable, and secure.

 The ultimate goal of this book is to arm you with relevant knowledge about
the state of J2EE and XML technology and the ways in which they are best put
to use. By the end of the book, you should have an excellent idea about which
XML technologies you want to use, how you plan to use them, and where to go
to learn more about them.

Who should read this book
This is an intermediate-level book and is not a primer on Java, XML, or J2EE. Its
primary audience is the distributed application developer. It assumes that you
have some practical experience with J2EE and an understanding of XML at the
conceptual level. Some basic concepts are briefly introduced as context for
detailed discussions, but this book should by no means be your first exposure to
either J2EE development or XML. The focus of this book is on the identifica-
tion, classification, and practical use of important XML-related Java technolo-
gies. Getting the most out of this book therefore requires some prior knowledge
of J2EE and XML basics.

 If you are an application development professional looking for proven
approaches to solving complicated problems with J2EE and XML technology,
this book is for you. It is a guide to help you make better decisions when design-
ing and building your applications. It presents technical alternatives, provides
examples of their implementation, and explains the tradeoffs between them. Dis-
cussions are limited to the most relevant topics in each area to maximize the ben-
efits of reading the book and managing its overall length.

How this book is organized
We begin by identifying the common challenges in distributed application devel-
opment and the design strategies used to overcome them. We discuss how J2EE
and the other emerging Java APIs for XML can be implemented to achieve those
design goals. We examine the J2EE and XML development process, suggesting
some tools and techniques you can employ to build applications most efficiently.

 Chapters are dedicated to each layer of an n-tier distributed application, pro-
viding in depth coverage of the most recent J2EE/XML developments and
usage examples. Additionally, the final chapter presents a detailed case study to
synthesize various topics discussed in the book in the context of an end-to-end

ABOUT THIS BOOK xv
J2EE/XML application. The case study illustrates the general approach to
J2EE/XML development problems, identifies critical analysis and design deci-
sions, and discusses the benefits and drawbacks associated with those decisions.

Chapter 1: Getting started
This first chapter introduces important concepts, tools, and techniques for build-
ing J2EE and XML applications. As a distributed application developer, you face
a broad range of challenges as you begin each new project. These challenges
range from architectural and design issues to tool selection and development
process management.

 To overcome these challenges, you require both an appreciation for distrib-
uted systems development issues and knowledge of specific tools you can use in a
J2EE environment. This chapter summarizes the common challenges to be over-
come at each stage of a J2EE and XML project and describes the tools and tech-
niques you need to be successful.

Chapter 2: The Java APIs for XML
In recent months, there has been a flurry of Java community development activ-
ity in the area of XML. The result has been the creation of a complex set of
closely related XML APIs, each of which is either in specification or develop-
ment. These APIs include the JAX family, as well as other popular emerging stan-
dards like JDOM.

 This chapter untangles the web of Java APIs for XML, identifying and classi-
fying each in terms of its functionality, intended use, and maturity. Where possi-
ble, we provide usage examples for each new API and describe how it might be
best used in your J2EE system. We also identify areas in which the APIs overlap
and suggest which ones are likely to be combined or eliminated in the future.
Subsequent chapters build upon your understanding of these APIs by providing
more specific examples of their implementation.

Chapter 3: Application development
Making changes to J2EE application logic and data structures can be costly and
time-consuming. Initial development of a flexible and robust application logic
layer is therefore critical to the longevity of your system. This chapter demon-
strates how XML technology can help you achieve that goal.

 Using XML in component interfaces is covered, as is the use of XML for data
storage and retrieval. Examples using common J2EE design patterns such as
Value Object and Data Access Object with the Java APIs for XML are provided.

xvi ABOUT THIS BOOK
Technologies discussed include JAXB, JDOM, XQuery, PDOM, and XQL.
Design tradeoffs are considered, and the maturity of each technology is examined.

Chapter 4: Application integration
A J2EE application that is not integrated with its environment cannot do much.
This chapter is about integrating your J2EE application with other applications
and services using the Java APIs for XML. Proven approaches to J2EE systems
integration and architectural patterns are presented. Traditional J2EE technical
approaches to systems integration are compared to the new, XML-based approach.

 This chapter details the creation and consumption of web services in J2EE,
including discussions and examples of SOAP, UDDI, and WSDL. Producing,
registering, and consuming web services in J2EE is demonstrated using the Java
APIs for XML. This chapter also discusses possible integration issues with non-
Java web service implementations, specifically Microsoft .NET.

Chapter 5: User interface development
This chapter discusses user interface development for a J2EE and XML applica-
tion. The pure J2EE approach to user interface development has a number of
limitations, including the mixture of presentation elements with application code
and the inability to centrally manage application views in some circumstances.
Recent developments in XML technology, including XSLT processing and web
publishing frameworks have the potential to overcome these limitations.

 In this chapter, we describe these two alternative XML presentation layer
architectures and compare them to the pure J2EE approach. Detailed examples
using XSLT and web publishing frameworks demonstrate how you might imple-
ment a multidevice, multilingual presentation layer for your J2EE application
using XML technology to dynamically create user interfaces in various formats.

Chapter 6: Case study
This final chapter illustrates the use of the tools and techniques presented in pre-
vious chapters in the context of a simple, yet complete, case study. By providing
an end-to-end example of a J2EE and XML solution, we further illustrate the
feasibility and desirability of using XML in J2EE solutions.

 You are guided through a brief development cycle from requirements and
analysis to design and implementation. Along the way, the challenges faced are
highlighted, and reasons behind key design decisions are articulated.

At the back
This book also contains three appendices on closely related topics. Appendix A
contains a brief summary of the J2EE design patterns employed throughout the

ABOUT THIS BOOK xvii
book. Appendix B contains a tutorial on distributed system security concepts you
should know before developing any J2EE solution. Appendix C provides a tuto-
rial on the popular Ant build tool from the Apache Software Foundation.

 Also at the back, you will find a helpful resources section, containing recom-
mended books and web sites for learning more about the tools and standards dis-
cussed throughout the book.

Source code
The source code for all examples called out as listings in this book is freely avail-
able from the publisher’s web site, http://www.manning.com/gabrick. The
complete source code for the case study in chapter 6 is also available at the same
address. Should errors be discovered after publication, all code updates will be
made available via the Web.

Code conventions
Courier typeface is used to denote code, filenames, variables, Java classes, and
other identifiers. Bold Courier typeface is used in some code listings to highlight
important sections.

 Code annotations accompany many segments of code. Certain annotations
are marked with chronologically ordered bullets such as B. These annotations
have further explanations that follow the code.

http://www.manning.com/gabrick

xviii

about the authors
KURT GABRICK is a software architect and developer specializing in server-side
Java technologies and distributed systems. He has designed and developed
numerous systems using J2EE and XML technology for a diverse group of For-
tune 1000 clients. Kurt has led various engineering efforts for software develop-
ment and professional services firms. He currently resides in the Phoenix, AZ
area, where he continues to code for fun and profit.

DAVE WEISS is an IT architect specializing in use case driven, object-oriented
development with Java and XML. Dave has worked for multiple professional ser-
vices companies, where he was responsible for software development methodol-
ogy and training programs, as well as leading distributed systems development
projects. Dave has authored numerous pieces of technical documentation and
training materials. He currently resides in the San Francisco Bay area.

about the cover illustration
The figure on the cover of J2EE and XML Development is a man from a village in
Abyssinia, today called Ethiopia. The illustration is taken from a Spanish com-
pendium of regional dress customs first published in Madrid in 1799. The book’s
title page states:

 Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por
R.M.V.A.R. Obra muy util y en special para los que tienen la del viajero
universal

 Which we translate, as literally as possible, thus:
 General collection of costumes currently used in the nations of the known
world, designed and printed with great exactitude by R.M.V.A.R. This work
is very useful especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the “exactitude” of their execution is evident in
this drawing. The Abyssinian is just one of many figures in this colorful collec-
tion. Their diversity speaks vividly of the uniqueness and individuality of the
world’s towns and regions just 200 years ago. This was a time when the dress
codes of two regions separated by a few dozen miles identified people uniquely as
belonging to one or the other. The collection brings to life a sense of isolation
and distance of that period—and of every other historic period except our own
hyperkinetic present.
xix

xx ABOUT THE COVER ILLUSTRATION
 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

author online
One of the advantages of buying a book published by Manning, is that you can
participate in the Author Online forum. So, if you have a moment to spare,
please visit us at http://www.manning.com/gabrick. There you can download
the book’s source code, communicate with the author, vent your criticism, share
your ideas, or just hang out.

 Manning’s commitment to its readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the author can
take place. It is not a commitment to any specific amount of participation on the
part of the author, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the author some challenging questions lest
his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.
xxi

http://www.manning.com/gabrick

Getting started

1

This chapter
■ Describes important distributed systems

concepts
■ Discusses J2EE and formal development

methodologies
■ Identifies J2EE development tools and best

practices
■ Recommends J2EE testing and deployment

strategies

2 CHAPTER 1

Getting started
This introductory chapter covers important concepts, tools, and techniques
for building J2EE and XML applications. As a distributed application devel-
oper, you face a broad range of challenges as you begin each new project.
These challenges range from architectural and design issues to tool selection
and management of the development process. To overcome these challenges,
you require both an appreciation for distributed systems development issues
and knowledge of the specific tools that you can use in J2EE development.

 Section 1.1 describes the aspects of distributed application development
that you need to understand to make effective use of J2EE and XML. In that
section we present the n-tier application architecture under which most enter-
prise Java systems are constructed today. We define the logical layers of these
applications and describe the types of components and challenges associated
with each layer. We also identify the specific types of challenges you are likely
to face when designing your application and present alternatives for dealing
with those challenges.

 In section 1.1, we also cover the often-misunderstood area of distributed
application security. Without the ability to secure your distributed application
properly, its usefulness can quickly be negated. We summarize your options for
securing communication channels and application components in this section.

 Sections 1.2 and 1.3 describe the tools and techniques you need to have
success with the J2EE platform. These range from defining an overall develop-
ment process to choosing your design, development, and configuration man-
agement tools. We suggest popular open source tools, which are available for
many aspects of development. We also suggest strategies for testing and
deploying your J2EE and XML application.

1.1 Distributed systems overview

DEFINITION A distributed computing system is a collection of independent com-
puter processes that communicate with one another by passing
messages.

By the definition, every application or service you develop using J2EE and
XML will be part of a distributed system. To build the best J2EE and XML
solutions possible, understanding general distributed system concepts and
design challenges is essential.

 This section covers the subjects you need to know before worrying about
how to integrate J2EE technology X with XML standard Y. Since we are

Distributed systems overview 3
summarizing an entire branch of computer science in only a few pages, we
strongly recommend the resources listed in the bibliography as further reading.

1.1.1 Distributed systems concepts

In the days of mainframe computing, processing was a centralized, closed, and
expensive endeavor. Information was processed by large, costly machines and
manipulated from the dreaded green-screen terminals that gave new meaning
to the word dumb. Corporate, scientific, and governmental information was
locked away in individual computing silos and replicated in various forms
across all kinds of computer systems.

 Mainframe computing is not all bad. The centralized model has enabled the
construction of many high-performance, mission-critical applications. Those
applications have usually been much easier to understand and implement than
their distributed equivalents. They typically contain a single security domain to
monitor, do not require a shared or public network to operate, and make any
system crashes immediately obvious to both users and administrators.

 Conversely, distributed applications are far more difficult to implement,
manage, and secure. They exist for two primary reasons: to reduce operating
costs and to enable information exchange. Distributed systems allow all types
of organizations to share resources, integrate processes, and find new ways to
generate revenue and reduce costs. For example, a supply chain application
can automate and standardize the relationship between several organizations,
thereby reducing interaction costs, decreasing processing time, and increasing
throughput capacity.

 In economic terms, distributed systems allow companies to achieve greater
economies of scale and focus division of labor across industries. In business
terms, companies can integrate entire supply chains and share valuable infor-
mation with business partners at vastly reduced costs. In scientific terms,
researchers can leverage one another’s experience and collaborate like never
before. And in technical terms, you have a lot of work to do.

 What makes distributed systems so difficult to design and build is that they
are not intuitive. As a human being, your life is both sequential and central-
ized. For example, you never arrive at work before getting out of bed in the
morning, and when you do arrive, you are always the first to know. Distrib-
uted computing is not so straightforward. Things happen independently of
one another, and there are few guarantees that they will occur in the right
order or when they are supposed to. Processes, computers, and networks can
crash at any time without warning. Designing a well-behaved, secure

4 CHAPTER 1

Getting started
distributed system therefore requires a methodical approach and appreciation
of the challenges to be overcome along the way.

Distributed system components
At the highest level, a distributed system consists of four types of components,
as depicted in figure 1.1.

■ Platforms—Platforms are the individual computing environments in
which programs execute. These can be heterogeneous hardware compo-
nents, operating systems, and device drivers that system architects and
developers must integrate into a seamless system.

■ Processes—Processes are independent software components that collabo-
rate with one another over channels. The terms client, server, peer, and
service are often substituted for the term process, and each has a more
specific meaning, as we discuss later in this section. Process can mean
different things depending on the granularity with which one uses it. A
process can represent an individual software object with a remote inter-
face, a client or server that implements a particular protocol, some pro-
prietary business application, or many other things.

■ Communication channels—Communication channels are pipelines between
processes that enable them to interact. The term usually refers to the com-
puter network(s) that logically connect processes and physically connect
platforms. Communication channels have both physical and logical aspects
that are accounted for in any distributed system design.

■ Messages—Messages are the data sent from one process to another over
a communication channel. How these data flow between processes in a

Process A Process B

Platform A Platform B
Messages

Communication Channel

Figure 1.1 Distributed system components

Distributed systems overview 5
reliable and secure manner is a question that requires much thought in
the analysis and design stages of your development cycle. XML can facil-
itate defining both the semantics and processing of messages between
systems, as we discuss in detail throughout the book.

The four types of distributed system components identified above are typically
arranged in one of three distinct architectures, based on the ways in which individ-
ual processes interact with one another. These models are summarized in table 1.1.

DEFINITION Distributed system architecture is the arrangement of the software,
hardware, and networking components of a distributed system in
the most optimal manner possible. Creating distributed system ar-
chitecture is a partly-science, mostly-art activity.

J2EE supports all the architectural models listed in table 1.1 to some extent,
but is heavily focused on client/server architectures. Let us briefly examine
each of these models.Table 1.1.

The client/server model
Client/server is the architectural model of the World Wide Web, and the one
with which you are probably most familiar. The client/server model is a dis-
tributed computing paradigm in which one process, often at the behest of an
end user, makes a request of another process to perform some task. The pro-
cess making the request is referred to as the client, and the process responding
to the request is known as the server. The client sends a message to the server
requesting some action. The server performs the requested action and returns
a response message to the client, containing the processing results or provid-
ing the requested information. This is depicted in figure 1.2. This request-
reply mechanism is a synchronous interaction model and is the basis of a fam-
ily of higher-level interaction paradigms. For example, remote procedure calls

Table 1.1 Distributed system types

System architecture Description

Client/server A distributed interaction model in which processes do
things for one another

Peer processing A distributed interaction model in which processes do
things together

Hybrid A combination of client/server and peer processing models

6 CHAPTER 1

Getting started
(RPC) and the Hypertext Transfer Protocol (HTTP) used on the World Wide
Web both employ the client/server mechanism, but are quite different from
each other at the application level.

Client/server is a role-based model. The labels client and server only refer to a
process’s role in a specific interaction. In practice, one process may act as a cli-
ent toward one process and as a server toward another. Two processes may also
be servers to one another in different situations. Some of the possibilities for
these relationships are illustrated in figure 1.3. The J2EE specification is cur-
rently focused on the server-side of this relationship through its endorsement of
servlet, Java Server Pages (JSP), and Enterprise Java Beans (EJB) specifications.

 Another important concept in client/server computing is service architec-
ture. Servers usually provide a set of related functions and make them available
to clients through standard interfaces and protocols. A common example is a
Web server, which allows clients to send and receive resources in a variety of
ways over the Internet via the HTTP protocol. While service architectures have
been implemented in the past for things such as Web, mail, and DNS services,
they are just beginning to take hold in business applications. In chapter 4, we
discuss something called the web services architecture, the latest incarnation of
the services architecture concept.

 A set of related functions provided by a single server is a service. By encap-
sulating a set of related server functions into a service with a standard inter-
face, the manner in which the service is implemented becomes irrelevant to
the client. Multiple server processes are then dedicated to performing the
same service for clients transparently. This is an essential technique employed
commonly to provide fault tolerance, hide implementation details, and
enhance performance in distributed systems. This is depicted in figure 1.4.

Client
Process

Server
Process

Request Message

Reply Message

Figure 1.2 Client/server architecture

Distributed systems overview 7
Process 1 Process 2

Request A

Reply A

Reply B

Request B

Process 3

Process 4

Client and Server
to Process 1,

Client to Process 4

Server to Process 2Client to Process 1

Client and Server
to Process 2,

Server to Process 3

R
ep

ly
 D

R
eq

u
es

t
D

R
ep

ly
 C

R
eq

u
es

t
C

Figure 1.3 Role Playing in client/server systems

Remote Clients

Service Interface

Server 1 Server 2

Server N

Figure 1.4
Service architecture
concepts

8 CHAPTER 1

Getting started
 J2EE is heavily focused on server-side, Web-enabled applications. This does
not mean that other types of applications cannot be built using the J2EE plat-
form, but does make creating Web-based, thin-client applications the most
logical choice for most J2EE developers.

 In chapter 3, we examine the client/server interactions that occur locally,
inside your application. Chapter 4 describes client/server interactions between
your application and other systems, including web services architecture.
Finally, in chapter 5, we examine the client/server capabilities of J2EE in terms
of user interfaces

The peer model
In this architectural model, independent processes collaborate to perform
some task in a coordinated fashion. The peer approach is common in situa-
tions where either a lot of computing power is needed to perform an intense
calculation or where independent systems need to guarantee that synchro-
nized states are maintained. Any system that is transactional makes use of this
model for at least part of its functionality.

 The peer model treats all processes as equals, although it often requires one
of them to act as a group coordinator. An example of a peer processing situa-
tion in scientific applications is gene sequencing; a business processing example
is executing a distributed purchasing transaction. In these situations, each pro-
cess calculates part of some result and contributes it to the whole. For example,
as a customer places an order, a pricing process calculates a specific customer’s
price for each item on an order and adds those prices to the order information.

 J2EE supports peer processing via the Java Transaction Architecture (JTA)
API. Using this API, your components can interact in a scoped, coordinated
way with each other and with external systems. JTA is one of the many J2EE
APIs available to you, and transactional support is one of the key features of
any J2EE EJB container.

Merging the client/server and peer models
There is no reason the client/server and peer models cannot coexist in the
same system. In practice, most substantial systems manifest traits of both the
client/server and peer processing models. For example, figure 1.5 shows a
web client invoking an e-commerce service provided by a merchant server to
place an order for a product. The e-commerce server accepts the request and
connects to the back-end fulfillment system as a client. The fulfillment system
in turn collaborates with the pricing and inventory systems to complete the

Distributed systems overview 9
order and generate a confirmation number. This number and other order data
are then sent back to the original client process via the merchant server.

 The hybrid model demonstrated here is used frequently in business appli-
cation development. Chances are good that you will use it in your J2EE
development projects rather than using either client/server or peer process-
ing exclusively.

Distributed system software layers
Client/server and peer processing architectures rely heavily on the layered
approach to software development depicted in figure 1.6. All processes,
whether acting as server, client, or peer, must execute on a computer some-
where. Each computer consists of a specific operating system and a set of
device drivers, all of which come in numerous varieties. Since it would be fool-
ish to try to predict every operating environment in which a process may be
required to run in overtime, a mechanism is needed to divorce the process
from its execution environment. And so was born a new class of software
product, called middleware.

Web Browser Merchant Server

Fulfillment
System

Pricing System Inventory
System

Peer
Processing

Order Confirmation Data

Request to Place Order

P
la

c
e

 O
rd

e
r

C
o

n
fi

rm
 O

rd
e

r

Figure 1.5 Combining client/server and peer processing architectures

10 CHAPTER 1

Getting started
Middleware, such as the J2EE products discussed in this book, exists to over-
come the differences between different computing platforms. It exposes a
common set of services across platforms and provides a homogeneous com-
puting environment in which distributed applications can be built. Software
that relies solely on its middleware environment can be deployed on any plat-
form to which the middleware has been ported. And since distributed systems
must grow incrementally over a period of time in different financial, political,
and business environments, the ability to run on a wide variety of platforms is
crucial to the longevity of most systems. Middleware is an essential ingredient
in distributed systems development.

 One of the most powerful aspects of J2EE is the broad range of middleware
services it provides to developers. The set of service APIs that are currently a
part of the J2EE specification is summarized in table 1.2. As you see, J2EE
provides built-in support for publishing and locating resources, asynchronous
messaging, transactions, and a host of other services. If you have worked with
J2EE in the past, you are probably familiar with many of these. One API that is
of particular interest to us in this book is JAXP, which we discuss in detail in
the next chapter. You will also see XML as middleware for your data through-
out the remaining chapters.

Computing Platform
(Operating System, Device Drivers, etc.)

Middleware

Distributed Applications and Services

Figure 1.6
Distributed system
software layers

Distributed systems overview 11

At the top of the distributed software stack are distributed applications and
services. These fall in the realm of the business application developer, and are
probably the part of distributed systems development in which you are most
interested. The distinction between applications and services made in
figure 1.6 illustrates that not everything built in a distributed environment
may be a full-fledged application.

DEFINITION An application is a logically complete set of functions that may make
use of a number of services to automate some business or other hu-
man process.

To illustrate this point, an e-commerce shopping site can be seen as an applica-
tion with various features, such as searching, purchasing, and order history
retrieval. A server implementing the file transfer protocol (FTP) is just a service
that allows users to upload and download arbitrary files.

Table 1.2 J2EE middleware services

Enterprise Java API Application in J2EE

Java Naming and Directory
Services (JNDI)

Provides a standard mechanism for locating resources, including
remote objects, environment properties, and directory services.

Java Database
Connectivity (JDBC)

Provides vendor-neutral access to enterprise relational database
management systems.

Java Message
Service (JMS)

Provides reliable point-to-point and publish/subscribe messaging
for J2EE components.

Java Transaction
API (JTA)

Provides mechanisms for declaring, accessing, and coordinating
transactional processing.

JavaMail Provides support for sending Internet email from J2EE applications.

Java Activation
Framework (JAF)

A mechanism of inspecting arbitrary data and instantiating objects
to process it, required by the JavaMail API.

Java API for XML Parsing
(JAXP)

Provides basic support for XML access from Java and a service pro-
vider interface for parsers and transformers.

J2EE Connector
Architecture

An architectural framework for plugging vendor-supplied resource
drivers into the J2EE environment.

Java Authentication and
Authorization
Service (JAAS)

Provides basic mechanisms for authenticating users and authoriz-
ing their access to resources. This API is being integrated into the
base Java platform, version 1.4. At the time of this writing, the
J2EE specification still explicitly references it as a required service.

12 CHAPTER 1

Getting started
 Whether you are building a service or an application has a dramatic effect
on the activities you undertake and the considerations you need to make dur-
ing analysis and design. However, distributed services and applications do
share enough characteristics that we usually discuss their properties together.
The distinction between the two becomes important in chapter 4, where we
look at integrating external services into your applications.

DEFINITION A service is a general set of functions that can be used in various
ways by specialized applications. Services usually only have one pri-
mary function, like locating resources or printing documents.

1.1.2 N-tier application architecture

Many distributed application architects find it useful to group their develop-
ment tasks in terms of logical layers, or tiers.

DEFINITION An application layer is a logical grouping of system components by
the functionality they provide to users and other application sub-
systems.

In general, every distributed application does similar things. It operates on its
own data, interacts with external systems, and provides an interface to its users.
This general pattern gives rise to the n-tier architecture depicted in figure 1.7.

Presentation
Layer

Application
Logic
Layer

Services
Layer

Application
Data

Layer

"Tier 1" "Tier 2"

"Tier 3"

"Tiers 4-N"

Figure 1.7
N-tier distributed application architecture

Distributed systems overview 13
The presentation layer
The presentation layer refers to those components responsible for creating and
managing an application’s interface(s) with its users. Technologies employed
here include web servers, dynamic template processing engines, and network-
aware client applications such as web browsers. In J2EE, presentation layer
components include servlets and Java Server Pages (JSP) running in the J2EE
web container.

 The primary challenge at this layer of the architecture is the creation and
management of different, synchronized views of the application for different
users, based on access rights, client-side rendering capabilities, and other fac-
tors. Building a presentation layer that is robust and manageable is not easy.
We take a detailed look at how this can be done using a combination of J2EE
and XML technologies in chapter 5.

The application logic layer
The application logic layer (known as the business logic layer to business appli-
cation developers) refers to the components responsible for implementing
the functionality of an application. These components must manage the
application’s data and state while performing the specific operations sup-
ported by the application. In J2EE, application logic is usually implemented
by Enterprise JavaBeans (EJB) running in the J2EE EJB container. Compo-
nents at this layer implement the resource-intensive, often transactional por-
tion of your application.

 Challenges at this layer involve ensuring correct behavior and data integ-
rity, interactions between system components, error handling, and perfor-
mance optimization. Building a flexible, high performance application logic
layer is quite challenging. We examine the ways in which XML might help
J2EE developers do this in chapter 3.

 The application data layer
This layer refers to the components that manage an application’s own, internal
data. In J2EE, these data are typically under the direct control of a relational
database management system (RDBMS) like Oracle Enterprise Server or IBM
DB/2. J2EE now mandates the presence of an RDBMS in its server environ-
ment. In some situations, you may not need to write components to directly
interact with a data store. If all your data-aware objects are EJB Entity Beans
that employ Container Managed Persistence (CMP), the EJB container handles
all database interaction on your behalf. This, of course, comes at the price of
extra configuration and a loss of flexibility in your data and/or object models.

14 CHAPTER 1

Getting started
 Challenges at this layer include effective use of system resources, database
connection pooling, and performance optimization. The EJB container and
JDBC driver classes handle most of this for you in J2EE, but an RDBMS may not
be the right place to store your data in some circumstances. We examine such
situations in our discussion of XML at the J2EE application layer in chapter 3.

The services layer
The services layer refers to an application’s external environment, with which
it collaborates in a variety of ways. A distributed application that does not
touch external systems is rarely useful. The services layer accounts for tiers
four through n of an n-tier application, since services can use other services
and there is no theoretical limit to the number or variety of relationships
between systems.

 As the developer of a specific application, the challenge at this layer is how
to interact with the environment in the most effective way. Chapter 4 discusses
this layer in detail and provides useful architectural patterns and techniques for
integrating remote services into your J2EE-XML application. It explains your
application integration options and covers the latest developments in this area
from a J2EE and XML developer’s perspective.

1.1.3 Overcoming common challenges

Since all distributed systems share some basic characteristics, they also have
some challenges in common. In this section, we examine common issues faced
by every distributed system architect, as well as the strategies and design goals
frequently employed to overcome them.

Heterogeneity of system components
Computer hardware and software comes in seemingly infinite varieties, and
you never find two components from different vendors that are exactly alike.
This is true for computers, networks, and software products, as well as the
applications built on top of them. The nature of a distributed system prevents
us from making bold predictions about when and how various services and
applications are going to be implemented, where they will need to run, or
how they will need to be extended. After all, a key benefit of the distributed
model is that the system can grow incrementally over time.

 There are two primary strategies you can employ to overcome the problem
of heterogeneity. The first is to abstract the differences in computing environ-
ments by using middleware, as described in section 1.1.1. This enables you to
write more general applications and services that can be deployed to many

Distributed systems overview 15
different environments over time. Your ability to move code and processes
from one location to another is limited only by the capabilities of your middle-
ware and the platforms it supports.

 The second strategy is to abstract differences in communication channels
and data representations through use of standards and protocols. For instance,
the Internet is a collection of disparate computers and networks that are able
to collaborate only because they speak the same languages. Separating the
application-level and transport-level communication aspects is the key. To do
this, protocols and data formats must be agreed to and, in the case of the
Internet, widely accepted.

 Evidence of this strategy’s success can be seen in many Internet services,
including the World Wide Web and Internet email. This concept is currently
being extended to standardize business communication over the Internet
using XML technology. We discuss this topic in detail in chapter 4.

Flexibility and extensibility
Shortsighted is the architect who believes he can predict the future requirements
placed on his or her system. The migration path from a closed e-commerce site
to an integrated supply chain is far shorter in the business world than it is in the
technical one. A key design goal for all distributed systems is to maximize system
flexibility and make extending functionality as painless as possible. Unfortu-
nately, it is difficult to mandate the ways in which this is accomplished.

 One way to face this challenge is to do a good object-oriented analysis of
your functional requirements. Study each requirement intently and try to
abstract it into a more general class of problem. Then, by building functional-
ity that addresses the more general class of problem, your system will be better
prepared to handle modifications and extensions to its capabilities in the
future. When functionality needs to be changed or extended, you will be able
to reuse existing components rather than building from scratch.

 For example, just because your company repairs vacuum cleaners does not
mean that you build a vacuum cleaner tracking system. You build a workflow
engine that can track the states of things, send notifications, and route mes-
sages. Then you apply your engine to the task of tracking vacuum cleaner
repair jobs. And next month, when your company expands into toasters and
microwave ovens, you go on vacation to reflect on your genius.

 This book discusses numerous strategies you can implement with J2EE and
XML to generalize your system and maximize its flexibility. In chapter 3, we
take a general approach to creating interfaces between components. In chap-
ter 4, we discuss general mechanisms for integrating your application with its

16 CHAPTER 1

Getting started
environment. In chapter 5, we take a general approach to serving views of
your J2EE application over the Web.

Vendor independence
Your system does not exist in a vacuum. Hardware, operating systems, middle-
ware, and networking products all play a role both in enabling and limiting the
capabilities of your system. A well-designed system is one that operates in the
context of hardware and software vendor implementations, but is not tied to it.

DEFINITION An open system is one in which components can be implemented in
different ways and executed in a variety of environments.

If your system is really open, the decisions made by your product vendors are
much less of a threat to it over time. This can be essential to the longevity of
your system and your reputation as its creator.

 Addressing the issue of vendor independence is a two-step process. First,
you must find vendors who conform to industry-supported standards when-
ever possible. Is it safer in the long-term to implement a web site in a propri-
etary scripting language provided by one vendor, or to implement it in Java
Server Pages? Since you are reading this book, we hope the answer is obvious.

 The second step is far more crucial. You should make proprietary exten-
sions to standard mechanisms only when absolutely necessary. In such cases,
going with a vendor’s solution is probably better than inventing your own,
because, you hope and expect, they did a lot of thinking about it first. For
example, J2EE does not currently address logging requirements, although it
will soon. To implement logging in your components, you can either use an
existing logging API or create your own. It is probably more expeditious to
use what is already available. However, you should always wrap any vendor-
specific code in a helper class and access it via a generic interface. That way,
changing from the proprietary mechanism to the standard one will be much
easier in the future. The Façade design pattern is a useful approach. See the
bibliography for a list of references on design patterns if you are unfamiliar
with this pattern.

 Embracing proprietary extensions should be avoided whenever possible.
The more you do this, no matter how convenient it makes your short-term
plans, the more married you are to your original implementation and the
more long-term risk there is to the system.

Distributed systems overview 17
Scalability and performance
Most system stakeholders want to believe that system use will grow exponen-
tially over time as more business relationships are solidified and users begin to
see the subtle genius of the concept. Whether this is true is irrelevant. The
danger is that it could be true. And as demand for system resources increases,
supply must also increase without negatively impacting performance. Your
solution must be scalable.

DEFINITION Scalability is a measure of the extent to which system usage can in-
crease without negatively impacting its performance.

Every system must deal with the good-and-evil struggle between functionality
and performance. The more functionality the system provides, the more time
and resources are needed to provide it. The slower the system is, the less likely
it is to be used.

 There are several ways to deal with performance concerns. One way is to
eliminate functionality. If your boss will let you do this, please email us so we
can come work with you! Another way is to streamline functionality wherever
possible. For example, make communication between processes asynchronous
whenever possible, so execution threads do not block while interacting with
remote systems. Ensuring that your distributed algorithms are streamlined and
that time-sensitive processing has few external dependencies can be half the
battle in performance tuning.

 Assuming your system is fine-tuned, throughput can be enhanced using
replication, load balancing, proxying, and caching.

DEFINITION Replication is the dedication of additional hardware and software to
a given activity in order to provide more processing capability.

Combining replication and load balancing is sometimes referred to as server
clustering. Setting up proxies and caching data can be even better than replicat-
ing functionality and balancing loads.

DEFINITION Load balancing is the distribution of demand for a service across all
servers that provide the service, ensuring that available resources are
being used evenly and effectively.

18 CHAPTER 1

Getting started
DEFINITION Caching is the technique of storing processed data so your servers
will not need to regenerate a set of data that has not changed since
the last time it was requested.

Caching proxy servers can be used to intercept requests for resources, validate
them before passing them on, and often even returned cached data to clients
themselves. Unfortunately, caching and proxying can’t be used in update
requests, which limits their use to the retrieval of existing data.

 The leading J2EE server providers offer scalability in different ways, but all
provide some level of server clustering and load balancing. If your provider
cannot make your J2EE environment scale, change providers. Scalability and
other nonfunctional enhancements are severely lacking in J2EE, but most
enterprise-level vendors have found ways to pick up the slack for now.

Concurrency and correctness
Providing reliability is not just a matter of ensuring that the system does not
crash. An equal measurement of your system’s reliability is the extent to which
it operates consistently. Regardless of load, time of day, and other factors, your
system must always keep itself in a valid state and behave in a predictable way.
The integrity of your system’s data is not hard to achieve in most distributed
applications, because they rely at some point on a database management sys-
tem (DBMS) that guarantees such integrity. The state and behavior of a run-
ning application, however, is the responsibility of its designer and developers.

 Ensuring that any logic-intensive application will run correctly in all situa-
tions is a complicated task. In a distributed system, it is even more so. This is
because servers in distributed systems must provide access to shared resources
to various clients, often concurrently. It is the responsibility of each service
implementer to ensure that information updates are coordinated and synchro-
nized across all client invocations. To address this, each distributed compo-
nent should have a detailed state model and be tested thoroughly. Assume
nothing works properly until proven otherwise. You will thank yourself when
your system goes live and you still have your weekends.

 Ensuring that individual J2EE components work together like they should
can be achieved by using the aforementioned JTA API and the transactional
capabilities of the EJB container. Your application can also lean on the transac-
tional capabilities of its relational database in some situations.

Distributed systems overview 19
Error handling
Dealing with error conditions in distributed systems is a real challenge. This is
because the failures that occur do not crash the entire system. A part of the
system fails, and it is up to the other components to detect the failure and take
appropriate action. And since certain types of failures can’t be detected easily
or at all, individual components need to be overly suspicious of errors when
interacting with each other.

 There are various types of distributed system failures, which can be
grouped as follows:

■ Process failures—These are failures of individual processes. They can be
further classified, based on whether or not the failure can be detected by
other processes when it occurs.

■ Omission failures—These are failures in communications, and include par-
tial message transmissions and corruption of messages during transport.

■ Arbitrary failures—These are random failures or unpredictable behav-
ior. This is the worst kind of failure, and the hardest to predict and
guard against.

Once an error has been detected, there are a couple of ways to try to recover
from it. In the case of a communication problem, a dropped or corrupted
message can be resent. This is the technique employed by the Simple Mail
Transport Protocol (SMTP) used by email systems on the Internet. To deal
with a processing failure, the original service request can be redirected to
another server. This technique is known as fail-over and can be initiated
explicitly by the client or by the service.

 Fault tolerance is a key measure of system reliability. This term refers to the
degree to which your system can detect and recover from the independent fail-
ures of its components. This is accomplished by fault-masking techniques as
described above. Fault masking simply means hiding errors from system clients.

 Your J2EE provider should provide some fail-over mechanism as part of its
server clustering functionality. Still, it will be the responsibility of your applica-
tion components to detect any application-level failures and recover from them
(by masking them) whenever possible. Try to be specific in terms of exception
throwing and handling in your code. It is easier to recover from an exception if
you know specifically what it is and how it happened when you catch it. We
have seen many components that feature epic try blocks and only catch
java.lang.Exception or java.lang.Throwable. If your code does not
observe exceptions closely, its chances of masking them are quite slim.

20 CHAPTER 1

Getting started
Transparency
Transparency in its many forms is a design goal that can make your system eas-
ier to use and more flexible. The principle is that the distributed nature of the
system should be transparent to its users as well as to developers of individual
applications. This is done to maximize the scalability and flexibility of the sys-
tem. There are various types of transparency, as summarized in table 1.3.

Using naming services to locate resources and leveraging remote object archi-
tectures are two ways in which you can enable network and mobility transpar-
ency in your application. The Java Naming and Directory Interface (JNDI)
and Remote Method Invocation (RMI) support this type of transparency in
J2EE. Your J2EE server provider usually provides location transparency as part
of server clustering. As noted in the previous section, you must share responsi-
bility for failure transparency with your server vendor.

System security
Distributed systems exist to share valuable resources among specific parties.
Take pains to ensure that these resources are not shared with or modified by
anyone else. Finding ways to share information securely over communication
channels is the primary challenge of security. There are two main aspects to
security in distributed systems. One involves verifying the identity and access
rights of each user. We will discuss that topic here. The other involves the
broader topic of protecting the application from hackers and other would-be
users who should not have any access to the system. More information on that
topic can be found in appendix B.

 The first critical step in securing your system is having a reliable authentica-
tion and authorization system for its intended users.

Table 1.3 Transparency types in distributed systems

Transparency type Description

Network transparency All resources are accessed in the same manner, regardless of their
actual location on the network.

Location transparency The amount of hardware and software resources dedicated to an
activity can be increased without affecting clients. This enables the
system to scale more easily.

Failure transparency Through fault handling techniques, the system allows clients to com-
plete their tasks despite hardware and software failures.

Mobility transparency Resources in the system can be rearranged without affecting users.

Distributed systems overview 21
DEFINITION Authentication is the process of verifying that someone is who he or
she purports to be.

J2EE addresses authentication and authorization via the Java Authentication
and Authorization Service (JAAS). This is an implementation of the Pluggable
Authentication Module (PAM) security architecture, in which various security
provider implementations can be plugged in to your J2EE environment. Each
of these providers might implement authentication and authorization in dif-
ferent ways, but your components are shielded from the details and always
access security information through a standard interface.

DEFINITION Authorization is the process of ensuring that each authenticated user
can only access the resources that he or she has the right to access.

JAAS is soon to become a part of the base Java platform, in version 1.4. Using
JAAS may seem like an obvious way to go with J2EE security requirements.
The devil can be found in the details, as usual. There are currently two major
drawbacks to using JAAS. The first is that you must declare your application
security policy in deployment descriptors and configuration files rather than
within the application itself. This can be error-prone and inconvenient, espe-
cially in the case of web applications. It is often impractical to rely on your
J2EE container to authenticate and authorize users, especially when they regis-
ter and self-administer their accounts via the Web. If your security policy must
be updated dynamically at runtime, using JAAS can be impractical. Your appli-
cation security model must also fit well with such JAAS concepts as authoriza-
tion realms and principals.

 The second drawback is the naive simplicity of many JAAS provider imple-
mentations. The out-of-the-box JAAS provider usually consists of authoriza-
tion realm and credential information being stored in a plain text file or
unencrypted database fields. This means that, even if you find a way to dele-
gate your application security to the container, the manner in which your
application is secured is very suspect.

 The solution to both these problems is to find or develop a JAAS module
that integrates well with your application object, data, and security models.
Being able to map container-understood values to meaningful application data
is the key. If this cannot be done, using container-level security can be prob-
lematic. We have not seen any implementations that do this well, but remain
hopeful that such advances will be developed.

22 CHAPTER 1

Getting started
1.2 The J2EE development process

Implementing a complex software system is all about managing complexity,
eliminating redundant efforts, and utilizing development resources effectively.
This is especially true in the J2EE environment, where you are building an n-
tier, distributed system. Determining what process you will follow to complete
your application on time and on budget is the first critical step on the path to
success. You must then determine which tools to use and how to use them to
support your development process. Because these decisions are so critical, this
section provides an overview of some of the most popular development meth-
odologies and tools used on J2EE projects.

1.2.1 J2EE and development methodologies

Numerous development methodologies exist for object-oriented projects, and
choosing one to adopt can be difficult.

DEFINITION A development methodology defines a process for building software,
including the steps to be taken and the roles to be played by project
team members.

For component-based development with J2EE and XML, finding one that
exactly fits your needs is even more challenging. This is true because most
development methodologies are robust project management frameworks,
generically designed to aid in the development of software systems from the
ground up. J2EE development is about implementing applications in an exist-
ing middleware environment, and the detailed, complicated processes pre-
scribed by most methodologies can be partly inapplicable or simply too
cumbersome to be useful on J2EE projects.

 An example of this is the Rational Unified Process (RUP), developed by the
masterminds at Rational Software. RUP provides a detailed process for object-
oriented development, defining a complicated web of processes, activities, and
tasks to be undertaken by team members in clearly defined roles. While this
sort of methodology can be useful and necessary when building and maintain-
ing, say, an air traffic control system, it is impractical to implement on a short-
term, J2EE development project. J2EE projects usually feature a handful of
developers tasked with building a business application that needs to be done
some time yesterday. If, on the other hand, you are developing a complicated

The J2EE development process 23
system over a longer timeframe, RUP may be right for you. You can get infor-
mation on RUP at http://www.rational.com.

 While some methodologies are too thick for J2EE, others can be too thin.
A methodology that does not produce enough relevant artifacts (such as a
design) can be easily abused and its usefulness invalidated. The best, recent
example of this is eXtreme Programming(XP), a lightweight methodology
championed by many industry luminaries of late. XP is the ultimate method-
ology for hackers. It is extremely fluid and revolves almost exclusively
around code. The XP process goes from requirements gathering to coding
test cases to coding functionality. The number of user stories (in XP par-
lance) implemented and the percentage of test cases running successfully at
the moment are the measure of success. You can get more information on XP
at http://www.extremeprogramming.org.

 XP is a lightweight, dynamic methodology, easily abused and often not
appropriate for large development projects. One concern with XP is that it
does not produce sufficient analysis and design documentation, which can be
essential in the ongoing maintenance of a system, including training activities.
J2EE development projects usually consist of small teams building functional-
ity in the context of rapidly changing requirements. XP can provide benefits in
the areas of quality assurance and risk mitigation under such circumstances.
However, be cognizant of potential longer-term issues surrounding the archi-
tecture of your system and the lack of design documentation over time.

 The trick to reaping the benefits of a methodology in J2EE is finding the
right mix of tools and techniques that will enable your team to execute with
more predictable results and higher quality. Methodology is only useful to the
extent that it makes your product better. So, rather than choosing an existing,
formal methodology, you may choose to roll your own, using the principles
upon which most modern methodologies are based. These common principles
are summarized in table 1.4.

Table 1.4 Common object-oriented development methodology principles

Principle Description

User driven design Software should be developed to satisfy the concrete requirements of
its users. It should function in the way users would like to use it. Poten-
tial future requirements should be analyzed, but functionality that does
not satisfy a known requirement need not be developed just in case.

(continued on next page)

24 CHAPTER 1

Getting started
1.2.2 J2EE development tools

Choosing the right set of analysis, design, and development tools can greatly
enhance the productivity of your team and the effectiveness of your pro-
cesses. The ideal set of tools you should have for a J2EE build can be summa-
rized as follows:

■ Analysis and design tool—A visual drawing environment in which you
can model your system, developing various UML diagrams that describe
aspects of it.

■ Development tool—Also known as an integrated development environ-
ment (IDE). While not required, an IDE can speed development time
greatly. This is especially true when developing thick-client applications.

■ Build tool—A utility to manage your development configuration and enable
autodeployment of your components to the J2EE environment. Certain
IDE products perform this function for certain server environments.

■ Source code control tool—A shared repository for your code base in vari-
ous versions of development.

■ Testing tool(s)—Utilities to perform various types of testing on your
components. We examine the complicated area of testing in section 1.3.

■ Problem tracking tool—An often-missing component that integrates
with your source code control environment to track problems from
identification to resolution.

We present some common choices for each of these tool groups, along with
their respective strengths and weaknesses, in the remainder of this section.

Iterative, incremental
development

A software development release should be accomplished using several
iterations of the development process. Each iteration cycle should be
short and small in scope, building upon any previous iteration by an
increment. This enables the modification/clarification of requirements,
enhancement to the design, and code refactoring during the develop-
ment phase.

Risk mitigation The most technically risky aspects of the system should be developed
first, providing validation of the overall architecture and finding prob-
lems as quickly as possible.

Quality assurance Testing must be an integral part of the development process, and a
problem tracking/resolution process must be used and managed.

Table 1.4 Common object-oriented development methodology principles (continued)

Principle Description

The J2EE development process 25
Analysis and design tools
Two of the most common choices in this area are Rational Rose by Rational
Software and Together Control Center by TogetherSoft Corporation. Ratio-
nal Rose is the old-timer of the two, written in native code for Windows.
Together Control Center is a Java-based newcomer that is taking the industry
by storm. Discovering which tool is right for you will depend on how you plan
to model your system and translate that model into code.

 Being a Windows application, Rational Rose’s user interface is quite intui-
tive and does things like drag-and-drop operations quite well. Rose is an excel-
lent tool for diagramming at both the conceptual (analysis) and design levels.
It is not a real-time modeling environment, meaning that you must explicitly
choose to generate code from your diagrams when desired. This is a good
thing when working at the conceptual level, when the classes you create do
not necessarily map to the implementation classes you will build. Also, the
code generated from Rose is notoriously bloated with generated symbols in
comments. Rose can be quite unforgiving when its generated tags have been
modified and you attempt to do round-trip engineering.

 Together Control Center, on the other hand, is a Java-based tool that still
suffers from symptoms of the Java GUI libraries. It is not as intuitive to dia-
gram with, requires a healthy chunk of memory, and can have some repainting
issues from time to time. On the other hand, it is a real-time design and devel-
opment environment. As you change a class diagram, the underlying source
files are updated automatically. The reverse is also true. This makes the prod-
uct a wonderful tool for low-level modeling and can even be a complete devel-
opment environment when properly configured. For conceptual modeling it is
less effective, since it assumes that any class you represent must be represented
in code.

 So the selection criteria between these tools is about the level(s) at which
you intend to model, to what extent you plan to do round-trip or real-time
engineering, and of course the price you are willing to pay. Both products are
abhorrently expensive in our opinion, but that is all we will say on the matter.
There are other UML tools around with smaller feature sets and user bases
that you should explore if pricing makes either of these two impractical for
your project.

Development tools
If you are developing in a Windows environment, the decision concerning the
use of an IDE should be based on several criteria. First, is there an IDE that
integrates well with your chosen J2EE server? What will it buy you in terms of

26 CHAPTER 1

Getting started
automating deployment tasks? Second, does your team share expertise in a
particular IDE already? Third, are you doing any thick-client development that
requires a visual environment? The answers to these questions should point
you in the direction of a particular IDE.

 Three of the most common commercial IDEs used on J2EE projects are
WebGain Studio (which includes Visual Caf), Borland’s JBuilder, and IBM’s
Visual Age. WebGain Studio is a complete J2EE development environment
that integrates best with BEA System’s WebLogic application server. Visual
Age is the obvious choice for development on IBM’s WebSphere platform. If
you have already decided on a commercial J2EE vendor, the best IDE to use is
usually quite obvious. If you are using an open source server like JBoss or
Enhydra, the most important feature of an IDE may be its ability to integrate
with the Ant build tool described in the next section. Ant integration is cur-
rently available for Visual Age, JBuilder, and the NetBeansopen source IDE.

Build tools
Whether or not you choose to use an IDE, your project is likely to benefit from
an automated build utility. Deploying J2EE components into their run-time
environment involves compiling the components and their related classes, cre-
ating deployment descriptors, and packaging the components into JAR, WAR,
or EAR files. All these files must have very specific structures and contents and
be placed in a location accessible to the server. This whole packaging and
deployment process is a complicated configuration task that lends itself to the
use of a build tool. The build tool can be configured once and automate the
build and deployment process for the lifetime of the component(s).

 The most significant and recent development in this area is the Antbuild
tool, part of the Apache Software Foundation’s Jakarta open source effort.
Ant is a platform-independent “make” utility that uses an XML configuration
file to execute tasks and build targets. Ant has a set of built-in tasks that per-
form common functions, such as compiling source files, invoking the JAR util-
ity, and moving files. There are also a number of custom tasks available that
extend Ant to provide specific types of functionality, such as creating EJB
home and remote interfaces from an implementation source file and validating
XML documents. One of the nicest things about Ant is its portability between
operating systems. Your properly defined project will build on Windows and
UNIX systems with very minor, if any, modifications to it.

 For a brief introduction and tutorial on Ant, please refer to appendix C.
The latest information about Ant can be found at http://jakarta.apache.org.

The J2EE development process 27
Source code control tools
J2EE applications are almost always developed in a team environment. Team
development requires a source code repository and versioning system to man-
age the shared code base during development. The Concurrent Versioning
System (CVS) is an open source versioning system used widely throughout the
industry. It is available for UNIX and Windows environments, and provides
enough functionality to meet the needs of most J2EE development teams.
More information about CVS can be found at http://www.cvshome.org.

 Teams needing tools that have vendor support or which are integrated into
a particular IDE or methodology could choose a commercial tool instead.
Such leading tools include Rational Software’s Clear Case and Microsoft’s
Visual Source Safe. Another consideration in choosing a source control tool
may be how you plan to implement problem tracking and integrate it with the
management of your code base. More important than which tool you imple-
ment is the mere fact that you have one and use it.

Testing tools
Table 1.5 displays the major categories of testing that can be performed on
your J2EE application and the intended goals of each. Note that the various
testing types are known by different names to different people. This list is only
a stake in the ground to frame our discussion of testing in section 1.3.

Table 1.5 Software testing types

Testing type Description

Unit/functional testing This refers to testing individual software components to ensure
proper behavior. The developer usually performs this activity as part
of the development process.

System testing This usually refers to testing the functionality of the entire applica-
tion, including the interactions between components and sub-
systems. Often, external integration points are simulated using test
harnesses to control the tests.

Integration testing Integration testing involves testing the functionality of the interac-
tion between your application and external systems, including the
proper handling of security and failure conditions.

Performance/load testing This involves simulating heavy use of the application by clients to
determine scalability and discover potential bottlenecks.

User acceptance testing
(UAT)

This involves getting real users to try the system, examine its func-
tionality, and report gaps between functionality delivered and origi-
nal requirements.

28 CHAPTER 1

Getting started
 There are many options for each type of testing you need to perform. Many
of the best tools available in the area of unit testing in Java are open source
tools. JUnit is a popular open source testing package for Java components.
Using this package, you write test cases in Java and add them to your suite of
unit tests. The framework then runs your tests and reports statistics and error
information. Information about JUnit can be found at http://www.junit.org.

 JUnit has also been extended to do more specific types of testing as well.
For automated Web testing there is HTTPUnit. For server-side J2EE testing
there are JUnitEE and Apache’s Cactusproject. Information about HTTPUnit
and JUnitEE can be found on the JUnit site listed above. Information about
Cactus is at http://jakarta.apache.org.

 For performance testing, you may choose to purchase a commercial prod-
uct that can simulate heavy usage of your applications. Some vendors in this
area offer a testing product to purchase and will also test and monitor your
application’s performance over the Internet for you. If you are in need of such
services, you may want to investigate the Mercury Interactive testing tools at
http://www.mercuryinteractive.com.

Problem tracking tools
The tool you use to track application errors during (and after?) testing is an
important component of your development process. Software developers
often struggle with what to do once a problem has been discovered. The bug
must be identified, documented, and reproduced several times. Then it must
be assigned to a developer for resolution and tracked until it has been fixed.
Seems simple, but the implementation of this process is often overly compli-
cated and mismanaged.

 Teams usually implement problem tracking in very nonstandardized and
problematic ways. Emails, spreadsheets, and MS Access databases are not
uncommon implementations of bug logs. Many development projects use a
bug tracking database, usually written in-house by a college intern with lim-
ited skills. These one-off tracking mechanisms suffer because they do not fea-
ture a notification system and are often improperly used by testers, project
managers, and developers.

 To generalize a bit, there are a couple of key components to making bug
tracking and resolution successful on a J2EE development project, or, for that
matter, any other software development project. The first component is to
design a process for error resolution as part of your development methodology.
The second component is to have a tool that is easy to use and provides built-in
workflow and management reporting. Ideally, you would have a tracking

Testing and deployment in J2EE 29
system that is fully integrated with your source code control system. If, for
example, you use Rational Clear Case for source control, you could implement
Rational Clear Quest for defect tracking. Using nonintegrated products for
these functions makes the defect resolution process more manual and error-
prone, limiting the usefulness of the process and hindering productivity.

 On the other hand, when you are using a bare-bones approach such as
CVS, the way in which problems are tracked is undefined. Problem tracking
using only a source code control system is more often a manual process than
an automated one, where developers might be directed to put comments into
the commit logs describing the bug they have fixed. If you do not use a ver-
sion control system at all, tracking modifications to your code base is as ad hoc
and error-prone as all your other development activities.

1.3 Testing and deployment in J2EE

J2EE applications are inherently difficult to test and deploy. They are difficult
to test because of the levels of indirection in the system and the nature of dis-
tributed processing itself. They are difficult to deploy because of the amount
of configuration required to connect the various components such that they
can collaborate. Difficulty in testing and deployment is the price we pay for
the generality and flexibility of J2EE.

1.3.1 Testing J2EE applications

In table 1.5, we summarized the major types of testing typically done on dis-
tributed applications. Picking the types of testing your J2EE application needs
is the first order of business. Often your client may dictate this information to
you. Most forms of testing are usually required in one form or another, with
the exception of integration testing for self-contained systems. This section
describes the various types of components that require testing and suggests
some strategies for doing so.

Testing thick clients
If your application does not employ a Web-based interface, you may need to
separately test the thick-client side of the application. In such circumstance,
you have to test the behavior of code executing in the application client con-
tainer, the J2EE term for a JVM on a client-side machine. To make your client-
side testing easier, you may choose to write simple test harnesses with predict-
able behavior and point your client at them instead of the J2EE server. For
example, a simple test harness might be an RMI object that always returns the

30 CHAPTER 1

Getting started
same value to a caller regardless of input parameters. Using test harnesses for
client components does require extra development time, but can make testing
more meaningful and faster overall.

 Depending on your choice of Java IDE, you may already have a debugging
tool to assist you in unit testing your client-side components. For example,
WebGain Studio will run your code inside its debugger, allowing you to step
through executing code. This can be useful for testing components running in
a local JVM. If you are not using an IDE, unit testing can still be accomplished
using open source tools such as the JUnit testing framework mentioned in the
previous section. There are also commercial tools on the market that provide
rich functional and nonfunctional testing capabilities for applications. An
example is JProbe, a Java-based testing suite from Sitraka Software. You may
want to investigate these products if your IDE or open source package does
not provide all of the testing metrics you require.

Testing web components
Since J2EE applications prefer the thin-client model, most J2EE test plans
must accommodate some form of Web-based testing. Web components, such
as servlets and JSP, must be tested over HTTP at a data (page) and protocol
level. The low-tech version of this testing is performed by humans using web
browsers to compare execution results to the success conditions of individual
tests. The problems with this method include the amount of time and
resources required, the potential for incomplete coverage of the test plan, and
the possibility of human error.

 Automating web unit tests can be accomplished with open source tools,
including SourceForge’s HTTP Unit testing framework noted earlier. Using
these tools does not save much time up front, since the tests themselves must
be coded. However, rerunning unit tests many times is easy, and can be an
essential part of your overall code integration methodology.

 For more automated and advanced web testing requirements, there are
several test suites on the market that can be used in place of human testers to
make web testing faster and more meaningful. In addition, these tools can
perform load and performance testing as well. A popular example is the prod-
uct suite offered by Mercury Interactive, which includes a functional testing
tool (WinRunner) and a performance testing tool (LoadRunner). These tools
do not eliminate the need for human testers, as the tests must be scripted by
someone. However, once the test scripts have been recorded and the com-
pleteness of the test plan verified, running tests and collecting meaningful sta-
tistics is much easier.

Testing and deployment in J2EE 31
Testing EJB components
Testing EJB components is the most difficult part of J2EE testing. Testing
whether a behavior is executing properly is relatively simple, but determining
the root cause of any errors often requires some detective work. In general,
testing your EJB components requires a two-phase approach. The first occurs
during development, when detailed logging is built into the EJB methods
themselves. Note that, if you are using JDK version prior to 1.4, this logging
capability should be encapsulated into its own subsystem (see the Façade soft-
ware pattern) so that your components don’t become dependent on your ven-
dor’s proprietary logging mechanisms. This is depicted in figure 1.8.

Rather than creating your own logging infrastructure from scratch or using
your vendor’s logging API, you may decide to standardize on an open source
logging API such as Log4j from the Apache Software Foundation. Informa-
tion on Log4j can be found at http://jakarta.apache.org.

 If you are already using JDK version 1.4 or later as you read this, your log-
ging can be done via the standard Java API classes in the package
java.util.logging. Support for JDK 1.4 in J2EE server products should
minimize logging implementation issues in the future.

 The second phase of EJB testing is deploying the bean and thoroughly exer-
cising its local or remote interface against some predictable results (perhaps a
prepopulated test database). Apache’s Cactus framework or JUnitEE are alter-
natives in this area, although both require a healthy amount of configuration

J2EE
Components

(vendor independent)

Logging
Interface

(vendor independent)

Logging
Subsystem

(vendor)

log messages

Interfaces

Figure 1.8 Logging adapter mechanism

32 CHAPTER 1

Getting started
and test code development. The JProbe software suite also integrates with
many J2EE servers for more automated EJB testing of remote interfaces.

Testing local EJBs and dependent objects
Since EJBs accessed via a remote interface should be coarse-grained compo-
nents, many rely on the functionality provided by other local EJBs or depen-
dent objects for tasks like data persistence, remote system interactions, and
service interfaces. Testing an EJB that is only available locally requires testing
code to be running in the same JVM as the EJB. Fortunately, this can be
accomplished using Cactus or JUnitEE in most circumstances.

 Testing dependent objects directly can be challenging, but using them
without directly testing them can make debugging your EJB impossible. In
these cases, we recommend that you design dependent objects to be very con-
figurable and have their owning EJB pass in configuration data from the
deployment descriptor at runtime. Then implement either a JUnit test case or
a main method within the dependent object that configures an instance with
some hard-coded values and exercises it. The dependent object can then be
tested outside of the EJB prior to testing the EJB itself. Structuring tests in this
manner can increase confidence that EJB level errors are not the result of mis-
behaved member objects.

End-to-end testing strategy
Logically sequencing and structuring your J2EE testing activities is essential to
efficient testing and debugging. Figure 1.9 suggests an overall approach to
testing the various types of components you are likely to have in your J2EE
application. This is a bottom-up testing strategy, in which each layer builds
upon the successful completion of testing from the previous layer.

 Sequencing of testing phases tends to be somewhat fluid, based on the
types of testing your system requires. Most testing cycles tend to follow a
sequence such as the one depicted in figure 1.10. However, it is possible to

Dependent Objects

(adapters, data access
objects, etc.)

Remote EJBs

Web
Components

Application
Clients

Local EJBs Figure 1.9
Component
testing approach

Testing and deployment in J2EE 33
simultaneously test UAT and performance to reduce overall delivery time.
Note that testing cycles can be iterative when necessary.

1.3.2 Deploying J2EE applications

J2EE’s flexibility and portability can create problems for those who assemble
and deploy enterprise Java applications, a situation that is complicated by the
proliferation of J2EE component packaging schemes and deployment descrip-
tor updates. In this section, we take a moment to discuss your overall deploy-
ment options and make some suggestions to help you manage your J2EE
runtime configuration.

Component development and packaging
J2EE components can be deployed in various types of JAR files, as depicted in
figure 1.11. When you roll your components into production, you might
archive your EJB JAR files and WAR files into a single Enterprise Application
Archive (EAR) file and deploy it. However, there is a large amount of vendor-
specific configuration to be done for each component before it is deployed.
Creating the individual components and then integrating them into an appli-
cation archive is more complicated than it appears.

 Current J2EE server implementations require a vendor-specific deployment
descriptor file to be included with your EJB and web components. These files
handle the deployment specifics that are not addressed by the generic J2EE
descriptors. These specifics include nonfunctional characteristics like load bal-
ancing and failover information and resource mappings for references made in
the standard deployment descriptors. In the case of EJB, you also need to run
your component JAR files (including the vendor deployment descriptor)
through a vendor tool to generate the specific implementation classes for your

Unit
&

Functional
Testing

System
Testing

Integration
Testing

Performance
Testing

User
Acceptance

Testing

Promote
 to

ProductionFigure 1.10
Testing phases

34 CHAPTER 1

Getting started
home and remote interfaces. During development, this process can make
debugging a long and error-prone process.

 To minimize the overhead of deploying your components during develop-
ment, we recommend the following approach:

■ Use a build tool that can be configured once to compile, jar, and deploy
individual components. Ant is an excellent choice. Your chosen IDE may
perform this function itself or be integrated with Ant to accomplish this.

■ Deploy your web applications in expanded directory format during
development. In most development tools, if you keep your web
components separated into their own project, it is possible to specify
that the deployment paths for your servlet classes and JSPs will be your
build output directories. In this configuration, recompiling your project
will update the deployed copy as well. (Note: Making changes to servlet
code may require an explicit redeployment in your web container,
depending on the vendor.)

In J2EE development, it is always worthwhile to spend time up front structur-
ing and configuring your development environment, including the use of the
right tool set. This will save an enormous amount of time over the life of your
project and should offset the cost of any additional purchases and configura-
tion time.

Managing component configuration
You are also likely to face issues dealing with the interdependencies among
your application components at some point. For example, a given EJB might
require access to a data source, a message queue, and two other remote EJBs.

JAR Files

(Java ARchive)

WAR Files

(Web ARchive)

EAR Files

(Enterprise ARchive)

Web Components
(Servlets, JSPs, etc.)

EJB Components
(including dependent

objects)
Figure 1.11
J2EE deployment formats

Summary 35
These dependencies tend to grow exponentially with the complexity of the
system, and managing them can become unwieldy. If you are working on a
medium to large size application, consider centralizing configuration-related
code using the J2EE Service Locator pattern. You can use this technique to
remove complexity from individual components and centralize access to your
configuration data. If you are unfamiliar with the Service Locator design pat-
tern, refer to appendix A for more information.

 An example of this strategy is the use of a JNDI Service Locator compo-
nent. This component could be a local Session bean that contains all the JNDI
configuration data and mappings in its deployment descriptor. Your other
components can query this bean via a local interface to obtain handles to data
sources, message queues, and other beans using application-wide identifiers or
class references. For example, an EJB might be found by passing its class to the
Service Locator. A message queue might be found by passing in a global name
that the Service Locator has mapped to a JMS queue configured in its deploy-
ment descriptor. This approach can be quite useful in systems consisting of
more than a handful of components, or in an environment where multiple
external resources must be accessed throughout the application.

1.4 Summary

This chapter covered a lot of ground in the areas of distributed computing and
J2EE development. The goal was to give you an appreciation for the
challenges you will face—and the tools that will help you face them—when
building a J2EE-XML system.

 A distributed system is a set of independent processes that communicate with
each other by passing messages over a communication channel. The client/
server and peer processing models are the most common architectures in use
today, and they are often combined to create more flexible distributed systems.

 A distributed application relies heavily on a layered approach to software
development using middleware. Middleware abstracts differences in comput-
ing environments and provides a common set of services for applications
built on top of it. This overcomes the wide diversity among system compo-
nents, which is the common challenge of devising distributed systems. This is
the raison d’être of the J2EE platform, which is a vendor-independent form of
middleware.

 The n-tier architectural model is a common, useful tool for building various
types of application components. This model dissects the application into pre-
sentation, application logic, data, and service layers for purposes of analyzing

36 CHAPTER 1

Getting started
and designing different types of functionality. We use the n-tier model to struc-
ture our detailed discussions on combining J2EE and XML in the remainder of
the book. Chapter 3 discusses the application logic and data layers. Chapter 4
covers the services layer. Chapter 5 examines the presentation layer. Chapter 6
combines all the layers into a cohesive, n-tier application.

 Beyond the need for middleware, common challenges in distributed devel-
opment include ensuring system flexibility/extensibility, vendor indepen-
dence, scalability, performance, concurrency, fault masking, transparency, and
security. Strategies exist to address each of these, and your J2EE vendor pro-
vides tools that implement many of those strategies.

 The role of formal methodologies in your J2EE development projects
depends on the size of your team, the length of your project, and the number of
artifacts you need to produce during analysis and design. RUP and XP are good
examples of two ends of the methodology spectrum, and we noted the condi-
tions under which each is most applicable. More importantly, we also abstracted
a few common principles from existing methodologies that can be used in the
creation of your own process or the customization of an existing one.

 In section 1.2, we took a brief tour of the categories of tools required in
J2EE development and pointed out a few popular choices in each category.
Many of these are open source and widely used, even in conjunction with com-
mercial products. Others are popular, commercial products that either inte-
grate well with your chosen server or provide functionality not readily available
in open source tools. The goal here was to create a checklist of required tools
and identify any holes in your development environment in this regard.

 Section 1.3 discussed complicated issues regarding the testing and deploy-
ment of a J2EE application. We discussed useful approaches to testing various
components and deploying them to your server environment, with an empha-
sis on build-time processes.

 From here, we turn our attention to the specifics of using XML technology
in the J2EE environment. Remaining chapters assume your mastery of the
material in this chapter and demonstrate in detail the integration of J2EE and
XML at each layer of an n-tiered architecture.

XML and Java
This chapter
■ Describes relevant XML standards and

technologies
■ Classifies XML tools in terms of functionality
■ Introduces and demonstrates use of Java

XML Pack APIs (JAX)
■ Suggests how JAX APIs are best deployed in

your architecture
37

38 CHAPTER 2

XML and Java
A complex set of closely related XML APIs, each of which is either in specifica-
tion or development, is the result of a flurry of Java community development
activity in the area of XML. These APIs include the JAX family, as well as other
popular emerging standards such as JDOM.

 This chapter untangles the web of Java APIs for XML, identifying and clas-
sifying each in terms of its functionality, intended use, and maturity. Where
possible, we provide usage examples for each new API and describe how it
might be best used in your J2EE system. We also identify areas in which the
APIs overlap and suggest which ones are likely to be combined or eliminated
in the future. Subsequent chapters build upon your understanding of these
APIs by providing more specific examples of their implementation.

 To fully appreciate the capabilities and limitations of the current JAX APIs,
section 2.1 provides a brief overview of the state of important XML technolo-
gies. These technologies and standards are implemented and used by the JAX
APIs, so understanding something about each will speed your mastery of JAX.

2.1 XML and its uses

Before diving into the details of Java’s XML API family, a brief refresher on a
few important XML concepts is warranted. This section provides such a
refresher, as well as an overview of the most important recent developments in
XML technology.

 XML, the eXtensible Markup Language, is not actually a language in its
own right. It is a metalanguage used to construct other languages. XML is
used to create structured, self-describing documents that conform to a set of
rules created for each specific language. XML provides the basis for a wide vari-
ety of industry- and discipline-specific languages. Examples include Mathe-
matical Markup Language (MathML), Electronic Business XML (ebXML),
and Voice Markup Language (VXML). This concept is illustrated in figure 2.1.

 XML consists of both markup and content. Markup, also referred to as tags,
describes the content represented in the document. This flexible representa-
tion of data allows you to easily send and receive data, and transform data from
one format to another. The uses of XML are rapidly expanding and are partially
the impetus for writing this book. For example, business partners use XML to
exchange data with each other in new and easier ways. E-business related
information such as pricing, inventory, and transactions are represented in
XML and transferred over the Internet using open standards and protocols.
There are also many specialized uses of XML, such as the Java Speech Markup
Language and the Synchronized Multimedia Integration Language.

XML and its uses 39
Each XML language defines its own grammar, a specific set of rules governing
the content and structure of documents written in that language. For exam-
ple, the element price may be valid in an ebXML document but has no mean-
ing in a MathML document. Since each language must fulfill this grammatical
requirement, XML provides facilities for generically documenting the correct
grammar of any derived language. Any XML parser can validate the structure
of any XML document, given the rules of its language.

 Using XML as a common base for higher-level languages enables the inter-
change of data between software components, systems, and enterprises. Pars-
ing and translation tools written to handle any type of XML-based data can be
employed to create and manipulate data in a uniform way, regardless of each
document’s semantic meaning. For example, the same XML parser can be used
to read a MathML document and an ebXML document, and the same XML
Translator can be used to convert an ebXML purchase order document into a
RosettaNet PIP document.

 An XML-based infrastructure enables high levels of component reuse and
interoperability in your distributed system. It also makes your system inter-
faces cleaner and more understandable to those who must maintain and
extend it. And since XML is an industry standard, it can be deployed widely in
your systems without worry about vendor dependence. XML also makes sense
from the standpoint of systems integration, as an alternative to distributed
object interaction. It allows data-level integration, making the coupling

XML
(Meta-language)

SGML
(Meta-language)

XHTML
Schema

WML
Schema

MathML
Schema

ebXML
Schema

VXML
Schema

XHTML
Document

WML
Document

MathML
Document

ebXML
Document

VXML
Document

Figure 2.1
XML language
hierarchy

40 CHAPTER 2

XML and Java
between your application and other systems much looser and enhancing over-
all architectural flexibility.

 In addition to its uses in messaging and data translation, XML can also be
used as a native data storage format in some situations. It is particularly well
suited for managing document repositories and hierarchical data. We examine
some of the possibilities in this area in chapter 3.

An example XML document
To illustrate the power and flexibility of XML and related technologies, we
need a concrete XML example with which to work. We use this simple docu-
ment throughout the rest of this chapter to illustrate the use of various XML
technologies. Most importantly, we use it to demonstrate the use of the JAX
APIs in section 2.2.

 Listing 2.1 contains an XML instance document, a data structure containing
information about a specific catalog of products.

<?xml version="1.0"?>

<product-catalog>
 <product sku="123456" name="The Product">
 <description locale="en_US">
 An excellent product.
 </description>
 <description locale="es_MX">
 Un producto excellente.
 </description>
 <price locale="en_US" unit="USD">
 99.95
 </price>
 <price locale="es_MX" unit="MXP">
 9999.95
 </price>
 </product>
</product-catalog>

b Shows a catalog containing a single product. The product information includes its
name, SKU number, description, and price. Note that the document contains
multiple price and description nodes, each of which is specific to a locale.

Classifying XML technologies
There are numerous derivative XML standards and technologies currently
under development. These are not specific to Java, or any other implementation

Listing 2.1 Product XML document example

Defines a product with
SKU=123456 and the
name “The Product”

b Lists descriptions and
prices for this product in
the U.S. and Mexico

XML and its uses 41
language for that matter. They are being developed to make the use of XML
easier, more standardized, and more manageable. The widespread adoption of
many of them is critical to the success of XML and related standards.

 This section provides a brief overview of the most promising specifications
in this area. Since it is impossible to provide exhaustive tutorials for each of
these in this section, we recommend you visit http://www.zvon.org, a web
site with excellent online tutorials for many of these technologies.

2.1.1 XML validation technologies

The rules of an XML language can be captured in either of two distinct ways.
When codified into either a document type definition or an XML schema defi-
nition, any validating XML parser can enforce the rules of a particular XML dia-
lect generically. This removes a tremendous burden from your application code.
In this section, we provide a brief overview of this important feature of XML.

Document type definitions
The first and earliest language definition mechanism is the document type def-
inition (DTD).

DEFINITION A document type definition is a text file consisting of a set of rules
about the structure and content of XML documents. It lists the valid
set of elements that may appear in an XML document, including
their order and attributes.

A DTD dictates the hierarchical structure of the document, which is
extremely important in validating XML structures. For example, the element
Couch may be valid within the element LivingRoom, but is most likely not valid
within the element BathRoom. DTDs also define element attributes very specif-
ically, enumerating their possible values and specifying which of them are
required or optional.

<!ELEMENT product-catalog (product+)>

<!ELEMENT product (description+, price+)>
 <!ATTLIST product
 sku ID #REQUIRED
 name CDATA #REQUIRED
 >

<!ELEMENT description (#PCDATA)>

Listing 2.2 DTD for the product catalog example document

Product catalogs must contain
one or more products and
each product has one or more
descriptions and one or more
prices

Each product must
have a SKU and
name attribute

42 CHAPTER 2

XML and Java
 <!ATTLIST description
 locale CDATA #REQUIRED
 >

<!ELEMENT price (#PCDATA)>
 <!ATTLIST price
 locale CDATA #REQUIRED
 unit CDATA #REQUIRED
 >

Listing 2.2 contains a DTD to constrain our product catalog example docu-
ment. For this DTD to be used by a validating XML parser, we could add the
DTD in-line to listing 2.1, right after the opening XML processing instruction.
We could also store the DTD in a separate file and reference it like this:

<!DOCTYPE product-catalog SYSTEM “product-catalog.dtd”>

Using this statement, a validating XML parser would locate a file named prod-
uct-catalog.dtd in the same directory as the instance document and use its
contents to validate the document.

XML Schema definitions
Although a nice first pass at specifying XML languages, the DTD mechanism
has numerous limitations that quickly became apparent in enterprise develop-
ment. One basic and major limitation is that a DTD is not itself a valid XML
document. Therefore it must be handled by XML parsing tools in a special way.

 More problematic, DTDs are quite limited in their ability to constrain the
structure and content of XML documents. They cannot handle namespace
conflicts within XML structures or describe complex relationships among doc-
uments or elements. DTDs are not modular, and constraints defined for one
data element cannot be reused (inherited) by other elements. For these rea-
sons and others, the World Wide Web Consortium (W3C) is working fever-
ishly to replace the DTD mechanism with XML Schema.

DEFINITION An XML Schema definition (XSD) is an XML-based grammar decla-
ration for XML documents.

XSD is itself an XML language. Using XSD, data constraints, hierarchical rela-
tionships, and element namespaces can be specified more completely than
with DTDs. XML Schema allows very precise definition of both simple and
complex data types, and allows types to inherit properties from other types.

XML and its uses 43
There are numerous common data types already built into the base XML
Schema language as a starting point for building specific languages.
Listing 2.3 shows a possible XML Schema definition for our example product
catalog document.

<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element type="product-catalog"/>

<xsd:complexType name="productCatalog">
 <xsd:element type="productType"
 minOccurs="1"/>
 </xsd:complexType>

 <xsd:complexType name="productType">
 <xsd:element name="description"
 type="xsd:string" minOccurs="1">
 <xsd:attribute name="locale"
 type="xsd:string"/>
 </xsd:element>
 <xsd:element name="price"
 type="xsd:decimal" minOccurs="1">
 <xsd:attribute name="locale"
 type="xsd:string"/>
 <xsd:attribute name="unit"
 type="xsd:string"/>
 </xsd:element>
 <xsd:attribute name="sku"
 type="xsd:decimal"/>
 <xsd:attribute name="name"
 type="xsd:string"/>
 </xsd:complexType>

</xsd:schema>

b This XSD defines a complex type called productType, which is built upon other
primitive data types. The complex type contains attributes and other elements as
part of its definition. Just from the simple example, the advantages of using XML
Schema over DTDs should be quite apparent to you.

The example XSD in listing 2.3 barely scratches the surface of the intricate
structures that you can define using XML Schema. Though we will not focus
on validation throughout this book, we strongly encourage you to become
proficient at defining schemas. You will need to use them frequently as the use

Listing 2.3 An XSD for the product catalog document

“xsd” namespace
defined by XML Schema

Declares the product catalog

Defines catalog type
containing one or more
product elements

b product type
definition

44 CHAPTER 2

XML and Java
of XML data in your applications increases. Detailed information on XML
Schema can be found at http://www.w3c.org/XML/Schema.

 Before leaving the topic of document validation, we note that some parsers
do not offer any validation at all, and others only support the DTD approach.
Document validation is invaluable during development and testing, but is
often turned off in production to enhance system performance. Using valida-
tion is also critical when sharing data between enterprises, to ensure both par-
ties are sending and receiving data in a valid format.

2.1.2 XML parsing technologies

Before a document can be validated and used, it must be parsed by XML-
aware software. Numerous XML parsers have been developed, including Crim-
son and Xerces, both from the Apache Software Foundation. You can learn
about these parsers at http://xml.apache.org. Both tools are open source and
widely used in the industry. Many commercial XML parsers are also available
from companies like Oracle and IBM.

DEFINITION An XML parser is a software component that can read and (in most
cases) validate any XML document. A parser makes data contained
in an XML data structure available to the application that needs to
use it.

SAX
Most XML parsers can be used in either of two distinct modes, based on the
requirements of your application. The first mode is an event-based model
called the Simple API for XML (SAX). Using SAX, the parser reads in the XML
data source and makes callbacks to its client application whenever it encoun-
ters a distinct section of the XML document. For example, a SAX event is fired
whenever the end of an XML element has been encountered. The event
includes the name of the element that has just ended.

 To use SAX, you implement an event handler for the parser to use while
parsing an XML document. This event handler is most often a state machine
that aggregates data as it is being parsed and handles subdocument data sets
independently of one another. The use of SAX is depicted in figure 2.2. SAX is
the fastest parsing method for XML, and is appropriate for handling large doc-
uments that could not be read into memory all at once.

 One of the drawbacks to using SAX is the inability to look forward in the
document during parsing. Your SAX handler is a state machine that can only

XML and its uses 45
operate on the portion of the XML document that has already been parsed.
Another disadvantage is the lack of predefined relationships between nodes in
the document. In order to perform any logic based on the parent or sibling
nodes, you must write your own code to track these relationships.

DOM
The other mode of XML parsing is to use the Document Object Model (DOM)
instead of SAX. In the DOM model, the parser will read in an entire XML data
source and construct a treelike representation of it in memory. Under DOM, a
pointer to the entire document is returned to the calling application. The
application can then manipulate the document, rearranging nodes, adding and
deleting content as needed. The use of DOM is depicted in figure 2.3.

 While DOM is generally easier to implement, it is far slower and more
resource intensive than SAX. DOM can be used effectively with smaller XML
data structures in situations when speed is not of paramount importance to the
application. There are some DOM-derivative technologies that permit the use
of DOM with large XML documents, which we discuss further in chapter 3.

 As you will see in section 2.2, the JAXP API enables the use of either DOM
or SAX for parsing XML documents in a parser-independent manner. Deciding
which method to use depends on your application’s requirements for speed,
data manipulation, and the size of the documents upon which it operates.

XML Parser

XML
Document

Application Code

Execute code
Resume parsing

Initialize Parser
Register Handlers

SAX Event

Execute code
Resume parsing

SAX Event

SAX Event
Parsing CompleteResume Application Code

Begin Parsing

Figure 2.2 Using the SAX API

46 CHAPTER 2

XML and Java
2.1.3 XML translation technologies

A key advantage of XML over other data formats is the ability to convert an
XML data set from one form to another in a generic manner. The technology
that enables this translation is the eXtensible Stylesheet Language for Trans-
formations (XSLT).

XSLT
Simply stated, XSLT provides a framework for transforming the structure of an
XML document. XSLT combines an input XML document with an XSL
stylesheet to produce an output document.

DEFINITION An XSL stylesheet is a set of transformation instructions for convert-
ing a source XML document to a target output document.

Figure 2.4 illustrates the XSLT process. Performing XSLT transformations
requires an XSLT-compliant processor. The most popular open source XSLT
engine for Java is the Apache Software Foundation’s Xalan project. Informa-
tion about Xalan can be found at http://xml.apache.org/xalan-j.

Initialize Parser

Application Code

XML Parser

XML
Document

Begin Parsing

Parsing Complete

In-memory DOM
Traverse, Manipulate
Perform Processing

Figure 2.3 Using the DOM API

XML and its uses 47
An XSLT processor transforms an XML source tree by associating patterns
within the source document with XSL stylesheet templates that are to be
applied to them. For example, consider the need to transform our product cat-
alog XML document into HTML for rendering purposes. This consists of
wrapping the appropriate product data in the XML document with HTML
markup. Listing 2.4 shows an XSL stylesheet that would accomplish this task.

<?xml version="1.0"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="/">
<html>
 <head><title>My Products</title></head>
 <body>
 <h1>Products Currently For Sale in the U.S.</h1>
 <xsl:for-each select="//product">
 <xsl:value-of select="@name"/> : $
 <xsl:value-of select="./price[@unit='USD']"/> USD
 </xsl:for-each>

Listing 2.4 Translating the product catalog for the Web

Parser

XSLT Processor

XSL
Stylesheet

XSL
Stylesheet

XML Document

Output from
Stylesheet 1

Output from
Stylesheet 2

Figure 2.4 XSLT processing overview

b Executes for the root element of
the source document

c Prints name
and price
information

48 CHAPTER 2

XML and Java
 </body>
</html>
</xsl:template>

</xsl:stylesheet>

b The match attribute is an XPath expression meaning the root XML element. This
template is therefore executed against the entire source document.

c Each product element in the source document will have its name attribute printed,
followed by the string: $, its price in dollars, and the string USD.

XSLT processors can vary in terms of their performance characteristics. Most
offer some way to precompile XSL stylesheets to reduce transformation times.
As you will see in section 2.2, the JAXP API provides a layer of pluggability for
compliant XSLT processors in a manner similar to parsers. This permits the
replacement of one XSLT engine with another, faster one as soon as it
becomes available.

 Details on XSLT can be found at http://www.w3.org/Style/XSL.

Binary transformations for XML
Note that the capabilities of XSLT are not limited to textual transformations. It
is often necessary to translate textual data to binary format. A common exam-
ple is the translation of business data to PDF format for display. For this reason
the XSL 1.0 Recommendation also specifies a set of formatting objects. For-
matting objects are instructions that define the layout and presentation of
information. Formatting objects are most useful for print media and design
work. Some Java libraries are already available to do the most common types
of transformations. See chapter 5 for an example of the most common binary
transformation required today, from XML format to PDF.

2.1.4 Messaging technologies

Numerous technologies for transmitting XML-structured data between appli-
cations and enterprises are currently under development. This is due to the
tremendous potential of XML to bridge the gap between proprietary data for-
mats and messaging protocols. Using XML, companies can develop standard
interfaces to their systems and services to which present and future business
partners can connect with little development effort. In this section, we provide
a brief description of the most promising of these technologies.

XML and its uses 49
SOAP
By far the most promising advances in this area are technologies surrounding
the Simple Object Access Protocol (SOAP).

DEFINITION SOAP is a messaging specification describing data encoding and
packaging rules for XML-based communication.

The SOAP specification describes how XML messages can be created, pack-
aged, and transmitted between systems. It includes a binding (mapping) for
the HTTP protocol, meaning that SOAP messages can be transmitted over
existing Web systems. Much of SOAP is based upon XML-RPC, a specification
describing how remote procedure calls can be executed using XML.

 SOAP can be implemented in a synchronous (client/server) or asynchro-
nous fashion. The synchronous method (RPC-style) involves a client explicitly
requesting some XML data from a SOAP server by sending a SOAP request
message. The server returns the requested data to the client in a SOAP
response message. This is depicted in figure 2.5.

Asynchronous messaging is also fully supported by the SOAP specification.
This can be useful in situations where updates to information can be sent and
received as they happen. The update event must not require an immediate
response, but an asynchronous response might be sent at some point in the
future. This response might acknowledge the receipt of the original message
and report the status of processing on the receiver side. Asynchronous SOAP is
depicted in figure 2.6.

 Many J2EE server vendors now support some form of SOAP messaging, via
their support of the JAXM API discussed later in this chapter. More informa-
tion on the SOAP specification is available at http://www.w3c.org/TR/SOAP.

SOAP Client SOAP Server

Remote Procedure Call
(SOAP over HTTP(S))

RPC Response
(SOAP over HTTP(S))

Figure 2.5 RPC-style SOAP messaging

50 CHAPTER 2

XML and Java
Web services
Closely related to the development of SOAP is the concept of web services. As
we alluded to in chapter 1, web services is the catchall phrase for the standard-
ization of distributed business services architecture over the Internet. Web ser-
vices rely on SOAP clients and servers to transport inter-enterprise messages.

 The subjects of XML messaging and web services are quite complex. We
take a detailed look at these topics in chapter 4, including examples. In this
section, we discuss only the basics of web services and related technologies.

 Work is also ongoing to define a standard way to register and locate new
web services using distributed service repositories, or search engines. These
repositories use XML to describe web services and the companies that provide
them. The most promising of these standards to date is the Universal Descrip-
tion, Discovery, and Integration (UDDI) specification. This is due to the
broad vendor support UDDI currently enjoys from many companies, includ-
ing IBM and Microsoft.

UDDI
A consortium of large companies has come together to create a set of stan-
dards around the registration and discovery process for web services. The
result is UDDI. The goal of UDDI is to enable the online registration and
lookup of web services via a publicly available repository, similar in operation
to the Domain Name System (DNS) of the Internet. The service registry is
referred to as the green pages and is defined in an XML Schema. The green
pages are syndicated across multiple operator sites. Each site provides some
level of public information regarding the services. This information is repre-
sented as metadata and known as a tModel.

 One of the challenges when registering a web service is deciding on how it
should be classified. A mere alphabetical listing by provider would make it impos-
sible to find a particular type of service. UDDI therefore allows classification of

SOAP
Message
Producer

SOAP
Message

Consumer

Asynchronous Data Update
(SOAP over HTTP(S))

Figure 2.6 Message-style SOAP messaging

XML and its uses 51
services by geographic region and standard industry codes, such as NAICS and
UN/SPC. Many expect the other services repositories, such as the ebXML
Repository, to merge with UDDI in the future, although no one can say for sure.

 You can read more about UDDI and related technologies at http://www.
uddi.org.

WSDL
The creators of the UDDI directory recognized the need for a standard means
for describing web services in the registry. To address this, they created the
Web Services Description Language (WSDL). WSDL is an XML language used
to generically describe web services. The information contained in each
description includes a network address, protocol, and a supported set of oper-
ations. We will discuss WSDL in detail and provide examples of it in chapter 4.

2.1.5 Data manipulation and retrieval technologies

Storing and retrieving data in XML format is the subject of much ongoing
work with XML. The need for XML storage and retrieval technologies has
resulted in the creation of a large number of closely related specifications. In
this section, we provide you with a brief overview of these specifications and
point you in the direction of more information about each.

XPath
XPath is a language for addressing XML structures that is used by a variety of
other XML standards, including XSLT, XPointer, and XQuery. It defines the
syntax for creating expressions, which are evaluated against an XML document.
For example, a forward slash (/) is a simple XPath expression. As you saw in
listing 2.4, this expression represents the root node of an XML document.

 XPath expressions can represent a node-set, Boolean, number, or string.
They can start from the root element or be relative to a specific position in a
document. The most common type of XPath expression is a location path,
which represents a node-set. For our product catalog document example, the
following XPath represents all the product nodes in the catalog:

/product

XPath has a built-in set of functions that enable you to develop very complex
expressions. Although XPath syntax is not a focus of this book, we do explore
technologies such as XSLT that use it extensively. Since XPath is so important,
we suggest that you become proficient with it as quickly as possible.

52 CHAPTER 2

XML and Java
 You can get more detailed information on XPath at http://www.w3c.org/
TR/xpath.

XPointer
XPointer is an even more specific language that builds on XPath. XPointer
expressions point to not only a node-set, but to the specific position or range
of positions within a node-set that satisfy a particular condition. XPointer
functions provide a very robust method for searching through XML data
structures. Take, for example, the following node-set:

<desc>This chapter provides an overview of the J2EE technologies.</desc>
<desc>This chapter provides an overview of the XML landscape.</desc>
<desc>This chapter is an introduction to distributed systems.</desc>

A simple XPointer expression that operates on this node-set is as follows:

xpointer(string-range(//desc, 'overview'))

This expression returns all nodes with the name desc that contain the string
overview. XPointer expressions can be formed in several ways and can quickly
become complex. You can find more information on XPointer at http://
www.w3c.org/XML/Linking.

XInclude
XInclude is a mechanism for including XML documents inside other XML doc-
uments. This allows us to set up complex relationships among multiple XML
documents. It is accomplished by using the <include> tag, specifying a loca-
tion for the document, and indicating whether or not it should be parsed. The
include tag may be placed anywhere within an XML document. The location
may reference a full XML document or may use XPointer notation to reference
specific portions of it. The use of XPointer with XInclude makes it easier to
include specific XML data and prevents us from having to duplicate data in
multiple files.

 Adding the following line to an XML document would include a node-set
from an external file called afile.xml in the current XML document, at the
current location:

<xi:include href=”afile.xml#xpointer(XPath expression)” parse=”xml” />

Only the nodes matching the specified XPath expression would be included.
 More information on XInclude can be found at http://www.w3c.org/TR/

xinclude.

XML and its uses 53
XLink
XLink is a technology that facilitates linking resources within separate XML doc-
uments. It was created because requirements for linking XML resources require
a more robust mechanism than HTML-style hyperlinks can provide. HTML
hyperlinks are unidirectional, whereas XLink enables traversal in both directions.
XLinks can be either simple or extended. Simple XLinks conform to similar rules
as HTML hyperlinks, while extended XLinks feature additional functionality.

 The flexibility of XLink enables the creation of extremely complex and
robust relationships. The following example uses a simple XLink that estab-
lishes a relationship between an order and the customer who placed it.

 If this XML document represents a customer:

<customer id=”0059”>
 <name>ABC Company</name>
 <employees>1000-1500</employees>
</customer>

This XML document lists orders linked to that customer:

<orders>
 <order xlink:type=”simple”
 href=”customers.xml#//customers/customer/@id[.='0059']”
 title=”Customer” show=”new”>
 <number>12345</number>
 <amount>$500</amount>
 </order>
</orders>

Note once again the importance of XPath expressions in enabling this technol-
ogy. More information on XLink is at http://www.w3c.org/XML/Linking.

XBase
XBase, or XML Base, is a mechanism for specifying a base uniform resource
identifier (URI) for XML documents, such that all subsequent references are
inferred to be relative to that URI. Despite its simplicity, XBase is extremely
handy and allows you to keep individual XLinks to a reasonable length.

 The following line describes a base URI using XBase. Any relative URI ref-
erence encountered inside the catalog element will be resolved using http://
www.manning.com/books as its base.

<catalog xml:base=http://www.manning.com/books/>
 ………
 ………
</catalog>

You can learn more about XBase at http://www.w3c.org/TR/xmlbase.

http://www.manning.com
http://www.manning.com
http://www.manning.com

54 CHAPTER 2

XML and Java
Query languages
As the amount of data being stored in XML has increased, it is not surprising
that several query languages have been developed specifically for XML. One of
the initial efforts in this area was XQL, the XML Query Language. XQL is a
language for querying XML data structures and shares many of its constructs
with XPath. Using XQL, queries return a set of nodes from one or more docu-
ments. Other query languages include Quilt and XML-QL.

 The W3C has recently taken on the daunting task of unifying these specifi-
cations under one, standardized query language. The result of this effort is a
language is called XQuery. It uses and builds upon XPath syntax. The result of
an XML query is either a node-set or a set of primitive values. XQuery is syn-
tactically similar to SQL, with a set of keywords including FOR, LET, WHERE,
and RETURN.

 The following is a simple XQuery expression that selects all product nodes
from afile.xml.

document(“afile.xml”)//product

A slightly more complex XQuery expression selects the warranty node for
each product.

FOR $product in //product
 RETURN $product/warranty

XQuery is in its early stages of completion and there are not many products
around that fully implement the specification. The latest version of Software
AG’s Tamino server has some support for XQuery, but a full XQuery engine
has yet to be implemented. We discuss XQuery in more detail in chapter 3,
within our discussion of XML data persistence. You can get all the details
about XQuery at http://www.w3c.org/XML/Query.

2.1.6 Data storage technologies

XML is data, so it should be no surprise that there are a variety of technologies
under development for storing native XML data. The range of technologies
and products is actually quite large, and it is still unclear which products will
emerge as the leaders.

 Storing XML on the file system is still very popular, but storing XML in a
textual, unparsed format is inefficient and greatly limits its usability. Static doc-
uments require reparsing each time they are accessed. An alternative mecha-
nism to storing text files is the Persistent Document Object Model (PDOM).
PDOM implements the W3C DOM specification but stores the parsed XML

The Java APIs for XML 55
document in binary format on the file system. In this fashion, it does not need
to be reparsed for subsequent access.

 PDOM documents may be generated from an existing DOM or through an
XML input stream, so the document is not required to be in memory in its
entirety at any given time. This is advantageous when dealing with large XML
documents. PDOM supports all of the standard operations that you would
expect from a data storage component, such as querying (via XQL), inserting,
deleting, compressing, and caching. We offer an example of using this tech-
nique for data storage in chapter 3. You can learn more about PDOM at
http://xml.darmstadt.gmd.de/xql/.

 Another alternative to static file system storage is the use of native-XML
databases. Databases such as Software AG’s Tamino are designed specifically
for XML. Unlike relational databases, which store hierarchical XML documents
in relational tables, Tamino stores XML in its native format. This gives Tamino
a significant performance boost when dealing with XML.

 Despite the appearance of native-XML database vendors, traditional data-
base vendors such as Oracle and IBM had no intention of yielding any of the
data storage market just because traditional relational databases did not handle
XML well initially. The major relational vendors have built extensions for their
existing products to accommodate XML as a data type and enable querying
functionality. This is advantageous for many companies that rely heavily on
RDBMS products and have built up strong skill-sets in those technologies.

 Figure 2.7 summarizes your options for XML data storage.

2.2 The Java APIs for XML

The Java development community is actively following and contributing to the
specification of many of the XML technologies discussed in section 2.1.

Plain Text
Flat Files

Parsed
Binary
Files

Relational
Databases

Native XML
Databases

Figure 2.7 XML data storage alternatives

56 CHAPTER 2

XML and Java
Additionally, Java is often the first language to implement these emerging tech-
nologies. This is due largely to the complimentary nature of platform indepen-
dent code (Java) and data (XML). However, XML API development in Java has
historically been disjointed, parallel, and overly complicated. Various groups
have implemented XML functionality in Java in different ways and at different
times, which led to the proliferation of overlapping, noncompatible APIs.

 To address this issue and make developing XML-aware applications in Java
simpler, Sun Microsystems is now coordinating Java XML API development via
the Java Community Process (JCP). Under this process, the Java development
community is standardizing and simplifying the various Java APIs for XML.
Most of these efforts have been successful, although a couple of the standard
specifications still have overlapping scope or functionality. Nevertheless, XML
processing in Java has come a long way in 2000 and 2001.

 The Java APIs for XML (JAX) is currently a family of related API specifica-
tions. The members of the JAX family are summarized in table 2.1. In this sec-
tion, we introduce each member of JAX and discuss its current state of
maturity. For those JAX members with an existing reference implementation,
we also provide usage examples for each.

Table 2.1 The JAX family—Java APIs for XML processing

Java API for XML JAX acronym Functional description

Java API for XML
parsing

JAXP Provides implementation-neutral access to XML
parsers and XSLT processors.

Java Document
Object Model

JDOM Provides a Java-centric, object-oriented imple-
mentation of the DOM framework.

Java API for XML
binding

JAXB Provides a persistent XML mapping for Java
object storage as XML.

Long Term Java-
Beans Persistence

Similar to JAXB, provides XML serialization for
JavaBean components.

Java API for XML
messaging

JAXM Enables the use of SOAP messaging in Java
applications, using resource factories in a man-
ner similar to the Java Messaging Service (JMS).

JAX-RPC JAX-RPC An XML-RPC implementation API for Java. Simi-
lar to JAXM.

Java API for XML
repositories

JAXR Provides implementation-neutral access to XML
repositories like ebXML and UDDI.

The Java APIs for XML 57
2.2.1 JAXP

JAXP provides a common interface for creating and using the SAX, DOM, and
XSLT APIs in Java. It is implementation- and vendor-neutral. Your applications
should use JAXP instead of accessing the underlying APIs directly to enable the
replacement of one vendor’s implementation with another as desired. As faster
or better implementations of the base XML APIs become available, you can
upgrade to them simply by exchanging one JAR file for another. This achieves
a primary goal in distributed application development: flexibility.

The JAXP API architecture is depicted in figure 2.8. JAXP enables flexibility by
divorcing your application code from the underlying XML APIs. You can use it
to parse XML documents using SAX or DOM as the underlying strategy. You
can also use it to transform XML via XSLT in a vendor-neutral way.

Table 2.2 The JAXP packages

Package Description

javax.xml.parsers Provides a common interface to DOM and SAX parsers.

javax.xml.transform Provides a common interface to XSLT processors.

org.xml.sax The generic SAX API for Java

org.w3c.dom The generic DOM API for Java

Application Code

JAXP API

SAX Interface DOM Interface XSLT Interface

Parsers Processors
Figure 2.8
JAXP architecture

58 CHAPTER 2

XML and Java
The JAXP API consists of four packages, summarized in table 2.2. Of these,
the two javax.xml packages are of primary interest. The javax.xml.parsers
package contains the classes and interfaces needed to parse XML documents.
The javax.xml.transform package defines the interface for XSLT processing.

Configuring JAXP
To use JAXP for parsing, you require a JAXP-compliant XML parser. The JAXP
reference implementation uses the Crimson parser mentioned earlier. To do
XSLT processing, you also need a compliant XSLT engine. The reference
implementation uses Xalan, also mentioned earlier.

 When you first access the JAXP parsing classes in your code, the framework
initializes itself by taking the following steps:

■ It initially checks to see if the system property javax.xml.parsers.Doc-
umentBuilderFactory or javax.xml.parsers.SAXParserFactory has
been set (depending on whether you are requesting the use of SAX or
DOM). If you are requesting an XSLT transformation, the system prop-
erty javax.xml.transform.TransformerFactory is checked instead.

■ If the appropriate system property has not been set explicitly, the frame-
work searches for a file called jaxp.properties in the lib directory of
your JRE. Listing 2.5 shows how the contents of this file might appear.

■ If the jaxp.properties file is not found, the framework looks for files on
the classpath named /META-INF/services/java.xml.parsers.Document-
BuilderFactory, /META-INF/services/SAXParserFactory, and /META-
INF/services/javax.xml.transform.TransformerFactory. When
found, these files contain the names of the JAXP DocumentBuilder, SAX-
ParserFactory, and TransformerFactory classes, respectively. JAXP-com-
pliant parsers and XSLT processors contain these text files in their jars.

■ If a suitable implementation class name cannot be found using the
above steps, the platform default is used. Crimson will be invoked for
parsing and Xalan for XSLT.

NOTE Statements in the following listing are shown on multiple lines for
clarity. In an actual jaxp.properties file, each statement should ap-
pear as a single line with no spaces between the equals character (=)
and the implementation class name.

The Java APIs for XML 59

javax.xml.parsers.DocumentBuilderFactory=
 org.apache.crimson.jaxp.DocumentBuilderFactoryImpl
javax.xml.parsers.SAXParserFactory=
 org.apache.crimson.jaxp.SAXParserFactoryImpl
javax.xml..transform.TransformerFactory=
 org.apache.xalan.processor.TransformerFactoryImpl

Since JAXP-compliant parsers and processors already contain the necessary text
files to map their implementation classes to the JAXP framework, the easiest
way to configure JAXP is to simply place the desired parser and/or processor
implementation’s JAR file on your classpath, along with the JAXP jar. If, how-
ever, you find yourself with two JAXP-compliant APIs on your classpath for
some other reason, you should explicitly set the implementation class(es)
before using JAXP. Since you would not want to do this in your application
code, the properties file approach is probably best.

 JAXP is now a part of the J2EE specification, meaning that your J2EE ven-
dor is required to support it. This makes using JAXP an even easier choice over
directly using a specific DOM, SAX, or XSLT implementation.

Using JAXP with SAX
The key JAXP classes for use with SAX are listed in table 2.3. Before demon-
strating the use of SAX via JAXP, we must digress for a moment on the low
level details of SAX parsing. To use SAX with or without JAXP, you must always
define one or more event handlers for the parser to use.

DEFINITION A SAX event handler is a component that registers itself for callbacks
from the parser when SAX events are fired.

The SAX API defines four core event handlers, encapsulated within the Enti-
tyResolver, DTDHandler, ContentHandler, and ErrorHandler interfaces of the
org.xml.sax package. The ContentHandler is the primary interface that most
applications need to implement. It contains callback methods for the start-
Document, startElement, endElement, and endDocument events. Your applica-
tion must implement the necessary SAX event interface(s) to define your
specific implementation of the event handlers with which you are interested.

Listing 2.5 A Sample jaxp.properties file

Sets DOM builder,
SAX parser, and
XSLT processor
implementation
classes

60 CHAPTER 2

XML and Java

The other types of event handlers defined in SAX exist to deal with more
peripheral tasks in XML parsing. The EntityResolver interface enables the
mapping of references to external sources such as databases or URLs. The
ErrorHandler interface is implemented to handle special processing of SAXEx-
ceptions. Finally, the DTDHandler interface is used to capture information
about document validation as specified in the document’s DTD.

 SAX also provides a convenience class called the org.xml.sax.help-
ers.DefaultHandler, which implements all of the event handler interfaces. By
extending the DefaultHandler class, your component has access to all of the
available SAX events.

 Now that we understand how SAX works, it is time to put JAXP to work
with it. For an example, let us read in our earlier product catalog XML docu-
ment using SAX events and JAXP. To keep our example short and relevant, we
define a SAX event handler class that listens only for the endElement event.
Each time a product element has been completely read by the SAX parser, we
print a message indicating such. The code for this handler is shown in
listing 2.6.

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

public class ProductEventHandler
 extends DefaultHandler {

Table 2.3 Primary JAXP interfaces to the SAX API

JAXP class or interface Description

javax.xml.parsers.SAXParserFactory Locates a SAXParserFactory implementation class and
instantiates it. The implementation class in turn provides
SAXParser implementations for use by your application code.

javax.xml.parsers.SAXParser Interface to the underlying SAX parser.

javax.xml.parsers.SAXReader A class wrapped by the SAXParser that interacts with your
SAX event handler(s). It can be obtained from the SAXParser
and configured before parsing when necessary.

org.xml.sax.helpers.DefaultHander A utility class that implements all the SAX event handler
interfaces. You can subclass this class to get easy access
to all possible SAX events and then override the specific
methods in which you have interest.

Listing 2.6 SAX event handler for product nodes

Extends this class to only handle
the endElement event

The Java APIs for XML 61
 // other event handlers could go here

public void endElement(String namespaceURI,
 String localName,
 String qName,
 Attributes atts)
 throws SAXException {
 // make sure it was a product node
 if (localName.equals(“product”))
 System.out.println(
 A product was read from the catalog.);
 }
}

Now that we have defined an event handler, we can obtain a SAX parser imple-
mentation via JAXP in our application code and pass the handler to it. The
handler’s endElement method will be called once when parsing the example
document, since there is only one product node. The code for our JAXP SAX
example is given in listing 2.7.

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import java.io.File;

public class JAXPandSAX {

 public static void main(String[] args) {

 ProductEventHandler handler
 = new ProductEventHandler();

 try {
 SAXParserFactory factory
 = SAXParserFactory.newInstance();
 SAXParser parser
 = factory.newSAXParser();
 File ourExample
 = new File("product-catalog.xml");

 parser.parse(ourExample, handler);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

}

Listing 2.7 Parsing XML with JAXP and SAX

Instantiates our
event handler

Obtains a SAXParser via JAXP

62 CHAPTER 2

XML and Java
When the code in listing 2.6 is executed against our product catalog docu-
ment from listing 2.1, you should see the following output:

Product read from the catalog.

This statement only prints once, since we have only defined a single product.
If there were multiple products defined, this statement would have printed
once per product.

Using JAXP with DOM
Using JAXP with DOM is a far less complicated endeavor than with SAX. This
is because you do not need to develop an event handler and pass it to the
parser. Using DOM, the entire XML document is read into memory and repre-
sented as a tree. This allows you to manipulate the entire document at once,
and does not require any state-machine logic programming on your part. This
convenience comes, of course, at the expense of system resources and speed.
The central JAXP classes for working with DOM are summarized in table 2.4.

Since our product catalog document is very short, there is no danger in read-
ing it in via DOM. The code to do so is given in listing 2.8. You can see that
the general steps of obtaining a parser from JAXP and invoking it on a docu-
ment are the same. The primary difference is the absence of the SAX event
handler. Note also that the parser returns a pointer to the DOM in memory
after parsing. Using the other DOM API classes in the org.w3c.dom package,
you could traverse the DOM in your code and visit each product in the cata-
log. We leave that as an exercise for the reader.

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.Document;
import java.io.File;

public class JAXPandDOM {

Table 2.4 Primary JAXP interfaces to the DOM API

JAXP class or interface Description

javax.xml.parsers.DocumentBuilderFactory Locates a DocumentBuilderFactory implementation
class and instantiates it. The implementation class
in turn provides DocumentBuilder implementations.

javax.xml.parsers.DocumentBuilder Interface to the underlying DOM builder.

Listing 2.8 Building a DOM with JAXP

Imports the JAXP
DOM classes

The Java APIs for XML 63
 public static void main(String[] args) {

 try {
 DocumentBuilderFactory factory
 = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder
 = factory.newDocumentBuilder();
 File ourExample
 = new File("product-catalog.xml");
 Document document
 = builder.parse(ourExample);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

}

Using JAXP with XSLT
JAXP supports XSLT in the same implementation-independent manner as XML
parsing. The JAXP interfaces to XSLT are located in the javax.xml.transform
package. The primary classes and interfaces are summarized in table 2.5. In
addition to these top-level interfaces, JAXP includes three subpackages to sup-
port the use of SAX, DOM, and I/O streams with XSLT. These packages are
summarized in table 2.6.

In section 2.1.3, we discussed the XSLT process and saw how our product
catalog document could be transformed into HTML via XSLT. Now we exam-
ine how that XSLT process can be invoked from your Java code via JAXP. For
the sake of clarity and simplicity, we will use the I/O stream helper classes

Table 2.5 Primary JAXP interfaces to the XSLT API

JAXP class or interface Description

javax.xml.transform.TransformerFactory Locates a TransformerFactory implementation class
and instantiates it.

javax.xml.transform.Transformer Interface to the underlying XSLT processor.

javax.xml.transform.Source An interface representing an XML data source to be
transformed by the Transformer.

javax.xml.transform.Result An interface to the output of the Transformer after
XSLT processing.

Obtains a DOMBuilder
via JAXP

Parses the XML and
builds a DOM tree

64 CHAPTER 2

XML and Java
from the javax.xml.transform.stream package to create our Source and
Result objects.

The code we need to convert our example document to HTML is shown in
listing 2.9. To compile it, you must have the JAXP jar file in your classpath. To
run this program, you must have the example product catalog XML document
from listing 2.1 saved in a file called product-catalog.xml. The stylesheet
from listing 2.4 must be saved to a file named product-catalog-to-html.xsl.
You can either type these files into your favorite editor or download them
from the book’s web site at http://www.manning.com/gabrick. You will also
need to place a JAXP-compliant XSLT engine (such as Xalan) in your classpath
before testing this example.

import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import java.io.File;

public class JAXPandXSLT {

 public static void main(String[] args) {

 File sourceFile
 = new File("product-catalog.xml");
 File xsltFile
 = new File("product-catalog-to-html.xsl");

 Source xmlSource = new StreamSource(sourceFile);
 Source xsltSource = new StreamSource(xsltFile);
 Result result = new StreamResult(System.out);

 TransformerFactory factory
 = TransformerFactory.newInstance();

try {

Table 2.6 JAXP helper packages for XSLT

Package name Description

javax.xml.transform.dom Contains classes and interfaces for using XSLT with DOM input
sources and results.

javax.xml.transform.sax Contains classes and interfaces for using XSLT with SAX input
sources and results.

javax.xml.transform.stream Contains classes and interfaces for using XSLT with I/O input and
output stream sources and results.

Listing 2.9 Building a DOM with JAXP

Imports the JAXP
XSLT API

Loads the XML and
XSL files

Creates I/O Stream
sources and results

Returns an instance of
TransformerFactory

http://www.manning.com/gabrick
http://www.manning.com/gabrick

The Java APIs for XML 65
 Transformer transformer
 = factory.newTransformer(xsltSource);

 transformer.transform(xmlSource, result);

 } catch (TransformerConfigurationException tce) {
 System.out.println("No JAXP-compliant XSLT processor found.");
 } catch (TransformerException te) {
 System.out.println("Error while transforming document:");
 te.printStackTrace();
 }
 }

}

B The TransformerFactory implementation then provides its own specific Trans-
former implementation. Note that the transformation rules contained in the
XSLT stylesheet are passed to the factory for it to create a Transformer object.

C This is the call that actually performs the XSLT transformation. Results are
streamed to the specified Result stream, which is the console in this example.

At first glance, using XSLT via JAXP does not appear to be too complex. This is
true for simple transformations, but there are many attributes of the XSLT
process that can be configured via the Transformer and TransformerFactory
interfaces. You can also create and register a custom error handler to deal with
unexpected events during transformation. See the JAXP documentation for a
complete listing of the possibilities. In this book, we concentrate on where
and how you would use JAXP in your J2EE code rather than exhaustively exer-
cising this API.

A word of caution
Using XSLT, even via JAXP, is not without its challenges. The biggest barrier
to the widespread use of XSLT is currently performance. Performing an XSLT
transformation on an XML document is time- and resource-intensive. Some
XSLT processors (including Xalan) allow you to precompile the transformation
rules contained in your stylesheets to speed throughput. Through the
JAXP 1.1 interface, it is not yet possible to access this feature.

 Proceed with caution and perform thorough load tests before using XSLT
in production. If you need to use XSLT and if performance via JAXP is insuffi-
cient, you may consider using a vendor API directly and wrapping it in a utility
component using the Façade pattern. You might also look into XSLTC, an
XSLT compiler recently donated to the Apache Software Foundation by Sun

B Factory returns new
Transformer

C Performs transformation

66 CHAPTER 2

XML and Java
Microsystems. It enables you to compile XSLT stylesheets into Java classes
called translets. More information on XSLTC is available at http://
xml.apache.org/xalan-j/xsltc/.

2.2.2 JDOM

The first thing that stands out about this JAX family member is its lack of a JAX
acronym. With JAXP now at your disposal, you can write parser-independent
XML application code. However, there is another API that can simplify things
even further. It is called the Java Document Object Model (JDOM), and has
been recently accepted as a formal recommendation under the Java Commu-
nity Process.

 JDOM, created by Jason Hunter and Brett McLaughlin, provides a Java-
centric API for working with XML data structures. It was designed specifically
for Java and provides an easy-to-use object model already familiar to Java
developers. For example, JDOM uses Java collection classes such as
java.util.List to work with XML data like node-sets. Furthermore, JDOM
classes are concrete implementations whereas the DOM classes are abstract.
This makes them easy to use and removes your dependence on a specific ven-
dor’s DOM implementation, much like JAXP.

 The most recent version of JDOM has been retrofitted to use the JAXP API.
This means that your use of JDOM does not subvert the JAXP architecture,
but builds upon it. When the JDOM builder classes create an XML object, they
invoke the JAXP API if available. Otherwise, they rely on a default provider for
parsing (Xerces) and a default XSLT processor (Xalan). The JDOM architecture
is depicted in figure 2.9.

 Table 2.7 lists the central JDOM classes. As you can see, they are named
quite intuitively. JDOM documents can be created in memory or built from a
stream, a file, or a URL.

The Java APIs for XML 67

Table 2.7 Core JDOM classes

Class name Description

org.jdom.Document The primary interface to a JDOM document.

org.jdom.Element An object representation of an XML node.

org.jdom.Attribute An object representation of an XML node’s attribute.

org.jdom.ProcessingInstruction JDOM contains objects to represent special XML content,
including application-specific processing instructions.

org.jdom.input.SAXBuilder A JDOM builder that uses SAX.

org.jdom.input.DOMBuilder A JDOM builder that uses DOM.

org.jdom.transform.Source A JAXP XSLT Source for JDOM Documents. The JDOM is
passed to the Transformer as a JAXP SAXSource.

org.jdom.transform.Result A JAXP XSLT Result for JDOM Documents. Builds a JDOM
from a JAXP SAXResult.

Request Document Parsing

Application Code

XML Parser

XML
Document

DOM API

SAX API

JAXP

Parsing Infrastructure

JDOM

Manipulate / Traverse
JDOM document

Figure 2.9
JDOM architecture

68 CHAPTER 2

XML and Java
To quickly demonstrate how easy JDOM is to use, let us build our product cat-
alog document from scratch, in memory, and then write it to a file. To do so,
we simply build a tree of JDOM Elements and create a JDOM Document from
it. The code to make this happen is shown in listing 2.10. When you compile
and run this code, you should find a well-formatted version of the XML docu-
ment shown in listing 2.1 in your current directory.

import org.jdom.*;
import org.jdom.output.XMLOutputter;
import java.io.FileOutputStream;

public class JDOMCatalogBuilder {

 public static void main(String[] args) {

 // construct the JDOM elements

 Element rootElement = new Element("product-catalog");
 Element productElement = new Element("product");

 productElement.addAttribute("sku", "123456");
 productElement.addAttribute("name", "The Product");

 Element en_US_descr = new Element("description");
 en_US_descr.addAttribute("locale", "en_US");
 en_US_descr.addContent("An excellent product.");

 Element es_MX_descr = new Element("description");
 es_MX_descr.addAttribute("locale", "es_MX");
 es_MX_descr.addContent("Un producto excellente.");

 Element en_US_price = new Element("price");
 en_US_price.addAttribute("locale", "en_US");
 en_US_price.addAttribute("unit", "USD");
 en_US_price.addContent("99.95");

 Element es_MX_price = new Element("price");
 es_MX_price.addAttribute("locale", "es_MX");
 es_MX_price.addAttribute("unit", "MXP");
 es_MX_price.addContent("9999.95");

 // arrange elements into a DOM tree

 productElement.addContent(en_US_descr);
 productElement.addContent(es_MX_descr);
 productElement.addContent(en_US_price);
 productElement.addContent(es_MX_price);

 rootElement.addContent(productElement);
 Document document = new Document(rootElement);

 // output the DOM to "product-catalog.xml" file

Listing 2.10 Building a document with JDOM

Creates element
attributes

Adds text to
the element

Builds the DOM by
adding one element as
content to another

Wraps root element
and processing
instructions

The Java APIs for XML 69
 XMLOutputter out = new XMLOutputter(" ", true);

 try {
 FileOutputStream fos = new FileOutputStream("product-catalog.xml");
 out.output(document, fos);
 } catch (Exception e) {
 System.out.println("Exception while outputting JDOM:");
 e.printStackTrace();
 }
 }

}

Due to its intuitive interface and support for JAXP, you will see JDOM used
extensively in remaining chapters. You can find detailed information about
JDOM and download the latest version from http://www.jdom.org.

2.2.3 JAXB

The Java API for XML Binding (JAXB) is an effort to define a two-way map-
ping between Java data objects and XML structures. The goal is to make the
persistence of Java objects as XML easy for Java developers. Without JAXB, the
process of storing and retrieving (serializing and deserializing, respectively)
Java objects with XML requires the creation and maintenance of cumbersome
code to read, parse, and output XML documents. JAXB enables you to work
with XML documents as if they were Java objects.

DEFINITION Serialization is the process of writing out the state of a running soft-
ware object to an output stream. These streams typically represent
files or TCP data sockets.

The JAXB development process requires the creation of a DTD and a binding
schema—an XML document that defines the mapping between a Java object
and its XML schema. You feed the DTD and binding schema into a schema
compiler to generate Java source code. The resulting classes, once compiled,
handle the details of the XML-Java conversion process. This means that you do
not need to explicitly perform SAX or DOM parsing in your application code.
Figure 2.10 depicts the JAXB process flow.
Early releases of JAXB show improved performance over SAX and DOM parsers
because its classes are lightweight and precompiled. This is a positive sign for
the future of JAXB, given the common concerns about performance when
using XML.

Indents element two
spaces and uses newlines

Writes the JDOM representation to a file

70 CHAPTER 2

XML and Java
One tradeoff to consider before using JAXB is a loss of system flexibility, since
any change in your XML or object structures requires recompilation of the
JAXB classes. This can be inconvenient or impractical for rapidly evolving sys-
tems that use JAXB extensively. Each change to the JAXB infrastructure
requires regenerating the JAXB bindings and retesting the affected portions of
the system.

 JAXB manifests other issues in its current implementation that you should
explore before using it in your applications. For example, the process by which
XML data structures are created from relational tables is overly simplistic and
resource intensive. Issues such as these are expected to subside as the specifica-
tion matures over time. We provide an example of using JAXB in the remain-
der of this section. More information about the capabilities and limitations of
this API are available at http://java.sun.com/xml/jaxb/.

Binding Java objects to XML
To see JAXB in action, we turn once again to our product catalog example
from listing 2.1. We previously developed the DTD corresponding to this
document, which is shown in listing 2.2. Creating the binding schema is a bit
more complicated. We start by creating a new binding schema file called
product-catalog.xjs. Binding schemas in the early access version of JAXB
always have the following root element:

Java
Source
Files

DTD

Binding
Schema

(conversion
instructions)

Schema Compiler Java Compiler

Java
Class
Files

Java Objects XML Documents

Figure 2.10 JAXB architecture

The Java APIs for XML 71
<xml-java-binding-schema version="1.0-ea">

This element identifies the document as a binding schema. We now define our
basic, innermost elements in the product-catalog document:

<element name="description" type="class">
 <attribute name="locale"/>
 <content property="description"/>
</element>

and

<element name="price" type="class">
 <attribute name="locale"/>
 <attribute name="unit"/>
 <content property="price"/>
 </element>

The type attribute of the element node denotes that the elements of type
description and price in the product-catalog document are to be treated as
individual Java objects. This is necessary because both description and price
have their own attributes as well as content.

 The content element in each of the above definitions tells the JAXB com-
piler to create a property for the enclosing class with the specified name. The
content of the generated Description class will be accessed via the getDe-
scription and setDescription methods. Likewise, the Price class content
will be accessed via methods called getPrice and setPrice.

 Having described these basic elements, we can now refer to them in the
definition of the product element.

<element name="product" type="class">
 <content>
 <element-ref name="description"/>
 <element-ref name="price"/>
 </content>
</element>

The product element maps to a Java class named Product and will contain two
Lists as instance variables. One of these will be a List of Description instances.
The other will be a List of Price instances. Notice the use of element-ref
instead of element in the definition of the description and price nodes. This
construct can be used to create complex object structures and to avoid dupli-
cation of information in the binding document.

 The final element to bind is the root element, product-catalog. Its bind-
ing is defined as follows:

72 CHAPTER 2

XML and Java
<element name="product-catalog" type="class" root="true">
 <content>
 <element-ref name="product"/>
 </content>
</element>

Notice the root=true attribute in this binding definition. This attribute iden-
tifies product-catalog as the root XML element. From this definition, the
JAXB compiler will generate a class called ProductCatalog, containing a List
of Product instances. The complete JAXB binding schema for our example is
shown in listing 2.11.

<xml-java-binding-schema version="1.0-ea">

 <element name="description" type="class">
 <attribute name="locale"/>
 <content property="description"/>
 </element>

 <element name="price" type="class">
 <attribute name="locale"/>
 <attribute name="unit"/>
 <content property="price"/>
 </element>

 <element name="product" type="class">
 <content>
 <element-ref name="description"/>
 <element-ref name="price"/>
 </content>
 </element>

 <element name="product-catalog" type="class" root="true">
 <content>
 <element-ref name="product"/>
 </content>
 </element>

</xml-java-binding-schema>

Now that we have a DTD and a binding schema, we are ready to generate our
JAXB source code. Make sure you have the JAXB jar files in your classpath and
execute the following command:

java com.sun.tools.xjc.Main product-catalog.dtd product-catalog.xjs

If all goes well, you will see the following files created in your current directory:

Listing 2.11 Complete JAXB binding schema example

The Java APIs for XML 73
Description.java
Price.java
Product.java
ProductCatalog.java

You can now compile these classes and begin to use them in your application
code.

Using JAXB objects
Using your compiled JAXB classes within your application is easy. To read in
objects from XML files, you simply point your JAXB objects at the appropriate
file and read them in. If you are familiar with the use of java.io.ObjectIn-
putStream, the concept is quite similar. Here is some code you can use to read
in the product catalog document via JAXB:

ProductCatalog catalog = null;
File productCatalogFile = new File("product-catalog.xml");
try {
 FileInputStream fis
 = new FileInputStream(productCatalogFile);
 catalog = ProductCatalog.unmarshal(fis);
} catch (Exception e) {
 // handle
} finally {
 fis.close();
}

To reverse the process and save the ProductCatalog instance as XML, you
could do the following:

try {
 FileOutputStream fos
 = new FileOutputStream(productCatalogFile);
 catalog.marshal(fos);
} catch (Exception e2) {
 // handle
} finally {
 fos.close();
}

In the course of application processing, use your JAXB objects just as you
would any other object containing instance variables. In many cases, you will
need to iterate through the children of a given element instance to find the
data you need. For example, to get the U.S. English description for a given
Product instance product, you would need to do the following:

String description = null;
List descriptions = product.getDescription();
ListIterator it = descriptions.listIterator();

74 CHAPTER 2

XML and Java
while (it.hasNext()) {
 Description d = (Description) it.next();
 if (d.getLocale().equals(en_US)) {
 description = d.getDescription();
 break;
 }
}

This type of iteration is necessary when processing XML data through all APIs,
and is not specific to JAXB. It is a necessary part of traversing tree data struc-
tures like XML.

 We invite you to explore the full capabilities of JAXB at the URL given near
the beginning of this section. This can be a very useful API in certain applica-
tions, especially those with serious performance demands.

2.2.4 Long Term JavaBeans Persistence

Easily the most poorly named Java XML API, Long Term JavaBeans Persistence
defines an XML mapping API for JavaBeans components. It is similar in func-
tion to JAXB, but leverages the JavaBeans component contract instead of a
binding schema to define the mapping from Java to XML. Since JavaBeans
must define get and set methods for each of their publicly accessible properties,
it was possible to develop XML-aware components that can serialize JavaBeans
to XML without a binding schema. These components use the Java reflection
API to inspect a given bean and serialize it to XML in a standard format.

 This API has become a part of the Java 2 Standard Edition as of
version 1.4. There is no need to download any extra classes and add them to
your classpath. The primary interfaces to this API are summarized in table 2.8.
These classes behave in a similar fashion to java.io.ObjectInputStream and
java.io.ObjectOutputStream, but use XML instead of a binary format.

Writing a JavaBean to XML
As an example, let us define a simple JavaBean with one property, as follows:

public class SimpleJavaBean {
 private String name;

Table 2.8 Core Long Term JavaBeans Persistence classes

Class name Description

java.beans.XMLEncoder Serializes a JavaBean as XML to an output stream.

java.beans.XMLDecoder Reads in a JavaBean as XML from an input stream.

The Java APIs for XML 75
public SimpleJavaBean(String name) {
 setName(name);
 }

// accessor
 public String getName() { return name; }

// modifier
 public void setName(String name) { this.name = name; }

}

As you can see, this bean implements the JavaBeans contract of providing an
accessor and modifier for its single property. We can save this bean to an XML
file named simple.xml using the following code snippet:

import java.beans.XMLEncoder;
import java.io.*;

...

XMLEncoder e
 = new XMLEncoder(new BufferedOutputStream(
 new FileOutputStream("simple.xml")));
e.writeObject(new SimpleJavaBean("Simpleton"));
e.close();

The code above creates an XMLEncoder on top of a java.io.BufferedOutput-
Stream representing the file simple.xml. We then pass the SimpleJavaBean
instance reference to the encoder’s writeObject method and close the stream.
The resulting file contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.0" class="java.beans.XMLDecoder">
 <object class="SimpleJavaBean">
 <void property="name">
 <string>Simpleton</string>
 </void>
 </object>
</java>

We will not cover the XML syntax in detail, since you do not need to under-
stand it to use this API. Detailed information about this syntax is available in
the specification, should you need it.

Restoring a JavaBean from XML
Reading a previously saved JavaBean back into memory is equally simple.
Using our SimpleJavaBean example, the bean can be reinstated using the fol-
lowing code:

76 CHAPTER 2

XML and Java
XMLDecoder d
 = new XMLDecoder(new BufferedInputStream(
 new FileInputStream("simple.xml")));
SimpleJavaBean result = (SimpleJavaBean) d.readObject();
d.close();

The XMLDecoder knows how to reconstitute any bean saved using the XMLEn-
coder component. This API can be a quick and painless way to export your
beans to XML for use by other tools and applications. And remember, you can
always transform the bean’s XML to another format via XSLT to make it more
suitable for import into another environment.

2.2.5 JAXM

The Java API for XML Messaging (JAXM) is an enterprise Java API providing a
standard access method and transport mechanism for SOAP messaging in Java.
It currently includes support for the SOAP 1.1 and SOAP with Attachments
specifications. JAXM supports both synchronous and asynchronous messaging.

 The JAXM specification defines the various services that must be provided
by a JAXM implementation provider. Using any compliant implementation,
the developer is shielded from much of the complexity of the messaging sys-
tem, but has full access to the services it provides. Figure 2.11 depicts the
JAXM architecture.

 The two main components of the JAXM architecture are the JAXM Client
and Provider. The Client is part of the J2EE Web or EJB container that pro-
vides access to JAXM services from within your application. The Provider may
be implemented in any number of ways and is responsible for sending and
receiving SOAP messages. With the infrastructure in place, sending and receiv-
ing SOAP messages can be done exclusively through the JAXM API.

J2EE Container

JAXM
Client

Application Code

Application Code

Create and Send
SOAP Message

JAXM Provider

Send Message
Over HTTP

Receive SOAP
Message

Receive and
Process Message

Figure 2.11 JAXM architecture

The Java APIs for XML 77
 The JAXM API consists of two packages, as summarized in table 2.9. Your
components access JAXM services via a ConnectionFactory and Connection
interface, in the same way you would obtain a handle to a message queue in
the Java Messaging Service (JMS) architecture. After obtaining a Connection,
you can use it create a structured SOAP message and send it to a remote host
via HTTP(S). JAXM also provides a base Java servlet for you to extend when
you need to handle inbound SOAP messages.

At the time of this writing, JAXM 1.0.1 is available as part of the Java XML
Pack and is clearly in the lead of all APIs under development in terms of stan-
dardizing the transmission of SOAP messages in Java. Since the creation and
consumption of SOAP messages is a complex topic, we defer an example of
using JAXM to chapter 4. There we use JAXM to create and access web services
in J2EE.

 More information about JAXM can be found at http://java.sun.com/xml/
jaxm/. Details about the Java XML Pack can be found at http://
java.sun.com/xml/javaxmlpack.html.

2.2.6 JAX-RPC

JAX-RPC is a Java-specific means of performing remote procedure calls using
XML. JAX-RPC implements the more general XML-RPC mechanism that is the
basis of SOAP. Using JAX-RPC, you can expose methods of the beans running
in your EJB container to remote Java and non-Java clients. An early access
release of the JAX-RPC is now available as part of the Java XML Pack. Up-to-
date details about JAX-RPC are at http://java.sun.com/xml/jaxrpc/.

 It should be noted that SOAP is fast becoming the preferred method of
implementing XML-RPC for web services. Since JAXM already implements the
SOAP protocol and has a more mature reference implementation available, the
future of the JAX-RPC API remains somewhat uncertain.

Table 2.9 The JAXM API packages

Package name Description

javax.xml.messaging Contains the ConnectionFactory and Connection interfaces and
supporting objects.

javax.xml.soap Contains the interface to the SOAP protocol objects, including
SOAPEnvelope, SOAPHeader, and SOAPBody

78 CHAPTER 2

XML and Java
2.2.7 JAXR

A critical component to the success of web services is the ability to publish
and access information about available services in publicly available registries.
Currently, there are several competing standards in the area of web services
registries. UDDI and ebXML Registry are currently the two most popular of
these standards.

 To abstract the differences between registries of different types, an effort is
underway to define a single Java API for accessing any type of registry. The
planned result is an API called the Java API for XML Registries (JAXR). JAXR
will provide a layer of abstraction from the specifics of each registry system,
enabling standardized access to web services information from Java.

 JAXR is expected to handle everything from executing complex registry
queries to submitting and updating your own data to a particular registry sys-
tem. The primary benefit is that you will have access to heterogeneous registry
content without having to code your components to any specific format. Just
as JNDI enables dynamic discovery of resources, JAXR will enable dynamic dis-
covery of XML-based registry information. More information on JAXR is avail-
able at http://java.sun.com/xml/jaxr/.

 The JAXR specification is currently in public review draft, and an early
access reference implementation is part of the Java XML Pack. Because of its
perceived future importance with regard to web services and the number of
parties interested in ensuring its interface is rock solid, this specification is
likely to change dramatically before its first official release. We encourage you
to stay on top of developments in this API, especially if you plan to produce or
consume web services in J2EE.

2.3 Summary

The chapter has been a whirlwind tour of current XML tools and technologies,
along with their related Java APIs. Now that you are familiar with the state and
direction of both XML and J2EE, we can begin to use them together to
enhance your application architecture.

 By now, you should be comfortable with viewing XML as a generic metalan-
guage and understand the relationships between XML, XML parsers, XSLT pro-
cessors, and XML-based technologies. You should also understand how XML is
validated and constrained at high level. Perhaps most importantly, you should
see how the various pieces of XML technology fit together to enable a wide

Summary 79
variety of functionality. You will see many of the technologies and APIs dis-
cussed in this chapter implemented by the examples in the remaining chapters.

 Of all the topics covered in this chapter, web services is by far the hottest
topic in business application development today. Chapter 4 contains the
details you need to implement and consume web services in J2EE. Chapter 6
provides an end-to-end example of using web services via a case study.

Application
development
This chapter
■ Demonstrates the use of XML-based

component interfaces
■ Discusses XML data persistence options
■ Identifies important XML technologies at the

application logic layer
81

82 CHAPTER 3

Application development
This chapter is about enhancing the internal structure of your J2EE applica-
tions with select XML technologies. We demonstrate the use of XML inter-
faces between components and discuss the potential advantages and
drawbacks of taking this approach. We use the Value Object design pattern
and provide a detailed example to illustrate the implementation of this XML
interface technique.

 In the second part of the chapter, we examine the use of XML as a persis-
tent representation of your application data. We take an in-depth look at
emerging XML data storage and retrieval technologies, including XQuery,
PDOM, and XQL. We highlight the potential advantages and disadvantages of
using XML technology for data persistence and examine the maturity level of
current implementations of each technology.

 Finally, we examine some options for translating between relational and
XML data representations using the Data Access Object pattern. The examples
demonstrate both an application-specific and a generic approach to bridging
the gap between relational JDBC data sources and XML data.

3.1 XML component interfaces

A component interface refers to the representation of data within your applica-
tion. For example, what does your customer component look like? How can its
data be accessed and manipulated? An XML component interface uses XML to
represent this information. Throughout this section, we will examine the advan-
tages and disadvantages of using XML within your application components.

 XML receives most of its attention for its potential to integrate applica-
tions, enterprises, and industries via self-describing data. These data can be
validated and manipulated in generic ways using generic tools, and detailed
grammars can be created to standardize and enforce the XML dialects spoken
between systems.

 However, the benefits of XML technology reach far beyond systems inte-
gration. In chapter 5, you will see that XML tools can be used to serve custom-
ized user views of application data through technologies like XSLT and XSP. In
this chapter, we expand our view of XML as an application development tool
to include internal application structure and data representation. In many
instances, XML can be used as the native data format for your entire applica-
tion. For example, using XML to represent customer, order, and product data
allows you to create a standard format that can be reused across applications.
Your customer relationship management system can then use the same XML
components as your e-commerce application. Additionally, these data can be

XML component interfaces 83
persisted in their native XML format or converted to a relational format for
storage in an RDBMS.

 To understand how XML can be used as an internal data format, we must
distinguish between the XML data structures in your application’s memory
space and the concept of an XML document. The term document conjures
images of a static file located on a file system. In fact, your application has little
interest in such documents. Your application holds its data resident in mem-
ory, passing it from one component to the next and operating on it. At some
point, this data may or may not be persisted to a storage medium, which could
be a file (document) or a database. See figure 3.1.

Proprietary formats vs. XML value objects
A value object is an in-memory representation of data that is suitable for pass-
ing between tiers of your application. These objects are often implemented as
proprietary software components. For example, your application might
employ a value object called CustomerData to represent customer information.

XML is typically thought
of as a structured flat

file.

Data Storage

J2EE Container

XML can be used in your application to represent data
in memory and as a storage format.

Figure 3.1 Viewing XML as more than a flat file

84 CHAPTER 3

Application development
It is just as easy, and in many cases more convenient, to use an XML DOM
value object to hold that customer information.

 Using an XML DOM object instead of a proprietary object has several
advantages.

■ You can access and manipulate a DOM using standard XML tools and APIs.
■ Your application data is ready to be transformed into virtually any out-

put format via XSLT.
■ You can expose your component interfaces to external applications that

have no knowledge of your proprietary data objects.
■ Using XML at this level provides a great deal of flexibility and ensures loose

coupling between your components and the clients that invoke them.

3.1.1 Using value objects

The use of value objects is described generically in the Value Object design
pattern in appendix A. In this pattern, a serializable utility object is used to
pass data by value between remote components using RMI. In this section, we
will compare a simple implementation of that pattern using a proprietary value
object with an implementation using an XML value object.

An example scenario
To analyze the concepts covered in this chapter, we provide an example. The
application we use is an ordering system. It contains customer information
such as address and phone number, order information, and product data. The
value objects that represent these data are straightforward components that
can demonstrate the use of XML in the application logic layer.

A proprietary value object implementation
The first component that we create is the class to represent a customer in our
application. Using the traditional J2EE approach, you might construct a Cus-
tomerValue object as shown in listing 3.1.

import java.io.Serializable;

/**
 * Value object for passing
 * customer data between remote
 * components.
 */
public class CustomerValue

Listing 3.1 A value object for customer data

XML component interfaces 85
 implements Serializable {

 /** Customer ID can't be changed */
 private long customerId;

 public String firstName;
 public String lastName;
 public String streetAddress;
 public String city;
 public String state;
 public String zipCode;
 public String phoneNumber;
 public String emailAddress;

 public CustomerValue(long id) {
 customerId = id;
 }

 public long getCustomerId() {
 return customerId;
 }

}

This is a simple object that encapsulates our customer data. One benefit of
using a proprietary object to represent a customer is that you can implement
validation logic specific to the customer data if necessary. However, using this
custom object also has two major drawbacks. First, this object cannot be
reused to represent any other type of data in your application (e.g., an order).
Thus, you will have to create and maintain many types of value objects and
have many specialized interfaces between your components.

 The second drawback of using this proprietary object is that any client
receiving a CustomerValue object must know what it is and how to access its
data specifically. The client must know the difference between a Customer-
Value and an OrderValue at the interface level and treat them differently. This
tightly couples the client and server components, creates code bloat on both
sides, and severely hampers the flexibility of the system.

Overcoming limitations with XML value objects
XML data structures can overcome the limitations of proprietary object imple-
mentations because they present a generic interface to the data they encapsu-
late. A DOM object is used in exactly the same manner regardless of its
contents. Client components need not worry about reflecting or casting of
objects to specific types, and need access to only the XML API classes to
handle any type of data. Additionally, most of the validation logic for a certain

Customer
data

86 CHAPTER 3

Application development
type of data can be enforced generically using validating parsers and a DTD or
XML Schema.

 Figure 3.2 shows the CustomerValue object represented as a DOM tree
instead of a proprietary object. Note that the DOM makes it easy to add more
structure to the customer data, encapsulating the address fields within a node.
To accomplish this with proprietary objects, we would need to write an
AddressValue object and add its reference to the CustomerValue object in list-
ing 3.2. The more structure we add, the more code is required in the propri-
etary approach. This is not true with XML.

Listing 3.2 shows what the customer DOM might look like if it were serial-
ized out to a file. However, based on the requirements of your application, it
is possible that this data could be transient and never be stored in a file.

Customer
(Root Node)

First Name

Last Name

Street
Address

City

State

Phone
Number

Email
Address

Address

Zip Code

Figure 3.2
Customer data represented
using a DOM tree

XML component interfaces 87
Remember to keep the concepts of an XML data structure and an XML file
separate in your mind.

<?xml version="1.0"?>

<!-- Reference to a DTD to validate our customer data -->
<!DOCTYPE customer SYSTEM "http://www.example.com/customer.dtd">

<customer id="123456">
<first-name>John</first-name>
<last-name>Doe</last-name>
<address>
 <street>123 Main</street>
 <city>Anytown</city>
 <state>CA</state>
 <zip>99999</zip>
</address>
<phone>800-555-9999</phone>
<email-address>john@doe.com</email-address>
</customer>

It is clearly beneficial to use XML in our component interfaces from the stand-
points of flexibility and reusability. Though our discussion used a simple exam-
ple, the concepts can be applied to larger systems where the advantages of an
XML approach become even more evident.

3.1.2 Implementing XML value objects

Now that we have chosen to use XML for our internal data representation,
let’s walk through a more robust example using the value object approach.
For purposes of this implementation, we’ll use the JDOM API. Later in this
section, we will discuss the use of JDOM over DOM in this setting. As we dis-
cussed in chapter 2, JDOM is layered on top of the DOM and SAX APIs, as well
as specific parser and XSLT engines, to provide a Java-friendly way to use XML
structures. Here we use JDOM to create new XML data structures, manipulate
them, and share them with clients.

 The requirements for this example are simple but sufficient for our pur-
poses. We are required to retrieve detailed customer information from an
enterprise data source based on the customer’s unique identifier. To accom-
plish this, we use the Data Access Object design pattern. In this pattern, the
data access object (DAO) hides the complexity of interacting with a persistent

Listing 3.2 Customer XML data serialized to a file

88 CHAPTER 3

Application development
data source and provides a simple interface for other components to use. The
Data Access Object pattern is discussed in detail in appendix A.

 To implement this pattern, we use an EJB session bean called the Cus-
tomerDataBean. This bean will obtain the customer data using a CustomerDAO
(data access object), which obtains customer data in their raw format from a
JDBC data source, converts them to XML using JDOM, and returns them to
the CustomerDataBean. The CustomerDataBean then returns the JDOM Docu-
ment to the remote caller. This scenario is depicted in figure 3.3.

The CustomerDataBean
First, we implement the CustomerDataBean session EJB. This bean declares an
instance variable to hold a reference to its CustomerDAO helper object.

public transient CustomerDAO cDAO;

At creation time, the bean obtains a reference to the JDBC data source using
JNDI and instantiates its CustomerDAO object.

protected void buildDAO() throws EJBException {
 try{
 javax.naming.Context jndiCtx
 = new javax.naming.InitialContext();
 javax.sql.DataSource ds = (javax.sql.DataSource)
 jndiCtx.lookup("java:comp/env/jdbc/CustomerDB");
 cDAO = new CustomerDAO(ds);
 } catch (Exception e) {

Customer
Data

Client

CustomerDataBean
(Session EJB)

CustomerDAO

JDBC Data Source

EJB Container

String (Customer ID)

JDOM Document

String (Customer ID)

JDOM Document

JDBC

Figure 3.3
Customer data retrieval scenario

using data access object

XML component interfaces 89
 throw new EJBException(e);
 }
}

Then, when invoked by a remote client, the bean obtains the requested cus-
tomer data in XML format from the CustomerDAO and returns it to the caller.

public org.jdom.Document getCustomerInfo(String customerId)
 throws CustomerNotFoundException {
 Document custData = cDAO.getCustomerInfo(customerId);
 return custData;
 }

The complete code for the CustomerDataBean is shown in Listing 3.3.

import javax.sql.DataSource;
import javax.ejb.EJBException;

import org.jdom.Document;

/**
 * A session bean that retrieves customer
 * data as a JDOM Document
 */
public class CustomerDataBean implements javax.ejb.SessionBean {

 public javax.ejb.SessionContext ctx;

 // transient so it won't be
 // serialized on passivation
 public transient CustomerDAO cDAO;

 public void ejbCreate() {
 buildDAO();
 }

 /**
 * Get a JDOM Document containing the specified
 * customer's information.
 * @param customerId Unique ID of the customer
 * @return JDOM containing the customer information
 * @throws CustomerNotFoundException
 */
 public org.jdom.Document getCustomerInfo(String customerId)
 throws CustomerNotFoundException {
 Document custData = cDAO.getCustomerInfo(customerId);
 return custData;
 }

 protected void buildDAO() throws EJBException {
 // look up data source in environment
 // and pass to the data access object's

Listing 3.3 Implementation of the CustomerDataBean

Retrieves data
from DAO

Gets JDOM
Document from DAO

90 CHAPTER 3

Application development
 // constructor
 try{
 javax.naming.Context jndiCtx = new javax.naming.InitialContext();
 javax.sql.DataSource ds = (javax.sql.DataSource)
 jndiCtx.lookup("java:comp/env/jdbc/CustomerDB");
 cDAO = new CustomerDAO(ds);
 } catch (Exception e) {
 throw new EJBException(e);
 }
 }

 public void ejbRemove() { }

// restore Data Access Object when activated
 public void ejbActivate() { buildDAO(); }

public void ejbPassivate() { }

public void setSessionContext(javax.ejb.SessionContext ctx) {
 this.ctx = ctx;
 }

}

As you can see, the CustomerDataBean is acting as a proxy between the data
access object and remote clients in this example. In practice, the Customer-
DataBean would probably cache the Document retrieved from the CustomerDAO
object for use in subsequent requests.

The Customer data access object
The interesting code in the CustomerDAO class is the getCustomerInfo
method, which performs all the relational-to-XML data translation. After exe-
cuting a prepared statement, this method creates a new JDOM Document to
hold the results.

Element root = new Element("customer");
 doc = new Document(root);

Various customer data fields are then added to the document. For simplicity,
we use elements for each field. XML attributes could be used to hold nonfor-
eign key values just as easily.

// first name
 Element fnElement =
 root.addContent(new Element("first-name"));
 fnElement.addContent(rs.getString("FIRST_NAME"));

...

Passes data source
to DAO constructor

XML component interfaces 91
After all the fields have been created and populated, the complete JDOM doc-
ument is returned to the caller, our session bean in this case. Listing 3.4 con-
tains the implementation code for this data access object.

import org.jdom.Document;
import org.jdom.Element;

import javax.sql.DataSource;
import java.sql.*;

/**
 * A Data Access Object
 * for customer data
 */
public class CustomerDAO {

 protected DataSource ds = null;

 private final static String GET_CUST_SQL =
 "select * from customers where custId=?";

 public CustomerDAO(DataSource ds) {
 this.ds = ds;
 }

/** Return customer data as a JDOM Document */
 public Document getCustomerInfo(String customerId)
 throws CustomerNotFoundException {
 Document doc = null;
 Connection con = null;
 PreparedStatement ps = null;
 ResultSet rs = null;
 try {
 con = ds.getConnection();
 ps = con.prepareStatement(GET_CUST_SQL);
 ps.setString(1, customerId);
 rs = ps.executeQuery();
 // only one row
 rs.next();

 // build a JDOM Document from the ResultSet
 // ---
 Element root = new Element("customer");
 doc = new Document(root);

 // first name
 Element fnElement =
 root.addContent(new Element("first-name"));
 fnElement.addContent(rs.getString("FIRST_NAME"));

 // last name

Listing 3.4 Implementation of the CustomerDAO class

SQL to retrieve customer
info from database

Connects to data
source and
retrieves the data

Builds customer
JDOM Document

92 CHAPTER 3

Application development
 Element lnElement =
 root.addContent(new Element("last-name"));
 lnElement.addContent(rs.getString("LAST_NAME"));

 // address info
 Element address
 = root.addContent(new Element("address"));
 Element streetElement =
 address.addContent(new Element("street"));
 streetElement.addContent(rs.getString("STREET"));
 Element cityElement =
 address.addContent(new Element("city"));
 cityElement.addContent(rs.getString("CITY"));
 Element stateElement =
 address.addContent(new Element("state"));
 stateElement.addContent(rs.getString("STATE"));
 Element zipElement =
 address.addContent(new Element("zip"));
 stateElement.addContent(rs.getString("ZIP"));

 // phone number
 Element phElement =
 root.addContent(new Element("phone"));
 phElement.addContent(rs.getString("PHONE"));

 // email address
 Element emElement =
 root.addContent(new Element("email-address"));
 emElement.addContent(rs.getString("EMAIL"));

 } catch (Exception e) {
 throw new CustomerNotFoundException(customerId, e);
 } finally {
 if (rs != null)
 try { rs.close(); } catch (SQLException sqle1) {}
 if (ps != null)
 try { ps.close(); } catch (SQLException sqle2) {}
 if (con != null)
 try { con.close(); } catch (SQLException sqle3) {}
 }

 // return a JDOM Document
 return doc;
 }

// other methods here to create and update customers

}

The CustomerDAO implementation shows just how simple it can be to create
and use XML data structures in your application instead of proprietary objects.

XML component interfaces 93
The document returned by the CustomerDAO can now be easily transformed
and used by remote clients generically via XML APIs and tools.

 This example combines the Value Object pattern with the Data Access
Object pattern to encapsulate the translation work between XML and non-
XML data representations. One problem remains with the CustomerDAO, how-
ever. It is specific to translating customer data. A separate object would be
required to translate other types of information, such as orders and invoices.
Later in this chapter, we develop a more generic data access object that can
translate between XML and relational data formats in a more general manner.

Using JDOM vs. DOM document interfaces
At the time of this writing, JDOM is not yet a standard Java or J2EE API.
Although it will likely be added to the standard APIs in some form in the
future, you may be hesitant to expose JDOM-based APIs to your application
clients for now. Not to worry, JDOM also provides an easy way to output a
more general DOM structure from a JDOM document. If we prefer to provide
an org.w3c.Document interface to remote clients in our example, we simply
add a few lines to the CustomerDataBean and change the return value for the
getCustomerInfo business method. This means importing three more classes
and altering the getCustomerInfo method slightly.

org.jdom.Document custData
 = cDAO.getCustomerInfo(customerId);
 DOMOutputter outputter = new DOMOutputter();
 try {
 return outputter.output(custData);
 } catch (JDOMException je) {
 // handle conversion error
 }

The “pure DOM” interface approach is shown in Listing 3.5.

import javax.sql.DataSource;
import javax.ejb.EJBException;

import org.jdom.JDOMException;
import org.jdom.output.DOMOutputter;

/**
 * A session bean that retrieves customer
 * data as a W3C DOM Document
 */
public class CustomerPureDOMDataBean implements javax.ejb.SessionBean {

Listing 3.5 Exposing the org.w3c.Document interface

94 CHAPTER 3

Application development
 public javax.ejb.SessionContext ctx;

 // transient so it won't be
 // serialized on passivation
 public transient CustomerDAO cDAO;

 public void ejbCreate() {
 buildDAO();
 }

/**
 * Get a JDOM Document containing the specified
 * customer's information.
 * @param customerId Unique ID of the customer
 * @return JDOM containing the customer information
 * @throws CustomerNotFoundException
 */
 public org.w3c.dom.Document
 getCustomerInfo(String customerId)
 throws CustomerNotFoundException {
 org.jdom.Document custData = cDAO.getCustomerInfo(customerId);
 DOMOutputter outputter = new DOMOutputter();

 try {
 return outputter.output(custData);
 } catch (JDOMException je) {
 // handle conversion error
 }
 return null;
 }

protected void buildDAO() throws EJBException {
 // look up data source in environment
 // and pass to the data access object's
 // constructor
 try{
 javax.naming.Context jndiCtx
 = new javax.naming.InitialContext();
 javax.sql.DataSource ds =
 (javax.sql.DataSource)
 jndiCtx.lookup("java:comp/env/jdbc/CustomerDB");
 cDAO = new CustomerDAO(ds);
 } catch (Exception e) {
 throw new EJBException(e);
 }
 }

 public void ejbRemove() { }

 // restore Data Access Object when activated
 public void ejbActivate() { buildDAO(); }

 public void ejbPassivate() { }

Uses DOMOutputter
to convert from
JDOM to DOM

Converts JDOM
to DOM

XML component interfaces 95
 public void setSessionContext(javax.ejb.SessionContext ctx) {
 this.ctx = ctx;
 }

}

Using JDOM vs. JAXB
You might be wondering why we chose JDOM over JAXB for our value object
example. JAXB is, after all, a member of the Java XML extension APIs. JDOM is
only a JCR at this point. The reason is one of flexibility.

 Using a JDOM approach, very few of the objects in our system are tied to
the internal structure of the value objects. When we alter the XML data struc-
ture, only those components that operate on the structures need to be
changed, and then only if those objects are working with the XML data at the
lowest level (e.g., traversing and populating nodes in code). None of the inter-
faces in the system need to change as a result of XML structure changes,
reducing the amount of running code in the system that needs to be retested.

 Using JAXB requires a tight coupling between the value objects and the
data structure. XML structural changes require rebinding of the JAXB classes
and retesting all of the components that interact with the JAXB objects.

3.1.3 When not to use XML interfaces

This book is about using XML in your J2EE applications with discretion. This
entire section discusses the merits of using XML throughout your application
as an internal data format. We would be remiss not to emphasize the fact that
the above approach is not appropriate in certain circumstances. You need to
consider some specific aspects of your system carefully before jumping in to an
all-XML system.

 Two of the most important considerations for deciding if XML is right for
your component pertain to resource usage and performance.

XML component interfaces and resource usage
One major drawback in using DOM-based XML APIs is that the entire XML
structure is present in memory whenever a DOM exists. If you have very large
XML data structures, numerous instances of data structures, or both, you
should estimate the amount of memory that will be consumed by your appli-
cation at various load levels. You may find that passing DOM trees around
inside your application is not feasible given the amount of data you plan to be
processing simultaneously.

96 CHAPTER 3

Application development
XML component interfaces and performance
Using JDOM (as shown in section 3.1.2) could result in slower response time
due to the processing required to translate between data formats. While this
bit of extra processing may not be a concern, the number of steps required to
service a single request should always be considered since it can have a signifi-
cant impact when aggregated across many simultaneous requests. Perfor-
mance concerns become much more significant if you need to parse files when
building your XML data tree. JDOM does allow the use of SAX to speed the
process, but parsing may still take more time than you can afford in some real-
time user-driven applications.

 The point of this section is not to scare you away from using XML in appli-
cation internals but rather to make you aware of the risks involved in doing so.
It is up to you as the system architect to determine the balance between the
flexibility and generality of XML and the performance and resource utilization
needs of your application.

3.2 XML and persistent data

Data storage undoubtedly conjures up images of your relational database or
ERP system. In some cases, however, storing your data persistently in XML for-
mat can be advantageous. This may be true if your application is managing a
large repository of data that is file-based. An example of this might be an appli-
cation that manages data feeds from partners using RosettaNet PIPs. The data
being operated on is document-based, and the format of those documents is
XML. In such cases, it may not make sense to translate the XML data into a
relational format and store them in a database, unless there are other require-
ments that dictate so. In the future, you may actually be using an XML data-
base product instead of a relational one, making the translation issue irrelevant.

 Configuration data is another situation in which storing data in XML for-
mat is appropriate. Many applications now use XML to persistently store con-
figuration parameters. Some even implement business rules and data
validation logic via XML constructs. Since these data are relatively static, there
is no need to store them in a database.

 Clearly there are some situations in which the persistent storage of XML is
appropriate. This fact presents some interesting challenges. Specifically, as the
amount of XML data grows, finding and retrieving each specific piece of data
becomes more challenging. Integrating data from separate XML documents is
even more challenging. Several related efforts are currently underway at the
W3C and other organizations to define a standard mechanism for querying

XML and persistent data 97
XML data efficiently. The W3C is in the process of defining a standard called
XQuery, which we examine in the next section.

 Another issue with XML data storage is one of performance and resource
utilization. XML is a necessarily verbose text format that arranges data in a
tree. This means that XML files are usually much larger than the data they con-
tain, and that they can be slow to search. Reading a large XML document into
memory can be impossible at times, rendering the DOM approach useless for
large XML repositories. Technologies are currently under development to
address these nonfunctional XML data persistence requirements. Technologies
such as the Persistent Document Object Model (PDOM) are being developed
to optimize XML file storage and enable faster XML searching mechanisms. We
look at PDOM in section 3.2.2.

3.2.1 Querying XML data

Having your data locked up in XML documents is relatively useless if you can-
not effectively locate, combine, and derive from those data in meaningful
ways. Many groups of developers recognized this problem early in the devel-
opment of XML, and a number of query languages and technologies have been
developed to solve it. In this section, we examine the W3C attempt to unify
these query technologies into a single, standard mechanism called XQuery.

XQuery
XQuery is a set of standard specifications currently under development by the
W3C for querying XML data structures. When fully specified, it is intended to
be for XML what SQL and stored procedures are for relational databases. You
will use XQuery in your applications to locate, group, and join data from one
or more XML data sets. Additionally, you will be able to use XQuery to derive
new data sets and data types from existing XML sources.

 At the time of this writing, the XQuery 1.0 specification is in a draft status,
and many of the details are likely to change. XQuery focuses exclusively on the
manipulation of XML data sets, and does not address nonfunctional issues such
as performance, file management, or resource utilization. Due to its youth and
lack of finalization, there are currently no enterprise tools that implement
XQuery 1.0. We provide an overview here of what is to come because it is likely
to become an important part of XML technology. Your J2EE data-aware objects
will likely use XQuery to operate on XML data in the future.

 There are several distinct parts of the XQuery 1.0 specification. These are
summarized in table 3.1. These related specifications are intended to provide a
complete definition of the data model, semantics, and syntax of the XQuery

98 CHAPTER 3

Application development
language. XQuery is closely related to XML Schema, using the same data defi-
nition mechanisms and built-in types. It is also very closely tied to the XPath
standard, and has even caused the XPath specification itself to be enhanced.

XQuery 1.0 is a human-readable, expression-based language built on concepts
borrowed from many other languages, including SQL, XQL, and Object
Query Language (OQL). There is also an XML-based variant of XQuery under
development called XQueryX. We focus on the human-readable XQuery in
this section.

Table 3.1 The XQuery 1.0 specification set

XQuery specification Contents

XML Query Requirements Describes the generalized requirements for XQuery technology.

XML Query Use Cases Contains use cases for the XQuery requirements.

XQuery 1.0 and XPath 2.0
Data Model

Describes the hierarchical XML data model shared by XPath and
XQuery.

XQuery 1.0 Formal
Semantics

Provides a formal description of terminology and mechanisms
employed by Xquery.

XQuery 1.0: An XML Query
Language

Describes the human-readable, expression-based form of Xquery.

XML Syntax for XQuery 1.0
(XQueryX)

Describes an XML-based variant of the XQuery language.

Table 3.2 Types of XQuery 1.0 expressions

XQuery expression type Description

Path expressions An XPath string representing a specific node or set of nodes in
an XML data tree. For example, //customers would return a set
of all the customer nodes found in a document.

Element constructors Templates for generating derived XML nodes by executing XQL
statements. These are basically XML nodes with embedded XQL
expressions that generate derived data when executed by an
XQuery engine.

FLWR expressions SQL-like structured statements containing some combination of
FOR, LET, WHERE, and RETURN clauses. (Pronounced flower.)

(continued on next page)

XML and persistent data 99
One interesting feature of XQuery is that it contains several types of expres-
sions that can be nested within one another in virtually any combination. The
types of expressions available are summarized in table 3.2. The ability to nest
these expressions within each other makes performing complex operations on
XML data sets amazingly straightforward. For example, you might use XQuery
to create new XML structures by joining existing XML documents. One such
scenario is depicted in figure 3.4, which shows customer data and order data
being joined to create an XML order history data set for a specific customer.

Operators and functions XQuery supports mathematical expressions, built-in functions
such as text() and not(), as well as user-defined functions and
function libraries.

Conditional expressions XQuery supports an IF-THEN-ELSE construct for execution
branching.

Quantified expressions XQuery supports partial node set selection using the SOME key-
word, and complete node set selection using the EVERY keyword.

Data type expressions XQuery supports data type testing and modification expressions

Table 3.2 Types of XQuery 1.0 expressions (continued)

XQuery expression type Description

Customer Data
(customers.xml)

Order Data
(orders.xml)

XQuery Engine

Order History
For

Customer Figure 3.4
Joining XML data using XQuery

100 CHAPTER 3

Application development
 We create the companies.xml and orders.xml files in order to demonstrate
an XQuery. The customers.xml file contains the following node:

<customer customer-id=123456>
 <customer-name>John Smith</customer-name>
</customer>

The orders.xml file contains the following node:

<order order-id=56789 customer-id=123456>
 <order-date>01-01-2001</order-date>
 <order-total>$59.00</order-total>
</order>

The query to accomplish the join might look something like this:

<order-history>
 {
 FOR
 $c in
 document(customers.xml)//customer[customer-id = 123456],

$o in
 document(orders.xml)//order[customer-id = $c/customer-id]

RETURN
 <customer-orders>
 {
 $c/customer-name,
 $o/order-date,
 $o/order-total
 }
 </customer-orders>
 SORT BY(order-date)
 }
</order-history>

b First, this query looks for all customers in the customers.xml file with the attribute
customer-id equal to 123456 and stores the result in the $c variable.

c Next, it retrieves all of the orders from the order.xml file with the customer-id
attribute equal to 123456 and stores them in $o.

d Finally, the resulting node contains the customer name, order date, and order total.

Given our sample data, the following XML node is the result of our query.

<customer-orders>
 John Smith, 01-01-2001, $59.00
</customer-orders>

Builds query

b

Retrieves results
c

Outputs
node-set

d

XML and persistent data 101
You should be able to appreciate the potential power and usefulness of
XQuery as a tool for searching existing data and deriving new data
representations in XML. If you plan to use XML as a persistent storage mecha-
nism, you can keep up to date on the latest XQuery developments at http://
www.w3c.org/XML/Query.

 To reiterate, XQuery is currently in draft status and no implementations
are currently available. So what are your options for querying XML data today?
Basically, your choices consist of using one of the query languages on which
XQuery is based. These include Quilt, XML-QL, and XQL, among others.
While none of these is nearly as sophisticated as XQuery intends to be, they
can be sufficient for performing simple queries.

Querying XML using DAO and XQL
In this section, we develop an XML-aware data access object that uses XQL.
This object provides the same functionality as the CustomerDAO from
section 3.1, but obtains its data from an XML document instead of a relational
database. Figure 3.5 depicts the result of our example. Following the figure,
we walk you through the creation of the code for the data access object.

In the XQL version of our object, we create two instances of org.w3c.dom.Doc-
ument. One will refer to the XQL data source document and the other to the
result set document.

// DOM for the source document
 Document srcDoc = DOMUtil.createDocument();

XML

Source
DOM

1 Load XML document into
source DOM.

Data Access Object

Execute XQL on source
DOM.

2

Result
DOM

Return result DOM.3

XQL

Figure 3.5
Data access object
processing using XQL

102 CHAPTER 3

Application development
// DOM for the output document
 Document rsltDoc = DOMUtil.createDocument();

Then we load the source document.

DOMUtil.parseXML(
 new FileInputStream(fileName),
 srcDoc,
 false, // Parse mode: nonvalidating
 DOMUtil.SKIP_IGNORABLE_WHITESPACE
);

Next, we create an XQL query string and execute it, creating the result
document.

String query = "//customer[@id='" + customerId + "']";
 XQL.execute(query, srcDoc, rsltDoc);

Finally, we convert the result document into a JDOM document and return it
to the caller.

org.jdom.input.DOMBuilder builder
 = new org.jdom.input.DOMBuilder();
 return builder.build(rsltDoc);

These steps represent the interesting code in our Customer data access object
using XQL. The full code for this class is contained in listing 3.6. This imple-
mentation uses a Java XQL implementation from the German National
Research Center for Technology (GMD). Note that if we chose not to expose
a JDOM Document interface, the CustomerDAOX object could simply return the
org.w3c.dom.Document reference instead. This implementation returns a
JDOM Document so it will work with the CustomerDataBean session EJB from
the earlier example.

import de.gmd.ipsi.xql.*;
import de.gmd.ipsi.domutil.*;
import org.w3c.dom.*;

import java.io.FileInputStream;

/**
 * A data access object
 * for customer data
 * using XQL
 */
public class CustomerDAOX {

 protected String fileName = null;

Listing 3.6 The Customer data access object using XQL

XML and persistent data 103
 public CustomerDAOX(String fileName) {
 this.fileName = fileName;
 }

/** Return customer data as a JDOM Document */
 public org.jdom.Document getCustomerInfo(String customerId)
 throws CustomerNotFoundException {

 Document srcDoc
 = DOMUtil.createDocument();

 Document rsltDoc
 = DOMUtil.createDocument();

 try {

 DOMUtil.parseXML(
 new FileInputStream(fileName),
 srcDoc,
 false, // Parse mode: non-validating
 DOMUtil.SKIP_IGNORABLE_WHITESPACE
);
 } catch (Exception e) {
 throw new CustomerNotFoundException(customerId, e);
 }

 String query = "//customer[@id='" + customerId + "']";
 XQL.execute(query, srcDoc, rsltDoc);

 org.jdom.input.DOMBuilder builder
 = new org.jdom.input.DOMBuilder();
 return builder.build(rsltDoc);
 }

 // other methods here to create and update customers

}

The code in listing 3.6 can be combined with the code in listing 3.2 to yield a
robust data access object that can support both relational and XML data sources.

3.2.2 Storing XML data

Querying XML data is only useful if XML data repositories exist. The low-tech
form of XML repository building is simply using a file system and XML files.
This works well for small applications that can tolerate the overhead and per-
formance characteristics of managing a group of XML-based text files. For
larger applications and those that do not wish to manage a repository them-
selves, a more enterprise-ready solution is required. Throughout this section,

Parses
org.w3c.dom.Document
from file

Executes XQL

Returns resulting
JDOM Document

104 CHAPTER 3

Application development
we examine relational databases, XML databases, and PDOM as storage
options for your application.

Using relational databases
Virtually all the major players in the relational database world now offer XML
integration capabilities in their database management systems. These vendors
include Oracle, IBM, and Microsoft. The level of XML support varies by ven-
dor, as does the mechanisms by which your XML data is converted to and
from the relational data model. Therefore, should you use an RDBMS to store
your XML data, your data-aware object implementations are likely to be
closely tied to your chosen vendor. Also, be sure to thoroughly load-test the
data layer of such applications, because the XML to relational transformation
process is being done by the underlying database management system.

 If you are uncomfortable using a proprietary mechanism to store XML in a
relational database, or if your database does not support XML, you can always
convert the data yourself. This gives you total control of the mapping between
your XML and relational data models, at the expense of additional develop-
ment and testing time. In section 3.1, we wrote a data access object that trans-
lated customer data between a JDOM document and a database table. We
noted that the conversion process was too specific to customer data to be use-
ful in other situations.

A generic data access object
To create a more generic version of the data access object, we need to change
the getCustomerData method to accept an SQL query string rather than use its
own, hard-coded one.

public Document getData(String SQL) throws Exception {

We then execute the query and obtain the JDBC ResultMetaData object to
inspect query results.

ResultSetMetaData rsmd = rs.getMetaData();
 int cols = rsmd.getColumnCount();

We can then build the JDOM document using the information in the Result-
SetMetaData. This document will generically represent a result-set, with
some number of row nodes. Each row will have one column data node for each
column in the result set. Additionally, we can add attributes to the column
nodes to tag each with a column name and Java data type.

while (rs.next()) {
 Element row = new Element("row");

XML and persistent data 105
 row.addAttribute("row-number", String.valueOf(i));
 for (int j = 1; j <= cols; j++) {
 Element column = new Element("column");
 column.addAttribute("column-name", rsmd.getColumnName(j));
 column.addAttribute("column-type", rsmd.getColumnTypeName(j));
 column.addContent(rs.getString(j));
 row.addContent(column);
 }
 root.addContent(row);

Listing 3.7 shows our more generic implementation of the relation to XML
conversion process.

import org.jdom.Document;
import org.jdom.Element;
import javax.sql.DataSource;
import java.sql.*;

public class GenericDAO {

 protected DataSource ds = null;

 public GenericDAO(DataSource ds) {
 this.ds = ds;
 }

 public Document getData(String SQL)
 throws Exception {
 Document doc
 = new Document(new Element("Result-Set"));
 Connection con = null;
 Statement stmt = null;
 ResultSet rs = null;
 try {
 con = ds.getConnection();
 stmt = con.createStatement();
 rs = stmt.executeQuery(SQL);
 ResultSetMetaData rsmd = rs.getMetaData();
 int cols = rsmd.getColumnCount();
 int i = 1;
 Element root = doc.getRootElement();
 while (rs.next()) {
 Element row = new Element("row");
 row.addAttribute("row-number", String.valueOf(i));
 for (int j = 1; j <= cols; j++) {
 Element column = new Element("column");
 column.addAttribute("column-name",
 rsmd.getColumnName(j));
 column.addAttribute("column-type",
 rsmd.getColumnTypeName(j));

Listing 3.7 The generic JDBC data access object

Inspects metadata

Iterates and
populates
JDOM

b

106 CHAPTER 3

Application development
 column.addContent(rs.getString(j));
 row.addContent(column);
 }
 root.addContent(row);
 i++;
 }
 } catch (Exception e) {
 throw e;
 } finally {
 if (rs != null)
 try { rs.close(); } catch (SQLException sqle1) {}
 if (stmt != null)
 try { stmt.close(); } catch (SQLException sqle2) {}
 if (con != null)
 try { con.close(); } catch (SQLException sqle3) {}
 }
 // return a JDOM Document
 return doc;
 }

 // other methods here to insert and update data

}

Listing 3.8 highlights the changes to the CustomerDataBean required to use
the new, generic data access object.

import javax.sql.DataSource;
import javax.ejb.EJBException;
import org.jdom.Document;

public class CustomerDataBean2
 implements javax.ejb.SessionBean {

 public javax.ejb.SessionContext ctx;

 // transient so it won't be
 // serialized on passivation
 public transient GenericDAO gDAO;

public void ejbCreate() {
 buildDAO();
 }

 public org.jdom.Document
 getCustomerInfo(String customerId) {

 String SQL = "select * from customers where " +
 "customerId='" + customerId + "'";
 Document custData = null;

Listing 3.8 CustomerDataBean using the generic DAO

b

A session bean that retrieves
customer data as a JDOM Docu-
ment using the generic DAO

Takes a customerId and gets that
customer’s information using
the generic DAO

XML and persistent data 107
 try {
 custData = gDAO.getData(SQL);
 } catch (Exception e) {
 throw new
 EJBException("Error while retrieving customer data.", e);
 }

 // we could translate the "Result-Set" XML structure
 // to the original customer format here if we
 // needed to

 return custData;
 }

protected void buildDAO() throws EJBException {
 try{
 javax.naming.Context jndiCtx
 = new javax.naming.InitialContext();
 javax.sql.DataSource ds =
 (javax.sql.DataSource)
 jndiCtx.lookup("java:comp/env/jdbc/CustomerDB");
 gDAO = new GenericDAO(ds);
 } catch (Exception e) {
 throw new EJBException(e);
 }
 }

 public void ejbRemove() { }

 // restore Data Access Object when activated
 public void ejbActivate() { buildDAO(); }

 public void ejbPassivate() { }

 public void setSessionContext(javax.ejb.SessionContext ctx) {
 this.ctx = ctx;
 }

}

To jump-start your data access object code development efforts, you can also
use an object-relational (O/R) mapping product such as WebGain TopLink.
While these products won’t generate generic data access objects, they will
write the code for doing specific relational data operations. You can modify
the code generated by these tools to include the necessary XML transforma-
tions. Given time constraints, this may be the most practical approach if your
data access and translation process cannot be generalized.

Uses DAO to get
customer data

The buildDAO method looks
up the data source in the
environment and passes it
to the DAO’s constructor

108 CHAPTER 3

Application development
Using XML databases
An alternative approach for data storage is to use an XML database. One of the
most notable XML database systems at the time of this writing is Software
AG’s Tamino product. Tamino is an e-business application suite, driven in
large part by its XML data server. This data server stores XML in its native,
hierarchical format, meaning that no translation between data models is
needed. Also, Tamino and products like it will be quick to implement XQuery
functionality as the standard solidifies.

 Before rushing out to purchase an XML database product, realize that XML
data servers are relatively new technology and have not been road tested in
production environments like RDBMSs have. As a seasoned architect, you
must always make technology decisions based on a balance between the
potential benefits of a new technology and the risks associated with using it.

PDOM
If you decide to manage your own XML data, your attention will soon turn to
maximizing the performance of the XML data store. XML data sets are trees
that can be expensive to iterate over and search. An option to consider is using
the PDOM API. PDOM, the Persistent Document Object Model, was designed
to enhance the performance of the GMD’s XQL implementation we discussed
in the previous section. It stores XML in an indexed, binary file and uses a
memory-paging algorithm to speed operations on large XML documents.
Using a PDOM instead of a DOM is simple, because the API exposes an imple-
mentation of the org.w3c.dom.Document interface.

 Listing 3.9 contains a data access object that uses a PDOM file instead of an
XML text file. This example is very similar to Listing 3.6, but uses a PDOM PDoc-
ument as the data source instead.

PDocument srcDoc = new PDocument(fileName);

The XQL and JDOM building process remain the same, as you see. The
PDOM API also provides the ability to commit changes made to the DOM in
memory back to the binary file. This can be useful in a transactional context.
Detailed information on PDOM can be found at the GMD’s XQL web site,
http://xml.darmstadt.gmd.de/xql/.

import de.gmd.ipsi.pdom.*;
import de.gmd.ipsi.xql.*;
import de.gmd.ipsi.domutil.*;
import org.w3c.dom.*;

Listing 3.9 Using the PDOM API

XML and persistent data 109
import java.io.IOException;

public class CustomerDAOP {

 protected String fileName = null;

 public CustomerDAOP(String fileName) {
 this.fileName = fileName;
 }

 /** Return customer data as a JDOM Document */
 public org.jdom.Document
 getCustomerInfo(String customerId)
 throws IOException {

 // DOM for the source document
 // PDocument implements org.w3c.dom.Document
 PDocument srcDoc = new PDocument(fileName);

 // DOM for the output document
 Document rsltDoc = DOMUtil.createDocument();

 String query = "//customer[@id='" + customerId + "']";
 XQL.execute(query, srcDoc, rsltDoc);

 org.jdom.input.DOMBuilder builder
 = new org.jdom.input.DOMBuilder();
 return builder.build(rsltDoc);
 }

 // other methods here to create and update customers

}

Table 3.3 summarizes the current solutions for storing XML data.

Table 3.3 XML repository solutions

Solutions Pros Cons

File system and
XML files

Human readable Must reparse files on each access.
Number of files becomes unwieldy.

RDBMS Enables you to stay with your current
vendor product

Requires use of proprietary storage
mechanism.

XML database Storage in native XML format Unproven technology

PDOM Files are already parsed New technology, relies on file system
storage.

A data access object for
customer data using PDOM
and XQL

Path to PDOM file

Executes XQL

Returns JDOM document

110 CHAPTER 3

Application development
3.2.3 When not to use XML persistence

There are many circumstances in which it is not appropriate to store your data
as XML, even if your application is internally XML-based. One key example is
transactional data, especially when it must be highly available and replicated.
Relational database systems are very good at optimizing queries, ensuring data
integrity, and replicating data across instances. There will be a time when XML
databases can claim the same performance and reliability characteristics, but
not yet.

 Another key situation in which you should still prefer relational databases is
when your data are highly interrelated. Using an RDBMS will allow you to
normalize those data, eliminating redundancies and increasing integrity. XML
technologies such as XLink and XPointer are not nearly mature enough at this
point to allow you to normalize an XML data repository. Deriving useful data
from disparate XML data sets is currently difficult and expensive in terms of
resource utilization and processing time.

 As XQuery and other XML technologies are implemented and refined over
time, these concerns will diminish. In the nearer future, storing your data rela-
tionally and converting to XML is still your best option in many situations.

3.3 Summary

In this chapter, we examined the ways XML might be used to add flexibility
and generality to your internal application components. XML can be used in
component interfaces, as an internal data representation format, and as a per-
sistent storage format. The JDOM API provides an easy method of working
with XML DOMs as data value objects instead of using proprietary software
objects. Using generic XML data structures allows your application to manipu-
late and transform data in generic ways. It also makes your application compo-
nent interfaces generic and enhances reusability.

 XML technologies for storing and retrieving persistent XML data are in
their infancy. For now, converting between XML and relational formats is
required in most production systems. Over time, tools such as XQuery and
XML database products plan to eliminate this requirement for many types of
applications. For now, implementing the data access object and doing some
form of conversion between data formats is a useful approach.

Summary 111
 Using XML throughout your application may not be appropriate in situa-
tions where response time must be minimized or system memory is severely
constrained. Using XML is more resource-intensive than using a more specific
approach. As the technology matures, this will become less of an issue. For
now, carefully consider the costs and benefits of using XML throughout your
application before proceeding to design it.

Application
integration

This chapter
■ Introduces system integration concepts
■ Suggests techniques for successful J2EE

■ Systems integration
■ Demonstrates implementation of J2EE-based

web services
■ Uses JAX APIs to enable web services
113

114 CHAPTER 4

Application integration
This chapter is about using XML technology to integrate your J2EE applica-
tion with other applications and services. We describe the systems integration
activity and its central role in the success of your distributed system. We also
present a proven approach for integrating independent systems, including the
major architectural patterns used to do so. Traditional approaches to systems
integration are compared and contrasted with XML-based ones.

 The remainder of the chapter focuses on the web services architecture that
many believe is the future of distributed systems on the Internet. We define and
discuss SOAP and its role in web services. We then provide examples of produc-
ing, locating, and consuming web services from within the J2EE environment.

4.1 Integrating J2EE applications

In a distributed environment, connecting your application to other applica-
tions, services, and data sources is essential. How these connections are made
can impact the performance, reliability, and functionality of your application
more than its own internal design. Synchronous interaction with other sys-
tems over a network can have a dramatic effect on the overall performance of
your application. System interaction also means ensuring data integrity
between applications, which can be complex. However, a standalone applica-
tion that does not have access to other enterprise systems cannot do much.

 The work of gluing together independent applications, services, and data
stores is referred to as systems integration. This is a discipline of its own that
has become as important in recent years as distributed application develop-
ment itself. In this section, we explore some systems integration possibilities in
the J2EE context. We identify the general architectural patterns for system
integration and examine the ways XML can enhance that integration.

4.1.1 Traditional approaches to systems integration

Perhaps the most difficult part of integrating your application into its environ-
ment is determining where to start. In the majority of cases, you are develop-
ing a new application and need to integrate it with existing systems. Each of
these systems provides a limited set of options for interacting with it. Some
systems expose remote APIs or object interfaces. Others support only asyn-
chronous messaging. Some may not offer any integration options at the appli-
cation layer, but can be fooled into integration at the data layer.

 Although specifics vary from system to system, your integration options
can be broadly classified into four architectural patterns. These patterns vary in
levels of complexity from simple data integration to tightly coupled software

Integrating J2EE applications 115
objects. Each has a distinct set of advantages and disadvantages, and the extent
to which XML can play a role varies by pattern as well. The relative complexi-
ties and sophistication of these patterns are shown in figure 4.1. These pat-
terns should look familiar to you. First, we will briefly review the traditional
approaches to provide you with some context. Then, in section 4.1.2, we will
examine the role that XML plays in each of these integration techniques.

Data level integration
This is the simplest architectural pattern for systems integration and may be
the quickest to implement. To integrate at the data layer, your application
shares access to an enterprise data store with one or more other applications.

 For example, your application might query a remote data store to retrieve
order history information for a particular customer. The data store itself
belongs to another application, but your application has read-only access
directly to the data.

 In another situation, your application might update a remote data store. If,
for example, your application needs to update customer information in
another system, it might simply execute an SQL statement against the other
system’s database. Data level integration is depicted in figure 4.2.

Data Level
Integration

Complexity

Message Level
Integration

Procedure Level
Integration

Object Level
Integration

S
o

p
h

is
ti

ca
ti

o
n

Figure 4.1 Relative complexity of systems integration patterns

116 CHAPTER 4

Application integration
 Advantages of data level integration include the following:
■ This integration type can be simple. When done properly, the remote

system has no knowledge of your application and operates without
modification.

■ This pattern can work with closed systems that do not expose any other
API for integration.

Disadvantages of data level integration include the following:
■ Management overhead can be complex when updating data owned by a

remote system. Your application is responsible for maintaining data
integrity between its own data and the remote system’s data. This may
involve reproducing some of the remote system’s application logic in
your integration components.

■ Mapping your application data model to that of the remote system may
be complex. Developing the translation mechanism may be difficult.
Also, if the integration is synchronous, the performance cost of translat-
ing and transferring data may be unacceptable.

■ Depending on your network and security configuration, you may not
be able to reach the remote data store directly. In those situations, this
pattern can be combined with message level integration, which we dis-
cuss next.

To implement this pattern in J2EE, you can use a data access object to wrap
remote database interaction and decouple it from an EJB. If the remote data
being accessed is client-specific, the DAO could be invoked from a session bean.
If the data is shared, the DAO could be used as a helper for an entity bean.

J2EE
Application

Remote Data Store

Remote
System

Figure 4.2

Integrating your application

at the data level

Integrating J2EE applications 117
Message level integration
Message level integration is the most flexible and best performing of the sys-
tem integration patterns. In this pattern, your application packages data into a
request and transmits it over the network to the remote system asynchro-
nously. The remote system unpackages the data and performs processing. This
is depicted in figure 4.3. Because the interaction is asynchronous, your appli-
cation does not wait for the remote system to process the message, resulting in
better overall performance.

In the reverse case, a remote system can generate messages and send them
asynchronously to your application. These messages might indicate the
result of some requested processing or initiate some new processing within
your application.

 Advantages of message level integration include the following:
■ Message level integration provides loose coupling between your applica-

tion and remote systems. Message creation and message processing are
completely separate from one another, and may occur at different times.
Your application and the remote system only need to agree on the for-
mat and meaning of the messages.

■ Message level integration maximizes performance. Your application
does not have to wait for remote processing to complete before con-
tinuing on.

■ Message level integration is scalable. Using message-oriented middle-
ware (such as a JMS provider), messages can be rerouted on the fly as
resources dictate. Also, the messaging middleware can provide guaran-
teed delivery of messages, removing some failure-handling burden from
your integration components.

J2EE
Application

Remote
System

Asynchronous Message

Asynchronous Message

Figure 4.3 Message level integration to a remote system

118 CHAPTER 4

Application integration
■ Message level integration is flexible. The implementation code that gen-
erates the message can be modified without altering the code that pro-
cesses the message, and vice versa.

 Disadvantages of message level integration include the following:
■ Message level integration only supports the asynchronous interaction

model, by definition.
■ This pattern may require adapter code to be written at the remote sys-

tem. Some systems natively support a set of known message types and a
delivery mechanism that can be extended to accommodate your
requirements. In other situations, you may have to write code that
receives messages on behalf of the remote system and interacts with it in
some other way.

JMS makes implementing message level integration easy. To implement outbound
messaging, you simply publish a message to a JMS topic or queue. This can be
done from within an EJB or a dependent object. Consider using the Business Del-
egate pattern from chapter 2 to separate the messaging code from your EJB.
Inbound messaging is even easier. Simply implement a Message Driven EJB to
process messages arriving on a specific JMS queue.

Procedure level integration
This pattern is an extension of message level integration that supports synchro-
nous interaction between systems. This is nothing more than a coordinated
pair of messages, a client/server request and reply. Many enterprise systems
support this pattern, referring to it as either remote procedure calls (RPC) or
remote function calls (RFC). This interaction type is depicted in figure 4.4.

J2EE
Application

Remote
System

(Wait Time)

RPC call (Request)

RPC Response

Figure 4.4 Procedure level integration

Integrating J2EE applications 119
Advantages of procedure level integration include the following:
■ Procedure level integration supports synchronous interaction as an

extension of the message level integration model. This is often an essen-
tial requirement in real-time distributed systems.

Disadvantages of procedure level integration include the following:
■ Procedure level integration slows application performance, since your appli-

cation must wait for remote processing to complete before continuing.
■ Procedure level integration adds a great deal of complexity to the failure

model between systems. Your application must determine how remote
failures are detected and handled, perhaps including logic to timeout
requests and retry them.

Procedure level integration can be complex, and therefore should be encapsu-
lated by a Business Delegate or other dependent object. If remote system
resources are constrained, you should also consider pooling a fixed number of
delegate objects within each EJB container being used. In this way, you can
predict the maximum number of concurrent connections being made to the
remote system. The delegate object might also contain logic to rollback its
remote changes when used in a transactional EJB context. Connection details,
object pool size, and other configuration parameters should be kept in the
deployment descriptor of the EJB using the delegate.

Object level integration
Object level integration is a specialized integration pattern. It can be used
between systems that support a common distributed object architecture, such
as CORBA or DCOM. In this pattern, some well-known object acts as an inter-
mediary between client and server software object. This intermediary (the
ORB in CORBA) provides a set of services that clients can use to locate a
desired server and invoke it. The general case for object integration is depicted
in figure 4.5. Once the client has located the service, the server object pro-
vides a remote stub of itself to the client that it can use locally. The stub code
translates local method calls into remote ones. On the server side, there is a
client skeleton providing the same proxy functionality to the server object.
This is depicted in figure 4.6.

 Advantages of object level integration include the following:
■ This type of interaction permits object-oriented access to remote

applications. This is most useful when the application itself is distrib-
uted, since the object models of independent systems may not be com-
pletely compatible.

120 CHAPTER 4

Application integration
■ Marshalling (packaging) of data and transmission are managed by the
distributed object system.

■ Remote failures can be detected via code level exception handling.

Disadvantages of object level integration include the following:
■ This type of integration tightly couples your application components

with those of the remote system. The two systems become integrated at
the code level via remote interfaces.

■ Both your application and the remote system must support the same
remote object architecture, directly or through a bridging tool like Intrin-
syc Software’s JIntegra product. For many legacy systems, this type of
integration is not possible due to lack of support for distributed objects.

■ Using an intermediary lookup service remotely takes time and can
degrade overall system performance if references to remote objects can-
not be effectively cached and reused.

EJB supports object level integration extensively via RMI. In fact, this integration
model is the basis of all interactions between EJBs and their clients, both remote

Local Object
(Client)

Remote Object
(Server)

Object Broker
and Registry

Invoke Method(s)

Locate/Activate Object

Figure 4.5 Object level integration

Remote Object
(Server)

Client Skeleton
(proxy)

Local Object
(Client)

Server Stub
(proxy)

Remote
Communication

Figure 4.6 Remote object interaction using proxies

Integrating J2EE applications 121
and local. Since RMI can be done over IIOP, EJB components can participate in
CORBA systems. Additionally, products such as JIntegra can be used to access EJB
from DCOM systems. Consider using the Session Façade or Aggregate Entity pat-
tern to encapsulate the integration points between your internal components and
remote systems.

Constraint-based modeling
Now that we have identified our system integration options, we need a
method for choosing which to use in a given situation. An effective approach
is to begin your analysis without assumptions and narrow your options by
considering the limitations and capabilities of the systems to which you must
connect. This is known as constraint-based modeling, in which the existing
environment guides much of the integration architecture.

 Before walking through an example, note that flexibility and performance
are two of the key design goals from chapter 1. Since message level integration
is the fastest and most flexible type of integration, we suggest you use it when-
ever possible. This would make your life much easier if it were not for synchro-
nous interaction requirements. If your application must obtain or update
remote data in real-time for whatever reason, message level integration goes
out the window.

 To demonstrate how constraint-based modeling works, let us consider the
following example. Say we are building an e-commerce application in J2EE and
have a requirement to obtain the most current pricing for each customer from
our enterprise ERP system whenever a customer begins to make a purchase.
Furthermore, we know that the ERP system does not store prices statically for
each customer, but performs a complex calculation to arrive at a unit price for
each product. This procedure requires data that is otherwise irrelevant to our
e-commerce application, and reproducing it on our side is infeasible.

 This requirement adds a constraint to our integration model; interaction
must be synchronous. This eliminates message level interaction and leaves us
with data, procedure, and object level options. Now we inspect the docu-
mentation for the ERP system and note that it exposes a set of RPCs that can
be used to obtain customer pricing, but does not support CORBA or any
other object architecture. We are now down to procedure and data level inte-
gration options. Data level integration is infeasible, because it is the pricing
algorithm itself to which we need access in the ERP system, not the data upon
which it operates.

 This leads us to the conclusion that this integration point will use proce-
dure level integration via the existing RPC mechanism exposed by the ERP

122 CHAPTER 4

Application integration
system. Note that we did not really make any decisions in this simple example.
The requirement and capabilities of the remote system mandated the decision
for us. In more complex examples, you may need to choose between two via-
ble options. If, for example, the ERP system did support object level integra-
tion, you would need to make a decision. Since procedure level integration
involves less coupling of the systems, you might choose to stick with the RPC
option. The point being that you may have a choice and need to apply judg-
ment after the constraint-based modeling exercise.

4.1.2 XML-based systems integration

XML is arguably the most important development in systems integration in the
past twenty years. The ability to generically describe, manipulate, and transform
data is allowing all types of enterprise systems to be connected in ways never
before possible. In this section, we examine the ways XML can enhance J2EE
systems integration in each of the four patterns described in section 4.1.1. As
you will see, XML technology provides most of its value at the message and
procedure level, but can be used in specialized ways at the data and object inte-
gration levels as well.

XML and data level integration
At the data level, XML provides a standard mechanism for mapping data mod-
els between your J2EE/XML application and the data store of a remote system.
An XSLT engine can restructure XML data into any arbitrary format, making
your data translation work much simpler. In the near future, XQuery will
enhance this capability greatly through its ability to group, join, derive, and
sort XML data. While the work of translating your XML data into remote data-
base calls is still your responsibility, XSLT and XQuery are available to assist
you in certain situations.

 This method is clearly advantageous compared to data level integration
without XML. Tools such as XSLT and XQuery allow your application to
manipulate the data coming from the remote data store. This means that your
application can be flexible and easily adapt to changes in the data format.

 For example, in a simple case you may be reading data from a remote
repository of XML flat files. When your application retrieves one or more files,
it performs and XSLT transformation to put the data in a format that is mean-
ingful to your application. This transformation only requires an XSL stylesheet
that can easily be modified if the source or target output format changes. XML
and data level integration are illustrated in figure 4.7.

Integrating J2EE applications 123
XML and message level integration
As noted in chapter 2, much work has been done in the area of XML messag-
ing. Leveraging the ability of XML to describe, validate, and structure mes-
sages between systems, many industry groups have developed standards for
XML messaging to facilitate B2B commerce and electronic document inter-
change (EDI). These standards include RosettaNet, cXML, and ebXML. While
each of these efforts began under different circumstances, they are attempting
to do very similar things:

■ Define an unambiguous XML language for the exchange of business
data

■ Define a standard mechanism for integrating new business partners into
existing processes

■ Define a standard mechanism for transmitting XML documents between
organizations

■ Define a security model for XML data interchange

Fortunately, these numerous standards are moving in the direction of unifica-
tion, particularly in the areas of data transport and partner integration. The
Simple Object Access Protocol (SOAP) is quickly gaining acceptance as a stan-
dard mechanism for transmitting XML messages, both synchronously and
asynchronously. We introduced SOAP in chapter 2, and discuss it in detail in
section 4.3. In the area of new partner integration, many XML standards bod-
ies are now supporting the Universal Description, Discovery, and Integration
Interface (UDDI), which we discussed briefly in chapter 3 as well. We discuss
UDDI implementation details further in section 4.3 as part of our discussion
of web services.

XML
Document(s)

J2EE
Application

XSL Stylesheet

Read XML Document
and transform using

XSLT

Remote
Repository

Figure 4.7 Using XML for data level integration

124 CHAPTER 4

Application integration
 The Java community is also hard at work defining standard APIs for using
XML-based messaging protocols like SOAP. The most promising proposal at
the message integration level at the time of this writing is the Java API for XML
Messaging (JAXM). JAXM provides an API for sending and receiving SOAP
messages. We demonstrate the use of JAXM in section 4.3.

XML and procedure level integration
In section 4.1.1, we noted that procedure level integration is really just a coor-
dinated pair of asynchronous messages exchanged between systems. As such,
the same XML technologies used in message level integration apply at this level
too. SOAP can be used in two-way (synchronous request-response) messaging,
due in part to its explicit binding to the HTTP protocol. Additionally, the
JAXM API can be used in either one-way or two-way mode. The examples in
section 4.3 demonstrate this.

 There is also ongoing work to develop a Java API for XML-RPC, called JAX-
RPC. This API will be closely aligned with SOAP and other XML messaging
technologies championed by the W3C. The JAX-RPC effort is focused on
defining a mapping between Java classes, interfaces, and data types and XML
data types and messaging protocols. This mapping is intended to make RPC
over XML protocols like SOAP easier to use in the Java environment.

 Since JAX-RPC is in its very early stages, it is not possible to demonstrate its
use in this book. It is possible that the entire API will be subsumed into
another API such as JAXM in the future. However, you should watch the
development of this API closely going forward.

XML and object level integration
XML might also be used in special cases where object level interaction is
required. Consider the situation in which you need to exchange a shared
object with another system, but using a distributed object architecture is not
possible. This could be due to security concerns or other technical limitations.
In such a situation, you might decide to serialize a Java object as an XML doc-
ument, transmit it to the remote system, and reactivate it there. As long as the
remote system is Java-based and the object is self-contained, this can be
accomplished using JAXM (over SOAP) and the Java API for XML Binding
(JAXB). This is an admittedly contrived example, and is intended only to open
your mind to the possibility of using XML even in situations of tightly cou-
pled, all-Java systems integration efforts too.

 You might also use XML to encode the data values passed back and forth
between remote objects. You could, for example, serialize a DOM structure to

J2EE and SOAP 125
a string and use it as a parameter in a remote method invocation. Serializing a
Java value object to XML and passing it to a non-Java based remote object can
be an easy way to convert data objects between platforms.

4.2 A web services scenario

In section 4.1, we reviewed several different methods for integrating your
applications with remote systems. Due to the newness of SOAP and web ser-
vices, and the great potential that they have to make a significant impact on
application integration, we review and analyze them in detail in sections 4.3
and 4.4.

 In order to bring some context to the discussion in the next two sections,
we apply a real world example involving a manufacturer and a distributor. The
manufacturer makes products that the distributor sells. There has been a slight
problem with this arrangement because the manufacturer changes product
information such as pricing every so often, and the distributor is still working
with the old data. Both companies decided to analyze the use of SOAP and
web services to transmit product information between their companies. We
will develop the code necessary to make this integration happen over the next
two sections. Figure 4.8 depicts the communication between both companies.

4.3 J2EE and SOAP

Before we apply SOAP as a solution to our problem, we must understand what
SOAP actually is. SOAP is a lightweight mechanism for exchanging messages in
a distributed environment. The SOAP specification is currently at version 1.1,
although version 1.2 is already a working draft. Detailed information about
SOAP can be found at http://www.w3.org/2000/xp/. The SOAP specifica-
tion addresses four main areas, as shown in table 4.1.

Web
Service

Distributor
Application

Pricing Updates
Manufacturer
Application

Product Image
Updates

Figure 4.8 Manufacturer and distributor application integration

126 CHAPTER 4

Application integration

The structure of a basic SOAP message is
depicted in figure 4.9. The optional
SOAP header element may contain
metainformation specific to a SOAP mes-
sage itself, including any special identifi-
ers needed by participating applications.
The SOAP body contains the payload of
the message, which can be an application
specific request, response, or an asyn-
chronous message. Both the header and
the body can be further structured into
SOAP blocks. For example, a SOAP body
could contain two blocks, each contain-
ing a separate remote procedure call.

4.3.1 Creating a simple SOAP message

Now that we know something about what SOAP is, let us see what it looks
like. To do so we will create and send a SOAP message using our example sce-
nario from section 4.2. Let us suppose that our distributor wants to know the
price of a product with a product identifier of 123456. The distributor’s sys-
tem makes an RPC method call to the manufacturer using a SOAP message.
The distributor calls a SOAP method named GetProductPrice and passes a

Table 4.1 SOAP specification components

SOAP construct Description

Message envelope The message envelope describes what a message is and who
should consume it.

Encoding rules SOAP defines encoding rules for serializing application-defined
data types.

RPC support SOAP defines constructs to support RPC interaction between mes-
sage senders and receivers. SOAP also supports asynchronous
(one-way) messages.

HTTP binding A SOAP message may be bound to the HTTP protocol and wrapped
in an HTTP packet.

SOAP Envelope

SOAP Header

SOAP Body

SOAP Block

SOAP Block

SOAP Block

SOAP Block

Figure 4.9 SOAP message structure

J2EE and SOAP 127
productId parameter. The manufacturer returns a price of $99.95 to the dis-
tributor. Figure 4.10 illustrates this chain of events.

SOAP request and response packets
Before we look at the Java code necessary to facilitate this interaction, we
examine the SOAP messages that are transmitted between the two companies.
Listing 4.1 shows the SOAP request and response packets for the GetProduct-
Price method call. As you can see, the request packet provides a product iden-
tifier parameter and the response packet contains the current price for the
specified product.

<!-- SOAP request packet -->

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetProductPrice xmlns:m="MyCompany-URI">

<productId>123456</productId>

</m:GetProductPrice>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--

<!-- SOAP response packet -->

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

Listing 4.1 SOAP request and response packets

Manufacturer
Application

Distributor
Application

getProductPrice
(productId = 123456)

price = $99.95

Figure 4.10 Simple RPC call using a SOAP message

Parameter passed
to remote method

128 CHAPTER 4

Application integration
<m:GetProductPriceResponse xmlns:m="MyCompany-URI">

<Price>99.95</Price>

</m:GetProductPriceResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP request and response packets must be transmitted over a network
between our manufacturer and distributor. We discuss the transport mecha-
nism for SOAP messages in the next section.

SOAP message transport
How does the SOAP message get transported? Currently, HTTP is the only
transport protocol explicitly defined for SOAP. When using HTTP, SOAP mes-
sages are wrapped in either an HTTP request or response packet. Listing 4.2
shows the messages from listing 4.1 being transmitted via HTTP.

POST /ProductPriceQuote HTTP/1.1
Host: www.supplierserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "MyAction-URI"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:GetProductPrice xmlns:m="MyCompany-URI">
<productId>123456</productId>

</m:GetProductPrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV:Body>

<m:GetProductPriceResponse xmlns:m="MyCompany-URI">
<Price>99.95</Price>

Listing 4.2 SOAP messaging over HTTP

Response
parameter

HTTP
request
headers

HTTP
response
headers

J2EE and SOAP 129
</m:GetProductPriceResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

4.3.2 Using SOAP with Attachments

The data transmitted between companies is not always textual in nature.
Graphics files and PDF documents are two very common examples of data that
companies often share. In section 4.3.1, we sent a textual parameter in the
request, a product id, and received a textual response. But what mechanism
can we use to transmit binary data using SOAP?

 There is an extension to the basic SOAP message structure that can accom-
modate non-SOAP (and non-XML) attachments to SOAP messages. This
extended specification, SOAP 1.1 with Attachments, defines a mechanism for
building multipart SOAP messages based on MIME encoding. This standard
uses the same encoding mechanism used in Internet email systems that allows
files to be attached to messages.

 The structure of a SOAP 1.1 with Attach-
ments message is depicted in figure 4.11.

 A complex SOAP message is divided into
Parts, which can be SOAP Parts or Attach-
ment Parts. SOAP Parts contain a SOAP
Envelope, while Attachment Parts can con-
tain any type of MIME encoded data. This
extension is very useful for sending binary
data (images, etc.) along with SOAP mes-
sages. The SOAP 1.1 with Attachments
specification can be found at http://
www.w3.org/TR/SOAP-attachments.

A SOAP with Attachments example
In order to examine a SOAP message that
contains an attachment, we add another
message to our manufacturer and distrib-
utor example. In this case, the manufac-
turer updates a product’s catalog image,
which causes a SOAP message to be sent
to the distributor. The message includes
the new image as a binary attachment.

SOAP Part

Attachment Part

MIME-encoded data

SOAP Envelope

SOAP Body

MIME Envelope

SOAP Header

Figure 4.11 SOAP with Attachments
message structure

130 CHAPTER 4

Application integration
 Listing 4.3 demonstrates the HTTP interaction for an asynchronous SOAP
message with an attachment (the product image) being sent from our manu-
facturer to our distributor. This example includes an updated image for the
product with an id of 123456.

POST /imageUpdate HTTP/1.1
Host: www.mycompany.com
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<productImageUpdate.xml@mycompany.com>"
Content-Length: XXXX
SOAPAction: http://schemas.mycompany.com/Product-Images
Content-Description: An updated thumbnail image for product 123456

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <productImageUpdate.xml@mycompany.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<myco:productImage_id="123456" type=thumbnail
 xmlns:myco="http://schemas.mycompany.com/Product-Images">

 <imageData
 href="cid:product123456thumb.jpg@mycompany.com"/>

</myco:productImage>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <product123456thumb.jpg@mycompany.com>

...Raw JPEG image..
--MIME_boundary--

SOAP messages can also include digital signature information, so that you can
verify the authenticity and validity of SOAP messages. This is based on the
XML Signature recommended standard, also from the W3C. For more details,
see http://www.w3.org/TR/SOAP-dsig/.

Listing 4.3 HTTP SOAP Message with an Attachment

HTTP headers

The cid attribute links the attached
file contents to the SOAP message

payload by its MIME block identifier

J2EE and SOAP 131
Getting more information about SOAP
A more detailed discussion of the SOAP protocol, encoding rules, and HTTP
binding is beyond the scope of this book. We are primarily concerned with
how to use SOAP from J2EE in this chapter. To learn more about what SOAP
is and how it works in general, we refer you to the references on the subject
that are cited in the bibliography.

4.3.3 Using JAXM for SOAP Messaging

In sections 4.3.2 and 4.3.3, we examined the contents of SOAP messages
transmitted between our manufacturer and distributor. We have not yet dis-
cussed how these messages are sent between our systems. For the purposes of
our discussion, we assume that the communication is taking place between
J2EE applications. Do not forget, however, that one of the more popular fea-
tures of SOAP is its ability to integrate heterogeneous systems (e.g., Microsoft
and J2EE applications).

 Currently, the only standard method for transmitting SOAP messages from
Java is the Java API for XML Messaging (JAXM). JAXM, which we examined
briefly in chapter 2, is currently being developed under the Java Community
Process (JCP). JAXM is an API providing a standard mechanism for sending
and receiving XML messages. The initial version of the JAXM specification sup-
ports SOAP 1.1 with Attachments, as described in the previous section.

 Although it is currently in an early access release, JAXM will provide a
familiar mechanism for using SOAP within your J2EE components. The API is
similar to the Java Messaging Service (JMS) in structure, defining connection
factories to abstract JAXM clients from the underlying SOAP provider. As you
will see in the examples, JAXM is based on the JDOM API we have been using
throughout the book.

Using a Business Delegate object for JAXM Messaging
In order to use JAXM, you must write Java code that performs its communication
with a remote host using the JAXM API. In our example, we implement this code
using the Business Delegate pattern. The Business Delegate pattern is used to sim-
plify client access to an application service. The Business Delegate object hides the
complexity of interacting with JAXM from the other components in our applica-
tion. In our case, we will implement a session EJB as our Business Delegate object.
Figure 4.12 depicts this scenario. For more information about the Business Dele-
gate pattern, please see appendix A.

 In listing 4.1, we examined the SOAP messages that were sent between our
manufacturer and distributor when the getProductPrice method was called.

132 CHAPTER 4

Application integration
Now we examine the session EJB that generates the SOAP message and inter-
acts with the remote host (manufacturer). The SOAP interaction is handled
inside a Business Delegate’s getProductPrice method, via JAXM. In this
method, we use a JAXM connection to obtain a MessageFactory and create a
JAXM Message.

SOAPMessageFactory mf = con.createMessageFactory();
SOAPMessage msg = mf.createMessage();

JAXM messages contain both a SOAPPart and zero or more Attachment Parts,
as specified by the SOAP 1.1 with Attachments specification. Every JAXM mes-
sage has a SOAPPart when it is initially created. Now that we have created the
message, we must obtain a handle to the different parts of the message put
some content in the message. We can obtain a handle to the envelope, header,
and body of the message within the SOAPPart, as follows:

SOAPPart sp = msg.getSOAPPart();

SOAPEnvelope envelope = sp.getSOAPEnvelope();

SOAPHeader hdr = envelope.createSOAPHeader();

SOAPBody bdy = envelope.createSOAPBody();

After obtaining a handle to the SOAPBody, we can create a remote method call
and bind its parameters.

JAXM Interaction

J2EE Application

Session Bean
(Business Delegate)

Application
Component

1

Application
Component

3

Application
Component

2

Messaging Services

Figure 4.12 Using a Business Delegate object with JAXM

J2EE and SOAP 133
SOAPBodyElement gpp
 = bdy.createSOAPBodyElement("GetProductPrice",
 Namespace.getNamespace("m", "MyCompany-URI"));

gpp.createSOAPElement("productId",
 Namespace.getNamespace("m", "MyCompany-URI"))
 .addContent(productId);

Finally, we bind the header and body to the envelope, create an Endpoint (des-
tination address), and make the remote method call.

// Set the soap header and soap body on the envelope.
envelope.setSOAPHeader(hdr);
envelope.setSOAPBody(bdy);

// Create an endpoint for the recipient of the message.
Endpoint endPoint = new Endpoint("www.mysupplier.com");

// Get the price via RPC
SOAPMessage priceMsg = con.call(msg, endPoint);

After the call has been made, we can inspect the resulting message and retrieve
the product price response.

String priceString
 = priceMsg.getSOAPPart().getSOAPEnvelope()
 .getSOAPBody().getChild("GetProductPriceResponse",
 Namespace.getNamespace("m", "MyCompany-URI"))
 .getTextTrim();

The full source for the Business Delegate is contained in listing 4.4. Once this
class is implemented, any other component in our application that needs pric-
ing information just needs to call its getProductPrice method.

import javax.xml.messaging.*;
import javax.xml.soap.*;
import org.jdom.*;

import java.net.*;
import java.io.*;
import java.util.*;

public class ProductPriceDelegate {

 private SOAPConnection con = null;

 public ProductPriceDelegate(SOAPConnectionFactory cf) {

 try {
 // Create a connection
 // from the connection factory looked up.
 con = cf.createConnection();

Listing 4.4 A JAXM Business Delegate for SOAP RPC

JAXM is built on
top of JDOM

b Business delegate

c Cache connection

d
ProductPriceDelegate

constructor

134 CHAPTER 4

Application integration
 } catch(Exception e) {
 throw new IllegalStateException(
 "Unable to obtain JAXM connection.");
 }

 }

 /** Business method to obtain current pricing for a product.
 * @param productId The product's ID
 * @return Current price as a double
 */
 public double getProductPrice(String productId)
 throws ProductPricingException {
 try {

 // Create a message factory from the connection
 MessageFactory mf = con.createMessageFactory();

 // Create a message from the message factory.
 SOAPMessage msg = mf.createMessage();

 // Message creation takes care of creating the SOAPPart
 SOAPPart sp = msg.getSOAPPart();

 // Retrieve the envelope from the soap part
 SOAPEnvelope envelope = sp.getSOAPEnvelope();

 // Create a soap header from the envelope.
 SOAPHeader hdr = envelope.createSOAPHeader();

 // Create a soap body from the envelope.
 SOAPBody bdy = envelope.createSOAPBody();

 SOAPHeaderElement
 quoteDate = hdr.createSOAPHeaderElement("QuoteDate",
 Namespace.getNamespace("q",
 "http://www.mycompany.com/PriceQuote"));
 quoteDate.setMustUnderstand(true);
 quoteDate.addContent((new Date()).toString());

 // Add a soap body element to the soap body
 SOAPBodyElement gpp
 = bdy.createSOAPBodyElement("GetProductPrice",
 Namespace.getNamespace("m", "MyCompany-URI"));
 gpp.createSOAPElement("productId",
 Namespace.getNamespace("m", "MyCompany-URI"))
 .addContent(productId);

 // Set the soap header and soap body on the envelope.
 envelope.setSOAPHeader(hdr);
 envelope.setSOAPBody(bdy);

 // Create an endpoint for the recipient of the message.
 Endpoint endPoint = new Endpoint("www.mysupplier.com");

 // Get the price via RPC

eAdds SOAP
header

element

SOAP body
contains
both
methods
and
parameters

J2EE and SOAP 135
 SOAPMessage priceMsg = con.call(msg, endPoint);

 // Inspect the results to obtain price
 String priceString
 = msg.getSOAPPart().getSOAPEnvelope()
 .getSOAPBody().getChild("GetProductPriceResponse",
 Namespace.getNamespace("m", "MyCompany-URI"))
 .getTextTrim();
 return Double.parseDouble(priceString);

 } catch(Exception e) {
 throw new ProductPricingException(productId,
 "Unable to obtain price.");
 }
 } // end getProductPrice()

}

b This class is a Business Delegate for using SOAP XML-RPC messaging to obtain
product price information from our manufacturer.

c Once we obtain a connection to the messaging system, we cache it using the vari-
able con. This allows us to avoid the overhead of obtaining the connection multi-
ple times.

d When this class is instantiated, its first task is to connect to the messaging system. If
that connection succeeds, then we cache the connection in the variable con. If it
fails, then the Business Delegate is of no use to the client and it throws an exception.

e Though it is not necessary, we add a SOAP header element to our message to show
how it is done. The element that we add to the message is today’s date.

This code uses JAXM to create a synchronous message that obtains the price
for a specific item. In section 4.3.2, we discussed a scenario in which an asyn-
chronous SOAP message is sent from the manufacturer to the distributor
because a product image was updated. In the next section, we examine the
Java code necessary to receive and process that image.

Receiving asynchronous SOAP messages
Receiving asynchronous SOAP messages via JAXM must be done via the J2EE
web container, since there is currently no JAXM support in the Message
Driven EJB construct. To receive asynchronous SOAP messages, you need to
implement a servlet to receive the inbound messages and route them to other
components as appropriate. JAXM provides a base servlet called JAXMServlet
for use in these situations. Listing 4.5 is a JAXM servlet to handle the asyn-
chronous product image updates described in listing 4.3.

136 CHAPTER 4

Application integration
 The manufacturer generates a SOAP message whenever a product image
has been updated. When the message arrives at the distributor, a JAXMServ-
let’s onMessage method is called with a JAXM Message parameter. Our exam-
ple servlet inspects the Message to obtain a reference to a JDOM Element that
contains the method call parameters.

Element productIdElem =
 message.getSOAPPart()
 .getSOAPEnvelope()
 .getSOAPBody()
 .getChild("productImage",
 Namespace
 .getNamespace("myco",
 "http://schemas.mycompany.com/Product-Images"));

The JDOM Element is then inspected to determine the product identifier, type
of image, and the identifier for the MIME block that contains the image data.

String productId
 = productIdElem.getAttributeValue("id");

String imageType
 = productIdElem.getAttributeValue("type");

String mimeContentId
 = productIdElem.getChild("imageData")
 .getAttributeValue("href");

The attachments are then inspected to locate the image data and save it to a
file. The JAXM API assumes that more than one attachment is present in any
message, so we must iterate over a collection of one in this case.

Iterator attachmentIterator
 = message.getAttachments();

while (attachmentIterator.hasNext()) {
 AttachmentPart ap
 = (AttachmentPart) attachmentIterator.next();

 // match attachment's content id to the
 // id specified above
 if (mimeContentId.equals(ap.getContentId())) {
 . . .
 }
}

Listing 4.5 contains the full source code for the JAXM servlet that accepts
inbound SOAP messages.

J2EE and SOAP 137

import javax.xml.messaging.*;
import javax.xml.soap.*;
import javax.activation.DataHandler;
import org.jdom.*;

import java.io.*;
import java.util.*;

/**
 * A JAXM servlet that receives asynchronous
 * image updates for products from a supplier.
 */
public class ImageUpdateServlet extends JAXMServlet {

 public SOAPMessage onMessage(SOAPMessage message) {

 try {

 Element productIdElem =
 message.getSOAPPart()
 .getSOAPEnvelope()
 .getSOAPBody()
 .getChild("productImage",
 Namespace
 .getNamespace("myco",
 "http://schemas.mycompany.com/Product-Images"));

 // get the product ID corresponding to
 // the image file
 String productId
 = productIdElem.getAttributeValue("id");

 // get the image type
 String imageType
 = productIdElem.getAttributeValue("type");

 // get the attachment's MIME id
 String mimeContentId
 = productIdElem.getChild("imageData")
 .getAttributeValue("href");

 // go get the attached image data
 Iterator attachmentIterator
 = message.getAttachments();

 // iterate the attachments - should only be one
 while (attachmentIterator.hasNext()) {
 AttachmentPart ap
 = (AttachmentPart) attachmentIterator.next();

 // match attachment's content id to the
 // id specified above
 if (mimeContentId.equals(ap.getContentId())) {

Listing 4.5 A JAXM servlet for inbound SOAP messaging

JAXM is built on
top of JDOM

b

Handles
image
update

Gets the SOAP block
containing the

product ID

138 CHAPTER 4

Application integration
 // obtain a data handler for the type of content
 // see javax.activation.DataHandler for details
 DataHandler dh = ap.getDataHandler();

 // store the binary image data someplace
 }
 }

 } catch(Exception e) {
 // log the error, panic, etc.
 }

 // asynchronous SOAP - no message to send back
 return null;
 }

}

b Handles the image update asynchronous message. This method returns null
because no response is sent back to the message creator.

SOAP is an important development in the application integration space. Our
discussion has been so detailed because we believe that it will play a significant
role in your J2EE application in the future.

4.4 Building web services in J2EE

The idea of web services is taking the technology industry by storm, due in
large part to vigorous support from software giants such as IBM, Sun Micro-
systems, and Microsoft. It is central to Microsoft’s .NET strategy, as well as
those of IBM, Sun, and numerous other companies. Since web services appear
destined to succeed, we discuss building and using web services in the J2EE
environment in this section.

 As XML messaging technologies such as SOAP have gained momentum, moving
distributed application architectures away from tightly coupled technologies such as
CORBA and RMI has become possible. The web services architecture is a loosely
coupled, service-oriented environment in which applications expose functionality to
one another over the Web. This type of architecture maximizes the flexibility and
interoperability of distributed applications. Because it is based on open standards
such as XML and HTTP, it is completely vendor- and implementation-independent.
A web service created using C++ and Microsoft’s .NET development tools can be
consumed by a Java component running in a J2EE container. And once these ser-
vices become pervasive, new types of applications that aggregate a set of services into
completely integrated, inter-enterprise distributed systems will be possible.

Building web services in J2EE 139
4.4.1 What is a web service?

A web service is some set of functionality made available to remote applications
and services via the Internet. A web service is described in XML, using the
Web Services Definition Language (WSDL). As shown later in this section, a
WSDL description contains details about what the service is, where to find it
on the Web, and how to interact with it. Once created, this description is reg-
istered in a well-known location. Figure 4.13 depicts a sample web service.
There are currently two popular, competing standards in the web services reg-
istry space, the ebXML Registry and Repository and Universal Description,
Discovery, and Integration (UDDI). Of these, UDDI is more general-purpose
and is rapidly gaining the support of a majority of the industry.

UDDI defines a system of interoperating service registries that collaborate over
the Internet. Its operation is conceptually similar to the Domain Name System
(DNS). In UDDI, businesses that provide web services register them with an
official UDDI registrar. The registration is then propagated throughout the
system, allowing any potential service consumer to search for and locate it via
any UDDI engine.

 Once a web service has been located, the interaction between producer
and consumer takes place over standard Internet protocols such as HTTP, FTP,
and SMTP. As described earlier, SOAP has an explicit binding to the HTTP pro-
tocol. This has made the use of SOAP for web service integration the de facto
standard. Where secure interactions are required, HTTPS can be used instead.

Manufacturer
Application

Web Service
Discovery

Web Serivces
Registry

Manufacturer
ABC

(Product Pricing)

Web Service
Registration

Client
Application Web Service Usage

Figure 4.13 Basic structure of a web service

140 CHAPTER 4

Application integration
Web service interfaces
A web service can be designed to use a one-way, message-based interface or a
two-way, RPC-style interface. This is consistent with our JAXM examples from
the previous section.

 Message-based web services are said to be document-driven, meaning that only
the data passed between the parties is important. Issues like timing and coordina-
tion of processing are irrelevant. Data-oriented Web services lend themselves to the
message-based style. For example, the SOAP message from listing 4.3 is data-
driven, and its web service would employ the message-based style.

 RPC-style services are interface-driven, synchronous interactions. A web
service that is process-oriented will use the RPC-style. For example, the SOAP
interaction described in listing 4.1 is synchronous (process-driven), and would
use the RPC-style.

4.4.2 Providing web services in J2EE

J2EE web services leverage the HTTP capabilities of servlets for sending and
receiving messages. For RPC-style web services, you create a servlet that
accepts the inbound request, interacts with the component providing the ser-
vice, and returns an appropriate response. The most obvious choice for imple-
menting a J2EE web service is a stateless session bean, since web services are
self-contained RPC calls that do not maintain state across invocations.

 The suggested architecture for a J2EE RPC-style web service is depicted in
figure 4.14.

J2EE EJB Container

Stateless Session
EJB

J2EE Web Container

RPC Java Servlet Web Service
Clients

HTTP(s)

Figure 4.14 RPC-style web service in J2EE

Building web services in J2EE 141
Message-style web services
For message-style web services in J2EE, the inbound servlet can place mes-
sages on a JMS topic or queue to be processed asynchronously by a Message
Driven EJB. If a response is required after the message has been processed, the
Message Driven Bean can place the response on an outbound queue for deliv-
ery via an outbound servlet. This architecture is depicted in figure 4.15.

J2EE web services component model
Since J2EE web services are built upon open standards, vendor tools can gen-
erate much of the code and supporting XML descriptions of your web service
automatically for you. This allows you to concentrate on the specific service
being implemented, rather than the details of SOAP messaging and WSDL. For
example, BEA’s WebLogic product will generate the WSDL for your web

Web Service
Clients

J2EE EJB Container

Message Driven EJB

Inbound JMS
Destination

Outbound JMS
Destination

J2EE Web Container

Inbound
Message Servlet

Outbound
Messaging

Adapter

HTTP(s)

Figure 4.15
Message-style web service in J2EE

142 CHAPTER 4

Application integration
service and provide a client JAR file to be downloaded to remote users of the
service. It additionally provides generic proxy servlets to receive and send web
service messages using SOAP 1.1 with attachments. The only requirements
placed upon you are that you implement your web services using the patterns
discussed in the previous section (stateless session EJBs for RPC and Message
Driven EJBs for message-style) and that you run those EJBs through a web ser-
vice generation utility. This can make building web services much faster and
easier. If you are using another J2EE server, consult your vendor’s documenta-
tion for similar functionality.

 As web services registries and the JAXR API mature, we expect to see
automated tools for registering your web services in UDDI and similar sys-
tems as well. For now, the registration process is outside the scope of ven-
dor implementations.

4.4.3 Implementing our example web services

To demonstrate the creation of J2EE web services, we implement both an
RPC-style web service and a message-style web service. The environment that
we have chosen for these examples to run in is BEA WebLogic version 6.1.
Although there are many vendor products that provide support for web ser-
vices, we have chosen WebLogic based in its popularity in the industry. An
evaluation version of WebLogic can be downloaded at http://www.bea.com.
Additionally, we use WebLogic in chapter 6 as an application environment for
our case study. We do, however, make every attempt to keep our examples
vendor- and product-independent. We note any area in which we use
WebLogic-specific services.

An RPC-style web service
For the RPC-style example, we implement a web service that provides price
updates to our distributor from our manufacturer. This is the web service that
would have created the SOAP response message shown in listing 4.1. We
require a stateless session bean that implements the GetProductPrice interface
described in listing 4.1. This bean will contain a single business method that
accepts a String representing a product identifier and returns a double repre-
senting the current price.

public double getProductPrice(String productId) {

The code for our session bean is shown in listing 4.6.

Building web services in J2EE 143
import javax.ejb.*;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
 * A simple stateless SessionBean that implements
 * our product pricing, RPC-style web service.
 */
public class ProductPricingBean implements SessionBean {

 /**
 * Retrieve the current price of the specified product.
 *
 * @param productId The product to be priced
 * @return the price as a double
 * @exception EJBException if there is
 * a communications or systems failure
 */
 public double getProductPrice(String productId) {
 return (new Double("9.95")).doubleValue();
 }

 // EJB specification stuff below

 private SessionContext ctx;

 public void ejbActivate() { }

 public void ejbRemove() { }

 public void ejbPassivate() { }

 public void ejbCreate () throws CreateException { }

 public void setSessionContext(SessionContext ctx) {
 this.ctx = ctx;
 }

}

b In the body of this method, the manufacturer’s application would typically interact
with other components, services, or data sources. For the purposes of this example,
we assume that the product price is always $9.95 USD.

This EJB can now be run through a vendor tool to produce the WSDL file and
link it to a SOAP proxy servlet. But first we will create the message-style web
service for product image updates. After developing the code for both ser-
vices, we will create and examine WSDL files for both of them together.

Listing 4.6 RPC web service session bean

Web Service
method exposed
to vendorsb

144 CHAPTER 4

Application integration
SOAP data types
Note that, due to limitations of the SOAP encoding rules, only Java primitive
types, their wrapper objects, and XML DOM objects can currently be used as
parameter and return types to a web service. Table 4.2 shows the supported
Java data types you can use in WebLogic web services as an example of this.

A message-style web service
For the message-based example, we implement a web service that provides
asynchronous updates of images for a product catalog. This is the web service
that would have produced the SOAP message shown in listing 4.3.

 The implementation includes a Message Driven Bean that accepts the
product image update message shown in listing 4.3. This EJB will be invoked
whenever a message is placed on the JMS Destination we configure for the
web service. Your J2EE vendor may provide a proxy servlet to handle the
receipt of the message for you, similar to the RPC-style proxy servlet used in
the previous example. However, the manner in which messages are placed on
the queue can vary by vendor. For example, WebLogic 6.1 uses its own pro-
prietary SOAP API to parse incoming messages and put their payloads on a
JMS topic or queue. If you want to use the built-in proxy functionality for
message-style web services, you may need to use the vendor’s API to access
your incoming messages.

 Since we like our J2EE code to be vendor-free, our example implementa-
tion for the message-style web service uses JAXM to handle incoming mes-
sages. This requires extra work on our part to create and deploy the proxy
servlet, but also gives us full control over the entire process. Listing 4.7 shows
the Message Driven EJB that processes the product image updates. We do not

Table 4.2 Supported Java data types for WebLogic 6.1 web services

Java data type category Examples

Primitive data types int, short, long, double, float, Boolean

Wrapper classes for primitive types java.lang.Integer, java.lang.Short,
java.lang.Long, java.lang.Double,
java.lang.Float, java.lang.Boolean

W3C classes representing XML docu-
ments, fragments, and elements

org.w3c.dom.Document, org.w3c.dom.Element

JavaBeans containing properties of
the types listed in this table only.

A Bean defining two properties of type int and
org.w3c.dom.Document

One-dimensional arrays of other data
types listed in this table

A one-dimensional array of org.w3c.dom.Document
objects

Building web services in J2EE 145
cover it step-by-step here, due to its similarity to the JAXM servlet in
listing 4.5.

import javax.ejb.*;
import javax.naming.*;
import java.rmi.RemoteException;
import javax.jms.MessageListener;
import javax.jms.TextMessage;
import javax.jms.JMSException;

import javax.xml.messaging.*;
import javax.xml.soap.*;
import javax.activation.DataHandler;
// JAXM based on JDOM
import org.jdom.*;

import java.io.ByteArrayInputStream;
import java.util.Iterator;

public class ImageUpdateListenerBean
 implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;
 private transient SOAPConnection jaxmCon;

 public void onMessage(javax.jms.Message msg) {

 TextMessage tm = (TextMessage) msg;
 try {
 String jaxmMsgString
 = (String) tm.getText();
 MessageFactory mf =
 jaxmCon.createMessageFactory();
 SOAPMessage message = mf.createMessage(
 (new ByteArrayInputStream(|
 jaxmMsgString.getBytes("UTF-8")))
);

 // now inspect the SOAP message to
 // determine the product ID and obtain
 // the attached image file

 Element productIdElem =
 message.getSOAPPart()
 .getSOAPEnvelope()
 .getSOAPBody()
 .getChild("productImage",
 Namespace
 .getNamespace("myco",
 "http://schemas.mycompany.com/Product-Images"));

Listing 4.7 Message-style web service bean

Uses JAXM to process
message contents

Connection to JAXM
provider

b Receives
message from
JMS queue

c Rebuilds JAXM
message

146 CHAPTER 4

Application integration
 String productId7
 = productIdElem.getAttributeValue("id");

 String imageType
 = productIdElem.getAttributeValue("type");

 String mimeContentId
 = productIdElem.getChild("imageData")
 .getAttributeValue("href");

 Iterator attachmentIterator
 = message.getAttachments();

 while (attachmentIterator.hasNext()) {
 AttachmentPart ap
 = (AttachmentPart) attachmentIterator.next();
 if (mimeContentId.equals(ap.getContentId())) {
 DataHandler dh = ap.getDataHandler();
 // store the binary image data someplace
 }
 }
 } catch(Exception ex) {
 // log, email, panic, etc.
 }
 }

 // Other EJB and helper methods
 // ----------------------------
 public void ejbCreate () throws CreateException {
 try {
 getJAXMConnection();
 } catch (Exception e) {
 throw new CreateException(e.getMessage());
 }
 }

 private void getJAXMConnection()
 throws Exception {
 if (jaxmCon == null) {
 Context namingCtx =
 new InitialContext();
 SOAPConnectionFactory myCF =
 (SOAPConnectionFactory) namingCtx.lookup(
 "java:comp/env/jaxm/JAXMConnFactory");
 jaxmCon = myCF.createConnection();
 }
 }

 private void releaseJAXMConnection() {
 if (jaxmCon != null) {
 try {
 jaxmCon.close();
 } catch (Exception e) { }
 }

Gets attachment’s
MIME id

Gets attached
image data

Creates connection to
JAXM provider

Building web services in J2EE 147
 }

 public void ejbActivate() {
 try {
 getJAXMConnection();
 } catch (Exception e) {
 throw new IllegalStateException(e.getMessage());
 }
 }

 public void ejbRemove() { releaseJAXMConnection(); }

 public void ejbPassivate() { releaseJAXMConnection(); }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

}

b Receives messages from a JMS queue each time a product is updated. The onMes-
sage method processes the JAXM message passed in from the queue.

c As we will see in listing 4.8, the JAXM Message is not directly serializable. Once
we receive the message from the JMS queue, the first step is to rebuild the JAXM
message.

The JAXMServlet that accepts the updates from our supplier and places them
on the JMS Queue is shown in listing 4.8. When invoked, this servlet transfers
the JAXM Message contents into a JMS Message. This is a bit complicated,
because JAXM messages are not currently serializable.

ByteArrayOutputStream baos =
 new ByteArrayOutputStream();
message.writeTo(baos);
String jaxmMsgString = baos.toString("UTF-8");

After we have the message represented as a ByteArrayOutputStream, we can
create a JMS TextMessage and place it on the queue, bound for our Message
Driven Bean.

TextMessage msg =
 qsession.createTextMessage();
msg.setText(jaxmMsgString);
qsender.send(msg);

import javax.naming.*;

Listing 4.8 JAXM web service servlet

148 CHAPTER 4

Application integration
// explicit class imports to avoid
// name collisions between JAXM and JMS
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueConnection;
import javax.jms.QueueSession;
import javax.jms.Session;
import javax.jms.QueueSender;
import javax.jms.Queue;
import javax.jms.TextMessage;

import javax.xml.messaging.*;
import javax.xml.soap.*;
// JAXM based on JDOM
import org.jdom.*;

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class ImageUpdateServlet extends JAXMServlet {

 private QueueConnectionFactory qcFactory = null;
 private Queue queue = null;

 public void init(ServletConfig servletConfig)
 throws ServletException {

 try {
 Context naming = new InitialContext();
 qcFactory = (QueueConnectionFactory)
 naming.lookup(
 "mycompany.jms.QueueConnectionFactory");
 queue = (Queue)
 naming.lookup(
 "mycompany.jms.ProductImageUpdateQueue");
 } catch(Exception e) {
 throw new ServletException(e.getMessage());
 }

}

public SOAPMessage onMessage(SOAPMessage message) {

 try {
 // put the JAXM Message on the Queue
 ByteArrayOutputStream baos =
 new ByteArrayOutputStream();
 message.writeTo(baos);
 String jaxmMsgString = baos.toString("UTF-8");

b

JAXM
proxy
servlet

Creates naming
context

c

Handles
image
update

d

Dumps
object to
UTF-8 string

Building web services in J2EE 149
 QueueConnection qcon =
 qcFactory.createQueueConnection();
 QueueSession qsession =
 qcon.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 QueueSender qsender =
 qsession.createSender(queue);
 TextMessage msg =
 qsession.createTextMessage();

 qcon.start();
 msg.setText(jaxmMsgString);
 qsender.send(msg);
 // clean up
 qsender.close();
 qsession.close();
 qcon.close();

 } catch(Exception e) {
 // log the error, panic, etc.
 }
 // asynchronous SOAP - no message to send back
 return null;
 }

}

b This class is a JAXM web services proxy servlet that receives asynchronous image
updates for products from a supplier.

c The onMessage method handles the image update from the asynchronous SOAP
message. The parameter that it receives is the JAXM Message. This method returns
null because no response is sent back to the message creator.

d This code block dumps the object to a UTF-8 string. We do this before we put it
on the JMS queue because JAXM Messages are not serializable.

Now that we have created both the RPC-style and message-Style web services,
we need to publish them for clients. This involves generating WSDL that
describes our new services.

Using WSDL to describe web services
For our new web services to be discovered and invoked by new business part-
ners, we must first create a description of each using WSDL. This description
provides details about what the web service does, how to invoke it, and where
it can be found on the Internet. These WSDL descriptions are then published
in one or more web service registries like UDDI.

Establishes queue
connection

Sends JAXM message

150 CHAPTER 4

Application integration

A WSDL file contains five groups of information, as described in table 4.3.
These data are layered on top of each other to provide a complete description
of your web service. At the top layer, the <service> elements describe the web
service(s) provided and their URLs. This information refers to and relies on
the information from the <binding>, <portType>, and <message> elements in
the document. The <types> construct allows you to define new XML Schema
data types if needed.

 Figure 4.16 visually depicts the relationship between elements in a WSDL
file. The WSDL for our example RPC web service is shown in listing 4.9.

<?xml version="1.0"?>
<definitions
 targetNamespace="java:examples.chapter4.webservices.rpc"
 xmlns:tns="java:examples.chapter4.webservices.rpc"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
>
 <types>
 <schema

Table 4.3 Information groups in WSDL

WSDL information type Description

Data types The <types> element allows you to derive new XML Schema data
types for elements used in your WSDL descriptions.

Messages The <message> element defines a one-way message, including its
parameters, if any. An RPC-style web service with one operation
would define two <message> elements, one for the request and
one for the response.

Port types Port types are abstract constructs that allow grouping of message
definitions into operations. They define request/response interac-
tion without regard to the specifics of the protocol used to exchange
the messages (which is handled by <binding> information).

Bindings A <binding> element maps a port type to a communication mech-
anism, like SOAP. These data add protocol-specific information to
the port type information.

Web service instances A <service> element describes an instance of a web service,
including where it is located (URL), what its interface is (port type)
and how to interact with it (binding).

Listing 4.9 WSDL for the product pricing web services

Building web services in J2EE 151
 targetNamespace='java:examples.chapter4.webservices.rpc'
 xmlns='http://www.w3.org/1999/XMLSchema'>
 <!-- Derived XML data types would go here -->
 </schema>
 </types>

 <!--
 Inbound/Outbound message definitions for our RPC service
 -->
 <message name="getProductPriceRequest">
 <part name="productId" type="xsd:string" />
 </message>
 <message name="getProductPriceResponse">
 <part name="return" type="xsd:double" />
 </message>

 <!--
 The definition of the web service port type.
 This binds the messages above together into
 an RPC request/response "operation."
 -->
 <portType name="ProductPricingPortType">
 <operation name="getProductPrice">
 <input message="tns:getProductPriceRequest"/>
 <output message="tns:getProductPriceResponse"/>
 </operation>
 </portType>

 <!--
 A binding of our new port type to SOAP/HTTP.
 -->
 <binding
 name="ProductPricingBinding"
 type="tns:ProductPricingPortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http/"/>
 <operation name="getProductPrice">
 <soap:operation soapAction="urn:getProductPrice"/>
 <input>
 <soap:body use="encoded" namespace='urn:ProductPricing'
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace='urn:ProductPricing'
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <!--
 The actual web service definition, built from the
 message, port, and binding information above.

152 CHAPTER 4

Application integration
 This is where the actual URL for the service is
 specified.
 -->
 <service name="ProductPricing">
 <documentation>
 This service accepts a product ID from our catalog and
 returns its current list price.
 </documentation>
 <port name="ProductPricingPort" binding="tns:ProductPricingBinding">
 <soap:address

location="http://localhost:7001/productPricing/productPricingURI"/>
 </port>
 </service>
</definitions>

Registering web services in UDDI
Now that the web service implementations exist and the WSDL has been gen-
erated, all that is left to do from the web service provider side is to register the
services with a UDDI registry. Both commercial and open source development
tools are becoming available to automate this task. If our web services were to
be publicly available, we would need to register with an official UDDI regis-
trar. Otherwise, we could purchase a UDDI registry product and run UDDI on
an internal network. See http://www.uddi.org for a current list of UDDI reg-
istrars and UDDI server providers.

Web Service Instance
Information

<service> elements

Binding Information

<binding> elements

Port Type Information

<portType> elements

Message Descriptions

<message> elements

Data Types Information

<types> element

Figure 4.16 Data relationships in WSDL

Building web services in J2EE 153
 Once we have decided where to register the web services, the task of con-
necting to the registry and registering them can be automated using an API.
In the future, the JAXR API should be available to make this automation
vendor-independent. For now, you must implement such functionality using a
third-party API such as the Free Software Foundation’s pUDDIng library.
Such APIs provide the ability to connect to a UDDI registry server and register
(as well as discover) your web services. You might consider writing a parame-
ter-driven utility application using pUDDIng or another UDDI tool to auto-
mate registrations, especially if you plan to create numerous web services in
the future. Information about pUDDIng and other tools can be found
through the UDDI URL listed in the preceding paragraph.

4.4.4 Consuming web services in J2EE

Accessing web services from J2EE is similar to other types of systems integra-
tion tasks with one extra step. That step has to do with locating the web ser-
vice in a registry before connecting to it. This can be done directly via APIs
such as pUDDIng or (in the future) JAXR. It is also likely that J2EE connectors
will soon be built to make this service discovery process transparent to the
application developer. You may, for instance, obtain a web service connection
factory via JNDI in your code and configure it externally, similar to JMS Desti-
nations, JDBC data sources, and other resources in J2EE.

 Many of the design patterns discussed in chapter 2 can be useful in terms
of web service interaction from an EJB container. You might use the Business
Delegate pattern to encapsulate the complexities of making a SOAP RPC call.
This delegate might use a combination of JAXM and JAXR to locate a web ser-
vice, build a SOAP message, and make an RPC call to a web service. Such an
implementation would be similar to the Business Delegate we created in list-
ing 4.4. In cases where you need to model a set of web service operations as
an internal application entity, you might also consider using the Aggregate
Entity or Data Access Object patterns with web service-aware helper classes.

4.4.5 J2EE web services and Microsoft .NET

All the major players in the software development industry have initiatives sur-
rounding web services. Sun Microsystems, IBM, and Microsoft are each tout-
ing the web services architecture as a key part of their business development
strategies for years to come. This begs the question, what issues can I expect
to encounter when trying to integrate my J2EE system with a non-Java web
service implementation? More specifically, will I really be able to actually

154 CHAPTER 4

Application integration
integrate with a Microsoft-based environment just because we all use SOAP
and HTTP to communicate?

 The short answer is yes, with some work potentially required. It is true that
SOAP and HTTP bring us a lot closer to an open services environment. How-
ever, there are some details to be tripped over when integrating a foreign web
service into your environment. These details concern the encoding of the
actual data carried within SOAP messages, not the messages themselves.

 Mapping primitive data types between a Java and COM environment is not
particularly challenging, but the same cannot be said about such complex
types as software objects. To communicate, both parties in a SOAP communi-
cation must speak the same encoding language, having agreed to the structure
and interpretation of the data payload in each message. This can be more
complicated than it appears. For example, the WebLogic 6.1 SOAP implemen-
tation can only handle the types shown in table 4.1. This means that you must
somehow serialize any complex object to XML or a JavaBean containing its
constituent primitive types as properties for transport.

 In simple scenarios (which most web service interactions should be), com-
municating with a .NET web service should be easy. This simple scenario refers
to the passing of data types explicitly handled by the SOAP encoding rules. For
data types that fall outside these bounds, an agreed-upon encoding mecha-
nism and the software objects to do the encoding and decoding between plat-
forms will be required.

4.5 Summary

This chapter began by describing systems integration, the process of gluing
individual applications and services together to create robust distributed sys-
tems. We discussed the four general architectural patterns for integrating inde-
pendent systems. These patterns describe the four ways in which two systems
communicate: through data, messages, remote procedures, and object inter-
faces. After discussing general integration patterns, we examined a proven
approach to systems integration called constraint-based modeling.

 After understanding the systems integration process, the remainder of the
chapter focused on the ways in which XML technologies can make integration
easier and more robust. We outlined the current XML standards and technolo-
gies that can be implemented in each of the four architectural patterns, includ-
ing some of the key Java/J2EE APIs that implement them.

 Sections 4.2 and 4.3 focused on SOAP and web services. These sections
included brief introductions to the technologies in general, along with

Summary 155
examples of their implementation in Java. Much of your XML-based systems
integration work in the future will likely involve web services, so investing the
time to master SOAP, UDDI, and WSDL should be well worth it.

 For another look at how web services are constructed and used in J2EE,
you need only look to the case study in chapter 6. In that chapter, we combine
our understanding of systems integration with the concepts from chapters 3
and 5 to create an end-to-end example of a J2EE/XML application that is inte-
grated into its environment via web services.

User interface
development

This chapter
■ Demonstrates use of XSLT with Java servlets
■ Compares pure J2EE user interface

development with an XML approach
■ Shows how to build multidevice and multilocale

user interfaces
■ Covers XML web publishing frameworks
157

158 CHAPTER 5

User interface development
Creating a robust presentation layer for your J2EE application is a challenging
endeavor. This is so because the vast majority of J2EE applications are web-
based, also known as “thin-client”, applications. In this chapter, we examine
some emerging challenges in J2EE user interface design and discuss ways you
might use XML technology to overcome them.

 We begin by exploring the nature of thin-client user interface development
and the challenges you are likely to face when building and maintaining an
advanced presentation layer. We then examine the “pure” J2EE approach to
building such a layer to see where the current J2EE architecture is lacking.

 The remainder of the chapter focuses on overcoming the limitations of the
pure J2EE approach using XSLT technology. First we develop an XSLT-based
presentation layer from scratch. Then we use XSLT from within a web pub-
lishing framework to discover the benefits and drawbacks of using a third
party API.

 The goal of this chapter is not to convince you that one architecture or
product is superior to another. We wish only to make you aware of the avail-
able options, see them in action, and understand the positive and negative
aspects of taking each approach.

5.1 Creating a thin-client user interface

In this chapter, we focus almost exclusively on web-based, thin-client distrib-
uted applications. Before diving into the details of overcoming challenges
associated with these types of applications, we should take a moment to dis-
cuss what they are and why building interfaces for them is so difficult.

DEFINITION A thin-client application is one in which the server side is responsi-
ble for generating the user interface views into the application. The
client side usually consists only of generic rendering software, e.g., a
web browser.

If you have built web-based applications before, you are no doubt familiar
with the thin-client architecture. Until recently, the burden of generating the
user interface for your application on the server side was not too difficult. Two
relatively recent developments, however, are now making the development
and maintenance of your presentation layer components more challenging.

Creating a thin-client user interface 159
5.1.1 Serving different types of devices

The first new challenge relates to the ongoing proliferation of web-enabled
devices. It seems as though anything that runs on electricity these days now
has a web browser on it. These “smart” devices include cell phones, PDAs, and
refrigerators. (That only sounds like a joke.) The trouble with these smart
devices is that they are usually quite dumb, virtually light years behind the cur-
rent version of your favorite computer-based Internet browser. Some under-
stand a subset of the HTML specification, and others require an entirely
separate markup language. An example of the latter is the WAP-enabled cell
phone, which requires web pages to be rendered using the Wireless Markup
Language (WML).

DEFINITION WML is an XML-based presentation markup language specifically
designed for web browsing on cellular telephones. These phones
typically feature small display areas and very limited rendering capa-
bilities. WML arranges content into a deck of cards (pages), each of
which should contain very little data and uncomplicated navigation.

Creating a single, integrated user interface that can render content for various
types of devices is difficult to do using the traditional J2EE (or ASP, or Cold
Fusion, etc.) approach. User interface components in these technologies were
not designed to change the entire structure of the generated content based on
the type client requesting it. This means that, in order to serve web browser
and cell phone client types from your J2EE web application, you must develop
and maintain two separate presentation layers. One layer would generate an
HTML interface, and the other a WML interface. Some updates to the applica-
tion would require updates to both user interfaces. If you think managing two
interfaces is scary, consider supporting three more types of client devices in the
same application.

5.1.2 Serving multiple locales

The other unpleasant possibility concerns serving content to users in different
locales. The obvious challenge here is to determine the end user’s preferred
language and render the presentation in that language. This means having
some mechanism to translate your application’s user interface between natural
languages, either on the fly or offline. Offline translation can be expensive and
time consuming, but its result is far less likely to be unintelligible. Real-time
translation has been done poorly many times, but never done well as far as we
know. Also consider that everything might need to be translated, including

160 CHAPTER 5

User interface development
text embedded in images and static text that might otherwise be embedded
directly in your JSP.

 The second, perhaps less obvious, dimension to the multiple locale prob-
lem has to do with cultural differences. Beyond the textual content of the
page, it may be appropriate and advantageous to change the entire structure
of your user interface for a new locale. You might want to change color
schemes, page layouts, or even the entire navigational flow of the interface.
The reasons for these types of changes have to do with psychology and mar-
keting and other ungeeklike topics that we need not address here. In this
chapter, we concentrate on how to satisfy these types of requirements, assum-
ing away the reasons.

 If you have tried to serve multiple languages and/or locales effectively
using a pure J2EE presentation layer, you already appreciate the magnitude of
the challenge. If not, we highlight its scariest features in the remainder of this
chapter. What inevitably results from attempting to meet this requirement in
the traditional approach is a large collection of mostly redundant, often misbe-
haved JSPs and servlets that are a nightmare to maintain and extend.

5.1.3 An example to work through

To really get at the heart of the matter and see how XML can help overcome
the thin-client blues, let us look at some example requirements. For the sake
of ubiquity and clarity, we examine a relatively simple user interface and a sin-
gle point of functionality in a fictitious application. The application is a stock-
trading web site, and the functional point to be explored is the rendering of a
specific user’s “watch list” of stock prices. Constraining our example to one
small functional point allows us to concentrate on dynamically changing the
user interface without bogging down in other details.

 Here are the requirements that concern us in this chapter:
■ The watch list page must be viewable via PC-based web browsers and

WAP-enabled cell phones.
■ The watch list page is rendered for two locales, the United States and

Great Britain. Each locale requires its own specific interface with appro-
priate textual messages.

■ The price for each stock listed on the watch list should be expressed in
the user’s local currency, USD (United States dollars) for the U.S. and
GBP (British pounds) for the U.K.

You can see from the requirements above that our watch list user interface
must consist of four pages. Figure 5.1 is an HTML page rendered for users in
the United States.

Creating a thin-client user interface 161
Figure 5.2 is an HTML page rendered for users in Great Britain.

Figure 5.1
Stock watch list
HTML page—
United States

Figure 5.2 Stock watch list HTML page—Great Britain

162 CHAPTER 5

User interface development
Figure 5.3 is a WML page rendered for users in the United States.

Figure 5.4 is a WML page rendered for users in Great Britain.

We chose the United States and Great Britain as the locales for this example
to avoid the requirement of a second language on your part. In the remain-
der of this chapter, we create and recreate these four pages using a variety of
techniques. In section 5.2, we use only the capabilities of J2EE and see where
they fail us. In sections 5.3 and 5.4, we bring XML technology to the rescue
and create a unified interface for this page that supports multiple device types
and locales.

5.2 The pure J2EE approach

Before we discuss any new, XML-based architectural models for user interface
creation, it is important to understand why we might need them. After all, we

Figure 5.3
Stock watch list WML page—United States

Figure 5.4
Stock watch list WML page—Great Britain

The pure J2EE approach 163
do not want to fix something that is not broken nor overcomplicate an appli-
cation unnecessarily. In this section we first explore what the pure J2EE
approach has to offer and see some of its limitations when using it to develop
our example pages.

5.2.1 The J2EE presentation tool kit

The various J2EE presentation layer components are summarized in table 5.1.
All of these components, with the exception of applets, execute in the J2EE
web container on the server side of a client/server application. These applica-
tions are almost always thin-client, web-based ones. In such an architecture the
J2EE server-side components are designed to collaborate with one another in
an adaptation of the Model-View-Controller (MVC) software design pattern.

The MVC presentation architecture is intended to decouple application data
(model) from its rendering (view) to produce a more modular system. The con-
troller is a traffic cop of sorts, managing the relationship between the views
and the model. The two main goals of the MVC are:

■ To enable multiple views of the same information
■ To reuse the components used to generate the interface

When MVC is implemented correctly, individual components are independent of
one another. A clock is a perfect example of this. The model, or mechanism for
keeping time, functions the same regardless of the use of a digital or analog view.

Table 5.1 J2EE presentation framework components

J2EE component Purpose

Applets Java components downloaded and run in client browsers.

Servlets Java components invoked through a client request to perform
server-side processing and generate a response.

Java Server Pages (JSPs) Response page templates that allow in-line inclusion of Java
code with static content.

JavaBeans Component framework for creating reuse in your applications.

JSP custom tags Classes that enable complex logic to be referenced by a simple
tag within a JSP. Often used to iterate over processing result
sets and dynamically generate UI structures like HTML tables.

Filters Server side components that intercept requests for pre and
post processing.

164 CHAPTER 5

User interface development
 In a J2EE presentation layer, one or more servlets usually act as the con-
troller. They accept requests from clients, perform some processing on the
model, and return an appropriate view. In some simple and other poorly
designed systems, the servlet itself may render the view. This involves embed-
ding static content like HTML tags directly in the servlet code, and is frowned
upon by all of us for its shortsightedness.

 A far superior approach is to have your controller servlet select an appropri-
ate JSP as the view and forward processing to it. JSPs are far more maintainable
and can make use of custom tags and JavaBeans to decouple much of the logic
from the static content in your pages. This is the preferred presentation layer
architecture referenced in the JSP specification (where it is called Model 2).
Figure 5.5 illustrates the overall concept.

5.2.2 Issues in J2EE MVC architecture

The J2EE presentation framework is an adaptation of MVC for thin-client
applications. In most cases, however, it does not succeed in fully decoupling
presentation logic from data in your user interface.

DEFINITION Presentation logic refers to the programming elements that control
the dynamic generation of the user interface. This term includes the
programming variables, statements, and control structures used in
your JSP pages.

J2EE

Container

Web Container

Tag
Libraries

Client Requests (HTTP, RMI, etc)

Client Responses (html, xml, etc)

Connection to business
logic layer and external

resourcesInbound
Filters

Outbound
Filters

Applets

JSPs

Servlets

Java
Beans

2

3

1

Figure 5.5 The J2EE MVC architecture

The pure J2EE approach 165
In this section, we explore some of the goals and challenges common to virtu-
ally all pure J2EE presentation layer implementations, one by one.

Enforcing the separation of logic and content
Servlets and JSPs can be implemented in many different ways. In figure 5.5,
we saw the Model 2 architecture in which JavaBeans are used as the model,
servlets as the controller, and JSPs as the view.

 Consider the following request-response flow:

1 A web request is intercepted by an inbound filter for preprocessing,
authentication, or logging and then redirected to a servlet.

2 The servlet performs lightweight processing and interacts with your
application’s business logic layer, finally forwarding execution to a JSP
for rendering.

3 The JSP uses a combination of JavaBeans and custom tags to render
the appropriate presentation and then forwards the response to an
output filter for any postprocessing before the response is returned to
the user.

The success of any MVC implementation relies on the clear separation of roles
(model, view, and controller) among components. When strictly enforced, the
reusability and maintainability of each individual component is greatly
enhanced. When not enforced, the attempted MVC architecture makes an
already complicated system even harder to maintain and extend.

Limitations of template languages
JSPs are dynamic page templates that contain a combination of logic and
data. They were modeled in a similar fashion to the other dynamic template
languages, such as Active Server Pages and Cold Fusion, as an enabler to
develop dynamic HTML pages. Completely separating code and data in such
template languages is difficult, and at times impossible. For example, even the
following three-line JSP contains page structure, static content, and code all
mixed together.

<html>
<h1>Hello <%=request.getParameter(uName)%> </h1>
</html>

When JSP was originally developed, it was heavily criticized for embedding Java
code directly into HTML pages (as done above). When data and code are collo-
cated, there is inevitably contention between the HTML author and the JSP
developer trying to work on the same source file. For enterprise applications,

166 CHAPTER 5

User interface development
there is usually an obvious need to separate the roles of UI designer and code
hound. To solve this problem, the JSP specification evolved to include the use
of custom tag libraries and JavaBeans. These additions freed JSPs of much Java
code by encapsulating complex presentation logic within tags and data struc-
tures within JavaBeans. XML tags referring to these other components now
replace much of the old JSP code.

 While the amount of code present in JSPs decreased, the complexity of the
overall architecture increased. In particular, tags often contain a combination
of presentation markup tags and Java code, making some pages more difficult
to maintain. The page designer cannot be expected to modify and recompile
tags to accomplish a simple HTML change; and finding the code that needs to
change can be tedious. A secondary issue with tags and JavaBeans in JSP is one
of enforcement. Developers often opt for the path of least resistance, continu-
ing to embed Java code directly in JSPs.

Code redundancy
As we discussed in section 5.1, the advent of multidevice and international-
ization requirements for J2EE applications puts much more strain on the pure
J2EE architecture. As we demonstrate in the next section, building our stock
quote example pages requires between two and four individual JSP pages. As
we increase either the number of locales or the number of client device types
being serviced, the number of JSP pages proliferates. Consider the burden of
developing and maintaining a set of 100 JSP pages to satisfy five functional
requirements. Think about making the same change in 20 different JSP
pages, testing them individually, and then regression testing the entire appli-
cation. If the change is to logic, you hopefully have encapsulated it in a tag or
a JavaBean. If the change is to the presentation layout or flow, you are in a
world of hurt.

5.2.3 Building our example in J2EE

Enough discussion. It is time to see the issues in action. To service requests
for our example watch list page using only J2EE, we require the following
components:

■ A servlet to accept the client request and interact with our application
logic layer to obtain a list of stock quotes.

■ A JSP for each device type for which we need to render the list.

The pure J2EE approach 167
Handling the request
We require a servlet to accept watch list user requests, obtain the watch list,
and select a view with which to render the list. In this J2EE-only scenario, our
servlet will forward the watch list to one of four JSPs, depending on the client
device type the user is connecting from and the user’s locale.

 The first step our servlet will take is to obtain the user’s stock quote list.
We assume that our application has stored the user’s unique identifier as a
String in the HttpSession object. After retrieving that identifier, we make a
call to the application logic layer to obtain the stock quote list as a JDOM
value object.

HttpSession session = request.getSession(false);
 ListBuilder builderInterface = ...
 // ... validate session object exists

String userId = (String) session.getAttribute("userId");
 org.jdom.Document quoteList = builderInterface.getWatchList(userId);

We then wrap the quoteList in a JavaBean object and store it in the request,
for later retrieval by the JSP component. We go over the bean code later in
this section.

XMLHelperBean helper = new XMLHelperBean(quoteList);
session.setAttribute(helper, helper);

The final step is the most involved. We must determine which of our four JSPs
will render the response for the user. To do this, we must determine the user’s
device type and locale preference. First we develop a method to determine the
device type, using the User-Agent HTTP header.

private String getOutputType(HttpServletRequest request) {
 String userAgent = request.getHeader("User-Agent");
 // compare to list of WAP User-Agents
 // for simplicity, we'll only try one here
 if (userAgent.indexOf("UP.Browser") >= 0)
 return "wml";
 return "html";
 }

In a real-world scenario, this servlet would maintain a dictionary of known
user-agents and their associated MIME content types. For the example, we
only output WML if someone is using the UP.Browser phone browser. Calling
the above method will set the output format. Now we require a method to
choose a JSP based on the output format and the user’s locale. For that, we
use the Accept-Language HTTP header(s), which contains an ordered list of
preferred locales from the user’s browser settings.

168 CHAPTER 5

User interface development
private String getForwardURL(
 HttpServletRequest request, String outputType) {
 String result = null;
 if (outputType.equals("html"))
 result = "/watchlist/watchlist.html.en_US.jsp";
 else
 result = "/watchlist/watchlist.wml.en_US.jsp";
 Enumeration locales = request.getHeaders("Accept-Language");
 while (locales.hasMoreElements()) {
 String locale = (String) locales.nextElement();
 if (locale.equalsIgnoreCase("en_GB"))
 if (outputType.equals("html"))
 return "/watchlist/watchlist.html.en_GB.jsp";
 else
 return "/watchlist/watchlist.wml.en_GB.jsp";
 }
 return result;
 }

The foregoing method will choose the appropriate JSP from the four we will
develop shortly. Now all that is left to do is make use of these methods in our
servlet’s request handling method.

String outputType = getOutputType(request);
 String forwardURL = getForwardURL(request, outputType);
 context.getRequestDispatcher(forwardURL).forward(request, response);

The complete code for our new servlet is shown in listing 5.1.

import org.jdom.*;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * The stock watchlist servlet with JSP
 */
public class WatchListJSPServlet extends HttpServlet {

 private ListBuilder builderInterface = new ListBuilder();
 private ServletConfig config;
 private ServletContext context;

 public WatchListJSPServlet() { super(); }

 public void init(ServletConfig config)
 throws ServletException {
 this.config = config;
 this.context = config.getServletContext();

Listing 5.1 The watch list JSP servlet

The pure J2EE approach 169
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // get userid from HttpSession
 HttpSession session = request.getSession(false);
 if (session == null) {
 context.getRequestDispatcher("/login.jsp")
 .forward(request, response);
 return;
 }

 String userId = (String) session.getAttribute("userId");
 Document quoteList = builderInterface.getWatchList(userId);

 XMLHelperBean helper =
 new XMLHelperBean(quoteList);

 request.setAttribute("helper", helper);

 String outputType = getOutputType(request);
 String forwardURL =

 getForwardURL(request, outputType);

 context.getRequestDispatcher(forwardURL)
 .forward(request, response);
 }

 private String getOutputType(HttpServletRequest request) {
 String userAgent = request.getHeader("User-Agent");
 // compare to list of WAP User-Agents
 // for simplicity, we'll only compare one here
 if (userAgent.indexOf("UP.Browser") >= 0)
 return "wml";
 return "html";
 }

 private String getForwardURL(HttpServletRequest request,
 String outputType) {
 String result = null;
 if (outputType.equals("html"))
 result = "/watchlist/watchlist.html.en_US.jsp";
 else
 result = "/watchlist/watchlist.wml.en_US.jsp";
 Enumeration locales = request.getHeaders("Accept-Language");
 while (locales.hasMoreElements()) {
 String locale = (String) locales.nextElement();
 if (locale.equalsIgnoreCase("en_GB"))
 if (outputType.equals("html"))
 return "/watchlist/watchlist.html.en_GB.jsp";
 else
 return "/watchlist/watchlist.wml.en_GB.jsp";
 }

User must be
logged in and have
an HttpSession

Store the document in a
JavaBean for later retrieval

Find the right JSP to
render the view

Forward the request and
response for rendering

170 CHAPTER 5

User interface development
 return result;
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }

}

Obtaining and using XML data
Our watch list servlet makes use of a ListBuilder component, the code for
which you can find on the web site for this book (http://www.manning.com/
gabrick). The ListBuilder returns a JDOM document containing a list of
stock quotes in XML format. Listing 5.2 shows the XML data set we are using
in the example. It contains three price quotes for stocks on my watch list.
Note that multiple price nodes are contained within each quote element, each
for a different currency. This will enable us to display prices in the user’s native
currency when the page is generated.

<?xml version="1.0"?>
<quote-list date="Nov. 4, 2001" time="9:32 AM EST">
 <customer first-name="Kurt" last-name="Gabrick" id="9999"/>
 <quote symbol="SRMC" name="Sierra Monitor Corporation">
 <price amount="2.00" currency="USD"/>
 <price amount="1.05" currency="GBP"/>
 <price amount="4000.00" currency="MXP"/>
 </quote>
 <quote symbol="IBM" name="International Business Machines">
 <price amount="135.00" currency="USD"/>
 <price amount="67.75" currency="GBP"/>
 <price amount="230000.00" currency="MXP"/>
 </quote>
 <quote symbol="ORCL" name="Oracle Corporation">
 <price amount="15.00" currency="USD"/>
 <price amount="7.75" currency="GBP"/>
 <price amount="30000.00" currency="MXP"/>
 </quote>
</quote-list>

After retrieving the JDOM document, we wrap it in a JavaBean component.
The reason for this is to keep the XML manipulation code out of our JSP. By

Listing 5.2 Stock quote XML data set

http://www.manning.com/gabrick
http://www.manning.com/gabrick
http://www.manning.com/gabrick

The pure J2EE approach 171
storing this JavaBean in the HttpRequest object, we make it available to
whichever JSP renders the view. The code for this bean is given in listing 5.3.
Notice that the bean is also a custom tag, extending javax.servlet.jsp.tag-
ext.TagSupport and implementing the doStartBody method. This allows us
to dynamically generate the watch list presentation markup within the bean
and eliminate all code from our JSPs.

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import java.util.*;

import org.jdom.*;

public class XMLHelperBean extends TagSupport {

 private String firstName;
 private String lastName;
 private String quoteTime;
 private String quoteDate;
 private Vector quotes = new Vector();

 private boolean useLinks=false;
 private String currency = "USD";

 public XMLHelperBean(Document doc) {
 Element root = doc.getRootElement();
 this.quoteTime = root.getAttributeValue("time");
 this.quoteDate = root.getAttributeValue("date");
 Element customer = root.getChild("customer");
 this.firstName = customer.getAttributeValue("first-name");
 this.lastName = customer.getAttributeValue("last-name");
 // build quote list
 List quoteElements = root.getChildren("quote");
 Iterator it = quoteElements.iterator();
 while (it.hasNext()) {
 Element e = (Element) it.next();
 Quote quote = new Quote();
 quote.symbol = e.getAttributeValue("symbol");
 quote.name = e.getAttributeValue("name");
 List priceElements = e.getChildren("price");
 Iterator it2 = priceElements.iterator();
 while (it2.hasNext()) {
 Element pe = (Element) it2.next();
 quote.prices.put(
 pe.getAttributeValue("currency"),

Listing 5.3 The XMLHelper JavaBean/tag

JavaBeans
properties

Custom tag
attributes

172 CHAPTER 5

User interface development
 pe.getAttributeValue("amount")
);
 }
 }
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public String getQuoteTime() {
 return quoteTime;
 }

 public String getQuoteDate() {
 return quoteDate;
 }

 // supplied only for consistency with
 // JavaBeans component contract - inoperative
 public void setFirstName(String s) {}
 public void setLastName(String s) {}
 public void setQuoteTime(String s) {}
 public void setQuoteDate(String s) {}

 public void setUseLinks(String yesno) {
 if (yesno.equalsIgnoreCase("yes"))
 useLinks = true;
 else
 useLinks = false;
 }

 public boolean getUseLinks() { return useLinks; }

 public void setCurrency(String currency) {
 this.currency = currency;
 }

 public String getCurrency() { return currency; }

 public int doStartTag() {
 try {
 JspWriter out = pageContext.getOut();
 out.print("<tr><th>Stock Symbol</th>");
 out.print("<th>Company Name</th><th>Last Price</th>");
 if (useLinks)
 out.print("<th>Easy Actions</th>");
 out.print("</tr>");
 for (int i = 0; i < quotes.size(); i++) {
 Quote q = (Quote) quotes.get(i);
 out.print("<tr><td>");

Dynamically builds
the watch list table in
either HTML or WML

The pure J2EE approach 173
 out.print(q.symbol);
 out.print("</td><td>");
 out.print(q.name);
 out.print("</td><td>");
 out.print(q.prices.get(currency));
 out.print(" ");
 out.print(currency);
 out.print("</td>");
 if (useLinks) {
 out.print("<td><a href=\"http://www.exampleco.com/

buyStock?symbol=");
 out.print(q.symbol);
 out.print("\">buy ");
 out.print("<a href=\"http://www.exampleco.com/sellStock?symbol=");
 out.print("\">sell</td>");
 }
 out.print("</tr>");
 }
 } catch(IOException ioe) {
 System.out.println("Error in XMLHelperBean.doStartTag(): " + ioe);
 }
 return(SKIP_BODY);
 }

 private class Quote {
 Hashtable prices = new Hashtable();
 String symbol;
 String name;
 }

}

Using the class from listing 5.3, we can eliminate all Java code from our JSP.
Hopefully even this trivial example gives you an appreciation of the amount of
design and development work necessary to make your JSP code-free.

Rendering the output
Now we need JSPs. We could develop one enormous JSP with a bunch of con-
trol structures in it. Such a page could handle the two output formats and two
locales in our example, but it would be quite complex and difficult to maintain
over time. Such a page would hardly be independent of the data either.

 We could develop two JSPs instead. One would produce HTML and the
other WML. If the page layout does not change across locales, we could put
selection logic for all the locale-specific text and images into our custom tag.
But, we would still have to deal with the locales with branching statements.

174 CHAPTER 5

User interface development
 Instead, we decided to write four very specific and simple JSPs, one for
each permutation of output formats and locales we need to service. See listings
5.4 through 5.7. Each JSP will obtain a handle to the XMLHelper JavaBean that
we stored in the request object to render its output.

<jsp:useBean name="helper" scope="page"
 class="examples.chapter5.XMLHelperBean"/>

<%@ taglib uri="example.tld" prefix="helperTag" %>

<html>
<head><title>Your Watch List</title></head>
<body>

<h1>Your Stock Price Watch List</h1>
<h3>
 Hello,
 <jsp:getProperty name="helper" property="firstName"/>!
</h3>

<h3>
 Here are the latest price quotes for
 your watch list stocks.
</h3>

<p><i>
 Price quotes were obtained at
 <jsp:getProperty name="helper" property="quoteTime"/>
 on
 <jsp:getProperty name="helper" property="quoteDate"/>.
</i></p>

<table cellpadding="5" cellspacing="0" border="1">

<helperTag:printData useLinks="yes" currency="USD"/>

</table>
</body>
</html>

b Because we specify useLinks=yes, our custom tag prints an HTML table consist-
ing of four columns with links to buy and sell individual stocks. Setting cur-
rency=USD will print all stock prices in U.S. dollars.

The JSP that produces the U.S. English, HTML version of our page is shown
in listing 5.4, with its British counterpart given in listing 5.5. Note both the

Listing 5.4 The U.S. English, HTML watch list JSP

Recovers the
JavaBean from
the request
object

Specifies prefix for
use as a tag

Invokes the doStartTag() of
our XMLHelperBean

b

The pure J2EE approach 175
similarities and the differences between the two. The U.S. page uses a bit less
formal language and expresses prices in USD. The British version is more for-
mal and shows pricing in British pounds. However, they both use the identical
data source and neither has any Java code in it.

<jsp:useBean name="helper" scope="page"
 class="examples.chapter5.XMLHelperBean"/>

<%@ taglib uri="example.tld" prefix="helperTag" %>

<html>
<head><title>Your Watch List</title></head>
<body>

<h1>Your Stock Price Watch List</h1>

<h3>
 Greetings, Mr.
 <jsp:getProperty name="helper" property="lastName"/>!
</h3>

<h3>
 Here are the latest prices on
 your stocks of interest.
</h3>

<p><i>
 Price quotes as of
 <jsp:getProperty name="helper" property="quoteTime"/>
 on
 <jsp:getProperty name="helper" property="quoteDate"/>.
</i></p>

<table cellpadding="5" cellspacing="0" border="1">

 <helperTag:printData useLinks="yes" currency="GBP"/>

</table>
</body>
</html>

Now all that remains is to develop the WML versions of the watch list page.
These pages contain a bit less textual information and do not have links to
directly buy individual stocks. If you need to refresh your memory on what
each of these pages looks like, flip back to figures 5.1 through 5.4.

Listing 5.5 The British English, HTML watch list JSP

176 CHAPTER 5

User interface development
<jsp:useBean name="helper" scope="page"
 class="examples.chapter5.XMLHelperBean"/>
<%@ taglib uri="example.tld" prefix="helperTag" %>

<wml>
 <card id="main" title="Your Watch List">
 <do type="accept" name="do-back" label="Back">
 <go href="http://www.exampleco.com/home.wml" />
 </do>
 <do type="accept" name="do-buy" label="Buy Shares">
 <go href="http://www.exampleco.com/buyShares" />
 </do>
 <do type="accept" name="do-sell" label="Sell Shares">
 <go href="http://www.exampleco.com/sellShares" />
 </do>
 <p>

 Hello,
 <jsp:getProperty name="helper" property="firstName"/>!

 </p>
 <p>Here are your latest watch list price quotes:</p>
 <table columns="3">
 <helperTag:printData useLinks="no" currency="USD"/>
 </table>
 </card>
</wml>

<jsp:useBean name="helper" scope="page"
 class="examples.chapter5.XMLHelperBean"/>
<%@ taglib uri="example.tld" prefix="helperTag" %>

<wml>
 <card id="main" title="Your Watch List">
 <do type="accept" name="do-back" label="Back">
 <go href="http://www.exampleco.com/home.wml" />
 </do>
 <do type="accept" name="do-buy" label="Buy Shares">
 <go href="http://www.exampleco.com/buyShares" />
 </do>
 <do type="accept" name="do-sell" label="Sell Shares">
 <go href="http://www.exampleco.com/sellShares" />
 </do>
 <p>Greetings, Mr.
 <jsp:getProperty name="helper" property="lastName"/>!
 </p>

Listing 5.6 The U.S. English WML watch list JSP

Listing 5.7 The British English WML watch list JSP

Prints the WML-version
without links

The J2EE/XML approach 177
 <p>Here are the latest prices on your stocks of interest.</p>
 <table columns="3">
 <helperTag:printData useLinks="no" currency="GBP"/>
 </table>
 </card>
</wml>

5.2.4 Analyzing the results

We think you will admit that building a multidevice, multilocale presentation
layer in J2EE is not easy. Imagine how much worse things could have been if
we had chosen some less-complimentary output formats or wildly different
locales. Also consider how much effort would be involved in extending our
example code to accommodate more languages, locales, or device types.

 This is the area in which an XML-based presentation layer can come to the
rescue to some extent. While serving substantially different views of the same
application is always challenging, some XML tools have recently emerged to
make the process a bit easier for you. That is, after you learn to use them.

5.3 The J2EE/XML approach

The first XML architectural alternative we examine involves the combined use of
XSLT with the J2EE presentation components. In chapter 2, we talked briefly
about what XSLT is and how to use it via JAXP. You will recall that XSLT provides
a general way to transform XML into virtually any output format. This comes in
very handy when generating thin-client user interfaces like the one we have been
working with in our example.

 The output format of an XSLT process is determined by the transformation
rules defined within an XSL stylesheet. In this section the desired output for-
mats are HTML and WML. And to emphasize the capabilities of XSLT, we use
it to generate PDFs from XML in this section too.

 If you are still a bit fuzzy on XSLT concepts, you can learn more of the
basics from the XSLT references in the bibliography or via an online tutorial. An
excellent introduction to XSLT can be found online at http://www.zvon.org.

5.3.1 Adding XSLT to the web process flow

In section 5.2, we created a controller servlet, a custom tag/JavaBean compo-
nent, and four JSPs to render the watch list page. Adding XSLT processing to
the mix has the following impact on our design:

178 CHAPTER 5

User interface development
■ The JSPs are no longer necessary.
■ The custom tag/JavaBean component is no longer necessary.
■ We require a new, outbound filter component to handle the XSLT process.
■ We must modify our WatchListJSPServlet to remove the JSP forward-

ing code.

Filters are the latest addition to the J2EE presentation framework. They are
useful for chaining together a web processing workflow. A filter can be applied
to a specific type of request or globally across your entire application. Filters
can perform preprocessing of a request (before it reaches the servlet) or post-
processing. In our example case, we are interested in postprocessing any
request that is handled by our Controller servlet.

 The XSLT request handling flow now begins when our controller receives a
request for a stock watch list. The servlet interacts with the application logic layer
via the ListBuilder component, which still returns its result in the form of a
JDOM Document. The view selection logic is now handled by our new filter com-
ponent, which selects among XSL stylesheets instead of JSP pages.

 This new architecture is an implementation of the Decorating Filter J2EE
pattern, which you can learn more about in appendix A. Figure 5.6 depicts
our implementation graphically.

XSLT Processor

ApplicationRequests from various clients
(Browser, Phone, PDA)

Stylesheets

Responses in various formats
(XHTML, WML, etc.)

Business Logic Processing

Figure 5.6 XSLT web request handling

The J2EE/XML approach 179
The XSLT filtering process
We begin our XSLT example by developing the filter that will manage the
stylesheet selection and XSLT transformation process. Here is an overview of
how the filter works:

1 Each web request for the watch list page is intercepted by the filter
and passed off to our controller servlet for processing.

2 The JDOM Document is returned to the filter via the HttpRequest object.

3 The filter determines the device type and preferred locale of the
requesting client, just as our original servlet used to do.

4 The filter selects the most appropriate XSL stylesheet and invokes
an XSLT processor to transform the JDOM results into a target out-
put format

5 The filter sends the result of the XSLT transformation back to the
user’s device, where it is rendered for display.

For the sake of clarity, we oversimplify the view selection and XSLT transfor-
mation process. As discussed in chapter 2, special attention must be paid to
precompiling and caching stylesheets in a production application, due to the
performance characteristics of XSLT. In this version of our example, we con-
centrate on the interesting part, which is the transformation itself.

Modifying the servlet
Because our filter will select the appropriate stylesheet and no JSPs need to be
invoked, our modified WatchListServlet component becomes quite simple.
Its source code is shown in listing 5.8. The servlet now interacts with the List-
Builder interface and stores the JDOM Document in the HttpRequest object.

import org.jdom.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * The stock watchlist servlet with XSLT
 */
public class WatchListServlet extends HttpServlet {

 private ListBuilder builderInterface = new ListBuilder();
 private ServletConfig config;
 private ServletContext context;

Listing 5.8 The modified watch list servlet

180 CHAPTER 5

User interface development
 public WatchListServlet() { super(); }

 public void init(ServletConfig config)
 throws ServletException {
 this.config = config;
 this.context = config.getServletContext();
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 HttpSession session = request.getSession(false);
 if (session == null) {
 context.getRequestDispatcher("/login.jsp")
 .forward(request, response);
 return;
 }
 String userId = (String) session.getAttribute("userId");
 Document quoteList = builderInterface.getWatchList(userId);
 request.setAttribute("quoteList", quoteList);

}

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }

}

Building the filter
Our filter implementation is a class that implements the javax.servlet.Filter
interface. The J2EE web container invokes the filter based on URL pattern match-
ing, as it does with servlets. When a filter matching a specific URL pattern is found,
the container invokes its doFilter method, the signature of which is as follows:

public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException;

The FilterChain parameter is a representation of all the processing to be
done during this request, including the servlet(s), JSP(s), and other filter(s)
that may be invoked. Since our filter is a postprocessing one, the first thing we
do in our doFilter method is execute the FilterChain:

chain.doFilter(request,response);

No need to wrap
the Document
anymore

The J2EE/XML approach 181
This, in effect, calls the WatchListServlet via the web container, which places
the JDOM Document in which we are interested into the request object. We
then access the Document in the doFilter method.

HttpServletRequest httpRequest = (HttpServletRequest) request;
Document outputDoc = (Document) httpRequest.getAttribute("quoteList");

Next, we call some helper methods to determine the appropriate stylesheet for
the transformation.

String outputFormat = getOutputFormat(httpRequest);
String locale = getLocaleString(httpRequest);
String stylesheetPath = getStylesheet(outputFormat, locale);

You can see the bodies of these methods in listing 5.9. They are similar to
those of our earlier WatchListJSPServlet component. Now that we have the
XML document and know which stylesheet we want to use, we perform the
transformation via the JAXP API.

TransformerFactory myFactory = TransformerFactory.newInstance();
Transformer myTransformer = myFactory.newTransformer(new

StreamSource(stylesheetPath));
JDOMResult result = new JDOMResult();
myTransformer.transform(new JDOMSource(outputDoc), result);

Now, all that is left to do is write the XSLT output back to the client, via the
HttpResponse object.

Document resultDoc = result.getDocument();
XMLOutputter xOut = new XMLOutputter();
if (outputFormat.equals("wml"))
 response.setContentType("text/vnd.wap.wml");
PrintWriter out = response.getWriter();
xOut.output(resultDoc, out);

Listing 5.9 provides the complete implementation of our XSLTFilter class.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import org.jdom.*;
import org.jdom.output.*;
import org.jdom.transform.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;

Listing 5.9 XSLT filter code

182 CHAPTER 5

User interface development
public class XSLTFilter implements Filter {

 private FilterConfig filterConfig;

 public void init(FilterConfig filterConfig)
 throws ServletException {
 this.filterConfig = filterConfig;
 }

 public FilterConfig getFilterConfig() {
 return this.filterConfig;
 }

 public void setFilterConfig(FilterConfig filterConfig) {
 this.filterConfig = filterConfig;
 }

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException,ServletException {
 try {
 chain.doFilter(request,response);
 HttpServletRequest httpRequest
 = (HttpServletRequest) request;
 Document outputDoc
 = (Document) httpRequest.getAttribute("quoteList");
 if (outputDoc == null) return;

 String outputFormat = getOutputFormat(httpRequest);
 String locale = getLocaleString(httpRequest);
 String stylesheetPath
 = getStylesheet(outputFormat, locale);

 TransformerFactory myFactory
 = TransformerFactory.newInstance();
 Transformer myTransformer
 = myFactory.newTransformer(
 new StreamSource(stylesheetPath));

 JDOMResult result = new JDOMResult();
 myTransformer.transform(
 new JDOMSource(outputDoc), result);
 Document resultDoc = result.getDocument();
 XMLOutputter xOut = new XMLOutputter();
 if (outputFormat.equals("wml"))
 response.setContentType("text/vnd.wap.wml");
 PrintWriter out = response.getWriter();
 xOut.output(resultDoc, out);

 } catch (Exception e) {
 System.out.println("Error was:" + e.getMessage());
 }
 }

The J2EE/XML approach 183
 private String getOutputFormat(HttpServletRequest request) {
 String userAgent = request.getHeader("User-Agent");
 // this is where your robust user-agent lookup should happen
 if (userAgent.indexOf("UP.Browser") >= 0)
 return "wml";
 return "html";
 }

 private String getLocaleString(HttpServletRequest request) {
 Enumeration locales = request.getHeaders("Accept-Language");
 while (locales.hasMoreElements()) {
 String locale = (String) locales.nextElement();
 if (locale.equalsIgnoreCase("en_GB"))
 return "en_GB";
 }
 return "en_US";
 }

 private String getStylesheet(String outputFormat, String locale) {
 if (locale.equals("en_US")) {
 if (outputFormat.equals("html"))
 return "watchlist.html.en_US.xsl";
 else
 return "watchlist.wml.en_US.xsl";
 } else {
 if (outputFormat.equals("html"))
 return "watchlist.html.en_GB.xsl";
 else
 return "watchlist.wml.en_GB.xsl";
 }
 }
 public void destroy() {}
}

Developing the stylesheets
The final four pieces of our new, XSLT-enabled solution are the four XSL
stylesheets used to transform the XML into output. We need to convert the JSPs,
JavaBeans, and custom tag code developed in section 5.2 into four sets of XSLT
transformation rules. Although there are a few different ways to develop an XSL
stylesheet, the most straightforward is the template-based approach. XSL
stylesheets developed in this manner most closely resemble the JSP templates with
which you are already familiar.

 Listing 5.10 contains the XSL stylesheet used to convert the quotes-list XML
document into HTML format for U.S. users. Note the resemblance of this file
to an HTML source file. The major differences are the wrapping of the entire
document in an <xsl:stylesheet> element and a global <xsl:template>

184 CHAPTER 5

User interface development
element. The <xsl:stylesheet> element identifies this file as a set of transfor-
mation rules, and the <xsl:template> element is our global transformation
rule that will be applied to the root node of the XML source document.

 A thorough analysis of XSLT development is beyond the scope of this
book. Note, however, the XML-based control structures (e.g., <xsl:for-
each>) and variable substitution (e.g., <xsl:value-of>) that can be accom-
plished in these stylesheets. XSLT is a powerful tool for transforming XML in a
variety of ways.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="html"
 doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
 />

<xsl:template match="/">

<html>
<head><title>Your Watch List</title></head>
<body>
<h1>Your Stock Price Watch List</h1>

<h3>
 Hello,
 <xsl:value-of select="/customer[@first-name]"/>!
</h3>
<h3>
 Here are the latest price quotes for
 your watch list stocks.
</h3>
<p><i>
 Price quotes were obtained at
 <xsl:value-of select="/quote-list[@time]"/>

 on
 <xsl:value-of select="/quote-list[@date]"/>

</i></p>

<table cellpadding="5" cellspacing="0" border="1">
<tr>
 <th>Stock Symbol</th>
 <th>Company Name</th>
 <th>Last Price</th>

Listing 5.10 The U.S. English HTML-producing stylesheet

Allows us to use spe-
cial HTML entities like
< and

The beginning of our only
global transformation rule

Uses XPath to select
customer first name

Gets the generation
time from the
quotes-list document

Gets the generation
date from the
quotes-list document

The J2EE/XML approach 185
 <th>Easy Actions</th>
</tr>
<xsl:for-each select="//quote">
 <tr>
 <td><xsl:value-of select="@symbol"/></td>

 <td><xsl:value-of select="@name"/></td>

 <td>$$
 <xsl:value-of select="./price[@currency=USD]"/>

 </td>
 <td>
 <a href="http://www.exampleco.com/buyStock?symbol=
 <xsl:value-of select="@symbol"/>">
 buy

 <a href="http://www.exampleco.com/sellStock?symbol=
 <xsl:value-of select="@symbol"/>">
 sell

 </td>
 </tr>
</xsl:for-each>
</table>
</body>
</html>

</xsl:template>
</xsl:stylesheet>

For brevity’s sake, we forego listing the other three stylesheets. You can down-
load them to examine from the book’s web site (http://www.manning.com/
gabrick) if you so choose.

5.3.2 Analyzing the results

The XSLT architecture we have created is both modular and extremely flexi-
ble. It allows us to create a single, integrated presentation layer that serves
appropriate content to various client types and locales. To support new locales
and client types, we need only add more stylesheets to the framework and
select them when appropriate. By making the stylesheet selection config-
urable, we could reduce the extension process to creating a single text file (the
stylesheet) and updating our web application configuration file so the filter
can use it.

 Another major advantages of this architecture is the ability to separate devel-
opment roles more effectively. The presentation page author can implement the

Iterates over all
quote elements in
the document

http://www.manning.com/gabrick
http://www.manning.com/gabrick
http://www.manning.com/gabrick

186 CHAPTER 5

User interface development
XSL and the developer can focus on the processing that generates the XML.
These tasks can be performed relatively independently of each other.

 The separation of roles advantage is not without its own challenges, how-
ever. For example, developing a user interface in XSL is far more difficult than
using standard HTML and requires a programming skill-set that is uncommon
among graphic designers. Graphical tools are expected to alleviate this prob-
lem somewhat in the future. Another challenge for the practicality of this
architecture is the current lack of XSLT skill-sets in the industry. Though this
will change over time, it has been an adoption hurdle for integrating XML into
the presentation layer.

 As we stated in chapter 2, performance will be the major factor in enabling
the widespread deployment of XSLT-based presentation layers. It may produce
an architecturally superior solution, but it must perform well to be adopted.
All indications point toward a steady increase in XSLT performance as the
technology matures.

5.3.3 Extending to binary formats

Before leaving the subject of interface rendering with XSLT, we should highlight
the abilities of XSLT formatting objects. A popular requirement for advanced web
applications today is to dynamically generate binary files that are more difficult or
impossible to manipulate once generated.

DEFINITION XSLT formatting objects (FO) is a portion of the XSLT specification
that defines the manner in which XML documents can be trans-
formed into binary output via XSLT.

Using an implementation of XSLT formatting objects, you can transform your
dynamic XML data into a binary format like PDF on the fly. To prove the point
and see how it is done, we extend our watch list example to generate PDF files
rather than HTML documents in this section.

 For an implementation of XSL formatting objects, we turn once again to
the Apache Software Foundation. ASF has a project called FOP that is cur-
rently a partial implementation of formatting objects. You can download the
binaries, source, and documentation from http://xml.apache.org/fop.

 For the sake of discussion, let us suppose that we need to output the stock
watch list page in PDF format instead of HTML for web-based clients. Perhaps
we have a fraud concern that someone might download the HTML source,
modify it, and then claim that our pricing information was incorrect and cost

The J2EE/XML approach 187
them money. Since it is difficult to steal and modify WML from a mobile
device, we are only concerned with traditional, HTML web browsers.

 Modifying our XSLT version of the example to generate PDF instead of
HTML involves two steps:

■ We must modify our HTML-producing stylesheets to produce an FOP
formatting object tree instead of an HTML page.

■ We must add a final step to the XSLT filter component to invoke the
FOP API and convert the formatting object tree to a PDF document.

DEFINITION A formatting object tree is a specialized XSL stylesheet that contains
print formatting instructions. The FOP Driver component uses
these instructions to create a PDF file from an XML document.

The modified process flow for generating PDF instead of HTML is depicted in
figure 5.7.

Creating a formatting tree
The basic structure of a formatting tree stylesheet is depicted in figure 5.8. The
tree consists of two main components: layouts and page sequences. A layout
describes a page template to be applied to one or more page sequences. Each page
sequence defines the actual content that will appear in the PDF, including all of its
formatting information. For our example, we create one layout (a master template)

ApplicationRequests from various clients
(Browser, Phone, PDA)

Response in binary format
(PDF)

Business Logic Processing

Stylesheets

XSLT Processor

XSLFO Processor

Figure 5.7 Dynamic PDF generation process flow

188 CHAPTER 5

User interface development
and one page sequence. Our page sequence will contain a single page showing the
same information as our HTML page did.

 Listing 5.11 contains the complete formatting tree XSL stylesheet to pro-
duce the U.S. English version of the watch list page in PDF format.

<?xml version="1.0"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
>

<xsl:template match ="/">

Listing 5.11 Formatting tree for U.S. English stock watch list

fo:root

(root element)

fo:layout-master-set

(page template grouping)

fo:simple-page-layout

(individual page template)

fo:page-sequence

(page content grouping)

fo:static-content

(header/footer content)

fo:page-flow

(individual page template)

fo:block

(block of content)

fo:block

(block of content)

Figure 5.8 Logical structure of a FO formatting tree

Identifies the XSLT
FO XML
namespace

The J2EE/XML approach 189
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <!-- define page layout -->
 <fo:layout-master-set>
 <fo:simple-page-master master-name="simple"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1.5cm"
 margin-bottom="2cm"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body margin-top="3cm"/>
 <fo:region-before extent="1.5cm"/>
 <fo:region-after extent="1.5cm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <!-- define the content -->
 <fo:page-sequence master-name="simple">

 <fo:static-content flow-name="xsl-region-before">
 <fo:block text-align="end"
 font-size="10pt"
 font-family="serif"
 line-height="14pt" >
 Watch List - Customer
 <xsl:value-of
 select="./quote-list/customer/@id"/>
 </fo:block>
 </fo:static-content>

 <fo:flow flow-name="xsl-region-body">

 <fo:block font-size="16pt"
 font-family="sans-serif"
 font-weight="bold"
 line-height="26pt"
 space-after.optimum="12pt"
 background-color="blue"
 color="white"
 text-align="center">
 Your Stock Watch List
 </fo:block>
 <fo:block font-size="12pt"
 font-family="sans-serif"
 font-weight="bold"
 line-height="18pt"
 space-after.optimum="10pt"
 start-indent="10pt">
 Hello,
 <xsl:value-of

Defines a page
template

Defines a page
sequence, bound to
our template above

Defines a global
page header for
the sequence

Prints customer id
from the data
document

Defines
document
contents

190 CHAPTER 5

User interface development
 select="./quote-list/customer/@first-name"/>
 </fo:block>
 <fo:block font-size="10pt"
 font-family="sans-serif"
 font-style="italic"
 line-height="18pt"
 space-after.optimum="10pt"
 start-indent="15pt">
 Prices were obtained at
 <xsl:value-of select="./quote-list/@time"/>
 on
 <xsl:value-of select="./quote-list/@date"/>
 </fo:block>
 <fo:table>
 <fo:table-column column-width="3cm"/>
 <fo:table-column column-width="7cm"/>
 <fo:table-column column-width="3cm"/>
 <fo:table-header font-size="10pt"
 line-height="14pt"
 font-family="sans-serif">
 <fo:table-row font-weight="bold">
 <fo:table-cell text-align="start">
 <fo:block>SYMBOL</fo:block>
 </fo:table-cell>
 <fo:table-cell text-align="start">
 <fo:block>COMPANY NAME</fo:block>
 </fo:table-cell>
 <fo:table-cell text-align="start">
 <fo:block>SHARE PRICE</fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-header>
 <fo:table-body font-size="10pt"
 line-height="16pt"
 font-family="sans-serif">
 <xsl:for-each select="//quote">

 <fo:table-row>
 <fo:table-cell>
 <fo:block text-align="start" >
 <xsl:value-of select="@symbol"/>

 </fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block text-align="start" >
 <xsl:value-of select="@name"/>

 </fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block text-align="start" >

Constructs the
watch list table,
just as we did in
textual formats

The J2EE/XML approach 191
 $ <xsl:value-of
 select="./price[@currency='USD']/@amount"/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </xsl:for-each>
 </fo:table-body>
 </fo:table>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
</xsl:template>

</xsl:stylesheet>

To make use of the FO stylesheet, we must invoke the Apache FOP API. Since
we do not want to tie our filter implementation to a specific FO implementa-
tion, we chose to wrap the use of FOP with an adapter object called PDFWriter.
This component takes a formatting tree stylesheet path and an XML input
source and writes the PDF to a specified output stream. To do its work, the
PDFWriter uses both Apache FOP and the JAXP API for XSLT. The code for
this adapter is given in listing 5.12.

import java.io.*;

import org.xml.sax.InputSource;
import org.apache.fop.apps.Driver;
import org.apache.fop.apps.Version;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class PDFWriter {

 protected Transformer transformer = null;

 public PDFWriter(StreamSource source)
 throws TransformerConfigurationException {
 TransformerFactory factory
 = TransformerFactory.newInstance();
 transformer = factory.newTransformer(source);
 }

 public PDFWriter(String xslFilePath)
 throws TransformerConfigurationException,
 FileNotFoundException {
 this(new StreamSource(new FileInputStream(xslFilePath)));
 }

Listing 5.12 An adapter for Apache FOP

Uses JAXP to
transform the XML
data into a FO tree

192 CHAPTER 5

User interface development
 protected byte[] invokeFOP(InputSource foSource)
 throws Exception {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 Driver driver = new Driver(foSource, out);
 driver.run();
 return out.toByteArray();
 }

 public byte[] generatePDF(StreamSource xmlSource)
 throws Exception {
 ByteArrayOutputStream baos
 = new ByteArrayOutputStream();
 StreamResult foResult = new StreamResult(baos);
 transformer.transform(xmlSource, foResult);
 ByteArrayInputStream bais
 = new ByteArrayInputStream(baos.toByteArray());
 return invokeFOP(new InputSource(bais));
 }

 public static void createPDFFromXML(String xslFilePath,
 InputStream xmlIn,
 OutputStream pdfOut)
 throws Exception {
 PDFWriter writer = new PDFWriter(xslFilePath);
 byte[] PDFbytes
 = writer.generatePDF(new StreamSource(xmlIn));
 pdfOut.write(PDFbytes, 0, PDFbytes.length);
 }

}

The last thing we need to do is modify our XSLT filter to use the PDFWriter
when html is the output format. The modified XSLTPDFFilter class is shown
in listing 5.13.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import org.jdom.*;
import org.jdom.output.*;
import org.jdom.transform.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class XSLTFilter implements Filter {

 private FilterConfig filterConfig;

Listing 5.13 The modified XSLT filter class

Defines a set of page
templates containing
a single page named
simple

Tranforms
XML to PDF
and writes
to an out-
put stream

The J2EE/XML approach 193
 public void init(FilterConfig filterConfig)
 throws ServletException {
 this.filterConfig = filterConfig;
 }

 public FilterConfig getFilterConfig() {
 return this.filterConfig;
 }

 public void setFilterConfig(FilterConfig filterConfig) {
 this.filterConfig = filterConfig;
 }

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException,ServletException {
 try {
 chain.doFilter(request,response);
 HttpServletRequest httpRequest
 = (HttpServletRequest) request;
 Document outputDoc
 = (Document) httpRequest.getAttribute("quoteList");
 if (outputDoc == null) return;

 String outputFormat = getOutputFormat(httpRequest);
 String locale = getLocaleString(httpRequest);
 String stylesheetPath
 = getStylesheet(outputFormat, locale);

 XMLOutputter xOut = new XMLOutputter();
 if (outputFormat.equals("html")) {
 ByteArrayOutputStream baos
 = new ByteArrayOutputStream();
 xOut.output(outputDoc, baos);
 ByteArrayInputStream bais
 = new ByteArrayInputStream(baos.toByteArray());
 // get the response output stream
 response.setContentType("application/pdf");
 OutputStream out = response.getOutputStream();
 PDFWriter.createPDFFromXML(stylesheetPath, bais, out);

 out.close();
 } else {
 // wml format
 TransformerFactory myFactory
 = TransformerFactory.newInstance();
 Transformer myTransformer
 = myFactory.newTransformer(
 new StreamSource(stylesheetPath));
 JDOMResult result = new JDOMResult();
 myTransformer.transform(
 new JDOMSource(outputDoc), result);

Converts JDOM to an
input stream

Creates and
saves PDF

194 CHAPTER 5

User interface development
 Document resultDoc = result.getDocument();
 response.setContentType("text/vnd.wap.wml");
 PrintWriter out = response.getWriter();
 xOut.output(resultDoc, out);
 }
 } catch (Exception e) {
 System.out.println("Error was:" + e.getMessage());
 }
 }
 private String getOutputFormat(HttpServletRequest request) {
 String userAgent = request.getHeader("User-Agent");
 if (userAgent.indexOf("UP.Browser") >= 0)
 return "wml";
 return "html";
 }

 private String getLocaleString(HttpServletRequest request) {
 Enumeration locales = request.getHeaders("Accept-Language");
 while (locales.hasMoreElements()) {
 String locale = (String) locales.nextElement();
 if (locale.equalsIgnoreCase("en_GB"))
 return "en_GB";
 }
 return "en_US";
 }

 private String getStylesheet(String outputFormat, String locale) {
 if (locale.equals("en_US")) {
 if (outputFormat.equals("html"))
 return "watchlist.pdf.en_US.xsl";
 else
 return "watchlist.wml.en_US.xsl";
 } else {
 if (outputFormat.equals("html"))
 return "watchlist.pdf.en_GB.xsl";
 else
 return "watchlist.wml.en_GB.xsl";
 }

 }
 public void destroy() {}
}

Figure 5.9 shows the fruit of our labor, a dynamically generated PDF contain-
ing our stock watch list data.

Uses our FO stylesheets
instead of the HTML-
producing ones

XML web publishing frameworks 195

5.4 XML web publishing frameworks

The architecture presented in the previous section requires custom code
development that can be difficult and time-consuming. In this section, we
explore a possible alternative to the custom integration work called web pub-
lishing frameworks.

DEFINITION A web publishing framework is a software suite design to speed the
development of an XML-based presentation layer.

Web publishing frameworks combine Java and XML technologies into a cohe-
sive and usable architecture. They are an out-of-the-box solution for generat-
ing your user interface. Using a web publishing framework, you can create a
production-ready, XML-based presentation layer without having to write cus-
tom code that integrates XML into your architecture. These frameworks were
built to solve the same challenge that we outlined earlier in this chapter—pro-
ducing various views of the same content while maintaining a separation
between presentation logic and style.

 Web publishing frameworks that are based on XML technologies are still
relatively new. Their reliability depends on the stability of underlying compo-
nents, including the XML parser and XSLT processor. A few popular web pub-
lishing framework products include the following:

Figure 5.9 The U.S. English PDF version of the stock watch list

196 CHAPTER 5

User interface development
■ Webmacro (http://www.webmacro.org)
■ Enhydra (http://www.enhydra.org)
■ Cocoon (http://xml.apache.org/cocoon)

For purposes of comparison with the XSLT approach from the previous sec-
tion, we now explore how our watch list example could be developed within
the Cocoon web publishing framework.

5.4.1 Introduction to Cocoon architecture

At the time of this writing, the Apache Software Foundation’s Cocoon is one
of the most stable and feature-rich XML web publishing frameworks. User
interface development with Cocoon involves the creation of XSL stylesheets
and XSP pages. Since XSP is a technology currently limited to Cocoon, we will
concentrate on the more generic, XSLT capabilities of Cocoon in this section.
Figure 5.10 depicts the Cocoon processing flow.

DEFINITION XML Server Pages (XSP) is a working draft specification for an XML-
based program generation language. XSPs contain directives that
control how a given XML data set is processed.

Request
(Browser, Phone,

PDA, etc.)

Cocoon

Producers

FileProducer

Processors

LDAP Processor

XSP Processor

XSLT Processor

Response
(HTML, WML,

etc.)

Formatters

PDF

Text

HTML

Figure 5.10 The Cocoon request processing flow

XML web publishing frameworks 197
The simplest way to use Cocoon is to add special processing instructions to
your XML data documents. These processing instructions allow Cocoon to
process and format your data and deliver it to a requesting client. Supported
output formats include WML, PDF, XML, and XHTML.

Cocoon producers
Producers are software components responsible for generating XML data. They
are the equivalent of a servlet in that they receive and process an HttpServlet-
Request. This is just one of the areas in which Cocoon is extensible. You can
implement your own producers to perform custom processing. Cocoon ships
with a FileProducer that loads a requested file from the file system.

Cocoon processors
Once the data has been produced, it is available for processing. A processor is a
component responsible for performing an operation such as an XSLT transfor-
mation on the XML data generated by a producer. Cocoon contains the fol-
lowing processors out-of-the-box:

■ An XSLT processor
■ An LDAP processor
■ An XSP processor

Writing your own processor is similar to writing a JSP custom tag. The tag is
created, associated with some behavior, and included in a page.

Cocoon formatters
Formatters are helper components that may be applied to a response before it
is returned to the requesting client. Formatters are used to wrap output con-
tent with additional formatting information. Formatters do things such as
placing tags around such markup content as HTML documents and creating a
final PDF from a XSLFO formatting tree.

5.4.2 Using Cocoon to render the watch list page

Let us put Cocoon to work on our example XML document. We will use the
standard Cocoon XSLT processor to perform an XSLT transformation on our
quote-list XML. Fortunately for us, we already developed the XSL required to
make this work in section 5.2.

 The only modification we need to make to the XML document returned
from the application logic layer (the ListBuilder interface in the example) is to

198 CHAPTER 5

User interface development
add a Cocoon processing instruction and references to our XSL stylesheets
within the XML data document. The Cocoon directive is as follows:

<?cocoon-process type=xslt ?>

Then we add two processing instructions that describe the HTML and WML
stylesheets to be applied to the data. For the U.S. locale, the instructions are
as follows:

<?xml-stylesheet href=watchlist.html.en_US.xsl type=text/xsl ?>
<?xml-stylesheet href=watchlist.wml.en_US.xsl type=text/xsl
 media=wap ?>

The media=wap attribute in the second processing instruction tells Cocoon to
select this stylesheet for WML-based clients. In other cases, the default
stylesheet will be used.

 Cocoon is designed to be accessed as a servlet, but can be invoked via an
API call as well. In listing 5.14, our modified WatchListServlet adds the
appropriate processing instructions to the XML data document and invokes the
Cocoon engine to perform the transformation and delivery back to the client.

import org.jdom.*;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

import org.apache.cocoon.Engine;
import org.apache.cocoon.util.CocoonServletRequest;

public class WatchListServletWithCocoon extends HttpServlet {

 private ListBuilder builderInterface = new ListBuilder();
 private ServletConfig config;
 private ServletContext context;

 public WatchListServletWithCocoon() { super(); }

 public void init(ServletConfig config)
 throws ServletException {
 this.config = config;
 this.context = config.getServletContext();
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

Listing 5.14 Invoking Cocoon from the watch list servlet

XML web publishing frameworks 199
 // get userid from HttpSession
 HttpSession session = request.getSession(false);
 if (session == null) {
 context.getRequestDispatcher("/login.jsp")
 .forward(request, response);
 return;
 }
 String userId = (String) session.getAttribute("userId");
 Document quoteList =
 builderInterface.getWatchList(userId);

 String localeString = getLocaleString(request);
 String document
 = getOutputDocWithProcessingInstructions(quoteList,
 localeString);

 try {
 Engine cocoonEngine = Engine.getInstance();
 CocoonServletRequest myReq
 = new CocoonServletRequest(document, request);
 cocoonEngine.handle(myReq, response);
 } catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 }

 }

 private String getLocaleString(HttpServletRequest request) {
 Enumeration locales
 = request.getHeaders("Accept-Language");
 while (locales.hasMoreElements()) {
 String locale = (String) locales.nextElement();
 if (locale.equalsIgnoreCase("en_GB"))
 return "en_GB";
 }
 return "en_US";
 }

 private String
 getOutputDocWithProcessingInstructions(Document document,
 String locale) {
 if (locale.equals("en_US")) {
 document.addContent(
 new ProcessingInstruction("xml-stylesheet",

"href=\"watchlist.html.en_US.xsl\" type=\"text/xsl\""));
 document.addContent(
 new ProcessingInstruction("xml-stylesheet",
"href=\"watchlist.wml.en_US.xsl\" type=\"text/xsl\"
 media=\"wap\""));
 } else {
 document.addContent(
 new ProcessingInstruction("xml-stylesheet",
"href=\"watchlist.html.en_GB.xsl\" type=\"text/xsl\""));

Adds
processing
instructions
for either
locale

Obtains a handle to
the Cocoon Engine

Wraps document
as an
HttpRequest

Invokes Cocoon to perform
the XSLT transformation

bAdds processing instructions
for specified locale

200 CHAPTER 5

User interface development
 document.addContent(
 new ProcessingInstruction("xml-stylesheet",
"href=\"watchlist.wml.en_GB.xsl\" type=\"text/xsl\"
 media=\"wap\""));
 }
 return document.toString();
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }

}

Figure 5.11 depicts our new presentation layer that combines Cocoon and the
J2EE presentation layer components.

5.4.3 Analyzing the results

The primary advantage of using a web publishing framework like Cocoon is
the avoidance of writing a significant amount of Java code, which would oth-
erwise be necessary to make the XSLT transformation process happen. From a
development standpoint, you need only supply XML documents and XSL
stylesheets to use the Cocoon framework. Web publishing frameworks also
feature caching algorithms to optimize performance.

 This convenience does come with a price. Despite precompiling stylesheets
and caching at various levels, XSLT transformation does not perform as well as
compiled templates, no matter what framework you use. Additionally, the

b

Application
Logic Layer

J2EE Web Container

Watch List Servlet

XSL
Stylesheets

Cocoon Engine

Client
Requests

Formatted
Responses

Figure 5.11
The J2EE Cocoon
presentation layer

Summary 201
J2EE presentation framework is fast, reliable, and adequately satisfies most user
interface needs.

 This begs the question—should you replace your JSP infrastructure with
XSLT, XSP, and Cocoon? At this point, we believe it is advisable to only aug-
ment your J2EE infrastructure with Cocoon and use XSP sparingly. Cocoon
technology has a lot of potential, but is not yet mature enough to warrant
redesigning your user interface. For now, the use of web publishing frame-
works should be limited to the portion of your application that has advanced
interface requirements like those described in this chapter.

5.5 A word about client-side XSLT

The architectures explored in this chapter perform XSLT transformations
focused exclusively on the server side. This is because most J2EE applications
use the thin-client model, wherein the server is required to do the work. Most
web browsers still do not support client-side XSLT or they lack the processing
power to perform transformations (e.g., wireless device browsers). This may
change in the future, and a model in which the client side performs the trans-
formation might become possible.

 One of the potential advantages of the client-side approach is the relief of
a heavy burden from the server-side, leading to faster responses and higher
application throughput. Another advantage may be the ability to perform
specialty processing such as conversion to voice or Braille. Client-side pro-
cessing could be an integrated feature of the browser or implemented using
applets. Currently, Internet Explorer 5 is the only popular browser with any
real XML support.

5.6 Summary

This chapter was all about creating a more robust, flexible user interface using
XML within the J2EE framework. We began by reviewing the common chal-
lenges involved in the development of a thin-client user interface to serve mul-
tiple types of users connecting via various types of devices. We detailed the
difficulties involved in creating and maintaining a multilocale, multidevice pre-
sentation layer using J2EE alone. We then discussed two alternatives to the
pure J2EE approach made available by the advent of XML technology.

 The first alternative is to add XSLT processing to your J2EE request han-
dling process. The recent addition of filters to the servlet API makes adding

202 CHAPTER 5

User interface development
XSLT much easier using the Decorating Filter pattern. Still, you have to roll
your own code to take this approach.

 The second alternative is to use XSLT via a web publishing framework like
Apache Cocoon. This approach allows you to avoid custom coding of the
XSLT extensions to your presentation layer and offers some potential perfor-
mance benefits from caching algorithms and other means. XSLT is much
slower than using compiled templates, but can be a reasonable alternative for
large, complicated interfaces that have advanced requirements such as multilo-
cale and/or multidevice support.

 If you decide that a hybrid J2EE/XML approach is not right for your appli-
cation, you should investigate other pure J2EE presentation frameworks to
give your user interface development efforts a jump start. Two such popular
frameworks are Struts and Velocity. Information on both can be found at
http://jakarta.apache.org.

 This chapter concludes our detailed discussion of using XML at each layer
of your n-tier J2EE application. The next and final chapter summarizes the
concepts and technologies from the first five chapters in the context of a cohe-
sive case study.

Case study
This chapter
■ Synthesizes concepts from previous chapters
■ Exercises J2EE/XML hybrid architecture
■ Presents an end-to-end example
203

204 CHAPTER 6

Case study
Throughout this book, we have examined various technologies relating to the
integration of J2EE and XML. Our goal has been to cover each component
with sufficient breadth and depth to give you a solid understanding. Each indi-
vidual component, however, is extremely complex and requires its own book
for an exhaustive discussion. The goal of this chapter is to provide cohesion to
our discussion and the topics that were previously explored. We use a case
study to examine an end-to-end architecture that highlights J2EE and XML
design patterns and technologies. Throughout this chapter, we produce an
application and step through its implementation. All of the materials necessary
to run the application can be found at http://www.manning.com/gabrick/.

6.1 Case study requirements

Our case study surrounds a fictional computer repair company named
RepairCo. In addition to repairing computers that have been brought or
shipped to their store locations, RepairCo sends certified technicians to cus-
tomer sites for onsite troubleshooting and repair. RepairCo technicians, while
certified and well trained, need access to the latest information on each
machine that they fix. The application that we develop throughout this chapter
enables real-time access to manuals, diagnostic material, and repair history. Our
application is accessed through a handheld device with wireless Internet access.

 The first step in our application development is the requirements process.
Given the small scope of this implementation, we document our requirements
informally in a small set of use cases. A heavy discussion about formal develop-
ment methodologies such as the Rational Unified Process or eXtreme Pro-
gramming is beyond the scope of this book. In an effort to limit the scope, we
will specify three use cases that our application must satisfy:

■ Use case 1: Viewing the application menu
■ Use case 2: Viewing detailed machine information
■ Use case 3: Viewing manufacturer information

The use cases are outlined in table 6.1.

Table 6.1 Use cases for the RepairCo application case study

Use case 1—User views application menu

Name 1. User views application menu

Objective User views application menu

(continued on next page)

http://www.manning.com/gabrick
http://www.manning.com/gabrick

Case study requirements 205
Given very minor modifications to the use cases, this could represent any thin-
client application that is accessed over the Internet. The only piece of function-
ality that may not currently be very common is real-time access to partner
information (use case #3). While this functionality may be very desirable, it has
typically involved custom integration work with each partner. As we alluded in
chapter 4, the growing popularity of web services will make real-time access to
partner data a more reasonable undertaking. The lack of complexity in our
requirements was intentional. The interesting points of our application lie in
the implementation details. The more generic the requirements, the easier it is
for you to apply the same design principles to your own applications.

Steps Using handheld device, user launches WAP browser.
User enters URL or selects bookmark for application home page.
System presents application menu.
Diagnose Application Hardware Problem
View Availability of Replacement Systems
Order Replacement Parts
View Common System Problems

Use case 2—User views detailed machine information

Name 2. User views detailed machine information

Objective User views common problems for a specific machine

Steps User selects VIEW COMMON PROBLEMS from the application menu.
System presents a list of machines.
Omnico 400
Amaya Workstation
Computech ATX
ACME xPad
User selects the Amaya Workstation.
System presents a list of common problems associated with that machine.

Use case 3—User views latest information from manufacturer

Name 3. User views latest information from manufacturer

Objective User views latest list of common problems.

Steps User selects VIEW COMMON PROBLEMS from the application menu.
System presents a list of machines.
User selects Amaya Workstation.
System presents a list of common problems associated with that machine.
User selects update.
System retrieves latest information from manufacturer and presents updated
list of issues.

Table 6.1 Use cases for the RepairCo application case study (continued)

206 CHAPTER 6

Case study
6.2 The application environment

Before we examine the architecture of our application, we must review the
application environment. There are myriad choices available for web servers,
J2EE servers, and SOAP servers. Though we did choose software for the imple-
mentation of our case study, it should be clear that our intention is not to per-
form a software evaluation. On the server side, we chose BEA’s WebLogic 6.1.
It serves as our web server, J2EE container, and SOAP server. The focus of our
discussion is the design and implementation of application, not the operating
environment. With a few modifications, this application will run using differ-
ent software products. For this reason, we note areas in our code that are
server dependant.

 For client-side access to our application, we use a Palm organizer with
wireless Internet access. The technicians at RepairCo merely launch an Inter-
net browser and select a bookmark to hit our application. The browser that we
use is the EzWap browser from EZOS, which interprets and renders WML on

Palm

EzWap

Web Container J2EE Container

BEA Weblogic 6.1

Case Study Environment

Generic Application
Environment

Client
Browser

Web Server J2EE
Server

Web
Services

Web
Services

Figure 6.1 Case study application environment and generic application environment

The analysis phase 207
the Palm device. Just as in the case of the server-side software, these compo-
nents can be substituted with other software that renders WML. Figure 6.1
depicts the case study application environment and the generic components
that can be used in their place.

6.3 The analysis phase

The next step in our case study is the analysis of our requirements and the
development and refinement of our analysis models. In chapter 4, section 4.1
we discussed constraint-based modeling as a means of designing our system.
In this vein, we begin our analysis with the services and data layer, because it is
clearly the most complex portion of our implementation.

6.3.1 Services and data layer analysis

The first component we look at is the integration to our partner companies.
For our purposes, we will develop the integration to only one of the manufac-
turers. Fortunately, our partner Amaya Inc. has a web service that we can inte-
grate to provide support information for the Amaya Workstation. Their
specifications for the RPC-style web service come in the form of a WSDL file.
In order to get the latest support information, we use a SOAP server to con-
nect to the web service and update our list. This process is a set of business
logic that we encapsulate in a stateless session bean called BugAccessorBean.
Our bean calls the web service by passing the name of the machine that we are
repairing, and the web service returns an XML DOM containing the informa-
tion that we requested. Figure 6.2 depicts this web service scenario. In order
to implement our application, we do not need intimate knowledge about how
Amaya implemented their web service. However, in the spirit of this case
study, we will examine the Amaya implementation of the web service in sec-
tion 6.8 so both sides of the implementation are clear.

J2EE Container

DOM

Session Bean
(BugAccessor)

Machine Name
(String)

Partner Company
(Amaya)

SOAP
Server

SOAP
Server

Figure 6.2 Connecting to partner company using a web service

208 CHAPTER 6

Case study
6.3.2 Data storage analysis

The next choice that we need to make is a data storage mechanism. In chap-
ter 3, we reviewed the advantages and disadvantages of several XML data stor-
age options, such as XML databases, PDOM, and relational databases. In this
case, we will use file system storage for our XML data so that we can open the
file and examine its contents during processing. To satisfy our use cases, we
must store the following data in table 6.2. These XML files will be reviewed in
section 6.7.

Once again, for the purposes of our example, we will discuss integration with our
partner Amaya only. Figure 6.3 displays an updated diagram of our architecture.

6.3.3 Other necessary components

While the BugAccessor bean may be responsible for updating our bug lists, we
need several additional components to round out our architecture. First, we
add a component called the ApplicationMenu. As implied by its name, the

Table 6.2 Case study data files

Purpose Filename

Menu of functions available in our application menu.xml

List of common problems associated with the Amaya machine amaya.xml

J2EE Container

DOM

Session Bean
(BugAccessor)

Machine Name
(String)

Partner Company
(Amaya)

SOAP
Server

SOAP
Server

amaya.xmlmenu.xml

Figure 6.3 Data and services layer architecture

The analysis phase 209
ApplicationMenu is responsible for the initial actions that our application sup-
ports. It provides access to the menu.xml file. It also has an administrative
interface so that RepairCo administrators can update the application.

 In addition, we introduce a presentation mechanism and a control point
for the web application. A servlet, named DiagnosticApp, will route all
requests to the appropriate components. Once the business logic processing is
complete, an XSLTFilter component will be responsible for transforming the
content before it is rendered to the user. This presentation mechanism was
discussed in chapter 5 and is an implementation of the Model-View-Control-
ler pattern. It is a solid choice because it is very likely that there will be a future
requirement for our application to support multiple output formats or lan-
guages. The flexibility of our filter enables this functionality to be added
through XSLT transformation without retouching the business logic compo-
nents. In some cases, this presentation framework may not be desirable
because the XSLT transformation impacts performance. In this case, perfor-
mance is not a primary concern because of the limited volume of requests that
we receive from our technicians.

 Figure 6.4 shows our complete analysis architecture. Though we will add
design-level components in the next section, we can satisfy the required func-
tionality with the tools shown here.

J2EE Container

DOM

Session Bean
(BugAccessor)

Machine Name
(String)

SOAP
Server

Partner Company
(Amaya)

SOAP
Server

Application
Menu

amaya.xmlmenu.xml

Web Container

XSLT
Filter

Diagnostic
App

Client
Device

Figure 6.4 Completed case study analysis architecture

210 CHAPTER 6

Case study
6.4 The design phase

Now that we have completed our requirement-gathering process and devel-
oped the analysis architecture, we move into design. During this phase, we
detail each component and add any necessary implementation classes to our
application. Also, we apply the principles and design patterns discussed
throughout this book to create a more robust architecture.

6.4.1 Designing the application logic layer

The first area of the application that requires our attention is the application
logic layer, the brains of our system. We must design the BugAccessorBean and
related components before concerning ourselves with other issues such as user
interface design.

The BugAccessorBean and ComponentLocator
The BugAccessorBean is a stateless session bean that is responsible for updat-
ing our bug list. In order to accomplish this, it communicates with our partner
companies through a web service to retrieve the latest information. Our bean
will have one method that contains the business logic called updateBugList
that takes the name of the particular machine that is to be updated and returns
a JDOM Document with the updated list of issues.

 The Amaya web service is not the only service that our application must
locate. The other components in our application also require naming services
to locate our BugAccessorBean. For this reason, we add a design level class to
our application called ComponentLocator. It will handle the logic surrounding
locating components shielding the other classes from the complexity and
removing potential redundant code. This class is an implementation of the
Service Locator pattern. Additionally, we implement this class as a singleton
using the Singleton pattern. The Singleton pattern uses one, and only one,
instance of the class in a particular JVM. One reason for this design is that we
save resources by creating the naming context only once. Also, this eliminates
the remote calls necessary for each client to locate the ComponentLocator class.
Lastly, as a service locator class, the ComponentLocator is not responsible for
maintaining or writing any data. This enables our application to scale to multi-
ple servers without risking inconsistencies in the state. For more information
on the Service Locator pattern or the Singleton pattern, please see appendix A.

 Figure 6.5 depicts these components in a class diagram using the Universal
Modeling Language (UML). If you are unfamiliar with UML notation, there is
a legend next to the ComponentLocator class that explains the composition of
the diagram.

The design phase 211
The ApplicationMenu component
The ApplicationMenu is a class that is responsible for building the initial menu
for our system. The information necessary to build the menu is stored in a file
named menu.xml. This was designed intentionally, so that new branches and
functions can be added to the system with relative ease. Each time a user
request is received, it is impractical to reload this information from a file. This
will undoubtedly cause performance problems. In order to alleviate this prob-
lem, we employ the Singleton pattern once again and load the data into our
ApplicationMenu class. Once we have initially loaded the menu, the getMenu
method merely returns the JDOM containing the menu information to the
caller. This is a caching method often used when the data is accessed fre-
quently and is not frequently modified. The reason that we have chosen this
architecture over using a bean is that the remote calls necessary to look up a
bean require too much overhead. One instance of this class in each JVM
serves our needs. In a different situation in which our class performed more
intense logic, we would reevaluate our design.

 The next issue we must consider is the process for updating the menu.
Unlike the ComponentLocator class, the ApplicationMenu must refresh itself
each time the menu is updated. The solution to this problem is the use of the
Service Activator pattern discussed in appendix A. In this pattern, a client sub-
scribes to a JMS queue to receive asynchronous messages. The client listens for
a message and performs some logic when a message is received. In our case,
we configure a JMS queue and add the ApplicationMenu as a subscriber. Any

BugAccessorBean

updateBugList (String) : org.jdom.document
ejbActivate()
ejbPassivate()
ejbRemove()
setSessionContext(setSessionContext)
ejbCreate()

ctx : Context
ComponentLocator

ComponentLocator()
getInstance() : ComponentLocator
getBeanHome(String) : EJBHome
getWebService(String) : EJBObject

ctx : Context
cl : ComponentLocator

Class Name

Attribute Name:
Type

Method Name (Parameters) : Return Type

Figure 6.5 Case study design architecture: BugAccessorBean and ComponentLocator

212 CHAPTER 6

Case study
time the menu.xml file is updated, we send a message that causes the Applica-
tionMenu to refresh itself. Figure 6.6 depicts the administrative interface to the
ApplicationMenu.

6.4.2 Designing the user interface

The final two components in our architecture are the presentation compo-
nents. In chapter 5, we introduced the combination of a filter, a servlet, and a
bean as an implementation of the Model-View-Controller pattern. In this par-
adigm, the servlet acts as the controller receiving requests and choosing the
appropriate combination of data (model) and presentation (view) to render to
the caller. The bean acts as the model and is only concerned with data. The fil-
ter acts as the view and renders the data in the appropriate format. The flexi-
bility of this paradigm allows us to implement a J2EE architecture that can
easily handle multiple presentation formats with minimal impact to the under-
lying data.

 In our case study design, the BugAccessorBean and the ApplicationMenu
act as the model. The DiagnosticApp is our controller servlet and the XSLT-
Filter is our view. Our current requirements indicate that we must produce
only WML, but this presentation framework is flexible enough to accommo-
date additional presentation formats if necessary. Figure 6.7 is the complete
class diagram for our application.

Menu.xmlApplicationMenu

JVM

JMS Queue

1. Subscribe

 2. Asynchronous Update
Message

3. Reload Menu

Figure 6.6 Administrative interface to ApplicationMenu

Validating our design 213
6.5 Validating our design

Before we move on, let’s review the steps that we have taken so far. We began
by choosing a suitable environment for our application. Next, we developed
an analysis architecture that satisfied our case study requirements. Then, we
added detail to those components during and added additional design level
components necessary to make our application complete. Table 6.3 lists each
component in our system and its purpose.

There is one step left in the design process after the application of design pat-
terns and the creation of our class diagrams. This step involves validating our
architecture against the use cases. This ensures that the designed application
satisfies the requirements. To perform our validation, we employ the use of a

Table 6.3 Case Study Component Summary

Component Purpose

BugAccessorBean Communicates with partner web service.

ComponentLocator Locates components and services.

ApplicationMenu Caches application menu data.

DiagnosticApp Controller servlet for application.

XSLTFilter Performs XSLT transformation and rendering

ComponentLocator

ComponentLocator()
getInstance() : ComponentLocator
getBeanHome(String) : EJBHome
getWebService(String) : EJBObject

ctx : Context
cl : ComponentLocator

BugAccessorBean

updateBugList (String) : org.jdom.document
ejbActivate()
ejbPassivate()
ejbRemove()
setSessionContext(SessionContext)
ejbCreate()

ctx : Context

ApplicationMenu

ApplicationMenu()
getInstance() : ApplicationMenu
loadMenu()
getMenu() : org.jdom.Document
registerListener()
onMessage(Message)

menu : ApplicationMenu
menuJDOM : org.jdom.Document
tcf : TopicConnectionFactory
tConn : TopicConnection
topic : Topic
ts : TopicSession
tSub : TopicSubscriber

DiagnosticApp

service(ServletRequest, ServletResponse)

XSLTFilter

doFilter(ServletRequest, ServletResponse , FilterChain)
init(FilterConfig)
getFilterConfig() : FilterConfig
setFilterConfig(FilterConfig)
destroy()

filterConfig : FilterConfig

Figure 6.7
Completed case study class diagram

214 CHAPTER 6

Case study
sequence diagram. Sequence diagrams are a type of UML interaction diagram
that show objects within the system interacting during the processing of a
request. Figure 6.8 is a sequence diagram that shows the application flow for
all three of our use cases.

 The sequence diagram is read from top to bottom beginning with the first
arrow, or message. Continuing down, you can see the flow of events between
application components. Sequence diagrams may be documented in much
more detail, including return values, but this level is sufficient for our pur-
poses. As we move into the implementation section, you can trace each
request along three paths—through the use case, the sequence diagram, and
finally the code. Each object is an instance of the classes from our class

a Client Device a DiagnosticApp an ApplicationMenu a BugAccessorBean a ComponentLocator

Object

[action = menu]
service()

getInstance()

getMenu()message

Use
Case 1

return
message

[action = update]
[machine = amaya]

service()
getInstance()

getBeanHome("BugAccessor")

updateBugList("Amaya")

getInstance()

getWebService()

Use
Case 3

[action = detail]
[machine = amaya]

service()Use
Case 2

1

3

2

an XSLTFilter

Figure 6.8 Sequence diagram for design validation

b

The implementation phase 215
diagram. Right-pointing arrows are messages that indicate a method call.
The method name is listed above each message. Left-pointing arrows are
return messages.

6.6 The implementation phase

With our design completed, we move into the implementation phase. In this
section, we list and explain the interesting pieces of code to be found in the
case study. As with the other examples in this book, we wrote this case study
to illustrate certain concepts. If this were a true production application, some
portions of the code would be more robust. For the full source code to this
application, go to http://www.manning.com/gabrick/.

6.6.1 Building the controller servlet

The DiagnosticApp component is the controller servlet for our application. It
accepts a parameter named action that is submitted on the query string of the
client browser (http://wwwcom/DiagnosticApp?action=menu). The three pos-
sible values for this parameter are listed in table 6.4.

Additionally, the machine name is passed to the servlet as a parameter if the
action is detail or update. The DiagnosticApp servlet makes calls to the other
business logic components to process the user’s request. Once that processing
is complete, the results are put into the request object along with the a refer-
ence to the appropriate stylesheet. The XSLTFilter (described in section 6.6.5)
performs the XSLT processing and renders the output to the user.

public class DiagnosticApp extends HttpServlet {

 ...
 public void service(ServletRequest req, ServletResponse res)
 throws ServletException, IOException {

Table 6.4 Possible parameter values for action variable

Value Purpose

menu View application menu

detail View detailed information about a specific machine

update Contact manufacturer and update machine support information

Listing 6.1 DiagnosticApp servlet

c
d

http://www.manning.com/gabrick
http://www.manning.com/gabrick

216 CHAPTER 6

Case study
 try {

 // If the user requested action is menu, then get the menu.
 String action = req.getParameter("action");

 if (action.equals("menu")) {
 ApplicationMenu menu
 = ApplicationMenu.getInstance();

 Document menuDoc = menu.getMenu();

 req.setAttribute("outputDoc", menuDoc);
 req.setAttribute("stylesheet",
 “config/mydomain/applications/book/menu.xsl");
 }

 // If the user requested action is update, then have the BugAccessorBean
 // update the list.
 String machineName = req.getParameter("machine");
 if (action.equals("update")) {
 ComponentLocator cl = ComponentLocator.getInstance();
 BugAccessorHome bHome =
 (BugAccessorHome)
 cl.getBeanHome("examples.chapter6.BugAccessor");
 BugAccessor bugBean = bHome.create();
 Document detailDoc
 = bugBean.updateBugList(machineName);

 req.setAttribute("outputDoc", detailDoc);
 req.setAttribute("stylesheet",
 "config/mydomain/applications/book/bugs.xsl");
 }
 // If the user requested action is detail, then get the list detail.
 // for the specified machine.
 if (action.equals("detail")) {
 SAXBuilder sBuilder = new SAXBuilder();
 Document detailDoc = sBuilder.build(new File(
 "config/mydomain/applications/book/" + machineName +
 ".xml"));
 req.setAttribute("outputDoc", detailDoc);
 req.setAttribute("stylesheet",
 "config/mydomain/applications/book/bugs.xsl");
 }
 }
 ...
 }

 ...
}

b

Central
point for
locating
services

c Communicates
with web service

The implementation phase 217
b The ComponentLocator is a central point for locating services. Here we use it to
locate the BugAccessorHome.

c Use the BugAccessorBean to communicate with the web service and update the
list of issues for a particular machine.

6.6.2 Building the ApplicationMenu component

The next listing that we examine is the ApplicationMenu class. It is responsible
for caching the list of available options for our home page. The DiagnosticApp
servlet calls the getMenu method each time the menu is required. We have
omitted the code that makes this component a singleton from this listing. It is
identical to the code that we use in the ComponentLocator class to implement
the Singleton pattern. We discuss the ComponentLocator code in section 6.6.3.

 The ApplicationMenu also requires an administrative interface. We use this
interface to reload the menu data from menu.xml. The class registers itself
with a JMS Queue in the registerListener method. If menu.xml is updated to
include an additional function, we need only put a message on the JMS queue.
As a subscriber, the ApplicationMenu class will reload the menu data.

public class ApplicationMenu implements MessageListener {
...

 private void loadMenu() {
 try {
 SAXBuilder sBuilder = new SAXBuilder();
 menuJDOM = sBuilder.build(new
 File("config/mydomain/applications/book/menu.xml"));

 } catch (Exception ex) {
 System.out.println("Error in loadMenu" + ex.getMessage());
 }
 }

 public Document getMenu() {
 return menuJDOM;
 }

 private void registerListener() {
 try {
 Context ctx = new InitialContext();
 tcf = (TopicConnectionFactory)
 ctx.lookup("TopicConnectionFactory");
 topic = (Topic) ctx.lookup("MenuRefresh");
 tConn = tcf.createTopicConnection();

Listing 6.2 ApplicationMenu code

Loads the
menu
from
the file
systemb

c Registers
with the JMS
Queue

218 CHAPTER 6

Case study
 ts = tConn.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 tSub = ts.createSubscriber(topic);
 tSub.setMessageListener(this);
 tConn.start();
 } catch (Exception ex) {
 System.out.println("Error in registerListener"
 + ex.getMessage());
 }
 }

 /**
 * Reload the menu data when a message is
 * received from the JMS Queue.
 */
 public void onMessage (Message ms) {
 loadMenu();
 }

 ...

}

b This method loads the menu initially and is called whenever the menu needs to be
reloaded.

c This code subscribes the ApplicationMenu to the JMS Queue so that the menu can
be reloaded if the administrator updates it.

d When the message is received from the JMS Queue, reload the menu.

6.6.3 Building the ComponentLocator

The ComponentLocator is responsible for locating remote objects and services
throughout our application. It hides the complexity of the JNDI calls from the
other classes and avoids the duplication of the code necessary to locate
remote objects.

 The private constructor and public getInstance methods are the way that
this class implements the Singleton pattern. This class contains a static variable
of type ComponentLocator that is initially set to null. On the first call to getIn-
stance, the private constructor is called and the naming context is cached so
that we do not need to reload it on subsequent calls. The static variable is also
set to the instance of this class that we just created and all subsequent calls to
getInstance merely return our singleton instance. See listing 6.3.

c

Message in
JMS Queue
triggers this
method

d

The implementation phase 219

public class ComponentLocator {

 private static ComponentLocator cl = null;
 private Context ctx = null;

 /**
 * Private constructor that is called only when there
 * is no other instance of this class.
 * Initializes and caches the context.
 */
 private ComponentLocator() {
 try {
 Properties prop = new Properties();
 prop.load(
 getClass().getResourceAsStream(/jndi.properties));
 ctx = new InitialContext(prop);
 } catch (Exception e) {
 System.out.println("Exception creating ComponentLocator;");
 }
 }

 /**
 * Method called to retrieve access to
 * the singleton instance. One will be
 * created if it does not already exist.
 */
 public static ComponentLocator getInstance() {
 if (cl == null) {
 cl = new ComponentLocator();
 }
 return cl; |
 }

 /**
 * Method called by clients looking for EJBs
 */
 public EJBHome getBeanHome(String beanName) {
 EJBHome ejbh = null;
 try {
 Object o = ctx.lookup(beanName);
 if (o != null) {
 Class beanHomeClass
 = Class.forName(beanName + Home);
 ejbh = (EJBHome)
 PortableRemoteObject.narrow(o, beanHomeClass);
 }
 } catch (Exception e) {
 System.out.println(
 "Error in getBeanHome in ComponentLocator class"
 + e.getMessage());

Listing 6.3 ComponentLocator implementation

b Caches
the
naming
context

Creates an
instance if one
has not already
been created

c

dPerforms JDNI
lookup to find

bean home

220 CHAPTER 6

Case study
 }
 return ejbh;
 }

 /**
 * Method called to locate web service for a particular
 * manufacturer. In this case, Only one is implemented.
 */
 public EJBObject getWebService(String machineName) {
 try {
 String className =

CommonIssues.class.getName();

 Properties prop = new Properties();
 prop.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");
 prop.put("weblogic.soap.wsdl.interface", className);
 prop.put("weblogic.soap.verbose", "true");
 // Register encoding types
 CodecFactory cf = CodecFactory.newInstance();
 cf.register("http://schemas.xmlsoap.org/soap/encoding/",
 new SoapEncodingCodec());
 cf.register("http://xml.apache.org/xml-soap/literalxml",
 new LiteralCodec());
 cf.register("http://schemas.xmlsoap.org/soap/encoding/",
 new LiteralCodec());
 cf.register("http://xml.apache.org/xml-soap/literalxml",
 new SoapEncodingCodec());
 prop.put("weblogic.soap.encoding.factory", cf);
 Context ctx = new InitialContext(prop);
 CommonIssues webService = (CommonIssues)ctx.lookup
 ("http://localhost/issues/CommonIssues/CommonIssues.wsdl");
 return webService;
 } catch (SoapFault fault) {
 System.out.println("Soap fault generated: " + fault);
 fault.printStackTrace();
 } catch (Exception e) {
 System.out.println("Error in getWebService." + e.getMessage());
 }
 return null;
 }

}

b This code is called only once to cache the naming context in the instance of this
class. It reads JNDI connection properties from a file named jndi.properties,
which is found on the classpath.

c Tests the static variable that indicates whether an instance has already been created.
If it has, then returns it. If not, creates an instance and then returns it to the caller.

e Amaya’s web service bean

fConfigures
WebLogic SOAP

Looks up web service

The implementation phase 221
d This method is responsible for remote lookups of our bean homes. It locates a
named object using the specified parameter and, if such an object is found, returns
a reference to it.

e The CommonIssuesBean is responsible for receiving web service calls at Amaya and
returning the latest information.

Important details about the ComponentLocator
The getWebService method in the ComponentLocator class is the first piece of
code that explicitly references WebLogic classes. In chapter 4, section 4.3.1,
we discussed the architecture of an RPC-style web service. It involves using a
stateless session bean to call a servlet that handles the SOAP communication
with the web service. In our implementation, WebLogic has provided an
implementation of that servlet in the weblogic.soap.servlet package. It
shields the developer from much of the detail requiring the simple calling
code that is listed in our method. If you were to port this code to another
application server or choose to use another SOAP server, this code would have
to be modified.

 There are two other lines in the getWebService method that require fur-
ther explanation. The first line in the method refers to a class called CommonIs-
sues. There are two methods for invoking an RPC-style web service. You may
use a static client to invoke a web service if you have the interfaces to the EJB,
parameters, and return types associated with the web service. If not, you may
write a dynamic client, which does not explicitly reference those classes in
your code. In our case, Amaya implemented their web service using a stateless
session bean called CommonIssuesBean. They have provided us with the inter-
face and as a result, we have written our getWebService as a static client. Our
reference to the CommonIssues class is a reference to the remote interface of
their bean.

 Finally, we provide a URL for Amaya’s web service. The URL begins with
http://localhost. This enables you to run the case study on one machine. As
we will see when we deploy the application, the Amaya web service is running
as a separate application. If you choose to deploy that portion of the applica-
tion to another machine, merely change the URL in the ComponentLocator
class to point to the appropriate location for the WSDL.

6.6.4 Building the BugAccessorBean

The BugAccessorBean is responsible for accessing our partner web services and
updating the list of common problems associated with each computer we repair.
It uses the ComponentLocator to locate the web service and then requests the

222 CHAPTER 6

Case study
latest set of problems in the form of an org.w3c.dom.Document. This informa-
tion is then written to the file system and returned to the calling component. In
this listing, we include only the method that communicates with the web ser-
vice and performs the update. The rest of the source code for this bean includ-
ing the home and remote interfaces is very standard. See listing 6.4.

public class BugAccessorBean implements SessionBean {
 ...

 /*
 * Based on the name of the machine that is passed in,
 * call the web service and update the bug list.
 */
 public Document updateBugList(String name) throws RemoteException {
 try {
 SAXBuilder sBuilder = new SAXBuilder();
 String fileName = name + ".xml";
 Document bugDoc = sBuilder.build(new
 File("config/mydomain/applications/book/"
 + fileName));
 Element root = bugDoc.getRootElement();
 String lastUpdatedString
 = root.getChildText("last_updated");

 SimpleDateFormat formatter
 = new SimpleDateFormat("MM-dd-yy");
 ParsePosition pos = new ParsePosition(0);
 Date lastUpdated =
 formatter.parse(lastUpdatedString, pos);
 Date currentDate = new Date();
 String today = formatter.format(currentDate);
 Element dateElement = root.getChild("last_updated");
 dateElement.setText(today);

 ComponentLocator cl
 = ComponentLocator.getInstance();
 CommonIssues webService
 = (CommonIssues) cl.getWebService(name);
 org.w3c.dom.Document wsDoc
 = webService.getIssuesList("amaya");

 DOMBuilder dBuilder = new DOMBuilder();
 Document newIssueDoc = dBuilder.build(wsDoc);
 Element docRoot = newIssueDoc.getRootElement();
 Element newIssues = docRoot.getChild("issues");
 newIssues.detach();

 Element issues = root.getChild("issues");
 root.removeContent(issues);

Listing 6.4 BugAccessorBean implementation

b Retrieves current list
of detailed issues

Updates the
last_updated
element to
today’s date

c Communicates
with the
web service

Replaces the old
set of issues with

the updated set
of issues

The implementation phase 223
 root.addContent(newIssues);

 XMLOutputter xmlOut = new XMLOutputter();
 xmlOut.output(bugDoc,
 new FileOutputStream(new
 File("config/mydomain/applications/book/"
 + fileName)));
 return bugDoc;
 } catch (Exception e) {
 System.out.println("Error in update bug list bean."
 + e.getMessage());
 }
 return null;
 }
}

b A detailed list of common problems associated with each machine is maintained in
XML files on the file system. This code retrieves this list for a given machine.

c This code communicates with Amaya’s web service. A string parameter is passed to
the getIssuesList method that represents the name of the computer that we’re
requesting information about. This method returns an org.w3c.dom.Document
containing the list of problems associated with that computer.

6.6.5 Building the XSLTFilter

Finally, we list the code for the XSLTFilter class. The XSLTFilter is responsi-
ble for transforming the output of our business logic to be rendered to the cli-
ent device. This implementation is a simplified version of the XSLTFilter listed
in chapter 4 as we are currently only concerned with one output format.

public class XSLTFilter implements Filter {

 ...

 /*
 * Method used to transform response
 * prior to rendering.
 */
 public void doFilter(ServletRequest request,
 ServletResponse response, FilterChain chain)
 throws IOException,ServletException {
 try {

 chain.doFilter(request, response);

 Document outputDoc = (Document)
 request.getAttribute("outputDoc");

Listing 6.5 XSLTFilter implementation

b
Sends processing
to servlet

c
Performs XSLT transforma-
tion on results of servlet

224 CHAPTER 6

Case study
 String stylesheet = (String)
 request.getAttribute("stylesheet");
 Transformer trans = TransformerFactory.newInstance()
 .newTransformer(new StreamSource(stylesheet));
 JDOMResult result = new JDOMResult();
 trans.transform(new JDOMSource(outputDoc), result);
 Document resultDoc = result.getDocument();

 response.setContentType("text/vnd.wap.wml");
 PrintWriter out = response.getWriter();
 XMLOutputter xOut = new XMLOutputter();
 xOut.output(resultDoc, out);

 } catch (Exception e) {
 System.out.println("Error in XSLTFilter: " + e.getMessage());
 }
 }
}

b This line sends the processing of this request to the next filter in the filter chain. In
this case, we only have one filter so the processing is passed along to the Diagnos-
ticApp servlet.

c Once the processing has returned from the DiagnosticApp servlet, the filter per-
forms the XSLT transformation using the stylesheet and XML document in the
request object.

6.7 Structuring application data

After reviewing the code for our application, the next step is to examine the
data. We have intentionally left the structure of the XML simple so that you
can follow the flow of data through the application. Listing 6.6 is the
menu.xml file containing menu data for the application.

<?xml version="1.0" encoding="UTF-8"?>

<menu>
 <option>Diagnose Hardware Problem</option>
 <option>View Availability of Replacement System</option>
 <option>Order Replacement Parts</option>
 <option>View Common System Problems</option>

 <machines>

Listing 6.6 The menu.xml data file

c

Renders the transformed
output to the user

List of
initial
menu
options

The Amaya web service 225
 <machine id="ominco4000">Omnico 4000</machine>
 <machine id="amaya">Amaya Workstation</machine>
 <machine id="computech">Computech ATX</machine>
 <machine id="xpad">ACME xPad</machine>
 </machines>
</menu>

Listing 6.7 is amaya.xml, which contains a detailed list of problems with the
Amaya machine. Given the scope of our application, it is not necessary to vali-
date these files against DTDs or XML Schemas. This would certainly be neces-
sary in a production application. Additionally, a backup of the amaya.xml file
should be made each time the list is updated using Amaya’s web service. In
the event that the update fails, you can revert to the previous version.

<?xml version="1.0" encoding="UTF-8"?>

<amaya>
 <machine>amaya</machine>
 <last_updated>06-01-01</last_updated>
 <issues>
 <issue id="0001">Machine Is Not Receiving Power</issue>
 <issue id="0002">LCD Stopped Working</issue>
 <issue id="0003">Abnormally Low Battery Life</issue>
 </issues>
</amaya>

6.8 The Amaya web service

Though we have completed our analysis and implementation of the RepairCo
side of the case study, we are fortunate enough to have access to Amaya’s web
service implementation as well. This web service provides Amaya resellers with
access to the latest support information about its machines. This particular web
service contains one stateless session bean (CommonIssuesBean) running in a
J2EE container that returns the latest data from an XML document (amaya.xml)
on the file system. This scenario is depicted in figure 6.9.

 The client in this scenario can be anything capable of sending a SOAP
request. In this scenario, the client is our repair diagnostic application. It sends
a single string parameter with the SOAP request, which represents the name of
the machine for which we are requesting information. The SOAP server at

Listing 6.7 The amaya.xml data file

List of machines
that RepairCo
supports

List of
common
problems
with
Amaya
machine

b

226 CHAPTER 6

Case study
Amaya receives SOAP requests and passes them to the appropriate compo-
nent. In this case, the CommonIssuesBean is the target of our SOAP request.
The CommonIssuesBean accesses XML data regarding support informa-
tion for Amaya’s computers. It returns an org.w3c.dom.Document to the SOAP
server, which in turn sends this information back to the requesting client.

 Listing 6.8 is the implementation of the CommonIssuesBean. As with our
previous listing, we omit the source for the home and remote interfaces.

public class CommonIssuesBean implements SessionBean {

 ...

 /**
 * Get the list of issues from the file system
 * and return the XML document.
 */
 public Document getIssuesList(String name) throws RemoteException {
 try {
 DocumentBuilderFactory dFactory
 = DocumentBuilderFactory.newInstance();
 DocumentBuilder dBuilder
 = dFactory.newDocumentBuilder();
 Document issueDoc = dBuilder.parse
 ("config/mydomain/applications/amaya/"
 + name + ".xml");
 return issueDoc; |#1
 } catch (Exception e) {
 System.out.println("Error in common issues bean: " + e.getMessage());
 }
 return null;
 }
}

Listing 6.8 CommonIssuesBean implementation

J2EE ContainerSOAP
Server

XMLCommonIssuesBean
Client

String

org.w3c.dom.Document

1
3

2

Figure 6.9 Amaya web service integration

C

D

Retrieves document
from file system and
returns it

The Amaya web service 227
The data that this bean sends back to RepairCo (amaya.xml) is listing 6.9.
Notice that it contains an issue with the id equal to 0004; an additional prob-
lem with the Amaya Workstation that RepairCo’s list does not contain (see
listing 6.7). This issue will be added to the list when RepairCo calls the Amaya
web service.

<?xml version="1.0" encoding="UTF-8"?>
<amaya>
 <issues>
 <issue id="0001">Machine Is Not Receiving Power</issue>
 <issue id="0002">LCD Stopped Working</issue>
 <issue id="0003">Abnormally Low Battery Life</issue>
 <issue id="0004">LCD Flickers</issue>
 </issues>
</amaya>

The final portion of the Amaya implementation that we examine is the WSDL
for the web service. This should look familiar due to its similarity to the WSDL
that we examined in chapter 4. WebLogic generated the file in listing 6.10
automatically, alleviating the need for us to create it manually.

<?xml version="1.0"?>
<definitions
 targetNamespace="java:amaya.webservices"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:dom="http://www.w3c.org/1999/DOM"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:tns="java:amaya.webservices"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

 <types>
 <schema targetNamespace='java:amaya.webservices'
 xmlns='http://www.w3.org/1999/XMLSchema'>
 </schema>
 </types>

 <message name="getIssuesListRequest">
 <part name="arg0" type="xsd:string" />
 </message>
 <message name="getIssuesListResponse">
 <part name="return" type="dom:org.w3c.dom.Document" />
 </message>

Listing 6.9 Amaya’s issues list with the Amaya machine

Listing 6.10 WSDL for Amaya web service

Derived XML
data types
would go here

Inbound/Outbound
message definitions
for our RPC service

228 CHAPTER 6

Case study
 <portType name="CommonIssuesPortType">
 <operation name="getIssuesList">
 <input message="tns:getIssuesListRequest"/>
 <output message="tns:getIssuesListResponse"/>
 </operation>
 </portType>

 <binding
 name="CommonIssuesBinding"
 type="tns:CommonIssuesPortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http/"/>
 <operation name="getIssuesList">
 <soap:operation soapAction="urn:getIssuesList"/>
 <input>
 <soap:body use="encoded" namespace='urn:CommonIssues'
 encodingStyle=
 "http://xml.apache.org/xml-soap/literalxml ◊
 http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace='urn:CommonIssues'
 encodingStyle=
 "http://xml.apache.org/xml-soap/literalxml ◊
 http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service
name="CommonIssues">

 <documentation>
 This service provides manufacturer support information
 on our products.
 </documentation>
 <port name="CommonIssuesPort"
 binding="tns:CommonIssuesBinding">
 <soap:address
 location="http://localhost:80/issues/issues"/>
 </port>
 </service>
</definitions>

b The definition of the web service port type. This binds the messages together into
an RPC request/response operation.

c The actual web service definition, built from the message, port, and binding infor-
mation in this file. This is where the actual URL for the service is specified.

Port type
definition

b

A binding of our new
port type to SOAP/HTTP

cWeb service definition

Running the application 229
6.9 Running the application

Now that we have designed and implemented our application, we can run it
and examine its output. As we stated earlier, the implementation is intended
to run on WebLogic version 6.1. For those of you who wish to port it to
another platform, we have included all of the source code for our application
online. BEA has a comprehensive set of documentation on their web site, so
we do not include product installation or administration information. Please
refer to http://edocs.bea.com for WebLogic documentation.

6.9.1 Installation

As for the installation of our application, first go to http://www.man-
ning.com/gabrick/ and download the Zip file containing the source as well as
the compiled code for the application. Unzip the file under the directory listed
in figure 6.10. The resulting directory structure is shown in figure 6.10.

 The directory structure in figure 6.10 is the default directory structure for
a WebLogic 6.1 installation. Once you have unpacked the files, you may start
WebLogic. From the administration console, which is located by default at
http://localhost:7001/console, you must perform the following actions:

1 Under the Deployments > Applications folder add an application:
 Path - .\config\mydomain\applications\amaya\issuesWebService.ear

2 Under the Deployments > EJB folder, configure an EJB with the fol-
lowing fields:

 URI: bug_bean_ejb.jar
 Path: .\config\mydomain\applications\book\WEB-INF\lib

3 Under the Deployments > Web Applications folder, add a web appli-
cation with the following fields:

 Name: book
 URI: book
 Path: .\config\mydomain\applications

Once you have completed these actions, the application is deployed and we
can view the output of our case study. If you have trouble deploying the
application components, refer to the Administration Guide within the
WebLogic documentation.

 There is one portion of our environment that we have not yet configured.
The client side that we discussed in section 6.2 consists of the Palm emulator

http://www.manning.com/gabrick

230 CHAPTER 6

Case study
with the EzWAP browser that renders WML. If you are not able to re-create
this environment, all you need is a browser that renders WML. In lieu of that,
you may also use a web browser such as Internet Explorer and examine the
contents of the response.

6.9.2 Viewing the main menu

To load the initial screen of our application, enter the URL http://local-
host:7001/book/DiagnosticApp?action=menu. This request calls the Diag-
nosticApp servlet, which in turn loads the ApplicationMenu and returns it to
the user. Figure 6.11 depicts the results of this request. The right side of this
picture is the list of menu options.

Unzip Files Here

INSTALL_DIR

config

mydomain

applications

INSTALL_DIR

config

mydomain

applications

amaya

src

amaya

webservices

book

src

examples

chapter7

WEB-INF

classes

amaya

webservices

examples

chapter6

lib

issuesWebService.ear

XML Files

bug_bean_ejb.jar

Class files for book
web application

Figure 6.10 Directory structure for case study

Running the application 231
6.9.3 Viewing common system problems

Once you select View Common System Problems, a list of machines that
RepairCo services is loaded. This is depicted in figure 6.12.

6.9.4 Viewing and updating the Amaya problem list

The next request can be initiated by selecting Amaya Workstation or by enter-
ing the URL http://localhost:7001/book/DiagnosticApp?action=detail
&machine=amaya. This loads RepairCo’s information regarding problems
with the Amaya machine. The results are depicted in figure 6.13 on the left
side. Technicians who don’t find the needed information in this list may click
on the Update link. This calls Amaya’s web service, which updates the list on
the right side of figure 6.13. Notice the additional problem, LCD Flickers,

Figure 6.11 Case study results: Viewing the Application menu

Figure 6.12 Case study results: List of machines that RepairCo services

232 CHAPTER 6

Case study
that was returned to our application in the updated list. You may call the web
service directly with the URL http://localhost:7001/book/DiagnosticApp
?action=update&machine=amaya.

6.9.5 Inspecting the web services SOAP messages

Listing 6.11 contains the SOAP messages that are sent between the RepairCo
application and the Amaya application. They are very similar to the SOAP mes-
sages we reviewed in chapter 4, section 4.2.

-------------- SENDING XML --------------

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 'http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsi='http://www.w3.org/1999/XMLSchema-instance'
 xmlns:xsd='http://www.w3.org/1999/XMLSchema'>

 <SOAP-ENV:Body>
 <ns0:getIssuesList xmlns:ns0='urn:CommonIssues'
 SOAP-ENV:encodingStyle='http://xml.apache.org/xml-soap/literalxml
 http://schemas.xmlsoap.org/soap/encoding/'>

 <ns0:arg0>amaya</ns0:arg0>

 </ns0:getIssuesList>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 6.11 SOAP messaging for Amaya web service

Figure 6.13 Case study results: Common list of problems with Amaya machine

Single parameter passed
to the web service

Summary 233
------------- RECEIVING XML -------------
<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 'http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:xsi='http://www.w3.org/1999/XMLSchema-instance'
 xmlns:xsd='http://www.w3.org/1999/XMLSchema'>

 <SOAP-ENV:Body>
 <ns0:getIssuesListResponse xmlns:ns0='urn:local'
 SOAP-ENV:encodingStyle='http://xml.apache.org/xml-soap/literalxml
 http://schemas.xmlsoap.org/soap/encoding/'>

 <ns0:return>

 <amaya>
 <issues>
 <issue id="0001">Machine Is Not Receiving Power</issue>
 <issue id="0002">LCD Stopped Working</issue>
 <issue id="0003">Abnormally Low Battery Life</issue>
 <issue id="0004">LCD Flickers</issue>
 </issues>
 </amaya>
 </ns0:return>
 </ns0:getIssuesListResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

6.10 Summary

The purpose of this chapter was to demonstrate the concepts and technolo-
gies examined in this book through the use of a case study. We began by
introducing RepairCo, a fictional company that services computers. They
needed an application to enable their technicians to access data while they
were in the field. We then proceeded to analyze and design these require-
ments, applying J2EE and XML patterns and concepts to our architecture. Our
implementation made use of several J2EE design patterns including the Sin-
gleton pattern, Service Locator pattern, and the Decorating Filter pattern.
Additionally, we used XML for our data storage and JDOM for manipulation
within Java. Finally, we implemented an RPC-style web service and used it to
integrate our application across companies. The result of our case study is a
flexible, robust architecture with several components that can be easily
adapted and reused in other applications.

Design patterns
for J2EE and XML

This appendix
■ Identifies J2EE design patterns for use with XML
■ Groups patterns by application tier
235

236 APPENDIX A

Design patterns for J2EE and XML
This appendix contains a brief overview of a few J2EE and XML design pat-
terns. If you are not familiar with design patterns generally or with J2EE
design patterns, more detailed information is available on the Web and in the
sources listed in the bibliography. A good place to start on the Web is the J2EE
Blueprints design pattern section,

 http://java.sun.com/j2ee/blueprints/design_patterns/.
 Briefly stated, a software design pattern is a reusable blueprint for structur-

ing code to solve a particular class of problem. Numerous design patterns spe-
cific to J2EE have been published, and there are even a couple of books on the
subject. In this section, we introduce only those patterns that are used in this
book. We describe each pattern and note where and how it is used in the chap-
ters, including the role XML plays in each.

A.1 Presentation layer patterns

Patterns listed in this section can be applied to enhance the flexibility and
extensibility of your application’s web interface. They involve the J2EE web
container, servlets, JSPs, and related objects.

A.1.1 The Decorating Filter pattern

The Decorating Filter pattern involves applying inbound and outbound filters
to modify client request and response data across distinct request types. The
pattern is depicted in figure A.1 and is fully supported by the servlet API as of
version 2.3. The Decorating Filter is useful when a general piece of logic needs
to be applied globally to many types of user interactions.

Inbound
Filter 1

1. Web Request Inbound
Filter 2

2. Forward

Servlet / JSP
(request-specific logic)

3. Forward

Outbound
Filter 1

Outbound
Filter 2

4. Forward

5. Forward

6. Web Response

Figure A.1 The Decorating Filter pattern

Presentation layer patterns 237
For example, your application may need to determine whether a session object
exists for a given user and create one if necessary. If the check needs to occur
on every request, encapsulating this logic in an inbound filter makes sense.
Perhaps your user interface components produce XML that needs to be trans-
lated into an output document based on the user’s device type and locale. This
logic could be encapsulated in an outbound filter and applied to every
response. In chapter 5, we do this very thing using XSLT, a document trans-
formation technology based on XML. This same pattern is used with XSLT the
chapter 6 case study.

 There are many other circumstances where this pattern can be useful. In
general, you will use inbound filters to prepare requests for processing and
outbound filters for output formatting. Other functionality, such as logging,
could be implemented as either type of filter, depending on the data you wish
to collect.

A.1.2 The Model-View-Controller pattern

This pattern is familiar to many developers who have written applications
requiring multiple user views of the same data. The concept here is that access
to an application is centrally managed by a controller component, which often
performs security checks and logs request activity. All client requests pass
through the controller and are dispatched to a component that renders the
user interface. This component is known as the view, and provides a specific
user with customized access to the application and its data. Internally, the
application actually has a single state (the model) from which all views are
derived. This is depicted in figure A.2.

Controller

View

Model

(Application State)

1. View Request 2. Update /
Query

3. Render View

4. View Response

Figure A.2 The Model-View-Controller pattern

238 APPENDIX A

Design patterns for J2EE and XML
Many J2EE presentation layers employ the Model-View-Controller (MVC) pat-
tern because of the common distributed application requirement of serving
many types of users with different access rights and functional needs from a sin-
gle user interface. As such, the MVC pattern has been mapped onto the J2EE
web components in various ways, which we will characterize generally here.

 A servlet most often acts as the controller component for the application,
although a JSP page can be used in some cases. This controller (often referred
to as a front controller) performs general functionality, such as access control
and request logging. It may then employ one or more helper components to
assist in request-specific processing. These can be virtually any type of Java
class, but are often JDBC- or EJB-aware components that integrate with other
tiers of the application.

 Once request processing has been completed, the request and response
data are forwarded to the view component. This is usually a JSP. The view
component in turn uses helpers to assist in rendering the response data in an
appropriate format. These helper classes are usually custom tags and Java-
Beans. A full implementation of the MVC pattern in J2EE is depicted in
figure A.3. The examples in chapter 5 use this pattern, but substitute XML
technologies for certain J2EE components to make the solution even more
robust. The case study in chapter 6 uses the MVC pattern with an XSLT servlet
filter as the view component.

There are numerous variations on the MVC theme in J2EE, and not every com-
ponent shown in figure A.3 is required in every solution. Also keep in mind
that it is easy to get carried away with the MVC pattern and design a solution
that is overly complicated and difficult for developers to use and comprehend.

Controller

(Servlet)

Application
Adapter

(Java class)

View
(JSP)

View Helper

(Tags and
JavaBeans)

Model
(Application)

1. Web Request 2. Execute
3. Query /

Update

4. Render View

5. Format Data

6. Web Response

Figure A.3 J2EE Model-View-Controller architecture

Application- and service-layer patterns 239
A.2 Application- and service-layer patterns

Patterns in this section are focused on increasing the flexibility, maintainability,
and modularity of your internal application components. The focus at this
layer is on hiding the complexities that lie below the client APIs, centralizing
configuration management, and creating tightly cohered, loosely coupled
application components.

A.2.1 The Service Locator pattern

The Service Locator pattern is one of the simplest and most useful of J2EE
patterns. This pattern hides the complexity of locating remote services, such as
EJBs, data sources, message queues, and mail servers. When employed prop-
erly, it can also reduce administrative burdens on the application assembler
and deployer.

 The concept behind this pattern is
to provide a simple API for obtaining
a reference to a service component.
This is depicted in figure A.4. For
example, a JNDI service locator might
provide a simple lookup method for
an instance of a particular EJBHome
class. While there are numerous steps
involved in the JNDI lookup process,
the Ser vice Locator’s clients are
shielded from the underlying com-
plexity. This is depicted in figure A.5.

 The Service Locator can also man-
age mappings of identifiers used in
the application to resources in the
operational environment. For exam-
ple, a Service Locator might contain a
map between an object’s class and a
JNDI name in the deployed configu-
ration. This technique is useful for
centrally managing JNDI configura-
tion information throughout your
application, and is demonstrated in
the case study in chapter 6.

Client
Object

Service
Locator

Remote
Resource

Uses

Locates

Figure A.4 The Service Locator pattern

EJB or
dependent

object

JNDI Service
Locator

JNDI
Naming
Context

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

JNDI Service
Locator

Uses

Creates

Named
Resource
(EJB, Message

Queue, Data Source,
etc.)

Locates

Figure A.5 A JNDI Service Locator
implementation

240 APPENDIX A

Design patterns for J2EE and XML
A.2.2 The Business Delegate pattern

The Business Delegate pattern is
employed to simplify client access to a
particular application service. In this
pattern, a Business Delegate object
acts as a proxy between application cli-
ents and the service. This is depicted
in figure A.6. This pattern is related to
the more general Proxy and Adapter
software patterns and hides the com-
plexity of locating and accessing a
complicated business API from the cli-

ent. Often, the Business Delegate utilizes a Service Locator of some kind to
locate a particular service and connect to it.

 In J2EE, Business Delegates are often dependent objects used by servlets
and EJBs. For example, an adapter class might provide access to an internal
ERP system for querying order status. This adapter might locate the ERP sys-
tem using JNDI parameters and engage in a complicated interaction with the
remote system. All this is transparent to the objects that use the adapter.

 The Business Delegate pattern is demonstrated by the JAXM examples in
chapter 4, which use it to shield application components from the complexi-
ties of interacting with remote applications via SOAP.

A.2.3 The Value Object pattern

The Value Object pattern is a simple but very useful pattern in J2EE. A value
object is a serializable representation of a complex set of data suitable for pass-
ing between application tiers via RMI. Value objects are generally utility
classes, similar to structs in C, but can contain behavior to validate or prohibit
internal data modification as well. An example of this pattern is creating an
OrderInfo object that contains all the data about a given order. This object
could be serialized across the network and used to display information to the
user. This is depicted in figure A.7.

 Value objects are critical to the proper operation of an RMI-based compo-
nent model such as EJB. Since local references to remote data are not possible,
a snapshot of the data is passed by value to the remote client. Value objects are
employed very often. See the case study for a detailed example of their use
with XML structures.

 There are two other J2EE patterns used with value objects. For complete-
ness, we mention them here. The Value Object Assembler is a pattern for

Client
Object Business

Delegate

Complex
Service

Uses

Interfaces

Figure A.6 The Business Delegate pattern

Application- and service-layer patterns 241
composing complicated value objects from various other objects. The Value
List Handler is a pattern for creating, manipulating, and updating sets of value
objects at the same time. The details of these patterns are available at Sun’s
J2EE patterns web site.

A.2.4 The Data Access Object pattern

The Data Access Object pattern is use-
ful for interacting synchronously with a
persistent data store. This pattern is
commonly used to decouple application
components, such as EJBs and servlets,
from an underlying database. The data
access object handles the complexity of
interacting with the data source and
provides a simple interface for its appli-
cation component clients to use. This
pattern is depicted in figure A.8.

 Often, a data access object is a JDBC-
aware class that interacts with a specific

relational database, but the pattern can also be applied to other types of enter-
prise systems. In the latter case, the data access object can be a wrapper for
things such as ERP systems, legacy mainframe applications, and other propri-
etary applications.

 You may be wondering why a data access object would be used to wrap
external systems instead of using an entity EJB. The reason is that entity EJBs
are not intended to simply act as proxies for calls to external systems. An entity

Client Object
OrderInfo

Session Bean

getOrderInfo()

OrderInfo (Serialized Value Object)

Figure A.7
The Value Object pattern

Client
Object Data

Access
Object

Uses

Interfaces

Data Source

Figure A.8 The Data Access Object pattern

242 APPENDIX A

Design patterns for J2EE and XML
EJB is appropriate when your application must implement business rules and
other logic in conjunction with access to shared, external data.

 For example, if you are modeling a business workflow, an entity EJB
might be appropriate. This is because many users require access to the work-
flow, the workflow itself must maintain its own internal state, and the work-
flow component must implement logic to ensure that transitions between
states are validated.

 Data access objects are appropriate when access is required on a per-client
(or per-request) basis and most of the data manipulation and other logic is
implemented by the remote system. For example, a remote procedure call to
an ERP system to obtain a specific customer’s product pricing is best handled
by a data access object. This is because access to the customer pricing informa-
tion does not need to be shared among many users and the logic to calculate
the price is contained within the ERP system.

 Knowing when to use a data access object instead of an entity bean will be
invaluable to you, so take the time to understand this pattern and its implica-
tions thoroughly. This pattern is used in the examples in chapter 3 both for
relational and XML-based data repositories.

Distributed
application security

This appendix
■ Summarizes important distributed security

considerations
■ Explains common security terms and

technology
243

244 APPENDIX B

Distributed application security
This appendix contains information about securing your J2EE and XML appli-
cation from hackers and other unauthorized system users. It contains a
detailed discussion of the security risks involved in distributed systems devel-
opment and the use of cryptography and shared secrets to secure communica-
tion among system components.

B.1 Securing distributed communication channels

Passing messages between processes exposes the system to two types of risk. The
first is that a third party will intercept a message containing sensitive data. The
second is that a third party will falsify a message or alter a valid one before it is
delivered to its intended recipient. Both of these risks present potentially serious
threats, ranging from loss of system reliability to loss of your competitive advan-
tage. To minimize these risks, communication between processes should be
encrypted when appropriate. The cryptographic techniques described in section
B.3 are used to do just that.

B.2 Securing application components

Even after communication has been secured, there are additional risks at the
application level. One is that an external entity might access resources it
should not. Another is that an external entity might gain access to resources
by falsifying its identity. To address these concerns, every distributed applica-
tion must have an authentication model and an authorization model.

B.2.1 Authentication models

Authentication is the process of ensuring that an entity is who it says it is. In
its weakest form, an entity is required to provide a password to authenticate
itself. Using something the entity knows to authenticate is not very secure,
because any other entity that also knows this information can impersonate
the real entity.

 Stronger authentication mechanisms can be created using public key cryp-
tography and certificate chains. In this model, a certificate authority that is
trusted by your application vouches for the entity wishing to be authenticated,
by signing the entity’s authentication credential either directly or indirectly
through a certificate chain. Your application agrees to transitively trust entities
that are trusted by the certificate authority. This is a stronger form of authen-
tication because it uses something the entity has (a signed credential), rather

Securing application components 245
than something the entity knows. Still, this model is susceptible to falsification
of the credential, but this possibility is extremely remote.

 The strongest form of authentication would be to use something the entity
is. In the case of humans, biometric readings are an example. In a distributed
environment, this level of security is costly to implement and relies at some
level on the same credential mechanism described previously, since the remote
entity is never physically present in a distributed environment.

B.2.2 Authorization models

Authorization is the process of granting some entity access to a given resource.
It is closely related to authentication, because your system must believe that an
entity is authentic before worrying about what that entity can and cannot do.
However, it is also a distinct, second phase of remote resource access that
allows an application to grant different levels of privileges to different users.

 Authorization is commonly implemented using access control lists. The
application maintains a list of entities or (more commonly) groups of entities
that can access and/or modify a resource. These lists are often stored in flat
files in small systems and in relational databases or directory servers in larger
ones. These lists are a valuable resource themselves, which should be secured
through encryption when possible. As these lists tend to grow exponentially as
the numbers and types of entities in the system increase, using flat files
becomes impractical quickly. Most systems of even modest size use dedicated
software and hardware resources to manage this information. Examples
include Lightweight Directory Access Protocol (LDAP) servers and network
operating system databases.

 The authorization scheme you choose and its implementation can have sig-
nificant performance impacts on your system, if access to resources is fine-
grained. If, for example, an authorization check needs to be done each time a
particular request is serviced, this will significantly slow response times as usage
levels increase. To combat this, consider retrieving and caching all of an entity’s
access rights in a convenient location when they first authenticate themselves.

B.2.3 Distributed security contexts

An important issue in security modeling is the requirement to share a com-
mon security context among system participants. If, for example, a require-
ment of your system is that a user authenticates only once but gains access to
five independent applications within the system, those five applications need
to share security data about users between them. If all five applications are
administered by the same organization, storing access rights in a directory

246 APPENDIX B

Distributed application security
server and forcing individual applications to defer to the directory server for
user authentication and authorization might accomplish this. If, on the other
hand, security data must be shared across organizations or public networks,
the certificate chaining and cryptography techniques described in section B.3
may be more appropriate. For example, a user could authenticate to any indi-
vidual application and have it vouch for their authenticity when communicat-
ing with other applications over secure channels.

B.3 Using cryptography and shared secrets

A critical dimension of distributed system security is ensuring the security and
integrity of information exchange. To realize such exchanges, distributed sys-
tems generally employ cryptographic techniques and shared secrets. In a
secure communication, both sender and receiver possess knowledge of a
shared secret (or key) with which data to be transmitted is enciphered (by the
sender) and/or deciphered (by the receiver). This key is usually a large num-
ber that is very hard to guess. In addition to encrypting the message, check-
sums and digital signatures based on the message data can be sent with the
message to ensure at the receiving end that a message is both authentic and
has not been modified during transmission.

B.3.1 Symmetrical cryptography

In symmetrical cryptography, both sender and receiver use the same, shared
key to encipher and decipher data. This technique can be used effectively to
exchange large amounts of secure data. However, the shared knowledge of the
secret key in symmetrical cryptography threatens the security of the system.
Since the key value needs to be known to multiple parties, the opportunities
to have the key fall into the wrong hands increases with the size of the system.
Also, the key itself can’t be securely transmitted over the network to remote
systems to begin a secure dialog.

B.3.2 Asymmetrical cryptography

To address these and other concerns, asymmetrical cryptography (also called
public key cryptography) was developed. This method uses a pair of keys for
each communication that are mathematically related to one another. The idea
is that it is impossible to determine the value of one of the keys by examining
the other. One of the keys is “private” to a particular entity, and is never
shared with anyone. The other key is “public,” and is freely available to any-
one who wants it. Data encrypted with the private key can only be decrypted

Using cryptography and shared secrets 247
with the public key, and vice versa. This can solve the problem of initiating
secure dialogs and eliminate the security risk of sharing symmetrical keys
among parties.

 One key benefit of asymmetrical cryptography is the ability to create digi-
tal signatures. A digital signature is a message digest, similar to a checksum. It is
based on the original contents of a message and is created using the message
sender’s private key. A digital signature, once verified, guarantees that a mes-
sage originated from the specified sender and has not been altered during
transmission. The use of digital signatures is especially important in banking
applications, to facilitate nonrepudiation by financial account holders. (Non-
repudiation means that the originator of a transaction cannot later claim that
someone else had used his or her account fraudulently and refuse to accept
responsibility for the transaction.)

B.3.3 Tradeoffs and common implementations

While public key cryptography is more secure, it is also far slower than sym-
metrical cryptography. Therefore, it is common for security protocols to use a
combination of the two, as in the case of the Secure Sockets Layer protocol
(SSL). In such models, a secure communication session is established using
public key cryptography. After this establishment, a symmetrical session key is
agreed upon between the two parties communicating. This agreed-upon, tem-
porary key is used to encrypt and decrypt messages for the remainder of the
session. This combines the advantages of symmetrical and asymmetrical meth-
ods to make secure communication as fast and secure as possible.

The Ant build tool

This appendix
■ Introduces the Apache Ant build tool
■ Provides a starter build file
■ Demonstrates development of custom tasks

and build listeners
249

250 APPENDIX C

The Ant build tool
Ant is a build and configuration management tool written entirely in Java. It is
similar in purpose and function to the UNIX make command-line utility, but is
far easier to use and far more functional. The make utility, with which you may
be familiar, is fussy about tab characters and spaces, very much platform-
dependent, and can be cryptic to use at times.

 Because Ant is Java-based, it is completely platform independent. It uses an
XML configuration file that is easy to build and manage. Furthermore, Ant is
completely open. Not only can you obtain the source code for the base tool, it
is simple to extend the functionality of Ant by writing custom tasks to do spe-
cific things you require in your environment.

DEFINITION A task is a Java component that is invoked by the Ant build process.
It is designed to be generic and reusable across development projects.

The need to write custom tasks is infrequent and becoming even less fre-
quent. Ant has quickly gained popularity and has been extended already by
many developers in a variety of ways. Table C.1 summarizes the tasks that are
already built into Ant version 1.4. Table C.2 lists some of the optional tasks
that are also publicly available for download from the Ant web site, http://
jakarta.apache.org/ant.

 Ant has been integrated with a variety of Java integrated development envi-
ronments (IDE), including IBM Visual Age, JBuilder, and NetBeans. Using
Ant along with your IDE makes the build process tool-independent, allowing
developers working on the same project to use their favorite, separate IDE (or
none at all). Ant is also integrated with the major source control systems,
including the popular, open source Concurrent Versioning System (CVS).

 For these reasons, Ant has become an extremely popular tool in a very
short time. It is used in open source projects like W3C and ASF development
activities and by commercial products. For example, BEA’s WebLogic J2EE
server began using Ant as of version 6, and has developed custom Ant tasks to
make otherwise complicated processes easy for you. In WebLogic, you can
generate the configuration files and even some of the source code for a J2EE
web service simply by invoking an Ant task.

 There are also many interesting open source projects based on Ant. One
example is XDoclet, a custom Ant task that generates EJBs, deployment descrip-
tors, and related objects from javadoc comments in your source code. Informa-
tion on XDoclet can be found at http://sourceforge.net/projects/xdoclet.

Using cryptography and shared secrets 251
 We strongly recommend your use and support of this tool. Due to its cen-
tral role in many Java development projects, we dedicate this appendix to an
introduction of its use.

Table C.1 Built-in Ant tasks

Task name Description

ant Runs ant on a specific build file.

antcall Calls another Ant task.

antstructure Generates a (partial) DTD for an Ant build file.

apply Executes a shell command on a specific file set.

available Tests for the presence of a specific property within a project.

chmod Changes permission settings on files.

condition Sets a property if the specified condition is true.

copy Copies files.

cvs Accesses a CVS source code repository.

cvspass Logs in to CVS.

delete Removes files.

dependset Manages arbitrary dependencies between files.

ear Archives a file set into EAR format.

echo Prints text to stdout.

exec Executes a shell command.

fail Exits the current build.

filter Creates a token filter used to select subsets of files from a path.

fixcrlf Adjusts a text file for local conventions.

genkey Generates a cryptographic key.

get Retrieves a file from a URL.

gunzip Expands a GNU Zip archive.

gzip Archives a file set into GNU ZIP format.

jar Archives a file set into JAR format.

(continued on next page)

252 APPENDIX C

The Ant build tool
java Invokes the java virtual machine on a class.

javac Invokes the Java compiler.

javadoc Invokes the javadoc utility to generate Java API documentation.

mail Sends SMTP email.

mkdir Creates file system directories.

move Moves files.

parallel Contains other tasks that are to be executed in a separate thread.

patch Applies incremental changes to the original file(s).

pathconvert Ensures path definitions are appropriate for the local machine.

property Sets environment variable(s) within a project.

record Records the build process to a file by implementing the Ant build
listener interface.

replace Substitutes text tokens across a file set.

rmic Invokes the Java RMI compiler.

sequential Contains other tasks that must execute in a specific order.

signjar Signs a JAR file with a private cryptographic key.

sleep Suspends the build process for the time period specified.

sql Executes one or more SQL statements against a JDBC data
source.

style Applies XSLT transformations to files.

tar Archives a file set into TAR format.

taskdef Defines a custom Ant task for use within a project.

touch Updates file timestamps.

tstamp Sets date and time properties.

typedef Defines a new Ant data type for the current project.

unjar Expands a JAR file.

untar Expands a TAR archive.

(continued on next page)

Table C.1 Built-in Ant tasks (continued)

Task name Description

Using cryptography and shared secrets 253
unwar Expands a WAR file.

unzip Expands a ZIP file.

uptodate Determines if target files are older than source files.

war Archives a file set into WAR format.

zip Archives a file set into ZIP format.

Table C.2 A sampling of optional Ant tasks

Task name Description

cab Creates a MS Cabinet file archive.

cccheckin Checks files into Rational Clear Case.

cccheckout Checks files out of Rational Clear Case.

ccuncheckout Release a Rational Clear Case check out.

ccupdate Obtains the latest source from Rational Clear Case.

csc Invokes the MS .NET C# compiler.

ddcreator Creates EJB deployment descriptors.

depend Manages Java class file dependencies.

ejbc Compiles EJBs.

ejbjar Creates EJB JAR deployment files.

ftp Transfers files via FTP.

ilasm Provides an interface language assembler for MS.NET.

javah Creates C/C++ header files for Java native methods.

jlink Links Java classes and libraries from subprojects.

jpcoverage, jpcovmerge,
jpconvreport

Invokes utilities in the JProbe testing software suite.

junit/junitreport Tasks for using the JUnit unit testing API.

mimemail Sends SMTP mail with MIME attachments.

(continued on next page)

Table C.1 Built-in Ant tasks (continued)

Task name Description

254 APPENDIX C

The Ant build tool
C.1 Installing and configuring Ant

You can download the latest version of Ant from http://jakarta.apache.org/
ant. Be sure to also download the optional Ant tasks. This secondary down-
load is brief and will save you time later when you would like to invoke an
optional task for the first time. Expand the Ant distribution file to a directory
of your choice and set three environment variables as detailed in table C.3.

native2ascii Converts native file formats to ASCII with wrapped Unicode.

propertyfile Enables unattended property file editing from within Ant.

pvcs Interface to the PVCS source control system.

rpm Builds Linux RPM installation files from a file set.

script Executes a script written in any language supported by the Bean
Scripting Framework (BSF).

sound Plays a sound file at the conclusion of a build.

telnet Enables unattended remote telnet session from within ant.

vajexport/vajimport/vajload Implements IBM Visual Age for Java related tasks

vsscheckin, vsscheckout,
vssget, vsshistory, vsslabel

Provides MS Visual Source Safe related tasks.

wljspc/wlrun/wlstop Executes BEA WebLogic server related tasks.

xmlvalidate Validates XML document well-formedness.

Table C.3 Ant environment variables

Environment
variable

Value to set UNIX example MS-DOS Example

JAVA_HOME Absolute path to your
JDK installation

JAVA_HOME=/usr/local/jdk JAVA_HOME=C:\jdk

ANT_HOME Absolute path to your
Ant installation

ANT_HOME=/usr/local/ant ANT_HOME=C:\ant

PATH Add Java and Ant exe-
cutable directories to
your system path

PATH=$PATH:$ANT_HOME/bin:
$JAVA_HOME/bin

PATH=%PATH%;%ANT_HOME%\bin;
%JAVA_HOME%\bin

Table C.2 A sampling of optional Ant tasks (continued)

Task name Description

Creating a build file 255
To test your installation, go to a shell and execute the command ant from any
directory. If ant is installed properly, you will see the following message
(assuming no file named build.xml is found in your current directory):

Buildfile: build.xml does not exist!
Build failed.

If you see the above message when you type ant at a command line, you are
now ready to construct your first build file and begin using Ant.

C.2 Creating a build file

An Ant build file is an XML document with a structure represented by
figure C.1. As you see, the root node of a build file is the <project> element.
Projects can contain global properties, task definitions, dynamically con-
structed path variables, and targets. Targets are named groupings of tasks. A
target can depend on the successful execution of other targets. A target can
also invoke other targets in the course of its processing. The capabilities of Ant
tasks, properties, and dynamic paths make Ant an extremely powerful and flex-
ible tool.

project

property

target

property

task

path

path

1
N

N

N

N

N

taskdef

1

N

N
Figure C.1
Build file structure

256 APPENDIX C

The Ant build tool
C.2.1 Dynamically constructed paths and file sets

One of the key features of Ant, besides the numerous built-in and optional
tasks it can perform, is its ability to dynamically construct path variables at exe-
cution time, specifically a classpath. As we mentioned in the previous section, a
<path> is just one type of element found in an Ant build file.

 Ant dynamically constructs path variables by evaluating one or more
<pathelement> and/or <fileset> elements contained within a <path> defini-
tion. A <pathelement> points at a file system directory, and adds all the con-
tents of that directory to the path being defined. A <fileset> is more
powerful, allowing you to filter the contents of a directory being added to
the path. You can specify files to be excluded either explicitly or using regu-
lar expressions.

 To see how this works, let us look at an example. Suppose you define a
<path> element in your build file as follows:

 <path id="project.class.path">
 <pathelement path="${build.dir}"/>
 <fileset dir="lib">
 <include name="**/*.jar"/>
 <include name="**/*.zip"/>
 </fileset>
 </path>

Ant creates a path variable with an id (name) of project.class.path. The
path includes all files and directories beneath the ${build.dir} directory
(which you probably set earlier in the file via a global property). It also contains
all ZIP and JAR files found in the lib relative directory and any subdirectories.
And if you wanted to exclude a specific JAR file from the path, deprecated.jar,
for example, you could add the following node to the fileset definition:

<exclude name=deprecated.jar/>

Once your globally declared path variable has been constructed, it can be ref-
erenced from tasks using its id attribute. To use the path above when compil-
ing a Java class via the javac task, you would refer to it as follows:

<javac srcdir="${src.dir}" classpathref="project.class.path" />

If you have done any Java development from the command line using the
JDK, you will no doubt appreciate the power and flexibility of dynamically
constructed paths, and specifically the capabilities of the <fileset> element.

Creating a build file 257
C.2.2 A Sample build file

When you download the code examples for this book, you will notice that
every chapter has its own Ant build file in its base directory. Those files are
very similar to the one in listing C.1. Let’s examine the contents of this build
file to see how Ant works.

<?xml version="1.0" encoding="UTF-8"?>

<project name="Sample" default="run" basedir=".">

 <property name="project.name" value="Ant Tutorial"/>
 <property name="ant.home" value="C:/ant"/>
 <property name="build.dir" value="${basedir}/build"/>
 <property name="src.dir" value="${basedir}/src"/>
 <property name="lib.dir" value="${base.dir}/lib"/>

 <!--
 To permanently add this task to your Ant configuration,
 edit the defaults.properties file in
 ant.jar:/org/apache/tools/ant/taskdefs.
 You can then remove this declaration from the build
 file and execute the mytask task as if it were
 built into Ant.
 -->
 <!--
 <taskdef name="mytask"

 classname="MessagePrinterTask"/>
 -->

 <path id="project.class.path">
 <pathelement path="${build.dir}"/>
 <fileset dir="lib">
 <include name="**/*.jar"/>
 <include name="**/*.zip"/>
 </fileset>
 </path>

 <target name="init">
 <echo>Running "init" target..."</echo>
 <tstamp/>
 <available property="build.dir.exists"
 file="${build.dir}"/>
 </target>

 <target name="prepare.build.dir"
 unless="build.dir.exists" depends="init">

Listing C.1 Build file contents

b
Root
element

Sets the
global project
properties

Document file with XML comments

c Custom task definition

Builds a
CLASSPATH
variable

Adds Zip and JAR files
from the lib directory
to the CLASSPATH

Adds build
directory to
CLASSPATH

d
Start of target
definitions

Ant task calls

This property only gets set if
the build directory exists

This executes only if
the unless property
is not set

258 APPENDIX C

The Ant build tool
 <echo>Running "prepare.build.dir" target..."</echo>
 <echo>Creating ${build.dir}.</echo>
 <mkdir dir="${build.dir}"/>
 </target>

 <target name="compile" depends="init, prepare.build.dir">
 <echo>Running "compile" target..."</echo>
 <javac srcdir="${src.dir}" destdir="${build.dir}"
 classpathref="project.class.path" debug="on" />
 <echo>Built ${project.name}...</echo>
 </target>

 <target name="run" depends="compile">
 <echo>Running "run" target..."</echo>
 <java classname="MessagePrinter"
 classpathref="project.class.path" fork="yes">
 <sysproperty key="message" value="Hello, world!"/>
 <arg value="message.txt"/>
 </java>
 </target>

 <target name="build.task" depends="compile">
 <echo>Running "build.task" target..."</echo>
 <jar jarfile="${ant.home}/lib/myTask.jar"
 basedir="${build.dir}"
 excludes="**/MessagePrinter.class,
 **/BuildResultPrinter.class"
 />
 </target>

 <target name="run.task" depends="compile">
 <echo>Running "run.task" target..."</echo>
 <mytask message="Hello from my task!"
 file="messageFromTask.txt"/>
 </target>

 <target name="build.listener" depends="compile">
 <echo>Running "build.listener" target..."</echo>
 <jar jarfile="${ant.home}/lib/myListener.jar"
 basedir="${build.dir}"
 excludes="**/MessagePrinter*.class"
 />
 </target>

</project>

e

Compiles
target

fCLASSPATH
reference

This target invokes the JVM
on the class MessagePrinter

g Custom task call

Creating a build file 259
b This root element of the build file defines the project name and base directory
from which all other paths in the file will be built. The default=run attribute
specifies that the target named run within the project will be invoked by default if
no other target is specified on the command line.

c This is a task definition for the custom task we build later, in section C.3. As we
will see, there are two ways to make your custom task classes available within an
Ant project.

d These are the project target definitions. The depends attribute lists other targets
that should be evaluated before this one, allowing you to build a dependency tree
among targets. For example, if you invoke Ant to run the compile task,

prompt> ant compile

targets will be evaluated in the following order:

1 init

2 prepare.build.dir

3 compile

e This target compiles all Java files in the source directory and places the compiled
classes into the build directory by calling the javac task. Note that it depends on
two tasks, which are evaluated in the order in which they appear.

f This is a call to the javac task, passing a reference to our dynamically constructed
CLASSPATH.

g This is a call to a custom task we develop ourselves in section C.3.

To use this build file, it should be saved as a file called build.xml in your
working directory. Ant looks for a file by this name in the current directory by
default. You also need to create directories named lib and src beneath your
working directory. Notice that Ant will create the directory called build auto-
matically if it does not exist the first time you compile your project.

 Let us put Ant to work with this build file. Copy or download the source
code from listing C.2 into a file named MessagePrinter.java in your src subdi-
rectory. This class requires a system property named message to be set. It also
accepts a command-line argument. We pass both of these to the JVM via the
java task call in our build file:

260 APPENDIX C

The Ant build tool
<target name="run" depends="compile">
 . . .
 <java classname="MessagePrinter"
 classpathref="project.class.path" fork="yes">
 <sysproperty key="message" value="Hello, world!"/>
 <arg value="message.txt"/>
 </java>
</target>

After creating the source file for this class, run it using the following command:

prompt> ant run

Since run is the default target, you can also just type:

prompt> ant

You should see the message Hello, world! echoed to the console by the java
task. There should also be a file named message.txt in your working directory
that contains the same string. Congratulations! You are another satisfied user
of Ant.

import java.io.*;

public class MessagePrinter {

 public MessagePrinter() { }

 public static void main(String[] args) {
 String message = System.getProperty("message");
 System.out.println(message);
 if (args.length > 0) {
 try {
 PrintStream ps
 = new PrintStream(new FileOutputStream(args[0]));
 ps.println(message);
 ps.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
 }
}

Listing C.2 A Simple class to test our Ant build file

Retrieves the
message system
property

Echoes the message
to stdout

Creates a file containing
the message from a com-

mand-line argument

Custom tasks 261
C.3 Custom tasks

At some point in your use of Ant, you may require functionality that simply is
not there. In such rare cases, you are free to develop your own task and add it
to your configuration. If it is generic enough, you might share it with the rest
of us. Developing a task is the right choice if there is a step in your build pro-
cess that needs to happen frequently and cannot be done using a combination
of existing tasks.

C.3.1 Developing the task

To see how easy it is to create a custom task, we now convert our Message-
Printer class from listing C.2 into an Ant task. This means extending
org.apache.tools.ant.Task and placing our functionality in a method called
execute() instead of main(). Also, parameters are passed to tags using XML
attributes. To support what used to be the message system property and the
command-line argument file name, we require two instance variables for our
task class. Declaring variables and providing modifiers for them is all that is
required. The code for our custom task is listing C.3.

import java.io.*;
import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.Task;

public class MessagePrinterTask extends Task {

 private String message = null;
 private String file = null;

 public MessagePrinterTask() { super(); }

 public void execute() throws BuildException {
 if (message == null)
 throw new BuildException("You must specify a +
 \"message\" attribute to use this task.");
 System.out.println(message);
 if (file != null) {
 try {
 PrintStream ps
 = new PrintStream(
 new FileOutputStream(file));
 ps.println(message);
 ps.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }

Listing C.3 A custom task

Extends the base
Ant task

Called after
attributes are set

262 APPENDIX C

The Ant build tool
 }
 }

 public void setMessage(String message) {
 this.message = message;
 }

 public void setFile(String file) {
 this.file = file;
 }

}

To compile the class defined in listing C.3, you will need to add ant.jar to
your lib directory. Then execute the build.task target in the example build
file. This will place a JAR containing the new task in Ant’s lib directory so it
can be found when you invoke it.

C.3.2 Defining the task

After successfully executing the build.task target, uncomment the taskdef
element in the example build file. If this had been uncommented before, all
your builds would have failed due to the previous absence of the JAR file con-
taining our new task. The taskdef element you just uncommented makes our
new task available to targets in our project. It is invoked by the name mytask,
as seen in this target:

<target name="run.task" depends="compile">
 <echo>Running "run.task" target..."</echo>
 <mytask message="Hello from my task!"
 file="messageFromTask.txt"/>
</target>

Invoking this target should produce identical results to the previous example,
with the exception of a new file appearing in your working directory.

C.3.3 Integrating the task

To permanently add our new task to your Ant installation, you can edit the
defaults.properties file in the Ant distribution JAR, adding its name and
class name to Ant permanently. Taking the permanent approach means you
need not explicitly declare the taskdef element in your build files anymore.
See the comments in build.xml for more details.

Passed attribute values
from the build file before
calling execute()

Build listeners 263
C.4 Build listeners

Another extension you may wish to make to your Ant environment is to create
a custom build listener.

DEFINITION A listener is a component that registers for callbacks with the Ant
system when interesting events occur. Such events include message
logging, beginning execution of targets and tasks, and ending the
build process.

Common tasks for listeners are logging messages and sending notification of
build problems to the configuration manager. Let us develop a simple listener
to see how this aspect of Ant works.

C.4.1 Developing the listener

In this example, we develop a build listener that logs all messages produced by
Ant during a build. The code for this component is shown in listing C.4. A
class acting as a build listener must implement the callback methods of the
org.apache.tools.ant.BuildListener interface. Our example listener is
interested in two events; the messageLogged and buildFinished events.

import java.io.*;
import java.util.*;
import org.apache.tools.ant.*;

public class BuildResultPrinter
 implements BuildListener {

 private Vector buildMessages = new Vector();

 public BuildResultPrinter() { }

 public void buildStarted(BuildEvent e) { }

 public void buildFinished(BuildEvent event) {
 Throwable e = event.getException();
 String status = (e != null) ? "failed" : "succeeded";
 String message = "Your Ant build process "
 + status + ".";
 try {
 PrintStream ps = new PrintStream(
 new FileOutputStream("build.results"));

Listing C.4 A build listener class

Implements the
BuildListener
callback interface

Writes all
logged messages
to a file named
build.results

264 APPENDIX C

The Ant build tool
 ps.println(message);
 if (buildMessages.size() > 0) {
 ps.println();
 ps.println(
 "The following messages were logged by Ant:");
 ps.println(
 "--");
 ps.println();
 for (int i = 0; i < buildMessages.size(); i++)
 ps.println((String) buildMessages.get(i));
 }
 ps.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 public void messageLogged(BuildEvent event) {
 buildMessages.add(event.getMessage());
 }

 public void targetStarted(BuildEvent event) { }

 public void targetFinished(BuildEvent event) { }

 public void taskStarted(BuildEvent event) { }

 public void taskFinished(BuildEvent event) { }

}

Execute the build.listener task in the example build file to compile and JAR
this class and place it in Ant’s classpath.

C.4.2 Using the listener

To put our new listener to work, execute the following in your working directory:

prompt> ant –listener BuildResultPrinter

You will now find a file named build.results in your working directory, con-
taining all logging messages created by Ant as it evaluated the run target.

C.5 Summary

We have only scratched the surface of the capabilities and extensibility of Ant.
We hope this brief introduction has been sufficient to pique your interest in
this build tool. As a Java developer, especially in a team environment, learning
about Ant and mastering it would be a valuable use of your time.

Collects messages
as they occur and
caches them

resources

Web-based resources mentioned in this book:

Resource topic Web address

Ant, Cactus, Log4j, Struts, Velocity http://jakarta.apache.org.

Cocoon, Apache Crimson, Apache FOP,
Xalan, Xerces, XSLTC

http://xml.apache.org.

Concurrent Versioning System http://www.cvshome.org.

Enhydra http://www.enhydra.org

eXtreme Programming (XP) http://www.extremeprogramming.org.

GMD's XQL, PDOM http://xml.darmstadt.gmd.de/xql/

J2EE Blueprints design pattern section http://java.sun.com/j2ee/blueprints/design_patterns/

Java XML Pack, JAXB, JAXM, JAXR,
JAX-RPC

http://java.sun.com/xml.

JDOM http:///www.jdom.org

JUnit http://www.junit.org

Mercury Interactive testing tools http://www.mercuryinteractive.com.

(continued on next page)
265

266 resources
Books you may want to read:

Alur, Deepak, Dan Malks, and John Crupi. Core J2EE Design Patterns. New York: Prentice
Hall 2001.

Beck, Kent. Extreme Programming Explained. Boston: Addison-Wesley, 2000.

Coulouris, George, Jean Dollimore, and Tim Kindberg. Distributed Systems Concepts and
Design. London: Addison-Wesley, 2001.

John Davies, Rod Johnson, Cedric Buest, Tyler Jewell, Andrew Longshaw, et al. Professional
Java Server Programming J2EE 1.3 Edition. Birmingham, UK: Wrox Press Ltd., 2001.

Fowler, Martin, and Kendall Scott. UML Distilled. Boston: Addison-Wesley, 2000.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Bos-
ton: Addison-Wesley, 1995.

Hatcher, Erik, and Steve Loughran. Java Software Development with Ant. Greenwich, CT:
Manning Publications, 2002.

Husted, Ted. Scaffolding: Developing Web Applications with Struts. Greenwich, CT: Man-
ning Publications, 2002.

Kay, Michael. XSLT. Birmingham, UK: Wrox Press Ltd., 2001.

Kruchten, Phillippe. The Rational Unified Process: An Introduction. New York: Addison-
Wesley, 2000.

McLaughlin, Brett. Java & XML, 2d ed. Cambridge: O’Reilly and Associates, 2001.

Mohr, Steven, Jonathan Pinnock, and Brian Loesgen. Professional XML. Birmingham, UK:
Wrox Press Ltd., 2000.

Mullender, Sape, ed. Distributed Systems. New York: Addison-Wesley, 1998.

Rational Software, Rational Unified Pro-
cess (RUP)

http://www.rational.com

SOAP, SOAP specification, SOAP 1.1 with
Attachments specification, XBase,
XDoclet, XInclude, XLink, XML Schema,
XML Signature recommended standard,
XPath, XQuery, XSLT

http://www.w3.org.

This book http://www.manning.com/gabrick

UDDI and related technologies http://www.uddi.org

WebLogic http://www.bea.com

Webmacro http://www.webmacro.org

Zvon, http://www.zvon.org

Resource topic Web address

http://www.manning.com/gabrick

resources 267
Seely, Scott. SOAP. New York: Prentice Hall, 2001.

Vint, Danny. XML Family of Specifications. Greenwich, CT: Manning Publications, 2002.

Vought, Eric, and Armin Begtrup. Unit Testing for Java Programmers: Using JUnit and Ant.
Greenwich, CT: Manning Publications, 2002.

Wesley, Ajamu. Web Services Explained. Greenwich, CT: Manning Publications, 2002.

index
A

acceptance testing, definition 27
Ant 26, 250–264

build files 255, 260
build listeners 263–264
built-in tasks 251
custom tasks 261–262
custom-built listener 263
dynamic filesets 256
dynamic paths 256
EJB interfaces 26
environment variables 254
installation 254–255
optional tasks 253
tasks 250
tutorial 235–264

Apache 26, 196, 202
FOP API 191

applets 163
application client container 29
application environment

case study 206
application layer, defined 12
application logic layer 13
application tier. See application layer
application, defined 11
authentication, defined 21
authorization, defined 21

B

bug logs 28
build tools 24

Antbuild 26

C

caching, defined 18
Cactus 28
case study 204, 206, 210–225

detailed design 210, 215
implementation 215, 225
requirements analysis 207, 209
requirements definition 204–205
running 229
web service 225, 228

client devices
user interfaces 159

client/server 5
hybrid model 8

code redundancy 166
COM 154
communication channels 4
component interface 82
Concurrent Versioning System (CVS) 250
constraint-based modeling 121
CORBA 119
cryptography

asymmetrical 246
symmetrical 246

CVS. See Concurrent Versioning System
cXML 123

D

database management system 18
DCOM 119
design tools 24

Rational Rose 25
Together Control Center 25
269

270 INDEX
design validation 213
development methodologies

and J2EE 22
defined 22

development tools 24
IDE 25

distributed systems 4–21
architectures 5, 9
challenges of 14, 21
components of 4–5
concepts 3
concurrency 18
correctness 18
definition 2
error handling 19
extensibility 15
failures 19
flexibility 15
heterogeneity 14
layers 9, 12
openness 16
performance of 17
scalability 17
security 20–21
transparency 20
vendor independence 16
vs. centralized 3–4

Document Object Model. See DOM
document type definitions. See XML-DTDs
DOM 45

building with JAXP 62, 64
JAXP 62
versus JDOM 93

DTD. See XML-DTDs

E

ebXML 38, 123
Registry 139

EDI 123
EJB 6, 153

container 18
object level integration 120
software patterns 241
testing strategy 31

Enterprise Application Archive (EAR) 33
Enterprise JavaBeans. See EJB
eXtensible Markup Language. See XQuery, XML
eXtensible Stylesheet Language Transformation.

See XSLT
eXtreme Programming. See XP

F

failure transparency 20
fault tolerance, measuring 19
formatting objects 186–195

defined 186
formatting tree 187

FTP 11
functional testing, definition 27

H

heterogeneity 14
HTTP Unit testing 30
HTTPS 139
hybrid architecture 5
hybrid processing 8

I

IBM 138
Integrated Development Environment (IDE)

choosing 25
integration testing, definition 27
internationalization, user interfaces. See localiza-

tion

J

J2EE
analysis tools 25
and MVC model 164, 166
and SOAP 125
and systems integration 114
application-layer pattern 239
build tools 26
building web services 138
connectors 153
data integration 115
defect tracking tools 28
deploying applications 33
deployment strategies for 33, 35
design tools 25
development methodologies 22
development processes 22, 29
development tools 24–25, 29
EJB components 31
integrating applications 114
message integration 117
middleware 10–11

INDEX 271
J2EE (continued)
object integration 119
presentation layer 236
presentation tool kit 163
problem tracking tools 28
procedure integration 118
pure user interfaces 162, 177
scalability 18
server-side focus 8
Service Locator 35
service-layer pattern 239
SOAP 125
source code control 27
testing applications 29
testing strategies 29, 32–33
testing tools 27
testing types 27
user interface 162
web components testing 30
web services 141

J2EE Connector Architecture, purpose of 11
JAAS 21

drawbacks of 21
purpose of 11

JAF, purpose of 11
JAR file, archiving 33
Java 2 Platform, Enterprise Edition. See J2EE
Java Document Object Model. See JDOM
Java ServerPages. See JSP
JavaBeans 163
JAX 55–78

API summary 56
overview 55, 78
XML binding 56
XML messaging 56
XML parsing 56
XML repositories 56

JAXB 69–74, 124
overview 69, 74
using the objects 73
versus JDOM 95

JAXM 124, 131–138
asynchronous messaging 135
overview 76
synchronous messaging 131

JAXP 57, 66
and DOM 62
and SAX 59
and XSLT 63
configuration 58
for XSLT 177, 191

interfaces to DOM API 62
interfaces to SAX API 60
interfaces to XSLT API 63
packages 57
purpose of 11
XSLT 63

JAXR 78, 153
JAX-RPC 77, 124
JBuilder 26, 250
JDBC, purpose of 11
JDOM 66–69

and JAXM 131
building a document, example 68
core classes 67
overview 66, 69
use of 170
using 210
versus DOM 93
versus JAXB 95

JMS 118, 153
purpose of 11
using 211

JNDI 35, 153, 218
and transparency 20
purpose of 11

JProbe 30
JSP 6, 163

custom tags 163
limitations 165

JTA 8, 18
purpose of 11

JUnit 28
JUnitEE 28, 31

L

layers 12
LDAP 245
load balancing, defined 17
load testing, defined 27
localization, user interfaces 159
location transparency 20
Log4j 31
Long-Term JavaBeans Persistence 74–76

M

MathML 38
Mercury Interactive 28

LoadRunner 30
WinRunner 30

272 INDEX
messages 4
Microsoft 138
middleware, purpose of 9
mobility transparency 20
multiple locales 159

N

.NET 138, 153–154
NetBeans 26, 250
network transparency 20
non-repudiation 247
n-tier architecture 12–14

application logic layer 13
data layer 13
presentation layer 13
services layer 14

O

object query language (OQL) 98
omission failures 19

P

PDAs 159
PDF format 187
PDOM 54, 108–109
peer processing 5, 8
Persistent Document Object Model. See PDOM
platforms 4
presentation logic, defined 164
problem tracking tool 24
process failures 19
processes 4
proxies 17
pUDDIng 153

R

Rational Clear Case 27, 29
Rational Clear Quest 29
Rational Rose 25
Rational Unified Process 22, 204
remote procedure calls. See RPC
replication, defined 17
RMI, and transparency 20
RosettaNet 123
RPC 118

java api for 124
RUP. See Rational Unified Process

S

scalability, defined 17
security 244–247

application components 244
authentication models 244
autorization models 245
certificate authorities 244
communication channels 244
cryptography 246–247
digital signatures 247

serialization 69
server clustering 17
service architecture 6
service, defined 12
servlets 163

filters 163, 178, 180, 212
Simple API for XML (SAX) 44

event handler definition 59
Simple Object Access Protocol. See SOAP
SML data storage 54
SMTP 19, 139
SOAP 123, 125–138

and J2EE 125
asynchronous messages 135
binary attachments 129–130
creating a message 126
defined 49
encoding compatibilities 154
J2EE 125
J2EE data types 144
message structure 126
message transport 128
messaging and JAXM 131
over HTTP 128
request packet 127
response packet 127
transports 128

software patterns 235–242
Aggregate Entity 153
Business Delegate 119, 131, 240
Data Access Object 153, 241
Model-View-Controller 163, 209
Service Activator 211
Service Locator 210, 239
Singleton 210
Value Object 240

source code control tool 24
SSL 247
stylesheets. See XSLT
system reliability 19

INDEX 273
system testing, definition 27
systems integration 114–125

data level 115
defined 114
message level 117
object level 119
procedure level 118

T

Tamino 55
template languages, limitations 165
testing tool 24
thin-client application 158
tiers 12
Together Control Center 25

U

UDDI 50, 123, 139, 152–153
Universal Modeling Language (UML) 210

class diagrams 210
sequence diagrams 214

use cases 204
user interface

device types 159
rendering output 173
using XML data 170

V

Value Object 84, 240
Visual Age 26
Visual Age for Java 250
Visual Source Safe 27
VXML 38

W

WAR files, archiving 33
web publishing frameworks 195–201

Apache Cocoon 196, 201
defined 195
Enhydra 196
Webmacro 196

web services 138–154
architecture 6
defined 50, 139–140
in J2EE 140, 149
J2EE and .NET 153–154

message style 140
RPC-style 140
via EJB 142
vs. other architectures 138

Web Services Description Language. See WSDL
WebGain Studio 26
WebLogic 229, 250
Wireless Markup Language (WML) 159
WSDL 51, 139, 149–152

example 227

X

XBase 53
XDoclet 250
XInclude 52
XLink 53
XML

and relational databases 104
as value object 85–96
binary transformations 48
component interfaces 82–96
data access objects 87
data integration 122
data manipulation 51
databases 108
defined 38
DTDs 41–42
example document 40
inappropriate use 95–96
instance documents 40
interfaces and performance 96
interfaces and resources 95
interfaces, when not to use 95
Java APIs 55
manipulating 51–54
message integration 123
messaging 48–51
parsing 44–45, 61
persistence 96–110
procedure integration 124
querying 97–103

See also XQuery, XPath
retrieving data 51
Schema definitions 42
storing data 54, 103
systems integration 122–125
transforming 46–48
translation technologies 46
user interface 170, 177, 201

274 INDEX
XML (continued)
uses 38
validation of 41–44
validation technologies 41
value objects, implementing 87
web publishing 195
writing a JavaBean 74

XML Databases 55
XML Query Language. See XQuery, XQL
XML Schema definition 42–44

example 43
XML Signature 130
XP 23, 204

XPath 51
XPointer 52
XQL 54, 101–103
XQuery 54–101, 122
XQueryX 98
XSD. See XML Schema Definition
XSLT 46–48, 122

binary transformations 48, 186–195
building stylesheets 183–185
client-side 201
stylesheet selection 179
user interfaces 177–195
web processing flow 178

	Cover
	reviews
	Title page
	Contents
	front material
	preface
	acknowledgments
	about this book
	about the authors
	about the cover illustration
	author online

	1. Getting started
	1.1 Distributed systems overview
	1.1.1 Distributed systems concepts
	1.1.2 N-tier application architecture
	1.1.3 Overcoming common challenges

	1.2 The J2EE development process
	1.2.1 J2EE and development methodologies
	1.2.2 J2EE development tools

	1.3 Testing and deployment in J2EE
	1.3.1 Testing J2EE applications
	1.3.2 Deploying J2EE applications

	1.4 Summary

	2. XML and Java
	2.1 XML and its uses
	2.1.1 XML validation technologies
	2.1.2 XML parsing technologies
	2.1.3 XML translation technologies
	2.1.4 Messaging technologies
	2.1.5 Data manipulation and retrieval technologies
	2.1.6 Data storage technologies

	2.2 The Java APIs for XML
	2.2.1 JAXP
	2.2.2 JDOM
	2.2.3 JAXB
	2.2.4 Long Term JavaBeans Persistence
	2.2.5 JAXM
	2.2.6 JAX-RPC
	2.2.7 JAXR

	2.3 Summary

	3. Application development
	3.1 XML component interfaces
	3.1.1 Using value objects
	3.1.2 Implementing XML value objects
	3.1.3 When not to use XML interfaces

	3.2 XML and persistent data
	3.2.1 Querying XML data
	3.2.2 Storing XML data
	3.2.3 When not to use XML persistence

	3.3 Summary

	4. Application integration
	4.1 Integrating J2EE applications
	4.1.1 Traditional approaches to systems integration
	4.1.2 XML-based systems integration

	4.2 A web services scenario
	4.3 J2EE and SOAP
	4.3.1 Creating a simple SOAP message
	4.3.2 Using SOAP with Attachments
	4.3.3 Using JAXM for SOAP Messaging

	4.4 Building web services in J2EE
	4.4.1 What is a web service?
	4.4.2 Providing web services in J2EE
	4.4.3 Implementing our example web services
	4.4.4 Consuming web services in J2EE
	4.4.5 J2EE web services and Microsoft .NET

	4.5 Summary

	5. User interface development
	5.1 Creating a thin-client user interface
	5.1.1 Serving different types of devices
	5.1.2 Serving multiple locales
	5.1.3 An example to work through

	5.2 The pure J2EE approach
	5.2.1 The J2EE presentation tool kit
	5.2.2 Issues in J2EE MVC architecture
	5.2.3 Building our example in J2EE
	5.2.4 Analyzing the results

	5.3 The J2EE/XML approach
	5.3.1 Adding XSLT to the web process flow
	5.3.2 Analyzing the results
	5.3.3 Extending to binary formats

	5.4 XML web publishing frameworks
	5.4.1 Introduction to Cocoon architecture
	5.4.2 Using Cocoon to render the watch list page
	5.4.3 Analyzing the results

	5.5 A word about client-side XSLT
	5.6 Summary

	6. Case study
	6.1 Case study requirements
	6.2 The application environment
	6.3 The analysis phase
	6.3.1 Services and data layer analysis
	6.3.2 Data storage analysis
	6.3.3 Other necessary components

	6.4 The design phase
	6.4.1 Designing the application logic layer
	6.4.2 Designing the user interface

	6.5 Validating our design
	6.6 The implementation phase
	6.6.1 Building the controller servlet
	6.6.2 Building the ApplicationMenu component
	6.6.3 Building the ComponentLocator
	6.6.4 Building the BugAccessorBean
	6.6.5 Building the XSLTFilter

	6.7 Structuring application data
	6.8 The Amaya web service
	6.9 Running the application
	6.9.1 Installation
	6.9.2 Viewing the main menu
	6.9.3 Viewing common system problems
	6.9.4 Viewing and updating the Amaya problem list
	6.9.5 Inspecting the web services SOAP messages

	6.10 Summary

	Appendices
	A. Design patterns for J2EE and XML
	A.1 Presentation layer patterns
	A.1.1 The Decorating Filter pattern
	A.1.2 The Model-View-Controller pattern

	A.2 Application- and service-layer patterns
	A.2.1 The Service Locator pattern
	A.2.2 The Business Delegate pattern
	A.2.3 The Value Object pattern
	A.2.4 The Data Access Object pattern

	B. Distributed application security
	B.1 Securing distributed communication channels
	B.2 Securing application components
	B.2.1 Authentication models
	B.2.2 Authorization models
	B.2.3 Distributed security contexts

	B.3 Using cryptography and shared secrets
	B.3.1 Symmetrical cryptography
	B.3.2 Asymmetrical cryptography
	B.3.3 Tradeoffs and common implementations

	C. The Ant build tool
	C.1 Installing and configuring Ant
	C.2 Creating a build file
	C.2.1 Dynamically constructed paths and file sets
	C.2.2 A Sample build file

	C.3 Custom tasks
	C.3.1 Developing the task
	C.3.2 Defining the task
	C.3.3 Integrating the task

	C.4 Build listeners
	C.4.1 Developing the listener
	C.4.2 Using the listener

	C.5 Summary

	resources
	Index
	A, B, C, D
	E, F, H, I, J
	L, M
	N, O, P, R, S
	T, U, V, W, X

