Overview of On-Line Version

We hope you enjoy this PDF version of the international bestseller Core Servlets and
JavaServer Pages (Sun Microsystems Press). If you are interested in purchasing the
book, it is available through most major on-line and brick-and-mortar bookstores.
See http://www.coreservlets.com for details.

Interested in the sequel? Check out More Servlets and JavaServer Pages at
http://www.moreservlets.com.

Looking for servlet and JSP short courses taught by the author?
Visit http://courses.coreservlets.com. Available on-site at your company or at public
venues.

core
SERVLETS and

JAVASERVER PAGES

= Practical guide to using the Java™
Platform for Web-enabled
applications and dynamic Web sites

& n-depth coverage of the latest
J2EE™ standards: servlets version
2.2 and JSP™ version 1.1

& Hundreds of completely portable,
fully documented, industrial-
strength examples

syt

QSun
4

L E SN

MARTY HALL

Complete searchable PDF version offered exclusively through the Java Lobby:

http://www.javalobby.org. Join now!
javalobby,

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Connrternits

TABLE OF CONTENTS

Acknowledgments xix
About the Author XX

Introduction xxi
Real Code for Real Programmers XXii
How This Book Is Organized XXiii
Conventions XXVii
About the Web Site XXvii

PART 1
Servlets 2.1 and 2.2 2

CHAPTER 1

Overview of Servlets and JavaServer Pages 4

I.I Servlets 5
I.2 The Advantages of Servlets Over “Traditional” CGl 7
Efficient 7

Convenient 7

Home page for this book: http://www.coreservlets.com.

Home page for sequel: http://www.moreservlets.com.

Servlet and JSP training courses: http://courses.coreservlets.com.
v

vi

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents

Powerful 8
Portable 8
Secure 8

Inexpensive 9
I.3 JavaServer Pages 9
|.4 The Advantages of JSP 10
Versus Active Server Pages (ASP) 10
Versus PHP 10
Versus Pure Servlets | |
Versus Server-Side Includes (SSI) | |
Versus JavaScript | |
Versus Static HTML |2
I.5 Installation and Setup 12
Obtain Servlet and JSP Software |2
Bookmark or Install the Servlet and JSP APl Documentation
Identify the Classes to the Java Compiler |4
Package the Classes |5
Configure the Server 16
Start the Server |7
Compile and Install Your Servlets 18

CHAPTER 2

First Servlets 20

2.1 Basic Servlet Structure 2|

2.2 A Simple Servlet Generating Plain Text 23
Compiling and Installing the Servlet 24
Invoking the Servlet 25

2.3 A Servlet That Generates HTML 26

2.4 Packaging Servlets 27
Creating Servlets in Packages 28
Compiling Servlets in Packages 29
Invoking Servlets in Packages 30

2.5 Simple HTML-Building Utilities 31

2.6 The Servlet Life Cycle 34
The init Method 34
The service Method 36

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

The doGet, doPost, and doXxx Methods 37
The SingleThreadModel Interface 38
The destroy Method 38

2.7 An Example Using Initialization Parameters 39

Contents

2.8 An Example Using Servlet Initialization and Page Modification Dates 44

2.9 Debugging Servlets 50

2.10 WebClient: Talking to Web Servers Interactively 52

WebClient 52
HttpClient 55
NetworkClient 57
SocketUtil 59
CloseableFrame 60
LabeledTextField 61
Interruptible 63

CHAPTER 3
Handling the Client Request: Form Data 64

3.1 The Role of Form Data 65

3.2 Reading Form Data from Servlets 66

3.3 Example: Reading Three Explicit Parameters 67
3.4 Example: Reading All Parameters 70

3.5 A Resumé Posting Service 74

3.6 Filtering Strings for HTML-Specific Characters 87
Code for Filtering 88
Example 89

CHAPTER 4
Handling the Client Request: HT TP Request Headers

4.1 Reading Request Headers from Servlets 94
4.2 Printing All Headers 96

4.3 HTTP I.l Request Headers 98

4.4 Sending Compressed Web Pages 104

4.5 Restricting Access to Web Pages 107

92

vii

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

viii Contents

CHAPTER 5
Accessing the Standard CGl Variables |14

5.1 Servlet Equivalent of CGI Variables |16
5.2 A Servlet That Shows the CGI Variables |19

CHAPTER 6
Generating the Server Response: HTTP Status Codes 122

6.1 Specifying Status Codes 124
6.2 HTTP 1.1 Status Codes and Their Purpose 126
6.3 A Front End to Various Search Engines 135

CHAPTER 7

Generating the Server Response: HTTP Response Headers 142

7.1 Setting Response Headers from Servlets 143

7.2 HTTP 1.1 Response Headers and Their Meaning 145
7.3 Persistent Servlet State and Auto-Reloading Pages |54
7.4 Using Persistent HTTP Connections 163

7.5 Using Servlets to Generate GIF Images |68

CHAPTER 8
Handling Cookies 178

8.1 Benefits of Cookies 179
Identifying a User During an E-commerce Session 180
Avoiding Username and Password 180
Customizing a Site 180
Focusing Advertising 18l

8.2 Some Problems with Cookies |8l

8.3 The Servlet Cookie APl 183
Creating Cookies 183
Cookie Attributes 183
Placing Cookies in the Response Headers 186
Reading Cookies from the Client 186

8.4 Examples of Setting and Reading Cookies 186

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents

8.5 Basic Cookie Utilities 190
Finding Cookies with Specified Names 190
Creating Long-Lived Cookies |91

8.6 A Customized Search Engine Interface 191

CHAPTER 9
Session Tracking 198

9.1 The Need for Session Tracking 199
Cookies 200
URL-Rewriting 200
Hidden Form Fields 201
Session Tracking in Servlets 201
9.2 The Session Tracking APl 201

Looking Up the HttpSession Object Associated with the Current
Request 202

Looking Up Information Associated with a Session 202
Associating Information with a Session 205
Terminating Sessions 206
Encoding URLs Sent to the Client 206

9.3 A Servlet Showing Per-Client Access Counts 207

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 209
Building the Front End 210
Handling the Orders 215

Behind the Scenes: Implementing the Shopping Cart and
Catalog Items 220

PART 2
JavaServer Pages 228

CHAPTER 10
JSP Scripting Elements 230

10.1 Scripting Elements 233
Template Text 234
10.2 JSP Expressions 234

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents

Predefined Variables 234
XML Syntax for Expressions 235

Using Expressions as Attribute Values 235
Example 236

10.3 JSP Scriptlets 238

Using Scriptlets to Make Parts of the JSP File Conditional

Special Scriptlet Syntax 242
10.4 |SP Declarations 242

Special Declaration Syntax 244
10.5 Predefined Variables 244

CHAPTER 11

The JSP page Directive: Structuring Generated Servlets

I1.I The import Attribute 248
Directories for Custom Classes 248
Example 249

I1.2 The contentType Attribute 251
Generating Plain Text Documents 252
Generating Excel Spreadsheets 254

I 1.3 The isThreadSafe Attribute 258

I 1.4 The session Attribute 259

I 1.5 The buffer Attribute 259

I 1.6 The autoflush Attribute 260

I1.7 The extends Attribute 260

I 1.8 The info Attribute 260

[1.9 The errorPage Attribute 261

[1.10 The isErrorPage Attribute 261

[1.11 The language Attribute 264

[1.12 XML Syntax for Directives 265

CHAPTER 12
Including Files and Applets in JSP Documents 266

12.1 Including Files at Page Translation Time 268
12.2 Including Files at Request Time 270

246

241

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents

12.3 Including Applets for the Java Plug-In 274
The jsp:plugin Element 275
The jsp:param and jsp:params Elements 277
The jsp:fallback Element 278
Example: Building Shadowed Text 279

CHAPTER 13
Using JavaBeans with JSP 286

I3.1 Basic Bean Use 288
Accessing Bean Properties 290
Setting Bean Properties: Simple Case 290
Installing Bean Classes 291
13.2 Example: StringBean 292
13.3 Setting Bean Properties 294
Associating Individual Properties with Input Parameters 298
Automatic Type Conversions 300
Associating All Properties with Input Parameters 301
13.4 Sharing Beans 302
Conditional Bean Creation 304

CHAPTER 14
Creating Custom JSP Tag Libraries 308

I4.1 The Components That Make Up a Tag Library 310
The Tag Handler Class 310
The Tag Library Descriptor File 311
The JSP File 313

14.2 Defining a Basic Tag 314
The Tag Handler Class 315
The Tag Library Descriptor File 316
The JSP File 318

14.3 Assigning Attributes to Tags 319
The Tag Handler Class 319
The Tag Library Descriptor File 321
The JSP File 322

14.4 Including the Tag Body 323

Xi

Xii

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents

The Tag Handler Class 324
The Tag Library Descriptor File 326
The JSP File 328

14.5 Optionally Including the Tag Body 329
The Tag Handler Class 329
The Tag Library Descriptor File ~ 331
The JSP File 332

14.6 Manipulating the Tag Body 334
The Tag Handler Class 334
The Tag Library Descriptor File 335
The JSP File 336

14.7 Including or Manipulating the Tag Body Multiple Times
The Tag Handler Class 338
The Tag Library Descriptor File 340
The JSP File 341

14.8 Using Nested Tags 34l
The Tag Handler Classes 342
The Tag Library Descriptor File 348
The JSP File 350

CHAPTER 15
Integrating Servlets and JSP 352

I5.1 Forwarding Requests 354
Using Static Resources 354

338

Supplying Information to the Destination Pages 355

Interpreting Relative URLs in the Destination Page
Alternative Means of Getting a RequestDispatcher

I5.2 Example: An On-Line Travel Agent 358

I5.3 Including Static or Dynamic Content 375

I5.4 Example: Showing Raw Servlet and JSP Output 377
I5.5 Forwarding Requests From JSP Pages 380

357
358

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents

PART 5
Supporting Technologies 382

CHAPTER 16
Using HTML Forms 384

16.1 How HTML Forms Transmit Data 385
16.2 The FORM Element 390
16.3 Text Controls 395
Textfields 395
Password Fields 397
Text Areas 398
16.4 Push Buttons 400
Submit Buttons 401
Reset Buttons 404
JavaScript Buttons 405
16.5 Check Boxes and Radio Buttons 405
Check Boxes 406
Radio Buttons 407
16.6 Combo Boxes and List Boxes 409
16.7 File Upload Controls 412
16.8 Server-Side Image Maps 414
IMAGE—Standard Server-Side Image Maps 414
ISMAP—Alternative Server-Side Image Maps 417
16.9 Hidden Fields 419
16.10 Grouping Controls 420
16.11 Controlling Tab Order 422
16.12 A Debugging Web Server 423
EchoServer 423
ThreadedEchoServer 427
NetworkServer 428

CHAPTER 17
Using Applets As Servlet Front Ends 432

I7.1 Sending Data with GET and Displaying the Resultant Page 434

eee
xXin

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Xiv Contents

17.2 A Multisystem Search Engine Front End 435

17.3 Sending Data with GET and Processing the Results Directly
(HTTP Tunneling) 438

Reading Binary or ASCll Data 439
Reading Serialized Data Structures 44|

17.4 A Query Viewer That Uses Object Serialization and HTTP
Tunneling 443

17.5 Sending Data by POST and Processing the Results Directly
(HTTP Tunneling) 450

17.6 An Applet That Sends POST Data 453
17.7 Bypassing the HTTP Server 459

CHAPTER 18
JDBC and Database Connection Pooling 460

I8.1 Basic Steps in Using JDBC 462
Load the Driver 462
Define the Connection URL 463
Establish the Connection 464
Create a Statement 465
Execute a Query 465
Process the Results 465
Close the Connection 466
18.2 Basic JDBC Example 467
18.3 Some JDBC Utilities 473
18.4 Applying the Database Utilities 482
18.5 An Interactive Query Viewer 487
Query Viewer Code 489
18.6 Prepared Statements (Precompiled Queries) 497
18.7 Connection Pooling 501
18.8 Connection Pooling: A Case Study 508
18.9 Sharing Connection Pools 515
Using the Servlet Context to Share Connection Pools 515
Using Singleton Classes to Share Connection Pools 516

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents

APPENDIX
Servlet and JSP Quick Reference 518

A.l Overview of Servlets and JavaServer Pages 519
Advantages of Servlets 519
Advantages of |SP 519
Free Servlet and JSP Software 519
Documentation 520
Servlet Compilation: CLASSPATH Entries 520
Tomcat 3.0 Standard Directories 520
Tomcat 3.1 Standard Directories 520
JSWDK 1.0.1 Standard Directories 520
Java Web Server 2.0 Standard Directories 521
A2 First Servlets 521
Simple Servlet 521
Installing Servlets 521
Invoking Servlets 521
Servlet Life Cycle 522
A.3 Handling the Client Request: Form Data 523
Reading Parameters 523
Example Servlet 523
Example Form 524
Filtering HTML-Specific Characters 524
A.4 Handling the Client Request: HTTP Request Headers 524
Methods That Read Request Headers 524
Other Request Information 525
Common HTTP I.| Request Headers 525
A5 Accessing the Standard CGl Variables 526
Capabilities Not Discussed Elsewhere 526
Servlet Equivalent of CGI Variables 526
A.6 Generating the Server Response: HTTP Status Codes 527
Format of an HTTP Response 527
Methods That Set Status Codes 527
Status Code Categories 527
Common HTTP I.| Status Codes 527
A.7 Generating the Server Response: HTTP Response Headers 528
Setting Arbitrary Headers 528

xvi

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents

Setting Common Headers 528
Common HTTP I.| Response Headers 528
Generating GIF Images from Servlets 529

A.8 Handling Cookies 530

Typical Uses of Cookies 530
Problems with Cookies 530
General Usage 530

Cookie Methods 530

A.9 Session Tracking 531

Looking Up Session Information: getValue 531
Associating Information with a Session: putValue
HttpSession Methods 532

Encoding URLs 533

A.10 JSP Scripting Elements 533

Types of Scripting Elements 533
Template Text 533
Predefined Variables 533

531

A.ll The JSP page Directive: Structuring Generated Servlets 534

The import Attribute 534

The contentType Attribute 534
Example of Using contentType 534
Example of Using setContentType 535
The isThreadSafe Attribute 535
The session Attribute 536

The buffer Attribute 536

The autoflush Attribute 536

The extends Attribute 536

The info Attribute 536

The errorPage Attribute 536

The isErrorPage Attribute 536

The language Attribute 536

XML Syntax 537

A.12 Including Files and Applets in JSP Documents 537

Including Files at Page Translation Time 537
Including Files at Request Time 537

Applets for the Java Plug-In: Simple Case 537
Attributes of jsp:plugin 537

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Contents xvii

Parameters in HTML: jsp:param 538
Alternative Text 538
A.13 Using JavaBeans with JSP 539
Basic Requirements for Class to be a Bean 539
Basic Bean Use 539
Associating Properties with Request Parameters 539
Sharing Beans: The scope Attribute of jsp:useBean 539
Conditional Bean Creation 540
A.14 Creating Custom JSP Tag Libraries 540
The Tag Handler Class 540
The Tag Library Descriptor File 541
The JSP File 541
Assigning Attributes to Tags 541
Including the Tag Body 541
Optionally Including the Tag Body 542
Manipulating the Tag Body 542
Including or Manipulating the Tag Body Multiple Times 542
Using Nested Tags 542
A.15 Integrating Servlets and JSP 542
Big Picture 542
Request Forwarding Syntax 543
Forwarding to Regular HTML Pages 543
Setting Up Globally Shared Beans 543
Setting Up Session Beans 543
Interpreting Relative URLs in the Destination Page 543
Getting a RequestDispatcher by Alternative Means (2.2 Only) 543
Including Static or Dynamic Content 544
Forwarding Requests from JSP Pages 544
A.16 Using HTML Forms 544
The FORM Element 544
Textfields 544
Password Fields 544
Text Areas 545
Submit Buttons 545
Alternative Push Buttons 545
Reset Buttons 545
Alternative Reset Buttons 545

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

xviii Contents

JavaScript Buttons 546
Alternative JavaScript Buttons 546
Check Boxes 546
Radio Buttons 546
Combo Boxes 546
File Upload Controls 547
Server-Side Image Maps 547
Hidden Fields 547
Internet Explorer Features 547
A.17 Using Applets As Servlet Front Ends 547
Sending Data with GET and Displaying the Resultant Page 547

Sending Data with GET and Processing the Results Directly
(HTTP Tunneling) 548

Sending Serialized Data: The Applet Code 549
Sending Serialized Data: The Servlet Code 549

Sending Data by POST and Processing the Results Directly
(HTTP Tunneling) 550

Bypassing the HTTP Server 551
A.18 JDBC and Database Connection Pooling 552
Basic Steps in Using JDBC 552
Database Utilities 553
Prepared Statements (Precompiled Queries) 553
Steps in Implementing Connection Pooling 554

Index 557

Aclknowledgrmenits

Many people have helped me out with this book. Without their assistance, I
would still be on the third chapter. John Guthrie, Amy Karlson, Rich Slywec-
zak, and Kim Topley provided valuable technical feedback on virtually every
chapter. Others pointing out errors and providing useful suggestions include
Don Aldridge, Camille Bell, Ben Benokraitis, Larry Brown, Carl Burnham,
Andrew Burton, Rick Cannon, Kevin Cropper, Chip Downs, Frank Erickson,
Payam Fard, Daniel Goldman, Rob Gordon, Andy Gravatt, Jeff Hall, Russell
Holley, David Hopkins, Lis Immer, Herman Ip, Truong Le, Frank Lewis,
Tanner Lovelace, Margaret Lyell, Paul McNamee, Mike Oliver, Barb Ride-
nour, Himanso Sahni, Bob Samson, Ron Tosh, Tsung-Wen Tsai, Peggy Sue
Vickers, and Maureen Knox Yencha. Hopefully I learned from their advice.
Mary Lou “Eagle Eye” Nohr spotted my errant commas, awkward sentences,
typographical errors, and grammatical inconsistencies. She improved the
result immensely. Joanne Anzalone produced the final version; she did a
great job despite my many last-minute changes. Ralph Semmel provided a
supportive work environment and a flexible schedule, not to mention inter-
esting projects on which to put servlets and JSP to work. Greg Doench of
Prentice Hall believed in the concept from the beginning and encouraged me
to write the book. Rachel Borden got Sun Microsystems Press to believe in it
also. Thanks to all.

Most of all, thanks to B.]J., Lindsay, and Nathan for their patience with my
funny schedule and my hogging the computer when they wanted to work or
play on it. God has blessed me with a great family.

Xix

XX

About the Author

About the Author

Marty Hall is a Senior Computer Sci-
entist in the Research and Technology
Development Center at the Johns
Hopkins University Applied Physics
Lab, where he specializes in applica-
tions of Java and Web technology. He
also teaches Java and Web program-
ming in the Johns Hopkins part-time
graduate program in Computer Sci-
ence, where he directs the Distributed
Computing and Web Technology con-

centration areas. When he gets a chance, he also teaches industry short
courses on servlets, JavaServer Pages, and other Java technology areas.
Marty’s previous book is Core Web Programming (Prentice Hall, 1998). He
can be reached at the following address:

Research and Technology Development Center
The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road
Laurel, MD 20723
hall@coreservlets.com

Introcluction

b

majority of my software development work. I did some CGI program-

ming and even worked a little with the early servlet versions, but for the
most part I did desktop and client-side applications. Over the last couple of
years, however, there has been a growing emphasis on server-side applications,
so I became more serious about servlets and JavaServer Pages. In the past year,
there has been a virtual stampede toward the technology among developers,
server vendors, and the authors of the Java platform specifications. So much so,
in fact, that the technology is rapidly becoming the standard tool for building
dynamic Web sites and connecting Web front ends to databases and applica-
tions on a server.

Unfortunately, however, it was extremely difficult to find good practical
advice on servlet and JSP development. I found a number of servlet books, but
only a handful of them covered recent versions of the specification, advanced
techniques, or reflected real-world experience. The few that did, if they cov-
ered JSP at all, hadn’t caught up to JSP 1.0, let alone JSP 1.1. Since JSP is a bet-
ter fit than servlets for many situations, what good was a servlet book that didn’t
also cover JSP? In the last couple of months, some JSP books have started com-
ing out. But the bulk of them don’t cover servlets. What good is that? Since an
integral part of JavaServer Pages is the use of scripting elements to create serv-
let code, you can't do effective JSP development without a thorough under-
standing of servlets. Besides, most real-world sites don’t use just one of the two

I n early 1996, I started using the Java programming language for the

XXi

xxii

Introduction

technologies; they combine them both. Finally, as I discovered when I started
teaching servlet and JSP development to my students in the Johns Hopkins
part-time graduate program (most of whom were professional software devel-
opers), few programmers were already comfortable with HTTP 1.1, HTML
forms, and JDBC, three critical supporting technologies. Telling them to get a
separate book for each of these areas was hardly reasonable: that brought to
five the number of books programmers needed if they were going to do serious
servlet/JSP development.

So, in mid-1999, I put together a short servlet and JSP tutorial with a few
dozen examples, put it on the Web, and tried out the material in a couple of
my courses. The response was overwhelming. After only a few months, I
was getting several thousand visitors a day to the tutorial along with a myr-
iad of requests to expand the coverage of the material. I eventually bowed
to the inevitable and started writing. This book is the result. I hope you find
it useful.

Real Code for Real Programmers

This book is aimed at serious software developers. This is not a book that
touts the potential of e-commerce or pontificates about how Web-enabled
applications will revolutionize your business. Instead, it is a hands-on book
aimed at helping programmers who are already convinced of the need for
dynamic Web sites get started building them right away. In showing how to
build these sites, I try to illustrate the most important approaches and warn
you of the most common pitfalls. Along the way, I include plenty of working
code: more than a hundred documented Java classes, for instance. I try to
give detailed examples of the most important and frequently used features,
summarize the lesser-used ones, and refer you to the APIs (available
on-line) for a few of the rarely used ones.

Nor is this a book that skims dozens of technologies at a high level.
Although I don’t claim that this is a definitive reference on every technology
it touches on (e.g., there are a number of books this size just on JDBC), if the
book covers a topic, it does so in enough detail for you to sit down and start
writing real programs. The one exception to this rule is the Java programming
language itself. Although I don’t assume any familiarity with server-side pro-
gramming, I do expect you to be familiar with the basics of Java language
development. If you're not, you will need to pick up a good tutorial like Core
Java, Core Web Programming, or Thinking in Java.

How This Book Is Organized

A word of caution, however. Nobody becomes a great developer just by
reading. You have to write some real code, too. The more, the better. In each
chapter, I suggest that you start by making a simple program or a small varia-
tion of one of the examples given, then strike off on your own with a more sig-
nificant project. Skim the sections you don’t plan on using right away, then
come back when you are ready to try them out.

If you do this, you should quickly develop the confidence to handle the
real-world problems that brought you here in the first place. You should be
able to decide where servlets apply well, where JSP is better, and where a com-
bination is best. You should not only know how to generate HTML content, but
you should also understand building other media types like GIF images or
Excel spreadsheets. You should understand HTTP 1.1 well enough to use its
capabilities to enhance the effectiveness of your pages. You should have no
qualms about developing Web interfaces to your corporate databases, using
either HTML forms or applets as front ends. You should be able to spin off
complex behaviors into JavaBeans components or custom JSP tag libraries,
then decide when to use these components directly and when to start requests
with servlets that set things up for separate presentation pages. You should have
fun along the way. You should get a raise.

How This Book Is Organized

This book is divided into three parts: Servlets, JavaServer Pages, and Sup-
porting Technologies.

Part I: Servlets

Part I covers servlet development with the 2.1 and 2.2 specifications.
Although version 2.2 (along with JSP 1.1) is mandated by the Java 2
Platform, Enterprise Edition (J2EE), many commercial products are
still at the earlier releases, so it is important to understand the differ-
ences. Also, although servlet code is portable across a huge variety of
servers and operating systems, server setup and configuration details
are not standardized. So, I include specific details for Apache Tomcat,
Sun’s JavaServer Web Development Kit (JSWDK), and the Java Web
Server. Servlet topics include:

e When and why you would use servlets
e Obtaining and configuring the servlet and JSP software

xxiii

XXiv Introduction

¢ The basic structure of servlets

e The process of compiling, installing, and invoking servlets

e Generating HTML from servlets

e The servlet life cycle

e Page modification dates and browser caches

e Servlet debugging strategies

e Reading form data from servlets

e Handling both GET and poST requests with a single servlet

* An on-line resume posting service

* Reading HTTP request headers from servlets

e The purpose of each of the HTTP 1.1 request headers

* Reducing download times by compressing pages

* Restricting access with password-protected servlets

* The servlet equivalent of each standard CGI variable

e Using HTTP status codes

e The meaning of each of the HTTP 1.1 status code values

* A search engine front end

e Setting response headers from servlets

e The purpose of each of the HTTP 1.1 response headers

¢ Common MIME types

* A servlet that uses the Refresh header to repeatedly access
ongoing computations

e Servlets that exploit persistent (keep-alive) HTTP connections

* Generating GIF images from servlets

e Cookie purposes and problems

e The Cookie API

e Some utilities that simplify cookie handling

* A customized search engine front end

e The purposes of session tracking

* The servlet session tracking API

e Using sessions to show per—client access counts

* An on-line store that uses session tracking, shopping carts, and
pages automatically built from catalog entries

How This Book Is Organized

Part II: JavaServer Pages

JSP provides a convenient alternative to servlets for pages that mostly
consist of fixed content. Part IT covers the use of JavaServer Pages ver-
sion 1.0 and 1.1. JSP topics include:

When and why you would use JavaServer Pages

How JSP pages are invoked

Using JSP expressions, scriptlets, and declarations
Predefined variables that can be used within expressions and
scriptlets

The page directive

Designating which classes are imported

Specifying the MIME type of the page

Generating Excel spreadsheets

Controlling threading behavior

Participating in sessions

Setting the size and behavior of the output buffer
Designating pages to process JSP errors
XML-compatible syntax for directives

Including JSP files at the time the main page is translated into a
servlet

Including HTML or plain text files at the time the client
requests the page

Including applets that use the Java Plug-In

Using JavaBeans with JSP

Creating and accessing beans

Setting bean properties explicitly

Associating bean properties with input parameters
Automatic conversion of bean property types

Sharing beans among multiple JSP pages and servlets
Creating JSP tag libraries

Tag handler classes

Tag library descriptor files

The JSP taglib directive

Simple tags

Tags that use attributes

Tags that use the body content between their start and end tags
Tags that modify their body content

Looping tags

Nested tags

XXV

XXVi

Introduction

e Integrating servlets and JSP

e Forwarding requests from servlets to static and dynamic
resources

e Using servlets to set up beans for use by JSP pages

* An on-line travel agency combining servlets and JSP

e Including JSP output in servlets

e Forwarding requests from JSP pages

Part III: Supporting Technologies

Part III covers three topics that are commonly used in conjunction
with servlets and JSP: HTML forms, applets talking to servlets, and
JDBC. Topics include:

e Sending data from forms

e Text controls

e Push buttons

¢ Check boxes and radio buttons

e Combo boxes and list boxes

* File upload controls

e Server-side image maps

e Hidden fields

e Grouping controls

e Tab ordering

* A Web server for debugging forms

e Sending GET data from an applet and having the browser
display the results

e Having applets send GET data and process the results
themselves (HTTP tunneling)

e Using object serialization to exchange high-level data structures
between applets and servlets

e Having applets send POST data and process the results
themselves

e Applets bypassing the HTTP server altogether

Conventions xXxvii

Conventions

Throughout the book, concrete programming constructs or program output are
presented in a monospaced font. For example, when abstractly discussing
server-side programs that use HTTP, I might refer to “HTTP servlets” or just
“servlets,” but when I say Ht tpservlet I am talking about a specific Java class.

User input is indicated in boldface, and command-line prompts are either
generic (Prompt>) or indicate the operating system to which they apply
(Dos>). For instance, the following indicates that “some output” is the result
when “java SomeProgram” is executed on any platform.

Prompt> java SomeProgram

Some Output

Important standard techniques are indicated by specially marked entries,
as in the following example.

Core Approach

Cr

Pay particular attention to items in “Core Approach” sections. They indicate \q\ ’
techniques that should always or almost always be used.

Notes and warnings are called out in a similar manner.

About the Web Site

The book has a companion Web site at http: //www.coreservlets.com/.
This free site includes:

e Documented source code for all examples shown in the book;
this code can be downloaded for unrestricted use

* On-line API (in Javadoc format) for all classes developed in the

book
e Up-to-date download sites for servlet and JSP software
e Links to all URLs mentioned in the text of the book
¢ Information on book discounts
* Reports on servlet and JSP short courses
* Book additions, updates, and news

Introduction

XXV

core

SERVLETS and
JAVASERVER PAGES

¥ Chapter |

Chapter 2
Chapter 3

Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8
Chapter 9

Overview of Servlets and
JavaServer Pages, 4

First Servlets, 20

Handling the Client Request:
Form Data, 64

Handling the Client Request:
HTTP Request Headers, 92
Accessing the Standard CGl
Variables, 114

Generating the Server Response:
HTTP Status Codes, 122
Generating the Server Response:
HTTP Response Headers, 142
Handling Cookies, 178

Session Tracking, 198

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

OVERVIEW OF
SERVLETS AND
JAVASERVER PAGES

y Topics in This Chapter

* What servlets are

* When and why you would use servlets
* What JavaServer Pages are

* When and why you would use JSP

* Obtaining the servlet and JSP software

» Software installation and setup

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

(JSP), outlining the major advantages of each. It then summarizes
how to obtain and configure the software you need to write servlets
and develop JSP documents.

T his chapter gives a quick overview of servlets and JavaServer Pages

1.1 Servlets

Servlets are Java technology’s answer to Common Gateway Interface (CGI)
programming. They are programs that run on a Web server, acting as a mid-
dle layer between a request coming from a Web browser or other HTTP cli-
ent and databases or applications on the HTTP server. Their job is to:

1. Read any data sent by the user.
This data is usually entered in a form on a Web page, but could
also come from a Java applet or a custom HTTP client program.
2. Look up any other information about the request that is
embedded in the HTTP request.
This information includes details about browser capabilities,
cookies, the host name of the requesting client, and so forth.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6 Chapter | Overview of Servlets and JavaServer Pages

3. Generate the results.
This process may require talking to a database, executing an
RMI or CORBA call, invoking a legacy application, or comput-
ing the response directly.

4. Format the results inside a document.
In most cases, this involves embedding the information inside
an HTML page.

5. Set the appropriate HTTP response parameters.
This means telling the browser what type of document is being
returned (e.g., HTML), setting cookies and caching parameters,
and other such tasks.

6. Send the document back to the client.
This document may be sent in text format (HTML), binary for-
mat (GIF images), or even in a compressed format like gzip that
is layered on top of some other underlying format.

Many client requests can be satisfied by returning pre-built documents,
and these requests would be handled by the server without invoking servlets.
In many cases, however, a static result is not sufficient, and a page needs to
be generated for each request. There are a number of reasons why Web
pages need to be built on-the-fly like this:

e The Web page is based on data submitted by the user.
For instance, the results page from search engines and
order-confirmation pages at on-line stores are specific to
particular user requests.

e The Web page is derived from data that changes
frequently.

For example, a weather report or news headlines page might
build the page dynamically, perhaps returning a previously built
page if it is still up to date.

* The Web page uses information from corporate
databases or other server-side sources.

For example, an e-commerce site could use a servlet to build a
Web page that lists the current price and availability of each
item that is for sale.

In principle, servlets are not restricted to Web or application servers that
handle HTTP requests, but can be used for other types of servers as well. For

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

1.2 The Advantages of Servlets Over “Traditional” CGI

example, servlets could be embedded in mail or FTP servers to extend their
functionality. In practice, however, this use of servlets has not caught on, and
I'll only be discussing HTTP servlets.

1.2 The Advantages of Servlets
Over “Traditional” CGI

Java servlets are more efficient, easier to use, more powerful, more portable,
safer, and cheaper than traditional CGI and many alternative CGI-like tech-
nologies.

Efficient

With traditional CGIL, a new process is started for each HTTP request. If the
CGI program itself is relatively short, the overhead of starting the process can
dominate the execution time. With servlets, the Java Virtual Machine stays
running and handles each request using a lightweight Java thread, not a
heavyweight operating system process. Similarly, in traditional CGI, if there
are N simultaneous requests to the same CGI program, the code for the CGI
program is loaded into memory N times. With servlets, however, there would
be N threads but only a single copy of the servlet class. Finally, when a CGI
program finishes handling a request, the program terminates. This makes it
difficult to cache computations, keep database connections open, and per-
form other optimizations that rely on persistent data. Servlets, however,
remain in memory even after they complete a response, so it is straightfor-
ward to store arbitrarily complex data between requests.

Convenient

Servlets have an extensive infrastructure for automatically parsing and decod-
ing HTML form data, reading and setting HTTP headers, handling cookies,
tracking sessions, and many other such high-level utilities. Besides, you already
know the Java programming language. Why learn Perl too? You're already con-
vinced that Java technology makes for more reliable and reusable code than
does C++. Why go back to C++ for server-side programming?

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8 Chapter | Overview of Servlets and JavaServer Pages

Powerful

Servlets support several capabilities that are difficult or impossible to accom-
plish with regular CGI. Servlets can talk directly to the Web server, whereas
regular CGI programs cannot, at least not without using a server-specific
APIL. Communicating with the Web server makes it easier to translate relative
URLs into concrete path names, for instance. Multiple servlets can also share
data, making it easy to implement database connection pooling and similar
resource-sharing optimizations. Servlets can also maintain information from
request to request, simplifying techniques like session tracking and caching
of previous computations.

Portable

Servlets are written in the Java programming language and follow a standard
APIL Consequently, servlets written for, say, I-Planet Enterprise Server can
run virtually unchanged on Apache, Microsoft Internet Information Server
(IIS), IBM WebSphere, or StarNine WebStar. For example, virtually all of
the servlets and JSP pages in this book were executed on Sun’s Java Web
Server, Apache Tomcat and Sun’s JavaServer Web Development Kit
(JSWDK) with no changes whatsoever in the code. Many were tested on
BEA WebLogic and IBM WebSphere as well. In fact, servlets are supported
directly or by a plug-in on virtually every major Web server. They are now
part of the Java 2 Platform, Enterprise Edition (J2EE; see
http://java.sun.com/j2ee/), so industry support for servlets is becoming
even more pervasive.

Secure

One of the main sources of vulnerabilities in traditional CGI programs
stems from the fact that they are often executed by general-purpose operat-
ing system shells. So the CGI programmer has to be very careful to filter
out characters such as backquotes and semicolons that are treated specially
by the shell. This is harder than one might think, and weaknesses stemming
from this problem are constantly being uncovered in widely used CGI
libraries. A second source of problems is the fact that some CGI programs
are processed by languages that do not automatically check array or string
bounds. For example, in C and C++ it is perfectly legal to allocate a

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

1.3 JavaServer Pages

100-element array then write into the 999th “element,” which is really some
random part of program memory. So programmers who forget to do this
check themselves open their system up to deliberate or accidental buffer
overflow attacks. Servlets suffer from neither of these problems. Even if a
servlet executes a remote system call to invoke a program on the local oper-
ating system, it does not use a shell to do so. And of course array bounds
checking and other memory protection features are a central part of the
Java programming language.

Inexpensive

There are a number of free or very inexpensive Web servers available that are
good for “personal” use or low-volume Web sites. However, with the major
exception of Apache, which is free, most commercial-quality Web servers are
relatively expensive. Nevertheless, once you have a Web server, no matter its
cost, adding servlet support to it (if it doesn’t come preconfigured to support
servlets) costs very little extra. This is in contrast to many of the other CGI
alternatives, which require a significant initial investment to purchase a pro-

prietary package.

1.3 JavaServer Pages

JavaServer Pages (JSP) technology enables you to mix regular, static HTML
with dynamically generated content from servlets. Many Web pages that
are built by CGI programs are primarily static, with the parts that change
limited to a few small locations. For example, the initial page at most
on-line stores is the same for all visitors, except for a small welcome mes-
sage giving the visitor’s name if it is known. But most CGI variations,
including servlets, make you generate the entire page via your program,
even though most of it is always the same. JSP lets you create the two parts
separately. Listing 1.1 gives an example. Most of the page consists of regu-
lar HTML, which is passed to the visitor unchanged. Parts that are gener-
ated dynamically are marked with special HTML-like tags and mixed right
into the page.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

10 Chapter | Overview of Servlets and JavaServer Pages

Listing I.I A sample JSP page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>Welcome to Our Store</TITLE></HEAD>

<BODY>

<Hl>Welcome to Our Store</H1>

<SMALL>Welcome,

<!-- User name is "New User" for first-time visitors -->

<%= Utils.getUserNameFromCookie (request) %>

To access your account settings, click

here.</SMALL>

<P>

Regular HTML for all the rest of the on-line store’s Web page.
</BODY>

</HTML>

1.4 The Advantages of JSP

JSP has a number of advantages over many of its alternatives. Here are a
few of them.

Versus Active Server Pages (ASP)

ASP is a competing technology from Microsoft. The advantages of JSP are
twofold. First, the dynamic part is written in Java, not VBScript or another
ASP-specific language, so it is more powerful and better suited to complex
applications that require reusable components. Second, JSP is portable to
other operating systems and Web servers; you aren’t locked into Windows
NT/2000 and IIS. You could make the same argument when comparing JSP
to ColdFusion; with JSP you can use Java and are not tied to a particular
server product.

Versus PHP

PHP is a free, open-source HTML-embedded scripting language that is some-
what similar to both ASP and JSP. The advantage of JSP is that the dynamic
part is written in Java, which you probably already know, which already has an

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

1.4 The Advantages of JSP

extensive APT for networking, database access, distributed objects, and the like,
whereas PHP requires learning an entirely new language.

Versus Pure Servliets

JSP doesn’t provide any capabilities that couldn’t in principle be accom-
plished with a servlet. In fact, JSP documents are automatically translated
into servlets behind the scenes. But it is more convenient to write (and to
modify!) regular HTML than to have a zillion print1n statements that gen-
erate the HTML. Plus, by separating the presentation from the content, you
can put different people on different tasks: your Web page design experts can
build the HTML using familiar tools and leave places for your servlet pro-
grammers to insert the dynamic content.

Versus Server-Side Includes (SSI)

SST is a widely supported technology for inserting externally defined pieces
into a static Web page. JSP is better because you have a richer set of tools for
building that external piece and have more options regarding the stage of the
HTTP response at which the piece actually gets inserted. Besides, SSI is
really intended only for simple inclusions, not for “real” programs that use
form data, make database connections, and the like.

Versus JavaScript

JavaScript, which is completely distinct from the Java programming language,
is normally used to generate HTML dynamically on the client, building parts
of the Web page as the browser loads the document. This is a useful capabil-
ity but only handles situations where the dynamic information is based on the
client’s environment. With the exception of cookies, the HTTP request data
is not available to client-side JavaScript routines. And, since JavaScript lacks
routines for network programming, JavaScript code on the client cannot
access server-side resources like databases, catalogs, pricing information, and
the like. JavaScript can also be used on the server, most notably on Netscape
servers and as a scripting language for IIS. Java is far more powerful, flexible,
reliable, and portable.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

12 Chapter | Overview of Servlets and JavaServer Pages

Versus Static HTML

Regular HTML, of course, cannot contain dynamic information, so static
HTML pages cannot be based upon user input or server-side data sources.
JSP is so easy and convenient that it is quite reasonable to augment HTML
pages that only benefit slightly by the insertion of dynamic data. Previously,
the difficulty of using dynamic data precluded its use in all but the most valu-
able instances.

1.5 Installation and Setup

Before you can get started, you have to download the software you need and
configure your system to take advantage of it. Here’s an outline of the steps
involved. Please note, however, that although your servlet code will follow a
standard API, there is no standard for downloading and configuring Web or
application servers. Thus, unlike most sections of this book, the methods
described here vary significantly from server to server, and the examples in
this section should be taken only as representative samples. Check your
server’s documentation for authoritative instructions.

Obtain Servlet and JSP Software

Your first step is to download software that implements the Java Servlet 2.1 or
2.2 and JavaServer Pages 1.0 or 1.1 specifications. If you are using an
up-to-date Web or application server, there is a good chance that it already
has everything you need. Check your server documentation or see the latest
list of servers that support servlets at http://java.sun.com/prod-
ucts/servlet/industry.html. Although you'll eventually want to deploy
in a commercial-quality server, when first learning it is useful to have a free
system that you can install on your desktop machine for development and
testing purposes. Here are some of the most popular options:

e Apache Tomcat.
Tomcat is the official reference implementation of the servlet 2.2
and JSP 1.1 specifications. It can be used as a small stand-alone
server for testing servlets and JSP pages, or can be integrated into
the Apache Web server. However, many other servers have
announced upcoming support, so these specifications will be

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

1.5 Installation and Setup

covered in detail throughout this book. Tomcat, like Apache
itself, is free. However, also like Apache (which is very fast, highly
reliable, but a bit hard to configure and install), Tomcat requires
significantly more effort to set up than do the commercial servlet
engines. For details, see http://jakarta.apache.org/.

e JavaServer Web Development Kit (JSWDK).
The [SWDK is the official reference implementation of the
servlet 2.1 and JSP 1.0 specifications. It is used as a small
stand-alone server for testing servlets and JSP pages before they
are deployed to a full Web server that supports these
technologies. It is free and reliable, but takes quite a bit of
effort to install and configure. For details, see
http://java.sun.com/products/servlet/download.html.

e Allaire JRun.
JRun is a servlet and JSP engine that can be plugged into
Netscape Enterprise or FastTrack servers, IIS, Microsoft
Personal Web Server, older versions of Apache, O'Reilly’s
WebSite, or StarNine WebSTAR. A limited version that
supports up to five simultaneous connections is available for
free; the commercial version removes this restriction and adds
capabilities like a remote administration console. For details,
see http://www.allaire.com/products/jrun/.

e New Atlanta’s ServletExec. ServletExec is a servlet and JSP
engine that can be plugged into most popular Web servers for
Solaris, Windows, MacOS, HP-UX and Linux. You can
download and use it for free, but many of the advanced features
and administration utilities are disabled until you purchase a
license. For details, see http: //newatlanta.com/.

e LiteWebServer (LWS) from Gefion Software.

LWS is a small free Web server derived from Tomcat that
supports servlets version 2.2 and JSP 1.1. Gefion also has a free
plug-in called WAICoolRunner that adds servlet 2.2 and JSP 1.1
support to Netscape FastTrack and Enterprise servers. For details,
see http://www.gefionsoftware.com/.

* Sun’s Java Web Server.
This server is written entirely in Java and was one of the first
Web servers to fully support the servlet 2.1 and JSP 1.0
specifications. Although it is no longer under active
development because Sun is concentrating on the
Netscape/I-Planet server, it is still a popular choice for learning

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

14 Chapter | Overview of Servlets and JavaServer Pages

servlets and JSP. For a free trial version, see
http://www.sun.com/software/jwebserver/try/. Fora
free non-expiring version for teaching purposes at academic
institutions, see http://freeware.thesphere.com/.

Bookmark or Install the Servlet and JSP API
Documentation

Just as no serious programmer should develop general-purpose Java applica-
tions without access to the JDK 1.1 or 1.2 API documentation, no serious pro-
grammer should develop servlets or JSP pages without access to the API for

classes in the javax.servlet packages. Here is a summary of where to find
the API:

e http://java.sun.com/products/jsp/download.html
This site lets you download either the 2.1/1.0 APT or the 2.2/1.1
API to your local system. You may have to download the entire
reference implementation and then extract the documentation.

® http://java.sun.com/products/servlet/2.2/javadoc/
This site lets you browse the servlet 2.2 API on-line.

® http://www.java.sun.com/j2ee/j2sdkee/techdocs/api/
This address lets you browse the complete API for the Java 2
Platform, Enterprise Edition (J2EE), which includes the servlet
2.2 and JSP 1.1 packages.

If Sun or Apache place any new additions on-line (e.g., a place to browse
the 2.1/1.0 API), they will be listed under Chapter 1 in the book source

archive at http://www.coreservlets.com/.

Identify the Classes to the Java Compiler

Once you've obtained the necessary software, you need to tell the Java com-
piler (javac) where to find the servlet and JSP class files when it compiles
your servlets. Check the documentation of your particular package for defini-
tive details, but the necessary class files are usually in the 1ib subdirectory of
the server’s installation directory, with the servlet classes in servlet.jar and
the JSP classes in jsp.jar, jspengine.jar, or jasper.jar. There are a
couple of different ways to tell javac about these classes, the easiest of which
is to put the JAR files in your cLasspaTh. If you've never dealt with the
CLASSPATH before, it is the variable that specifies where javac looks for

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

1.5 Installation and Setup

classes when compiling. If the variable is unspecified, javac looks in the cur-
rent directory and the standard system libraries. If you set cLASSPATH your-
self, be sure to include “.”, signifying the current directory.

Following is a brief summary of how to set the environment variable on a
couple of different platforms. Assume dir is the directory in which the serv-
let and JSP classes are found.

Unix (C Shell)

setenv CLASSPATH .:dir/servlet.jar:dir/jspengine.jar

Add :scrLasspatH to the end of the setenv line if your cLASSPATH is
already set and you want to add more to it, not replace it. Note that on Unix
systems you use forward slashes to separate directories within an entry and
colons to separate entries, whereas you use backward slashes and semicolons
on Windows. To make this setting permanent, you would typically put this
statement in your .cshrec file.

Windows

set CLASSPATH=.;dir\servlet.jar;dir\jspengine.jar

Add ;scrasspaTH% to the end of the above line if your cLASSPATH is
already set and you want to add more to it, not replace it. Note that on Win-
dows you use backward slashes to separate directories within an entry and
semicolons to separate entries, while you use forward slashes and colons on
Unix. To make this setting permanent on Windows 95/98, you'd typically put
this statement in your autoexec.bat file. On Windows NT or 2000, you
would go to the Start menu, select Settings, select Control Panel, select Sys-
tem, select Environment, then enter the variable and value.

Package the Classes

As you'll see in the next chapter, you probably want to put your servlets into
packages to avoid name conflicts with servlets other people write for the
same Web or application server. In that case, you may find it convenient to
add the top-level directory of your package hierarchy to the cLASSPATH as
well. See Section 2.4 (Packaging Servlets) for details.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

16 Chapter | Overview of Servlets and JavaServer Pages

Configure the Server

Before you start the server, you may want to designate parameters like the
port on which it listens, the directories in which it looks for HTML files, and
so forth. This process is totally server-specific, and for commercial-quality
Web servers should be clearly documented in the installation notes. How-
ever, with the small stand-alone servers that Apache and Sun provide as ref-
erence implementations of the servlet 2.2/JSP 1.1 specs (Apache Tomcat) or
2.1/1.0 specs (Sun J[SWDK), there are a number of important but poorly doc-
umented settings that I'll describe here.

Port Number

Tomcat and the JSWDK both use a nonstandard port by default in order to
avoid conflicts with existing Web servers. If you use one of these products for
initial development and testing, and don’t have another Web server running,
you will probably find it convenient to switch to 80, the standard HTTP port
number. With Tomcat 3.0, do so by editing install_dir/server.xml,
changing 8080 to 80 in the line

<ContextManager port="8080" hostName="" inet="">

With the JSWDK 1.0.1, edit the install dir/webserver.xml file and
replace 8080 with 80 in the line

port NMTOKEN "8080"

The Java Web Server 2.0 also uses a non-standard port. To change it, use
the remote administration interface, available by visiting http://some-
hostname:9090/, where somehostname is replaced by either the real name
of the host running the server or by localhost if the server is running on the
local machine.

JAVA_HOME Setting

If you use JDK 1.2 or 1.3 with Tomcat or the JSWDK, you must set the
JAVA_HOME environment variable to refer to the JDK installation directory.
This setting is unnecessary with JDK 1.1. The easiest way to specify this vari-
able is to insert a line that sets it into the top of the startup (Tomcat) or
startserver (JSWDK) script. For example, here’s the top of the modified
version of startup.bat and startserver.bat that I use:

Note: if you use Tomcat 3.2 or 4.x, see updated information at

http://archive.coreservlets.com/Using-Tomcat.html

rem Marty Hall: added JAVA_HOME setting below
set JAVA_HOME=C:\jdk1.2.2

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

1.5 Installation and Setup

DOS Memory Setting

If you start Tomcat or the [SWDK server from Windows 95 or 98, you proba-
bly have to modify the amount of memory DOS allocates for environment
variables. To do this, start a fresh DOS window, click on the MS-DOS icon in
the top-left corer of the window, and select Properties. From there,
choose the Memory tab, go to the Initial Environment setting, and change
the value from auto to 2816. This configuration only needs to be done once.

Tomcat 3.0 CR/LF Settings

The first releases of Tomcat suffered from a serious problem: the text files
were saved in Unix format (where the end of line is marked with a linefeed),
not Windows format (where the end of the line is marked with a carriage
return/linefeed pair). As a result, the startup and shutdown scripts failed on
Windows. You can determine if your version suffers from this problem by
opening install_dir/startup.bat in Notepad; if it appears normal you
have a patched version. If the file appears to be one long jumbled line, then
quit Notepad and open and immediately save the following files using Word-
pad (not Notepad):

e install_ dir/startup.bat

e install_dir/tomcat.bat

e install dir/shutdown.bat

e install dir/tomcatEnv.bat

e install_dir/webpages/WEB-INF/web.xml

e install_dir/examples/WEB-INF/web.xml

Start the Server

To start one of the “real” Web servers, check its documentation. In many
cases, starting it involves executing a command called httpd either from the
command line or by instructing the operating system to do so automatically
when the system is first booted.

With Tomcat 3.0, you start the server by executing a script called startup
in the main installation directory. With the [SWDK 1.0.1, you execute a simi-
lar script called startserver.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

18 Chapter | Overview of Servlets and JavaServer Pages

Compile and Install Your Servlets

Once you've properly set your cLASSPATH, as described earlier in this sec-
tion, just use “javac ServletName.java” to compile a servlet. The result-
ant class file needs to go in a location that the server knows to check during
execution. As you might expect, this location varies from server to server. Fol-
lowing is a quick summary of the locations used by the latest releases of Tom-
cat, the JSWDK, and the Java Web Server. In all three cases, assume
install_dir is the server’s main installation directory.

Tomcat

® install_dir/webpages/WEB-INF/classes
Standard location for servlet classes.

® install dir/classes
Alternate location for servlet classes.

® install dir/lib
Location for JAR files containing classes.

Tomcat 3.1

Just before this book went to press, Apache released a beta version of
Tomcat 3.1. If there is a final version of this version available when you go to
download Tomcat, you should use it. Here is the new directory organization
that Tomcat 3.1 uses:

® install dir/webapps/ROOT/WEB-INF/classes
Standard location for servlet classes.

® install dir/classes
Alternate location for servlet classes.

® install dir/lib
Location for JAR files containing classes.

The JSWDK

® install dir/webpages/WEB-INF/servlets
Standard location for servlet classes.

® install dir/classes
Alternate location for servlet classes.

® install dir/lib
Location for JAR files containing classes.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

1.5 Installation and Setup

Java Web Server 2.0

install dir/servlets

Location for frequently changing servlet classes. The server
automatically detects when servlets in this directory change,
and reloads them if necessary. This is in contrast to Tomcat and
the JSWDK, where you have to restart the server when a servlet
that is already in server memory changes. Most commercial
servers have an option similar to this auto-reloading feature.
install dir/classes

Location for infrequently changing servlet classes.

install dir/1lib

Location for JAR files containing classes.

I realize that this sounds a bit overwhelming. Don’t worry, I'll walk you
through the process with a couple of different servers when I introduce some
real servlet code in the next chapter.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

19

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

FIRST SERVLETS

J Topics in This Chapter

* The basic structure of servlets

* A simple servlet that generates plain text

* The process of compiling, installing, and invoking servlets
* A servlet that generates HTML

* Some utilities to help build HTML

* The life cycle of servlets

* An example of reading initialization parameters

* An example that uses initialization and page modification
dates

* Servlet debugging strategies

* A tool for interactively talking to servlets

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

and how to set up your development environment. Now you want to

really write a few servlets. Good. This chapter shows you how, outlin-
ing the structure that almost all servlets follow, walking you through the steps
required to compile and execute a servlet, and giving details on how servlets
are initialized and when the various methods are called. It also introduces a
few general tools that you will find helpful in your servlet development.

T he previous chapter showed you how to install the software you need

2.1 Basic Servlet Structure

Listing 2.1 outlines a basic servlet that handles GET requests. GET requests, for
those unfamiliar with HTTP, are the usual type of browser requests for Web
pages. A browser generates this request when the user types a URL on the
address line, follows a link from a Web page, or submits an HTML form that
does not specify a METHOD. Servlets can also very easily handle POST requests,
which are generated when someone submits an HTML form that specifies
METHOD="POST". For details on using HTML forms, see Chapter 16.

To be a servlet, a class should extend HttpServlet and override doGet or
doPost, depending on whether the data is being sent by GET or by post. If
you want the same servlet to handle both GET and PosT and to take the same
action for each, you can simply have doGet call doPost, or vice versa.

21

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

22 Chapter 2 First Servlets

Listing 2.1 ServletTemplate.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Use "request" to read incoming HTTP headers
// (e.g. cookies) and HTML form data (e.g. data the user
// entered and submitted) .

// Use "response" to specify the HTTP response status
// code and headers (e.g. the content type, cookies).

PrintWriter out = response.getWriter();
// Use "out" to send content to browser

Both of these methods take two arguments: an HttpServletRequest and
an HttpServletResponse. The HttpServletRequest has methods by
which you can find out about incoming information such as form data, HTTP
request headers, and the client’s hostname. The HttpservletResponse lets
you specify outgoing information such as HTTP status codes (200, 404, etc.),
response headers (Content-Type, Set-Cookie, etc.), and, most importantly,
lets you obtain a Printwriter used to send the document content back to the
client. For simple servlets, most of the effort is spent in println statements
that generate the desired page. Form data, HTTP request headers, HTTP
responses, and cookies will all be discussed in detail in the following chapters.

Since doGet and doPost throw two exceptions, you are required to
include them in the declaration. Finally, you have to import classes in
java.io (for PrintwWriter, etc.), javax.servlet (for HttpServilet, etc.),
and javax.servlet.http (for HttpServletRequest and HttpServlet-
Response).

Strictly speaking, Ht tpservlet is not the only starting point for servlets, since
servlets could, in principle, extend mail, FTP, or other types of servers. Servlets
for these environments would extend a custom class derived from Generic-
servlet, the parent class of Httpservlet. In practice, however, servlets are
used almost exclusively for servers that communicate via HTTP (i.e., Web and
application servers), and the discussion in this book will be limited to this usage.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.2 A Simple Servlet Generating Plain Text

2.2 A Simple Servlet Generating
Plain Text

Listing 2.2 shows a simple servlet that just generates plain text, with the out-
put shown in Figure 2-1. Section 2.3 (A Servlet That Generates HTML)
shows the more usual case where HTML is generated. However, before mov-
ing on, it is worth spending some time going through the process of installing,
compiling, and running this simple servlet. You'll find this a bit tedious the
first time you try it. Be patient; since the process is the same each time, you'll
quickly get used to it, especially if you partially automate the process by
means of a script file such as that presented in the following section.

Listing 2.2 HelloWorld.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();
out.println("Hello World");

}

Metzcape
File Edt %iew Go Communicator Help

Iy -ty 1-%

ﬂivﬁnukmarks ¥,/ Ll:u:atinn:Ihttp:a’a"ln:u:alhnst.-’sewleta’Helln:n"v'-.-"nrll:l j

Hello TWorld

& ==

Figure 2-1 Result of Listing 2.2 (HellowWorld. java).

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

23

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

24 Chapter 2 First Servlets

Compiling and Installing the Servlet

The first thing you need to do is to make sure that your server is configured
properly and that your cLasspaTH refers to the JAR files containing the stan-
dard servlet classes. Please refer to Section 1.5 (Installation and Setup) for an
explanation of this process.

The next step is to decide where to put the servlet classes. This location
varies from server to server, so refer to your Web server documentation for
definitive directions. However, there are some moderately common conven-
tions. Most servers have three distinct locations for servlet classes, as detailed
below.

1. A directory for frequently changing servlet classes.
Servlets in this directory are automatically reloaded when
their class file changes, so you should use this directory during
development. For example, this is normally
install_dir/servlets with Sun’s Java Web Server and
IBM’s WebSphere and install dir/myserver/servlet-
classes for BEA WebLogic, although most servers let the
server administrator specify a different location. Neither
Tomcat nor the JSWDK support automatic servlet reloading.
Nevertheless, they still have a similar directory in which to
place servlets; you just have to stop and restart the mini-server
each time you change an existing servlet. With Tomcat 3.0,
place servletsin install_ dir/webpages/WEB-INF/classes.
With the JSWDK 1.0.1, use
install_dir/webpages/WEB-INF/servlets.

Note: if you use Tomcat 3.2 or 4.x, see updated information at

http://archive.coreservlets.com/Using-Tomcat.html

2. A directory for infrequently changing servlet classes.
Servlets placed in this location are slightly more efficient since
the server doesn’t have to keep checking their modification
dates. However, changes to class files in this directory require
you to restart the server. This option (or Option 3 below) is the
one to use for “production” servlets deployed to a high-volume
site. This directory is usually something like
install_dir/classes, which is the default name with Tom-
cat, the JSWDK, and the Java Web Server. Since Tomcat and
the JSWDK do not support automatic servlet reloading, this
directory works the same as the one described in Option 1, so
most developers stick with that previous option.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.2 A Simple Servlet Generating Plain Text 25

3. A directory for infrequently changing servlets in JAR files.
With the second option above, the class files are placed directly
in the classes directory or in subdirectories corresponding to
their package name. Here, the class files are packaged in a JAR
file, and that file is then placed in the designated directory. With
Tomcat, the JSWDK, the Java Web Server, and most other serv-
ers, this directory is install_dir/lib. You must restart the
server whenever you change files in this directory.

Once you've configured your server, set your cLASSPATH, and placed the
servlet in the proper directory, Simply do “javac HelloWorld.java” to
compile the servlet. In production environments, however, servlets are fre-
quently placed into packages to avoid name conflicts with servlets written by
other developers. Using packages involves a couple of extra steps that are
covered in Section 2.4 (Packaging Servlets). Also, it is common to use HTML
forms as front ends to servlets (see Chapter 16). To use them, you’'ll need to
know where to place regular HTML files to make them accessible to the
server. This location varies from server to server, but with the [SWDK and
Tomcat, you place an HTML file in
install_dir/webpages/path/file.html and then access it via
http://localhost/path/file.html (replace localhost with the real
hostname if running remotely). A JSP page can be installed anywhere that a
normal HTML page can be.

Invoking the Servlet

With different servers, servlet classes can be placed in a variety of different
locations, and there is little standardization among servers. To invoke servlets,
however, there is a common convention: use a URL of the form
http://host/servlet/ServletName. Note that the URL refers to serv-
let, singular, even if the real directory containing the servlet code is called
servlets, plural, or has an unrelated name like classes or 1ib.

Figure 2-1, shown earlier in this section, gives an example with the Web
server running directly on my PC (“localhost” means “the current machine”).

Most servers also let you register names for servlets, so that a servlet can
be invoked via http://host/any-path/any-file. The process for doing
this is server-specific; check your server’s documentation for details.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

26 Chapter 2 First Servlets

2.3 A Servlet That Generates HTML

Most servlets generate HTML, not plain text as in the previous example. To
build HTML, you need two additional steps:

1. Tell the browser that you're sending back HTML, and
2. Modify the print1n statements to build a legal Web page.

You accomplish the first step by setting the HTTP content-Type
response header. In general, headers are set by the setHeader method of
HttpServletResponse, but setting the content type is such a common task
that there is also a special setContentType method just for this purpose.
The way to designate HTML is with a type of text/html, so the code would
look like this:

response.setContentType ("text/html") ;

Although HTML is the most common type of document servlets create, it is
not unusual to create other document types. For example, Section 7.5 (Using
Servlets to Generate GIF Images) shows how servlets can build and return cus-
tom images, specifying a content type of image/gif. As a second example,
Section 11.2 (The contentType Attribute) shows how to generate and return
Excel spreadsheets, using a content type of application/vnd.ms-excel.

Don'’t be concerned if you are not yet familiar with HTTP response head-
ers; they are discussed in detail in Chapter 7. Note that you need to set
response headers before actually returning any of the content via the print-
writer. That’s because an HTTP response consists of the status line, one or
more headers, a blank line, and the actual document, in that order. The head-
ers can appear in any order, and servlets buffer the headers and send them all
at once, so it is legal to set the status code (part of the first line returned) even
after setting headers. But servlets do not necessarily buffer the document
itself, since users might want to see partial results for long pages. In version
2.1 of the servlet specification, the Printwriter output is not buffered at all,
so the first time you use the Printwriter, it is too late to go back and set
headers. In version 2.2, servlet engines are permitted to partially buffer the
output, but the size of the buffer is left unspecified. You can use the get-
BufferSize method of HttpServletResponse to determine the size, or use
setBufferSize to specify it. In version 2.2 with buffering enabled, you can
set headers until the buffer fills up and is actually sent to the client. If you
aren’t sure if the buffer has been sent, you can use the iscommitted method
to check.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.4 Packaging Serviets

Core Approach

Always set the content type before transmitting the actual document.

The second step in writing a servlet that builds an HTML document is to
have your println statements output HTML, not plain text. The structure of
an HTML document is discussed more in Section 2.5 (Simple HTML-Build-
ing Utilities), but it should be familiar to most readers. Listing 2.3 gives an
example servlet, with the result shown in Figure 2-2.

Listing 2.3 HelloWwWw.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWWww extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html");
PrintWriter out = response.getWriter();
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.println(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello WWW</TITLE></HEAD>\n" +
"<BODY>\n" +
"<H1>Hello WWW</H1>\n" +
"</BODY></HTML>") ;

2.4 Packaging Servlets

In a production environment, multiple programmers may be developing
servlets for the same server. So, placing all the servlets in the top-level servlet
directory results in a massive hard-to-manage directory and risks name con-
flicts when two developers accidentally choose the same servlet name. Pack-
ages are the natural solution to this problem. Using packages results in
changes in the way the servlets are created, the way that they are compiled,

o

by

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

28 Chapter 2 First Servlets

’; Hello W% - Microsoft Internet Explorer -0 x|
File Edit ‘Wiew Favortezr Toolz Help n

&5 QRN AEIB-SH-

Address [€] http: Aacalhast/servietHelldwwid »| @ Go || Links

B
Hello WWW

&1 Done 25}, Local intranet

.|

Figure 2-2 Result of Listing 2.3 (Hellowww. java).

and the way they’re invoked. Let’s take these areas one at a time in the follow-
ing three subsections. The first two changes are exactly the same as with any
other Java class that uses packages; there is nothing specific to servlets.

Creating Servlets in Packages

Two steps are needed to place servlets in packages:

1. Move the files to a subdirectory that matches the
intended package name.
For example, I'll use the coreservilets package for most of the
rest of the servlets in this book. So, the class files need to go in a
subdirectory called coreservlets.

2. Insert a package statement in the class file.
For example, to place a class file in a package called somepack-
age, the first line of the file should read

package somePackage;

For example, Listing 2.4 presents a variation of the Hellowww
servlet that is in the coreservlets package. The class file goes in
install dir/webpages/WEB-INF/classes/coreservliets for Tomcat
3.0, in install_dir/webpages/WEB-INF/servlets/coreservlets for
the JSWDK 1.0.1, and in install _dir/servlets/coreservlets for the
Java Web Server 2.0.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.4 Packaging Serviets

Listing 2.4 HelloWww2.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWWww2 extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.println(docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello WWW</TITLE></HEAD>\n" +
"<BODY>\n" +
"<H1>Hello WWW</H1>\n" +
"< /BODY></HTML>") ;

Compiling Servlets in Packages

There are two main ways to compile classes that are in packages. The first
option is to place your package subdirectory right in the directory where the
Web server expects servlets to go. Then, you would set the cLASSPATH vari-
able to point to the directory above the one actually containing your servlets,
that is, to the main servlet directory used by the Web server. You can then
compile normally from within the package-specific subdirectory. For exam-
ple, if your base servlet directory is c:\JavawebServer2.0\servlets and
your package name (and thus subdirectory name) is coreservlets, and you
are running Windows, you would do:

DOS> set CLASSPATH=C:\JavaWebServer2.0\servlets;%CLASSPATH%
DOS> cd C:\JavaWebServer2.0\servlets\coreservlets
DOS> javac HelloWorld.java

The first part, setting the CLASSPATH, you probably want to do permanently,
rather than each time you start a new DOS window. On Windows 95/98 you
typically put the set CLASSPATH=. .. statement in your autoexec.bat file
somewhere after the line that sets the CLASSPATH to point to servlet.jar

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

30 Chapter 2 First Servlets

and the JSP JAR file. On Windows NT or Windows 2000, you go to the Start
menu, select Settings, select Control Panel, select System, select Environment,
then enter the variable and value. On Unix (C shell), you set the cLasspaTH
variable by

setenv CLASSPATH /install_dir/servlets:S$SCLASSPATH

Put this in your .cshrc file to make it permanent.

If your package were of the form namel.name2.name3 rather than simply
namel as here, the cLasspaTH should still point to the top-level servlet direc-
tory, that is, the directory containing name1.

A second way to compile classes that are in packages is to keep the source
code in a location distinct from the class files. First, you put your package direc-
tories in any location you find convenient. The CLASSPATH refers to this loca-
tion. Second, you use the -d option of javac to install the class files in the
directory the Web server expects. An example follows. Again, you will probably
want to set the CLASSPATH permanently rather than set it each time.

DOS> cd C:\MyServlets\coreservlets

DOS> set CLASSPATH=C:\MyServlets;%CLASSPATH%

DOS> javac -d C:\tomcat\webpages\WEB-INF\classes HelloWWW2.java

Keeping the source code separate from the class files is the approach I use
for my own development. To complicate my life further, I have a number of
different cLassPATH settings that I use for different projects, and typically
use JDK 1.2, not JDK 1.1 as the Java Web Server expects. So, on Windows I
find it convenient to automate the servlet compilation process with a batch
file servletc.bat, as shown in Listing 2.5 (line breaks in the set crLass-
PATH line inserted only for readability). T put this batch file in c:\win-
dows\Command or somewhere else in the Windows paTh. After this, to
compile the Hellowww2 servlet and install it with the Java Web Server, I
Ineuﬂy go to C:\MyServlets\coreservlets and do “servletc
Hellowww2.java”. The source code archive at http://www.coreserv-
lets.com/ contains variations of servletc.bat for the [SWDK and Tom-
cat. You can do something similar on Unix with a shell script.

Invoking Servlets in Packages

To invoke a servlet that is in a package, use the URL
http://host/servlet/packageName.ServletName
instead of

http://host/servlet/ServletName

Thus, if the Web server is running on the local system,

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.5 Simple HTML-Building Utilities

Listing 2.5 servletc.bat

@echo off

rem This is the version for the Java Web Server.
rem See http://www.coreservlets.com/ for other versions.

set CLASSPATH=C:\JavaWebServer2.0\lib\servlet.jar;
C:\JavaWebServer2.0\1lib\jsp.jar;
C:\MyServlets

C:\JDK1.1l.8\bin\javac -d C:\JavaWebServer2.0\servlets %1%

http://localhost/servlet/coreservlets.HelloWnWww?2

would invoke the Hellowww2 servlet, as illustrated in Figure 2-3.

Hello wWwa' - Hetzcape
File Edit “iew Go Communicator Help

4 AR, S0 8 o

meiTEh:qumarlcas X LDCEtiDnZIhttp:.-".-"|l:Il:a|hl:ISt.-"SEW|Et.-"CDrESEW|EtS.HE||EI"~.-'-.-'"-.-'-.-'"-.-'-.-"2 j

Hello WWW

= (== | |Dacument: Done

Figure 2-3 Invoking a servlet in a package via
http://hostname/servlet/packagename. servletName.

2.5 Simple HTML-Building Utilities

An HTML document is structured as follows:

<!DOCTYPE ...>

<HTML>

<HEAD><TITLE>...</TITLE>...</HEAD>

<BODY ...>

</BODY>

</HTML>

You might be tempted to omit part of this structure, especially the poc-
TYPE line, noting that virtually all major browsers ignore it, even though the

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

32 Chapter 2 First Servlets

HTML 3.2 and 4.0 specifications require it. I strongly discourage this prac-
tice. The advantage of the pocTYPE line is that it tells HTML validators
which version of HTML you are using, so they know which specification to
check your document against. These validators are very valuable debugging
services, helping you catch HTML syntax errors that your browser guesses
well on, but that other browsers will have trouble displaying. The two most
popular on-line validators are the ones from the World Wide Web Consor-
tium (http://validator.w3.org/) and from the Web Design Group
(http://www.htmlhelp.com/tools/validator/). They let you submit a
URL, then they retrieve the page, check the syntax against the formal HTML
specification, and report any errors to you. Since a servlet that generates
HTML looks like a regular Web page to visitors, it can be validated in the
normal manner unless it requires POST data to return its result. Remember
that GET data is attached to the URL, so you can submit a URL that includes
GET data to the validators.

Core Approach

K ” Use an HTML validator to check the syntax of pages that your servlets
generate.

Admittedly it is a bit cambersome to generate HTML with print1n state-
ments, especially long tedious lines like the bocTypPE declaration. Some people
address this problem by writing detailed HTML generation utilities in Java,
then use them throughout their servlets. I'm skeptical of the utility of an exten-
sive library for this. First and foremost, the inconvenience of generating
HTML programmatically is one of the main problems addressed by JavaServer
Pages (discussed in the second part of this book). JSP is a better solution, so
don’t waste effort building a complex HTML generation package. Second,
HTML generation routines can be cumbersome and tend not to support the
full range of HTML attributes (cLass and 1D for style sheets, JavaScript event
handlers, table cell background colors, and so forth). Despite the questionable
value of a full-blown HTML generation library, if you find you're repeating the
same constructs many times, you might as well create a simple utility file that
simplifies those constructs. For standard servlets, there are two parts of the
Web page (DocTYPE and HEAD) that are unlikely to change and thus could ben-
efit from being incorporated into a simple utility file. These are shown in List-

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.5 Simple HTML-Building Utilities

ing 2.6, with Listing 2.7 showing a variation of Hellowww2 that makes use of
this utility. I'll add a few more utilities throughout the book.

Listing 2.6 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
public static final String DOCTYPE =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">";

public static String headwWwithTitle(String title) {
return(DOCTYPE + "\n" +
"<HTML>\n" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

Listing 2.7 HelloWww3.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWWww3 extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
out.println(ServletUtilities.headWithTitle("Hello WWW") +
"<BODY>\n" +
"<H1>Hello WwWW</H1>\n" +
"</BODY></HTML>") ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

33

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

34 Chapter 2 First Servlets

43 Hello W' - Microsoft Intemet Explorer

File Edit “iew Fawvoites Toolz Help n

& - x JERAL R I X ENE JER

Address |ﬂ;—| hitp: #flocalhostserviet/coreserylets. Hellwianad 3 ﬂ " Go || Links

E
Hello WWW

& Daone 25 Local intranet

-]

Figure 2-4 Result of the He11oWwWw3 servlet.

2.6 The Servlet Life Cycle

Earlier in this book, I vaguely referred to the fact that only a single instance
of a servlet gets created, with each user request resulting in a new thread that
is handed off to doGet or dopost as appropriate. I'll now be more specific
about how servlets are created and destroyed, and how and when the various
methods are invoked. I'll give a quick summary here, then elaborate in the
following subsections.

When the servlet is first created, its init method is invoked, so that is
where you put one-time setup code. After this, each user request results in a
thread that calls the service method of the previously created instance.
Multiple concurrent requests normally result in multiple threads calling ser-
vice simultaneously, although your servlet can implement a special interface
that stipulates that only a single thread is permitted to run at any one time.
The service method then calls doGet, doPost, or another doxxx method,
depending on the type of HTTP request it received. Finally, when the server
decides to unload a servlet, it first calls the servlet’s destroy method.

The init Method

The init method is called when the servlet is first created and is not called
again for each user request. So, it is used for one-time initializations, just as
with the init method of applets. The servlet can be created when a user first
invokes a URL corresponding to the servlet or when the server is first started,

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.6 The Servlet Life Cycle

depending on how you have registered the servlet with the Web server. It will
be created for the first user request if it is not explicitly registered but is
instead just placed in one of the standard server directories. See the discus-
sion of Section 2.2 (A Simple Servlet Generating Plain Text) for details on
these directories.

There are two versions of init: one that takes no arguments and one that
takes a servletConfig object as an argument. The first version is used when
the servlet does not need to read any settings that vary from server to server.
The method definition looks like this:

public void init() throws ServletException {

// Initialization code...

}

For examples of this type of initialization, see Section 2.8 (An Example
Using Servlet Initialization and Page Modification Dates) later in this chap-
ter. Section 18.8 (Connection Pooling: A Case Study) in the chapter on JDBC
gives a more advanced application where init is used to preallocate multiple
database connections.

The second version of init is used when the servlet needs to read
server-specific settings before it can complete the initialization. For example,
the servlet might need to know about database settings, password files,
server-specific performance parameters, hit count files, or serialized cookie
data from previous requests. The second version of init looks like this:

public void init(ServletConfig config)

throws ServletException {
super.init (configqg) ;
// Initialization code. ..

}

Notice two things about this code. First, the init method takes a serviet-
Config as an argument. ServletConfig has a getInitParameter method
with which you can look up initialization parameters associated with the servlet.
Just as with the getParameter method used in the init method of applets,
both the input (the parameter name) and the output (the parameter value) are
strings. For a simple example of the use of initialization parameters, see Section
2.7 (An Example Using Initialization Parameters); for a more complex exam-
ple, see Section 4.5 (Restricting Access to Web Pages) where the location of a
password file is given through the use of getInitpParameter. Note that
although you look up parameters in a portable manner, you set them in a
server-specific way. For example, with Tomcat, you embed servlet properties in
a file called web.xm1, with the JSWDK you use servlets.properties, with
the WebLogic application server you use weblogic.properties, and with
the Java Web Server you set the properties interactively via the administration

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

36 Chapter 2 First Servlets

console. For examples of these settings, see Section 2.7 (An Example Using
Initialization Parameters).

The second thing to note about the second version of init is that the first
line of the method body is a call to super.init. This call is critical! The
ServletConfig object is used elsewhere in the servlet, and the init method
of the superclass registers it where the servlet can find it later. So, you can
cause yourself huge headaches later if you omit the super.init call.

—

@ Core Approach
k\ "’ If you write an init method that takes a ServletConfig as an

=

argument, always call super.init on the first line.

The service Method

Each time the server receives a request for a servlet, the server spawns a new
thread and calls service. The service method checks the HTTP request
type (GET, POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDe-
lete, etc., as appropriate. Now, if you have a servlet that needs to handle
both PosT and GET requests identically, you may be tempted to override ser-
vice directly as below, rather than implementing both doGet and doPost.

public void service (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
// Servlet Code
}

This is not a good idea. Instead, just have dopost call doget (or vice
versa), as below.

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
// Servlet Code

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
doGet (request, response) ;

}

Although this approach takes a couple of extra lines of code, it has five
advantages over directly overriding service:

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.6 The Servlet Life Cycle 37

1. You can add support for other services later by adding doput,
doTrace, etc., perhaps in a subclass. Overriding service

directly precludes this possibility.

2. You can add support for modification dates by adding a get-
LastModified method. If you use doGet, the standard ser-
vice method uses the getLastModified method to set
Last-Modified headers and to respond properly to conditional
GET requests (those containing an If-Modified-Since
header). See Section 2.8 (An Example Using Servlet Initializa-
tion and Page Modification Dates) for an example.

3. You get automatic support for HEAD requests. The system just
returns whatever headers and status codes doGet sets, but omits
the page body. HEAD is a useful request method for custom
HTTP clients. For example, link validators that check a page for
dead hypertext links often use HEAD instead of GET in order to
reduce server load.

4. You get automatic support for opTIONS requests. If a doGet
method exists, the standard service method answers 0PTIONS
requests by returning an Allow header indicating that GET,
HEAD, OPTIONS, and TRACE are supported.

5. You get automatic support for TRACE requests. TRACE isa

request method used for client debugging: it just returns the
HTTP request headers back to the client.

Core Tip A
If your servlet needs to handle both GET and pOST identically, have your Q
doPost method call doGet, or vice versa. Don’t override service K ’
directly.

The doGet, doPost, and doXxx Methods

These methods contain the real meat of your servlet. Ninety-nine percent of
the time, you only care about GET and/or POST requests, so you override
doGet and/or doPost. However, if you want to, you can also override dobe-
lete for DELETE requests, doPut for PUT, doOptions for oPTIONS, and doT-
race for TRACE. Recall, however, that you have automatic support for
opTIONS and TRACE, as described in the previous section on the service
method. Note that there is no doHead method. That’s because the system

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

38 Chapter 2 First Servlets

automatically uses the status line and header settings of doGet to answer
HEAD requests.

The SingleThreadModel Interface

Normally, the system makes a single instance of your servlet and then creates
a new thread for each user request, with multiple simultaneous threads run-
ning if a new request comes in while a previous request is still executing. This
means that your doGet and dopost methods must be careful to synchronize
access to fields and other shared data, since multiple threads may be trying to
access the data simultaneously. See Section 7.3 (Persistent Servlet State and
Auto-Reloading Pages) for more discussion of this. If you want to prevent this
multithreaded access, you can have your servlet implement the singleTh-
readModel interface, as below.

public class YourServlet extends HttpServlet
implements SingleThreadModel {

}

If you implement this interface, the system guarantees that there is never
more than one request thread accessing a single instance of your servlet. It
does so either by queuing up all the requests and passing them one at a time
to a single servlet instance, or by creating a pool of multiple instances, each of
which handles one request at a time. This means that you don’t have to worry
about simultaneous access to regular fields (instance variables) of the servlet.
You do, however, still have to synchronize access to class variables (static
fields) or shared data stored outside the servlet.

Synchronous access to your servlets can significantly hurt performance
(latency) if your servlet is accessed extremely frequently. So think twice
before using the singleThreadModel approach.

The destroy Method

The server may decide to remove a previously loaded servlet instance, per-
haps because it is explicitly asked to do so by the server administrator, or per-
haps because the servlet is idle for a long time. Before it does, however, it
calls the servlet’s destroy method. This method gives your servlet a chance
to close database connections, halt background threads, write cookie lists or
hit counts to disk, and perform other such cleanup activities. Be aware, how-
ever, that it is possible for the Web server to crash. After all, not all Web serv-
ers are written in reliable programming languages like Java; some are written

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.7 An Example Using Initialization Parameters

in languages (such as ones named after letters of the alphabet) where it is
easy to read or write off the ends of arrays, make illegal typecasts, or have
dangling pointers due to memory reclamation errors. Besides, even Java
technology won't prevent someone from tripping over the power cable run-
ning to the computer. So, don’t count on destroy as the only mechanism for
saving state to disk. Activities like hit counting or accumulating lists of cookie
values that indicate special access should also proactively write their state to
disk periodically.

2.7 An Example Using
Initialization Parameters

Listing 2.8 shows a servlet that reads the message and repeats initialization
parameters when initialized. Figure 2-5 shows the result when message is
Shibboleth, repeats is 5, and the servlet is registered under the name
ShowMsg. Remember that, although servlets read init parameters in a stan-
dard way, developers set init parameters in a server-specific manner. Please
refer to your server documentation for authoritative details. Listing 2.9 shows
the configuration file used with Tomcat to obtain the result of Figure 2-5,
Listing 2.10 shows the configuration file used with the [SWDK, and Figures
2-6 and 2-7 show how to set the parameters interactively with the Java Web
Server. The result is identical to Figure 2-5 in all three cases.

Because the process of setting init parameters is server-specific, it is a good
idea to minimize the number of separate initialization entries that have to be
specified. This will limit the work you need to do when moving servlets that
use init parameters from one server to another. If you need to read a large
amount of data, I recommend that the init parameter itself merely give the
location of a parameter file, and that the real data go in that file. An example
of this approach is given in Section 4.5 (Restricting Access to Web Pages),
where the initialization parameter specifies nothing more than the location of
the password file.

Core Approach

For complex initializations, store the data in a separate file and use the init
parameters to give the location of that file.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

»

39

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

40 Chapter 2 First Servlets

Listing 2.8 ShowMessage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Example using servlet initialization. Here, the message
* to print and the number of times the message should be

* repeated is taken from the init parameters.

*/

public class ShowMessage extends HttpServlet {
private String message;
private String defaultMessage = "No message.";
private int repeats = 1;

public void init(ServletConfig config)

throws ServletException {

// Always call super.init

super.init (config);

message = config.getInitParameter ("message");

if (message == null) {
message = defaultMessage;

}

try {
String repeatString = config.getInitParameter ("repeats");
repeats = Integer.parselnt(repeatString);

} catch(NumberFormatException nfe) {
// NumberFormatException handles case where repeatString
// is null *and* case where it is something in an
// illegal format. Either way, do nothing in catch,
// as the previous value (1) for the repeats field will
// remain valid because the Integer.parseInt throws
// the exception *before* the value gets assigned
// to repeats.

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "The ShowMessage Servlet";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1l ALIGN=CENTER>" + title + "</H1>");

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.7 An Example Using Initialization Parameters

Listing 2.8 ShowMessage.java (continued)

for (int i1=0; i<repeats; i++) {
out.println(message + "
");
}
out.println("</BODY></HTML>") ;
}

The ShowMeszzage Servlet - Hetzcape i m| ﬂ

File Edit “iew Go Communicator Help

(4 A2 03808

,qiTBDkaarks ,f Lu:u:atiu:un:|http:.-".-"Iu:u:alhu:ust.-"sewlet.-"SthMsg ﬂ

The ShowMessage Servlet

shibboleth
shibboleth
shibboleth
shibboleth
shibboleth

= == Docu =| e 28 == Ea] s

Figure 2-5 The ShowMessage servlet with serverspecific initialization parameters.

Listing 2.9 shows the setup file used to supply initialization parameters to
servlets used with Tomcat 3.0. The idea is that you first associate a name with
the servlet class file, then associate initialization parameters with that name
(not with the actual class file). The setup file is located in
install_dir/webpages/WEB-INF. Rather than recreating a similar version
by hand, you might want to download this file from http://www.core-
servlets.com/, modify it, and copy it to
install_dir/webpages/WEB-INF.

Listing 2.10 shows the properties file used to supply initialization parame-
ters to servlets in the JSWDK. As with Tomcat, you first associate a name
with the servlet class, then associate the initialization parameters with the
name. The properties file is located in install_dir/webpages/WEB-INF.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

41

42

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter 2 First Servlets

Listing 2.9 web.xml (for Tomcat)

<?xml version="1.0" encoding="IS0-8859-1"7?>

< !DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN"

"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet>
<servlet-name>
ShowMsg
</servlet-name>

<servlet-class>
coreservlets.ShowMessage
</servlet-class>

<init-param>
<param-name>
message
</param-name>
<param-value>
Shibboleth
</param-value>
</init-param>

<init-param>
<param-name>
repeats
</param-name>
<param-value>
5
</param-value>
</init-param>
</servlet>
< /web-app>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.7 An Example Using Initialization Parameters

Listing 2.10 servlets.properties

servlets.properties used with the JSWDK

Register servlet via servletName.code=servletClassFile
You access it via http://host/examples/servlet/servletName
ShowMsg.code=coreservlets.ShowMessage

Set init params via
servletName. initparams=paraml=vall,param2=val2, ...
ShowMsg.initparams=message=Shibboleth, repeats=5

Standard setting
jsp.code=com.sun. jsp.runtime.JspServlet

Set this to keep servlet source code built from JSP
jsp.initparams=keepgenerated=true

i Java Web Server - Web Service _ 10 =|

JAVAWEB SERVER™ 2.0

2 B I ?

Setup Maonitor | Security | Sernvlets Help

Servlets
Add

E| Caonfigure
- counter Servlet Class: |coreservlets.ShowMessage
- dateserlet

Add a New Serviet

Serviet Name: [Showhsg

- BIrOr
- imagemap
- invoker Bean Servlet

- jsp92S5enidet
- japSeret Bean Serdet: © Yes & Mo

- linkcheck Jar File:

- ndservlet

- pageCompile

-~ phone

- pservlet

- SecretServlet

- session

Rimnlnfnrmgpﬂlj bt ﬂ
L3

-

Wwarning: Applet Window

Figure 2-6 Registering a name for a servlet with the Java Web Server. Servlets that
use initialization parameters must first be registered this way.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

44

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter 2 First Servlets

i Java Web Server - Web Service M [=]ES

JAVAWEB SERVER™ 2.0

P u ?

Setup Moniter | Security | Senlets Help

ﬁ seniets j Configuration] Properties]

- Add
= Configure

MEssa0e Shibboleth "
- counter R e ——— Madify
Remove
- BFFOF 4

- imagemap
- invaker

- japY925erviet
- jspSendet
- linkeheck Ly
- ndserndet

- pageCompile
- phone

- psenet J
- SecretSernvet
- §ASSI0h

-~ Chowhsg - Load Remove..,
4 *

Warning: Applet Window

Mame Yalue J Add |

Figure 2-7 Specifying initialization parameters for a named servlet with the Java Web
Server.

2.8 An Example Using Servlet Initialization
and Page Modification Dates

Listing 2.11 shows a servlet that uses init to do two things. First, it builds an
array of 10 integers. Since these numbers are based upon complex calcula-
tions, I don’t want to repeat the computation for each request. So I have
doGet look up the values that init computed instead of generating them
each time. The results of this technique are shown in Figure 2-8.

However, since all users get the same result, init also stores a page modifi-
cation date that is used by the getLastModi fied method. This method should
return a modification time expressed in milliseconds since 1970, as is standard

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.8 An Example Using Servlet Initialization and Page Modification Dates

i‘.-;}.'{;—:"r'um Lottery Humbers - HNetscape O ﬂ

File Edt %iew Go Communicator Help

i e BB @ FH =

Y our Lottery Numbers

Based upon extensive research of astro-illogical trends, psychic
farces, and detailed statistical claptrap, we have chosen the 10
best lottery numbers for you

50
3l
97
69
53
82
5

93
42
44

e B

—

= == Document: Done I e =) ST

Figure 2-8 Output of Lot teryNumbers servlet.

with Java dates. The time is automatically converted to a date in GMT appro-
priate for the Last-Modified header. More importantly, if the server receives
a conditional GET request (one specifying that the client only wants pages
marked If-Modified-Since a particular date), the system compares the
specified date to that returned by getLastModified, only returning the page
if it has been changed after the specified date. Browsers frequently make these
conditional requests for pages stored in their caches, so supporting conditional
requests helps your users as well as reducing server load. Since the Last-Mod-
ified and If-Modified-Since headers use only whole seconds, the get-
LastModified method should round times down to the nearest second.

Figures 2-9 and 2-10 show the result of requests for the same servlet with
two slightly different 1£-Modified-since dates. To set the request headers
and see the response headers, I used webclient, a Java application shown in
Section 2.10 (WebClient: Talking to Web Servers Interactively) that lets you
interactively set up HTTP requests, submit them, and see the results.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

46 Chapter 2 First Servlets

Listing 2.1l LotteryNumbers. java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Example using servlet initialization and the
* getLastModified method.
*/

public class LotteryNumbers extends HttpServlet {
private long modTime;
private int[] numbers = new int[10];

/** The init method is called only when the servlet
* dis first loaded, before the first request

* 1is processed.

*/

public void init() throws ServletException {
// Round to nearest second (ie 1000 milliseconds)
modTime = System.currentTimeMillis()/1000*1000;
for(int i=0; i<numbers.length; i++) {
numbers[i] = randomNum();

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType ("text/html") ;

PrintWriter out = response.getWriter();

String title = "Your Lottery Numbers";

out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</HI1>\n" +

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.8 An Example Using Servlet Initialization and Page Modification Dates

Listing 2.1 LotteryNumbers.java (continued)

"Based upon extensive research of " +
"astro-illogical trends, psychic farces, " +
"and detailed statistical claptrap, " +
"we have chosen the " + numbers.length +
" best lottery numbers for you." +
"") ;

for(int i=0; i<numbers.length; i++) {

out.println(" " + numbers[i]);

}

out.println("" +
"</BODY></HTML>") ;

/** The standard service method compares this date

* against any date specified in the If-Modified-Since
request header. If the getLastModified date is
later, or if there is no If-Modified-Since header,
the doGet method is called normally. But if the
getLastModified date is the same or earlier,

the service method sends back a 304 (Not Modified)
response, and does not call doGet.

The browser should use its cached version of

the page in such a case.

* 0% kX X X X X %

public long getLastModified (HttpServletRequest request) {
return (modTime) ;

// A random int from 0 to 99.

private int randomNum () {
return((int) (Math.random() * 100));

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

47

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

48 Chapter 2 First Servlets

[E3 web Client -[0] %]

Host: |lu|:a]]mst

Port: (80

Request Line: |GET Iservleticoreservlets. LotteryNumbers HTTP/1.0

Request Headers:

If Modified- Since: Thu, 23 Dec 1999 15:56:05 GMT J

Submit Request,

Results

HTTF1.1 200 OK -
Server: JavaWeh Server/2.0

Last-Modified: Thu, 23 Dec 1999 15:58:05 GMT

Content-Type: textTiml

Connection: close

Date: Thu, 23 Dec 1999 16:06:35 GAMT

=DOCTYPE HTML PUBLIC “-)3 CIDTD HIML 4.0 TransitionaliEN"=
=HTMIL-
< | f

Interrupt Dovmnload ‘

Figure 2-9 Accessing the Lot teryNumbers servlet with an unconditional GET
request or with a conditional request specifying a date before servlet initialization results
in the normal Web page.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.8 An Example Using Servlet Initialization and Page Modification Dates

[E3 Web Client -[0] %]

Host: |lu|:a]]mst

Port: (80

Request Line: |GET Iservleticoreservlets.LotteryNumbers HTTP/1.0

Request Headers:

If Modified- Since: Thu, 23 Dec 1999 15:58:05 GMT J

ubnit Request

Results

HTTF/1.1 304 Not Modified J
Server: JavaWeh Server/2.0

Content-Type: textTiml

Conteni-Length: 101

Connection: close

Date: Thu, 23 Dec 1999 16:03:58 GAMT

" o

Interrupt Dovmnload

Figure 2-10 Accessing the Lot teryNumbers servlet with a conditional GET request
specifying a date at or after servlet initialization results in a 304 (Not Modified)
response.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

50 Chapter 2 First Servlets

2.9 Debugging Servlets

Naturally, when you write servlets, you never make mistakes. However, some
of your colleagues might make an occasional error, and you can pass this
advice on to them. Seriously, though, debugging servlets can be tricky
because you don't execute them directly. Instead, you trigger their execution
by means of an HTTP request, and they are executed by the Web server. This
remote execution makes it difficult to insert break points or to read debug-
ging messages and stack traces. So, approaches to servlet debugging differ
somewhat from those used in general development. Here are seven general
strategies that can make your life easier.

1. Look at the HTML source.
If the result you see in the browser looks funny, choose “View
Source” from the browser’s menu. Sometimes a small HTML
error like <TABLE> instead of </TABLE> can prevent much of
the page from being viewed. Even better, use a formal HTML
validator on the servlet’s output. See Section 2.5 (Simple
HTML-Building Utilities) for a discussion of this approach.

2. Return error pages to the client.
Sometimes certain classes of errors can be anticipated by the serv-
let. In these cases, the servlet should build descriptive information
about the problem and return it to the client in a regular page or
by means of the sendError method of HttpServletResponse.
See Chapter 6 (Generating the Server Response: HTTP Status
Codes) for details on sendError. For example, you should plan
for cases when the client forgets some of the required form data
and send an error page detailing what was missing. Exror pages
are not always possible, however. Sometimes something unex-
pected goes wrong with your servlet, and it simply crashes. The
remaining approaches help you in those situations.

3. Start the server from the command line.
Most Web servers execute from a background process, and this
process is often automatically started when the system is
booted. If you are having trouble with your servlet, you should
consider shutting down the server and restarting it from the
command line. After this, System.out.println or Sys-
tem.err.println calls can be easily read from the window in
which the server was started. When something goes wrong with

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.9 Debugging Serviets

your servlet, your first task is to discover exactly how far the
servlet got before it failed and to gather some information about
the key data structures during the time period just before it
failed. Simple print1n statements are surprisingly effective for
this purpose. If you are running your servlets on a server that
you cannot easily halt and restart, then do your debugging with
the JSWDK, Tomcat, or the Java Web Server on your personal
machine, and save deployment to the real server for later.

4. Use the log file.
The Httpservilet class has a method called 1og that lets you
write information into a logging file on the server. Reading debug-
ging messages from the log file is a bit less convenient than watch-
ing them directly from a window as with the previous approach,
but using the log file does not require stopping and restarting the
server. There are two variations of this method: one that takes a
String, and the other that takes a String and a Throwable (an
ancestor class of Exception). The exact location of the log file is
server-specific, but it is generally clearly documented or can be
found in subdirectories of the server installation directory.

5. Look at the request data separately.
Servlets read data from the HTTP request, construct a response,
and send it back to the client. If something in the process goes
wrong, you want to discover if it is because the client is sending
the wrong data or because the servlet is processing it incorrectly.
The Echoserver class, shown in Section 16.12 (A Debugging
Web Server), lets you submit HTML forms and get a result that
shows you exactly how the data arrived at the server.

6. Look at the response data separately.
Once you look at the request data separately, you'll want to do
the same for the response data. The webclient class, presented
next in Section 2.10 (WebClient: Talking to Web Servers Inter-
actively), permits you to connect to the server interactively,
send custom HTTP request data, and see everything that comes
back, HTTP response headers and all.

7. Stop and restart the server.
Most full-blown Web servers that support servlets have a desig-
nated location for servlets that are under development. Servlets in
this location (e.g., the servlets directory for the Java Web
Server) are supposed to be automatically reloaded when their
associated class file changes. At times, however, some servers can

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

52 Chapter 2 First Servlets

get confused, especially when your only change is to a lower-level
class, not to the top-level servlet class. So, if it appears that
changes you make to your servlets are not reflected in the servlet’s
behavior, try restarting the server. With the [SWDK and Tomcat,
you have to do this every time you make a change, since these
mini-servers have no support for automatic servlet reloading.

2.10 WebClient: Talking to Web
Servers Interactively

This section presents the source code for the webclient program discussed
in Section 2.9 (Debugging Servlets) and used in Section 2.8 (An Example
Using Servlet Initialization and Page Modification Dates) and extensively
throughout Chapter 16 (Using HTML Forms). As always, the source code
can be downloaded from the on-line archive at http://www.coreserv-
lets.com/, and there are no restrictions on its use.

WebClient

This class is the top-level program that you would use. Start it from the com-
mand line, then customize the HTTP request line and request headers, then
press “Submit Request.”

Listing 2.12 WebClient. java

import java.awt.*;
import java.awt.event.*;
import java.util.*;

/**
A graphical client that lets you interactively connect to
Web servers and send custom request lines and
* request headers.
*/

public class WebClient extends CloseableFrame
implements Runnable, Interruptible, ActionListener {
public static void main (String[] args) {
new WebClient ("Web Client");
}

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.10 WebClient: Talking to Web Servers Interactively

Listing 2.12 WebClient . java (continued)

private LabeledTextField hostField, portField,
requestLineField;

private TextArea requestHeadersArea, resultArea;

private String host, requestLine;

private int port;

private String[] requestHeaders = new String[30];

private Button submitButton, interruptButton;

private boolean isInterrupted = false;

public WebClient (String title) {
super (title) ;
setBackground (Color.lightGray) ;
setLayout (new BorderLayout (5, 30));
int fontSize = 14;
Font labelFont =
new Font("Serif", Font.BOLD, fontSize);
Font headingFont =
new Font ("SansSerif", Font.BOLD, fontSize+4);
Font textFont =
new Font ("Monospaced", Font.BOLD, fontSize-2);
Panel inputPanel = new Panel();
inputPanel.setLayout (new BorderLayout ());
Panel labelPanel = new Panel();
labelPanel.setLayout (new GridLayout(4,1));

hostField = new LabeledTextField("Host:", labelFont,
30, textFont);
portField = new LabeledTextField("Port:", labelFont,

"80", 5, textFont);

// Use HTTP 1.0 for compatibility with the most servers.
// If you switch this to 1.1, you *must* supply a
// Host: request header.
requestLineField =

new LabeledTextField("Request Line:", labelFont,

"GET / HTTP/1.0", 50, textFont);

labelPanel.add (hostField) ;
labelPanel.add (portField) ;
labelPanel.add(requestLineField) ;
Label requestHeadersLabel =

new Label ("Request Headers:");
requestHeadersLabel.setFont (labelFont) ;
labelPanel.add(requestHeadersLabel) ;
inputPanel.add(labelPanel, BorderLayout.NORTH) ;
requestHeadersArea = new TextArea (5, 80);
requestHeadersArea.setFont (textFont) ;
inputPanel.add (requestHeadersArea, BorderLayout.CENTER) ;
Panel buttonPanel = new Panel();
submitButton = new Button ("Submit Request");
submitButton.addActionListener (this) ;
submitButton.setFont (labelFont) ;
buttonPanel.add (submitButton) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

53

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

54 Chapter 2 First Servlets

Listing 2.12 WebClient . java (continued)

inputPanel.add (buttonPanel, BorderLayout.SOUTH) ;
add (inputPanel, BorderLayout.NORTH) ;
Panel resultPanel = new Panel();
resultPanel.setLayout (new BorderLayout()) ;
Label resultLabel =

new Label ("Results", Label.CENTER) ;
resultLabel.setFont (headingFont) ;
resultPanel.add(resultLabel, BorderLayout.NORTH) ;
resultArea = new TextAreal();
resultArea.setFont (textFont) ;
resultPanel.add(resultArea, BorderLayout.CENTER) ;
Panel interruptPanel = new Panel();
interruptButton = new Button("Interrupt Download") ;
interruptButton.addActionListener (this) ;
interruptButton.setFont (labelFont) ;
interruptPanel.add(interruptButton) ;
resultPanel.add(interruptPanel, BorderLayout.SOUTH) ;
add (resultPanel, BorderLayout.CENTER) ;
setSize (600, 700);
setVisible(true) ;

public void actionPerformed (ActionEvent event) ({
if (event.getSource() == submitButton) {
Thread downloader = new Thread(this);
downloader.start () ;
} else if (event.getSource() == interruptButton) {
isInterrupted = true;

public void run() {
isInterrupted = false;
if (hasLegalArgs())
new HttpClient (host, port, requestLine,
requestHeaders, resultArea, this);

public boolean isInterrupted() {
return(isInterrupted) ;

private boolean hasLegalArgs() {
host = hostField.getTextField() .getText () ;
if (host.length() == 0) {
report ("Missing hostname") ;
return(false) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.10 WebClient: Talking to Web Servers Interactively

Listing 2.12 WebClient . java (continued)

String portString =
portField.getTextField () .getText () ;

if (portString.length() == 0) {
report ("Missing port number") ;
return(false) ;

}

try {
port = Integer.parselnt (portString) ;

} catch (NumberFormatException nfe) {
report("Illegal port number: " + portString);
return(false) ;

}

requestLine =
requestLineField.getTextField () .getText () ;

if (requestLine.length() == 0) {

report ("Missing request line");
return(false) ;

}

getRequestHeaders () ;

return (true) ;

private void report (String s) {
resultArea.setText (s) ;

private void getRequestHeaders () {
for(int i=0; i<requestHeaders.length; i++)
requestHeaders[i] = null;

int headerNum = 0;

String header =
requestHeadersArea.getText () ;

StringTokenizer tok =

new StringTokenizer (header, "\r\n");
while (tok.hasMoreTokens())
requestHeaders|[headerNum++] = tok.nextToken /() ;

HttpClient

The Httpclient class does the real network communication. It simply sends
the designated request line and request headers to the Web server, then
reads the lines that come back one at a time, placing them into a TextArea
until either the server closes the connection or the HttpClient is inter-

rupted by means of the isInterrupted flag.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

55

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

56 Chapter 2 First Servlets

Listing 2.13 HttpClient.java

import java.awt.*;
import java.net.*;
import java.io.*;

/**
* The underlying network client used by WebClient.
*/

public class HttpClient extends NetworkClient {
private String requestLine;
private String[] requestHeaders;
private TextArea outputArea;
private Interruptible app;

public HttpClient(String host, int port,
String requestLine, String[] requestHeaders,
TextArea outputArea, Interruptible app) {
super (host, port);
this.requestLine = requestLine;
this.requestHeaders = requestHeaders;
this.outputArea = outputArea;
this.app = app;
if (checkHost (host))
connect () ;

protected void handleConnection (Socket uriSocket)
throws IOException ({
try {
PrintWriter out = SocketUtil.getWriter (uriSocket) ;
BufferedReader in = SocketUtil.getReader (uriSocket) ;
outputArea.setText ("") ;
out.println(requestLine) ;
for (int i=0; i<requestHeaders.length; i++) {
if (requestHeaders[i] == null)
break;
else
out.println(requestHeaders[i]) ;
}
out.println();
String line;
while ((line = in.readLine()) != null &&
lapp.isInterrupted())
outputArea.append(line + "\n");
if (app.isInterrupted())

outputArea.append("---- Download Interrupted ----");
} catch(Exception e) {
outputArea.setText ("Error: " + e);

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.10 WebClient: Talking to Web Servers Interactively

Listing 2.13 HttpClient.java (continued)

private boolean checkHost (String host) {
try {
InetAddress.getByName (host) ;
return(true) ;
} catch (UnknownHostException uhe) {
outputArea.setText ("Bogus host: " + host);
return(false) ;

NetworkClient

The NetworkClient class is a generic starting point for network clients and
is extended by HttpClient.

Listing 2.14 NetworkClient. java

import java.net.*;
import java.io.*;

/** A starting point for network clients. You’ll need to
* override handleConnection, but in many cases

connect can remain unchanged. It uses

SocketUtil to simplify the creation of the
PrintWriter and BufferedReader.

@see SocketUtil
/

* % X X X X

public class NetworkClient {
protected String host;
protected int port;

/** Register host and port. The connection won't
* actually be established until you call

* connect.

*

* @see #connect

*/

public NetworkClient (String host, int port) {
this.host = host;
this.port = port;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

57

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

58 Chapter 2 First Servlets

Listing 2.14 NetworkClient. java (continued)

/** Establishes the connection, then passes the socket
* to handleConnection.

*

* @see #handleConnection

*/

public void connect () {

try {

Socket client = new Socket (host, port);
handleConnection(client) ;

} catch (UnknownHostException uhe) {
System.out.println("Unknown host: " + host);
uhe.printStackTrace () ;

} catch(IOException ioe) {
System.out.println("IOException: " + ioe);
ioe.printStackTrace () ;

/** This is the method you will override when
making a network client for your task.
* The default version sends a single line

* ("Generic Network Client") to the server,
* reads one line of response, prints it, then exits.
*/

protected void handleConnection (Socket client)
throws IOException {
PrintWriter out =
SocketUtil.getWriter(client) ;
BufferedReader in =
SocketUtil.getReader (client) ;
out.println("Generic Network Client") ;
System.out.println
("Generic Network Client:\n" +
"Made connection to " + host +
" and got ‘" 4+ in.readLine() + "’ in response");
client.close();

}

/** The hostname of the server we’re contacting. */

public String getHost () {
return (host) ;

}

/** The port connection will be made on. */

public int getPort() {
return (port) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.10 WebClient: Talking to Web Servers Interactively

SocketUtil

SocketUtil is a simple utility class that simplifies creating some of the
streams used in network programming. It is used by Networkclient and
HttpClient.

Listing 2.15 SocketUtil. java

import java.net.*;
import java.io.*;

/** A shorthand way to create BufferedReaders and
* PrintWriters associated with a Socket.
*/

public class SocketUtil {
/** Make a BufferedReader to get incoming data. */

public static BufferedReader getReader (Socket s)
throws IOException {
return (new BufferedReader (
new InputStreamReader (s.getInputStream())));

/** Make a PrintWriter to send outgoing data.

* This PrintWriter will automatically flush stream
* when println is called.

*/

public static PrintWriter getWriter (Socket s)
throws IOException {
// 2nd argument of true means autoflush
return(new PrintWriter (s.getOutputStream(), true));

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

59

60

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter 2 First Servlets

CloseableFrame

CloseableFrame is an extension of the standard Frame class, with the addi-
tion that user requests to quit the frame are honored. This is the top-level
window on which webc1lient is built.

Listing 2.16 CloseableFrame.java

import java.awt.*;
import java.awt.event.*;

/** A Frame that you can actually quit. Used as

* the starting point for most Java 1.1 graphical
* applications.

*/

public class CloseableFrame extends Frame {
public CloseableFrame(String title) {
super (title) ;
enableEvents (AWTEvent .WINDOW_EVENT_MASK) ;

/** Since we are doing something permanent, we need
* to call super.processWindowEvent first.

*/

public void processWindowEvent (WindowEvent event) ({
super .processWindowEvent (event); // Handle listeners
if (event.getID() == WindowEvent.WINDOW_CLOSING)

System.exit (0) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.10 WebClient: Talking to Web Servers Interactively

LabeledTextField

The LabeledTextField class is a simple combination of a TextField and a
Label and is used in webClient.

Listing 2.17 LabeledTextField.java

import java.awt.*;

/** A TextField with an associated Label.
*/

public class LabeledTextField extends Panel {
private Label label;
private TextField textField;

public LabeledTextField(String labelString,
Font labelFont,
int textFieldSize,
Font textFont) {
setLayout (new FlowLayout (FlowLayout.LEFT)) ;
label = new Label (labelString, Label.RIGHT) ;
if (labelFont != null)
label.setFont (labelFont) ;
add(label) ;
textField = new TextField(textFieldSize) ;
if (textFont != null)
textField.setFont (textFont) ;
add (textField) ;
}

public LabeledTextField(String labelString,
String textFieldString) {
this(labelString, null, textFieldString,
textFieldString.length(), null);

}

public LabeledTextField(String labelString,
int textFieldSize) {
this(labelString, null, textFieldSize, null);

}

public LabeledTextField(String labelString,

Font labelFont,
String textFieldString,
int textFieldSize,
Font textFont) {

this(labelString, labelFont,

textFieldSize, textFont) ;
textField.setText (textFieldString) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

61

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

62 Chapter 2 First Servlets

Listing 2.17 LabeledTextField. java (continued)

/** The Label at the left side of the LabeledTextField.
* To manipulate the Label, do:

* <PRE>

* LabeledTextField 1ltf = new LabeledTextField(...);
* ltf.getLabel () .someLabelMethod(...);

* </PRE>

*

* @see #getTextField

*/

public Label getLabel () {
return (label) ;

/** The TextField at the right side of the
* LabeledTextField.

*

* @see #getLabel

*/

public TextField getTextField() {
return (textField) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

2.10 WebClient: Talking to Web Servers Interactively

Interruptible

Interruptible is a simple interface used to identify classes that have an
isInterruptedInethOd.Itisusedl»/HttpClienttOIXﬂlWebClienttosee
if the user has interrupted it.

Listing 2.18 Interruptible. java

* An interface for classes that can be polled to see

* 1f they’ve been interrupted. Used by HttpClient

* and WebClient to allow the user to interrupt a network
* download.

public interface Interruptible {
public boolean isInterrupted();

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

63

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

HANDLING THE
CLIENT REQUEST:
FORM DATA

y Topics in This Chapter

* Using getParameter to read single values from
prespecified parameters in the form data

* Using getParametervalues to read multiple values from
prespecified parameters in the form data

* Using getParameterNames to discover what parameters
are available

* Handling both GET and posT requests with a single servlet
* A servlet that makes a table of the input parameters
* An on-line resumé posting service

* Filtering HTML-specific characters

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

ne of the main motivations for building Web pages dynamically is so
that the result can be based upon user input. This chapter shows you
how to access that input.

3.1 The Role of Form Data

If you've ever used a search engine, visited an on-line bookstore,
tracked stocks on the Web, or asked a Web-based site for quotes on
plane tickets, you've probably seen funny-looking URLs like
http://host/path?user=Marty+Hall&origin=bwi&dest=1ax. The
part after the question mark (i.e., user=Marty+Hall&origin=
bwisdest=1ax) is known as form data (or query data) and is the most com-
mon way to get information from a Web page to a server-side program.
Form data can be attached to the end of the URL after a question mark (as
above), for GET requests, or sent to the server on a separate line, for POST
requests. If youre not familiar with HTML forms, Chapter 16 (Using
HTML Forms) gives details on how to build forms that collect and transmit
data of this sort.

Extracting the needed information from this form data is traditionally one
of the most tedious parts of CGI programming. First of all, you have to read

65

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

66 Chapter 3 Handling the Client Request: Form Data

the data one way for GET requests (in traditional CGI, this is usually through
the QUERY_STRING environment variable) and a different way for posT
requests (by reading the standard input in traditional CGI). Second, you have
to chop the pairs at the ampersands, then separate the parameter names (left
of the equal signs) from the parameter values (right of the equal signs).
Third, you have to URL-decode the values. Alphanumeric characters are sent
unchanged, but spaces are converted to plus signs and other characters are
converted to %XX where XX is the ASCII (or ISO Latin-1) value of the char-
acter, in hex. Then, the server-side program has to reverse the process. For

example, if someone enters a value of “~hall, ~gates, and ~mcnealy”
into a textfield with the name users in an HTML form, the data is sent as
“Users=%7Ehall%2C+%7Egates%2C+and+%7Emcnealy’, and the

server-side program has to reconstitute the original string. Finally, the fourth
reason that parsing form data is tedious is that values can be omitted (e.g.,
“paraml=vall¶m2=¶m3=val3”) or a parameter can have more
than one value (e.g., “paraml=vallsparam2=val2¶ml=val3”), so
your parsing code needs special cases for these situations.

3.2 Reading Form Data from
Servlets

One of the nice features of servlets is that all of this form parsing is handled
automatically. You simply call the getParameter method of the Http-
ServletRequest, supplying the case-sensitive parameter name as an argu-
ment. You use getParameter exactly the same way when the data is sent by
GET as you do when it is sent by POST. The servlet knows which request
method was used and automatically does the right thing behind the scenes.
The return value is a String corresponding to the URL-decoded value of
the first occurrence of that parameter name. An empty String is returned if
the parameter exists but has no value, and null is returned if there was no
such parameter. If the parameter could potentially have more than one value,
you should call getParametervalues (which returns an array of strings)
instead of getParameter (which returns a single string). The return value of
getParameterValues is null for nonexistent parameter names and is a
one-element array when the parameter has only a single value.

Parameter names are case sensitive so, for example, request.get-
Parameter ("Paraml") and request.getParameter ("paraml") are
not interchangeable.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.3 Example: Reading Three Explicit Parameters

Core Warning

The values supplied to get Parameter and getParameterValues
are case sensitive.

Finally, although most real servlets look for a specific set of parameter
names, for debugging purposes it is sometimes useful to get a full list. Use
getParameterNames U)getﬂﬁslmtinthe1er10fan Enumeration, each
entry of which can be cast to a String and used in a getParameter or get-
ParameterValues call. Just note that the HttpServletRequest API
does not specify the order in which the names appear within that Enumer-
ation.

Core Warning

Don’t count on getParameterNames returning the names in any
particular order.

3.3 Example: Reading Three
Explicit Parameters

Listing 3.1 presents a simple servlet called Threeparams that reads form
data parameters named paraml, param2, and param3 and places their val-
ues in a bulleted list. Listing 3.2 shows an HTML form that collects user
input and sends it to this servlet. By use of an ACTION of /servlet/core-
servlets.ThreeParans, the form can be installed anywhere on the system
running the servlet; there need not be any particular association between the
directory containing the form and the servlet installation directory. Recall
that the specific locations for installing HTML files vary from server to
server. With the JSWDK 1.0.1 and Tomcat 3.0, HTML pages are placed
somewhere in install dir/webpages and are accessed via
http://host/path/file.html. For example, if the form shown in Listing
3.2 is pkmed in install dir/webpages/forms/ThreeParams-
Form.html and the server is accessed from the same host that it is running
on, the form would be accessed by a URL of http://local-
host/forms/ThreeParamsForm.html.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

<

»

=

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

68 Chapter 3 Handling the Client Request: Form Data

Figures 3-1 and 3-2 show the result of the HTML front end and the serv-
let, respectively.

Listing 3.1 ThreeParams.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ThreeParams extends HttpServlet ({
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Reading Three Request Parameters";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</HI1>\n" +
"\n" +
" paraml: "
+ request.getParameter("paraml") + "\n" +
" param2: "
+ request.getParameter ("param2") + "\n" +
" param3: "
+ request.getParameter("param3") + "\n" +
"\n" +
"</BODY></HTML>") ;

Although you are required to specify response settings (see Chapters 6 and
7) before beginning to generate the content, there is no requirement that you
read the request parameters at any particular time.

If you're accustomed to the traditional CGI approach where you read
pOST data through the standard input, you should note that you can do the
same thing with servlets by calling getReader or getInputStream on the
HttpServletRequest and then using that stream to obtain the raw input.
This is a bad idea for regular parameters since the input is neither parsed
(separated into entries specific to each parameter) nor URL-decoded
(translated so that plus signs become spaces and %XX gets replaced by the

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.3 Example: Reading Three Explicit Parameters

ASCII or ISO Latin-1 character corresponding to the hex value XX). How-
ever, reading the raw input might be of use for uploaded files or POST data
being sent by custom clients rather than by HTML forms. Note, however,
that if you read the PoST data in this manner, it might no longer be found

by getParameter.

Listing 3.2 ThreeParamsForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE>Collecting Three Parameters</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="/servlet/coreservlets.ThreeParams">
First Parameter: <INPUT TYPE="TEXT" NAME="paraml">

Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

Third Parameter: <INPUT TYPE="TEXT" NAME="param3">

<CENTER>

<INPUT TYPE="SUBMIT">

</CENTER>

</FORM>

</BODY>
</HTML>

'; Collecting Three Parameters - Microsoft Intemnet Explorer

File Edit “iew Favorites Tools Help

&2 QRAAEB|B- IH-

Address |€| http:Nocalhost/ ThieeParamsF orm. html ﬂ o’ Go

Links **

Collecting Three Parameters

First Parameter: ’”hall—
Second Parameter: ,”gales—
Third Parameter: W

] Done EQ Local intranet

- |

Figure 3-1 HTML front end resulting from ThreeParamsForm.html.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

69

70

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter 3 Handling the Client Request: Form Data

'; Reading Thiee Reguest Parameters - Microsoft Internet Explorer - O ﬁ
File Edit “iew Favorites Tools Help n

&5 QERNAEIB IH-

Address |€| http:#/locahost/serviet/coreservlets. ThreeP arams Pparam =% FE halliparam2=*%7E gatestparam3=%7E mcnealy ﬂ o’ Go | Links >

B
Reading Three Request Parameters
o paraml: ~hall
L] llﬂl'ﬂl'l'l::"‘-'gates
s param3}: ~mcnealy
/|

&] Done 25| Lacal intraret

Figure 3-2 Output of ThreeParams servlet.

3.4 Example: Reading All
Parameters

The previous example extracted parameter values from the form data based
upon prespecified parameter names. It also assumed that each parameter
had exactly one value. Here’s an example that looks up all the parameter
names that are sent and puts their values in a table. It highlights parameters
that have missing values as well as ones that have multiple values.

First, the servlet looks up all the parameter names by the getParameter-
Names method of Ht tpServletRequest. This method returns an Enumera-
tion that contains the parameter names in an unspecified order. Next, the
servlet loops down the Enumeration in the standard manner, using has-
MoreElements to determine when to stop and using nextElement to get
each entry. Since nextElement returns an Object, the servlet casts the result
to a String and passes that to getParametervalues, yielding an array of
strings. If that array is one entry long and contains only an empty string, then
the parameter had no values and the servlet generates an italicized “No Value”
entry. If the array is more than one entry long, then the parameter had multiple
values and the values are displayed in a bulleted list. Otherwise, the one main
value is placed into the table unmodified. The source code for the servlet is
shown in Listing 3.3, while Listing 3.4 shows the HTML code for a front
end that can be used to try the servlet out. Figures 3-3 and 3-4 show the
result of the HTML front end and the servlet, respectively.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.4 Example: Reading All Parameters

Notice that the servlet uses a doPost method that simply calls doGet.
That’s because I want it to be able to handle both GET and POST requests.
This approach is a good standard practice if you want HTML interfaces to
have some flexibility in how they send data to the servlet. See the discussion
of the service method in Section 2.6 (The Servlet Life Cycle) for a discus-
sion of why having doPost call doGet (or vice versa) is preferable to overrid-
ing service directly. The HTML form from Listing 3.4 uses POST, as
should all forms that have password fields (if you don’t know why, see
Chapter 16). However, the ShowParameters servlet is not specific to that
particular front end, so the source code archive site at www.coreserv-
lets.com includes a similar HTML form that uses GET for you to experi-
ment with.

Listing 3.3 ShowParameters.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class ShowParameters extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Reading All Request Parameters";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</HI1>\n" +
"<TABLE BORDER=1 ALIGN=CENTER>\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
"<TH>Parameter Name<TH>Parameter Value(s)");
Enumeration paramNames = request.getParameterNames() ;
while (paramNames.hasMoreElements ()) {
String paramName = (String)paramNames.nextElement () ;
out.print ("<TR><TD>" + paramName + "\n<TD>") ;
String[] paramValues =
request.getParameterValues (paramName) ;

if (paramValues.length == 1) {
String paramValue = paramValues[0];
if (paramValue.length() == 0)

out.println("<I>No Value</I>");

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

72 Chapter 3 Handling the Client Request: Form Data

Listing 3.3 ShowParameters.java (continued)

else

out.println (paramValue) ;
} else {

out.println("") ;

for(int i=0; i<paramValues.length; i++) {
out.println("" + paramValues[i]);

}

out.println("");

out.println("</TABLE>\n</BODY></HTML>") ;

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response);

Listing 3.4 ShowParametersPostForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>A Sample FORM using POST</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">A Sample FORM using POST</H1l>

<FORM ACTION="/servlet/coreservlets.ShowParameters"
METHOD="POST">

Item Number: <INPUT TYPE="TEXT" NAME="itemNum">

Quantity: <INPUT TYPE="TEXT" NAME="quantity">

Price Each: <INPUT TYPE="TEXT" NAME="price" VALUE="S$">

<HR>

First Name: <INPUT TYPE="TEXT" NAME="firstName">

Last Name: <INPUT TYPE="TEXT" NAME="lastName">

Middle Initial: <INPUT TYPE="TEXT" NAME="initial">

Shipping Address:

<TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

Credit Card:

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Visa">Visa

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Master Card">Master Card

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.4 Example: Reading All Parameters

Listing 3.4 ShowParametersPostForm.html (continued)

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Amex">American Express

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Discover">Discover

 <INPUT TYPE="RADIO" NAME="cardType"
VALUE="Java SmartCard">Java SmartCard

Credit Card Number:

<INPUT TYPE="PASSWORD" NAME="cardNum">

Repeat Credit Card Number:

<INPUT TYPE="PASSWORD" NAME="cardNum">

<CENTER>

<INPUT TYPE="SUBMIT" VALUE="Submit Order">
</CENTER>
< /FORM>

</BODY>
</HTML>

Sample FORM using POST - Netscape
File Edit “iew Go Communicator Help

147 3d s & =

A Sample FORM using POST

Ttem Number; 1272
Cuantity: 12
Price Each: |54 -95

First Mame: [Marcy
Last Mame: |Hall

Middle Tnitial: |

L]

Johns Hopkins Applied Physics Lab
11100 Johhs Hopkins Rd.

Laurel, MD 20723
Shipping Address: JJ

Credit Card:
~ Visa
" Waster Card
' American Express
" Discover
@ Java SmartCard

Credit Card Number: |xxxxxxx
Repeat Credit Card Mumber |75 77

Subrit Order

= | == Document: Done i e P Eal oA

Figure 3-3 HTML front end that collects data for ShowParameters servlet.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

73

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

74 Chapter 3 Handling the Client Request: Form Data
L=
File Edit “iew Go Communicator Help
i e Ao s B @ =
Reading All Request Parameters
Parameter Name Parameter Value(s)
address Johns Hopking Applied Physics Lab 11100 Johns Hopkins Rd. Laurel,
WD 20723
initial Ne Value
price $4.95
* 314159
cardlum . 314159
firstMame Marty
iternNum 1274
cardType Javva SmartCard
quantity 12
lastIatne Hall
= == Cocument: Done T T R = S P Y

Figure 3-4 Output of ShowParameters servlet.

3.5 A Resumé Posting Service

On-line job services have become increasingly popular of late. A reputable
site provides a useful service to job seekers by giving their skills wide expo-
sure and provides a useful service to employers by giving them access to a
large pool of prospective employees. This section presents a servlet that han-

dles part of such a site: the submission of on-line resumés.

Listing 3.5 and Figure 3-5 show the HTML form that acts as the front end
to the resumé-processing servlet. If you are not familiar with HTML forms,
they are covered in detail in Chapter 16. The important thing to understand
here is that the form uses POST to submit the data and that it gathers values

for the following parameter names:

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.5 A Resumé Posting Service

T COULDNT HELP NOTICING 1 FIXED THE BUGS
AND TIGHTENED THE
CODE FROM TWELVE
THOUSAND LINES TO
SIXTEEN.

T TOOK THE
LIBERTY OF
UPDATING YOUR
RESUME . TM
GUESSING YOU'LL
) NEED IT SOON.

THE BUGS IN THE

PROGRAM ON THIS OLD
DISKETTE YOU THREW
AWAY.

www.unitedmedia.com

7/.[4¢ © 1996 United Feature Syndicate, Inc.(NYC)

b \
L s B

DILBERT reprinted by permission of United Syndicate, Inc.

® headingFont
Headings will be displayed in this font. A value of “default”
results in a sans-serif font such as Arial or Helvetica.

® headingSize
The person’s name will be displayed in this point size.
Subheadings will be displayed in a slightly smaller size.

® bodyFont
The main text (languages and skills) will be displayed in this font.

® DbodySize
The main text will be displayed in this point size.

e fgColor
Text will be this color.

® bgColor
The page background will be this color.

® name
This parameter specifies the person’s name. It will be centered
at the top of the resumé in the font and point size previously
specified.

® title
This parameter specifies the person’s job title. It will be
centered under the name in a slightly smaller point size.

® email
The job applicant’s email address will be centered under the job
title inside amailto link.

® Jlanguages
The programming languages listed will be placed in a bulleted
list in the on-line resumé.

e skills
Text from the skills text area will be displayed in the body font at the
bottom of the resumé under a heading called “Skills and Experience.”

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

76 Chapter 3 Handling the Client Request: Form Data

Listing 3.6 shows the servlet that processes the data from the HTML form.
When the “Preview” button is pressed, the servlet first reads the font and color
parameters. Before using any of the parameters, it checks to see if the value is
null (ie., there is an error in the HTML form and thus the parameter is missing)
or is an empty string (i.e., the user erased the default value but did not enter any-
thing in its place). The servlet uses a default value appropriate to each parameter
in such a case. Parameters that represent numeric values are passed to
Integer.parseInt. To guard against the possibility of improperly formatted
numbers supplied by the user, this Integer.parseInt call is placed inside a
try/catch block that supplies a default value when the parsing fails. Although it
may seem a bit tedious to handle these cases, it generally is not too much work if
you make use of some utﬂity methods such as replaceIfMissing and repla-
ceIfMissingOrDefault in Listing 3.6. Tedious or not, users will sometimes
overlook certain fields or misunderstand the required field format, so it is critical
that your servlet handle malformed parameters gracefully and that you test it with
both properly formatted and improperly formatted data.

Core Approach

\:‘\ ’ Design your servlets to gracefully handle missing or improperly formatted
parameters. Test them with malformed data as well as with data in the
expected format.

Once the servlet has meaningful values for each of the font and color
parameters, it builds a cascading style sheet out of them. If you are unfamiliar
with style sheets, they are a standard way of specifying the font faces, font
sizes, colors, indentation, and other formatting information in an HTML 4.0
Web page. Style sheets are usually placed in a separate file so that several
Web pages at a site can share the same style sheet, but in this case it is
more convenient to embed the style information directly in the page by
using the STYLE element. For more information on style sheets, see
http://www.w3.0rg/TR/REC-CSS1.

After creating the style sheet, the servlet places the job applicant’s name,
job title, and e-mail address centered under each other at the top of the page.
The heading font is used for these lines, and the e-mail address is placed
inside a mailto: hypertext link so that prospective employers can contact
the applicant directly by clicking on the address. The programming languages
specified in the 1anguages parameter are parsed using StringTokenizer
(assuming spaces and/or commas are used to separate the language names)
and placed in a bulleted list beneath a “Programming Languages” heading.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.5 A Resumé Posting Service

Finally, the text from the skills parameter is placed at the bottom of the
page beneath a “Skills and Experience” heading.

Figures 3-6 through 3-8 show a couple of possible results. Listing 3.7
shows the underlying HTML of the first of these results.

Listing 3.5 SubmitResume.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Free Resume Posting</TITLE>
<LINK REL=STYLESHEET
HREF="jobs-site-styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<Hl>hotcomputerjobs.com</H1>
<P CLASS="LARGER">
To use our <I>free</I> resume-posting service, simply fill
out the brief summary of your skills below. Use "Preview"
to check the results, then press "Submit" once it is
ready. Your mini resume will appear on-line within 24 hours.</P>
<HR>
<FORM ACTION="/servlet/coreservlets.SubmitResume"
METHOD="POST">

<DL>
<DT>First, give some general information about the look of
your resume:
<DD>Heading font:

<INPUT TYPE="TEXT" NAME="headingFont" VALUE="default">
<DD>Heading text size:

<INPUT TYPE="TEXT" NAME="headingSize" VALUE=32>
<DD>Body font:

<INPUT TYPE="TEXT" NAME="bodyFont" VALUE="default">
<DD>Body text size:

<INPUT TYPE="TEXT" NAME="bodySize" VALUE=18>
<DD>Foreground color:

<INPUT TYPE="TEXT" NAME="fgColor" VALUE="BLACK">
<DD>Background color:

<INPUT TYPE="TEXT" NAME="bgColor" VALUE="WHITE">

<DT>Next, give some general information about yourself:
<DD>Name: <INPUT TYPE="TEXT" NAME="name">
<DD>Current or most recent title:

<INPUT TYPE="TEXT" NAME="title">
<DD>Email address: <INPUT TYPE="TEXT" NAME="email">
<DD>Programming Languages :

<INPUT TYPE="TEXT" NAME="languages">

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

78 Chapter 3 Handling the Client Request: Form Data

Listing 3.5 SubmitResume.html (continued)

<DT>Finally, enter a brief summary of your skills and
experience: (use <P> to separate paragraphs.
Other HTML markup is also permitted.)
<DD><TEXTAREA NAME="gkills"
ROWS=15 COLS=60 WRAP="SOFT"></TEXTAREA>
</DL>
<CENTER>
<INPUT TYPE="SUBMIT" NAME="previewButton" Value="Preview">
<INPUT TYPE="SUBMIT" NAME="submitButton" Value="Submit">
</CENTER>
</FORM>
<HR>
<P CLASS="TINY">See our privacy policy
here.</P>
</BODY>
</HTML>

Listing 3.6 SubmitResume.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Servlet that handles previewing and storing resumes
* gubmitted by job applicants.
*/

public class SubmitResume extends HttpServlet {
public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
if (request.getParameter("previewButton") != null) {
showPreview(request, out);
} else {
storeResume (request) ;
showConfirmation(request, out);

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.5 A Resumé Posting Service

Listing 3.6 SubmitResume. java (continued)

// Shows a preview of the submitted resume. Takes

// the font information and builds an HTML

// style sheet out of it, then takes the real

// resume information and presents it formatted with
// that style sheet.

private void showPreview (HttpServletRequest request,
PrintWriter out) {
String headingFont = request.getParameter ("headingFont");
headingFont = replaceIfMissingOrDefault (headingFont, ""):;
int headingSize =
getSize (request.getParameter ("headingSize"), 32);
String bodyFont = request.getParameter ("bodyFont");
bodyFont = replaceIfMissingOrDefault (bodyFont, "");
int bodySize =
getSize (request.getParameter ("bodySize"), 18);
String fgColor = request.getParameter ("fgColor");
fgColor = replaceIfMissing(fgColor, "BLACK"):;
String bgColor = request.getParameter ("bgColor");
bgColor = replaceIfMissing(bgColor, "WHITE"):;
String name = request.getParameter ("name");
name = replaceIfMissing(name, "Lou Zer");
String title = request.getParameter("title");
title = replaceIfMissing(title, "Loser"):;
String email = request.getParameter("email");
email =
replaceIfMissing(email, "contact@hotcomputerjobs.com");
String languages = request.getParameter ("languages"):;
languages = replaceIlfMissing(languages, "<I>None</I>");
String languageList = makeList (languages) ;
String skills = request.getParameter("skills");
skills = replaceIfMissing(skills, "Not many, obviously.");
out.println
(ServletUtilities.DOCTYPE + "\n" +
"<HTML>\n" +
"<HEAD>\n" +
"<TITLE>Resume for " + name + "</TITLE>\n" +
makeStyleSheet (headingFont, headingSize,
bodyFont, bodySize,
fgColor, bgColor) + "\n" +
"</HEAD>\n" +
"<BODY>\n" +
"<CENTER>\n"+
"" + name + "
\n" +
"" + title + "
\n" +
"" + email +
"\n" +

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

79

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

80 Chapter 3 Handling the Client Request: Form Data

Listing 3.6 SubmitResume. java (continued)

"< /CENTER>

\n" +

"Programming Languages" +
"\n" +

makeList (languages) + "

\n" +

"Skills and Experience" +
"< /SPAN>

\n" +

skills + "\n" +

"< /BODY></HTML>") ;

// Builds a cascading style sheet with information
// on three levels of headings and overall

// foreground and background cover. Also tells

// Internet Explorer to change color of mailto link
// when mouse moves over it.

private String makeStyleSheet (String headingFont,

int headinglSize,
String bodyFont,
int bodySize,
String fgColor,
String bgColor) {

int heading2Size = headinglSize*7/10;

int heading3Size = headinglSize*6/10;

String styleSheet =

"<STYLE TYPE=\"text/css\">\n" +

"<!--\n" +
" HEADING1 { font-size: " + headinglSize + "px;\n" +
" font-weight: bold;\n" +
" font-family: " + headingFont +

"Arial, Helvetica, sans-serif;\n" +
"I\n" +
" HEADING2 { font-size: " + heading2Size + "px;\n" +
" font-weight: bold;\n" +
" font-family: " + headingFont +

"Arial, Helvetica, sans-serif;\n" +
"I\n" +
" HEADING3 { font-size: " + heading3Size + "px;\n" +
" font-weight: bold;\n" +
" font-family: " + headingFont +

"Arial, Helvetica, sans-serif;\n" +
"I\n" +
"BODY { color: " + fgColor + ";\n" +
" background-color: " + bgColor + ";\n" +
" font-size: " + bodySize + "px;\n" +
" font-family: " + bodyFont +

"Times New Roman, Times, serif;\n" +

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.5 A Resumé Posting Service

Listing 3.6 SubmitResume. java (continued)

"I\n" +

"A:hover { color: red; }\n" +

"——>\n" +

"</STYLE>";
return(styleSheet) ;

// Replaces null strings (no such parameter name) or
// empty strings (e.g., 1f textfield was blank) with
// the replacement. Returns the original string otherwise.

private String replaceIfMissing(String orig,
String replacement) {

if ((orig == null) || (orig.length() == 0)) {
return (replacement) ;
} else {

return (orig) ;

// Replaces null strings, empty strings, or the string
// "default" with the replacement.
// Returns the original string otherwise.

private String replaceIfMissingOrDefault(String orig,
String replacement) {

if ((orig == null) ||
(orig.length() == 0) ||
(orig.equals ("default"))) {
return (replacement) ;
} else {

return(orig + ", ");

// Takes a string representing an integer and returns it
// as an int. Returns a default if the string is null
// or in an illegal format.

private int getSize(String sizeString, int defaultSize) {
try {
return (Integer.parselnt (sizeString)) ;
} catch (NumberFormatException nfe) {
return(defaultSize) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

8l

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

82 Chapter 3 Handling the Client Request: Form Data

Listing 3.6 SubmitResume. java (continued)

// Given "Java,C++,Lisp", "Java C++ Lisp" or
// "Java, C++, Lisp", returns
// "

// Java
// C++
// Lisp
// "

private String makeList (String listItems) {
StringTokenizer tokenizer =
new StringTokenizer (listItems, ", ");

String list = "\n";
while (tokenizer.hasMoreTokens ()) {

list = list + " " + tokenizer.nextToken() + "\n";
}

list = list + "";
return(list);

// Show a confirmation page when they press the
// "Submit" button.

private void showConfirmation (HttpServletRequest request,
PrintWriter out) {

String title = "Submission Confirmed.";

out.println(ServletUtilities.headWithTitle(title) +
"<BODY>\n" +
"<H1>" + title + "</HI1>\n" +
"Your resume should appear on-line within\n" +
"24 hours. If it doesn’t, try submitting\n" +
"again with a different email address.\n" +
"</BODY></HTML>") ;

// Why it is bad to give your email address to untrusted sites
private void storeResume (HttpServletRequest request) {

String email = request.getParameter ("email");
putInSpamList (email) ;

private void putInSpamList (String emailAddress) {
// Code removed to protect the guilty.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.5 A Resumé Posting Service

2} Free Resume Posting - Microsoft Internet Explorer

Edt WYiew Favoiles Tools Help |
RRAREIB-S6- I
-
hotcomputerjobs.com
To use our fFee resumne-posting service, simply fill out the brief stunmary of your skills below. Use "Preview" to
check the results, then press "Submit” once it is ready. Your mini resume will appear on-line within 24 hours.
First, give some general information about the look of your resume:
Headmg font: |default
Headmg text size: |32
Eody font: [default
Body text size: |18
Foreground color: [BLACK
Background color: [WHITE
Next, give some general information about yourself:
Mame: |4 Gore lthm
Current or most recent title: [Chief Technology Officer
Email address: [thmE@aol.com
Programming Languages: [lava, C++. Smalltalk, Ada
Finally, enter a brief summary of your skills and experience: {use <P> to separate paragraphs. Other HTML markup 15 also permitted.)
Expert in data structures and computational methods. -
<P
Tell known for finding efficient solutions to
<Irapparently</I> intractable problems, then rigorously
proving time and memory regquirements for best, worst, and
average-case performance.
<P
Can prove that P is not egual to NP. Doesn't want to work
for companies that don't knov vhat this means.
<P
Mot related to the American politician.
Preview | Submit
|&] Dore || |23 Localintanet /,‘

Figure 3-5 Front end to SubmitResume servlet.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

84 Chapter 3 Handling the Client Request: Form Data

2} Resume for Al Gore Ithm - Microsoft Internet Explorer =10] |

File Edit “iew Favorites Tools Help n

i @ [1]) | Gl &3 [y & Links >

Al Gore Ithm
Chief Technology Officer

ithm@aol.com

Programming Languages

» Java
o O+
« Smalltalk
e Ada

Skills and Experience

Expert in data structures and computational methods

Well known for findmg efficient solutions to apparently miractable problems, then
ngorously proving tume and memory requirements for best, worst, and average-case

P erformance

Can prove that P 1s not equal to NP. Doesn't want to work for compames that don't know
what tlus means

Not related to the American politician

-]

& 251 Local irtranet

Figure 3-6 SubmitResume servlet after “Preview” button is pressed in Figure 3-5.

Listing 3.7 HTML source of SubmitResume output shown in

Figure 3-6.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE>Resume for Al Gore Ithm</TITLE>
<STYLE TYPE="text/css">
<!--
.HEADING1 { font-size: 32px;
font-weight: bold;
font-family: Arial, Helvetica, sans-serif;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.5 A Resumé Posting Service

Listing 3.7 HTML source of SubmitResume output shown in
Figure 3—6. (continued)

.HEADING2 { font-size: 22px;
font-weight: bold;
font-family: Arial, Helvetica, sans-serif;

.HEADING3 { font-size: 19px;
font-weight: bold;
font-family: Arial, Helvetica, sans-serif;

}
BODY { color: BLACK;

background-color: WHITE;

font-size: 18px;

font-family: Times New Roman, Times, serif;
}
A:hover { color: red; }
-—>
</STYLE>
</HEAD>
<BODY>
<CENTER>
Al Gore Ithm

Chief Technology Officer

ithm@aol.com
< /CENTER>

Programming Languages

Java
C++
Smalltalk
Ada
< /UL>

Skills and Experience

Expert in data structures and computational methods.
<P>

Well known for finding efficient solutions to
<I>apparently</I> intractable problems, then rigorously
proving time and memory requirements for best, worst, and
average-case performance.

<P>

Can prove that P is not equal to NP. Doesn’'t want to work
for companies that don’t know what this means.

<P>

Not related to the American politician.

</BODY></HTML>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

86 Chapter 3 Handling the Client Request: Form Data

3 Resume for Carl Ciacker - Microsoft Internet Explorer [=E

J File Edit “iew Favorites Toolz Help ‘

J*‘""@ﬁ|@®|%‘§.' “Links”

Carl Cracker
Virus Writer and Breakin Artiseo

Programming Languages

« Assembler
« Binary
« Word-Macro

Skills amd Experience

Awesome virus author!l
Especially expert at email viruseslll Wrote the totally cool and radical Alyssa virusill

Will work for cheapl Just give me an account on your payroll system computer.

|@ ’_’_ 25 Local intraret

Figure 3-7 Another possible result of SubmitResume servlet.

Submizsion Confirmed. - Microsoft Internet Explorer =1
J i E View Favortes Tools Help
j& -2 QA QAGES B >
B
Submission Confirmed.
Your resume should appear on-line within 24 hours. If it
doesn't, try submitting again with a different email address.
E
|&] Done || |25 Localintranet Y

Figure 3-8 SubmitResume servlet when “Submit” button is pressed.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.6 Filtering Strings for HTML-Specific Characters

3.6 Filtering Strings for
HTML-Specific Characters

Normally, when a servlet wants to generate HTML that will contain charac-
ters like < or >, it simply uses &1t; or >, the standard HTML character
entities. Similarly, if a servlet wants a double quote or an ampersand to
appear inside an HTML attribute value, it uses " or &. Failing to
make these substitutions results in malformed HTML code, since < or > will
often get interpreted as part of an HTML markup tag, a double quote in an
attribute value may be interpreted as the end of the value, and ampersands
are just plain illegal in attribute values. In most cases, it is easy to note the
special characters and use the standard HTML replacements. However,
there are two cases when it is not so easy to make this substitution manually.

The first case where manual conversion is difficult occurs when the string
is derived from a program excerpt or another source where it is already in
some standard format. Going through manually and changing all the special
characters can be tedious in such a case, but forgetting to convert even one
special character can result in your Web page having missing or improperly
formatted sections (see Figure 3-9 later in this section).

The second case where manual conversion fails is when the string is
derived from HTML form data. Here, the conversion absolutely must be
performed at runtime, since of course the query data is not known at compile
time. Failing to do this for an internal Web page can also result in missing or
improperly formatted sections of the servlet’s output if the user ever sends
these special characters. Failing to do this filtering for externally-accessible
Web pages also lets your page become a vehicle for the cross-site scripting
attack. Here, a malicious programmer embeds GET parameters in a URL that
refers to one of your servlets. These GET parameters expand to HTML
<SCRIPT> elements that exploit known browser bugs. However, by embed-
ding the code in a URL that refers to your site and only distributing the URL,
not the malicious Web page itself, the attacker can remain undiscovered
more easily and can also exploit trusted relationships to make users think the
scripts are coming from a trusted source (your servlet). For more details on
this issue, see http://www.cert.org/advisories/ CA-2000-02.html

and http://www.microsoft.com/technet/security/crssite.asp.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

88 Chapter 3 Handling the Client Request: Form Data

Code for Filtering

Replacing <, >, ", and & in strings is a simple matter, and there are a number
of different approaches that would accomplish the task. However, it is impor-
tant to remember that Java strings are immutable (i.e., can’t be modified), so
string concatenation involves copying and then discarding many string seg-
ments. For example, consider the following two lines:

String sl = "Hello";
String s2 = sl + " World";

Since s1 cannot be modified, the second line makes a copy of s1 and appends
"World" to the copy, then the copy is discarded. To avoid the expense of gener-
ating these temporary objects (garbage), you should use a mutable data structure,
and StringBuffer is the natural choice. Listing 3.8 shows a static filter
method that uses a StringBuf fer to efficiently copy characters from an input
string to a filtered version, replacing the four special characters along the way.

Listing 3.8 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {

// Other methods in ServletUtilities shown elsewhere...

*

~

* % kX X kX X

Given a string, this method replaces all occurrences of
'<' with '&1lt;', all occurrences of '>' with

'> ', and (to handle cases that occur inside attribute
values), all occurrences of double quotes with

'" ' and all occurrences of '&' with '&'.
Without such filtering, an arbitrary string

could not safely be inserted in a Web page.

~

public static String filter (String input) {
StringBuffer filtered = new StringBuffer(input.length());
char c;
for(int i=0; i<input.length(); i++) {
¢ = input.charAt(i);

if (¢ == '<') {
filtered.append("<");
} else if (¢ == '>') {

filtered.append(">");

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.6 Filtering Strings for HTML-Specific Characters

Listing 3.8 ServletUtilities.java (continued)

} else if (c == '"') {
filtered.append("" ") ;
} else if (¢ == '&') {
filtered.append("&");
} else {

filtered.append(c):;
}
}
return(filtered.toString()):
}
}

Example

By means of illustration, consider a servlet that attempts to generate a Web
page containing the following code listing:
if (a<b) {
doThis () ;
} else {
doThat () ;
}

If the code was inserted into the Web page verbatim, the <b would be
interpreted as the beginning of an HTML tag, and all of the code up to the
next > would likely be interpreted as malformed pieces of that tag. For exam-
ple, Listing 3.9 shows a servlet that outputs this code fragment, and Figure
3-9 shows the poor result. Listing 3.10 presents a servlet that changes noth-
ing except for filtering the string containing the code fragment, and, as Fig-
ure 3-10 illustrates, the result is fine.

Listing 3.9 BadCodeServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that displays a fragment of some Java code,

* but forgets to filter out the HTML-specific characters
* (the less-than sign in this case).

*/

public class BadCodeServlet extends HttpServlet {
private String codeFragment =

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

89

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

90 Chapter 3 Handling the Client Request: Form Data

Listing 3.9 BadCodeServlet.java (continued)

"if (a<b) {\n" +
" doThis();\n" +
"} else {\n" +

" doThat();\n" +
"}\n";

public String getCodeFragment () {
return (codeFragment) ;

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "The Java 'if' Statement";

out.println(ServletUtilities.headWithTitle(title) +
"<BODY>\n" +
"<H1>" + title + "</HI1>\n" +
"<PRE>\n" +
getCodeFragment () +
"</PRE>\n" +
"Note that you <I>must</I> use curly braces\n" +
"when the 'if' or 'else' clauses contain\n" +
"more than one expression.\n" +
"</BODY></HTML>") ;

Listing 3.10 FilteredCodeServlet. java

package coreservlets;

/** Subclass of BadCodeServlet that keeps the same doGet method
* but filters the code fragment for HTML-specific characters.
* You should filter strings that are likely to contain
* gpecial characters (like program excerpts) or strings
* that are derived from user input.

*/

public class FilteredCodeServlet extends BadCodeServlet {
public String getCodeFragment () {
return (ServletUtilities.filter(super.getCodeFragment())) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

3.6 Filtering Strings for HTML-Specific Characters

ﬂ{-The Java 'if* Statement - Hetscape M[=] E3

File Edit Wiew Go Communicator Help

|l v 2 AN armas &@ § =

¥ Wi'Bookmarks v Location:|http:HIDcalhosta’sewlet.-’coreservlets.BadCodeServIet ﬂ
r T
The Java 'if' Statement

if (=

MNote that vou must use curly hraces
when the 'if' or 'else' clauses contaln
more than one expression.

= == Diocument: Done BT R e = B 7 [

Figure 3-9 Result of BadCodeServlet: much of the code fragment is lost, and the
text following the code fragment is incorrectly displayed in a monospaced font.

ﬂ{-The Java 'if* Statement - Hetscape M[=] E3

File Edit Wiew Go Communicator Help

(i AD e S &0 o

W_&'Bookmarks e/ Location:|http:a’a’localhosta’selvleta’coreservlets.FiIteredEodeServIet j

The Java "if' Statement

if (a<b) {
doThi=s():

}oelse |
doThat () :

+

Mote that you rest use curly braces when the i or 'else’ clavses contain
tnote thah ohe expression.

=5 (== Document: Done it e = I v

Figure 3-10 Result of FilteredCodeServlet: use of the £ilter method solves
problems with strings containing special characters.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

HANDLING THE
CLIENT REQUEST:
HTTP REQUEST
HEADERS

y Topics in This Chapter

* Reading HTTP request headers from servlets

* Building a table of all the request headers

* The purpose of each of the HTTP I.I request headers
* Reducing download times by compressing pages

* Restricting access with password-protected servlets

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

ne of the keys to creating effective servlets is understanding how to

manipulate the HyperText Transfer Protocol (HTTP). Getting a

thorough grasp of this protocol is not an esoteric, theoretical topic,
but rather a practical issue that can have an immediate impact on the perfor-
mance and usability of your servlets. This chapter discusses the HTTP infor-
mation that is sent from the browser to the server in the form of request
headers. It explains each of the HTTP 1.1 request headers, summarizing how
and why they would be used in a servlet. The chapter also includes three
detailed examples: listing all request headers sent by the browser, reducing
download time by encoding the Web page with gzip when appropriate, and
establishing password-based access control for servlets.

Note that HTTP request headers are distinct from the form data dis-
cussed in the previous chapter. Form data results directly from user input
and is sent as part of the URL for GET requests and on a separate line for
POST requests. Request headers, on the other hand, are indirectly set by the
browser and are sent immediately following the initial GET or POST request
line. For instance, the following example shows an HTTP request that
might result from submitting a book-search request to a servlet at
http://www.somebookstore.com/search. The request includes the head-
ers Accept, Accept-Encoding, Connection, Cookie, Host, Referer, and
User-Agent, all of which might be important to the operation of the serv-
let, but none of which can be derived from the form data or deduced auto-

93

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

94 Chapter 4 Handling the Client Request: HTTP Request Headers

matically: the servlet needs to explicitly read the request headers to make
use of this information.

GET /search?keywords=servlets+jsp HTTP/1.1

Accept: image/gif, image/jpg, */*

Accept-Encoding: gzip

Connection: Keep-Alive

Cookie: userID=1d456578

Host: www.somebookstore.com

Referer: http://www.somebookstore.com/findbooks.html

User-Agent: Mozilla/4.7 [en] (Win98; U)

4.1 Reading Request Headers from
Servlets

Reading headers is straightforward; just call the getHeader method of
HttpServletRequest, which returns a string if the specified header was
supplied on this request, null otherwise. Header names are not case sensi-
tive. So, for exanqﬂe, request.getHeader ("Connection") and
request.getHeader("connection")EHeinhﬂChangeabkl

Although getHeader is the general-purpose way to read incoming head-
ers, there are a couple of headers that are so commonly used that they have
special access methods in HttpservletRequest. I'll list them here, and
remember that Appendix A (Servlet and JSP Quick Reference) gives a sepa-
rate syntax summary.

® getCookies
The getCookies method returns the contents of the cookie
header, parsed and stored in an array of cookie objects. This
method is discussed more in Chapter 8 (Handling Cookies).

¢ getAuthType and getRemoteUser
The getauthType and getRemoteUser methods break the
Authorization header into its component pieces. Use of the
Authorization header is illustrated in Section 4.5 (Restricting
Access to Web Pages).

® getContentLength
The getcontentLength method returns the value of the
Content-Length header (as an int).

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.1 Reading Request Headers from Servlets

® getContentType
The getcontentType method returns the value of the
Content—Type}Kmder(asaString)

® getDateHeader and getIntHeader
TTKBgetDateHeaderzuulgetIntHeaderInethOdSreadthe
specified header and then convert them to bate and int values,
respectively.

® getHeaderNames
Rather than looking up one particular header, you can use the
getHeaderNamesInethodtogyﬁzulEnumeration(ﬂfﬂlheader
names received on this particular request. This capability is
illustrated in Section 4.2 (Printing All Headers).

® getHeaders
In most cases, each header name appears only once in the
request. Occasionally, however, a header can appear multiple
times, with each occurrence listing a separate value.
Accept—Languageisonesuchemanqﬂe.Ifaheadernanmam
repeated in the request, version 2.1 servlets cannot access the
later values without reading the raw input stream, since
getHeader returns the value of the first occurrence of the
header only. In version 2.2, however, getHeaders returns an
Enumeration of the values of all occurrences of the header.

Finally, in addition to looking up the request headers, you can get informa-
tion on the main request line itself, also by means of methods in Http-
ServletRequest.

® getMethod
The getMethod method returns the main request method
(normally GET or posT, but things like HEAD, PUT, and DELETE
are possible).

® getRequestURI
The getRequestURI method returns the part of the URL that
comes after the host and port but before the form data. For
example, for a URL of
http://randomhost.com/servlet/search.BookSearch,
getRequestURI would return
/servlet/search.BookSearch.

® getProtocol
Lastly, the getProtocol method returns the third part of the
request line, which is generally BTTP/1.0 or HTTP/1. 1. Servlets

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

95

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
96 Chapter 4 Handling the Client Request: HTTP Request Headers

should usually check getProtocol before specifying response
headers (Chapter 7) that are specific to HTTP 1.1.

4.2 Printing All Headers

Listing 4.1 shows a servlet that simply creates a table of all the headers it
receives, along with their associated values. It also prints out the three com-
ponents of the main request line (method, URI, and protocol). Figures 4-1
and 4-2 show typical results with Netscape and Internet Explorer.

Listing 4.1 ShowRequestHeaders.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Shows all the request headers sent on this
* particular request.
*/

public class ShowRequestHeaders extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Servlet Example: Showing Request Headers";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</HI1>\n" +
"Request Method: " +
request.getMethod () + "
\n" +
"Request URI: " +
request.getRequestURI () + "
\n" +
"Request Protocol: " +
request.getProtocol () + "

\n" +

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.2 Printing All Headers

Listing 4.1 ShowRequestHeaders. java (continued)

"<TABLE BORDER=1 ALIGN=CENTER>\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
"<TH>Header Name<TH>Header Value") ;
Enumeration headerNames = request.getHeaderNames();
while (headerNames .hasMoreElements ()) {
String headerName = (String)headerNames.nextElement () ;
out.println ("<TR><TD>" + headerName) ;
out.println (" <TD>" + request.getHeader (headerName)) ;

}
out.println("</TABLE>\n</BODY></HTML>") ;

/** Let the same servlet handle both GET and POST. */

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

ervlet Example: Showing Reguest Headers - Netscape

File Edit “iew Go Communicator Help

45 Ao uasd@ F s
Servlet Example: Showing Request Headers

Request Method: GET
Request URT: /zervlet/coreserviets. ShowRequestHeaders
Request Protocol: HTTE/1.0

Header Name Header Value
Connection Keep-Alve
User-Agent Mozillaid. 7 [en] (Wmd8; T
Host localhost
Lccept image/gif, imagex-xbitmap, imagefipeg, image/pipeg, image/png,
Lccept-Encoding gap
Lccept-Language en
Lceept-Charset 150-8859-1,* utf-8

Hfk

= == Daocument: Done s M E ES] A

Figure 4-1 Request headers sent by Netscape 4.7 on Windows 98.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

98 Chapter 4 Handling the Client Request: HTTP Request Headers

'; Serviet Example: Showing Request Headers - Microzoft Internet Explorer - O ﬁ
File Edit “iew Favorites Tools Help n
Sl sNERAN I ESE JE Uit =

Servlet Example: Showing Request Headers

Request Method: GET
Request URT: iservlet/coreserviets ShowRequestHeaders
Request Protocol: HTTP/1.1

}II;:II'::I- Header Value
Fy—— wnage/gl, imagez-zbitmap, nage/ipeg, mage/pipes, applcationmsword,
P application/rd ms-excel, applicationfynd ms-powerpoint, */*
Accept-
Longage en-us
Accept-
Encogmg gzip, deflate
User-Agent Nozillafd. 0 (compatible, METE 5.0; Windows 98; DigExt)
Host localhost

Connection Keep-Alive

o

&] Done 25| Lacal intraret

Figure 4-2 Request headers sent by Internet Explorer 5 on Windows 98.

4.3 HTTP |.l1 Request Headers

Access to the request headers permits servlets to perform a number of opti-
mizations and to provide a number of features not otherwise possible. This
section presents each of the possible HTTP 1.1 request headers along with a
brief summary of how servlets can make use of them. The following sections
give more detailed examples.

Note that HTTP 1.1 supports a superset of the headers permitted in
HTTP 1.0. For additional details on these headers, see the HTTP 1.1 specifi-
cation, given in RFC 2616. There are a number of places the official RFCs
are archived on-line; your best bet is to start at http://www.rfc-edi-
tor.org/ to get a current list of the archive sites.

Accept

This header specifies the MIME types that the browser or other client
can handle. A servlet that can return a resource in more than one format

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.3 HTTP I.1 Request Headers

can examine the Accept header to decide which format to use. For exam-
ple, images in PNG format have some compression advantages over those
in GIF, but only a few browsers support PNG. If you had images in both
formats, a servlet could call request.getHeader ("Accept"), check for
image/png, and if it finds it, use xxx.png filenames in all the MG ele-
ments it generates. Otherwise it would just use xxx.gif.

See Table 7.1 in Section 7.2 (HTTP 1.1 Response Headers and Their
Meaning) for the names and meanings of the common MIME types.

Accept-Charset

This header indicates the character sets (e.g., ISO-8859-1) the browser
can use.

Accept-Encoding

This header designates the types of encodings that the client knows how
to handle. If it receives this header, the server is free to encode the page
by using the format specified (usually to reduce transmission time),
sending the content-Encoding response header to indicate that it has
done so. This encoding type is completely distinct from the MIME type
of the actual document (as specified in the content-Type response
header), since this encoding is reversed before the browser decides what
to do with the content. On the other hand, using an encoding the
browser doesn’t understand results in totally incomprehensible pages.
Consequently, it is critical that you explicitly check the Accept-Encod-
ing header before using any type of content encoding. Values of gzip
or compress are the two standard possibilities.

Compressing pages before returning them is a very valuable service
because the decoding time is likely to be small compared to the savings
in transmission time. See Section 4.4 (Sending Compressed Web
Pages) for an example where compression reduces download times by
a factor of 10.

Accept-Language

This header specifies the client’s preferred languages, in case the servlet
can produce results in more than one language. The value of the header
should be one of the standard language codes such as en, en-us, da,
etc. See RFC 1766 for details.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

100 Chapter 4 Handling the Client Request: HTTP Request Headers

Authorization

This header is used by clients to identify themselves when accessing
password-protected Web pages. See Section 4.5 (Restricting Access to
Web Pages) for an example.

Cache-Control

This header can be used by the client to specify a number of options for
how pages should be cached by proxy servers. The request header is
usually ignored by servlets, but the cache-control response header
can be valuable to indicate that a page is constantly changing and
shouldn’t be cached. See Chapter 7 (Generating the Server Response:
HTTP Response Headers) for details.

Connection

This header tells whether or not the client can handle persistent HTTP
connections. These let the client or other browser retrieve multiple files
(e.g., an HTML file and several associated images) with a single socket
connection, saving the overhead of negotiating several independent
connections. With an HTTP 1.1 request, persistent connections are the
default, and the client must specify a value of close for this header to
use old-style connections. In HTTP 1.0, a value of keep-alive means
that persistent connections should be used.

Each HTTP request results in a new invocation of a servlet, regardless
of whether the request is a separate connection. That is, the server
invokes the servlet only after the server has already read the HTTP
request. This means that servlets need help from the server to handle
persistent connections. Consequently, the servlet’s job is just to make it
possible for the server to use persistent connections, which is done by
sending a Content-Length response header. Section 7.4 (Using Per-
sistent HTTP Connections) has a detailed example.

Content-Length

This header is only applicable to PosT requests and gives the size of the
POST data in bytes. Rather than calling request . get IntHeader ("Con-
tent-Length"), you can Simply use request.getContentLength ().
However, since servlets take care of reading the form data for you (see
Chapter 3, “Handling the Client Request: Form Data”), you are
unlikely to use this header explicitly.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.3 HTTP I.1 Request Headers 101

Content-Type

Although this header is usually used in responses from the server, it can
also be part of client requests when the client attaches a document as

the posT data or when making PUT requests. You can access this header
with the shorthand getcontentType method of HttpServletRequest.

Cookie

This header is used to return cookies to servers that previously sent
them to the browser. For details, see Chapter 8 (Handling Cookies).
Technically, cookie is not part of HTTP 1.1. It was originally a
Netscape extension but is now very widely supported, including in both
Netscape and Internet Explorer.

Expect

This rarely used header lets the client tell the server what kinds of
behaviors it expects. The one standard value for this header, 100-con-
tinue, is sent by a browser that will be sending an attached document
and wants to know if the server will accept it. The server should send a
status code of either 100 (Continue) or 417 (Expectation Failed)in
such a case. For more details on HTTP status codes, see Chapter 6
(Generating the Server Response: HTTP Status Codes).

From

This header gives the e-mail address of the person responsible for the
HTTP request. Browsers do not send this header, but Web spiders
(robots) often set it as a courtesy to help identify the source of server
overloading or repeated improper requests.

Host

Browsers are required to specify this header, which indicates the host
and port as given in the original URL. Due to request forwarding and
machines that have multiple hostnames, it is quite possible that the
server could not otherwise determine this information. This header is
not new in HTTP 1.1, but in HTTP 1.0 it was optional, not required.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

102 Chapter 4 Handling the Client Request: HTTP Request Headers

If-Match

This rarely used header applies primarily to PUT requests. The client
can supply a list of entity tags as returned by the ETag response header,
and the operation is performed only if one of them matches.

If-Modified-Since

This header indicates that the client wants the page only if it has been
changed after the specified date. This option is very useful because it
lets browsers cache documents and reload them over the network only
when they've changed. However, servlets don’t need to deal directly
with this header. Instead, they should just implement the getLastMod-
ified method to have the system handle modification dates automati-
cally. An illustration is given in Section 2.8 (An Example Using Servlet
Initialization and Page Modification Dates).

If-None-Match

This header is like T£-Match, except that the operation should be per-
formed only if no entity tags match.

If-Range
This rarely used header lets a client that has a partial copy of a docu-

ment ask for either the parts it is missing (if unchanged) or an entire
new document (if it has changed since a specified date).

If-Unmodified-Since

This header is like T£-Modified-Since in reverse, indicating that the
operation should succeed only if the document is older than the speci-
fied date. Typically, Tf-Modified-Since is used for GET requests (“give
me the document only if it is newer than my cached version”), whereas
If-Unmodified-Since is used for pUT requests (“update this docu-
ment only if nobody else has changed it since I generated it”).

Pragma

A pPragma header with a value of no-cache indicates that a servlet that
is acting as a proxy should forward the request even if it has a local copy.
The only standard value for this header is no-cache.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.3 HTTP I.1 Request Headers 103

Proxy-Authorization

This header lets clients identify themselves to proxies that require it.
Servlets typically ignore this header, using Authorization instead.

Range
This rarely used header lets a client that has a partial copy of a docu-
ment ask for only the parts it is missing.

Referer

This header indicates the URL of the referring Web page. For example,
if you are at Web page 1 and click on a link to Web page 2, the URL of
Web page 1 is included in the Referer header when the browser
requests Web page 2. All major browsers set this header, so it is a useful
way of tracking where requests came from. This capability is helpful for
tracking advertisers who refer people to your site, for changing content
slightly depending on the referring site, or simply for keeping track of
where your traffic comes from. In the last case, most people simply rely
on Web server log files, since the Referer is typically recorded there.
Although it’s useful, don't rely too heavily on the Referer header since
it can be easily spoofed by a custom client. Finally, note that this header
is Referer, not the expected Referrer, due to a spelling mistake by one
of the original HTTP authors.

Upgrade

The Upgrade header lets the browser or other client specify a commu-
nication protocol it prefers over HTTP 1.1. If the server also supports
that protocol, both the client and the server can switch protocols. This
type of protocol negotiation is almost always performed before the serv-
let is invoked. Thus, servlets rarely care about this header.

User-Agent

This header identifies the browser or other client making the request
and can be used to return different content to different types of
browsers. Be wary of this usage, however; relying on a hard-coded list
of browser versions and associated features can make for unreliable
and hard-to-modify servlet code. Whenever possible, use something
specific in the HTTP headers instead. For example, instead of trying
to remember which browsers support gzip on which platforms, simply

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

104 Chapter 4 Handling the Client Request: HTTP Request Headers

check the accept-Encoding header. Admittedly, this is not always
possible, but when it is not, you should ask yourself if the browser-spe-
cific feature you are using really adds enough value to be worth the
maintenance cost.

Most Internet Explorer versions list a “Mozilla” (Netscape) version first
in their user-agent line, with the real browser version listed paren-
thetically. This is done for compatibility with JavaScript, where the
User-Agent header is sometimes used to determine which JavaScript
features are supported. Also note that this header can be easily spoofed,
a fact that calls into question the reliability of sites that use this header
to “show” market penetration of various browser versions. Hmm, mil-
lions of dollars in marketing money riding on statistics that could be
skewed by a custom client written in less than an hour, and I should take
those numbers as accurate ones?

Via
This header is set by gateways and proxies to show the intermediate
sites the request passed through.

Warning
This rarely used catchall header lets clients warn about caching or con-
tent transformation errors.

4.4 Sending Compressed Web
Pages

Several recent browsers know how to handle gzipped content, automatically
uncompressing documents that are marked with the content-Encoding
header and then treating the result as though it were the original document.
Sending such compressed content can be a real timesaver, since the time
required to compress the document on the server and then uncompress it on
the client is typically dwarfed by the savings in download time, especially
when dialup connections are used.

Browsers that support content encoding include most versions of Netscape
for Unix, most versions of Internet Explorer for Windows, and Netscape 4.7
and later for Windows. Earlier Netscape versions on Windows and Internet

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.4 Sending Compressed Web Pages 105

SOMETIMES I THINK THE WEB
IS A BIG PLOT TO KEEP
PEOPLE LIKE ME
AWAY FROM

NORMAL SOCIETY.

UH-OH, HE'S /5
ON TO ME.

IT CANCELS OUT ALL
THE PRODUCTIVITY
GAINS OF THE INFOR-
MATION AGE.

I CALCULATED THE TOTAL
TIME THAT HUMANS
HAVE WAITED FOR WEB
PAGES TO LOAD...

S.Adywms E-mail: SCOTTADAMS@AOL.COM

5[5]47 © 1997 United Feature Syndicate, Inc.

DILBERT reprinted by permission of United Syndicate, Inc.

Explorer on non-Windows platforms generally do not support content encod-
ing. Fortunately, browsers that support this feature indicate that they do so
by setting the Accept-Encoding request header. Listing 4.2 shows a servlet
that checks this header, sending a compressed Web page to clients that sup-
port gzip encoding and sending a regular Web page to those that don’t. The
result showed a tenfold speedup for the compressed page when a dialup con-
nection was used. In repeated tests with Netscape 4.7 and Internet Explorer
5.0 on a 28.8K modem connection, the compressed page averaged less than 5
seconds to completely download, whereas the uncompressed page consis-
tently took more than 50 seconds.

Core Tip

A

Gzip compression can dramatically reduce the download time of long text Q
pages. \q\ ”

Implementing compression is straightforward since gzip format is built in
to the Java programming languages via classes in java.util.zip. The serv-
let first checks the Accept-Encoding header to see if it contains an entry for
gzip. If so, it uses a GzIPOutputStream to generate the page, specifying
gzip as the value of the content-Encoding header. You must explicitly call
close when using a GZIPoutputsStream. If gzip is not supported, the servlet
uses the normal Printwriter to send the page. To make it easy to create
benchmarks with a single browser, I also added a feature whereby compres-
sion could be suppressed by including ?encoding=none at the end of the
URL.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

106 Chapter 4 Handling the Client Request: HTTP Request Headers

Listing 4.2 EncodedPage.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.zip.*;

/** Example showing benefits of gzipping pages to browsers
* that can handle gzip.
*/

public class EncodedPage extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
String encodings = request.getHeader ("Accept-Encoding");
String encodeFlag = request.getParameter ("encoding") ;

PrintWriter out;
String title;
if ((encodings != null) &&
(encodings.indexOf ("gzip") != -1) &&
!"none".equals (encodeFlag)) {
title = "Page Encoded with Gzip";
OutputStream outl = response.getOutputStream();
out = new PrintWriter (new GZIPOutputStream(outl), false);
response.setHeader ("Content-Encoding", "gzip");

} else {
title = "Unencoded Page";
out = response.getWriter():;
}

out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1l ALIGN=CENTER>" + title + "</HI1>\n");

String line = "Blah, blah, blah, blah, blah. " +

"Yadda, vyadda, vyadda, yadda.";
for(int i=0; 1<10000; i++) {
out.println(line);

}

out.println("</BODY></HTML>") ;

out.close();

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.5 Restricting Access to Web Pages 107

'3 Page Encoded with GZip - Microsoft Internet Explorer -10 ﬂ
File Edit Wiew Favortes Tool: Help n
&5 - QRNAREIES Lirks >

Page Encoded with GZip

Blah, blah, blah, blah, blah. Yadda, vadda, vadda, vadda. Blah, blah, blah, blah,
blah. Yadda, vadda, vadda, vadda. Blah, blah, blah, blah, blah. Tadda, yadda,
vadda, yadda. Blah, blah, blah, blah, blah. Yadda, yadda, yadda, yadda. Blah,

blah, blah, blah, blah Yadda, vadda, vadda, vadda Blah, blah, blah, blah, blah
Yadda, yadda, yadda, yadda. BElah, blah, blah, blah, blah. Yadda, vadda,

vadda, yadda. Blah, blah, blah, blah, blah. Yadda, yadda, yadda, yadda. Blah,

blah, blah, blah, blah. Yadda, yadda, yadda, yadda. Blah, blah, blah, blah, blah. =]

] Done 5‘:‘% Local intranst

Figure 4-3 Since the Windows version of Internet Explorer 5.0 supports gzip, this
page was sent gzipped over the network and reconstituted by the browser, resulting in a
large saving in download time.

4.5 Restricting Access to Web
Pages

Many Web servers support standard mechanisms for limiting access to desig-
nated Web pages. These mechanisms can apply to static pages as well as
those generated by servlets, so many authors use their server-specific mecha-
nisms for restricting access to servlets. Furthermore, most users at e-com-
merce sites prefer to use regular HTML forms to provide authorization
information since these forms are more familiar, can provide more explana-
tory information, and can ask for additional information beyond just a user-
name and password. Once a servlet that uses form-based access grants initial
access to a user, it would use session tracking to give the user access to other
pages that require the same level of authorization. See Chapter 9 (Session
Tracking) for more information.

Nevertheless, form-based access control requires more effort on the part
of the servlet developer, and HTTP-based authorization is sufficient for many
simple applications. Here’s a summary of the steps involved for “basic” autho-
rization. There is also a slightly better variation called “digest” authorization,
but among the major browsers, only Internet Explorer supports it.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter 4 Handling the Client Request: HTTP Request Headers

1. Check whether there is an Authorization header. If there is
no such header, go to Step 2. If there is, skip over the word
“basic” and reverse the base64 encoding of the remaining part.
This results in a string of the form username :password. Check
the username and password against some stored set. If it
matches, return the page. If not, go to Step 2.

2. Return a 401 (Unauthorized) response code and a header of
the following form:
WWW-Authenticate: BASIC realm="some-name"
This response instructs the browser to pop up a dialog box tell-
ing the user to enter a name and password for some-name, then
to reconnect with that username and password embedded in a
single base64 string inside the Authorization header.

If you care about the details, base64 encoding is explained in RFC 1521
(remember, to retrieve RFCs, start at http://www.rfc-editor.org/ to
get a current list of the RFC archive sites). However, there are probably
only two things you need to know about it. First, it is not intended to pro-
vide security, as the encoding can be easily reversed. So, it does not obviate
the need for SSL to thwart attackers who might be able to snoop on your
network connection (no easy task unless they are on your local subnet).
SSL, or Secure Sockets Layer, is a variation of HTTP where the entire
stream is encrypted. It is supported by many commercial servers and is
generally invoked by using https in the URL instead of http. Servlets can
run on SSL servers just as easily as on standard servers, and the encryption
and decryption is handled transparently before the servlets are invoked.
The second point you should know about base64 encoding is that Sun pro-
vides the sun.misc.BASE64Decoder class, distributed with both JDK 1.1
and 1.2, to decode strings that were encoded with base64. Just be aware
that classes in the sun package hierarchy are not part of the official lan-
guage specification, and thus are not guaranteed to appear in all implemen-

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.5 Restricting Access to Web Pages 109

tations. So, if you use this decoder class, make sure that you explicitly
include the class file when you distribute your application.

Listing 4.3 presents a password-protected servlet. It is explicitly registered
with the Web server under the name secretservlet. The process for regis-
tering servlets varies from server to server, but Section 2.7 (An Example
Using Initialization Parameters) gives details on the process for Tomcat, the
JSWDK and the Java Web Server. The reason the servlet is registered is so
that initialization parameters can be associated with it, since most servers
don’t let you set initialization parameters for servlets that are available merely
by virtue of being in the servlets (or equivalent) directory. The initializa-
tion parameter gives the location of a Java Properties file that stores user
names and passwords. If the security of the page was very important, you'd
want to encrypt the passwords so that access to the properties file would
not equate to knowledge of the passwords.

In addition to reading the incoming authorization header, the servlet
specifies a status code of 401 and sets the outgoing www-Authenticate
header. Status codes are discussed in detail in Chapter 6 (Generating the
Server Response: HTTP Status Codes), but for now, just note that they con-
vey high-level information to the browser and generally need to be set when-
ever the response is something other than the document requested. The
most common way to set status codes is through the use of the setstatus
method of HttpServletResponse, and you typically Supply a constant
instead of an explicit integer in order to make your code clearer and to pre-
vent typographic errors.

wnW-Authenticate and other HTTP response headers are discussed in
Chapter 7 (Generating the Server Response: HTTP Response Headers), but
for now note that they convey auxiliary information to support the response
specified by the status code, and they are commonly set through use of the
setHeader method OthtpServletResponse.

Figures 44, 4-5, and 4-6 show the result when a user first tries to access
the page, after the user enters an unknown password, and after the user
enters a known password. Listing 4.4 gives the program that built the simple
password file.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

110 Chapter 4 Handling the Client Request: HTTP Request Headers

Listing 4.3 ProtectedPage.java

package coreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import java.util.Properties;
import sun.misc.BASE64Decoder;

/** Example of password-protected pages handled directly
* by servlets.
*/

public class ProtectedPage extends HttpServlet {
private Properties passwords;
private String passwordFile;

/** Read the password file from the location specified
* Dby the passwordFile initialization parameter.
*/

public void init(ServletConfig config)

throws ServletException {

super.init (config) ;

try {
passwordFile = config.getInitParameter ("passwordFile");
passwords = new Properties();
passwords.load(new FileInputStream(passwordFile)) ;

} catch(IOException ioe) {1}

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String authorization = request.getHeader ("Authorization");

if (authorization == null) {
askForPassword (response) ;
} else {

String userInfo = authorization.substring(6).trim() ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.5 Restricting Access to Web Pages

Listing 4.3 ProtectedPage.java (continued)

BASE64Decoder decoder = new BASE64Decoder() ;
String nameAndPassword =

new String(decoder.decodeBuffer (userInfo));
int index = nameAndPassword.indexOf (":");
String user = nameAndPassword.substring (0, index) ;
String password = nameAndPassword.substring (index+1) ;
String realPassword = passwords.getProperty (user) ;

if ((realPassword != null) &&
(realPassword.equals (password))) {
String title = "Welcome to the Protected Page";

out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</HI1>\n" +
"Congratulations. You have accessed a\n" +
"highly proprietary company document.\n" +
"Shred or eat all hardcopies before\n" +
"going to bed tonight.\n" +
"</BODY></HTML>") ;

} else {
askForPassword (response) ;

// If no Authorization header was supplied in the request.

private void askForPassword (HttpServletResponse response) {
response.setStatus (response.SC_UNAUTHORIZED); // Ie 401
response.setHeader ("WWW-Authenticate",
"BASIC realm=\"privileged-few\"");

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

112 Chapter 4 Handling the Client Request: HTTP Request Headers

Uzername and Password Required

Enter uzername for privileged-few at localhost:

Uszer Mame: ||

Pazzword: I

(] I Cancel |

Figure 4-4 |Initial result when accessing SecretServlet (the registered name for
the ProtectedPage servlet).

Metscape

@ Authorization failed. Retry?
: Cancel |

Figure 4-5 Result ofter entering incorrect name or password.

Welcome to the Protected Page - Netzcape

File Edit “iews Go Communicator Help

| w AV @ 3 N

i J'Bookmarks 7./ Locatinn:Ihttp:a’a"localhosta’servleh’secretSewIet ﬂ (57 What's Related

Welcome to the Protected Page

Congratulations. You have accessed a highly propretary company document.
=hred or eat all hardcopies before going to bed tonight.

[(== |Document: Done

Figure 4-6 Result affer entering known name and password.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

4.5 Restricting Access to Web Pages

Listing 44 PasswordBuilder.java

import java.util.*;
import java.io.*;

/** Application that writes a simple Java properties file
* containing usernames and associated passwords.
*/

public class PasswordBuilder {
public static void main (String[] args) throws Exception {
Properties passwords = new Properties();

passwords.put ("marty", "martypw") ;
passwords.put ("bj", "bjpw");
passwords.put ("lindsay", "lindsaypw") ;
passwords .put ("nathan", "nathanpw");

// This location should *not* be Web-accessible.
String passwordFile =

"C:\\JavaWebServer2.0\\data\\passwords.properties";

FileOutputStream out = new FileOutputStream(passwordFile) ;

// Using JDK 1.1 for portability among all servlet

// engines. In JDK 1.2, use "store" instead of "save"
// to avoid deprecation warnings.

passwords.save (out, "Passwords");

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

113

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

ACCESSING THE
STANDARD CGI
VARIABLES

y Topics in This Chapter

* The idea of “CGl variables”
* The servlet equivalent of each standard CGl variable

* A servlet that shows the values of all CGl variables

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

way Interface (CGI) programming, you are probably used to the idea of

“CGI variables.” These are a somewhat eclectic collection of informa-
tion about the current request. Some are based on the HTTP request line
and headers (e.g., form data), others are derived from the socket itself (e.g.,
the name and IP address of the requesting host), and still others are taken
from server installation parameters (e.g., the mapping of URLs to actual
paths).

Although it probably makes more sense to think of different sources of
data (request data, server information, etc.) as distinct, experienced CGI pro-
grammers may find it useful to see the servlet equivalent of each of the CGI
variables. If you don’t have a background in traditional CGI, first, count your
blessings; servlets are easier to use, more flexible and more efficient than
standard CGI. Second, just skim this chapter, noting the parts not directly
related to the incoming HTTP request. In particular, observe that you can
use getServletContext () .getRealPath to map a URI (the part of the
URL that comes after the host and port) to an actual path and that you can
use request .getRemoteHost and request.getRemoteAddress to get the
name and IP address of the client.

I f you come to servlets with a background in traditional Common Gate-

115

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

116 Chapter 5 Accessing the Standard CGI Variables

5.1 Servlet Equivalent of CGI
Variables

For each standard CGI variable, this section summarizes its purpose and the
means of accessing it from a servlet. As usual, once you are familiar with this
information, you may want to use Appendix A (Servlet and JSP Quick
Reference) as a reminder. Assume request is the HttpServletRequest
supplied to the doGet and doPost methods.

AUTH_TYPE

If an Authorization header was supplied, this variable gives the
scheme specified (basic or digest). Access it with request . getau-
thType ().

CONTENT_LENGTH

For POST requests only, this variable stores the number of bytes of data
sent, as given by the Content-Length request header. Technically,
since the CONTENT_LENGTH CGI variable is a string, the servlet
equivalent iS String.valueOf (request.getContentLength()) or
request.getHeader ("Content-Length"). You'll probably want to
just call request.getContentLength (), which returns an int.

CONTENT_TYPE

CONTENT_TYPE designates the MIME type of attached data, if specified.
See Table 7.1 in Section 7.2 (HTTP 1.1 Response Headers and Their
Meaning) for the names and meanings of the common MIME types.
Access CONTENT_TYPE with request.getContentType ().

DOCUMENT_ROOT

The DOCUMENT_ROOT variable specifies the real directory corresponding
to the URL http: //host/. Access it with

getServletContext () .getRealPath("/"). In older servlet specifica-
tions you accessed this variable with request .getRealPath("/"); the
older access method is no longer supported. Also, you can use get-
ServletContext () .getRealPath to map an arbitrary URI (i.e., URL
suffix that comes after the hostname and port) to an actual path on the
local machine.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

5.1 Servlet Equivalent of CGI Variables 117

HTTP_XXX YYY

Variables of the form HTTP_HEADER_NAME were how CGI programs
obtained access to arbitrary HTTP request headers. The cookie header
became HTTP_COOKIE, User-Agent became HTTP_USER_AGENT, Ref-
erer became HTTP_REFERER, and so forth. Servlets should just use
request .getHeader or one of the shortcut methods described in
Chapter 4 (Handling the Client Request: HTTP Request Headers).

PATH_INFO

This variable supplies any path information attached to the URL after the
address of the servlet but before the query data. For example, with
http://host/servlet/coreservlets.SomeServ-
let/foo/bar?baz=quux, the path information is / foo/bar. Since serv-
lets, unlike standard CGI programs, can talk directly to the server, they
don’t need to treat path information specially. Path information could be
sent as part of the regular form data and then translated by getservlet-
Context () .getRealPath. Access the value of PATH_INFO by using
request.getPathInfo().

PATH_TRANSLATED

PATH_TRANSLATED gives the path information mapped to a real path on
the server. Again, with servlets there is no need to have a special case for
path information, since a servlet can call getservletContext () .get-
RealPath to translate partial URLs into real paths. This translation is
not possible with standard CGI because the CGI program runs entirely
separately from the server. Access this variable by means of
request.getPathTranslated().

QUERY_STRING

For GET requests, this variable gives the attached data as a single string
with values still URL-encoded. You rarely want the raw data in servlets;
instead, use request.getParameter to access individual parameters,
as described in Chapter 3 (Handling the Client Request: Form Data).
However, if you do want the raw data, you can get it via
request.getQueryString ().

REMOTE_ADDR

This variable designates the IP address of the client that made the
request, as a String (e.g., "198.137.241.30"). Access it by calling
request.getRemoteAddr ().

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

118 Chapter 5 Accessing the Standard CGI Variables

REMOTE_HOST

REMOTE_HOST indicates the fully qualified domain name (e.g., white-
house.gov) of the client that made the request. The IP address is
returned if the domain name cannot be determined. You can access this
variable with request . getRemoteHost ().

REMOTE_USER

If an Authorization header was supplied and decoded by the server
itself, the REMOTE_USER variable gives the user part, which is useful
for session tracking in protected sites. Access it with request . get-
RemoteUser (). For decoding Authorization information directly in
servlets, see Section 4.5 (Restricting Access to Web Pages).

REQUEST_METHOD

This variable stipulates the HTTP request type, which is usually GET or
POST but is occasionally HEAD, PUT, DELETE, OPTIONS, or TRACE. Servlets
rarely need to look up REQUEST_METHOD explicitly, since each of the
request types is typically handled by a different servlet method (docet,
doPost, etc.). An exception is HEAD, which is handled automatically by
the service method returning whatever headers and status codes the
doGet method would use. Access this variable by means of
request.getMethod ().

SCRIPT_NAME

This variable specifies the path to the servlet, relative to the server’s root
directory. It can be accessed through request.getservietpath().

SERVER_NAME

SERVER_NAME gives the host name of the server machine. It can be
accessed by means of request .getServerName ().

SERVER_PORT

This variable stores the port the server is listening on. Technically, the

servlet equivalent is String.valueOf (request.getServerPort ()),
which returns a string. You'll usually just want request.getserver-
port (), which returns an int.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

5.2 A Servlet That Shows the CGI Variables

SERVER_PROTOCOL

The sERVER_PROTOCOL variable indicates the protocol name and ver-
sion used in the request line (e.g., HTTP/1.0 or HTTP/1.1). Access it by
Cﬂhngrequest.getProtocol(L

SERVER_SOFTWARE
This variable gives identifying information about the Web server. Access
itbylneansOfgetServletContext().getServerInfo(L

5.2 A Servlet That Shows the CGI
Variables

Listing 5.1 presents a servlet that creates a table showing the values of all the
CGI variables other than HTTP_xxx_yvy, which are just the HTTP request
headers described in Chapter 4. Figure 5-1 shows the result for a typical
request.

Listing 5.1 ShowCGIVariables.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Creates a table showing the current value of each
* of the standard CGI variables.
*/

public class ShowCGIVariables extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String[]l[] variables =
{ { "AUTH_TYPE", request.getAuthType() 1},
{ "CONTENT_ LENGTH",
String.valueOf (request.getContentLength()) 1},
{ "CONTENT_TYPE", request.getContentType() 1},

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

120 Chapter 5 Accessing the Standard CGI Variables

Listing 5.1 ShowCGIVariables.java (continued)

{ "DOCUMENT_ ROOT",
getServletContext () .getRealPath("/") 1},
"PATH_INFO", request.getPathInfo() },
"PATH_TRANSLATED", request.getPathTranslated() 1},
"QUERY_STRING", request.getQueryString() 1},
"REMOTE_ADDR", request.getRemoteAddr() 1},
"REMOTE_HOST", request.getRemoteHost() 1},
"REMOTE_USER", request.getRemoteUser() 1},
"REQUEST_METHOD", request.getMethod() 1},
"SCRIPT NAME", request.getServletPath() },
"SERVER_NAME", request.getServerName() },
"SERVER_PORT",
String.valueOf (request.getServerPort()) 1},
"SERVER_PROTOCOL", request.getProtocol() 1},
{ "SERVER_SOFTWARE",
getServletContext () .getServerInfo() }

e e T T e M B B e e M

~

};
String title = "Servlet Example: Showing CGI Variables";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</HI1>\n" +
"<TABLE BORDER=1 ALIGN=CENTER>\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
"<TH>CGI Variable Name<TH>Value") ;
for(int i=0; i<variables.length; i++) {
String varName = variables[i][0];
String varValue = variables[i][1];
if (varvValue == null)
varValue = "<I>Not specified</I>";
out.println ("<TR><TD>" + varName + "<TD>" + varValue);
}
out.println("</TABLE></BODY></HTML>") ;

/** POST and GET requests handled identically. */

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

5.2 A Servlet That Shows the CGI Variables 121

4'?"-— Servlet Example: Showing CGl Variables - Hetscape ;@ﬁ

File Edit Yiew Go Communicator Help

IEFPE VPN I Y o

,,‘é T Bokmarks £ Location: ‘hllp.f.fwebdsv.apl.|hu.edufssrvlst.f‘curessrvlsts ShowCGIV aniables/some/path/infoparam? =vall kparam2=val2 j @" Wwhat's Related

Servlet Example: Showing CGI Variables

CGI Variable Name Value
AUTH TYPE Not specified
CONTENT LENGTH |-1
CONTENT TYPE Not specified
DOCUMENT ROOT |(optlavaWebServer2 Ofpublic_html/
PATH _INFO fsomefpathinte
PATH TRAWSLATED (foptJava’™ebServer? Ofpublic_htmlisomeipath/info
QUERY STEING param 1=vall¶me=val?
REMOTE_ADDE 207.114.1.148

FEMOTE HOST pind-s30. dial-up.abs.net
REMOTE_TUSER Naf specified

REQUEST METHCD |GET

SCRIPT MNAME fservleticoreserviets. ShowCGIV ariables
SERVEE_MNAME webdev. apl jhu.edn

SERVEER_FORT 30

SERVER_FROTOCOL HTTE/1.0
SERVER_SOFTWARE |webpageservice/2.0

=& == Document: Done B W= N P Y

Figure 5-1 The standard CGl variables for a typical request.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

GENERATING THE

SERVERRESPONSE:
HTTP STATUS
CODES

y Topics in This Chapter

* The purpose of HTTP status codes
* The way to specify status codes from servlets
* The meaning of each of the HTTP I.I status code values

* A servlet that uses status codes to redirect users to other
sites and to report errors

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

hen a Web server responds to a request from a browser or other

Web client, the response typically consists of a status line, some

response headers, a blank line, and the document. Here is a
minimal example:

HTTP/1.1 200 OK
Content-Type: text/plain

Hello World

The status line consists of the HTTP version (HTTP/1.1 in the example
above), a status code (an integer; 200 in the above example), and a very short
message corresponding to the status code (ox in the example). In most cases,
all of the headers are optional except for content-Type, which specifies the
MIME type of the document that follows. Although most responses contain a
document, some don’t. For example, responses to HEAD requests should
never include a document, and there are a variety of status codes that essen-
tially indicate failure and either don’t include a document or include only a
short error message document.

Servlets can perform a variety of important tasks by manipulating the sta-
tus line and the response headers. For example, they can forward the user to
other sites; indicate that the attached document is an image, Adobe Acrobat
file, or HTML file; tell the user that a password is required to access the doc-
ument; and so forth. This chapter discusses the various status codes and what

123

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

124 Chapter 6 Generating the Server Response: HTTP Status Codes

can be accomplished with them, and the following chapter discusses the
response headers.

6.1 Specifying Status Codes

As just described, the HTTP response status line consists of an HTTP ver-
sion, a status code, and an associated message. Since the message is directly
associated with the status code and the HTTP version is determined by the
server, all a servlet needs to do is to set the status code. The way to do this is
by the setStatus method of HttpServletResponse. If your response
includes a special status code and a document, be sure to call setstatus
before actually returning any of the content via the printwriter. That’s
because an HTTP response consists of the status line, one or more headers,
a blank line, and the actual document, in that order. The headers can
appear in any order, and servlets buffer the headers and send them all at
once, so it is legal to set the status code (part of the first line returned) even
after setting headers. But servlets do not necessarily buffer the document
itself, since users might want to see partial results for long pages. In version
2.1 of the servlet specification, the printwriter output is not buffered at
all, so the first time you use the Printwriter, it is too late to go back and
set headers. In version 2.2, servlet engines are permitted to partially buffer
the output, but the size of the buffer is left unspecified. You can use the
getBuffersize method of HttpServletResponse to determine the size,
or use setBufferSize to specify it. In version 2.2 with buffering enabled,
you can set status codes until the buffer fills up and is actually sent to the
client. If you aren’t sure if the buffer has been sent, you can use the iscom-
mitted method to check.

Core Approach

\:\“\ ’ Be sure to set status codes before sending any document content to the
client.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.1 Specifying Status Codes 125

The setstatus method takes an int (the status code) as an argument,
but instead of using explicit numbers, it is clearer and more reliable to use
the constants defined in HttpServletResponse. The name of each con-
stant is derived from the standard HTTP 1.1 message for each constant, all
uppercase with a prefix of sc (for Status Code) and spaces changed to
underscores. Thus, since the message for 404 is “Not Found,” the equiva-
lent constant in HttpServletResponse is SC_NOT FOUND. In version 2.1 of
the servlet specification, there are three exceptions. The constant for code
302 is derived from the HTTP 1.0 message (Moved Temporarily), not the
HTTP 1.1 message (Found), and the constants for codes 307 (Temporary
Redirect) and 416 (Requested Range Not Satisfiable) are missing alto-
gether. Version 2.2 added the constant for 416, but the inconsistencies for
307 and 302 remain.

Although the general method of setting status codes is simply to call
response.setStatus (int), there are two common cases where a shortcut
method in HttpServletResponse is pﬂﬁdded.]uﬂibe aware that both of
these methods throw T0Exception, whereas setsStatus doesn't.

® public void sendError(int code, String message)
The sendError method sends a status code (usually 404) along
with a short message that is automatically formatted inside an
HTML document and sent to the client.

® public void sendRedirect(String url)
The sendrRedirect method generates a 302 response along
with a Location header giving the URL of the new document.
With servlets version 2.1, this must be an absolute URL. In
version 2.2, either an absolute or a relative URL is permitted
and the system automatically translates relative URLSs into
absolute ones before putting them in the Location header.

Setting a status code does not necessarily mean that you don’t need to
return a document. For example, although most servers automatically gener-
ate a small “File Not Found” message for 404 responses, a servlet might want
to customize this response. Remember that if you do send output, you have
tO(%ﬂlsetStatus(n‘sendErrortht

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

126 Chapter 6 Generating the Server Response: HTTP Status Codes

6.2 HTTP |.1 Status Codes and
Their Purpose

The following sections describe each of the status codes available for use in
servlets talking to HTTP 1.1 clients, along with the standard message associ-
ated with each code. A good understanding of these codes can dramatically
increase the capabilities of your servlets, so you should at least skim the
descriptions to see what options are at your disposal. You can come back to
get details when you are ready to make use of some of the capabilities. Note
that Appendix A (Servlet and JSP Quick Reference) presents a brief summary
of these codes in tabular format.

The complete HTTP 1.1 specification is given in RFC 2616, which you can
access on-line by going to http://www.rfc-editor.org/ and following the
links to the latest RFC archive sites. Codes that are new in HTTP 1.1 are
noted, since many browsers support only HTTP 1.0. You should only send
the new codes to clients that support HTTP 1.1, as verified by checking
request.getRequestProtocol.

The rest of this section describes the specific status codes available in
HTTP 1.1. These codes fall into five general categories:

e 100-199
Codes in the 100s are informational, indicating that the client
should respond with some other action.

e 200-299
Values in the 200s signify that the request was successful.
e 300-399

Values in the 300s are used for files that have moved and usually
include a Location header indicating the new address.

e 400-499
Values in the 400s indicate an error by the client.
e 500-599

Codes in the 500s signify an error by the server.

The constants in HttpServletResponse that represent the various codes
are derived from the standard messages associated with the codes. In serv-
lets, you usually refer to status codes only by means of these constants. For
example, you would use response.setSta-
tus (response.SC_NO_CONTENT) rather than response.setStatus (204),
since the latter is unclear to readers and is prone to typographical errors.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.2 HTTP I.l1 Status Codes and Their Purpose

However, you should note that servers are allowed to vary the messages
slightly, and clients pay attention only to the numeric value. So, for example,
you might see a server return a status line of HTTP/1.1 200 Document Fol-
lows instead of HTTP/1.1 200 OK.

100 (Continue)

If the server receives an Expect request header with a value of
100-continue, it means that the client is asking if it can send an
attached document in a follow-up request. In such a case, the server
should either respond with status 100 (sc_coNTINUE) to tell the client
to go ahead or use 417 (Expectation Failed) to tell the browser it
won't accept the document. This status code is new in HTTP 1.1.

101 (Switching Protocols)

A 101 (sc_sSWITCHING_PROTOCOLS) status indicates that the server will
comply with the Upgrade header and change to a different protocol.
This status code is new in HTTP 1.1.

200 (OK)

A value of 200 (sc_ok) means that everything is fine. The document fol-
lows for GET and poOST requests. This status is the default for servlets; if
you don’t use setstatus, you'll get 200.

201 (Created)

A status code of 201 (sc_CREATED) signifies that the server created a
new document in response to the request; the Location header should
give its URL.

202 (Accepted)

A value of 202 (sc_accepTED) tells the client that the request is being
acted upon, but processing is not yet complete.

203 (Non-Authoritative Information)

A 203 (SC_NON_AUTHORITATIVE_INFORMATION) status signifies that the
document is being returned normally, but some of the response headers
might be incorrect since a document copy is being used. This status
code is new in HTTP 1.1.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

127

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

128 Chapter 6 Generating the Server Response: HTTP Status Codes

204 (No Content)

A status code of 204 (sc_No_cONTENT) stipulates that the browser
should continue to display the previous document because no new doc-
ument is available. This behavior is useful if the user periodically
reloads a page by pressing the “Reload” button, and you can determine
that the previous page is already up-to-date. For example, a servlet
might do something like this:

int pageVersion =

Integer.parselnt (request.getParameter ("pageVersion")) ;
if (pageVersion >= currentVersion) {

response.setStatus (response.SC_NO_CONTENT) ;
} else {

// Create regular page

}

However, this approach does not work for pages that are automatically
reloaded via the Refresh response header or the equivalent <META
HTTP-EQUIV="Refresh" ...> HTML entry, since returning a 204 sta-
tus code stops future reloading. JavaScript-based automatic reloading
could still work in such a case, though. See the discussion of Refresh in
Section 7.2 (HTTP 1.1 Response Headers and Their Meaning) for
details.

205 (Reset Content)
A value of 205 (SC_RESET_CONTENT) means that there is no new docu-
ment, but the browser should reset the document view. This status

code is used to force browsers to clear form fields. It is new in HTTP
1.1.

206 (Partial Content)

A status code of 206 (SC_PARTIAL_CONTENT) is sent when the server
fulfills a partial request that includes a Range header. This value is new
in HTTP 1.1.

300 (Multiple Choices)

A value of 300 (sc_MULTIPLE_CHOICES) signifies that the requested
document can be found several places, which will be listed in the
returned document. If the server has a preferred choice, it should be
listed in the Location response header.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.2 HTTP I.l1 Status Codes and Their Purpose

301 (Moved Permanently)

The 301 (SC_MOVED_PERMANENTLY) status indicates that the requested
document is elsewhere; the new URL for the document is given in the
Location response header. Browsers should automatically follow the
link to the new URL.

302 (Found)

This value is similar to 301, except that the URL given by the Location
header should be interpreted as a temporary replacement, not a perma-
nent one. Note: in HTTP 1.0, the message was Moved Temporarily
instead of Found, and the constant in HttpServletResponse is
SC_MOVED_TEMPORARILY, not the expected sc_Founp.

Core Note

The constant representing 302 is SC_MOVED_TEMPORARILY, not
SC_FOUND.

Status code 302 is very useful because browsers automatically follow
the reference to the new URL given in the Location response header.
It is so useful, in fact, that there is a special method for it, sendredi-
rect. Using response.sendRedirect (url) has a couple of advan-
tages over using

response.setStatus (response.SC_MOVED_TEMPORARILY) and
response.setHeader ("Location", url). First, it is shorter and
easier. Second, with sendredirect, the servlet automatically builds a
page containing the link to show to older browsers that don’t automat-
ically follow redirects. Finally, with version 2.2 of servlets (the version
in J2EE), sendrRedirect can handle relative URLs, automatically
translating them into absolute ones. You must use an absolute URL in
version 2.1, however.

If you redirect the user to another page within your own site, you should
pass the URL through the encodeURL method of HttpservletRe-
sponse. Doing so is a simple precaution in case you ever use session
tracking based on URL-rewriting. URL-rewriting is a way to track users
who have cookies disabled while they are at your site. It is implemented
by adding extra path information to the end of each URL, but the serv-
let session-tracking API takes care of the details automatically. Session

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

o

<

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

130 Chapter 6 Generating the Server Response: HTTP Status Codes

tracking is discussed in Chapter 9, and it is a good idea to use enco-
deURL routinely so that you can add session tracking at a later time with
minimal changes to the code.

Core Approach

If you redirect users to a page within your site, plan ahead for session
tracking by using

response.sendRedirect (response.encodeURL (url)),
rather than just

response.sendRedirect (url).

This status code is sometimes used interchangeably with 301. For exam-
ple, if you erroneously ask for http: / /host /~user (missing the trailing
slash), some servers will reply with a 301 code while others will use 302.

Technically, browsers are only supposed to automatically follow the
redirection if the original request was GET. For details, see the discus-
sion of the 307 status code.

303 (See Other)

The 303 (SC_SEE_OTHER) status is similar to 301 and 302, except that
if the original request was PosT, the new document (given in the
Location header) should be retrieved with GeT. This code is new in
HTTP 1.1.

304 (Not Modified)

When a client has a cached document, it can perform a conditional
request by supplying an If-Modified-Since header to indicate that it
only wants the document if it has been changed since the specified date.
A value of 304 (sc_NOoT_MODIFIED) means that the cached version is
up-to-date and the client should use it. Otherwise, the server should
return the requested document with the normal (200) status code. Serv-
lets normally should not set this status code directly. Instead, they
should implement the getLastModified method and let the default
service method handle conditional requests based upon this modifica-
tion date. An example of this approach is given in Section 2.8 (An Exam-
ple Using Servlet Initialization and Page Modification Dates).

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.2 HTTP I.l1 Status Codes and Their Purpose 131

305 (Use Proxy)

A value of 305 (sc_usE_PROXY) signifies that the requested document
should be retrieved via the proxy listed in the Location header. This
status code is new in HTTP 1.1.

307 (Temporary Redirect)

The rules for how a browser should handle a 307 status are identical to
those for 302. The 307 value was added to HTTP 1.1 since many brows-
ers erroneously follow the redirection on a 302 response even if the
original message is a POST. Browsers are supposed to follow the redirec-
tion of a POST request only when they receive a 303 response status.
This new status is intended to be unambiguously clear: follow redi-
rected GET and POST requests in the case of 303 responses; follow redi-
rected GET but not PoST requests in the case of 307 responses. Note:
For some reason there is no constant in HttpServletResponse corre-
sponding to this status code. This status code is new in HTTP 1.1.

Core Note

There is no SC_TEMPORARY_REDIRECT constant in
HttpServletResponse, so you have to use 307 explicitly.

400 (Bad Request)

A 400 (sc_BAD_REQUEST) status indicates bad syntax in the client
request.

401 (Unauthorized)

A value of 401 (sc_UNAUTHORIZED) signifies that the client tried to
access a password-protected page without proper identifying informa-
tion in the Authorization header. The response must include a
wwW-Authenticate header. For an example, see Section 4.5, “Restrict-
ing Access to Web Pages.”

403 (Forbidden)

A status code of 403 (sc_FORBIDDEN) means that the server refuses to
supply the resource, regardless of authorization. This status is often the
result of bad file or directory permissions on the server.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

132 Chapter 6 Generating the Server Response: HTTP Status Codes

404 (Not Found)

The infamous 404 (sc_NoT_FOUND) status tells the client that no
resource could be found at that address. This value is the standard “no
such page” response. It is such a common and useful response that
there is a special method for it in the HttpServletResponse class:
sendError ("message"). The advantage of sendError over setSta-
tus is that, with sendError, the server automatically generates an error
page showing the error message. Unfortunately, however, the default
behavior of Internet Explorer 5 is to ignore the error page you send
back and displays its own, even though doing so contradicts the HTTP
specification. To turn off this setting, go to the Tools menu, select Inter-
net Options, choose the Advanced tab, and make sure “Show friendly
HTTP error messages” box is not checked. Unfortunately, however, few
users are aware of this setting, so this “feature” prevents most users of
Internet Explorer version 5 from seeing any informative messages you
return. Other major browsers and version 4 of Internet Explorer prop-
erly display server-generated error pages. See Figures 6-3 and 6—4 for
an example.

Core Warning

o

k‘\ ’ By default, Internet Explorer version 5 ignores server-generated error pages.

405 (Method Not Allowed)

A 405 (sC_METHOD_NOT_ALLOWED) value indicates that the request
method (GET, POST, HEAD, PUT, DELETE, etc.) was not allowed for this
particular resource. This status code is new in HTTP 1.1.

406 (Not Acceptable)

A value of 406 (sc_NOT_ACCEPTABLE) signifies that the requested
resource has a MIME type incompatible with the types specified
by the client in its Accept header. See Table 7.1 in Section 7.2
(HTTP 1.1 Response Headers and Their Meaning) for the names
and meanings of the common MIME types. The 406 value is new in
HTTP 1.1.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.2 HTTP I.l1 Status Codes and Their Purpose 133

407 (Proxy Authentication Required)

The 407 (Sc_PROXY_AUTHENTICATION_REQUIRED) value is similar
to 401, but it is used by proxy servers. It indicates that the client must
authenticate itself with the proxy server. The proxy server returns a
Proxy-Authenticate response header to the client, which results
in the browser reconnecting with a Proxy-Authorization request
header. This status code is new in HTTP 1.1.

408 (Request Timeout)
The 408 (sc_REQUEST_TIMEOUT) code means that the client took too
long to finish sending the request. It is new in HTTP 1.1.

409 (Conflict)

Usually associated with PUT requests, the 409 (sc_CONFLICT) status is
used for situations such as an attempt to upload an incorrect version of a
file. This status code is new in HTTP 1.1.

410 (Gone)

A value of 410 (sc_coNE) tells the client that the requested document
is gone and no forwarding address is known. Status 410 differs from
404 in that the document is known to be permanently gone, not just
unavailable for unknown reasons, as with 404. This status code is new
in HTTP 1.1.

411 (Length Required)

A status of 411 (SC_LENGTH_REQUIRED) signifies that the server cannot
process the request (assumedly a POST request with an attached docu-
ment) unless the client sends a content-Length header indicating the
amount of data being sent to the server. This value is new in HTTP 1.1.

412 (Precondition Failed)
The 412 (SC_PRECONDITION_FAILED) status indicates that some pre-

condition specified in the request headers was false. It is new in HTTP
1.1.

413 (Request Entity Too Large)
A status code of 413 (SC_REQUEST_ENTITY_TOO_LARGE) tells the client
that the requested document is bigger than the server wants to handle

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

134 Chapter 6 Generating the Server Response: HTTP Status Codes

now. If the server thinks it can handle it later, it should include a
Retry-After response header. This value is new in HTTP 1.1.

414 (Request URI Too Long)

The 414 (SC_REQUEST_URI_TOO_LONG) status is used when the URI is
too long. In this context, “URI” means the part of the URL that came
after the host and port in the URL. For example, in
http://www.y2k-disaster.com:8080/we/look/silly/now/, the
URI is /we/look/silly/now/. This status code is new in HTTP 1.1.

415 (Unsupported Media Type)
A value of 415 (sC_UNSUPPORTED_MEDIA_TYPE) means that the request

had an attached document of a type the server doesn’t know how to
handle. This status code is new in HTTP 1.1.

416 (Requested Range Not Satisfiable)

A status code of 416 signifies that the client included an unsatisfiable
Range header in the request. This value is new in HTTP 1.1. Surpris-
ingly, the constant that corresponds to this value was omitted from
HttpServletResponse in version 2.1 of the servlet APIL

Core Note

In version 2.1 of the servlet specification, there is no
SC_REQUESTED_RANGE_NOT_SATISFIABLE constant in
HttpServletResponse, so you have to use 416 explicitly. The constant
is available in version 2.2 and later.

417 (Expectation Failed)

If the server receives an Expect request header with a value of
100-continue, it means that the client is asking if it can send an
attached document in a follow-up request. In such a case, the server
should either respond with this status (417) to tell the browser it won't
accept the document or use 100 (sc_coNTINUE) to tell the client to go
ahead. This status code is new in HTTP 1.1.

500 (Internal Server Error)

500 (SC_INTERNAL_SERVER_ERROR) is the generic “server is confused”
status code. It often results from CGI programs or (heaven forbid!)
servlets that crash or return improperly formatted headers.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.3 A Front End to Various Search Engines

501 (Not Implemented)

The 501 (sc_NOT_IMPLEMENTED) status notifies the client that the
server doesn’t support the functionality to fulfill the request. It is used,
for example, when the client issues a command like puT that the server
doesn’t support.

502 (Bad Gateway)

A value of 502 (sc_BAD_GATEWAY) is used by servers that act as proxies
or gateways; it indicates that the initial server got a bad response from
the remote server.

503 (Service Unavailable)

A status code of 503 (SC_SERVICE_UNAVAILABLE) signifies that the
server cannot respond because of maintenance or overloading. For
example, a servlet might return this header if some thread or database
connection pool is currently full. The server can supply a Retry-After
header to tell the client when to try again.

504 (Gateway Timeout)

A value of 504 (sc_GATEwAY_TIMEOUT) is used by servers that act as
proxies or gateways; it indicates that the initial server didn’t get a timely
response from the remote server. This status code is new in HTTP 1.1.

505 (HTTP Version Not Supported)

The 505 (SC_HTTP_VERSION_NOT_ SUPPORTED) code means that the
server doesn’t support the version of HTTP named in the request line.
This status code is new in HTTP 1.1.

6.3 A Front End to Various Search
Engines

Listing 6.1 presents an example that makes use of the two most common sta-
tus codes other than 200 (OK): 302 (Found) and 404 (Not Found). The 302
code is set by the shorthand sendredirect method of HttpServletRe-
sponse, and 404 is specified by sendError.

In this application, an HTML form (see Figure 6-1 and the source code in
Listing 6.3) first displays a page that lets the user choose a search string, the
number of results to show per page, and the search engine to use. When the

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

135

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

136 Chapter 6 Generating the Server Response: HTTP Status Codes

form is submitted, the servlet extracts those three parameters, constructs a
URL with the parameters embedded in a way appropriate to the search
engine selected (see the searchspec class of Listing 6.2), and redirects the
user to that URL (see Figure 6-2). If the user fails to choose a search engine
or specify search terms, an error page informs the client of this fact (see Fig-
ures 6-3 and 6-4).

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.3 A Front End to Various Search Engines

Listing 6. SearchEngines.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/** Servlet that takes a search string, number of results per

*

E A

page, and a search engine name, sending the query to
that search engine. Illustrates manipulating

the response status line. It sends a 302 response
(via sendRedirect) if it gets a known search engine,
and sends a 404 response (via sendError) otherwise.

public class SearchEngines extends HttpServlet {

public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
String searchString = request.getParameter ("searchString");
if ((searchString == null) ||

(searchString.length() == 0)) {
reportProblem(response, "Missing search string.");
return;

}
// The URLEncoder changes spaces to "+" signs and other
// non-alphanumeric characters to "%$XY", where XY is the
// hex value of the ASCII (or ISO Latin-1) character.
// Browsers always URL-encode form values, so the
// getParameter method decodes automatically. But since
// we're just passing this on to another server, we need to
// re-encode it.
searchString = URLEncoder.encode (searchString) ;
String numResults =

request .getParameter ("numResults") ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

137

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

138 Chapter 6 Generating the Server Response: HTTP Status Codes

Listing 6.1 SearchEngines.java (continued)

if ((numResults == null) ||
(numResults.equals("0"))
(numResults.length() ==
numResults = "10";
}
String searchEngine =
request .getParameter ("searchEngine") ;
if (searchEngine == null) {
reportProblem(response, "Missing search engine name.");

|
0)) (

return;
}
SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs () ;
for(int i=0; i<commonSpecs.length; i++) {

SearchSpec searchSpec = commonSpecs[i];

if (searchSpec.getName () .equals (searchEngine)) {

String url =

searchSpec.makeURL (searchString, numResults) ;
response.sendRedirect (url);
return;

}

reportProblem (response, "Unrecognized search engine.");

}

private void reportProblem(HttpServletResponse response,
String message)
throws IOException {
response. sendError (response.SC_NOT FOUND,
"<H2>" + message + "</H2>");

}

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.3 A Front End to Various Search Engines

Listing 6.2 SearchSpec.java

package coreservlets;

/** Small class that encapsulates how to construct a
* gearch string for a particular search engine.
*/

class SearchSpec {
private String name, baseURL, numResultsSuffix;

private static SearchSpec[] commonSpecs =
{ new SearchSpec ("google",
"http://www.google.com/search?g=",
"&num=") ,
new SearchSpec("infoseek",
"http://infoseek.go.com/Titles?gt=",
"&nh="),
new SearchSpec("lycos",
"http://lycospro.lycos.com/cgi-bin/" +
"pursuit?query=",
"&maxhits="),
new SearchSpec ("hotbot",
"http://www.hotbot.com/?MT=",
"&DC=")
Y

public SearchSpec (String name,
String baseURL,
String numResultsSuffix) {
this.name = name;
this.baseURL = baseURL;
this.numResultsSuffix = numResultsSuffix;

public String makeURL (String searchString,
String numResults) {
return (baseURL + searchString +
numResultsSuffix + numResults) ;

public String getName () {
return (name) ;

public static SearchSpec[] getCommonSpecs () {
return (commonSpecs) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

139

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

140 Chapter 6 Generating the Server Response: HTTP Status Codes

/3 Searching the Web - Microsoft Internet Explorer

=10j x|
J File Edit Wiew Favortes Toolz Help |
[&-2-9RAQEIE-H - ks>
B
Searching the Web
Search String: Ijava sendets
Eesults to Show Per Page: IT
& Google | © Infoseek | © Lycos| © HotBot
H
|@ Done ’_’_ 25 Local intranet S

Figure 6-1

Front end to the SearchEngines servlet. See Listing 6.3 for the HTML
source code.

8 Google Search: java servlets - Microsoft Internet Explorer

J File Edit Wiew Favortes Toolz Help

|
J&-» - AEIE- S -

Help
‘ -;O{ ‘)glem |javaservlets |1Dresults =l

Google Search I'm feeling lucky |

Showing results 1210 of approximately 17,300 for java servlets. Search took 0.12 seconds.

The Java Apache Project

...The Java Apache Project This site has been designed for HTML 3.2 enabled...
...the Table of Contents. Enjoy. The Java Apache Project Developrent Tearmn...
java.apache orgf - Cached: 3k - GoogleScout

Java(Thl) Senviet AP

...out the Boston schedule." Java TM Servlets provide web developers...
...gerver side -- without a face. Java Servlets have made many web...
Java.sun.comfproducts/serdet/ - Cached: 15k - GoogleScout

|
] I_I_‘Q Internst 4
Figure 6-2 Result of the SearchEngines servlet when the form of Figure 6-1 is
submitted.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.3 A Front End to Various Search Engines 141

A HTTP 404 Nol - (o] x|

J Fie Edit “iew Favortes Toolz Help |

|- = - QN AESE-SH - |JLinks»

@ The page cannot be found

The page you are looking for might have been removed, had its
nare changed, or is temporarily unavailable.

Please try the following:

If you typed the page address in the Address bar, make

sure that it is spelled correctly,

Open the |ocalhost home page, and then look for links to b
the information you want,

Click the “= Back button to try another link.

Click Search to look for information on the Internet,

E
|@ ’_ ’_ @ Local intranet A

Figure 6-3 Result of SearchEngines servlet when no search string was specified.
Internet Explorer 5 displays its own error page, even though the servlet generates one.

04 Not Found - Hetscape

File Edit Wiew Go Communicator Help

404 Not Found

Missing search string.

| (== Document: Dane

Jgk 2P [F A 4

Figure 6-4 Result of SearchEngines servlet when no search string was specified.
Netscape correctly displays the servlet-generated error page.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

142 Chapter 6 Generating the Server Response: HTTP Status Codes

Listing 6.3 SearchEngines.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Searching the Web</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Searching the Web</H1>

<FORM ACTION="/servlet/coreservlets.SearchEngines">
<CENTER>
Search String:
<INPUT TYPE="TEXT" NAME="searchString">

Results to Show Per Page:
<INPUT TYPE="TEXT" NAME="numResults"
VALUE=10 SIZE=3>

<INPUT TYPE="RADIO" NAME="searchEngine"
VALUE="google">
Google |
<INPUT TYPE="RADIO" NAME="searchEngine"
VALUE="infoseek">
Infoseek |
<INPUT TYPE="RADIO" NAME="searchEngine"
VALUE="1lycos">
Lycos |
<INPUT TYPE="RADIO" NAME="searchEngine"
VALUE="hotbot">
HotBot

<INPUT TYPE="SUBMIT" VALUE="Search">
</CENTER>
< /FORM>

</BODY>
</HTML>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

6.3 A Front End to Various Search Engines 143

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

GENERATING THE

SERVERRESPONSE:
HTTP RESPONSE
HEADERS

y Topics in This Chapter

» Setting response headers from servlets
* The purpose of each of the HTTP I.l response headers
* Common MIME types

* A servlet that uses the rRefresh header to repeatedly
access ongoing computations

* Servlets that exploit persistent (keep-alive) HTTP
connections

* Generating GIF images from servlets

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

more response headers, a blank line, and the document. To get the
most out of your servlets, you need to know how to use the status line
and response headers effectively, not just how to generate the document.
Setting the HTTP response headers often goes hand in hand with setting
the status codes in the status line, as discussed in the previous chapter. For
example, all the “document moved” status codes (300 through 307) have an
accompanying Location header, and a 401 (Unauthorized) code always
includes an accompanying www-Authenticate header. However, specifying
headers can also play a useful role even when no unusual status code is set.
Response headers can be used to specify cookies, to supply the page modifi-
cation date (for client-side caching), to instruct the browser to reload the
page after a designated interval, to give the file size so that persistent HTTP
connections can be used, to designate the type of document being generated,
and to perform many other tasks.

3 response from a Web server normally consists of a status line, one or

7.1 Setting Response Headers
from Servlets

The most general way to specify headers is to use the setHeader method of
HttpServletResponse. This method takes two strings: the header name and

143

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

144 Chapter 7 Generating the Server Response: HTTP Response Headers

the header value. As with setting status codes, you must specify headers
before returning the actual document. With servlets version 2.1, this means
that you must set the headers before the first use of the Printwriter or raw
OutputStream that transmits the document content. With servlets version
2.2 (the version in J2EE), the Printwriter may use a buffer, so you can set
headers until the first time the buffer is flushed. See Section 6.1 (Specifying
Status Codes) for details.

4 A Core Approach
@ PP

—

Be sure to set response headers before sending any document content to
the client.

E

In addition to the general-purpose setHeader method, HttpServlet-
Response also has two specialized methods to set headers that contain dates
and integers:

® setDateHeader(String header, long milliseconds)
This method saves you the trouble of translating a Java date in
milliseconds since 1970 (as returned by
System.currentTimeMillis, Date.getTime, Or
Calendar.getTimeInMillis) into a GMT time string.

® setIntHeader (String header, int headerValue)
This method spares you the minor inconvenience of converting
an int to a String before inserting it into a header.

HTTP allows multiple occurrences of the same header name, and you
sometimes want to add a new header rather than replace any existing header
with the same name. For example, it is quite common to have multiple
Accept and set-Cookie headers that specify different supported MIME
types and different cookies, respectively. With servlets version 2.1, set-
Header, setDateHeader and setIntHeader always add new headers, so
there is no way to “unset” headers that were set earlier (e.g., by an inherited
method). With servlets version 2.2, setHeader, setDateHeader, and
setIntHeader replace any existing headers of the same name, whereas
addHeader, addDateHeader, and addIntHeader add a header regardless of
whether a header of that name already exists. If it matters to you whether a
specific header has already been set, use containsHeader to check.

Finally, HttpservletResponse also supplies a number of convenience
methods for specifying common headers. These methods are summarized as
follows.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.2 HTTP 1.1 Response Headers and Their Meaning 145

® setContentType
This method sets the content-Type header and is used by the
majority of servlets. See Section 7.5 (Using Servlets to Generate
GIF Images) for an example of its use.

® setContentLength
This method sets the content-Length header, which is useful
if the browser supports persistent (keep-alive) HTTP
connections. See Section 7.4 for an example.

® addCookie
This method inserts a cookie into the Set-cookie header.
There is no corresponding setCookie method, since it is
normal to have multiple set-cookie lines. See Chapter § for a
discussion of cookies.

® sendRedirect
As discussed in the previous chapter, the sendrRedirect
method sets the Location header as well as setting the status
code to 302. See Section 6.3 (A Front End to Various Search
Engines) for an example.

7.2 HTTP |.1 Response Headers
and Their Meaning

Following is a summary of the HTTP 1.1 response headers. A good under-
standing of these headers can increase the effectiveness of your servlets, so
you should at least skim the descriptions to see what options are at your dis-
posal. You can come back to get details when you are ready to make use of
the capabilities. Note that Appendix A (Servlet and JSP Quick Reference)
presents a brief summary of these headers for use as a reminder.

These headers are a superset of those permitted in HTTP 1.0. For addi-
tional details on these headers, see the HTTP 1.1 specification, given in RFC
2616. There are a number of places the official RFCs are archived on-line;
your best bet is to start at http://www.rfc-editor.org/ to get a current
list of the archive sites. Header names are not case sensitive, but are tradi-
tionally written with the first letter of each word capitalized.

Be cautious in writing servlets whose behavior depends on response head-
ers that are only available in HTTP 1.1, especially if your servlet needs to run
on the WWW “at large,” rather than on an intranet—many older browsers
support only HTTP 1.0. It is best to explicitly check the HTTP version with
request.getRequestProtocol before using new headers.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

146 Chapter 7 Generating the Server Response: HTTP Response Headers

Accept-Ranges

This header, which is new in HTTP 1.1, tells the client whether or not
you accept Range request headers. You typically specify a value of
bytes to indicate that you accept Range requests, and a value of none
to indicate that you do not.

Age
This header is used by proxies to indicate how long ago the document

was generated by the original server. It is new in HTTP 1.1 and is rarely
used by servlets.

Allow

The al1ow header specifies the request methods (GET, PosT, etc.) that
the server supports. It is required for 405 (Method Not Allowed)
responses. The default service method of servlets automatically gener-
ates this header for oPTIONS requests.

Cache-Control

This useful header tells the browser or other client the circumstances in
which the response document can safely be cached. It has the following
possible values:

e public: Document is cacheable, even if normal rules (e.g., for
password-protected pages) indicate that it shouldn’t be.

e private: Document is for a single user and can only be stored
in private (nonshared) caches.

® no-cache: Document should never be cached (i.e., used to
satisfy a later request). The server can also specify
“no-cache="headerl, header?2, ...,headerN"” to indicate
the headers that should be omitted if a cached response is later
used. Browsers normally do not cache documents that were
retrieved by requests that include form data. However, if a
servlet generates different content for different requests even
when the requests contain no form data, it is critical to tell the
browser not to cache the response. Since older browsers use the
pragma header for this purpose, the typical servlet approach is
to set both headers, as in the following example.
response.setHeader ("Cache-Control", "no-cache");

response.setHeader ("Pragma", "no-cache");

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.2 HTTP 1.1 Response Headers and Their Meaning 147

® no-store: Document should never be cached and should not
even be stored in a temporary location on disk. This header is
intended to prevent inadvertent copies of sensitive information.

¢ must-revalidate: Client must revalidate document with
original server (not just intermediate proxies) each time it is used.

e proxy-revalidate: This is the same as must-revalidate,
except that it applies only to shared caches.

* max-age=xxx: Document should be considered stale after xxx
seconds. This is a convenient alternative to the Expires header,
but only works with HTTP 1.1 clients. If both max-age and
Expires are present in the response, the max-age value takes
precedence.

e s-max-age=xxx: Shared caches should consider the document
stale after xxx seconds.

The cache-Control header is new in HTTP 1.1.

Connection

A value of close for this response header instructs the browser not to
use persistent HTTP connections. Technically, persistent connections
are the default when the client supports HTTP 1.1 and does not specify
a “Connection: close” request header (or when an HTTP 1.0 client
specifies “Connection: keep-alive”). However, since persistent con-
nections require a Content-Length response header, there is no reason
for a servlet to explicitly use the connection header. Just omit the con-
tent-Length header if you aren’t using persistent connections. See
Section 7.4 (Using Persistent HTTP Connections) for an example of the
use of persistent HTTP connections from servlets.

Content-Encoding

This header indicates the way in which the page was encoded during
transmission. The browser should reverse the encoding before deciding
what to do with the document. Compressing the document with gzip
can result in huge savings in transmission time; for an example, see Sec-
tion 4.4 (Sending Compressed Web Pages).

Content-Language

The content-Language header signifies the language in which the
document is written. The value of the header should be one of the stan-
dard language codes such as en, en-us, da, etc. See RFC 1766 for

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

148 Chapter 7 Generating the Server Response: HTTP Response Headers

details (you can access RFCs on-line at one of the archive sites listed at
http://www.rfc-editor.org/).

Content-Length

This header indicates the number of bytes in the response. This infor-
mation is needed only if the browser is using a persistent (keep-alive)
HTTP connection. See the connection header for determining when
the browser supports persistent connections. If you want your servlet to
take advantage of persistent connections when the browser supports it,
your servlet should write the document into a ByteArrayoutput-
stream, look up its size when done, put that into the content-Length
field with response. setContentLength, then send the content via
byteArrayStream.writeTo (response.getOutputStream()). For
an example of this approach, see Section 7.4.

Content-Location

This header supplies an alternative address for the requested docu-
ment. Content-Location is informational; responses that include this
header also include the requested document, unlike the case with the
Location header. This header is new to HTTP 1.1.

Content-MD5

The content-MD5 response header provides an MD5 digest for the
subsequent document. This digest provides a message integrity check
for clients that want to confirm they received the complete, unaltered
document. See RFC 1864 for details on MD5. This header is new in
HTTP 1.1.

Content-Range

This new HTTP 1.1 header is sent with partial-document responses and
specifies how much of the total document was sent. For example, a value
of “bytes 500-999/2345” means that the current response includes
bytes 500 through 999 of a document that contains 2345 bytes in total.

Content-Type

The content-Type header gives the MIME (Multipurpose Internet
Mail Extension) type of the response document. Setting this header is
so common that there is a special method in HttpServletResponse for
it: setContentType. MIME types are of the form maintype/subtype
for officially registered types, and of the form maintype/x-subtype for

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.2 HTTP 1.1 Response Headers and Their Meaning

unregistered types. The default MIME type for servlets is text /plain,
but servlets usually explicitly specify text/html. They can, however,
specify other types instead. For example, Section 7.5 (Using Servlets to
Generate GIF Images) presents a servlet that builds a GIF image based
upon input provided by specifying the image/gif content type, and
Section 11.2 (The contentType Attribute) shows how servlets and JSP
pages can generate Excel spreadsheets by specifying a content type of
application/vnd.ms-excel.

Table 7.1 lists some the most common MIME types used by servlets.

For more detail, many of the common MIME types are listed in RFC
1521 and RFC 1522 (again, see http: //www.rfc-editor.org/ fora
list of RFC archive sites). However, new MIME types are registered all
the time, so a dynamic list is a better place to look. The officially regis-
tered types are listed at
http://www.isi.edu/in-notes/iana/assign-
ments/media-types/media-types. For common unregistered types,
http://www.ltsw.se/knbase/internet/mime.htpisa good source.

Table 7.1

Common MIME Types

Type

application/msword
application/octet-stream
application/pdf
application/postscript
application/vnd.lotus-notes
application/vnd.ms-excel
application/vnd.ms-powerpoint
application/x-gzip
application/x-java-archive

application/x-java-serial-
ized-object

application/x-java-vm

Meaning

Microsoft Word document
Unrecognized or binary data
Acrobat (.pdf) file
PostScript file

Lotus Notes file

Excel spreadsheet
Powerpoint presentation
Gzip archive

JAR file

Serialized Java object

Java bytecode (.class) file

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

149

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

150 Chapter 7 Generating the Server Response: HTTP Response Headers

Table 7.1 Common MIME Types (continued)

application/zip
audio/basic
audio/x-aiff

audio/x-wav

Zip archive
Sound file in .au or .snd format
AIFF sound file

Microsoft Windows sound file

audio/midi MIDI sound file

text/css HTML cascading style sheet

text/html HTML document

text/plain Plain text

image/gif GIF image

image/jpeg JPEG image

image/png PNG image

image/tiff TIFF image

image/x-xbitmap X Window bitmap image

video/mpeg thExz\ddeOChp

video/quicktime QuickTime video clip
Date

This header specifies the current date in GMT format. If you want to
set the date from a servlet, use the setbateHeader method to specify
it. That method saves you the trouble of formatting the date string prop-
erly, as would be necessary with response. setHeader ("Date",
"..."). However, most servers set this header automatically, so servlets
don’t usually need to.

ETag
This new HTTP 1.1 header gives names to returned documents so that

they can be referred to by the client later (as with the T£-Match request
header).

Expires
This header stipulates the time at which the content should be consid-
ered out-of-date and thus no longer be cached. A servlet might use this

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.2 HTTP 1.1 Response Headers and Their Meaning 151

for a document that changes relatively frequently, to prevent the
browser from displaying a stale cached value. For example, the follow-
ing would instruct the browser not to cache the document for longer
than 10 minutes

long currentTime = System.currentTimeMillis();
long tenMinutes = 10*60*1000; // In milliseconds
response.setDateHeader ("Expires",

currentTime + tenMinutes) ;

Also see the max-age value of the cache-control header.

Last-Modified

This very useful header indicates when the document was last changed.
The client can then cache the document and supply a date by an 1£-Mod-
ified-since request header in later requests. This request is treated as
a conditional GET, with the document only being returned if the
Last-Modified date is later than the one specified for 1£-Modi -
fied-Since. Otherwise, a 304 (Not Modified) status line is returned,
and the client uses the cached document. If you set this header explicitly,
use the setDateHeader method to save yourself the bother of formatting
GMT date strings. However, in most cases you simply implement the
getLastModified method and let the standard service method handle
If-Modified-Since requests. For an example, see Section 2.8 (An
Example Using Servlet Initialization and Page Modification Dates).

Location

This header, which should be included with all responses that have a sta-
tus code in the 300s, notifies the browser of the document address. The
browser automatically reconnects to this location and retrieves the new
document. This header is usually set indirectly, along with a 302 status
code, by the sendredirect method of HttpServletResponse. An
example is given in Section 6.3 (A Front End to Various Search Engines).

Pragma

Supplying this header with a value of no-cache instructs HTTP 1.0 cli-
ents not to cache the document. However, support for this header was
inconsistent with HTTP 1.0 browsers. In HTTP 1.1, “cache-Control:
no-cache” is a more reliable replacement.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

152 Chapter 7 Generating the Server Response: HTTP Response Headers

Refresh

This header indicates how soon (in seconds) the browser should ask for
an updated page. For example, to tell the browser to ask for a new copy
in 30 seconds, you would specify a value of 30 with

response.setIntHeader ("Refresh", 30)

Note that Refresh does not stipulate continual updates; it just speci-
fies when the next update should be. So, you have to continue to sup-
ply Refresh in all subsequent responses, and sending a 204 (No
Content) status code stops the browser from reloading further. For an
example, see Section 7.3 (Persistent Servlet State and Auto-Reloading
Pages).

Instead of having the browser just reload the current page, you can
specify the page to load. You do this by supplying a semicolon and a
URL after the refresh time. For example, to tell the browser to go to
http://host/path after 5 seconds, you would do the following.

response.setHeader ("Refresh", "5; URL=http://host/path")

This setting is useful for “splash screens,” where an introductory image
or message is displayed briefly before the real page is loaded.

Note that this header is commonly set by
<META HTTP-EQUIV="Refresh"
CONTENT="5; URL=http://host/path">

in the HEAD section of the HTML page, rather than as an explicit header
from the server. That usage came about because automatic reloading or
forwarding is something often desired by authors of static HTML pages.
For servlets, however, setting the header directly is easier and clearer.

This header is not officially part of HTTP 1.1 but is an extension sup-
ported by both Netscape and Internet Explorer.

Retry-After

This header can be used in conjunction with a 503 (service Unavail-
able) response to tell the client how soon it can repeat its request.

Server

This header identifies the Web server. Servlets don’t usually set this; the
Web server itself does.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.2 HTTP 1.1 Response Headers and Their Meaning 153

Set-Cookie

The set-cookie header specifies a cookie associated with the page.
Each cookie requires a separate Set-Cookie header. Servlets should not
use response.setHeader ("Set-Cookie", ...), but instead should
use the special—purpose addCookie method of HttpServletResponse.
For details, see Chapter 8 (Handling Cookies). Technically, set-cookie
is not part of HTTP 1.1. It was originally a Netscape extension but is now
very widely supported, including in both Netscape and Internet Explorer.

Trailer

This new and rarely used HTTP 1.1 header identifies the header fields
that are present in the trailer of a message that is sent with “chunked”
transfer-coding. See Section 3.6 of the HTTP 1.1 specification (RFC
2616) for details. Recall that http: //www.rfc-editor.org/ maintains
an up-to-date list of RFC archive sites.

Transfer-Encoding

Supplying this header with a value of chunked indicates “chunked”
transfer-coding. See Section 3.6 of the HTTP 1.1 specification (RFC
2616) for details.

Upgrade

This header is used when the client first uses the Upgrade request
header to ask the server to switch to one of several possible new proto-
cols. If the server agrees, it sends a 101 (switching Protocols) status
code and includes an Upgrade response header with the specific proto-
col it is switching to. This protocol negotiation is usually carried on by
the server itself, not by a servlet.

Vary
This rarely used new HTTP 1.1 header tells the client which headers
can be used to determine if the response document can be cached.

Via
This header is used by gateways and proxies to list the intermediate sites
the request passed through. It is new in HTTP 1.1.

Warning
This new and rarely used catchall header lets you warn clients about
caching or content transformation errors.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

154 Chapter 7 Generating the Server Response: HTTP Response Headers

WWW-Authenticate

This header is always included with a 401 (Unauthorized) status code.
It tells the browser what authorization type and realm the client should
supply in its Authorization header. Frequently, servlets let pass-
word-protected Web pages be handled by the Web server’s specialized
mechanisms (e.g., .htaccess) rather than handling them directly. For
an example of servlets dealing directly with this header, see Section 4.5
(Restricting Access to Web Pages).

1.3 Persistent Servlet State and
Auto-Reloading Pages

Here is an example that lets you ask for a list of some large, randomly chosen
prime numbers. This computation may take some time for very large num-
bers (e.g., 150 digits), so the servlet immediately returns initial results but
then keeps calculating, using a low-priority thread so that it won’t degrade
Web server performance. If the calculations are not complete, the servlet
instructs the browser to ask for a new page in a few seconds by sending it a
Refresh header.

In addition to illustrating the value of HTTP response headers, this exam-
ple shows two other valuable servlet capabilities. First, it shows that the same
servlet can handle multiple simultaneous connections, each with its own
thread. So, while one thread is finishing a calculation for one client, another
client can connect and still see partial results.

Second, this example shows how easy it is for servlets to maintain state
between requests, something that is cumbersome to implement in tradi-
tional CGI and many CGI alternatives. Only a single instance of the servlet
is created, and each request simply results in a new thread calling the serv-
let’s service method (which calls doGet or doPost). So, shared data simply
has to be placed in a regular instance variable (field) of the servlet. Thus,
the servlet can access the appropriate ongoing calculation when the
browser reloads the page and can keep a list of the N most recently
requested results, returning them immediately if a new request specifies
the same parameters as a recent one. Of course, the normal rules that
require authors to synchronize multithreaded access to shared data still

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.3 Persistent Servlet State and Auto-Reloading Pages 155

apply to servlets. Servlets can also store persistent data in the servilet-
context object that is available through the getservletcontext method.
ServletContext has setattribute and getaAttribute methods that let
you store arbitrary data associated with specified keys. The difference
between storing data in instance variables and storing it in the servlet-
Ccontext is that the servletContext is shared by all servlets in the servlet
engine (or in the Web application, if your server supports such a capability).

Listing 7.1 shows the main servlet class. First, it receives a request that
specifies two parameters: numprimes and numbigits. These values are nor-
mally collected from the user and sent to the servlet by means of a simple
HTML form. Listing 7.2 shows the source code and Figure 7-1 shows the
result. Next, these parameters are converted to integers by means of a simple
utility that uses Integer.parseInt (see Listing 7.5). These values are then
matched by the findprimeList method to a Vector of recent or ongoing
calculations to see if there is a previous computation corresponding to the
same two values. If so, that previous value (of type PrimeList) is used; oth-
erwise, a new PrimeList is created and stored in the ongoing-calculations
Vector, potentially displacing the oldest previous list. Next, that PrimeList
is checked to determine if it has finished finding all of its primes. If not, the
client is sent a Refresh header to tell it to come back in five seconds for
updated results. Either way, a bulleted list of the current values is returned to
the client.

Listings 7.3 (PrimeList.java) and 7.4 (Primes.java) present auxiliary
code used by the servlet. PrimeList.java handles the background thread
for the creation of a list of primes for a specific set of values. Primes.java
contains the low-level algorithms for choosing a random number of a speci-
fied length and then finding a prime at or above that value. It uses built-in
methods in the BigInteger class; the algorithm for determining if the num-
ber is prime is a probabilistic one and thus has a chance of being mistaken.
However, the probability of being wrong can be specified, and I use an error
value of 100. Assuming that the algorithm used in most Java implementations
is the Miller-Rabin test, the likelihood of falsely reporting a composite num-
ber as prime is provably less than 2100 This is almost certainly smaller than
the likelihood of a hardware error or random radiation causing an incorrect
response in a deterministic algorithm, and thus the algorithm can be consid-
ered deterministic.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

156 Chapter 7 Generating the Server Response: HTTP Response Headers

Listing 7.1 PrimeNumbers.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Servlet that processes a request to generate n

* prime numbers, each with at least m digits.

It performs the calculations in a low-priority background
thread, returning only the results it has found so far.
If these results are not complete, it sends a Refresh
header instructing the browser to ask for new results a
little while later. It also maintains a list of a

small number of previously calculated prime lists

to return immediately to anyone who supplies the

same n and m as a recent completed computation.

EE I S

/

public class PrimeNumbers extends HttpServlet {
private Vector primeListVector = new Vector () ;
private int maxPrimeLists = 30;

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
int numPrimes =
ServletUtilities.getIntParameter (request,
"numPrimes", 50);
int numDigits =
ServletUtilities.getIntParameter (request,
"numDigits", 120);
PrimeList primeList =
findPrimeList (primeListVector, numPrimes, numDigits);

if (primeList == null) {
primelList = new PrimeList (numPrimes, numDigits, true);
// Multiple servlet request threads share the instance
// variables (fields) of PrimeNumbers. So
// synchronize all access to servlet fields.
synchronized (primeListVector) {
if (primeListVector.size() >= maxPrimelLists)
primelListVector.removeElementAt (0) ;
primeListVector.addElement (primeList) ;
}
}

Vector currentPrimes = primelList.getPrimes();

int numCurrentPrimes = currentPrimes.size();
int numPrimesRemaining = (numPrimes - numCurrentPrimes) ;
boolean isLastResult = (numPrimesRemaining == 0);

if (!isLastResult) ({
response.setHeader ("Refresh", "5");

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.3 Persistent Servlet State and Auto-Reloading Pages

Listing 7.1 PrimeNumbers.java (continued)

response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Some " + numDigits + "-Digit Prime Numbers";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H2 ALIGN=CENTER>" + title + "</H2>\n" +
"<H3>Primes found with " + numDigits +
" or more digits: " + numCurrentPrimes +
".</H3>");
if (isLastResult)
out.println ("Done searching.");
else
out.println("Still looking for " + numPrimesRemaining +
" more<BLINK>...</BLINK>") ;
out.println("") ;
for(int i=0; i<numCurrentPrimes; 1i++) {
out.println(" " + currentPrimes.elementAt(i));
}
out.println("</0OL>") ;
out.println("</BODY></HTML>") ;
}

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

// See if there is an existing ongoing or completed

// calculation with the same number of primes and number

// of digits per prime. If so, return those results instead
// of starting a new background thread. Keep this list

// small so that the Web server doesn’t use too much memory.
// Synchronize access to the list since there may be

// multiple simultaneous requests.

private PrimeList findPrimelList (Vector primeListVector,
int numPrimes,
int numDigits) {
synchronized (primeListVector) {
for (int i=0; i<primeListVector.size(); i++) {
PrimeList primes =
(PrimeList)primeListVector.elementAt (i) ;
if ((numPrimes == primes.numPrimes()) &&
(numDigits == primes.numDigits()))
return (primes) ;
}

return(null) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

157

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

158 Chapter 7 Generating the Server Response: HTTP Response Headers

Listing 7.2 PrimeNumbers.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Finding Large Prime Numbers</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">

<H2 ALIGN="CENTER">Finding Large Prime Numbers</H2>

<CENTER>

<FORM ACTION="/servlet/coreservlets.PrimeNumbers">
Number of primes to calculate:
<INPUT TYPE="TEXT" NAME="numPrimes" VALUE=25 SIZE=4>

Number of digits:
<INPUT TYPE="TEXT" NAME="numDigits" VALUE=150 SIZE=3>

<INPUT TYPE="SUBMIT" VALUE="Start Calculating">

</FORM>

</CENTER>

</BODY>

</HTML>

'3 Finding Large Prime Numbers - Microsoft Intemnet Explorer

J File Edit “iew Favortes Toolz Help |
|20 Q US|
|
Finding Large Prime Numbers
Number of primes to calculate: |25
- "-hw
J |
|@ Done ’_l_lg'g Local intranet G

Figure 7-1 Result of PrimeNumbers.html, used as a front end to the
PrimeNumbers servlet.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.3 Persistent Servlet State and Auto-Reloading Pages

g Some 150-Digit Prime Numbers - Microsoft Internet Explorer - O ﬁ
File Edit “iew Favoites Tools Help n
- QW QAEIE-FE- Links ™

[

Some 150-Digit Prime Numbers
Primes found with 150 or more digits: 9.
Still looking for 16 more

6863401851306169732726 10018202748073761107415752014763897883103299218
£86340185130616973272610018202748073761107415752014763897883103299218
686340185130616%73272610018202748073761107415752014763897883103299218
£86340185130616973272610018202748073761107415752014763897883103299218
686340185130616973272610018202748073761107415752014763897883103299218
686340185130616973272610018202748073761107415752014763897883103299218
£86340185130616973272610018202748073761107415752014763897883103299218
686340185130616%73272610018202748073761107415752014763897883103299218
£86340185130616973272610018202748073761107415752014763897883103299218

¥ | o

R N

&] Done 25| Lacal intrarst
Figure 7-2 Intermediate result of a request to the PrimeNumbers servlet. This result

can be obtained when the browser reloads automatically or when a different client
independently enters the same parameters as those from an ongoing or recent request.
Either way, the browser will automatically reload the page to get updated results.

g Some 150-Digit Prime Numbers - Microsoft Internet Explorer - O ﬁ
File Edit “iew Favoites Tools Help n

i D RGES -3 - Links >

Some 150-Digit Prime Numbers
Primnes found with 150 or more digits: 25.
Done searching

686340185130616973272610018202748073761107415752014763897883103299218
686340185130616973272610018202748073761107415752014763897883103299218
£86340185130616973272610018202748073761107415752014763897883103299218
686340185130616%73272610018202748073761107415752014763897883103299218
686340185130616973272610018202748073761107415752014763897883103299218
£86340185130616973272610018202748073761107415752014763897883103299218
686340185130616%73272610018202748073761107415752014763897883103299218
6863401851306169732726 10018202748073761107415752014763897883103299218
£86340185130616973272610018202748073761107415752014763897883103299218
686340185130616%73272610018202748073761107415752014763897883103299218

| 6863401851306169?32?261001820??480?3?6110?415?52014?6389?883103299218v
1 »

e R N RS

—

& Done g'g Local intranet

Figure 7-3

Final result of a request to the PrimeNumbers servlet. This result can be

obtained when the browser reloads automatically or when a different client independently
enters the same parameters as those from an ongoing or recent request. The browser will
stop updating the page at this point.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

159

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

160 Chapter 7 Generating the Server Response: HTTP Response Headers

Listing 7.3 PrimeList.java

package coreservlets;

import java.util.*;
import java.math.BigInteger;

/** Creates a Vector of large prime numbers, usually in
* a low-priority background thread. Provides a few small
* thread-safe access methods.

*/

public class PrimeList implements Runnable {
private Vector primesFound;
private int numPrimes, numDigits;

/** Finds numPrimes prime numbers, each of which are
* numDigits long or longer. You can set it to only
* return when done, or have it return immediately,
* and you can later poll it to see how far it
* has gotten.

*/
public PrimeList(int numPrimes, int numDigits,
boolean runInBackground) {
// Using Vector instead of ArrayList
// to support JDK 1.1 servlet engines
primesFound = new Vector (numPrimes) ;
this.numPrimes = numPrimes;
this.numDigits = numDigits;
if (runInBackground) {
Thread t = new Thread(this) ;
// Use low priority so you don’t slow down server.
t.setPriority (Thread.MIN_PRIORITY) ;
t.start () ;
} else {
run();

public void run() {
BigInteger start = Primes.random(numDigits) ;
for(int i=0; i<numPrimes; i++) {
start = Primes.nextPrime (start) ;
synchronized(this) {
primesFound.addElement (start) ;

}
}
public synchronized boolean isDone () {

return (primesFound.size() == numPrimes) ;

}

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.3 Persistent Servlet State and Auto-Reloading Pages

Listing 7.3 PrimeList.java (continued)

public synchronized Vector getPrimes() {
if (isDone())
return (primesFound) ;
else
return ((Vector)primesFound.clone()) ;

}

public int numDigits () {
return (numbDigits) ;

}

public int numPrimes () {
return (numPrimes) ;

}

public synchronized int numCalculatedPrimes () {
return (primesFound.size());

Listing 7.4 Primes.java

package coreservlets;
import java.math.BigInteger;

/** A few utilities to generate a large random BigInteger,
* and find the next prime number above a given BigInteger.
*/

public class Primes {
// Note that BigInteger.ZERO was new in JDK 1.2, and 1.1
// code is being used to support the most servlet engines.
private static final BigInteger ZERO = new BigInteger("0");
private static final BigInteger ONE = new BigInteger("1l");
private static final BigInteger TWO = new BigInteger("2");

// Likelihood of false prime is less than 1/2”ERR_VAL

// Assumedly BigInteger uses the Miller-Rabin test or

// equivalent, and thus is NOT fooled by Carmichael numbers.
// See section 33.8 of Cormen et al’s Introduction to

// Algorithms for details.

private static final int ERR_VAL = 100;

public static BigInteger nextPrime (BigInteger start) {
if (isEven(start))
start = start.add(ONE) ;
else

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

161

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

162 Chapter 7 Generating the Server Response: HTTP Response Headers

Listing 7.4 Primes.java (continued)

start = start.add(TwO) ;

if (start.isProbablePrime (ERR_VAL))
return(start) ;

else
return (nextPrime (start)) ;

}

private static boolean isEven(BigInteger n) {
return(n.mod (TWO) .equals (ZERO)) ;
}

private static StringBuffer[] digits =
{ new StringBuffer("0"), new StringBuffer ("1")
new StringBuffer("2"), new StringBuffer ("3")
new StringBuffer("4"), new StringBuffer("5"),
new StringBuffer("6"), new StringBuffer ("7")
new StringBuffer("8"), new StringBuffer ("9")

’

’

’

}i
private static StringBuffer randomDigit () {
int index = (int)Math.floor (Math.random() * 10);
return(digits[index]) ;

public static BigInteger random (int numDigits) {
StringBuffer s = new StringBuffer("");
for(int i=0; i<numbDigits; i++) {
s.append (randomDigit ()) ;
}

return (new BigInteger (s.toString()));

/** Simple command-line program to test. Enter number
of digits, and it picks a random number of that

* length and then prints the first 50 prime numbers
above that.

public static void main (String[] args) {

int numDigits;

if (args.length > 0)
numDigits = Integer.parselnt(args([0]);

else
numDigits = 150;

BigInteger start = random(numDigits) ;

for(int i=0; 1i<50; i++) {
start = nextPrime (start);
System.out.println("Prime " + i + " = " + start);

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.4 Using Persistent HTTP Connections 163

Listing 7.5 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
// ... Other utilities shown earlier

/** Read a parameter with the specified name, convert it

* to an int, and return it. Return the designated default
* wvalue if the parameter doesn’t exist or if it is an

* dllegal integer format.

*/

public static int getIntParameter (HttpServletRequest request,
String paramName,
int defaultvalue) ({
String paramString = request.getParameter (paramName) ;
int paramValue;
try {
paramValue = Integer.parselnt(paramString);
} catch(NumberFormatException nfe) { // null or bad format
paramValue = defaultValue;
}

return(paramvValue) ;

//

7.4 Using Persistent HTTP
Connections

One of the problems with HTTP 1.0 was that it required a separate socket
connection for each request. When a Web page that includes lots of small
images or many applet classes is retrieved, the overhead of establishing all the
connections could be significant compared to the actual download time of the
documents. Many browsers and servers supported the “keep-alive” extension
to address this problem. With this extension, the server tells the browser how
many bytes are contained in the response, then leaves the connection open
for a certain period of time after returning the document. The client detects

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

164 Chapter 7 Generating the Server Response: HTTP Response Headers

that the document has finished loading by monitoring the number of bytes
received, and reconnects on the same socket for further transactions. Persis-
tent connections of this type became standard in HTTP 1.1, and compliant
servers are supposed to use persistent connections unless the client explicitly
instructs them not to (either by a “Connection: close” request header or
indirectly by sending a request that specifies HTTP/1.0 instead of HTTP/1.1
and does not also Stipulate “Connection: keep-alive”).

Servlets can take advantage of persistent connections if the servlets are
embedded in servers that support them. The server should handle most of
the process, but it has no way to determine how large the returned document
is. So the servlet needs to set the content-Length response header by
means of response. setContentLength. A servlet can determine the size of
the returned document by buffering the output by means of a Bytearray-
OutputStream, retrieving the number of bytes with the byte stream’s size
method, then sending the buffered output to the client by passing the serv-
let’s output stream to the byte stream’s writeTo method.

Using persistent connections is likely to pay off only for servlets that load a
large number of small objects, where those objects are also servlet-generated
and would thus not otherwise take advantage of the servers support for per-
sistent connections. Even so, the advantage gained varies greatly from Web
server to Web server and even from Web browser to Web browser. For exam-
ple, the default configuration for Sun’s Java Web Server is to permit only five
connections on a single HTTP socket: a value that is too low for many appli-
cations. Those who use this server can raise the limit by going to the adminis-
tration console, selecting “Web Service” then “Service Tuning,” then entering
a value in the “Connection Persistence” window.

Listing 7.6 shows a servlet that generates a page with 100 IMG tags (see
Figure 7—4 for the result). Each of the 1MG tags refers to another servlet
(ImageRetriever, shown in Listing 7.7) that reads a GIF file from the server
system and returns it to the client. Both the original servlet and the Image-
Retriever servlet use persistent connections unless instructed not to do so
by means of a parameter in the form data named usepersistence with a
value of no. With Netscape 4.7 and a 28.8K dialup connection to talk to the
Solaris version of Java Web Server 2.0 (with the connection limit raised above
100), the use of persistent connections reduced the average download time
between 15 and 20 percent.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.4 Using Persistent HTTP Connections

Listing 7.6 PersistentConnection. java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/**

*/

Illustrates the value of persistent HTTP connections for
pages that include many images, applet classes, or

other auxiliary content that would otherwise require

a separate connection to retrieve.

public class PersistentConnection extends HttpServlet {
public void doGet (HttpServletRequest request,

}

HttpServletResponse response)

throws ServletException, IOException {
response.setContentType ("text/html") ;
ByteArrayOutputStream byteStream =

new ByteArrayOutputStream(7000) ;
PrintWriter out = new PrintWriter (byteStream, true);
String persistenceFlag =

request.getParameter ("usePersistence") ;
boolean usePersistence =

((persistenceFlag == null) ||

(!persistenceFlag.equals("no")));

String title;
if (usePersistence) {

title = "Using Persistent Connection";
} else {
title = "Not Using Persistent Connection";

}
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1l ALIGN=\"CENTER\">" + title + "</H1>");
int numImages = 100;
for(int i=0; i<numImages; i++) {
out.println (makeImage (i, usePersistence));
}
out.println("</BODY></HTML>") ;
if (usePersistence) {
response.setContentLength(byteStream.size());
}

byteStream.writeTo(response.getOutputStream());

private String makeImage (int n, boolean usePersistence) {

String file =
"/servlet/coreservlets.ImageRetriever?giflLocation=" +
"/bullets/bullet" + n + ".gif";

if (!'usePersistence)

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

165

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

166 Chapter 7 Generating the Server Response: HTTP Response Headers

Listing 7.6 PersistentConnection.java (continued)

file = file + "&usePersistence=no";
return("<IMG SRC=\"" + file + "\"\n" +
" WIDTH=6 HEIGHT=6 ALT=\"\">");
}

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

}

Listing 7.7 ImageRetriever. java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** A servlet that reads a GIF file off the local system
* and sends it to the client with the appropriate MIME type.

* Includes the Content-Length header to support the
* use of persistent HTTP connections unless explicitly
* instructed not to through "usePersistence=no".
* Used by the PersistentConnection servlet.
*/

public class ImageRetriever extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
String gifLocation = request.getParameter ("gifLocation");

if ((gifLocation == null) ||
(gifLocation.length() == 0)) {
reportError (response, "Image File Not Specified");
return;

}
String file = getServletContext () .getRealPath(gifLocation);
try {
BufferedInputStream in =
new BufferedInputStream(new FileInputStream(file));
ByteArrayOutputStream byteStream =
new ByteArrayOutputStream(512);
int imageByte;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.4 Using Persistent HTTP Connections

Listing 7.7 ImageRetriever.java (continued)

while((imageByte = in.read()) != -1) {
byteStream.write (imageByte) ;

}

in.close();

String persistenceFlag =
request .getParameter ("usePersistence") ;
boolean usePersistence =

((persistenceFlag == null) ||

(!persistenceFlag.equals("no"))) ;

response.setContentType ("image/gif");
if (usePersistence) {

response.setContentLength (byteStream.size());
}
byteStream.writeTo (response.getOutputStream()) ;
catch (IOException ioe) {
reportError (response, "Error: " + ioe);

-

public void reportError (HttpServletResponse response,
String message)
throws IOException {
response.sendError (response.SC_NOT_FOUND,
message) ;

sing Persistent Connection - Metscape

File Edit “iew Go Communicator Help

(2 3B oG I S0 B I~

wi'Bookmarks J‘ Location:Ihttp:.f.fwebdav.apl.\hu.edu/servlet/coreservlats.ParsistantConnaction j

Using Persistent Connection

= =h=| |Document: Done

Figure 7-4 Result of the PersistentConnection servlet.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

167

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

168 Chapter 7 Generating the Server Response: HTTP Response Headers

1.5 Using Servlets to Generate GIF
Images

Although servlets often generate HTML output, they certainly don’t always
do so. For example, Section 11.2 (The contentType Attribute) shows a JSP
page (which gets translated into a servlet) that builds Excel spreadsheets and
returns them to the client. Here, I'll show you how to generate GIF images.
First, let me summarize the two main steps servlets have to perform in
order to build multimedia content. First, they have to set the content-Type
response header by using the setContentType method of HttpsServlet-
Response. Second, they have to send the output in the appropriate format.
This format varies among document types, of course, but in most cases you
use send binary data, not strings as with HTML documents. Consequently,
servlets will usually get the raw output stream by using the getoutput-
stream method, rather than getting a Printwriter by using getwriter.
Putting these two points together, servlets that generate non-HTML content
usually have a section of their doGet or doPost method that looks like this:

response.setContentType ("type/subtype") ;

OutputStream out = response.getOutputStream() ;

Those are the two general steps required to build non-HTML content.
Next, let’s look at the specific steps required to generate GIF images.

1. Create an Image.
You create an Image object by using the createImage method
of the component class. Since server-side programs should not
actually open any windows on the screen, they need to explicitly
tell the system to create a native window system object, a pro-
cess that normally occurs automatically when a window pops
up. The addNotify method accomplishes this task. Putting this
all together, here is the normal process:

Frame f = new Frame();

f.addNotify () ;

int width = ...;

int height = ...;

Image img = f.createImage(width, height) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.5 Using Servlets to Generate GIF Images 169

2. Draw into the Image.
You accomplish this task by calling the Image’s getGraphics
method and then using the resultant Graphics object in the
usual manner. For example, with JDK 1.1, you would use vari-
ous drawxxx and £i11xxx methods of Graphics to draw
images, strings, and shapes onto the Image. With the Java 2
platform, you would cast the Graphics object to Graphics2p,
then make use of Java2D’s much richer set of drawing opera-
tions, coordinate transformations, font settings, and fill patterns
to perform the drawing. Here is a simple example:

Graphics g = img.getGraphics();
g.fillRect(...);
g.drawString(...);

3. Set the content-Type response header.
As already discussed, you use the setContentType method of
HttpServletResponse for this task. The MIME type for GIF
images is image/gif.

response.setContentType ("image/gif") ;

4. Get an output stream.
As discussed previously, if you are sending binary data, you
should call the getoutputStream method of HttpServlet-
Response rather than the getwriter method.

OutputStream out = response.getOutputStream() ;

5. Send the Image in GIF format to the output stream.
Accomplishing this task yourself requires quite a bit of work.
Fortunately, there are several existing classes that perform this
operation. One of the most popular ones is Jef Poskanzer’s
GifEncoder class, available free from
http://www.acme.com/java/. Here is how you would use this
class to send an Image in GIF format:

try {

new GifEncoder (img, out) .encode() ;
} catch (IOException ioe) {

// Error message

}
Listings 7.8 and 7.9 show a servlet that reads message, fontName, and

fontsize parameters and uses them to create a GIF image showing the mes-

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

170 Chapter 7 Generating the Server Response: HTTP Response Headers

sage in the designated face and size, with a gray, oblique shadowed version of
the message shown behind the main string. This operation makes use of sev-
eral facilities available only in the Java 2 platform. First, it makes use of any
font that is installed on the server system, rather than limiting itself to the
standard names (Serif, SansSerif, Monospaced, Dialog, and DialogIn-
put) available to JDK 1.1 programs.

Second, it uses the translate, scale, and shear transformations to cre-
ate the shadowed version of the main message. Consequently, the servlet will
run only in servlet engines running on the Java 2 platform. You would expect
this to be the case with engines supporting the servlet 2.2 specification, since
that is the servlet version stipulated in J2EE.

Even if you are using a server that supports only version 2.1, you should
still use the Java 2 platform if you can, since it tends to be significantly more
efficient for server-side tasks. However, many servlet 2.1 engines come pre-
configured to use JDK 1.1, and changing the Java version is not always sim-
ple. So, for example, Tomcat and the JSWDK automatically make use of
whichever version of Java is first in your pATH, but the Java Web Server uses a
bundled version of JDK 1.1.

Listing 7.10 shows an HTML form used as a front end to the servlet. Fig-
ures 7-5 through 7-8 show some possible results. Just to simplify experimen-
tation, Listing 7.11 presents an interactive application that lets you specify
the message, font name, and font size on the command line, popping up a
JFrame that shows the same image as the servlet would return. Figure 7-9
shows one typical result.

Listing 7.8 ShadowedText.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.awt.*;

/** Servlet that generates GIF images representing
* a designated message with an oblique shadowed
* version behind it.
* <P>
* Only runs on servers that support Java 2, since
* 1t relies on Java2D to build the images.
*/
public class ShadowedText extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
String message = request.getParameter ("message");
if ((message == null) || (message.length() == 0)) {

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.5 Using Servlets to Generate GIF Images

Listing 7.8 ShadowedText.java (continued)

message = "Missing ’‘message’ parameter";
}
String fontName = request.getParameter ("fontName") ;
if (fontName == null) {
fontName = "Serif";
}
String fontSizeString = request.getParameter ("fontSize");
int fontSize;
try {

fontSize = Integer.parselnt (fontSizeString) ;
} catch (NumberFormatException nfe) {
fontSize = 90;
}
response.setContentType ("image/gif");
OutputStream out = response.getOutputStream();
Image messageImage =
MessageImage.makeMessageImage (message,
fontName,
fontSize);
MessageImage.sendAsGIF (messageImage, out);

}
/** Allow form to send data via either GET or POST. */

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

}

Listing 7.9 MessageImage.java

package coreservlets;

import java.awt.*;

import java.awt.geom. *;

import java.io.*;

import Acme.JPM.Encoders.GifEncoder;

/** Utilities for building images showing shadowed messages.
* TIncludes a routine that uses Jef Poskanzer’'s GifEncoder

* to return the result as a GIF.

* <P>

* Does not run in JDK 1.1, since it relies on Java2D
* to build the images.

* <P>

*/

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

171

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

172 Chapter 7 Generating the Server Response: HTTP Response Headers

Listing 7.9 MessageImage.java (continued)

public class MessageImage {

/** Creates an Image of a string with an oblique
* shadow behind it. Used by the ShadowedText servlet
* and the ShadowedTextFrame desktop application.
*/
public static Image makeMessageImage (String message,
String fontName,
int fontSize) {
Frame f = new Frame() ;
// Connect to native screen resource for image creation.
f.addNotify () ;
// Make sure Java knows about local font names.
GraphicsEnvironment env =
GraphicsEnvironment .getLocalGraphicsEnvironment () ;
env.getAvailableFontFamilyNames () ;
Font font = new Font (fontName, Font.PLAIN, fontSize);
FontMetrics metrics = f.getFontMetrics (font);
int messageWidth = metrics.stringWidth (message) ;
int baselineX = messageWidth/10;
int width = messageWidth+2* (baselineX + fontSize);
int height = fontSize*7/2;
int baselineY = height*8/10;
Image messagelmage = f.createImage(width, height) ;
Graphics2D g2d =
(Graphics2D)messageImage.getGraphics () ;
g2d.setFont (font) ;
g2d.translate (baselineX, baselineY) ;
g2d.setPaint (Color.lightGray) ;
AffineTransform origTransform = g2d.getTransform() ;
g2d.shear (-0.95, 0);
g2d.scale(l, 3);
g2d.drawString (message, 0, 0);
g2d.setTransform(origTransform) ;
g2d.setPaint (Color.black) ;
g2d.drawString (message, 0, 0);
return (messagelmage) ;

}

/** Uses GifEncoder to send the Image down output stream
* in GIF89A format. See http://www.acme.com/java/ for
* the GifEncoder class.

*/

public static void sendAsGIF (Image image, OutputStream out) {
try {
new GifEncoder (image, out) .encode() ;
} catch(IOException ioe) {
System.err.println("Error outputting GIF: " + ioe);

}

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.5 Using Servlets to Generate GIF Images

Listing 7.10 ShadowedText .html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>GIF Generation Service</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1 ALIGN="CENTER">GIF Generation Service</Hl>

Welcome to the <I>free</I> trial edition of our GIF

generation service. Enter a message, a font name,

and a font size below, then submit the form. You will

be returned a GIF image showing the message in the

designated font, with an oblique "shadow" of the message
behind it. Once you get an image you are satisfied with, right
click on it (or click while holding down the SHIFT key) to save
it to your local disk.

<P>

The server is currently on Windows, so the font name must

be either a standard Java font name (e.g., Serif, SansSerif,
or Monospaced) or a Windows font name (e.g., Arial Black).
Unrecognized font names will revert to Serif.

<FORM ACTION="/servlet/coreservlets.ShadowedText">
<CENTER>
Message:
<INPUT TYPE="TEXT" NAME="message">

Font name:
<INPUT TYPE="TEXT" NAME="fontName" VALUE="Serif">

Font size:
<INPUT TYPE="TEXT" NAME="fontSize" VALUE="90">

<Input TYPE="SUBMIT" VALUE="Build Image">
</CENTER>
</FORM>

</BODY>
</HTML>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

173

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

174 Chapter 7 Generating the Server Response: HTTP Response Headers

GIF Generation Service - Netscape

e Edit View Go Communicator Help

2 b omadD 3 =

GIF Generation Service

Welcome to the free trial edition of our GIF generation service. Enter a message, a font name, and a font size below, then submut
the form. Teu will be returned a GIF image showing the message in the designated font, with an oblicue "shadow” of the

message behind it. Once you get an image you are satisfied with, right click on it {or chck while holding down the SHIFT key) to
sawe it to your local disk

The server is currently on Windows, so the font name must be either a standard Java font name (e g, Senf, SansSerif, or
Monospaced) or a Windews font name (e.g., Anal Black). Unrecognized font names will revert te Serif.

Message kids-books.com
Font name ICUIlZ T
Font size: |90

Build Image

| == |Document: Dane

Z

Figure 7-5 Front end to ShadowedText servlet.

+'F— GIF image 784x315 pixels - Hetscape

File Edit Wiew Go Communicator Help

4o BdoumalsdB @ =

kids-books.com

| == |Document: Done

Jee P 2 2| 4

Figure 7-6 Using the GIF-generation servlet to build the logo for a children’s books
Web site. (Result of submitting the form shown in Figure 7-5).

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.5 Using Servlets to Generate GIF Images 175

4? GIF image 886x350 pixels - Metscape ;@ﬁ
File Edit Wiew Go Communicator Help
id o donumalsdB 3 =
4] | |
b 0w &P @ 2

= == Document: Dane
Figure 7-7 Using the GIF-generation servlet to build the title image for a site

describing a local theater company.

3 GIF image 967x280 pixels - Netscape
File Edit “iew Go Communicator Help
=
s

FrE T Yl

County Larnivall

I L
S % 2P [E 2

4
= == Document: Dane
Figure 7-8 Using the GIF-generation servlet to build an image for a page advertising

a local carnival.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

176 Chapter 7 Generating the Server Response: HTTP Response Headers

Listing 7.11 ShadowedTextFrame.java

package coreservlets;

import java.awt.*;
import javax.swing.*;
import java.awt.geom. *;

/** Interactive interface to MessagelImage class.

* Enter message, font name, and font size on the command
* line. Requires Java2.

*/

public class ShadowedTextFrame extends JPanel ({
private Image messagelmage;

public static void main (String[] args) {

String message = "Shadowed Text";
if (args.length > 0) {

message = args[0];
}
String fontName = "Serif";
if (args.length > 1) {

fontName = args[l];
}
int fontSize = 90;
if (args.length > 2) {

try {

fontSize = Integer.parselnt(args([2]);

} catch (NumberFormatException nfe) {}
}
JFrame frame = new JFrame ("Shadowed Text");
frame.addWindowListener (new ExitListener());
JPanel panel =

new ShadowedTextFrame (message, fontName, fontSize);
frame.setContentPane (panel) ;
frame.pack() ;
frame.setVisible(true) ;

public ShadowedTextFrame (String message,
String fontName,
int fontSize) {
messagelImage = Messagelmage.makeMessagelmage (message,
fontName,
fontSize) ;
int width = messageImage.getWidth (this);
int height = messageImage.getHeight (this) ;
setPreferredSize (new Dimension (width, height));

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

7.5 Using Servlets to Generate GIF Images

Listing 7.11 ShadowedTextFrame.java (continued)

public void paintComponent (Graphics g) {
super .paintComponent (g) ;
g.drawImage (messageImage, 0, 0, this);

Listing 7.12 ExitListener.java

package coreservlets;

import Java.awt.*;

import Jjava.awt.event.*;

/** A listener that you attach to the top-level Frame or JFrame
* of your application, so gquitting the frame exits the app.

*/

public class ExitListener extends WindowAdapter {
public void windowClosing (WindowEvent event) {

System.exit (0);

Egishadnwed Text -3 x|

Tom’'s Tools

Figure 7-9 ShadowedTextFrame application when invoked with “java
coreservlets.ShadowedTextFrame "Tom’s Tools" Haettenschweiler
100".

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

177

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

HANDLING
COOKIES

/ Topics in This Chapter

* Purposes for cookies

* Problems with cookies

* The Cookie API

* A simple servlet that sets cookies

* A cookie-reporting servlet

* Some utilities that simplify cookie handling

* A customized search engine front end based upon cookies

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

ookies are small bits of textual information that a Web server sends to

a browser and that the browser returns unchanged when later visiting

the same Web site or domain. By letting the server read information
it sent the client previously, the site can provide visitors with a number of
conveniences such as presenting the site the way the visitor previously cus-
tomized it or letting identifiable visitors in without their having to enter a
password. Most browsers avoid caching documents associated with cookies,
so the site can return different content each time.

This chapter discusses how to explicitly set and read cookies from within
servlets, and the next chapter shows you how to use the servlet session track-
ing API (which can use cookies behind the scenes) to keep track of users as
they move around to different pages within your site.

8.1 Benefits of Cookies

This section summarizes four typical ways in which cookies can add value to
your site.

179

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

180 Chapter 8 Handling Cookies

Identifying a User During an E-commerce
Session

Many on-line stores use a “shopping cart” metaphor in which the user selects
an item, adds it to his shopping cart, then continues shopping. Since the
HTTP connection is usually closed after each page is sent, when the user
selects a new item to add to the cart, how does the store know that it is the
same user that put the previous item in the cart? Persistent (keep-alive)
HTTP connections (see Section 7.4) do not solve this problem, since persis-
tent connections generally apply only to requests made very close together in
time, as when a browser asks for the images associated with a Web page.
Besides, many servers and browsers lack support for persistent connections.
Cookies, however, can solve this problem. In fact, this capability is so useful
that servlets have an API specifically for session tracking, and servlet authors
don’t need to manipulate cookies directly to take advantage of it. Session
tracking is discussed in Chapter 9.

Avoiding Username and Password

Many large sites require you to register in order to use their services, but it is
inconvenient to remember and enter the username and password each time
you visit. Cookies are a good alternative for low-security sites. When a user
registers, a cookie containing a unique user ID is sent to him. When the cli-
ent reconnects at a later date, the user ID is returned, the server looks it up,
determines it belongs to a registered user, and permits access without an
explicit username and password. The site may also remember the user’s
address, credit card number, and so forth, thus simplifying later transactions.

Customizing a Site

Many “portal” sites let you customize the look of the main page. They might
let you pick which weather report you want to see, what stock and sports
results you care about, how search results should be displayed, and so forth.
Since it would be inconvenient for you to have to set up your page each time
you visit their site, they use cookies to remember what you wanted. For sim-
ple settings, this customization could be accomplished by storing the page
settings directly in the cookies. Section 8.6 gives an example of this. For more
complex customization, however, the site just sends the client a unique iden-
tifier and keeps a server-side database that associates identifiers with page
settings.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.2 Some Problems with Cookies 181

Focusing Advertising

Most advertiser-funded Web sites charge their advertisers much more for
displaying “directed” ads than “random” ads. Advertisers are generally willing
to pay much more to have their ads shown to people that are known to have
some interest in the general product category. For example, if you go to a
search engine and do a search on “Java Servlets,” the search site can charge
an advertiser much more for showing you an ad for a servlet development
environment than for an ad for an on-line travel agent specializing in Indone-
sia. On the other hand, if the search had been for “Java Hotels,” the situation
would be reversed. Without cookies, the sites have to show a random ad
when you first arrive and haven't yet performed a search, as well as when you
search on something that doesn’t match any ad categories. Cookies let them
remember “Oh, that’s the person who was searching for such and such previ-
ously” and display an appropriate (read “high priced”) ad instead of a random
(read “cheap”) one.

8.2 Some Problems with Cookies

Providing convenience to the user and added value to the site owner is the
purpose behind cookies. And despite much misinformation, cookies are not a
serious security threat. Cookies are never interpreted or executed in any way
and thus cannot be used to insert viruses or attack your system. Furthermore,
since browsers generally only accept 20 cookies per site and 300 cookies total
and since each cookie can be limited to 4 kilobytes, cookies cannot be used to
fill up someone’s disk or launch other denial of service attacks.

However, even though cookies don'’t present a serious security threat, they
can present a significant threat to privacy. First, some people don't like the
fact that search engines can remember that they’re the user who usually does
searches on certain topics. For example, they might search for job openings
or sensitive health data and don’t want some banner ad tipping off their
coworkers next time they do a search. Even worse, two sites can share data on
a user by each loading small images off the same third-party site, where that
third party uses cookies and shares the data with both original sites.
(Netscape, however, provides a nice feature that lets you refuse cookies from
sites other than that to which you connected, but without disabling cookies
altogether.) This trick of associating cookies with images can even be
exploited via e-mail if you use an HTML-enabled e-mail reader that “sup-

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

182 Chapter 8 Handling Cookies

ports” cookies and is associated with a browser. Thus, people could send you
e-mail that loads images, attach cookies to those images, then identify you
(e-mail address and all) if you subsequently visit their Web site. Boo.

A second privacy problem occurs when sites rely on cookies for overly
sensitive data. For example, some of the big on-line bookstores use cookies
to remember users and let you order without reentering much of your per-
sonal information. This is not a particular problem since they don’t actually
display the full credit card number and only let you send books to an
address that was specified when you did enter the credit card in full or use
the username and password. As a result, someone using your computer (or
stealing your cookie file) could do no more harm than sending a big book
order to your address, where the order could be refused. However, other
companies might not be so careful, and an attacker who got access to some-
one’s computer or cookie file could get on-line access to valuable personal
information. Even worse, incompetent sites might embed credit card or
other sensitive information directly in the cookies themselves, rather than
using innocuous identifiers that are only linked to real users on the server.
This is dangerous, since most users don’t view leaving their computer unat-
tended in their office as being tantamount to leaving their credit card sit-
ting on their desk.

THE THING I T KEEP I'M No CoMPUTER WHIZ, ACTUALLY, I'M TALKING ABouT PRIVACY
DON'T LIKE HEARING BUT AREN'T THERE THINGS ALL T REALLY ON THIS END, MOTHER.
ABOUT USING PEOPLE You CAN Do, LIKE SETTING NEED 1S A HUH? £

THE INTERNET TALK ABOUT THE BROWSER To REJECT GooD DEAD- PETER, MOVE YouR
1S THERE'S NoT ~ THAT. CoOKIES AND NEVER BOLT Lock.) HEAD, I CAN'T
GIVING oUT PERSONAL ! SEE WHAT YOUR

ENOUGH PRIVACY.
> INFORMATION ?

E-MAIL SAYS.

FOXTROT © 1998 Bill Amend. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All
rights reserved

The point of all this is twofold. First, due to real and perceived privacy
problems, some users turn off cookies. So, even when you use cookies to give
added value to a site, your site shouldn’t depend on them. Second, as the
author of servlets that use cookies, you should be careful not to use cookies
for particularly sensitive information, since this would open users up to risks
if somebody accessed their computer or cookie files.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.3 The Servlet Cookie API 183

8.3 The Servlet Cookie API

To send cookies to the client, a servlet should create one or more cookies with
designated names and values with new Cookie(name, value), set any
optional attributes with cookie.setXxx (readable later by cookie.getXxx),
and insert the cookies into the response headers with
response.addCookie (cookie). To read incoming cookies, a servlet should
call request.getCookies, which returns an array of cookie objects corre-
sponding to the cookies the browser has associated with your site (this is nul1 if
there are no cookies in the request). In most cases, the servlet loops down this
array until it finds the one whose name (getName) matches the name it had in
mind, then calls getvalue on that Cookie to see the value associated with that
name. Each of these topics is discussed in more detail in the following sections.

Creating Cookies

You create a cookie by calling the cookie constructor, which takes two
strings: the cookie name and the cookie value. Neither the name nor the
value should contain white space or any of the following characters:

t1r¢)y=,"/2e:;

Cookie Attributes

Before adding the cookie to the outgoing headers, you can set various charac-
teristics of the cookie by using one of the following set xxx methods, where
Xxx is the name of the attribute you want to specify. Each setxxx method
has a corresponding get xxx method to retrieve the attribute value. Except
for name and value, the cookie attributes apply only to outgoing cookies from
the server to the client; they aren’t set on cookies that come from the browser
to the server. See Appendix A (Servlet and JSP Quick Reference) for a sum-
marized version of this information.

public String getComment()
public void setComment(String comment)

These methods look up or specify a comment associated with the
cookie. With version 0 cookies (see the upcoming subsection on

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

184 Chapter 8 Handling Cookies

getVersion and setVersion), the comment is used purely for
informational purposes on the server; it is not sent to the client.

public String getDomain()
public void setDomain(String domainPattern)

These methods get or set the domain to which the cookie applies.
Normally, the browser only returns cookies to the exact same host-
name that sent them. You can use setDomain method to instruct the
browser to return them to other hosts within the same domain. To
prevent servers setting cookies that apply to hosts outside their
domain, the domain specified is required to start with a dot (e.g.,
.prenhall.com), and must contain two dots for noncountry domains
like . com, .edu and .gov; and three dots for country domains like
.co.uk and .edu.es. For instance, cookies sent from a servlet at
bali.vacations.com would not normally get sent by the browser to
pages at mexico.vacations.com. If the site wanted this to happen,
the servlets could Specify cookie.setDomain (" .vacations.com").

public int getMaxAge()
public void setMaxAge(int lifetime)

These methods tell how much time (in seconds) should elapse before
the cookie expires. A negative value, which is the default, indicates that
the cookie will last only for the current session (i.e., until the user quits
the browser) and will not be stored on disk. See the LongLivedcookie
class (Listing 8.4), which defines a subclass of cookie with a maximum
age automatically set one year in the future. Specifying a value of 0
instructs the browser to delete the cookie.

public String getName()
public void setName(String cookieName)

This pair of methods gets or sets the name of the cookie. The name and
the value are the two pieces you virtually always care about. However,
since the name is supplied to the cookie constructor, you rarely need to
call setName. On the other hand, getName is used on almost every
cookie received on the server. Since the getCookies method of Http-
ServletRequest returns an array of Cookie objects, it is common to
loop down this array, calling getName until you have a particular name,
then check the value with getvalue. For an encapsulation of this pro-
cess, see the getcookievalue method shown in Listing 8.3.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.3 The Servlet Cookie API 185

public String getPath()
public void setPath(String path)

These methods get or set the path to which the cookie applies. If you don’t
specify a path, the browser returns the cookie only to URLS in or below
the directory containing the page that sent the cookie. For example, if

the server sent the cookie from http://ecommerce.site.com/toys/
specials.html, the browser would send the cookie back when connect-
ingtohttp://ecommerce.site.com/toys/bikes/beginners.html,
but not to http: //ecommerce.site.com/cds/classical.html. The
setPath method can be used to specify something more general. For
example, someCookie.setPath("/") specifies that all pages on the
server should receive the cookie. The path specified must include the
current page; that is, you may specify a more general path than the
default, but not a more specific one. So, for example, a servlet at
http://host/store/cust—service/request(Xnﬂdspecﬁyafmﬂlof
/store/ (since /store/ includes /store/cust-service/) but not a
paﬂlOf/store/cust—service/returns/(ﬁncethﬁ(hﬁﬂiogldoesnot
indude/store/cust—service/)

public boolean getSecure()
public void setSecure(boolean secureFlag)

This pair of methods gets or sets the boolean value indicating whether
the cookie should only be sent over encrypted (i.e., SSL) connections.
The default is false; the cookie should apply to all connections.

public String getValue()
public void setValue(String cookieValue)

The getvalue method looks up the value associated with the cookie;
the setvalue method specifies it. Again, the name and the value are
the two parts of a cookie that you almost always care about, although in
a few cases, a name is used as a boolean flag and its value is ignored (i.e.,
the existence of a cookie with the designated name is all that matters).

public int getVersion()
public void setVersion(int version)

These methods get/set the cookie protocol version the cookie complies
with. Version 0, the default, follows the original Netscape specification
(http://www.netscape.com/newsref/std/cookie_spec.html)
Version 1, not yet widely supported, adheres to RFC 2109 (retrieve
RFCs from the archive sites listed at http://www.rfc-editor.org/).

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

186 Chapter 8 Handling Cookies

Placing Cookies in the Response Headers

The cookie is inserted into a set-cookie HTTP response header by means
of the adacookie method of HttpServletResponse. The method is called
addCookie, not setCookie, because any previously specified set-cookie
headers are left alone and a new header is set. Here's an example:

Cookie userCookie = new Cookie("user", "uidl234");
userCookie.setMaxAge (60*60*24*365); // 1 year

response.addCookie (userCookie) ;

Reading Cookies from the Client

To send cookies to the client, you create a Cookie, then use addcookie to
send a set-Cookie HTTP response header. To read the cookies that come
lxwkfhnntheCﬁentyoucaﬂgetCookiesOnththtpServletRequest.ThB
call returns an array of Cookie objects corresponding to the values that came in
on the cookie HTTP request header. If there are no cookies in the request,
getCookies returns null. Once you have this array, you typically loop down it,
calling getName on each cookie until you find one matching the name you
have in mind. You then call getvalue on the matching cookie and finish with
some processing specific to the resultant value. This is such a common process
that Section 8.5 presents two utilities that simplify retrieving a cookie or cookie
value that matches a designated cookie name.

8.4 Examples of Setting and
Reading Cookies

Listing 8.1 and Figure 8-1 show the setCookies servlet, a servlet that sets
six cookies. Three have the default expiration date, meaning that they should
apply only until the user next restarts the browser. The other three use set-
MaxAge to stipulate that they should apply for the next hour, regardless of
whether the user restarts the browser or reboots the computer to initiate a
new browsing session.

Listing 8.2 shows a servlet that creates a table of all the cookies sent to
itin the request. Figure 8-2 shows this servlet immediately after the
SetCookies servlet is visited. Figure 8—3 shows it after setCookies is vis-
ited then the browser is closed and restarted.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.4 Examples of Setting and Reading Cookies

Listing 8.1 SetCookies.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Sets six cookies: three that apply only to the current
* gession (regardless of how long that session lasts)

* and three that persist for an hour (regardless of

* whether the browser is restarted).

public class SetCookies extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
for(int i=0; 1i<3; i++) {
// Default maxAge is -1, indicating cookie
// applies only to current browsing session.
Cookie cookie = new Cookie("Session-Cookie " + i,
"Cookie-Value-S" + 1i);
response.addCookie(cookie) ;
cookie = new Cookie("Persistent-Cookie " + i,
"Cookie-Value-P" + i);
// Cookie is valid for an hour, regardless of whether
// user quits browser, reboots computer, or whatever.
cookie.setMaxAge(3600);
response.addCookie(cookie) ;
}
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Setting Cookies";
out.println
(ServletUtilities.headwithTitle (title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
"There are six cookies associated with this page.\n" +
"To see them, visit the\n" +
"\n" +
"<CODE>ShowCookies</CODE> servlet.\n" +
"<P>\n" +
"Three of the cookies are associated only with the\n" +
"current session, while three are persistent.\n" +
"Quit the browser, restart, and return to the\n" +
"<CODE>ShowCookies</CODE> servlet to verify that\n" +
"the three long-lived ones persist across sessions.\n" +
"< /BODY></HTML>") ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

187

188

44 Setting Cookies - Microsoft Internet Explorer

File Edit ‘iew Favortes Tools Help n

PR - Bl e Ll

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter 8 Handling Cookies

Setting Cookies

There are six cooldes associated with this page. To see them, wisit
the ShowCookies servlet.

Three of the coclies are associated only with the current session,
while three are persistent. Quit the browser, restart, and return to the
ShowCookies servlet to vendy that the three long-lived ones persist
across sessions.

@] Done 25 Local intranst

Figure 8-1 Result of SetCookies servlet.

Listing 8.2 ShowCookies.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Creates a table of the cookies associated with
* the current page.
*/

public class ShowCookies extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Active Cookies";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.4 Examples of Setting and Reading Cookies

Listing 8.2 ShowCookies. java (continued)

"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
" <TH>Cookie Name\n" +
" <TH>Cookie Value") ;
Cookie[] cookies = request.getCookies();
Cookie cookie;
for(int i=0; i<cookies.length; i++) {
cookie = cookies[i];
out.println("<TR>\n" +
" <TD>" + cookie.getName() + "\n" +
" <TD>" + cookie.getValue()):
}
out.println("</TABLE></BODY></HTML>") ;

'3 Active Cookies - Microsoft Internet Explorer

File Edt “iew Favortes Tools Help “
&5 QEAAEIE HF - i

Active Cookies

Cookie Name Coolae Value
Zesston-Coolie-0 | Coclie-Value-20
Persistent-Cookie-0 | Cookie-Value-P0
Sesston-Coolae-1 |(Cockie-Value-31
Persistent-Cookde-1 |Cookie-Value-P1
Sesston-Uoolie-2 |Cookie-Value-32
Peraistent-Coolie-2 |Coolie-Value-P2
|

&1 Done 25 Local intranet

Figure 8-2 Result of visiting the ShowCookies servlet within an hour of visiting

SetCookies in the same browser session.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

189

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

190 Chapter 8 Handling Cookies

& Active Cookies - Microsoft Internet E xplorer
File Edt “iew Favortes Tools Help m
v QEONQAEI -G - ||ux”
[
Active Cookies
Cookie Name Cookie Value
Peraistent-Coolie-0 |Coolie-Value-P0O
Peraistent-Coolie-1 |Coolie-Value-P1
Peraistent-Coolie-2 |Coolie-Value-P2
| |
€] Done 25 Local intranet

Figure 8-3 Result of visiting the ShowCookies servlet within an hour of visiting
SetCookies in a different browser session.

8.5 Basic Cookie Utilities

This section presents some simple but useful utilities for dealing with cookies.

Finding Cookies with Specified Names

Listing 8.3 shows a section of servletutilities.java that simplifies the
retrieval of a cookie or cookie value, given a cookie name. The getcookie-
value method loops through the array of available cookie objects, returning
the value of any cookie whose name matches the input. If there is no match,
the designated default value is returned. So, for example, my typical
approach for dealing with cookies is as follows:

Cookie[] cookies = request.getCookies();
String color =
ServletUtilities.getCookieValue (cookies, "color", "black");
String font =
ServletUtilities.getCookieValue (cookies, "font", "Arial");
The getcookie method also loops through the array comparing names,
but returns the actual cookie object instead of just the value. That method is
for cases when you want to do something with the cookie other than just

read its value.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.6 A Customized Search Engine Interface

Listing 8.3 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
// Other methods in this class shown in earlier chapters.

public static String getCookieValue (Cookie[] cookies,
String cookieName,
String defaultvalue) {
for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals (cookie.getName()))
return (cookie.getValue()) ;
}

return (defaultvValue) ;

public static Cookie getCookie(Cookie[] cookies,
String cookieName) {
for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals (cookie.getName()))
return (cookie) ;
}

return (null) ;

Creating Long-Lived Cookies

Listing 8.4 shows a small class that you can use instead of cookie if you want
your cookie to automatically persist when the client quits the browser. See
Listing 8.5 for a servlet that uses this class.

8.6 A Customized Search Engine
Interface

Listing 8.5 shows the customizedSearchEngines servlet, a variation of the
SearchEngines example previously shown in Section 6.3. Like the search-
Engines servlet (see Figure 8-5), the customizedSearchEngines servlet

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

191

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

192 Chapter 8 Handling Cookies

Listing 84 LongLivedCookie.java

package coreservlets;
import javax.servlet.http.*;

/** Cookie that persists 1 year. Default Cookie doesn't
* persist past current session.
*/

public class LongLivedCookie extends Cookie {
public static final int SECONDS_PER_YEAR = 60*60*24*365;

public LongLivedCookie(String name, String value) {
super (name, value) ;
setMaxAge (SECONDS_PER_YEAR) ;

}

reads the user choices from the HTML front end and forwards them to the
appropriate search engine. In addition, the CustomizedSearchEngines
servlet returns to the client cookies that store the search values. Then, when
the user comes back to the front-end servlet at a later time (even after quit-
ting the browser and restarting), the front-end page is initialized with the val-
ues from the previous search.

To accomplish this customization, the front end is dynamically generated
instead of coming from a static HTML file (see Listing 8.6 for the source
code and Figure 8—4 for the result). The front-end servlet reads the cookie
values and uses them for the initial values of the HTML form fields. Note
that it would not have been possible for the front end to return the cookies
directly to the client. That’s because the search selections aren’t known until
the user interactively fills in the form and submits it, which cannot occur until
after the servlet that generated the front end has finished executing.

This example uses the LongLivedCookie class, shown in the previous sec-
tion, for creating a Cookie that automatically has a long-term expiration date,
instructing the browser to use it beyond the current session.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.6 A Customized Search Engine Interface

Listing 8.5 CustomizedSearchEngines.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/**
*
*

*

*/

A variation of the SearchEngine servlet that uses
cookies to remember users choices. These values
are then used by the SearchEngineFrontEnd servlet
to initialize the form-based front end.

public class CustomizedSearchEngines extends HttpServlet {
public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

String searchString = request.getParameter ("searchString") ;

if ((searchString == null) ||
(searchString.length() == 0)) {
reportProblem(response, "Missing search string.");
return;

}
Cookie searchStringCookie =
new LongLivedCookie ("searchString", searchString);
response.addCookie (searchStringCookie) ;
// The URLEncoder changes spaces to "+" signs and other
// non-alphanumeric characters to "%$XY", where XY is the
// hex value of the ASCII (or ISO Latin-1) character.
// Browsers always URL-encode form values, so the
// getParameter method decodes automatically. But since
// we're just passing this on to another server, we need to
// re-encode it.
searchString = URLEncoder.encode (searchString) ;
String numResults = request.getParameter ("numResults") ;
if ((numResults == null) ||
(numResults.equals("0"))
(numResults.length() ==
numResults = "10";

|l
0)) {
}
Cookie numResultsCookie =
new LongLivedCookie ("numResults", numResults);
response.addCookie (numResultsCookie) ;
String searchEngine = request.getParameter ("searchEngine") ;
if (searchEngine == null) {
reportProblem(response, "Missing search engine name.");
return;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

193

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

194 Chapter 8 Handling Cookies

Listing 8.5 CustomizedSearchEngines.java (continued)

Cookie searchEngineCookie =
new LongLivedCookie ("searchEngine", searchEngine);
response.addCookie (searchEngineCookie) ;

SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs () ;
for(int i=0; i<commonSpecs.length; i++) {

SearchSpec searchSpec = commonSpecs[i];

if (searchSpec.getName () .equals (searchEngine)) {

String url =

searchSpec.makeURL (searchString, numResults) ;
response.sendRedirect (url) ;
return;

}

reportProblem (response, "Unrecognized search engine.");

private void reportProblem(HttpServletResponse response,
String message)
throws IOException {
response.sendError (response.SC_NOT_FOUND,
"<H2>" + message + "</H2>");

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

Listing 8.6 SearchEnginesFrontEnd.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/** Dynamically generated variation of the

* SearchEngines.html front end that uses cookies
* to remember a user's preferences.

*/

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.6 A Customized Search Engine Interface

Listing 8.6 SearchEnginesFrontEnd.java (continued)

public class SearchEnginesFrontEnd extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
Cookie[] cookies = request.getCookies();
String searchString =
ServletUtilities.getCookieValue (cookies,
"searchString",
"Java Programming");
String numResults =
ServletUtilities.getCookieValue (cookies,
"numResults",
"io");
String searchEngine =
ServletUtilities.getCookieValue (cookies,
"searchEngine",
"google") ;
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Searching the Web";
out.println
(ServletUtilities.headwithTitle (title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">Searching the Web</Hl1>\n" +
"\n" +
"<FORM ACTION=\"/servlet/" +
"coreservlets.CustomizedSearchEngines\">\n" +
"<CENTER>\n" +
"Search String:\n" +
"<INPUT TYPE=\"TEXT\" NAME=\"searchString\"\n" +
" VALUE=\"" + searchString + "\">
\n" +
"Results to Show Per Page:\n" +
"<INPUT TYPE=\"TEXT\" NAME=\"numResults\"\n" +
" VALUE=" + numResults + " SIZE=3>
\n"
"<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
" VALUE=\"google\"" +
checked("google", searchEngine) + ">\n" +
"Google |\n" +
"<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
" VALUE=\"infoseek\"" +
checked("infoseek", searchEngine) + ">\n" +
"Infoseek |\n" +
"<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
" VALUE=\"lycos\"" +
checked("lycos", searchEngine) + ">\n" +
"Lycos |\n" +
"<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
" VALUE=\"hotbot\"" +

+

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

195

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

196 Chapter 8 Handling Cookies

Listing 8.6 SearchEnginesFrontEnd.java (continued)

checked ("hotbot", searchEngine) + ">\n" +
"HotBot\n" +

"
\n" +

"<INPUT TYPE=\"SUBMIT\" VALUE=\"Search\">\n" +
"</CENTER>\n" +

"</FORM>\n" +

"\n" +

"</BODY>\n" +

"</HTML>\n") ;

private String checked(String namel, String name2) {
if (namel.equals (name2))
return(" CHECKED") ;
else
return("");

#+- Searching the Web - Netscape
File Edt Wiew Go Communicator Help

id o AdmIsED 3 =
Searching the Web

Search Smng; IJavaServer Pages
Eesults to Show Per Page |5D
© Google | © Infoseek | © Lycos | & HotBot
Search

| (== |Document: Dane =R P

Figure 8-4 Result of SearchEnginesFrontEnd servlet. Whatever options you
specify will be the initial choices next time you visit the same servlet.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

8.6 A Customized Search Engine Interface 197

#-HotBot results: JavaServer Pages - Netscape
File Edit Wiew Go Communicator Help

IS PN T Y | E P

EMAIL - HOMEPAGES - CLUBS - CHAT - AUCTIONS - GA

Return Results:

|SD j|fu|l descriptions 7|

MNEW SEARCH | REVISE OPTICNE ADVANCED SEARCH

Search Partners

* Research "JavaServer Pages" at AtHand vellow Pages.
* Find books on "JavaServer Pages" at bn.com.

* Check out a "JavaServer Pages" group at eGroups.

WEB RESULTS fewer than 1,000 1 - 50 next >>

Get the Top 10 sites for "JavaServer Pages"

1. Web Development with JavaServer Pages _lﬂ
| | 3
| (== |Document: [ane SR N

Figure 8-5 Result of CustomizedSearchEngines servlet.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

SESSION
TRACKING

/ Topics in This Chapter

* The purpose of session tracking
* The servlet session tracking API

* A servlet that uses sessions to show per-client access
counts

* A reusable shopping cart class

* An on-line store that uses session tracking, shopping
carts, and pages automatically built from catalog entries

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter

his chapter shows you how to use the servlet session tracking API to
keep track of visitors as they move around at your site.

9.1 The Need for Session Tracking

HTTP is a “stateless” protocol: each time a client retrieves a Web page, it
opens a separate connection to the Web server, and the server does not auto-
matically maintain contextual information about a client. Even with servers
that support persistent (keep-alive) HTTP connections and keep a socket
open for multiple client requests that occur close together in time (see Sec-
tion 7.4), there is no built-in support for maintaining contextual information.
This lack of context causes a number of difficulties. For example, when cli-
ents at an on-line store add an item to their shopping carts, how does the
server know what’s already in them? Similarly, when clients decide to proceed
to checkout, how can the server determine which previously created shop-
ping carts are theirs?

There are three typical solutions to this problem: cookies, URL-rewriting,

and hidden form fields.

199

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

200 Chapter 9 Session Tracking

Cookies

You can use HTTP cookies to store information about a shopping session, and
each subsequent connection can look up the current session and then extract
information about that session from some location on the server machine.
For example, a servlet could do something like the following:

String sessionID = makeUniqueString() ;

Hashtable sessionInfo = new Hashtable();

Hashtable globalTable = findTableStoringSessions () ;

globalTable.put (sessionID, sessionInfo);

Cookie sessionCookie = new Cookie("JSESSIONID", sessionID);

sessionCookie.setPath("/");

response.addCookie (sessionCookie) ;

Then, in later requests the server could use the globalTable hash table to
associate a session ID from the JSESSIONID cookie with the sessionInfo
hash table of data associated with that particular session. This is an excellent
solution and is the most widely used approach for session handling. Still, it
would be nice to have a higher-level API that handles some of these details.
Even though servlets have a high-level and easy-to-use interface to cookies
(see Chapter 8), a number of relatively tedious details still need to be han-
dled in this case:

e Extracting the cookie that stores the session identifier from the
other cookies (there may be many cookies, after all)

e Setting an appropriate expiration time for the cookie (sessions
that are inactive for 24 hours probably should be reset)

e Associating the hash tables with each request

* Generating the unique session identifiers

Besides, due to real and perceived privacy concerns over cookies (see Sec-
tion 8.2), some users disable them. So, it would be nice to have alternative
implementation approaches in addition to a higher-level protocol.

URL-Rewriting

With this approach, the client appends some extra data on the end of each
URL that identifies the session, and the server associates that identifier
with data it has stored about that session. For example, with
http://host/path/file.html;jsessionid=1234, the session information
is attached as jsessionid=1234. This is also an excellent solution, and even
has the advantage that it works when browsers don’t support cookies or when

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.2 The Session Tracking API 201

the user has disabled them. However, it has most of the same problems as
cookies, namely, that the server-side program has a lot of straightforward but
tedious processing to do. In addition, you have to be very careful that every
URL that references your site and is returned to the user (even by indirect
means like Location fields in server redirects) has the extra information
appended. And, if the user leaves the session and comes back via a bookmark
or link, the session information can be lost.

Hidden Form Fields

HTML forms can have an entry that looks like the following:
<INPUT TYPE="HIDDEN" NAME="session" VALUE="...">

This entry means that, when the form is submitted, the specified name and
value are included in the GET or posT data. For details, see Section 16.9
(Hidden Fields). This hidden field can be used to store information about the
session but it has the major disadvantage that it only works if every page is
dynamically generated.

Session Tracking in Servlets

Servlets provide an outstanding technical solution: the Httpsession APL
This high-level interface is built on top of cookies or URL-rewriting. In fact,
most servers use cookies if the browser supports them, but automatically
revert to URL-rewriting when cookies are unsupported or explicitly disabled.
But, the servlet author doesn’t need to bother with many of the details,
doesn’t have to explicitly manipulate cookies or information appended to the
URL, and is automatically given a convenient place to store arbitrary objects
that are associated with each session.

9.2 The Session Tracking API

Using sessions in servlets is straightforward and involves looking up the ses-
sion object associated with the current request, creating a new session object
when necessary, looking up information associated with a session, storing
information in a session, and discarding completed or abandoned sessions.
Finally, if you return any URLs to the clients that reference your site and
URL-rewriting is being used, you need to attach the session information to
the URLs.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

202 Chapter 9 Session Tracking

Looking Up the HttpSession Object Associated
with the Current Request

You look up the Httpsession object by calling the getSession method of
HttpServletRequest. Behind the scenes, the system extracts a user ID
from a cookie or attached URL data, then uses that as a key into a table of
previously created HttpSession objects. But this is all done transparently to
the programmer: you just call getSession. If getSession returns null, this
means that the user is not already participating in a session, so you can create
a new session. Creating a new session in this case is so commonly done that
there is an option to automatically create a new session if one doesn’t already
exist. Just pass true to getSession. Thus, your first step usually looks like
this:

HttpSession session = request.getSession(true) ;

If you care whether the session existed previously or is newly created, you
can use isNew to check.

Looking Up Information Associated with a
Session

HttpSession objects live on the server; theyre just automatically associated
with the client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data structure that lets
you store any number of keys and associated values. In version 2.1 and earlier
of the servlet API, you use session.getValue("attribute") to look up a
previously stored value. The return type is 0bject, so you have to do a type-
cast to whatever more specific type of data was associated with that attribute
name in the session. The return value is nul1 if there is no such attribute, so
you need to check for nul1 before calling methods on objects associated with
sessions.

In version 2.2 of the servlet API, getvalue is deprecated in favor of get-
Attribute because of the better naming match with setattribute (in ver-
sion 2.1 the match for getvalue is putvalue, not setvalue). Nevertheless,
since not all commercial servlet engines yet support version 2.2, T'll use
getValue in my examples.

Here’s a representative example, assuming ShoppingCart is some class
you've defined to store information on items being purchased (for an imple-
mentation, see Section 9.4 (An On-Line Store Using a Shopping Cart and
Session Tracking)).

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.2 The Session Tracking API

HttpSession session = request.getSession(true) ;
ShoppingCart cart =

(ShoppingCart) session.getValue ("shoppingCart") ;
if (cart == null) { // No cart already in session

cart = new ShoppingCart() ;

session.putValue ("shoppingCart", cart);

éoSomethingWith(cart);

In most cases, you have a specific attribute name in mind and want to find
the value (if any) already associated with that name. However, you can also
discover all the attribute names in a given session by calling getvalueNames,
which returns an array of strings. This method is your only option for finding
attribute names in version 2.1, but in servlet engines supporting version 2.2
of the servlet specification, you can use getattributeNames. That method is
Inoreconﬁsﬁﬂﬁinthatﬁlfﬁuﬂm2H1Enumeration,ﬁmthkethegetHeader—
NameszuuigetParameterNamesInethodsOthtpServletRequest.

Although the data that was explicitly associated with a session is the part
you care most about, there are some other pieces of information that are
sometimes useful as well. Here is a summary of the methods available in the
HttpSession class.

public Object getValue(String name)

public Object getAttribute(String name)

These methods extract a previously stored value from a session object.
They return nu11 if there is no value associated with the given name. Use
getValue in version 2.1 of the servlet API. Version 2.2 supports both
methods, but getattribute is preferred and getvalue is deprecated.

public void putValue(String name, Object value)

public void setAttribute(String name, Object value)

These methods associate a value with a name. Use putvalue with
version 2.1 servlets and either setattribute (preferred) or putvalue
(deprecated) with version 2.2 servlets. If the object supplied to
putValueorsetAttributeinﬂeHKHHsththtpSessionBinding—
Listener interface, the object’s valueBound method is called after it is
stored in the session. Similarly, if the previous value implements
HttpSessionBindingListener, its valueUnbound method is called.

public void removeValue(String name)

public void removeAttribute(String name)

These methods remove any values associated with the designated name.
If the value being removed implements HttpSessionBindingLis-

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

204 Chapter 9 Session Tracking

tener, its valueUnbound method is called. With version 2.1 servlets,
use removeValue. In version 2.2, removeAttribute is preferred, but
removevalue is still supported (albeit deprecated) for backward com-
patibility.

public String[] getValueNames()

public Enumeration getAttributeNames()

These methods return the names of all attributes in the session. Use
getValueNames in version 2.1 of the servlet specification. In version
2.2, getvalueNames is supported but deprecated; use getattribute-
Names instead.

public String getId()

This method returns the unique identifier generated for each session. It
is sometimes used as the key name when only a single value is associated
with a session, or when information about sessions is being logged.

public boolean isNew()

This method returns true if the client (browser) has never seen the ses-
sion, usually because it was just created rather than being referenced by
an incoming client request. It returns false for preexisting sessions.

public long getCreationTime()

This method returns the time in milliseconds since midnight, January 1,
1970 (GMT) at which the session was first built. To get a value useful for
printing out, pass the value to the bate constructor or the setTimeIn-
Millis method of Gregoriancalendar.

public long getLastAccessedTime()

This method returns the time in milliseconds since midnight, January 1,
1970 (GMT) at which the session was last sent from the client.

public int getMaxInactivelnterval()
public void setMaxInactiveInterval(int seconds)

These methods get or set the amount of time, in seconds, that a session
should go without access before being automatically invalidated. A neg-
ative value indicates that the session should never time out. Note that
the time out is maintained on the server and is not the same as the
cookie expiration date, which is sent to the client.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.2 The Session Tracking API 205

public void invalidate()

This method invalidates the session and unbinds all objects associated
with it.

Associating Information with a Session

As discussed in the previous section, you read information associated with a
session by using getvalue (in version 2.1 of the servlet specification) or
getAttribute (in version 2.2). To specify information in version 2.1 serv-
lets, you use putvalue, supplying a key and a value. Use setAttribute in
version 2.2. This is a more consistent name because it uses the get/set nota-
tion of JavaBeans. To let your values perform side effects when they are
stored in a session, simply have the object you are associating with the session
implement the HttpSessionBindingListener interface. Now, every time
putValue or setAttribute is called on one of those objects, its valueBound
method is called immediately afterward.

Be aware that putvalue and setAttribute replace any previous values;
if you want to remove a value without supplying a replacement, use remove-
Value in version 2.1 and removeattribute in version 2.2. These methods
trigger the valueUnbound method of any values that implement Http-
SessionBindingListener. Sometimes you just want to replace previous
values; see the referringPage entry in the example below for an example.
Other times, you want to retrieve a previous value and augment it; for an
example, see the previousItems entry below. This example assumes a
ShoppingCart class with an addItem method to store items being ordered,
and a catalog class with a static get Item method that returns an item, given
an item identifier. For an implementation, see Section 9.4 (An On-Line Store
Using a Shopping Cart and Session Tracking).

HttpSession session = request.getSession(true) ;
session.putValue ("referringPage", request.getHeader ("Referer"));
ShoppingCart cart =
(ShoppingCart) session.getValue ("previousItems") ;
if (cart == null) { // No cart already in session
cart = new ShoppingCart();
session.putValue ("previousItems", cart);
}
String itemID = request.getParameter ("itemID") ;
if (itemID != null) {
cart.addItem(Catalog.getItem(itemID)) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

206 Chapter 9 Session Tracking

Terminating Sessions

Sessions will automatically become inactive when the amount of time
between client accesses exceeds the interval specified by getMax-
InactiveInterval. When this happens, any objects bound to the Http-
Session object automatically get unbound. When this happens, your
attached objects will automatically be notified if they implement the
HttpSessionBindingListener interface.

Rather than waiting for sessions to time out, you can explicitly deactivate a
session through the use of the session’s invalidate method.

Encoding URLs Sent to the Client

If you are using URL-rewriting for session tracking and you send a URL that
references your site to the client, you need to explicitly add on the session
data. Since the servlet will automatically switch to URL-rewriting when cook-
ies aren’t supported by the client, you should routinely encode all URLs that
reference your site. There are two possible places you might use URLs that
refer to your own site. The first is when the URLSs are embedded in the Web
page that the servlet generates. These URLs should be passed through the
encodeURL method of HttpServletResponse. The method will determine
if URL-rewriting is currently in use and append the session information only
if necessary. The URL is returned unchanged otherwise.
Here’s an example:

String originalURL = someRelativeOrAbsoluteURL;
String encodedURL = response.encodeURL(originalURL) ;
out.println("...");

The second place you might use a URL that refers to your own site is in a
sendRedirect call (i.e., placed into the Location response header). In this
second situation, there are different rules for determining if session informa-
tion needs to be attached, so you cannot use encodeURL. Fortunately, Http-
ServletResponse supplies an encodeRedirectURL method to handle that
case. Here’s an example:

String originalURL = someURL; // Relative URL OK in version 2.2
String encodedURL = response.encodeRedirectURL (originalURL) ;
response.sendRedirect (encodedURL) ;

Since you often don’t know if your servlet will later become part of a series
of pages that use session tracking, it is good practice for servlets to plan ahead
and encode URLs that reference their site.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.3 A Servlet Showing Per-Client Access Counts

Core Approach

207

Plan ahead: pass URLs that refer to your own site through Q

response.encodeURL Or response.encodeRedirectURL,
regardless of whether your servlet is using session tracking.

9.3 A Servlet Showing Per-Client
Access Counts

Listing 9.1 presents a simple servlet that shows basic information about the
client’s session. When the client connects, the servlet uses request .getSes-
sion(true) to either retrieve the existing session or, if there was no session,
to create a new one. The servlet then looks for an attribute of type Integer
called accesscount. If it cannot find such an attribute, it uses 0 as the num-
ber of previous accesses. This value is then incremented and associated with
the session by putvalue. Finally, the servlet prints a small HTML table
showing information about the session. Figures 9-1 and 9-2 show the servlet
on the initial visit and after the page was reloaded several times.

Listing 9.1 ShowSession.java

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

import java.util.*;

/** Simple example of session tracking. See the shopping
* cart example for a more detailed one.
*/

public class ShowSession extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Session Tracking Example";
HttpSession session = request.getSession(true);
String heading;
// Use getAttribute instead of getValue in version 2.2.
Integer accessCount =

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

208 Chapter 9 Session Tracking

Listing 9.1 ShowSession.java (continued)

(Integer)session.getValue("accessCount");
if (accessCount == null) {

accessCount = new Integer(0);

heading = "Welcome, Newcomer";
} else {

heading = "Welcome Back";

accessCount = new Integer(accessCount.intValue() + 1);
}
// Use setAttribute instead of putValue in version 2.2.
session.putValue("accessCount", accessCount);

out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + heading + "</Hl1>\n" +
"<H2>Information on Your Session:</H2>\n" +
"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
" <TH>Info Type<TH>Value\n" +
"<TR>\n" +
" <TD>ID\n" +
" <TD>" + session.getId() + "\n" +

"<TR>\n" +

" <TD>Creation Time\n" +

" <TD>" +

new Date(session.getCreationTime()) + "\n" +
"<TR>\n" +

" <TD>Time of Last Access\n" +

" <TD>" +

new Date(session.getLastAccessedTime()) + "\n" +
"<TR>\n" +

" <TD>Number of Previous Accesses\n" +
" <TD>" + accessCount + "\n" +
"</TABLE>\n" +

"</BODY></HTML>") ;

/** Handle GET and POST requests identically. */

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 209

%{—Session Tracking Example - Netscape ;Iglﬂ

File Edt “iew Go Communicator Help

e o AN e masdE D # [N
Welcome, Newcomer

Information on Your Session:

Info Type Value
D OMCEARAAAAAAESTAAAAQAMS
Creation Time Wed Jan 05 11.48:07 EST 2000
Tine of Last Access “Wed Jan 05 11:48:07 EST 2000

MNumber of Presmous Accesses |0

= =B= Document: Done ir M e = R v [

Figure 9-1 First visit to ShowSession servlet.

%{—Session Tracking Example - Netscape ;Iglﬂ

File Edt “iew Go Communicator Help

e o AN e maEdE D E [N
Welcome Back

Information on Your Session:

Info Type Value
D OMCEARAAAAAAESTAAAAQAMS
Creation Time “Wed Jan 05 11:48:07 EST 2000
Tine of Last Access “Wed Jan 05 11:48:58 EST 2000

MNumber of Presious Accesses |10

= =B= Document: Done e TEh A By A

Figure 9-2 Eleventh visit to ShowSession servlet.

9.4 An On-Line Store Using a Shopping
Cart and Session Tracking

This section gives an extended example of how you might build an on-line
store that uses session tracking. The first subsection shows how to build pages

that display items for sale. The code for each display page simply lists the

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

210 Chapter 9 Session Tracking

page title and the identifiers of the items listed on the page. The actual page
is then built automatically by methods in the parent class, based upon item
descriptions stored in the catalog. The second subsection shows the page that
handles the orders. It uses session tracking to associate a shopping cart with
each user and permits the user to modify orders for any previously selected
item. The third subsection presents the implementation of the shopping cart,
the data structures representing individual items and orders, and the catalog.

WALLY, WE'RE VENTURE
CAPTTALISTS. WE WANT
TO INVEST IN YOUR

WEB-BASED BUSINESS,

T OONT OWN A
WEB-BASED
BUSTNESS. T'M JUsT
AN ENGINEER WITH
A COOL PONYTATL.

THAT'S GOOD
ENOUGH FOR

WE LIKE TO
GET IN EARLY.

www.dilbert.com scottadams@aol.com
11349 © 1999 United Feature Syndicate, Inc.

l
I
3

Lo

DILBERT reprinted by permission of United Syndicate, Inc.

Building the Front End

Listing 9.2 presents an abstract base class used as a starting point for servlets
that want to display items for sale. It takes the identifiers for the items for
sale, looks them up in the catalog, and uses the descriptions and prices found
there to present an order page to the user. Listing 9.3 (with the result shown
in Figure 9-3) and Listing 9.4 (with the result shown in Figure 9-4) show
how easy it is to build actual pages with this parent class.

Listing 9.2 CatalogPage.java

package coreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Base class for pages showing catalog entries.
* Servlets that extend this class must specify
the catalog entries that they are selling and the page
title <I>before</I> the servlet is ever accessed. This

*

*

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking

Listing 9.2 CatalogPage.java (continued)

is done by putting calls to setItems and setTitle
in init.
*/

public abstract class CatalogPage extends HttpServlet {
private Item[] items;
private String[] itemIDs;
private String title;

/** Given an array of item IDs, look them up in the
* Catalog and put their corresponding Item entry

* dinto the items array. The Item contains a short

* description, a long description, and a price,

* using the item ID as the unique key.

* <P>

* Servlets that extend CatalogPage must call
* this method (usually from init) before the servlet
* 1is accessed.

*/

protected void setItems (String[] itemIDs) {
this.itemIDs = itemIDs;
items = new Item[itemIDs.length];
for(int i=0; i<items.length; i++) {
items[i] = Catalog.getItem(itemIDs[i]);

/** Sets the page title, which is displayed in
* an Hl1 heading in resultant page.

* <P>

* Servlets that extend CatalogPage must call
* this method (usually from init) before the servlet
* 1is accessed.

*/

protected void setTitle(String title) {
this.title = title;

/** First display title, then, for each catalog item,

* put its short description in a level-two (H2) heading
with the price in parentheses and long description
below. Below each entry, put an order button
that submits info to the OrderPage servlet for
the associated catalog entry.
<P>

E R A

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

211

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

212 Chapter 9 Session Tracking

Listing 9.2 CatalogPage.java (continued)

To see the HTML that results from this method, do

* "View Source" on KidsBooksPage or TechBooksPage, two
concrete classes that extend this abstract class.

*/

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
if (items == null) {
response.sendError (response.SC_NOT_FOUND,
"Missing Items.");
return;
}
PrintWriter out = response.getWriter();
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1l ALIGN=\"CENTER\">" + title + "</H1>");
Item item;
for(int i=0; i<items.length; i++) {
out.println ("<HR>") ;
item = items[1i];
// Show error message if subclass lists item ID
// that’s not in the catalog.
if (item == null) {
out.println ("" +
"Unknown item ID " + itemIDs[i] +
"") ;
} else {
out.println() ;
String formURL =
"/servlet/coreservlets.OrderPage";
// Pass URLs that reference own site through encodeURL.
formURL = response.encodeURL (formURL) ;
out.println
("<FORM ACTION=\"" + formURL + "\">\n" +
"<INPUT TYPE=\"HIDDEN\" NAME=\"itemID\" " +
" VALUE=\"" + item.getItemID() + "\">\n" +
"<H2>" + item.getShortDescription() +
" ($" + item.getCost() + ")</H2>\n" +
item.getLongDescription() + "\n" +
"<P>\n<CENTER>\n" +
"<INPUT TYPE=\"SUBMIT\" " +
"VALUE=\"Add to Shopping Cart\">\n" +
"< /CENTER>\n<P>\n</FORM>") ;

}
out.println("<HR>\n</BODY></HTML>") ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking

Listing 9.2 CatalogPage.java (continued)

/** POST and GET requests handled identically. */

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

Listing 9.3 KidsBooksPage.java

package coreservlets;

/** A specialization of the CatalogPage servlet that

* displays a page selling three famous kids-book series.
* QOrders are sent to the OrderPage servlet.
*/

public class KidsBooksPage extends CatalogPage {
public void init() {
String[] ids = { "lewisO001l", "alexander001", "rowling001" };
setItems (ids) ;
setTitle("All-Time Best Children’s Fantasy Books");

Listing 9.4 TechBooksPage.java

package coreservlets;

/** A specialization of the CatalogPage servlet that

* displays a page selling two famous computer books.
* QOrders are sent to the OrderPage servlet.
*/

public class TechBooksPage extends CatalogPage {
public void init() {
String[] ids = { "hall001", "hallOO02" };
setItems (ids) ;
setTitle("All-Time Best Computer Books");

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

213

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

214 Chapter 9 Session Tracking
IBx]
File Edit Wiew Go Communicator Help
1w 2 ddamSsdB @ =

All-Time Best Children's Fantasy Books

The Chronicles of Narnia by C.S. Lewis ($19.95)

The classic children's adventure pitting Aslan the Great Lion and his followers against the White Witch and the
forces of ewil Dragons, magicians, quests, and talking animals wound around a deep spiritnal allegory. Series
includes The Magician's Nephew, The Lion, the Witch and the Wardrobe, The Horse and Hiz Boy, Prince
Caspian, The Voyage af the Dawn Treader, The Silver Chair, and The Lasi Batile

Add to Shopping Cart ‘

The Prydain Series by Lloyd Alexander ($19.95)

Humble pig-keeper Taran joms mighty Lord Gwydion m his battle agamst Arawn the Lord of Annuvin. Joned by
his loyal fiiends the beautifill princess Eilonwy, wannabe bard Flewdsdur Fllam, and firry half-man Gueg, Taran
discovers courage, nobility, and other values along the way. Series includes The Book of Three, The Black
Cauidron, The Castie of Livr, Taran Wanderer, and The High King

Add to Shopping Cart ‘

The Harry Potter Trilogy by J. K. Rowling ($25.95)
The first three of the popular stories about wizard-in-training Harry Potter topped both the adult and children's
best-geller ists. Senies mcludes Harry Potier and the Sorcerer's Stone, Harvy Patter and the Chamber of

Secrets, and Harry Potier and the Prisoner of Azkaban

Add to Shopping Cart

= == Document: Done S R e

Figure 9-3 Result of the KidsBooksPage servlet.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking

ﬂ{AII-Time Best Computer Books - Netscape _|O ﬁ

File Edit Yiew Go Communicator Help

9 e At ma &8 & =
. 1
All-Time Best Computer Books
Core Serviets and JavaServer Pages by Marty Hall ($39.95)
The definitive reference on servlets and ISP fom Prentice Hall and Sun Microsystems Press. Nominated for the
Mobel Prize in Literature
Add to Shopping Cart ‘
Core Web Programming, Javal Edition by Marty Hall, Larry
Brown, and Paul McNamee ($49.95)
Cne stop shopping for the Web programmer. Topics mclude
¢ Thorough coverage of Java 2; including Threads, MNetworking, Swing, JavaZD, and Collections
e A fastintroduction to HIML 4.01, including frames, style sheets, layers, and Netscape and Internet
Esplorer extensions
e A fastintroduction to HTTP 1.1, servlets, and JavaServer Pages.
¢ A quick overview of JavaScrpt 1.2
Add to Shopping Cart
= == Document: Done e R A

Figure 9-4 Result of the TechBooksPage servlet.

Handling the Orders

Listing 9.5 shows the servlet that handles the orders coming from the various
catalog pages shown in the previous subsection. It uses session tracking to
associate a shopping cart with each user. Since each user has a separate ses-
sion, it is unlikely that multiple threads will be accessing the same shopping
cart simultaneously. However, if you were paranoid, you could conceive of a
few circumstances where concurrent access could occur, such as when a sin-
gle user has multiple browser windows open and sends updates from more
than one very close together in time. So, just to be safe, the code synchro-
nizes access based upon the session object. This prevents other threads that

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

215

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
216 Chapter 9 Session Tracking
use the same session from accessing the data concurrently, while still allowing

simultaneous requests from different users to proceed. Figures 9-5 and 9-6
show some typical results.

Listing 9.5 OrderPage. java

package coreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import java.util.*;

import java.text.NumberFormat;

/** Shows all items currently in ShoppingCart. Clients

* have their own session that keeps track of which
ShoppingCart is theirs. If this is their first visit

to the order page, a new shopping cart is created.
Usually, people come to this page by way of a page
showing catalog entries, so this page adds an additional
item to the shopping cart. But users can also

bookmark this page, access it from their history 1list,
or be sent back to it by clicking on the "Update Order"
button after changing the number of items ordered.

* % X X X X X X %

/

public class OrderPage extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
HttpSession session = request.getSession(true);
ShoppingCart cart;
synchronized(session) {
cart = (ShoppingCart)session.getValue("shoppingCart");
// New visitors get a fresh shopping cart.
// Previous visitors keep using their existing cart.
if (cart == null) {
cart = new ShoppingCart():;
session.putValue("shoppingCart", cart);

}
String itemID = request.getParameter ("itemID") ;
if (itemID != null) {

String numItemsString =
request .getParameter ("numItems") ;
if (numItemsString == null) {
// If request specified an ID but no number,
// then customers came here via an "Add Item to Cart"
// button on a catalog page.
cart.addItem(itemID) ;
} else {
// If request specified an ID and number, then

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking

Listing 9.5 OrderPage. java (continued)

// customers came here via an "Update Order" button
// after changing the number of items in order.

// Note that specifying a number of 0 results

// in item being deleted from cart.

int numItems;

try {

numItems = Integer.parselnt (numItemsString) ;
} catch (NumberFormatException nfe) {

numItems = 1;

}

cart.setNumOrdered (itemID, numItems) ;

}
// Whether or not the customer changed the order, show
// order status.
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Status of Your Order";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1l ALIGN=\"CENTER\">" + title + "</H1>");
synchronized(session) {
Vector itemsOrdered = cart.getItemsOrdered() ;

if (itemsOrdered.size() == 0) {
out.println("<H2><I>No items in your cart...</I></H2>");
} else {

// If there is at least one item in cart, show table
// of items ordered.
out.println

("<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +

"<TR BGCOLOR=\"#FFADOO\">\n" +

" <TH>Item ID<TH>Description\n" +

" <TH>Unit Cost<TH>Number<TH>Total Cost") ;
ItemOrder order;

// Rounds to two decimal places, inserts dollar

// sign (or other currency symbol), etc., as

// appropriate in current Locale.

NumberFormat formatter =
NumberFormat.getCurrencyInstance () ;

String formURL =

"/servlet/coreservlets.OrderPage";
// Pass URLs that reference own site through encodeURL.
formURL = response.encodeURL(formURL) ;

// For each entry in shopping cart, make
// table row showing ID, description, per-item
// cost, number ordered, and total cost.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

217

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

218 Chapter 9 Session Tracking

Listing 9.5 OrderPage. java (continued)

// Put number ordered in textfield that user
// can change, with "Update Order" button next
// to it, which resubmits to this same page
// but specifying a different number of items.

for(int i=0; i<itemsOrdered.size(); 1i++) {
order = (ItemOrder)itemsOrdered.elementAt (i) ;
out.println
("<TR>\n" +

" <TD>" + order.getItemID() + "\n" +
" <TD>" + order.getShortDescription() + "\n" +

" <TD>" +
formatter. format (order.getUnitCost()) + "\n" +
" <TD>" +

"<FORM ACTION=\"" + formURL + "\">\n" +
"<INPUT TYPE=\"HIDDEN\" NAME=\"itemID\"\n" +
" VALUE=\"" + order.getItemID() + "\">\n" +
"<INPUT TYPE=\"TEXT\" NAME=\"numItems\"\n" +
" SIZE=3 VALUE=\"" +
order.getNumItems () + "\">\n" +
"<SMALL>\n" +
"<INPUT TYPE=\"SUBMIT\"\n "+
" VALUE=\"Update Order\">\n" +
"</SMALL>\n" +
"</FORM>\n" +
" <TD>" +
formatter.format (order.getTotalCost())) ;
}
String checkoutURL =
response.encodeURL (" /Checkout.html") ;
// "Proceed to Checkout" button below table
out.println
("</TABLE>\n" +
"<FORM ACTION=\"" + checkoutURL + "\">\n" +
"<BIG><CENTER>\n" +
"<INPUT TYPE=\"SUBMIT\"\n" +
" VALUE=\"Proceed to Checkout\">\n" +
"</CENTER></BIG></FORM>") ;
}
out.println ("</BODY></HTML>") ;

}

/** POST and GET requests handled identically. */

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet (request, response) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking

37 Status of Your Order - Netscape

File Edit Yiew Go Communicator Help

e VoI EB H

Status of Your Order

Proceed to Checkout |

[P == |Document: Done

Item ID Desecription Unit Cost Number

Figure 9-5 Result of OrderPage servlet after user clicks on “Add to Shopping Cart”

in KidsBooksPage.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

Total Cost

alexander001 The Prydain Series by Lloyd Alexander (51995 [v oun | $19.95

R =N

A

219

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

220 Chapter 9 Session Tracking
RIS
File Edit Yiew Go Communicator Help
ie e Aate blaE B @ =
a 7
Status of Your Order
Item ID Desecription Unit Cost Number Total Cost
alexander001 |The Prodain Series by Lloyd Alezander $19.95 [_vpaseoer | $19.95
. '1_ Update Drder
lewis001 The Chronicles of Narria by C.35. Lewis £19.95 $19.95
hall001 gzﬁ"e Serviets and JavaServer Pages by Marty $39.95 ,? Update Order $599 25
Core Web Programming, Javal Bdition by ’? Update Order
eli0 Mlarty Hall, Larry Brown, and Paul McNamee $49.95 $2.497.50
Proceed to Checkout ‘
= == Document: Done A e R A

Figure 9-6 Result of OrderPage servlet after several additions and changes to the
order.

Behind the Scenes: Implementing the Shopping
Cart and Catalog Items

Listing 9.6 gives the shopping cart implementation. It simply maintains a
vector of orders, with methods to add and update these orders. Listing 9.7
shows the code for the individual catalog item, Listing 9.8 presents the class
representing the order status of a particular item, and Listing 9.9 gives the
catalog implementation.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking

Listing 9.6 ShoppingCart.java

package coreservlets;
import java.util.*;

/** A shopping cart data structure used to track orders.
* The OrderPage servlet associates one of these carts
* with each user session.

*/

public class ShoppingCart {
private Vector itemsOrdered;

/** Builds an empty shopping cart. */

public ShoppingCart () {
itemsOrdered = new Vector () ;

/** Returns Vector of ItemOrder entries giving
* TItem and number ordered.
*/

public Vector getItemsOrdered() {
return (itemsOrdered) ;

/** Looks through cart to see if it already contains

* an order entry corresponding to item ID. If it does,
* dincrements the number ordered. If not, looks up

* TItem in catalog and adds an order entry for it.

public synchronized void addItem(String itemID) {
ItemOrder order;
for(int i=0; i<itemsOrdered.size(); 1i++) {
order = (ItemOrder)itemsOrdered.elementAt (i) ;
if (order.getItemID() .equals(itemID)) {
order.incrementNumItems () ;
return;

}
ItemOrder newOrder = new ItemOrder (Catalog.getItem(itemID)) ;
itemsOrdered.addElement (newOrder) ;

/** Looks through cart to find order entry corresponding
* to item ID listed. If the designated number

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

221

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

222 Chapter 9 Session Tracking

Listing 9.6 ShoppingCart.java (continued)

is positive, sets it. If designated number is 0
(or, negative due to a user input error), deletes
* item from cart.
*/

public synchronized void setNumOrdered(String itemID,
int numOrdered) {
ItemOrder order;
for(int i=0; i<itemsOrdered.size(); 1i++) {
order = (ItemOrder)itemsOrdered.elementAt (i) ;
if (order.getItemID() .equals(itemID)) {
if (numOrdered <= 0) {
itemsOrdered.removeElementAt (i) ;
} else {
order.setNumItems (numOrdered) ;
}

return;

}

ItemOrder newOrder =
new ItemOrder (Catalog.getItem(itemID)) ;
itemsOrdered.addElement (newOrder) ;

Listing 9.7 Item.java

package coreservlets;

/** Describes a catalog item for on-line store. The itemID

* uniquely identifies the item, the short description

gives brief info like the book title and author,

the long description describes the item in a couple

of sentences, and the cost gives the current per-item price.
Both the short and long descriptions can contain HTML
markup.

* % X X X X

public class Item {
private String itemID;
private String shortDescription;
private String longDescription;
private double cost;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking

Listing 9.7 Item.java (continued)

public Item(String itemID, String shortDescription,
String longDescription, double cost) {
setItemID (itemID) ;
setShortDescription (shortDescription) ;
setLongDescription (longDescription) ;
setCost (cost) ;

public String getItemID() {
return(itemID) ;

protected void setItemID(String itemID) {
this.itemID = itemID;

public String getShortDescription() {
return (shortDescription) ;

protected void setShortDescription(String shortDescription) {
this.shortDescription = shortDescription;

public String getLongDescription() {
return (longDescription) ;

protected void setLongDescription(String longDescription) {
this.longDescription = longDescription;

public double getCost () {
return (cost) ;

protected void setCost (double cost) {
this.cost = cost;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

223

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

224 Chapter 9 Session Tracking

Listing 9.8 ItemOrder.java

package coreservlets;

/** Associates a catalog Item with a specific order by

* keeping track of the number ordered and the total price.
* Also provides some convenience methods to get at the

* Item data without first extracting the Item separately.

public class ItemOrder {
private Item item;
private int numItems;

public ItemOrder (Item item) {
setItem(item) ;
setNumItems (1) ;

public Item getItem() {
return(item) ;

protected void setItem(Item item) {
this.item = item;

public String getItemID() {
return(getItem() .getItemID()) ;

public String getShortDescription() {
return(getItem() .getShortDescription()) ;

public String getLongDescription() {
return(getItem() .getLongDescription()) ;

7

public double getUnitCost () {
return(getItem() .getCost())

public int getNumItems () {
return (numItems) ;

public void setNumItems (int n) {
this.numItems = n;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking

Listing 9.8 ItemOrder.java (continued)

public void incrementNumItems () {
setNumItems (getNumItems () + 1);

public void cancelOrder () {
setNumItems (0) ;

public double getTotalCost () {
return (getNumItems () * getUnitCost()) ;

Listing 9.9 Catalog.java

package coreservlets;
/** A catalog listing the items available in inventory. */

public class Catalog {
// This would come from a database in real life
private static Item[] items =
{ new Item("hallOO1",

"<I>Core Servlets and JavaServer Pages</I> " +
" by Marty Hall",
"The definitive reference on servlets " +

"and JSP from Prentice Hall and \n" +
"Sun Microsystems Press. Nominated for " +
"the Nobel Prize in Literature.",

39.95),

new Item("hallO02",

"<I>Core Web Programming, Java2 Edition</I> " +
"by Marty Hall, Larry Brown, and " +
"Paul McNamee",

"One stop shopping for the Web programmer. " +
"Topics include \n" +
"Thorough coverage of Java 2; " +

"including Threads, Networking, Swing, \n" +
"Java2D, and Collections\n" +

"A fast introduction to HTML 4.01, " +
"including frames, style sheets, layers,\n" +
"and Netscape and Internet Explorer " +
"extensions.\n" +

"A fast introduction to HTTP 1.1, " +
"servlets, and JavaServer Pages.\n" +

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

225

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

226 Chapter 9 Session Tracking

Listing 9.9 Catalog.java (continued)

"A quick overview of JavaScript 1.2\n" +
"",
49.95),
new Item("lewisOO01",

"<I>The Chronicles of Narnia</I> by C.S. Lewis",

"The classic children’s adventure pitting " +
"Aslan the Great Lion and his followers\n" +
"against the White Witch and the forces " +
"of evil. Dragons, magicians, dquests, \n" +
"and talking animals wound around a deep " +
"spiritual allegory. Series includes\n" +
"<I>The Magician’s Nephew</I>,\n" +
"<I>The Lion, the Witch and the " +

"Wardrobe</I>, \n" +
"<I>The Horse and His Boy</I>,\n" +
"<I>Prince Caspian</I>,\n" +
"<I>The Voyage of the Dawn " +
"Treader</I>,\n" +
"<I>The Silver Chair</I>, and \n" +
"<I>The Last Battle</I>.",
19.95),
new Item("alexander001",

"<I>The Prydain Series</I> by Lloyd Alexander",

"Humble pig-keeper Taran joins mighty " +
"Lord Gwydion in his battle against\n" +
"Arawn the Lord of Annuvin. Joined by " +
"his loyal friends the beautiful princess\n" +
"Eilonwy, wannabe bard Fflewddur Fflam," +
"and furry half-man Gurgi, Taran discovers " +
"courage, nobility, and other values along\n" +
"the way. Series includes\n" +
"<I>The Book of Three</I>,\n" +
"<I>The Black Cauldron</I>,\n" +
"<I>The Castle of Llyr</I>,\n" +
"<I>Taran Wanderer</I>, and\n" +
"<I>The High King</I>.",

19.95),

new Item("rowlingOO1",

"<I>The Harry Potter Trilogy</I> by " +
"J.K. Rowling",

"The first three of the popular stories " +
"about wizard-in-training Harry Potter\n" +
"topped both the adult and children’s " +
"best-seller lists. Series includes\n" +

"<I>Harry Potter and the " +
"Sorcerer’s Stone</I>,\n" +
"<I>Harry Potter and the " +

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 227

Listing 9.9 Catalog.java (continued)

"Chamber of Secrets</I>, and\n" +
"<I>Harry Potter and the " +
"Prisoner of Azkaban</I>.",
25.95)

Y

public static Item getItem(String itemID) {
Item item;
if (itemID == null) {
return(null) ;

}
for(int i=0; i<items.length; i++) {
item = items[i];
if (itemID.equals(item.getItemID())) {
return(item) ;

}

return (null) ;

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

-

' JAVASERVER PAGES

\l.

Chapter 10
Chapter 1|

Chapter 12

Chapter 13
Chapter 14

Chapter 15

JSP Scripting Elements, 230

The JSP page Directive: Structuring
Generated Servlets, 246
Including Files and Applets in JSP
Documents, 266

Using JavaBeans with J|SP, 286
Creating Custom |SP Tag Libraries,
308

Integrating Servlets and JSP, 352

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

JSP SCRIPTING
ELEMENTS

/ Topics in This Chapter

* The purpose of |SP
* How JSP pages are invoked

* Using JSP expressions to insert dynamic results directly
into the output page

* Using JSP scriptlets to insert Java code into the method
that handles requests for the page

* Using JSP declarations to add methods and field
declarations to the servlet that corresponds to the JSP

page

* Predefined variables that can be used within expressions
and scriptlets

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapte

avaServer Pages (JSP) technology enables you to mix regular, static
HTML with dynamically generated content from servlets. You simply
write the regular HTML in the normal manner, using familiar
Web-page-building tools. You then enclose the code for the dynamic
parts in special tags, most of which start with <% and end with %>. For
example, here is a section of a JSP page that results in “Thanks for ordering
Core Web Programming” for a URL of http://host/OrderConfirma-
tion.jsp?title=Core+Web+Programming:

Thanks for ordering <I><%= request.getParameter ("title") %></I>

Separating the static HTML from the dynamic content provides a number
of benefits over servlets alone, and the approach used in JavaServer Pages
offers several advantages over competing technologies such as ASP, PHP, or
ColdFusion. Section 1.4 (The Advantages of JSP) gives some details on these
advantages, but they basically boil down to two facts: that JSP is widely sup-
ported and thus doesn’t lock you into a particular operating system or Web
server and that JSP gives you full access to servlet and Java technology for the
dynamic part, rather than requiring you to use an unfamiliar and weaker spe-
cial-purpose language.

The process of making JavaServer Pages accessible on the Web is much
simpler than that for servlets. Assuming you have a Web server that supports
JSP, you give your file a . jsp extension and simply install it in any place you

231

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

232 Chapter 10 JSP Scripting Elements

could put a normal Web page: no compiling, no packages, and no user
CLASSPATH settings. However, although your personal environment doesn’t
need any special settings, the server still has to be set up with access to the
servlet and JSP class files and the Java compiler. For details, see your server’s
documentation or Section 1.5 (Installation and Setup).

Although what you write often looks more like a regular HTML file than a
servlet, behind the scenes, the JSP page is automatically converted to a nor-
mal servlet, with the static HTML simply being printed to the output stream
associated with the servlet’s service method. This translation is normally
done the first time the page is requested. To ensure that the first real user
doesn’t get a momentary delay when the JSP page is translated into a servlet
and compiled, developers can simply request the page themselves after first
installing it. Many Web servers also let you define aliases so that a URL that
appears to reference an HTML file really points to a servlet or JSP page.

Depending on how your server is set up, you can even look at the source
code for servlets generated from your JSP pages. With Tomcat 3.0, you need to
change the isWorkDirPersistent attribute from false to true in
install dir/server.xml. After that, the code can be found in
install_dir/work/port-number. With the JSWDK 1.0.1, you need to
change the workDirIsPersistent attribute from false to true in
install_dir/webserver.xml. After that, the code can be found in
install_dir/work/%3Aport-number%2F. With the Java Web Server, 2.0 the
default setting is to save source code for automatically generated servlets. They
can be found in install_dir/tmpdir/default/pagecompile/jsp/_JSP.

One warning about the automatic translation process is in order. If you
make an error in the dynamic portion of your JSP page, the system may not
be able to properly translate it into a servlet. If your page has such a fatal
translation-time error, the server will present an HTML error page describ-
ing the problem to the client. Internet Explorer 5, however, typically replaces
server-generated error messages with a canned page that it considers friend-
lier. You will need to turn off this “feature” when debugging JSP pages. To do
so with Internet Explorer 5, go to the Tools menu, select Internet Options,
choose the Advanced tab, and make sure “Show friendly HTTP error mes-
sages” box is not checked.

Core Warning

When debugging |SP pages, be sure to turn off Internet Explorer’s
“friendly” HTTP error messages.

by

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

10.1 Scripting Elements 233

Aside from the regular HTML, there are three main types of JSP con-
structs that you embed in a page: scripting elements, directives, and actions.
Scripting elements let you specify Java code that will become part of the
resultant servlet, directives let you control the overall structure of the servlet,
and actions let you specify existing components that should be used and oth-
erwise control the behavior of the JSP engine. To simplify the scripting ele-
ments, you have access to a number of predefined variables, such as request
in the code snippet just shown (see Section 10.5 for more details). Scripting
elements are covered in this chapter, and directives and actions are explained
in the following chapters. You can also refer to Appendix (Servlet and JSP
Quick Reference) for a thumbnail guide summarizing JSP syntax.

This book covers versions 1.0 and 1.1 of the JavaServer Pages specification.
JSP changed dramatically from version 0.92 to version 1.0, and although
these changes are very much for the better, you should note that newer JSP
pages are almost totally incompatible with the early 0.92 JSP engines, and
older JSP pages are equally incompatible with 1.0 JSP engines. The changes
from version 1.0 to 1.1 are much less dramatic: the main additions in version
1.1 are the ability to portably define new tags and the use of the servlet 2.2
specification for the underlying servlets. J[SP 1.1 pages that do not use custom
tags or explicitly call 2.2-specific statements are compatible with JSP 1.0
engines, and JSP 1.0 pages are totally upward compatible with JSP 1.1
engines.

10.1 Scripting Elements

JSP scripting elements let you insert code into the servlet that will be gener-
ated from the JSP page. There are three forms:

1. Expressions of the form <%= expression %>, which are evalu-
ated and inserted into the servlets output

2. Scriptlets of the form <% code %>, which are inserted into the
servlet’s _jspservice method (called by service)

3. Declarations of the form <%! code %>, which are inserted into
the body of the servlet class, outside of any existing methods

Each of these scripting elements is described in more detail in the follow-
ing sections.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

234 Chapter 10 JSP Scripting Elements

Template Text

In many cases, a large percentage of your]SP page just consists of static
HTML, known as template text. In almost all respects, this HTML looks just
like normal HTML, follows all the same syntax rules, and is simply “passed
through” to the client by the servlet created to handle the page. Not only
does the HTML look normal, it can be created by whatever tools you already
are using for building Web pages. For example, I used Allaire’s HomeSite for
most of the JSP pages in this book.

There are two minor exceptions to the “template text is passed straight
through” rule. First, if you want to have <% in the output, you need to put <\%
in the template text. Second, if you want a comment to appear in the JSP
page but not in the resultant document, use

<%-- JSP Comment --%>
HTML comments of the form
<!-- HTML Comment -->

are passed through to the resultant HTML normally.

10.2 JSP Expressions

A JSP expression is used to insert values directly into the output. It has the
following form:

<%= Java Expression %>

The expression is evaluated, converted to a string, and inserted in the
page. This evaluation is performed at run time (when the page is requested)
and thus has full access to information about the request. For example, the
following shows the date/time that the page was requested:

Current time: <%= new java.util.Date() %>

Predefined Variables

To simplify these expressions, you can use a number of predefined variables.
These implicit objects are discussed in more detail in Section 10.5, but for
the purpose of expressions, the most important ones are:

e request, the HttpServletRequest
e response, the HttpServletResponse

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

10.2 JSP Expressions

* session, the HttpSession associated with the request (unless
disabled with the session attribute of the page directive — see
Section 11.4)

e out, the Printwriter (a buffered version called Jspwriter)
used to send output to the client

Here is an example:

Your hostname: <%= request.getRemoteHost () %>

XML Syntax for Expressions

XML authors can use the following alternative syntax for J[SP expressions:

<jsp:expression>
Java Expression
</jsp:expression>

Note that XML elements, unlike HTML ones, are case sensitive, so be
sure to use jsp:expression in lower case.

Using Expressions as Attribute Values

As we will see later, JSP includes a number of elements that use XML syntax
to specify various parameters. For example, the following example passes
"Marty" to the setFirstName method of the Obﬁxi bound to the author
variable. Don’t worry if you don’t understand the details of this code; it is dis-
cussed in detail in Chapter 13 (Using JavaBeans with JSP). My purpose here
is simply to point out the use of the name, property, and value attributes.

<jsp:setProperty name="author"
property="firstName"
value="Marty" />

Most attributes require the value to be a fixed string enclosed in either sin-
gle or double quotes, as in the example above. A few attributes, however, per-
mit you to use a JSP expression that is computed at request time. The value
attribute of jsp:setProperty is one such example, so the following code is
perfectly legal:

<jsp:setProperty name="user"

property="id"
value='<%= "UserID" + Math.random() %>’ />

Table 10.1 lists the attributes that permit a request-time value as in this

example.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

235

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

236 Chapter 10 JSP Scripting Elements

Table 10.1 Attributes That Permit JSP Expressions

Element Name Attribute Name(s)
jsp:setProperty name

(see Section 13.3, “Setting Bean Properties”) value
jsp:include page

(see Chapter 12, “Including Files and Applets in [SP
Documents”)

jsp:forward page

(see Chapter 15, “Integrating Servlets and JSP”)

jsp:param value
(see Chapter 12, “Including Files and Applets in [SP
Documents”)

Example

Listing 10.1 gives an example JSP page; Figure 10-1 shows the result. Notice
that I included META tags and a style sheet link in the HEAD section of the
HTML page. It is good practice to include these elements, but there are two
reasons why they are often omitted from pages generated by normal servlets.
First, with servlets, it is tedious to generate the required print1n statements.
With JSP, however, the format is simpler and you can make use of the code
reuse options in your usual HTML building tool. Second, servlets cannot use
the simplest form of relative URLs (ones that refer to files in the same direc-
tory as the current page) since the servlet directories are not mapped to
URLs in the same manner as are URLSs for normal Web pages. JSP pages, on
the other hand, are installed in the normal Web page hierarchy on the server,
and relative URLSs are resolved properly. Thus, style sheets and JSP pages can
be kept together in the same directory. The source code for the style sheet,
like all code shown or referenced in the book, can be downloaded from

http://www.coreservlets.com/.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

10.2 JSP Expressions

Listing 10.] Expressions.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Expressions</TITLE>
<META NAME="author" CONTENT="Marty Hall">
<META NAME="keywords"
CONTENT="JSP, expressions, JavaServer,b Pages, servlets">
<META NAME="description"
CONTENT="A quick example of JSP expressions.">
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>

<BODY>

<H2>JSP Expressions</H2>

Current time: <%= new java.util.Date() %>
Your hostname: <%= request.getRemoteHost () %>
Your session ID: <%= session.getId() %>
The <CODE>testParam</CODE> form parameter:

<%= request.getParameter("testParam") %>

</BODY>

</HTML>

SP Expressions - Netscape

File Edit “iew Go Communicator Help

14 A ass0H -

wi ” Bookmarks \g& Location: Ihttp:Ja"webdev.apl.ihu.edu#"halla’JSPHE spressions. jep YtestParam=some+data j

JSP Expressions

& Current time: Mon Jan 17 10:40:10 EST 2000

s Your hostname: pmd-s40 dial-up. abs.net

e Vour sesston ID: TOKIEMNIAA A AQAGEMVEQALL
* The testParamform parameter: some data

[== |ocument: Done S = E A I
Figure 10-1 Typical result of Expressions.jsp.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

237

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

238 Chapter 10 JSP Scripting Elements

10.3 JSP Scriptlets

If you want to do something more complex than insert a simple expression,
JSP scriptlets let you insert arbitrary code into the servlet's _jspservice
method (which is called by service). Scriptlets have the following form:

<% Java Code %>

Scriptlets have access to the same automatically defined variables as
expmmﬁons(request,response,session,out,ekl;S@3$€Cﬁ0niﬂl5).SO,
for example, if you want output to appear in the resultant page, you would
use the out variable, as in the following example.

<%

String queryData = request.getQueryString();

out.println("Attached GET data: " + queryData);

%>

In this particular instance, you could have accomplished the same effect
more easily by using the following JSP expression:

Attached GET data: <%= request.getQueryString() %>

In general, however, scriptlets can perform a number of tasks that cannot
be accomplished with expressions alone. These tasks include setting response
headers and status codes, invoking side effects such as writing to the server
log or updating a database, or executing code that contains loops, condition-
als, or other complex constructs. For instance, the following snippet specifies

that the current page is sent to the client as plain text, not as HTML (which is
the default).

<% response.setContentType ("text/plain"); %>

It is important to note that you can set response headers or status codes
at various places within a JSP page, even though this capability appears to
violate the rule that this type of response data needs to be specified before
any document content is sent to the client. Setting headers and status codes
is permitted because servlets that result from JSP pages use a special type
of printwriter (of the more specific class Jspwriter) that buffers the
document before sending it. This buffering behavior can be changed, how-
ever; see Section 11.6 for a discussion of the autoflush attribute of the
page directive.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

10.3 JSP Scriptlets

As an example of executing code that is too complex for a JSP expression,
Listing 10.2 presents a |SP page that uses the bgcolor request parameter to
set the background color of the page. Some results are shown in Figures
10-2, 10-3, and 10—4.

Listing 10.2 BGColor.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Color Testing</TITLE>
</HEAD>

<%
String bgColor = request.getParameter ("bgColor");
boolean hasExplicitColor;
if (bgColor != null) {
hasExplicitColor = true;

} else {
hasExplicitColor = false;
bgColor = "WHITE";

}

%>

<BODY BGCOLOR="<%= bgColor %>">

<H2 ALIGN="CENTER">Color Testing</H2>

<%

if (hasExplicitColor) {

out.println("You supplied an explicit background color of " +
bgColor + ".");
} else {
out.println("Using default background color of WHITE. " +

"Supply the bgColor request attribute to try " +
"a standard color, an RRGGBB value, or to see " +
"if your browser supports X1l color names.");

o° W
v

</BODY>
</HTML>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

239

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

240 Chapter 10 JSP Scripting Elements

43 Color Testing - Microsoft Internet Explorer

J File Edit “iew Favortes Toolz: Help |

[-2 QN QAEIE-SEA-

| Addiess [&] hitp:/ acathost)SP/BGColorisp =] PG [Liks >

[—|

Color Testing

TTaing default background color of WHITE. Supply the bgColor request
attribute to tty a standard color, an EEGGEE walue, of to see if your
browser supports 211 color names,

|@ Daone I_I_ 251 Local intranet

Figure 10-2 Default result of BGColor. jsp.

[-]
/

43 Color Testing - Microsoft Internet Explorer

J File Edit “iew Favortes Toolz: Help |
[€&-2- QN AEIB-TH-
| fddess [2] hitp://localhost/ ISP /BGCalar sp?baColor=COCOCD v @G | Links
_ -
Color Testing
Tou supplied an explicit background color of COCOCD,
[
|@ Done I_I_ S5 Local intranet i

Figure 10-3 Result of BGColor.jsp when accessed with a bgColor parameter
having the RGB value c0c0cCo.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

10.3 JSP Scriptlets 241

'; Color Testing - Microsoft Internet Explorer
File Edit “iew Favortes Tool: Help n

2 0NN QMBI B I

Address |€| http: /flocalhostAJSPYBGCalor jzp PhbgCalor=papayawhip j o Go || Links »

=

Color Testing

Tou supplied an explicit background color of papayawhip.

J -]

&) Daone g'g Local intranet

Figure 10-4 Result of BGColor.jsp when accessed with a bgColor parameter
having the X11 color value papayawhip.

Using Scriptlets to Make Parts of the JSP File
Conditional

Another use of scriptlets is to conditionally include standard HTML and JSP
constructs. The key to this approach is the fact that code inside a scriptlet
gets inserted into the resultant servlet's _jspservice method (called by
service) exactly as written, and any static HTML (template text) before or
after a scriptlet gets converted to print statements. This means that script-
lets need not contain complete Java statements, and blocks left open can
affect the static HTML or JSP outside of the scriptlets. For example, con-
sider the following JSP fragment containing mixed template text and script-
lets.

<% 1if (Math.random() < 0.5) { %>

Have a nice day!

<% } else { %>

Have a lousy day!
<% } %>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

242 Chapter 10 JSP Scripting Elements

When converted to a servlet by the JSP engine, this fragment will result in
something similar to the following.
if (Math.random() < 0.5) {
out.println("Have a nice day!");
} else {
out.println("Have a lousy day!");

}

Special Scriptlet Syntax

There are two special constructs you should take note of. First, if you want to
use the characters %> inside a scriptlet, enter $\> instead. Second, the XML
equivalent of <% Ccode %> is

<jsp:scriptlet>

Code

</jsp:scriptlet>

The two forms are treated identically by JSP engines.

10.4 JSP Declarations

A JSP declaration lets you define methods or fields that get inserted into the
main body of the servlet class (outside of the _jspservice method that is
called by service to process the request). A declaration has the following form:

<%! Java Code %>

Since declarations do not generate any output, they are normally used in
conjunction with JSP expressions or scriptlets. For example, here is a JSP
fragment that prints the number of times the current page has been
requested since the server was booted (or the servlet class was changed and
reloaded). Recall that multiple client requests to the same servlet result only
in multiple threads calling the service method of a single servlet instance.
They do not result in the creation of multiple servlet instances except possibly
when the servlet implements singleThreadModel. For a discussion of sin-
gleThreadModel, see Section 2.6 (The Servlet Life Cycle) and Section 11.3
(The isThreadSafe Attribute). Thus, instance variables (fields) of a servlet are
shared by multiple requests and accessCount does not have to be declared
static below.

<%! private int accessCount = 0; %>

Accesses to page since server reboot:
<%= ++accessCount %>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

10.4 JSP Declarations

Listing 10.3 shows the full JSP page; Figure 10-5 shows a representative

result.

Listing 10.3 AccessCounts. jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Declarations</TITLE>
<META NAME="author" CONTENT="Marty Hall">
<META NAME="keywords"
CONTENT="JSP,declarations, JavaServer, Pages, servlets">
<META NAME="description"
CONTENT="A quick example of JSP declarations.">
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>

<BODY>
<H1>JSP Declarations</H1>

<%! private int accessCount = 0; %>
<H2>Accesses to page since server reboot:
<%= ++accessCount $%$></H2>

</BODY>
</HTML>

5P Declarations - Hetzcape

File Edit Yiew Go Communicator Help

I RPN Y 1:0

J'Baakmarks J‘ Lacatian:Ihttp:.v'f"lacalhustf'JSF'H.-’-‘«ccessEaunts.isp j

JSP Declarations

Accesses to page since server
reboot: 16

= (== y

Figure 10-5 Visiting AccessCounts. jsp after it has been requested 15 times by
the same or different clients.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Servlet and JSP training courses by book’s author: courses.coreservlets.com.

243

244

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapter 10 JSP Scripting Elements

Special Declaration Syntax

As with scriptlets, if you want to use the characters $>, enter $\> instead.
Finally, note that the XML equivalent of <$! code %> is
<jsp:declaration>

Code
</jsp:declaration>

10.5 Predefined Variables

To simplify code in JSP expressions and scriptlets, you are supplied with eight
automatically defined variables, sometimes called implicit objects. Since JSP
declarations (see Section 10.4) result in code that appears outside of the
_jspService method, these variables are not accessible in declarations. The
available variables are request, response, out, session, application,
config,pageContext,mﬂipage.Ik%aﬂsfbreadlaREghen}xﬂO“ﬂ

request

This variable is the HttpServletRequest associated with the request;
it gives you access to the request parameters, the request type (e.g., GET
or posT), and the incoming HTTP headers (e.g., cookies). Strictly
speaking, if the protocol in the request is something other than HTTP,
request is allowed to be a subclass of servietrRequest other than
HttpServletRequest. However, few, if any, JSP servers currently sup-
port non-HTTP servlets.

response
This variable is the HttpServletResponse associated with the
response to the client. Note that since the output stream (see out) is
normally buffered, it is legal to set HTTP status codes and response
headers in JSP pages, even though the setting of headers or status codes
is not permitted in servlets once any output has been sent to the client.

out

This is the Printwriter used to send output to the client. However, to
make the response object useful, this is a buffered version of print-
writer called gspwriter. You can adjust the buffer size through use of
the buffer attribute of the page directive (see Section 11.5). Also note

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

10.5 Predefined Variables 245

that out is used almost exclusively in scriptlets, since JSP expressions
are automatically placed in the output stream and thus rarely need to
refer to out explicitly.

session

This variable is the Ht tpSession object associated with the request.
Recall that sessions are created automatically, so this variable is bound
even if there is no incoming session reference. The one exception is if
you use the session attribute of the page directive (see Section 11.4)
to turn sessions off. In that case, attempts to reference the session
variable cause errors at the time the JSP page is translated into a servlet.

application

This variable is the servletcontext as obtained via getServletCon-
fig().getContext (). Servlets and JSP pages can store persistent data
in the servletcontext object rather than in instance variables. serv-
letContext has setattribute and getAttribute methods that let
you store arbitrary data associated with specified keys. The difference
between storing data in instance variables and storing it in the servlet-
Context is that the servletContext is shared by all servlets in the serv-
let engine (or in the Web application, if your server supports such a
capability). For more information on the use of the servletcontext,
see Section 13.4 (Sharing Beans) and Chapter 15 (Integrating Servlets
and JSP).

config
This variable is the servletConfig object for this page.

pageContext

JSP introduced a new class called Pagecontext to give a single point of
access to many of the page attributes and to provide a convenient place
to store shared data. The pagecontext variable stores the value of the

PageContext object associated with the current page. See Section 13.4
(Sharing Beans) for a discussion of its use.

page

This variable is simply a synonym for this and is not very useful in the
Java programming language. It was created as a place holder for the
time when the scripting language could be something other than Java.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

THE JSP PAGE
DIRECTIVE:
STRUCTURING
GENERATED
SERVLETS

y Topics in This Chapter

* The purpose of the page directive

* Designating which classes are imported

* Using custom classes

* Specifying the MIME type of the page

* Generating Excel documents

* Controlling threading behavior

* Participating in sessions

* Setting the size and behavior of the output buffer
* Designating pages to process JSP errors

* XML-compatible syntax for directives

Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Chapte

JSP directive affects the overall structure of the servlet that results

from the JSP page. The following templates show the two possible

forms for directives. Single quotes can be substituted for the double
quotes around the attribute values, but the quotation marks cannot be omit-
ted altogether. To obtain quote marks within an attribute value, precede
them with a back slash, using * for * and \" for ".

<%$@ directive attribute="value" %>

<%@ directive attributel="valuel"
attribute2="value2"

attributeN="valueN" %>

In JSP, there are three types of directives: page, include, and taglib.
The page directive lets you control the structure of the servlet by importing
classes, customizing the servlet superclass, setting the content type, and the
like. A page directive can be placed anywhere within the document; its use is
the topic of this chapter. The second directive, include, lets you insert a file
into the servlet class at the time the JSP file is translated into a servlet. An
include directive should be placed in the document at the point at which
you want the file to be inserted; it is discussed in Chapter 12 (Including Files
and Applets in J[SP Documents) for inserting files into JSP pages. JSP 1.1
introduces a third directive, taglib, which can be used to define custom

247

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

248 Chapter Il The JSP page Directive: Structuring Generated Servlets

markup tags; it is discussed in Chapter 14 (Creating Custom JSP Tag Librar-
ies).

The page directive lets you define one or more of the following case-sen-
sitive attributes: import, contentType, isThreadSafe, session, buffer,
autoflush, extends, info, errorPage, isErrorPage, and language
These attributes are explained in the following sections.

1.1 The import Attribute

The import attribute of the page directive lets you specify the packages that
should be imported by the servlet into which the JSP page gets translated. If
you dont explicitly specify any classes to import, the servlet imports
java.lang.*, javax.servlet.*, javax.servlet.jsp.*, javax.serv-
let.http.*, and possibly some number of server-specific entries. Never
write JSP code that relies on any server-specific classes being imported auto-
matically. Use of the import attribute takes one of the following two forms:

<%@ page import="package.class" %>

<%@ page import="package.classl, ...,package.classN" %>

For example, the following directive signifies that all classes in the
java.util package should be available to use without explicit package iden-
tifiers.

<%@ page import="java.util.*" %>

The import attribute is the only page attribute that is allowed to appear
multiple times within the same document. Although page directives can
appear anywhere within the document, it is traditional to place import state-
ments either near the top of the document or just before the first place that
the referenced package is used.

Directories for Custom Classes

If you import classes that are not in any of the standard java or
javax.servlet packages, you need to be sure that those classes have been
properly installed on your server. In particular, most servers that support
automatic servlet reloading do not permit classes that are in the auto-reload-
ing directories to be referenced by JSP pages. The particular locations used
for servlet classes vary from server to server, so you should consult your
server’s documentation for definitive guidance. The locations used by Apache
Tomcat 3.0, the JSWDK 1.0.1, and the Java Web Server 2.0 are summarized

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
I11.1 The import Attribute
in Table 11.1. All three of these servers also make use of JAR files in the 1ib

subdirectory, and in all three cases you must restart the server whenever you
change files in this directory.

Table 1.1 Class Installation Directories
Automatically Availab
Location Relative Reloaded le from
to Installation When Class JSP
Server Directory Use Changes? Pages?
Tomecat 3.0 webpages/WEB-INF/ Standardlocation No Yes
classes for servlet classes
Tomcat 3.0 classes Alternative loca- No Yes
tion for servlet
classes
JSWDK webpages/WEB-INF/ Standardlocation No Yes
1.0.1 servlets for servlet classes
JSWDK classes Alternative loca- No Yes
1.0.1 tion for servlet
classes
Java Web servlets Location for fre- Yes No
Server 2.0 quently chang-
ing servlet classes
Java Web classes Location for No Yes
Server 2.0 infrequently
changing servlet
classes
Example

Listing 11.1 presents a page that uses three classes not in the standard JSP
import list: java.util.Date, coreservlets.ServletUtilities (see List-
ing 8.3), and coreservlets.LongLivedCookie (see Listing 8.4). To simplify
references to these classes, the JSP page uses

<%@ page import="java.util.*,coreservlets.*" %>

Figures 11-1 and 11-2 show some typical results.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

249

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

250 Chapter Il The JSP page Directive: Structuring Generated Servlets
Listing I 1.1 ImportAttribute. jsp
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>The import Attribute</TITLE>

<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">

< /HEAD>
<BODY>
<H2>The import Attribute</H2>
<%-- JSP page directive --%>

<%@ page import="java.util.*,coreservlets.*" %>

<%-- JSP Declaration (see Section 10.4) --%>
<%!
private String randomID() {

int num = (int) (Math.random()*10000000.0) ;

return("id" + num) ;

private final String NO_VALUE = "<I>No Value</I>";
%>

<%-- JSP Scriptlet (see Section 10.3) --%>

<%

Cookie[] cookies = request.getCookies();

String o0ldID =
ServletUtilities.getCookieValue(cookies, "userID", NO_VALUE);
String newID;
if (0ldID.equals(NO_VALUE)) {
newID = randomID() ;
} else {
newID = o0l1ldID;
}
LongLivedCookie cookie = new LongLivedCookie("userID", newID);
response.addCookie (cookie) ;

)
>

<%-- JSP Expressions (see Section 10.2) --%>
This page was accessed at <%= new Date() %> with a userID
cookie of <%= 0ldID %>.

</BODY>
</HTML>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

11.2 The contentType Attribute 251

43 The import Attribute - Microsoft Internet Explorer O] x|

J File Edit “iew Favortes Toolz Help |

J€ -2 QNS QAEIB-SH -

Jﬁi\gldless IE http: #Alocalhostd) SPAmpartétribute, jzp j FGD |J Links **

[—
The import Attribute
This page was accessed at Wed Jan 19 072959 EST
2000 with a veetID cockie of No Palue. -

|@ Dane l_ I_ @ Local intranet i

Figure 11-1 ImportAttribute.jsp when first accessed.

43 The import Attribute - Microsoft Internet Explorer O] x|

J File Edit “iew Favortes Toolz Help |

J€ -2 QNS QAEIB-SH -

Jﬁi\gldless IE http: #Alocalhostd) SPAmpartétribute, jzp j FGD |J Links **

[—
The import Attribute
This page was acceszed at Wed Jan 12 07:31:.24 EST
2000 with a veerID cookie of 1d1107611. -

|@ Daone l_ I_ @ Local intranet i

Figure 11-2 ImportAttribute.jsp when accessed in a subsequent visit.

11.2 The contentType Attribute

The contentType attribute sets the Content-Type response header, indicat-
ing the MIME type of the document being sent to the client. For more infor-
mation on MIME types, see Table 7.1 (Common MIME Types) in Section
7.2 (HTTP 1.1 Response Headers and Their Meaning).

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

252 Chapter Il The JSP page Directive: Structuring Generated Servlets

Use of the contentType attribute takes one of the following two forms:

<%@ page contentType="MIME-Type" %>
<%@ page contentType="MIME-Type; charset=Character-Set" %>

For example, the directive
<%@ page contentType="text/plain" %>
has the same effect as the scriptlet
<% response.setContentType ("text/plain"); %>
Unlike regular servlets, where the default MIME type is text/plain, the

default for JSP pages is text/html (with a default character set of
IS0-8859-1).

Generating Plain Text Documents

Listing 11.2 shows a document that appears to be HTML but has a content-
Type of text/plain. Strictly speaking, browsers are supposed to display the
raw HTML content in such a case, as shown in Netscape in Figure 11-3.
Internet Explorer, however, interprets the document as though it were of
type text/html, as shown in Figure 11-4.

Listing 1.2 ContentType. jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE>The contentType Attribute</TITLE>

</HEAD>

<BODY>

<H2>The contentType Attribute</H2>
<%@ page contentType="text/plain" %>
This should be rendered as plain text,
not as HTML.

</BODY>
</HTML>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

11.2 The contentType Attribute 253

File Edit Wiew Go Communicator Help

e Abamas @ 3 =

<!DOCTYPE HTML PUBELIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTHL>

<HEAD>

<TITLE>The contentType Attribute</TITLE:

</ HELD>

<BODY>
<Hz>The contentType Attribute</HZ>»

Thiz should ke rendered as plain text,
<Brnot a= HTHL.

</BODT>
</ HTHML>

=R == |Documert: Done = TR Pz
Figure 11-3 For plain text documents, Netscape does not try fo interpret HTML tags.

'3 The contentT ype Attribute - Microsoft Internet Explorer
J File Edit “iew Favortez Tool: Help |
[¢-2- A QEIB SN Juns >
] [|
The contentType Attribute
This should be rendered as plan text, not as HTTL.
| -]
|@ Done I_l_ 25 Local intranet 4

Figure 11-4 Internet Explorer interprets HTML tags in plain text documents.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

254 Chapter Il The JSP page Directive: Structuring Generated Servlets

Generating Excel Spreadsheets

You can create simple Microsoft Excel spreadsheets by specifying applica-
tion/vnd.ms-excel as the content type and then formatting the spread-
sheet entries in one of two ways.

One way to format the content is to put rows on separate lines of the docu-
ment and to use tabs between each of the columns. Listing 11.3 shows a sim-
ple example, and Figures 11-5 and 11-6 show the results of loading the page
in Netscape on a system with Excel installed. Of course, in a real application,
the entries would probably be generated dynamically, perhaps by a JSP
expression or scriptlet that refers to database values that were accessed with
JDBC (see Chapter 18).

Listing I 1.3 Excel.jsp

<%@ page contentType="application/vnd.ms-excel" %>

<%-- Note that there are tabs, not spaces, between columns. --%>
1997 1998 1999 2000 2001 (Anticipated)

12.3 13.4 14.5 15.6 16.7

Warning: There is a possible secunty hazard here.

e Opening:
. Encel.xlz using excel exe.

When you download a file from the network, pou should be
aware of securty conzsiderations.

A file that containg malicious programming instructions
could damage or athenwize compromize the contents of
Your compuker,

You should only use files obtained from zsites that pou bust,

‘WWhat do you want to da with thizs file?

" Save it to disk

[V abaays ask before opening this bpe of file
[~ Open OLE zerver in-place

Qk | Cancel

Figure 11-5 With the default browser settings, Netscape prompts you before allowing
Excel content.

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

11.2 The contentType Attribute 255
X Microsoft Excel !EE
“ File Edit ‘iew Insert Format Tools Data Window Help
DEHE SRy saad -« |e@®|z 4 2%l @

Arial - 10 -

BIg|

=FH % _-d-A-

A VOQUNAPL xls
A

1997 1993 1999 2000 2001 (Anticipated)
123 13.4 145 158 167

ﬁ » [¥\ ¥OQINAPL 141 |
Ready i [Mo [

Figure 11-6 Result of Excel. jsp on system that has Excel installed.

A second way to format Excel content is to use a normal HTML table,
which recent versions of Excel can interpret properly as long as the page is
marked with the proper MIME type. This capability suggests a simple
method of returning either HTML or Excel content, depending on which
the user prefers: just use an HTML table and set the content type to
application/vnd.ms-excel only if the user requests the results in Excel.
Unfortunately, this approach brings to light a small deficiency in the page
directive: attribute values cannot be computed at run time, nor can page
directives be conditionally inserted as can template text. So, the following
attempt results in Excel content regardless of the result of the checkuser-
Request method.

<% boolean usingExcel = checkUserRequest (request); %>

<% if (usingExcel) { %>

<%@ page contentType="application/vnd.ms-excel" %>

<% } %>

Fortunately, there is a simple solution to the problem of conditionally set-
ting the content type: just use scriptlets and the normal servlet approach of
response.setContentType, as in the following snippet:

<%

String format = request.getParameter ("format");

if ((format != null) && (format.equals("excel"))) {
response.setContentType ("application/vnd.ms-excel") ;

[

>

Home page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
Servlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

256 Chapter Il The JSP page Directive: Structuring Generated Servlets

Listing 11.4 shows a page that uses this approach; Figures 11-7 and 11-8
show the results in Internet Explorer. Again, in a real application the data
would almost certainly be dynamically